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Series Foreword

The rapid growth and integration of databases provides scientists, engineers, and
business people with a vast new resource that can be analyzed to make scientific
discoveries, optimize industrial systems, and uncover financially valuable patterns. To
undertake these large data analysis projects, researchers and practitioners have
adopted established algorithms from statistics, machine learning, neural networks, and
databases and have also developed new methods targeted at large data mining
problems. Principles of Data Mining by David Hand, Heikki Mannila, and Padhraic Smyth
provides practioners and students with an introduction to the wide range of algorithms
and methodologies in this exciting area. The interdisciplinary nature of the field is
matched by these three authors, whose expertise spans statistics, databases, and
computer science. The result is a book that not only provides the technical details and
the mathematical principles underlying data mining methods, but also provides a
valuable perspective on the entire enterprise.

Data mining is one component of the exciting area of machine learning and adaptive
computation. The goal of building computer systems that can adapt to their
envirionments and learn from their experience has attracted researchers from many
fields, including computer science, engineering, mathematics, physics, neuroscience,
and cognitive science. Out of this research has come a wide variety of learning
techniques that have the potential to transform many scientific and industrial fields.
Several research communities have converged on a common set of issues surrounding
supervised, unsupervised, and reinforcement learning problems. The MIT Press series
on Adaptive Computation and Machine Learning seeks to unify the many diverse strands
of machine learning research and to foster high quality research and innovative
applications.

Thomas Dietterich

Preface

The science of extracting useful information from large data sets or databases is known
as data mining. It is a new discipline, lying at the intersection of statistics, machine
learning, data management and databases, pattern recognition, artificial intelligence, and
other areas. All of these are concerned with certain aspects of data analysis, so they
have much in common—but each also has its own distinct flavor, emphasizing particular
problems and types of solution.

Because data mining encompasses a wide variety of topics in computer science and
statistics it is impossible to cover all the potentially relevant material in a single text.
Given this, we have focused on the topics that we believe are the most fundamental.



From a teaching viewpoint the text is intended for undergraduate students at the senior
(final year) level, or first or second-year graduate level, who wish to learn about the basic
principles of data mining. The text should also be of value to researchers and
practitioners who are interested in gaining a better understanding of data mining
methods and techniques. A familiarity with the very basic concepts in probability,
calculus, linear algebra, and optimization is assumed—in other words, an undergraduate
background in any quantitative discipline such as engineering, computer science,
mathematics, economics, etc., should provide a good background for reading and
understanding this text.

There are already many other books on data mining on the market. Many are targeted at
the business community directly and emphasize specific methods and algorithms (such
as decision tree classifiers) rather than general principles (such as parameter estimation
or computational complexity). These texts are quite useful in providing general context
and case studies, but have limitations in a classroom setting, since the underlying
foundational principles are often missing. There are other texts on data mining that have
a more academic flavor, but to date these have been written largely from a computer
science viewpoint, specifically from either a database viewpoint (Han and Kamber,
2000), or from a machine learning viewpoint (Witten and Franke, 2000).

This text has a different bias. We have attempted to provide a foundational view of data
mining. Rather than discuss specific data mining applications at length (such as, say,
collaborative filtering, credit scoring, and fraud detection), we have instead focused on
the underlying theory and algorithms that provide the "glue" for such applications. This is
not to say that we do not pay attention to the applications. Data mining is fundamentally
an applied discipline, and with this in mind we make frequent references to case studies
and specific applications where the basic theory can (or has been) applied.

In our view a mastery of data mining requires an understanding of both statistical and
computational issues. This requirement to master two different areas of expertise
presents quite a challenge for student and teacher alike. For the typical computer
scientist, the statistics literature is relatively impenetrable: a litany of jargon, implicit
assumptions, asymptotic arguments, and lack of details on how the theoretical and
mathematical concepts are actually realized in the form of a data analysis algorithm. The
situation is effectively reversed for statisticians: the computer science literature on
machine learning and data mining is replete with discussions of algorithms, pseudocode,
computational efficiency, and so forth, often with little reference to an underlying model
or inference procedure. An important point is that both approaches are nonetheless
essential when dealing with large data sets. An understanding of both the "mathematical
modeling” view, and the "computational algorithm" view are essential to properly grasp
the complexities of data mining.

In this text we make an attempt to bridge these two worlds and to explicitly link the notion
of statistical modeling (with attendant assumptions, mathematics, and notation) with the
"real world" of actual computational methods and algorithms.

With this in mind, we have structured the text in a somewhat unusual manner. We begin
with a discussion of the very basic principles of modeling and inference, then introduce a
systematic framework that connects models to data via computational methods and
algorithms, and finally instantiate these ideas in the context of specific techniques such
as classification and regression. Thus, the text can be divided into three general
sections:
1. Fundamentals: Chapters 1 through 4 focus on the fundamental aspects of
data and data analysis: introduction to data mining (chapter 1), measurement
(chapter 2), summarizing and visualizing data (chapter 3), and uncertainty
and inference (chapter 4).
2. Data Mining Components: Chapters 5 through 8 focus on what we term the
"components” of data mining algorithms: these are the building blocks that
can be used to systematically create and analyze data mining algorithms. In
chapter 5we discuss this systematic approach to algorithm analysis, and
argue that this "component-wise" view can provide a useful systematic
perspective on what is often a very confusing landscape of data analysis



algorithms to the novice student of the topic. In this context, we then delve

into broad discussions of each component: model representations in chapter

6, score functions for fitting the models to data in chapter 7, and optimization

and search techniques in chapter 8. (Discussion of data management is

deferred until chapter 12.)

3. Data Mining Tasks and Algorithms: Having discussed the fundamental

components in the first 8 chapters of the text, the remainder of the chapters

(from 9 through 14) are then devoted to specific data mining tasks and the

algorithms used to address them. We organize the basic tasks into density

estimation and clustering (chapter 9), classification (chapter 10), regression

(chapter 11), pattern discovery (chapter 13), and retrieval by content (chapter

14). In each of these chapters we use the framework of the earlier chapters to

provide a general context for the discussion of specific algorithms for each

task. For example, for classification we ask: what models and representations

are plausible and useful? what score functions should we, or can we, use to

train a classifier? what optimization and search techniques are necessary?

what is the computational complexity of each approach once we implement it

as an actual algorithm? Our hope is that this general approach will provide the

reader with a "roadmap" to an understanding that data mining algorithms are

based on some very general and systematic principles, rather than simply a

cornucopia of seemingly unrelated and exotic algorithms.
In terms of using the text for teaching, as mentioned earlier the target audience for the
text is students with a quantitative undergraduate background, such as in computer
science, engineering, mathematics, the sciences, and more quantitative business-
oriented degrees such as economics. From the instructor's viewpoint, how much of the
text should be covered in a course will depend on both the length of the course (e.g., 10
weeks versus 15 weeks) and the familiarity of the students with basic concepts in
statistics and machine learning. For example, for a 10-week course with first-year
graduate students who have some exposure to basic statistical concepts, the instructor
might wish to move quickly through the early chapters: perhaps covering chapters 3, 4, 5
and 7 fairly rapidly; assigning chapters 1, 2, 6 and 8 as background/review reading; and
then spending the majority of the 10 weeks covering chapters 9 through 14 in some
depth.
Conversely many students and readers of this text may have little or no formal statistical
background. It is unfortunate that in many quantitative disciplines (such as computer
science) students at both undergraduate and graduate levels often get only a very limited
exposure to statistical thinking in many modern degree programs. Since we take a fairly
strong statistical view of data mining in this text, our experience in using draft versions of
the text in computer science departments has taught us that mastery of the entire text in
a 10-week or 15-week course presents quite a challenge to many students, since to fully
absorb the material they must master quite a broad range of statistical, mathematical,
and algorithmic concepts in chapters 2 through 8. In this light, a less arduous path is
often desirable. For example, chapter 11 on regression is probably the most
mathematically challenging in the text and can be omitted without affecting
understanding of any of the remaining material. Similarly some of the material in chapter
9 (on mixture models for example) could also be omitted, as could the Bayesian
estimation framework in chapter 4. In terms of what is essential reading, most of the
material in chapters 1 through 5 and in chapters 7, 8 and 12 we consider to be essential
for the students to be able to grasp the modeling and algorithmic ideas that come in the
later chapters (chapter 6 contains much useful material on the general concepts of
modeling but is quite long and could be skipped in the interests of time). The more "task-
specific" chapters of 9, 10, 11, 13, and 14 can be chosen in a "menu-based" fashion, i.e.,
each can be covered somewhat independently of the others (but they do assume that
the student has a good working knowledge of the material in chapters 1 through 8).
An additional suggestion for students with limited statistical exposure is to have them
review some of the basic concepts in probability and statistics before they get to chapter
4 (on uncertainty) in the text. Unless students are comfortable with basic concepts such
as conditional probability and expectation, they will have difficulty following chapter 4 and
much of what follows in later chapters. We have included a brief appendix on basic
probability and definitions of common distributions, but some students will probably want



to go back and review their undergraduate texts on probability and statistics before
venturing further.

On the other side of the coin, for readers with substantial statistical background (e.qg.,
statistics students or statisticians with an interest in data mining) much of this text will
look quite familiar and the statistical reader may be inclined to say "well, this data mining
material seems very similar in many ways to a course in applied statistics!" And this is
indeed somewhat correct, in that data mining (as we view it) relies very heavily on
statistical models and methodologies. However, there are portions of the text that
statisticians will likely find quite informative: the overview of chapter 1, the algorithmic
viewpoint of chapter 5, the score function viewpoint of chapter 7, and all of chapters 12
through 14 on database principles, pattern finding, and retrieval by content. In addition,
we have tried to include in our presentation of many of the traditional statistical concepts
(such as classification, clustering, regression, etc.) additional material on algorithmic and
computational issues that would not typically be presented in a statistical textbook.
These include statements on computational complexity and brief discussions on how the
techniques can be used in various data mining applications. Nonetheless, statisticians
will find much familiar material in this text. For views of data mining that are more
oriented towards computational and data-management issues see, for example, Han and
Kamber (2000), and for a business focus see, for example, Berry and Linoff (2000).
These texts could well serve as complementary reading in a course environment.

In summary, this book describes tools for data mining, splitting the tools into their
component parts, so that their structure and their relationships to each other can be
seen. Not only does this give insight into what the tools are designed to achieve, but it
also enables the reader to design tools of their own, suited to the particular problems and
opportunities facing them. The book also shows how data mining is a process—not
something which one does, and then finishes, but an ongoing voyage of discovery,
interpretation, and re-investigation. The book is liberally illustrated with real data
applications, many arising from the authors' own research and applications work. For
didactic reasons, not all of the data sets discussed are large—it is easier to explain what
is going on in a "small" data set. Once the idea has been communicated, it can readily
be applied in a realistically large context.

Data mining is, above all, an exciting discipline. Certainly, as with any scientific
enterprise, much of the effort will be unrewarded (it is a rare and perhaps rather dull
undertaking which gives a guaranteed return). But this is more than compensated for by
the times when an exciting discovery—a gem or nugget of valuable information—is
unearthed. We hope that you as a reader of this text will be inspired to go forth and
discover your own gems!

We would like to gratefully acknowledge Christine McLaren for granting permission to
use the red blood cell data as an illustrative example in chapters 9 and 10. Padhraic
Smyth's work on this text was supported in part by the National Science Foundation
under Grant IRI-9703120.

We would also like to thank Niall Adams for help in producing some of the diagrams,
Tom Benton for assisting with proof corrections, and Xianping Ge for formatting the
references. Naturally, any mistakes which remain are the responsibility of the authors
(though each of the three of us reserves the right to blame the other two).

Finally we would each like to thank our respective wives and families for providing
excellent encouragement and support throughout the long and seemingly never-ending
saga of "the book"!

Chapter 1: Introduction

1.1 Introduction to Data Mining

Progress in digital data acquisition and storage technology has resulted in the growth of
huge databases. This has occurred in all areas of human endeavor, from the mundane
(such as supermarket transaction data, credit card usage records, telephone call details,



and government statistics) to the more exotic (such as images of astronomical bodies,
molecular databases, and medical records). Little wonder, then, that interest has grown
in the possibility of tapping these data, of extracting from them information that might be
of value to the owner of the database. The discipline concerned with this task has
become known as data mining.

Defining a scientific discipline is always a controversial task; researchers often disagree
about the precise range and limits of their field of study. Bearing this in mind, and
accepting that others might disagree about the details, we shall adopt as our working
definition of data mining:

Data mining is the analysis of (often large) observational data sets to find unsuspected
relationships and to summarize the data in novel ways that are both understandable and
useful to the data owner.

The relationships and summaries derived through a data mining exercise are often
referred to as models or patterns. Examples include linear equations, rules, clusters,
graphs, tree structures, and recurrent patterns in time series.

The definition above refers to "observational data," as opposed to "experimental data."
Data mining typically deals with data that have already been collected for some purpose
other than the data mining analysis (for example, they may have been collected in order
to maintain an up-to-date record of all the transactions in a bank). This means that the
objectives of the data mining exercise play no role in the data collection strategy. This is
one way in which data mining differs from much of statistics, in which data are often
collected by using efficient strategies to answer specific questions. For this reason, data
mining is often referred to as "secondary" data analysis.

The definition also mentions that the data sets examined in data mining are often large. If
only small data sets were involved, we would merely be discussing classical exploratory
data analysis as practiced by statisticians. When we are faced with large bodies of data,
new problems arise. Some of these relate to housekeeping issues of how to store or
access the data, but others relate to more fundamental issues, such as how to determine
the representativeness of the data, how to analyze the data in a reasonable period of
time, and how to decide whether an apparent relationship is merely a chance occurrence
not reflecting any underlying reality. Often the available data comprise only a sample
from the complete population (or, perhaps, from a hypothetical superpopulation); the aim
may be to generalize from the sample to the population. For example, we might wish to
predict how future customers are likely to behave or to determine the properties of
protein structures that we have not yet seen. Such generalizations may not be
achievable through standard statistical approaches because often the data are not
(classical statistical) "random samples," but rather "convenience" or "opportunity”
samples. Sometimes we may want to summarize or compress a very large data set in
such a way that the result is more comprehensible, without any notion of generalization.
This issue would arise, for example, if we had complete census data for a particular
country or a database recording millions of individual retail transactions.

The relationships and structures found within a set of data must, of course, be novel.
There is little point in regurgitating well-established relationships (unless, the exercise is
aimed at "hypothesis" confirmation, in which one was seeking to determine whether
established pattern also exists in a new data set) or necessary relationships (that, for
example, all pregnant patients are female). Clearly, novelty must be measured relative to
the user's prior knowledge. Unfortunately few data mining algorithms take into account a
user's prior knowledge. For this reason we will not say very much about novelty in this
text. It remains an open research problem.

While novelty is an important property of the relationships we seek, it is not sufficient to
qualify a relationship as being worth finding. In particular, the relationships must also be
understandable. For instance simple relationships are more readily understood than
complicated ones, and may well be preferred, all else being equal.

Data mining is often set in the broader context of knowledge discovery in databases, or
KDD. This term originated in the artificial intelligence (Al) research field. The KDD



process involves several stages: selecting the target data, preprocessing the data,
transforming them if necessary, performing data mining to extract patterns and
relationships, and then interpreting and assessing the discovered structures. Once again
the precise boundaries of the data mining part of the process are not easy to state; for
example, to many people data transformation is an intrinsic part of data mining. In this
text we will focus primarily on data mining algorithms rather than the overall process. For
example, we will not spend much time discussing data preprocessing issues such as
data cleaning, data verification, and defining variables. Instead we focus on the basic
principles for modeling data and for constructing algorithmic processes to fit these
models to data.

The process of seeking relationships within a data set— of seeking accurate, convenient,
and useful summary representations of some aspect of the data—involves a number of
steps:
= determining the nature and structure of the representation to be used;
= deciding how to quantify and compare how well different representations fit
the data (that is, choosing a "score" function);
= choosing an algorithmic process to optimize the score function; and
= deciding what principles of data management are required to implement the
algorithms efficiently.

The goal of this text is to discuss these issues in a systematic and detailed manner. We
will look at both the fundamental principles (chapters 2 to 8) and the ways these
principles can be applied to construct and evaluate specific data mining algorithms
(chapters 9 to 14).

Example 1.1

Regression analysis is a tool with which many readers will be familiar. In its simplest form,
it involves building a predictive model to relate a predictor variable, X, to a response
variable, Y , through a relationship of the form Y = aX + b. For example, we might build a
model which would allow us to predict a person's annual credit-card spending given their
annual income. Clearly the model would not be perfect, but since spending typically
increases with income, the model might well be adequate as a rough characterization. In
terms of the above steps listed, we would have the following scenario:
= The representation is a model in which the response variable, spending,
is linearly related to the predictor variable, income.
= The score function most commonly used in this situation is the sum of
squared discrepancies between the predicted spending from the model
and observed spending in the group of people described by the data.
The smaller this sum is, the better the model fits the data.
=  The optimization algorithm is quite simple in the case of linear
regression: a and b can be expressed as explicit functions of the
observed values of spending and income. We describe the algebraic
details in chapter 11.
= Unless the data set is very large, few data management problems arise
with regression algorithms. Simple summaries of the data (the sums,
sums of squares, and sums of products of the X and Y values) are
sufficient to compute estimates of a and b. This means that a single pass

throuih the data will iield estimates.

Data mining is an interdisciplinary exercise. Statistics, database technology, machine
learning, pattern recognition, artificial intelligence, and visualization, all play a role. And
just as it is difficult to define sharp boundaries between these disciplines, so it is difficult
to define sharp boundaries between each of them and data mining. At the boundaries,
one person's data mining is another's statistics, database, or machine learning problem.



1.2 The Nature of Data Sets

We begin by discussing at a high level the basic nature of data sets.

A data set is a set of measurements taken from some environment or process. In the
simplest case, we have a collection of objects, and for each object we have a set of the
same p measurements. In this case, we can think of the collection of the measurements
on n objects as a form of n x p data matrix. The n rows represent the n objects on which
measurements were taken (for example, medical patients, credit card customers, or
individual objects observed in the night sky, such as stars and galaxies). Such rows may
be referred to as individuals, entities, cases, objects, or records depending on the
context.

The other dimension of our data matrix contains the set of p measurements made on
each object. Typically we assume that the same p measurements are made on each
individual although this need not be the case (for example, different medical tests could
be performed on different patients). The p columns of the data matrix may be referred to
as variables, features, attributes, or fields; again, the language depends on the research
context. In all situations the idea is the same: these names refer to the measurement that
is represented by each column. In chapter 2 we will discuss the notion of measurement
in much more detail.

Example 1.2

The U.S. Census Bureau collects information about the U.S. population every 10 years.
Some of this information is made available for public use, once information that could be
used to identify a particular individual has been removed. These data sets are called
PUMS, for Public Use Microdata Samples, and they are available in 5 % and 1 % sample
sizes. Note that even a 1 % sample of the U.S. population contains about 2.7 million
records. Such a data set can contain tens of variables, such as the age of the person,
gross income, occupation, capital gains and losses, education level, and so on. Consider
the simple data matrix shown in table 1.1. Note that the data contains different types of
variables, some with continuous values and some with categorical. Note also that some

values are missing—for example, the Age of person 249, and the Marital Status of person
255. Missing measurements are very common in large real-world data sets. A more
insidious problem is that of measurement noise. For example, is person 248's income really
$100,000 or is this just a rough guess on his part?

Table 1.1: Examples of Data in Public Use Microdata Sample Data Sets.
ID Age Sex Marital Education Income
Status
248 54 Male Married High 100000
school
graduate
249 ?? Female Married High 12000
school
graduate
250 29 Male Married Some 23000
college
251 9 Male Not Child 0
married
252 85 Female Not High 19798
married school
graduate
253 40 Male Married High 40100
school
graduate




Table 1.1: Examples of Data in Public Use Microdata Sample Data Sets.

ID Age Sex Marital Education Income
Status
254 38 Female Not Less than 2691
married 1st grade
| 255 7 | Male |22 | child o
| 256 ‘ 49 ‘ Male | Married ‘ 11th grade ‘ 30000
257 76 Male Married Doctorate ‘ 30686
degree

A typical task for this type of data would be finding relationships between different
variables. For example, we might want to see how well a person's income could be
predicted from the other variables. We might also be interested in seeing if there are
naturally distinct groups of people, or in finding values at which variables often coincide. A
subset of variables and records is available online at the Machine Learning Repository of

the Universiti of California, Irvine , wwv. i ¢s. uci . edu/ ~m earn/ MLSunmary. ht m .

Data come in many forms and this is not the place to develop a complete taxonomy.
Indeed, it is not even clear that a complete taxonomy can be developed, since an
important aspect of data in one situation may be unimportant in another. However there
are certain basic distinctions to which we should draw attention. One is the difference
between quantitative and categorical measurements (different names are sometimes
used for these). A quantitative variable is measured on a numerical scale and can, at
least in principle, take any value. The columns Age and Income in table 1.1 are
examples of quantitative variables. In contrast, categorical variables such as Sex, Marital
Status and Education in 1.1 can take only certain, discrete values. The common three
point severity scale used in medicine (mild, moderate, severe) is another example.
Categorical variables may be ordinal (possessing a natural order, as in the Education
scale) or nominal (simply naming the categories, as in the Marital Status case). A data
analytic technique appropriate for one type of scale might not be appropriate for another
(although it does depend on the objective—see Hand (1996) for a detailed discussion).
For example, were marital status represented by integers (e.g., 1 for single, 2 for
married, 3 for widowed, and so forth) it would generally not be meaningful or appropriate
to calculate the arithmetic mean of a sample of such scores using this scale. Similarly,
simple linear regression (predicting one quantitative variable as a function of others) will
usually be appropriate to apply to quantitative data, but applying it to categorical data
may not be wise; other techniques, that have similar objectives (to the extent that the
objectives can be similar when the data types differ), might be more appropriate with
categorical scales.

Measurement scales, however defined, lie at the bottom of any data taxonomy. Moving
up the taxonomy, we find that data can occur in various relationships and structures.
Data may arise sequentially in time series, and the data mining exercise might address
entire time series or particular segments of those time series. Data might also describe
spatial relationships, so that individual records take on their full significance only when
considered in the context of others.

Consider a data set on medical patients. It might include multiple measurements on the
same variable (e.g., blood pressure), each measurement taken at different times on
different days. Some patients might have extensive image data (e.g., Xrays or magnetic
resonance images), others not. One might also have data in the form of text, recording a
specialist's comments and diagnosis for each patient. In addition, there might be a
hierarchy of relationships between patients in terms of doctors, hospitals, and
geographic locations. The more complex the data structures, the more complex the data
mining models, algorithms, and tools we need to apply.




For all of the reasons discussed above, the n x p data matrix is often an
oversimplification or idealization of what occurs in practice. Many data sets will not fit into
this simple format. While much information can in principle be "flattened" into the n x p
matrix (by suitable definition of the p variables), this will often lose much of the structure
embedded in the data. Nonetheless, when discussing the underlying principles of data
analysis, it is often very convenient to assume that the observed data exist in an n x p
data matrix; and we will do so unless otherwise indicated, keeping in mind that for data
mining applications n and p may both be very large. It is perhaps worth remarking that
the observed data matrix can also be referred to by a variety names including data set,
training data, sample, database, (often the different terms arise from different
disciplines).

Example 1.3

Text documents are important sources of information, and data mining methods can help in
retrieving useful text from large collections of documents (such as the Web). Each
document can be viewed as a sequence of words and punctuation. Typical tasks for mining
text databases are classifying documents into predefined categories, clustering similar
documents together, and finding documents that match the specifications of a query. A
typical collection of documents is "Reuters-21578, Distribution 1.0," located at
http://ww.research. att.com ~l ewi s. Each document in this collection is a short
newswire article.

A collection of text documents can also be viewed as a matrix, in which the rows represent
documents and the columns represent words. The entry (d, w), corresponding to document
d and word w, can be the number of times woccurs in d, or simply 1 if woccurs in dand 0
otherwise.

With this approach we lose the ordering of the words in the document (and, thus, much of
the semantic content), but still retain a reasonably good representation of the document's
contents. For a document collection, the number of rows is the number of documents, and
the number of columns is the number of distinct words. Thus, large multilingual document
collections may have millions of rows and hundreds of thousands of columns. Note that
such a data matrix will be very sparse; that is, most of the entries will be zeroes. We
discuss text data in more detail in chapter 14.

Example 1.4

Another common type of data is transaction data, such as a list of purchases in a store,
where each purchase (or transaction) is described by the date, the customer ID, and a list
of items and their prices. A similar example is a Web transaction log, in which a sequence
of triples (user id, web page, time), denote the user accessing a particular page at a
particular time. Designers and owners of Web sites often have great interest in
understanding the patterns of how people navigate through their site.

As with text documents, we can transform a set of transaction data into matrix form.
Imagine a very large, sparse matrix in which each row corresponds to a particular individual
and each column corresponds to a particular Web page or item. The entries in this matrix
could be binary (e.qg., indicating whether a user had ever visited a certain Web page) or
integer-valued (e.g., indicating how many times a user had visited the page).

Figure 1.1 shows a visual representation of a small portion of a large retail transaction data
set displayed in matrix form. Rows correspond to individual customers and columns
represent categories of items. Each black entry indicates that the customer corresponding
to that row purchased the item corresponding to that column. We can see some obvious
patterns even in this simple display. For example, there is considerable variability in terms
of which categories of items customers purchased and how many items they purchased. In
addition, while some categories were purchased by quite a few customers (e.g., columns 3,



5, 11, 26) some were not purchased at all (e.g., columns 18 and 19). We can also see pairs
of categories which that were frequently purchased together (e.g., columns 2 and 3).
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Figure 1.1: A Portion of a Retail Transaction Data Set Displayed as a Binary Image, With 100
Individual Customers (Rows) and 40 Categories of Items (Columns).

