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Preface 

Since its inception in 2000 with two conference papers titled "Privacy Preserv­
ing Data Mining", research on learning from data that we aren't allowed to see 
has multiplied dramatically. Publications have appeared in numerous venues, 
ranging from data mining to database to information security to cryptogra­
phy. While there have been several privacy-preserving data mining workshops 
that bring together researchers from multiple communities, the research is still 
fragmented. 

This book presents a sampling of work in the field. The primary target is 
the researcher or student who wishes to work in privacy-preserving data min­
ing; the goal is to give a background on approaches along with details showing 
how to develop specific solutions within each approach. The book is organized 
much like a typical data mining text, with discussion of privacy-preserving so­
lutions to particular data mining tasks. Readers with more general interests 
on the interaction between data mining and privacy will want to concentrate 
on Chapters 1-3 and 8, which describe privacy impacts of data mining and 
general approaches to privacy-preserving data mining. Those who have par­
ticular data mining problems to solve, but run into roadblocks because of 
privacy issues, may want to concentrate on the specific type of data mining 
task in Chapters 4-7. 

The authors sincerely hope this book will be valuable in bringing order to 
this new and exciting research area; leading to advances that accomplish the 
apparently competing goals of extracting knowledge from data and protecting 
the privacy of the individuals the data is about. 

West Lafayette, Indiana, Chris Clifton 



Privacy and Data Mining 

Data mining has emerged as a significant technology for gaining knowledge 
from vast quantities of data. However, there has been growing concern that use 
of this technology is violating individual privacy. This has lead to a backlash 
against the technology. For example, a "Data-Mining Moratorium Act" intro­
duced in the U.S. Senate that would have banned all data-mining programs 
(including research and development) by the U.S. Department of Defense[31]. 
While perhaps too extreme - as a hypothetical example, would data mining 
of equipment failure to improve maintenance schedules violate privacy? - the 
concern is real. There is growing concern over information privacy in general, 
with accompanying standards and legislation. This will be discussed in more 
detail in Chapter 2. 

Data mining is perhaps unfairly demonized in this debate, a victim of mis­
understanding of the technology. The goal of most data mining approaches is 
to develop generalized knowledge, rather than identify information about spe­
cific individuals. Market-basket association rules identify relationships among 
items purchases (e.g., "People who buy milk and eggs also buy butter"), the 
identity of the individuals who made such purposes are not a part of the 
result. Contrast with the "Data-Mining Reporting Act of 2003" [32], which 
defines data-mining as: 

(1) DATA-MINING- The term 'data-mining' means a query or 
search or other analysis of 1 or more electronic databases, where-

(A) at least 1 of the databases was obtained from or remains under 
the control of a non-Federal entity, or the information was acquired 
initially by another department or agency of the Federal Government 
for purposes other than intelligence or law enforcement; 

(B) the search does not use a specific individual's personal identi­
fiers to acquire information concerning that individual; and 

(C) a department or agency of the Federal Government is conduct­
ing the query or search or other analysis to find a pattern indicating 
terrorist or other criminal activity. 
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Note in particular clause (B), which talks specifically of searching for infor­
mation concerning that individual This is the opposite of most data mining, 
which is trying to move from information about individuals (the raw data) to 
generalizations that apply to broad classes. (A possible exception is Outlier 
Detection; techniques for outlier detection that limit the risk to privacy are 
discussed in Chapter 7.3.) 

Does this mean that data mining (at least when used to develop general­
ized knowledge) does not pose a privacy risk? In practice, the answer is no. 
Perhaps the largest problem is not with data mining, but with the infras­
tructure used to support it. The more complete and accurate the data, the 
better the data mining results. The existence of complete, comprehensive, and 
accurate data sets raises privacy issues regardless of their intended use. The 
concern over, and eventual elimination of, the Total/Terrorism Information 
Awareness Program (the real target of the "Data-Mining Moratorium Act") 
was not because preventing terrorism was a bad idea - but because of the po­
tential misuse of the data. While much of the data is already accessible, the 
fact that data is distributed among multiple databases, each under different 
authority, makes obtaining data for misuse diflScult. The same problem arises 
with building data warehouses for data mining. Even though the data mining 
itself may be benign, gaining access to the data warehouse to misuse the data 
is much easier than gaining access to all of the original sources. 

A second problem is with the results themselves. The census community 
has long recognized that publishing summaries of census data carries risks of 
violating privacy. Summary tables for a small census region may not iden­
tify an individual, but in combination (along with some knowledge about the 
individual, e.g., number of children and education level) it may be possible 
to isolate an individual and determine private information. There has been 
significant research showing how to release summary data without disclos­
ing individual information [19]. Data mining results represent a new type of 
"summary data"; ensuring privacy means showing that the results (e.g., a 
set of association rules or a classification model) do not inherently disclose 
individual information. 

The data mining and information security communities have recently be­
gun addressing these issues. Numerous techniques have been developed that 
address the first problem - avoiding the potential for misuse posed by an inte­
grated data warehouse. In short, techniques that allow mining when we aren't 
allowed to see the data. This work falls into two main categories: Data per­
turbation, and Secure Multiparty Computation. Data perturbation is based 
on the idea of not providing real data to the data miner - since the data isn't 
real, it shouldn't reveal private information. The data mining challenge is in 
how to obtain valid results from such data. The second category is based on 
separation of authority: Data is presumed to be controlled by diff*erent enti­
ties, and the goal is for those entities to cooperate to obtain vahd data-mining 
results without disclosing their own data to others. 
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The second problem, the potential for data mining results to reveal private 
information, has received less attention. This is largely because concepts of 
privacy are not well-defined - without a formal definition, it is hard to say if 
privacy has been violated. We include a discussion of the work that has been 
done on this topic in Chapter 2. 

Despite the fact that this field is new, and that privacy is not yet fully 
defined, there are many applications where privacy-preserving data mining 
can be shown to provide useful knowledge while meeting accepted standards 
for protecting privacy. As an example, consider mining of supermarket trans­
action data. Most supermarkets now off'er discount cards to consumers who 
are willing to have their purchases tracked. Generating association rules from 
such data is a commonly used data mining example, leading to insight into 
buyer behavior that can be used to redesign store layouts, develop retailing 
promotions, etc. 

This data can also be shared with suppUers, supporting their product de­
velopment and marketing eff'orts. Unless substantial demographic information 
is removed, this could pose a privacy risk. Even if sufficient information is re­
moved and the data cannot be traced back to the consumer, there is still a risk 
to the supermarket. Utilizing information from multiple retailers, a supplier 
may be able to develop promotions that favor one retailer over another, or 
that enhance supplier revenue at the expense of the retailer. 

Instead, suppose that the retailers collaborate to produce globally valid 
association rules for the benefit of the supplier, without disclosing their own 
contribution to either the supplier or other retailers. This allows the supplier 
to improve product and marketing (benefiting all retailers*), but does not pro­
vide the information needed to single out one retailer. Also notice that the 
individual data need not leave the retailer, solving the privacy problem raised 
by disclosing consumer data! In Chapter 6.2.1, we will see an algorithm that 
enables this scenario. 

The goal of privacy-preserving data mining is to enable such win-win-
win situations: The knowledge present in the data is extracted for use, the 
individual's privacy is protected, and the data holder is protected against 
misuse or disclosure of the data. 

There are numerous drivers leading to increased demand for both data 
mining and privacy. On the data mining front, increased data collection is 
providing greater opportunities for data analysis. At the same time, an in­
creasingly competitive world raises the cost of failing to utilize data. This can 
range from strategic business decisions (many view the decision as to the next 
plane by Airbus and Boeing to be make-or-break choices), to operational deci­
sions (cost of overstocking or understocking items at a retailer), to intelligence 
discoveries (many beheve that better data analysis could have prevented the 
September 11, 2001 terrorist attacks.) 

At the same time, the costs of faihng to protect privacy are increasing. For 
example, Toysmart.com gathered substantial customer information, promising 
that the private information would "never be shared with a third party." 
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When Toysmart.com filed for bankruptcy in 2000, the customer hst was viewed 
as one of its more valuable assets. Toysmart.com was caught between the 
Bankruptcy court and creditors (who claimed rights to the Hst), and the 
Federal Trade Commission and TRUSTe (who claimed Toysmart.com was 
contractually prevented from disclosing the data). Walt Disney Corporation, 
the parent of Toysmart.com, eventually paid $50,000 to the creditors for the 
right to destroy the customer list.[64] More recently, in 2004 California passed 
SB 1386, requiring a company to notify any California resident whose name 
and social security number, driver's license number, or financial information 
is disclosed through a breach of computerized data; such costs would almost 
certainly exceed the $.20/person that Disney paid to destroy Toysmart.com 
data. 

Drivers for privacy-preserving data mining include: 

• Legal requirements for protecting data. Perhaps the best known are the 
European Community's regulations [26] and the HIPAA healthcare reg­
ulations in the U.S. [40], but many jurisdictions are developing new and 
often more restrictive privacy laws. 

• Liability from inadvertent disclosure of data. Even where legal protections 
do not prevent sharing of data, contractual obligations often require pro­
tection. A recent U.S. example of a credit card processor having 40 million 
credit card numbers stolen is a good example - the processor was not sup­
posed to maintain data after processing was complete, but kept old data 
to analyze for fraud prevention (i.e., for data mining.) 

• Proprietary information poses a tradeoflP between the eflaciency gains pos­
sible through sharing it with suppliers, and the risk of misuse of these 
trade secrets. Optimizing a supply chain is one example; companies face a 
tradeoff" between greater efl&ciency in the supply chain, and revealing data 
to suppliers or customers that can compromise pricing and negotiating 
positions [7]. 

• Antitrust concerns restrict the ability of competitors to share information. 
How can competitors share information for allowed purposes (e.g., collab­
orative research on new technology), but still prove that the information 
shared does not enable collusion in pricing? 

While the latter examples do not really appear to be a privacy issue, privacy-
preserving data mining technology supports all of these needs. The goal of 
privacy-preserving data mining - analyzing data while limiting disclosure of 
that data - has numerous applications. 

This book first looks more specifically at what is meant by privacy, as well 
as background in security and statistics on which most privacy-preserving data 
mining is built. A brief outline of the different classes of privacy-preserving 
data mining solutions, along with background theory behind those classes, is 
given in Chapter 3. Chapters 4-7 are organized by data mining task (classi­
fication, regression, associations, clustering), and present privacy-preserving 
data mining solutions for each of those tasks. The goal is not only to present 
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algorithms to solve each of these problems, but to give an idea of the types 
of solutions that have been developed. This book does not attempt to present 
all the privacy-preserving data mining algorithms that have been developed. 
Instead, each algorithm presented introduces new approaches to preserving 
privacy; these differences are highlighted. Through understanding the spec­
trum of techniques and approaches that have been used for privacy-preserving 
data mining, the reader will have the understanding necessary to solve new 
privacy-preserving data mining problems. 



What is Privacy? 

A standard dictionary definition of privacy as it pertains to data is "freedom 
from unauthorized intrusion" [58]. With respect to privacy-preserving data 
mining, this does provide some insight. If users have given authorization to 
use the data for the particular data mining task, then there is no privacy issue. 
However, the second part is more diflacult: If use is not authorized, what use 
constitutes "intrusion" ? 

A common standard among most privacy laws (e.g., European Commu­
nity privacy guidelines[26] or the U.S. healthcare laws[40]) is that privacy only 
applies to "individually identifiable data". Combining intrusion and individ­
ually identifiable leads to a standard to judge privacy-preserving data mining: 
A privacy-preserving data mining technique must ensure that any information 
disclosed 

1. cannot be traced to an individual; or 
2. does not constitute an intrusion. 

Formal definitions for both these items are an open challenge. At one ex­
treme, we could assume that any data that does not give us completely accu­
rate knowledge about a specific individual meets these criteria. At the other 
extreme, any improvement in our knowledge about an individual could be 
considered an intrusion. The latter is particularly likely to cause a problem 
for data mining, as the goal is to improve our knowledge. Even though the 
target is often groups of individuals, knowing more about a group does in­
crease our knowledge about individuals in the group. This means we need to 
measure both the knowledge gained and our abiUty to relate it to a particular 
individual, and determine if these exceed thresholds. 

This chapter first reviews metrics concerned with individual identifiability. 
This is not a complete review, but concentrates on work that has particular 
applicability to privacy-preserving data mining techniques. The second issue, 
what constitutes an intrusion, is less clearly defined. The end of the chapter 
will discuss some proposals for metrics to evaluate intrusiveness, but this is 
still very much an open problem. 
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To utilize this chapter in the concept of privacy-preserving data min­
ing, it is important to remember that all disclosure from the data mining 
must be considered. This includes disclosure of data sets that have been al­
tered/randomized to provide privacy, communications between parties par­
ticipating in the mining process, and disclosure of the results of mining (e.g., 
a data mining model.) As this chapter introduces means of measuring pri­
vacy, examples will be provided of their relevance to the types of disclosures 
associated with privacy-preserving data mining. 

2.1 Individual Identifiability 

The U.S. Healthcare Information Portability and Accountability Act (KIPAA) 
defines individually nonidentifiable data as data "that does not identify an in­
dividual and with respect to which there is no reasonable basis to believe that 
the information can be used to identify an individual" [41]. The regulation 
requires an analysis that the risk of identification of individuals is very small 
in any data disclosed, alone or in combination with other reasonably avail­
able information. A real example of this is given in [79]: Medical data was 
disclosed with name and address removed. Linking with publicly available 
voter registration records using birth date, gender, and postal code revealed 
the name and address corresponding to the (presumed anonymous) medical 
records. This raises a key point: Just because the individual is not identifiable 
in the data is not sufficient; joining the data with other sources must not 
enable identification. 

One proposed approach to prevent this is /c-anonymity[76, 79]. The basic 
idea behind A:-anonymity is to group individuals so that any identification is 
only to a group of /c, not to an individual. This requires the introduction of 
a notion of quasi-identifier: information that can be used to link a record to 
an individual. With respect to the HIPAA definition, a quasi-identifier would 
be anything that would be present in "reasonably available information". The 
HIPAA regulations actually give a list of presumed quasi-identifiers; if these 
items are removed, data is considered not individually identifiable. The defi­
nition of /c-anonymity states that any record must not be unique in its quasi-
identifiers; there must be at least k records with the same quasi-identifier. 
This ensures that an attempt to identify an individual will result in at least 
k records that could apply to the individual. Assuming that the privacy-
sensitive data (e.g., medical diagnoses) are not the same for all k records, 
then this throws uncertainty into any knowledge about an individual. The 
uncertainty lowers the risk that the knowledge constitutes an intrusion. 

The idea that knowledge that applies to a group rather than a specific 
individual does not violate privacy has a long history. Census bureaus have 
used this approach as a means of protecting privacy. These agencies typically 
publish aggregate data in the form of contingency tables reflecting the count of 
individuals meeting a particular criterion (see Table 2.1). Note that some cells 
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Table 2.1. Excerpt from Table of Census Data, U.S. Census Bureau 

Block Group 1, Census Tract 1, District 
of Columbia, District of Columbia 

Total: 9 
Owner occupied: 3 

1-person household 2 
2-person household 1 

Renter occupied: 6 
1-person household 3 
2-person household 2 

list only a single such household. The disclosure problem is that combining 
this data with small cells in other tables (e.g., a table that reports salary by 
size of household, and a table reporting salary by racial characteristics) may 
reveal that only one possible salary is consistent with the numbers in all of the 
tables. For example, if we know that all owner-occupied 2-person households 
have salary over $40,000, and of the nine multiracial households, only one has 
salary over $40,000, we can determine that the single multiracial individual 
in an owner-occupied 2-person household makes over $40,000. Since race and 
household size can often be observed, and home ownership status is publicly 
available (in the U.S.), this would result in disclosure of an individual salary. 

Several methods are used to combat this. One is by introducing noise into 
the data; in Table 2.1 the Census Bureau warns that statistical procedures 
have been applied that introduce some uncertainty into data for small ge­
ographic areas with small population groups. Other techniques include cell 
suppression, in which counts smaller than a threshold are not reported at all; 
and generalization, where cells with small counts are merged (e.g., changing 
Table 2.1 so that it doesn't distinguish between owner-occupied and Renter-
occupied housing.) Generalization and suppression are also used to achieve 
A:-anonymity. 

How does this apply to privacy-preserving data mining? If we can ensure 
that disclosures from the data mining generalize to large enough groups of 
individuals, then the size of the group can be used as a metric for privacy 
protection. This is of particular interest with respect to data mining results: 
When does the result itself violate privacy? The "size of group" standard 
may be easily met for some techniques; e.g., pruning approaches for decision 
trees may already generalize outcomes that apply to only small groups and 
association rule support counts provide a clear group size. 

An unsolved problem for privacy-preserving data mining is the cumulative 
effect of multiple disclosures. While building a single model may meet the 
standard, multiple data mining models in combination may enable deducing 
individual information. This is closely related to the "multiple table" problem 
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of census release, or the statistical disclosure limitation problem. Statistical 
disclosure limitation has been a topic of considerable study; readers interested 
in addressing the problem for data mining are urged to delve further into 
statistical disclosure limitation[18, 88, 86]. 

In addition to the "size of group" standard, the census community has de­
veloped techniques to measure risk of identifying an individual in a dataset. 
This has been used to evaluate the release of Public Use Microdata Sets: Data 
that appears to be actual census records for sets of individuals. Before release, 
several techniques are applied to the data: Generalization (e.g., limiting geo­
graphic detail), top/bottom coding (e.g., reporting a salary only as "greater 
than $100,000"), and data swapping (taking two records and swapping their 
values for one attribute.) These techniques introduce uncertainty into the 
data, thus limiting the confidence in attempts lo identify an individual in the 
data. Combined with releasing only a sample of the dataset, it is hkely that 
an identified individual is really a false match. This can happen if the indi­
vidual is not in the sample, but swapping values between individuals in the 
sample creates a quasi-identifier that matches the target individual. Knowing 
that this is likely, an adversary trying to compromise privacy can have little 
confidence that the matching data really applies to the targeted individual. 

A set of metrics are used to evaluate privacy preservation for public use 
microdata sets. One set is based on the value of the data, and includes preser­
vation of univariate and covariate statistics on the data. The second deals 
with privacy, and is based on the percentage of individuals that a particularly 
well-equipped adversary could identify. Assumptions are that the adversary: 

1. knows that some individuals are almost certainly in the sample (e.g., 600-
1000 for a sample of 1500 individuals), 

2. knows that the sample comes from a restricted set of individuals (e.g., 
20,000), 

3. has a good estimate (although some uncertainty) about the non-sensitive 
values (quasi-identifiers) for the target individuals, and 

4. has a reasonable estimate of the sensitive values (e.g., within 10%.) 

The metric is based on the number of individuals the adversary is able to 
correctly and confidently identify. In [60], identification rates of 13% are con­
sidered acceptably low. Note that this is an extremely well-informed adversary; 
in practice rates would be much lower. 

While not a clean and simple metric like "size of group", this experimental 
approach that looks at the rate at which a well-informed adversary can identify 
individuals can be used to develop techniques to evaluate a variety of privacy-
preserving data mining approaches. However, it is not amenable to a simple, 
"one size fits all" standard - as demonstrated in [60], applying this approach 
demands considerable understanding of the particular domain and the privacy 
risks associated with that domain. 

There have been attempts to develop more formal definitions of anonymity 
that provide greater flexibility than /c-anonymity. A metric presented in [15] 
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uses the concept of anonymity, but specifically based on the ability to learn 
to distinguish individuals. The idea is that we should be unable to learn a 
classifier that distinguishes between individuals with high probability. The 
specific metric proposed was: 

Definition 2 .1 . [15] Two records that belong to different individuals / i , /2 
are p-indistinguishable given data X if for every polynomial-time function 
/ : / ^ { 0 , l } 

\Pr{f{h) = l\X} - Pr{f{h) = 1\X}\ < p 

where 0 < p < 1. 

Note the similarity to /c-anonymity. This definition does not prevent us from 
learning sensitive mformation, it only poses a problem if that sensitive in­
formation is tied more closely to one individual rather than another. The 
difference is that this is a metric for the (sensitive) data X rather than the 
quasi-identifiers. 

Further treatment along the same lines is given in [12], which defines a 
concept of isolation based on the abiHty of an adversary to "single out" an 
individual y in a. set of points RDB using a query q: 

Definition 2.2. [12] Let y be any RDB point, and let 6y = ||^ — ^||2- ^ e say 
that q {c,t)-isolates y iff B{q,cSy) contains fewer than t points in the RDB, 
that is, \B{q,cSy) H RDB\ < t. 

The idea is that if y has at least t close neighbors, then anonymity (and 
privacy) is preserved. "Close" is determined by both a privacy threshold c, 
and how close the adversary's "guess" q is to the actual point y. With c — 0, 
or if the adversary knows the location of y^ then /c-anonymity is required to 
meet this standard. However, if an adversary has less information about y, 
the "anonymizing" neighbors need not be as close. 

The paper continues with several sanitization algorithms that guarantee 
meeting the (c, t)-isolation standard. Perhaps most relevant to our discussion 
is that they show how to relate the definition to different "strength" adver­
saries. In particular, an adversary that generates a region that it believes y lies 
in versus an adversary that generates an action point q as the estimate. They 
show that there is essentially no difference in the abiHty of these adversaries 
to violate the (non)-isolation standard. 

2.2 Measuring the Intrusiveness of Disclosure 

To violate privacy, disclosed information must both be linked to an individual, 
and constitute an intrusion. While it is possible to develop broad definitions 
for individually identifiable, it is much harder to state what constitutes an 
intrusion. Release of some types of data, such as date of birth, pose only a mi­
nor annoyance by themselves. But in conjunction with other information date 
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of birth can be used for identity theft, an unquestionable intrusion. Determin­
ing intrusiveness must be evaluated independently for each domain, making 
general approaches difficult. 

What can be done is to measure the amount of information about a privacy 
sensitive attribute that is revealed to an adversary. As this is still an evolving 
area, we give only a brief description of several proposals rather than an in-
depth treatment. It is our feeling that measuring intrusiveness of disclosure is 
still an open problem for privacy-preserving data mining; readers interested 
in addressing this problem are urged to consult the papers referenced in the 
following overview. 

Bounded Knowledge. 

Introducing uncertainty is a well established approach to protecting privacy. 
This leads to a metric based on the ability of an adversary to use the disclosed 
data to estimate a sensitive value. One such measure is given by [1]. They 
propose a measure based on the differential entropy of a random variable. 
The differential entropy h{A) is a measure of the uncertainty inherent in A. 
Their metric for privacy is 2^^^\ Specifically, if we add noise from a random 
variable A, the privacy is: 

n{A) = 2~^^A f^^^'>^''32fA{a)da 

where QA is the domain of A. There is a nice intuition behind this measure: 
The privacy is 0 if the exact value is known, and if the adversary knows only 
that the data is in a range of width a (but has no information on where in 
that range), n{A) = a. 

The problem with this metric is that an adversary may already have knowl­
edge of the sensitive value; the real concern is how much that knowledge is 
increased by the data mining. This leads to a conditional privacy definition: 

^ / . i ^ x ^ ~ fo fA,B(a,b)log2fA\B=b{a)dadb 

n{A\B)=2 -^""^'^ 

This was applied to noise addition to a dataset in [1]; this is discussed further 
in Chapter 4.2. However, the same metric can be applied to disclosures other 
than of the source data (although calculating the metric may be a challenge.) 

A similar approach is taken in [14], where conditional entropy was used 
to evaluate disclosure from secure distributed protocols (see Chapter 3.3). 
While the definitions in Chapter 3.3 require perfect secrecy, the approach in 
[14] allows some disclosure. Assuming a uniform distribution of data, they 
are able to calculate the conditional entropy resulting from execution of a 
protocol (in particular, a set of linear equations that combine random noise 
and real data.) Using this, they analyze several scalar product protocols based 
on adding noise to a system of linear equations, then later factoring out the 
noise. The protocols result in sharing the "noisy" data; the technique of [14] 
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enables evaluating the expected change in entropy resulting from the shared 
noisy data. While perhaps not directly applicable to all privacy-preserving 
data mining, the technique shows another way of calculating the information 
gained. 

Need to know. 

While not really a metric, the reason for disclosing information is important. 
Privacy laws generally include disclosure for certain permitted purposes, e.g. 
the European Union privacy guidelines specifically allow disclosure for gov­
ernment use or to carry out a transaction requested by the individual[26]: 

Member States shall provide that personal data may be processed only 
if: 
(a) the data subject has unambiguously given his consent; or 
(b) processing is necessary for the performance of a contract to which 
the data subject is party or in order to take steps at the request of 
the data subject prior to entering into a contract; or ... 

This principle can be applied to data mining as well: disclose only the data 
actually needed to perform the desired task. We will show an example of this in 
Chapter 4.3. One approach produces a classifier, with the classification model 
being the outcome. Another provides the ability to classify, without actually 
revealing the model. If the goal is to classify new instances, the latter approach 
is less of a privacy threat. However, if the goal is to gain knowledge from 
understanding the model (e.g., understanding decision rules), then disclosure 
of that model may be acceptable. 

Protected from disclosure. 

Sometimes disclosure of certain data is specifically proscribed. We may find 
that any knowledge about that data is deemed too sensitive to reveal. For 
specific types of data mining, it may be possible to design techniques that 
limit ability to infer values from results, or even to control what results can 
be obtained. This is discussed further in Chapter 6.3. The problem in general 
is difficult. Data mining results inherently give knowledge. Combined with 
other knowledge available to an adversary, this may give some information 
about the protected data. A more detailed analysis of this type of disclosure 
will be discussed below. 

Indirect disclosure. 

Techniques to analyze a classifier to determine if it discloses sensitive data 
were explored in [48]. Their work made the assumption that the disclosure 
was a "black box" classifier - the adversary could classify instances, but not 
look inside the classifier. (Chapter 4.5 shows one way to do this.) A key insight 
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of this work was to divide data into three classes: Sensitive data, Pubhc data, 
and data that is f/nknown to the adversary. The basic metric used was the 
Bayes classification error rate. Assume we have data (xi, X2,...,Xn), that we 
want to classify x^'s into m classes { 0 , 1 , . . . , m — 1}. For any classifier C: 

Xi H-̂  C{xi) G { 0 , 1 , . . . , m - 1}, 2 = 1, 2 , . . . , n, 

we define the classifier accuracy for C as: 

771—1 

Y^ Pr{C{x) / i\z = i}Pr{z = i}. 
i=0 

As ar 5-xample, assume we have n samples X - (xi, .T2, . . . , x^) from a '^-poir.t 
Gaussian mixture (1 — e)A/"(0,1) + eN{ii, 1). We generate a sensitive data set 
Z = {zi,Z2,.' •, Zn) where Zi = 0 ii Xi is sampled from N{0,1), and Zi — 1 if 
Xi is sampled from Ar(/i, 1). For this simple classification problem, notice that 
out of the n samples, there are roughly en samples from N{id, 1), and (1 — e)n 
from A/'(0,1). The total number of misclassified samples can be approximated 
by: 

n(l - e)Pr{C{x) = l\z - 0} + nePr{C{x) = 0\z = 1}; 

dividing by n, we get the fraction of misclassified samples: 

(1 - e)Pr{C{x) = l\z = 0}-{- ePr{C{x) = 0\z = 1}; 

and the metric gives the overall possibility that any sample is misclassified 
by C. Notice that this metric is an "overall" measure, not a measure for a 
particular value of x. 

Based on this, several problems are analyzed in [48]. The obvious case is 
the example above: The classifier returns sensitive data. However, there are 
several more interesting cases. What if the classifier takes both public and 
unknown data as input? If we assume that all of the training data is known 
to the adversary (including public and sensitive, but not unknown, values), 
the classifier C(P, U) —> S gives the adversary no additional knowledge about 
the sensitive values. But if the training data is unknown to the adversary, 
the classifier C does reveal sensitive data, even though the adversary does not 
have complete information as input to the classifier. 

Another issue is the potential for privacy violation of a classifier that 
takes public data and discloses non-sensitive data to the adversary. While 
not in itself a privacy violation (no sensitive data is revealed), such a classifier 
could enable the adversary to deduce sensitive information. An experimental 
approach to evaluate this possibility is given in [48]. 

