

Undergraduate Topics in Computer Science

foundational and theoretical material to final-year topics and applications, UTiCS books take a
fresh, concise, and modern approach and are ideal for self-study or for a one- or two-semester

international advisory board, and contain numerous examples and problems. Many include fully
worked solutions.

Also in this series

Iain Craig
Object-Oriented Programming Languages: Interpretation
978-1-84628-773-2

Hanne Riis Nielson and Flemming Nielson
Semantics with Applications: An Appetizer
978-1-84628-691-9

for undergraduates studying in all areas of computing and information science. From core

course. The texts are all authored by established experts in their fields, reviewed by an

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content

Max Bramer

Principles of
Data Mining

Max Bramer, BSc, PhD, CEng, FBCS, FIEE, FRSA

Series editor
Ian Mackie

Advisory board
Samson Abramsky, University of Oxford, UK
Chris Hankin, Imperial College London, UK
Dexter Kozen, Cornell University, USA
Andrew Pitts, University of Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Denmark
Steven Skiena, Stony Brook University, USA
Iain Stewart, University of Durham, UK
David Zhang, The Hong Kong Polytechnic University, Hong Kong

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN-13: 978-1-84628-765-7 e-ISBN-13: 978-1-84628-766-4
ISBN-10: 1-84628-765-0 e-ISBN 10: 1-84628-766-9

Printed on acid-free paper

© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free for
general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that
may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Undergraduate Topics in Computer Science ISSN 1863-7310

École Polytechnique, France and King’s College London, UK

Library of Congress Control Number: 2007922358

Digital Professor of Information Technology, University of Portsmouth, UK

Contents

Introduction to Data Mining . 1

1. Data for Data Mining . 11
1.1 Standard Formulation . 11
1.2 Types of Variable . 12

1.2.1 Categorical and Continuous Attributes 14
1.3 Data Preparation . 14

1.3.1 Data Cleaning . 15
1.4 Missing Values . 17

1.4.1 Discard Instances . 17
1.4.2 Replace by Most Frequent/Average Value 17

1.5 Reducing the Number of Attributes . 18
1.6 The UCI Repository of Datasets . 19
Chapter Summary . 20
Self-assessment Exercises for Chapter 1 . 20

2. Introduction to Classification: Näıve Bayes and Nearest
Neighbour . 23
2.1 What is Classification? . 23
2.2 Näıve Bayes Classifiers . 24
2.3 Nearest Neighbour Classification . 31

2.3.1 Distance Measures . 34
2.3.2 Normalisation . 37
2.3.3 Dealing with Categorical Attributes 38

2.4 Eager and Lazy Learning . 38
Chapter Summary . 39

vi Principles of Data Mining

Self-assessment Exercises for Chapter 2 . 39

3. Using Decision Trees for Classification . 41
3.1 Decision Rules and Decision Trees . 41

3.1.1 Decision Trees: The Golf Example . 42
3.1.2 Terminology . 43
3.1.3 The degrees Dataset . 44

3.2 The TDIDT Algorithm . 47
3.3 Types of Reasoning . 49
Chapter Summary . 50
Self-assessment Exercises for Chapter 3 . 50

4. Decision Tree Induction: Using Entropy for Attribute
Selection . 51
4.1 Attribute Selection: An Experiment . 51
4.2 Alternative Decision Trees . 52

4.2.1 The Football/Netball Example . 53
4.2.2 The anonymous Dataset . 55

4.3 Choosing Attributes to Split On: Using Entropy 56
4.3.1 The lens24 Dataset . 57
4.3.2 Entropy . 59
4.3.3 Using Entropy for Attribute Selection 60
4.3.4 Maximising Information Gain . 62

Chapter Summary . 63
Self-assessment Exercises for Chapter 4 . 63

5. Decision Tree Induction: Using Frequency Tables for
Attribute Selection . 65
5.1 Calculating Entropy in Practice . 65

5.1.1 Proof of Equivalence . 66
5.1.2 A Note on Zeros . 68

5.2 Other Attribute Selection Criteria: Gini Index of Diversity 68
5.3 Inductive Bias . 70
5.4 Using Gain Ratio for Attribute Selection . 72

5.4.1 Properties of Split Information . 73
5.5 Number of Rules Generated by Different Attribute Selection

Criteria . 74
5.6 Missing Branches . 75
Chapter Summary . 76
Self-assessment Exercises for Chapter 5 . 77

Contents vii

6. Estimating the Predictive Accuracy of a Classifier 79
6.1 Introduction . 79
6.2 Method 1: Separate Training and Test Sets 80

6.2.1 Standard Error . 81
6.2.2 Repeated Train and Test . 82

6.3 Method 2: k-fold Cross-validation . 82
6.4 Method 3: N -fold Cross-validation . 83
6.5 Experimental Results I . 84
6.6 Experimental Results II: Datasets with Missing Values 86

6.6.1 Strategy 1: Discard Instances . 87
6.6.2 Strategy 2: Replace by Most Frequent/Average Value . . . 87
6.6.3 Missing Classifications . 89

6.7 Confusion Matrix . 89
6.7.1 True and False Positives . 90

Chapter Summary . 91
Self-assessment Exercises for Chapter 6 . 91

7. Continuous Attributes . 93
7.1 Introduction . 93
7.2 Local versus Global Discretisation . 95
7.3 Adding Local Discretisation to TDIDT . 96

7.3.1 Calculating the Information Gain of a Set of Pseudo-
attributes . 97

7.3.2 Computational Efficiency . 102
7.4 Using the ChiMerge Algorithm for Global Discretisation 105

7.4.1 Calculating the Expected Values and χ2 108
7.4.2 Finding the Threshold Value . 113
7.4.3 Setting minIntervals and maxIntervals 113
7.4.4 The ChiMerge Algorithm: Summary 115
7.4.5 The ChiMerge Algorithm: Comments 115

7.5 Comparing Global and Local Discretisation for Tree Induction . 116
Chapter Summary . 118
Self-assessment Exercises for Chapter 7 . 118

8. Avoiding Overfitting of Decision Trees . 119
8.1 Dealing with Clashes in a Training Set . 120

8.1.1 Adapting TDIDT to Deal With Clashes 120
8.2 More About Overfitting Rules to Data . 125
8.3 Pre-pruning Decision Trees . 126
8.4 Post-pruning Decision Trees . 128
Chapter Summary . 133
Self-assessment Exercise for Chapter 8 . 134

viii Principles of Data Mining

9. More About Entropy . 135
9.1 Introduction . 135
9.2 Coding Information Using Bits . 138
9.3 Discriminating Amongst M Values

(M Not a Power of 2) . 140
9.4 Encoding Values That Are Not Equally Likely 141
9.5 Entropy of a Training Set . 144
9.6 Information Gain Must be Positive or Zero 145
9.7 Using Information Gain for Feature Reduction for Classification

Tasks . 147
9.7.1 Example 1: The genetics Dataset . 148
9.7.2 Example 2: The bcst96 Dataset . 152

Chapter Summary . 154
Self-assessment Exercises for Chapter 9 . 154

10. Inducing Modular Rules for Classification 155
10.1 Rule Post-pruning . 155
10.2 Conflict Resolution . 157
10.3 Problems with Decision Trees . 160
10.4 The Prism Algorithm . 162

10.4.1 Changes to the Basic Prism Algorithm 169
10.4.2 Comparing Prism with TDIDT. 170

Chapter Summary . 171
Self-assessment Exercise for Chapter 10 . 171

11. Measuring the Performance of a Classifier 173
11.1 True and False Positives and Negatives . 174
11.2 Performance Measures . 176
11.3 True and False Positive Rates versus Predictive Accuracy 179
11.4 ROC Graphs . 180
11.5 ROC Curves . 182
11.6 Finding the Best Classifier . 183
Chapter Summary . 184
Self-assessment Exercise for Chapter 11 . 185

12. Association Rule Mining I . 187
12.1 Introduction . 187
12.2 Measures of Rule Interestingness . 189

12.2.1 The Piatetsky-Shapiro Criteria and the RI Measure 191
12.2.2 Rule Interestingness Measures Applied to the chess

Dataset . 193

Contents ix

12.2.3 Using Rule Interestingness Measures for Conflict
Resolution . 195

12.3 Association Rule Mining Tasks . 195
12.4 Finding the Best N Rules . 196

12.4.1 The J-Measure: Measuring the Information Content of
a Rule . 197

12.4.2 Search Strategy . 198
Chapter Summary . 201
Self-assessment Exercises for Chapter 12 . 201

13. Association Rule Mining II . 203
13.1 Introduction . 203
13.2 Transactions and Itemsets . 204
13.3 Support for an Itemset . 205
13.4 Association Rules . 206
13.5 Generating Association Rules . 208
13.6 Apriori . 209
13.7 Generating Supported Itemsets: An Example 212
13.8 Generating Rules for a Supported Itemset 214
13.9 Rule Interestingness Measures: Lift and Leverage 216
Chapter Summary . 218
Self-assessment Exercises for Chapter 13 . 219

14. Clustering . 221
14.1 Introduction . 221
14.2 k-Means Clustering . 224

14.2.1 Example . 225
14.2.2 Finding the Best Set of Clusters . 230

14.3 Agglomerative Hierarchical Clustering . 231
14.3.1 Recording the Distance Between Clusters 233
14.3.2 Terminating the Clustering Process 236

Chapter Summary . 237
Self-assessment Exercises for Chapter 14 . 238

15. Text Mining . 239
15.1 Multiple Classifications . 239
15.2 Representing Text Documents for Data Mining 240
15.3 Stop Words and Stemming . 242
15.4 Using Information Gain for Feature Reduction 243
15.5 Representing Text Documents: Constructing a Vector Space

Model . 243
15.6 Normalising the Weights . 245

x Principles of Data Mining

15.7 Measuring the Distance Between Two Vectors 246
15.8 Measuring the Performance of a Text Classifier 247
15.9 Hypertext Categorisation . 248

15.9.1 Classifying Web Pages . 248
15.9.2 Hypertext Classification versus Text Classification 249

Chapter Summary . 253
Self-assessment Exercises for Chapter 15 . 253

References . 255

A. Essential Mathematics . 257
A.1 Subscript Notation . 257

A.1.1 Sigma Notation for Summation . 258
A.1.2 Double Subscript Notation . 259
A.1.3 Other Uses of Subscripts . 260

A.2 Trees . 260
A.2.1 Terminology . 261
A.2.2 Interpretation . 262
A.2.3 Subtrees . 263

A.3 The Logarithm Function log2 X . 264
A.3.1 The Function −X log2 X . 266

A.4 Introduction to Set Theory . 267
A.4.1 Subsets . 269
A.4.2 Summary of Set Notation . 271

B. Datasets . 273

C. Sources of Further Information . 293

D. Glossary and Notation . 297

E. Solutions to Self-assessment Exercises . 315

Index . 339

Introduction to Data Mining

The Data Explosion

Modern computer systems are accumulating data at an almost unimaginable
rate and from a very wide variety of sources: from point-of-sale machines in the
high street to machines logging every cheque clearance, bank cash withdrawal
and credit card transaction, to Earth observation satellites in space.

Some examples will serve to give an indication of the volumes of data in-
volved:

– The current NASA Earth observation satellites generate a terabyte (i.e. 109

bytes) of data every day. This is more than the total amount of data ever
transmitted by all previous observation satellites.

– The Human Genome project is storing thousands of bytes for each of several
billion genetic bases.

– As long ago as 1990, the US Census collected over a million million bytes of
data.

– Many companies maintain large Data Warehouses of customer transactions.
A fairly small data warehouse might contain more than a hundred million
transactions.

There are vast amounts of data recorded every day on automatic recording
devices, such as credit card transaction files and web logs, as well as non-
symbolic data such as CCTV recordings.

Alongside advances in storage technology, which increasingly make it pos-
sible to store such vast amounts of data at relatively low cost whether in com-
mercial data warehouses, scientific research laboratories or elsewhere, has come

2 Principles of Data Mining

a growing realisation that such data contains buried within it knowledge that
can be critical to a company’s growth or decline, knowledge that could lead
to important discoveries in science, knowledge that could enable us accurately
to predict the weather and natural disasters, knowledge that could enable us
to identify the causes of and possible cures for lethal illnesses, knowledge that
could literally mean the difference between life and death. Yet the huge volumes
involved mean that most of this data is merely stored—never to be examined
in more than the most superficial way, if at all. It has rightly been said that
the world is becoming ‘data rich but knowledge poor’.

Machine learning technology, some of it very long established, has the po-
tential to solve the problem of the tidal wave of data that is flooding around
organisations, governments and individuals.

Knowledge Discovery

Knowledge Discovery has been defined as the ‘non-trivial extraction of im-
plicit, previously unknown and potentially useful information from data’. It is
a process of which data mining forms just one part, albeit a central one.

Knowledge

Patterns
Prepared
Data

Data Store

Interpretation
& Assimilation

Data
Mining

Selection &
Preprocessing

Integration

Data Sources

Figure 1 The Knowledge Discovery Process

Figure 1 shows a slightly idealised version of the complete knowledge dis-
covery process.

Data comes in, possibly from many sources. It is integrated and placed
in some common data store. Part of it is then taken and pre-processed into a
standard format. This ‘prepared data’ is then passed to a data mining algorithm
which produces an output in the form of rules or some other kind of ‘patterns’.
These are then interpreted to give—and this is the Holy Grail for knowledge
discovery—new and potentially useful knowledge.

Introduction to Data Mining 3

This brief description makes it clear that although the data mining algo-
rithms, which are the principal subject of this book, are central to knowledge
discovery they are not the whole story. The pre-processing of the data and the
interpretation (as opposed to the blind use) of the results are both of great
importance. They are skilled tasks that are far more of an art (or a skill learnt
from experience) than an exact science. Although they will both be touched on
in this book, the algorithms of the data mining stage of knowledge discovery
will be its prime concern.

Applications of Data Mining

There is a rapidly growing body of successful applications in a wide range of
areas as diverse as:

– analysis of organic compounds

– automatic abstracting

– credit card fraud detection

– electric load prediction

– financial forecasting

– medical diagnosis

– predicting share of television audiences

– product design

– real estate valuation

– targeted marketing

– thermal power plant optimisation

– toxic hazard analysis

– weather forecasting

and many more. Some examples of applications (potential or actual) are:

– a supermarket chain mines its customer transactions data to optimise tar-
geting of high value customers

– a credit card company can use its data warehouse of customer transactions
for fraud detection

– a major hotel chain can use survey databases to identify attributes of a
‘high-value’ prospect

4 Principles of Data Mining

– predicting the probability of default for consumer loan applications by im-
proving the ability to predict bad loans

– reducing fabrication flaws in VLSI chips

– data mining systems can sift through vast quantities of data collected during
the semiconductor fabrication process to identify conditions that are causing
yield problems

– predicting audience share for television programmes, allowing television ex-
ecutives to arrange show schedules to maximise market share and increase
advertising revenues

– predicting the probability that a cancer patient will respond to chemotherapy,
thus reducing health-care costs without affecting quality of care.

Applications can be divided into four main types: classification, numerical
prediction, association and clustering. Each of these is explained briefly below.
However first we need to distinguish between two types of data.

Labelled and Unlabelled Data

In general we have a dataset of examples (called instances), each of which
comprises the values of a number of variables, which in data mining are often
called attributes. There are two types of data, which are treated in radically
different ways.

For the first type there is a specially designated attribute and the aim is to
use the data given to predict the value of that attribute for instances that have
not yet been seen. Data of this kind is called labelled. Data mining using labelled
data is known as supervised learning. If the designated attribute is categorical,
i.e. it must take one of a number of distinct values such as ‘very good’, ‘good’
or ‘poor’, or (in an object recognition application) ‘car’, ‘bicycle’, ‘person’,
‘bus’ or ‘taxi’ the task is called classification. If the designated attribute is
numerical, e.g. the expected sale price of a house or the opening price of a
share on tomorrow’s stock market, the task is called regression.

Data that does not have any specially designated attribute is called un-
labelled. Data mining of unlabelled data is known as unsupervised learning.
Here the aim is simply to extract the most information we can from the data
available.

Introduction to Data Mining 5

Supervised Learning: Classification

Classification is one of the most common applications for data mining. It corre-
sponds to a task that occurs frequently in everyday life. For example, a hospital
may want to classify medical patients into those who are at high, medium or
low risk of acquiring a certain illness, an opinion polling company may wish to
classify people interviewed into those who are likely to vote for each of a num-
ber of political parties or are undecided, or we may wish to classify a student
project as distinction, merit, pass or fail.

This example shows a typical situation (Figure 2). We have a dataset in
the form of a table containing students’ grades on five subjects (the values of
attributes SoftEng, ARIN, HCI, CSA and Project) and their overall degree
classifications. The row of dots indicates that a number of rows have been
omitted in the interests of simplicity. We want to find some way of predicting
the classification for other students given only their grade ‘profiles’.

SoftEng ARIN HCI CSA Project Class
A B A B B Second
A B B B B Second
B A A B A Second
A A A A B First
A A B B A First
B A A B B Second

. .
A A B A B First

Figure 2 Degree Classification Data

There are several ways we can do this, including the following.

Nearest Neighbour Matching. This method relies on identifying (say) the five
examples that are ‘closest’ in some sense to an unclassified one. If the five
‘nearest neighbours’ have grades Second, First, Second, Second and Second
we might reasonably conclude that the new instance should be classified as
‘Second’.

Classification Rules. We look for rules that we can use to predict the classi-
fication of an unseen instance, for example:

IF SoftEng = A AND Project = A THEN Class = First

6 Principles of Data Mining

IF SoftEng = A AND Project = B AND ARIN = B THEN Class = Second
IF SoftEng = B THEN Class = Second

Classification Tree. One way of generating classification rules is via an inter-
mediate tree-like structure called a classification tree or a decision tree.

Figure 3 shows a possible decision tree corresponding to the degree classi-
fication data.

SoftEng

A

A

A

A

B

B

B

B

SECONDProject

ARINFIRST

SECONDCSA

SECONDFIRST

Figure 3 Decision Tree for Degree Classification Data

Supervised Learning: Numerical Prediction

Classification is one form of prediction, where the value to be predicted is a
label. Numerical prediction (often called regression) is another. In this case we
wish to predict a numerical value, such as a company’s profits or a share price.

A very popular way of doing this is to use a Neural Network as shown in
Figure 4 (often called by the simplified name Neural Net).

This is a complex modelling technique based on a model of a human neuron.
A neural net is given a set of inputs and is used to predict one or more outputs.

Although neural networks are an important technique of data mining, they
are complex enough to justify a book of their own and will not be discussed
further here. There are several good textbooks on neural networks available,
some of which are listed in Appendix C.

Introduction to Data Mining 7

Input # 1

Input # 2

Input # 3

Input # 4

Output

Output
Layer

Hidden
Layer

Input
Layer

Figure 4 A Neural Network

Unsupervised Learning: Association Rules

Sometimes we wish to use a training set to find any relationship that exists
amongst the values of variables, generally in the form of rules known as associ-
ation rules. There are many possible association rules derivable from any given
dataset, most of them of little or no value, so it is usual for association rules
to be stated with some additional information indicating how reliable they are,
for example:

IF variable 1 > 85 and switch 6 = open
THEN variable 23 < 47.5 and switch 8 = closed (probability = 0.8)

A common form of this type of application is called ‘market basket analysis’.
If we know the purchases made by all the customers at a store for say a week,
we may be able to find relationships that will help the store market its products
more effectively in the future. For example, the rule

IF cheese AND milk THEN bread (probability = 0.7)

indicates that 70% of the customers who buy cheese and milk also buy bread, so
it would be sensible to move the bread closer to the cheese and milk counter, if
customer convenience were the prime concern, or to separate them to encourage
impulse buying of other products if profit were more important.

8 Principles of Data Mining

Unsupervised Learning: Clustering

Clustering algorithms examine data to find groups of items that are similar. For
example, an insurance company might group customers according to income,
age, types of policy purchased or prior claims experience. In a fault diagnosis
application, electrical faults might be grouped according to the values of certain
key variables (Figure 5).

0
0 5

5

10

15

20

10 15 20

3

2

1

Figure 5 Clustering of Data

About This Book

This book is designed to be suitable for an introductory course at either un-
dergraduate or masters level. It can be used as a textbook for a taught unit in
a degree programme on potentially any of a wide range of subjects including
Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioin-
formatics and Forensic Science. It is also suitable for use as a self-study book for
those in technical or management positions who wish to gain an understanding
of the subject that goes beyond the superficial. It goes well beyond the gen-
eralities of many introductory books on Data Mining but—unlike many other
books—you will not need a degree and/or considerable fluency in Mathematics
to understand it.

Mathematics is a language in which it is possible to express very complex
and sophisticated ideas. Unfortunately it is a language in which 99% of the
human race is not fluent, although many people have some basic knowledge of

Introduction to Data Mining 9

it from early experiences (not always pleasant ones) at school. The author is a
former Mathematician (‘recovering Mathematician’ might be a more accurate
term) who now prefers to communicate in plain English wherever possible and
believes that a good example is worth a hundred mathematical symbols.

Unfortunately it has not been possible to bury mathematical notation en-
tirely. A ‘refresher’ of everything you need to know to begin studying the book
is given in Appendix A. It should be quite familiar to anyone who has studied
Mathematics at school level. Everything else will be explained as we come to
it. If you have difficulty following the notation in some places, you can usually
safely ignore it, just concentrating on the results and the detailed examples
given. For those who would like to pursue the mathematical underpinnings
of Data Mining in greater depth, a number of additional texts are listed in
Appendix C.

No introductory book on Data Mining can take you to research level in the
subject—the days for that have long passed. This book will give you a good
grounding in the principal techniques without attempting to show you this
year’s latest fashions, which in most cases will have been superseded by the
time the book gets into your hands. Once you know the basic methods, there
are many sources you can use to find the latest developments in the field. Some
of these are listed in Appendix C.

The other appendices include information about the main datasets used in
the examples in the book, many of which are of interest in their own right and
are readily available for use in your own projects if you wish, and a glossary of
the technical terms used in the book.

Self-assessment Exercises are included for each chapter to enable you to
check your understanding. Specimen solutions are given in Appendix E.

Acknowledgements

I would like to thank my daughter Bryony for drawing many of the more
complex diagrams and for general advice on design. I would also like to thank
my wife Dawn for very valuable comments on earlier versions of the book and
for preparing the index. The responsibility for any errors that may have crept
into the final version remains with me.

Max Bramer
Digital Professor of Information Technology

University of Portsmouth, UK
January 2007

1
Data for Data Mining

Data for data mining comes in many forms: from computer files typed in by
human operators, business information in SQL or some other standard database
format, information recorded automatically by equipment such as fault logging
devices, to streams of binary data transmitted from satellites. For purposes of
data mining (and for the remainder of this book) we will assume that the data
takes a particular standard form which is described in the next section. We will
look at some of the practical problems of data preparation in Section 1.3.

1.1 Standard Formulation

We will assume that for any data mining application we have a universe of
objects that are of interest. This rather grandiose term often refers to a col-
lection of people, perhaps all human beings alive or dead, or possibly all the
patients at a hospital, but may also be applied to, say, all dogs in England, or
to inanimate objects such as all train journeys from London to Birmingham,
all the rocks on the moon or all the pages stored in the World Wide Web.

The universe of objects is normally very large and we have only a small
part of it. Usually we want to extract information from the data available to
us that we hope is applicable to the large volume of data that we have not yet
seen.

Each object is described by a number of variables that correspond to its
properties. In data mining variables are often called attributes. We will use both

12 Principles of Data Mining

terms in this book.
The set of variable values corresponding to each of the objects is called a

record or (more commonly) an instance. The complete set of data available to
us for an application is called a dataset. A dataset is often depicted as a table,
with each row representing an instance. Each column contains the value of one
of the variables (attributes) for each of the instances. A typical example of a
dataset is the ‘degrees’ data given in the Introduction (Figure 1.1).

SoftEng ARIN HCI CSA Project Class
A B A B B Second
A B B B B Second
B A A B A Second
A A A A B First
A A B B A First
B A A B B Second

. .
A A B A B First

Figure 1.1 The Degrees Dataset

This dataset is an example of labelled data, where one attribute is given
special significance and the aim is to predict its value. In this book we will
give this attribute the standard name ‘class’. When there is no such significant
attribute we call the data unlabelled.

1.2 Types of Variable

In general there are many types of variable that can be used to measure the
properties of an object. A lack of understanding of the differences between the
various types can lead to problems with any form of data analysis. At least six
main types of variable can be distinguished.

Nominal Variables

A variable used to put objects into categories, e.g. the name or colour of an
object. A nominal variable may be numerical in form, but the numerical values
have no mathematical interpretation. For example we might label 10 people
as numbers 1, 2, 3, . . . , 10, but any arithmetic with such values, e.g. 1 + 2 = 3

Data for Data Mining 13

would be meaningless. They are simply labels. A classification can be viewed
as a nominal variable which has been designated as of particular importance.

Binary Variables

A binary variable is a special case of a nominal variable that takes only two
possible values: true or false, 1 or 0 etc.

Ordinal Variables

Ordinal variables are similar to nominal variables, except that an ordinal vari-
able has values that can be arranged in a meaningful order, e.g. small, medium,
large.

Integer Variables

Integer variables are ones that take values that are genuine integers, for ex-
ample ‘number of children’. Unlike nominal variables that are numerical in
form, arithmetic with integer variables is meaningful (1 child + 2 children = 3
children etc.).

Interval-scaled Variables

Interval-scaled variables are variables that take numerical values which are
measured at equal intervals from a zero point or origin. However the origin
does not imply a true absence of the measured characteristic. Two well-known
examples of interval-scaled variables are the Fahrenheit and Celsius tempera-
ture scales. To say that one temperature measured in degrees Celsius is greater
than another or greater than a constant value such as 25 is clearly meaningful,
but to say that one temperature measured in degrees Celsius is twice another
is meaningless. It is true that a temperature of 20 degrees is twice as far from
the zero value as 10 degrees, but the zero value has been selected arbitrarily
and does not imply ‘absence of temperature’. If the temperatures are converted
to an equivalent scale, say degrees Fahrenheit, the ‘twice’ relationship will no
longer apply.

14 Principles of Data Mining

Ratio-scaled Variables

Ratio-scaled variables are similar to interval-scaled variables except that the
zero point does reflect the absence of the measured characteristic, for example
Kelvin temperature and molecular weight. In the former case the zero value
corresponds to the lowest possible temperature ‘absolute zero’, so a temperature
of 20 degrees Kelvin is twice one of 10 degrees Kelvin. A weight of 10 kg is
twice one of 5 kg, a price of 100 dollars is twice a price of 50 dollars etc.

1.2.1 Categorical and Continuous Attributes

Although the distinction between different categories of variable can be impor-
tant in some cases, many practical data mining systems divide attributes into
just two types:

– categorical corresponding to nominal, binary and ordinal variables

– continuous corresponding to integer, interval-scaled and ratio-scaled vari-
ables.

This convention will be followed in this book. For many applications it is
helpful to have a third category of attribute, the ‘ignore’ attribute, correspond-
ing to variables that are of no significance for the application, for example the
name of a patient in a hospital or the serial number of an instance, but which
we do not wish to (or are unable to) delete from the dataset.

It is important to choose methods that are appropriate to the types of vari-
able stored for a particular application. The methods described in this book are
applicable to categorical and continuous attributes as defined above. There are
other types of variable to which they would not be applicable without modifi-
cation, for example any variable that is measured on a logarithmic scale. Two
examples of logarithmic scales are the Richter scale for measuring earthquakes
(an earthquake of magnitude 6 is 10 times more severe than one of magnitude
5, 100 times more severe than one of magnitude 4 etc.) and the Stellar Mag-
nitude Scale for measuring the brightness of stars viewed by an observer on
Earth.

1.3 Data Preparation

Although this book is about data mining not data preparation, some general
comments about the latter may be helpful.

Data for Data Mining 15

For many applications the data can simply be extracted from a database
in the form described in Section 1.1, perhaps using a standard access method
such as ODBC. However, for some applications the hardest task may be to
get the data into a standard form in which it can be analysed. For example
data values may have to be extracted from textual output generated by a fault
logging system or (in a crime analysis application) extracted from transcripts
of interviews with witnesses. The amount of effort required to do this may be
considerable.

1.3.1 Data Cleaning

Even when the data is in the standard form it cannot be assumed that it
is error free. In real-world datasets erroneous values can be recorded for a
variety of reasons, including measurement errors, subjective judgements and
malfunctioning or misuse of automatic recording equipment.

Erroneous values can be divided into those which are possible values of the
attribute and those which are not. Although usage of the term noise varies, in
this book we will take a noisy value to mean one that is valid for the dataset,
but is incorrectly recorded. For example the number 69.72 may accidentally be
entered as 6.972, or a categorical attribute value such as brown may accidentally
be recorded as another of the possible values, such as blue. Noise of this kind
is a perpetual problem with real-world data.

A far smaller problem arises with noisy values that are invalid for the
dataset, such as 69.7X for 6.972 or bbrown for brown. We will consider these to
be invalid values, not noise. An invalid value can easily be detected and either
corrected or rejected.

It is hard to see even very ‘obvious’ errors in the values of a variable when
they are ‘buried’ amongst say 100,000 other values. In attempting to ‘clean
up’ data it is helpful to have a range of software tools available, especially to
give an overall visual impression of the data, when some anomalous values or
unexpected concentrations of values may stand out. However, in the absence of
special software, even some very basic analysis of the values of variables may be
helpful. Simply sorting the values into ascending order (which for fairly small
datasets can be accomplished using just a standard spreadsheet) may reveal
unexpected results. For example:

– A numerical variable may only take six different values, all widely separated.
It would probably be best to treat this as a categorical variable rather than
a continuous one.

– All the values of a variable may be identical. The variable should be treated

16 Principles of Data Mining

as an ‘ignore’ attribute.

– All the values of a variable except one may be identical. It is then necessary
to decide whether the one different value is an error or a significantly differ-
ent value. In the latter case the variable should be treated as a categorical
attribute with just two values.

– There may be some values that are outside the normal range of the variable.
For example, the values of a continuous attribute may all be in the range
200 to 5000 except for the highest three values which are 22654.8, 38597 and
44625.7. If the data values were entered by hand a reasonable guess is that
the first and third of these abnormal values resulted from pressing the initial
key twice by accident and the second one is the result of leaving out the
decimal point. If the data were recorded automatically it may be that the
equipment malfunctioned. This may not be the case but the values should
certainly be investigated.

– We may observe that some values occur an abnormally large number of times.
For example if we were analysing data about users who registered for a web-
based service by filling in an online form we might notice that the ‘country’
part of their addresses took the value ‘Albania’ in 10% of cases. It may be
that we have found a service that is particularly attractive to inhabitants of
that country. Another possibility is that users who registered either failed to
choose from the choices in the country field, causing a (not very sensible)
default value to be taken, or did not wish to supply their country details and
simply selected the first value in a list of options. In either case it seems likely
that the rest of the address data provided for those users may be suspect
too.

– If we are analysing the results of an online survey collected in 2002, we may
notice that the age recorded for a high proportion of the respondents was 72.
This seems unlikely, especially if the survey was of student satisfaction, say.
A possible interpretation for this is that the survey had a ‘date of birth’ field,
with subfields for day, month and year and that many of the respondents did
not bother to override the default values of 01 (day), 01 (month) and 1930
(year). A poorly designed program then converted the date of birth to an
age of 72 before storing it in the database.

It is important to issue a word of caution at this point. Care is needed when
dealing with anomalous values such as 22654.8, 38597 and 44625.7 in one of
the examples above. They may simply be errors as suggested. Alternatively
they may be outliers, i.e. genuine values that are significantly different from
the others. The recognition of outliers and their significance may be the key to
major discoveries, especially in fields such as medicine and physics, so we need

Data for Data Mining 17

to be careful before simply discarding them or adjusting them back to ‘normal’
values.

1.4 Missing Values

In many real-world datasets data values are not recorded for all attributes. This
can happen simply because there are some attributes that are not applicable for
some instances (e.g. certain medical data may only be meaningful for female
patients or patients over a certain age). The best approach here may be to
divide the dataset into two (or more) parts, e.g. treating male and female
patients separately.

It can also happen that there are attribute values that should be recorded
that are missing. This can occur for several reasons, for example

– a malfunction of the equipment used to record the data

– a data collection form to which additional fields were added after some data
had been collected

– information that could not be obtained, e.g. about a hospital patient.

There are several possible strategies for dealing with missing values. Two
of the most commonly used are as follows.

1.4.1 Discard Instances

This is the simplest strategy: delete all instances where there is at least one
missing value and use the remainder.

This strategy is a very conservative one, which has the advantage of avoid-
ing introducing any data errors. Its disadvantage is that discarding data may
damage the reliability of the results derived from the data. Although it may be
worth trying when the proportion of missing values is small, it is not recom-
mended in general. It is clearly not usable when all or a high proportion of all
the instances have missing values.

1.4.2 Replace by Most Frequent/Average Value

A less cautious strategy is to estimate each of the missing values using the
values that are present in the dataset.

18 Principles of Data Mining

A straightforward but effective way of doing this for a categorical attribute
is to use its most frequently occurring (non-missing) value. This is easy to
justify if the attribute values are very unbalanced. For example if attribute X
has possible values a, b and c which occur in proportions 80%, 15% and 5%
respectively, it seems reasonable to estimate any missing values of attribute X
by the value a. If the values are more evenly distributed, say in proportions
40%, 30% and 30%, the validity of this approach is much less clear.

In the case of continuous attributes it is likely that no specific numerical
value will occur more than a small number of times. In this case the estimate
used is generally the average value.

Replacing a missing value by an estimate of its true value may of course
introduce noise into the data, but if the proportion of missing values for a
variable is small, this is not likely to have more than a small effect on the
results derived from the data. However, it is important to stress that if a variable
value is not meaningful for a given instance or set of instances any attempt to
replace the ‘missing’ values by an estimate is likely to lead to invalid results.
Like many of the methods in this book the ‘replace by most frequent/average
value’ strategy has to be used with care.

There are other approaches to dealing with missing values, for example
using the ‘association rule’ methods described in Chapter 12 to make a more
reliable estimate of each missing value. However, as is generally the case in
this field, there is no one method that is more reliable than all the others for
all possible datasets and in practice there is little alternative to experimenting
with a range of alternative strategies to find the one that gives the best results
for a dataset under consideration.

1.5 Reducing the Number of Attributes

In some data mining application areas the availability of ever-larger storage
capacity at a steadily reducing unit price has led to large numbers of attribute
values being stored for every instance, e.g. information about all the purchases
made by a supermarket customer for three months or a large amount of detailed
information about every patient in a hospital. For some datasets there can be
substantially more attributes than there are instances, perhaps as many as 10
or even 100 to one.

Although it is tempting to store more and more information about each
instance (especially as it avoids making hard decisions about what information
is really needed) it risks being self-defeating. Suppose we have 10,000 pieces
of information about each supermarket customer and want to predict which

Data for Data Mining 19

customers will buy a new brand of dog food. The number of attributes of any
relevance to this is probably very small. At best the many irrelevant attributes
will place an unnecessary computational overhead on any data mining algo-
rithm. At worst, they may cause the algorithm to give poor results.

Of course, supermarkets, hospitals and other data collectors will reply that
they do not necessarily know what is relevant or will come to be recognised
as relevant in the future. It is safer for them to record everything than risk
throwing away important information.

Although faster processing speeds and larger memories may make it possible
to process ever larger numbers of attributes, this is inevitably a losing struggle
in the long term. Even if it were not, when the number of attributes becomes
large, there is always a risk that the results obtained will have only superficial
accuracy and will actually be less reliable than if only a small proportion of
the attributes were used—a case of ‘more means less’.

There are several ways in which the number of attributes (or ‘features’)
can be reduced before a dataset is processed. The term feature reduction or
dimension reduction is generally used for this process. We will return to this
topic in Chapter 9.

1.6 The UCI Repository of Datasets

Most of the commercial datasets used by companies for data mining are—
unsurprisingly—not available for others to use. However there are a number of
‘libraries’ of datasets that are readily available for downloading from the World
Wide Web free of charge by anyone.

The best known of these is the ‘Repository’ of datasets maintained by
the University of California at Irvine, generally known as the ‘UCI Reposi-
tory’ [1].1 The URL for the Repository is http://www.ics.uci.edu/∼mlearn/
MLRepository.html. It contains approximately 120 datasets on topics as di-
verse as predicting the age of abalone from physical measurements, predicting
good and bad credit risks, classifying patients with a variety of medical con-
ditions and learning concepts from the sensor data of a mobile robot. Some
datasets are complete, i.e. include all possible instances, but most are rela-
tively small samples from a much larger number of possible instances. Datasets
with missing values and noise are included.