Note, however, that with this "flat representation” we may lose a significant portion of
information including sequential and temporal information (e.g., in what order and at what
times items were purchased), any information about structured relationships between
individual items (such as product category hierarchies, links between Web pages, and so
forth). Nonetheless, it is often useful to think of such data in a standard n x p matrix. For
example, this allows us to define distances between users by comparing their p-

dimensional Web-page usage vectors, which in turn allows us to cluster users based on

Web page patterns. We will look at clustering in much more detail in chapter 9.

1.3 Types of Structure: Models and Patterns

The different kinds of representations sought during a data mining exercise may be
characterized in various ways. One such characterization is the distinction between a
global model and a local pattern.

A model structure, as defined here, is a global summary of a data set; it makes
statements about any point in the full measurement space. Geometrically, if we consider
the rows of the data matrix as corresponding to p-dimensional vectors (i.e., points in p-
dimensional space), the model can make a statement about any point in this space (and
hence, any object). For example, it can assign a point to a cluster or predict the value of
some other variable. Even when some of the measurements are missing (i.e., some of
the components of the p-dimensional vector are unknown), a model can typically make
some statement about the object represented by the (incomplete) vector.

A simple model might take the form Y = aX + ¢, where Y and X are variables and a and ¢
are parameters of the model (constants determined during the course of the data mining
exercise). Here we would say that the functional form of the model is linear, since Y is a
linear function of X. The conventional statistical use of the term is slightly different. In
statistics, a model is linear if it is a linear function of the parameters. We will try to be
clear in the text about which form of linearity we are assuming, but when we discuss the
structure of a model (as we are doing here) it makes sense to consider linearity as a
function of the variables of interest rather than the parameters. Thus, for example, the
model structure Y = ax? + bX + ¢, is considered a linear model in classic statistical
terminology, but the functional form of the model relating Y and X is nonlinear (it is a
second-degree polynomial).



In contrast to the global nature of models, pattern structures make statements only about
restricted regions of the space spanned by the variables. An example is a simple
probabilistic statement of the form i f X > x; t hen prob(Y > y;) = pl. This structure
consists of constraints on the values of the variables X and Y , related in the form of a
probabilistic rule. Alternatively we could describe the relationship as the conditional
probability p(Y > y;|X > x;) = p1, which is semantically equivalent. Or we might notice
that certain classes of transaction records do not show the peaks and troughs shown by
the vast majority, and look more closely to see why. (This sort of exercise led one bank
to discover that it had several open accounts that belonged to people who had died.)
Thus, in contrast to (global) models, a (local) pattern describes a structure relating to a
relatively small part of the data or the space in which data could occur. Perhaps only
some of the records behave in a certain way, and the pattern characterizes which they
are. For example, a search through a database of mail order purchases may reveal that
people who buy certain combinations of items are also likely to buy others. Or perhaps
we identify a handful of "outlying" records that are very different from the majority (which
might be thought of as a central cloud in p-dimensional space). This last example
illustrates that global models and local patterns may sometimes be regarded as opposite
sides of the same coin. In order to detect unusual behavior we need a description of
usual behavior. There is a parallel here to the role of diagnostics in statistical analysis;
local pattern-detection methods have applications in anomaly detection, such as fault
detection in industrial processes, fraud detection in banking and other commercial
operations.

Note that the model and pattern structures described above have parameters associated
with them; a, b, ¢ for the model and x;, y; and p1 for the pattern. In general, once we
have established the structural form we are interested in finding, the next step is to
estimate its parameters from the available data. Procedures for doing this are discussed
in detail in chapters 4, 7 and 8. Once the parameters have been assigned values, we
refer to a particular model, such as y = 3:2x + 2:8, as a "fitted model," or just "model” for
short (and similarly for patterns). This distinction between model (or pattern) structures
and the actual (fitted) model (or pattern) is quite important. The structures represent the
general functional forms of the models (or patterns), with unspecified parameter values.
A fitted model or pattern has specific values for its parameters.

The distinction between models and patterns is useful in many situations. However, as
with most divisions of nature into classes that are convenient for human comprehension,
it is not hard and fast: sometimes it is not clear whether a particular structure should be
regarded as a model or a pattern. In such cases, it is best not to be too concerned about
which is appropriate; the distinction is intended to aid our discussion, not to be a
proscriptive constraint.

1.4 Data Mining Tasks

It is convenient to categorize data mining into types of tasks, corresponding to different
objectives for the person who is analyzing the data. The categorization below is not
unique, and further division into finer tasks is possible, but it captures the types of data
mining activities and previews the major types of data mining algorithms we will describe
later in the text.
1. Exploratory Data Analysis (EDA) (chapter 3): As the name suggests,

the goal here is simply to explore the data without any clear ideas of

what we are looking for. Typically, EDA techniques are interactive and

visual, and there are many effective graphical display methods for

relatively small, low-dimensional data sets. As the dimensionality

(number of variables, p) increases, it becomes much more difficult to

visualize the cloud of points in p-space. For p higher than 3 or 4,

projection techniques (such as principal components analysis) that

produce informative low-dimensional projections of the data can be very

useful. Large numbers of cases can be difficult to visualize effectively,

however, and notions of scale and detail come into play: "lower

resolution” data samples can be displayed or summarized at the cost of



possibly missing important details. Some examples of EDA applications
are:
= Like a pie chart, a coxcomb plot divides up a circle, but
whereas in a pie chart the angles of the wedges differ, in
a coxcomb plot the radii of the wedges differ. Florence
Nightingale used such plots to display the mortality rates
at military hospitals in and near London (Nightingale
1858).
= |n 1856 John Bennett Lawes laid out a series of plots of
land at Rothamsted Experimental Station in the UK, and
these plots have remained untreated by fertilizers or
other artificial means ever since. They provide a rich
source of data on how different plant species develop
and compete, when left uninfluenced. Principal
components analysis has been used to display the data
describing the relative yields of different species (Digby
and Kempton, 1987, p. 59).
= More recently, Becker, Eick, and Wilks (1995) described
a set of intricate spatial displays for visualization of time-
varying long-distance telephone network patterns (over
12,000 links).
Descriptive Modeling (chapter 9): The goal of a descriptive model is
describe all of the data (or the process generating the data). Examples of
such descriptions include models for the overall probability distribution of
the data (density estimation), partitioning of the p-dimensional space into
groups (cluster analysis and segmentation), and models describing the
relationship between variables (dependency modeling). In segmentation
analysis, for example, the aim is to group together similar records, as in
market segmentation of commercial databases. Here the goal is to split
the records into homogeneous groups so that similar people (if the
records refer to people) are put into the same group. This enables
advertisers and marketers to efficiently direct their promotions to those
most likely to respond. The number of groups here is chosen by the
researcher; there is no "right" number. This contrasts with cluster
analysis, in which the aim is to discover "natural" groups in data—in
scientific databases, for example. Descriptive modelling has been used
in a variety of ways.
= Segmentation has been extensively and successfully
used in marketing to divide customers into homogeneous
groups based on purchasing patterns and demographic
data such as age, income, and so forth (Wedel and
Kamakura, 1998).
= Cluster analysis has been used widely in psychiatric
research to construct taxonomies of psychiatric illness.
For example, Everitt, Gourlay and Kendell (1971) applied
such methods to samples of psychiatric inpatients; they
reported (among other findings) that "all four analyses
produced a cluster composed mainly of patients with
psychotic depression.”
= Clustering techniques have been used to analyze the
long-term climate variability in the upper atmosphere of
the Earth's Northern hemisphere. This variability is
dominated by three recurring spatial pressure patterns
(clusters) identified from data recorded daily since 1948
(see Cheng and Wallace [1993] and Smyth, Idea, and
Ghil [1999] for further discussion).
Predictive Modeling: Classification and Regression (chapters 10 and
11): The aim here is to build a model that will permit the value of one
variable to be predicted from the known values of other variables. In
classification, the variable being predicted is categorical, while in




regression the variable is quantitative. The term "prediction” is used here
in a general sense, and no notion of a time continuum is implied. So, for
example, while we might want to predict the value of the stock market at
some future date, or which horse will win a race, we might also want to
determine the diagnosis of a patient, or the degree of brittleness of a
weld. A large number of methods have been developed in statistics and
machine learning to tackle predictive modeling problems, and work in this
area has led to significant theoretical advances and improved
understanding of deep issues of inference. The key distinction between
prediction and description is that prediction has as its objective a unique
variable (the market's value, the disease class, the brittleness, etc.),
while in descriptive problems no single variable is central to the model.
Examples of predictive models include the following:
= The SKICAT system of Fayyad, Djorgovski, and Weir

(1996) used a tree-structured representation to learn a

classification tree that can perform as well as human

experts in classifying stars and galaxies from a 40-

dimensional feature vector. The system is in routine use

for automatically cataloging millions of stars and galaxies

from digital images of the sky.

= Researchers at AT&T developed a system that tracks the

characteristics of all 350 million unique telephone

numbers in the United States (Cortes and Pregibon,

1998). Regression techniques are used to build models

that estimate the probability that a telephone number is

located at a business or a residence.
Discovering Patterns and Rules (chapter 13): The three types of tasks
listed above are concerned with model building. Other data mining
applications are concerned with pattern detection. One example is
spotting fraudulent behavior by detecting regions of the space defining
the different types of transactions where the data points significantly
different from the rest. Another use is in astronomy, where detection of
unusual stars or galaxies may lead to the discovery of previously
unknown phenomena. Yet another is the task of finding combinations of
items that occur frequently in transaction databases (e.g., grocery
products that are often purchased together). This problem has been the
focus of much attention in data mining and has been addressed using
algorithmic techniques based on association rules.

A significant challenge here, one that statisticians have traditionally dealt with
in the context of outlier detection, is deciding what constitutes truly unusual
behavior in the context of normal variability. In high dimensions, this can be
particularly difficult. Background domain knowledge and human interpretation
can be invaluable. Examples of data mining systems of pattern and rule
discovery include the following:

= Professional basketball games in the United States are
routinely annotated to provide a detailed log of every
game, including time-stamped records of who took a
particular type of shot, who scored, who passed to
whom, and so on. The Advanced Scout system of
Bhandari et al. (1997) searches for rule-like patterns from
these logs to uncover interesting pieces of information
which might otherwise go unnoticed by professional
coaches (e.g., "When Player X is on the floor, Player Y's
shot accuracy decreases from 75% to 30%.") As of 1997
the system was in use by several professional U.S.
basketball teams.

= Fraudulent use of cellular telephones is estimated to cost
the telephone industry several hundred million dollars per
year in the United States. Fawcett and Provost (1997)
described the application of rule-learning algorithms to




discover characteristics of fraudulent behavior from a
large database of customer transactions. The resulting
system was reported to be more accurate than existing
hand-crafted methods of fraud detection.

5. Retrieval by Content (chapter 14): Here the user has a pattern of
interest and wishes to find similar patterns in the data set. This task is
most commonly used for text and image data sets. For text, the pattern
may be a set of keywords, and the user may wish to find relevant
documents within a large set of possibly relevant documents (e.g., Web
pages). For images, the user may have a sample image, a sketch of an
image, or a description of an image, and wish to find similar images from
a large set of images. In both cases the definition of similarity is critical,
but so are the details of the search strategy.

There are numerous large-scale applications of retrieval systems, including:
= Retrieval methods are used to locate documents on the
Web, as in the Google system (wwv. googl e. com) of
Brin and Page (1998), which uses a mathematical
algorithm called PageRank to estimate the relative
importance of individual Web pages based on link
patterns.
=  QBIC ("Query by Image Content"), a system developed
by researchers at IBM, allows a user to interactively
search a large database of images by posing queries in
terms of content descriptors such as color, texture, and
relative position information (Elickner et al., 1995).
Although each of the above five tasks are clearly differentiated from each other, they
share many common components. For example, shared by many tasks is the notion of
similarity or distance between any two data vectors. Also shared is the notion of score
functions (used to assess how well a model or pattern fits the data), although the
particular functions tend to be quite different across different categories of tasks. It is
also obvious that different model and pattern structures are needed for different tasks,
just as different structures may be needed for different kinds of data.

1.5 Components of Data Mining Algorithms

In the preceding sections we have listed the basic categories of tasks that may be
undertaken in data mining. We now turn to the question of how one actually
accomplishes these tasks. We will take the view that data mining algorithms that address
these tasks have four basic components:
1. Model or Pattern Structure: determining the underlying structure or
functional forms that we seek from the data (chapter 6).
2. Score Function: judging the quality of a fitted model (chapter 7).
3. Optimization and Search Method: optimizing the score function and
searching over different model and pattern structures (chapter 8).
4. Data Management Strategy: handling data access efficiently during the
search/optimization (chapter 12).

We have already discussed the distinction between model and pattern structures. In the
remainder of this section we briefly discuss the other three components of a data mining
algorithm.

1.5.1 Score Functions

Score functions quantify how well a model or parameter structure fits a given data set. In
an ideal world the choice of score function would precisely reflect the utility (i.e., the true
expected benefit) of a particular predictive model. In practice, however, it is often difficult
to specify precisely the true utility of a model's predictions. Hence, simple, "generic"
score functions, such as least squares and classification accuracy are commonly used.
Without some form of score function, we cannot tell whether one model is better than
another or, indeed, how to choose a good set of values for the parameters of the model.



Several score functions are widely used for this purpose; these include likelihood, sum of
squared errors, and misclassification rate (the latter is used in supervised classification
problems). For example, the well-known squared error score function is defined as

1.1) & 3
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where we are predicting n "target” values y(i), 1 =i = n, and our predictions for each are
denoted as y(i) (typically this is a function of some other "input" variable values for
prediction and the parameters of the model).

Any views we may have on the theoretical appropriateness of different criteria must be
moderated by the practicality of applying them. The model that we consider to be most
likely to have given rise to the data may be the ideal one, but if estimating its parameters
will take months of computer time it is of little value. Likewise, a score function that is
very susceptible to slight changes in the data may not be very useful (its utility will
depend on the objectives of the study). For example if altering the values of a few
extreme cases leads to a dramatic change in the estimates of some model parameters
caution is warranted; a data set is usually chosen from a number of possible data sets,
and it may be that in other data sets the value of these extreme cases would have
differed. Problems like this can be avoided by using robust methods that are less
sensitive to these extreme points.

1.5.2 Optimization and Search Methods

The score function is a measure of how well aspects of the data match proposed models
or patterns. Usually, these models or patterns are described in terms of a structure,
sometimes with unknown parameter values. The goal of optimization and search is to
determine the structure and the parameter values that achieve a minimum (or maximum,
depending on the context) value of the score function. The task of finding the "best"
values of parameters in models is typically cast as an optimization (or estimation)
problem. The task of finding interesting patterns (such as rules) from a large family of
potential patterns is typically cast as a combinatorial search problem, and is often
accomplished using heuristic search techniques. In linear regression, a prediction rule is
usually found by minimizing a least squares score function (the sum of squared errors
between the prediction from a model and the observed values of the predicted variable).
Such a score function is amenable to mathematical manipulation, and the model that
minimizes it can be found algebraically. In contrast, a score function such as
misclassification rate in supervised classification is difficult to minimize analytically. For
example, since it is intrinsically discontinuous the powerful tool of differential calculus
cannot be brought to bear.

Of course, while we can produce score functions to produce a good match between a
model or pattern and the data, in many cases this is not really the objective. As noted
above, we are often aiming to generalize to new data which might arise (new customers,
new chemicals, etc.) and having too close a match to the data in the database may
prevent one from predicting new cases accurately. We discuss this point later in the
chapter.

1.5.3 Data Management Strategies

The final component in any data mining algorithm is the data management strategy: the
ways in which the data are stored, indexed, and accessed. Most well-known data
analysis algorithms in statistics and machine learning have been developed under the
assumption that all individual data points can be accessed quickly and efficiently in
random-access memory (RAM). While main memory technology has improved rapidly,
there have been equally rapid improvements in secondary (disk) and tertiary (tape)
storage technologies, to the extent that many massive data sets still reside largely on
disk or tape and will not fit in available RAM. Thus, there will probably be a price to pay
for accessing massive data sets, since not all data points can be simultaneously close to
the main processor.



Many data analysis algorithms have been developed without including any explicit
specification of a data management strategy. While this has worked in the past on
relatively small data sets, many algorithms (such as classification and regression tree
algorithms) scale very poorly when the "traditional version™ is applied directly to data that
reside mainly in secondary storage.

The field of databases is concerned with the development of indexing methods, data
structures, and query algorithms for efficient and reliable data retrieval. Many of these
techniques have been developed to support relatively simple counting (aggregating)
operations on large data sets for reporting purposes. However, in recent years,
development has begun on techniques that support the "primitive" data access
operations necessary to implement efficient versions of data mining algorithms (for
example, tree-structured indexing systems used to retrieve the neighbors of a point in
multiple dimensions).

1.6 The Interacting Roles of Statistics and Data Mining

Statistical techniques alone may not be sufficient to address some of the more
challenging issues in data mining, especially those arising from massive data sets.
Nonetheless, statistics plays a very important role in data mining: it is a necessary
component in any data mining enterprise. In this section we discuss some of the
interplay between traditional statistics and data mining.

With large data sets (and particularly with very large data sets) we may simply not know
even straightforward facts about the data. Simple eye-balling of the data is not an option.
This means that sophisticated search and examination methods may be required to
illuminate features which would be readily apparent in small data sets. Moreover, as we
commented above, often the object of data mining is to make some inferences beyond
the available database. For example, in a database of astronomical objects, we may
want to make a statement that "all objects like this one behave thus," perhaps with an
attached qualifying probability. Likewise, we may determine that particular regions of a
country exhibit certain patterns of telephone calls. Again, it is probably not the calls in the
database about which we want to make a statement. Rather it will probably be the
pattern of future calls which we want to be able to predict. The database provides the set
of objects which will be used to construct the model or search for a pattern, but the
ultimate objective will not generally be to describe those data. In most cases the
objective is to describe the general process by which the data arose, and other data sets
which could have arisen by the same process. All of this means that it is necessary to
avoid models or patterns which match the available database too closely: given that the
available data set is merely one set from the sets of data which could have arisen, one
does not want to model its idiosyncrasies too closely. Put another way, it is necessary to
avoid overfitting the given data set; instead one wants to find models or patterns which
generalize well to potential future data. In selecting a score function for model or pattern
selection we need to take account of this. We will discuss these issues in more detail in
chapter 7 and chapters 9 through 11. While we have described them in a data mining
context, they are fundamental to statistics; indeed, some would take them as the defining
characteristic of statistics as a discipline.

Since statistical ideas and methods are so fundamental to data mining, it is legitimate to
ask whether there are really any differences between the two enterprises. Is data mining
merely exploratory statistics, albeit for potentially huge data sets, or is there more to data
mining than exploratory data analysis? The answer is yes—there is more to data mining.
The most fundamental difference between classical statistical applications and data
mining is the size of the data set. To a conventional statistician, a "large" data set may
contain a few hundred or a thousand data points. To someone concerned with data
mining, however, many millions or even billions of data points is not unexpected—
gigabyte and even terabyte databases are by no means uncommon. Such large
databases occur in all walks of life. For instance the American retailer Wal-Mart makes
over 20 million transactions daily (Babcock, 1994), and constructed an 11 terabyte
database of customer transactions in 1998 (Piatetsky-Shapiro, 1999). AT&T has 100
million customers and carries on the order of 300 million calls a day on its long distance




network. Characteristics of each call are used to update a database of models for every
telephone number in the United States (Cortes and Pregibon, 1998). Harrison (1993)
reports that Mobil Oil aims to store over 100 terabytes of data on oil exploration. Fayyad
Djorgovski, and Weir (1996) describe the Digital Palomar Observatory Sky Survey as
involving three terabytes of data. The ongoing Sloan Digital Sky Survey will create a raw
observational data set of 40 terabytes, eventually to be reduced to a mere 400 gigabyte
catalog containing 3 x 108 individual sky objects (Szalay et al., 1999). The NASA Earth
Observing System is projected to generate multiple gigabytes of raw data per hour
(Fayyad, Piatetsky-Shapiro, and Smyth, 1996). And the human genome project to
complete squuencing of the entire human genome will likely generate a data set of more
than 3.3 x 10” nucleotides in the process (Salzberg, 1999). With data sets of this size
come problems beyond those traditionally considered by statisticians.

Massive data sets can be tackled by sampling (if the aim is modeling, but not necessarily
if the aim is pattern detection) or by adaptive methods, or by summarizing the records in
terms of sufficient statistics. For example, in standard least squares regression
problems, we can replace the large numbers of scores on each variable by their sums,
sums of squared values, and sums of products, summed over the records—these are
sufficient for regression co-efficients to be calculated no matter how many records there
are. It is also important to take account of the ways in which algorithms scale, in terms of
computation time, as the number of records or variables increases. For example,
exhaustive search through all subsets of variables to find the "best" subset (according to
some score function), will be feasible only up to a point. With p variables there are 2° - 1
possible subsets of variables to consider. Efficient search methods, mentioned in the
previous section, are crucial in pushing back the boundaries here.

Further difficulties arise when there are many variables. One that is important in some
contexts is the curse of dimensionality, the exponential rate of growth of the number of
unit cells in a space as the number of variables increases. Consider, for example, a
single binary variable. To obtain reasonably accurate estimates of parameters within
both of its cells we might wish to have 10 observations per cell; 20 in all. With two binary
variables (and four cells) this becomes 40 observations. With 10 binary variables it
becomes 10240 observations, and with 20 variables it becomes 10485760. The curse of
dimensionality manifests itself in the difficulty of finding accurate estimates of probability
densities in high dimensional spaces without astronomically large databases (so large, in
fact, that the gigabytes available in data mining applications pale into insignificance). In
high dimensional spaces, "nearest" points may be a long way away. These are not
simply difficulties of manipulating the many variables involved, but more fundamental
problems of what can actually be done. In such situations it becomes necessary to
impose additional restrictions through one's prior choice of model (for example, by
assuming linear models).

Various problems arise from the difficulties of accessing very large data sets. The
statistician's conventional viewpoint of a "flat" data file, in which rows represent objects
and columns represent variables, may bear no resemblance to the way the data are
stored (as in the text and Web transaction data sets described earlier). In many cases
the data are distributed, and stored on many machines. Obtaining a random sample from
data that are split up in this way is not a trivial matter. How to define the sampling frame
and how long it takes to access data become important issues.

Worse still, often the data set is constantly evolving—as with, for example, records of
telephone calls or electricity usage. Distributed or evolving data can multiply the size of a
data set many-fold as well as changing the nature of the problems requiring solution.
While the size of a data set may lead to difficulties, so also may other properties not
often found in standard statistical applications. We have already remarked that data
mining is typically a secondary process of data analysis; that is, the data were originally
collected for some other purpose. In contrast, much statistical work is concerned with
primary analysis: the data are collected with particular questions in mind, and then are
analyzed to answer those questions. Indeed, statistics includes subdisciplines of
experimental design and survey design—entire domains of expertise concerned with the
best ways to collect data in order to answer specific questions. When data are used to
address problems beyond those for which they were originally collected, they may not be



ideally suited to these problems. Sometimes the data sets are entire populations (e.g., of
chemicals in a particular class of chemicals) and therefore the standard statistical notion
of inference has no relevance. Even when they are not entire populations, they are often
convenience or opportunity samples, rather than random samples. (For instance,the
records in question may have been collected because they were the most easily
measured, or covered a particular period of time.)

In addition to problems arising from the way the data have been collected, we expect
other distortions to occur in large data sets—including missing values, contamination,
and corrupted data points. It is a rare data set that does not have such problems. Indeed,
some elaborate modeling methods include, as part of the model, a component describing
the mechanism by which missing data or other distortions arise. Alternatively, an
estimation method such as the EM algorithm (described in chapter 8) or an imputation
method that aims to generate artificial data with the same general distributional
properties as the missing data might be used. Of course, all of these problems also arise
in standard statistical applications (though perhaps to a lesser degree with small,
deliberately collected data sets) but basic statistical texts tend to gloss over them.

In summary, while data mining does overlap considerably with the standard exploratory
data analysis techniques of statistics, it also runs into new problems, many of which are
consequences of size and the non traditional nature of the data sets involved.

1.7 Data Mining: Dredging, Snooping, and Fishing

An introductory chapter on data mining would not be complete without reference to the
historical use of terms such as "data mining," "dredging," "snooping," and "fishing." In the
1960s, as computers were increasingly applied to data analysis problems, it was noted
that if you searched long enough, you could always find some model to fit a data set
arbitrarily well. There are two factors contributing to this situation: the complexity of the
model and the size of the set of possible models.

Clearly, if the class of models we adopt is very flexible (relative to the size of the
available data set), then we will probably be able to fit the available data arbitrarily well.
However, as we remarked above, the aim may be to generalize beyond the available
data; a model that fits well may not be ideal for this purpose. Moreover, even if the aim is
to fit the data (for example, when we wish to produce the most accurate summary of data
describing a complete population) it is generally preferable to do this with a simple
model. To take an extreme, a model of complexity equivalent to that of the raw data
would certainly fit it perfectly, but would hardly be of interest or value.

Even with a relatively simple model structure, if we consider enough different models
with this basic structure, we can eventually expect to find a good fit. For example,
consider predicting a response variable, Y from a predictor variable X which is chosen
from a very large set of possible variables, Xy, ..., X,, none of which are related to Y. By
virtue of random variation in the data generating process, although there are no
underlying relationships between Y and any of the X variables, there will appear to be
relationships in the data at hand. The search process will then find the X variable that
appears to have the strongest relationship to Y. By this means, as a consequence of the
large search space, an apparent pattern is found where none really exists. The situation
is particularly bad when working with a small sample size n and a large number p of
potential X variables. Familiar examples of this sort of problem include the spurious
correlations which are popularized in the media, such as the "discovery" that over the
past 30 years when the winner of the Super Bowl championship in American football is
from a particular league, a leading stock market index historically goes up in the
following months. Similar examples are plentiful in areas such as economics and the
social sciences, fields in which data are often relatively sparse but models and theories
to fit to the data are relatively plentiful. For instance, in economic time-series prediction,
there may be a relatively short time-span of historical data available in conjunction with a
large number of economic indicators (potential predictor variables). One particularly
humorous example of this type of prediction was provided by Leinweber (personal
communication) who achieved almost perfect prediction of annual values of the well-



known Standard and Poor 500 financial index as a function of annual values from
previous years for butter production, cheese production, and sheep populations in
Bangladesh and the United States.