A final issue is raised by the fact that publicly available records already 
contain considerable information that many would consider private. If the 
private data revealed by a data mining process is already publicly available, 
does this pose a privacy risk? If the ease of access to that data is increased 
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(e.g., available on the internet versus in person at a city hall), then the answer 
is yes. But if the data disclosed through data mining is as hard to obtain as the 
publicly available records, it isn't clear that the data mining poses a privacy 
threat. 

Expanding on this argument, privacy risk really needs to be measured 
as the loss of privacy resulting from data mining. Suppose X is a sensitive 
attribute and its value for an fixed individual is equal to x. For example, 
X = X \s the salary of a professor at a university. Before any data processing 
and mining, some prior information may already exist regarding x. If each 
department publishes a range of salaries for each faculty rank, the prior infor­
mation would be a bounded interval. Clearly, when addressing the impact of 
data mining on privacy, prior information also should be considered. Another 
type of external information comes from other attributes that are not privacy 
sensitive and are dependent on X. The values of these attributes, or even 
some properties regarding these attributes, are already public. Because of the 
dependence, information about X can be inferred from these attributes. 

Several of the above techniques can be applied to these situations, in par­
ticular Bayesian inference, the conditional privacy definition of [1] (as well as 
a related conditional distribution definition from [27], and the indirect disclo­
sure work of [48]. Still open is how to incorporate ease of access into these 
definitions. 



Solution Approaches / Problems 

In the current day and age, data collection is ubiquitous. Collating knowledge 
from this data is a valuable task. If the data is collected and mined at a single 
site, the data mining itself does not really pose an additional privacy risk; 
anyone with access to data at that site already has the specific individual 
information. While privacy laws may restrict use of such data for data mining 
(e.g., EC95/46 restricts how private data can be used), controlling such use 
is not really within the domain of privacy-preserving data mining technology. 
The technologies discussed in this book are instead concerned with preventing 
disclosure of private data: mining the data when we aren't allowed to see it. 
If individually identifiable data is not disclosed, the potential for intrusive 
misuse (and the resultant privacy breach) is eliminated. 

The techniques presented in this book all start with an assumption that 
the source(s) and mining of the data are not all at the same site. This would 
seem to lead to distributed data mining techniques as a solution for privacy-
preserving data mining. While we will see that such techniques serve as a 
basis for some privacy-preserving data mining algorithms, they do not solve 
the problem. Distributed data mining is eff"ective when control of the data 
resides with a single party. From a privacy point of view, this is little dif­
ferent from data residing at a single site. If control/ownership of the data is 
centralized, the data could be centrally collected and classical data mining 
algorithms run. Distributed data mining approaches focus on increasing ef­
ficiency relative to such centralization of data. In order to save bandwidth 
or utilize the parallelism inherent in a distributed system, distributed data 
mining solutions often transfer summary information which in itself reveals 
significant information. 

If data control or ownership is distributed, then disclosure of private in­
formation becomes an issue. This is the domain of privacy-preserving data 
mining. How control is distributed has a great impact on the appropriate so­
lutions. For example, the first two privacy-preserving data mining papers both 
dealt with a situation where each party controlled information for a subset of 
individuals. In [56], the assumption was that two parties had the data divided 
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between them: A "collaborating companies" model. The motivation for [4], 
individual survey data, lead to the opposite extreme: each of thousands of 
individuals controlled data on themselves. Because the way control or owner­
ship of data is divided has such an impact on privacy-preserving data mining 
solutions, we now go into some detail on the way data can be divided and the 
resulting classes of solutions. 

3.1 Data Partitioning Models 

Before formulating solutions, it is necessary to first model the different ways in 
which data is distributed in the real world. There are two basic data partition­
ing / data distribution models: hurizontai partitioning (a.k.a. homogeneous 
distribution) and vertical partitioning (a.k.a. heterogeneous distribution). We 
will now formally define these models. We define a dataset D in terms of the 
entities for whom the data is collected and the information that is collected for 
each entity. Thus, D = {E, / ) , where E is the entity set for whom information 
is collected and / is the feature set that is collected. We assume that there are k 
different sites. Pi , . . . ,P /^ collecting datasets Di = (^i, / i ) , . . . ,Dk = {Ek,Ik) 
respectively. 

Horizontal partitioning of data assumes that different sites collect the same 
sort of information about different entities. Therefore, in horizontal partition­
ing. EG - [JiEi = Ei[j'"[JEk. and/c = ^^ - hf]'"f]h- Many such 
situations exist in real life. For example, all banks collect very similar infor­
mation. However, the customer base for each bank tends to be quite different. 
Figure 3.1 demonstrates horizontal partitioning of data. The figure shows two 
banks. Citibank and JPMorgan Chase, each of which collects credit card infor­
mation for their respective customers. Attributes such as the account balance, 
whether the account is new, active, delinquent are collected by both. Merging 
the two databases together should lead to more accurate predictive models 
used for activities like fraud detection. 

On the other hand, vertical partitioning of data assumes that different 
sites collect different feature sets for the same set of entities. Thus, in verti­
cal partitioning. EG =- f]iEi = Eif].. .f]Ek, dmd IQ = [J^ = hi) • •-Uh-
For example. Ford collects information about vehicles manufactured. Fire­
stone collects information about tires manufactured. Vehicles can be linked to 
tires. This linking information can be used to join the databases. The global 
database could then be mined to reveal useful information. Figure 3.2 demon­
strates vertical partitioning of data. First, we see a hypothetical hospital / 
insurance company collecting medical records such as the type of brain tu­
mor and diabetes (none if the person does not suffer from the condition). 
On the other hand, a wireless provider might be collecting other information 
such as the approximate amount of airtime used every day, the model of the 
cellphone and the kind of battery used. Together, merging this information 
for common customers and running data mining algorithms might give com-



Perturbation 19 

CC# Active? Delinquent? New? Balance 

Citibank 

1 113 

296 

; 
1 1934 

Yes 

No 

Yes 

No 

Yes 

Yes 

Yes 

No 

No 

<$400 

>$1000 

i 
$400-600 

JPMorgan Chase- . 

3450 

4127 

; 
8772 

Yes 

No 

Yes 

Yes 

No 

No 

Yes 

Yes 

No 

<$400 

$400-600 

; 
>$1000 

Fig. 3.1. Horizontal partitioning / Homogeneous distribution of data 

pletely unexpected correlations (for example, a person with Type I diabetes 
using a cell phone with Li/Ion batteries for more than an hour per day is very 
likely to suffer from primary brain tumors.) It would be impossible to get such 
information by considering either database in isolation. 

While there has been some work on more complex partitionings of data 
(e.g., [44] deals with data where the partitioning of each entity may be differ­
ent), there is still considerable work to be done in this area. 

3.2 Perturbation 

One approach to privacy-preserving data mining is based on perturbating 
the original data, then providing the perturbed dataset as input to the data 
mining algorithm. The privacy-preserving properties are a result of the pertur­
bation: Data values for individual entities are distorted, and thus individually 
identifiable (private) values are not revealed. An example would be a survey: 
A company wishes to mine data from a survey of private data values. While 
the respondents may be unwilling to provide those data values directly, they 
would be willing to provide perturbed/distorted results. 

If an attribute is continuous, a simple perturbation method is to add noise 
generated from a specified probability distribution. Let X be an attribute 
and an individual have X = x, where x is a real value. Let r be a number 
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Fig. 3.2. Vertical partitioning / Heterogeneous distribution of data 

randomly drawn from a normal distribution with mean 0 and variance 1. In 
stead of disclosing x, the individual reveals x -\- r. In fact, more complicated 
methods can be designed. For example, Warner [87] proposed the randomized 
response method for handling privacy sensitive questions in survey. Suppose 
an attribute Y with two values (yes or no) is of interest in a survey. The 
attribute however is private and an individual who participates the survey is 
not willing to disclose it. In stead of directly asking the question whether the 
surveyee has Y or not, the following two questions are presented: 

1. I have the attribute Y. 
2. I do not have the attribute Y. 

The individual then use a randomizing device to decide which question to an­
swer: The first is chosen with probability 0 and the second question is chosen 
with probability 1 — 0. The surveyor gets either yes or no from the individual 
but does not know which question has been chosen and answered. Clearly, 
the value of Y thus obtained is the perturbed value and the true value or 
the privacy is protected. [23] used this technique for building privacy preserv­
ing decision trees. When mining association rules in market basket data, [28] 
proposed a a sophisticated scheme called the select-a-size randomization for 
preserving privacy, which will be discussed in detail in Section 6.1. Zhu and 
Liu [92] explored more sophisticated schemes for adding noise. Because ran­
domization is usually an important part of most perturbation methods, we 
will use randomization and perturbation interchangeably in the book. 

The randomized or noisy data preserves individual privacy, but it poses a 
challenge to data mining. Two crucial questions are how to mine the random-
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ized data and how good the results based on randomized data are compared 
to the possible results from the original data. When data are sufficient, many 
aggregate properties can still be mined with enough accuracy, even when the 
randomization scheme is not exactly known. When the randomization scheme 
is known, then it is in generally possible to design a data mining tool in a way 
so that the best possible results can be obtained. It is understandable that 
some information or efficiency will be lost or compromised due to randomiza­
tion. In most applications, the data mining tasks of interest are usually with 
a limited scope. Therefore, there is a possibility that randomization can be 
designed so that the information of interest can be preserved together with 
privacy, while irrelevant information is compromised. In general, the design of 
optimal randomization is still an open challenge. 

Different data mining tasks and applications require different randomiza­
tion schemes. The degree of randomization usually depends on how much 
privacy a data source wants to preserve, or how much information it allows 
others to learn. Kargupta et al. pointed out an important issue: arbitrary ran­
domization is not safe [49]. Though randomized data may look quite different 
from the original data, an adversary may be able to take advantage of proper­
ties such as correlations and patterns in the original data to approximate their 
values accurately. For example, suppose a data contains one attribute and all 
its values are a constant. Based on the randomized data, an analyst can learn 
this fact fairly easily, which immediately results in a privacy breach. Similar 
situations will occur when the original data points demonstrate high sequen­
tial correlations or even deterministic patterns, or when the attributes are 
highly correlated. Huang el al. [42] further explore this issue as well and pro­
pose two data reconstruction methods based on data correlations - a Principal 
Component Analysis (PCA) technique and a Bayes Estimate (BE) technique. 
In general, data sources need to be aware of any special patterns in their data, 
and set up constraints that should be satisifed by any randomization schemes 
that they use. On the other hands, as discussed in the previous paragraph, 
excessive randomization will compromise the performance of a data mining al­
gorithm or method. Thus, the efficacy of randomization critically depends on 
the way it is applied. For application, randomization schemes should be care­
fully designed to preserve a balance between privacy and information sharing 
and use. 

3.3 Secure Multi-party Computation 

Secure Multi-party Computation(SMC) refers to the general problem of secure 
computation of a function with distributed inputs. In general, any problem can 
be viewed as an SMC problem, and indeed all solution approaches fall under 
the broad umbrella of SMC. However, with respect to Privacy Preserving 
Data Mining, the general class of solutions that possess the rigor of work 
in SMC, and are typically based on cryptographic techniques are said to be 
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SMC solutions. Since a significant part of the book describes these solutions, 
we now provide a brief introduction to the field of SMC. 

Yao first postulated the two-party comparison problem (Yao's Millionaire 
Protocol) and developed a provably secure solution [90]. This was extended 
to multiparty computations by Goldreich et al.[37]. They developed a frame­
work for secure multiparty computation, and in [36] proved that computing a 
function privately is equivalent to computing it securely. 

We start with the definitions for security in the semi-honest model. A 
semi-honest party (also referred to as honest but curious) follows the rules 
of the protocol using its correct input, but is free to later use what it sees 
during execution of the protocol to compromise security. A formal definition 
of private two-party computation in the semi-honest model is given below. 

Definition 3.1. (privacy with respect to semi-honest behavior):[36] 
Let f : {0,1}* X {0,1}* i—> {0,1}* x {0,1}* be a functionality, and 

f\{x,y) (resp., /2(x,y)) denote the first (resp., second) element of f{x,y). 
Let n be two-party protocol for computing f. The view of the first (resp., sec­
ond) party during an execution of TI on {x,y), denoted VlEw{^ (x, y) (resp., 
YlEW^ {x,y)), is ( x , r , m i , . . . ,mi) (resp., (?/,r, m i , . . . ,mt)), where r repre­
sents the outcome of the first (resp., second) party ^s internal coin tosses, and 
rui represents the i^^ message it has received. The OUTPUT of the first (resp., 
second) party during an execution of TI on (x^y), denoted OUTPUT{^ (x,7/) 
(resp., OUTPUT2̂  (x, y)) is implicit in the party^s own view of the execution, 
and OUTPUT^ (x, y) = (ouTPUTf (x, y), OUTPUT2^ (X, y)). 

(general case) We say that TI privately computes fif there exist probabilistic 
polynomial-time algorithms, denoted Si and S2, such that 

{{Si {x, h (x, y)), f {x, y))}^,y = {(viEwf {x, y), O U T P U T " (X, y)) }^_^ 

{{S2 {y, /2 {x, y)), f {x, y))}^y = {(viEwf {x, y), O U T P U T " {X, y)) }^_^ 

c 
where = denotes computational indistinguishability by (non-uniform) families 
of polynomial-size circuits. 

Privacy by Simulation 

The above definition says that a computation is secure if the view of each 
party during the execution of the protocol can be effectively simulated given 
the input and the output of that party. Thus, in all of our proofs of security, 
we only need to show the existence of a simulator for each party that satisfies 
the above equations. 

This does not quite guarantee that private information is protected. What­
ever information can be deduced from the final result obviously cannot be kept 
private. For example, if a party learns that point A is an outlier, but point 
B which is close to A is not an outlier, it learns an estimate on the number 
of points that lie between the space covered by the hypersphere for A and 
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hypersphere for B. Here, the result reveals information to the site having A 
and B. The key to the definition of privacy is that nothing is learned beyond 
what is inherent in the result. 

A key result we use is the composition theorem. We state it for the semi-
honest model. A detailed discussion of this theorem, as well as the proof, can 
be found in [36]. 

Theorem 3.2. (Composition Theorem for the semi-honest model): Suppose 
that g is privately reducible to f and that there exists a protocol for privately 
computing f Then there exists a protocol for privately computing g. 

Proof Refer to [36]. 

The above definitions and theorems are relative to the r,cmi-honest model. 
This model guarantees that parties who correctly follow the protocol do not 
have to fear seeing data they are not supposed to - this actually is suflacient 
for many practical applications of privacy-preserving data mining (e.g., where 
the concern is avoiding the cost of protecting private data.) The malicious 
model (guaranteeing that a malicious party cannot obtain private informa­
tion from an honest one, among other things) adds considerable complexity. 
While many of the SMC-style protocols presented in this book do provide 
guarantees beyond that of the semi-honest model (such as guaranteeing that 
individual data items are not disclosed to a malicious party), few meet all 
the requirements of the malicious model. The definition above is sufl[icient 
for understanding this book; readers who wish to perform research in secure 
multiparty computation based privacy-preserving data mining protocols are 
urged to study [36]. 

Apart from the prior formulation, Goldreich also discusses an alternative 
formulation for privacy using the real vs. ideal model philosophy. A scheme is 
considered to be secure if whatever a feasible adversary can obtain in the real 
model, is also feasibly attainable in an ideal model. In this frame work, one 
first considers an ideal model in which the (two) parties are joined by a (third) 
trusted party, and the computation is performed via this trusted party. Next, 
one considers the real model in which a real (two-party) protocol is executed 
without any trusted third parties. A protocol in the real model is said to be 
secure with respect to certain adversarial behavior if the possible real execu­
tions with such an adversary can be "simulated" in the corresponding ideal 
model. The notion of simulation used here is diff'erent from the one used in 
Definition 3.1: Rather than simulating the view of a party via a traditional al­
gorithm, the joint view of both parties needs to be simulated by the execution 
of an ideal-model protocol. Details can be found in [36]. 

3.3.1 Secure Circuit Evaluation 

Perhaps the most important result to come out of the Secure Multiparty Com­
putation community is a constructive proof that any polynomially computable 
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function can be computed securely. This was accomplished by demonstrating 
that given a (polynomial size) boolean circuit with inputs split between par­
ties, the circuit could be evaluated so that neither side would learn anything 
but the result. The idea is based on share splitting: the value for each "wire" 
in the circuit is split into two shares, such that the exclusive or of the two 
shares gives the true value. Say that the value on the wire should be 0 - this 
could be accomplished by both parties having 1, or both having 0. However, 
from one party's point of view, holding a 0 gives no information about the 
true value: we know that the other party's value is the true value, but we 
don't know what the other party's value is. 

Andrew Yao showed that we could use cryptographic techniques to com­
pute random shares of the output of a gate given random shares of the input, 
such that the exclusive or of the outputs gives the correct value, (This was 
formalized by Goldreich et al. in [37].) Two see this, let us view the case for 
a single gate, where each party holds one input. The two parties each choose 
a random bit, and provide the (randomly chosen) value r to the other party. 
They then replace their own input i with i 0 r . Imagine the gate is an exclusive 
or: Party a then has {ia 0^^) and r^. Party a simply takes the exclusive or of 
these values to get {ia & Va) ® Vb as its share of the output. Party b likewise 
gets {ib 0 Vb) 0 Va as its share. Note that neither has seen anything but a 
randomly chosen bit from the other party - clearly no information has been 
passed. However, the exclusive or of the two results is: 

O ^ OaQOb 

= {{ia e Va) 0 n) 0 {{ib 0 n) 0 r^) 
^ia^ib^raera^n^n 

Since any value exclusive orred with itself is 0, the random values cancel out 
and we are left with the correct result. 

Inverting a value is also easy; one party simply inverts its random share; 
the other does nothing (both know the circuit, it is just the inputs that are 
private.) The and operation is more difficult, and involves a cryptographic 
protocol known as oblivious transfer. If we start with the random shares as 
described above. Party a randomly chooses its output Oa and constructs a 
table as follows: 
{iberb),ra\\Ofl 0,1 1,0 1,1 
Ob Oa + {ia®ra)-rb Oa + {ia © Va) 

{n +1) 
Oa + ( ( 2 a © r a ) + l ) Oa + ( ( i a © r a ) + l ) -

{Vb + 1) 

Note that given party 6's shares of the input (first line), the exclusive or of 
Oa with Ob (the second hue) cancels out Oa, leaving the correct output for the 
gate. But the (randomly chosen) Oa hides this from Party b. 

The cryptographic oblivious transfer protocol allows Party b to get the 
correct bit from the second row of this table, without being able to see any of 
the other bits or revealing to Party a which entry was chosen. 

Repeating this process allows computing any arbitrarily large circuit (for 
details on the process, proof, and why it is limited to polynomial size see 
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[36].) The problem is that for data mining on large data sets, the number of 
inputs and size of the circuit become very large, and the computation cost 
becomes prohibitive. However, this method does enable efficient computation 
of functions of small inputs (such as comparing two numbers), and is used 
frequently as a subroutine in privacy-preserving data mining algorithms based 
on the secure multiparty computation model. 

3.3.2 Secure Sum 

We now go through a short example of secure computation to give a flavor of 
the overall idea - Secure sum. The secure sum problem is rather simple but 
extremely useful. Distributed data mining algorithms frequently calculate the 
sum of values from individual sites and thus use it as an underlying primitive. 

The problem is defined as follows: Once again, we assume k parties. 
P i , . . . , P/c. Party Pi has a private value Xi. Together they want to compute 
the sum S = Xli=.i ^* ^^ ^ secure fashion (i.e., without revealing anything 
except the final result). One other assumption is that the range of the sum is 
known (i.e., an upper bound on the sum). Thus, we assume that the sum S 
is a number in the field J^. Assuming at least 3 parties, the following protocol 
computes such a sum -

• Pi generates a random number r from a uniform random distribution over 
the field T. 

• Pi computes Si = xi -\-r mod \F\ and sends it to P2 
• For parties P 2 , . . . , P/c-i 

- Pi receives Si-i = r + Yl]^i ^3 ^ ^ d |P | . 

- Pi computes Si = Si-i -\-Xi mod |P | = T + X^j^i ^j ^ ^ d |P | and sends 
it to site Pi-fi. 

• Pk receives Sk-\ = r + YljZi ^j ^ ^ ^ 1̂ 1-

• Pk computes Sk = Sk-i + Xi mod |P | = r + J2j=i ^j ^^^ l-̂ l ^^^ sends 
it to site Pi. 

• Pi computes S =^ Sk — r mod |P | = Ylj=i ^j ^^od \F\ and sends it to all 
other parties as well 

Figure 3.3 depicts how this method operates on an example with 4 parties. 
The above protocol is secure in the SMC sense. The proof of security consists 
of showing how to simulate the messages received. Once those can be simulated 
in polynomial time, the messages sent can be easily computed. The basic idea 
is that every party (except Pi) only sees messages masked by a random number 
unknown to it, while Pi only sees the final result. So, nothing new is learned 
by any party. Formally, P^ (2 = 2 , . . . , A:) gets the message Si-i = r + ^ J ~ ^ Xj. 

i-l 

Pr{Si-i =a)= Pr{r + ^ x,- = a) (3.1) 



26 Solution Approaches / Problems 

IFU50 

R = 32 

Slte1 
32 + 5 mod 50 = 37 

3 + 17 mod 50 
= 20 

2 0 - R =-12 mod 50 = 38 

17 

Site 2 

12 
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Site 3 

49 + 4 mod 50 = 3 

Fig. 3.3. Secure computation of a sum. 

Pr{r = a-Y^xj) 

1 

W\ 

(3.2) 

(3.3) 

Thus, Si-i can be simulated simply by randomly choosing a number from a 
uniform distribution over T. Since Pi knows the final result and the number 
r it chose, it can simulate the message it gets as well. Note tha t Pi can also 
determine Ylj=2^j ^^ subtracting xi. This is possible from the global result 
regardless of how it is computed^ so Pi has not learned anything from the 
computation. 

In the protocol presented above. P i is designated as the initiator and the 
parties are ordered numerically (i.e., messages go from Pi to P^+i. However, 
there is no special reason for either of these. Any party could be selected to 
initiate the protocol and receive the sum at the end. The order of the parties 
can also be scrambled (as long as every par ty does have the chance to add its 
private input) . 

This method faces an obvious problem if sites collude. Sites P/_i and 
P/_l-i can compare the values they send/receive to determine the exact value 
for xi. The method can be extended to work for an honest majority. Each 
site divides xi into shares. The sum for each share is computed individually. 
However, the path used is permuted for each share, such tha t no site has the 
same neighbor twice. To compute x/, the neighbors of P/ from each iteration 
would have to collude. Varying the number of shares varies the number of 
dishonest (colluding) parties required to violate security. 
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One problem with both the randomization and cryptographic SMC ap­
proach is that unique secure solutions are required for every single data min­
ing problem. While many of the building blocks used in these solutions are 
the same, this still remains a tremendous task, especially when considering 
the sheer number of different approaches possible. One possible way around 
this problem is to somehow transform the domain of the problem in a way 
that would make different data mining possible without requiring too much 
customization. 



Predictive Modeling for Classification 

Classification refers to the problem of categorizing observations into classes. 
Predictive modeling uses samples of data for which the class is known to gen­
erate a model for classifying new observations. Classification is ubiquitous in 
its applicability. Many real life problems reduce to classification. For example, 
medical diagnosis can be viewed as a classification problem: Symptoms and 
tests form the observation; the disease / diagnosis is the class. Similarly, fraud 
detection can be viewed as classification into fraudulent and non-fraudulent 
classes. Other examples abound. 

There are several privacy issues associated with classification. The most 
obvious is with the samples used to generate, or learn, the classification model. 
The medical diagnosis example above would require samples of medical data; 
if individually identifiable this would be "protected healthcare information" 
under the U.S. HIPAA regulations. A second issue is with privacy of the 
observations themselves; imagine a "health self-checkup" web site, or a bank 
offering a service to predict the likelihood that a transaction is fraudulent. A 
third issue was discussed in Chapter 2.2: the classification model itself could 
be too effective, in effect revealing private information about individuals. 

Example: Fraud Detection 

To illustrate these issues, we will introduce an example based on credit card 
fraud detection. Credit card fraud is a burgeoning problem costing millions 
of dollars worldwide. Fair Isaac's Falcon Fraud Manager is used to monitor 
transactions for more than 450 million active accounts over six continents [30]. 
Consortium models incorporating data from hundreds of issuers have proven 
extremely useful in predicting fraud. 

A key assumption of this approach is that Fair Isaac is trusted by all of 
the participating entities to keep their data secret from others. This imposes a 
high burden on Fair Isaac to ensure security of the data. In addition, privacy 
laws affect this model: many laws restrict trans-border disclosure of private 
information. (This includes transfer to the U.S., which has relatively weak 
privacy laws.) 
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A privacy-preserving solution would not require that actual private data be 
provided to Fair Isaac. This could involve ensemble approaches (card issuers 
provide a fraud model to Fair Isaac, rather than actual data), or having issues 
provide statistics that are not individually identifiable. Carrying this further, 
the card issuers may want to avoid having their own private data exposed. 
(Disclosure that an issuer had an unusually high percentage of fraudulent 
transactions would not be good for the stock price.) A full privacy-preserving 
solution would enable issuers to contribute to the development of the global 
fraud model, as well as use that model, without fear that their, or their cus­
tomers', private data would be disclosed. Eliminating concerns over privacy 
could result in improved models: more sensitive data could be utilized, and 
entities that might otherwise have passed could participate. 

Wfious techniques have evolved for classification. They include bayesian 
classification, decision tree based classification, neural network classification, 
and many others. For example. Fair Isaac uses an advanced neural network for 
fraud detection. In the most elemental sense, a classification algorithm trains 
a model out of the training data. In order to perform better than random, the 
algorithm computes some form of summary statistics from the training data, 
or encodes information in some way. Thus, inherently, some form of access to 
the data is assumed. Indeed most of the algorithms use the simplest possible 
means of computing these summary statistics through direct examination of 
data items. The privacy-preserving data mining problem, then, is to compute 
these statistics and construct the prediction model without having access to 
the data. Related to this is the issue of how the generated model is shared 
between the participating parties. Giving the global model to all parties may 
be appropriate in some cases, but not all. With a shared (privacy-preserving) 
model, some protocol is required to classify a new instance as well. 

Privacy preserving solutions have been developed for several different tech­
niques. Indeed, the entire field of privacy preserving data mining originated 
with two concurrently developed independent solutions for decision tree clas­
sification, emulating the IDS algorithm when direct access to the data is not 
available. 

This chapter contains a detailed view of privacy preserving solutions for 
IDS classification, starting with a review of decision tree classification and 
the IDS algorithm. We present three distinct solutions, each applicable to a 
different partitioning of the data. The two original papers in the field assumed 
horizontal partitioning, however one assumed that data was divided between 
two parties, while the other assumed that each individual provided their own 
data. This resulted in very difi'erent solutions, based on completely different 
models of privacy. Most privacy-preserving data mining work has build on one 
of the privacy models used in these original papers, so we will go into them 
in some detail. For completeness, we also introduce a solution for vertically 
partitioned data; this raises some new issues that do not occur with hori­
zontal partitioning. We then discuss some of the privacy preserving solutions 
developed for other forms of classification. 
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4.1 Decision Tree Classification 

Decision tree classification is one of the most widely used and practical meth­
ods for inductive inference. Decision tree learning is robust to noisy data 
and is capable of learning both conjunctive and disjunctive expressions. It is 
generally used to approximate discrete-valued target functions. Mitchell [59] 
characterizes problems suited to decision trees as follows (presentation cour­
tesy Hamilton et al.[39]): 

• Instances are composed of attribute-value pairs. 
- Instances are described by a fixed set of attributes (e.g., temperature) 

and their values (e.g., hot). 
- The easiest situation for decision tree learning occurs when each at­

tribute takes on a small number of disjoint possible values (e.g., hot, 
mild, cold). 

- Extensions to the basic algorithm allow handling real-valued attributes 
as well (e.g., temperature). 

• The target function has discrete output values. 
- A decision tree assigns a classification to each example. Boolean clas­

sification (with only two possible classes) is the simplest. Methods can 
easily be extended to learning functions multiple (> 2) possible output 
values. 

- Learning target functions with real-valued outputs is also possible 
(though significant extensions to the basic algorithm are necessary); 
these are commonly referred to as regression trees. 