The UCI site also has links to other repositories of both datasets and pro-
grams, maintained by a variety of organisations such as the (US) National

1 Full details of the books and papers referenced in the text are given in the Refer-
ences section which follows Chapter 15.

20 Principles of Data Mining

Space Science Center, the US Bureau of Census and the University of Toronto.
The datasets in the UCI Repository were collected principally to enable data

mining algorithms to be compared on a standard range of datasets. There are
many new algorithms published each year and it is standard practice to state
their performance on some of the better-known datasets in the UCI Repository.
Several of these datasets will be described later in this book.

The availability of standard datasets is also very helpful for new users of data
mining packages who can gain familiarisation using datasets with published
performance results before applying the facilities to their own datasets.

In recent years a potential weakness of establishing such a widely used set
of standard datasets has become apparent. In the great majority of cases the
datasets in the UCI Repository give good results when processed by standard
algorithms of the kind described in this book. Datasets that lead to poor results
tend to be associated with unsuccessful projects and so may not be added to
the Repository. The achievement of good results with selected datasets from
the Repository is no guarantee of the success of a method with new data, but
experimentation with such datasets can be a valuable step in the development
of new methods.

A welcome relatively recent development is the creation of the UCI ‘Knowl-
edge Discovery in Databases Archive’ at http://kdd.ics.uci.edu. This con-
tains a range of large and complex datasets as a challenge to the data mining
research community to scale up its algorithms as the size of stored datasets,
especially commercial ones, inexorably rises.

Chapter Summary

This chapter introduces the standard formulation for the data input to data
mining algorithms that will be assumed throughout this book. It goes on to
distinguish between different types of variable and to consider issues relating to
the preparation of data prior to use, particularly the presence of missing data
values and noise. The UCI Repository of datasets is introduced.

Self-assessment Exercises for Chapter 1

Specimen solutions to self-assessment exercises are given in Appendix E.

1. What is the difference between labelled and unlabelled data?

Data for Data Mining 21

2. The following information is held in an employee database.

Name, Date of Birth, Sex, Weight, Height, Marital Status, Number of Chil-
dren

What is the type of each variable?

3. Give two ways of dealing with missing data values.

2
Introduction to Classification: Näıve

Bayes and Nearest Neighbour

2.1 What is Classification?

Classification is a task that occurs very frequently in everyday life. Essentially
it involves dividing up objects so that each is assigned to one of a number
of mutually exhaustive and exclusive categories known as classes. The term
‘mutually exhaustive and exclusive’ simply means that each object must be
assigned to precisely one class, i.e. never to more than one and never to no
class at all.

Many practical decision-making tasks can be formulated as classification
problems, i.e. assigning people or objects to one of a number of categories, for
example

– customers who are likely to buy or not buy a particular product in a super-
market

– people who are at high, medium or low risk of acquiring a certain illness

– student projects worthy of a distinction, merit, pass or fail grade

– objects on a radar display which correspond to vehicles, people, buildings or
trees

– people who closely resemble, slightly resemble or do not resemble someone
seen committing a crime

24 Principles of Data Mining

– houses that are likely to rise in value, fall in value or have an unchanged
value in 12 months’ time

– people who are at high, medium or low risk of a car accident in the next 12
months

– people who are likely to vote for each of a number of political parties (or
none)

– the likelihood of rain the next day for a weather forecast (very likely, likely,
unlikely, very unlikely).

We have already seen an example of a (fictitious) classification task, the
‘degree classification’ example, in the Introduction.

In this chapter we introduce two classification algorithms: one that can be
used when all the attributes are categorical, the other when all the attributes
are continuous. In the following chapters we come on to algorithms for gener-
ating classification trees and rules (also illustrated in the Introduction).

2.2 Näıve Bayes Classifiers

In this section we look at a method of classification that does not use rules,
a decision tree or any other explicit representation of the classifier. Rather, it
uses the branch of Mathematics known as probability theory to find the most
likely of the possible classifications.

The significance of the first word of the title of this section will be explained
later. The second word refers to the Reverend Thomas Bayes (1702–1761), an
English Presbyterian minister and Mathematician whose publications included
“Divine Benevolence, or an Attempt to Prove That the Principal End of the
Divine Providence and Government is the Happiness of His Creatures” as well
as pioneering work on probability. He is credited as the first Mathematician to
use probability in an inductive fashion.

A detailed discussion of probability theory would be substantially outside
the scope of this book. However the mathematical notion of probability corre-
sponds fairly closely to the meaning of the word in everyday life.

The probability of an event, e.g. that the 6.30 p.m. train from London to
your local station arrives on time, is a number from 0 to 1 inclusive, with 0
indicating ‘impossible’ and 1 indicating ‘certain’. A probability of 0.7 implies
that if we conducted a long series of trials, e.g. if we recorded the arrival time
of the 6.30 p.m. train day by day for N days, we would expect the train to be
on time on 0.7 × N days. The longer the series of trials the more reliable this
estimate is likely to be.

Introduction to Classification: Näıve Bayes and Nearest Neighbour 25

Usually we are not interested in just one event but in a set of alternative
possible events, which are mutually exclusive and exhaustive, meaning that one
and only one must always occur.

In the train example, we might define four mutually exclusive and exhaus-
tive events

E1 – train cancelled
E2 – train ten minutes or more late
E3 – train less than ten minutes late
E4 – train on time or early.

The probability of an event is usually indicated by a capital letter P , so we
might have

P (E1) = 0.05
P (E2) = 0.1
P (E3) = 0.15
P (E4) = 0.7

(Read as ‘the probability of event E1 is 0.05’ etc.)
Each of these probabilities is between 0 and 1 inclusive, as it has to be to

qualify as a probability. They also satisfy a second important condition: the
sum of the four probabilities has to be 1, because precisely one of the events
must always occur. In this case

P (E1) + P (E2) + P (E3) + P (E4) = 1

In general, the sum of the probabilities of a set of mutually exclusive and
exhaustive events must always be 1.

Generally we are not in a position to know the true probability of an event
occurring. To do so for the train example we would have to record the train’s
arrival time for all possible days on which it is scheduled to run, then count
the number of times events E1, E2, E3 and E4 occur and divide by the total
number of days, to give the probabilities of the four events. In practice this is
often prohibitively difficult or impossible to do, especially (as in this example)
if the trials may potentially go on forever. Instead we keep records for a sample
of say 100 days, count the number of times E1, E2, E3 and E4 occur, divide
by 100 (the number of days) to give the frequency of the four events and use
these as estimates of the four probabilities.

For the purposes of the classification problems discussed in this book, the
‘events’ are that an instance has a particular classification. Note that classifi-
cations satisfy the ‘mutually exclusive and exhaustive’ requirement.

The outcome of each trial is recorded in one row of a table. Each row must
have one and only one classification.

26 Principles of Data Mining

For classification tasks, the usual terminology is to call a table (dataset)
such as Figure 2.1 a training set. Each row of the training set is called an
instance. An instance comprises the values of a number of attributes and the
corresponding classification.

The training set constitutes the results of a sample of trials that we can use
to predict the classification of other (unclassified) instances.

Suppose that our training set consists of 20 instances, each recording the
value of four attributes as well as the classification. We will use classifications:
cancelled, very late, late and on time to correspond to the events E1, E2, E3
and E4 described previously.

day season wind rain class
weekday spring none none on time
weekday winter none slight on time
weekday winter none slight on time
weekday winter high heavy late
saturday summer normal none on time
weekday autumn normal none very late
holiday summer high slight on time
sunday summer normal none on time
weekday winter high heavy very late
weekday summer none slight on time
saturday spring high heavy cancelled
weekday summer high slight on time
saturday winter normal none late
weekday summer high none on time
weekday winter normal heavy very late
saturday autumn high slight on time
weekday autumn none heavy on time
holiday spring normal slight on time
weekday spring normal none on time
weekday spring normal slight on time

Figure 2.1 The train Dataset

How should we use probabilities to find the most likely classification for an
unseen instance such as the one below?

weekday winter high heavy ????

Introduction to Classification: Näıve Bayes and Nearest Neighbour 27

One straightforward (but flawed) way is just to look at the frequency of
each of the classifications in the training set and choose the most common one.
In this case the most common classification is on time, so we would choose
that.

The flaw in this approach is, of course, that all unseen instances will be
classified in the same way, in this case as on time. Such a method of classification
is not necessarily bad: if the probability of on time is 0.7 and we guess that
every unseen instance should be classified as on time, we could expect to be
right about 70% of the time. However, the aim is to make correct predictions
as often as possible, which requires a more sophisticated approach.

The instances in the training set record not only the classification but also
the values of four attributes: day, season, wind and rain. Presumably they are
recorded because we believe that in some way the values of the four attributes
affect the outcome. (This may not necessarily be the case, but for the purpose
of this chapter we will assume it is true.) To make effective use of the additional
information represented by the attribute values we first need to introduce the
notion of conditional probability.

The probability of the train being on time, calculated using the frequency
of on time in the training set divided by the total number of instances is known
as the prior probability. In this case P (class = on time) = 14/20 = 0.7. If we
have no other information this is the best we can do. If we have other (relevant)
information, the position is different.

What is the probability of the train being on time if we know that the
season is winter? We can calculate this as the number of times class = on time
and season = winter (in the same instance), divided by the number of times the
season is winter, which comes to 2/6 = 0.33. This is considerably less than the
prior probability of 0.7 and seems intuitively reasonable. Trains are less likely
to be on time in winter.

The probability of an event occurring if we know that an attribute has a
particular value (or that several variables have particular values) is called the
conditional probability of the event occurring and is written as, e.g.

P (class = on time | season = winter).

The vertical bar can be read as ‘given that’, so the whole term can be read
as ‘the probability that the class is on time given that the season is winter ’.

P (class = on time | season = winter) is also called a posterior probability.
It is the probability that we can calculate for the classification after we have
obtained the information that the season is winter. By contrast, the prior prob-
ability is that estimated before any other information is available.

To calculate the most likely classification for the ‘unseen’ instance given

28 Principles of Data Mining

previously we could calculate the probability of

P (class = on time | day = weekday and season = winter
and wind = high and rain = heavy)

and do similarly for the other three possible classifications. However there are
only two instances in the training set with that combination of attribute values
and basing any estimates of probability on these is unlikely to be helpful.

To obtain a reliable estimate of the four classifications a more indirect ap-
proach is needed. We could start by using conditional probabilities based on a
single attribute.

For the train dataset

P (class = on time | season = winter) = 2/6 = 0.33
P (class = late | season = winter) = 1/6 = 0.17
P (class = very late | season = winter) = 3/6 = 0.5
P (class = cancelled | season = winter) = 0/6 = 0

The third of these has the largest value, so we could conclude that the
most likely classification is very late, a different result from using the prior
probability as before.

We could do a similar calculation with attributes day, rain and wind. This
might result in other classifications having the largest value. Which is the best
one to take?

The Näıve Bayes algorithm gives us a way of combining the prior prob-
ability and conditional probabilities in a single formula, which we can use to
calculate the probability of each of the possible classifications in turn. Having
done this we choose the classification with the largest value.

Incidentally the first word in the rather derogatory sounding name Näıve
Bayes refers to the assumption that the method makes, that the effect of the
value of one attribute on the probability of a given classification is independent
of the values of the other attributes. In practice, that may not be the case.
Despite this theoretical weakness, the Näıve Bayes method often gives good
results in practical use.

The method uses conditional probabilities, but the other way round from
before. (This may seem a strange approach but is justified by the method that
follows, which is based on a well-known Mathematical result known as Bayes
Rule.)

Instead of (say) the probability that the class is very late given that the
season is winter, P (class = very late | season = winter), we use the condi-
tional probability that the season is winter given that the class is very late, i.e.
P (season = winter | class = very late). We can calculate this as the number of
times that season = winter and class = very late occur in the same instance,
divided by the number of instances for which the class is very late.

Introduction to Classification: Näıve Bayes and Nearest Neighbour 29

In a similar way we can calculate other conditional probabilities, for example
P (rain = none |class = very late).

For the train data we can tabulate all the conditional and prior probabilities
as shown in Figure 2.2.

class = on
time

class = late class = very
late

class = can-
celled

day =
weekday

9/14 = 0.64 1/2 = 0.5 3/3 = 1 0/1 = 0

day =
saturday

2/14 = 0.14 1/2 = 0.5 0/3 = 0 1/1 = 1

day = sunday 1/14 = 0.07 0/2 = 0 0/3 = 0 0/1 = 0
day = holiday 2/14 = 0.14 0/2 = 0 0/3 = 0 0/1 = 0
season =
spring

4/14 = 0.29 0/2 = 0 0/3 = 0 1/1 = 1

season =
summer

6/14 = 0.43 0/2 = 0 0/3 = 0 0/1 = 0

season =
autumn

2/14 = 0.14 0/2 = 0 1/3 = 0.33 0/1 = 0

season =
winter

2/14 = 0.14 2/2 = 1 2/3 = 0.67 0/1 = 0

wind = none 5/14 = 0.36 0/2 = 0 0/3 = 0 0/1 = 0
wind = high 4/14 = 0.29 1/2 = 0.5 1/3 = 0.33 1/1 = 1
wind =
normal

5/14 = 0.36 1/2 = 0.5 2/3 = 0.67 0/1 = 0

rain = none 5/14 = 0.36 1/2 =0.5 1/3 = 0.33 0/1 = 0
rain = slight 8/14 = 0.57 0/2 = 0 0/3 = 0 0/1 = 0
rain =
heavy

1/14 = 0.07 1/2 = 0.5 2/3 = 0.67 1/1 = 1

Prior
Probability

14/20 =
0.70

2/20 =
0.10

3/20 =
0.15

1/20 = 0.05

Figure 2.2 Conditional and Prior Probabilities: train Dataset

For example, the conditional probability P (day = weekday | class = on time)
is the number of instances in the train dataset for which day = weekday and
class = on time, divided by the total number of instances for which class = on
time. These numbers can be counted from Figure 2.1 as 9 and 14, respectively.
So the conditional probability is 9/14 = 0.64.

The prior probability of class = very late is the number of instances in
Figure 2.1 for which class = very late divided by the total number of instances,
i.e. 3/20 = 0.15.

We can now use these values to calculate the probabilities of real interest to
us. These are the posterior probabilities of each possible class occurring for a
specified instance, i.e. for known values of all the attributes. We can calculate
these posterior probabilities using the method given in Figure 2.3.

30 Principles of Data Mining

Näıve Bayes Classification

Given a set of k mutually exclusive and exhaustive classifications c1, c2, . . . ,
ck, which have prior probabilities P (c1), P (c2), . . . , P (ck), respectively, and
n attributes a1, a2, . . . , an which for a given instance have values v1, v2,
. . . , vn respectively, the posterior probability of class ci occurring for the
specified instance can be shown to be proportional to

P (ci) × P (a1 = v1 and a2 = v2 . . . and an = vn | ci)

Making the assumption that the attributes are independent, the value of
this expression can be calculated using the product

P(ci)×P(a1 = v1 | ci)×P(a2 = v2 | ci)× . . .×P(an = vn | ci)

We calculate this product for each value of i from 1 to k and choose the
classification that has the largest value.

Figure 2.3 The Näıve Bayes Classification Algorithm

The formula shown in bold in Figure 2.3 combines the prior probability of
ci with the values of the n possible conditional probabilities involving a test
on the value of a single attribute.

It is often written as P (ci) ×
n∏

j=1

P (aj = vj | class = ci).

Note that the Greek letter
∏

(pronounced pi) in the above formula is not
connected with the mathematical constant 3.14159. . . . It indicates the product
obtained by multiplying together the n values P (a1 = v1 | ci), P (a2 = v2 | ci)
etc.

(
∏

is the capital form of ‘pi’. The lower case form is π. The equivalents in
the Roman alphabet are P and p. P is the first letter of ‘Product’.)

When using the Näıve Bayes method to classify a series of unseen instances
the most efficient way to start is by calculating all the prior probabilities and
also all the conditional probabilities involving one attribute, though not all of
them may be required for classifying any particular instance.

Using the values in each of the columns of Figure 2.2 in turn, we obtain the
following posterior probabilities for each possible classification for the unseen
instance:

weekday winter high heavy ????

class = on time

0.70 × 0.64 × 0.14 × 0.29 × 0.07 = 0.0013

Introduction to Classification: Näıve Bayes and Nearest Neighbour 31

class = late

0.10 × 0.50 × 1.00 × 0.50 × 0.50 = 0.0125

class = very late

0.15 × 1.00 × 0.67 × 0.33 × 0.67 = 0.0222

class = cancelled

0.05 × 0.00 × 0.00 × 1.00 × 1.00 = 0.0000

The largest value is for class = very late.

Note that the four values calculated are not themselves probabilities, as
they do not sum to 1. This is the significance of the phrasing ‘the posterior
probability . . . can be shown to be proportional to’ in Figure 2.3. Each value
can be ‘normalised’ to a valid posterior probability simply by dividing it by the
sum of all four values. In practice, we are interested only in finding the largest
value so the normalisation step is not necessary.

The Näıve Bayes approach is a very popular one, which often works well.
However it has a number of potential problems, the most obvious one being that
it relies on all attributes being categorical. In practice, many datasets have a
combination of categorical and continuous attributes, or even only continuous
attributes. This problem can be overcome by converting the continuous at-
tributes to categorical ones, using a method such as those described in Chapter
7 or otherwise.

A second problem is that estimating probabilities by relative frequencies can
give a poor estimate if the number of instances with a given attribute/value
combination is small. In the extreme case where it is zero, the posterior proba-
bility will inevitably be calculated as zero. This happened for class = cancelled
in the above example. This problem can be overcome by using a more compli-
cated formula for estimating probabilities, but this will not be discussed further
here.

2.3 Nearest Neighbour Classification

Nearest Neighbour classification is mainly used when all attribute values are
continuous, although it can be modified to deal with categorical attributes.

The idea is to estimate the classification of an unseen instance using the
classification of the instance or instances that are closest to it, in some sense
that we need to define.

32 Principles of Data Mining

Supposing we have a training set with just two instances such as the fol-
lowing

a b c d e f Class
yes no no 6.4 8.3 low negative
yes yes yes 18.2 4.7 high positive

There are six attribute values, followed by a classification (positive or neg-
ative).

We are then given a third instance

yes no no 6.6 8.0 low ???

What should its classification be?
Even without knowing what the six attributes represent, it seems intuitively

obvious that the unseen instance is nearer to the first instance than to the
second. In the absence of any other information, we could reasonably predict
its classification using that of the first instance, i.e. as ‘negative’.

In practice there are likely to be many more instances in the training set
but the same principle applies. It is usual to base the classification on those of
the k nearest neighbours (where k is a small integer such as 3 or 5), not just the
nearest one. The method is then known as k-Nearest Neighbour or just k-NN
classification (Figure 2.4).

Basic k-Nearest Neighbour Classification Algorithm

– Find the k training instances that are closest to the unseen instance.

– Take the most commonly occurring classification for these k instances.

Figure 2.4 The Basic k-Nearest Neighbour Classification Algorithm

We can illustrate k-NN classification diagrammatically when the dimension
(i.e. the number of attributes) is small. The following example illustrates the
case where the dimension is just 2. In real-world data mining applications it
can of course be considerably larger.

Figure 2.5 shows a training set with 20 instances, each giving the values of
two attributes and an associated classification.

How can we estimate the classification for an ‘unseen’ instance where the
first and second attributes are 9.1 and 11.0, respectively?

For this small number of attributes we can represent the training set as 20
points on a two-dimensional graph with values of the first and second attributes
measured along the horizontal and vertical axes, respectively. Each point is
labelled with a + or − symbol to indicate that the classification is positive or
negative, respectively. The result is shown in Figure 2.6.

Introduction to Classification: Näıve Bayes and Nearest Neighbour 33

Attribute 1 Attribute 2 Class
0.8 6.3 −
1.4 8.1 −
2.1 7.4 −
2.6 14.3 +
6.8 12.6 −
8.8 9.8 +
9.2 11.6 −
10.8 9.6 +
11.8 9.9 +
12.4 6.5 +
12.8 1.1 −
14.0 19.9 −
14.2 18.5 −
15.6 17.4 −
15.8 12.2 −
16.6 6.7 +
17.4 4.5 +
18.2 6.9 +
19.0 3.4 −
19.6 11.1 +

Figure 2.5 Training Set for k-Nearest Neighbour Example

A circle has been added to enclose the five nearest neighbours of the unseen
instance, which is shown as a small circle close to the centre of the larger one.

The five nearest neighbours are labelled with three + signs and two − signs,
so a basic 5-NN classifier would classify the unseen instance as ‘positive’ by a
form of majority voting. There are other possibilities, for example the ‘votes’
of each of the k nearest neighbours can be weighted, so that the classifications
of closer neighbours are given greater weight than the classifications of more
distant ones. We will not pursue this here.

We can represent two points in two dimensions (‘in two-dimensional space’
is the usual term) as (a1, a2) and (b1, b2) and visualise them as points in a
plane.

When there are three attributes we can represent the points by (a1, a2, a3)
and (b1, b2, b3) and think of them as points in a room with three axes at right
angles. As the number of dimensions (attributes) increases it rapidly becomes
impossible to visualise them, at least for anyone who is not a physicist (and
most of those who are).

34 Principles of Data Mining

Figure 2.6 Two-dimensional Representation of Training Data in Figure 2.5

When there are n attributes, we can represent the instances by the points
(a1, a2, . . . , an) and (b1, b2, . . . , bn) in ‘n-dimensional space’.

2.3.1 Distance Measures

There are many possible ways of measuring the distance between two instances
with n attribute values, or equivalently between two points in n-dimensional
space. We usually impose three requirements on any distance measure we use.
We will use the notation dist(X,Y) to denote the distance between two points
X and Y .

1. The distance of any point A from itself is zero, i.e. dist(A,A) = 0.

2. The distance from A to B is the same as the distance from B to A, i.e.
dist(A,B) = dist(B,A) (the symmetry condition).

The third condition is called the triangle inequality (Figure 2.7). It cor-
responds to the intuitive idea that ‘the shortest distance between any two
points is a straight line’. The condition says that for any points A, B and Z:
dist(A,B) ≤ dist(A,Z) + dist(Z,B).

Introduction to Classification: Näıve Bayes and Nearest Neighbour 35

As usual, it is easiest to visualise this in two dimensions.

Z

A

B

Figure 2.7 The Triangle Inequality

The equality only occurs if Z is the same point as A or B or is on the direct
route between them.

There are many possible distance measures, but the most popular is almost
certainly the Euclidean Distance (Figure 2.8). This measure is named after the
Greek Mathematician Euclid of Alexandria, who lived around 300 bc and is
celebrated as the founder of geometry. It is the measure of distance assumed
in Figure 2.6.

We will start by illustrating the formula for Euclidean distance in two di-
mensions. If we denote an instance in the training set by (a1, a2) and the unseen
instance by (b1, b2) the length of the straight line joining the points is

√
(a1 − b1)2 + (a2 − b2)2

by Pythagoras’ Theorem.
If there are two points (a1, a2, a3) and (b1, b2, b3) in a three-dimensional

space the corresponding formula is
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2

The formula for Euclidean distance between points (a1, a2, . . . , an) and
(b1, b2, . . . , bn) in n-dimensional space is a generalisation of these two results.
The Euclidean distance is given by the formula

√
(a1 − b1)2 + (a2 − b2)2 + ... + (an − bn)2

36 Principles of Data Mining

(b1,b2)

(a1,a2)

Figure 2.8 Example of Euclidean Distance

Another measure sometimes used is called Manhattan Distance or City
Block Distance. The analogy is with travelling around a city such as Man-
hattan, where you cannot (usually) go straight from one place to another but
only by moving along streets aligned horizontally and vertically.

(12,9)

(4,2)

Figure 2.9 Example of City Block Distance

The City Block distance between the points (4, 2) and (12, 9) in Figure 2.9
is (12 − 4) + (9 − 2) = 8 + 7 = 15.

A third possibility is the maximum dimension distance. This is the largest
absolute difference between any pair of corresponding attribute values. (The
absolute difference is the difference converted to a positive number if it is
negative.) For example the maximum dimension distance between instances

6.2 −7.1 −5.0 18.3 −3.1 8.9

and

8.3 12.4 −4.1 19.7 −6.2 12.4

Introduction to Classification: Näıve Bayes and Nearest Neighbour 37

is 12.4 − (−7.1) = 19.5.
For many applications, Euclidean distance seems the most natural way of

measuring the distance between two instances.

2.3.2 Normalisation

A major problem when using the Euclidean distance formula (and many other
distance measures) is that the large values frequently swamp the small ones.

Suppose that two instances are as follows for some classification problem
associated with cars (the classifications themselves are omitted).

Mileage (miles) Number of doors Age (years) Number of owners
18,457 2 12 8
26,292 4 3 1

When the distance of these instances from an unseen one is calculated, the
mileage attribute will almost certainly contribute a value of several thousands
squared, i.e. several millions, to the sum of squares total. The number of doors
will probably contribute a value less than 10. It is clear that in practice the
only attribute that will matter when deciding which neighbours are the nearest
using the Euclidean distance formula is the mileage. This is unreasonable as the
unit of measurement, here the mile, is entirely arbitrary. We could have chosen
an alternative measure of distance travelled such as millimetres or perhaps
light years. Similarly we might have measured age in some other unit such as
milliseconds or millennia. The units chosen should not affect the decision on
which are the nearest neighbours.

To overcome this problem we generally normalise the values of continuous
attributes. The idea is to make the values of each attribute run from 0 to 1.
Suppose that for some attribute A the smallest value found in the training data
is −8.1 and the largest is 94.3. First we adjust each value of A by adding 8.1 to
it, so the values now run from 0 to 94.3+8.1 = 102.4. The spread of values from
highest to lowest is now 102.4 units, so we divide all values by that number to
make the spread of values from 0 to 1.

In general if the lowest value of attribute A is min and the highest value is
max, we convert each value of A, say a, to (a − min)/(max − min).

Using this approach all continuous attributes are converted to small num-
bers from 0 to 1, so the effect of the choice of unit of measurement on the
outcome is greatly reduced.

Note that it is possible that an unseen instance may have a value of A that
is less than min or greater than max. If we want to keep the adjusted numbers

38 Principles of Data Mining

in the range from 0 to 1 we can just convert any values of A that are less than
min or greater than max to 0 or 1, respectively.

Another issue that occurs with measuring the distance between two points
is the weighting of the contributions of the different attributes. We may be-
lieve that the mileage of a car is more important than the number of doors
it has (although no doubt not a thousand times more important, as with the
unnormalised values). To achieve this we can adjust the formula for Euclidean
distance to

√
w1(a1 − b1)2 + w2(a2 − b2)2 + ... + wn(an − bn)2

where w1, w2, . . . , wn are the weights. It is customary to scale the weight values
so that the sum of all the weights is one.

2.3.3 Dealing with Categorical Attributes

One of the weaknesses of the nearest neighbour approach to classification is
that there is no entirely satisfactory way of dealing with categorical attributes.
One possibility is to say that the difference between any two identical values of
the attribute is zero and that the difference between any two different values
is 1. Effectively this amounts to saying (for a colour attribute) red − red = 0,
red − blue = 1, blue − green = 1, etc.

Sometimes there is an ordering (or a partial ordering) of the values of an
attribute, for example we might have values good, average and bad. We could
treat the difference between good and average or between average and bad as
0.5 and the difference between good and bad as 1. This still does not seem
completely right, but may be the best we can do in practice.

2.4 Eager and Lazy Learning

The Näıve Bayes and Nearest Neighbour algorithms described in Sections 2.2
and 2.3 illustrate two alternative approaches to automatic classification, known
by the slightly cryptic names of eager learning and lazy learning, respectively.

In eager learning systems the training data is ‘eagerly’ generalised into
some representation or model such as a table of probabilities, a decision tree
or a neural net without waiting for a new (unseen) instance to be presented for
classification.

In lazy learning systems the training data is ‘lazily’ left unchanged until an

Introduction to Classification: Näıve Bayes and Nearest Neighbour 39

unseen instance is presented for classification. When it is, only those calcula-
tions that are necessary to classify that single instance are performed.

The lazy learning approach has some enthusiastic advocates, but if there are
a large number of unseen instances, it can be computationally very expensive
to carry out compared with eager learning methods such as Näıve Bayes and
the other methods of classification that are described in later chapters.

A more fundamental weakness of the lazy learning approach is that it does
not give any idea of the underlying causality of the task domain. This is also
true of the probability-based Näıve Bayes eager learning algorithm, but to a
lesser extent. X is the classification for no reason deeper than that if you do
the calculations X turns out to be the answer. We now turn to methods that
give an explicit way of classifying any unseen instance that can be used (and
critiqued) independently from the training data used to generate it. We call
such methods model-based.

Chapter Summary

This chapter introduces classification, one of the most common data mining
tasks. Two classification algorithms are described in detail: the Näıve Bayes
algorithm, which uses probability theory to find the most likely of the possible
classifications, and Nearest Neighbour classification, which estimates the classi-
fication of an unseen instance using the classification of the instances ‘closest’ to
it. These two methods generally assume that all the attributes are categorical
and continuous, respectively.

Self-assessment Exercises for Chapter 2

1. Using the Näıve Bayes classification algorithm with the train dataset, cal-
culate the most likely classification for the following unseen instances.

weekday summer high heavy ????

sunday summer normal slight ????

2. Using the training set shown in Figure 2.5 and the Euclidean distance
measure, calculate the 5-nearest neighbours of the instance with first and
second attributes 9.1 and 11.0, respectively.

3
Using Decision Trees for Classification

In this chapter we look at a widely-used method of constructing a model from a
dataset in the form of a decision tree or (equivalently) a set of decision rules. It is
often claimed that this representation of the data has the advantage compared
with other approaches of being meaningful and easy to interpret.

3.1 Decision Rules and Decision Trees

In many fields, large collections of examples, possibly collected for other pur-
poses, are readily available. Automatically generating classification rules (often
called decision rules) for such tasks has proved to be a realistic alternative to
the standard Expert System approach of eliciting the rules from experts. The
British academic Donald Michie [2] reported two large applications of 2,800
and 30,000+ rules, developed using automatic techniques in only one and 9
man-years, respectively, compared with the estimated 100 and 180 man-years
needed to develop the celebrated ‘conventional’ Expert Systems MYCIN and
XCON.

In many (but not all) cases decision rules can conveniently be fitted together
to form a tree structure of the kind shown in the following example.

42 Principles of Data Mining

3.1.1 Decision Trees: The Golf Example

A fictitious example which has been used for illustration by many authors,
notably Quinlan [3], is that of a golfer who decides whether or not to play each
day on the basis of the weather.

Figure 3.1 shows the results of two weeks (14 days) of observations of
weather conditions and the decision on whether or not to play.

Outlook Temp
(◦F)

Humidity
(%)

Windy Class

sunny
sunny
sunny
sunny
sunny
overcast
overcast
overcast
overcast
rain
rain
rain
rain
rain

75
80
85
72
69
72
83
64
81
71
65
75
68
70

70
90
85
95
70
90
78
65
75
80
70
80
80
96

true
true
false
false
false
true
false
true
false
true
true
false
false
false

play
don’t play
don’t play
don’t play
play
play
play
play
play
don’t play
don’t play
play
play
play

Classes
play, don’t play
Outlook
sunny, overcast, rain
Temperature
numerical value
Humidity
numerical value
Windy
true, false

Figure 3.1 Data for the Golf Example

Assuming the golfer is acting consistently, what are the rules that deter-
mine the decision whether or not to play each day? If tomorrow the values of
Outlook, Temperature, Humidity and Windy were sunny, 74◦F, 77% and false
respectively, what would the decision be?

One way of answering this is to construct a decision tree such as the one
shown in Figure 3.2. This is a typical example of a decision tree, which will
form the topic of several chapters of this book.

In order to determine the decision (classification) for a given set of weather
conditions from the decision tree, first look at the value of Outlook. There are
three possibilities.

1. If the value of Outlook is sunny, next consider the value of Humidity. If the
value is less than or equal to 75 the decision is play. Otherwise the decision
is don’t play.

Using Decision Trees for Classification 43

sunny overcast rain

true false≤75 >75

Humidity play Windy

Outlook

don’t play don’t play playplay

Figure 3.2 Decision Tree for the Golf Example

2. If the value of Outlook is overcast, the decision is play.

3. If the value of Outlook is rain, next consider the value of Windy. If the
value is true the decision is don’t play, otherwise the decision is play.

Note that the value of Temperature is never used.

3.1.2 Terminology

We will assume that the ‘standard formulation’ of the data given in Chapter 1
applies. There is a universe of objects (people, houses etc.), each of which can
be described by the values of a collection of its attributes. Attributes with a
finite (and generally fairly small) set of values, such as sunny, overcast and rain,
are called categorical. Attributes with numerical values, such as Temperature
and Humidity, are generally known as continuous. We will distinguish between
a specially-designated categorical attribute called the classification and the
other attribute values and will generally use the term ‘attributes’ to refer only
to the latter.

Descriptions of a number of objects are held in tabular form in a training
set. Each row of the figure comprises an instance, i.e. the (non-classifying)
attribute values and the classification corresponding to one object.

The aim is to develop classification rules from the data in the training set.
This is often done in the implicit form of a decision tree.

A decision tree is created by a process known as splitting on the value of
attributes (or just splitting on attributes), i.e. testing the value of an attribute
such as Outlook and then creating a branch for each of its possible values.
In the case of continuous attributes the test is normally whether the value is
‘less than or equal to’ or ‘greater than’ a given value known as the split value.

44 Principles of Data Mining

The splitting process continues until each branch can be labelled with just one
classification.

Decision trees have two different functions: data compression and prediction.
Figure 3.2 can be regarded simply as a more compact way of representing the
data in Figure 3.1. The two representations are equivalent in the sense that
for each of the 14 instances the given values of the four attributes will lead to
identical classifications.

However, the decision tree is more than an equivalent representation to the
training set. It can be used to predict the values of other instances not in the
training set, for example the one given previously where the values of the four
attributes are sunny, 74, 77 and false respectively. It is easy to see from the
decision tree that in this case the decision would be don’t play. It is important
to stress that this ‘decision’ is only a prediction, which may or may not turn
out to be correct. There is no infallible way to predict the future!

So the decision tree can be viewed as not merely equivalent to the original
training set but as a generalisation of it which can be used to predict the
classification of other instances. These are often called unseen instances and
a collection of them is generally known as a test set or an unseen test set, by
contrast with the original training set.

3.1.3 The degrees Dataset

The training set shown in Figure 3.3 (taken from a fictitious university) shows
the results of students for five subjects coded as SoftEng, ARIN, HCI, CSA
and Project and their corresponding degree classifications, which in this sim-
plified example are either FIRST or SECOND. There are 26 instances. What
determines who is classified as FIRST or SECOND?

Figure 3.4 shows a possible decision tree corresponding to this training set.
It consists of a number of branches, each ending with a leaf node labelled with
one of the valid classifications, i.e. FIRST or SECOND. Each branch comprises
the route from the root node (i.e. the top of the tree) to a leaf node. A node
that is neither the root nor a leaf node is called an internal node.

We can think of the root node as corresponding to the original training set.
All other nodes correspond to a subset of the training set.

At the leaf nodes each instance in the subset has the same classification.
There are five leaf nodes and hence five branches.

Each branch corresponds to a classification rule. The five classification rules
can be written in full as:

IF SoftEng = A AND Project = A THEN Class = FIRST
IF SoftEng = A AND Project = B AND ARIN = A AND CSA = A

Using Decision Trees for Classification 45

SoftEng ARIN HCI CSA Project Class
A B A B B SECOND
A B B B A FIRST
A A A B B SECOND
B A A B B SECOND
A A B B A FIRST
B A A B B SECOND
A B B B B SECOND
A B B B B SECOND
A A A A A FIRST
B A A B B SECOND
B A A B B SECOND
A B B A B SECOND
B B B B A SECOND
A A B A B FIRST
B B B B A SECOND
A A B B B SECOND
B B B B B SECOND
A A B A A FIRST
B B B A A SECOND
B B A A B SECOND
B B B B A SECOND
B A B A B SECOND
A B B B A FIRST
A B A B B SECOND
B A B B B SECOND
A B B B B SECOND

Classes
FIRST, SECOND
SoftEng
A,B
ARIN
A,B
HCI
A,B
CSA
A,B
Project
A,B

Figure 3.3 The degrees Dataset

THEN Class = FIRST
IF SoftEng = A AND Project = B AND ARIN = A AND CSA = B
THEN Class = SECOND
IF SoftEng = A AND Project = B AND ARIN = B
THEN Class = SECOND
IF SoftEng = B THEN Class = SECOND

The left-hand side of each rule (known as the antecedent) comprises a num-
ber of terms joined by the logical AND operator. Each term is a simple test on
the value of a categorical attribute (e.g. SoftEng = A) or a continuous attribute
(e.g. in Figure 3.2, Humidity > 75).