The danger of this sort of "discovery” is well known to statisticians, who have in the past

labelled such extensive searches "data mining" or "data dredging"—causing these terms
to acquire derogatory connotations. The problem is less serious when the data sets are
large, though dangers remain even then, if the space of potential structures examined is
large enough. These risks are more pronounced in pattern detection than model fitting,
since patterns, by definition, involve relatively few cases (i.e., small sample sizes): if we
examine a billion data points, in search of an unusual configuration of just 50 points, we
have a good chance of detecting this configuration.

There are no easy technical solutions to this problem, though various strategies have
been developed, including methods that split the data into subsamples so that models
can be built and patterns can be detected using one part, and then their validity can be
tested on another part. We say more about such methods in later chapters. The final
answer, however, is to regard data mining not as a simple technical exercise, divorced
from the meaning of the data. Any potential model or pattern should be presented to the
data owner, who can then assess its interest, value, usefulness, and, perhaps above all,
its potential reality in terms of what else is known about the data.

1.8 Summary

Thanks to advances in computers and data capture technology, huge data sets—
containing gigabytes or even terabytes of data—have been and are being collected.
These mountains of data contain potentially valuable information. The trick is to extract
that valuable information from the surrounding mass of uninteresting numbers, so that
the data owners can capitalize on it. Data mining is a new discipline that seeks to do just
that: by sifting through these databases, summarizing them, and finding patterns.

Data mining should not be seen as a simple one-time exercise. Huge data collections
may be analyzed and examined in an unlimited number of ways. As time progresses, so
new kinds of structures and patterns may attract interest, and may be worth seeking in
the data.

Data mining has, for good reason, recently attracted a lot of attention: it is a new
technology, tackling new problems, with great potential for valuable commercial and
scientific discoveries. However, we should not expect it to provide answers to all
questions. Like all discovery processes, successful data mining has an element of
serendipity. While data mining provides useful tools, that does not mean that it will
inevitably lead to important, interesting, or valuable results. We must beware of over-
exaggerating the likely outcomes. But the potential is there.

1.9 Further Reading

Brief, general introductions to data mining are given in Fayyad, Piatetsky-Shapiro, and
Smyth (1996), Glymour et al. (1997), and a special issue of the Communications of the
ACM, Vol. 39, No. 11. Overviews of certain aspects of predictive data mining are given
by Adriaans and Zantige (1996) and Weiss and Indurkhya (1998). Witten and Franke
(2000) provide a very readable, applications-oriented account of data mining from a
machine learning (artificial intelligence) perspective and Han and Kamber (2000) is an
accessible textbook written from a database perspective data mining. There are many
texts on data mining aimed at business users, notably Berry and Linoff (1997, 2000) that
contain extensive practical advice on potential business applications of data mining.
Leamer (1978) provides a general discussion of the dangers of data dredging, and Lovell
(1983) provides a general review of the topic. From a statistical perspective. Hendry
(1995, section 15.1) provides an econometrician's view of data mining. Hand et al.
(2000) and Smyth (2000) present comparative discussions of data mining and statistics.




Casti (1990, 192-193 and 439) provides a briefly discusses "common folklore" stock
market predictors and coincidences.

Chapter 2: Measurement and Data

2.1 Introduction

Our aim is to discover relationships that exist in the "real world," where this may be the
physical world, the business world, the scientific world, or some other conceptual
domain. However, in seeking such relationships, we do not go out and look at that
domain firsthand. Rather, we study data describing it. So first we need to be clear about
what we mean by data.

Data are collected by mapping entities in the domain of interest to symbolic
representation by means of some measurement procedure, which associates the value
of a variable with a given property of an entity. The relationships between objects are
represented by numerical relationships between variables. These numerical
representations, the data items, are stored in the data set; it is these items that are the
subjects of our data mining activities.

Clearly the measurement process is crucial. It underlies all subsequent data analytic and
data mining activities. We discuss this process in detail in section 2.2.

We remarked in chapter 1 that the notion of "distance" between two objects is
fundamental. Section 2.3 outlines distance measures between two objects, based on the
vectors of measurements taken on those objects. The raw results of measurements may
or may not be suitable for direct data mining. Section 2.4 briefly comments on how the
data might be transformed before analysis.

We have already noted that we do not want our data mining activities simply to discover
relationships that are mere artifacts of the way the data were collected. Likewise, we do
not want our findings to be properties of the way the data are defined: discovering that
people with the same surname often live in the same household would not be a major
breakthrough. In section 2.5 we briefly introduce notions of the schema of data—the a
priori structure imposed on the data.

No data set is perfect, and this is particularly true of large data sets. Measurement error,
missing data, sampling distortion, human mistakes, and a host of other factors corrupt
the data. Since data mining is concerned with detecting unsuspected patterns in data, it
is very important to be aware of these imperfections—we do not want to base our
conclusions on patterns that merely reflect flaws in data collection or of the recording
processes. Section 2.6 discusses quality issues in the context of measurements on
cases or records and individual variables or fields. Section 2.7 discusses the quality of
aggregate collections of such individuals (i.e., samples).

Section 2.8 presents concluding remarks, and section 2.9 gives pointers to more detailed
reading.

2.2 Types of Measurement

Measurements may be categorized in many ways. Some of the distinctions arise from
the nature of the properties the measurements represent, while others arise from the use
to which the measurements are put.

To illustrate, we will begin by considering how we might measure the property WEIGHT.
In this discussion we will denote a property by using uppercase letters, and the variable
corresponding to it (the result of the mapping to numbers induced by the measurement
operation) by lowercase letters. Thus a measurement of WEIGHT yields a value of
weight. For concreteness, let us imagine we have a collection of rocks.

The first thing we observe is that we can rank the rocks according to the WEIGHT
property. We could do this, for example, by placing a rock on each pan of a weighing
scale and seeing which way the scale tipped. On this basis, we could assign a number to



each rock so that larger numbers corresponded to heavier rocks. Note that here only the
ordinal properties of these numbers are relevant. The fact that one rock was assigned
the number 4 and another was assigned the number 2 would not imply that the first was
in any sense twice as heavy as the second. We could equally have chosen some other
number, provided it was greater than 2, to represent the WEIGHT of the first rock. In
general, any monotonic (order preserving) transformation of the set of numbers we
assigned would provide an equally legitimate assignment. We are only concerned with
the order of the rocks in terms of their WEIGHT property.

We can take the rocks example further. Suppose we find that, when we place a large
rock on one pan of the weighing scale and two small rocks on the other pan, the pans
balance. In some sense the WEIGHT property of the two small rocks has combined to be
equal to the WEIGHT property of the large rock. It turns out (this will come as no
surprise!) that we can assign numbers to the rocks in such a way that not only does the
order of the numbers correspond to the order observed from the weighing scales, but the
sum of the numbers assigned to the two smaller rocks equals the number assigned to
the larger rock. That is, the total weight of the two smaller rocks equals the weight of the
larger rock. Note that even now the assignment of numbers is not unique. Suppose we
had assigned the numbers 2 and 3 to the smaller rocks, and the number 5 to the larger
rock. This assignment satisfies the ordinal and additive property requirements, but so too
would the assignment of 4, 6, and 10 respectively. There is still some freedom in how we
define the variable weight corresponding to the WEIGHT property.

The point of this example is that our numerical representation reflects the empirical
properties of the system we are studying. Relationships between rocks in terms of their
WEIGHT property correspond to relationships between values of the measured variable
weight. This representation is useful because it allows us to make inferences about the
physical system by studying the numerical system. Without juggling sacks of rocks, we
can see which sack contains the largest rock, which sack has the heaviest rocks on
average, and so on.

The rocks example involves two empirical relationships: the order of the rocks, in terms
of how they tip the scales, and their concatenation property—the way two rocks together
balance a third. Other empirical systems might involve less than or more than two
relationships. The order relationship is very common; typically, if an empirical system has
only one relationship, it is an order relationship. Examples of the order relationship are
provided by the SEVERITY property in medicine and the PREFERENCE property in

psychology.

Of course, not even an order relationship holds with some properties, for example, the
properties HAIR COLOR, RELIGION, and RESIDENCE OF PROGRAMMER, do not
have a natural order. Numbers can still be used to represent "values" of the properties,
(blond = 1, black = 2, brown = 3, and so on), but the only empirical relationship being
represented is that the colors are different (and so are represented by different
numbers). It is perhaps even more obvious here that the particular set of numbers
assigned is not unique. Any set in which different numbers correspond to different values
of the property will do.

Given that the assignment of numbers is not unique, we must find some way to restrict
this freedom—or else problems might arise if different researchers use different
assignments. The solution is to adopt some convention. For the rocks example, we
would adopt a basic "value" of the property WEIGHT, corresponding to a basic value of
the variable weight, and defined measured values in terms of how many copies of the
basic value are required to balance them. Examples of such basic values for the
WEIGHT/weight system are the gram and pound.

Types of measurement may be categorized in terms of the empirical relationships they
seek to preserve. However, an important alternative is to categorize them in terms of the
transformations that lead to other equally legitimate numerical representations. Thus, a
numerical severity scale, in which only order matters, may be represented equally well
by any numbers that preserve the orde—numbers derived through a monotonic or
ordinal transformation of the original ones. For this reason, such scales are termed
ordinal scales.



In the rocks example, the only legitimate transformations involved multiplying by a
constant (for example, converting from pounds to grams). Any other transformation
(squaring the numbers, adding a constant, etc.) would destroy the ability of the numbers
to represent the order and concatenation property by addition. (Of course, other
transformations may enable the empirical relationships to be represented by different
mathematical operanons For example if we transformed the values 2, 3, and 5 in the
rocks example to e, e and e°, we could represent the empirical relationship by
multiplication: e%e®= ¢, However addition is the most basic operation and is a favored
choice.) Since with this type of scale multiplying by a constant leaves the ratios of values
unaffected, such scales are termed ratio scales.

In the other case we outlined above (the hair color example) any transformation was
legitimate, provided it preserved the unique identity of the different numbers—it did not
matter which of two numbers was larger, and addition properties were irrelevant.
Effectively, here, the numbers were simply used as labels or names; such scales are
termed nominal scales.

There are other scale types, corresponding to different families of legitimate (or
admissible) transformations. One is the interval scale. Here the family of legitimate
transformations permit changing the units of measurement by multiplying by a constant,
plus adding an arbitrary constant. Thus, not only is the unit of measurement arbitrary, but
so also is the origin. Classic examples of such scales are conventional measures of
temperature (Fahrenheit, Centigrade, etc.) and calendar time.

It is important to understand the basis for different kinds of measurement scale so we
can be sure that any patterns discovered during mining operations are genuine. To
illustrate the dangers, suppose that two groups of three patients record their pain on an
ordinal scale that ranges from 1 (no pain) to 10 (severe pain); one group of patients
yields scores of 1, 2, and 6, while the other yields 3, 4, and 5. The mean of the first three
is (1 + 2 + 6)/3 = 3, while that of the second three is 4. The second group has the larger
mean. However, since the scale is purely ordinal any order-preserving transformation will
yield an equally legitimate numerical representation. For example, a transformation of
the scale so that it ranged from 1 to 20, with (1, 2, 3, 4, 5, 6) transformed to (1, 2, 3, 4, 5,
12) would preserve the order relationships between the different levels of pain—if a
patient A had worse pain than a patient B using the first scale, then patient A would also
have worse pain than patient B using the second scale. Now, however, the first group of
patients would have a mean score (1 + 2 + 12)/3 = 5, while the second group would still
have a mean score 4. Thus, two equally legitimate numerical representations have led to
opposite conclusions. The pattern observed using the first scale (one mean being larger
than the other) was an artifact of the numerical representation adopted, and did not
correspond to any true relationship among the objects (if it had, two equally legitimate
representations could not have led to opposite conclusions). To avoid such problems we
must be sure to only make statistical statements for which the truth value will be invariant
under legitimate transformations of the measurement scales. In this example, we could
make the statement that the median of the scores of the second group is larger than the
median of the scores of the first group; this would remain true, whatever order-preserving
transformation we applied.

Up to this point, we have focussed on measurements that provide mappings in which the
relationships between numbers in the empirical system being studied correspond to
relationships between numbers in a numerical system. Because the mapping serves to
represent relationships in an empirical system, this type of measurement is called
representational.

However, not all measurement procedures fit easily into this framework. In some
situations, it is more natural to regard the measurement procedure as defining a property
in question, as well as assigning a number to it. For example, the property QUALITY OF
LIFE in medicine is often measured by identifying those components of human life that
one regards as important, and then defining a way of combining the scores
corresponding to the separate components (e.g., a weighted sum). EFFORT in software
engineering is sometimes defined in a similar way, combining measures of the number of
program instructions, a complexity rating, the number of internal and external documents
and so forth. Measurement procedures that define a property as well as measure it are
called operational or nonrepresentational procedures. The operational perspective on



measurement was originally conceived in physics, around the start of the century, amid
uneasiness about the reality of concepts such as atoms. The approach has gone onto
have larger practical implications for the social and behavioral sciences. Since in this
method the measurement procedure also defines the property, no question of legitimate
transformations arises. Since there are no alternative numerical representations any
statistical statements are permissible.

Example 2.1

One early attempt at measuring programming effort is given by Halstead (1977). In a given
program if a is the number of unique operators, b is the number of unique operands, n is
the number of total operator occurrences, and m is the total number of operand
occurrences, then the programming effort is

e =am(n + m) log(a + b)/2b.

This is a nonrepresentational measurement, since it defines programming effort, as well as

irovidini a wai to measure it.

One way of describing the distinction between representational and operational
measurement is that the former is concerned with understanding what is going on in a
system, while the latter is concerned with predicting what is going on. The difference
between understanding (or describing) a system and predicting its behavior crops up
elsewhere in this book. Of course, the two aims overlap, but the distinction is a useful
one. We can construct effective and valuable predictive systems that make no reference
to the mechanisms underlying the process. For instance most people successfully drive
automobiles or operate video recorders, without any idea of their inner workings.

In principle, the mappings defined by the representational approach to measurement, or
the numbers assigned by the operational approach, can take any values from the
continuum. For example, a mapping could tell us that the length of the diagonal of a unit
square is the square root of 2. However, in practice, recorded data are only
approximations to such mathematical ideals. First, there is often unavoidable error in
measurement (e.g., if you repeatedly measure someone's height to the nearest
millimeter you will observe a distribution of values). Second, data are recorded to a finite
number of decimal places. We might record the length of the diagonal of a unit square as
1.4, 0r 1.41, or 1.414, or 1.4142, and so on, but the measure will never be exact.
Occasionally, this kind of approximation can have an impact on an analysis. The effect is
most noticeable when the approximation is crude (when the data are recorded to only
very few decimal places).

The above discussion provides a theoretical basis for measurement issues. However, it
does not cover all descriptive measurement terms that have been introduced. Many
other taxonomies for measurement scales have been described, sometimes based not
on the abstract mathematical properties of the scales but rather on the sorts of data
analytic techniques used to manipulate them. Examples of such alternatives include
counts versus measurements; nominal, ordinal, and numerical scales; qualitative versus
gquantitative measurements; metrical versus categorical measurements; and grades,
ranks, counted fractions, counts, amounts, and balances. In most cases it is clear what is
intended by these terms. Ranks, for example, correspond to an operational assignment
of integers to the particular entities in a given collection on the basis of the relative "size"
of the property in question: the ranks are integers which preserve the order property.

In data mining applications (and in this text), the scale types that occur most frequently
are categorical scales in which any one-to-one transformation is allowed (nominal
scales), ordered categorical scales, and numerical (quantitative or real-valued) scales.



2.3 Distance Measures

Many data mining techniques (for example, nearest neighbor classification methods,
cluster analysis, and multidimensional scaling methods) are based on similarity
measures between objects. There are essentially two ways to obtain measures of
similarity. First, they can be obtained directly from the objects. For example, a marketing
survey may ask respondents to rate pairs of objects according to their similarity, or
subjects in a food tasting experiment may be asked to state similarities between flavors
of ice-cream. Alternatively, measures of similarity may be obtained indirectly from
vectors of measurements or characteristics describing each object. In the second case it
is necessary to define precisely what we mean by "similar,” so that we can calculate
formal similarity measures.

Instead of talking about how similar two objects are, we could talk about how dissimilar
they are. Once we have a formal definition of either "similar” or "dissimilar,” we can
easily define the other by applying a suitable monotonically decreasing transformation.
For example, if s(i, j) denotes the similarity and d(i, j) denotes the dissimilarity between
objects i and j, possible transformations include d, j) = 1 - s, j) and

dlr gl = 21 =55 J1) The term proximity is often used as a general term to denote

either a measure of similarity or dissimilarity.

Two additional terms—distance and metric—are often used in this context. The term
distance is often used informally to refer to a dissimilarity measure derived from the
characteristics describing the objects—as in Euclidean distance, defined below. A metric,
on the other hand, is a dissimilarity measure that satisfies three conditions:

1. d(,j)=0foralliandj,and d(i, j) =0if and only if i = j;

2. d(i, ) =d(, i) foralliand j; and

3. d(, ) =d(, k) + dk, j) for all i, j, and k.
The third condition is called the triangle inequality.
Suppose we have n data objects with p real-valued measurements on each object. We
denote the vector of observations for the ith object by x(i) = (X1(i), X2(1), . . ., Xp(@), L =i =
n, where the value of the kth variable for the ith object is x«(i). The Euclidean distance
between the ith and jth objects is defined as

(2.1) P 2
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This measure assumes some degree of commensurability between the different
variables. Thus, it would be effective if each variable was a measure of length (with the
number p of dimensions being 2 or 3, it would yield our standard physical measure of
distance) or a measure of weight, with each variable measured using the same units. It
makes less sense if the variables are noncommensurate. For example, if one variable
were length and another were weight, there would be no obvious choice of units; by
altering the choice of units we would change which variables were most important as far
as the distance was concerned.
Since we often have to deal with data sets in which the variables are not commensurate,
we must find some way to overcome the arbitrariness of the choice of units. A common
strategy is to standardize the data by dividing each of the variables by its sample
standard deviation, so that they are all regarded as equally important. (But note that this
does not resolve the issue—treating the variables as equally important in this sense is
still making an arbitrary assumption.) The standard deviation for the kth variable X can
be estimated as

1
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where |k is the mean for variable X, which (if unknown) can be estimated using the

sample mean + = & L= #+lil Thus, #i = *+/mrremoves the effect of scale as captured by

In addition, if we have some idea of the relative importance that should be accorded to
each variable, then we can weight them (after standardization), to yield the weighted
Euclidean distance measure
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The Euclidean and weighted Euclidean distances are both additive, in the sense that the
variables contribute independently to the measure of distance. This property may not
always be appropriate. To take an extreme case, suppose that we are measuring the
heights and diameters of a number of cups. Using commensurate units, we could define
similarities between the cups in terms of these two measurements. Now suppose that we
measured the height of each cup 100 times, and the diameter only once (so that for any
given cup we have 101 variables, 100 of which have almost identical values). If we
combined these measurements in a standard Euclidean distance calculation, the height
would dominate the apparent similarity between the cups. However, 99 of the height
measurements do not contribute anything to what we really want to measure; they are
very highly correlated (indeed, perfectly, apart from measurement error) with the first
height measurement. To eliminate such redundancy we need a data-driven method. One
approach is to standardize the data, not just in the direction of each variable, as with
weighted Euclidean distance, but also taking into account the covariances between the
variables.

Example 2.2

Consider two variables X and Y, and assume we have n objects, with X taking the values
X(1), ..., x(n) and Y taking the values y(1), . . ., y(n).
Then the sample covariance between X and Y is defined as
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where iis the sample mean of the X values and #is the sample mean of the Y values.

The covariance is a measure of how X and Y vary together: it will have a large positive
value if large values of X tend to be associated with large values of Y and small values of X
with small values of Y. If large values of X tend to be associated with small values of Y, it
will take a negative value.

More generally, with p variables we can construct a p x p matrix of covariances, in which
the element (k, I) is the covariance between the kth and Ith variables. From the definition of
covariance above, we can see that such a matrix (a co-variance matrix) must be
symmetric.

The value of the covariance depends on the ranges of X and Y. This dependence can be
removed by standardizing, dividing the values of X by their standard deviation and the
values of Y by their standard deviation. The result is the sample correlation coefficient ?(X,
Y) between X and Y:
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In the same way that a covariance matrix can be formed if there are p variables, a p x p
correlation matrix can be formed in the same manner. Figure 2.1 shows a pixel image of a
correlation matrices for an 11-dimensional data set on housing-related variables across
different Boston suburbs. From the matrix we can clearly see structure in terms of how
different variables are correlated. For example, variables 3 and 4 (relating to business
acreage and presence of nitrous oxide) are each highly negatively correlated with variable
2 (the percent of large residential lots in the suburb) and positively correlated with each
other. Variable 5 (average number of rooms) is positively correlated with variable 11
(median home value) (i.e., larger houses tend to be more valuable). Variables 8 and 9 (tax
rates and highway accessibility) are also highly correlated.
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Figure 2.1: A Sample Correlation Matrix Plotted as a Pixel Image. White Corresponds to +1
and Black to -1. The Three Rightmost Columns Contain Values of -1, 0, and +1
(Respectively) to Provide a Reference for Pixel Intensities. The Remaining 11 x 11 Pixels
Represent the 11 x 11 Correlation Matrix. The Data Come From a well-known Data Set in the
Regression Research Literature, in Which Each Data Vector is a Suburb of Boston and Each
Variable Represents a Certain General Characteristic of a Suburb. The Variable Names are
(1) Per-Capita Crime Rate, (2) Proportion of Area Zoned for Large Residential Lots, (3)
Proportion of Non-Retail Business Acres, (4) Nitric Oxide Concentration, (5) Average Number
of Rooms Perdwelling, (6) Proportion of Pre-1940 Homes, (7) Distance to Retail Centers
Index, (8) Accessibility to Highways Index, (9) Property Tax Rate, (10) Pupil-to-Teacher Ratio,
and (11) Median Value of Owner-Occupied Homes.

Note that covariance and correlation capture linear dependencies between variables (they
are more accurately termed linear covariance and linear correlation). Consider data points
that are uniformly distributed around a circle in two dimensions (X and Y), centered at the
origin. The variables are clearly dependent, but in a nonlinear manner and they will have

zero linear correlation. Thus, independence implies a lack of correlation, but the reverse is
not generally true. We will have more to say about independence in chapter 4.

Recall again our coffee cup example with 100 measurements of height and one
measurement of width. We can discount the effect of the 100 correlated variables by
incorporating the covariance matrix in our definition of distance. This leads to the
Mahalanobis distance between two p-dimensional measurements x (i) and x(j), defined
as:
- i
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where T represents the transpose, S is the p x p sample covariance matrix, and st
standardizes the data relative to S. Note that although we have been thinking about our
p-dimensional measurement vectors X (i) as rows in our data matrix, the convention in
matrix algebra is to treat these as p x 1 column vectors (we can still visualize our data
matrix as being an n x p matrix). Entry (k, |) of S is defined between variable Xy and X,
as in equation 2.5. Thus, we have a p x 1 vector transposed (to give a 1 x p vector),
multiplied by the p x p matrix s, multiplied by a p x 1 vector, yielding a scalar distance.
Of course, other matrices could be used in place of S. Indeed, the statistical frameworks
of canonical variates analysis and discriminant analysis use the average of the
covariance matrices of different groups of cases.
The Euclidean metric can also be generalized in other ways. For example, one obvious
generalization is to the Minkowski or L, metric:
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where ? = 1. Using this, the Euclidean distance is the special case of ? = 2. The L; metric
(also called the Manhattan or city-block metric) can be defined as
(2.8) ; :
S L =eld) = xeli)) |-
k=1

The case ? ? 8 yields the Ls metric
max |z (i} = 2[4} .

There is a huge number of other metrics for quantitative measurements, so the problem
is not so much defining one but rather deciding which is most appropriate for a particular
situation.

For multivariate binary data we can count the number of variables on which two objects
take the same or take different values. Consider table 2.1, in which all p variables
defined for objects i and j take values in {0, 1}; the entry n; ; inthe boxfori=21and j=1
denotes that there are n; ; variables such that i and j both have value 1.

Table 2.1: A Cross-Classification of Two Binary Variables.

i= i=
1 0
i=1 ng, ny
1 0
i=0 No, No
1 0

With binary data, rather than measuring the dissimilarities between objects, we often
measure the similarities. Perhaps the most obvious measure of similarity is the simple
matching coefficient, defined as
(2.9) ny+ Rop
ma+ o+ e+ Roo
the proportion of the variables on which the objects have the same value, where n; ; +
Nio+ No1+ Ngo=p, the total number of variables. Sometimes, however, it is
inappropriate to include the (0,0) cell (or the (1,1) cell, depending on the meaning of 0
and 1). For example, if the variables are scores of the presence (1) or absence (0) of
certain properties, we may not care about all the irrelevant properties had by neither
object. (For instance, in vector representations of text documents it may be not be
relevant that two documents do not contain thousands of specific terms). This
consideration leads to a modification of the matching coefficient, the Jaccard coefficient,
defined as
(2.10) i1l
npy+nie+no
The Dice coefficient extends this argument. If (0,0) matches are irrelevant, then (0,1) and
(1,0) mismatches should lie between (1,1) matches and (0,0) matches in terms of
relevance. For this reason the number of (0,1) and (1,0) mismatches should be multiplied
by a half. This yields 2n; 1/(2n; 1 + N1 o + Ng 1). As with quantitative data, there are many
different measures for multivariate binary data—again the problem is not so much
defining such measures but choosing one that possesses properties that are desirable
for the problem at hand.
For categorical data in which the variables have more than two categories, we can score
1 for variables on which the two objects agree and 0 otherwise, expressing the sum of
these as a fraction of the possible total p. If we know about the categories, we might be
able to define a matrix giving values for the different kinds of disagreement.