• Disjunctive descriptions may be required (since decision trees naturally 
represent disjunctive expressions). 

• The training data may contain errors. Decision tree learning methods are 
robust to errors - both errors in classifications of the training examples 
and errors in the attribute values that describe these examples. 

• The training data may contain missing attribute values. Decision tree 
methods can be used even when some training examples have unknown 
values (e.g., temperature is known for only some of the examples). 

The model built by the algorithm is represented by a decision tree - hence 
the name. A decision tree is a sequential arrangement of tests (an appropriate 
test is prescribed at every step in an analysis). The leaves of the tree predict 
the class of the instance. Every path from the tree root to a leaf corresponds to 
a conjunction of attribute tests. Thus, the entire tree represents a disjunction 
of conjunctions of constraints on the attribute-values of instances. This tree 
can also be represented as a set of if-then rules. This adds to the readabihty 
and intuitiveness of the model. 

For instance, consider the weather dataset shown in Table 4.1. Figure 4.1 
shows one possible decision tree learned from this data set. New instances are 
classified by sorting them down the tree from the root node to some leaf node, 
which provides the classification of the instance. Every interior node of the 
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tree specifies a test of some attribute for the instance; each branch descending 
from that node corresponds to one of the possible values for this attribute. 
So, an instance is classified by starting at the root node of the decision tree, 
testing the attribute specified by this node, then moving down the tree branch 
corresponding to the value of the attribute. This process is then repeated at 
the node on this branch and so on until a leaf node is reached. For example 
the instance {sunny, hot, normal, FALSE} would be classified as "Yes" by 
the tree in figure 4.1. 

Table 4.1. The Weather Dataset 

outlook 

sunny 
sunny 

overcast 
rainy 
rainy 
rainy 

overcast 
sunny 
sunny 
rainy 
sunny 

overcast 
overcast 

rainy 

temperature | humidity 

hoi 
hot 
hot 

mild 
cool 
cool 
cool 
mild 
cool 
mild 
mild 
mild 
hot 
mild 

high 
high 
high 
high 

normal 
normal 
normal 

high 
normal 
normal 
normal 

high 
normal 

high 

windy 

FALSE 
TRUE 
FALSE 
FALSE 
FALSE 
TRUE 
TRUE 
FALSE 
FALSE 
FALSE 
TRUE 
TRUE 
FALSE 
TRUE 

play 

no 
no 
yes 
yes 
yes 
no 
yes 
no 
yes 
yes 
yes 
yes 
yes 
no 

While many possible trees can be learned from the same set of training 
data, finding the optimal decision tree is an NP-complete problem. Occam's 
Razor (specialized to decision trees) is used as a guiding principle: "The world 
is inherently simple. Therefore the smallest decision tree that is consistent 
with the samples is the one that is most likely to identify unknown objects 
correctly". Rather than building all the possible trees, measuring the size of 
each, and choosing the smallest tree that best fits the data, several heuristics 
can be used in order to build a good tree. 

Quinlan's IDS[72] algorithm is based on an information theoretic heuris­
tic. It is appeahngly simple and intuitive. As such, it is quite popular for 
constructing a decision tree. The seminal papers in Privacy Preserving Data 
Mining [4, 57] proposed solutions for constructing a decision tree using ID3 
without disclosure of the data used to build the tree. 

The basic IDS algorithm is given in Algorithm 1. An information theoretic 
heuristic is used to decide the best attribute to split the tree. The subtrees are 
built by recursively applying the IDS algorithm to the appropriate subset of 
the dataset. Building an IDS decision tree is a recursive process, operating on 
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Outlook 

Humidity Yes Wind 

No Yes 

Fig. 4.1. A decision tree learned from the weather dataset 

the decision attributes R, class attribute C, and training entities T. At each 
stage, one of three things can happen: 

1. R might be empty; i.e., the algorithm has no attributes on which to make 
a choice. In this case, a decision on the class must be made simply on the 
basis of the transactions. A simple heuristic is to create a leaf node with 
the class of the leaf being the majority class of the transactions in T. 

2. All the transactions in T may have the same class c. In this case, a leaf is 
created with class c. 

3. Otherwise, we recurse: 
a) Find the attribute A that is the most effective classifier for transac­

tions in T, specifically the attribute that gives the highest information 
gain. 

b) Partition T based on the values â  of ^ . 
c) Return a tree with root labeled A and edges a ,̂ with the node at the 

end of edge â  constructed from calling ID3 with i? — {A}, C, T{Ai). 

In step 3a, information gain is defined as the change in the entropy relative 
to the class attribute. Specifically, the entropy 

HciT) = 
c£C 

\nc)\,_\T{c 
log-

Analogously, the entropy after classifying with A is 

\T{a)\ 
Hc{T\A) = Y. • 

\T\ HciTia)). 
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Information gain due to the a t t r ibute A is now defined as 

Gain{A)''=^ Hc{T)-Hc{T\A). 

The goal, then, is to find A tha t maximizes Gain{A). Since Hc{T) is fixed 
for any given T, this is equivalent to finding A tha t minimizes HciT\A). 
Expanding, we get: 

Hc{T\A) = J2 ^^Hc{T{A)) 
aGA 

\T{a,c)\ 

\T{A)\ 
1 Y - m M Y ^ | r ( a , c ) | , / 

^ ^ | T ( a , c ) | l o g ( | T ( a , c ) | ) + 
aeAcec 

^ | T ( a ) | l o g ( | T ( a ) | ) ) (4.1) 

A l g o r i t h m 1 ID3(R,C,T) tree learning algorithm 

Require: H, the set of attributes 
Require: C, the class attribute 
Require: T, the set of transactions 
1: if i^ is empty then 
2: return a leaf node, with class value assigned to most transactions in T 
3: else if all transactions in T have the same class c then 
4: return a leaf node with the class c 
5: else 
6: Determine the attribute A that best classifies the transactions in T 
7: Let a i , . . . , a m be the values of attribute A. Partition T into the vn partitions 

T ( a i ) , . . . , T{ayr^ such that every transaction in T(ai) has the attribute value 
ai. 

8: Return a tree whose root is labeled A (this is the test attribute) and has vn 
edges labeled a i , . . . ,am such that for every i, the edge ai goes to the tree 
IDZ{R-A,C,T{ai)). 

9: end if 

4.2 A Perturbat ion-Based Solution for IDS 

We now look at several perturbation based solutions for the classification 
problem. Recall tha t the focal processes of the perturbation based technique 
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• the process of adding noise to the data 
• the technique of learning the model from the noisy dataset 

We start off by describing the solution proposed in the seminal paper by 
Agrawal and Srikant [4]. Agrawal and Srikant assume that the data is hori­
zontally partitioned and the class is globally known. For example, a company 
wants a survey of the demographics of existing customers - each customer has 
his/her own information. Furthermore, the company already knows which are 
high-value customers, and wants to know what demographics correspond to 
high-value customers. The challenge is that customers do not want to reveal 
their demographic information. Instead, they give the company data that is 
perturbed by the addition of random noise. (As we shall see, while the added 
noise is random, it must come from a distribution that is known to the com­
pany.) 

If we return to the description of ID3 in Section 4.1, we see that Steps 1 
and 3c do not reference the (noisy) data. Step 2 references only the class data. 
Since this is assumed to be known, this only leaves Steps 3a and 3b: Finding 
the attribute with the maximum information gain and partitioning the tree 
based on that attribute. Looking at Equation 4.1, the only thing needed is 
|T(a,c)| and |T(a)|.^ 1^(^)1 requires partitioning the entities based on the 
attribute value, exactly what is needed for Step 3b. The problem is that the 
attribute values are modified, so we don't know which entity really belongs in 
which partition. 

Figure 4.2 demonstrates this problem graphically. There are clearly peaks 
in the number of drivers under 25 and in the 25-35 age range, but this doesn't 
hold in the noisy data. The ID3 partitioning should reflect the peaks in the 
data. 

A second problem comes from the fact that the data is assumed to be or­
dered (otherwise "adding" noise makes no sense.) As a result, where to divide 
partitions is not obvious (as opposed to categorical data). Again, reconstruct­
ing the distribution can help. We can see that in Figure 4.2 partitioning the 
data at ages 30 and 50 would make sense - there is a natural "break" in the 
data at those points anyway. However, we can only see this from the actual 
distribution. The split points are not obvious in the noisy data. 

Both these problems can be solved if we know the distribution of the 
original data, even if we do not know the original values. The problem remains 
that we may not get the right entities in each partition, but we are likely to 
get enough that the statistics on the class of each partition will still hold. (In 
[4] experimental results are given to verify this conjecture.) 

What remains is the problem of estimating the distribution of the real 
data (X) given the noisy data (w) and the distribution of the noise {¥). This 
is accomplished through Bayes' rule: 

^ [4] actually uses the gini coefficient rather than information gain. While this may 
affect the quality of the decision tree, it has no impact on the discussion here. We 
stay with information gain for simplicity. 
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Fig. 4.2. Original distribution vs. distribution after random noise addition 
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Given the actual data values Wi — Xi -\-yi, we use this to estimate the distri­
bution function as follows: 

Differentiating gives us the posterior density function: 

fviwi -a)fx{a) 
z)fx{z)dz 

(4.2) 
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The only problem is, we don't know the real density function fx- However, 
starting with an assumption of a uniform distribution, we can use Equation 4.2 
to iteratively refine the density function estimate, converging on an estimate 
of the real distribution for X. 

In [4] several optimizations are given, for example partitioning the data 
to convert the integration into sums. They also discuss tradeoffs in when to 
compute distributions: Once for each attribute? Separately for each class? For 
only the data that makes it to each split point? They found that reconstructing 
each attribute separately for each class gave the best performance/accuracy 
tradeoff, with classification accuracy substantially better than naively running 
on the noisy data, and approaching that of building a classifier directly on the 
real data. 

One question with this approach is how much privacy is given? With the 
secure multiparty computation based approaches, the definition of privacy is 
clear. However, given a value that is based on the real value, how do we know 
how much noise is enough? Agrawal and Srikant proposed a metric based 
the confidence in estimating a value within a specified width: If it can be 
estimated with c% confidence that a value x lies in the interval [x/,x/i], then 
the privacy at the c% confidence level is \xk—oci\. They quantify this in terms 
of a percentage: The privacy metric for noise from a uniform distribution 
is the confidence times twice the interval width of the noise: 100% privacy 
corresponds to a 50% confidence that the values is within two distribution 
widths of the real value, or nearly 100% confidence that it is within one width. 
They have an equivalent definition for noise from a Gaussian distribution. 

Agrawal and Aggarwal (not the same Agrawal) pointed out problems with 
this definition of privacy [1]. The very ability to reconstruct distributions may 
give us less privacy than expected. Figure 4.2 demonstrates this. Assume the 
noise is known to come from a uniform distribution over [—15,15], and the 
actual/reconstructed distribution is as shown by the bars. Since there are no 
drivers under age 16 (as determined from the reconstructed distribution), a 
driver whose age is given as 1 in the "privacy-preserving" dataset is known 
to be 16 years old - all privacy for this individual is lost. They instead give a 
definition based on entropy (discussed in Section 4.1). Specifically, if a random 
variable Y has entropy H{Y), the privacy is 2^^^\ This has the nice property 
that for a uniform distribution, the privacy is equivalent to the width of the 
interval from which the random value is chosen. This gives a meaningful way 
to compare different noise distributions. 

They also provide a solution to the loss of privacy obtained through re­
constructing the original data distribution. The idea is based on conditional 
entropy. Given the reconstructed distribution X, the privacy is now 2^{Y\X). 
This naturally captures the expected privacy in terms of the interval width 
description: a reconstruction distribution that eliminates part of an interval 
(or makes it highly unlikely) gives a corresponding decrease in privacy. 
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4.3 A Cryptographic Solution for IDS 

Lindell and Pinkas [56] were the first to propose privacy-preserving data min­
ing using a cryptographic solution under the secure multiparty computation. 
They also targeted IDS on horizontally partitioned data. Specifically, the so­
lution in [57] assumes horizontal partitioning of data between two parties and 
shows how to build and ID3 tree. An interesting aspect of this solution is 
the abihty to maintain "perfect" security in the SMC sense, while trading off" 
efficiency against the quality of the resulting decision tree. 

Revisiting the IDS description from Section 4.1, we can assume that R and 
C are known to both parties. T is divided. In Step 1 we need only determine 
the class value of the majority of the transactions in T. This can be done 
asmg circuit evaluation (Chapter S.S.I). Since each party is able to compiil-; 
the count of local items in each class, the input size of the circuit is fixed by 
the number of classes, rather than growing with the (much larger) training 
data set size. 

Step 2 requires only that we determine if all of the items are of the same 
class. This can again be done with circuit evaluation, here testing for equality. 
Each party gives as input either the single class Q of all of its remaining items, 
or the special symbol _L if its items are of multiple classes. The circuit returns 
the input if the input values are equal, else it returns _L.̂  

It is easy to prove that these two steps preserve privacy: Knowing the tree, 
we know the majority class for Step 1. As for Step 2, if we see a tree that 
has a "pruned" branch, we know that all items must be of the same class, 
or else the branch would have continued. Interestingly, if we test if all items 
are in the same class before testing if there are no more attributes (reversing 
steps 1 and 2, as the original IDS algorithm was written), the algorithm would 
not be private. The problem is that Step 2 reveals if all of the items are of 
the same class. The decision tree doesn't contain this information. However, 
if a branch is "pruned" (the tree outputs the class without looking at all the 
attributes), we know that all the training data at that point are of the same 
class - otherwise the tree would have another spht/level. Thus Step 2 doesn't 
reveal any knowledge that can't be inferred from the tree when the tree is 
pruned - the given order ensures that this step will only be taken if pruning 
is possible. 

This leaves Step S. Note that once A is known, steps Sb and Sc can be 
computed locally - no information exchange is required, so no privacy breach 
can occur. Since A can be determined by looking at the result tree, revealing 
A is not a problem, provided nothing but the proper choice for A is revealed. 
The hard part is Step Sa: computing the attribute that gives the highest 
information gain. This comes down to finding the A that minimizes Equation 
4.1. 

^ The paper by Lindell and Pinkas gives other methods for computing this step, 
however circuit evaluation is sufficient - the readers are encouraged to read [57] 
for the details. 
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Note that since the database is horizontally partitioned, \T{a)\ is really 
|Ti(a)| + |T2(a)|, where Ti and T2 are the two databases. The idea be­
hind the privacy-preserving algorithm is that the parties will compute (ran­
dom) shares of ( |r i(a,c) | + IT2 (a, c)|)log(|Ti (a,c)| + IT2 (a, c)|), and (|Ti (a) | + 
|T2(a)|) log(|Ti(a)| + |T2(a)|). The parties can then locally add their shares to 
give each a random share of Hc{T\A). This is repeated for each attribute A, 
and a (small) circuit, of size linear in the number of attributes, is constructed 
to select the A that gives the largest value. 

The problem, then is to efficiently compute (x + y) log(x + y). Lindell and 
Pinkas actually give a protocol for computing {x-\-y) ln(x+y), giving shares of 
Hc{T\A) • |T| -In2. However, the constant factors are immaterial since the goal 
is simply to find the A that minimizes the equation. In [57] three protocols are 
given: Computing shares of ln(x+y), computing shares 01 xy, and the protocol 
for computing the final result. The last is straightforward: Given shares ui 
and U2 of ln(x + ?/), the parties call the multiplication protocol twice to give 
shares oiui-y and U2'X. Each party then sums three multiplications: the two 
secure multiplications, and the result of multiplying its input {x or y) with 
its share of the logarithm. This gives each shares of uiyu2X -\- uix ^ U2y = 
{x + y){ui + U2) = {x + y) ln(x + y). 

The logarithm and multiplication protocols are based on oblivious poly­
nomial evaluation [62]. The idea of obHvious polynomial evaluation is that one 
party has a polynomial P , the other has a value for x, and the party holding 
X obtains P{x) without learning P or revealing x. Given this, the multiplica­
tion protocol is simple: The first party chooses a random r and generates the 
polynomial P{y) = xy — r. The resulting of evaluating this on y is the second 
party's share: xy — r. The first party's share is simply r. 

The challenge is computing shares of ln(x + y). The trick is to approximate 
ln(x + y) with a polynomial, specifically the Taylor series: 

M^.,^ttiri^ 
Let 2^ be the closest power of 2 to (x + y). Then {x-\-y) = 2'^{1 + e) for some 
- 1 / 2 < 6 < 1/2. Now 

2 3 

\n{x) = ln(2"(l + e ) ) = n l n 2 + e - ^ + ^ - . . . 

We determine shares of 2^nln2 and 2^e (where N is an upper bound on n) 
using circuit evaluation. This is a simple circuit, e • 2^ = (x + ^) — 2^, and n 
is obtained by inspecting the two most significant bits of {x -\-y). There are a 
small (logarithmic in the database size) number of possibilities for 2^nln2 , 
and 6 • 2^ is obtained by left shifting e • 2^. 

Assume the parties share of 2^nln2 are ai and 0:2, and the shares of 2^e 
are /3i and ^2- The first party defines 
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and defines it's share ui = Pi -\- r. The second party defines its share as 
/?2 + ^^(^2)- Note that P{a2) computes the Taylor series approximation times 
2^ , minus the random r. Since 2N is public, it is easily divided out later, so 
the parties do get random shares of an approximation of ln(a: -f y). 

As discussed in Section 3.3, all arithmetic is really done over a sufficiently 
large field, so that the random values (e.g., shares) can be chosen from a 
uniform distribution. In addition, the values in the Taylor series are multiplied 
by the least common multiple of 2,..., /c to ehminate fractions. 

The key points to remember are the use of oblivious polynomial evalua­
tion, and the use of an efficiently computable (bounded) approximation when 
eflftciently and privately computing the real value is difficult. 

4.4 IDS on Vertically Partitioned Data 

Quite different solutions are required for vertically partitioned data. A solution 
for constructing ID3 on vertically partitioned data was proposed by Du and 
Zhan[22]. Their work assumes that the data is vertically partitioned between 
two parties. The class of the training data is assumed to be shared, but some 
the attributes are private. Thus most steps can be evaluated locally. The main 
problem is computing which site has the best attribute to split on - each can 
compute the gain of their own attributes without reference to the other site. 
Instead of describing this in more detail, we explore a later solution proposed 
by Vaidya and Clifton that solves a more general problem - constructing an 
ID3 decision tree when the training data is vertically partitioned between 
many parties (> 2) and the class attribute is known to only a single party. 

With vertically partitioned data, each party has knowledge of only some 
of the attributes. Thus, knowing the structure of the tree - especially, knowl­
edge of an unknown attribute and its breakpoints for testing - constitutes a 
violation of the privacy of the individual parties. 

In the best case, for no leakage of information, even the structure of the tree 
should be hidden, with an oblivious protocol for classifying a new instance. 
However, the cost associated with this is typically unacceptable. A compromise 
is to cloak the attribute tests used in the tree while still revealing the basic 
structure of the tree. A privacy-preserving decision tree is depicted in Figure 
4.3. Note that each site only need know the branch values for the decisions 
it makes; e.g., site 1 would not know that the leftmost branch (performed by 
site 2) is based on humidity. 

How do we go about constructing such a tree? Remember, that for ver­
tically partitioned data, no single site knows R in its entirety. Instead each 
site i knows its own attributes Ri. A further assumption is that only one 
site knows the class attribute C. (Relaxing this assumption, as in [22], makes 
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SlLl: Outlook 

V^WSjA^y M2i\2:Qvercast Va 

S2L2 Humidity 

xain 

SIL5: Yes S2L6:Wind 

Valb Normal Vall:5i 

S2L3: No S2L4: Yes S2L7: No 

Fig. 4.3. The privacy preserving IDS decision tree on the weather dataset (Mapping 
from identifiers to attributes and values is known only at the site holding attributes) 

the problem simpler.) Every site also knows a projection of the transactions 
IIR.T. Each projection includes a transaction identifier that serves as a join 
key. (given in Algorithm 1). Privacy-preserving variants of the necessary steps 
are developed to ensure privacy of data. 

Following the IDS algorithm, the first challenge is to check if R is empty. 
This is based on Secure Sum (described in Chapter S.S.2.) The key idea is 
to sum the number of remaining attributes at each site, and then compare 
with 0. If the sum is 0, clearly, no more attributes remain. While the secure 
summation protects the number of attributes available at any given site, the 
global sum is still revealed. To protect this, 

• The first party adds a random r to its count of remaining items. 
• This is passed to all sites, each adding its count. 
• The last site and first then use commutative encryption to compare the 

final value to r (without revealing either) - if they are the same, R is 
empty. 

Line 2 requires the determination of the majority class for a node. Since 
only one site knows the class, some protocol is required to do this. First, each 
site determines which of its transactions might reach that node of the tree. 
The intersection of these sets with the transactions in a particular class gives 
the number of transactions that reach that point in the tree having that par­
ticular class. Once this is done for all classes, the class site can now determine 
the distribution and majority class, and return a (leaf) node identifier. The 
identifier is used to map to the distribution at the time of classification. 
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The intersection process itself needs to be secure - this can be done by 
using a protocol for securely determining the cardinality of set intersection. 
Many protocols for doing so are known [84, 33, 2]. One of these protocols can 
be used. 

To formalize the whole process, the notion of a Constraint Set is intro­
duced. As the tree is being built, each party i keeps track of the values of 
its attributes used to reach that point in the tree in a filter ConstraintSi. 
Initially, this is composed of all don't care values ('?'). However, when an 
attribute Aij at site i is used (lines 6-7 of id3), entry j in ConstraintSi is set 
to the appropriate value before recur sing to build the subtree. An example is 
given in Figure 4.4. The site has 6 attributes ^ i , . . . , AQ. The constraint tuple 
shows that the only transactions valid for this transaction are those with a 
value of 5 for Ai, high for A2, and wcvrrri. for ^45. The other attributes have a 
value of ? since they do not factor into the selection of an instance. Formally, 

A | A2 A 3 A 4 A 3 A ^ 

5 high ? 7 warm ? 

Fig. 4.4. A constraint tuple for a single site 

we define the following functions: 

Constraints.set(attr, fa/): Set the value of attribute attr to val in the local 
constraints set. The special value '?' signifies a don't-care condition. 

satisfies: x satisfies ConstraintSi if and only if the attribute values of the 
instance are compatible with the constraint tuple: \/i,{Ai{x) = v ^ 
Constraints{Ai) = v) W Constraints{Ai) = '?'. 

FormTransSet: Function F or mT r an s Set (Constraints): Return local trans­
actions meeting constraints 

y = 0 
for all transaction id i G T do 

if ti satisfies Constraints then 
Y ^YU{i} 

end if 
end for 
return Y 

Now, the majority class (and class distributions) are determined by computing 
for each class H^^i A;^^' where Yk includes a constraint on the class value. 

DistributionCounts: Function DistrihutionCountsi): Compute class distri­
bution given current constraints 
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• Every site except the class site forms the transaction set according to 
its local constraints 

• for each class Q 
- The class site includes a constraint for Ci in its local constraints set 
- The class site forms the transaction set according to the constraints 
- All sites execute a secure cardinality of set intersection protocol to 

find the count of transactions with the class Ci 
• The class site returns the distribution of counts 

The next issue is to determine if all transactions have the same class (Al­
gorithm 1 line 3). If all are not the same class, as Httle information as possible 
should be disclosed. While this is possible without leaking any information, 
the associated cost in efficiency forces a compromise. For efficiency, the class 
site learns the count of classes even if this is an interior node; since it could 
compute this from the counts at the leaves of the subtree below the node, 
this discloses no additional information. The basic idea is simply to use the 
DistributionCounts function defined earlier to get the distribution and then 
check it. If all transactions are in the same class, we construct a leaf node. 
The class site maintains a mapping from the ID of that node to the resulting 
class distribution. 

IsSameClass: Function IsSameClass{): Find out if all transactions have the 
same class 
• Call the DistributionCounts function to get the distribution 
• If only one of the counts is non-zero, build a leaf node with the distri­

bution and return the ID of the node 
• Otherwise return false 

The next problem is to compute the best attribute: that with the maximum 
information gain. Once again, revisiting the equations from Section 4.1, the 
information gain when an attribute A is used to partition a data set T is: 

Gain{A) = Hc{T) - Hc{T\A) 

Hc{T)-Y,^^Hc{T{A)) 
aeA ' ' 

Remember, also that the entropy of a dataset T is given by: 

where T{c) is the set of transactions having class c in T. 
We can see that computing the gain for an attribute agains comes down to 

counting transactions. If the number of transactions reaching a node can be 
determined, the number in each class c, and the same two after partitioning 
with each possible attribute value a G A, the gain due to A can be computed. 



44 Predictive Modeling for Classification 

Once this is done for all attributes, the attribute with the best information 
gain can be selected. The only tricky part of this is the fact that recursion 
cannot be used (at least directly), since no one knows the exact transaction 
set at a node. The constraint set is once again used to apply appropriate filters 
to get the correct count of transactions. 

ComputelnfoGain: ComputeInfoGain{A) : Compute the Information Gain 
for an attribute A 
• Get the total number of transactions at this node (using the Distribu-

tionCounts function) 
• Compute the entropy of the transaction set at this node 
• For each attribute value a e A 

- Update the constraint set with the filter A -^ a 
- Use the DistrihutionCaunts function to get the number of satis­

fying transactions 
- Compute the conditional entropy 

• Compute the information gain 

Finding the best attribute is a simple matter of finding out the informa­
tion gain due to each attribute and selecting the best one. A naive efficient 
implementation would leak the information gain due to each attribute. If even 
this minimal information should not be leaked, the information gain can be 
split between the parties, and a sequence of secure comparisons carried out 
to determine the best attribute. 

AttribMaxInfoGain: AttrihMaxInfoGain(): return the site with the attribute 
having maximum information gain. 
• For each attribute A, compute the information gain using the function 

ComputelnfoGain. 
• Find the attribute having the best information gain. 

Once the best attribute has been determined, execution proceeds at that 
site. The site creates an interior node for the split, and then recurses. 

The complete privacy-preserving distributed ID3 algorithm can be visual­
ized as follows: 

PPID3: PPID3{) : Privacy-preserving distributed IDS over vertically parti­
tioned data 
• If the attribute set is empty 

- Get the distribution counts 
- Create a leaf node and return the ID 

• If all transactions have same class 
- Create a leaf node and return the ID 

• Otherwise 
- Find the site with the attribute having the best information gain 
- At that site, create an interior node with the best attribute 
- For each value a for the best attribute A 
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create a local constraint A —^ a 
Recurse and add the appropriate branch to the inner node 

- Unset the local constraint set for A 
- Store the ID to node mapping locally and return the node ID 

A model is of no use without a good way of applying it. The real goal of 
classification is to apply the model developed to predict the class of a new in­
stance. With horizontally partitioned data, the developed model can be given 
to all sites, and any party can locally classify a new instance. With vertically 
partitioned data, the problem is more complex. Given that the structure of 
the tree is known (as in Figure 4.3), the root site first makes a decision based 
on its data. It then looks at the node this decision leads to and tells the site 
responsible for that node the node and the instance to be classified. This con­
tinues until a leaf is reached, and which point the site that originally held the 
class value knows the predicted class of the new instance. While this does lead 
to some disclosure of information (knowing the path followed, a site can say 
if instances have the same values for data not known to that site), specific 
values need not be disclosed. 

4.5 Bayesian Methods 

We now discuss the privacy preserving variants of several bayesian classifica­
tion methods proposed in the literature. First up is Naive Bayes Classification, 
followed by Bayesian Network structure learning. 

Naive Bayes is a simple but highly effective classifier. This combination of 
simplicity and effectiveness has lead to its use as a baseline standard by which 
other classifiers are measured. With various enhancements it is highly effective, 
and receives practical use in many applications (e.g., text classification[59]). 
Kantarcioglu and Vaidya[45] present a privacy-preserving solution for horizon­
tally partitioned data while Vaidya and Clifton [82] do the same for vertically 
partitioned data. We now present a synopsis of both after briefly describ­
ing the Naive Bayes classifier. This description is based on the discussion in 
Mitchell[59]. The Naive Bayes classifier applies to learning tasks where each 
instance x is described by a conjunction of attribute values and the target 
function f(x) can take on any value from some finite set C. A set of training 
examples of the target function is provided, and a new instance is presented, 
described by the tuple of attribute values < a i , a2 , . . . ,an >. The learner is 
asked to predict the target value, or classification, for this new instance. 