46 Principles of Data Mining

A

A

A

A

SoftEng

SECONDProject

ARINFIRST

SECONDCSA

SECONDFIRST

B

B

B

B

Figure 3.4 Decision Tree for the degrees Dataset

A set of rules of this kind is said to be in Disjunctive Normal Form (DNF).
The individual rules are sometimes known as disjuncts.

Looking at this example in terms of data compression, the decision tree can
be written as five decision rules with a total of 14 terms, an average of 2.8
terms per rule. Each instance in the original degrees training set could also be
viewed as a rule, for example

IF SoftEng = A AND ARIN = B AND HCI = A AND CSA = B
AND Project = B THEN Class = SECOND

There are 26 such rules, one per instance, each with five terms, making a
total of 130 terms. Even for this very small training set, the reduction in the
number of terms requiring to be stored from the training set (130 terms) to the
decision tree (14 terms) is almost 90%.

The order in which we write the rules generated from a decision tree is
arbitrary, so the five rules given above could be rearranged to (say)

IF SoftEng = A AND Project = B AND ARIN = A AND CSA = B
THEN Class = SECOND
IF SoftEng = B THEN Class = SECOND
IF SoftEng = A AND Project = A THEN Class = FIRST
IF SoftEng = A AND Project = B AND ARIN = B
THEN Class = SECOND

Using Decision Trees for Classification 47

IF SoftEng = A AND Project = B AND ARIN = A AND CSA = A
THEN Class = FIRST

without any change to the predictions the ruleset will make on unseen instances.
For practical use, the rules can easily be simplified to an equivalent nested

set of IF . . . THEN . . . ELSE rules, with even more compression, e.g. (for the
original set of rules)

if (SoftEng = A) {
if (Project = A) Class = FIRST
else {

if (ARIN = A) {
if (CSA = A) Class = FIRST
else Class = SECOND

}
else Class = SECOND

}
}
else Class = SECOND

3.2 The TDIDT Algorithm

Decision trees are widely used as a means of generating classification rules
because of the existence of a simple but very powerful algorithm called TDIDT,
which stands for Top-Down Induction of Decision Trees. This has been known
since the mid-1960s and has formed the basis for many classification systems,
two of the best-known being ID3 [4] and C4.5 [3], as well as being used in many
commercial data mining packages.

The method produces decision rules in the implicit form of a decision tree.
Decision trees are generated by repeatedly splitting on the values of attributes.
This process is known as recursive partitioning.

In the standard formulation of the TDIDT algorithm there is a training set
of instances. Each instance corresponds to a member of a universe of objects,
which is described by the values of a set of categorical attributes. (The algo-
rithm can be adapted to deal with continuous attributes, as will be discussed
in Chapter 7.)

The basic algorithm can be given in just a few lines as shown in Figure 3.5.
At each non-leaf node an attribute is chosen for splitting. This can poten-

tially be any attribute, except that the same attribute must not be chosen twice
in the same branch. This restriction is entirely innocuous, e.g. in the branch

48 Principles of Data Mining

TDIDT: BASIC ALGORITHM

IF all the instances in the training set belong to the same class
THEN return the value of the class
ELSE (a) Select an attribute A to split on+

(b) Sort the instances in the training set into subsets, one
for each value of attribute A

(c) Return a tree with one branch for each non-empty subset,
each branch having a descendant subtree or a class
value produced by applying the algorithm recursively

+ Never select an attribute twice in the same branch

Figure 3.5 The TDIDT Algorithm

corresponding to the incomplete rule

IF SoftEng = A AND Project = B

it is not permitted to choose SoftEng or Project as the next attribute to split
on, but as their values are already known there would be no point in doing so.

However this harmless restriction has a very valuable effect. Each split on
the value of an attribute extends the length of the corresponding branch by one
term, but the maximum possible length for a branch is M terms where there
are M attributes. Hence the algorithm is guaranteed to terminate.

There is one important condition which must hold before the TDIDT algo-
rithm can be applied. This is the Adequacy Condition: no two instances with
the same values of all the attributes may belong to different classes. This is sim-
ply a way of ensuring that the training set is consistent. Dealing with training
sets that are not consistent is the subject of Section 8.1.

A major problem with the TDIDT algorithm, which is not apparent at first
sight, is that it is underspecified. The algorithm specifies ‘Select an attribute A
to split on’ but no method is given for doing this.

Provided the adequacy condition is satisfied the algorithm is guaranteed to
terminate and any selection of attributes (even random selection) will produce
a decision tree, provided that an attribute is never selected twice in the same
branch.

This under-specification may seem desirable, but many of the resulting de-
cision trees (and the corresponding decision rules) will be of little, if any, value
for predicting the classification of unseen instances.

Thus some methods of selecting attributes may be much more useful than
others. Making a good choice of attributes to split on at each stage is crucial
to the success of the TDIDT approach. This will be the main topic of Chapters
4 and 5.

Using Decision Trees for Classification 49

3.3 Types of Reasoning

The automatic generation of decision rules from examples is known as rule
induction or automatic rule induction.

Generating decision rules in the implicit form of a decision tree is also often
called rule induction, but the terms tree induction or decision tree induction
are sometimes preferred. We will end this chapter with a digression to explain
the significance of the word ‘induction’ in these phrases and will return to the
topic of attribute selection in the next chapter.

Logicians distinguish between different types of reasoning. The most famil-
iar is deduction, where the conclusion is shown to follow necessarily from the
truth of the premises, for example

All Men Are Mortal
John is a Man
Therefore John is Mortal

If the first two statements (the premises) are true, then the conclusion must
be true.

This type of reasoning is entirely reliable but in practice rules that are 100%
certain (such as ‘all men are mortal’) are often not available.

A second type of reasoning is called abduction. An example of this is

All Dogs Chase Cats
Fido Chases Cats
Therefore Fido is a Dog

Here the conclusion is consistent with the truth of the premises, but it may
not necessarily be correct. Fido may be some other type of animal that chases
cats, or perhaps not an animal at all. Reasoning of this kind is often very
successful in practice but can sometimes lead to incorrect conclusions.

A third type of reasoning is called induction. This is a process of generali-
sation based on repeated observations.

After many observations of x and y occurring together, learn the rule
if x then y

For example, if I see 1,000 dogs with four legs I might reasonably conclude
that “if x is a dog then x has 4 legs” (or more simply “all dogs have four legs”).
This is induction. The decision trees derived from the golf and degrees datasets
are of this kind. They are generalised from repeated observations (the instances
in the training sets) and we would expect them to be good enough to use for
predicting the classification of unseen instances in most cases, but they may

50 Principles of Data Mining

not be infallible.

Chapter Summary

This chapter introduces the TDIDT (Top-Down Induction of Decision Trees)
algorithm for inducing classification rules via the intermediate representation
of a decision tree. The algorithm can always be applied provided the ‘adequacy
condition’ holds for the instances in the training set. The chapter ends by
distinguishing three types of reasoning: deduction, abduction and induction.

Self-assessment Exercises for Chapter 3

1. What is the adequacy condition on the instances in a training set?

2. What are the most likely reasons for the condition not to be met for a given
dataset?

3. What is the significance of the adequacy condition to automatic rule gen-
eration using the TDIDT algorithm?

4. What happens if the basic TDIDT algorithm is applied to a dataset for
which the adequacy condition does not apply?

4
Decision Tree Induction: Using Entropy

for Attribute Selection

4.1 Attribute Selection: An Experiment

In the last chapter it was shown that the TDIDT algorithm is guaranteed to
terminate and to give a decision tree that correctly corresponds to the data,
provided that the adequacy condition is satisfied. This condition is that no two
instances with identical attribute values have different classifications.

However, it was also pointed out that the TDIDT algorithm is underspeci-
fied. Provided that the adequacy condition is satisfied, any method of choosing
attributes will produce a decision tree. We will begin this chapter by consid-
ering the decision trees obtained from using some poorly chosen strategies for
attribute selection and then go on to describe one of the most widely used
approaches and look at how the results compare.

First we look at the decision trees produced by using the three attribute
selection strategies listed below.

– takefirst – for each branch take the attributes in the order in which they
appear in the training set, working from left to right, e.g. for the degrees
training set in the order SoftEng, ARIN, HCI, CSA and Project.

– takelast – as for takefirst, but working from right to left, e.g. for the degrees
training set in the order Project, CSA, HCI, ARIN and SoftEng.

– random – make a random selection (with equal probability of each attribute

52 Principles of Data Mining

being selected).

As always no attribute may be selected twice in the same branch.
Warning: these three strategies are given here for purposes of illustration

only. They are not intended for serious practical use but provide a basis for
comparison with other methods introduced later.

Figure 4.1 shows the results of running the TDIDT algorithm with attribute
selection strategies takefirst, takelast and random in turn to generate decision
trees for the seven datasets contact lenses, lens24, chess, vote, monk1, monk2
and monk3. These datasets will be mentioned frequently as this book pro-
gresses. Information about all of them is given in Appendix B. The random
strategy was used five times for each dataset. In each case the value given in
the table is the number of branches in the decision tree generated.

The last two columns record the number of branches in the largest and the
smallest of the trees generated for each of the datasets. In all cases there is a
considerable difference. This suggests that although in principle the attributes
can be chosen in any arbitrary way, the difference between a good choice and
a bad one may be considerable. The next section looks at this issue from a
different point of view.

Dataset take take random most least
first last 1 2 3 4 5

contact lenses 42 27 34 38 32 26 35 42 26
lens24 21 9 15 11 15 13 11 21 9
chess 155 56 94 52 107 90 112 155 52
vote 40 79 96 78 116 110 96 116 40
monk1 60 75 82 53 87 89 80 89 53
monk2 142 112 122 127 109 123 121 142 109
monk3 69 69 43 46 62 55 77 77 43

Figure 4.1 Number of Branches Generated by TDIDT with Three Attribute
Selection Methods

4.2 Alternative Decision Trees

Although (as was illustrated in the last section) any method of choosing at-
tributes will produce a decision tree that does not mean that the method chosen
is irrelevant. Some choices of attribute may be considerably more useful than

Decision Tree Induction: Using Entropy for Attribute Selection 53

others.

4.2.1 The Football/Netball Example

A fictitious university requires its students to enrol in one of its sports clubs,
either the Football Club or the Netball Club. It is forbidden to join both clubs.
Any student joining no club at all will be awarded an automatic failure in their
degree (this being considered an important disciplinary offence).

Figure 4.2 gives a training set of data collected about 12 students, tabulating
four items of data about each one (eye colour, marital status, sex and hair
length) against the club joined.

eyecolour married sex hairlength class
brown yes male long football
blue yes male short football
brown yes male long football
brown no female long netball
brown no female long netball
blue no male long football
brown no female long netball
brown no male short football
brown yes female short netball
brown no female long netball
blue no male long football
blue no male short football

Figure 4.2 Training Set for the Football/Netball Example

What determines who joins which club?

It is possible to generate many different trees from this data using the
TDIDT algorithm. One possible decision tree is Figure 4.3. (The numbers in
parentheses indicate the number of instances corresponding to each of the leaf
nodes.)

This is a remarkable result. All the blue-eyed students play football. For
the brown-eyed students, the critical factor is whether or not they are married.
If they are, then the long-haired ones all play football and the short-haired
ones all play netball. If they are not married, it is the other way round: the
short-haired ones play football and the long-haired ones play netball.

54 Principles of Data Mining

hairlength hairlength

married

brown

yes

long short short long

no

blue

netball (1) football (1) netball (4)football (2)

eyecolour

football (4)

Figure 4.3 Football/Netball Example: Decision Tree 1

This would be an astonishing discovery, likely to attract worldwide atten-
tion, if it were correct—but is it?

Another decision tree that can be generated from the training set is Figure
4.4. This one looks more believable but is it correct?

football (7)

male female

sex

netball (5)

Figure 4.4 Football/Netball Example: Decision Tree 2

Although it is tempting to say that it is, it is best to avoid using terms such
as ‘correct’ and ‘incorrect’ in this context. All we can say is that both decision
trees are compatible with the data from which they were generated. The only
way to know which one gives better results for unseen data is to use them both
and compare the results.

Despite this, it is hard to avoid the belief that Figure 4.4 is right and Figure
4.3 is wrong. We will return to this point.

Decision Tree Induction: Using Entropy for Attribute Selection 55

4.2.2 The anonymous Dataset

Now consider the different example in Figure 4.5.

a1 a2 a3 a4 class
a11 a21 a31 a41 c1
a12 a21 a31 a42 c1
a11 a21 a31 a41 c1
a11 a22 a32 a41 c2
a11 a22 a32 a41 c2
a12 a22 a31 a41 c1
a11 a22 a32 a41 c2
a11 a22 a31 a42 c1
a11 a21 a32 a42 c2
a11 a22 a32 a41 c2
a12 a22 a31 a41 c1
a12 a22 a31 a42 c1

Figure 4.5 The anonymous Dataset

Here we have a training set of 12 instances. There are four attributes, a1,
a2, a3 and a4, with values a11, a12 etc., and two classes c1 and c2.

One possible decision tree we can generate from this data is Figure 4.6.

a21 a 22

a42 a41a41 a42

a4 a4

a2

c2 c1 c2c1

a11 a12

a1

c1

Figure 4.6 Anonymous Data: Decision Tree 1

56 Principles of Data Mining

Another possible tree is Figure 4.7.

c1

a3

a31 a32

c2

Figure 4.7 Anonymous Data: Decision Tree 2

Which tree is better?
This is the football/netball example in anonymised form, of course.
The effect of replacing meaningful attribute names such as eyecolour and

sex with meaningless names such as a1 and a3 is considerable. Although we
might say that we prefer Figure 4.7 because it is smaller, there seems no reason
why Figure 4.6 should not be acceptable.

Data mining algorithms generally do not allow the use of any background
knowledge the user has about the domain from which the data is drawn, such
as the ‘meaning’ and relative importance of attributes, or which attributes are
most or least likely, to determine the classification of an instance.

It is easy to see that a decision tree involving tests on eyecolour, hairlength
etc. is meaningless when it is given in isolation, but if those attributes were
part of a much larger number (possibly many thousands) in a practical appli-
cation what would there be to prevent meaningless decision rules from being
generated?

Apart from vigilance and a good choice of algorithm, the answer to this is
‘nothing at all’. The quality of the strategy used to select the attribute to split
on at each stage is clearly of vital importance. This is the topic to which we
now turn.

4.3 Choosing Attributes to Split On: Using
Entropy

The attribute selection techniques described in Section 4.1 (takefirst, takelast
and random) were included for illustrative purposes only. For practical use
several much superior methods are available. One commonly used method is to
select the attribute that minimises the value of entropy, thus maximising the

Decision Tree Induction: Using Entropy for Attribute Selection 57

information gain. This method will be explained later in this chapter. Other
commonly used methods will be discussed in the next chapter.

Figure 4.8 is based on Figure 4.1, which gave the size of the tree with most
and least branches produced by the takefirst, takelast and random attribute se-
lection strategies for a number of datasets. The final column shows the number
of branches generated by the ‘entropy’ attribute selection method (which has
not yet been described). In almost all cases the number of branches is substan-
tially reduced. The smallest number of branches, i.e. rules for each dataset, is
in bold and underlined.

Dataset excluding entropy entropy
most least

contact lenses 42 26 16
lens24 21 9 9
chess 155 52 20
vote 116 40 34
monk1 89 53 52
monk2 142 109 95
monk3 77 43 28

Figure 4.8 Most and Least Figures from Figure 4.1 Augmented by Informa-
tion about Entropy Attribute Selection

In all cases the number of rules in the decision tree generated using the
‘entropy’ method is less than or equal to the smallest number generated using
any of the other attribute selection criteria introduced so far. In some cases,
such as for the chess dataset, it is considerably fewer.

There is no guarantee that using entropy will always lead to a small de-
cision tree, but experience shows that it generally produces trees with fewer
branches than other attribute selection criteria (not just the basic ones used
in Section 4.1). Experience also shows that small trees tend to give more ac-
curate predictions than large ones, although there is certainly no guarantee of
infallibility.

4.3.1 The lens24 Dataset

Before explaining the method of attribute selection using entropy, it will be
helpful to say more about one of the small datasets used in Figures 4.1 and 4.8.
The lens24 dataset is ophthalmological data about contact lenses. It comprises

58 Principles of Data Mining

24 instances linking the values of four attributes age (i.e. age group), specRx
(spectacle prescription), astig (whether astigmatic) and tears (tear production
rate) with one of three classes 1, 2 and 3 (signifying respectively that the patient
should be fitted with hard contact lenses, soft contact lenses or none at all).
The complete training set is given as Figure 4.9.

Value of attribute Class
age specRx astig tears
1 1 1 1 3
1 1 1 2 2
1 1 2 1 3
1 1 2 2 1
1 2 1 1 3
1 2 1 2 2
1 2 2 1 3
1 2 2 2 1
2 1 1 1 3
2 1 1 2 2
2 1 2 1 3
2 1 2 2 1
2 2 1 1 3
2 2 1 2 2
2 2 2 1 3
2 2 2 2 3
3 1 1 1 3
3 1 1 2 3
3 1 2 1 3
3 1 2 2 1
3 2 1 1 3
3 2 1 2 2
3 2 2 1 3
3 2 2 2 3

classes
1: hard contact lenses
2: soft contact lenses
3: no contact lenses

age
1: young
2: pre-presbyopic
3: presbyopic

specRx
(spectacle prescription)
1: myopia
2: high hypermetropia

astig
(whether astigmatic)
1: no
2: yes

tears
(tear production rate)
1: reduced
2: normal

Figure 4.9 Training Set for lens24 Data

Decision Tree Induction: Using Entropy for Attribute Selection 59

4.3.2 Entropy

Note: This description relies on an understanding of the mathe-
matical function log2 X. If you are unfamiliar with this function, a
brief summary of the essential points is given in Appendix A.3.

Entropy is an information-theoretic measure of the ‘uncertainty’ contained
in a training set, due to the presence of more than one possible classification.

If there are K classes, we can denote the proportion of instances with clas-
sification i by pi for i = 1 to K. The value of pi is the number of occurrences
of class i divided by the total number of instances, which is a number between
0 and 1 inclusive.

The entropy of the training set is denoted by E. It is measured in ‘bits’ of
information and is defined by the formula

E = −
K∑

i=1

pi log2 pi

summed over the non-empty classes only, i.e. classes for which pi �= 0.
An explanation of this formula will be given in Chapter 9. At present it is

simplest to accept the formula as given and concentrate on its properties.
As is shown in Appendix A the value of −pi log2 pi is positive for values of pi

greater than zero and less than 1. When pi = 1 the value of −pi log2 pi is zero.
This implies that E is positive or zero for all training sets. It takes its minimum
value (zero) if and only if all the instances have the same classification, in which
case there is only one non-empty class, for which the probability is 1.

Entropy takes its maximum value when the instances are equally distributed
amongst the K possible classes.

In this case the value of each pi is 1/K, which is independent of i, so

E = −
K∑

i=1

(1/K) log2(1/K)

= −K(1/K) log2(1/K)
= − log2(1/K) = log2 K

If there are 2, 3 or 4 classes this maximum value is 1, 1.5850 or 2, respec-
tively.

For the initial lens24 training set of 24 instances, there are 3 classes. There
are 4 instances with classification 1, 5 instances with classification 2 and 15
instances with classification 3. So p1 = 4/24, p2 = 5/24 and p3 = 15/24.

We will call the entropy Estart. It is given by
Estart = −(4/24) log2(4/24) − (5/24) log2(5/24) − (15/24) log2(15/24)

= 0.4308 + 0.4715 + 0.4238

60 Principles of Data Mining

= 1.3261 bits (these and subsequent figures in this chapter are given to four
decimal places).

4.3.3 Using Entropy for Attribute Selection

The process of decision tree generation by repeatedly splitting on attributes
is equivalent to partitioning the initial training set into smaller training sets
repeatedly, until the entropy of each of these subsets is zero (i.e. each one has
instances drawn from only a single class).

At any stage of this process, splitting on any attribute has the property
that the average entropy of the resulting subsets will be less than
(or occasionally equal to) that of the previous training set. This is an
important result that we will state here without proof. We will come back to
it in Chapter 9.

For the lens24 training set, splitting on attribute age would give three
subsets as shown in Figures 4.10(a), 4.10(b) and 4.10(c).
Training set 1 (age = 1)

Value of attribute Class
age specRx astig tears
1 1 1 1 3
1 1 1 2 2
1 1 2 1 3
1 1 2 2 1
1 2 1 1 3
1 2 1 2 2
1 2 2 1 3
1 2 2 2 1

Figure 4.10(a) Training Set 1 for lens24 Example

Entropy E1 = −(2/8) log2(2/8) − (2/8) log2(2/8) − (4/8) log2(4/8)
= 0.5 + 0.5 + 0.5 = 1.5
Training set 2 (age = 2)

Entropy E2 = −(1/8) log2(1/8) − (2/8) log2(2/8) − (5/8) log2(5/8)
= 0.375 + 0.5 + 0.4238 = 1.2988
Training Set 3 (age = 3)

Entropy E3 = −(1/8) log2(1/8) − (1/8) log2(1/8) − (6/8) log2(6/8)
= 0.375 + 0.375 + 0.3113 = 1.0613

Decision Tree Induction: Using Entropy for Attribute Selection 61

Value of attribute Class
age specRx astig tears
2 1 1 1 3
2 1 1 2 2
2 1 2 1 3
2 1 2 2 1
2 2 1 1 3
2 2 1 2 2
2 2 2 1 3
2 2 2 2 3

Figure 4.10(b) Training Set 2 for lens24 Example

Value of attribute Class
age specRx astig tears
3 1 1 1 3
3 1 1 2 3
3 1 2 1 3
3 1 2 2 1
3 2 1 1 3
3 2 1 2 2
3 2 2 1 3
3 2 2 2 3

Figure 4.10(c) Training Set 3 for lens24 Example

Although the entropy of the first of these three training sets (E1) is greater
than Estart, the weighted average will be less. The values E1, E2 and E3 need
to be weighted by the proportion of the original instances in each of the three
subsets. In this case all the weights are the same, i.e. 8/24.

If the average entropy of the three training sets produced by splitting on at-
tribute age is denoted by Enew, then Enew = (8/24)E1+(8/24)E2+(8/24)E3 =
1.2867 bits (to 4 decimal places).

If we define Information Gain = Estart − Enew then the information gain
from splitting on attribute age is 1.3261 − 1.2867 = 0.0394 bits (see Figure
4.11).

The ‘entropy method’ of attribute selection is to choose to split on the
attribute that gives the greatest reduction in (average) entropy, i.e. the one
that maximises the value of Information Gain. This is equivalent to minimising
the value of Enew as Estart is fixed.

62 Principles of Data Mining

age = 1 age = 2 age = 3

Initial Entropy = 1.3261 bits
Average Entropy of Subsets = 1.2867 bits
Information Gain = 1.3261–1.2867 = 0.0394 bits

E1 = 1.5 bits E2 = 1.2988 bits E3 = 1.0613 bits

Figure 4.11 Information Gain for Splitting on Attribute age

4.3.4 Maximising Information Gain

The values of Enew and Information Gain for splitting on each of the four
attributes age, specRx, astig and tears are as follows:

attribute age

Enew = 1.2867
Information Gain = 1.3261 − 1.2867 = 0.0394 bits

attribute specRx

Enew = 1.2866
Information Gain = 1.3261 − 1.2866 = 0.0395 bits

attribute astig

Enew = 0.9491
Information Gain = 1.3261 − 0.9491 = 0.3770 bits

attribute tears

Enew = 0.7773
Information Gain = 1.3261 − 0.7773 = 0.5488 bits

Thus, the largest value of Information Gain (and the smallest value of the
new entropy Enew) is obtained by splitting on attribute tears (see Figure 4.12).

The process of splitting on nodes is repeated for each branch of the evolving
decision tree, terminating when the subset at every leaf node has entropy zero.

Decision Tree Induction: Using Entropy for Attribute Selection 63

tears = 2tears = 1

Figure 4.12 Splitting on Attribute tears

Chapter Summary

This chapter examines some alternative strategies for selecting attributes at
each stage of the TDIDT decision tree generation algorithm and compares the
size of the resulting trees for a number of datasets. The risk of obtaining decision
trees that are entirely meaningless is highlighted, pointing to the importance
of a good choice of attribute selection strategy. One of the most widely used
strategies is based on minimising entropy (or equivalently maximising infor-
mation gain) and this approach is illustrated in detail.

Self-assessment Exercises for Chapter 4

1. By constructing a spreadsheet or otherwise, calculate the following for the
degrees dataset given in Section 3.1.3, Figure 3.3:

a) the initial entropy Estart

b) the weighted average entropy Enew of the training (sub)sets resulting
from splitting on each of the attributes SoftEng, Arin, HCI, CSA and
Project in turn and the corresponding value of Information Gain in
each case.

Using these results, verify that the attribute that will be chosen by the
TDIDT algorithm for the first split on the data using the entropy selection
criterion is SoftEng.

2. Suggest reasons why entropy (or information gain) is one of the most effec-

64 Principles of Data Mining

tive methods of attribute selection when using the TDIDT tree generation
algorithm.

5
Decision Tree Induction: Using Frequency

Tables for Attribute Selection

5.1 Calculating Entropy in Practice

The detailed calculations needed to choose an attribute to split on at a node
in the evolving decision tree were illustrated in Section 4.3.3. At each node a
table of values such as Figure 4.10(a), reproduced here as Figure 5.1, needs to
be calculated for every possible value of every categorical attribute.

Value of attribute Class
age specRx astig tears
1 1 1 1 3
1 1 1 2 2
1 1 2 1 3
1 1 2 2 1
1 2 1 1 3
1 2 1 2 2
1 2 2 1 3
1 2 2 2 1

Figure 5.1 Training Set 1 (age = 1) for lens24 Example

For practical use a more efficient method is available which requires only a

66 Principles of Data Mining

single table to be constructed for each categorical attribute at each node. This
method, which can be shown to be equivalent to the one given previously (see
Section 5.1.1), uses a frequency table. The cells of this table show the number
of occurrences of each combination of class and attribute value in the training
set. For the lens24 dataset the frequency table corresponding to splitting on
attribute age is shown in Figure 5.2.

age = 1 age = 2 age = 3
Class 1 2 1 1
Class 2 2 2 1
Class 3 4 5 6
Column sum 8 8 8

Figure 5.2 Frequency Table for Attribute age for lens24 Example

We will denote the total number of instances by N , so N = 24.
The value of Enew, the average entropy of the training sets resulting from

splitting on a specified attribute, can now be calculated by forming a sum as
follows.

(a) For every non-zero value V in the main body of the table (i.e. the part
above the ‘column sum’ row), subtract V × log2 V .

(b) For every non-zero value S in the column sum row, add S × log2 S.

Finally, divide the total by N .
Figure 5.3 gives the value of log2 x for small integer values of x for reference.
Using the frequency table given as Figure 5.2, splitting on attribute age

gives an Enew value of
−2 log2 2 − 1 log2 1 − 1 log2 1 − 2 log2 2 − 2 log2 2 − 1 log2 1
−4 log2 4 − 5 log2 5 − 6 log2 6 + 8 log2 8 + 8 log2 8 + 8 log2 8

divided by 24. This can be rearranged as

(−3 × 2 log2 2 − 3 log2 1 − 4 log2 4 − 5 log2 5 − 6 log2 6 + 3 × 8 log2 8)/24

= 1.2867 bits (to 4 decimal places), which agrees with the value calculated
previously.

5.1.1 Proof of Equivalence

It remains to be proved that this method always gives the same value of Enew

as the basic method described in Chapter 4.

Decision Tree Induction: Using Frequency Tables for Attribute Selection 67

x log2 x

1 0
2 1
3 1.5850
4 2
5 2.3219
6 2.5850
7 2.8074
8 3
9 3.1699
10 3.3219
11 3.4594
12 3.5850

Figure 5.3 Some values of log2 x (to 4 decimal places)

Assume that there are N instances, each relating the value of a number
of categorical attributes to one of K possible classifications. (For the lens24
dataset used previously, N = 24 and K = 3.)

Splitting on a categorical attribute with V possible values produces V sub-
sets of the training set. The jth subset contains all the instances for which the
attribute takes its jth value. Let Nj denote the number of instances in that
subset. Then

V∑

j=1

Nj = N

(For the frequency table shown in Figure 5.2, for attribute age, there are three
values of the attribute, so V = 3. The three column sums are N1, N2 and N3,
which all have the same value (8). The value of N is N1 + N2 + N3 = 24.)

Let fij denote the number of instances for which the classification is the ith
one and the attribute takes its jth value (e.g. for Figure 5.2, f32 = 5). Then

K∑

i=1

fij = Nj

The frequency table method of forming the sum for Enew given above
amounts to using the formula

Enew = −
V∑

j=1

K∑

i=1

(fij/N). log2 fij +
V∑

j=1

(Nj/N). log2 Nj

68 Principles of Data Mining

The basic method of calculating Enew using the entropies of the j subsets
resulting from splitting on the specified attribute was described in Chapter 4.

The entropy of the jth subset is Ej where

Ej = −
K∑

i=1

(fij/Nj). log2(fij/Nj)

The value of Enew is the weighted sum of the entropies of these V subsets.
The weighting is the proportion of the original N instances that the subset
contains, i.e. Nj/N for the jth subset. So

Enew =
V∑

j=1

NjEj/N

= −
V∑

j=1

K∑

i=1

(Nj/N).(fij/Nj). log2(fij/Nj)

= −
V∑

j=1

K∑

i=1

(fij/N). log2(fij/Nj)

= −
V∑

j=1

K∑

i=1

(fij/N). log2 fij +
V∑

j=1

K∑

i=1

(fij/N). log2 Nj

= −
V∑

j=1

K∑

i=1

(fij/N). log2 fij +
V∑

j=1

(Nj/N). log2 Nj [as
K∑

i=1

fij = Nj]

This proves the result.

5.1.2 A Note on Zeros

The formula for entropy given in Section 4.3.2 excludes empty classes from the
summation. They correspond to zero entries in the body of the frequency table,
which are also excluded from the calculation.

If a complete column of the frequency table is zero it means that the cat-
egorical attribute never takes one of its possible values at the node under
consideration. Any such columns are ignored. (This corresponds to ignoring
empty subsets whilst generating a decision tree, as described in Section 3.2,
Figure 3.5.)

5.2 Other Attribute Selection Criteria: Gini
Index of Diversity

As well as entropy (or information gain) many other methods have been pro-
posed for selecting the attribute to split on at each stage of the TDIDT algo-

Decision Tree Induction: Using Frequency Tables for Attribute Selection 69

rithm. There is a useful review of several methods by Mingers [5].
One measure that is commonly used is the Gini Index of Diversity. If there

are K classes, with the probability of the ith class being pi, the Gini Index is

defined as 1 −
K∑

i=1

p2
i .

This is a measure of the ‘impurity’ of a dataset. Its smallest value is zero,
which it takes when all the classifications are the same. It takes its largest value
1− 1/K when the classes are evenly distributed between the instances, i.e. the
frequency of each class is 1/K.

Splitting on a chosen attribute gives a reduction in the average Gini Index
of the resulting subsets (as it does for entropy). The new average value Gininew

can be calculated using the same frequency table used to calculate the new
entropy value in Section 5.1.

Using the notation introduced in that section, the value of the Gini Index
for the jth subset resulting from splitting on a specified attribute is Gj , where

Gj = 1 −
K∑

i=1

(fij/Nj)2

The weighted average value of the Gini Index for the subsets resulting from
splitting on the attribute is

Gininew =
V∑

j=1

Nj.Gj/N

=
V∑

j=1

(Nj/N) −
V∑

j=1

K∑

i=1

(Nj/N).(fij/Nj)2

= 1 −
V∑

j=1

K∑

i=1

f2
ij/(N.Nj)

= 1 − (1/N)
V∑

j=1

(1/Nj)
K∑

i=1

f2
ij

At each stage of the attribute selection process the attribute is selected which
maximises the reduction in the value of the Gini Index, i.e. Ginistart−Gininew.

Again taking the example of the lens24 dataset, the initial probabilities of
the three classes as given in Chapter 4 are p1 = 4/24, p2 = 5/24 and p3 = 15/24.
Hence the initial value of the Gini Index is Gstart = 0.5382.

For splitting on attribute age the frequency table, as before, is shown in
Figure 5.4.

We can now calculate the new value of the Gini Index as follows.

1. For each non-empty column, form the sum of the squares of the values in
the body of the table and divide by the column sum.

70 Principles of Data Mining

age = 1 age = 2 age = 3
Class 1 2 1 1
Class 2 2 2 1
Class 3 4 5 6
Column sum 8 8 8

Figure 5.4 Frequency Table for Attribute age for lens24 Example

2. Add the values obtained for all the columns and divide by N (the number
of instances).

3. Subtract the total from 1.

For Figure 5.4 we have

age = 1: (22 + 22 + 42)/8 = 3
age = 2: (12 + 22 + 52)/8 = 3.75
age = 3: (12 + 12 + 62)/8 = 4.75

Gnew = 1 − (3 + 3.75 + 4.75)/24 = 0.5208.
Thus the reduction in the value of the Gini Index corresponding to splitting

on attribute age is 0.5382 − 0.5208 = 0.0174.

For the other three attributes, the corresponding values are

specRx: Gnew = 0.5278, so the reduction is 0.5382 − 0.5278 = 0.0104
astig: Gnew = 0.4653, so the reduction is 0.5382 − 0.4653 = 0.0729
tears: Gnew = 0.3264, so the reduction is 0.5382 − 0.3264 = 0.2118

The attribute selected would be the one which gives the largest reduction
in the value of the Gini Index, i.e. tears. This is the same attribute that was
selected using entropy.

5.3 Inductive Bias

Before going on to describe a further method of attribute selection we will in-
troduce the idea of inductive bias, which will help to explain why other methods
are needed.

Consider the following question, which is typical of those that used to be
(and probably still are) set for school children to answer as part of a so-called
‘intelligence test’.

Decision Tree Induction: Using Frequency Tables for Attribute Selection 71

Find the next term in the sequence
1, 4, 9, 16, ...

Pause and decide on your answer before going on.
Most readers will probably have chosen the answer 25, but this is misguided.

The correct answer is 20. As should be obvious, the nth term of the series is
calculated from the formula:

nth term = (−5n4 + 50n3 − 151n2 + 250n − 120)/24
By choosing 25, you display a most regrettable bias towards perfect squares.
This is not serious of course, but it is trying to make a serious point. Math-

ematically it is possible to find some formula that will justify any further de-
velopment of the sequence, for example

1, 4, 9, 16, 20, 187,−63, 947

It is not even necessary for a term in a sequence to be a number. The sequence

1, 4, 9, 16,dog, 36, 49

is perfectly valid mathematically. (A restriction to numerical values shows a
bias towards numbers rather than the names of types of animal.)

Despite this, there is little doubt that anyone answering the original question
with 20 will be marked as wrong. (Answering with ‘dog’ is definitely not to be
recommended.)

In practice we have a strong preference for hypothesising certain kinds of
solution rather than others. A sequence such as

1, 4, 9, 16, 25 (perfect squares)
or 1, 8, 27, 64, 125, 216 (perfect cubes)
or 5, 8, 11, 14, 17, 20, 23, 26 (values differ by 3)

seems reasonable, whereas one such as

1, 4, 9, 16, 20, 187,−63, 947

does not.
Whether this is right or wrong is impossible to say absolutely—it depends

on the situation. It illustrates an inductive bias, i.e. a preference for one choice
rather than another, which is not determined by the data itself (in this case,
previous values in the sequence) but by external factors, such as our preferences
for simplicity or familiarity with perfect squares. In school we rapidly learn
that the question-setter has a strong bias in favour of sequences such as perfect
squares and we give our answers to match this bias if we can.

Turning back to the task of attribute selection, any formula we use for it,
however principled we believe it to be, introduces an inductive bias that is not

72 Principles of Data Mining

justified purely by the data. Such bias can be helpful or harmful, depending
on the dataset. We can choose a method that has a bias that we favour, but
we cannot eliminate inductive bias altogether. There is no neutral, unbiased
method.

Clearly it is important to be able to say what bias is introduced by any
particular method of selecting attributes. For many methods this is not easy to
do, but for one of the best-known methods we can. Using entropy can be shown
to have a bias towards selecting attributes with a large number of values.

For many datasets this does no harm, but for some it can be undesirable. For
example we may have a dataset about people that includes an attribute ‘place
of birth’ and classifies them as responding to some medical treatment ‘well’,
‘badly’ or ‘not at all’. Although the place of birth may have some effect on the
classification it is probably only a minor one. Unfortunately, the information
gain selection method will almost certainly choose it as the first attribute to
split on in the decision tree, generating one branch for each possible place of
birth. The decision tree will be very large, with many branches (rules) with
very low value for classification.