Additive dstance measures can be readily adapted to deal with mixed data types (e.qg.,
some binary variables, some categorical, and some quantitative) since we can add the
contributions from each variable. Of course, the question of relative standardization still
arises.



2.4 Transforming Data
Sometimes raw data are not in the most convenient form and it can be advantageous to
modify them prior to analysis. Note that there is a duality between the form of the model
and the nature of the data. For example, if we speculate that a variable Y is a function of
the square of a variable X, then we either could try to find a suitable function of X?, or we
could square X first, to U = X2, and fit a function to U. The equivalence of the two
approaches is obvious in this simple example, but sometimes one or other can be much
more straightforward.

Example 2.3

Clearly variable V1 in figure 2.2 is nonlinearly related to variable V,. However, if we work
with the reciprocal of V5, that is, V3 = 1/V,, we obtain the linear relationship shown in figure
2.3
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Figure 2.2: A Simple Nonlinear Relationship between Variable V; and V,. (In These and
Subsequent Figures V; and V, are on the X and Y Axes Respectively).
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Fiiure 2.3: The Data of Fiiure 2.2 after the Simile Transformation of Vi to 1/Vi.

Sometimes, especially if we are concerned with formal statistical inferences in which the
shape of a distribution is important (as when running statistical tests, or calculating
confidence intervals), we might want to transform the data so that they approximate the
requisite distribution more closely. For example, it is common to take logarithms of
positively skewed data (such as bank account sizes or incomes) to make the distribution



more symmetric (so that it more closely approximates a normal distribution, on which
many inferential procedures are based).
Example 2.4

In figure 2.4 not only are the two variables nonlinearly related, but the variance of V,
increases as V; increases. Sometimes inferences are based on an assumption that the
variance remains constant (for example, in the basic model for regression analysis). In the
case of these (artificial) data, a square root transformation of V, yields the transformed data

shown in figure 2.5.

a

Figure 2.4: Another Simple Nonlinear Relationship. Here the Variance of V; Increases as V;
Increases.
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Figure 2.5: The Data of Figure 2.4 after a Simple Square Root Transformation of V,. Now the

Variance of Vi is Relativeli Constant as V| Increases.

Since our fundamental aim in data mining is exploration, we must be prepared to
contemplate and search for the unsuspected. Certain transformations of the data may
lead to the discovery of structures that were not at all obvious on the original scale. On
the other hand, it is possible to go too far in this direction: we must be wary of creating
structures that are simply arti-facts of a peculiar transformation of the data (see the
example of the ordinal pain scale in section 2.2). Presumably, when this happens in a
data mining context, the domain expert responsible for evaluating an apparent discovery
will soon reject the structure.

Note also that in transforming data we may sacrifice the way it represents the underlying
objects. As described in section 2.2 the standard mapping of rocks to weights maps a
physical concatenation operation to addition. If we nonlinearly transform the numbers
representing the weights, using logarithms or taking square roots for example, the



physical concatenation operation is no longer preserved. Caution—and common
sense—must be exercised.

Common data transformations include taking square roots, reciprocals, logarithms, and
raising variables to positive integral powers. For data expressed as proportions, the logit
transformation, /"' =15 is often used.

Some classes of techniques assume that the variables are categorical—that only a few
(ordered) responses are possible. At an extreme, some techniques assume that
responses are binary, with only two possible outcome categories. Of course continuous
variables (those that can, at least in principle, take any value within a given interval) can
be split at various thresholds to reduce them to categories. This sacrifices information,
with the information loss increasing as the number of categories is reduced, but in
practice this loss can be quite small.

2.5 The Form of Data

We mentioned in chapter 1 that data sets come in different forms; these forms are known
as schemas. The simplest form of data (and the only form we have discussed in any
detall) is a set of vector measurements on objects o(1), . . ., o(n). For each object we
have measurements of p variables X, ..., Xp. Thus, the data can be viewed as a matrix
with n rows and p columns. We refer to this standard form of data as a data matrix, or
simply standard data. We can also refer to the data set as a table.

Often there are several types of objects we wish to analyze. For example, in a payroll
database, we might have data both about employees, with variables name, department-
name, age, and salary, and about departments with variables department-name, budget
and manager. These data matrices are connected to each other by the occurrence of the
same (categorical) values in the department-name fields and in the fields name and
manager. Data sets consisting of several such matrices or tables are called
multirelational data.

In many cases multirelational data can be mapped to a single data matrix or table. For
example, we could join the two data tables using the values of the variable department-
name. This would give us a data matrix with the variables name, department-name, age,
salary, budget (of the department), and manager (of the department). The possibility of
such a transformation seems to suggest that there is no need to consider multirelational
structures at all since in principle we could represent the data in one large table or
matrix. However, this way of joining the data sets is not the only possibility: we could also
create a table with as many rows as there are departments (this would be useful if we
were interested in getting information about the departments, e.g., determining whether
there was a dependence between the budget of a department and the age of the
manager). Generally no single table best captures all the information in a multirelational
data set. More important, from the point of view of efficiency in storage and data access,
"flattening” multirelational data to form a single large table may involve the needless
replication of numerous values.

Some data sets do not fit well into the matrix or table form. A typical example is a time
series, in which consecutive values correspond to measurements taken at consecutive
times, (e.g., measurements of signal strength in a waveform, or of responses of a patient
at a series of times after receiving medical treatment). We can represent a time series
using two variables, one for time and one for the measurement value at that time. This is
actually the most natural representation to use for storing the time series in a database.
However, representing the data as a two-variable matrix does not take into account the
ordered aspect of the data. In analyzing such data, it is important to recognize that a
natural order does exist. It is common, for example, to find that neighboring observations
are more closely related (more highly correlated) than distant observations. Failure to
account for this factor could lead to a poor model.

A string is a sequence of symbols from some finite alphabet. A sequence of values from
a categorical variable is a string, and so is standard English text, in which the values are
alphanumeric characters, spaces, and punctuation marks. Protein and DNA/RNA
sequences are other examples. Here the letters are individual proteins (note that a string



representation of a protein sequence is a 2-dimensional view of a 3-dimensional
structure). A string is another data type that is ordered and for which the standard matrix
form is not necessarily suitable.

A related ordered data type is the event-sequence. Given a finite alphabet of categorical
event types, an event-sequence is a sequence of pairs of the form {event, occurrence
time}. This is quite similar to a string, but here each item in the sequence is tagged with
an occurrence time. An example of an event-sequence is a telecommunication alarm log,
which includes a time of occurrence for each alarm. More complicated event-sequences
include transaction data (such as records of retail or financial transactions), in which
each transaction is time-stamped and the events themselves can be relatively complex
(e.g., listing all purchases along with prices, department names, and so forth).
Furthermore, there is no reason to restrict the concept of event sequences to categorical
data; for example we could extend it to real-valued events occurring asynchronously,
such as data from animal behavioral experiments or bursts of energy from objects in
deep space.

Of course, order may be imposed simply for logistic convenience: placing patient records
in alphabetical order by name assists retrieval, but the fact that Jones precedes Smith is
unlikely to have any impact on most data mining activities. Still, care must always be
exercised in data mining. For example, records of members of the same family (with the
same last name) would probably occur near one another in a data set, and they may
have related properties. (We may find that a contagious disease tends to infect groups of
people whose names are close together in the data set.)

Ordered data are spread along a unidimensional continuum (per individual variable), but
other data often lie in higher dimensions. Spatial, geographic, or image data are located
in two and three dimensional spaces. It is important to recognize that some of the
variables are part of the defining data schema in these examples: that is, some of the
variables merely specify the coordinates of observations in the spaces. The discovery
that geographical data lies in a two-dimensional continuum would not be \ery profound.
A hierarchical structure is a more complex data schema. For example, a data set of
children might be grouped into classes, which are grouped into years, which are grouped
into schools, which are grouped into counties, and so on. This structure is obvious in a
multirelational representation of the data, but can be harder to see in a single table.
Ignoring this structure in data analysis can be very misleading. Research on statistical
models for such multi-level data has been particularly active in recent years. A special
case of hierarchical structures arises when responses to certain items on a questionnaire
are contingent on answers to other questions: for instance the relevance of the question
"Have you had a hysterectomy?" depends on the answer to the question "Are you male
or female?"

To summarize, in any data mining application it is crucial to be aware of the schema of
the data. Without such awareness, it is easy to miss important patterns in the data or,
perhaps worse, to rediscover patterns that are part of the fundamental design of the
data. In addition, we must be particularly careful about data schemas when sampling, as
we will discuss in more detail in chapter 4.

2.6 Data Quality for Individual Measurements

The effectiveness of a data mining exercise depends critically on the quality of the data.
In computing this idea is expressed in the familiar acronym GIGO—Garbage In, Garbage
Out. Since data mining involves secondary analysis of large data sets, the dangers are
multiplied. It is quite possible that the most interesting patterns we discover during a data
mining exercise will have resulted from measurement inaccuracies, distorted samples or
some other unsuspected difference between the reality of the data and our perception of
it.

It is convenient to characterize data quality in two ways: the quality of the individual
records and fields, and the overall quality of the collection of data. We deal with each of
these in turn.



No measurement procedure is without the risk of error. The sources of error are infinite,
ranging from human carelessness, and instrumentation failure, to inadequate definition
of what it is that we are measuring. Measuring instruments can lead to errors in two
ways: they can be inaccurate or they can be imprecise. This distinction is important,
since different strategies are required for dealing with the different kinds of errors.

A precise measurement procedure is one that has small variability (often measured by its
variance). Using a precise process, repeated measurements on the same object under
the same conditions will yield very similar values. Sometimes the word precision is taken
to connote a large number of digits in a given recording. We do not adopt this
interpretation, since such "precision” can all too easily be spurious, as anyone familiar
with modern data analysis packages (which sometimes give results of calculations to
eight or more decimal places) will know.

An accurate measurement procedure, in contrast, not only possesses small variability,
but also yields results close to what we think of as the true value. A measurement
procedure may Yield precise but inaccurate measurements. For example repeated
measurements of someone's height may be precise, but if these were made while the
subject was wearing shoes, the result would be inaccurate. In statistical terms, the
difference between the mean of repeated measurements and the true value is the bias of
a measurement procedure. Accurate procedures have small bias as well as small
variance.

Note that the concept of a "true value" is integral to the concept of accuracy. But this
concept is rather more slippery than it might at first appear. Take a person's height, for
example. Not only does it vary slightly from moment to moment—as the person breathes
and as his or her heart beats— but it also varies over the course of a day (gravity pulls
us down). Astronauts returning from extended tours in space, are significantly taller than
when they set off (though they soon revert to their former height). Mosteller (1968)
remarked that "Today some scientists believe that true values do not exist separately
from the measuring process to be used, and in much of social science this view can be
amply supported. The issue is not limited to social science; in physics, complications
arise from the different methods of measuring microscopic and macroscopic quantities
such as lengths. On the other hand, because it suggests ways of improving
measurement methods, the concept of true value is useful; since some methods come
much nearer to being ideal than others, the better ones can provide substitutes for true
values."

Other terms are also used to express these concepts. The reliability of a measurement
procedure is the same as its precision. The former term is typically used in the social
sciences whereas the latter is used in the physical sciences. This use of two different
names for the same concept is not as unreasonable as it might seem, since the process
of determining reliability is quite different from that of determining precision. In measuring
the precision of an instrument, we can use that instrument repeatedly: assuming that
during the course of the repeated applications the circumstances will not change much.
Furthermore, we assume that the measurement process itself will not influence the
system being measured. (Of course, there is a grey area here: as Mosteller noted, very
small or delicate phenomena may indeed be perturbed by the measurement procedure.)
In the social and behavioral sciences, however, such perturbation is almost inevitable:
for instance a test asking a subject to memorize a list of words could not usefully be
applied twice in quick succession. Effective retesting requires more subtle techniques,
such as alternative-form testing (in which two alternative forms of the measuring
instrument are used), split-halves testing (in which the items on a single test are split into
two groups), and methods that assess internal consistency (giving the expected
correlation of one test with another version that contains the same number of items).
Earlier we described two factors contributing to the inaccuracy of a measurement. One
was basic precision—the extent to which repeated measurements of the same object
gave similar results. The other was the extent to which the distribution of measurements
was centered on the true value. While precision corresponds to reliability, the other
component corresponds to validity. Validity is the extent to which a measurement
procedure measures what it is supposed to measure. In many areas—including software
engineering and economics—careful thought is required to construct metrics that tap the
underlying concepts we want to measure. If a measurement procedure has poor validity,
any conclusions we draw from it about the target phenomena will be at best dubious and




at worst positively misleading. This is especially true in feedback situations, where action
is taken on the basis of measurements. If the measurements are not tapping the
phenomenon of interest, such actions could lead the system to depart even further from
its target state.

2.7 Data Quality for Collections of Data

In addition to the quality of individual observations, we need to consider the quality of
collections of observations. Much of statistics and data mining is concerned with
inference from a sample to a population, that is, how, on the basis of examining just a
fraction of the objects in a collection, one can infer things about the entire population.
Statisticians use the term parameter to refer to descriptive summaries of populations or
distributions of objects (more generally, of course, a parameter is a value that indexes a
family of mathematical functions). Values computed from a sample of objects are called
statistics, and appropriately chosen statistics can be used as estimates of parameters.
Thus, for example, we can use the average of a sample as an estimate of the mean
(parameter) of an entire population or distribution.

Such estimates are useful only if they are accurate. As we have just noted, inaccuracies
can occur in two ways. Estimates from different samples might vary greatly, so that they
are unreliable: using a different sample might have led to a very different estimate. Or
the estimates might be biased, tending to be too large or too small. In general, the
precision of an estimate (the extent to which it would vary from sample to sample)
increases with increasing sample size; as resources permit, we can reduce this
uncertainty to an acceptable value. Bias, on the other hand, is not so easily diminished.
Some estimates are intrinsically biased, but do not cause a problem because the bias
decreases with increasing sample size. Of more significance in data mining are biases
arising from an inappropriate sample. If we wanted to calculate the average weight of
people living in New York, it would obviously be inadvisable to restrict our sample to
women. If we did this, we would probably underestimate the average. Clearly, in this
case, the population from which our sample is drawn (women in New York) is not the
population to which we wish to generalize (everyone in New York). Our sampling frame,
the list of people from which we will draw our sample, does not match the population
about which we want to make an inference. This is a simple example—we were able to
clearly identify the population from which the sample was drawn (women in New York).
Difficulties arise when it is less obvious what the effect of the incorrect sampling frame
will be. Suppose, for example, that we drew our sample from people working in offices.
Would this lead to biased estimates? Maybe the sexes are disproportionately
represented in offices. Maybe office workers have a tendency to be heavier than average
because of their sedentary occupation. There are many reasons why such a sample
might not be representative of the population we aim to study. The concept of
representativeness is key to the ability to make valid inferences, as is the concept of a
random sample. We discuss the need for random samples, as well as strategies for
drawing such samples, in chapter 4.

Because we often have no control over the way the data are collected, quality issues are
particularly important in data. Our data set may be a distorted sample of the population
we wish to describe. If we know the nature of this distortion then we might be able to
allow for it in our inferences, but in general this is not the case and inferences must be
made with care. The terms opportunity sample and convenience sample are sometimes
used to describe samples that are not properly drawn from the population of interest. The
sample of office workers above would be a convenience sample—it is much more
convenient to sample from them than to sample from the whole population of New York.
Distortions of a sample can occur for many reasons, but the risk is especially grave when
humans are involved. The effects can be subtle and unexpected: for instance, in large
samples, the distribution of stated ages tends to cluster around integers ending with O or
5—just the sort of pattern that data mining would detect as potentially interesting.
Interesting it may be, but will probably be of no value in our analysis.

A different kind of distortion occurs when customers are selected through a chain of
selection steps. With bank loans, for example, an initial population of potential customers



is contacted (some reply and some do not), those who reply are assessed for
creditworthiness (some receive high scores and some do not), those with high scores
are offered a loan (some accept and some do not), those who take out a loan are
followed up (some are good customers, paying the installments on time, and others are
not), and so on. A sample drawn at any particular stage would give a distorted
perspective on the population at an earlier stage.

In this example of candidates for bank loans, the selection criteria at each step are
clearly and explicitly stated but, as noted above, this is not always the case. For
example, in clinical trials samples of patients are selected from across the country,
having been exposed to different diagnostic practices and perhaps different previous
treatments in different primary care facilities. Here the notion of taking a "random sample
from a well-defined population"” makes no sense. This problem is compounded by the
imposition of inclusion/exclusion criteria: perhaps the patients must be male, aged
between 18 and 50, with a primary diagnosis of the disease in question made no longer
than two years ago, and so on. (It is hardly surprising in this context, that the sizes of
effects recorded in clinical trials are typically larger than those found when the treatments
are applied more widely. On the other hand it is reassuring that the directions of the
effects do normally generalize in this way.)

In addition to sample distortion arising from a mismatch between the sample population
and the population of interest other kinds of distortion arise. The aim of many data
mining exercises is to make some prediction of what will happen in the future. In such
cases it is important to remember that populations are not static. For instance the nature
of a customers shopping at a certain store will change over time, perhaps because of
changes in the social culture of the surrounding neighborhood, or in response to a
marketing initiative, or for many other reasons. Much work on predictive methods has
failed to take account of such population drift. Typically, the future performance of such
methods is assessed using data collected at the same time as the data used to build the
model—implicitly assuming that the distribution of objects used to construct the model is
the same as that of future objects. Ideally, a more sophisticated model is required that
can allow for evolution over time. In principle, population drift can be modeled, but in
practice this may not be easy.

An awareness of the risks of using distorted samples is vital to valid data mining, but not
all data sets are samples from the population of interest. Often the data set comprises
the entire population, but is so large that we wish to work with a sample from it. We can
formulate valid descriptions of the population represented in such a data set, to any
degree of accuracy, provided the sample is properly chosen. Of course, technical
difficulties may arise, as we discuss in more detail in chapter 4, when working with data
sets that have complex structures and that might be dispersed over many different
databases. In chapter 4, we explain how to draw samples from a data set in such a way
that we can make accurate inferences about the overall population of values in the data
set, but we restrict our discussion to the cases in which the actual drawing of a sample is
straightforward, once we know which cases should be included.

Distortion of samples can be viewed as a special case of incomplete data, one in which
entire records are missing from what would otherwise be a representative sample. Data
can also be missing in other ways. In particular, individual fields may be missing from
records. In some ways this is not as serious as the situation described above. (At least
here, one can see that the data are missing!) Still, significant problems may arise from
incomplete data. The fundamental question is "Why are the data missing?" Was there
information in the missing data that is not present in the data that have been recorded? If
so, inferences based on the observed data are likely to be biased. In any incomplete
data problem, it is crucial to be clear about the objectives of the analysis. In particular, if
the aim is to make an inference only about the cases that have complete records,
inferences based only on the complete cases is entirely valid.

Outliers or anomalous observations represent another, quite different aspect of data
quality. In many situations the objective of the data mining exercise is to detect
anomalies: in fraud detection and fault detection those records that differ from the
majority are precisely the ones that are of interest. In such cases we would use a pattern
detection process (see chapters 6 and 13). On the other hand, if the aim is model
building—constructing a global model to aid understanding of, or prediction from, the



data—outliers may simply obscure the main points of the model. In this case we might
want to identify and remove them before building our model.

When observing only one variable, we can detect outliers simply by plotting the data—as
a histogram, for example. Points that are far from the others will lie out in the tails.
However, the situation becomes more interesting—and challenging—when multiple
variables are involved. In this case, it is possible that each variable for a particular record
has perfectly normal values, but the overall pattern of scores is abnormal. Consider the
distribution of points shown in figure 2.6. Clearly there is an unusual point here, one that
would immediately arouse suspicion if such a distribution were observed in practice. But
the point stands out only because we produced the two dimensional plot. A one
dimensional examination of the data would indicate nothing unusual at all about the point
in question.
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Figure 2.6: A Plot of 200 Points From Highly Positively Correlated Bivariate Data (From a
Bivariate Normal Distribution), With a Single Easily Identifiable Outlier.

Furthermore, there may be highly unusual cases whose abnormality becomes apparent
only when large numbers of variables are examined simultaneously. In such cases, a
computer is essential to detection.

Every large data set includes suspect data. Rather than promoting relief, a large data set
that appears untarnished by incompleteness, distortion, measurement error, or other
problems should invite suspicion. Only when we recognize and understand the
inadequacies of the data can we take steps to alleviate their impact. Only then can we be
sure that the discovered structures and patterns reflect what is really going on in the
world. Since data miners rarely have control over the data collection processes, an
awareness of the dangers that can arise from poor data is crucial. Hunter (1980) stated
the risks succinctly:

Data of a poor quality are a pollutant of clear thinking and rational decisionmaking.
Biased data, and the relationships derived from such data, can have serious
consequences in the writing of laws and regulations.

And, we might add, they can have serious consequences in developing scientific
theories, in unearthing commercially valuable information, in improving quality of life, and
so on.

2.8 Conclusion

In this chapter we have restricted our discussion to numeric data. However, other kinds
of data also arise. For example, text data is an important class of non-numeric data,
which we discuss further in chapter 14. Sometimes the definition of an individual data
item (and hence whether it is numeric or non-numeric) depends on the objectives of our
analysis: in economic contexts, in which hundreds of thousands of time series are stored



in databases, the data items might be entire time series, rather than the individual
numbers within those series.

Even with non-numeric data, numeric data analysis plays a fundamental role. Often non-
numeric data items, or the relationships between them, are reduced to numeric
descriptions, which are subject to standard methods of analysis. For example, in text
processing we might measure the number of times a particular word occurs in each
document, or the probability that certain pairs of words appear in documents.

2.9 Further Reading

The magnum opus on representational measurement theory is the three volume work of
Krantz et al. (1971), Suppes et al. (1989), and Luce et al. (1990). Roberts (1979) also
outlines this approach. Dawes and Smith (1985) and Michell (1986, 1990) describe
alternative approaches, including the operational approach. Hand (1996) explores the
relationship between measurement theory and statistics. Some authors place their
discussions of software metrics in a formal measurement theoretical context—see, for
example, Eenton (1991). Anderberg (1973) includes a good discussion of similarity and
dissimilarity measures.

Issues of reliability and validity are often discussed in treatments of measurement issues
in the social, behavioral, and medical sciences—see, for example, Dunn (1989) and
Streiner and Norman (1995). Carmines and Zeller (1979) also discuss such issues. A
key work on incomplete data and different types of missing data mechanisms is Little
and Rubin (1987). The bank loan example of distorted samples is taken from Hand
McConway, and Stanghellini (1997). Goldstein (1995) is a key work on multilevel
modeling.

Chapter 3: Visualizing and Exploring Data

3.1 Introduction

This chapter explores visual methods for finding structures in data. Visual methods have
a special place in data exploration because of the power of the human eye/brain to
detect structures—the product of aeons of evolution. Visual methods are used to display
data in ways that capitalize upon the particular strengths of human pattern processing
abilities. This approach lies at quite the opposite end of the spectrum from methods for
formal model building and for testing to see whether observed data could have arisen
from a hypothesized data generating structure. Visual methods are important in data
mining because they are ideal for sifting through data to find unexpected relationships.
On the other hand, they do have their limitations, particularly, as we illustrate below, with
very large data sets.

Exploratory data analysis can be described as data-driven hypothesis generation. We
examine the data, in search of structures that may indicate deeper relationships between
cases or variables. This process stands in contrast to hypothesis testing (we use the
phrase here in an informal and general sense; more formal methods are described in
chapter 4) which begins with a proposed model or hypothesis and undertakes statistical
manipulations to determine the likelihood that the data arose from such a model. The
phrase data based in the above description indicates that it is the patterns in the data
that give rise to the hypotheses—in contrast to situations in which hypotheses are
generated from theoretical arguments about underlying mechanisms. This distinction has
implications for the legitimacy of subsequent testing of the hypotheses. It is closely
related to the issues of overfitting discussed in chapter 7 (and again in 10 and 11). A
simple example will illustrate the problem.

If we take 10 random samples of size 20 from the same population, and measure the
values of a single variable, the random samples will have different means (just by virtue
of random variability). We could compare the means using formal tests. Suppose,
however, we took only the two samples giving rise to the smallest and largest means,



ignoring the others. A test of the difference between these means might well show
significance. If we took 100 samples, instead of 10, then we would be even more likely to
find a significant difference between the largest and the smallest means. By ignoring the
fact that these are the largest and smallest in a set of 100, we are biasing the analysis
toward detecting a difference—even though the samples were generated from the same
population.

In general, when searching for patterns, we cannot test whether a discovered pattern is a
real property of the underlying distribution (as opposed to a chance property of the
sample) without taking into account the size of the search—the number of possible
patterns we have examined. The informal nature of exploratory data analysis makes this
very difficult—it is often impossible to say how many patterns have been examined. For
this reason researchers often use a separate data set, obtained from the same source as
the first, to conduct formal testing for the existence of any pattern. (Alternatively, they
may use some kind of sophisticated method such as cross-validation and sample re-use,
as described in chapter 7.)

This chapter examines informal graphical data exploration methods, which have been
widely used in data analysis down through the ages. Early books on statistics contain
many such methods. They were often more practical than lengthy, number crunching
alternatives in the days before computers. However, something of a revolution has
occurred in recent years, and now such methods are even more widely used. As with the
bulk of the methods decribed in this book, the revolution has been driven by the
computer: computers enable us to view data in many different ways, both quickly and
easily, and have led to the development of extremely powerful data visualization tools.
We begin the discussion in section 3.2 with a description of simple summary statistics for
data. Section 3.3 discusses visualization methods for exploring distributions of values of
single variables. Such tools, at least for small data sets, have been around for centuries,
but even here progress in computer technology has led to the development of novel
approaches. More-over, even when using univariate displays, we often want
simultaneous univariate displays of many variables, so we need concise displays that
readily convey the main features of distributions.

Section 3.4 moves on to methods for displaying the relationships between pairs of
variables. Perhaps the most basic form is the scatterplot. Due to the sizes of the data
sets often encountered in data mining applications, scatterplots are not always
enlightening—the diagram may be swamped by the data. Of course, this qualification
can also apply to other graphical displays.