The Bayesian approach to classifying the new instance is to assign the most 
probable target value, CMAPI given the attribute values < ai , a 2 , . . . , a^ > that 
describe the instance. 

CMAP = argmax {P{cj|ai, a 2 , . . . , a^)) (4.3) 
cjec 

Using Bayes theorem. 
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/P (a i , a2 , . . . , an | c j )P(c j ) 
CMAP = argmax — '——^ 

cjEC V P (a i , a2 , . . . , an ) 
= argmax (P(ai, a 2 , . . . , an\cj)P{cj)) 

CjEC 

The Naive Bayes classifier makes the further simplifying assumption that 
the attribute values are conditionally independent given the target value. 
Therefore, 

CNB = argmax P(cj) TTP(a^|cj) I (4.4) 

where CNB denotes the target value output by the Naive Bayes classifier. 
The conditional probabilities P{ai\cj) need to be estimated from the train­

ing set. The prior probabilities P{cj) also need to be fixed in some fashion 
(typically by simply counting the frequencies from the training set). The prob­
abilities for differing hypotheses (classes) can also be computed by normaliz­
ing the values received for each hypothesis (class). Probabihties are computed 
diflPerently for nominal and numeric attributes. 

Nominal Attributes: For a nominal attribute X with r possible attributes 
values x i , . . . ,Xr, the probability P{X = Xk\cj) = — where n is the total 
number of training examples for which C = Cj, and rij is the number of 
those training examples that also have X = Xk-

Numeric Attributes: In the simplest case, numeric attributes are assumed to 
have a "normal" or "Gaussian" probability distribution. 
The probability density function for a normal distribution with mean /i 
and variance a'^ is given by 

1 (a;-^)^ 
fix) = -—-e-^^ (4.5) 

VzTra 

The mean /i and variance a^ are calculated for each class and each numeric 
attribute from the training set. Now the required probability that the 
instance is of the class Cj, P{X = x'|cj), can be estimated by substituting 
X = xMn equation 4.5. 

In order to see how a privacy-preserving Naive Bayesian classifier is con­
structed, we need to address two issues: How to select the model parameters 
and how to classify a new instance. 

The method in [82] is fully secure in the sense that even the model built is 
split between the participants. Thus, none of the participants knows the actual 
model parameters. The only information revealed is when a new instance is 
classified - the class of the instance. In contrast, for horizontally partitioned 
data, [45] propose that the global model built be shared by all participants 
so that each can locally classify a new instance as and when required. Let us 
now take a brief look at how this works. 
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4.5.1 Horizontally Partitioned Data 

For horizontally partitioned data, it is possible to build very efficient protocols 
by compromising a little on security. In [45] an efficient protocol is achieved 
by allowing all parties to learn the total number of instances overall. 

Building the model parameters 

The procedure for building model parameters is different for nominal and 
numeric attributes. 

Nominal attributes 

For a nominal attribute, the conditional probability that an instance belongs 
to class c given that the instance has an attribute value A = a, P{C = c\A = 
a), is given by 

P{C-c\A-a)- ^^^^^^ - — . 

Uac is the number of instances in the (global) training set that have the class 
value c and an attribute value of a, while Ua is the (global) number of instances 
which simply have an attribute value of a. The necessary parameters are 
simply the counts of instances, riac and ria-

With the data being horizontally partitioned, each party has partial in­
formation for every attribute. Each party can locally compute the counts for 
the instances local to it. The global count is simply the sum of these local 
counts. This global count can be easily computed securely using the secure 
sum protocol. Similarly, the global count of instances having the attribute 
value a can be computed through a secure sum of local counts. Thus, the re­
quired probability can be easily computed by dividing the appropriate global 
sums. The overall procedure is quite efficient since it only involves computing 
secure sums which can be done with negligible computation cost and linear 
communication cost. 

Numeric attributes 

For a numeric attribute, the necessary parameters are the mean /i and variance 
(7̂  for each class. 

Again, the necessary information is split between all of the parties. To 
compute the mean, each party needs to sum the attribute values for all ap­
propriate instances having the same class value. These local sums are added 
together and the global sum is divided by the total number of instances having 
that same class to get the mean for that class value. Thus, only the secure sum 
protocol is required to securely compute the means. Once all of the means fiy 
are known, it is quite easy to compute the variance cr̂ , for all class values. 
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Since each party knows the classification of the training instances it has, it 
can subtract the appropriate mean iiy from an instance having class value y, 
square the value, and sum all such values together (again using secure sum). 
The global sum divided by the global number of instances having the same 
class y gives the required variance a^. 

The vigilant (astute?) reader will notice that while efficient, the above 
protocols are not fully secure. Instead of just the mean and variance, more 
information is revealed. This additional information is actually the numerator 
and denominator in each case, instead of just the result of the division. As 
long as this information leakage is viewed acceptable, we have rather efficient 
protocols. However, if this leakage is deemed unacceptable, one must construct 
a more secure protocol. One way to do this is as follows - instead of completing 
the secure sums, the secure sum protocol leaves the sum split beiw*een two 
parties. These two parties can now engage in some sort of protocol for secure 
division to compute the final result. The interested reader can refer to [45] for 
more details. 

Classifying a new instance 

Since all the model parameters are known to all parties, evaluation is quite 
simple. The party thats needs to classify a new instance simply uses the Naive 
Bayes evaluation procedure locally. Since the other parties have no participa­
tion in this, the question of privacy being compromised does not arise. An 
interesting point is that the model building algorithm can easily be modified 
to allow only one party to learn the model parameters. This party could then 
be the only one that could classify a new instance. This is useful in certain 
cases where one party simply wishes to use the training data present at several 
organizations to build a global classifier for itself. 

4.5.2 Vertically Partitioned Data 

Vertical partitioning of data has its own compHcations. A new issue is the 
location of the class attribute. There are two possibilities: the class may be 
known to all parties or it may be private to some party. This impacts the way 
the model is built and the way evaluation of a new instance is done. Both cases 
are realistic and model diflFerent situations. In the first case, each party can 
easily estimate all the required counts for nominal attributes and means and 
variances for numeric attributes locally, causing no privacy breaches. Predic­
tion is also simple - each party can independently estimate the probabilities. 
All parties then securely multiply the probabilities and compare to obtain the 
predicted class. As such, we do not further discuss this. The other case is more 
challenging and is discussed in the following sections. 
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Building the model parameters 

In this case, revealing the model parameters to everyone reveals too much 
information about the data of any one party. Since every attribute is private 
to some party - revealing its composition leaks too much information. One 
solution is to have the model parameters split between parties. An interactive 
protocol needs to be run to classify a new instance. The key is that the share 
of the parameters that each party gets appears to be random by itself. Only 
when added, do they have meaning. However, this addition occurs as part of 
the evaluation procedure which reveals only the class of a new instance. Let 
us now briefly look at the procedure for building model parameters for both 
nominal and numeric attributes. 

Nominal attributes 

Assume that party Pd holds the nominal attribute D, while party Pc holds 
the class attribute C. The necessary parameters are the probability estimates 
for every combination of attribute value and class value. However these need 
to be split between the two parties. Thus, if there are q classes and p attribute 
values, the goal is to compute p x q matrices S^^ S^ where the sum of corre­
sponding entries sf^-\- sf^ gives the probabiHty estimate for class Q given that 
the attribute has value a/. 

A single probability estimate su can be computed as follows: Pd constructs 
a binary vector corresponding to the entities in the training set with 1 for each 
item having the value ai and 0 for other items. Pc constructs a similar vector 
with l/ui for the n^ entities in the class, and 0 for other entities. The scalar 
product of the vectors gives the appropriate probability for the entry. Du and 
Atallah [20] show how to construct a secure protocol that return as output 
random shares of the scalar product. More detail on the entire procedure can 
be found in [82]. 

Numeric Attributes 

For numeric attributes, computing the probability requires knowing the mean 
/i and variance a^ for each class value. 

Computing the mean is similar to the earlier procedure for nominal at­
tributes - for each class, Pc builds a vector of l/ui and 0 depending on whether 
the training entity is in the class or not. The mean for the class is the scalar 
product of this vector with the projection of the data onto the attribute. The 
scalar product protocol gives each party a share of the result, such that the 
sum is the mean (actually a constant times the mean, to convert to an integral 
value.) 

Computing the variances is more difficult, as it requires summing the 
square of the distances between values and the mean, without revealing values 
to Pc or classes to P^, or means to either. This is accomplished with homo-
morphic encryption: E{a + b) = E{a) * E{b). Pd generates a homomorphic 
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encryption key-pair. Next, Pd computes encrypted vectors of the data values 
and its share of the means and sends them to Pc^ along with the encryption 
(but not decryption) key. 

Pc takes each data value and subtracts the appropriate mean (both its 
share and the share sent by Pd) to give it the distance needed to compute the 
variance. 

Pc also subtracts a random value, keeping the random value as its share of 
the distances. Homomorphic encryption makes this possible without decrypt­
ing. It now sends the vector back to Pd, which can decrypt to get the distance 
minus a random value. Thus, each has a random share of the distance. 

The parties can now use a secure square computation protocol to compute 
shares of the square of the distance. Now, we are almost at the end. To find 
the variance for a particular class, we need to sum zhe square of the distances 
corresponding to instances having that class and then divide by the total 
number of instances having the class. 

To do this, for each class value Vp, Pc creates the vector y , where Yi = 
C/rip if the ith transaction has class value Vp, otherwise 1^ = 0 {rip is the total 
number of instances having class Vp). The scalar product of this vector with 
the share vectors computed earlier gives the shares of the variance for class 
value Vp (Actually, it gives shares of a constant times the variance, rather than 
the variance, but this can be adjusted for later in the evaluation procedure). 

Classifying a new^ instance 

Since all the model parameters are always split between some two parties, all 
of the parties must engage in a secure collaborative protocol to find the class of 
a new instance. This is quite complex and requires use of many subprotocols. 
We do not go into this in any depth other than stating that reasonably efficient 
solutions are possible. The interested reader is advised to look at [82] for more 
details. 

4.5.3 Learning Bayesian Netv^ork Structure 

The above methods support Naive Bayes, which assumes that the impact 
of different attributes on the class is independent. Bayesian Networks relax 
this assumption, capturing where dependencies between attributes affect the 
class. A Bayesian Network is a graphical model; the vertices correspond to 
attributes, and the edges to probabilistic relationships between the attributes 
(Nai ve Bayes is thus a Bayesian Network with no edges.) The probability of 
a given class is similar to Equation 4.4, except that the probabilities associ­
ated with an attribute are conditional on the parents of that attribute in the 
network. 

Wright and Yang [89] gave a privacy-preserving protocol for learning the 
Bayesian network structure for vertically partitioned data. This is a crypto­
graphic protocol, as with the Naive Bayes approach above, but specifically 
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for two parties. Their approach is to emulate the K2 algorithm [16], which 
starts with a graph with no edges, then chooses a node and greedily adds 
the "parent" edge to that node that most improves a score for the network, 
stopping when a threshold for number of parents is reached. 

Since the structure of the final network is presumed to be part of the 
outcome (and those not a privacy concern), the only issue is to determine 
which attribute most improves the score. Note the similarity with the decision 
tree protocol of Section 4.4; the difference is in the score function. Instead of 
information gain K2 algorithm uses: 

(For full details including the notation, please see [89]; our purpose here is 
not to give the full algorithm but to show the novel ideas with respect to 
privacy-preserving data mining.) The privacy-preserving solution works by 
first modifying the scoring function (taking the natural log of /(z, TT^)). While 
this changes the output, it doesn't aff'ect the order; since all that matters 
is determining which attribute gives the highest score, the actual value is 
unimportant and the resulting network is unchanged. This same technique 
- transforming scoring functions in ways that do not alter the final result -
has proven beneficial in designing other privacy-preserving data mining algo­
rithms. 

Note that by pushing the logarithm into Equation 4.6, the products turn 
into summations. Moreover, taking a page from [57] they approximate a dif­
ficult to compute value (in this case, Stirling's approximation for factorial.) 
Ignoring small factors in the approximation, the formula reduces to a sum of 
factors, where each factor is of the form In a: or a: In x (except for a final factor 
based on the number of possible values for each attribute, which they consider 
pubhc knowledge.) This now reduces to secure summation and the Inx and 
xhix protocols of [57]. 

4.6 Summary 

We have seen several examples of how to create privacy-preserving classifica­
tion algorithms. A common theme is to start with an algorithm and a parti­
tioning of data. An appropriate model for preserving privacy is then chosen; 
If the data comes from many sources and noise is deemed suflScient to protect 
privacy, the data is perturbed. With fewer sources, cryptographic approaches 
are more appropriate. In either case, the algorithm is analyzed to determine 
what steps can be computed easily, and which are aff'ected by privacy. 

With data perturbation, the problem is generally determining distribu­
tions; the eff"ect of noise on individual values will generally average out over 
time. With cryptographic protocols, the problem is generally computing a 
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function from distributed inputs; through clever transformations to that func­
tion and use of a limited toolkit of techniques, it is often possible to efficiently 
evaluate or approximate the function without disclosing data. The number of 
algorithms that have been developed for privacy-preserving classification con­
tinues to grow. The methods presented here capture some of the key concepts 
that are being used in these algorithms. 



Predictive Modeling for Regression 

5.1 Introduction and Case Study 

Regression is one of the most widely used statistical tools in data analysis and 
data mining. Suppose that a data set consists of a set of variables referred to as 
responses and another set of variables referred to as attributes (or independent 
variables). A central problem in data analysis is to model the relationship 
between the responses and the attributes. This is often termed as multiple 
responses multiple regression. A special case is multivariate regression - when 
the number of responses is one. In this chapter, we only deal with regression 
with one response. There are two primary goals of regression: one is to identify 
attributes that affect the response; the other is to predict the response for a 
new realization of the attributes, in other words, to fit a regression model. 

There exist various types of regression that arise from different model as­
sumptions. The simplest model assumption is to assume that the relationship 
between a response and a number of attributes is linear, which leads to lin­
ear regression. Linear regression is arguably the most popular and successful 
statistical method in data analysis. Nonlinear regression assumes an explicit 
nonlinear function, which depends on a number of unknown parameters, for 
the relationship between the response and the attributes. More generally, one 
does not want to or have to assume any specific form for the relationship. 
This leads to non-parametric regression. Many types of regression models ex­
ist between linear regression and general non-parametric regression, such as 
partial linear regression, additive model, etc. The choice of a proper regression 
model mostly depends on the application and the available data. While there 
have been umpteen different regression model looked at by statisticians, all 
of these have assumed that the basic data is freely available at a central site. 
In a privacy-preserving sense, the only work in this area has been on linear 
regression. Therefore, in this chapter, we focus only on hnear regression. 

Fitting a regression model is an art that consists of a series of steps in­
cluding estimation, inferences, diagnostics, model selection, etc. The success of 
regression relies on the interaction between the analyst and data, and the role 
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played by the analysts is much more crucial than one may reahze. The com­
plexity of regression also depends on the type of models one chooses to fit and 
the principle one uses to fit the model. The commonly used principles include 
least squares, maximum likelihood and non-parametric smoothing. Therefore, 
regression analysis is a dynamic and interactive procedure to build a model 
that relates a response and a number of attributes. Any competent regression 
software should be able to support all the activities required by this procedure. 
In this chapter, though we only consider the simplest model, linear regression, 
it still has most issues related to general regression. The development of secure 
linear regression would provide guidance for other more complicated types of 
regression in the future. For details regarding linear regression, readers are 
referred to Neter et al[63]. 

The ncceSLiit} oi developing privacy-preserving regression protocols arise 
when data are distributed among a number of data owners, or parties, who 
are interested in cooperatively identifying the relationship between a response 
and some attributes but are not willing to disclose their individual data to 
other owners due to concerns over data confidentiahty and individual privacy. 
The data owners can be government agencies, corporations, etc. However, 
as every data owner only possesses part of the data, their private data may 
not be sufficient for each individual owner to fit the desired regression model 
properly. As before, we consider the following two modes of data separation: 

Vertically partitioned data 

Each data owner only holds a subset of the attributes and their values. In 
general, overlapping is allowed, which will not complicate the separation much. 
For convenience, we assume that the subsets held by the data owners are 
disjoint. 

Horizontally partitioned data 

Each data owner holds all of the attributes, however, he/she only owns a 
limited number of cases, which may not be enough for fitting an accurate 
regression model. 

The responses might also be partitioned. For example, in horizontally par­
titioned data, every data owner holds the response for the cases in their in­
dividual data sets. In vertically partitioned data, just as in classification, the 
ownership of responses can be complicated. It is possible that only one owner, 
or a subset of owners, hold the responses, or the responses are shared by all 
the owners. To avoid unnecessary complexity, we assume that the data owners 
either hold the responses or are given the responses for vertically partitioned 
cases. We will briefly discuss the complications caused by the ownership of 
the responses for horizontally partitioned data. 

Next, we will use a well-known real data set to illustrate the vertical and 
horizontal partitions of data in the regression setting. 
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5.1.1 Case Study 

A well-known data set popularly used to illustrate linear regression is the 
Boston housing data first analyzed in Harrison and Rubinfel (1978). The origi­
nal data contains 13 attributes that might affect housing values for 506 census 
tracts in the Boston standard statistical metropolitan area in 1970. The data is 
publicly available on the Internet. The attributes include Town (town name), 
Tract (tract ID number), Crim (per capita crime), Zn (proportions of resi­
dential land zoned for lots over 25000 sq.ft per town), Indus (proportion of 
non-retail business acres per town), Chas (binary with level 1 if tract borders 
Charles river; 0 otherwise), Nox (nitric oxides concentration per town), Rm 
(average numbers of rooms per dwelHng), Age ( proportion of owner-occupied 
anitfr- built prior to 1940), Dis (weighted distances to five Boston employment 
centers), Rad (an index of accessibility to radial highways). Tax (full-value 
property-tax rate per USD 10,000 per town), Ptration ( pupil-teacher ration 
per town), B (transformed proportion of blacks), Lstat (percentage value of 
lower status population), and the response is Medv (median values of owner-
occupied housing in USD 1000). 

The data originated from several sources including the 1970 US census 
and the Boston Metropolitan Area Planning Committee. Hence, originally, 
the data was in fact distributed across several sources. For simplicity, we 
simply assume that there are only two sources (those mentioned above). If we 
further assume that the sources are not willing to share the data with each 
other, unlike 40 years ago, then the data should be considered as vertically 
partitioned. From a horizontal perspective, the data can considered as divided 
as tracts in Boston and tracts surrounding Boston. Data for these tracts could 
be held by different agents who are not willing to expose the data to other 
parties. In this case, we have horizontal partitioning of data. In general, a 
data can be partitioned both horizontally and vertically (in effect arbitrarily). 
In this chapter, however, the targeted data are either vertically partitioned or 
horizontally partitioned. 

The purpose of regressing the Medv against other attributes is to identify 
the attributes that linearly affect the housing price in Boston. As expected, 
not all the attributes are important or significant. Hence, regression should 
be a dynamic and interactive procedure consisting of estimation or modeling 
fitting, diagnostics and model selection with the aim of deriving the best 
model. 

5.1.2 What are the Problems? 

For convenience, we assume that only two parties are engaged in regression. 
Following the convention in the literature, we name the first party Alice and 
the second party Bob. In the following, we deal with vertically partitioned 
data first and will discuss the horizontally partitioned case in a later section. 
Assume that AHce holds data for attributes xi, X2,. . . , x^ and Bob holds data 
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for attributes zi, 2:2, • • •, ^̂ m, and both Alice and Bob know the response y. 
For simplicity, the attributes held by Alice and Bob do not overlap. Sup­
pose Â  data points were observed. Let Xij be the value of attribute Xj for 
the ith data point and similarly Zik be the value of attribute Zk for the ith 
data point, where l<i<N,l<j<m and 1 < k < n. So Ahce holds 
the data (^ij)i<2<N,i<j<n and Bob the data {zik)i<i<N,i<k<m- Suppose the 
response vector is Y^ = {yk)i<k<N that is known to both Ahce and Bob, 
where r means transpose. Ahce and Bob desire to collectively identify and fit 
a proper regression model that approximates the relationship between y and 
some attributes, while not willing to or allowed to disclose their original data 
to each other. In the chapter, the focus is only on linear regression, and the 
attributes and their corresponding values, which form a column vector, are 
used interchangeably. 

Let us consider a model involving attributes Xi^.Xi^,..., Xi^ (held by Alice) 
and attributes Zj^ ,Zj^,..., Zj^ (held by Bob). In general, higher order terms of 
these attributes such as xf. are also candidate terms that need to be included 
in the model, so are the interactions between the attributes. The higher terms 
and the interactions between the attributes held by the same party can be 
regarded as induced new attributes and treated fairly easily. However, the in­
teractions between the attributes held by different parties will pose challenges 
to privacy-preserving regression. For example, if we want to include the cross 
term Xi-^Zj-^^ in the linear model, then it is necessary to generate a column 
vector equal to Xi^ Zj^, which would result in immediate privacy breach if it 
is disclosed to both the parties. Certain extra measures must be exercised to 
prevent this from happening. Securely accommodating cross terms is a re­
search issue that has not been treated or even addressed in the literature of 
privacy-preserving regression as of now. Hence, in the following discussion, 
we only discuss hnear models that do not include cross terms. So, the hnear 
model we consider is as follows, 

s t 

y = ao + J2^^^^'^ ^^Pji^ji +^ (5-1) 
k=l l^\ 

where e is a error term following a known distribution. For convenience, we 
assume that Alice always hold the A/"-dimensional column vector whose entries 
are identical to 1, which is denoted by Xi^. Then the model becomes 

^ik^ik -^^1^31^31 + e (5.2) 
k^O 1=1 

where we assume that ai^ = ao. Let A = (x^^,x^^,...,x^J be a A/" x (s + 1) 
matrix containing the values of x^^,..., Xi^, and B = (z^^,..., Zj J a A" x t ma­
trix containing the values of 2:^^,..., Zj^. Hence, the data matrix for the model 
above is X = {A,B). Let /3^ = {ao.ai^,... ,aij and p^ = {Pj^,...,PjJ. 
Then f3^ = (/9^,/^^) is the vector of regression coefficients. Recall that Y is 
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the vector of responses. It is well-known that the least squares estimate of /? 
is 

P = {X^Xy^X^Y. (5.3) 

Although the calculation of /3 is an important step in regression, it is 
not the only step. In fact it is a relatively easy first step. Other steps in­
cluding diagnostics and model selection are even more important and chal­
lenging. Diagnostics are used to assess whether a fixed model is proper and 
suggest further analyses towards the best regression model and results. Usu­
ally model diagnostics rely on either statistics measuring the goodness of fit 
of the obtained model or graphical tools. Diagnostics are also used to discover 
peculiarities such as outliers that exists in the data. Statistics reflecting the 
goodness of fit of a model include correlation coefficient, i?^, ad.iusted R^ (or 
jR^), etc. Graphical tools include the residual versus predicted response plot 
and the residual versus predictor plots. These plots may suggest that certain 
model assumptions are violated and need to be remedied using transformation 
or suggest that cross terms and high order terms of the involved attributes 
should be added to the model. Clearly, residuals play an essential role in diag­
nostics. Once (3 is available, we can calculate the fitted or predicted responses 
as follows, 

Y = {m,...,yNr = Xp. (5.4) 

The column vector of residues is i = Y — Y and the residual for the zth data 
point is ii — yi — yi. Then 

(5.5) 

and 

^a -
^ T!^=l{y^-y^?|{N-p-l) 

Ell{y^-y)y{N-l) 
(5.6) 

where p = s + t is the number of attributes involved in the model. Using the 
residuals, the residual plots can be easily generated. For example, the residual 
versus predicted response plot is the plot of Q against ^̂  for 1 < i < N. 
Diagnostic measures and plots may also reveal the original data, thus posing 
a challenge to privacy preserving regression. As will be discussed later on, 
these issues have not been well addressed and treated in the literature. 

The other step we want to discuss is model selection in regression. Note 
that in the linear model above, only s of the m attributes held by Alice and t of 
the n attributes held by Bob are involved. As discussed earlier, the ultimate 
goal of regression is to identify a subset of the m -\- n attributes and the 
best regression model including these attributes. This procedure is referred 
to as model selection and should be regarded as the most important step in 
regression. The key of model selection is to discriminate diflPerent regression 
models involving diflferent sets of attributes. Some diagnostic statistics such 
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as those measuring the goodness of fit can be used for model selection, but 
much caution should be exerted. For example, the full model that includes 
all the attributes attains the maximum R'^ among the models without high 
order and cross terms, but the full model is very likely a poor model because 
many irrelevant attributes are included and it overfits the data. The fitted full 
model usually performs poorly in terms of prediction. 

In statistics, various statistics or criteria are available to distinguish two 
different models. For two nested models, the extra sum of squares principle 
can be used to decide whether including extra attributes or terms in the 
smaller model is statistically necessary. In the following, we would like to 
briefly introduce one of the most popularly used model selection criteria called 
Mallow's Cp. Let RSSfuii be the sum of squared residuals generated from the 
regression with the full model, and let RSS^^i be bhe sum of squared residuals 
generated from the regression with the chosen attributes in (5.?). Then 

Cp^^^-{n-2p), (5.7) 

where 
2̂ _ RSSfuii 

a N — m — n — 1 
Varying the chosen attributes, different regression models can be fitted and 
their corresponding Cp can be calculated. In the end, the models that corre­
spond to a Cp approximately equal to p are considered to be the best models. 
Other model selection procedures include step-wise regression and best sub­
set regression. It should be clear from the above discussion that process of 
regression is not simply one step estimation of the regression coeflScients. In 
fact, many models, sometimes in the order of hundreds or thousands, need to 
be fitted and diagnosed to arrive at the best model. Facilitating this complex 
procedure while preserving privacy in much more challenging than the secure 
estimation of the regression coeflScients of a fixed model. 

Many other issues are also present in regression such as outlier detection, 
high collinearity, insufficient-rank etc. To resolve these issues, regularization 
and other robust techniques are needed. They may also cause security concerns 
for privacy preserving regression. For now, however, in this chapter we will 
only focus on a much simpHfied regression procedure that consists of estima­
tion, diagnostics and model selection. Most results in the privacy-preserving 
literature touch only the first step, but we stress that the other two steps 
deserve attention and further research in the future. It is our belief that only 
when the issues of privacy preservation in these three basic steps have been 
tackled well, can a practically useful privacy-preserving regression protocol be 
built and tested. 

5.1.3 Weak Secure Model 

As the discussion in Section 3.3 shows, general multiparty computation is 
theoretically feasible. The theoretical work of Goldreich et al. is based on cir-
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cuit evaluation over finite field, specifically involving boolean computations. 
Although general regression is a complicated procedure, in theory it can al­
ways be decomposed into a collection of basic or atomic operations of Boolean 
nature. Hence, theoretically, we can conclude that secure multiparty computa­
tion is feasible for regression. However, although the statement is appealing, 
it does not convey any practical means and relief. Naive application of the 
circuit evaluation technique makes the protocol way too complex to be useful 
in practice. In addition, even though every atomic operation is secure, the se­
curity of the whole procedure may not be guaranteed (if intermediate results 
are revealed). More practical solutions are clearly required. 

The definitional approach to SMC is very appeahng in terms of security 
since it clearly expresses what it means for a protocol to be secure. However, 
this often is too rigorous and it is difficult to formulate solutions for practical 
problems that are efficient and meet with the security definitions. There has 
been an effort to propose weaker models which would allow more eflficient 
solutions to be proposed. But this is still immature and in progress. 

Du et al. [21] propose a weak security model under which certain protocols 
might hold. Although it is still very heuristic and primitive, it does serve as a 
starting point which could be further improved. We now present the model. 
The model is defined for two parties Alice and Bob as follows: 

Weak Security Model 

Let I A and IB be the private inputs of A and B respectively, and OA and OB 
be their respective outputs for the function T; i.e., {OA^OB) = J^[IA,IB)' A 
protocol C for computing T is secure against dishonest Bob if there exist an 
infinite number of {I'A->0'A) pairs in {1Z,7l) such that (O^A^^B) = ^{I'AI^B)-

Similarly, C is secure against dishonest Alice if there exist an infinite number 
of pairs {I'B.O'B) such that [OA^O'^) = C{IAJB)' 

Intuitively, under this security model a protocol is considered to be secure, 
if for any input/output pair (/, O) from one party, there exist an infinite 
number of possible input/output pairs in IZ for the other party such that the 
result of the protocol is still O for the first party when its input is / . Therefore, 
from its own observed output, a party cannot determine the inputs from the 
other party. 