5.4 Using Gain Ratio for Attribute Selection

In order to reduce the effect of the bias resulting from the use of information
gain, a variant known as Gain Ratio was introduced by the Australian aca-
demic Ross Quinlan in his influential system C4.5 [3]. Gain Ratio adjusts the
information gain for each attribute to allow for the breadth and uniformity of
the attribute values.

The method will be illustrated using the frequency table given in Section 5.1.
The value of Enew, the average entropy of the training sets resulting from
splitting on attribute age, has previously been shown to be 1.2867 and the
entropy of the original training set Estart has been shown to be 1.3261. It
follows that

Information Gain = Estart − Enew = 1.3261 − 1.2867 = 0.0394.

Gain Ratio is defined by the formula

Gain Ratio = Information Gain/Split Information

where Split Information is a value based on the column sums.
Each non-zero column sum s contributes −(s/N) log2(s/N) to the Split

Information. Thus for Figure 5.2 the value of Split Information is

−(8/24) log2(8/24) − (8/24) log2(8/24) − (8/24) log2(8/24) = 1.5850

Decision Tree Induction: Using Frequency Tables for Attribute Selection 73

Hence Gain Ratio = 0.0394/1.5850 = 0.0249 for splitting on attribute age.
For the other three attributes, the value of Split Information is 1.0 in each

case. Hence the values of Gain Ratio for splitting on attributes specRx, astig
and tears are 0.0395, 0.3770 and 0.5488 respectively.

The largest value of Gain Ratio is for attribute tears, so in this case Gain
Ratio selects the same attribute as entropy.

5.4.1 Properties of Split Information

Split Information forms the denominator in the Gain Ratio formula. Hence the
higher the value of Split Information, the lower the Gain Ratio.

The value of Split Information depends on the number of values a categorical
attribute has and how uniformly those values are distributed (hence the name
‘Split Information’).

To illustrate this we will examine the case where there are 32 instances and
we are considering splitting on an attribute a, which has values 1, 2, 3 and 4.

The ‘Frequency’ row in the tables below is the same as the column sum row
in the frequency tables used previously in this chapter.

The following examples illustrate a number of possibilities.

1. Single Attribute Value

a = 1 a = 2 a = 3 a = 4
Frequency 32 0 0 0

Split Information = −(32/32) × log2(32/32) = − log2 1 = 0

2. Different Distributions of a Given Total Frequency

a = 1 a = 2 a = 3 a = 4
Frequency 16 16 0 0

Split Information = −(16/32) × log2(16/32) − (16/32) × log2(16/32) =
− log2(1/2) = 1

a = 1 a = 2 a = 3 a = 4
Frequency 16 8 8 0

Split Information = −(16/32) × log2(16/32) − 2 × (8/32) × log2(8/32) =
−(1/2) log2(1/2) − (1/2) log2(1/4) = 0.5 + 1 = 1.5

a = 1 a = 2 a = 3 a = 4
Frequency 16 8 4 4

Split Information = −(16/32) × log2(16/32) − (8/32) × log2(8/32) − 2 ×
(4/32) × log2(4/32) = 0.5 + 0.5 + 0.75 = 1.75

74 Principles of Data Mining

3. Uniform Distribution of Attribute Frequencies

a = 1 a = 2 a = 3 a = 4
Frequency 8 8 8 8

Split Information = −4 × (8/32) × log2(8/32) = − log2(1/4) = log2 4 = 2

In general, if there are M attribute values, each occurring equally frequently,
the Split Information is log2 M (irrespective of the frequency value).

Summary

Split Information is zero when there is a single attribute value.
For a given number of attribute values, the largest value of Split Information

occurs when there is a uniform distribution of attribute frequencies.
For a given number of instances that are uniformly distributed, Split Infor-

mation increases when the number of different attribute values increases.
The largest values of Split Information occur when there are many possible

attribute values, all equally frequent.
Information Gain is generally largest when there are many possible attribute

values. Dividing this value by Split Information to give Gain Ratio substantially
reduces the bias towards selecting attributes with a large number of values.

5.5 Number of Rules Generated by Different
Attribute Selection Criteria

Figure 5.5 repeats the results given in Figure 4.8, augmented by the results for
Gain Ratio. The largest value for each dataset is given in bold and underlined.

For many datasets Information Gain (i.e. entropy reduction) and Gain Ratio
give the same results. For others using Gain Ratio can give a significantly
smaller decision tree. However, Figure 5.5 shows that neither Information Gain
nor Gain Ratio invariably gives the smallest decision tree. This is in accord with
the general result that no method of attribute selection is best for all possible
datasets. In practice Information Gain is probably the most commonly used
method, although the popularity of C4.5 makes Gain Ratio a strong contender.

Decision Tree Induction: Using Frequency Tables for Attribute Selection 75

Dataset Excluding Entropy and Gain Ratio Entropy Gain Ratio
most least

contact lenses 42 26 16 17
lens24 21 9 9 9
chess 155 52 20 20
vote 116 40 34 33
monk1 89 53 52 52
monk2 142 109 95 96
monk3 77 43 28 25

Figure 5.5 TDIDT with Various Attribute Selection Methods

5.6 Missing Branches

The phenomenon of missing branches can occur at any stage of decision tree
generation but is more likely to occur lower down in the tree where the number
of instances under consideration is smaller.

As an example, suppose that tree construction has reached the following
stage (only some of the nodes and branches are labelled).

*

=1

=1

Y

X

The left-most node (marked as ∗) corresponds to an incomplete rule
IF X =1 AND Y = 1 . . .

Suppose that at ∗ it is decided to split on categorical attribute Z, which has
four possible values a, b, c and d. Normally this would lead to four branches
being created at that node, one for each of the possible categorical values. How-
ever it may be that for the instances being considered there (which may be only
a small subset of the original training set) there are no cases where attribute
Z has the value d. In that case only three branches would be generated, giving
the following.

76 Principles of Data Mining

=c=b=a

=1

=1

Z

Y

X

There is no branch for Z = d. This corresponds to an empty subset of
instances where Z has that value. (The TDIDT algorithm states ‘divide the
instances into non-empty subsets’.)

This missing branch phenomenon occurs quite frequently but generally has
little impact. Its drawback (if it is one) occurs when the tree is used to classify
an unseen instance for which attributes X, Y and Z have the values 1, 1 and
d respectively. In this case there will be no branches of the tree corresponding
to the unseen instance and so none of the corresponding rules will fire and the
instance will remain unclassified.

This is not usually a significant problem as it may well be considered prefer-
able to leave an unseen instance unclassified rather than to classify it wrongly.
However it would be easy for a practical rule induction system to provide a
facility for any unclassified instances to be given a default classification, say
the largest class.

Chapter Summary

This chapter describes an alternative method of calculating the average entropy
of the training (sub)sets resulting from splitting on an attribute, which uses
frequency tables. It is shown to be equivalent to the method used in Chapter
4 but requires less computation. An alternative attribute selection criterion,
the Gini Index of Diversity, is illustrated and it is shown how this can also be
calculated using a frequency table.

The important issue of inductive bias is introduced. This leads to a descrip-
tion of a further attribute selection criterion, Gain Ratio, which was introduced
as a way of overcoming the bias of the entropy minimisation method, which is
undesirable for some datasets.

Decision Tree Induction: Using Frequency Tables for Attribute Selection 77

Self-assessment Exercises for Chapter 5

1. Repeat Exercise 1 from Chapter 4 using the frequency table method of
calculating entropy. Verify that the two methods give the same results.

2. When using the TDIDT algorithm, with the degrees dataset, find the at-
tribute that will be chosen for the first split on the data using the Gain
Ratio and Gini Index attribute selection strategies.

3. Suggest two datasets for which the Gain Ratio attribute selection strategy
may be preferable to using entropy minimisation.

6
Estimating the Predictive Accuracy of a

Classifier

6.1 Introduction

Any algorithm which assigns a classification to unseen instances is called a
classifier. A decision tree of the kind described in earlier chapters is one very
popular type of classifier, but there are several others, some of which are de-
scribed elsewhere in this book.

This chapter is concerned with estimating the performance of a classifier of
any kind but will be illustrated using decision trees generated with attribute
selection using information gain, as described in Chapter 4.

Although the data compression referred to in Chapter 3 can sometimes
be important, in practice the principal reason for generating a classifier is to
enable unseen instances to be classified. However we have already seen that
many different classifiers can be generated from a given dataset. Each one is
likely to perform differently on a set of unseen instances.

The most obvious criterion to use for estimating the performance of a clas-
sifier is predictive accuracy, i.e. the proportion of a set of unseen instances that
it correctly classifies. This is often seen as the most important criterion but
other criteria are also important, for example algorithmic complexity, efficient
use of machine resources and comprehensibility.

For most domains of interest the number of possible unseen instances is
potentially very large (e.g. all those who might develop an illness, the weather
for every possible day in the future or all the possible objects that might appear

80 Principles of Data Mining

on a radar display), so it is not possible ever to establish the predictive accuracy
beyond dispute. Instead, it is usual to estimate the predictive accuracy of a
classifier by measuring its accuracy for a sample of data not used when it was
generated. There are three main strategies commonly used for this: dividing
the data into a training set and a test set, k-fold cross-validation and N -fold
(or leave-one-out) cross-validation.

6.2 Method 1: Separate Training and Test Sets

For the ‘train and test’ method the available data is split into two parts called
a training set and a test set (Figure 6.1). First, the training set is used to
construct a classifier (decision tree, neural net etc.). The classifier is then used
to predict the classification for the instances in the test set. If the test set
contains N instances of which C are correctly classified the predictive accuracy
of the classifier for the test set is p = C/N . This can be used as an estimate of
its performance on any unseen dataset.

ESTIMATE

SPLIT

DATASET

TEST SET

TRAINING SET
learning

algorithm

classifier

Figure 6.1 Train and Test

NOTE. For some datasets in the UCI Repository (and elsewhere) the data
is provided as two separate files, designated as the training set and the test set.
In such cases we will consider the two files together as comprising the ‘dataset’
for that application. In cases where the dataset is only a single file we need to
divide it into a training set and a test set before using Method 1. This may be
done in many ways, but a random division into two parts in proportions such
as 1:1, 2:1, 70:30 or 60:40 would be customary.

Estimating the Predictive Accuracy of a Classifier 81

6.2.1 Standard Error

It is important to bear in mind that the overall aim is not (just) to classify
the instances in the test set but to estimate the predictive accuracy of the
classifier for all possible unseen instances, which will generally be many times
the number of instances contained in the test set.

If the predictive accuracy calculated for the test set is p and we go on to
use the classifier to classify the instances in a different test set, it is very likely
that a different value for predictive accuracy would be obtained. All that we
can say is that p is an estimate of the true predictive accuracy of the classifier
for all possible unseen instances.

We cannot determine the true value without collecting all the instances and
running the classifier on them, which is usually an impossible task. Instead, we
can use statistical methods to find a range of values within which the true value
of the predictive accuracy lies, with a given probability or ‘confidence level’.

To do this we use the standard error associated with the estimated value p.
If p is calculated using a test set of N instances the value of its standard error
is

√
p(1 − p)/N . (The proof of this is outside the scope of this book, but can

readily be found in many statistics textbooks.)
The significance of standard error is that it enables us to say that with a

specified probability (which we can choose) the true predictive accuracy of the
classifier is within so many standard errors above or below the estimated value
p. The more certain we wish to be, the greater the number of standard errors.
The probability is called the confidence level, denoted by CL and the number
of standard errors is usually written as ZCL.

Figure 6.2 shows the relationship between commonly used values of CL and
ZCL.

Confidence Level (CL) 0.9 0.95 0.99
ZCL 1.64 1.96 2.58

Figure 6.2 Values of ZCL for Certain Confidence Levels

If the predictive accuracy for a test set is p, with standard error S, then
using this table we can say that with probability CL (or with a confidence level
CL) the true predictive accuracy lies in the interval p ± ZCL × S.

82 Principles of Data Mining

Example

If the classifications of 80 instances out of a test set of 100 instances were
predicted accurately, the predictive accuracy on the test set would be 80/100
= 0.8. The standard error would be

√
0.8 × 0.2/100 =

√
0.0016 = 0.04. We can

say that with probability 0.95 the true predictive accuracy lies in the interval
0.8 ± 1.96 × 0.04, i.e. between 0.7216 and 0.8784 (to four decimal places).

Instead of a predictive accuracy of 0.8 (or 80%) we often refer to an error
rate of 0.2 (or 20%). The standard error for the error rate is the same as that
for predictive accuracy.

The value of CL to use when estimating predictive accuracy is a matter of
choice, although it is usual to choose a value of at least 0.9. The predictive ac-
curacy of a classifier is often quoted in technical papers as just p±

√
p(1 − p)/N

without any multiplier ZCL.

6.2.2 Repeated Train and Test

Here the classifier is used to classify k test sets, not just one. If all the test sets
are of the same size, N , the predictive accuracy values obtained for the k test
sets are then averaged to produce an overall estimate p.

As the total number of instances in the test sets is kN , the standard error
of the estimate p is

√
p(1 − p)/kN .

If the test sets are not all of the same size the calculations are slightly more
complicated.

If there are Ni instances in the ith test set (1 ≤ i ≤ k) and the predictive
accuracy calculated for the ith test set is pi the overall predictive accuracy p

is
i=k∑

i=1

piNi/T where
i=k∑

i=1

Ni = T , i.e. p is the weighted average of the pi values.

The standard error is
√

p(1 − p)/T .

6.3 Method 2: k-fold Cross-validation

An alternative approach to ‘train and test’ that is often adopted when the
number of instances is small (and which many prefer to use regardless of size)
is known as k-fold cross-validation (Figure 6.3).

If the dataset comprises N instances, these are divided into k equal parts,
k typically being a small number such as 5 or 10. (If N is not exactly divisible
by k, the final part will have fewer instances than the other k − 1 parts.) A

Estimating the Predictive Accuracy of a Classifier 83

series of k runs is now carried out. Each of the k parts in turn is used as a test
set and the other k − 1 parts are used as a training set.

The total number of instances correctly classified (in all k runs combined) is
divided by the total number of instances N to give an overall level of predictive
accuracy p, with standard error

√
p(1 − p)/N .

SPLIT

ESTIMATE
DATASET

learning
algorithm

classifier

Figure 6.3 k-fold Cross-validation

6.4 Method 3: N -fold Cross-validation

N -fold cross-validation is an extreme case of k-fold cross-validation, often
known as ‘leave-one-out’ cross-validation or jack-knifing, where the dataset is
divided into as many parts as there are instances, each instance effectively
forming a test set of one.

N classifiers are generated, each from N − 1 instances, and each is used to
classify a single test instance. The predictive accuracy p is the total number
correctly classified divided by the total number of instances. The standard error
is

√
p(1 − p)/N .

The large amount of computation involved makes N -fold cross-validation
unsuitable for use with large datasets. For other datasets, it is not clear whether
any gain in the accuracy of the estimates produced by using N -fold cross-
validation justifies the additional computation involved. In practice, the method
is most likely to be of benefit with very small datasets where as much data as

84 Principles of Data Mining

possible needs to be used to train the classifier.

6.5 Experimental Results I

In this section we look at experiments to estimate the predictive accuracy of
classifiers generated for four datasets.

All the results in this section were obtained using the TDIDT tree induction
algorithm, with information gain used for attribute selection.

Basic information about the datasets is given in Figure 6.4 below. Further
information about these and most of the other datasets mentioned in this book
is given in Appendix B.

Dataset Description classes attributes+ instances
categ cts training test

set set
vote Voting in US

Congress in 1984 2 16 300 135
pima- Prevalence of
indians Diabetes in Pima

Indian Women 2 8 768
chess Chess Endgame 2 7 647
glass Glass Identification 7 9* 214

+ categ: categorical; cts: continuous
∗ plus one ‘ignore’ attribute

Figure 6.4 Four Datasets

The vote, pima-indians and glass datasets are all taken from the UCI Repos-
itory. The chess dataset was constructed for a well-known series of machine
learning experiments [6].

The vote dataset has separate training and test sets. The other three
datasets were first divided into two parts, with every third instance placed
in the test set and the other two placed in the training set in both cases.

The result for the vote dataset illustrates the point that TDIDT (along with
some but not all other classification algorithms) is sometimes unable to classify
an unseen instance (Figure 6.5). The reason for this was discussed in Section
5.6.

Estimating the Predictive Accuracy of a Classifier 85

Dataset Test set Correctly classified Incorrectly Unclassified
(instances) classified

vote 135 126 (93% ± 2%) 7 2
pima-indians 256 191 (75% ± 3%) 65
chess 215 214 (99.5% ± 0.5%) 1
glass 71 50 (70% ± 5%) 21

Figure 6.5 Train and Test Results for Four Datasets

Unclassified instances can be dealt with by giving the classifier a ‘default
strategy’, such as always allocating them to the largest class, and that will be
the approach followed for the remainder of this chapter. It could be argued that
it might be better to leave unclassified instances as they are, rather than risk
introducing errors by assigning them to a specific class or classes. In practice the
number of unclassified instances is generally small and how they are handled
makes little difference to the overall predictive accuracy.

Figure 6.6 gives the ‘train and test’ result for the vote dataset modified to
incorporate the ‘default to largest class’ strategy. The difference is slight.

Dataset Test set (instances) Correctly classified Incorrectly classified
vote 135 127 (94% ± 2%) 8

Figure 6.6 Train and Test Results for vote Dataset (Modified)

Figures 6.7 and 6.8 show the results obtained using 10-fold and N -fold
Cross-validation for the four datasets.

For the vote dataset the 300 instances in the training set are used. For the
other two datasets all the available instances are used.

Dataset Instances Correctly classified Incorrectly classified
vote 300 275 (92% ± 2%) 25
pima-indians 768 536 (70% ± 2%) 232
chess 647 645 (99.7% ± 0.2%) 2
glass 214 149 (70% ± 3%) 65

Figure 6.7 10-fold Cross-validation Results for Four Datasets

All the figures given in this section are estimates. The 10-fold cross-
validation and N -fold cross-validation results for all four datasets are based

86 Principles of Data Mining

Dataset Instances Correctly classified Incorrectly classified
vote 300 278 (93% ± 2%) 22
pima-indians 768 517 (67% ± 2%) 251
chess 647 646 (99.8% ± 0.2%) 1
glass 214 144 (67% ± 3%) 70

Figure 6.8 N -fold Cross-validation Results for Four Datasets

on considerably more instances than those in the corresponding test sets for
the ‘train and test’ experiments and so are more likely to be reliable.

6.6 Experimental Results II: Datasets with
Missing Values

We now look at experiments to estimate the predictive accuracy of a classifier
in the case of datasets with missing values. As before we will generate all the
classifiers using the TDIDT algorithm, with Information Gain for attribute
selection.

Three datasets were used in these experiments, all from the UCI Repository.
Basic information about each one is given in Figure 6.9 below.

Dataset Description classes attributes+ instances
categ cts training test

set set
crx Credit Card 2 9 6 690 200

Applications (37) (12)
hypo Hypothyroid 5 22 7 2514 1258

Disorders (2514) (371)
labor-ne Labor Negotiations 2 8 8 40 (39) 17 (17)

+ categ: categorical; cts: continuous

Figure 6.9 Three Datasets with Missing Values

Each dataset has both a training set and a separate test set. In each case,
there are missing values in both the training set and the test set. The values
in parentheses in the ‘training set’ and ‘test set’ columns show the number of
instances that have at least one missing value.

The ‘train and test’ method was used for estimating predictive accuracy.

Estimating the Predictive Accuracy of a Classifier 87

Two strategies for dealing with missing attribute values were described in
Section 1.4. We give results for each of these in turn.

6.6.1 Strategy 1: Discard Instances

This is the simplest strategy: delete all instances where there is at least one
missing value and use the remainder. This strategy has the advantage of avoid-
ing introducing any data errors. Its main disadvantage is that discarding data
may damage the reliability of the resulting classifier.

A second disadvantage is that the method cannot be used when a high
proportion of the instances in the training set have missing values, as is the case
for example with both the hypo and the labor-ne datasets. A final disadvantage
is that it is not possible with this strategy to classify any instances in the test
set that have missing values.

Together these weaknesses are quite substantial. Although the ‘discard in-
stances’ strategy may be worth trying when the proportion of missing values
is small, it is not recommended in general.

Of the three datasets listed in Figure 6.9, the ‘discard instances’ strategy
can only be applied to crx. Doing so gives the possibly surprising result in
Figure 6.10.

Dataset MV strategy Rules Test set
Correct Incorrect

crx Discard Instances 118 188 0

Figure 6.10 Discard Instances Strategy with crx Dataset

Clearly discarding the 37 instances with at least one missing value from the
training set (5.4%) does not prevent the algorithm constructing a decision tree
capable of classifying the 188 instances in the test set that do not have missing
values correctly in every case.

6.6.2 Strategy 2: Replace by Most Frequent/Average
Value

With this strategy any missing values of a categorical attribute are replaced by
its most commonly occurring value in the training set. Any missing values of a
continuous attribute are replaced by its average value in the training set.

88 Principles of Data Mining

Figure 6.11 shows the result of applying the ‘Most Frequent/Average Value’
strategy to the crx dataset. As for the ‘Discard Instances’ strategy all instances
in the test set are correctly classified, but this time all 200 instances in the test
set are classified, not just the 188 instances in the test set that do not have
missing values.

Dataset MV strategy Rules Test set
Correct Incorrect

crx Discard Instances 118 188 0
crx Most Frequent/Average Value 139 200 0

Figure 6.11 Comparison of Strategies with crx Dataset

With this strategy we can also construct classifiers from the hypo and crx
datasets.

In the case of the hypo dataset, we get a decision tree with just 15 rules.
The average number of terms per rule is 4.8. When applied to the test data this
tree is able to classify correctly 1251 of the 1258 instances in the test set (99%;
Figure 6.12). This is a remarkable result with so few rules, especially as there
are missing values in every instance in the training set. It gives considerable
credence to the belief that using entropy for constructing a decision tree is an
effective approach.

Dataset MV strategy Rules Test set
Correct Incorrect

hypo Most Frequent/Average Value 15 1251 7

Figure 6.12 Most Frequent Value/Average Strategy with hypo Dataset

In the case of the labor-ne dataset, we obtain a classifier with five rules,
which correctly classifies 14 out of the 17 instances in the test set (Figure
6.13).

Dataset MV strategy Rules Test set
Correct Incorrect

labor-ne Most Frequent/Average Value 5 14 3

Figure 6.13 Most Frequent Value/Average Strategy with labor-ne Dataset

Estimating the Predictive Accuracy of a Classifier 89

6.6.3 Missing Classifications

It is worth noting that for each dataset given in Figure 6.9 the missing values are
those of attributes, not classifications. Missing classifications in the training set
are a far larger problem than missing attribute values. One possible approach
would be to replace them all by the most frequently occurring classification but
this is unlikely to prove successful in most cases. The best approach is probably
to discard any instances with missing classifications.

6.7 Confusion Matrix

As well as the overall predictive accuracy on unseen instances it is often helpful
to see a breakdown of the classifier’s performance, i.e. how frequently instances
of class X were correctly classified as class X or misclassified as some other
class. This information is given in a confusion matrix.

The confusion matrix in Figure 6.14 gives the results obtained in ‘train and
test’ mode from the TDIDT algorithm (using information gain for attribute se-
lection) for the vote test set, which has two possible classifications: ‘republican’
and ‘democrat’.

Correct Classified as
classification democrat republican
democrat 81 (97.6%) 2 (2.4%)
republican 6 (11.5%) 46 (88.5%)

Figure 6.14 Example of a Confusion Matrix

The body of the table has one row and column for each possible classifi-
cation. The rows correspond to the correct classifications. The columns corre-
spond to the predicted classifications.

The value in the ith row and jth column gives the number of instances for
which the correct classification is the ith class which are classified as belonging
to the jth class. If all the instances were correctly classified, the only non-zero
entries would be on the ‘leading diagonal’ running from top left (i.e. row 1,
column 1) down to bottom right.

To demonstrate that the use of a confusion matrix is not restricted to
datasets with two classifications, Figure 6.15 shows the results obtained us-
ing 10-fold cross-validation with the TDIDT algorithm (using information gain

90 Principles of Data Mining

for attribute section) for the glass dataset, which has six classifications: 1, 2,
3, 5, 6 and 7 (there is also a class 4 but it is not used for the training data).

Correct Classified as
classification 1 2 3 5 6 7
1 52 10 7 0 0 1
2 15 50 6 2 1 2
3 5 6 6 0 0 0
5 0 2 0 10 0 1
6 0 1 0 0 7 1
7 1 3 0 1 0 24

Figure 6.15 Confusion Matrix for glass Dataset

6.7.1 True and False Positives

When a dataset has only two classes, one is often regarded as ‘positive’ (i.e. the
class of principal interest) and the other as ‘negative’. In this case the entries
in the two rows and columns of the confusion matrix are referred to as true
and false positives and true and false negatives (Figure 6.16).

Correct classification Classified as
+ −

+ true positives false negatives
− false positives true negatives

Figure 6.16 True and False Positives and Negatives

When there are more than two classes, one class is sometimes important
enough to be regarded as positive, with all the other classes combined treated
as negative. For example we might consider class 1 for the glass dataset as the
‘positive’ class and classes 2, 3, 5, 6 and 7 combined as ‘negative’. The confusion
matrix given as Figure 6.15 can then be rewritten as shown in Figure 6.17.

Of the 73 instances classified as positive, 52 genuinely are positive (true
positives) and the other 21 are really negative (false positives). Of the 141
instances classified as negative, 18 are really positive (false negatives) and the
other 123 are genuinely negative (true negatives). With a perfect classifier there
would be no false positives or false negatives.

Estimating the Predictive Accuracy of a Classifier 91

Correct classification Classified as
+ −

+ 52 18
− 21 123

Figure 6.17 Revised Confusion Matrix for glass Dataset

False positives and false negatives may not be of equal importance, e.g.
we may be willing to accept some false positives as long as there are no false
negatives or vice versa. We will return to this topic in Chapter 11.

Chapter Summary

This chapter is concerned with estimating the performance of a classifier (of
any kind). Three methods are described for estimating a classifier’s predictive
accuracy. The first of these is to divide the data available into a training set used
for generating the classifier and a test set used for evaluating its performance.
The other methods are k-fold cross-validation and its extreme form N -fold (or
leave-one-out) cross-validation.

A statistical measure of the accuracy of an estimate formed using any of
these methods, known as standard error is introduced. Experiments to estimate
the predictive accuracy of the classifiers generated for various datasets are
described, including datasets with missing attribute values. Finally a tabular
way of presenting classifier performance information called a confusion matrix
is introduced, together with the notion of true and false positive and negative
classifications.

Self-assessment Exercises for Chapter 6

1. Calculate the predictive accuracy and standard error corresponding to the
confusion matrices given in Figures 6.14 and 6.15. For each dataset, state
the range in which the true value of the predictive accuracy can be expected
to lie with probability 0.9, 0.95 and 0.99.

2. Suggest some classification tasks for which either false positive or false neg-
ative classifications (or both) would be undesirable. For these tasks, what
proportion of false negative (positive) classifications would you be willing

92 Principles of Data Mining

to accept in order to reduce the proportion of false positives (negatives) to
zero?

7
Continuous Attributes

7.1 Introduction

Many data mining algorithms, including the TDIDT tree generation algorithm,
require all attributes to take categorical values. However, in the real world many
attributes are naturally continuous, e.g. height, weight, length, temperature and
speed. It is essential for a practical data mining system to be able to handle such
attributes. In some cases the algorithms can be adapted for use with continuous
attributes. In other cases, this is hard or impossible to do.

Although it would be possible to treat a continuous attribute as a categor-
ical one with values 6.3, 7.2, 8.3, 9.2 etc., say, this is very unlikely to prove
satisfactory in general. If the continuous attribute has a large number of dif-
ferent values in the training set, it is likely that any particular value will only
occur a small number of times, perhaps only once, and rules that include tests
for specific values such as X = 7.2 will probably be of very little value for
prediction.

The standard approach is to split the values of a continuous attribute into a
number of non-overlapping ranges. For example a continuous attribute X might
be divided into the four ranges X < 7, 7 ≤ X < 12, 12 ≤ X < 20 and X ≥ 20.
This allows it to be treated as a categorical attribute with four possible values.
In the figure below, the values 7, 12 and 20 are called cut values or cut points.

X < 7 7 ≤ X < 12 12 ≤ X < 20 X ≥ 20
7 12 20

94 Principles of Data Mining

As further examples, an age attribute might be converted from a continuous
numerical value into six ranges, corresponding to infant, child, young adult,
adult, middle-aged and old, or a continuous attribute height might be replaced
by a categorical one with values such as very short, short, medium, tall, very
tall.

Converting a continuous attribute to one with a discrete set of values, i.e.
a categorical attribute, is known as discretisation.

There are a number of possible approaches to discretising continuous at-
tributes. Ideally the boundary points chosen for the ranges (the cut points)
should reflect real properties of the domain being investigated, e.g. constant
values in a physical or mathematical law. In practice it is very rarely possi-
ble to give principled reasons for choosing one set of ranges over another (for
example where should the boundary be between tall and very tall or between
medium and tall?) and the choice of ranges will generally have to be made
pragmatically.

Suppose that we have a continuous attribute length, with values in the range
from 0.3 to 6.6 inclusive. One possibility would be to divide these into three
ranges of equal size, i.e.

0.3 ≤ length < 2.4
2.4 ≤ length < 4.5
4.5 ≤ length ≤ 6.6

This is known as the equal width intervals method. However there are ob-
vious problems. Why choose three ranges, not four or two (or twelve)? More
fundamentally it may be that some, or perhaps even many, of the values are in
a narrow range such as 2.35 to 2.45. In this case any rule involving a test on
length < 2.4 would include instances where length is say 2.39999 and exclude
those where length is 2.40001. It is highly unlikely that there is any real differ-
ence between those values, especially if they were all measured imprecisely by
different people at different times. On the other hand, if there were no values
between say 2.3 and 2.5, a test such as length < 2.4 would probably be far
more reasonable.

Another possibility would be to divide length into three ranges, this time so
that there are the same number of instances in each of the three ranges. This
might lead to a split such as

0.3 ≤ length < 2.385
2.385 ≤ length < 3.0
3.0 ≤ length ≤ 6.6

This is known as the equal frequency intervals method. It would seem to be
preferable to the equal width intervals method given above but is still prone

Continuous Attributes 95

to the same problem at cut points, e.g. why is a length of 2.99999 treated
differently from one of 3.00001?

The problem with any method of discretising continuous attributes is that of
over-sensitivity. Whichever cut points are chosen there will always be a poten-
tial problem with values that fall just below a cut point being treated differently
from those that fall just above for no principled reason.

Ideally we would like to find ‘gaps’ in the range of values. If in the length
example there were many values from 0.3 to 0.4 with the next smallest value
being 2.2, a test such as length < 1.0 would avoid problems around the cut
point, as there are no instances (in the training set) with values close to 1.0.
The value 1.0 is obviously arbitrary and a different cut point, e.g. 1.5 could
just as well have been chosen. Unfortunately the same gaps may not occur in
unseen test data. If there were values such as 0.99, 1.05, 1.49 and 1.51 in the
test data, whether the arbitrary choice of cut point was 1.0 or 1.5 could be of
critical importance.

Although both the equal width intervals and the equal frequency intervals
methods are reasonably effective, they both suffer from the fundamental weak-
ness, as far as classification problems are concerned, that they take no account
of the classifications when determining where to place the cut points, and other
methods which do make use of the classifications are generally preferred. Two
of these are described in Sections 7.3 and 7.4.

7.2 Local versus Global Discretisation

Some data mining algorithms, such as the TDIDT rule generation algorithm,
can be adapted so that each continuous attribute is converted to a categorical
attribute at each stage of the process (e.g. at each node of the decision tree).
This is known as local discretisation.

An alternative approach is to use a global discretisation algorithm to convert
each continuous attribute to a categorical one once and for all independently of
any data mining algorithm that may subsequently be applied to the converted
training set. For example, continuous attribute Age might be converted to
categorical attribute Age2, with four values A, B, C and D, corresponding to
ages in the intervals 0 to under 16, 16 to under 30, 30 to under 60 and 60
and over, respectively, with the three ‘split values’ 16, 30 and 60 determined
globally from consideration of the training set as a whole. Although attractive
in principle, finding an appropriate global discretisation is not necessarily easy
to achieve in practice.

96 Principles of Data Mining

7.3 Adding Local Discretisation to TDIDT

The TDIDT algorithm is a widely used method of generating classification rules
via the intermediate representation of a decision tree. (For definiteness in the
description that follows we shall assume that the information gain attribute
selection criterion is used, but this is not essential.) TDIDT can be extended to
deal with continuous attributes in a number of ways. For example, at each node
in the decision tree each continuous attribute can be converted to a categorical
attribute with several values, by one of the methods described in Section 7.1
or otherwise.

An alternative approach is at each node to convert each continuous attribute
to a number of alternative categorical attributes. For example if continuous
attribute A has values −12.4, −2.4, 3.5, 6.7 and 8.5 (each possibly occurring
several times) a test such as A < 3.5 splits the training data into two parts,
those instances for which A < 3.5 and those for which A ≥ 3.5. A test such as
A < 3.5 can be considered as equivalent to a kind of categorical attribute with
the two possible values true and false. We will use the phrase pseudo-attribute
to describe it.

If a continuous attribute A has n distinct values v1, v2, . . . , vn (in ascending
numerical order) there are n − 1 possible corresponding pseudo-attributes (all
binary), i.e. A < v2, A < v3, . . . , A < vn (we omit A < v1 as no values of A

can be less than v1, the smallest value).
We can imagine that for the part of the training set under consideration at

each node all the continuous attribute columns are replaced by new columns
for each pseudo-attribute derived from each continuous attribute. They would
then be in competition for selection with each other and with any genuine
categorical attributes. This imaginary replacement table will probably have
far more columns than before but as all the attributes/pseudo-attributes are
categorical it can be processed by the standard TDIDT algorithm to find the
one with the largest corresponding information gain (or other measure).

If it turns out that one of the pseudo-attributes, say Age < 27.3, is selected
at a given node, we can consider the continuous attribute Age as having been
discretised into two intervals with cut point 27.3.

This is a local discretisation which does not (in the standard form of this
method) lead to the continuous attribute itself being discarded. Hence there
may be a further test such as Age < 14.1 at a lower level in the ‘yes’ branch
descending from the test Age < 27.3.

The process described above may seem resource intensive but it is not as
bad as it would first appear. We will come back to this point in Section 7.3.2,
but leaving it aside at the moment, we have an algorithm for incorporating
local discretisation into TDIDT as follows.

Continuous Attributes 97

At each node:

1. For each continuous attribute A

a) Sort the instances into ascending numerical order.

b) If there are n distinct values v1, v2, . . . , vn, calculate the values of
information gain (or other measure) for each of the n−1 corresponding
pseudo-attributes A < v2, A < v3, . . . , A < vn.

c) Find which of the n−1 attribute values gives the largest value of infor-
mation gain (or optimises some other measure). If this is vi return the
pseudo-attribute A < vi, and the value of the corresponding measure.

2. Calculate the value of information gain (or other measure) for any categor-
ical attributes.

3. Select the attribute or pseudo-attribute with the largest value of informa-
tion gain (or which optimises some other measure).

7.3.1 Calculating the Information Gain of a Set of
Pseudo-attributes

At any node of the evolving decision tree the entropy values (and hence the
information gain values) of all the pseudo-attributes derived from a given con-
tinuous attribute can be calculated with a single pass through the training
data. The same applies to any other measure that can be calculated using the
frequency table method described in Chapter 5. There are three stages.

98 Principles of Data Mining

Stage 1
Before processing any continuous attributes at a node we first need to
count the number of instances with each of the possible classifications in
the part of the training set under consideration at the node. (These are
the sums of the values in each row of a frequency table such as Figure 5.2.)
These values do not depend on which attribute is subsequently processed
and so only have to be counted once at each node of the tree.

Stage 2
We next work through the continuous attributes one by one. We will
assume that a particular continuous attribute under consideration is named
Var and that the aim is to find the largest value of a specified measure for
all possible pseudo-attributes Var < X where X is one of the values of Var
in the part of the training set under consideration at the given node. We
will call the values of attribute Var candidate cut points. We will call the
largest value of measure maxmeasure and the value of X that gives that
largest value the cut point for attribute Var.

Stage 3
Having found the value of maxmeasure (and the corresponding cut points)
for all the continuous attributes, we next need to find the largest and then
compare it with the values of the measure obtained for any categorical
attributes to determine which attribute or pseudo-attribute to split on at
the node.