Moving beyond variable pairs, section 3.5 describes some of the tools used to examine
relationships between multiple variables. No method is perfect, of course: unless a very
rare relationship holds in the data, the relationship between multiple variables cannot be
completely displayed in two dimensions.

Principal components analysis is illustrated in section 3.6. This method can be regarded
as a special (indeed, the most basic) form of multidimensional scaling analysis. These
are methods that seek to represent the important structure of the data in a reduced
number of dimensions. Section 3.7 discusses additional multidimensional scaling
methods.

There are numerous books on data visualization (see section 3.8) and we could not hope
to examine all of the possibilities thoroughly in a single chapter. There are also several
software packages motivated by an awareness of the importance of data visualization
that have very powerful and flexible graphics facilities.

3.2 Summarizing Data: Some Simple Examples

We mentioned in earlier chapters that the mean is a simple summary of the average of a
collection of values. Suppose that x(1), ..., x(n) comprise a set of n data values. The
sample mean is defined as

@1 =3 x(i)/n.

(Note that we use  to refer to the true mean of the population, and #to refer a sample-
based estimate of this mean). The sample mean has the property that it is the value that



is "central" in the sense that it minimizes the sum of squared differences between it and
the data values. Thus, if there are n data values, the mean is the value such that the sum
of n copies of it equals the sum of the data values.

The mean is a measure of location. Another important measure of location is the median,
which is the value that has an equal number of data points above and below it. (Easy if n
is an odd number. When there is an even number it is usually defined as halfway
between the two middle values.)

The most common value of the data is the mode. Sometimes distributions have more
than one mode (for example, there may be 10 objects which take the value 3 on some
variable, and another 10 which take the value 7, with all other values taken less often
than 10 times) and are therefore called multimodal.

Other measures of location focus on different parts of the distribution of data values. The
first quartile is the value that is greater than a quarter of the data points. The third
quartile is greater than three quarters. (We leave it to you to discover why we have not
mentioned the second quartile.) Likewise, deciles and percentiles are sometimes used.
Various measures of dispersion or variability are also common. These include the
standard deviation and its square, the variance. The variance is defined as the average
of the squared differences between the mean and the individual data values:

(B2) &* = Z{r{i} — p)¥/n.

Note that since the mean minimizes the sum of these squared differences, there is a
close link between the mean and the variance. If i is unknown, as is often the case in
practice, we can replace u above with #, our data based estimate. When p is replaced
with #, to get an unbiased estimate (as discussed in chapter 4), the variance is estimated
as
(3.3) Yixli) = i) f(n —1).
¥

The standard deviation is the square root of the variance:
34
(34) TF= \/Z{r[:’} —p)Ein.

The interquartile range, common in some applications, is the difference between the third
and first quartile. The range is the difference between the largest and smallest data
point.
Skewness measures whether or not a distribution has a single long tail and is commonly
defined as

(35 _ (i) —pP®

(St (i) = )2 ¥

For example, the distribution of peoples' incomes typically shows the vast majority of
people earning small to moderate amounts, and just a few people earning large sums,
tailing off to the very few who earn astronomically large sums—the Bill Gateses of the
world. A distribution is said to be right-skewed if the long tail extends in the direction of
increasing values and left-skewed otherwise. Right-skewed distributions are more
common. Symmetric distributions have zero skewness.

3.3 Tools for Displaying Single Variables

One of the most basic displays for univariate data is the histogram, showing the number
of values of the variable that lie in consecutive intervals. With small data sets, histograms
can be misleading: random fluctuations in the values or alternative choices for the ends
of the intervals can give rise to very different diagrams. Apparent multimodality can arise,
and then vanish for different choices of the intervals or for a different small sample. As
the size of the data set increases, however, these effects diminish. With large data sets,
even subtle features of the histogram can represent real aspects of the distribution.
Figure 3.1 shows a histogram of the number of weeks during 1996 in which owners of a
particular credit card used that card to make supermarket purchases (the label on the
vertical axis has been removed to conceal commercially sensitive details). There is a
large mode to the left of the diagram: most people did not use their card in a



supermarket, or used it very rarely. The number of people who used the card a given
number of times decreases rapidly with increases in the number of times. However, the
relatively large number of people represented in this diagram allows us to detect another,
much smaller mode toward the right hand end of the diagram. Apparently there is a
tendency for people to make regular weekly trips to a supermarket, though this is
reduced from 52 annual transactions, probably by interruptions such as holidays.

00

100

0 10 Faxl » Ll 50
Figure 3.1: Histogram of the Number of Weeks of the Year a Particular Brand of Credit Card
was Used.
Example 3.1

Figure 3.2 shows a histogram of diastolic blood pressure for 768 females of Pima Indian
heritage. This is one variable out of eight that were collected for the purpose of building
classification models for forecasting the onset of diabetes. Th e documentation for this data
set (available online at the UCI Machine Learning data archive) states that there are no
missing values in the data. However, a cursory glance at the histogram reveals that about
35 subjects have a blood pressure value of zero, which is clearly impossible if these
subjects were alive when the measurements were taken (presumably they were). A
plausible explanation is that the measurements for these 35 subjects are in fact missing,
and that the value "0" was used in the collection of the data to code for "missing." This
seems likely given that a number of the other variables (such astri ceps-f ol d- ski n-
t hi ckness) also have zero-values that are physically impossible.
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Figure 3.2: Histogram of Diastolic Blood Pressure for 768 Females of Pima Indian Descent.
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The point here is that even though the histogram has limitations it is nonetheless often
quite valuable to plot data before proceeding with more detailed modeling. In the case of



the Pima Indians data, the histogram clearly reveals some suspicious values in the data
that are incompatible with the physical interpretations of the variables being measured.
Performing such simple checks on the data is always advisable before proceeding to use a
data mining algorithm. Once we apply an algorithm it is unlikely that we will notice such
data quality problems, and these problems may distort our analysis in an unpredictable
manner.

The disadvantages of histograms have also been tackled by smoothing estimates. One
of the most widely used types is the kernel estimate.

Kernel estimates smooth out the contribution of each observed data point over a local
neighborhood of that point (we will revisit the kernel method again in chapter 9).
Consider a single variable X for which we have measured values {x(1), ..., x(n)}. The
contribution of data point x(i) to the estimate at some point x* depends on how far apart
x(i) and x* are. The extent of this contribution is dependent upon on the shape of the
kernel function adopted and the width accorded to it. Denoting the kernel function by K
and its width (or bandwidth) by h, the estimated density at any point X is

(3.6) | o 2= z(i)
f[lJ—ngh( ),

where K(t)dt = 1 to ensure that the estimate f(x) itself integrates to 1 (i.e., is a proper
density) and where the kernel function K is usually chosen to be a smooth unimodal
function with a peak at 0. The quality of a kernel estimate depends less on the shape of
K than on the value of h.
A common form for K is the Normal (Gaussian) curve, with h as its spread parameter
(standard deviation), i.e.,

BT Kt h) = Ce~#&)
where C is a normalization constant and t = x - x(i) is the distance of the query point x to
data point x(i). The bandwidth h is equivalent to s, the standard deviation (or width) of
the Gaussian kernel function.
There are formal methods for optimizing the fit of these estimates to the unknown
distribution that generated the data, but here our interest is in graphical procedures. For
our purposes the attraction of such estimates is that by varying h, we can search for
peculiarities in the shape of the sample distribution. Small values of h lead to very spiky
estimates (not much smoothing at all), while large values lead to oversmoothing. The
limits at each extreme of h are the empirical distribution of the data points (i.e., "delta
functions" on each data point x(i)) as h ? 0, and a uniform flat distributionas h ? 8.
These limits correspond to the extremes of total commitment to the data (with no mass
anywhere except at the observed data points), versus completely ignoring the observed
data.
Figure 3.3 shows a kernel estimate of the density of the weights of 856 elderly women
who took part in a study of osteoporosis. The distribution is clearly right skewed and
there is a hint of multimodality. Certainly the assumption often made in classical
statistical work that distributions are normal does not apply in this case. (This is not to
say that statistical techniques nominally based on that assumption might not still be valid.
Often the arguments are asymptotic—based on normality arising from the central limit
theorem. In this case, the assumption that the sample mean of 856 subjects would vary
from sample to sample according to a normal distribution would be reasonable for
practical purposes.)
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Figure 3.3: Kernel Estimate of tlhe' Weights (in Kg) of 856 Elderly Women.
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Figure 3.4 shows what happens when a larger value is used for the smoothing
parameter h. Which of the two kernel estimates is "better" is a difficult question to
answer. Figure 3.4 is more conservative in that less credence is given to local
(potentially random) fluctuations in the observed data values.
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Figure 3.4: As Figure 3.3, but with More Smoothing.

Although this section focuses on displaying single variables, it is often desirable to
display different groups of scores on a single variable separately, so that the groups may
be compared. (Of course, we can think of this as a two-variable situation, in which one of
the variables is the grouping factor.) Histograms, kernel plots, and other unidimensional
displays can be used separately for each group. However, this can become unwieldy if
there are more than two or three groups. In such cases a useful alternative display is the
box and whisker plot.

Although various versions of box and whisker plots exist, the essential ideas are the
same. A box containing which the bulk of the data is defined—for example, the interval
between the first and third quartiles. A line across this box indicates some measure of
location—often the median of the data. Whiskers project from the ends of the box to
indicate the spread of the tails of the empirical distribution.

We illustrate the boxplot using a subset of the diabetes data set from figure 3.2. Figure
3.5 shows four panels of box plots, each containing a separate boxplot for each of the
two classes in the data, healthy (1) and diabetic (2).The diagrams show clearly how
mean, dispersion, and skewness vary with values of the grouping variable.




Figure 3.5: Boxplots on Four Different Variables From the Pima Indians Diabetes Data Set.
For Each Variable, a Separate Boxplot is Produced for the Healthy Subjects (Labeled 1) and
the Diabetic Subjects (Labeled 2). The Upper and Lower Boundaries of Each Box Represent
the Upper and Lower Quartiles of the Data Respectively. The Horizontal Line within Each Box
Represents the Median of the Data. The Whiskers Extend 1.5 Times the Interquartile Range
From the End of Each Box. All Data Points Outside the Whiskers are Plotted Individually
(Although Some Overplotting is Present, e.g., for Values of 0).

3.4 Tools for Displaying Relationships between Two

Variables

The scatterplot is a standard tool for displaying two variables at a time. Figure 3.6 shows
the relationship between two variables describing credit card repayment patterns (the
details are confidential). It is clear from this diagram that the variables are strongly
correlated—when one value has a high (low) value, the other variable is likely to have a
high (low) value. However, a significant number of people depart from this pattern;
showing high values on one of the variables and low values on the other. It might be
worth investigating these individuals to find out why they are unusual.
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Figure 3.6: A Standard Scatterplot for Two Banking Variables.

Unfortunately, in data mining, scatterplots are not always so useful. If there are too many
data points we will find ourselves looking at a purely black rectangle. Figure 3.7
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illustrates this sort of problem. This shows a scatterplot of 96,000 points from a study of
bank loans. Little obvious structure is discernible, although it might appear that later
applicants in general are older. On the other hand, the apparent greater vertical
dispersion toward the right end of the diagram could equally be caused by a greater
number of samples on the right side. In fact, the linear regression fit to these data has a
very small but highly significant downward slope.
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Figure 3.7: A Scatterplot of 96,000 Cases, with Much Overprinting. Each Data Point
Represents an Individual Applicant for a Loan. The Vertical Axis Shows the Age of the
Applicant, and the Horizontal Axis Indicates the Day on Which the Application was Made.
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Even when the situation is not quite so extreme, scatterplots with large numbers of
points can conceal more than they reveal. Figure 3.8 plots the number of weeks a
particular credit card was used to buy petrol (gasoline) in a given year against the
number of weeks the card was used in a supermarket (each data point represents an
individual credit card). There is clearly some correlation, but the actual correlation 0.482
is much higher than it appears here. The diagram is deceptive because it conceals a
great deal of overprinting in the bottom left corner—there are 10,000 customers
represented here altogether. The bimodality shown in figure 3.1 can also be discerned in
this figure, though not as easily as in figure 3.1.
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Figure 3.8: Overprinting Conceals the Actual Strength of the Correlation.

Another curious phenomenon is also apparent in figure 3.8. The distribution of the
number of weeks the card was used in a petrol station is skewed for low values of the
supermarket variable, but fairly uniform for high values. What could explain this? (Of
course, bearing in mind the point above, this apparent phenomenon needs to be
checked for overprinting.)

Contour plots can help overcome some of these problems. Note that creating a contour
plot in two dimensions effectively requires us to construct a two-dimensional density
estimate, using something like a two-dimensional generalization of the kernel method of
equation 3.6, again raising the issue of bandwidth selection but now in a two-dimensional
context. A contour plot of the 96,000 points shown in figure 3.7 is given in figure 3.9.
Certain trends are clear from this display that cannot be discerned in figure 3.7. For



instance the density of points increases toward the right side of the diagram; the
apparent increasing dispersion of the vertical axis is due to there being a greater
concentration of points in that area. The vertical skewness of the data is also very
evident in this diagram. The unimodality of the data, and the position of the single mode
cannot be seen at all in figure 3.7 but is quite clear in figure 3.9. Note that since the
horizontal axis in these plots is time, an alternative way to display the data is to plot
contours of constant conditional probability density, as time progresses.
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Figure 3.9: A Contour Plot of the Data from Figure 3.7.
Other standard forms of display can be used when one of the two variables is time, to
show the value of the other variable as time progresses. This can be a very effective way
of detecting trends and departures from expected or standard behaviour. Figure 3.10
shows a plot of the number of credit cards issued in the United Kingdom from 1985 to
1993 inclusive. A smooth curve has been fitted to the data to place emphasis on the
main features of the relationship. It is clear that around 1990 something caused a break
in a growth pattern that had been linear up to that point. In fact, what happened was that
in 1990 and 1991 annual fees were introduced for credit cards, and many users reduced
their holding to a single card.
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Figure 3.10: A Plot of the Number of Credit Cards in Circulation in the United Kingdom, By
Year.
Figure 3.11 shows a plot of the number of miles flown by UK airlines, during each month
from January 1963 to December 1970. There are several patterns immediately apparent
from this display that conform with what one might expect to observe, such as the
gradually increasing trend and the periodicity (with large peaks in the summer and small
peaks around the new year). The plot also reveals an interesting bifurcation of the
summer peak, suggesting a tendency for travelers to favor the early and late summer
over the middle period.
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Figure 3.11: Patterns of Change over Time in the Number of Miles Flown by UK Airlines in

the 1960s.
Figure 3.12 provides a third example of the power of plots in which time is one of the two
variables. From February to June 1930, an experiment was carried out in Lanarkshire,
Scotland to investigate whether adding milk to children's diets had an effect on
"physique, general health and increasing mental alertness" (Leighton and McKinlay,
1930). In this study 20,000 children were allocated to one of three groups; 5000 of the
children received three-quarters of a pint of raw milk per day, 5000 received three-
quarters of a pint of pasteurized milk per day, and 10,000 formed a control group
receiving no dietary milk supplement. The children were weighed at the start of the
experiment and again four months later. Interest lay in whether there was differential
growth between the three groups.

&0 5

]
55

&5

B T ] ¥ H] n 12

A
Figure 3.12: Weight Changes Over Time in a Group of 10,000 School Children in the 1930s.
The Steplike Pattern in the Data Highlights a Problem with the Measurement Process.
Figure 3.12 plots the mean weight of the control group of girls against the mean age of
the group they are in. The first point corresponds to the youngest age group (mean age
5.5 years) at the start of the experiment, and the second point corresponds to this group
four months later. The third and fourth points correspond to the second age group, and
so on. The points are connected by lines to make the shape easier to discern. Similar
shapes are apparent for all groups in the experiment.

The plot immediately reveals an unexpected pattern that cannot be seen from a table of
the data. We would expect a smooth plot, but there are clear steps evident here. It
seems that each age group does not gain as much weight as expected. There are
various possible explanations for this shape. Perhaps children grow less during the early
months of the year than during the later ones. However, similar plots of heights show no
such intermittent growth, so we need a more elaborate explanation in which height
increases uniformly but weight increases in spurts. Another possible explanation arises
from the fact that the children were weighed in their clothes. The report does say, "All of
the children were weighed without their boots or shoes and wearing only their ordinary
outdoor clothing. The boys were made to turn out the miscellaneous collection of articles



that is normally found in their pockets, and overcoats, mufflers, etc., were also discarded.
Where a child was found to be wearing three or four jerseys—a not uncommon
experience—all in excess of one were removed." It still seems likely, however, that the
summer garb was lighter than the winter garb. This example illustrates that the patterns
discovered by data mining may not shed much light on the phenomena under
investigation, but inding data anomalies and shortcomings may be just as valuable.

3.5 Tools for Displaying More Than Two Variables

Since sheets of paper and computer screens are flat, they are readily suited for
displaying two-dimensional data, but are not effective for displaying higher dimensional
data. We need some kind of projection, from the higher dimensional data to a two
dimensional plane, with modifications to show (aspects of) the other dimensions. The
most obvious approach along these lines is to examine the relationships between all
pairs of variables, extending the basic scatterplot described in section 3.3 to a scatterplot
matrix.

Figure 3.13 illustrates a scatterplot matrix for characteristics, performance measures,
and relative performance measures of 209 computer CPUs dating from over 10 years
ago. The variables are cycle time, minimum memory (kb), maximum memory (kb), cache
size (kb), minimum channels, maximum channels, relative performance, and estimated
relative performance (relative to an IBM 370/158-3). While some pairs of variables
appear to be unrelated, others are strongly related. Brushing allows us to highlight points
in a scatterplot matrix in such a way that the points corresponding to the same objects in
each scatterplot are highlighted. This is particularly useful in interactive exploration of
data.
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Figure 3.13: A scatterplot Matrix for the Computer CPU Data.
Of course, scatterplot matrices are not really multivariate solutions: they are multiple
bivariate solutions, in which the multivariate data are projected into multiple two-
dimensional plots (and in each two-dimensional plot all other variables are ignored).
Such projections necessarily sacrifice information. Picture a cube formed from eight



smaller cubes. If data points are uniformly distributed in alternate subcubes, with the
others being empty, all three one-dimensional and all three two-dimensional projections
show uniform distributions. (This "exclusive-or" structure caused great difficulty with
perceptrons—the precursors of today's neural networks which we will discuss in
chapters 5and 11.)

Interactive graphics come into their own when more than two variables are involved,
since then we can rotate ("spin") the direction of projection in a search for structure.
Some systems even let the software follow random rotations, while we watch and wait
for interesting structures to become apparent. While this is a good idea in principle, the
excitement of watching a cloud of points shift relative position as the direction of viewing
changes can quickly pall, and more structured methods are desirable. Projection pursuit,
described in chapter 11, is one such method.

Trellis plotting also utilizes multiple bivariate plots. Here, however, rather than displaying
a scatterplot for each pair of variables, they fix a particular pair of variables that is to be
displayed and produce a series of scatterplots conditioned on levels of one or more other
variables.

Figure 3.14 shows a trellis plot for data on epileptic seizures. The horizontal axis of each
plot gives the number of seizures that 58 patients experienced over a certain two week
period, and the vertical axis gives the number of seizures experienced over a later two
week period. The two left hand graphs show the figures for males, and the two right hand
graphs the figures for females. The two upper graphs show ages 29 to 42 while the two
lower graphs show ages 18 to 28. (The original data set included the record of another
subject who had much higher counts. We have removed this subject here so that we can
more clearly see the relationships between the scores of the other subjects.) From these
plots, we can see that the younger group show lower average counts than the older
group. The figures also hint at some possible differences between the slopes of the
estimated best fitting lines relating the y and x axes, though we would need to carry out
formal tests to be confident that these differences were real.
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Figure 3.14: A Trellis Plot for the Epileptic Seizures Data.

Trellis plots can be produced with any kind of component graph. Instead of scatterplots
in each cell, we could have histograms, time series plots, contour plots, or any other
types of plots.

An entirely different way to display multivariate data is through the use of icons, small
diagrams in which the sizes of different features are determined by the values of
particular variables. Star icons are among the most popular. In these, different directions
from the origin correspond to different variables, and the lengths of radii projecting in
these directions correspond to the magnitudes of the variables. Figure 3.15 shows an
example. The data displayed here come from 12 chemical properties that were
measured on 53 mineral samples equally spaced along a long drill into the Earth's
surface.



1 10 19 28 ar 46
“< 5 -‘C’J e e T
2 i1 20 29 38 47
Fi
€ & A . F r
3 12 21 30 39 48
i 87 i ¥ — -
]
4 13 22 N 40 45
' ¥ :r( 3 = »
] A
o 14 23 a2 41 50
v
W # P >
L4 i =y '
B 15 24 33 42 a1
F
4': 0} ¥ . o~ —
\ :
T 16 25 34 43 a2
4 ' ¥ e = ’
B 17 26 35 44 53
-K: & S - Lo
k] 18 27 36 45

Figure 3.15: An Example of a Star Plot.

Another type of icon plot, Chernoff's faces, is discussed frequently in introductory texts
on the subject. In these plots, the sizes of features in cartoon faces (length of nose,
degree of smile, shape of eyes, etc.) represent the values of the variables. The method
is based on the principle that the human eye is particularly adept at recognizing and
distinguishing between faces. Although they are entertaining, plots of this type are
seldom used in serious data analysis since the idea does not work very well in practice
with more than a handful of cartoon faces. In general, iconic representations are effective
only for relatively small numbers of cases since they require the eye to scan each case
separately.

Parallel coordinates plots show variables as parallel axes, representing each case as a
piecewise linear plot connecting the measured values for that case. Figure 3.16 shows
such a plot for four repeated measurements of the number of epileptic seizures
experienced by 58 patients during successive two week periods. The data are clearly
skewed and might be modeled by a Poisson distribution (see Appendix). Since the data
set is not too large, we can follow the trajectories of individual patients.
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Figure 3.16: A Parallel Coordinates Plot for the Epileptic Seizure Data.

Another way of representing dimensions is through the use of color. Line styles, as in the
parallel coordinates plot above, can serve the same purpose.

No single method of representing multivariate data is a universal solution. Which method
is most useful in a given situation will depend on the data and on the structures being
sought.

3.6 Principal Components Analysis

Scatterplots project multivariate data into a two-dimensional space defined by just two of
the variables. This allows us to examine pairwise relationships between variables, but
such simple projections might conceal more complicated relationships. To detect these
relationships we can use projections along different directions, defined by any weighted
linear combination of variables (e.g., along the direction defined by 2x; + 3x, + X3).

With only a few variables, it might be feasible to search for such interesting spaces
manually, rotating the distribution of the data. With more than a few variables, however, it
is best to let the computer loose to search by itself. To do this, we need to define what an
"interesting" projection might look like, so that the computer knows when it has found
one. Projection pursuit methods are based on this general principle of allowing the
computer to search for interesting directions. (Such techniques, however, are
computationally quite intensive: we will return to projection pursuit in chapter 11 when we
discuss regression.)

However, in one special case—for one specific definition of what constitutes an
"interesting” direction—a computationally efficient explicit solution can be found. This is
when we seek the projection onto the two-dimensional plane for which the sum of
squared differences between the data points and their projections onto this plane is
smaller than when any other plane is used. (We use two-dimensional projections here for
convenience, but in general we can use any k-dimensional projection, 1 =k =p - 1). This
two-dimensional plane can be shown to be spanned by (1) the linear combination of the
variables that has maximum sample variance and (2) the linear combination that has



maximum variance subject to being uncorrelated with the first linear combination. Thus
"interesting” here is defined in terms of the maximum variability in the data.

Of course, we can take this process further, seeking additional linear combinations that
maximize the variance subject to being uncorrelated with all those already selected. In
general, if we are lucky, we find a set of just a few such linear combinations
("components") that describes the data fairly accurately. The mathematics of this
process is described below. Our aim here is to capture the intrinsic variability in the data.
This is a useful way of reducing the dimensionality of a data set, either to ease
interpretation or as a way to avoid overfitting and to prepare for subsequent analysis.
Suppose that X is an n x p data matrix in which the rows represent the cases (each row
is a data vector x(i)) and the columns represent the variables. Strictly speaking, the ith
row of this matrix is actually the transpose x " of the ith data vector x (i), since the
convention is to consider data vectors as being p x 1 column vectors rather than 1 x p
row vectors. In addition, assume that X is mean-centered so that the value of each
variable is relative to the sample mean for that variable (i.e., the estimated mean has
been subtracted from each column).

Let a be the p x 1 column vector of projection weights (unknown at this point) that result
in the largest variance when the data X are projected along a. The projection of any
particular data vector x is the linear combination a'x = . %% Note that we can express
the projected values onto a of all data vectors in X as Xa (n x p by p x 1, yielding an n x
1 column vector of projected values). Furthermore, we can define the variance along a
as

SR

= a'X"Xa

— alVa,
where V = X'X is the p x p covariance matrix of the data (since X has zero mean), as
defined in chapter 2. Thus, we can express a(the variance of the projected data (a
scalar) that we wish to maximize) as a function of both a and the covariance matrix of the
data V.
Of course, maximizing “adirectly is not well-defined, since we can increase "awithout limit
simply by increasing the size of the components of a. Some kind of constraint must be
imposed, so we impose a nhormalization constraint on the a vectors such that a Ta=1.