The model above is rather primitive and much improvement is necessary. 
For example, as Du et al point out, even if a protocol C is secure against Bob 
under the model above, if the infinite number of input/output pairs of Alice 
are all concentrated around the true input and output, then Bob can get clear 
knowledge of the information of Alice, thus incurring a privacy breach. One 
possibility to improve the model might be to incorporate a distribution or a 
distance measure between all the possible pairs. 

However, other more serious problems still exist. The model is not stated 
rigorously enough. For example, the model does not state anything about what 
is revealed during the protocol. So, a protocol C might simply reveal A's input 
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I A during computation. While there may be infinite possible ( /^ ,0^) pairs 
possible, B would know A's actual input, while the protocol would be con­
sidered safe under the proposed security model. In our opinion, this security 
model has much better appHcabihty for examining the question of whether the 
results reveal information about the input and could be used in conjunction 
with the standard SMC model. In any case, keeping these problems in mind, 
the model serves as a heuristic start point, but clearly needs further scrutiny 
and analysis. 

5.2 Vertically Part i t ioned Da ta 

5.2.1 Secure Estimation of Regression Coefficients 

Recall that, in Section 5.1.2, A is the data matrix for the attributes held by 
Alice and B the data matrix for the attributes held by Bob. In terms of A 
and -B, the formula for calculating the estimate /3 is 

aA\_fArAArBy fA^Y\ 
PB)~\ B^A B-B ) \B-Y) ^^-^^ 

It is clear that matrix product plays a central role in calculating the re­
gression coefficients, and security is of concern when matrices from different 
parties are involved. For example, we need a secure way for calculating A'^B. 
Indeed, it is easy to see that if secure protocols for matrix multiplication and 
matrix inversion are available, it is quite easy to create a secure protocol for 
estimating the regression coefficients. 

In order to facilitate these calculations, some basic protocols were devel­
oped in the Hterature. In the following, we introduce some of these protocols 
first, then show how they can be employed to securely calculate the coeffi­
cients. 

The first protocol was proposed by Du et al[21]. This protocol assumes 
the use of a Commodity Server, a third party that helps the two parties in 
computing their goal. The commodity server is considered to be semi-trusted, 
and it does not collude with either of the parties. The main advantage of 
utilizing a commodity server is to make the secure computation significantly 
more efficient. The commodity server does not learn any information from the 
protocol, and it only provides necessary help to make the secure computation 
possible. The secure matrix product with a CS is described as follows: 
Secure A'^ • B protocol with commodity server 

1. The commodity Sever generates random matrices Ra, Rb and r^ of di­
mensions N X m, N X n and mxn^ respectively; let r^ = R^^Rb — Va- The 
server then sends {Ra^Ta) to Alice and {Rb.rb) to Bob; 

2. Alice sends A=^ A \- Ra to Bob, and Bob sends B — B + Rb to AHce; 
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3. Bob generates a m x n random matrix Vb and compute T = A'B-\-{rb — Vb), 
then send it to Alice; 

4. Alice computes Va = T + ra - Rl - B. 

It can be easily verified that Va-\-Vh — A^'B and [21] proved that neither 
party can learn about the original data of the other party under their model. 
Therefore, the product of two matrices is calculated without exposing the raw 
data. Note, however, that it is rather difficult to prove the security of the 
model under the standard SMC definitions of security. Clearly, the success of 
this protocol relies on the participating parties being semi-honest. Since the 
commodity server only provides necessary random matrices, it cannot learn 
anything about A and B unless it colludes with Alice or Bob. In practice, it 
ma}^ be difficult to find a trustworthy commodity server who can be relied 
upon not to collude with one of the parties. In this case, one should use only 
a 2-party secure protocol. [21] also proposed the following solution for secure 
matrix product. For convenience, we assume that Â  is even. Suppose M is 
an arbitrary N x N matrix with entries rriij and M~^ — (m -̂̂ ) is the inverse 
of M. Let Mjgf̂  — (m^j)i<^<jv,i<j<iv/27 ^right ^ (^2j)i<z<iv,iV/2+i<j<iV5 

^^t^p "^ (^'•^)l<i<A^/2,l<j<7V, ^ b o t t o m ^ i'^''^)N/2+l<i<NA<j<N' 
Two-party Secure (A^ • B) protocol I 

1. Alice and Bob jointly generate a, N x N invertible random matrix M; 
2. Alice computes Ai = A - Mĵ f̂ , A2 = A • Mj-ĵ ĵ ,̂ and sends ^1 to Bob. 

3. Bob computes Bi — M^"^ • B, B2 = ^bottom * ^ ' ^^^ sends B2 to Alice 
4. AHce computes Va = A2 - B2 and Bob computes Vb = Ai • Bi. 

It can be easily verified that 14 + H = A • B. Clearly that M plays a 
central role in the protocol above. A bad choice of M immediately results in 
a privacy breach. A security analysis of this protocol will be postponed to 
a later section. First, we look at another protocol for secure matrix product 
that was proposed by Du et al[21]. 
Two-party secure (A^ • B) protocol II 

1. Alice generates a set of g = [{N—m)/2\ orthogonal A/"-dimensional vectors 
{ui^U2^... ,Ug} such that ujxj = ujzk — 0 for all z, j and k. Alice then 
sends the matrix IJ = [i^i, 1̂ 2, •. •, %] to Bob; 

2. Bob computes W — {I — UU'^)B^ where / is an identity matrix, and then 
sends W to Alice; 

3. AHce computes A^W, which is equal to A^B, and sends it to Bob 

Based on any of the protocols above, secure protocols for other more com­
plex matrix operations can be developed. In the following, several of them are 
briefly described, which are for matrix sum and product, matrix inverse and 
matrix determinant. 
Two-party Secure ({Ai + Bi) • {A2 + B2)) protocol 

In this protocol, Ai and A2 are assumed to be held by Alice and Bi and 
B2 by Bob. Observe that 
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(Ai -f Bi) . (A2 + B2) = A1A2 + A1B2 + ^2^1 + ^1^2, 

To securely compute (^i + ^ i ) • {A2 + B2), one only needs to use any of the 
secure {A'^ • B) protocols for calculating ^11^2 and A2B1. 
Two-party Secure {A-\- B)~^ protocol 

In this protocol, Alice owns A while Bob owns B and A-]r B is invertible. 
Alice and Bob want to securely compute {A-{- B)~^ such that Alice gets Va 
and Bob gets Vh and K + H = {A + B)~^. Again, any of the secure {A • JB) 
protocols can be used to server as the building block. The protocol is stated 
below. 

1. Bob generates two random matrices P and Q; 
2. TTsp one of the secure {A^au- B) protocols to derive K + H = PAQ. and 

AHce holds Va and Bob holds T4. 
3. Bob sends Vb + PBQ to AHce, then AHce compute K + 14 + PBQ = 

P{A + B)Q 
4. Alice computes (^-^(yl + ^ ) - ^ p - ^ 
5. Using the chosen secure {A- B) protocol further, Alice and Bob drive Wa 

and Wb respectively such that Wa + Wb = {A + B)~^. 

Similar techniques can be used to develop secure protocols for calculat­
ing matrix determinant | A + 5 | and matrix norm ||A -f 5 | | . So far, we 
have developed secure protocols that are effective in computing the regression 
coefficients while preserving privacy. Recall the formula for {PAI PB)- The pro­
cedure is stated in the following protocol. 
Secure estimation of regression coefficients protocol 

1. Use a secure {A • B) protocol to obtain Vai and Vbi such that Vai + Hi = 

2. Use the secure {A + B)~^ protocol to obtain 142 and 1̂ 2 such that 1̂ 2 + 
Vb2 = {Val+Vbl)-' = {X-X)-\ 

3. Ahce compute Vas = A^'Y and I43 = B^Y. 
4. Use the secure matrix sum-product protocol to compute P = (1^2 + 

Vb2){VaS + Vb3). 

5.2.2 Diagnostics and Model Determination 

As discussed earlier, the estimation of the regression coefficients is the first 
step in regression. In order to assess whether the model or the fitted model 
is proper, various diagnostics are required. Most diagnostic procedures rely 
on residuals, which are the diflPerences between the original responses and 
the predicted values based on the fitted regression model. Because the fitted 
regression coefficients are /3, so according to Equation 5.4, the predicted or 
fitted responses are Y =^ X-f3 and the residuals are e = Y — Y. The calculation 
of Y can be carried out securely using the secure sum protocol. Once the 
residuals are available, some basic diagnostic statistic such as R^ and the 
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adjusted R^ can be calculated, which reflect how good the model fits the data. 
Diagnostic graphics including various residual plots can also be generated, for 
example, the all-purpose residual versus predicted response plot. If the model 
is proper and fits the data well, the residual plots are expected to show random 
clouds of points, or not to show any suspicious patterns. While the residual 
versus predictor variable plots can tell whether the fitted model is proper, 
they also can result in violation of privacy. For example, Ahce can generate 
the residual versus xi plot, and the coordinates of the points are exactly the 
values of xi, if the plot is shown to the other party (Bob). From the plot. 
Bob may be able to guess accurately the values of xi which are held by Alice, 
thus causing a privacy breach of the attribute values. Some measures can 
be implemented, so that all the parties can freely share the residual plots to 
decide if further analyses would be needed, or a a^cceptable model has already 
been derived. 

The ultimate goal of regression is to obtain a model that best explains the 
data as well as possesses good accuracy in prediction. Although the model 
that includes all the attributes has the largest E? ̂  it is usually a rather poor 
model because it is highly variable and most likely does not reveal the true 
relationship between the response and a number of predictor variables. In 
order to arrive at the best model, model selection is a must in regression. 
Model selection can be conducted in roughly three modes. It can be an iter­
ative procedure controlled by the analyst based on diagnostic analyses, or an 
automatic procedure such as stepwise regression, or a exhaustive procedure 
that runs over all the possible models relying on some model selection criteria 
such as Mallow's Cp mentioned earlier. At first glance, the secure protocols 
developed above can be repeatedly used for various models without causing 
privacy breach. However, after taking diagnostics into consideration, it is not 
difficult to realize that model selection could present serious challenge to pri­
vacy preservation. For example, suppose a model includes only one attribute 
from each party. Assuming that there are only two parties, the disclosure of 
the residuals immediately results in the disclosure of the values of the involved 
attributes to the opposite parties. Unfortunately, this has not been well con­
sidered and studied in the literature due to the misunderstanding discussed 
earlier. Much research is needed to make the secure estimation of regression 
coefl̂ icient practically useful in finding the best regression model while pre­
serving privacy at the same time. 

5.2.3 Security Analysis 

The two-party secure {A^ • B) protocol I and II serve as the fundamental 
building blocks for the secure estimation of regression coefficients. Both pro­
tocols are secure only under the weak secure model. Even so, it is important 
to understand how secure these two protocols are in the weak sense. Note 
that both protocols involve the following operation: one party multiplies its 
data by a AT X N/2 matrix known to both parties and sends the result to the 
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other party. Further note that this operation needs to be carried out twice 
in the two-party secure {A^ • B) protocol I, while only once in the two-party 
secure {A^ • B) protocol 11. However, following protocol I, in the end, the two 
parties hold only a portion of A^B, while both parties end up knowing A^B 
following the protocol II. The final result A^B also has implications on pri­
vacy disclosure. Hence, deciding which protocol to use depends on the specific 
application. 

This section focuses on the security analysis for the operation described 
in the previous paragraph. For the ease of presentation, x — (xi, X2, . . . , x^Y 
denotes a column of the data matrix and M denote a, N x N/2 matrix. Then 
a party computes x^M and passes the result b — x^M, a N/2 x 1 vector, 
to the other party. If M was not properly chosen, this operation will cause 
the disclosure of some values of x. For example, if M has a column that is a 
unit A''-dimensional vector with the first coordinate equal to 1 and the other 
coordinates equal to zero, then the value of xi is immediately disclosed, which 
could lead to serious breach of privacy. In order to prevent this kind of privacy 
breach from occurring, Du et al. introduced a concept called k-secure matrix 
and carefully studied the properties of these matrices. 

Definition 5.1. Assume M is of full rank N/2. Let Mk he a sub-matrix of 
M by removing k rows from M. M is k-secure if the rank of Mk is ^ for any 

Mk-

The immediate property of /c-secure matrices is stated in the following 
theorem: 

Theorem 6.2, If M is k-secure, any nonzero linear combination of the 
columns of M generates a column vector with at least /c + 1 nonzero entries. 

Let mi,7722,... ^niN. be the columns of M. Giving x^M is in fact giving 

the following ^ linear equations: x^mi = 6i,x'^m2 = 62,. . . ,x^mN/2 = ^iv/2-
Linearly combining these equations will not result in an equation in terms 
of less than A: + 1 x^'s. In other words, for any single equation generated as 
above, there exist at least k+l variables with nonzero coefficients. This further 
implies that one cannot solve for any of Xi based on the given equations. 
Any simplified equations involving one particular entry, e.g., xi, must include 
another k entries at the same time. In some sense, it can be said that each 
individual entry is protected by k other entries. For the proof of Theorem 
5.2, the reader is referred to Du et al.[21], where the authors also prove other 
properties of /c-secure matrices and argue that ^-secure matrices should be 
ideal for secure matrix product. Although the larger the value of /c, the more 
secure is the protocol, it is indeed more difficult to construct a A:-secure matrix 
with a large k. Du et al.[21] give the construction of y-secure matrix using 
results from coding theory. Similar procedures could be used to generate k-
secure matrices for other k. In practice, when the security requirements are 
not extremely high, lower /c-secure matrices can also be used. 



Vertically Partitioned Data 65 

By using A:-secure matrices, the protocols are secure in a weak sense, but 
other pitfalls may still exist. For example, although the simplified equations 
always involve at least A: + 1 variables, some may imply the ranges of some 
variables if additional information is available. If the same data matrix has 
been used multiple times and the other party keeps all of the prior results, 
then these could be combined to infer the individual original values. Overall, 
the protocols themselves could be regarded to be fairly secure when a large k is 
enforced. But, as discussed earlier, regression is not just one-step estimation of 
the linear coefficients, it also involves iterative diagnostics and model selection. 
Many challenges for preserving privacy exist in these two steps, which have 
not yet been recognized and studied. 

5.2.4 An Alternative: Secure PowelPs Algorithm 

In the previous sections, all the protocols for secure regression analysis are 
based on the following formula, 

p={X^X)-^X^Y. 

As a matter of fact, /? is an explicit minimizer of the following minimization 
problem 

P = argmin(y - Xpy{Y - Xp). (5.9) 

Recall that the columns of X may be distributed across several parties. For 
example, when there are two parties, X = {A,B) where A belongs to the 
first party while B the second party. The protocols discussed in the previous 
sections tried to secure the direct calculation of $ through Equation 5.3. Re­
cently, Sanil et al. proposed a new method that avoids the direct use of the 
formula for computing the regression coefficients. Instead, they propose a se­
cure protocol for the minimization of Equation 5.9. As will be discussed later, 
this leads to higher security for the calculation of (3 and may have further im-
pHcation for secure statistical analysis, and distributed computing, in general. 
This alternative approach challenges the wisdom of using standard analytical 
solution in distributed and/or secure computing. The procedure proposed by 
Sanil et al.[77] is an modification of the well-known Powell's algorithm for 
quadratic optimization. 

Suppose f{p) is the target function one wants to minimize, where /3 G IZ^. 
Powell's algorithm is a derivative-free procedure that finds the minimizer of 
/(/?) though a series of line optimizations of f{p) in various directions. The 
following is a pseudo code for the algorithm. 
Initialization: Select an arbitrary orthogonal basis for 7^^: d^^\S'^\ . . . , S^K 
Also set an arbitrary starting point p. 
Iteration: Repeat the following block of steps p times 

• set /3 ^ p. 
• For z = 1,2,... ,p: 
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- Find 5 that minimizes f{/3-{- 5d^'^\ 
- Set p^P-^6d^'\ 

• For 2 = l , 2 , . . . , ( p - l ) : Set S'^ ^ d^'-^^\ 
• Set d(p) ^0-p. 
• - Find 6 that minimizes /(/? + 5d^^\ 

- Setp^P-j-Sd^P^). 

Note that during each iteration in the algorithm above, (^ + 1) one-
dimensional minimizations need to be carried out. Powell proved that when 
/(/3) is a quadratic function, the final output of the algorithm is exactly the 
minimizer of /(/?). In regression, the target function L{/3) = {Y — X/3y{Y — 
X(3) is clearly a quadratic function, hence the algorithm can be employed di­
rectly for computing 6. For se<"ure rp^rpssimi, however, additional effort needs 
to be exerted so that the involved parties do not disclose their attribute val­
ues. Sanil et al.[77] assume that all the participants are semi-honest. Utilizing 
the secure sum protocol, they propose the following procedure for securely 
computing the regression coefficients. 

The key of Powell's algorithm is line optimization. Along any given direc­
tion d^ the minimizer oi L{/3 -\- Sd) over 6 is 

{¥ - xpyxd _ z^ 
{xdyxd ~ ^ J^ ' 

where z = Y — X(5 and w = Xd. For convenience, we assume that there 
are three parties denoted by Ai, A2 and ^3 respectively. The data owned by 
Ai is denoted by X î,. and the regression coefficients for the attributes held 
by Ai are denoted by 13A.-,, for i = 1,2,3. Hence, X = {XA^.XA^^^A^) and 
P^ = {P\^, /^^2' ^^2)- ^^^ given direction d can also be decomposed into three 
components as d'^ = (d'A-^^^d'^^^d^^). Then, 

z = Y- [XA.PA^ + XA,PA2 + XASPAS] 

and 
W = XA^dA^ + XA2dA2 + XA^dAs-

Clearly, z and w can be computed using the secure summation protocol. It is 
straightforward to extend the discussion above to any number of parties. 

The secure Powell's algorithm proposed by Sanil et al.[77] is described as 
follows. First an initial set of search directions d^^\d'''^\ ... ,d^^^ are chosen 
such that dj is zero if r and j are not held by the same party. In the algorithm, 

each Aj will know and update only d]^ , which is the portion related to the 
attributes owned by Aj. Second, set up the initial values for the regression 
coefficients p^ = {PAI^I^A2^ - • • ^ f^Ak)- Third, the following block of steps is 
iterated p times, which leads to the exact least squares estimate p. 
Secure Iteration 

1. Each Aj sets PAJ = pAy 
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2. For r - l , 2 , . . . , j 9 : 

(a) Each Aj computes XAJPAJ and XAjd]^^,. 

(h) z = Y — J2j=i ^AjpAj and w = Yl,j=i ^AjdA are computed collec­
tively by A i , . . . , Afc using the secure summation protocol. 

(c) Compute 5 — z'^w/w^w. 

(d) Each Aj updates PAJ ^ PAJ + 5d^2' 

3. For r = 1 ,2 , . . . , (p - 1): Each Aj updates d^^] <- d^^^^\ 

4. Each Aj updates d^^^. ^ PAJ - PAJ-

5. z^ w and 5 are computed as before, and each Aj updates PAJ ^— PAJ +5d^^ . 

The secure Powell's algorithm outputs the regression coefficients 8 and 
the residuals which are equal to the final z when the algorithm terminates. 
Using these results, diagnostics including the all-purpose residual plot and 
other goodness of fit measures such as R^ can be generated. Compared to 
the protocols discussed in Section 5.2.1, the secure Powell's algorithm is at 
least as competitive in terms of generating the necessary results for fitting a 
regression model with diagnostics. 

Although a rigorous security comparison between the secure Powell's algo­
r i thm and the protocols based on Section 5.2.1 would be difficult, it appears 
tha t the former ought to be more secure, because, during the iterations of the 
algorithms, each Aj only updates its portions of the regression coefficients and 
the search directions. Due to this only some aggregate values of linear combi­
nations of their private da ta are revealed, while the other parties do not know 
the coefficients of the linear combinations at all. In other words, the other 
parties only knows the results at most, do not know the linear equations. In 
the matrix-product based protocols, the parties do know the linear equations 
and the values of the these equations, so there exists the risk tha t they can 
solve these equations to guess or infer the original values. 

A possible downside of the secure Powell's algorithm is tha t it may not 
be appropriate for a small number of parties. For example, if there are only 
two parties, the secure summation protocol will not be able to protect the 
private da ta very well. This is t rue for a small number of parties (> 2) as 
well, especially when many iterations are needed. Another risk is tha t , if a 
par ty only hold a small number of at tr ibutes and it is known to the other 
parties, the privacy protection it receives is significantly lesser than a party 
tha t holds a large number of at tr ibutes. For other concerns as well as more 
details of the technique, readers are referred to Sanil et al.[77]. 

Most da ta mining procedures and analyses involve various optimization. 
This alternative approach to secure regression indicates tha t non-standard 
approaches to these optimizations might be more suitable when constraints 
like privacy protection are present. This idea is worth further investigation in 
other tasks of statistical analysis and da ta mining as well. 
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5.3 Horizontally Partitioned Data 

In horizontally partitioned data, each data owner or party holds all the at­
tributes but only a subset of cases. Assume that there are k parties denoted 
by Pi, P2, . . . , P/c, who own ni , ^2, . . . , Uk cases, respectively. Let Ai be a 
rii X p matrix that stores the data of party z, and YA,. denote the n^ x 1 re­
sponse vector for the cases held by party i, for 1 < 2 < /c. Then the overall 
data matrix X and response vector Y have the following representations. 

X = 

fA,\ 
A2 

\Ak/ 

andy 

\yAj 

(5.10) 

Each party can use the attribute values (e.g., Ai) and responses (VAJ of the 
cases it holds to fit a regression model without accessing to other parties' 
data. In many applications, however, the parties usually want to fit a regres­
sion model collectively due to the following concerns. First, individual parties 
may not hold enough data and a model built from individual data may be sus­
ceptible to high variability. Second, since the parties own the same attributes 
and responses, it would be practically useful to understand how the response 
and some of the attributes are related globally assuming a global model exists. 
Third, it might also be possible to understand how the relationship between 
the response and the attributes changes over the parties. When the parties are 
not willing to or not allowed to disclose their data to each other, secure pro­
tocols are again needed to facilitate regression for the horizontally distributed 
data. 

From Equation 5.3 and Equation 5.10, in terms of the distributed data 
and responses, the formula for calculating the least squares estimates of p is 

k 

/3 = (^A;^,)- i(X^^;r^j . (5.11) 
r=l 

Note that Al^Ar and A^YA^ can be calculated by Pr locally and confidentially. 
Now the secure summation protocol can be employed to calculate the sums in 
Equation 5.11, and in the end (3 can be obtained. In contrast with vertically 
partitioned data, the secure estimation of P for horizontally partitioned data 
is relatively much more straightforward. 

Once (3 is available, the parties can obtain the predicted responses for 
their cases, that is, YA^ = ArP, and further more the corresponding residuals, 
CAi = YA^ — YA.; • Many diagnostic statistics or measures such as R^ can be 
securely calculated even when the responses are also private, as long as the 
statistics are additive across the residuals held by the parties. However, due to 
the horizontal distribution of the data, there are privacy concerns regarding 
the generation and sharing of various residual plots, which are often fairly 
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useful diagnostic tools. For example, when the responses are also private, 
the residual versus predicted responses plot would immediately disclose the 
response fairly accurately. One possible way to avoid this disclosure is to 
generate the residual versus predicted response by each party using his/her 
owned responses and residuals only and then communicate with others about 
the findings from the plots. However, this naive approach could be easily 
misleading because it can only reveal local patterns. For the residual versus 
predictor plots, because the parties hold a subset of the values, an overall plot 
would again reveal the values of the attributes to all the parties. 

In order to facilitate global diagnostics confidentially, Karr et al. [50] pro­
posed to use synthetic predictor values and residuals. The procedure consists 
of three steps. First, each party simulates values of its predictors. Second, us­
ing the estimated 5, each party sinmiates residuals associated with thece syn 
thetic predictors in a way that mimics the relationships between the real-data 
predictors and residuals. Finally, the parties share their synthetic predictors 
and residuals using secure data integration protocols. The resulting synthetic 
predictors and residuals then can be used for diagnostics including various 
residual plots. For detailed description of the procedure, readers are referred 
to Karr et al. [50]. It is understandable that some information or patterns 
may be missing in the synthetic data, nonetheless, this is a possible way to 
conduct diagnostics while protecting original private data. 

5.4 Summary and Future Research 

Regression is one of the most important and fundamental tasks in data mining 
and analysis. Unlike other simple tasks such as mining association rules and 
classification, regression is a complex procedure consisting of at least three cru­
cial components: estimation, diagnostics and model selection. In some sense, 
regression represents the first real challenge for developing a privacy preserv­
ing protocol that can help conduct complex data analyses used in the sta­
tistical/actuarial world securely. In the literature, there have been a series of 
paper attempting to develop protocols and address issues for secure regres­
sion, but most of them have only focused on the secure estimation of the 
regression coefficients of a fixed model. Secure diagnostics have recently re­
ceived much attention in [50]. Despite these achievements, much effort and 
research is needed to develop procedures that can accommodate at least the 
three components effectively as well as securely, so secure regression could be 
implemented and tested in real applications. 
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Finding Patterns and Rules (Association 
Rules) 

Apart from classification and regression, one of the most important tasks 
of data mining is to find patterns in data. The best known data analysis 
technique in this area is association rule mining. In brief, an association rule 
is an expression of the form X => F , where X and Y are sets of items. The 
meaning of such rules is quite intuitive - Given a database V consisting of 
transactions T (where each transaction is a set of items), a rule of the form 
X ^Y expresses that whenever a transaction T contains X, then it is likely 
to contain Y. The degree of likeliness is expressed by the confidence of the 
rule which is defined as the number of transactions containing both X and Y 
divided by the total number of transactions containing X. That is, the rule 
confidence is understood as the conditional probability p{Y C T\X C T). 
Association rule mining originated from the analysis of market-basket data 
where rules like "A customer who buys milk and eggs will also buy bread 
with high probability" are found. 

The association rule mining problem can be formally stated as follows[3]: 
Let J = {'ii,'̂ 2, • • • •,'im] be a set of literals, called items. Let P be a set of 
transactions, where each transaction T is a set of items such that T C X. 
Associated with each transaction is a unique identifier, called its TID. We 
say that a transaction T contains X, a set of some items in X, if X C T. 
An association rule is an implication of the form X => y , where X C X, 
Y d , and X D F == 0. The rule X => Y holds in the transaction set V with 
confidence c if c% of transactions in V that contain X also contain Y. The 
rule X =^Y has support s in Z> if s% of the transactions in V contain XUY. 

Rules are deemed interesting when they occur in many transactions (high 
support), and where transactions that contain the left hand side are likely 
to contain the right hand side (high confidence). The association rule mining 
problem is to find all such rules, i.e., all A, J5, and C that form rules with the 
desired confidence and support. The key component is to find sets of items 
that occur frequently, from these the rules can be determined. 

The canonical example of association rule mining is that of the original 
motivators - supermarkets. Any supermarket chain employs market-basket 
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analysis. For example, Wal-Mart analyzes 90 million transactions per week, 
down to each shopping cart [69]. Indeed, Wal-Mart has been able to find es­
oteric rules such as: "Wal-Mart customers who purchase Barbie dolls have a 
60% likelihood of also purchasing one of three types of candy bars" [69]. In gen­
eral, rules of this sort can be utilized to reposition items, create new specials, 
and to generally improve the profitability of a store. When a consumer enrolls 
in the loyalty/rewards program of the supermarket, the supermarket immedi­
ately gets to further mine targeted data for that consumer. This could allow 
the supermarket to feasibly create specialized coupons for the consumer, and 
to channel the consumer to useful items. Where does privacy/security play 
any role in this? The basic model as explained here is certainly very applica­
ble to mining over horizontally partitioned data. Moving data to a central site 
increases risks of litigation - especirdly if ceriain data such as pharmacy data 
is also moved. Instead of a single Wal-Mart repository, each store can keep 
ownership over local data, and they can then together mine globally valid 
rules in a privacy-preserving manner. Also, in order to better compete with 
these supermarket, local stores which do not have sufficient data on their own 
can combine data to increase the benefit derived. 