To illustrate this process we will use the golf training set introduced in
Chapter 3. For simplicity we will assume that we are at the root node of the
decision tree but the same method can be applied (with a reduced training set
of course) at any node of the tree.

We start by counting the number of instances with each of the possible
classifications. Here there are 9 play and 5 don’t play, making a total of 14.

We now need to process each of the continuous attributes in turn (Stage
2). There are two: temperature and humidity. We will illustrate the processing
involved at Stage 2 using attribute temperature.

The first step is to sort the values of the attribute into ascending numer-
ical order and create a table containing just two columns: one for the sorted
attribute values and the other for the corresponding classification. We will call
this the sorted instances table.

Figure 7.1 shows the result of this for our example. Note that temperature
values 72 and 75 both occur twice. There are 12 distinct values 64, 65, . . . , 85.

Continuous Attributes 99

Temperature Class
64 play
65 don’t play
68 play
69 play
70 play
71 don’t play
72 play
72 don’t play
75 play
75 play
80 don’t play
81 play
83 play
85 don’t play

Figure 7.1 Sorted Instances Table for golf Dataset

The algorithm for processing the sorted instances table for continuous at-
tribute Var is given in Figure 7.2. It is assumed that there are n instances and
the rows in the sorted instances table are numbered from 1 to n. The attribute
value corresponding to row i is denoted by value(i) and the corresponding class
is denoted by class(i).

Essentially, we work through the table row by row from top to bottom,
accumulating a count of the number of instances with each classification. As
each row is processed its attribute value is compared with the value for the
row below. If the latter value is larger it is treated as a candidate cut point
and the value of the measure is computed using the frequency table method
(the example that follows will show how this is done). Otherwise the attribute
values must be the same and processing continues to the next row. After the
last but one row has been processed, processing stops (the final row has nothing
below it with which to compare).

The algorithm returns two values: maxmeasure and cutvalue, which are
respectively the largest value of the measure that can be obtained for a pseudo-
attribute derived from attribute Var and the corresponding cut value.

100 Principles of Data Mining

Algorithm for Processing a Sorted Instances Table
Set count of all classes to zero

Set maxmeasure to a value less than the smallest
possible value of the measure used

for i=1 to n − 1 {
increase count of class(i) by 1
if value(i) < value(i + 1){

(a) Construct a frequency table for pseudo-attribute
Var < value(i + 1)

(b) Calculate the value of measure
(c) If measure > maxmeasure {

maxmeasure=measure
cutvalue=value(i + 1)

}
}

}

Figure 7.2 Algorithm for Processing a Sorted Instances Table

Returning to the golf training set and continuous attribute temperature,
we start with the first instance, which has temperature 64 and class play. We
increase the count for class play to 1. The count for class don’t play is zero. The
value of temperature is less than that for the next instance so we construct a
frequency table for the pseudo-attribute temperature < 65 (Figure 7.3(a)).

Class temperature < 65 temperature ≥ 65 Class total
play 1 * 8 9
don’t play 0 * 5 5
Column sum 1 13 14

Figure 7.3(a) Frequency Table for golf Example

In this and the other frequency tables in this section the counts of play and
don’t play in the ‘temperature < xxx’ column are marked with an asterisk.
The entries in the final column are fixed (the same for all attributes) and are
shown in bold. All the other entries are calculated from these by simple addition
and subtraction. Once the frequency table has been constructed, the values of

Continuous Attributes 101

measures such as Information Gain and Gain Ratio can be calculated from it,
as described in Chapter 5.

Figure 7.3(b) shows the frequency table resulting after the next row of the
sorted instances table has been examined. The counts are now play = 1, don’t
play = 1.

Class temperature < 68 temperature ≥ 68 Class total
play 1 * 8 9
don’t play 1 * 4 5
Column sum 2 12 14

Figure 7.3(b) Frequency Table for golf Example

The value of Information Gain (or the other measures) can again be cal-
culated from this table. The important point here is how easily this second
frequency table can be derived from the first. Only the don’t play row has
changed by moving just one instance from the ‘greater than or equal to’ col-
umn to the ‘less than’ column.

We proceed in this way processing rows 3, 4, 5 and 6 and generating a new
frequency table (and hence a new value of measure) for each one. When we come
to the seventh row (temperature = 72) we note that the value of temperature
for the next instance is the same as for the current one (both 72), so we do
not create a new frequency table but instead go on to row 8. As the value of
temperature for this is different from that for the next instance we construct a
frequency table for the latter value, i.e. for pseudo-attribute temperature < 75
(Figure 7.3(c)).

Class temperature < 75 temperature ≥ 75 Class total
play 5 * 4 9
don’t play 3 * 2 5
Column sum 8 6 14

Figure 7.3(c) Frequency Table for golf Example

We go on in this way until we have processed row 13 (out of 14). This ensures
that frequency tables are constructed for all the distinct values of temperature
except the first. There are 11 of these candidate cut values, corresponding to
pseudo-attributes temperature < 65, temperature < 68, . . . , temperature < 85.

The value of this method is that the 11 frequency tables are generated from
each other one by one, by a single pass through the sorted instances table.

102 Principles of Data Mining

At each stage it is only necessary to update the relevant count of instances in
the appropriate class to move from one frequency table to the next. Having
duplicated attribute values is a complication, but it is easily overcome.

7.3.2 Computational Efficiency

This section looks at three efficiency issues associated with the method de-
scribed in Section 7.3.1.

(a) Sorting continuous values into ascending numerical order

This is the principal overhead on the use of the method and thus the prin-
cipal limitation on the maximum size of training set that can be handled. This
is also true of almost any other conceivable method of discretising continuous
attributes. For this algorithm it has to be carried out once for each continuous
attribute at each node of the decision tree.

It is important to use an efficient method of sorting, especially if the num-
ber of instances is large. The one most commonly used is probably Quicksort,
descriptions of which are readily available from books (and websites) about
sorting. Its most important feature is that the number of operations required
is approximately a constant multiple of n × log2 n, where n is the number of
instances. We say it varies as n × log2 n. This may not seem important but
there are other sorting algorithms that vary as n2 (or worse) and the difference
is considerable.

Figure 7.4 shows the values of n× log2 n and n2 for different values of n. It
is clear from the table that a good choice of sorting algorithm is essential.

n n × log2 n n2

100 664 10, 000
500 4, 483 250, 000
1, 000 9, 966 1, 000, 000
10, 000 132, 877 100, 000, 000
100, 000 1, 660, 964 10, 000, 000, 000
1, 000, 000 19, 931, 569 1, 000, 000, 000, 000

Figure 7.4 Comparison of Values of n log2 n and n2

The difference between the values in the second and third columns of this
table is considerable. Taking the final row for illustration, if we imagine a sorting

Continuous Attributes 103

task for 1,000,000 items (not a huge number) that takes 19,931,569 steps and
assume that each step takes just one microsecond to perform, the time required
would be 19.9 seconds. If we used an alternative method to perform the same
task that takes 1,000,000,000,000 steps, each lasting a microsecond, the time
would increase to over 11.5 days.

(b) Calculating the measure value for each frequency table

For any given continuous attribute, generating the frequency tables takes
just one pass through the training data. The number of such tables is the
same as the number of cut values, i.e. the number of distinct attribute values
(ignoring the first). Each table comprises just 2 × 2 = 4 entries in its main
body plus two column sums. Processing many of these small tables should be
reasonably manageable.

(c) Number of candidate cut points

As the method was described in Section 7.3.1 the number of candidate cut
points is always the same as the number of distinct values of the attribute
(ignoring the first). For a large training set the number of distinct values may
also be large. One possibility is to reduce the number of candidate cut points
by making use of class information.

Figure 7.5 is the sorted instances table for the golf training set and attribute
temperature, previously shown in Section 7.3.1, with the eleven cut values in-
dicated with asterisks (where there are repeated attribute values only the last
occurrence is treated as a cut value).

We can reduce this number by applying the rule ‘only include attribute
values for which the class value is different from that for the previous attribute
value’. Thus attribute value 65 is included because the corresponding class
value (don’t play) is different from the class corresponding to temperature 64,
which is play. Attribute value 69 is excluded because the corresponding class
(play) is the same as that for attribute value 68. Figure 7.6 shows the result of
applying this rule.

The instances with temperature value 65, 68, 71, 81 and 85 are included.
Instances with value 69, 70 and 83 are excluded.

However, repeated attribute values lead to complications. Should 72, 75 and
80 be included or excluded? We cannot apply the rule ‘only include attribute
values for which the class value is different from that for the previous attribute
value’ to the two instances with attribute value 72 because one of their class
values (don’t play) is the same as for the previous attribute value and the other
(play) is not. Even though both instances with temperature 75 have class play,

104 Principles of Data Mining

Temperature Class
64 play
65 * don’t play
68 * play
69 * play
70 * play
71 * don’t play
72 play
72 * don’t play
75 play
75 * play
80 * don’t play
81 * play
83 * play
85 * don’t play

Figure 7.5 Sorted Instances with Candidate Cut Values

Temperature Class
64 play
65 * don’t play
68 * play
69 play
70 play
71 * don’t play
72 play
72 ? don’t play
75 play
75 ? play
80 ? don’t play
81 * play
83 play
85 * don’t play

Figure 7.6 Sorted Instances with Candidate Cut Values (revised)

Continuous Attributes 105

we still cannot apply the rule. Which of the instances for the previous attribute
value, 72, would we use? It seems reasonable to include 80, as the class for both
occurrences of 75 is play, but what if they were a combination of play and don’t
play?

There are other combinations that can occur, but in practice none of this
need cause us any problems. It does no harm to examine more candidate cut
points than the bare minimum and a simple amended rule is: ‘only include
attribute values for which the class value is different from that for the previous
attribute value, together with any attribute which occurs more than once and
the attribute immediately following it’.

This gives the final version of the table shown in Figure 7.7, with eight
candidate cut values.

Temperature Class
64 play
65 * don’t play
68 * play
69 play
70 play
71 * don’t play
72 play
72 * don’t play
75 play
75 * play
80 * don’t play
81 * play
83 play
85 * don’t play

Figure 7.7 Sorted Instances with Candidate Cut Values (final)

7.4 Using the ChiMerge Algorithm for Global
Discretisation

ChiMerge is a well-known algorithm for global discretisation introduced by
Randy Kerber, an American researcher [7]. It uses a statistical technique for
discretising each continuous attribute separately.

106 Principles of Data Mining

The first step in discretising a continuous attribute is to sort its values into
ascending numerical order, with the corresponding classifications sorted into
the same order.

The next step is to construct a frequency table giving the number of oc-
currences of each distinct value of the attribute for each possible classification.
It then uses the distribution of the values of the attribute within the different
classes to generate a set of intervals that are considered statistically distinct at
a given level of significance.

As an example, suppose that A is a continuous attribute in a training set
with 60 instances and three possible classifications c1, c2 and c3. A possible
distribution of the values of A arranged in ascending numerical order is shown
in Figure 7.8. The aim is to combine the values of A into a number of ranges.
Note that some of the attribute values occur just once, whilst others occur
several times.

Value of A Observed frequency for class Total
c1 c2 c3

1.3 1 0 4 5
1.4 0 1 0 1
1.8 1 1 1 3
2.4 6 0 2 8
6.5 3 2 4 9
8.7 6 0 1 7
12.1 7 2 3 12
29.4 0 0 1 1
56.2 2 4 0 6
87.1 0 1 3 4
89.0 1 1 2 4

Figure 7.8 ChiMerge: Initial Frequency Table

Each row can be interpreted not just as corresponding to a single attribute
value but as representing an interval, i.e. a range of values starting at the value
given and continuing up to but excluding the value given in the row below.
Thus the row labelled 1.3 corresponds to the interval 1.3 ≤ A < 1.4. We can
regard the values 1.3, 1.4 etc. as interval labels, with each label being used to
indicate the lowest number in the range of values included in that interval. The
final row corresponds to all values of A from 89.0 upwards.

The initial frequency table could be augmented by an additional column
showing the interval corresponding to each row (Figure 7.9).

Continuous Attributes 107

Value of A Interval Observed frequency for class Total
c1 c2 c3

1.3 1.3 ≤ A < 1.4 1 0 4 5
1.4 1.4 ≤ A < 1.8 0 1 0 1
1.8 1.8 ≤ A < 2.4 1 1 1 3
2.4 2.4 ≤ A < 6.5 6 0 2 8
6.5 6.5 ≤ A < 8.7 3 2 4 9
8.7 8.7 ≤ A < 12.1 6 0 1 7
12.1 12.1 ≤ A < 29.4 7 2 3 12
29.4 29.4 ≤ A < 56.2 0 0 1 1
56.2 56.2 ≤ A < 87.1 2 4 0 6
87.1 87.1 ≤ A < 89.0 0 1 3 4
89.0 89.0 ≤ A 1 1 2 4

Figure 7.9 ChiMerge: Initial Frequency Table with Intervals Added

In practice, the ‘Interval’ column is generally omitted as it is implied by the
entries in the Value column.

Starting with the initial frequency table, ChiMerge systematically applies
statistical tests to combine pairs of adjacent intervals until it arrives at a set
of intervals that are considered statistically different at a given level of signifi-
cance.

ChiMerge tests the following hypothesis for each pair of adjacent rows in
turn.

Hypothesis
The class is independent of which of the two adjacent intervals an instance
belongs to.

If the hypothesis is confirmed, there is no advantage in treating the intervals
separately and they are merged. If not, they remain separate.

ChiMerge works through the frequency table from top to bottom, examining
each pair of adjacent rows (intervals) in turn in order to determine whether the
relative class frequencies of the two intervals are significantly different. If not,
the two intervals are considered to be similar enough to justify merging them
into a single interval.

The statistical test applied is the χ2 test, pronounced (and often written)
as the ‘Chi square’ test. χ is a Greek letter, which is written as Chi in the
Roman alphabet. It is pronounced like ‘sky’, without the initial ‘s’.

For each pair of adjacent rows a contingency table is constructed giving the
observed frequencies of each combination of the two variables A and ‘class’. For

108 Principles of Data Mining

the adjacent intervals labelled 8.7 and 12.1 in Figure 7.8 the contingency table
is shown below as Figure 7.10(a).

Value of A Observed frequency for class Total observed
c1 c2 c3

8.7 6 0 1 7
12.1 7 2 3 12
Total 13 2 4 19

Figure 7.10(a) Observed Frequencies for Two Adjacent Rows of Figure 7.8

The ‘row sum’ figures in the right-hand column and the ‘column sum’ figures
in the bottom row are called ‘marginal totals’. They correspond respectively to
the number of instances for each value of A (i.e. with their value of attribute
A in the corresponding interval) and the number of instances in each class for
both intervals combined. The grand total (19 instances in this case) is given in
the bottom right-hand corner of the table.

The contingency table is used to calculate the value of a variable called χ2

(or ‘the χ2 statistic’ or ‘the Chi-square statistic’), using a method that will
be described in Section 7.4.1. This value is then compared with a threshold
value T , which depends on the number of classes and the level of statistical
significance required. The threshold will be described further in Section 7.4.2.
For the current example we will use a significance level of 90% (explained
below). As there are three classes this gives a threshold value of 4.61.

The significance of the threshold is that if we assume that the classification
is independent of which of the two adjacent intervals an instance belongs to,
there is a 90% probability that χ2 will be less than 4.61.

If χ2 is less than 4.61 it is taken as supporting the hypothesis of indepen-
dence at the 90% significance level and the two intervals are merged. On the
other hand, if the value of χ2 is greater than 4.61 we deduce that the class and
interval are not independent, again at the 90% significance level, and the two
intervals are left unchanged.

7.4.1 Calculating the Expected Values and χ2

For a given pair of adjacent rows (intervals) the value of χ2 is calculated using
the ‘observed’ and ‘expected’ frequency values for each combination of class and
row. For this example there are three classes so there are six such combinations.
In each case, the observed frequency value, denoted by O, is the frequency that

Continuous Attributes 109

actually occurred. The expected value E is the frequency value that would be
expected to occur by chance given the assumption of independence.

If the row is i and the class is j, then let the total number of instances in
row i be rowsumi and let the total number of occurrences of class j be colsumj .
Let the grand total number of instances for the two rows combined be sum.
Assuming the hypothesis that the class is independent of which of the two
rows an instance belongs to is true, we can calculate the expected number of
instances in row i for class j as follows. There are a total of colsumj occurrences
of class j in the two intervals combined, so class j occurs a proportion of
colsumj/sum of the time. As there are rowsumi instances in row i, we would
expect rowsumi × colsumj/sum occurrences of class j in row i.

To calculate this value for any combination of row and class, we just have
to take the product of the corresponding row sum and column sum divided by
the grand total of the observed values for the two rows.

For the adjacent intervals labelled 8.7 and 12.1 in Figure 7.8 the six values
of O and E (one pair of values for each class/row combination) are given in
Figure 7.10(b).

Value of A Frequency for class Total observed
c1 c2 c3

O E O E O E

8.7 6 4.79 0 0.74 1 1.47 7
12.1 7 8.21 2 1.26 3 2.53 12
Total 13 2 4 19

Figure 7.10(b) Observed and Expected Values for Two Adjacent Rows of
Figure 7.8

The O values are taken from Figure 7.8 or Figure 7.10(a). The E values are
calculated from the row and column sums. Thus for row 8.7 and class c1, the
expected value E is 13 × 7/19 = 4.79.

Having calculated the value of O and E for all six combinations of class and
row, the next step is to calculate the value of (O − E)2/E for each of the six
combinations. These are shown in the Val columns in Figure 7.11.

The value of χ2 is then the sum of the six values of (O − E)2/E. For the
pair of rows shown in Figure 7.11 the value of χ2 is 1.89.

If the independence hypothesis is correct the observed and expected values
O and E would ideally be the same and χ2 would be zero. A small value of
χ2 would also support the hypothesis, but the larger the value of χ2 the more
reason there is to suspect that the hypothesis may be false. When χ2 exceeds

110 Principles of Data Mining

Value Frequency for class Total
of A c1 c2 c3 observed

O E Val* O E Val* O E Val*
8.7 6 4.79 0.31 0 0.74 0.74 1 1.47 0.15 7
12.1 7 8.21 0.18 2 1.26 0.43 3 2.53 0.09 12
Total 13 2 4 19

Figure 7.11 O, E and Val values for two adjacent rows of Figure 7.8
* Val columns give the value of (O − E)2/E

the threshold value we consider that it is so unlikely for this to have occurred
by chance that the hypothesis is rejected.

The value of χ2 is calculated for each adjacent pair of rows (intervals). When
doing this, a small but important technical detail is that an adjustment has to
be made to the calculation for any value of E less than 0.5. In this case the
denominator in the calculation of (O − E)2/E is changed to 0.5.

The results for the initial frequency table are summarised in Figure 7.12(a).

Value of A Frequency for class Total Value of χ2

c1 c2 c3
1.3 1 0 4 5 3.11
1.4 0 1 0 1 1.08
1.8 1 1 1 3 2.44
2.4 6 0 2 8 3.62
6.5 3 2 4 9 4.62
8.7 6 0 1 7 1.89
12.1 7 2 3 12 1.73
29.4 0 0 1 1 3.20
56.2 2 4 0 6 6.67
87.1 0 1 3 4 1.20
89.0 1 1 2 4
Total 27 12 21 60

Figure 7.12(a) Initial Frequency Table with χ2 Values Added

In each case, the χ2 value given in a row is the value for the pair of adjacent
intervals comprising that row and the one below. No χ2 value is calculated for
the final interval, because there is not one below it. As the table has 11 intervals
there are 10 χ2 values.

Continuous Attributes 111

ChiMerge selects the smallest value of χ2, in this case 1.08, corresponding
to the intervals labelled 1.4 and 1.8 and compares it with the threshold value,
which in this case is 4.61.

The value 1.08 is less than the threshold value so the independence hypoth-
esis is supported and the two intervals are merged. The combined interval is
labelled 1.4, i.e. the smaller of the two previous labels.

This gives us a new frequency table, which is shown in Figure 7.12(b). There
is one fewer row than before.

Value of A Frequency for class Total
c1 c2 c3

1.3 1 0 4 5
1.4 1 2 1 4
2.4 6 0 2 8
6.5 3 2 4 9
8.7 6 0 1 7
12.1 7 2 3 12
29.4 0 0 1 1
56.2 2 4 0 6
87.1 0 1 3 4
89.0 1 1 2 4

Figure 7.12(b) ChiMerge: Revised Frequency Table

The χ2 values are now calculated for the revised frequency table. Note that
the only values that can have changed from those previously calculated are
those for the two pairs of adjacent intervals of which the newly merged interval
(1.4) is one. These values are shown in bold in Figure 7.12(c).

Now the smallest value of χ2 is 1.20, which again is below the threshold
value of 4.61. So intervals 87.1 and 89.0 are merged.

ChiMerge proceeds iteratively in this way, merging two intervals at each
stage until a minimum χ2 value is reached which is greater than the threshold,
indicating that an irreducible set of intervals has been reached. The final table
is shown as Figure 7.12(d).

The χ2 values for the two remaining pairs of intervals are greater than
the threshold value. Hence no further merging of intervals is possible and the
discretisation is complete. Continuous attribute A can be replaced by a cate-
gorical attribute with just three values, corresponding to the ranges (for the
90% significance level):

112 Principles of Data Mining

Value of A Frequency for class Total Value of χ2

c1 c2 c3
1.3 1 0 4 5 3.74
1.4 1 2 1 4 5.14
2.4 6 0 2 8 3.62
6.5 3 2 4 9 4.62
8.7 6 0 1 7 1.89
12.1 7 2 3 12 1.73
29.4 0 0 1 1 3.20
56.2 2 4 0 6 6.67
87.1 0 1 3 4 1.20
89.0 1 1 2 4
Total 27 12 21 60

Figure 7.12(c) Revised Frequency Table with χ2 Values Added

Value of A Frequency for class Total Value of χ2

c1 c2 c3
1.3 24 6 16 46 10.40
56.2 2 4 0 6 5.83
87.1 1 2 5 8
Total 27 12 21 60

Figure 7.12(d) Final Frequency Table

1.3 ≤ A < 56.2
56.2 ≤ A < 87.1
A ≥ 87.1

A possible problem with using these ranges for classification purposes is
that for an unseen instance there might be a value of A that is substantially
less than 1.3 (the smallest value of A for the training data) or substantially
greater than 87.1. (Although the final interval is given as A ≥ 87.1 the largest
value of A for the training data was just 89.0.) In such a case we would need
to decide whether to treat such a low or high value of A as belonging to either
the first or last of the ranges as appropriate or to treat the unseen instance as
unclassifiable.

Continuous Attributes 113

7.4.2 Finding the Threshold Value

Threshold values for the χ2 test can be found in statistical tables. The value
depends on two factors:

1. The significance level. 90% is a commonly used significance level. Other
commonly used levels are 95% and 99%. The higher the significance level,
the higher the threshold value and the more likely it is that the hypothesis
of independence will be supported and thus that the adjacent intervals will
be merged.

2. The number of degrees of freedom of the contingency table. A full expla-
nation of this is outside the scope of this book, but the general idea is as
follows. If we have a contingency table such as Figure 7.10(a) with 2 rows
and 3 columns, how many of the 2 × 3 = 6 cells in the main body of the
table can we fill independently given the marginal totals (row and column
sums)? The answer to this is just 2. If we put two numbers in the c1 and
c2 columns of the first row (A = 8.7), the value in the c3 column of that
row is determined by the row sum value. Once all three values in the first
row are fixed, those in the second row (A = 12.1) are determined by the
three column sum values.

In the general case of a contingency table with N rows and M columns the
number of independent values in the main body of the table is (N−1)×(M−1).
For the ChiMerge algorithm the number of rows is always two and the number
of columns is the same as the number of classes, so the number of degrees of
freedom is (2 − 1) × (number of classes − 1) = number of classes − 1, which in
this example is 2. The larger the number of degrees of freedom is, the higher
the threshold value.

For 2 degrees of freedom and a 90% significance level, the χ2 threshold value
is 4.61. Some other values are given in Figure 7.13 below.

Choosing a higher significance level will increase the threshold value and
thus may make the merging process continue for longer, resulting in categorical
attributes with fewer and fewer intervals.

7.4.3 Setting minIntervals and maxIntervals

A problem with the ChiMerge algorithm is that the result may be a large
number of intervals or, at the other extreme, just one interval. For a large
training set an attribute may have many thousands of distinct values and the
method may produce a categorical attribute with hundreds or even thousands
of values. This is likely to be of little or no practical value. On the other hand,

114 Principles of Data Mining

Degrees 90% Significance 95% Significance 99% Significance
of freedom level level level
1 2.71 3.84 6.64
2 4.61 5.99 9.21
3 6.25 7.82 11.34
4 7.78 9.49 13.28
5 9.24 11.07 15.09
6 10.65 12.59 16.81
7 12.02 14.07 18.48
8 13.36 15.51 20.09
9 14.68 16.92 21.67
10 15.99 18.31 23.21
11 17.28 19.68 24.72
12 18.55 21.03 26.22
13 19.81 22.36 27.69
14 21.06 23.69 29.14
15 22.31 25.00 30.58
16 23.54 26.30 32.00
17 24.77 27.59 33.41
18 25.99 28.87 34.80
19 27.20 30.14 36.19
20 28.41 31.41 37.57
21 29.62 32.67 38.93
22 30.81 33.92 40.29
23 32.01 35.17 41.64
24 33.20 36.42 42.98
25 34.38 37.65 44.31
26 35.56 38.89 45.64
27 36.74 40.11 46.96
28 37.92 41.34 48.28
29 39.09 42.56 49.59
30 40.26 43.77 50.89

Figure 7.13 χ2 Threshold Values

Continuous Attributes 115

if the intervals are eventually merged into just one that would suggest that
the attribute value is independent of the classification and the attribute would
best be deleted. Both a large and a small number of intervals can simply reflect
setting the significance level too low or too high.

Kerber [7] proposed setting two values, minIntervals and maxIntervals. This
form of the algorithm always merges the pair of intervals with the lowest value of
χ2 as long as the number of intervals is more than maxIntervals. After that the
pair of intervals with the smallest value of χ2 is merged at each stage until either
a χ2 value is reached that is greater than the threshold value or the number of
intervals is reduced to minIntervals. In either of those cases the algorithm stops.
Although this is difficult to justify in terms of the statistical theory behind
the χ2 test it can be very useful in practice to give a manageable number
of categorical values. Reasonable settings for minIntervals and maxIntervals
might be 2 or 3 and 20, respectively.

7.4.4 The ChiMerge Algorithm: Summary

With the above extension, the ChiMerge algorithm is summarised in Figure
7.14.

7.4.5 The ChiMerge Algorithm: Comments

The ChiMerge algorithm works quite well in practice despite some theoretical
problems relating to the statistical technique used, which will not be discussed
here (Kerber’s paper [7] gives further details). A serious weakness is that the
method discretises each attribute independently of the values of the others,
even though the classifications are clearly not determined by the values of just
a single attribute.

Sorting the values of each continuous attribute into order can be a significant
processing overhead for a large dataset. However this is likely to be an overhead
for any method of discretisation, not just ChiMerge. In the case of ChiMerge
it needs to be performed only once for each continuous attribute.

116 Principles of Data Mining

1. Set values of minIntervals and maxIntervals (2 ≤ minIntervals ≤ max-
Intervals).
2. Decide on a significance level (say 90%). Using this and the number of
degrees of freedom (i.e. number of classes −1) look up the threshold value
to use.
3. For each continuous attribute in turn:
(a) Sort the values of the attribute into ascending numerical order.
(b) Create a frequency table containing one row for each distinct attribute
value and one column for each class. Label each row with the correspond-
ing attribute value. Enter the number of occurrences of each attribute
value/class combination in the training set in the cells of the table.
(c) If (number of rows = minIntervals) then stop, otherwise go on to next
step.
(d) For each pair of adjacent rows in the frequency table in turn:
For each combination of row and class:

(i) calculate O, the observed frequency value for that combination

(ii) calculate E, the expected frequency value for that combination, from
the product of the row and column sums divided by the total number
of occurrences in the two rows combined

(iii) calculate the value of (O − E)2/E *

Add the values of (O − E)2/E to give χ2 for that pair of adjacent rows.
(e) Find the pair of adjacent rows with the lowest value of χ2.
(f) If the lowest value of χ2 is less than the threshold value OR (number of
rows > maxIntervals), merge the two rows, setting the attribute value label
for the merged row to that of the first of the two constituent rows, reduce
the number of rows by one and go back to step (c). Otherwise stop.

* If E < 0.5, replace E in the denominator of this formula by 0.5.

Figure 7.14 The ChiMerge Algorithm

7.5 Comparing Global and Local Discretisation
for Tree Induction

This section describes an experiment aimed at comparing the effectiveness of
using the local discretisation method for TDIDT described in Section 7.3 with
that of using ChiMerge for global discretisation of continuous attributes fol-
lowed by using TDIDT for rule generation, with all attributes now categorical.
For convenience information gain will be used for attribute selection through-

Continuous Attributes 117

out.
Seven datasets are used for the experiment, all taken from the UCI Repos-

itory. Basic information about each dataset is given in Figure 7.15.

Dataset Instances Attributes Classes
Categ. Contin.

glass 214 0 9 7
hepatitis 155 13 6 2
hypo 2514 22 7 5
iris 150 0 4 3
labor-ne 40 8 8 2
pima-indians 768 0 8 2
sick-euthyroid 3163 18 7 2

Figure 7.15 Datasets Used in ChiMerge Experiments

The version of ChiMerge used is a re-implementation by the present author
of Kerber’s original algorithm.

The value of each set of classification rules can be measured by the number
of rules generated and the percentage of instances that they correctly classify.
The methodology chosen for these experiments is 10-fold cross-validation. First
the training set is divided into 10 groups of instances of equal size. TDIDT is
then run 10 times with a different 10% of the instances omitted from the rule
generation process for each run and used subsequently as an unseen test set.
Each run produces a percentage of correct classifications over the unseen test
set and a number of rules. These figures are then combined to give an average
number of rules and the percentage of correct classifications. The ‘default to
largest class’ strategy is used throughout.

Figure 7.16 shows the results of applying TDIDT directly to all the datasets,
compared with first using ChiMerge to discretise all the continuous attributes
globally (90% significance level).

The percentage of correct classifications for the global discretisation ap-
proach is comparable with those achieved by local discretisation. However,
local discretisation seems to produce an appreciably smaller number of rules,
at least for these datasets. This is particularly the case for the pima-indians
and sick-euthyroid datasets.

On the other hand, the global discretisation approach has the considerable
advantage that the data only has to be discretised once and can then be used
as the input to any data mining algorithm that accepts categorical attributes,
not only TDIDT.

118 Principles of Data Mining

Dataset Local discretisation Global discretisation
Number Correct % Number of Correct %
of rules of rules

glass 38.3 69.6 88.2 72.0
hepatitis 18.9 81.3 42.0 81.9
hypo 14.2 99.5 46.7 98.7
iris 8.5 95.3 15.1 94.7
labor-ne 4.8 85.0 7.6 85.0
pima-indians 121.9 69.8 328.0 74.0
sick-euthyroid 72.7 96.6 265.1 96.6

Figure 7.16 TDIDT with Information Gain. Local Discretisation v Global
Discretisation by ChiMerge (90% significance level). Results from 10-fold Cross-
validation

Chapter Summary

This chapter looks at the question of how to convert a continuous attribute
to a categorical one, a process known as discretisation. This is important as
many data mining algorithms, including TDIDT, require all attributes to take
categorical values.

Two different types of discretisation are distinguished, known as local and
global discretisation. The process of extending the TDIDT algorithm by adding
local discretisation of continuous attributes is illustrated in detail, followed by
a description of the ChiMerge algorithm for global discretisation. The effective-
ness of the two methods is compared for the TDIDT algorithm for a number
of datasets.

Self-assessment Exercises for Chapter 7

1. Using the amended form of the rule given in Section 7.3.2, what are the can-
didate cut points for the continuous attribute humidity in the golf training
set given in Chapter 3?

2. Starting at Figure 7.12(c) and the resulting merger of intervals 87.1 and
89.0, find the next pair of intervals to be merged.

8
Avoiding Overfitting of Decision Trees

The Top-Down Induction of Decision Trees (TDIDT) algorithm described in
previous chapters is one of the most commonly used methods of classifica-
tion. It is well known, widely cited in the research literature and an important
component of many successful commercial packages. However, like many other
methods, it suffers from the problem of overfitting to the training data, re-
sulting in some cases in excessively large rule sets and/or rules with very low
predictive power for previously unseen data.

A classification algorithm is said to overfit to the training data if it generates
a decision tree (or any other representation of the data) that depends too much
on irrelevant features of the training instances, with the result that it performs
well on the training data but relatively poorly on unseen instances.

Realistically, overfitting will always occur to a greater or lesser extent simply
because the training set does not contain all possible instances. It only becomes
a problem when the classification accuracy on unseen instances is significantly
downgraded. We always need to be aware of the possibility of significant over-
fitting and to seek ways of reducing it.

In this chapter we look at ways of adjusting a decision tree either while it
is being generated, or afterwards, in order to increase its predictive accuracy.
The idea is that generating a tree with fewer branches than would otherwise be
the case (known as pre-pruning) or removing parts of a tree that has already
been generated (known as post-pruning) will give a smaller and simpler tree.
This tree is unlikely to be able to predict correctly the classification of some of
the instances in the training set. As we already know what those values should
be this is of little or no importance. On the other hand the simpler tree may

120 Principles of Data Mining

be able to predict the correct classification more accurately for unseen data—a
case of ‘less means more’.

We will start by looking at a topic that at first sight is unrelated to the
subject of this chapter, but will turn out to be important: how to deal with
inconsistencies in a training set.

8.1 Dealing with Clashes in a Training Set

If two (or more) instances in a training set have the same combination of
attribute values but different classifications the training set is inconsistent and
we say that a clash occurs.

There are two main ways this can happen.

1. One of the instances has at least one of its attribute values or its classifi-
cation incorrectly recorded, i.e. there is noise in the data.

2. The clashing instances are both (or all) correct, but it is not possible to
discriminate between them on the basis of the attributes recorded.

In the second case the only way of discriminating between the instances is
by examining the values of further attributes, not recorded in the training set,
which in most cases is impossible. Unfortunately there is usually no way except
‘intuition’ of distinguishing between cases (1) and (2).

Clashes in the training set are likely to prove a problem for any method of
classification but they cause a particular problem for tree generation using the
TDIDT algorithm because of the ‘adequacy condition’ introduced in Chapter
3. For the algorithm to be able to generate a classification tree from a given
training set, it is only necessary for one condition to be satisfied: no two or more
instances may have the same set of attribute values but different classifications.
This raises the question of what to do when the adequacy condition is not
satisfied.

It is generally desirable to be able to generate a decision tree even when
there are clashes in the training data, and the basic TDIDT algorithm can be
adapted to do this.

8.1.1 Adapting TDIDT to Deal With Clashes

Consider how the TDIDT algorithm will perform when there is a clash in the
training set. The method will still produce a decision tree but (at least) one of
the branches will grow to its greatest possible length (i.e. one term for each of

Avoiding Overfitting of Decision Trees 121

the possible attributes), with the instances at the lowest node having more than
one classification. The algorithm would like to choose another attribute to split
on at that node but there are no ‘unused’ attributes and it is not permitted
to choose the same attribute twice in the same branch. When this happens we
will call the set of instances represented by the lowest node of the branch the
clash set.

A typical clash set might have one instance with classification true and one
with classification false. In a more extreme case there may be several possible
classifications and several instances with each classification in the clash set, e.g.
for an object recognition example there might be three instances classified as
house, two as tree and two as lorry.

Figure 8.1 shows an example of a decision tree generated from a training
set with three attributes x, y and z, each with possible values 1 and 2, and
three classifications c1, c2 and c3. The node in the bottom row labelled ‘mixed’
represents a clash set, i.e. there are instances with more than one of the three
possible classifications, but no more attributes to split on.

y

(mixed) c2 c3c1

c1

x

1

1 1

2

21

2 2

zz

Figure 8.1 Incomplete Decision Tree (With Clash Set)

There are many possible ways of dealing with clashes but the two principal
ones are:

(a) The ‘delete branch’ strategy: discard the branch to the node from the
node above. This is similar to removing the instances in the clash set from
the training set (but not necessarily equivalent to it, as the order in which the
attributes were selected might then have been different).

Applying this strategy to Figure 8.1 gives Figure 8.2. Note that this tree
will be unable to classify unseen instances for which x = 1, y = 1 and z = 2,

122 Principles of Data Mining

as previously discussed in Section 5.6.

y

c2 c3c1

c1

zz

x

1

1

11

2

2

2

Figure 8.2 Decision Tree Generated from Figure 8.1 by ‘Delete Branch’ Strat-
egy

(b) The ‘majority voting’ strategy: label the node with the most common
classification of the instances in the clash set. This is similar to changing the
classification of some of the instances in the training set (but again not neces-
sarily equivalent, as the order in which the attributes were selected might then
have been different).