With this normalization constraint we can rewrite our optimization problem as that of
maximizing the quantity
B9 u=a’"Va—Ala"a—1).

where ? is a Lagrange multiplier. Differentiating with respect to a yields

¥
(3.10) f}” =Wa-2la=1,
n

which reduces to the familiar eigenvalue form of

(3.11) [V — Alja = 1.
Thus, the first principal component a is the eigenvector associated with the largest
eigenvalue of the covariance matrix V. Furthermore, the second principal component
(the direction orthogonal to the first component that has the largest projected variance) is
the eigenvector corresponding to the second largest eigenvalue of V, and so on (the
eigenvector for the kth largest eigenvalue corresponds to the kth principal component
direction).
In practice of course we may be interested in projecting to more than two-dimensions. A
basic property of this projection scheme is that if the data are projected into the first k
eigenvectors, the variance of the projected data can be expressed as Lj=1% where ?is
the jth eigenvalue. Equivalently, the squared error in terms of approximating the true
data matrix X using only the first k eigenvectors can be expressed as

(3.12) ‘T': k1 N

BT A

el=11



Thus, in choosing an appropriate number k of principal components, one approach is to
increase k until the squared error quantity above is smaller than some acceptable degree
of squared error. For high-dimensional data sets, in which the variables are often
relatively well-correlated, it is not uncommon for a relatively small number of principal
components (say, 5 or 10) to capture 90% or more of the variance in the data.

A useful visual aid in this context is the scree plot—which shows the amount of variance
explained by each consecutive eigenvalue. This is necessarily nonincreasing with the
number of the component, and the hope is that it demonstrates a sudden dramatic fall
toward zero. A principal components analysis of the correlation matrix of the computer
CPU data described earlier gives rise to eigenvalues proportional to 63.26, 10.70, 10.30,
6.68, 5.23, 2.18, 1.31, and 0.34 (see figure 3.17). The fall from the first to the second
eigenvalue is dramatic, but after that the decline is gradual. (The weights that the first
component puts on the eight variables are (0.199, -0.365, -0.399, -0.336, -0.331, - 0.298,
-0.421, -0.423). Note that, it gives them all roughly similar weights, but gives the first
variable (cycle time) a weight opposite in sign to those of the other variables.) If, instead
of the correlation matrix, we analyzed the covariance matrix, the variables with larger
ranges of values would tend to dominate. In the case of these data, the values given for
memory are much larger than those for the other variables. (This is because they are
given in kilobytes. Had they been given in megabytes, this would not be the case—an
example of the arbitrariness of the scaling of noncommensurate variables (see chapter
2)). Principal components analysis of the covariance matrix gives proportions of variation
attributable to the different components as 96.02, 3.93, 0.04, 0.01, 0.00, 0.00, 0.00, and
0.00 (see figure 3.17). Here the fall from the first component is very striking—the
variability in the data can, indeed, be explained almost entirely by the differences in
memory capacity. Often, however, there is no obvious fall such as this—no point at
which the remaining variance in the data can be attributed to random variation. Then the
choice of how many components to extract is fairly arbitrary. The proportion of the total
variance that we regard as providing an adequate simplified description of the data
depends on the field of application. In some cases it might be sufficient for the first few
components to describe 60% of the variance, but in other fields one might hope for 95%
or more.
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Figure 3.17: Scree Plots for the Computer CPU Data Set. The Upper Plot Displays the
Eigenvalues From the Correlation Matrix, and the Lower Plot is for the Covariance Matrix.



When conducting principal components analysis prior to further analyses, it is risky to
choose a small number of components that fail to explain the variability in the data very
well. Information is lost, and there is no guarantee that the sacrificed information is not
relevant to the aims of further analyses. (Indeed, this is true even if the retained
components do explain the variability well, short of 100%.) For example, we might
perform principal components analysis prior to classifying our data. Since the aims of
dimension reduction and classification are somewhat different, it is possible that the
reduction to a few spanning components may lose valuable information about the
differences between the classes—we will see an example of this at the end of chapter 9.
Likewise, for many multivariate data sets in which the points fall into two (or more)
classes, a prior principal components analysis may completely obliterate the differences
between the distributions of the classes. On the other hand, in regression problems
(chapter 11) with many explanatory variables, unless the data set is large, there may be
problems of instability of the estimated coefficients. A principal components analysis is
sometimes performed to reduce the large number of explanatory variables to a few linear
combinations prior to carrying out the regression analysis.
Despite the risks of failing to extract relevant information, principal components analysis
is a powerful and valuable tool. Because it is based on linear projections and minimizing
the variance (or sum of squared errors), numerical manipulations can be carried out
explicitly, without any iterative searches. Computing the principal component solutions
directly from the eigenvector equations will scale roughly as O(n p2 + p3) (n p2 to calculate
V and p3 to solve the eigenvalue equations for the pxp matrix ). This means that it can be
applied to data sets with large numbers of records n (but does not scale so well as a
function of dimensionality p). As illustrated above when we applied principal components
analysis to both correlation and covariance matrices, the method is not invariant under
rescalings of the original variables. The appropriate steps to take will depend on the
objectives of the analysis. Typically we rescale the data if different variables measure
different attributes (e.g., height, weight, and lung capacity) since otherwise the results of
a direct principal components analysis depend on the arbitrary choice of units used for
each attribute.
To illustrate the simple graphical use of principal components analysis, figure 3.18 shows
the projections (indicated by the numbers) of 17 pills onto the space spanned by the first
two principal components. The six measurements on each pill are the times at which a
specified proportion (10%, 30%, 50%, 70%, 75%, and 90%) of the pill has dissolved. It is
clear from this diagram that one of the pills is very different from the others, lying in the
bottom right corner, far from the other points.
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Figure 3.18: Projection Onto the First Two Principal Components.

Sometimes we can gain insights from the pattern of weights (or loadings, as they are
sometimes called) defining the components of a principal components analysis. Huba et
al. (1981) collected data on 1684 students in Los Angeles showing consumption of each
of thirteen legal and illegal psychoactive substances: cigarettes, beer, wine, spirits,
cocaine, tranquilizers, drug store medications used to get high, heroin and other opiates,
marijuana, hashish, inhalants (such as glue), hallucinogenics, and amphetamines. They



scored each as 1 (never tried), 2 (tried only once), 3 (tried a few times), 4 (tried many
times), 5 (tried regularly). Taking these variables in order, the weights of the first
component from a principal components analysis were (0.278, 0.286, 0.265, 0.318,
0.208, 0.293, 0.176, 0.202, 0.339, 0.329, 0.276, 0.248, 0.329). This component assigns
roughly equal weights to each of the variables and can be regarded as a general
measure of how often students use such substances. Thus, the biggest difference
between the students is in terms of how often they use psychoactive substances,
regardless of which substances they use.

The second component had weights (0.280, 0.396, 0.392, 0.325, -0.288, -0.259, -0.189,
-0.315, 0.163, -0.050, -0.169, -0.329, -0.232). This is interesting because it gives positive
weights to the legal substances and negative weights to the illegal ones: therefore, once
we have controlled for overall substance use, the major difference between the students
lies in their use of legal versus illegal substances. This is just the sort of relationship one
would hope to discover from a data mining exercise.
Another statistical technique, factor analysis, is often confused with principal components
analysis, but the two have very different aims. As described above, principal components
analysis is a transformation of the data to new variables. We can then select just some of
these as providing an adequate description of the data. Factor analysis, on the other
hand, is a model for data, based on the notion that we can define the measured
variables X4, ..., X, as linear combinations of a smaller number m (m < p) of "latent”
(unobserved) factors—variables that cannot be measured explicitly. The objective of
factor analysis is to unearth information about these latent variables.
We can define F = (Fy, ..., Fm)T as the m x 1 column vector of unknown latent variables,
taking values f = (f4, ..., fm). Then a measured data vector x = (xg, ..., x,o)T (defined here
as a p x 1 column vector) is regarded as a linear function of f defined by

(3.13) x = Al + e
Here ? is a p x m matrix of factor loadings giving the weights with which each factor
contributes to each manifest variable. The components of the p x 1 vector e are
uncorrelated random variables, sometimes termed specific factors since they contribute
only to single manifest (observed) variables, X;, 1 =j = p. Factor analysis is a special
case of structural linear relational models described in chapter 9, so we will not dwell on
estimation procedures here. However, since factor analysis was the earliest model
structure of this form to be developed, it has a special place, not only because of its
history, but also because it continues to be among the most widely used of such models.
Factor analysis has not had an entirely uncontroversial history, partly because its
solutions are not invariant to various transformations. It is easy to see that new factors
can be defined from equation 3.13 via m x m orthogonal matrices M, such that x = (? M)
(Mf) +e. This corresponds to rotating the factors in the space they span. Thus, the
extracted factors are essentially nonunique, unless extra constraints are imposed. There
are various constraints in general use, including methods that seek to extract factors for
which the weights are as close to 0 or 1 as possible, defining the variables as clearly as
possible in terms of a subset of the factors.

3.7 Multidimensional Scaling

In the preceding section we described how to use principal components analysis to
project a multivariate data set onto the plane in which the data has maximum dispersion.
This allows us to examine the data visually, while sacrificing the minimum amount of
information. Such a method is effective only to the extent that the data lie in a two-
dimensional linear subspace of the area spanned by the measured variables. But what if
the data forms a set that is intrinsically two-dimensional, but instead of being "flat," is
curved or otherwise distorted in the space spanned by the original variables? (Imagine a
crumpled piece of paper, intrinsically two-dimensional, but occupying three dimensions.)
In this event it is quite possible that principal components analysis might fail to detect the
underlying two-dimensional structure. In such cases, multidimensional scaling can be
helpful. Multidimensional scaling methods seek to represent data points in a lower
dimensional space while preserving, as far as is possible, the distances between the
data points. Since, we are mostly concerned with two-dimensional representations, we



shall restrict most of our discussion to such cases. The extension to higher dimensional
representations is immediate.

Many multidimensional scaling methods exist, differing in how they define the distances
that are being preserved, the distances they map to, and how the calculations are
performed. Principal components analysis may be regarded as a basic form. In this
approach the distances between the data points are taken as Euclidean (or
Pythagorean), and they are mapped to distances in a reduced space that are also
measured using the Euclidean metric. The sum of squared distances between the
original data points and their projections provides a measure of quality of the
representation. Other methods of multidimensional scaling also have associated
measures of the quality of the representation.

Since multidimensional scaling methods seek to preserve interpoint distances, such
distances can serve as the starting point for an analysis. That is, we do not need to know
any measured values of variables for the objects being analyzed, only how similar the
objects are, in terms of some distance measure. For example, the data may have been
collected by asking respondents to rate the similarity between pairs of objects. (A classic
example of this is a matrix showing the number of times the Morse codes for different
letters are confused. There are no "variables" here, simply a matrix of "similarities"
measuring how often is letter was mistaken for another.) The end point of the process is
the same—a configuration of data points in a two-dimensional space. In a sense, the
objects and the raters are used to determine on what dimensions "similarity” is to be
measured. Multidimensional scaling methods are widely used in areas such as
psychometrics and market research, in attempts to understand perceptions of
relationships and similarities between objects.
From an n x p data matrix X we can compute an n x n matrix B = XX (Since this scales
as O(nz) in both time and memory, it is clear that this approach is not practical for very
large numbers of objects n). It is straightforward to see from this that the Euclidean
distance between the ith and jth objects is given by

(3.14) d;; = by; + bj; = 2b;;.
If we could invert this relationship, then, given a matrix of distances D (derived from
original data points by computing Euclidean distances or obtained by other means), we
could compute the elements of B. B could then be factorized to yield the coordinates of
the points. One factorization of B would be in terms of the eigenvectors. If we chose
those associated with the two largest eigenvalues, we would have a two-dimensional
representation that preserved the structure of the data as well as possible.
The feasibility of this procedure hinges upon our ability to invert equation 3.14.
Unfortunately, this is not possible without imposing some extra constraints. Because
shifting the mean and rotating a configuration of points does not affect the interpoint
distances, for any given a set of distances there is an infinite number of possible
solutions, differing in the location and orientation of the point configuration.
A sufficient constraint to impose is the assumption that the means of all the variables are
0. That is, we assume L= = Ufor all k = 1, ..., p. This means that £:% = £, =0 Now,
by summing equation 3.14 first over i, then over j, and finally over both i and j, we obtain

Z-'.I’;': = ir(B) + nb;;

(3.15) Z“ﬁ-‘_‘ = tr(B) + nb;

Z J;T:I, = 2ntr(B)

where tr(B) is the trace of the matrix B. The third equation expresses tr(B) in terms of the
*‘5‘}, the first and second express b and bj in terms of 4;and tr(B), and hence in terms of
4 alone. Plugging these into equation 3.14 expresses bj as a function of 4, yielding the
required inversion.

This process is known as the principal coordinates method. It can be shown that the
scores on the components calculated from a princi}?al components analysis of a data
matrix X (and hence a factorization of the matrix X') are the same as the coordinates of
the above scaling analysis.



Of course, if the matrix B does not arise not as a product xX", but by some other route
(such as simple subjective differences between pairs of objects), then there is no
guarantee that all the eigenvalues will be non-negative. If the negative eigenvalues are
small in absolute value, they can be ignored.

Classical multidimensional scaling into two dimensions finds the projection into two
dimensions that is most accurate in the sense that it minimizes

(3.16) Z Zr_rs:_,- —d;;)?,

where dj is the observed distance between points i and j in the p-dimensional space and
d; is the distance between the points representing these objects in the two-dimensional
space. Expressed this way the process permits ready generalization. Given distances or
dissimilarities, derived in one way or another, we can seek a distribution of points in a
two-dimensional space that minimizes the sum of squared differences ?; ?; (d - dij)z.
Thus, we relax the restriction that the configuration must be found by projection. With this
relaxation an exact algebraic solution will generally not be possible, so numerical
methods must be used: we simply have a function of 2n parameters (the coordinates of
the points in the two-dimensional space) that is to be minimized.

The score function ?; ?(d; - dij)z, measuring how well the interpoint distances in the
derived configuration match those originally provided, is invariant with respect to
rotations and translations. However, it is not invariant to rescalings: if the d; were
multiplied by a constant, we would end up with the same solution, but a different value of

?i? 5 (d.J d.l) To permit different situations to be properly compared we divide ?; ?;(d; -

IJ) by, iy +, yielding the standardized residual sum of squares. A common by score
function is the square root of this quantity, the stress. A variant on the stress is the
sstress, defined as

I. E ] "3 T
(3.17) \_Z‘ Z (62 — d2,)2/ E Z di
| i ] i i
These measures effectively assume that the differences between the original
dissimilarities and the distances in the two-dimensional configuration are due to random

discrepancies and arbitrary distortions—that is, that d; = d; + i j- More sophisticated
models can also be built. For example, we might assume that d; = a + bd; + i ij- Now a
two-stage procedure is necessary. Beginning with a proposed configuration, we regress
the distances dj in the two-dimensional space on the given dissimilarities, yielding
estimates for a and b. We then find new values of the d; that minimize the stress

(318) \szzld S, ] --|r|.:'§| II .-z:znr
and repeat this process until we achieve satisfactory convergence.
Multidimensional scaling methods such as the above, which attempt to model the
dissimilarities as given, are called metric methods. Sometimes, however, a more general
approach is required. For example, we may not be given the precise similarities, only
their rank order (objects A and B are more similar than B and C, and so on); or we may
not be prepared to assume that the relationship between d;j and d; has a particular form,
just that some monotonic relationship exists. This requires a two-stage approach similar
to that described in the preceding paragraph, but with a technique known as monotonic
regression replacing simple linear regression, yielding non-metric multidimensional
scaling. The term non-metric here indicates that the method seeks to preserve only
ordinal relationships.
Multidimensional scaling is a powerful method for displaying data to reveal structure.
However, as with the other graphical methods described in this chapter, if there are too
many data points the structure becomes obscured. Moreover, since multidimensional
scaling involves applying highly sophisticated transformations to the data (more so than
a simple scatterplot or principal components analysis) there is a possibility that artifacts
may be introduced. In particular, in some situations the dissimilarities between objects
can be determined more accurately when the objects are similar than when they are
quite different. Consider the evolution of the style of a manufactured object. Those
objects that are produced within a short time of each other will probably have much in




common, while those separated by a greater time gap may have very little in common.
The consequence will be an induced curvature in the multidimensional scaling plot,
where we might have hoped to achieve a more or less straight line. This phenomenon is
known as the horseshoe effect.
Figure 3.19 shows a plot produced using honmetric scaling to minimize the sstress score
function of equation 3.17. The data arose from a study of English dialects. Each pair of a
group of 25 villages was rated according to the percentages of 60 items for which the
villages used different words. The villages, and the counties in which they are located,
are listed in table 3.1. The figure shows that villages from the same county (and hence
that are relatively close geographically) tend to use the same words.
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Figure 3.19: A Multidimensional
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Scaling Plot of the Village Dialect Similarities Data.
Table 3.1: Numerical Codes, Names, And Counties for the 25 Villages with Dialect

1 North Nottinghamshire
Wheatley
2 South Nottinghamshire

Clifton

| 3 | Oxton ‘ Nottinghamshire

| 4 | Eastoft ‘ Lincolnshire

| 5 | Keelby ’ Lincolnshire

| 6 | Wiloughton ‘ Lincolnshire

| 7 | Wragby ‘ Lincolnshire

‘ 8 ‘ Old ‘ Lincolnshire
Bolingbroke

| 9 | Fulbeck ‘ Lincolnshire

| 10 | Sutterton ’ Lincolnshire

| 11 | Swinstead ‘ Lincolnshire

| 12 | Crowland ‘ Lincolnshire

| 13 | Harby ‘ Leicestershire

| 14 | Packington ‘ Leicestershire

| 15 | Goadby ’ Leicestershire

| 16 | Ullesthorpe ‘ Leicestershire

| 17 | Empingham ‘ Rutland




| 18 | Warmington ‘ Northamptonshire

’ 19 ‘ Little ‘ Northamptonshire
Harrowden

| 20 | Kislingbury ‘ Northamptonshire

| 21 | Sulgrave ‘ Northamptonshire

| 22 | Warboys ‘ Huntingdonshire

‘ 23 ‘ Little ‘ Cambridgeshire
Downham

| 24 | Tingewick ‘ Buckinghamshire

| 25 | Turvey ‘ Bedfordshire

Multidimensional scaling methods typically display the data points in a two-dimensional
space. If the variables are also described in this space (provided the data are in vector
form) the relationships between data points and variables may be clearly seen. Given the
complicated nonlinear relationship between the space defined by the original variables
and the space used to display the data, representing the original variables is a non-trivial
task. Plots that display both data points and variables are known as biplots. The "bi" here
signifies that there are two modes being displayed—the points and the variables—not
that the display is two-dimensional. Indeed, three-dimensional biplots have also been
developed. Forms of multidimensional scaling that involve nonlinear transformations
produce nonlinear biplots. Biplots have even been produced for categorical data, and in
this case the levels of the variables are represented by regions in the plot. Effective
interpretation of multidimensional and biplot displays requires practice and experience.

3.8 Further Reading

Exploratory data analysis achieved an identity and respectability with the publication of
John Tukey's book Exploratory Data Analysis (Tukey, 1977). Since then, as progress in
computer technology facilitated rapid and straight-forward production of accurate
graphical displays, such methods have blossomed. Modern data visualization techniques
can be very powerful ways of discovering structure. Books on graphical methods include
those of Tufte (1983), Chambers et al. (1983), and Jacoby (1997). Wilkinson (1999) is a
particularly interesting recent addition to the visualization literature, introducing a novel
and general purpose language for analyzing and synthesizing a wide variety of data
visualization techniques.

Interactive dynamic methods are emphasized by Asimov (1985), Becker, Cleveland, and
Wilks (1987), Cleveland and McGill (1988), and Buja, Cook, and Swayne (1996). Books
that describe smoothing approaches to displaying univariate distributions, as well as
multivariate extensions, include those of Silverman (1986), Scott (1992), and Wand and
Jones (1995). Carr et al. (1987) discuss scatterplot techniques for large data sets.
Wegman (1990) discusses parallel coordinates. Categorical data is somewhat more
difficult to visualize than quantitative real-valued data, and for this reason, visualization
techniques for categorical data are not as widely developed or used. Still, Blasius and
Greenacre (1998) provide a useful and broad review of recent developments in the
visualization and exploratory data analysis of categorical data. Cook and Weisberg
(1994) describe the use of graphical techniques for the task of regression modeling.
Card, MacKinlay, and Shneiderman (1999) contains a collection of papers on a variety of
topics entitled "information visualization" and describe a number of techniques for
displaying complex heterogeneous data sets in a useful manner. Keim and Kriegel
(1994) describe a system specifically designed for database exploration.
Multidimensional scaling has become a large field in its own right. Books on this include
those by Davidson (1983) and Cox and Cox (1994). Biplots are discussed in detail by
Gower and Hand (1996).

The CPU data is from Ein-Dor and Feldmesser (1987), and is reproduced in Hand et al.
(1994), dataset 325. The data on English dialects is from Morgan (1981) and is




reproduced in Hand et al. (1994), dataset 145. The data on epileptic seizures is given in
Thall and Vail (1990) and also in Hand et al. (1994). The mineral core data shown in the
icon plot is described in Chernoff (1973).

Chapter 4: Data Analysis and Uncertainty

4.1 Introduction

In this chapter, we focus on uncertainty and how to cope with it. Not only is the process
of mapping from the real world to our databases seldom perfect, but the domain of the
mapping—the real world itself—is beset with ambiguities and uncertainties. The basic
tool for dealing with uncertainty is probability, and we begin by defining the concept and
showing how it is used to construct statistical models. Section 4.2 provides a brief
discussion of the distinction between probability calculus and the interpretation of
probability, focusing on the two main interpretations: the frequentist and the subjective
(Bayesian). Section 4.3 extends this discussion to define the concept of a random
variable, with a particular focus on the relationships that can exist between multiple
random variables.

Fundamental to many data mining activities is the notion of a sample. Sometimes the
database contains only a sample from the universe of possible records; section 4.4
explores this situation, explaining why samples are often sufficient to work with. Section
4.5 describes estimation, the process of moving beyond a data sample to develop
parameter estimates for a model describing the data. In particular, we review in some
detail the basic principles of the maximum likelihood and Bayesian approaches to
estimation. Section 4.6 discusses the closely related topic of how to evaluate the quality
of a hypothesis on the basis of observed data. Section 4.7 outlines various systematic
methods for drawing samples from data. Section 4.8 presents some concluding remarks,
and section 4.9 gives pointers to more detailed reading.

4.2 Dealing with Uncertainty

The ubiquity of the idea of uncertainty is illustrated by the rich variety of words used to
describe it and related concepts. Probability, chance, randomness, luck, hazard, and fate
are just a few examples. The omnipresence of uncertainty requires us to be able to cope
with it: modeling uncertainty is a necessary component of almost all data analysis.
Indeed, in some cases our primary aim is to model the uncertain or random aspects of
data. It is one of the great achievements of science that we have developed a deep and
powerful understanding of uncertainty. The capricious gods that were previously invoked
to explain the lack of predictability in the world have been replaced by mathematical,
statistical, and computer-based models that allow us to understand and manipulate
uncertain events. We can even attempt the seemingly impossible and predict uncertain
events, where prediction for a data miner either can mean the prediction of future events
(where the notion of uncertainty is very familiar) or prediction in a nhontemporal sense of
a variable whose true value is somehow hidden from us (for example, diagnosing
whether a person has cancer, based on only descriptive symptoms).

We may be uncertain for various reasons. Our data may be only a sample from the
population we wish to study, so that we are uncertain about the extent to which different
samples differ from each other and from the overall population. Perhaps our interest lies
in making a prediction about tomorrow, based on the data we have today, so that our
conclusions are subject to uncertainty about what the future will bring. Perhaps we are
ignorant and cannot observe some value, and have to base our ideas on our "best
guess" about it. And so on.

Many conceptual bases have been formulated for handling uncertainty and ignorance. Of
these, by far the most widely used is probability. Fuzzy logic is another that has a
moderately large following, but this area—along with closely related areas such as
possibility theory and rough sets—remains rather controversial: it lacks the sound
theoretical backbone and widespread application and acceptance of probability. These



ideas may one day develop solid foundations, and become widely used, but because of
their current uncertain status we will not consider them further in this book.

It is useful to distinguish between probability theory and probability calculus. The former
is concerned with the interpretation of probability while the latter is concerned with the
manipulation of the mathematical representation of probability. (Unfortunately, not all
textbooks make this distinction between the two terms—often books on probability
calculus are given titles such as "Introduction to the Theory of Probability.") The
distinction is an important one because it permits the separation of those areas about
which there is universal agreement (the calculus) from those areas about which opinions
differ (the theory). The calculus is a branch of mathematics, based on well-defined and
generally accepted axioms (stated by the Russian mathematician Kolmogorov in the
1930s); the aim is to explore the consequences of those axioms. (There are some areas
in which different sets of axioms are used, but these are rather specialized and generally
do not impinge on problems of data mining.) The theory, on the other hand, leaves scope
for perspectives on the mapping from the real world to the mathematical
representation—i.e., on what probability is.

A study of the history and philosophy of probability theory reveals that there are as many
perspectives on the meaning of probability as there are thinkers. However, the views can
be grouped into variants of a few different types. Here we shall restrict ourselves to
discussing the two most important types (in terms of their impact on data mining
practice). More philosophically inclined readers may wish to consult section 4.9 for
references to material containing broader discussions.

The frequentist view of probability takes the perspective that probability is an objective
concept. In particular, the probability of an event is defined as the limiting proportion of
times that the event would occur in repetitions of essentially identical situations. A simple
example is the proportion of times a head comes up in repeatedly tossing a coin. This
interpretation restricts our application of probability: for instance we cannot assess the
probability that a particular athlete will win a medal in the next Olympics because this is a
one-off event, where the notion of a "limiting proportion” makes no sense. On the other
hand, we can certainly assess the probability that a customer in a supermarket will
purchase a certain item, since we can use a large number of similar customers as the
basis for a limiting proportion argument. It is clear in this last example that some
idealization is going on: different customers are not really the same as repetitions of a
single customer. As in all scientific modeling we need to decide what aspects are
important for our model to be sufficiently accurate. In predicting customer behavior we
might decide that the differences between customers do not matter.