6.1 Randomization-based Approaches 

Randomization approaches have been proposed for privacy-preserving mining 
of association rules from horizontally partitioned transaction databases. In 
real applications, a number of resources can hold a set of transactions. For 
example, Walmart stores at different locations have their own collections of 
customer transactions at their stores. These resources want to understand 
the purchasing behavior of the customers by mining the transaction database 
collectively, however, they are not willing or allowed to disclose their records 
to each other or to a third-party analyst. Hence, privacy preserving associa­
tion rule mining protocols are needed. Because association rules as defined in 
the introduction are relatively simple patterns and the computation methods 
for finding association rules such as the popular Apriori algorithm are not 
complicated, so efficient methods based on secure multi-party computation or 
cryptography can also be developed, which will be discussed in later sections. 
In this section, we will focus on the randomization approach. The advantage 
of randomization approach is that it is usually more efficient than other meth­
ods, especially when the databases are of large size. For transaction databases, 
their sizes are typically in thousands and even millions. 

For convenience, we use a simplified model for discussion in the following. 
Let X be the collection of items. Suppose there are N clients with transactions 
^1,^2,... ,tiv, where each transaction ti is a set of items. The clients need to 
send their individual transaction to a designated server for mining association 
rules. Because directly sending the transactions will result in privacy violation, 
the cHents randomize their transactions and send the results to the server 
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instead. The key issues in using the randomization approach are what kind 
of randomization should be used, how to mine the association rules based on 
the randomized transactions and how well randomization protects the clients' 
original transactions. Following [28, 27], we will discuss these issues separately. 
For simplicity, we assume that all the transactions have the same size, that 
is, each ti contains the same number (k) of items. In real applications, the 
transactions may of different sizes and all the concepts, procedures and results 
discussed in the following can be modified accordingly. 

6.1.1 Randomization Operator 

We assume that the transactions are independent and identically distributed 
as some fixed unknown distribatiou. A iHiidomization operator, denoted by 
i?, is a random mapping from the realized transactions {ti)i<i<N to all the 
possible subsets of items from T, i.e., 

t[ = R{U), (6.1) 

where t[ is a subset of items in X and 1 < i < N. 
Note that the definition of randomization operator above is fairly general. 

Intuitively, the clients do not want to the server to know the items in their 
original transactions (t^), so they send the server different transactions {t[). 
If randomization is done systematically, some general association rules and 
patterns can still be mined from the randomized transactions. This will be 
discussed in the next subsection. Here, we will introduce several randomiza­
tion operators. A nai* ve randomization operator is simply to replace each 
item in ti with an item not originally in t^, with probability p. This operator 
is called the uniform operator, which can be regarded as a generalization of 
Warner's "randomized response" method for handhng sensitive questions in 
surveys [87]. Although most items in a transaction can be replaced by using a 
large p, there is still probability that some items or patterns will be retained, 
which lead to privacy disclosure. It appears that more sophisticated random­
ization operators are needed. [28] proposed an operator called "select-a-size" 
randomization defined as follows. 

Definition 6.1. Let p be a fixed number between 0 and 1, and let {v[J]}o<3<m 
be a probability distribution over {0,1, 2 , . . . , m}. Given a transaction, the 
select-a-size randomization operator generates another transaction t' = R{t) 
in three steps: 

1. The operator randomly draw an integer j from {0 ,1 ,2 , . . . , m} using the 
distribution {p[j]}o<j<m' 

2. It selects j items from t uniformly at random without replacement. These 
items, and no other items oft, are placed into t'. 

3. It considers each item a ^ t in turn and tosses a coin with probability p 
of %eads^' and 1 — p of HaiW\ At those items for which the coin faces 
"heads^^ are added to t'. 
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Both the uniform and the select-a-size operators are per-transaction and 
item-invariant, because they apply the same randomization procedure to the 
transactions independently and do not use any item specific information. Com­
pared to the uniform operator, the select-a-size operator tries to include more 
false items into t', leading to randomized transactions that better hide the 
original ones. [28] also described a special case of the select-a-size operator 
called the cut-and-paste randomization operator, which has fewer parameters 
and is relatively easier to implement. 

6.1.2 Support Estimation and Algorithm 

Once the server has received the randomized transactions, it need to mine 
the original association rules irom these aata. The key in ordinary association 
rule mining is to find subsets of items that have support above a prespecified 
threshold. In this section, we introduce a method to estimate the original 
support of a given subset of items based on the randomized data and the 
associated mining algorithm. 

Let T = [ti] be the original transactions and T' = {t[] the randomized 
transactions. Let A be a fixed subset of items of size k. The support of A in 
the original transactions T is denoted by s and in the randomized transaction 
by s'. To derive the estimate of 5, a concept called partial support of A is 
defined as follows. For 0 < I < k^ 

#{teT\4^{Ant) = l} 
si = j ^ (6.2) 

where #() is the cardinality or size of a set. si is called the partial support 
of A for intersection size / in T. Clearly Sk =^ s because the size of A is k. 
Similarly, partial support of A for intersection size / in T' can be defined and 
is denoted by sj for 0 < / < /c. Furthermore, define the transitional probability 
from intersection size I to intersection size V as 

p[l ^ I'] = Pmt' nA) = i'\ # ( i nA) = i] (6.3) 

for 0 < lyV < k. Because the randomization operator is pre-transaction and 
item-invariant, p[l -^ V] does not depend on the transaction t, in fact, only 
depends on m, /c, / I', p and the distribution {p[j]}o<j<m- Hence when the 
parameters are given, p[l -^ V] can be calculated; the explicit formula for 
p[l -> V] can be found in [28]. Let P = (P//,/) be the (A: + 1) x (A: + 1) matrix 
with entries P//,/ = p[l —̂  V]. 

Now we are ready to state an important result derived by [28], which 
relates the partial supports of A in the randomized transactions T' and the 
partial supports of A in the original transactions T. Note that, due to the 
select-a-size randomization operator, the partial supports SQ^S[, ... ,s^f^ are 
random variables. [28] showed that the expected values of SQ, s^, . . . , sj. are 
given by 
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E{s'o, s ; , . . . , 4 ) ^ = P(so, 5 1 , . . . , 5fc)^ (6.4) 

where P is the matrix of transitional probabilities defined above. Now let 
Q = {Qi,i') be the inverse matrix of P when it exists. Then 

(so, s i , . . . , SkY = QE{so, s[,..., 4 ) . (6.5) 

Therefore, 

Define 

Sk = E{Qk,oSo + Qk,is[ H h Qk,ks'k)- (6-6) 

s = Qk,oSo + Qk,is[ + • • • + Q/c,/c4- (6-7) 

Equation 6.5 indicates that s is an unbiased estimate of 5/c, which is exactly 
the support {sj of A in T. In other words, from the randomized transactions, 
we can calculate all the partial supports of A^ which can be used to derive an 
unbiased estimate of s. The variance of s and its estimate were also derived 
exphcitly in [28], which can be used to assess the accuracy of s. Readers are 
referred to [28] for the details. 

Most algorithms used for mining association rules in T such as the Apriori 
algorithm can be modified to mine association rules from T\ First, all the 
partial supports of a candidate subset need to be calculated in T' in order to 
estimate s. Second, the criteria to retain or discard candidate matrices are still 
in terms of s instead of SQ, s^, . . . , sĵ ., so some special treatments are needed. 
Readers can find a modified Apriori algorithm for mining association rules 
from r in [28]. 

6.1.3 Limiting Privacy Breach 

Intuitively, the select-a-size randomization operator is expected to protect the 
items in original transactions and preserve the privacy of the clients on aver­
age. However, for each individual client, a type of privacy violation called pri­
vacy breach can still occur. [27] carefully defined privacy breach and proposed 
a method called ampHfication that can be used to limit privacy breaches. The 
concept and method are generally applicable to privacy preserving data min­
ing via randomization. Hence, following [27], we introduce them in general, 
then apply them to mining association rule using the select-a-size randomiza­
tion operator. 

In general, we assume N clients hold private data xi ,X2, . . . ,a:A ,̂ respec­
tively, which can be regarded as realizations of a random variable X with 
distribution px{x) = P[X = x] and sample space 14. Using a randomization 
operator R^ each client sends the randomized value yi = R{xi) to a server 
for analysis. The randomized data ^1,2/2, ••• ,2/N are regarded as reahzations 
of y = R{^) with distribution pviv) — P[y = y] and sample space Vy-
When the randomized data yi is disclosed, the posterior probability for the 
corresponding client's original private data to be x G Vx is 
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where p[x —> yi] is the transitional probabihty for R to map x to yi] and the 
posterior probability that the client's data possesses a property C{X) is 

P[C{X) \Y = y,]= J2 P[X = ^\y-y^] (6.9) 
Q{x),xeVx 

where C : Vx -^ {true, false}. For example, C{X) is true when X belongs 
to a particular subset. Informally, the disclosure of yi significantly increases 
the probabihty that the server knows that the client possesses a property 
C(X). Sometimes, the lack of a certain property is considered to be private, 
so if the disclosure of yi significantly decreases the probability that a client 
possesses a property, it also results in privacy breach. Given below are the 
formal definitions of these two types of privacy breach. 

Definition 6.2. Let Ci and C2 he two arbitrary properties, and let 0 < pi < 
p2 < 1. It is said that there is a upward pi — to—rho2 privacy breach with 
respect to C\ if for some y ^Vy 

P[Ci{X)] < Pi, P[Ci{X)\Y = y]> P2; (6.10) 

it is said that there is a downward p2 — to~rho\ privacy breach with respect to 
C2 if for some y ^Vy 

P[C2{X)] > /92, P[C2{X)\Y = y]< pi. (6.11) 

Randomization operators need to be designed so that they will not lead 
to either type of privacy breach defined above. Directly verifying whether a 
given operator causes privacy breach or not is generally tedious or infeasible. 
Fortunately sufficient conditions exist, which guarantee neither of the two 
types of breach will happen for given pi and p2- One such condition called 
amplification was given by [27] in terms of the transitional probabilities p[x -^ 
y]. The intuitive idea behind the condition is that, if the probabilities for the 
values of X to be randomized to y are close to each other, the disclosure of 
y = R{x) does not tell much about the original value x. In other words, the 
transitional probability p[x —> y] should not be too large compared to the 
other values of X for any fixed x and y. 

Definition 6.3. A randomization operator R{x) is at most j—amplifying for 
yeVy if 

^ { ^ < 7 (6.12) 
p[x2 -^ y] 

for any xi and X2 in Vx such that p[x2 ^ ^] > 0 where 7 > 1. Operator R{x) 
is at most ^—amplifying if it is at most 'j—amplifying for all suitable y E Vy. 
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Let y ^ Vy and assume there exists x G Vx such that p[x -^ y] > 0. [27] 
showed a sufficient condition for R{x) to cause neither the upward pi —to — p2 
privacy breach nor the downward p2 — to — pi privacy breach is that R is at 
most 7—ampUfying where 7 satisfies 

P2 1 - Pi ^ .^.^. 
— - > 7 - (6.13) 
p i l - P2 

Next we apply the general results to the select-a-size randomization oper­
ator for mining associations rules. Under the assumptions in Sections 6.1.1-
6.1.2, Vx consists of transactions of size m and Vy of all the possible trans­
actions. Let n be the number of items in X. Let t be an arbitrary transaction 
in Vx and t' = R{t). Let m' = #( t ' ) , i.e., the number of items in f and 
j = :jj^(t(M'). The transitional probabilities from t to t' is 

^ m ^ 
J 

where {p[j]} is the distribution used to select a size for randomization. For 
any two transactions, say ti and ^2, in Vx such that # ( t i Pi f) = ji and 

Khnf)=j2, 

p[ti -^f] _p[ji] \J2 
m 

p[t2 -^t'] p[J2] (m 

pj-2(l - p)m-J2 

(6.15) 
pji{l - p)m-h 

Note that ^r^^^J depends on j i , J2, '^ and the tuning parameters p and 
{p[j]} of the select-a-size randomization operator R. Applying Equation 6.13 
the sufficient condition for R to cause neither the upward pi-to-p2 privacy 
breach nor the downward p2-to-pi privacy breach is 

< 7 (6.16) 

for 0 < j i , J2 ^ ^ where 7 satisfies Equation 6.13. Hence, any select-a-size op­
erator satisfying the sufficient condition can prevent the two types of privacy 
breaches from occurring. In order to choose the best possible operator, [27] 
further considered the amount of aggregate information that can be transmit­
ted to the randomized transactions and proposed a simple but optimal way to 
determine the tuning parameters in R. Other properties of R have also been 
studied in [27]. Readers are referred to the original works for more details and 
apphcations in real databases. 
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6.1.4 Other work 

One limitation of the current randomization based approaches for association 
rule mining is that the randomization is both transaction invariant as well 
as item invariant Under the assumption that each data provider holds only 
a single transaction, while the data mining is done by a single central site, 
Zhang, Wang and Zhao [91] propose a scheme based on algebraic techniques. 
However, their technique is limited to semi-honest adversaries. 

The key difference is that perturbation guidance is provided to the data 
provider. This is done by dynamically estimating the eigenvectors of the trans­
action matrix. Since transactions are provided to the central site in a stream 
fashion, the transaction matrix is updated by appending each new transaction 
at the end. After update, singular value deromposiiion gives the eigenvectors 
and eigenvalues of the transaction matrix. The k eigenvectors corresponding 
to the top k eigenvalues form the perturbation guidance Vk given to the next 
data provider. Thus, Vk itself is a n x A; matrix. Given Vk, each data provider 
applies the perturbation function R{') to its data transaction t. R{t) is defined 
as follows: first the data transaction t in vector form (boolean) is transformed 
to the integer vector i — tVkVj^. This integer vector is then mapped back to 
a boolean vector using a very simple transformation utilizing a pre-defined 
parameter pt. li U > 1 — pt, the corresponding element R{t)i <— 1 otherwise 
R{t)i -^ 0. Finally, the transformed transaction R(t) is additionally perturbed 
as follows: for every item not in the original transaction, a random number r 
is chosen from a uniform distribution over [0,1]. If r > 1 — pm where rhom is 
another pre-defined parameter, then the item is added to R{t). This completes 
the transformation of a transaction. 

[91] further analyze the accuracy and privacy properties of this algorithm 
and compare it to the cut and paste operator proposed for randomization by 
Evfimievski et al[28]. 

Rizvi and Haritsa [75] also propose a data distortion based approach to 
mine association rules from boolean data. Again, the idea is to modify data 
values such that reconstruction of the values for any individual transaction is 
difficult, but the rules learned on the distorted data are still valid. One inter­
esting feature of this work is a flexible definition of privacy; e.g., the ability 
to correctly guess a value of ' 1 ' from the distorted data can be considered a 
greater threat to privacy than correctly learning a '0'. The basic distortion 
procedure is as follows: The distorted vector Y is generated from the boolean 
source vector X as follows: Yi = X^ 0 r^, where fi is the complement of r^, a 
random variable with density function / ( r ) = bernoulli{p){0 < p < 1). Thus, 
ri takes a value 1 with probability p and 0 with probability 1 — p. The net 
eflPect of the above computation is that the identity of the i*^ element in X is 
kept the same with probability p and is flipped with probability (1 — p). This 
distorted vector is provided to the database miner. The distorted database 
can be mined provided that the distortion procedure as well as the value of p 
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is known to the miner. For further details, readers are referred to the paper 
by Rizvi and Haritsa [75]. 

6.2 Cryptography-based Approaches 

Several cryptography based approaches have also been proposed to solve the 
association rule mining problem. We introduce two techniques here, which 
show the different challenges (and solutions) resulting from horizontally and 
vertically partitioned data. 

6.2.1 Horizontally Partitioned Data 

In a horizontally partitioned database, since the transactions are distributed 
among the k sites, the global support count of an item set is the sum of all the 
local support counts. Thus, an itemset X is globally supported if the global 
support count of X is bigger than 5% of the total transaction database size. 
The global confidence of a rule X ^ Y can be given as {X U Y} .sup/X.sup. 
An itemset is called a globally large itemset if it is globally supported. 

The aim of distributed association rule mining is to find all rules whose 
global support and global confidence are higher than the user specified mini­
mum support and confidence. 

Kantarcioglu and Clifton [47] propose a secure method based on the FDM 
algorithm [13]. The FDM algorithm is a fast method for distributed mining of 
association rules as summarized below: 

1. Candidate Set Generation: Intersect the globally large itemsets of size 
p — 1 with locally large p — 1 itemsets to get candidates. From these, use 
the classic apriori candidate generation algorithm to get the candidate p 
itemsets. 

2. Local Pruning: For each X in the local candidate set, scan the local 
database to compute the local support of X. If X is locally large, it is 
included in the locally large itemset list. 

3. Itemset Exchange: Broadcast locally large itemsets to all sites - the 
union of locally large itemsets, a superset of the possible global frequent 
itemsets. (It is clear that if X is supported globally, it will be supported 
at least at one site.) Each site computes (using apriori) the support of 
items in union of the locally large itemsets. 

4. Support Count Exchange: Broadcast the computed supports. From 
these, each site computes globally large p-itemsets. 

The FDM algorithm as described above avoids disclosing individual trans­
actions, but does expose significant information about the rules supported at 
each site. The goal is to approximate the efficiency of the above algorithm, 
without requiring that any site disclose its locally large itemsets, support 
counts or transaction sizes. 
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The Kantarcioglu and Clifton algorithm[47] basically modifies the above 
outhned method. In the I temset Exchange step, a secure union algorithm 
is used to get the global candidate set. After this step, the globally supported 
itemsets can be easily found using a protocol for secure sum. The output of 
the secure sum protocol is the actual sum. However, rather than learning the 
exact support, what is really required is to simply determine whether the 
support exceeds a threshold. To do this without revealing the actual sum, the 
secure sum algorithm is modified slightly. Instead of sending R + Yl'^i ^^ ^^^^ 
1, site k performs a secure comparison with site 1 to see if R-^Y^Vi > R (using 
a circuit, as described in Chapter 3.3.1). If so, the support threshold is met. 
The confidence of large itemsets can also be found using this method. One 
thing that needs to be emphasized is that if the goal is to have a totally secure 
method, the union step itself has to be eliminated. However, using the secure 
union method gives high efficiency with provably controlled disclosure of some 
minor information (i.e., the number of duplicate items and the candidate 
sets.) The validity of even this disclosed information can be reduced by noise 
addition. Basically, each site can add some fake large itemsets to its actual 
locally large itemsets. In the pruning phase, the fake items will be eliminated. 

This gives a brief, oversimplified idea of how the method works. Full dis­
cussion can be found in [46]. 

6.2.2 Vertically Partitioned Data 

For vertically partitioned data, a secure algorithm can be created simply by 
extending the existing apriori algorithm. Remember that vertical partitioning 
implies that an itemset could be split between multiple sites. Most steps of 
the apriori algorithm can be done locally at each of the sites. The crucial step 
involves finding the support count of an itemset. If the support count of an 
itemset can be securely computed, one can check if the support is greater than 
threshold, and decide whether the itemset is frequent. Using this, association 
rules can be easily mined securely. 

Now, we look at how this can be done. Consider the entire transaction 
database to be a boolean matrix where 1 represents the presence of that item 
(column) in that transaction (row), while 0 correspondingly represents an ab­
sence. The key insight is as follows: The support count of an itemset is exactly 
the scalar product of the vectors representing the sub-itemsets with both par­
ties. Thus, if we can compute the scalar product securely, we can compute 
the support count. Full details are given in [80] which proposes an algebraic 
method to compute the scalar product. While this algebraic method is not 
provably secure, other methods since then have been proposed for computing 
the scalar product[20, 43, 35], out of which at least one [35] is provably secure. 

These protocols typically assume a semi-honest model, where the parties 
involved will honestly follow the protocol but can later try to infer additional 
information from whatever data they receive through the protocol. One result 
of this is that parties are not allowed to give spurious input to the protocol. 
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If a party is allowed to give spurious input, they can probe to determine the 
value of a specific item at other parties. For example, if a party gives the 
input (0 , . . . , 0,1, 0 , . . . , 0), the result of the scalar product (1 or 0) tells the 
malicious party if the other party the transaction corresponding to the 1. 
Attacks of this type can be termed probing attacks and need to be protected 
against. 

Another way of finding the support count is as follows: Let party i represent 
its sub-itemset as a set Si which contains only those transactions which contain 
the sub-itemset. Then the size of the intersection set of all these local sets 
(151,5 = n^^iSi)^ gives the support count of the itemset. The key protocol 
required here is a secure protocol for computing the size of the intersection 
set of local sets. 

Evfimievski et ali2] and Vaidya and Clifton [84] describe two similar proto­
cols for doing this based on commutative encryption. Freedman et al. [33] also 
propose techniques using homomorphic encryption to do private matching and 
set intersection for two parties which can guard against malicious adversaries 
in the random oracle model as well. We now briefly describe the technique in 
[84]. Commutative encryption means that the order of encryption does not 
matter. Thus if an item X is encrypted first with a key Ki and then with a key 
7^2, the resulting ciphertext is the same if X was encrypted first with K2 and 
then with Ki. Thus, Y = EKA^KA^)) = EK^EK^iX)). What makes this 
useful is that i^i,i^2 can be generated by separate parties and kept secret. 
As long as the keys are not known to other parties, the ciphertext cannot be 
decrypted, and it is impossible to know what has been encrypted. Thus, every 
party i generates its own key i^^, and every party encrypts the local set of 
each party with its key. At the end, all the sets have been encrypted by all of 
the keys, and the common items in the sets have the same ciphertext - thus, 
one can easily count the size of the intersection set without knowing what the 
common items are. This is one of the protocols proposed in [2] by Evfimievski 
et al. However, the protocol is restricted to only two parties, assumes semi-
honest adversaries and is susceptible to the probing attacks described earher. 
The protocol proposed by Vaidya and Clifton [84] utilizes the same basic idea 
but has some enhancements so that it can applied to any number of parties 
and provides resistance to probing attacks. 

For finding the support of a single itemset, either of the two ways presented 
in the earlier couple of paragraphs is equally good. However, for association 
rule mining, both are not quite the same. The second method (of set inter­
section) is much more efficient than the first (of scalar product). The reason 
is rather subtle. Basically, in set intersection using commutative encryption, 
the protocol actually leaks more information than purely necessary. Instead 
of simply finding out the size of the complete intersection set, each party can 
also compute the sizes of the intermediate intersection sets (of a subset of 
the attributes). This fact can be turned to our advantage. Now, all parties 
simply encrypt all of the attributes with their keys. Once all attributes have 
been encrypted with all of the keys, they are sent to all of the parties. At this 
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point, every party can simply run Apriori locally and the do the necessary 
intersections to find out the support of an itemset. Thus, the overall compu­
tation/communication complexity is independent of the number of itemsets 
(which can run in the thousands). 

6.3 Inference from Results 

The techniques described above all provide a measure of protection for the 
data from which the rules are derived. The rules, by design, give knowledge. 
The problem is that this knowledge can inherently pose a risk to privacy. 
For example, assume we are performing a medical study to determine risk 
factors for a terminal disease. The methods described earlier in this chap­
ter ensure that individuals having the disease are not disclosed. However, a 
high confidence rule, combined with external knowledge about individuals, 
could enable inference about an individual's disease status. Specifically, if the 
antecedents of the rule are not private information, a high confidence rule 
inherently discloses that individuals who meet the rule criteria are likely to 
have the disease. 

Addressing this problem is challenging, as the very outcome we desire (as­
sociation rules) is exactly the source of the privacy violation. Quantifying the 
probability of disclosure of private information is straightforward; confidence 
gives a probability distribution on the private value for individuals meeting 
the antecedent, support says what fraction of individuals will meet that an­
tecedent. Combining this with an estimate of the likelihood that an adversary 
will know the attributes in the antecedent of the rule for a given individual 
allows an estimate of the privacy risk to that individual. 

More diflicult is deciding if the risk posed is acceptable, particularly in 
hght of the value of the knowledge in the rule. While Chapter 2 gives some 
insight into this issue, there is still research needed to build a comprehensive 
framework for evaluating the value of privacy. 

If the risk to privacy outweighs the reward, does this ehminate our ability 
to mine data? In [5], Atallah et al. pose an interesting alternative: altering 
data to lower the support and/or confidence of a specific rule. In many ways, 
this is similar to the randomization of Section 6.1 - transactions are altered by 
inserting "fake" items or removing real items. The goal, however, is to remove 
specific rules from the output rather than protect the input data. 

The problem of minimizing the changes to the data while still ensuring 
that the confidence and support of the rules in question are reduced below 
a threshold was shown to be NP-hard in [5]. The paper proceeded to give 
a heuristic algorithm, and demonstrate bounds on the amount of data mod­
ification needed. This was later extended to adding unknown values in [78] 
(although this only works if the data has a significant number of unknown 
values to begin with, otherwise the unknown values can be used to identify 
what rules might have been hidden.) 
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We do not go into detail on these approaches, because they do not really 
address privacy in any common sense of the term. A complete treatment 
of this topic can be found in [85]. In conjunction with randomization based 
approaches, these methods may be effective at addressing both privacy and 
the inference problem posed at the beginning of this section, providing a 
more complete solution for privacy-preserving association rule mining. This 
is a challenging and open problem for future work, and probably requires 
significant advances in privacy definitions and metrics to come to full fruition. 

A first cut at a full evaluation of the potential inference problems from 
association rules was given by Mielikainen [24]. He formulated an inverse fre­
quent set mining problem: Given a set of association rules, what data sets are 
compatible with that set of rules? While perhaps not immediately apparent, 
this is actually an effective metric for privacy. By measuring the fraction of 
such compatible data sets that disclose an individual's private data, the risk 
of disclosure posed by the rules can be estimated. If the adversary is presumed 
to know certain external information, the data sets can be further limited to 
those consistent with the external information, and again the disclosure risk 
can be measured by the fraction that correctly identify an individual's private 
data. 

Unfortunately, the value of this approach to estimating privacy risk is tem­
pered by the fact that inverse frequent set mining is NP-complete; this was 
shown through equivalence to 3-coloring in [24]. While this may also seem 
fortunate, as it would seem to make the adversary's job diflacult, relying on 
NP-hardness to ensure security has often failed in areas such as cryptogra­
phy. In particular, [24] also shows that for some sets of frequent itemsets, 
determining the compatible datasets is polynomially computable. 

While this section has been a slight foray from the task of computing 
data mining models without revealing the data used, it has pointed out the 
challenge of ensuring that private knowledge is not revealed. Even when in­
dividually identifiable data is protected, the knowledge gained through data 
mining can pose a privacy risk. Evaluating the risk, and the tradeoff between 
the risk and reward from obtaining that knowledge, is still an area of active re­
search. This will be discussed further when we look at open privacy-preserving 
data mining challenges in Chapter 8. 



Descriptive Modeling (Clustering, Outlier 
Detection) 

The data mining tasks of the previous chapters - classification, regression, 
associations - have a clearly defined "right answer". While it may not be 
possible to learn that "right answer" (e.g., we may not develop an optimal 
Bayesian classifier), the algorithms follow clearly defined paths. Descriptive 
modeling is less clearly defined. With clustering, for example, not only do 
we not know in advance what the clusters mean, we may not even know the 
proper number of clusters. Descriptive modeling is a much more exploratory 
process. 

This poses new challenges for privacy-preserving data mining. Algorithms 
for descriptive modeling tend to be iterative. The simple act of tracking data 
access across iterations can be revealing. For example, if an outlier detection 
algorithm frequently access a particular individual, it may imply that the 
individual is actually quite central. This is because algorithms that detect 
outliers by noting a lack of near neighbors would frequently access a central 
individual when attempting to show that other "near-center" entities are not 
outliers. Contrast with something like association rules, where the data items 
accessed at each iteration can be determined knowing the rules produced by 
that iteration. 

Perhaps as a result of this distinction, there has been little work on 
perturbation-based approaches to privacy-preserving clustering. If the goal 
of clustering were to model the clusters, running algorithms directly on per­
turbed data may well give reasonable results. However, if the goal is to de­
termine the cluster that an individual belongs to (or if the individual is an 
outher), perturbation-based techniques will give completely distorted results 
- even though the general clusters may be okay, which individual is in which 
cluster would be completely altered. 