Applying this strategy to Figure 8.1 gives Figure 8.3, assuming that the
most common classification of the instances in the clash set is c3.

The decision on which of these strategies to use varies from one situation
to another. If there were, say, 99 instances classified as yes and one instance
classified as no in the training set, we would probably assume that the no
was a misclassification and use method (b). If the distribution in a weather
forecasting application were 4 rain, 5 snow and 3 fog, we might prefer to discard
the instances in the clash set altogether and accept that we are unable to make
a prediction for that combination of attribute values.

A middle approach between the ‘delete branch’ and the ‘majority voting’
strategies is to use a clash threshold. The clash threshold is a percentage from
0 to 100 inclusive.

The ‘clash threshold’ strategy is to assign all the instances in a clash set
to the most commonly occurring class for those instances provided that the
proportion of instances in the clash set with that classification is at least equal
to the clash threshold. If it is not, the instances in the clash set (and the
corresponding branch) are discarded altogether.

Avoiding Overfitting of Decision Trees 123

y

c3 c2 c3c1

c1

x

1

1

11

2

2

2 2

zz

Figure 8.3 Decision Tree Generated from Figure 8.1 by ‘Majority Voting’
Strategy

Setting the clash threshold to zero gives the effect of always assigning to the
most common class, i.e. the ‘majority voting’ strategy. Setting the threshold
to 100 gives the effect of never assigning to the most common class, i.e. the
‘delete branch’ strategy.

Clash threshold values between 0 and 100 give a middle position between
these extremes. Reasonable percentage values to use might be 60, 70, 80 or 90.

Figure 8.4 shows the result of using different clash thresholds for the same
dataset. The dataset used is the crx ‘credit checking’ dataset modified by delet-
ing all the continuous attributes to ensure that clashes will occur. The modified
training set does not satisfy the adequacy condition.

The results were all generated using TDIDT with attributes selected using
information gain in ‘train and test’ mode.

Clash threshold Training set Test set

Correct Incorr. Unclas Correct Incorr. Unclas

0% Maj. Voting 651 39 0 184 16 0

60% 638 26 26 182 10 8

70% 613 13 64 177 3 20

80% 607 11 72 176 2 22

90% 552 0 138 162 0 38

100% Del. Branch 552 0 138 162 0 38

Figure 8.4 Results for crx (Modified) With Varying Clash Thresholds

124 Principles of Data Mining

From the results given it is clear that when there are clashes in the training
data it is no longer possible to obtain a decision tree that gives 100% predictive
accuracy on the training set from which it was generated.

The ‘delete branch’ option (threshold = 100%) avoids making any errors
but leaves many of the instances unclassified. The ‘majority voting’ strategy
(threshold = 0%) avoids leaving instances unclassified but gives many classi-
fication errors. The results for threshold values 60%, 70%, 80% and 90% lie
between these two extremes. However, the predictive accuracy for the training
data is of no importance—we already know the classifications! It is the accuracy
for the test data that matters.

In this case the results for the test data are very much in line with those
for the training data: reducing the threshold value increases the number of
correctly classified instances but it also increases the number of incorrectly
classified instances and the number of unclassified instances falls accordingly.

If we use the ‘default classification strategy’ and automatically allocate each
unclassified instance to the largest class in the original training set, the picture
changes considerably.

Clash threshold Training set Test set
Correct Incorr. Unclas Correct Incorr.

0% maj. voting 651 39 0 184 16
60% 638 26 26 188 12
70% 613 13 64 189 11
80% 607 11 72 189 11
90% 552 0 138 180 20
100% del. branch 552 0 138 180 20

Figure 8.5 Results for crx (Modified) With Varying Clash Thresholds (Using
Default to Largest Class)

Figure 8.5 shows the results given in Figure 8.4 modified so that for the test
data any unclassified instances are automatically assigned to the largest class.
The highest predictive accuracy is given for clash thresholds 70% and 80% in
this case.

Having established the basic method of dealing with clashes in a training
set, we now turn back to the main subject of this chapter: the problem of
avoiding the overfitting of decision trees to data.

Avoiding Overfitting of Decision Trees 125

8.2 More About Overfitting Rules to Data

Let us consider a typical rule such as

IF a = 1 and b = yes and z = red THEN class = OK

Adding an additional term to this rule will specialise it, for example the aug-
mented rule

IF a = 1 and b = yes and z = red and k = green THEN class = OK

will normally refer to fewer instances than the original form of the rule (possibly
the same number, but certainly no more).

In contrast, removing a term from the original rule will generalise it, for
example the depleted rule

IF a = 1 and b = yes THEN class = OK

will normally refer to more instances than the original form of the rule (possibly
the same number, but certainly no fewer).

The principal problem with TDIDT and other algorithms for generating
classification rules is that of overfitting. Every time the algorithm splits on an
attribute an additional term is added to each resulting rule, i.e. tree generation
is a repeated process of specialisation.

If a decision tree is generated from data containing noise or irrelevant at-
tributes it is likely to capture erroneous classification information, which will
tend to make it perform badly when classifying unseen instances.

Even when that is not the case, beyond a certain point, specialising a rule
by adding further terms can become counter-productive. The generated rules
give a perfect fit for the instances from which they were generated but in some
cases are too specific (i.e. specialised) to have a high level of predictive accuracy
for other instances. To put this point another way, if the tree is over-specialised,
its ability to generalise, which is vital when classifying unseen instances, will
be reduced.

Another consequence of excessive specificity is that there is often an un-
necessarily large number of rules. A smaller number of more general rules may
have greater predictive accuracy on unseen data.

The standard approach to reducing overfitting is to sacrifice classification
accuracy on the training set for accuracy in classifying (unseen) test data. This
can be achieved by pruning the decision tree. There are two ways to do this:

– Pre-pruning (or forward pruning)
Prevent the generation of non-significant branches

– Post-pruning (or backward pruning)
Generate the decision tree and then remove non-significant branches.

126 Principles of Data Mining

Pre- and post-pruning are both methods to increase the generality of deci-
sion trees.

8.3 Pre-pruning Decision Trees

Pre-pruning a decision tree involves using a ‘termination condition’ to decide
when it is desirable to terminate some of the branches prematurely as the tree
is generated.

Each branch of the evolving tree corresponds to an incomplete rule such as

IF x = 1 AND z = yes AND q > 63.5 . . . THEN . . .

and also to a subset of instances currently ‘under investigation’.
If all the instances have the same classification, say c1, the end node of the

branch is treated by the TDIDT algorithm as a leaf node labelled by c1. Each
such completed branch corresponds to a (completed) rule, such as

IF x = 1 AND z = yes AND q > 63.5 THEN class = c1

If not all the instances have the same classification the node would normally
be expanded to a subtree by splitting on an attribute, as described previously.
When following a pre-pruning strategy the node (i.e. the subset) is first tested
to determine whether or not a termination condition applies. If it does not, the
node is expanded as usual. If it does, the subset is treated as a clash set in
the way described in Section 8.1, using a ‘delete branch’, a ‘majority voting’
or some other similar strategy. The most common strategy is probably the
‘majority voting’ one, in which case the node is treated as a leaf node labelled
with the most frequently occurring classification for the instances in the subset
(the ‘majority class’).

The set of pre-pruned rules will wrongly classify some of the instances in
the training set. However, the classification accuracy for the test set may be
greater than for the unpruned set of rules.

There are several criteria that can be applied to a node to determine whether
or not pre-pruning should take place. Two of these are:

– Size Cutoff
Prune if the subset contains fewer than say 5 or 10 instances

– Maximum Depth Cutoff
Prune if the length of the branch is say 3 or 4.

Figure 8.6 shows the results obtained for a variety of datasets using
TDIDT with information gain for attribute selection. In each case 10-fold cross-
validation is used, with a size cutoff of 5 instances, 10 instances or no cutoff

Avoiding Overfitting of Decision Trees 127

(i.e. unpruned). Figure 8.7 shows the results with a maximum depth cutoff of
3, 4 or unlimited instead. The ‘majority voting’ strategy is used throughout.

No cutoff 5 Instances 10 Instances
Rules % Acc. Rules % Acc. Rules % Acc.

breast-cancer 93.2 89.8 78.7 90.6 63.4 91.6
contact lenses 16.0 92.5 10.6 92.5 8.0 90.7
diabetes 121.9 70.3 97.3 69.4 75.4 70.3
glass 38.3 69.6 30.7 71.0 23.8 71.0
hypo 14.2 99.5 11.6 99.4 11.5 99.4
monk1 37.8 83.9 26.0 75.8 16.8 72.6
monk3 26.5 86.9 19.5 89.3 16.2 90.1
sick-euthyroid 72.8 96.7 59.8 96.7 48.4 96.8
vote 29.2 91.7 19.4 91.0 14.9 92.3
wake vortex 298.4 71.8 244.6 73.3 190.2 74.3
wake vortex2 227.1 71.3 191.2 71.4 155.7 72.2

Figure 8.6 Pre-pruning With Varying Size Cutoffs

No cutoff Length 3 Length 4
Rules % Acc. Rules % Acc. Rules % Acc.

breast-cancer 93.2 89.8 92.6 89.7 93.2 89.8
contact lenses 16.0 92.5 8.1 90.7 12.7 94.4
diabetes 121.9 70.3 12.2 74.6 30.3 74.3
glass 38.3 69.6 8.8 66.8 17.7 68.7
hypo 14.2 99.5 6.7 99.2 9.3 99.2
monk1 37.8 83.9 22.1 77.4 31.0 82.2
monk3 26.5 86.9 19.1 87.7 25.6 86.9
sick-euthyroid 72.8 96.7 8.3 97.8 21.7 97.7
vote 29.2 91.7 15.0 91.0 19.1 90.3
wake vortex 298.4 71.8 74.8 76.8 206.1 74.5
wake vortex2 227.1 71.3 37.6 76.3 76.2 73.8

Figure 8.7 Pre-pruning With Varying Maximum Depth Cutoffs

The results obtained clearly show that the choice of pre-pruning method is
important. However, it is essentially ad hoc. No choice of size or depth cutoff
consistently produces good results across all the datasets.

128 Principles of Data Mining

This result reinforces the comment by Quinlan [3] that the problem with
pre-pruning is that the ‘stopping threshold’ is “not easy to get right—too high a
threshold can terminate division before the benefits of subsequent splits become
evident, while too low a value results in little simplification”. It would be highly
desirable to find a more principled choice of cutoff criterion to use with pre-
pruning than the size and maximum depth approaches used previously, and if
possible one which can be applied completely automatically without the need
for the user to select any cutoff threshold value. A number of possible ways
of doing this have been proposed, but in practice the use of post-pruning, to
which we now turn, has proved more popular.

8.4 Post-pruning Decision Trees

Post-pruning a decision tree implies that we begin by generating the (complete)
tree and then adjust it with the aim of improving the classification accuracy
on unseen instances.

There are two principal methods of doing this. One method that is widely
used begins by converting the tree to an equivalent set of rules. This will be
described in Chapter 10.

Another commonly used approach aims to retain the decision tree but to
replace some of its subtrees by leaf nodes, thus converting a complete tree to
a smaller pruned one which predicts the classification of unseen instances at
least as accurately. This method has several variants, such as Reduced Error
Pruning, Pessimistic Error Pruning, Minimum Error Pruning and Error Based
Pruning. A comprehensive study and numerical comparison of the effectiveness
of different variants is given in [8].

The details of the methods used vary considerably, but the following exam-
ple gives the general idea. Suppose we have a complete decision tree generated
by the TDIDT algorithm, such as Figure 8.8 below.

Here the customary information about the attribute split on at each node,
the attribute value corresponding to each branch and the classification at each
leaf node are all omitted. Instead the nodes of the tree are labelled from A to
M (A being the root) for ease of reference. The numbers at each node indicate
how many of the 100 instances in the training set used to generate the tree
correspond to each of the nodes. At each of the leaf nodes in the complete tree
all the instances have the same classification. At each of the other nodes the
corresponding instances have more than one classification.

The branch from the root node A to a leaf node such as J corresponds to a
decision rule. We are interested in the proportion of unseen instances to which

Avoiding Overfitting of Decision Trees 129

that rule applies that are incorrectly classified. We call this the error rate at
node J (a proportion from 0 to 1 inclusive).

A (100)

I (20)

E (10) F (50) M (3)L (7)

D (10)C (30)B (60)

K (12)

G (20) H (10)

J (8)

Figure 8.8 Initial Decision Tree

If we imagine the branch from the root node A to an internal node such as
G were to terminate there, rather than being split two ways to form the two
branches A to J and A to K, this branch would correspond to an incomplete
rule of the kind discussed in Section 8.3 on pre-pruning. We will assume that
the unseen instances to which a truncated rule of this kind applies are classified
using the ‘majority voting’ strategy of Section 8.1.1, i.e. they are all allocated
to the class to which the largest number of the instances in the training set
corresponding to that node belong.

When post-pruning a decision tree such as Figure 8.8 we look for non-leaf
nodes in the tree that have a descendant subtree of depth one (i.e. all the
nodes one level down are leaf nodes). All such subtrees are candidates for post-
pruning. If a pruning condition (which will be described below) is met the
subtree hanging from the node can be replaced by the node itself. We work
from the bottom of the tree upwards and prune one subtree at a time. The
method continues until no more subtrees can be pruned.

For Figure 8.8 the only candidates for pruning are the subtrees hanging
from nodes G and D.

Working from the bottom of the tree upwards we start by considering the
replacement of the subtree ‘hanging from’ node G by G itself, as a leaf node in

130 Principles of Data Mining

a pruned tree. How does the error rate of the branch (truncated rule) ending
at G compare with the error rate of the two branches (complete rules) ending
at J and K? Is it beneficial or harmful to the predictive accuracy of the tree to
split at node G? We might consider truncating the branch earlier, say at node
F . Would that be beneficial or harmful?

To answer questions such as these we need some way of estimating the error
rate at any node of a tree. One way to do this is to use the tree to classify the
instances in some set of previously unseen data called a pruning set and count
the errors. Note that it is imperative that the pruning set is additional to the
‘unseen test set’ used elsewhere in this book. The test set must not be used
for pruning purposes. Using a pruning set is a reasonable approach but may
be unrealistic when the amount of data available is small. An alternative that
takes a lot less execution time is to use a formula to estimate the error rate.
Such a formula is likely to be probability-based and to make use of factors such
as the number of instances corresponding to the node that belong to each of
the classes and the prior probability of each class.

Figure 8.9 shows the estimated error rates at each of the nodes in Figure
8.8 using a (fictitious) formula.

Node Estimated
error rate

A 0.3
B 0.15
C 0.25
D 0.19
E 0.1
F 0.129
G 0.12
H 0.05
I 0.2
J 0.2
K 0.1
L 0.2
M 0.1

Figure 8.9 Estimated Error Rates at Nodes in Figure 8.8

Using Figure 8.9 we see that the estimated error rates at nodes J and K are
0.2 and 0.1, respectively. These two nodes correspond to 8 and 12 instances,
respectively (of the 20 at node G).

Avoiding Overfitting of Decision Trees 131

J (8,0.2) K (12,0.1)

G (20,0.12)

Figure 8.10 Subtree Descending From Node G1

To estimate the error rate of the subtree hanging from node G (Figure 8.10)
we take the weighted average of the estimated error rates at J and K. This
value is (8/20) × 0.2 + (12/20) × 0.1 = 0.14. We will call this the backed-up
estimate of the error rate at node G because it is computed from the estimated
error rates of the nodes below it.

We now need to compare this value with the value obtained from Figure
8.9, i.e. 0.12, which we will call the static estimate of the error rate at that
node.2

In the case of node G the static value is less than the backed-up value. This
means that splitting at node G increases the error rate at that node, which is
obviously counter-productive. We prune the subtree descending from node G

to give Figure 8.11.
The candidates for pruning are now the subtrees descending from nodes F

and D. (Node G is now a leaf node of the partly pruned tree.)
We can now consider whether or not it is beneficial to split at node F

(Figure 8.12). The static error rates at nodes G, H and I are 0.12, 0.05 and
0.2. Hence the backed-up error rate at node F is (20/50) × 0.12 + (10/50) ×
0.05 + (20/50) × 0.2 = 0.138.

The static error rate at node F is 0.129, which is smaller than the backed-up
value, so we again prune the tree, giving Figure 8.13.

The candidates for pruning are now the subtrees hanging from nodes B and
D. We will consider whether to prune at node B (Figure 8.14).

The static error rates at nodes E and F are 0.1 and 0.129, respectively, so
the backed-up error rate at node B is (10/60)× 0.1 + (50/60)× 0.129 = 0.124.
This is less than the static error rate at node B, which is 0.15. Splitting at
node B reduces the error rate, so we do not prune the subtree.

We next need to consider pruning at node D (Figure 8.15). The static error

1 In Figure 8.10 and similar figures, the two figures in parentheses at each node give
the number of instances in the training set corresponding to that node (as in Figure
8.8) and the estimated error rate at the node, as given in Figure 8.9.

2 From now on, for simplicity we will generally refer to the ‘backed-up’ error rate
and the ‘static error rate’ at a node, without using the word ‘estimated’ every
time. However it is important to bear in mind that they are only estimates not the
accurate values, which we have no way of knowing.

132 Principles of Data Mining

A (100)

I (20)

E (10) F (50) M (3)L (7)

D (10)C (30)B (60)

G (20) H (10)

Figure 8.11 Decision Tree With One Subtree Pruned

H (10,0.05) G (20,0.12) I (20,0.2)

F (50,0.129)

Figure 8.12 Subtree Descending From node F

A (100)

E (10) F (50) M (3)L (7)

D (10)C (30)B (60)

Figure 8.13 Decision Tree With Two Subtrees Pruned

E (10,0.1) F (50,0.129)

B (60,0.15)

Figure 8.14 Subtree Descending From Node B

Avoiding Overfitting of Decision Trees 133

L (7,0.2) M (3,0.1)

D (10,0.19)

Figure 8.15 Subtree Descending From Node D

rates at nodes L and M are 0.2 and 0.1, respectively, so the backed-up error
rate at node D is (7/10)×0.2+(3/10)×0.1 = 0.17. This is less than the static
error rate at node D, which is 0.19, so we do not prune the subtree. There are
no further subtrees to consider. The final post-pruned tree is Figure 8.13.

In an extreme case this method could lead to a decision tree being post-
pruned right up to its root node, indicating that using the tree is likely to lead
to a higher error rate, i.e. more incorrect classifications, than simply assigning
every unseen instance to the largest class in the training data. Luckily such
poor decision trees are likely to be very rare.

Post-pruning decision trees would appear to be a more widely used and
accepted approach than pre-pruning them. No doubt the ready availability
and popularity of the C4.5 classification system [3] has had a large influence on
this. However, an important practical objection to post-pruning is that there
is a large computational overhead involved in generating a complete tree only
then to discard some or possibly most of it. This may not matter with small
experimental datasets, but ‘real-world’ datasets may contain many millions of
instances and issues of computational feasibility and scaling up of methods will
inevitably become important.

The decision tree representation of classification rules is widely used and it is
therefore desirable to find methods of pruning that work well with it. However,
the tree representation is itself a source of overfitting, as will be demonstrated
in Chapter 10.

Chapter Summary

This chapter begins by examining techniques for dealing with clashes (i.e. in-
consistent instances) in a training set. This leads to a discussion of methods for
avoiding or reducing overfitting of a decision tree to training data. Overfitting
arises when a decision tree is excessively dependent on irrelevant features of
the training data with the result that its predictive power for unseen instances
is reduced.

134 Principles of Data Mining

Two approaches to avoiding overfitting are distinguished: pre-pruning (gen-
erating a tree with fewer branches than would otherwise be the case) and post-
pruning (generating a tree in full and then removing parts of it). Results are
given for pre-pruning using either a size or a maximum depth cutoff. A method
of post-pruning a decision tree based on comparing the static and backed-up
estimated error rates at each node is also described.

Self-assessment Exercise for Chapter 8

What post-pruning of the decision tree shown in Figure 8.8 would result from
using the table of estimated error rates given below rather than the values given
in Figure 8.9?

Node Estimated
error rate

A 0.2
B 0.35
C 0.1
D 0.2
E 0.01
F 0.25
G 0.05
H 0.1
I 0.2
J 0.15
K 0.2
L 0.1
M 0.1

9
More About Entropy

9.1 Introduction

In this chapter we return to the subject of the entropy of a training set, which
was introduced in Chapter 4. The idea of entropy is not only used in data
mining; it is a very fundamental one, which is widely used in Information
Theory as the basis for calculating efficient ways of representing messages for
transmission by telecommunication systems.

We will start by explaining what is meant by the entropy of a set of distinct
values and then come back to look again at the entropy of a training set.

Suppose we are playing a game of the ‘twenty questions’ variety where we try
to identify one of M possible values by asking a series of yes/no questions. The
values in which we are really interested are mutually exclusive classifications of
the kind discussed in Chapter 2 and elsewhere, but the same argument can be
applied to any set of distinct values.

We will assume at present that all M values are equally likely and for
reasons that will soon become apparent we will also assume that M is an exact
power of 2, say 2N , where N ≥ 1.

As a concrete example we will take the task of identifying an unknown
capital city from the eight possibilities: London, Paris, Berlin, Warsaw, Sofia,
Rome, Athens and Moscow (here M = 8 = 23).

There are many possible ways of asking questions, for example random
guessing:

136 Principles of Data Mining

Is it Warsaw? No
Is it Berlin? No
Is it Rome? Yes

This works well if the questioner makes a lucky guess early on, but (un-
surprisingly) it is inefficient in the general case. To show this, imagine that we
make our guesses in the fixed order: London, Paris, Berlin etc. until we guess
the correct answer. We never need guess further than Athens, as a ‘no’ answer
will tell us the city must be Moscow.

If the city is London, we need 1 question to find it.
If the city is Paris, we need 2 questions to find it.
If the city is Berlin, we need 3 questions to find it.
If the city is Warsaw, we need 4 questions to find it.
If the city is Sofia, we need 5 questions to find it.
If the city is Rome, we need 6 questions to find it.
If the city is Athens, we need 7 questions to find it.
If the city is Moscow, we need 7 questions to find it.

Each of these possibilities is equally likely, i.e. has probability 1/8, so on
average we need (1 + 2 + 3 + 4 + 5 + 6 + 7 + 7)/8 questions, i.e. 35/8 = 4.375
questions.

A little experiment will soon show that the best strategy is to keep dividing
the possibilities into equal halves. Thus we might ask

Is it London, Paris, Athens or Moscow? No
Is it Berlin or Warsaw? Yes
Is it Berlin?

Whether the third question is answered yes or no, the answer will tell us
the identity of the ‘unknown’ city.

The halving strategy always takes three questions to identify the unknown
city. It is considered to be the ‘best’ strategy not because it invariably gives
us the answer with the smallest number of questions (random guessing will
occasionally do better) but because if we conduct a long series of ‘trials’ (each
a game to guess a city, selected at random each time) the halving strategy will
invariably find the answer and will do so with a smaller number of questions on
average than any other strategy. With this understanding we can say that the
smallest number of yes/no questions needed to determine an unknown value
from 8 equally likely possibilities is three.

It is no coincidence that 8 is 23 and the smallest number of yes/no questions
needed is 3. If we make the number of possible values M a higher or a lower
power of two the same occurs. If we start with 8 possibilities and halve the
number by the first question, that leaves 4 possibilities. We can determine

More About Entropy 137

the unknown value with 2 further questions. If we start with 4 possibilities
and halve the number down to 2 by the first question we can determine the
unknown value by just one further question (‘is it the first one?’). So for M = 4
the smallest number of questions is 2 and for M = 2 the smallest number of
questions is 1.

We can extend the argument to look at higher values of M , say 16. It takes
one ‘halving’ question to reduce the number of possibilities to 8, which we know
we can handle with 3 further questions. So the number of questions needed in
the case of 16 values (M = 16) must be 4.

In general, we have the following result. The smallest number of yes/no
questions needed to determine an unknown value from M = 2N

equally likely possibilities is N .
Using the mathematical function log2,1 we can rewrite the last result as: the

smallest number of yes/no questions needed to determine an unknown value
from M equally likely possibilities is log2 M (provided M is a power of 2; see
Figure 9.1).

M log2 M

2 1
4 2
8 3
16 4
32 5
64 6
128 7
256 8
512 9
1024 10

Figure 9.1 Some values of log2 M (where M is a power of 2)

We will define a quantity called the entropy of a set of M distinct values
as follows.

The entropy of a set of M distinct values that are equally likely is the
smallest number of yes/no questions needed to determine an unknown value
drawn from the M possibilities. As before, the words ‘in all cases’ are implicit
and by smallest we mean the smallest number of questions averaged over a
series of trials, not just one single trial (game).

1 The log2 function is defined in Appendix A for readers who are unfamiliar with it.

138 Principles of Data Mining

In the phrase ‘the smallest number of yes/no questions needed’ in the defin-
ition of entropy, it is implicit that each question needs to divide the remaining
possibilities into two equally probable halves. If they do not, for example with
random guessing, a larger number will be needed.

It is not sufficient that each question looked at in isolation is a ‘halving
question’. For example, consider the sequence

Is it Berlin, London, Paris or Warsaw? Yes
Is it Berlin, London, Paris or Sofia? Yes

Both questions are ‘halving questions’ in their own right, but the answers
leave us after two questions still having to discriminate amongst three possi-
bilities, which cannot be done with one more question.

It is not sufficient that each question asked is a halving question. It is
necessary to find a sequence of questions that take full advantage of the answers
already given to divide the remaining possibilities into two equally probable
halves. We will call this a ‘well-chosen’ sequence of questions.

So far we have established that the entropy of a set of M distinct values is
log2 M , provided that M is a power of 2 and all values are equally likely. We
have also established the need for questions to form a ‘well-chosen’ sequence.
This raises three questions:

– What if M is not a power of 2?

– What if the M possible values are not equally likely?

– Is there a systematic way of finding a sequence of well-chosen questions?

It will be easier to answer these questions if we first introduce the idea of
coding information using bits.

9.2 Coding Information Using Bits

There is an obvious everyday sense in which the more questions that are an-
swered the more information we have. We can formalise this by saying that the
answer to a question that can only be answered yes or no (with equal prob-
ability) can be considered as containing one unit of information. The basic
unit of information is called a bit (short for ‘binary digit’). This usage of the
word ‘bit’ has a close connection with its use for the basic unit of storage in
computer memory. It is a fundamental two-valued unit that corresponds to a
switch being open or closed, a light being on or off, an electric current flowing
or not flowing, or the dot and dash of Morse code.

More About Entropy 139

The unit of information can also be looked at as the amount of information
that can be coded using only a zero or a one. If we have two possible values,
say male and female, we might use the coding

0 = male
1 = female

We can encode four possible values (say: man, woman, dog, cat) using two
bits, e.g.

00 = man
01 = woman
10 = dog
11 = cat

To code eight values, say the eight capital cities, we need to use three bits,
for example

000 = London
001 = Paris
010 = Berlin
011 = Warsaw
100 = Sofia
101 = Rome
110 = Athens
111 = Moscow

Coding the 2N equally likely possibilities with N binary digits shows that
it is always possible to discriminate amongst the values with a sequence of N

well-chosen questions, for example:

Is the first bit zero?
Is the second bit zero?
Is the third bit zero?
and so on.

This leads to the following alternative (and equivalent) definition of entropy:

The entropy of a set of M distinct values is the number of bits needed to
encode the values in the most efficient way.

As for the previous definition, the words ‘in all cases’ are implicit and by
‘the most efficient way’ we mean the smallest number of bits averaged over a
series of trials, not just one single trial. This second definition also explains why
the entropy is often given not as a number but as so many ‘bits of information’.

140 Principles of Data Mining

9.3 Discriminating Amongst M Values
(M Not a Power of 2)

So far we have established that the entropy of a set of M distinct values that
are equally likely is log2 M for cases where M is a power of 2. We now need to
consider the case when it is not.

Is there any sense in which we can say that the entropy is log2 M bits of
information? We cannot have a non-integer number of questions or encode with
a non-integer number of bits.

To answer this we need to think of identifying not just one value out of M

possibilities but a sequence of k such values (each one chosen independently of
the others). We will denote the smallest number of yes/no questions needed to
determine a sequence of k unknown values drawn independently from M pos-
sibilities, i.e. the entropy, by VkM . This is the same as the number of questions
needed to discriminate amongst Mk distinct possibilities.

To take a concrete example, say M is 7 and k is 6 and the task is to identify
a sequence of six days of the week, for example {Tuesday, Thursday, Tuesday,
Monday, Sunday, Tuesday}. A possible question might be

Is the first day Monday, Tuesday or Wednesday
and the second day Thursday
and the third day Monday, Saturday, Tuesday or Thursday
and the fourth day Tuesday, Wednesday or Friday
and the fifth day Saturday or Monday
and the sixth day Monday, Sunday or Thursday?

There are 76=117649 possible sequences of six days. The value of log2 117649
is 16.84413. This is between 16 and 17 so to determine any possible value of a
sequence of 6 days of the week would take 17 questions. The average number
of questions for each of the six days of the week is 17/6 = 2.8333. This is
reasonably close to log27, which is approximately 2.8074.

A better approximation to the entropy is obtained by taking a larger value
of k, say 21. Now log2 Mk is log2(721) = 58.95445, so 59 questions are needed
for the set of 21 values, making an average number of questions per value of
59/21 = 2.809524.

Finally, for a set of 1000 values (k = 1000), log2 Mk is log2(71000) =
2807.3549, so 2808 questions are needed for the set of 1000 values, making
an average per value of 2.808, which is very close to log2 7.

It is not a coincidence that these values appear to be converging to log2 7, as
is shown by the following argument for the general case of sequences of length
k drawn from M distinct equally likely values.

More About Entropy 141

There are Mk possible sequences of k values. Assuming now that M is not
a power of 2, the number of questions needed, VkM is the next integer above
log2 Mk. We can put lower and upper bounds on the value of VkM by the
relation

log2 Mk ≤ VkM ≤ log2 Mk + 1

Using the property of logarithms that log2 Mk = k log2 M leads to the relation

k log2 M ≤ VkM ≤ k log2 M + 1

so log2 M ≤ VkM/k ≤ log2 M + 1/k.
VkM/k is the average number of questions needed to determine each of the

k values. By choosing a large enough value of k, i.e. a long enough sequence,
the value of 1/k can be made as small as we wish. Thus the average number
of questions needed to determine each value can be made arbitrarily close to
log2 M . Thus the entropy of a set of M distinct values can be said to be log2 M ,
even when M is not a power of 2 (see Figure 9.2).

M log2 M

2 1
3 1.5850
4 2
5 2.3219
6 2.5850
7 2.8074
8 3
9 3.1699
10 3.3219

Figure 9.2 log2 M for M from 2 to 10

9.4 Encoding Values That Are Not Equally
Likely

We finally come to the general case of encoding M distinct values that are not
equally likely. (We assume that values that never occur are not included.)

When M possible values are equally likely the entropy has previously been
shown to be log2 M . When M values are unequally distributed the entropy will

142 Principles of Data Mining

always have a lower value than log2 M . In the extreme case where only one
value ever occurs, there is no need to use even one bit to represent the value
and the entropy is zero.

We will write the frequency with which the ith of the M values occurs as
pi where i varies from 1 to M . Then we have 0 ≤ pi ≤ 1 for all pi and

i=M∑

i=1

pi = 1.

For convenience we will give an example where all the pi values are the
reciprocal of an exact power of 2, i.e. 1/2, 1/4 or 1/8, but the result obtained
can be shown to apply for other values of pi using an argument similar to that
in Section 9.3.

Suppose we have four values A, B, C and D which occur with frequencies
1/2, 1/4, 1/8 and 1/8 respectively. Then M = 4, p1 = 1/2, p2 = 1/4, p3 = 1/8,
p4 = 1/8.

When representing A, B, C and D we could use the standard 2-bit encoding
described previously, i.e.

A 10
B 11
C 00
D 01

However, we can improve on this using a variable length encoding, i.e. one
where the values are not always represented by the same number of bits. There
are many possible ways of doing this. The best way turns out to be the one
shown in Figure 9.3.

A 1
B 01
C 001
D 000

Figure 9.3 Most Efficient Representation for Four Values with Frequencies
1/2, 1/4, 1/8 and 1/8

If the value to be identified is A, we need examine only one bit to establish
this. If it is B we need to examine two bits. If it is C or D we need to examine 3
bits. In the average case we need to examine 1/2×1+1/4×2+1/8×3+1/8×3 =
1.75 bits.

This is the most efficient representation. Flipping some or all of the bits
consistently will give other equally efficient representations that are obviously
equivalent to it, such as

More About Entropy 143

A 0
B 11
C 100
D 101

Any other representation will require more bits to be examined on average.
For example we might choose

A 01
B 1
C 001
D 000

With this representation, in the average case we need to examine 1/2× 2 +
1/4 × 1 + 1/8 × 3 + 1/8 × 3 = 2 bits (the same as the number for the fixed
length representation).

Some other representations, such as

A 101
B 0011
C 10011
D 100001

are much worse than the 2-bit representation. This one requires 1/2×3+1/4×
4 + 1/8 × 5 + 1/8 × 6 = 3.875 bits to be examined on average.

The key to finding the most efficient coding is to use a string of N bits to
represent a value that occurs with frequency 1/2N . Writing this another way,
represent a value that occurs with frequency pi by a string of log2(1/pi) bits
(see Figure 9.4).

pi log2(1/pi)
1/2 1
1/4 2
1/8 3
1/16 4

Figure 9.4 Values of log2(1/pi)

This method of coding ensures that we can determine any value by asking
a sequence of ‘well-chosen’ yes/no questions (i.e. questions for which the two
possible answers are equally likely) about the value of each of the bits in turn.

Is the first bit 1?
If not, is the second bit 1?

144 Principles of Data Mining

If not, is the third bit 1?
etc.

So in Figure 9.3 value A, which occurs with frequency 1/2 is represented
by 1 bit, value B which occurs with frequency 1/4 is represented by 2 bits and
values C and D are represented by 3 bits each.

If there are M values with frequencies p1, p2, . . . , pM the average number
of bits that need to be examined to establish a value, i.e. the entropy, is the
frequency of occurrence of the ith value multiplied by the number of bits that
need to be examined if that value is the one to be determined, summed over
all values of i from 1 to M . Thus we can calculate the value of entropy E by

E =
M∑

i=1

pi log2(1/pi)

This formula is often given in the equivalent form

E = −
M∑

i=1

pi log2(pi)

There are two special cases to consider. When all the values of pi are the
same, i.e. pi = 1/M for all values of i from 1 to M , the above formula reduces
to

E = −
M∑

i=1

(1/M) log2(1/M)

= − log2(1/M)
= log2 M

which is the formula given in Section 9.3.
When there is only one value with a non-zero frequency, M = 1 and p1 = 1,

so E = −1 × log2 1 = 0.

9.5 Entropy of a Training Set

We can now link up the material in this chapter with the definition of the
entropy of a training set given in Chapter 4. In that chapter the formula for
entropy was simply stated without motivation. We can now see the entropy of
a training set in terms of the number of yes/no questions needed to determine
an unknown classification.

If we know that the entropy of a training set is E, it does not imply that we
can find an unknown classification with E ‘well-chosen’ yes/no questions. To
do so we would have to ask questions about the classification itself, e.g. ‘Is the
classification A or B, rather than C or D?’ Obviously we cannot find a way of
predicting the classification of an unseen instance by asking questions of this

More About Entropy 145

kind. Instead we ask a series of questions about the value of a set of attributes
measured for each of the instances in a training set, which collectively determine
the classification. Sometimes only one question is necessary, sometimes many
more.

Asking any question about the value of an attribute effectively divides the
training set into a number of subsets, one for each possible value of the attribute
(any empty subsets are discarded). The TDIDT algorithm described in Chapter
3 generates a decision tree from the top down by repeatedly splitting on the
values of attributes. If the training set represented by the root node has M

possible classifications, each of the subsets corresponding to the end nodes of
each branch of the developing tree has an entropy value that varies from log2 M

(if the frequencies of each of the classifications in the subset are identical) to
zero (if the subset has attributes with only one classification).

When the splitting process has terminated, all the ‘uncertainty’ has been
removed from the tree. Each branch corresponds to a combination of attribute
values and for each branch there is a single classification, so the overall entropy
is zero.

Although it is possible for a subset created by splitting to have an entropy
greater than its ‘parent’, at every stage of the process splitting on an attribute
reduces the average entropy of the tree or at worst leaves it unchanged. This is
an important result, which is frequently assumed but seldom proved. We will
consider it in the next section.