The frequentist view was the dominant perspective on probability throughout most of the
last century, and hence it underpins most widely used statistical software. However, in
the last decade or so, a competing vi ew has acquired increasing importance. This view,
that of subjective probability, has been around since people first started formalizing
probabilistic notions, but until recently it was primarily of theoretical interest. What
revived the approach was the development of the computer and of powerful algorithms
for manipulating and processing subjective probabilities. The principles and
methodologies for data analysis that derive from the subjective point of view are often
referred to as Bayesian statistics. A central tenet of Bayesian statistics is the explicit
characterization of all forms of uncertainty in a data analysis problem, including
uncertainty about any parameters we estimate from the data, uncertainty as to which
among a set of model structures are best or closest to "truth," uncertainty in any forecast
we might make, and so on. Subjective probability is a very flexible framework for
modeling such uncertainty in different forms.

From the perspective of subjective probability, probability is an indivdual degree of belief
that a given event will occur. Thus, probability is not an objective property of the outside
world, but rather an internal state of the individual—and may differ from individual to
individual. Fortunately it turns out that if we adopt certain tenets of rational behaviour the
set of axioms underlying subjective probability is the same as that underlying the
frequentist view. The calculus is the same for the two viewpoints, even though the
underlying interpretation is quite different.

Of course, this does not imply that the conclusions drawn using the two approaches are
necessarily the same. At the very least, subjective probability can make statements



about areas that frequentist probability cannot address. Moreover, statistical inferences
based on subjective probability necessarily involve a subjective component—the initial or
prior belief that an event will happen. As noted above, this factor is likely to differ from
person to person.

Nonetheless, the frequentist and subjective viewpoints in many cases lead to roughly the
same answers, particularly for simple hypotheses and large data sets. Rather than
committing to one viewpoint or the other, many practitioners view both as useful in their
own right, with each appropriate in different situations. The methodologies for data
analysis that derive from the frequentist view tend to be computationally simpler, and
thus (to date at least) have dominated in the development of data mining techniques
where the size of the data sets do not favor the application of complex computational
methods. However, when applied with care the Bayesian (subjective) methodology has
the ability to tease out more subtle information from the data. Just as applied statistics
has seen increased interest in Bayesian methods in recent years, we can expect to see
more Bayesian ideas being applied in data mining in the future. In the rest of this book
we will refer to both frequentist and Bayesian views where appropriate. As we will see
later in this chapter, in a certain sense the two viewpoints can be reconciled: the
frequentist methodology of fitting models and patterns to data can be implemented as a
special case of a more general Bayesian methodology. For the practitioner this is quite
useful, since it means that the same general modeling and computational apparatus can
be used.

4.3 Random Variables and Their Relationships

We introduced the notion of a variable in chapter 2. In this chapter we introduce the
concept of a random variable. A random variable is a mapping from a property of objects
to a variable that can take one of a set of possible values, via a process that appears to
the observer to have some element of unpredictability to it. The possible values of a
random variable X are called the domain of X. We use uppercase letters such as X to
refer to a random variable and lowercase letters such as x to refer to a value of a random
variable.

An example of a random variable is the outcome of a coin toss (the domain is the set
{heads, tails}). Less obvious examples of random variables include the number of times
we have to toss a coin to obtain the first head (the domain is the set of positive integers)
and the flying time of a paper aeroplane in seconds (the domain is the set of positive real
numbers).

The appendix defines the basic properties of univariate (single) random variables,
including both probability mass functions p(X) when the domain of X is finite and
probability density functions f(x) when the domain of X is the real-line or any interval
defined on it. Basic properties of the expectation of X, E[X] = ?xf(x)dx, for real-valued X,
are also reviewed, noting for example that since E is a linear operator we have that E[X
+Y] = E[X]+E[Y]. These basic properties are extremely useful in allowing us to derive
general principles for data analysis in a statistical context and we will refer to
distributions, densities, expectation, etc., frequently throughout the remainder of this
chapter.

4.3.1 Multivariate Random Variables

Since data mining often deals with multiple variables, we must also introduce the
concept of a multivariate random variable. A multivariate random variable X is a set Xj,
..., Xp of random variables. We use the m-dimensional vector x = {xy, ..., X} to denote a
set of values for X. The density function f(X) of the multivariate random variable X is
called the joint density function of X. We denote this as f(X) = f(X1 = X, ..., Xy = Xp), Of
simply f(Xq, ..., Xp). Similarly, we have joint probability distributions for variable staking
values in a finite set. Note that f(X) is a scalar function of p variables.

The density function of any single variable in the set X (or, more generally, any subset of
the complete set of variables) is called a marginal density of the joint density.
Technically, it is derived from the joint density by summing or integrating across the



variables not included in the subset. For example, for a tri-variate random variable X =
(X1, Xz, X3) the marginal density of f(Xy) is given by f(x1) = 72 f (X1, X2, X3)dX20X3.
The density of a single variable (or a subset of the complete set of variables) given (or
"conditional on") particular values of the other variables is a conditional density. Thus we
can speak of the conditional density of variable X; given that X, takes the value 6,
denoted f(X; | X2 = 6). In general, the conditional density of X; given some value of X; is
denoted by f(X; | X2), and is defined as
4.1) ' fleq, £q)
flzy |x2) = |
_Ilrl__J":. ]
For discrete-valued random variables we have equivalent definitions (p(a; | az), etc.). We
can also use mixtures of the two—e.g., a conditional probability density function f(x; | a;)
for a continuous variable conditioned on a categorical variable, and a conditional
probability mass function p(a; | x;) for the reverse case.

Examile 4.1

Suppose we have data on purchases of products from supermarkets, with each
observation (row) in the data matrix representing the products bought by one customer. Let
each column represent a particular product, and associate a random variable with each
column so that there is one variable per product. An observation in a given row and column
has value 1 if the customer corresponding to that row bought the product from that column,
and has value O otherwise.

Denote by A the binary random variable for a particular column, corresponding to the event
"purchase of product A." A data-driven estimate of the probability that A takes value 1 is
simply the fraction of customers who bought product A—i.e., na/n, where n is the total
number of customers and np is the number of customers who bought product A. For
example, if n = 100, 000 and np = 10, 000, an estimate of the probability that a randomly
selected customer bought product A is 0.1.

Now consider a second product (a second column in the data matrix), with random variable
B defined in the same way as A. Let ng be the number of customers who bought product B;
assume ng = 5000 and therefore p(B = 1) = 0:05. Now let nag be the number of customers
who purchased both A and B. Following the same argument as above, an estimate of p(A =
1, B = 1) is given by nag/n. We can now estimate p(B = 1|A = 1) as nag/na. Thus, for
example, if nag = 10, we estimate p(B = 1|A = 1) as 10/10, 000 = 0.001. We see from this
that, while the estimated probability of a customer buying product B is 0.05, this reduces to
0.001 if we know that this customer bought product A as well. For the people in our
database, the proportion of people buying B is far smaller among those who also bought A
than among the people in the database as a whole (and thus smaller than among those
who did not buy A). This prompts the question of whether buying A makes the purchase of
B less likely in general, or whether this finding is simply an accident true only of the data we
happen to have in our database. This is precisely the sort of question that we will address

in the remainder of this chaiter, iarticularli in section 4.6 on hiiothesis testini.

Note that particular variables in the multivariate set X may well be related to each other
in some manner. Indeed, a generic problem in data mining is to find relationships
between variables. Is purchasing item A likely to be related to purchasing item B? Is
detection of pattern A in the trace of a measuring instrument likely to be followed shortly
afterward by a particular fault? Variables are said to be independent if there is no
relationship between the occurrence of values of the variables; otherwise they are
dependent. More formally, variables X and Y are independent if and only if p(x, y) =
p(X)p(y) for all values of X and Y . An equivalent formulation is that X and Y are
independent if and only if p(x|y) = p(x) or p(y | x) = p(y) for all values of X and Y . (Note
that these definitions hold whether each p in the expression is a probability mass
function or a density function—in the latter case the variables are independent if and only
if f(x,¥) = f(X)f(y)). The second form of the definition shows that when X and Y are
independent the distribution of X is the same whether or not the value of Y is known.



Thus, Y carries no information about X, in the sense that the value taken by Y does not
influence the probability of X taking any value. The random variables A and B in example
4.3.1 describing supermarket purchases are likely to be dependent, given the data as
stated.
We can generalize these ideas to more than two variables. For example, we say that X is
conditionally independent of Y given Z if for all values of X, Y, and Z we have that p(x, y |
z) = p(x| z)p(y | z), or equivalently p(x | vy, z) = p(x| z). To illustrate, suppose a person
purchases bread (so that a random variable Z takes the value 1). Then subsequent
purchases of butter (random variable X takes the value 1) and cheese (random variable
Y takes the value 1) might be modeled as being conditionally independent—the
probability of purchasing cheese is unaffected by whether or not butter was purchased,
once we know that bread has been purchased.
Note that conditional independence need not imply marginal (unconditional)
independence. That is, the conditional independence relations above do not imply p(x, y)
= p(x)p(y). For example, in our illustration we might reasonably expect purchases of
butter and cheese to be dependent in general (since they are both dependent on bread
purchases). The reverse also applies: X and Y may be (unconditionally) independent, but
conditionally dependent given a third variable Z. The subtleties of these dependence and
independence relations have important consequences for data miners. In particular,
even though two observed variables (such as butter and cheese) may appear to be
dependent given the data, their true relationship may be masked by a third (potentially
unobserved) variable (such as bread in our illustration).

Example 4.2

Care is needed when studying and interpreting conditional independence statements.
Consider the following hypothetical example. A and B represent two different treatments,
and the fractions shown in the table are the fraction of patients who recover (thus, at the
top left, 2 out of 10 "old" patients receiving treatment A recover). The data have been
partitioned into "old" and "young" groups, according to whether the patients were older or
younger than 30.

A B
old 2/10 30/90

Young 48/90 10/10

For each of the two age strata, treatment B appears superior to treatment A. However, now
consider the overall results—obtained by aggregating the rows of the above table:

A B

Total 50/100 40/100

Overall, in this aggregate table, treatment A seems superior to treatment B. At first glance
this result seems rather mysterious (in fact, it is known as Simpson's paradox (Simpson
1951)).

The apparent contradiction between the two sets of results is explained by the fact that the
first set is conditional on particular age strata, while the second is unconditional. When the
two conditional statements are combined, the differences in sample sizes of the four
groups cause the proportions based on the larger samples (Old B and Young A) to
dominate the other two proportions.




The assumption of conditional independence is widely used in the context of sequential
data, for which the next value in the sequence is often independent of all of the past
values in the sequence given only the current value in the sequence. In this context,
conditional independence is known as the first-order Markov property.

The notions of independence and conditional independence (which can be viewed as a
generalization of independence) are central to many of the key concepts in data
analysis, as we shall see in later chapters. The assumptions of independence and
conditional independence enable us to factor the joint densities of many variables into
much more tractable products of simpler densities, e.g.,

4.2) -

where each variable x; is conditionally independent of variables xi, ..., X.2, given the
value of x; (this is an example of a first-order Markov model). In addition to the
computational benefits provided by such simplifications, it also provides important
modeling gains by allowing us to construct more understandable models with fewer
parameters. Nonetheless, independence is a very strong assumption that is frequently
violated in practice (for example, assuming sequences of letters in text are first-order
Markov may not be realistic). Still, keeping in mind that our models are inevitably
approximations to the real world, the benefits of appropriate independence assumptions
often outweigh the alternative of building more complex but less stable models. We will
return to this theme of modeling in chapter 6.
A special case of dependency is correlation, or linear dependency, as introduced in
chapter 2 (Note that statistical dependence is not the same as correlation: two variables
may be dependent but not linearly correlated). Variables are said to be positively
correlated if high values of one variable tend to be associated with high values of the
other, and to be negatively correlated if high values of one tend to be associated with low
values of the other. It is important not to confuse correlation with causation. Two
variables may be highly positively correlated without any causal relationship between
them. For example, yellow-stained fingers and lung cancer may be correlated, but are
causally linked only via a third variable, namely whether a person smokes or not.
Similarly, human reaction time and earned income may be negatively correlated, but this
does not mean that one causes the other. In this case a more convincing explanation is
that a third variable, age, is causally related to both of these variables.

Example 4.3

A paper published in the Journal of the American Medical Association in 1987 (volume 257,
page 785) examined the in-hospital mortality for 18,986 coronary bypass graft operations
that were carried out at 77 hospitals in the United States. A regression analysis (see
chapter 11) showed that hospitals that carried out more operations tended to have lower in-
hospital mortality rates (even adjusting for different types of cases at different hospitals).
From this pattern it was concluded that average in-hospital mortality following this type of
operation would be reduced if the low-volume surgery units were closed.

However, determining the relationship between quality of outcome and number of treated
cases in a hospital requires a longitudinal analysis in which the sizes are deliberately
manipulated. The results of large-volume hospitals might degrade if their volume was
increased. The correlation between out-come and size might have arisen not because
larger size induces superior performance, but because superior performance attracts more

cases, or because both the number of cases and the outcome are related to some other
factor.

4.4 Samples and Statistical Inference

As we noted in chapter 2, many data mining problems involve the entire population of
interest, while others involve just a sample from this population. In the latter case, the



samples may arise at the start—perhaps only a sample of tax-payers is selected for
detailed investigation; perhaps a complete census of the population is carried out only
occasionally, with just a sample being selected in most years; or perhaps the data set
consists of market research results. In other cases, even though the complete data set is
available, the data mining operation is carried out on a sample. This is entirely legitimate
if the aim is modeling (see chapter 1), which seeks to represent the prominent structures
of the data, and not small idiosyncratic deviations. Such structures will be preserved in a
sample, provided it is not too small. However, working with a small sample of a large
data set may be less appropriate if the aim is pattern detection: in this case the aim may
be to detect small deviations from the bulk of the data, and if the sample is too small
such deviations may be excluded. Moreover, if the aim is to detect records that show
anomalous behavior, the analysis must be based on the entire sample.

It is when a sample is used that the power of inferential statistics comes into play.
Statistical inference allows us to make statements about population structures, to
estimate the size of these structures, and to state our degree of confidence in them, all
on the basis of a sample. (See figure 4.1 for a simple illustration of the roles of probability
and statistics). Thus, for example, we could say that our best estimate of a population
value is 6.3, and that one is 95% confident that the true population value lies between
5.9 and 6.7. (Definition and interpretation of intervals such as these is a delicate point,
and depends on what philosophical basis we adopt—frequentist or Bayesian, for
example. We shall say more about such intervals later in this chapter.) Note the use of
the word estimate for the population value here. If we were basing our analysis on the
entire population, we would use the word calculate: if all the constituent numbers are
known, we can actually calculate the population value, and no notion of estimation

arises.
PROBABILITY

MOEHEL DATA

STATIETHCAL INFERESCE

Figure 4.1: An lllustration of the Dual Roles of Probability and Statistics in Data Analysis.

Probability Specifies How Observed Data Can be Generated From Models. Statistical

Inference Allows Us to Infer Models From Observed Data.
In order to make an inference about a population structure, we must have a model or
pattern structure in mind: we would not be able to assess the evidence for some
structure underlying the data if we never contemplated the existence of such a structure.
So, for example, we might hypothesize that the value of some variable Z depends on the
values of two other variables X and Y . Our model is that Z is related to X and Y . Then
we can estimate the strength of these relationships in the population. (Of course, we may
conclude that one or both of the relationships are of strength zero—that there is no
relationship.)
Statistical inference is based on the premise that the sample has been drawn from the
population in a random manner—that each member of the population had a particular
probability of appearing in the sample. The model will specify the distribution function for
the population—the probability that a particular value for the random variable will arise in
the sample. For example, if the model indicates that the data have arisen from a Normal
distribution with a mean of 0 and a standard deviation of 1, it also tells us that the
probability of observing a value as large as +20 is very small. Indeed, under the
assumption that the model is correct, a precise probability can be put on observing a
value greater than +20. Given the model, we can generally compute the probability that
an observation will fall within any interval. For samples from categorical distributions, we
can estimate the probability that values equal to each of the observed values would have
arisen. In general, if we have a model M for the data we can state the probability that a
random sampling process would lead to the data D = {x(1), ..., Xx(n)}, here x(i) is the ith p-
dimensional vector of measurements (the ith row in our n x p data matrix). This



(4.

probability is expressed as p(D | M). Often we do not make dependence on the model M
explicit and simply write p(D), relying on the context to make it clear. (As noted in the
appendix the probability of observing any particular value of a variable that has a
continuous cumulative distribution function is zero—particular values refer to intervals of
length zero, and therefore the area under the probability density function across such an
interval is zero. However, all real data actually refer to finite (if small) intervals (e.qg., if
someone is said to be 5 feet 11 inches tall, they are known to have a height in the
interval between 5 feet 10.5 inches and 5 feet 11.5 inches). Thus it does make sense to
talk of the probability of any particular data value being observed in practice.)?

Let p(x(i)) be the probability of individual i having vector measurement x(i) (here p could
be a probability mass function or a density function, depending on the nature of x). If we
further assume that the probability of each member of the population being selected for
inclusion in the sample has no effect on the probability of other members being selected
(that is, that the separate observations are independent, or that the data are drawn "at
random"), the overall probability of observing the entire distribution of values in the
sample is simply the product of the individual probabilities:

3 plD |8, M) = ngix-.’f] g M),

i=1
where M is the model and ? are the parameters of the model (assumed fixed at this
point). (When regarded as a function of the parameters ? in the model M, this is called
the likelihood function. We discuss it in detail below.) Methods have been developed to
cope with situations in which observing one value alters the chance of observing
another, but independence is by far the most commonly used assumption, even when it
is only approximately true.
Based on this probability, we can decide how realistic the assumed model is. If our
calculations suggest it is very unlikely that the assumed model would have given rise to
the observed data, we might feel justified in rejecting the model; this is the principle
underlying hypothesis tests (section 4.6). In hypothesis testing we decide to reject an
assumed model (the null hypothesis) if the probability of the observed data arising under
that model is less than some pre-specified value (often 0.01 or 0.05—the significance
level of the test).
A similar principle is used in estimating population values for the parameters of the
model. Suppose that our model indicates that the data arise from a Normal distribution
with unit variance but unknown mean . We could propose various values for the mean,
for each one calculating the probability that the observed data would have arisen if the
population mean had that value. We could carry out hypothesis tests for each value,
rejecting those with a low probability of having given rise to the observed data. Or we
can short-cut this process and simply use the estimate of the mean with the highest
probability of having generated the observed data. This value is called the maximum
likelihood estimate of the mean, and the process we have described is maximum
likelihood estimation (see section 4.5). The probability that a particular model would give
rise to the observed data, when expressed as a function of the parameters, is called the
likelihood function. This function can also be used to define an interval of likely values;
we can say, for example, that, assuming our model is correct, 90% of intervals generated
from a data sample in this way will contain the true value of the parameter.

4.5 Estimation

In chapter 3 we described several techniques for summarizing a given set of data. When
we are concerned with inference, we want to make more general statements, statements
about the entire population of values that might have been drawn. These are statements
about the probability distribution or probability density function (or, equivalently, about
the cumulative distribution function) from which the data are assumed to have arisen.

4.5.1 Desirable Properties of Estimators

In the following subsections we describe the two most important methods of estimating
the parameters of a model: maximum likelihood estimation and Bayesian estimation. It is
important to be aware of the differing properties of different methods so that we can
adopt a method suited to our problem. Here we briefly describe some attractive



properties of estimators. Let #be an estimator of a parameter ?. Since #is a number
derived from the data, if we were to draw a different sample of data, we would obtain a
different value for #. Thus, #is a random variable. Therefore, it has a distribution, with
different values arising as different samples are drawn. We can obtain descriptive
summaries of that distribution. It will, for example, have a mean or expected value, £[¥.
Here the expectation function E is taken with respect to the true (unknown) distribution
from which the data are assumed to be sampled—that is, over all possible data sets of
size n that could occur weighted by their probability of occurrence.
The bias of i#(a concept we introduced informally in chapter 2) is defined as

(4.4) Bias(0) = E[6] — @,
the difference between the expected value of the estimator £[#¥land the true value of the
parameter ?. Estimators for which E[#] = #have bias 0 are said to be unbiased. Such
estimators show no systematic departure from the true parameter value on average,
although for any particular single data set D we might have that #is far away from ?. Note
that since both the sampling distribution and the true value of ? are unknown in practice,
we cannot typically calculate the actual bias for a given data set. Nonetheless, the
general concept of bias (and variance, below) is of fundamental importance in
estimation.

Just as the bias of an estimator can be used as a measure of its quality, so also can its
variance:

(4.5) Var() = E[0 — E[0])°.
The variance measures the random, data-driven component of error in our estimation
procedure; it reflects how sensitive our estimator will be to the idiosyncrasies of
individual data sets. Note that the variance does not depend on the true value of 2—it
simply measures how much our estimates will vary across different observed data sets.
Thus, although the true sampling distribution is unknown, we can in principle get a data-
driven estimate of the variance of an estimator, for a given value of n, by repeatedly
subsampling our original data set and calculating the variance of the estimated #s across
these simulated samples. We can choose between estimators that have the same bias
by choosing one with minimum variance. Unbiased estimators that have minimum
variance are called, unsurprisingly, best unbiased estimators.
As an extreme example, if we were to completely ignore our data D and simply say

arbitrarily that # = ifor every data set, then *™"1"lis zero since the estimate #never

changes as D changes—however this would be a very the estimate ineffective estimator
in practice since unless we made a very lucky guess we are almost certainly wrong in
our estimate of ?, i.e., there will be a non-zero (and potentially very large) bias.

The mean squared error of #is Elif=f"the mean of the squared difference between the
value of the estimator and the true value of the parameter. Mean squared error has a
natural decomposition as the sum of the squared bias of #and its variance:

4.6) g [(a - )] E |(6 — E[f) + E[f) -ﬂ;'-"]

J ff-.':u] r}}? + E [[.rl ,r-'[r;]:.'-']

A

" (x;s.f.ﬁ{u]}? + Var(d),

N J
where in going from the first to second lines above we took advantage of the fact that
various cross-terms in the squared expression cancel out, noting (for example) that E[?]
= ? since ? is a constant, etc. Mean squared error is a very useful criterion since it
incorporates both systematic (bias) and random (variance) differences between the
estimated and true values. (Of course it too is primarily of theoretical interest, since to
calculate it we need to know ?, which we don't in practice). Unfortunately, bias and
variance often work in different directions: modifying an estimator to reduce its bias
increases its variance, and vice versa. The trick is to arrive at the best compromise.
Balancing bias and variance is a central issue in data mining and we will return to this
point in chapter 6 in a general context and in later chapters in more specific contexts.

There are also more subtle aspects to the use of mean squared error in estimation. For
example, mean squared error treats equally large departures from ? as equally serious,



regardless of whether they are above or below ?. This is appropriate for measures of
location, but may not be appropriate for measures of dispersion (which, by definition,
have a lower bound of zero) or for estimates of probabilities or probability densities.
Suppose that we have sequence . ----#..0f estimators, based on increasing sample
sizes ny, ..., Ny The sequence is said to be consistent if the probability of the difference
between #and the true value ? being greater than any given value tends to O as the
sample size increases. This is clearly an attractive property (especially in data mining
contexts, with large samples) since the larger the sample is the closer the estimator is
likely to be to the true value (assuming that the data are coming from a particular
distribution—as discussed in chapters 1 and 2, for very large databases this may not be
a reasonable assumption).

4.5.2 Maximum Likelihood Estimation

Maximum likelihood estimation is the most widely used method of parameter estimation.
Consider a data set of n observations D = {x, ..., x(n)}, independently sampled from the
same distribution f(x | ?) (as statisticians say, independently and identically distributed
or iid). The likelihood function L(? | x(1), ..., X(n)) is the probability that the data would
have arisen, for a given value of ?, regarded as a function of ?, i.e., p(D | ?). Note that
although we are implicitly assuming a particular model M here, as defined by f(x | ?), for
convenience we do not explicitly condition on M in our likelihood definitions below—Iater,
when we consider multiple models we will need to explicitly keep track of which model
we are talking about.

Since we have assumed that the observations are independent we have
@7 Lig | = L{#|=x(l),.. ..x(n))

plx(l),.... xi(n) | #)

= []f(x)|8),

which is a scalar function of ? (where ? itself may be a vector of parameters rather than a
single parameter). The likelihood of a data set L(? | D), the probability of the actual
observed data D for a particular model, is a fundamental concept in data analysis.
Defining a likelihood for a given problem amounts to specifying a probabilistic model for
how the data were generated. It turns out that once we can state such a likelihood, the
door is opened to the application of many general and powerful ideas from statistical
inference. Note that since likelihood is defined as a function of ? the convention is that
we can drop or ignore any terms in p(D | ?) that do not contain ?, i.e., likelihood is only
defined within an arbitrary scaling constant, so it is the shape as a function of ? that
matters and not the actual values that it takes. Note also that the idd assumption above
is not necessary to define a likelihood: for example, if our n observations had a Markov
dependence (where each x(i) depends on x(i - 1), we would define the likelihood as a
product of terms such as f(x(i) | x(i - 1), ?).
The value for ? for which the data has the highest probability of having arisen is the
maximum likelihood estimator (or MLE). We will denote the maximum likelihood
estimator for ? as #ut.,

Example 4.4

Customers in a supermarket either purchase or do not purchase milk. Suppose we want an
estimate of the proportion of customers purchasing milk, based on a sample x(1), ...,
X(1000) of 1000 randomly drawn observations from the database. Here x(i) takes the value
1 if the ith customer in the sample does purchase milk and 0 if he or she does not. A simple
model here would be the observations independently follow a Binomial distribution
(described in the appendix) with unknown parameter 0 = ? = 1; that is, ? is the probability
that milk is purchased by a random customer. Under the usual assumption of conditional
independence given the model, the likelihood can be written as

Lig | =(1),..., o 1030) ) = Hrr""u — Tl = g — gyioT

where r is the number ambng the 1000 who do purchase milk. Taking logs of this yields
I(?) =log L(?) =rlog ? + (1000 - r) log(1 - ?),



which, after differentiating and setting to zero, yields
I L) =

-\ 1-¢
from which we obtain #u. =/l Thus, the proportion purchasing milk is from which we
obtain in fact also the maximum-likelihood estimate of ? under this Binomial model.