The challenges are high for other approaches, as well. Iteration poses a 
challenge for secure multiparty computation, in that the number of iterations 
or intermediate steps may reveal information that compromises privacy (e.g., 
an item moving between clusters as cluster centers move gives more infor­
mation about the values of that item than simply which cluster it is in.) In 
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this chapter we look at three approaches to clustering. The first introduces 
a new approach, data transformation. As with perturbation, the goal is to 
protect privacy by altering the data. The difference is that the transformation 
approach preserves the information needed for clustering, while eliminating 
the original (private) data values. The other two approaches are based on 
the secure multiparty computation model, and show how iteration challenges 
can be addressed. We finish with a privacy-preserving approach to the closely 
related problem of outlier detection. 

7.1 Clustering 

Several solutions have been proposed for privacy-preserving clustering. One 
question that arises is why the parties need to collaborate in the first place? 
Would not some form of local clustering with model merging suffice? However, 
it can be easily seen that global data does give significantly better descriptive 
models. Figure 7.1 shows a simple two-dimensional plot of data points clus­
tered into 3 clusters. If we consider the data to be vertically partitioned, one 
party would know the projection on the X-axis, while the other would know 
the projection on the F-axis. Running a clustering algorithm such as k-means 
locally would give poor results. 

Figure 7.2 shows the clusters that would probably be found by the first 
party. Figure 7.3 shows the clusters detected by the other party. It is easy to 
see that these are incorrect, and furthermore, difficult to combine into a valid 
model. Indeed from x's point of view (looking solely at the horizontal axis), 
there really are only two clusters, "left" and "right", with both having a mean 
in the y dimension of about 3. Thus, a method such as X-means [70] would 
probably stop after finding these two clusters. The problem is exacerbated by 
higher dimensionality and clearly shows the need for global clustering. 

7.1.1 Data Perturbation for Clustering 

Disclosing distorted data instead of the original data is a natural way to 
protect privacy. As discussed in the previous chapters, randomization / per­
turbation randomly modifies individual data and the resulting data can be 
mined for association rules, regression analysis etc. Though randomization 
should still work for privacy-preserving clustering, more effort will be needed. 
Furthermore, when the clusters in the original data are not well separated 
from each other, it may be impossible to identify them in the randomized 
data. Furthermore, even if appropriate clusters are identified, the proper clus­
ter for each individual is likely to be lost. It is easy to imagine scenarios where 
private data would be used to group individuals, with the goal of identifying 
which individuals belong in which group rather than statistics on the clusters 
(computer dating is one thought.) 
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Fig. 7.1. A two-dimensional scatter plot grouped into 3 clusters 
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Fig. 7.2. Clusters found by the first party on local data 

Transformation-based Clustering 

To address this problem, while maintaining the characteristics of the pertur­
bation approach, Oliveira and Zaiane proposed to use transformation, instead 
of randomization, to distort the original data [66, 67]. 

Clustering is to divide data points into groups, so that the points in the 
same group are similar to each other but the points from different groups are 
dissimilar with each other. Hence, the measure of similarity or dissimilarity 
between two data points play a crucial rule in clustering. DiflFerent measures 
lead to different clustering methods. [66] regarded data points as vectors in 
multiple dimensional Euclidean space and used the Euclidean distance as the 
similarity measure. Let D = {dij)mxn be an m x n data matrix in which each 
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row corresponds to a data point. Assume that D is held by an owner that 
requests another party to conduct a clustering analysis of D but do not want 
to disclose D. The owner decides to transform the data points and then send 
the transformed data denoted by D' to the other party for analysis. Because 
the clustering result based on D' should be exactly the same as that based 
on D, the similarity between any two rows of D should be invariant under 
the transformation. This is guaranteed by using orthogonal transformations. 
In [66], in fact, only a subfamily of orthogonal transformation was proposed. 

Let Di denote the zth column of i^ for 1 < i < n. Let 

R = 
cos 6 sin 6 

-sin 9 cos 9 
(7.1) 

where 9 is an angle, i? is a two-dimensional rotation operator. Any two given 
columns of JD, Di and Dj^ can be rotated as 

{D[,D'^) = {D,,D,)R. (7.2) 

th Replacing Di and Dj with D[ and D'^ leads to a new data matrix where the i 

and j ^ columns have been modified. This operation can continue until all the 
columns of D have been modified, and the resulting matrix D' has the property 
that the distances between the rows of D' are equal to the distances between 
the rows of D. Note that if 9 isO, then R is an identity matrix and D[ = Di 
and D', = Dj. In other words, the columns have not been really modified. 
Therefore, 9 needs to be carefully chosen so that the modified columns are 
different from the original ones. [66] proposed the pairwise-security thresholds 
pi and p2 for selecting 9, which are 

Var(A - D[) > pi and Var(P^- - D]) > p2, (7.3) 
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where Var() is the variance of the vector entries. Hence, 6 should be chosen so 
that the thresholds above are satisfied. The above procedure is repeated for 
a number of disjoint or joint pairs of the columns until all the columns of D 
are distorted. This method was referred to as Rotation-Based Transformation 
(RBT) in [66]. Following is the pseudocode for RET. 
RBT.Algorithm 
Input: Dmxn Output: D'^^^ 

1. Choose A: pairs of security thresholds {k = [fD- {{pii, Pi2)}i<i<k-
2. Choose k pairs of columns of D, e.g., (Di.Dj), such that each column of 

D is selected at least once. 
3. For each selected pair (Di.Dj) do 

a) Compute {Di,Dj)R{0) as a function of 6. 
b) Select Oi such that Var(A - D[) > pn an Y'di{Dj - D'-) > pi2 
c) {D^,,D^^) = {D,,D,)R{ei). 

End.for 
End.Algorithm 

Although the RBT procedure was proposed for centralized data, it can be 
extended to distributed or partitioned data without much difficulty. To gen­
eralize it to similarity measures other than the EucHdean distance would be 
difficult. In addition, in practice, one may know ahead of time which cluster­
ing methods and which similarity measure will be used. This drawback could 
limit the usefulness of this procedure. Another concern is the security of the 
procedure. [66] argued that a bruce force attack would require a great deal 
of computational power to get the original data, because an adversary has to 
figure out the correspondence between the pairs and the angles Oi used during 
the transformation. The procedure outlined above only require every column 
of D to be rotated at least once, which may not be enough to hide the data 
well. We believe that for data of moderate size, the computation to recover the 
original data or some columns of D may not as intensive as [66] thought. Fur­
thermore, once a privacy breach occurs, it is not just limited to one individual, 
in fact, it will cause the disclosure of all the values of at least one attribute. 
Likewise, prior knowledge of the attributes of a few individuals (as many as 
the number of attributes) enables triangulation using the distances alone to 
determine the entire data; inverting the rotation is not necessary. Hence, the 
security of this kind of transformation is also questionable in practice. Trans­
formation is a valuable idea, but more sophisticated procedures need to be 
developed. 

Generative Models for Clustering 

As discussed earlier, disclosing summary statistics instead of original data is 
an eff'ective way to share information and preserve privacy. The procedure 
for privacy preserving clustering using generative models [66] belongs to this 
category. Suppose data are horizontally distributed among k sources. [66] 
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assumes that there exists an underlying distribution that generates the data 
and it can learned from high-level information from the k partitioned data 
instead of integrating the data together. Under this assumption, a source 
does not need to send actual data to a third party for clustering, instead, a 
model is fitted to the local data, then the model is sent to a server to learn 
the global distribution. 

Let the k resources be labeled by 5i , ^2, . . . , Sk, respectively. At Si, 
model-based clustering methods are employed to fit a model denoted by pi. 
Because the disclosure of a model may also cause a privacy breach, certain 
privacy cost constraints need to be satisfied by pi. In [66], the authors advo­
cated the use of likelihood of the data instead of entropy to quantify privacy 
loss. Then the sources send the models {pi}i<i<k to a centraHzed server that 
learns a global model for cluotering. [66] uses KL-divergence to measure the 
discrepancy between two densities / and g, which is 

K{f;g) = I fix)log^dx. (7.4) 

The global model po can be approximated by the solution of the following 
optimization problem: 

k 

p* = argmin^^^ ^ ViK{pi;p), (7.5) 
i=l 

where ^ is a family of distributions, and {i'i}i<i<k are the proportions of the 
data held by {Si}i<i<k^ respectively. Define p = Y^=i ^iPi- It is clear that p 
is the average of the fitted local models {pi}. [66] observed that 

k k 

^UiK{pi]p) = ^yiK{pi\p) ^ K{p]p). 

Hence, the minization problem (7.5) is equivalent to 

p* :- ^Ygmm^^j,K(p]p). (7.6) 

If the distribution family T is large enough to include p, then p* = p. How­
ever, p usually is not easily interpretable, because the local models may be 
over-parametrized to guarantee enough information is available for fitting the 
global model. Furthermore, p may not easily interpretable either. Hence, in 
practice, one prefers to restrict J^ to be a family of parametric models. For 
example, T can be the collection of Gaussian mixture distributions with fi­
nite components. Then, (7.6) becomes an optimization problem which can be 
solved numerically. When this requires intensive computation, an alternative 
using Monte Carlo simulation can be used. Instead of directly minizing (7.6), 
a sample {xi]i<i<ri^ is randomly generated from p. When p is complicated, 
Markov Chain Monte Carlo (MCMC) algorithms can be employed to generate 
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the sample. Based on the sample, (7.6) can be further approximated by the 
following maximum likelihood approach, 

^ m 

p* = maxpe^— Y^ log{p{xi)). (7.7) 

Note that the objective function above is the likelihood function. For cluster­
ing, the distributions in T are usually of mixture structures. Hence, the EM 
algorithm can be used for computing the maximum likelihood estimate p*. 

The security of the procedure described above is controlled by the privacy 
constraints imposed on the local models {pi}. Hence, the data sources decide 
what kind of local models they want to release to a centralized analyst. Note 
thai the private data are never disclosed. 

The key requirement for the correctness of this approach is that the same 
underlying model generates the data at each source. In other words, the re­
sources are homogeneous; differences between the local models are due to 
random variations rather than differences in the populations held by those 
sources. This assumption may be unrealistic in many applications, further 
work is needed to determine when this approach is applicable (or how to 
determine if it is applicable.) 

7.2 Cryptography-based Approaches 

The Secure Multiparty Computation model has also been used to develop 
descriptive modeling techniques. 

7.2.1 EM-clustering for Horizontally Partitioned Data 

Expectation Maximization (EM) is one of the most well-known clustering 
techniques, and can be viewed as a generalization of /c-means clustering. The 
basic idea behind EM clustering is as follows. Assume the data to be clustered 
y = {yir '' ^Vn} is independent and independently distributed, and drawn 
from a population with density function f{y;^), where iẐ" is a vector of the 
unknown parameters. The observed data log likehhood is: 

logL(iZ^)-log/(y;lZ^). 

The maximum likelihood principle says that the estimators that maximize the 
data Hkelihood are consistent estimators of the true parameters. This means 
that we cluster by estimating the parameters ^, then clustering objects to 
their best-fit distribution among those parameters. Typically EM clustering 
assumes that data are drawn from a Gaussian distribution; the parameters ^ 
to be learned are the mean and variance of each dimension. 

It is generally infeasible to find analytical solutions to determine ^ from the 
data. The EM algorithm is an iterative procedure to find the ^ that maximizes 
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logL{^) by data augmentation. The observed data y is augmented by the 
missing value z that contains group information of the observed data. More 
specifically, z = (Zi, • • •, Zn) where Zj = {Zji,Zj2, • • •, Zjk). Zji = 1 means 
data point j belongs to the ith component. For instance, Zj = (1,0,0,0,0) 
means that the jth data point belongs to component 1. x = (y, z) becomes 
complete data with density function /c(x; ^ ) . The complete data log Hkelihood 
is: 

logLe(^)-log/e(x;iZ^). 

Typically the complete data likelihood has a simpler structure and its expected 
Hkelihood can be maximized analytically. 

Since we don't know the actual z, the EM algorithm starts with a random 
assignment. It then iterates learning the parameters ^ and updating the clus­
ter assignments z until the cluster assignments stabilize. Dempster [17] proved 
that by maximizing G(lZ ;̂l̂ *̂̂ ) = E'^(t){logLc(l^)|y}, the observed log likeli­
hood is non-decreasing for each iteration step, which guarantees convergence 
of the algorithm. The algorithm contains two steps: 

E-Step: On the {t + l)st step, calculate the expected complete data log like­
lihood given observed data values: G{^; iẐ (*)) 

M-Step: Find iẐ (*+i) to maximize G{^;^^^^). 

Lin et al.[55] propose a privacy preserving EM algorithm for secure clus­
tering of horizontally partitioned data. While this algorithm builds on many 
of the secure protocols we have already discussed, the fact that the EM algo­
rithm is iterative makes the problem more challenging (as with the regression 
algorithm in Chapter 5.2.4.) A new twist is introduced in their proof that 
the intermediate steps, or simply the number of steps, does not reveal private 
information. 

The key to this proof comes in two parts. First is showing that while 
the data disclosed at any iteration may exceed that needed for the solution, 
it does not reveal identifiable information. Second is showing that given two 
iterations, no private information is revealed that cannot be derived from only 
the second iteration. 

We will now describe the algorithm and give an overview of the key novel 
features of the proof. To simplify the exposition, we consider only one dimen­
sion; i.e., data for only a single numerical attribute is collected by all parties. 

Let the data yj be partitioned across s sites {I < I < s). Each site / has 
ni data items. 

To obtain a global estimation for the cluster i parameters at step t + 1 
mean jj^i , variance cr̂  , and proportion of items in i 7r| ^ (the E step) 
requires only the global values n and 

n n 

/^r^^^E-i^./E^;^ (7-8) 
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''^''=t^S'(vj-^^''?/f:^i? (7.9) 
j=l j=l 

-r^^=E-SVn (7.10) 
j=l 

Because of the commutativity of addition, we can rewrite the summations in 
the above equations as: 

n s ni 

E-SV-EE4^^. (7-11) 
n s ni 

E4' = EE4^ (7-^2) 
j=i 1=1 j=i 

n s ni 

j=i 1=1 j=i 

Observe that the second summation in each of the above equations can be 
computed locally at each site: 

(7.14) 

(7.15) 

Cu = T.4(:y^~^^^y (7.16) 
3 = 1 

Calculating local values does not disclose private values; secure summation 
(Chapter 3.3.2) shows how to compute the global summations without re­
vealing anything except the final sums in Equations 7.11-7.13. Given these 
sums, and assuming n is known to all (or computed securely using a secure 
summation), each site can calculate /i^, cr̂ , and TT̂  locally using Equations 
7.8-7.10. 

Given the parameters for each cluster, each site can locally perform the 
next E-step. This is done by assigning its local items to clusters as follows: 

where i/ji is a data point at site /. 
The E-step and M-step iterate until 

1̂ (̂ +1) _i:(*)| < e . (7.18) 

Ail 

Bii 

3 = 1 

ni 

3 = 1 

ni 
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where 

L(t)(^(t), ,(t) |y) = ^ ^ { , ( j ) [ l o g ; r , / , ( y f I^W)]}. (7.19) 

This can again be calculated using secure summation and a secure compar­
ison, as with the association rule algorithm in Chapter 6.2.1. Algorithm 2 
summarizes the method. 

A l g o r i t h m 2 Secure EM Algorithm. 

At each site /, yi=i..ni,j=i..k randomly initialize Ziji to 0 or 1. 
Use secure sum of Section 3.3.2 to compute n = Yl^i=i'^i 

while Threshold criterion of log likelihood not met do 
for all i = l../c do 

At each site /, calculate A^^'^ '̂  and B^^'^ ^ using equations (7.14) and (7.15). 

Use secure sum to calculate A]^'^ and B^ '^ . 

Site 1 uses these to compute fi]^'^ and broadcasts it to all sites. 

Each site / calculates C^i using equation (7.16). 

Use secure sum to calculate C | 

Site 1 calculates cr| and TTJ and broadcasts them to all sites. 
At each site /, Vj=i..n/ update zy.'^' using equation (7.17). 

end for 

Calculate the log likelihood difference using equation (7.18) and (7.19). 
end while 

Secure summation guarantees tha t the only information disclosed at each 
iteration are the parameters n, /i-i, cr̂ , and TT̂ . (Technically, the sums used 
to calculate those parameters are disclosed, but note tha t the sums can be 
derived from the final parameter values.) The first question is the privacy 
implications of revealing these global parameters. In [55] it is shown tha t 
these values do not directly reveal individually identifiable information, or 
even site identifiable information. Even in exceptional cases, such as a cluster 
containing a single individual (thus leading the cluster center to converge to 
the values for tha t individual), only the site containing tha t individual knows 
which cluster the individual is in. Since tha t site already knows the da ta for 
tha t individual, there is no privacy breach. Similar arguments are given for 
the other parameters. 

A more challenging problem is posed by the ability to compare values 
across iterations. While a single mean may not reveal anything, does the 
change in tha t mean across iterations reveal too much about the data? To 
address this question, assume without loss of generality tha t s new da ta points 
are assigned to component i. From the mean and variance of steps t and t + 1 , 
we have: 
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Y:;U^J-^? 
rii — 1 

' n̂  + s - 1 

When 5 > 1, these two equations have infinite solutions for 2/n,;+i, • • •, Vm^s' In 
other words, values from previous iterations will not give specific information 
on individuals that is not already available from the final iteration. 

7.2.2 K-means Clustering for Vertically Partitioned Data 

Vertically partitioned data once ag^iir. rnis-̂ c- its own complications. First, we 
must decide how the model is shared by the parties. It is easy to say that 
we group the data points into clusters. However, apart from cluster member­
ship, what other information is shared by the parties? Do all parties know 
all the relevant information about each cluster or do they know only the in­
formation restricted to their attributes? Which of these alternatives makes 
sense in the particular real-life situation? These issues are common to any 
privacy-preserving clustering over vertically partitioned data. 

Vaidya and Clifton [81] proposed the first method for clustering over ver­
tically partitioned data - a privacy-preserving protocol perform do k-means 
clustering. Though all parties know the final assignment of data points to clus­
ters, they retain only partial information for each cluster. The cluster centers 
jjii are assumed to be semiprivate information, i.e., each site can learn only 
the components of fi that correspond to the attributes it holds. Thus, all in­
formation about a site's attributes (not just individual values) is kept private; 
if sharing the /i is desired, an evaluation of privacy/secrecy concerns can be 
performed after the values are known. 

K-means clustering[25, 34] is a simple technique to group items into k clus­
ters. The basic idea behind A:-means clustering is as follows: 

Initialize the k means JJLI ... jik to 0. 
Arbitrarily select k starting points / i ^ . . . /i^ 
repeat 

Assign fi'i... fi'^ to jjLi... Ilk respectively 
for all points i do 

Assign point i to cluster j if distance d{i^ fij) is the minimum over all 

end for 
Calculate new means /i^ ... ii'^. 

9: until the difference between fix ... jik and ji'i... ji'^ is acceptably low. 
Each item is placed in its closest cluster, and the cluster centers are then ad­
justed based on the data placement. This repeats until the positions stabilize. 

Let us now see what is necessary to make this algorithm privacy-preserving. 
Since k is traditionally used to denote the number of clusters, in the following 
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discussion, we abuse notation a bit, and just for this section, use r to refer to 
the number of parties. Step 1,2 are quite simple. Since the da ta is vertically 
partitioned, each par ty can randomly choose its par t for each of the k means. 
The assignments in step 4 are local assignments so they can be easily carried 
out by each party. If all of the points have been appropriately assigned to the 
closest cluster, calculating the new means is again a local operation. Thus, 
each par ty can compute the new mean for its a t t r ibutes for each cluster. 
Figuring out when to stop (Step 9 is the other step requiring work. Thus, 
in order to make the entire algorithm privacy-preserving, the following two 
computations need to be carried out securely: 

• The closest cluster computation for each point 
• The termination test: is the improvement to the mean approximation in 

the iteration below a threshold? 

Closes t c luster c o m p u t a t i o n 

The closest cluster computation is invoked for every single da ta point in each 
iteration. Each party has as its input the component of the distance corre­
sponding to each of the k clusters. This is equivalent to having a matr ix of 
distances of dimension kxr. For common distance metrics; such as Euclidean, 
Manhat tan , or Minkowski; this translates to finding the cluster where the sum 
of the local distances is the minimum among all the clusters. 

The problem is formally defined as follows. Consider r parties P i , . . . , P^, 
each with their own k-element vector Xi : 

Pi has X i 

'xn~ 
^21 

_Xkl_ 

, P2 has 

' ^ 1 2 " 

3:^22 

_Xk2_ 

, . . . , ij- nas 

X\f 

X2r 

The goal is to compute the index / tha t represents the row with the minimum 
sum. Formally, find 

argmin{ y . ^ij) 
^=^-^ j=l..r 

For use in /c-means clustering, Xij = \/j.ij — pointj\^ or site Pj ' s component of 
the distance between a point and the cluster i with mean /i^. 

The security of the algorithm is based on three key ideas. 

1. Disguise the site components of the distance with random values tha t 
cancel out when combined. 

2. Compare distances so only the comparison result is learned; no party 
knows the distances being compared. 

3. Permute the order of clusters so the real meaning of the comparison results 
is unknown. 
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The algorithm also requires three non-colluding sites. These parties may be 
among the parties holding data, but could be external as well. They need 
only know the number of sites r and the number of clusters k. Assuming they 
do not collude with each other, they learn nothing from the algorithm. For 
simplicity of presentation, we will assume the non-colluding sites are Pi, P2, 
and Pr among the data holders. Using external sites, instead of participating 
sites Pi, P2 and P .̂, to be the non-colluding sites, is trivial. 

The algorithm proceeds as follows. Site Pi generates a length k random 
vector Vi for each site i, such that ^11=1 Vi = 0. Pi also chooses a permutation 
TT of l../c. Pi then engages each site Pi in the permutation algorithm to generate 
the sum of the vector Vj and Pj's distances Xi. The resulting vector is known 
only to P^, and is permuted by n known only to Pi, i.e.. Pi has 7r(Vi + Xi), 
but does not know zr or Vi. Pi and P3 . . . P^-i send their vectors to P^. 

Sites P2 and Pr now engage in a series of secure addition / comparisons to 
find the (permuted) index of the minimum distance. Specifically, they want 
to find if XlLi xii+vii < YH=I ^mi-^Vmi- Since V/, Y^i^i ^u = 0̂  ^^e result is 
1^1=1 ^li < ^21=1 ^mii showing which cluster (/ or m) is closest to the point. 
Pr has all components of the sum except X2 + V2. For each comparison, we 
use a secure circuit evaluation (see Chapter 3.3.1) that calculates a2 + a^ < 
h2 -\- hr-, without disclosing anything but the comparison result. After k — \ 
such comparisons, keeping the minimum each time, the minimum cluster is 
known. 

P2 and Pr now know the minimum cluster in the permutation TT. They do 
not know the real cluster it corresponds to (or the cluster that corresponds to 
any of the others items in the comparisons.) For this, they send the minimum 
i back to site Pi. Pi broadcasts the result 7r~^(i), the proper cluster for the 
point. 

The permutation algorithm is one of the two key building blocks borrowed 
from the Secure Multiparty Computation literature. The secure permutation 
algorithm developed by Du and Atallah[20] simultaneously computes a vector 
sum and permutes the order of the elements in the vector. The key behind 
the solution is the use of Homomorphic encryption. An encryption function 
7i : 71 -^ S is called additively homomorphic if there is an eflacient algorithm 
Plus to compute H{x -{-y) from H{x) and H{y) that does not reveal x or y. 
Many such systems exist; examples include systems by Benaloh[10], Naccache 
and Stern [61], Okamoto and Uchiyama[65], and Paillier [68]. This allows us to 
perform addition of encrypted data without decrypting it. Basically, the first 
party encrypts its data using homomorphic encryption and sends to the other 
party the encrypted data as well as the encryption key. Using the encryption 
key, the other party can encrypt random numbers. Using the homomorphic 
property of the encryption, these two encrypted numbers can be added. Now 
the other party permutes the resulting sum vector and sends it back to the 
original party which can decrypt to get the permuted vector with randoms 
added. A graphical depiction of stages 1 and 2 is given in Figures 7.4 and 7.5. 
More details along with a security proof can be found in [81]. 
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Fig. 7.4. Closest Cluster - Stage 1 

The other primitive used from SMC is the secure addition comparison, 
which builds a circuit that has two inputs from each party, sums the first 
input of both parties and the second input of both parties, and returns the 
result of comparing the two sums. This (simple) circuit is evaluated securely 
using the generic algorithm described in Section 3.3.1. 

The termination test 

When to terminate is decided by comparing the improvement to the mean 
approximation in each iteration to a threshold. If the improvement is sufficient, 
the algorithm proceeds, otherwise it terminates. 

Each party locally computes the difference between its share of the old 
mean and the new mean for each of the k clusters. Now, the parties must figure 
out if the total sum is less than the threshold. This looks straightforward, 
except that to maintain security (and practicahty) all arithmetic takes place in 
a field and is thus modular arithmetic. This results in a non-obvious threshold 
evaluation at the end, consisting of a secure addition/comparison. Intervals 
are compared rather than the actual numbers. Further details can be found 
in [81]. 
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i^v,_; 

Fig. 7.5. Closest Cluster - Stage 2 

Even now, this protocol is not fully secure since some intermediate results 
are leaked. Essentially, the intermediate cluster assignment of data points is 
known to every party for each iteration, though the final result only specifies 
the final clusters. However, this compromise is required for eflSciency, though 
finding better solution is an issue for future research. 

7.3 Outlier Detection 

Outlier detection has wide application; one that has received considerable 
attention is the search for terrorism. Detecting previously unknown suspicious 
behavior is a clear outlier detection problem. The search for terrorism has also 
been the flash point for attacks on data mining by privacy advocates; the U.S. 
Terrorism Information Awareness program was killed for this reason [54]. 

Outher detection has numerous other applications that also raise pri­
vacy concerns. Mining for anomalies has been used for network intrusion 
detection[8, 53]; privacy advocates have responded with research to enhance 
anonymity[74, 38]. Fraud discovery in the mobile phone industry has also 
made use of outlier detection [29]; organizations must be careful to avoid over­
stepping the bounds of privacy legislation[26]. Privacy-preserving outlier de-
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tection will ensure these concerns are balanced, allowing us to get the benefits 
of outlier detection without being thwarted by legal or technical counter-
measures. However, outlier detection, by definition, means pinpointing enti­
ties/transactions that are anomalous. In no sense does it summarize informa­
tion. Thus, the entities that are highlighted lose all privacy at the individual 
level. This is necessary for the true positives in any case. The problem remains 
for the false positives - entities identified as outliers without really being so. 
This seems problematic, however, a couple of caveats exist. First, any detec­
tion technique is not fool-proof and false positives always exist. We merely 
reduce the privacy leakage and problems. Secondly, technical solutions exist. 
All the identifiers can be eliminated to begin with. The outliers detected are 
hand examined and if sufficient cause exists, the anonymization is taken away 
and Ihe real identity is revealed (just as it occurs in real life with a court 
order). 

An obvious question again is to ask why privacy-preserving outlier detec­
tion is necessary in the first place? Why not run the outher detection algorithm 
locally at each site and then combine the results? This is especially true since 
false negatives will never occur due to the local detection process as long as 
a fixed threshold is used. For example, a person who is close to 5 points in a 
local dataset, will be close to at least 5 points in the global dataset as well. As 
long as the outlier detection threshold stays at 4, this point will never be de­
tected as an outlier. This does make sense in some applications. However, the 
problem of false positives does remain. Figure 7.6 demonstrates this problem. 
Here we have horizontal partitioning of data between two parties (diamonds 
and rectangles are used to show the different points). If outlier detection was 
carried out locally at diamond's site, among others, the two points circled 
would be detected as outliers. In the global case, it can be clearly seen that 
the point at (0.1,0.9) is truly an outlier where as the point at (0.81,0.85) is 
not an outlier. By doing outlier detection on the global dataset, detecting this 
false positive would be avoided. This is especially important for applications 
such as terrorist detection - where the points are many, and the resources to 
manually check them later, small. 