9.6 Information Gain Must be Positive or Zero

The Information Gain attribute selection criterion was described in Chapter
4. Because of its name, it is sometimes assumed that Information Gain must
always be positive, i.e. information is always gained by splitting on a node
during the tree generation process.

However this is not correct. Although it is generally true that information
gain is positive it is also possible for it to be zero. The following demonstration
that information gain can be zero is based on the principle that for C possible
classifications, the entropy of a training set takes the value log2 C (its largest
possible value) when the classes are balanced, i.e. there are the same number
of instances belonging to each of the classes.

The training set shown in Figure 9.5 has two equally balanced classes.
The probability of each class is 0.5, so we have

Estart = −(1/2) log2(1/2) − (1/2) log2(1/2) = − log2(1/2) = log2(2) = 1

146 Principles of Data Mining

X Y Class
1 1 A
1 2 B
2 1 A
2 2 B
3 2 A
3 1 B
4 2 A
4 1 B

Figure 9.5 Training Set for ‘Information Gain Can be Zero’ Example

This is the value of log2 C for C = 2 classes.
The training set has been constructed to have the property that whichever

attribute is chosen for splitting, each of the branches will also be balanced.
For splitting on attribute X the frequency table is shown in Figure 9.6(a).

Attribute value
Class 1 2 3 4
A 1 1 1 1
B 1 1 1 1
Total 2 2 2 2

Figure 9.6(a) Frequency Table for Attribute X

Each column of the frequency table is balanced and it can easily be verified
that Enew = 1.

For splitting on attribute Y the frequency table is shown in Figure 9.6(b).

Attribute value
Class 1 2
A 2 2
B 2 2
Total 4 4

Figure 9.6(b) Frequency Table for Attribute Y

Again both columns are balanced and Enew = 1. Whichever value is taken,
Enew is 1 and so the Information Gain = Estart − Enew = 0.

More About Entropy 147

The absence of information gain does not imply that there is no value in
splitting on either of the attributes. Whichever one is chosen, splitting on the
other attribute for all the resulting branches will produce a final decision tree
with each branch terminated by a leaf node and thus having an entropy of zero.

Although we have shown that Information Gain can sometimes be zero, it
can never be negative. Intuitively it would seem wrong for it to be possible to
lose information by splitting on an attribute. Surely that can only give more
information (or occasionally the same amount)?

The result that Information Gain can never be negative is stated by many
authors and implied by others. The name Information Gain gives a strong
suggestion that information loss would not be possible, but that is far from
being a formal proof.

The present author’s inability to locate a proof of this crucial result led him
to issue a challenge to several British academics to find a proof in the technical
literature or generate one themselves. An excellent response to this came from
two members of the University of Ulster in Northern Ireland who produced a
detailed proof of their own [9]. The proof is too difficult to reproduce here but
is well worth obtaining and studying in detail.

9.7 Using Information Gain for Feature
Reduction for Classification Tasks

We conclude this chapter by looking at a further use for entropy, in the form
of Information Gain, this time as a means of reducing the number of features
(i.e. attributes) that a classification algorithm (of any kind) needs to consider.

The method of feature reduction described here is specific to classification
tasks. It uses information gain, which was introduced in Chapter 4 as a criterion
for selecting attributes at each stage of the TDIDT tree generation algorithm.
However for purposes of feature reduction, information gain is applied at the
top level only as an initial pre-processing stage. Only the attributes meeting a
specified criterion are retained for use by the classification algorithm. There is
no assumption that the classification algorithm used is TDIDT. It can poten-
tially be any algorithm.

Broadly the method amounts to asking for each attribute in turn ‘how
much information is gained about the classification of an instance by knowing
the value of this attribute?’ Only the attributes with the largest values of
information gain are retained for use with the preferred classification algorithm.
There are three stages.

148 Principles of Data Mining

1. Calculate the value of information gain for each attribute in the original
dataset.
2. Discard all attributes that do not meet a specified criterion.
3. Pass the revised dataset to the preferred classification algorithm.

The method of calculating information gain for categorical attributes using
frequency tables was described in Chapter 5. A modification that enables the
method to be used for continuous attributes by examining alternative ways of
splitting the attribute values into two parts was described in Chapter 7. The
latter also returns a ‘split value’, i.e. the value of the attribute that gives the
largest information gain. This value is not needed when information gain is
used for feature reduction. It is sufficient to know the largest information gain
achievable for the attribute with any split value.

There are many possible criteria that can be used for determining which
attributes to retain, for example:

– Only retain the best 20 attributes

– Only retain the best 25% of the attributes

– Only retain attributes with an information gain that is at least 25% of the
highest information gain of any attribute

– Only retain attributes that reduce the initial entropy of the dataset by at
least 10%.

There is no one choice that is best in all situations, but analysing the infor-
mation gain values of all the attributes can help make an informed choice.

9.7.1 Example 1: The genetics Dataset

As an example we will consider the genetics dataset, which is available from
the UCI Repository. Some basic information about this is given in Figure 9.7.

Although 60 attributes is hardly a large number, it may still be more than
is needed for reliable classification and is large enough to make overfitting a
realistic possibility.

There are three classifications, distributed 767, 768 and 1655 amongst the
three classes for the 3190 instances. The relative proportions are 0.240, 0.241
and 0.519, so the initial entropy is: −0.240× log2(0.240)−0.241× log2(0.241)−
0.519 × log2(0.519) = 1.480.

The values of information gain for some of the attributes A0 to A59 are
shown in Figure 9.8.

More About Entropy 149

The genetics Dataset: Basic Information

The genetics dataset contains 3190 instances. Each instance comprises the
values of a sequence of 60 DNA elements and is classified into one of three
possible categories: EI, IE and N . Each of the 60 attributes (named A0
to A59) is categorical and has 8 possible values: A, T , G, C, N , D, S and R.

For further information see [10].

Figure 9.7 genetics Dataset: Basic Information

Attribute Information Gain
A0 0.0062
A1 0.0066
A2 0.0024
A3 0.0092
A4 0.0161
A5 0.0177
A6 0.0077
A7 0.0071
A8 0.0283
A9 0.0279
.
A27 0.2108
A28 0.3426
A29 0.3896
A30 0.3296
A31 0.3322
.
A57 0.0080
A58 0.0041
A59 0.0123

Figure 9.8 genetics Dataset: Information Gain for Some of the Attributes

150 Principles of Data Mining

The largest information gain is for A29. A gain of 0.3896 implies that the
initial entropy would be reduced by more than a quarter if the value of A29
were known. The second largest information gain is for attribute A28.

Comparing values written as decimals to four decimal places is awkward
(for people). It is probably easier to make sense of this table if it is adjusted by
dividing all the information gain values by 0.3896 (the largest value), making
a proportion from 0 to 1, and then multiplying them all by 100. The resulting
values are given in Figure 9.9. An adjusted information gain of 1.60 for attribute
A0 means that the information gain for A0 is 1.60% of the size of the largest
value, which was the one obtained for A29.

Attribute Info. Gain
(adjusted)

A0 1.60
A1 1.70
A2 0.61
A3 2.36
A4 4.14
A5 4.55
A6 1.99
A7 1.81
A8 7.27
A9 7.17
.
A27 54.09
A28 87.92
A29 100.00
A30 84.60
A31 85.26
.
A57 2.07
A58 1.05
A59 3.16

Figure 9.9 genetics Dataset: Information Gain as Percentage of Largest Value

From this table it is clear that not only is the information gain for A29 the
largest, it is considerably larger than most of the other values. Only a small
number of other information gain values are even 50% as large.

Another way of looking at the information gain values is to consider fre-

More About Entropy 151

quencies. We can divide the range of possible adjusted values (0 to 100% in
this case) into a number of ranges, generally known as bins. These might be
labelled 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. (It is not essential for the
bins to be equally spaced.)

Each of the information gain values is then assigned to one of the bins. The
first bin corresponds to values from 0 to 10 inclusive, the second bin corresponds
to values greater than 10 but less than or equal to 20, and so on.

The frequency for each of the 10 bins is shown in Figure 9.10. The final two
columns show the cumulative frequency (i.e. the number of values that are less
than or equal to the bin label) and the cumulative frequency expressed as a
percentage of the total number of values (i.e. 60).

Bin Frequency Cumulative Cumulative
frequency frequency (%)

10 41 41 68.33
20 9 50 83.33
30 2 52 86.67
40 2 54 90.00
50 0 54 90.00
60 2 56 93.33
70 0 56 93.33
80 0 56 93.33
90 3 59 98.33
100 1 60 100.00
Total 60

Figure 9.10 genetics Dataset: Information Gain Frequencies

As many as 41 of the 60 attributes have an information gain that is no more
than 10% as large as that of A29. Only six attributes have an information gain
that is more than 50% of that of A29.

It is tempting to discard all but the best six attributes. Although this is not
necessarily the best policy, it is interesting to look at the change in predictive
accuracy that results if we do.

Using TDIDT with the entropy attribute selection criterion for classifica-
tion, the predictive accuracy obtained using 10-fold cross-validation is 89.5%
when all 60 attributes are used. This increases to 91.8% when only the best six
attributes are used. Although this improvement is quite small, it certainly is
an improvement and is obtained using only 6 out of the original 60 attributes.

152 Principles of Data Mining

9.7.2 Example 2: The bcst96 Dataset

The next example makes use of a much larger dataset. The dataset bcst96 has
been used for experiments on automatic classification of web pages. Some basic
information about it is given in Figure 9.11.

The bcst96 Dataset: Basic Information

The bcst96 dataset comprises 1186 instances (training set) and a further
509 instances (test set). Each instance corresponds to a web page, which
is classified into one of two possible categories, B or C, using the values of
13,430 attributes, all continuous.
There are 1,749 attributes that each have only a single value for the in-
stances in the training set and so can be deleted, leaving 11,681 continuous
attributes.

Figure 9.11 bcst96 Dataset: Basic Information

In this case the original number of attributes is more than 11 times as large
as the number of instances in the training set. It seems highly likely that a
large number of the attributes could safely be deleted, but which ones?

The initial value of entropy is 0.996, indicating that the two classes are
fairly equally balanced.

As can be seen in Figure 9.11, having deleted the attributes that have a
single value for all instances in the training set, there are 11,681 continuous
attributes remaining.

Next we calculate the information gain for each of these 11,681 attributes.
The largest value is 0.381.

The frequency table is shown in Figure 9.12.
The most surprising result is that as many as 11,135 of the attributes

(95.33%) have an information gain in the 5 bin, i.e. no more than 5% of the
largest information gain available. Almost 99% of the values are in the 5 and
10 bins.

Using TDIDT with the entropy attribute selection criterion for classifica-
tion, the algorithm generates 38 rules from the original training set and uses
these to predict the classification of the 509 instances in the test set. It does this
with 94.9% accuracy (483 correct and 26 incorrect predictions). If we discard
all but the best 50 attributes, the same algorithm generates a set of 62 rules,
which again give 94.9% predictive accuracy on the test set (483 correct and 26
incorrect predictions).

More About Entropy 153

Bin Frequency Cumulative Cumulative
frequency frequency (%)

5 11,135 11,135 95.33
10 403 11,538 98.78
15 76 11,614 99.43
20 34 11,648 99.72
25 10 11,658 99.80
30 7 11,665 99.86
35 4 11,669 99.90
40 1 11,670 99.91
45 2 11,672 99.92
50 1 11,673 99.93
55 1 11,674 99.94
60 2 11,676 99.96
65 2 11,678 99.97
70 0 11,678 99.97
75 1 11,679 99.98
80 0 11,679 99.98
85 1 11,680 99.99
90 0 11,680 99.99
95 0 11,680 99.99
100 1 11,681 100.00
Total 11,681

Figure 9.12 bcst96 Dataset: Information Gain Frequencies

In this case just 50 out of 11,681 attributes (less than 0.5%) suffice to
give the same predictive accuracy as the whole set of attributes. However, the
difference in the amount of processing required to produce the two decision
trees is considerable. With all the attributes the TDIDT algorithm will need to
examine approximately 1, 186 × 11, 681 = 13, 853, 666 attribute values at each
node of the evolving decision tree. If only the best 50 attributes are used the
number drops to just 1, 186 × 50 = 59, 300.

Although feature reduction cannot always be guaranteed to produce re-
sults as good as those in these two examples, it should always be considered,
especially when the number of attributes is large.

154 Principles of Data Mining

Chapter Summary

This chapter returns to the subject of the entropy of a training set. It explains
the concept of entropy in detail using the idea of coding information using bits.
The important result that when using the TDIDT algorithm information gain
must be positive or zero is discussed, followed by the use of information gain
as a method of feature reduction for classification tasks.

Self-assessment Exercises for Chapter 9

1. What is the entropy of a training set of 100 instances with four classes that
occur with relative frequencies 20/100, 30/100, 25/100 and 25/100? What
is the entropy of a training set of 10,000 instances with those frequencies
for its four classes?

2. Given the task of identifying an unknown person in a large group using
only yes/no questions, which question is it likely to be best to ask first?

10
Inducing Modular Rules for Classification

Generating classification rules via the intermediate form of a decision tree is
a widely used technique, which formed the main topic of the first part of this
book. However, as pointed out in Chapter 8, like many other methods it suffers
from the problem of overfitting to the training data. We begin this chapter
by describing the ‘rule post-pruning’ method, which is an alternative to the
post-pruning method discussed in Chapter 8. This leads on to the important
topic of conflict resolution.

We go on to suggest that the decision tree representation is itself a major
cause of overfitting and then look at an algorithm which generates rules directly
without using the intermediate representation of a decision tree.

10.1 Rule Post-pruning

The Rule Post-pruning method begins by converting a decision tree to an equiv-
alent set of rules and then examines the rules with the aim of simplifying them
without any loss of (and preferably with a gain in) predictive accuracy.

Figure 10.1 shows the decision tree for the degrees dataset given in Chap-
ter 3. It consists of five branches, each ending with a leaf node labelled with
one of the valid classifications, i.e. FIRST or SECOND.

Each branch of the tree corresponds to a classification rule and so the rules
equivalent to the decision tree can be extracted from it branch by branch. The
order in which the branches are taken is arbitrary as for any unseen instance

156 Principles of Data Mining

A

SoftEng

SECONDProject

A

ARINFIRST

A

SECONDCSA

A B

SECONDFIRST

B

B

B

Figure 10.1 Decision Tree for the degrees Dataset

only one rule (at most) can ever apply. The five rules corresponding to Figure
10.1 are as follows (in arbitrary order):

IF SoftEng = A AND Project = B AND
ARIN = A AND CSA = A THEN Class = FIRST

IF SoftEng = A AND Project = A THEN Class = FIRST
IF SoftEng = A AND Project = B AND ARIN = A AND

CSA = B THEN Class = SECOND
IF SoftEng = A AND Project = B AND ARIN = B THEN

Class = SECOND
IF SoftEng = B THEN Class = SECOND

We now examine each of the rules in turn to consider whether removing each
of its terms increases or reduces its predictive accuracy. Thus for the first rule
given above we consider the four terms ‘SoftEng = A’, ‘Project = B’, ‘ARIN
= A’ and ‘CSA = A’. We need some way of estimating whether removing each
of these terms singly would increase or decrease the accuracy of the resulting
rule set. Assuming we have such a method, we remove the term that gives the
largest increase in predictive accuracy, say ‘Project = B’. We then consider the
removal of each of the other three terms. The processing of a rule ends when
removing any of the terms would reduce (or leave unchanged) the predictive
accuracy. We then go on to the next rule.

This description relies on there being some means of estimating the effect

Inducing Modular Rules for Classification 157

on the predictive accuracy of a ruleset of removing a single term from one of
the rules. We may be able to use a probability-based formula to do this or
we can simply use the original and revised rulesets to classify the instances
in an unseen pruning set and compare the results. (Note that it would be
methodologically unsound to improve the ruleset using a test set and then
examine its performance on the same instances. For this method there needs
to be three sets: training, pruning and test.)

10.2 Conflict Resolution

A second important issue raised by the use of rule post-pruning is of much wider
applicability. Once even one term has been removed from a rule the property
that for any unseen instance only one rule (at most) can ever apply is no longer
valid.

The method of post-pruning described in Chapter 8, i.e. working bottom-up,
repeatedly replacing a subtree by a single node has the very desirable property
that the resulting branches will still fit together in a tree structure. For example
the method might (probably unwisely) lead to the replacement of the test on
the value of ARIN in Figure 10.1 and the subtree that hangs from it by a single
node labelled SECOND. The result will still be a tree, as shown in Figure 10.2.

A

SECONDProject

A

SECONDFIRST

SoftEng

B

B

Figure 10.2 Decision Tree for the degrees Dataset (revised)

Instead of this, suppose that, as part of a process such as rule post-pruning,
we wish to remove the link corresponding to ‘SoftEng = A’ near the top of the
tree, giving Figure 10.3.

If we do so, we will no longer have a tree—just two disconnected trees. It
is unclear whether and how these can be used. The five rules listed in Section

158 Principles of Data Mining

B

SECONDProject

A

ARINFIRST

A

SECONDCSA

A

SECONDFIRST

SoftEng

B

B

B

Figure 10.3 Decision Tree for the degrees Dataset (revised – version 2)

10.1 have now become the following (the first four rules have changed).

IF Project = B AND ARIN = A AND CSA = A THEN Class = FIRST
IF Project = A THEN Class = FIRST
IF Project = B AND ARIN = A AND CSA = B

THEN Class = SECOND
IF Project = B AND ARIN = B THEN Class = SECOND
IF SoftEng = B THEN Class = SECOND

We will say that a rule fires if its condition part is satisfied for a given
instance. If a set of rules fits into a tree structure there is only one rule that
can fire for any instance. In the general case of a set of rules that do not fit
into a tree structure, it is entirely possible for several rules to fire for a given
test instance, and for those rules to give contradictory classifications.

Suppose that for the degrees application we have an unseen instance for
which the values of SoftEng, Project, ARIN and CSA are ‘B’, ‘B’, ‘A’ and ‘A’,
respectively. Both the first and the last rules will fire. The first rule concludes
‘Class = FIRST’; the last rule concludes ‘Class = SECOND’. Which one should
we take?

The problem can be illustrated outside the context of the degrees dataset
by considering just two rules from some imaginary ruleset:

IF x = 4 THEN Class = a

Inducing Modular Rules for Classification 159

IF y = 2 THEN Class = b

What should the classification be for an instance with x = 4 and y = 2?
One rule gives class a, the other class b.

We can easily extend the example with other rules such as

IF w = 9 and k = 5 THEN Class = b

IF x = 4 THEN Class = a

IF y = 2 THEN Class = b

IF z = 6 and m = 47 THEN Class = b

What should the classification be for an instance with w = 9, k = 5, x = 4,
y = 2, z = 6 and m = 47? One rule gives class a, the other three rules give
class b.

We need a method of choosing just one classification to give to the unseen
instance. This method is known as a conflict resolution strategy. There are
various strategies we can use, including:

– ‘majority voting’ (e.g. there are three rules predicting class b and only one
predicting class a, so choose class b)

– giving priority to certain types of rule or classification (e.g. rules with a
small number of terms or predicting a rare classification might have a higher
weighting than other rules in the voting)

– using a measure of the ‘interestingness’ of each rule (of the kind that will be
discussed in Chapter 12), give priority to the most interesting rule.

It is possible to construct quite elaborate conflict resolution strategies but
most of them have the same drawback: they require the condition part of all
the rules to be tested for each unseen instance, so that all the rules that fire are
known before the strategy is applied. By contrast, we need only work through
the rules generated from a decision tree until the first one fires (as we know no
others can).

A very basic but widely used conflict resolution strategy is to work through
the rules in order and to take the first one that fires. This can reduce the
amount of processing required considerably, but makes the order in which the
rules are generated very important.

Whilst it is possible using a conflict resolution strategy to post-prune a
decision tree to give a set of rules that do not fit together in a tree structure,
it seems an unnecessarily indirect way of generating a set of rules. In addition
if we wish to use the ‘take the first rule that fires’ conflict resolution strategy,
the order in which the rules are extracted from the tree is likely to be of crucial
importance, whereas it ought to be arbitrary.

160 Principles of Data Mining

In Section 10.4 we will describe an algorithm that dispenses with tree gen-
eration altogether and produces rules that are ‘free standing’, i.e. do not fit
together into a tree structure, directly. We will call these modular rules.

10.3 Problems with Decision Trees

Although very widely used, the decision tree representation has a serious po-
tential drawback: the rules derived from the tree may be much more numerous
than necessary and may contain many redundant terms.

In a PhD project at the Open University, supervised by the present author,
Cendrowska [11], [12] criticised the principle of generating decision trees which
can then be converted to decision rules, compared with the alternative of gen-
erating decision rules directly from the training set. She comments as follows
[the original notation has been changed to be consistent with that used in this
book]:

“[The] decision tree representation of rules has a number of disadvan-
tages. . . . [Most] importantly, there are rules that cannot easily be represented
by trees.

Consider, for example, the following rule set:

Rule 1: IF a = 1 AND b = 1 THEN Class = 1
Rule 2: IF c = 1 AND d = 1 THEN Class =1

Suppose that Rules 1 and 2 cover all instances of Class 1 and all other
instances are of Class 2. These two rules cannot be represented by a single
decision tree as the root node of the tree must split on a single attribute, and
there is no attribute which is common to both rules. The simplest decision tree
representation of the set of instances covered by these rules would necessarily
add an extra term to one of the rules, which in turn would require at least one
extra rule to cover instances excluded by the addition of that extra term. The
complexity of the tree would depend on the number of possible values of the
attributes selected for partitioning. For example, let the four attributes a, b, c

and d each have three possible values 1, 2 and 3, and let attribute a be selected
for partitioning at the root node. The simplest decision tree representation of
Rules 1 and 2 is shown [in Figure 10.4].

The paths relating to Class 1 can be listed as follows:

IF a = 1 AND b = 1 THEN Class = 1
IF a = 1 AND b = 2 AND c = 1 AND d = 1 THEN Class = 1
IF a = 1 AND b = 3 AND c = 1 AND d = 1 THEN Class = 1
IF a = 2 AND c = 1 AND d = 1 THEN Class = 1

Inducing Modular Rules for Classification 161

1

b c c

3 3

a

321

1 2

c c d d

3221 321

321321321

32121

321

d d

3 3

2 2 1 2 2

2 2

1

1 2 21 2 22 2

2 2 2 2

Figure 10.4 Simplest Decision Tree Representation of Rules 1 and 2

IF a = 3 AND c = 1 AND d =1 THEN Class = 1

Clearly, the consequence of forcing a simple rule set into a decision tree rep-
resentation is that the individual rules, when extracted from the tree, are often
too specific (i.e. they reference attributes which are irrelevant). This makes
them highly unsuitable for use in many domains.”

The phenomenon of unnecessarily large and confusing decision trees de-
scribed by Cendrowska is far from being merely a rare hypothetical possibility.
It will occur whenever there are two (underlying) rules with no attribute in
common, a situation that is likely to occur frequently in practice.

All the rules corresponding to the branches of a decision tree must begin in
the same way, i.e. with a test on the value of the attribute selected at the top
level. Leaving aside issues of overfitting, this effect will inevitably lead to the
introduction of terms in rules (branches) which are unnecessary except for the
sole purpose of enabling a tree structure to be constructed.

Issues of the size and compactness of a rule set may not seem important
when the training sets are small, but may become very important as they scale
up to many thousands or millions of instances, especially if the number of
attributes is also large.

Although in this book we have generally ignored issues of the practicality
of and/or cost associated with finding the values of attributes, considerable
practical problems can arise when the values of some attributes are unknown
for an instance that needs to be classified or can only be obtained by means of

162 Principles of Data Mining

tests that carry an unusually high cost or risk to health. For many real-world
applications a method of classifying unseen instances that avoided making un-
necessary tests would be highly desirable.

10.4 The Prism Algorithm

The Prism algorithm was introduced by Cendrowska [11], [12]. The aim is to
induce modular classification rules directly from the training set. The algorithm
assumes that all the attributes are categorical. When there are continuous at-
tributes they can first be converted to categorical ones (as described in Chap-
ter 7). Alternatively the algorithm can be extended to deal with continuous
attributes in much the same way as was described for TDIDT in Section 7.3.

Prism uses the ‘take the first rule that fires’ conflict resolution strategy
when the resulting rules are applied to unseen data, so it is important that as
far as possible the most important rules are generated first.

The algorithm generates the rules concluding each of the possible classes in
turn. Each rule is generated term by term, with each term of the form ‘attribute
= value’. The attribute/value pair added at each step is chosen to maximise
the probability of the target ‘outcome class’.

In its basic form, the Prism algorithm is shown in Figure 10.5. Note that
the training set is restored to its original state for each new class.

For each classification (class = i) in turn and starting with the complete
training set each time:

1. Calculate the probability that class = i for each attribute/value pair.

2. Select the pair with the largest probability and create a subset of
the training set comprising all the instances with the selected at-
tribute/value combination (for all classifications).

3. Repeat 1 and 2 for this subset until a subset is reached that contains
only instances of class i. The induced rule is then the conjunction of all
the attribute/value pairs selected.

4. Remove all instances covered by this rule from the training set.

Repeat 1–4 until all instances of class i have been removed

Figure 10.5 The Basic Prism Algorithm

We will illustrate the algorithm by generating rules for the lens24 dataset

Inducing Modular Rules for Classification 163

(classification 1 only). The algorithm generates two classification rules for that
class.

The initial training set for lens24 comprises 24 instances, shown in Figure
10.6.

age specRx astig tears class
1 1 1 1 3
1 1 1 2 2
1 1 2 1 3
1 1 2 2 1
1 2 1 1 3
1 2 1 2 2
1 2 2 1 3
1 2 2 2 1
2 1 1 1 3
2 1 1 2 2
2 1 2 1 3
2 1 2 2 1
2 2 1 1 3
2 2 1 2 2
2 2 2 1 3
2 2 2 2 3
3 1 1 1 3
3 1 1 2 3
3 1 2 1 3
3 1 2 2 1
3 2 1 1 3
3 2 1 2 2
3 2 2 1 3
3 2 2 2 3

Figure 10.6 The lens24 Training Set

First Rule
Figure 10.7 shows the probability of class = 1 occurring for each at-

tribute/value pair over the whole training set (24 instances).
The maximum probability is when astig = 2 or tears = 2.
Choose astig = 2 arbitrarily.
Incomplete rule induced so far:

IF astig = 2 THEN class = 1

164 Principles of Data Mining

Attribute/value pair Frequency Total frequency Probability
for class = 1 (out of 24

instances)
age = 1 2 8 0.25
age = 2 1 8 0.125
age = 3 1 8 0.125
specRx = 1 3 12 0.25
specRx = 2 1 12 0.083
astig = 1 0 12 0
astig = 2 4 12 0.33
tears = 1 0 12 0
tears = 2 4 12 0.33

Figure 10.7 First Rule: Probability of Attribute/value Pairs (Version 1)

The subset of the training set covered by this incomplete rule is given in
Figure 10.8.

age specRx astig tears class
1 1 2 1 3
1 1 2 2 1
1 2 2 1 3
1 2 2 2 1
2 1 2 1 3
2 1 2 2 1
2 2 2 1 3
2 2 2 2 3
3 1 2 1 3
3 1 2 2 1
3 2 2 1 3
3 2 2 2 3

Figure 10.8 First Rule: Subset of Training Set Covered by Incomplete Rule
(Version 1)

Figure 10.9 shows the probability of each attribute/value pair (not involving
attribute astig) occurring for this subset.

The maximum probability is when tears = 2.
Incomplete rule induced so far:

Inducing Modular Rules for Classification 165

Attribute/value pair Frequency Total frequency Probability
for class = 1 (out of 12

instances)
age = 1 2 4 0.5
age = 2 1 4 0.25
age = 3 1 4 0.25
specRx = 1 3 6 0.5
specRx = 2 1 6 0.17
tears = 1 0 6 0
tears = 2 4 6 0.67

Figure 10.9 First Rule: Probability of Attribute/value Pairs (Version 2)

IF astig = 2 and tears = 2 THEN class = 1

The subset of the training set covered by this rule is shown in Figure 10.10.

age specRx astig tears class
1 1 2 2 1
1 2 2 2 1
2 1 2 2 1
2 2 2 2 3
3 1 2 2 1
3 2 2 2 3

Figure 10.10 First Rule: Subset of Training Set Covered by Incomplete Rule
(Version 2)

Figure 10.11 shows the probability of each attribute/value pair (not involv-
ing attributes astig or tears) occurring for this subset.

The maximum probability is when age = 1 or specRx = 1.
Choose (arbitrarily) age = 1.

Incomplete rule induced so far:

IF astig = 2 and tears = 2 and age = 1 THEN class = 1

The subset of the training set covered by this rule is given in Figure 10.12.
This subset contains only instances of class 1.
The final induced rule is therefore

IF astig = 2 and tears = 2 and age = 1 THEN class = 1

166 Principles of Data Mining

Attribute/value pair Frequency Total frequency Probability
for class = 1 (out of 6

instances)
age = 1 2 2 1.0
age = 2 1 2 0.5
age = 3 1 2 0.5
specRx = 1 3 3 1.0
specRx = 2 1 3 0.33

Figure 10.11 First Rule: Probability of Attribute/value Pairs (Version 3)

age specRx astig tears class
1 1 2 2 1
1 2 2 2 1

Figure 10.12 First Rule: Subset of Training Set Covered by Incomplete Rule
(Version 3)

Second Rule
Removing the two instances covered by the first rule from the training set

gives a new training set with 22 instances. This is shown in Figure 10.13.
The table of frequencies is now as given in Figure 10.14 for attribute/value

pairs corresponding to class = 1.
The maximum probability is achieved by astig = 2 and tears = 2.

Choose astig = 2 arbitrarily.
Incomplete rule induced so far:

IF astig=2 THEN class = 1

The subset of the training set covered by this rule is shown in Figure 10.15.
This gives the frequency table shown in Figure 10.16.
The maximum probability is achieved by tears = 2.
Incomplete rule induced so far:

IF astig = 2 and tears = 2 then class = 1

The subset of the training set covered by this rule is shown in Figure 10.17.
This gives the frequency table shown in Figure 10.18.
The maximum probability is for specRx = 1
Incomplete rule induced so far:

IF astig = 2 and tears = 2 and specRx = 1 THEN class = 1

Inducing Modular Rules for Classification 167

age specRx astig tears class
1 1 1 1 3
1 1 1 2 2
1 1 2 1 3
1 2 1 1 3
1 2 1 2 2
1 2 2 1 3
2 1 1 1 3
2 1 1 2 2
2 1 2 1 3
2 1 2 2 1
2 2 1 1 3
2 2 1 2 2
2 2 2 1 3
2 2 2 2 3
3 1 1 1 3
3 1 1 2 3
3 1 2 1 3
3 1 2 2 1
3 2 1 1 3
3 2 1 2 2
3 2 2 1 3
3 2 2 2 3

Figure 10.13 The lens24 Training Set (Reduced)

Attribute/value pair Frequency Total frequency Probability
for class = 1 (out of 22

instances)
age = 1 0 6 0
age = 2 1 8 0.125
age = 3 1 8 0.125
specRx = 1 2 11 0.18
specRx = 2 0 11 0
astig = 1 0 12 0
astig = 2 2 10 0.2
tears = 1 0 12 0
tears = 2 2 10 0.2

Figure 10.14 Second Rule: Probability of Attribute/value Pairs (Version 1)

168 Principles of Data Mining

age specRx astig tears class
1 1 2 1 3
1 2 2 1 3
2 1 2 1 3
2 1 2 2 1
2 2 2 1 3
2 2 2 2 3
3 1 2 1 3
3 1 2 2 1
3 2 2 1 3
3 2 2 2 3

Figure 10.15 Second Rule: Subset of Training Set Covered by Incomplete
Rule (Version 1)

Attribute/value pair Frequency Total frequency Probability
for class = 1 (out of 10

instances)
age = 1 0 2 0
age = 2 1 4 0.25
age = 3 1 4 0.25
specRx = 1 0 5 0
specRx = 2 2 5 0.4
tears = 1 0 6 0
tears = 2 2 4 0.5

Figure 10.16 Second Rule: Probability of Attribute/value Pairs (Version 2)

age specRx astig tears class
2 1 2 2 1
2 2 2 2 3
3 1 2 2 1
3 2 2 2 3

Figure 10.17 Second Rule: Subset of Training Set Covered by Incomplete
Rule (Version 2)

Inducing Modular Rules for Classification 169

Attribute/value pair Frequency Total Frequency Probability
for class = 1 (out of 4

instances)
age = 1 0 0 –
age = 2 1 2 0.5
age = 3 1 2 0.5
specRx = 1 2 2 1.0
specRx = 2 0 2 0

Figure 10.18 Second Rule: Probability of Attribute/value Pairs (Version 3)

age specRx astig tears class
2 1 2 2 1
3 1 2 2 1

Figure 10.19 Second Rule: Subset of Training Set Covered by Incomplete
Rule (Version 3)

The subset of the training set covered by this rule is shown in Figure 10.19.
This subset contains only instances of class 1. So the final induced rule is:

IF astig = 2 and tears = 2 and specRx = 1 THEN class = 1

Removing the two instances covered by this rule from the current version of
the training set (which has 22 instances) gives a training set of 20 instances from
which all instances of class 1 have now been removed. So the Prism algorithm
terminates (for classification 1).

The final pair of rules induced by Prism for class 1 are:

IF astig = 2 and tears = 2 and age = 1 THEN class = 1
IF astig = 2 and tears = 2 and specRx = 1 THEN class = 1

The algorithm will now go on to generate rules for the remaining classifica-
tions. It produces 3 rules for class 2 and 4 for class 3. Note that the training
set is restored to its original state for each new class.

10.4.1 Changes to the Basic Prism Algorithm

1. Tie-breaking

The basic algorithm can be improved slightly by choosing between at-
tribute/value pairs which have equal probability not arbitrarily as above
but by taking the one with the highest total frequency.

170 Principles of Data Mining

2. Clashes in the Training Data

The original version of Prism does not include any method of dealing with
clashes in the training set encountered during rule generation.

However, the basic algorithm can easily be extended to deal with clashes as
follows.

Step 3 of the algorithm states:

Repeat 1 and 2 for this subset until a subset is reached that contains only
instances of class i.

To this needs to be added ‘or a subset is reached which contains instances
of more than one class, although values of all the attributes have already been
used in creating the subset’.

The simple approach of assigning all instances in the subset to the majority
class does not fit directly into the Prism framework. A number of approaches
to doing so have been investigated, and the most effective would appear to be
as follows.

If a clash occurs while generating the rules for class i:

1. Determine the majority class for the subset of instances in the clash set.

2. If this majority class is class i, then complete the induced rule by as-
signing all the instances in the clash set to class i. If not, discard the
rule.

10.4.2 Comparing Prism with TDIDT

Both the additional features described in Section 10.4.1 are included in a re-
implementation of Prism by the present author [13].

The same paper describes a series of experiments to compare the perfor-
mance of Prism with that of TDIDT on a number of datasets. The author
concludes “The experiments presented here suggest that the Prism algorithm
for generating modular rules gives classification rules which are at least as good
as those obtained from the widely used TDIDT algorithm. There are generally
fewer rules with fewer terms per rule, which is likely to aid their comprehen-
sibility to domain experts and users. This result would seem to apply even
more strongly when there is noise in the training set. As far as classification
accuracy on unseen test data is concerned, there appears to be little to choose
between the two algorithms for noise-free datasets, including ones with a sig-
nificant proportion of clash instances in the training set. The main difference

Inducing Modular Rules for Classification 171

is that Prism generally has a preference for leaving a test instance as ‘unclas-
sified’ rather than giving it a wrong classification. In some domains this may
be an important feature. When it is not, a simple strategy such as assigning
unclassified instances to the majority class would seem to suffice. When noise
is present, Prism would seem to give consistently better classification accuracy
than TDIDT, even when there is a high level of noise in the training set. . . .
The reasons why Prism should be more tolerant to noise than TDIDT are not
entirely clear, but may be related to the presence of fewer terms per rule in
most cases. The computational effort involved in generating rules using Prism
. . . is greater than for TDIDT. However, Prism would seem to have considerable
potential for efficiency improvement by parallelisation.”

These very positive conclusions are of course based on only a fairly limited
number of experiments and need to be verified for a much wider range of
datasets. In practice, despite the drawbacks of a decision tree representation
and the obvious potential of Prism and other similar algorithms, TDIDT is far
more frequently used to generate classification rules. The ready availability of
C4.5 [3] and related systems is no doubt a significant factor in this.

In Chapter 12 we go on to look at the use of modular rules for predicting
associations between attribute values rather than for classification.