In figure 4.2 we plot the likelihood as a function of ? for three hypothetical data sets under
this Binomial model. The data sets correspond to 7 milk purchases, 70 milk purchases, and
700 milk purchases out of n = 10, n =100, and n = 1000, total purchases respectively. The
peak of the likelihood function is at the same value, ? = 0.7 in each case, but the
uncertainty about the true value of ? (as reflected in the "spread" of the likelihood function)
becomes much smaller as n increases (i.e., as we obtain a large customer database). Note
that the absolute value of the likelihood function is not relevant; only its shape is of
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Figure 4.2: The Likelihood Function for Three Hypothetical Data Sets Under a Binomial
Model: r =7, n =10 (Top), r = 70, n = 100 (Center), and r = 700, n = 1000 (Bottom).

Example 4.5

Suppose we have assumed that our sample x(1), ..., x(n) of n data points has arisen
independently from a Normal distribution with unit variance and unknown mean ?. This sort
of situation can arise when the source of uncertainty is measurement error; we may know
that the results have a certain variance (here rescaled to 1), but not know the mean value
for the object that is being repeatedly measured. Then the likelihood function for ? is

Lig| e(l).....x(n}) = H':-'f-l |,'_-'g-x|:-(—£‘l|.l=:.l.|—_IJ:I.')
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with log-likelihood defined as
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Hence, the maximum likelihood estimator #u:for ? is #xc = L, =li/n the sample mean.



Figure 4.3 shows both the likelihood function L(?) and the log-likelihood I(?) = log L(?) as a
function of ? for a sample of 20 data points from a Normal density with a true mean of O
and a known standard deviation of 1. Figure 4.4 shows the same type of plot but with 200
data points. Note how the likelihood function is peaked around the value of the true mean
at 0. Also note (as in the Binomial example) how the likelihood function narrows as more
data becomes available, reflecting decreasing support from the data for values of ? that are

not close to 0.
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Figure 4.3: The Likelihood as a Function of ? for a Sample of 20 Data Points From a Normal
Density with a True Mean of 0 and a Known Standard Deviation of 1: (a) a Histogram of 20
Data Points Generated From the True Model (top), (b) the Likelihood Function for ? (Center),
and (c) the Log-Likelihood Function for ? (Bottom).
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Figure 4.4: The Likelihood Function for the Same Model as in Figure 4.3 but with 200 Data
Points: (a) a Histogram of the 200 Data Points Generated From the True Model (Top), (b) the

Likelihood Function for ? (Center), and (c) the Log-Likelihood Function for ? (Bottom).

Example 4.6

A useful general concept in statistical estimation is the notion of a sufficient statistic.
Loosely speaking, we can define a quantity s(D) as a sufficient statistic for ? if the likelihood
L(?) only depends on the data through s(D). Thus, in the Binomial model above, the total
number of "successes" r (the number of people who purchase milk) is a sufficient statistic



for the Binomial parameter ?. It is sufficient in the sense that the likelihood is only a function
of r (assuming n is known already). Knowing which particular customers purchased milk
(which particular rows in the data matrix have 1's in the milk column) is irrelevant from the
point of view of our Binomial model, once we know the sum total r. Similarly, for the
example above involving the estimation of the mean of a Normal distribution, the sum of
the observations L. #lilis a sufficient statistic for the likelihood of the mean (keeping in
mind that the likelihood is only defined as a function of ? and all other terms can be
dropped).

For massive data sets this idea of sufficient statistics can be quite useful in practice—
instead of working with the full data set we can simply compute and store the sufficient
statistics, knowing that these are sufficient for likelihood-based estimation. For example, if
we are gathering large volumes of data on a daily basis (e.g., Web logs) we can in principle
just update the sufficient statistics nightly and throw the raw data away. Unfortunately,
however, sufficient statistics often do not exist for many of the more flexible model forms
that we like to use in data mining applications, such as trees, mixture models, and so forth,
that are discussed in detail later in this book. Nonetheless, for simpler models, sufficient

statistics are a veri useful conceit.

Maximum likelihood estimators are intuitively and mathematically attractive; for example,
they are consistent estimators in the sense defined earlier. Moreover, if fais the MLE of
a parameter ?, then #ifutlis the MLE of the function g(?), though some care needs to be
exercised if g is not a one-to-one function. On the other hand, nothing is perfect—
maximum likelihood estimators are often biased (depending on the parameter and the
underlying model), although this bias may be extremely small for large data sets, often
scaling as O(1/n).
For simple problems (where "simple" refers to the mathematical structure of the problem,
and not to the number of data points, which can be large), MLEs can be found using
differential calculus. In practice, the log-likelihood I(?) is usually maximized (as in the
Binomial and Normal density examples above), since this replaces the awkward product
in the definition with a sum; this process leads to the same result as maximizing L(?)
directly because the logarithm is a monotonic function. Of course we are often interested
in models that have more than one parameter (models such as neural networks (chapter
11) can have hundreds or thousands of parameters). The univariate definition of
likelihood generalizes directly to the multivariate case, but in this situation the likelihood
is a mulutivariate function of d parameters (that is, a scalar-valued function defined on a
d-dimensional parameter space). Since d can be large, finding the maximum of this d-
dimensional function can be quite challenging if no closed-form solution exists. We will
return to this topic of optimization in detail in chapter 8 where we discuss iterative search
methods. Multiple maxima can present a difficult problem (which is why stochastic
optimization methods are often necessary), as can situations in which optima occur at
the boundaries of the parameter space.

Example 4.7

Simple linear regression is widely used in data mining. This was mentioned briefly in
chapter 1and is discussed again in detail in chapter 11. In its simplest form it relates two
variables: X, a predictor or explanatory variable, and Y , a response variable. The
relationship is assumed to take the form Y = a + bX + e, where a and b are parameters and
e is a random variable assumed to come from a Normal distribution with a mean of 0 and a
variance of s, and we can write e = Y - (a + bX). Here the data consists of a set of pairs D
={(x(2), y(1)), ..., (x(n), y(n))} and the probability density function of the response data
given the explanatory data is f(y(1), ..., y(n) | x(1), ..., X(n), a, b). We are interested not in
modeling the distribution of the xs, but rather in modeling f(y|x).

Thus, the likelihood (or more precisely, conditional likelihood) function for this model can be
written as
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To find the maximum likelihood estimators of a and b, we can take logs and discard terms
that do not involve either a or b. This yields
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Thus, we can estimate a and b by finding those values that minimize the sum of squared
differences between the predicted values a + bx(i) and the observed values y(i). Such a
procedure—minimizing a sum of squares—is ubiquitous in data mining, and goes under the
name of the least squares method. The sum of squares criterion is of great historical
importance, with roots going back to Gauss and beyond. At first it might seem arbitrary to
choose a sum of squares (why not a sum of absolute values, for example?), but the above
shows how the least squares choice arises naturally from the choice of a Normal
distribution for the error term in the model.

Up to this now we have been discussing point estimates, single number estimates of the
parameter in question. A point estimate is "best" in some sense, but it conveys no idea of
the uncertainty associated with it—perhaps there was a large number of almost equally
good estimates, or perhaps this estimate was by far the best. Interval estimates provide
this sort of information. In place of a single number they give an interval with a specified
degree of confidence that this interval contains the unknown parameter. Such an interval
is called a confidence interval, and the upper and lower limits of the interval are called
confidence limits. Interpretation of confidence intervals is rather subtle. Here, since we
are assuming that ? is unknown but fixed, it does not make sense to say that ? has a
certain probability of lying within a given interval: it either does or it does not. However, it
does make sense to say that an interval calculated by the given procedure contains ?
with a certain probability: after all, the interval is calculated from the sample, and is thus
a random variable.

Example 4.8

The following example is deliberately artificial to keep the explanation simple. Suppose the
data consist of 100 independent observations from a Normal distribution with unknown
mean p and known variance s?, and we want a 95% confidence interval for M. That is,
given the data x(1), ..., x(n), we want to find a lower limit I(xX) and an upper limit u(x) such
that P(uT [I(x), u(x)]) = 0:95.

The distribution of the sample mean =xin this situation (which is also the maximum likelihood
estimate of the mean, ixctis known to follow a Normal distribution with a mean of p and a
variance of s%/100, and hence standard deviation of s/10. We also know, from the
properties of the Normal distribution (see the appendix), that 95% of the probability lies

within 1.96 standard deviations of the mean. Hence,
Pip—=196a/10 < ¢ < u+ 196 /10) = 0.95,

This can be rewritten as
.I”I__." = |_'Ili.*'.r|,"'|l] 1 I A 4 ].1H |.f.rl-"|[i:| = (1.95.

Thus, lir} = & - L8=/l0gnd #iz} = ¢ 4+ L9%=/10define a suitable 95% confidence interval.

Frequently confidence intervals are based on the assumption that the sample statistic
has a roughly Normal distribution. This is often realistic: the central limit theorem tells us
that the distribution of many statistics can be approximated well by a Normal distribution,




especially if the sample size is large. Using this approximation, we find an interval in
which the statistic has a known probability of lying, given the unknown true parameter
value, ?, and invert it to find an interval for the unknown parameter. In order to apply this
approach, we need an estimate of the standard deviation of the estimator #. One way to
derive such an estimate is the bootstrap method.

Example 4.9

Many bootstrap methods, of gradually increasing sophistication and complexity, have been
developed over the last two decades. The basic idea is as follows. The data originally
arose from a distribution F (X), and we wish to make some statement about this
distribution. However, we have only a sample of data (x(1), ..., x(n)), which we may denote
by F1¥). What we do is draw a subsample, #{¥}, from F(¥} and act as if ¥ {¥were the real
distribution. We can repeat this many times, computing a statistic for each of these
subsamples. This process gives us information on the sampling properties of statistics
calculated from samples drawn from ¥{X}, which we hope are similar to the sampling
properties of statistics calculated from samples drawn from F (X).

To illustrate, consider an early approach to estimating the performance of a predictive
classification rule. As we have discussed above, evaluating performance of a classification
rule simply by reclassifying the data used to design it is unwise—it is likely to lead to
optimistically biased estimates. Suppose that e, is the estimate of misclassification rate
obtained by the simple resubstitution process of estimating the classification error on the
same data as was used to estimate the parameters of the classification model. We really
want to estimate ec, the "true" misclassification rate which we expect to achieve on future
objects. The difference between these is (ec - ea). If we could estimate this difference, we
could adjust ea to yield a better estimate. In fact, we can estimate this difference, as _
follows. Suppose we regard fi¥las the true distribution and draw from it a subsample—**!
. Now, acting as if ¥{¥lwere the true distribution, we can build a rule based on the data in
the subsample ¥ *)and apply it both to #{¥)land to (¥}, The difference in performance in
these two situations will give us an estimate of the difference (ec - ea). To reduce any
effects arising from the randomness of the sampling procedure, we repeat the subsampling
many times and average the results. The final result is an estimate of the difference (ec -
ex) that can be added to the value of e obtained by resubstituting the data (*linto the rule

based on ¥}, to iield an estimate of the true misclassification rate ei

4.5.3 Bayesian Estimation

In the frequentist approach to inference described so far the parameters of a population
are fixed but unknown, and the data comprise a random sample from that population
(since the sample was drawn in a random way). The intrinsic variability thus lies in the
data D = {x(1), ..., x(n)}. In contrast, Bayesian statistics treats the data as known—after
all, they have been observed and recorded—and the parameters ? as random variables.
Thus, whereas frequentists regard a parameter ? as a fixed but unknown quantity,
Bayesians regard ? as having a distribution of possible values and see the observed
data as possibly shedding light on this distribution. p(?) reflects our degree of belief on
where the true (unknown) parameters ? may be. If p(?) is very peaked about some value
of ? then we are very sure about our convictions (although of course we may be entirely
wrong!). If p(?) is very broad and flat (and this is the more typical case) then we are
expressing a prior belief that is less certain on the location of 2.

Note that while the term Bayesian has a fairly precise meaning in statistics, it has
sometimes been used in a somewhat looser manner in the computer science and pattern
recognition literature to refer to the use of any form of probabilistic model in data
analysis. In this text we adopt the more standard and widespread statistical definition,
which is described below.

Before the data are analyzed, the distribution of the probabilities that ? will take different
values is known as the prior distribution p(?). Analysis of the data D leads to modification
of this distribution to take into account the information in the empirical data, yielding the



posterior distribution, p(? | D). The modification from prior to posterior is carried out by
means of a theorem named after Thomas Bayes:
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Note that this updating procedure leads to a distribution, rather than a single value, for 2.
However, the distribution can be used to yield a single value estimate. We could, for
example, take the mean of the posterior distribution, or its mode (the latter technique is
known as the maximum a posteriori method, or MAP). If we choose the prior p(?) in a
specific manner (e.g., p(?) is uniform over some range), the MAP and maximum
likelihood estimates of ? may well coincide (since in effect the prior is "flat" and prefers
no one value of ? over any other). In this sense, maximum likelihood can be viewed as a
special case of the MAP procedure, which in turn is a restricted ("point estimate”) form of
Bayesian estimation.
For a given set of data D and a particular model, the denominator in equation 4.9is a
constant, so we can alternatively write the expression as

(4.10) pid | D) o p( 1] @) p(d).
Here we see that the posterior distribution of ? given D (that is, the distribution
conditional on having observed the data D) is proportional to the product of the prior p(?)
and the likelihood p(D | ?). If we have only weak beliefs about the likely value of the
parameter before collecting the data, we will want to choose a prior that spreads the
probability widely (for example, a Normal distribution with large variance). In any case,
the larger the set of observed data, the more the likelihood dominates the posterior
distribution, and the lower the importance of the particular shape of the prior.

Example 4.10

Consider example 4.4 once again involving the proportion of customers who purchase milk,
where we consider a single binary variable X and wish to estimate ? = p(X = 1). A widely
used prior for a parameter ? that varies between 0 and 1 is the Beta distribution, defined as
(4.11) pi#) s 871 =87

where a > 0; 3 > 0 are the two parameters of this model. It is straightforward to show that
Elf] = 535, that the mode of ? is #3-%, and the variance is *#! = mwtas=7. Thus, if we
assume for example that a and 33 are chosen to be both greater than 1, we can see that
the relative sizes of a and 13 control the location of both the mean and the mode: if a = 3
then the mean and the mode are at 0. If a < 3 then the mode is less than 0.5, and so forth.
Similarly, the variance is inversely proportional to a + 3: the size of the sum a+[ controls
the "narrowness" of the prior p(?). If a and R are relatively large,we will have a relatively
narrow peaked prior about the mode. In this manner, we can choose a and 3 to reflect any
prior beliefs we might have about the parameter ?.

Recall from example 4.4 that the likelihood function for ? under the Binomial model can be
written as

(4.12) L8 | D) =8"(1 - 8)"""

where r is the number of 1's in the n total observations. We see that the Beta and Binomial
likelihoods are similar in form: the Beta looks like a Binomial likelihood with a - 1 prior
successes and 3 - 1 prior failures. Thus, in effect, we can think of a + 3 - 2 as the
equivalent sample size for the prior, i.e., it is as if our Beta prior is based on this many prior
observations.

Combining the likelihood and the prior, we get
(413) pl 80 o pl D@ p(d)
= #(1-8)"""8"" 1 - )
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This is conventiently in the form of another Beta distribution, i.e., the posterior on ?, p(?|D),
is itself another Beta distribution but with parametersr+aand n-r + 3.
Thus, for example, the mean of this posterior distribution p(?|D) is =%i=. This is very
intuitive. If a = 3 = 0 we get the standard MLE of =. Otherwise, we get a modified estimate,
where not all weight is placed on the data alone (on r and n). For example, in data mining
practice, it is common to use the heuristic estimate of =-for estimates of probabilities,
rather than the MLE, corresponding in effect to using a point estimate based on posterior



mean and a Beta prior with a = 3 = 1. This has the effect of "smoothing"” the estimate away
from the extreme values of 0 and 1. For example, consider a supermarket where we
wanted to estimate the probability of a particular product being purchased, but in the
available sample D we had r = 0 (perhaps the product is purchased relatively rarely and no-
one happened to buy it in the day we drew a sample). The MLE estimate in this case would
be 0, whereas the posterior mean would be =, which is close to 0 for large n but allows for
a small(but non-zero) probability in the model for that the product is purchased on an
average day.

In general, with high-dimensional data sets (i.e., large p) we can anticipate that certain
events will not occur in our observed data set D. Rather than committing to the MLE
estimate of a probability ? = 0, which is equivalent to stating that the event is impossible
according to the model, it is often more prudent to use a Bayesian estimate of the form
described here. For the supermarket example, the prior p(?) might come from historical
data at the same supermarket, or from other stores in the same geographical location. This
allows information from other related analyses (in time or space) to be leveraged, and
leads to the more general concept of Bayesian hierarchical models (which is somewhat

beiond the scoie of this textl.

One of the primary distinguishing characteristics of the Bayesian approach is the
avoidance of so-called point-estimates (such as a maximum likelihood estimate of a
parameter) in favor of retaining full knowledge of all uncertainty involved in a problem
(e.g., calculating a full posterior distribution on ?).

As an example, consider the Bayesian approach to making a prediction about a new
data point x(n + 1), a data point not in our training data set D.

Here x might be the value of the Dow-Jones financial index at the daily closing of the
stock-market and n + 1 is one day in the future. Instead of using a point estimate for #in
our model for prediction (as we would in a maximum likelihood or MAP framework), the
Bayesian approach is to average over all possible values of ?, weighted by their
posterior probability p(? | D):

4.14
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since x(n + 1) is conditionally independent of the training data D, given ?, by definition. In
fact, we can take this further and also average over different models, using a technique
known as Bayesian model averaging. Naturally, all of this averaging can entalil
considerably more computation than the maximum likelihood approach. This is a primary
reason why Bayesian methods have become practical only in recent years (at least for
small-scale data sets). For large-scale problems and high-dimensional data, fully
Bayesian analysis methods can impose significant computational burdens.
Note that the structure of equations 4.9 and 4.10 enables the distribution to be updated
sequentially. For example, after we build a model with data D,;, we can update it with
further data D,:

(4.15) p(ft | Dy, Ds) ox p( Dy | Mpl Dy | @)p(6).
This sequential updating property is very attractive for large sets of data, since the result
is independent of the order of the data (provided, of course, that D; and D, are
conditionally independent given the underlying model p).
The denominator in equation 4.9, p(D) = 2 p(D | ?)p( ?)d?, is called the predictive
distribution of D, and represents our predictions about the value of D. It includes our
uncertainty about ?, via the prior p(?), and our uncertainty about D when ? is known, via
p(D | ?). The predictive distribution changes as new data are observed, and can be
useful for model checking: if observed data D have only a small probability according to
the predictive distribution, that distribution is unlikely to be correct.

Examile 4,11




Suppose we believe that a single data point x comes from a Normal distribution with
unknown mean ? and known variance a—that is, x ~ N(?, a). Now suppose our prior
distribution for ? is ? ~ N(?g, ap), with known ?; and ao. Then
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The mathematics here looks horribly complicated (a fairly common occurrence with
Bayesian methods), but consider the following reparameterization. Let

ioo=1 =1y=1
oy = |y = ] |

and
? = al(?olao + X/a)
After some algebraic manipulations we get
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Since this is a probability density function for ?, it must integrate to unity. Hence the
posterior on ? has the form

pld | z) = _.Il exp| l,':'{'l ) fag)
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This is a Normal distribution N(?4, a;). Thus the Normal prior distribution has been updated
to yield a Normal posterior distribution and therefore the complicated mathematics can be
avoided. Given a Normal prior for the mean and data arising from a Normal distribution as
above, we can obtain the posterior merely by computing the updated parameters.
Moreover, the updating of the parameters is not as messy as it might at first seem.
Reciprocals of variances are called precisions. Here 1/a;, the precision of the updated
distribution, is simply the sum of the precisions of the prior and the data distributions. This
is perfectly reasonable: adding data to the prior should decrease the variance, or increase
the precision. Likewise, the updated mean, ?;, is simply a weighted sum of the prior mean
and the datum x, with weights that depend on the precisions of those two values.
When there are n data points, with the situation described above, the posterior is again
Normal, now with updated parameter values

a; = (L/ag + n/a)'1

and
b = If"|_,-"ft.. - J':'r_l"'-r ).

The choice of prior distribution can play an important role in Bayesian analysis (more for
small samples than for large samples as mentioned earlier). The prior distribution
represents our initial belief that the parameter takes different values. The more confident
we are that it takes particular values, the more closely the prior will be bunched around
those values. The less confident we are, the larger the dispersion of the prior. In the case
of a Normal mean, if we had no idea of the true value, we would want to use a prior that
gave equal probability to each possible value, i.e., a prior that was perfectly flat or that
had infinite variance. This would not correspond to any proper density function (which
must have some non-zero values and which must integrate to unity). Still, it is sometimes
useful to adopt improper priors that are uniform throughout the space of the parameter.
We can think of such priors as being essentially flat in all regions where the parameter
might conceivably occur. Even so, there remains the difficulty that priors that are uniform
for a particular parameter are not uniform for a nonlinear transformation of that
parameter.

Another issue, which might be seen as either a difficulty or a strength of Bayesian
inference, is that priors show an individual's prior belief in the various possible values of



a parameter—and individuals differ. It is entirely possible that your prior will differ from
mine and therefore we will probably obtain different results from an analysis. In some
circumstances this is fine, but in others it is not. One way to overcome this problem is to
use a so-called reference prior, a prior that is agreed upon by convention. A common
form of reference prior is Jeffrey's prior. To define this, we first need to define the Fisher
information:
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for a scalar parameter ?—that is, the negative of the expectation of the second derivative
of the log-likelihood. Essentially this measures the curvature or flatness of the likelihood
function. The flatter a likelihood function is, the less the information it provides about the
parameter values. Jeffrey's prior is then defined as

(4.17) p(#) o /T(# | x).
This is a convenient reference prior since if f = f(?) is some function of ?, this has a
prior proportional to VI 1%, This means that a consistent prior will result no matter how
the parameter is transformed.
The distributions in the examples display began with a Beta or Normal prior and ended
with a Beta or Normal posterior. Conjugate families of distributions satisfy this property in
general: the prior distribution and posterior distribution belong to the same family. The
advantage of using conjugate families is that the complicated updating process can be
replaced by a simple updating of the parameters.
We have already remarked that it is straightforward to obtain single point estimates from
the posterior distribution. Interval estimates are also easy to obtain—integration of the
posterior distribution over a region gives the estimated probability that the parameter lies
in that region. When a single parameter is involved and the region is an interval, the
result is a credibility interval. The shortest possible credibility interval is the interval
containing a given probability (say 90%) such that the posterior density is highest over
the interval. Given that one is prepared to accept the fundamental Bayesian notion that
the parameter is a random variable, the interpretation of such intervals is much more
straightforward than the interpretation of frequentist confidence intervals.
Of course, it is a rare model that involves only one parameter. Typically models involve
several or many parameters. In this case we can find joint posterior distributions for all
parameters simultaneously or for individual (sets of) parameters alone. We can also
study conditional distributions for some parameters given fixed values of the others. Until
recently, Bayesian statistics provided an interesting philosophical viewpoint on inference
and induction, but was of little practical value; carrying out the integrations required to
obtain marginal distributions of individual parameters from complicated joint distributions
was too difficult (only in rare cases could analytic solutions be found, and these often
required the imposition of undesirable assumptions). However, in the last 10 years or so
this area has experienced something of a revolution. Stochastic estimation methods,
based on drawing random samples from the estimated distributions, enable properties of
the distributions of the parameters to be estimated and studied. These methods, called
Markov chain Monte Carlo (MCMC) methods are discussed again briefly in chapter 8.

It is worth repeating that the primary characteristic of Bayesian statistics lies in its
treatment of uncertainty. The Bayesian philosophy is to make all uncertainty explicit in
any data analysis, including uncertainty about the estimated parameters as well as any
uncertainty about the model. In the maximum likelihood approach, a point estimate of a
parameter is often considered the primary goal, but a Bayesian analyst will report a full
posterior distribution on the parameter as well as a posterior on model structures.
Bayesian prediction consists of taking weighted averages over parameter values and
model structures (where the weights are proportional to the likelihood of the parameter or
model given the data, times the prior). In principle, this weighted averaging can provide
more accurate predictions than the alternative (and widely used) approach of
conditioning on a single model using point estimates of the parameters. However, in
practice, the Bayesian approach requires estimation of the averaging weights, which in
high-dimensional problems can be difficult. In addition, a weighted average over
parameters or models is less likely to be interpretable if description is a primary goal.



4.6 Hypothesis Testing

Although data mining is primarily concerned with looking for unsuspected features in
data (as opposed testing specific hypotheses that are formed before we see the data), in
practice we often do want to test specific hypotheses (for example, if our data mining
algorithm generates a potentially interesting hypothesis that we would like to explore
further).

In many situations we want to see whether the data support some idea about the value
of a parameter. For example, we might want to know if a new treatment has an effect
greater than that of the standard treatment, or if two variables are related in a population.
Since we are often unable to measure these for an entire population, we must base our
conclusions on a samples. Statistical tools for exploring such hypotheses are called
hypothesis tests.

4.6.1 Classical Hypothesis Testing
The basic principle of hypothesis tests is as follows. We begin by defining two
complementary hypotheses: the null hypothesis and the alternative hypothesis. Often the
null hypothesis is some point value (e.g., that the effect inquestion has value zero—that
there is no treatment difference or regression slope) and the alternative hypothesis is
simply the complement of the null hypothesis. Suppose, for example, that we are trying
to draw conclusions about a parameter ?. The null hypothesis, denoted by Hp, might
state that ? = ?y, and the alternative hypothesis (H;) might state that ? ??,. Using the
observed data, we calculate a statistic (what form of statistic is best depends on the
nature of the hypothesis being tested; examples are given below). The statistic would
vary from sample to sample—it would be a random variable. If we assume that the null
hypothesis is correct, then we can determine the expected distribution for the chosen
statistic, and the observed value of the statistic would be one point from that distribution.
If the observed value were way out in the tail of the distribution, we would have to
conclude either that an unlikely event had occurred or that the null hypothesis was not, in
fact, tru