As usual, the basic assumption is that data is distributed; the stewards 
of the data are allowed to use it, but disclosing it to others is a privacy 
violation. While there are numerous different definitions of outliers as well 
as techniques to find them, the only one currently developed in a privacy-
preserving fashion is for distance-based outliers. The method developed by 
Vaidya and Clifton [83] finds distance-based outliers without any party gaining 
knowledge beyond learning which items are outliers. Ensuring that data is 
not disclosed maintains privacy, i.e., no privacy is lost beyond that inherently 
revealed in knowing the outliers. Even knowing which items are outliers need 
not be revealed to all parties, further preventing privacy breaches. 
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Fig. 7.6. Global outlier detection on data set collected from two parties 

7.3.1 Distance-based Outliers 

Knorr and Ng [51] define the notion of a Distance Based outlier as follows: An 
object 0 in a dataset T is a DB(p,dt)-outlier if at least fraction p of the objects 
in T lie at distance greater than dt from 0. Other distance based outlier tech­
niques also exist [52, 73]. The advantages of distance based outliers are that no 
explicit distribution needs to be defined to determine unusualness, and that 
it can be applied to any feature space for which we can define a distance mea­
sure. Euclidean distance is the standard, although the algorithms are easily 
extended to general Minkowski distances. There are other non distance based 
techniques for finding outliers as well as significant work in statistics [9], but 
there is no work on finding them in a privacy-preserving fashion - thus, this 
is a rich area for future work. 

For Euclidean distance, for vertically partitioned data, the distance dt 
is fixed by the local parties deciding on the local distances dti (i.e., dt = 
Yli=i ^^0' since no site globally knows all of the attributes. An object X is 
an outlier if at least p% of the other objects lie at a distance greater than dt. 
For horizontally partitioned data, all parties together decide on the distance 
threshold dt. Rather than computing the distance and comparing against 
the threshold, the difference between the distance squared and the threshold 
squared is computed. This difference is calculated, and the number of objects 
of each party being to which this object is relatively an outlier is computed. 
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Now all parties simply have to sum these values up and if the sum is greater 
than p%, then that object is an outlier. 

7.3.2 Basic Approach 

The approach duplicates the results of the outlier detection algorithm of [51]. 
The idea is that an object O is an outlier if more than a percentage p of the 
objects in the data set are farther than distance dt from O. The basic idea 
is that parties compute the portion of the answer they know, then engage 
in a secure sum to compute the total distance. The key is that this total is 
(randomly) split between sites, so nobody knows the actual distance. A secure 
protocol is used to determine if the actual distance between any two points 
exceeds the threshold; again the comparison results are randomly split such 
that summing the spHts (over a closed field) results in a 1 if the distance 
exceeds the threshold, or a 0 otherwise. 

For a given object O, each site can now sum all of its shares of comparison 
results (again over the closed field). When added to the sum of shares from 
other sites, the result is the correct count; all that remains is to compare it 
with the percentage threshold p. This addition/comparison is also done with 
a secure protocol, revealing only the result: if O is an outlier. 

The pairwise comparison of all points may seem excessive, but early termi­
nation could disclose information about relative positions of points (this will 
be discussed further in Section 7.3.7.) The asymptotic complexity still equals 
that of [51]. 

Note that a secure solution requires that all operations are carried out 
modulo some field. For the algorithms, the field D is used for distances, and 
F is used for counts of the number of entities. The field F must be over twice 
the number of objects. Limits on D are based on maximum distances; details 
on the size are given with each algorithm. 

The following Sections presents the privacy-preserving algorithms for both 
horizontally and vertically partitioned data. Following that, the complete 
proof of security for these algorithms is presented. This is especially instruc­
tive for readers wishing to develop their own algorithms since the proof of 
security forms a significantly important component necessary for trust in the 
overall solution. A discussion of the computational and communication com­
plexity of the algorithms rounds off this section, and affords the opportunity 
to discuss avenues for future work in this area. 

7.3.3 Horizontally Partitioned Data 

The key idea behind the algorithm for horizontally partitioned data is as 
follows. For each object i, the protocol iterates over every other object j . 
If the same party holds both i and j , it can easily find the distance and 
compare against the threshold. If two different parties hold the two objects, 
the parties engage in a distance calculation protocol (Section 7.3.3) to get 
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random shares of the distance. Now, a second protocol compares the shares 
with the threshold, returning 1 if the distance exceeds the threshold, or 0 if 
it does not. The key to this second protocol is that the 1 or 0 is actually two 
shares r^ and r^ returned to the two parties, such that r^ + r^ = 1 (or 0) 
(mod F). Looking at only one share, neither party can learn anything. 

Once all points have been compared, the parties individually sum their 
shares. Since the shares add to 1 for distances exceeding the distance thresh­
old, and 0 otherwise, the total sum (mod F) gives the number of points for 
which the distance exceeds the threshold. Explicit computation of this sum 
would still reveal the actual number of points distant. So the parties do not 
actually compute this sum; instead all parties pass their (random) shares to 
a designate to add, and the designated party and the party holding the point 
engage in a secure protocol that reveals only if the sum of the shares exceeds 
p%. Thus, the only result of the protocol is to reveal whether the point is an 
outlier or not. 

Algorithm 3 gives the complete details. Steps 3-15 are the pairwise com­
parison of two points, giving each party random shares of a 1 (if the points 
are far apart) or 0 (if the points are within the distance threshold dt). The 
random split of shares ensures that nothing is learned by either party. In steps 
16-18, a party Py other than Pq (i.e., any party other than the party holding 
the object being evaluated) is chosen. All other parties (other than Pq and 
Py) send their shares to Py who sums these with its share. Again, since each 
share is a random split (and Pq holds the other part of the spHt), no party 
learns anything. Finally, Py and Pq add and compare their shares, revealing 
only if the object Oi is an outlier. Note that the shares of this comparison 
are spht, and could be sent to any party {Pq in Algorithm 3, but it need not 
even be one of the Pr parties). Only that party (e.g., a fraud prevention unit) 
learns if Oi is an outlier, the others learn nothing. 

Computing distance between two points 

A key step of Algorithm 3 requires computation of the distance between two 
objects. However, rather than simply revealing the result to the two parties the 
computation must output random shares of that distance to the two parties. 
This distance is than compared against the threshold to determine whether 
the two objects are close or not. For convenience, what is actually computed 
are shares of the square of the distance. These are then compared with the 
square of the threshold. (This does not change the result, since squaring is a 
monotonically increasing function.) We now look at the algorithm for com­
puting shares of the square of the Euclidean distance. The algorithm is based 
on a secure scalar product, for which many protocols exist [20, 80, 43, 35]; 
any of these can be used. 

Formally, assume that there are two parties, Pi and P2. All computations 
are over a field D larger than the square of the maximum distance. Pi's 
input is the point X, P2's input is the point Y. The outputs are ri and r2 
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A l g o r i t h m 3 Finding DB(p,D)-outliers 

Require: k parties, P i , . . . , P^; each holding a subset of the objects O. 
Require: Fields D larger than the maximum distance squared, F larger than \0\ 
1: for all objects oi ^ O {Let Pq be the party holding Oi} do 
2: Every party Pr initializes local counter nurrir to 0 
3: for all objects Oj GO, Oj y^ oi do 
4: if Pq holds Oj then 
5: if Distance{oi,Oj) > dt {Computed locally at Pq} then 
6: Pq locally increments nurriq (modulo F) 
7: end if 
8: else 
9: {Assume party Ps holds Oj} 

10: Pq and Ps engage in the distance computation protocol (Section 7.3.3) to 
get fq and Vs respectively such that rg+r^ (mod D) = Distance"[Oi, Oj) 

11: Pq and Ps use the secure comparison protocol (Section 7.3.5) to get r^ 
and r^ respectively such that the following condition holds: if Tq + Vs 
(mod D) > df, then r^ + r'̂  = 1 (mod P) , else r^ + r^ = 0 (mod P) . 

end if 12 
13 
14 
15 
16: 
17: 
18: 
19 

At Pq: nurriq •̂— nuniq + r^ 
At Ps'. nunris ^- nunts + r^ 

end for 
{Let Pv be a party other than Pq] 
All parties Pr excepting Pq and Pv send their local counters nurrir to Pv 
At Pv'- nurriv <— ^^^ nurrii 
Pq and Pv use the secure comparison protocol (Section 7.3.5) to get tempq and 
tempv respectively such that the following condition holds: if nuruq + nurriv 
(mod P) > | 0 | * p%, then tempq + tempv = 1 {oi is an outlier), otherwise 
tempq -h tempv = 0 

20: Pv sends tempv to Pq, revealing to Pq if ô  is an outlier. 
21: end for 

respectively (independently uniformly distributed over D), such tha t r i + r 2 = 
Distance^{X, Y) (mod D), where Distance{X, Y) is the Euclidean distance 
between the points X and Y. 

Let there be m at tr ibutes, and a point W be represented by its m-
dimensional tuple {wi^... ^Wm)- Each co-ordinate represents the value of the 
point for tha t a t t r ibute. The square of the Euclidean distance between X and 
Y is given by 

Distance^ {X ,Y) = /__](a:r — Vr 

= x\- 2xiyi -\-yl + ... 

. . . + x^ — Zxmym 1 y^^ 
171 m m 

= ^ X^ + ^ 7ŷ  - ^ 2Xryr 
r = l r=l r=l 
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Pi can independently calculate J2r ^r • Similarly, P2 can calculate J2r Vr • 
As long as there is more than one attribute (i.e., m > 1), the remaining sum 
Y2ri'^^'r){—yr) is simply the scalar product of two m-dimensional vectors. Pi 
and P2 engage in a secure scalar product protocol to get random shares of the 
dot product. This, added to their prior calculated values, gives each party a 
random share of the square of the distance. 

Assuming that the scalar product protocol is secure, applying the compo­
sition theorem of [36] shows that the entire protocol is secure. 

7.3.4 Vertically Partitioned Data 

Vertically partitioned data introduces a different challenge. Since each party 
owns some of the attributes, each party can compute the distance between 
two objects for those attributes. Thus, each party can compute a share of 
the pairwise distance locally; the sum of these shares is the total distance. 
However, revealing the distance still reveals too much information, therefore 
a secure protocol is used to get shares of the pairwise comparison of distance 
and threshold. From this point, it is similar to horizontal partitioning: Add 
the shares and determine if they exceed p%. 

An interesting side effect of this algorithm is that the parties need not 
reveal any information about the attributes they hold, or even the number 
of attributes. Each party locally determines the distance threshold for its at­
tributes (or more precisely, the share of the overall threshold for its attributes). 
Instead of computing the local pairwise distance, each party computes the 
difference between the local pairwise distance and the local threshold. If the 
sum of these differences is greater than 0, the pairwise distance exceeds the 
threshold. 

Algorithm 4 gives the full details. In steps 6-10, the sites sum their local 
distances (actually the difference between the local distance and the local 
threshold). The random x added by Pi masks the distance from each party. 
In steps 11-13, Parties Pi and Pk get shares of the pairwise comparison result, 
as in Algorithm 3. The comparison is a test if the sum is greater than 0 (since 
the threshold has already been subtracted.) These two parties keep a running 
sum of their shares. At the end, in step 15 these shares are added and compared 
with the percentage threshold, again as in Algorithm 3. 

Theorem 7.1. Proof of Correctness: Algorithm 4 correctly returns as output 
the complete set of points that are global outliers. 

Proof In order to prove the correctness of Algorithm 4, it is sufficient to 
prove that a point is reported as an outlier if and only if it is truly an outlier. 
Consider point g. If g is an outher, in step 11 for at least p% * | 0 | + 1 of 
the other points, mi -\- ruk — 1 (mod F). Since |P | > |0 | , it follows that 
m[ + m^ > | 0 | * p%. Therefore, point q will be correctly reported as an 
outlier. If q is not an outlier, the same argument applies in reverse. Thus, in 
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A l g o r i t h m 4 Finding DB(p,D)-outliers 

Require: k parties, P i , . . . , Pfc; each holding a subset of the attributes for all objects 
O. 

Require: dtr : local distance threshold for Pr (e.g., dt^ -\-mr/m). 
Require: Fields D larger than twice the maximum distance value (e.g., for Eu­

clidean this is actually Distance^), F larger than \0\ 
1: for all objects ô  G O do 
2: m[ ^rUk^O (mod F) 
3: for all objects Oj G O^Oj ^ Oi do 
4: Pi: Randomly choose a number x from a uniform distribution over the field 

D 
5: Pi: x' <^ X 
6: for r <— 1 , . . . , /c — 1 do 
7: At Pr'- x' •«— x' + Dista7icer{oi,Oj) — dtr (mod D) {Dtstancer is iccal 

distance at Pr} 
8: Pr sends x' to Pr+i 
9: end for 

10: At Pk'. x' ^- x' -{- Distancek{oi,Oj) — dtk (mod D) 
11: Pi and Pk engage in the secure comparison protocol (Section 7.3.5) to get 

mi and rrik respectively such that the following condition holds: if 0 < 
x' + {—x) (mod D) < \D\/2, then mi + ruk = 1 (mod P) , otherwise 
mi + mk = 0 (mod P) 

12: At Pi : m[ ^ m[ + rm (mod P) 
13: At Pk-. rUk ̂  m'^ + rrik (mod P) 
14: end for 
15: Pi and Pk engage in the secure comparison protocol (Section 7.3.5) to get 

tempi and tempk respectively such that the following condition holds: if m[ -\-
mj, (mod P) > |0|*p%, then tem,pi-\-tempk ^— 1 {oi is an outlier), otherwise 
tempi + tem,pk "^ 0 

16: Pi and Pk send tem.pi and tem.pk to the party authorized to learn the result; 
if tem.pi + tempk = 1 then Oi is an outlier. 

17: end for 

step 11 at most p% * | 0 | — 1 points, rui + ruk = 1 (mod P ) . Again, since 
| P | > | 0 | , it follows tha t m[ + mj. < \0\ * J9%. Therefore, point q will not be 
reported as an outlier. 

7.3.5 Modi f i ed Secure C o m p a r i s o n P r o t o c o l 

At several stages in the algorithm, a protocol is required to securely compare 
the sum of two numbers, with the output split between the parties holding 
those numbers. This can be accomplished using the generic circuit evaluation 
technique first proposed by Yao[90]. Formally, we need a modified secure com­
parison protocol for two parties, A and B. The local inputs are Xa and x^ and 
the local outputs are ya and y^. All operations on input are in a field P i and 
output are in a field F2. ya + Vb = '^ (mod P2) if Xa + Xb (mod P i ) > 0, 
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otherwise ya-^Vh = 0 (mod -F2). A final requirement is that ya and yh should 
be independently uniformly distributed over F (clearly the joint distribution 
is not uniform). 

The standard secure multiparty computation circuit-based approach [36] 
can be used to solve this problem. Effectively, A chooses ya with a uniform 
distribution over F , and provides it as an additional input to the circuit that 
appropriately computes y^. The circuit is then securely evaluated, with B 
receiving the output yh- The complexity of this is equivalent to the complexity 
of Yao's Millionaire's problem (simple secure comparison). 

7.3.6 Security Analysis 

The proof technique used is that of Secure Multiparty Compulation (Secdon 
3.3). The idea is that since what a party sees during the protocol (its shares) 
are randomly chosen from a uniform distribution over a field, it learns nothing 
in isolation. (Of course, collusion with other parties could reveal information, 
since the joint distribution of the shares is not random). The idea of the proof 
is based on a simulation argument: If we can define a simulator that uses the 
algorithm output and a party's own data to simulate the messages seen by 
a party during a real execution of the protocol, then the real execution isn't 
giving away any new information (as long as the simulator runs in polynomial 
time). 

The formal definitions for this can be found in [36] and are discussed in 
Section 3.3. We now look at the proof of security for Algorithms 3 and 4 under 
this framework. 

Horizontally partitioned data 

Theorem 7.2. Algorithm 3 returns as output the set of points that are global 
outliers, and reveals no other information to any party provided parties do not 
collude. 

Proof Presuming that the number of objects | 0 | is known globally, each party 
can locally set up and run its own components of Algorithm 3 (e.g., a party 
only needs to worry about its local objects in the "For all objects" statements 
at lines 1 and 3.) In the absence of some type of secure anonymous send[74, 
38] (e.g., anonymous transmission with public key cryptography to ensure 
reception only by the correct party), the number of objects at each site is 
revealed. Since at least an upper bound on the number of items is inherently 
revealed by the running time of the algorithm, we assume these values are 
known. 

The next problem is to simulate the messages seen by each party during 
the algorithm. Communication occurs only at steps 10, 11, 17, 19, and 20. 
Now we look at how each step can be simulated. 
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Step 10: 

Pq and Ps each receive a share of the square of the distance. As can be seen 
in Section 7.3.3, all parts of the shares are computed locally except for shares 
of the scalar product. Assume that the scalar product protocol chooses shares 
by selecting the share for Pq (call it Sq) randomly from a uniform distribution 
over D. Then Vx G D,Pr{sq = x) — r ^ . Thus, Sq is easily simulated by 
simply choosing a random value from D. Let the result w = X]r(^^^)(~"^^) ^^ 
fixed. Then Vx G D, Pr{ss = x) = Pr{w — Sq = y) = Pr{sq = w — y) = j ^ ^ . 
Therefore, the simulator for Pg can simulate this message by simply choosing 
a random number from an uniform distribution over D. Assuming that the 
scalar product protocol is secure, applying the composition theorem shows 
that step 10 is secure. 

Steps 11 and 19: 

The simulator for party Pq (respectively Ps) chooses a number randomly from 
a uniform distribution, this time over the field F. By the same argument as 
above, the actual values are uniformly distributed, so the probability of the 
simulator and the real protocol choosing any particular value are the same. 
Since a circuit for secure comparison is used (and all parameters - dt,p, \0\ 
are known to all parties) , using the composition theorem, no additional in­
formation is leaked and step 11 (respectively 19) is secure. 

Step 17: 

Py receives several shares nurrir. However, note that nurrir is a sum, where 
all components of the sum are random shares from Step 11. Since Py receives 
only shares from the Pg in step 11, and receives none from Pq, all of the 
shares in the sum are independent. As long as Pq does not collude with Py, 
the independence assumption holds. Thus the sum nurrir can be simulated by 
choosing a random value from a uniform distribution over F. 

Step 20: 

Since Pq knows the final result (1 if ô  is an outlier, 0 otherwise), and tempq 
was simulated in step 19, it can simulate tempy with the results (1 or 0) 
—tempq mod F. 

The simulator clearly runs in polynomial time (the same as the algorithm). 
Since each party is able to simulate the view of its execution (i.e., the proba­
bility of any particular value is the same as in a real execution with the same 
inputs/results) in polynomial time, the algorithm is secure with respect to 
Definition 3.1. 

While the proof is formally only for the semi-honest model, it can be seen 
that a malicious party in isolation cannot learn private values (regardless of 
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what it does, it is still possible to simulate what it sees without knowing the 
input of the other parties.) This assumes that the underlying scalar product 
and secure comparison protocols are secure against mahcious behavior. A 
malicious party can cause incorrect results, but it cannot learn private data 
values. 

Vertically partitioned data 

Theorem 7.3. Algorithm 4 returns as output the set of points that are global 
outliers while revealing no other information to any party, provided parties do 
not collude. 

Proof All parties know the number (and identity) of objects in O. Thus they 
can set up the loops; the simulator just runs the algorithm to generate most 
of the simulation. The only communication is at lines 8, 11, 15, and 16. 

Step 8: 

Each party Pg sees x' = x -f Ylr^i Distancer{oi, Oj), where x is the random 
value chosen by Pi. Pr{x' — y) — Pr{x + Yl^r^iDistancer{oi,Oj) = y) = 
Pr{x = y — Yl^r~^o-^'^^^^'^^^r{oi->Oj)) = r ^ . Thus we can simulate the value 
received by choosing a random value from a uniform distribution over D. 

Steps 11 and 15: 

Each step is again a secure comparison, so messages are simulated as in Steps 
11 and 19 of Theorem 7.2. 

Step 16: 

This is again the final result, simulated as in Step 20 of Theorem 7.2. tempi is 
simulated by choosing a random value, tempk = result — tempi. By the same 
argument on random shares used above, the distribution of simulated values 
is indistinguishable from the distribution of the shares. 

Again, the simulator clearly runs in polynomial time (the same as the 
algorithm). Since each party is able to simulate the view of its execution (i.e., 
the probability of any particular value is the same as in a real execution with 
the same inputs/results) in polynomial time, the algorithm is secure with 
respect to Definition 3.1. 

Without collusion and assuming a malicious-model secure comparison, a 
malicious party is unable to learn anything it could not learn from altering 
its input. Step 8 is particularly sensitive to collusion, but can be improved (at 
cost) by splitting the sum into shares and performing several such sums (see 
[47] for more discussion of collusion-resistant secure sum). 
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7.3.7 Computa t ion and Communica t ion Analysis 

In general we do not discuss the computational/communicational complexity 
of the algorithms in detail. However, in this case the algorithmic complexity 
raises interesting issues vis-a-vis security. Therefore we discuss it below in 
detail. 

Both Algorithms 3 and 4 suffer the drawback of having quadratic compu­
tation complexity due to the nested iteration over all objects. 

Due to the nested iteration, Algorithm 3 requires 0{n'^) distance compu­
tations and secure comparisons (steps 10-11), where n is the total number of 
objects. Similarly, Algorithm 4 also requires O(n^) secure comparisons (step 
11). While operation parallehsm can be used to reduce the round complexity 
of communication, the key practical issue is the com.putational complexity of 
the encryption required for the secure comparison and scalar product proto­
cols. 

This quadratic complexity is troubling since the major focus of new algo­
rithms for outlier detection has been to reduce the complexity, since n^ is as­
sumed to be inordinately large. However, achieving lower than quadratic com­
plexity is challenging - at least with the basic algorithm. Failing to compare 
all pairs of points is likely to reveal information about the relative distances of 
the points that are compared. Developing protocols where such revelation can 
be proven not to disclose information beyond that revealed by simply knowing 
the outliers is a challenge. Otherwise, completely novel techniques must be de­
veloped which do not require any pairwise comparison. When there are three 
or more parties, assuming no collusion, much more efficient solutions that 
reveal some information can be developed. In the following sections we dis­
cuss some of these techniques developed by Vaidya and Clifton[83] for both 
partitionings of data. While not completely secure, the privacy versus cost 
tradeoff may be acceptable in some situations. An alternative (and another 
approach to future work) is demonstrating lower bounds on the complexity of 
fully secure outlier detection. However, significant work is required to make 
any of this happen - thus opening a rich area for future work. 

Horizontally par t i t ioned da ta 

The most computationally and communication intensive part of the algorithm 
are the secure comparisons. With horizontally partitioned data, a semi-trusted 
third party can perform comparisons and return random shares. The two 
comparing parties just give the values to be compared to the third party to 
add and compare. As long as the third party does not collude with either of 
the comparing parties, the comparing parties learn nothing. 

The real question is, what is disclosed to the third party? Basically, since 
the data is horizontally partitioned, the third party has no idea about the 
respective locations of the two objects. All it can find out is the distance 
between the two objects. While this is information that is not a part of the 
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result, by itself it is not very significant and allows a tremendous increase in 
efficiency. Now, the cost of secure comparison reduces to a total of 4 messages 
(which can be combined for all comparisons performed by the pair, for a 
constant number of rounds of communication) and insignificant computation 
cost. 

Vertically partitioned data 

The simple approach used in horizontal partitioning is not suitable for verti­
cally partitioned data. Since all of the parties share all of the points, partial 
knowledge about a point does reveal useful information to a party. Instead, 
one of the remaining parties is chosen to play the part of completely untrusted 
non-colluding party. With this assumption, a much more efficient secure com­
parison algorithm has been postulated by Cachin [11] that reveals nothing 
to the third party. The algorithm is otherwise equivalent, but the cost of the 
comparisons is reduced substantially. 

7.3.8 Summary 

This section has presented privacy-preserving solutions for finding distance 
based outliers in distributed data sets. A significantly important and useful 
part is the security proofs for the algorithm. The basic proof technique (of sim­
ulation) is the same for every secure algorithm under in the Secure Multiparty 
Computation framework. 
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Future Research - Problems remaining 

In a few short years, the field of privacy-preserving data mining has developed 
a suite of techniques to address many of the standard data mining tasks. These 
techniques address privacy in a variety of ways; all open new opportunities 
for data mining in areas where privacy concerns have hmited (or may in the 
future hmit) access to data. 

V/hat challenges remain? Perhaps the most apparent is adoption; these 
techniques have not yet seen real-world application. We see two most likely 
routes to adoption of privacy-preserving data mining technologies, both will 
demand effort that goes beyond algorithm development. The first route is to 
develop new markets for data mining: Identify areas where data mining has 
not even been considered, as the sharing or disclosure of data is inconceivable. 
While legally protected data on individuals could be the source of such data, 
a more hkely scenario is protecting secrecy of corporate data where collabo­
ration meets competition. The interaction between legally protected data and 
privacy-preserving data mining technology has not yet been explored by the 
courts, and until it is a cost-benefit tradeoff" between the risk of using data and 
the rewards from data mining will be difficulty to evaluate. With corporate 
secrecy, the tradeoff's are clearer and more easily measured. There has been 
research work moving toward such applications [6, 7], continued progress could 
well serve as a driver to bring privacy-preserving data mining technologies. 

The second route we see as a likely adoption path for this technology is 
based on the increasing cost of protecting data. While data is rightly viewed 
as a valuable asset, legislative actions such a EC 95/46 and California SB 1386 
as well as court cases regarding privacy are driving up the cost of protecting 
that asset. It is rarely the data itself that provides value, instead it is the 
knowledge that can be gleaned from the data. The case of CardSystems is a 
clear example; an information security breach resulted in the theft of about 
239,000 names and credit card numbers. Of particular importance is that 
the files stolen were no longer needed to carry out CardSystems' primary 
task of authorizing and processing credit card transactions, instead the data 
"consisted of transactions which were not completed for a variety of reasons. 



114 Future Research - Problems remaining 

This data was stored for research purposes in order to determine why these 
transactions did not successfully complete." [71] Although as of press time of 
this book the future of CardSystems was uncertain, the testimony cited above 
noted that Visa and American Express had decided to terminate CardSystems 
as a transactions processor, potentially dealing a fatal blow to the business. 
While it is not clear that existing privacy-preserving data mining techniques 
would have enabled the knowledge discovery CardSystems desired from the 
stolen data, development and use of such technology certainly would have been 
financially prudent. Such financial drivers could well lead to adoption of new 
technology as a cost-saving measure as well as a better means of protecting 
privacy. 

Continued development of privacy-preserving data mining techniques will 
help to address the adoption problem. If techniques already exist that address 
the needs of data mining users, the cost of adoption will be lowered. One 
approach to this is through developing a toolkit that can be used to build 
privacy-preserving data mining solutions. As we have seen, many algorithms 
for both perturbation and cryptographic approaches reuse a few basic tools: 
determining original distributions from distorted data, summation, counting 
of items in common, etc. The challenge is not in implementing these basic 
building blocks, but in how to securely assemble them. The programming chal­
lenges are straightforward, but designing an algorithm and proving it secure 
still demands a level of expertise beyond what can be expected of develop­
ers who have the needed domain expertise to build a real-world application. 
While education (and hopefully this book) will help, frameworks supporting 
easier privacy proofs are needed. 

A second way to speed adoption of privacy-preserving technology is to 
integrate this technology with existing applications. For example, building 
perturbation techniques into web survey software could serve as a selling point 
for that software. Ensuring that the techniques provide for the varieties of 
analysis that may be needed, without knowing the specific applications in 
advance, is a challenging issue. 

Perhaps the most technically challenging issue is to develop a better un­
derstanding of privacy, and how the outcomes of data mining impact privacy. 
The scarcity of material in Chapter 2 demonstrates the need for more research 
in this area. Without a clear understanding of how much or little is revealed 
by the results of a particular data mining process, it is unlikely that privacy-
preserving data mining will be fully accepted in highly sensitive fields such as 
medical research. While it is likely that such fields will use privacy-preserving 
technology, the real win will come when these fields recognize the technology 
as sufficiently effective to waive the normal controls put in place when private 
data is involved. This will be a long process, involving significant work by 
the research community to fully prove the efficacy of the technology in guar­
anteeing privacy. Once such guarantees can be made, we may see knowledge 
discovery that today is inconceivable due to privacy considerations. 
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