Chapter Summary

This chapter begins by considering a method of post-pruning decision rules
generated via a decision tree, which has the property that the pruned rules
will not generally fit together to form a tree. Rules of this kind are known as
modular rules. When using modular rules to classify unseen test data a conflict
resolution strategy is needed and several possibilities for this are discussed. The
use of a decision tree as an intermediate representation for rules is identified as
a source of overfitting.

The Prism algorithm induces modular classification rules directly from a
training set. Prism is described in detail, followed by a discussion of its perfor-
mance as a classification algorithm relative to TDIDT.

Self-assessment Exercise for Chapter 10

What would be the first rule generated by Prism for the degrees dataset given
in Chapter 3, Figure 3.3, for class ‘FIRST’?

11
Measuring the Performance of a Classifier

Up to now we have generally assumed that the best (or only) way of measuring
the performance of a classifier is by its predictive accuracy, i.e. the proportion
of unseen instances it correctly classifies. However this is not necessarily the
case.

There are many other types of classification algorithm as well as those
discussed in this book. Some require considerably more computation or memory
than others. Some require a substantial number of training instances to give
reliable results. Depending on the situation the user may be willing to accept
a lower level of predictive accuracy in order to reduce the run time/memory
requirements and/or the number of training instances needed.

A more difficult trade-off occurs when the classes are severely unbalanced.
Suppose we are considering investing in one of the leading companies quoted on
a certain stock market. Can we predict which companies will become bankrupt
in the next two years, so we can avoid investing in them? The proportion of
such companies is obviously small. Let us say it is 0.02 (a fictitious value), so
on average out of every 100 companies 2 will become bankrupt and 98 will not.
Call these ‘bad’ and ‘good’ companies respectively.

If we have a very ‘trusting’ classifier that always predicts ‘good’ under all
circumstances its predictive accuracy will be 0.98, a very high value. Looked at
only in terms of predictive accuracy this is a very successful classifier. Unfor-
tunately it will give us no help at all in avoiding investing in bad companies.

On the other hand, if we want to be very safe we could use a very ‘cautious’
classifier that always predicted ‘bad’. In this way we would never lose our money
in a bankrupt company but would never invest in a good one either. This is

174 Principles of Data Mining

similar to the ultra-safe strategy for air traffic control: ground all aeroplanes, so
you can be sure that none of them will crash. In real life, we are usually willing
to accept the risk of making some mistakes in order to achieve our objectives.

It is clear from this example that neither the very trusting nor the very
cautious classifier is any use in practice. Moreover, where the classes are severely
unbalanced (98% to 2% in the company example), predictive accuracy on its
own is not a reliable indicator of a classifier’s effectiveness.

11.1 True and False Positives and Negatives

The idea of a confusion matrix was introduced in Chapter 6. When there are
two classes, which we will call positive and negative (or simply + and −), the
confusion matrix consists of four cells, which can be labelled TP , FP , FN and
TN as in Figure 11.1.

Predicted class Total
+ − instances

Actual class + TP FN P
− FP TN N

Figure 11.1 True and False Positives and Negatives

TP: true positives
The number of positive instances that are classified as positive

FP: false positives
The number of negative instances that are classified as positive

FN: false negatives
The number of positive instances that are classified as negative

TN: true negatives
The number of negative instances that are classified as negative

P = TP + FN
The total number of positive instances

N = FP + TN
The total number of negative instances

Measuring the Performance of a Classifier 175

It is often useful to distinguish between the two types of classification error:
false positives and false negatives.

False positives (also known as Type 1 Errors) occur when instances that
should be classified as negative are classified as positive.

False negatives (also known as Type 2 Errors) occur when instances that
should be classified as positive are classified as negative.

Depending on the application, errors of these two types are of more or less
importance.

In the following examples we will make the assumption that there are only
two classifications, which will be called positive and negative, or + and −. The
training instances can then be considered as positive and negative examples
of a concept such as ‘good company’, ‘patient with brain tumour’ or ‘relevant
web page’.

Bad Company Application. Here we would like the number of false positives
(bad companies that are classified as good) to be as small as possible, ideally
zero. We would probably be willing to accept a high proportion of false negatives
(good companies classified as bad) as there are a large number of possible
companies to invest in.

Medical Screening Application. It would not be possible in any realistic sys-
tem of healthcare to screen the entire population for a condition that occurs
only rarely, say a brain tumour. Instead the doctor uses his or her experience
to judge (based on symptoms and other factors) which patients are most likely
to be suffering from a brain tumour and sends them to a hospital for screening.

For this application we might be willing to accept quite a high proportion
of false positives (patients screened unnecessarily) perhaps as high as 0.90, i.e.
only 1 in 10 of patients screened has a brain tumour, or even higher. However
we would like the proportion of false negatives (patients with a brain tumour
who are not screened) to be as small as possible, ideally zero.

Information Retrieval Application. A web search engine can be looked at as a
kind of classifier. Given a specification such as ‘pages about American poetry’ it
effectively classifies all pages on the web that are known to it as either ‘relevant’
or ‘not relevant’ and displays the URLs of the ‘relevant’ ones to the user. Here
we may be willing to accept a high proportion of false negatives (relevant pages
left out), perhaps 30% or even higher, but probably do not want too many false
positives (irrelevant pages included), say no more than 10%. In such information

176 Principles of Data Mining

retrieval applications the user is seldom aware of the false negatives (relevant
pages not found by the search engine) but false positives are visible, waste time
and irritate the user.

These examples illustrate that, leaving aside the ideal of perfect classifica-
tion accuracy, there is no single combination of false positives and false neg-
atives that is ideal for every application and that even a very high level of
predictive accuracy may be unhelpful when the classes are very unbalanced. To
go further we need to define some improved measures of performance.

11.2 Performance Measures

We can now define a number of performance measures for a classifier applied
to a given test set. The most important ones are given in Figure 11.2. Several
measures have more than one name, depending on the technical area (signal
processing, medicine, information retrieval etc.) in which they are used.

For information retrieval applications the most commonly used measures
are Recall and Precision. For the search engine application, Recall measures
the proportion of relevant pages that are retrieved and Precision measures
the proportion of retrieved pages that are relevant. The F1 Score combines
Precision and Recall into a single measure, which is their product divided by
their average. This is known as the harmonic mean of the two values.

The values of P and N , the number of positive and negative instances, are
fixed for a given test set, whichever classifier is used. The values of the measures
given in Figure 11.2 will generally vary from one classifier to another. Given
the values of True Positive Rate and False Positive Rate (as well as P and N)
we can derive all the other measures.

We can therefore characterise a classifier by its True Positive Rate (TP
Rate) and False Positive Rate (FP Rate) values, which are both proportions
from 0 to 1 inclusive. We start by looking at some special cases.

A: The Perfect Classifier
Here every instance is correctly classified. TP = P , TN = N and the

confusion matrix is:

Predicted class Total
+ − instances

Actual class + P 0 P

− 0 N N

Measuring the Performance of a Classifier 177

True Positive
Rate

TP/P The proportion of
positive instances that
are correctly classified as
positive

or Hit Rate
or Recall
or Sensitivity or
TP Rate
False Positive
Rate

FP/N The proportion of
negative instances that
are erroneously classified
as positive

or False Alarm
Rate
or FP Rate
False Negative
Rate

FN/P The proportion of
positive instances that
are erroneously classified
as negative = 1 − True
Positive Rate

or FN Rate

True Negative
Rate

TN/N The proportion of
negative instances that
are correctly classified as
negative

or Specificity
or TN Rate
Precision TP/(TP+FP) Proportion of instances
or Positive
Predictive Value

classified as positive that
are really positive

F1 Score (2 × Precision × Recall) A measure that combines
/(Precision + Recall) Precision and Recall

Accuracy or
Predictive
Accuracy

(TP + TN)/(P + N) The proportion of
instances that are
correctly classified

Error Rate (FP + FN)/(P + N) The proportion of
instances that are
incorrectly classified

Figure 11.2 Some Performance Measures for a Classifier

178 Principles of Data Mining

TP Rate (Recall) = P/P = 1
FP Rate = 0/N = 0
Precision = P/P = 1
F1 Score = 2 × 1/(1 + 1) = 1
Accuracy = (P + N)/(P + N) = 1

B: The Worst Possible Classifier
Every instance is wrongly classified. TP = 0 and TN = 0. The confusion

matrix is:

Predicted class Total
+ − instances

Actual class + 0 P P

− N 0 N

TP Rate (Recall) = 0/P = 0
FP Rate = N/N = 1
Precision = 0/N = 0
F1 Score is not applicable (as Precision + Recall = 0)
Accuracy = 0/(P + N) = 0

C: The Ultra-liberal Classifier
This classifier always predicts the positive class. The True Positive rate is

1 but the False Positive rate is also 1. The False Negative and True Negative
rates are both zero. The confusion matrix is:

Predicted class Total
+ − instances

Actual class + P 0 P

− N 0 N

TP Rate (Recall) = P/P = 1
FP Rate = N/N = 1
Precision = P/(P + N)
F1 Score = 2 × P/(2 × P + N)
Accuracy = P/(P + N), which is the proportion of positive instances in the
test set.

D: The Ultra-conservative Classifier
This classifier always predicts the negative class. The False Positive rate is

zero, but so is the True Positive rate. The confusion matrix is:

Predicted class Total
+ − instances

Actual class + 0 P P

− 0 N N

Measuring the Performance of a Classifier 179

TP Rate (Recall) = 0/P = 0
FP Rate = 0/N = 0
Precision is not applicable (as TP + FP = 0)
F1 Score is also not applicable
Accuracy = N/(P + N), which is the proportion of negative instances in
the test set.

11.3 True and False Positive Rates versus
Predictive Accuracy

One of the strengths of characterising a classifier by its TP Rate and FP Rate
values is that they do not depend on the relative sizes of P and N . The same
applies to using the FN Rate and TN Rate values or any other combination
of two ‘rate’ values calculated from different rows of the confusion matrix. In
contrast, Predictive Accuracy and all the other measures listed in Figure 11.2
are derived from values in both rows of the table and so are affected by the
relative sizes of P and N , which can be a serious weakness.

To illustrate this, suppose that the positive class corresponds to those who
pass a driving test at the first attempt and that the negative class corresponds
to those who fail. Assume that the relative proportions in the real world are 9
to 10 (a fictitious value) and the test set correctly reflects this.

Then the confusion matrix for a particular classifier on a given test set
might be

Predicted class Total
+ − instances

Actual class + 8, 000 1, 000 9, 000
− 2, 000 8, 000 10, 000

This gives a true positive rate of 0.89 and a false positive rate of 0.2, which
we will assume is a satisfactory result.

Now suppose that the number of successes grows considerably over a period
of time because of improved training, so that there is a higher proportion of
passes. With this assumption a possible confusion matrix for a future series of
trials would be as follows.

Predicted class Total
+ − instances

Actual class + 80, 000 10, 000 90, 000
− 2, 000 8, 000 10, 000

180 Principles of Data Mining

The classifier will of course still work exactly as well as before to predict
the correct classification of either a pass or a fail with which it is presented. For
both confusion matrices the values of TP Rate and FP Rate are the same (0.89
and 0.2 respectively). However the values of the Predictive Accuracy measure
are different.

For the original confusion matrix, Predictive Accuracy is 16,000/19,000 =
0.842. For the second one, Predictive Accuracy is 88,000/100,000 = 0.88.

An alternative possibility is that over a period of time there is a large
increase in the relative proportion of failures, perhaps because of an increase
in the number of younger people being tested. A possible confusion matrix for
a future series of trials would be as follows.

Predicted class Total
+ − instances

Actual class + 8, 000 1, 000 9, 000
− 20, 000 80, 000 100, 000

Here the Predictive Accuracy is 88,000/109,000 = 0.807.
Whichever of these test sets was used with the classifier the TP Rate and

FP Rate values would be the same. However the three Predictive Accuracy
values would vary from 81% to 88%, reflecting changes in the relative numbers
of positive and negative values in the test set, rather than any change in the
quality of the classifier.

11.4 ROC Graphs

The TP Rate and FP Rate values of different classifiers on the same test set are
often represented diagrammatically by a ROC Graph. The abbreviation ROC
Graph stands for ‘Receiver Operating Characteristics Graph’, which reflects its
original uses in signal processing applications.

On a ROC Graph, such as Figure 11.3, the value of FP Rate is plotted on
the horizontal axis, with TP Rate plotted on the vertical axis.

Each point on the graph can be written as a pair of values (x, y) indicating
that the FP Rate has value x and the TP Rate has value y.

The points (0, 1), (1, 0), (1, 1) and (0, 0) correspond to the four special cases
A, B, C and D in Section 11.2, respectively. The first is located at the best
possible position on the graph, the top left-hand corner. The second is at the
worst possible position, the bottom right-hand corner. If all the classifiers are
good ones, all the points on the ROC Graph are likely to be around the top
left-hand corner.

Measuring the Performance of a Classifier 181

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

FP Rate

T
P

 R
at

e

Figure 11.3 Example of ROC Graph

The other six points shown are (0.1, 0.6), (0.2, 0.5), (0.4, 0.2), (0.5, 0.5),
(0.7, 0.7) and (0.2, 0.7).

One classifier is better than another if its corresponding point on the ROC
Graph is to the ‘north-west’ of the other’s. Thus the classifier represented by
(0.1, 0.6) is better than the one represented by (0.2, 0.5). It has a lower FP Rate
and a higher TP Rate. If we compare points (0.1, 0.6) and (0.2, 0.7), the latter
has a higher TP Rate but also a higher FP Rate. Neither classifier is superior
to the other on both measures and the one chosen will depend on the relative
importance given by the user to the two measures.

The diagonal line joining the bottom left and top right-hand corners corre-
sponds to random guessing, whatever the probability of the positive class may
be. If a classifier guesses positive and negative at random with equal frequency,
it will classify positive instances correctly 50% of the time and negative in-
stances as positive, i.e. incorrectly, 50% of the time. Thus both the TP Rate
and the FP Rate will be 0.5 and the classifier will lie on the diagonal at point
(0.5, 0.5).

Similarly, if a classifier guesses positive and negative at random with positive
selected 70% of the time, it will classify positive instances correctly 70% of the
time and negative instances as positive, i.e. incorrectly, 70% of the time. Thus
both the TP Rate and the FP Rate will be 0.7 and the classifier will lie on the
diagonal at point (0.7, 0.7).

We can think of the points on the diagonal as corresponding to a large
number of random classifiers, with higher points on the diagonal corresponding

182 Principles of Data Mining

to higher proportions of positive classifications generated on a random basis.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

FP Rate

T
P

 R
at

e

Figure 11.4 Example of ROC Graph (Amended)

The upper left-hand triangle corresponds to classifiers that are better than
random guessing. The lower right-hand triangle corresponds to classifiers that
are worse than random guessing, such as the one at (0.4, 0.2).

A classifier that is worse than random guessing can be converted to one
that is better than random guessing simply by reversing its predictions, so that
every positive prediction becomes negative and vice versa. By this method the
classifier at (0.4, 0.2) can be converted to the new one at (0.2, 0.4) in Figure
11.4. The latter point is the former reflected about the diagonal line.

11.5 ROC Curves

In general, each classifier corresponds to a single point on a ROC Graph. How-
ever there are some classification algorithms that lend themselves to ‘tuning’,
so that it is reasonable to think of a series of classifiers, and thus points on a
ROC Graph, one for each value of some variable, generally known as a parame-
ter. For a decision tree classifier such a parameter might be the ‘depth cutoff’
(see Chapter 8) which can vary from 1, 2, 3 etc.

In such a case the points can be joined to form a ROC Curve such as
Figure 11.5.

Measuring the Performance of a Classifier 183

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

FP Rate

T
P

 R
at

e

Figure 11.5 Example of ROC Curve

Examining ROC curves can give insights into the best way of tuning a
classification algorithm. In Figure 11.5 performance clearly degrades after the
third point in the series.

The performance of different types of classifier with different parameters
can be compared by inspecting their ROC curves.

11.6 Finding the Best Classifier

There is no infallible way of finding the best classifier for a given application,
unless we happen to find one that gives perfect performance, corresponding
to the (0, 1) point on the ROC Graph. One approach that is sometimes used
is to measure the distance of a classifier on the ROC Graph from the perfect
classifier.

Figure 11.6 shows the points (fprate, tprate) and (0, 1). The Euclidean dis-

tance between them is
√

fprate2 + (1 − tprate)2.

We can write Euc =
√

fprate2 + (1 − tprate)2.
The smallest possible value of Euc is zero, when fprate = 0 and tprate = 1

(the perfect classifier). The largest value is
√

2, when fprate is 1 and tprate is
zero (the worst possible classifier). We could hypothesise that the smaller the
value of Euc the better the classifier.

Euc is a useful measure but does not take into account the relative impor-
tance of true and false positives. There is no best answer to this. It depends on
the use to which the classifier will be put.

184 Principles of Data Mining

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

FP Rate

T
P

 R
at

e
(fprate,tprate)

(0,1)

Figure 11.6 Measuring the Distance from the Perfect Classifier

We can specify the relative importance of making tprate as close to 1 as
possible and making fprate as close to zero as possible by a weight w from 0 to
1 and define the Weighted Euclidean Distance as

WEuc =
√

(1 − w)fprate2 + w(1 − tprate)2

If w = 0 this reduces to WEuc = fprate, i.e. we are only interested in
minimising the value of fprate.

If w = 1 it reduces to WEuc = 1 - tprate, i.e. we are only interested in
minimising the difference between tprate and 1 (thus maximising tprate).

If w = 0.5 the formula reduces to
WEuc =

√
0.5 ∗ fprate2 + 0.5 ∗ (1 − tprate)2

which is a constant multiple of√
fprate2 + (1 − tprate)2, so the effect when comparing one classifier with

another is the same as if there were no weighting at all.

Chapter Summary

This chapter looks at the use of true and false positive and negative classi-
fications as a better way of measuring the performance of a classifier than
predictive accuracy alone. Other performance measures can be derived from
these four basic ones, including true positive rate (or hit rate), false positive

Measuring the Performance of a Classifier 185

rate (or false alarm rate), precision, accuracy and F1 score.
The values of true positive rate and false positive rate are often represented

diagrammatically by a ROC graph. Joining the points on a ROC graph to form
a ROC curve can often give insight into the best way of tuning a classifier. A
Euclidean distance measure of the difference between a given classifier and the
performance of a hypothetical perfect classifier is described.

Self-assessment Exercise for Chapter 11

Four classifiers are generated for the same training set, which has 100 instances.
They have the following confusion matrices.

Predicted class
+ −

Actual class + 50 10
− 10 30

Predicted class
+ −

Actual class + 55 5
− 5 35

Predicted class
+ −

Actual class + 40 20
− 1 39

Predicted class
+ −

Actual class + 60 0
− 20 20

Calculate the values of true positive rate and false positive rate for each
classifier and plot them on a ROC graph. Calculate the value of the Euclidean
distance measure Euc for each one. Which classifier would you consider the best
if you were equally concerned with avoiding false positive and false negative
classifications?

12
Association Rule Mining I

12.1 Introduction

Classification rules are concerned with predicting the value of a categorical
attribute that has been identified as being of particular importance. In this
chapter we go on to look at the more general problem of finding any rules of
interest that can be derived from a given dataset.

We will restrict our attention to IF . . . THEN . . . rules that have a conjunc-
tion of ‘attribute = value’ terms on both their left- and right-hand sides. We
will also assume that all attributes are categorical (continuous attributes can be
dealt with by discretising them ’globally’ before any of the methods discussed
here are used).

Unlike classification, the left- and right-hand sides of rules can potentially
include tests on the value of any attribute or combination of attributes, subject
only to the obvious constraints that at least one attribute must appear on both
sides of every rule and no attribute may appear more than once in any rule. In
practice data mining systems often place restrictions on the rules that can be
generated, such as the maximum number of terms on each side.

If we have a financial dataset one of the rules extracted might be as follows:

IF Has-Mortgage = yes AND Bank Account Status = In credit
THEN Job Status = Employed AND Age Group = Adult under 65

Rules of this more general kind represent an association between the values
of certain attributes and those of others and are called association rules. The

188 Principles of Data Mining

process of extracting such rules from a given dataset is called association rule
mining (ARM). The term generalised rule induction (or GRI) is also used,
by contrast with classification rule induction. (Note that if we were to apply
the constraint that the right-hand side of a rule has to have only one term
which must be an attribute/value pair for a designated categorical attribute,
association rule mining would reduce to induction of classification rules.)

For a given dataset there are likely to be few if any association rules that
are exact, so we normally associate with each rule a confidence value, i.e. the
proportion of instances matched by its left- and right-hand sides combined as
a proportion of the number of instances matched by the left-hand side on its
own. This is the same measure as the predictive accuracy of a classification
rule, but the term ‘confidence’ is more commonly used for association rules.

Association Rule Mining algorithms need to be able to generate rules with
confidence values less than one. However the number of possible Association
Rules for a given dataset is generally very large and a high proportion of the
rules are usually of little (if any) value. For example, for the (fictitious) financial
dataset mentioned previously, the rules would include the following (no doubt
with very low confidence):

IF Has-Mortgage = yes AND Bank Account Status = In credit
THEN Job Status = Unemployed

This rule will almost certainly have a very low confidence and is obviously
unlikely to be of any practical value.

The main difficulty with association rule mining is computational efficiency.
If there are say 10 attributes, each rule can have a conjunction of up to nine
‘attribute = value’ terms on the left-hand side. Each of the attributes can
appear with any of its possible values. Any attribute not used on the left-hand
side can appear on the right-hand side, also with any of its possible values.
There are a very large number of possible rules of this kind. Generating all of
these is very likely to involve a prohibitive amount of computation, especially
if there are a large number of instances in the dataset.

For a given unseen instance there are likely to be several or possibly many
rules, probably of widely varying quality, predicting different values for any
attributes of interest. A conflict resolution strategy of the kind discussed in
Chapter 10 is needed that takes account of the predictions from all the rules,
plus information about the rules and their quality. However we will concentrate
here on rule generation, not on conflict resolution.

Association Rule Mining I 189

12.2 Measures of Rule Interestingness

In the case of classification rules we are generally interested in the quality of a
rule set as a whole. It is all the rules working in combination that determine
the effectiveness of a classifier, not any individual rule or rules.

In the case of association rule mining the emphasis is on the quality of each
individual rule. A single high quality rule linking the values of attributes in a
financial dataset or the purchases made by a supermarket customer, say, may
be of significant commercial value.

To distinguish between one rule and another we need some measures of
rule quality. These are generally known as rule interestingness measures. The
measures can of course be applied to classification rules as well as association
rules if desired.

Several interestingness measures have been proposed in the technical liter-
ature. Unfortunately the notation used is not yet very well standardised, so in
this book we will adopt a notation of our own for all the measures described.

In this section we will write a rule in the form

if LEFT then RIGHT

We start by defining four numerical values which can be determined for any
rule simply by counting:

NLEFT Number of instances matching LEFT
NRIGHT Number of instances matching RIGHT
NBOTH Number of instances matching both LEFT and RIGHT
NTOTAL Total number of instances

We can depict this visually by a figure known as a Venn diagram. In Fig-
ure 12.1 the outer box can be envisaged as containing all NTOTAL instances
under consideration. The left- and right-hand circles contain the NLEFT in-
stances that match LEFT and the NRIGHT instances that match RIGHT,
respectively. The hashed area where the circles intersect contains the NBOTH

instances that match both LEFT and RIGHT.

Figure 12.1 Instances matching LEFT, RIGHT and both LEFT and RIGHT

190 Principles of Data Mining

The values NLEFT , NRIGHT , NBOTH and NTOTAL are too basic to be
considered as rule interestingness measures themselves but the values of most
(perhaps all) interestingness measures can be computed from them.

Three commonly used measures are given in Figure 12.2 below. The first
has more than one name in the technical literature.

Confidence (Predictive Accuracy, Reliability)
NBOTH / NLEFT

The proportion of right-hand sides predicted by the rule that are correctly
predicted

Support
NBOTH/NTOTAL

The proportion of the training set correctly predicted by the rule

Completeness
NBOTH/NRIGHT

The proportion of the matching right-hand sides that are correctly predicted
by the rule

Figure 12.2 Basic Measures of Rule Interestingness

We can illustrate this using the financial rule given in Section 12.1.

IF Has-Mortgage = yes AND Bank Account Status = In credit
THEN Job Status = Employed AND Age Group = Adult under 65

Assume that by counting we arrive at the following values:

NLEFT = 65
NRIGHT = 54
NBOTH = 50
NTOTAL = 100

From these we can calculate the values of the three interestingness measures
given in Figure 12.2.

Confidence = NBOTH/NLEFT = 50/65 = 0.77
Support = NBOTH/NTOTAL = 50/100 = 0.5
Completeness = NBOTH/NRIGHT = 50/54 = 0.93

The confidence of the rule is 77%, which may not seem very high. However
it correctly predicts for 93% of the instances in the dataset that match the

Association Rule Mining I 191

right-hand side of the rule and the correct predictions apply to as much as 50%
of the dataset. This seems like a valuable rule.

Amongst the other measures of interestingness that are sometimes used is
discriminability. This measures how well a rule discriminates between one class
and another. It is defined by:

1 − (NLEFT − NBOTH)/(NTOTAL − NRIGHT)

which is

1− (number of misclassifications produced by the rule) / (number of instances
with other classifications)

If the rule predicts perfectly, i.e. NLEFT = NBOTH , the value of discriminabil-
ity is 1.

For the example given above, the value of discriminability is

1 − (65 − 50)/(100 − 54) = 0.67.

12.2.1 The Piatetsky-Shapiro Criteria and the RI
Measure

In an influential paper [14] the American researcher Gregory Piatetsky-Shapiro
proposed three principal criteria that should be met by any rule interestingness
measure. The criteria are listed in Figure 12.3 and explained in the text that
follows.

Criterion 1
The measure should be zero if NBOTH = (NLEFT × NRIGHT)/NTOTAL

Interestingness should be zero if the antecedent and the consequent are
statistically independent (as explained below).

Criterion 2
The measure should increase monotonically with NBOTH

Criterion 3
The measure should decrease monotonically with each of NLEFT and
NRIGHT

For criteria 2 and 3, it is assumed that all other parameters are fixed.

Figure 12.3 Piatetsky-Shapiro Criteria for Rule Interestingness Measures

192 Principles of Data Mining

The second and third of these are more easily explained than the first.
Criterion 2 states that if everything else is fixed the more right-hand sides
that are correctly predicted by a rule the more interesting it is. This is clearly
reasonable.
Criterion 3 states that if everything else is fixed

(a) the more instances that match the left-hand side of a rule the less
interesting it is.

(b) the more instances that match the right-hand side of a rule the less
interesting it is.

The purpose of (a) is to give preference to rules that correctly predict a given
number of right-hand sides from as few matching left-hand sides as possible (for
a fixed value of NBOTH , the smaller the value of NLEFT the better).

The purpose of (b) is to give preference to rules that predict right-hand sides
that are relatively infrequent (because predicting common right-hand sides is
easier to do).
Criterion 1 is concerned with the situation where the antecedent and the con-
sequent of a rule (i.e. its left- and right-hand sides) are independent. How many
right-hand sides would we expect to predict correctly just by chance?

We know that the number of instances in the dataset is NTOTAL and that
the number of those instances that match the right-hand side of the rule is
NRIGHT . So if we just predicted a right-hand side without any justification
whatever we would expect our prediction to be correct for NRIGHT instances
out of NTOTAL, i.e. a proportion of NRIGHT /NTOTAL times.

If we predicted the same right-hand side NLEFT times (one for each instance
that matches the left-hand side of the rule), we would expect that purely by
chance our prediction would be correct NLEFT × NRIGHT /NTOTAL times.

By definition the number of times that the prediction actually turns out
to be correct is NBOTH . So Criterion 1 states that if the number of correct
predictions made by the rule is the same as the number that would be expected
by chance the rule interestingness is zero.

Piatetsky-Shapiro proposed a further rule interestingness measure called
RI, as the simplest measure that meets his three criteria. This is defined by:

RI = NBOTH − (NLEFT × NRIGHT /NTOTAL)
RI measures the difference between the actual number of matches and the

expected number if the left- and right-hand sides of the rule were independent.
Generally the value of RI is positive. A value of zero would indicate that the
rule is no better than chance. A negative value would imply that the rule is
less successful than chance.

The RI measure satisfies all three of Piatetsky-Shapiro’s criteria.

Criterion 1 RI is zero if NBOTH = (NLEFT × NRIGHT)/NTOTAL

Association Rule Mining I 193

Criterion 2 RI increases monotonically with NBOTH (assuming that all other
parameters are fixed).
Criterion 3 RI decreases monotonically with each of NLEFT and NRIGHT

(assuming that all other parameters are fixed).

Although doubts have been expressed about the validity of the three criteria
and much research in this field remains to be done, the RI measure remains a
valuable contribution in its own right.

There are several other rule interestingness measures available. Some im-
portant ones are described later in this chapter and in Chapter 13.

12.2.2 Rule Interestingness Measures Applied to the
chess Dataset

Although Rule Interestingness Measures are particularly valuable for associa-
tion rules, we can also apply them to classification rules if we wish.

The unpruned decision tree derived from the chess dataset (with attribute
selection using entropy) comprises 20 rules. One of these (numbered rule 19 in
Figure 12.4) is

IF inline = 1 AND wr bears bk = 2 THEN Class = safe

For this rule

NLEFT = 162
NRIGHT = 613
NBOTH = 162
NTOTAL = 647

So we can calculate the values of the various rule interestingness measures
as follows:

Confidence = 162/162 = 1
Completeness = 162/613 = 0.26
Support = 162/647 = 0.25
Discriminability = 1 − (162 − 162)/(647 − 613) = 1
RI = 162 − (162 × 613/647) = 8.513

The ‘perfect’ values of confidence and discriminability are of little value here.
They always occur when rules are extracted from an unpruned classification
tree (created without encountering any clashes in the training data). The RI

value indicates that the rule can be expected to correctly predict 8.513 more
correct classifications (on average) than would be expected by chance.

194 Principles of Data Mining

Rule NLEFT NRIGHT NBOTH Conf Compl Supp Discr RI
1 2 613 2 1.0 0.003 0.003 1.0 0.105
2 3 34 3 1.0 0.088 0.005 1.0 2.842
3 3 34 3 1.0 0.088 0.005 1.0 2.842
4 9 613 9 1.0 0.015 0.014 1.0 0.473
5 9 613 9 1.0 0.015 0.014 1.0 0.473
6 1 34 1 1.0 0.029 0.002 1.0 0.947
7 1 613 1 1.0 0.002 0.002 1.0 0.053
8 1 613 1 1.0 0.002 0.002 1.0 0.053
9 3 34 3 1.0 0.088 0.005 1.0 2.842
10 3 34 3 1.0 0.088 0.005 1.0 2.842
11 9 613 9 1.0 0.015 0.014 1.0 0.473
12 9 613 9 1.0 0.015 0.014 1.0 0.473
13 3 34 3 1.0 0.088 0.005 1.0 2.842
14 3 613 3 1.0 0.005 0.005 1.0 0.158
15 3 613 3 1.0 0.005 0.005 1.0 0.158
16 9 34 9 1.0 0.265 0.014 1.0 8.527
17 9 34 9 1.0 0.265 0.014 1.0 8.527
18 81 613 81 1.0 0.132 0.125 1.0 4.257
19 162 613 162 1.0 0.264 0.25 1.0 8.513
20 324 613 324 1.0 0.529 0.501 1.0 17.026

NTOTAL = 647

Figure 12.4 Rule Interestingness Values for Rules Derived from chess Dataset

The table of interestingness values of all 20 classification rules derived from
the chess dataset, given as Figure 12.4, is very revealing.

Judging by the RI values, it looks as if only the last five rules are really
of any interest. They are the only rules (out of 20) that correctly predict the
classification for at least four instances more than would be expected by chance.
Rule 20 predicts the correct classification 324 out of 324 times. Its support value
is 0.501, i.e. it applies to over half the dataset, and its completeness value is
0.529. By contrast, Rules 7 and 8 have RI values as low as 0.053, i.e. they
predict only slightly better than chance.

Ideally we would probably prefer only to use rules 16 to 20. However in
the case of classification rules we cannot just discard the other 15 much lower
quality rules. If we do we will have a tree with only five branches that is unable
to classify 62 out of the 647 instances in the dataset. This illustrates the general
point that an effective classifier (set of rules) can include a number of rules that
are themselves of low quality.

Association Rule Mining I 195

12.2.3 Using Rule Interestingness Measures for Conflict
Resolution

We can now return briefly to the subject of conflict resolution, when several
rules predict different values for one or more attributes of interest for an unseen
test instance. Rule interestingness measures give one approach to handling this.
For example we might decide to use only the rule with the highest interesting-
ness value, or the most interesting three rules, or more ambitiously we might
decide on a ‘weighted voting’ system that adjusts for the interestingness value
or values of each rule that fires.

12.3 Association Rule Mining Tasks

The number of generalised rules that can be derived from a given dataset is
potentially very large and in practice the aim is usually either to find all the
rules satisfying a specified criterion or to find the best N rules. The latter will
be discussed in the next section.

As a criterion for accepting a rule we could use a test on the confidence of
the rule, say ‘confidence > 0.8’, but this is not completely satisfactory. It is
quite possible that we can find rules that have a high level of confidence but
are applicable very rarely. For example with the financial example used before
we might find the rule

IF Age Group = Over seventy AND Has-Mortgage = no
THEN Job Status = Retired

This may well have a high confidence value but is likely to correspond to
very few instances in the dataset and thus be of little practical value. One way
of avoiding such problems is to use a second measure. One frequently used is
support. The value of support is the proportion of the instances in the dataset
to which the rule (successfully) applies, i.e. the proportion of instances matched
by the left- and right-hand sides together. A rule that successfully applied to
only 2 instances in a dataset of 10,000 would have a low value of support (just
0.0002), even if its confidence value were high.

A common requirement is to find all rules with confidence and support
above specified threshold values. A particularly important type of association
rule application for which this approach is used is known as market basket
analysis. This involves analysing very large datasets of the kind collected by
supermarkets, telephone companies, banks etc. about their customers’ transac-
tions (purchases, calls made, etc.) to find rules that, in the supermarket case,

196 Principles of Data Mining

find associations between the products purchased by customers. Such datasets
are generally handled by restricting attributes to having only the values true
or false (indicating the purchase or non-purchase of some product, say) and
restricting the rules generated to ones where every attribute included in the
rule has the value true.

Market basket analysis will be discussed in detail in Chapter 13.

12.4 Finding the Best N Rules

In this section we will look at a method of finding the best N rules that can be
generated from a given dataset. We will assume that the value of N is a small
number such as 20 or 50.

We first need to decide on some numerical value that we can measure for any
rule which captures what we mean by ‘best’. We will call this a quality measure.
In this section we will use a quality measure (or measure of rule interestingness)
known as the J-measure.

Next we need to decide on some set of rules in which we are interested. This
could be all possible rules with a conjunction of ‘attribute = value’ terms on
both the left- and right-hand sides, the only restriction being that no attribute
may appear on both sides of a rule. However a little calculation shows that for
even as few as 10 attributes the number of possible rules is huge and in practice
we may wish to restrict the rules of interest to some smaller (but possibly still
very large) number. For example we might limit the rule ‘order’, i.e. the number
of terms on the left-hand side, to no more than four (say) and possibly also
place restrictions on the right-hand side, for example a maximum of two terms
or only a single term or even only terms involving a single specified attribute.
We will call the set of possible rules of interest the search space.

Finally we need to decide on a way of generating the possible rules in the
search space in an efficient order, so that we can calculate the quality measure
for each one. This is called a search strategy. Ideally we would like to find a
search strategy that avoids having to generate low-quality rules if possible.

As rules are generated we maintain a table of the best N rules so far found
and their corresponding quality measures in descending numerical order. If a
new rule is generated that has a quality measure greater than the smallest value
in the table the Nth best rule is deleted and the new rule is placed in the table
in the appropriate position.

Association Rule Mining I 197

12.4.1 The J-Measure: Measuring the Information
Content of a Rule

The J-measure was introduced into the data mining literature by Smyth and
Goodman [15], as a means of quantifying the information content of a rule that
is soundly based on theory. Justifying the formula is outside the scope of this
book, but calculating its value is straightforward.

Given a rule of the form If Y = y, then X = x using Smyth and Goodman’s
notation, the information content of the rule, measured in bits of information,
is denoted by J(X;Y = y), which is called the J-measure for the rule.

The value of the J-measure is the product of two terms:

– p(y) The probability that the left-hand side (antecedent) of the rule will
occur

– j(X;Y = y) The j-measure (note the small letter ‘j’) or cross-entropy.

The cross-entropy term is defined by the equation:

j(X;Y = y) = p(x|y). log2

(p(x|y)
p(x)

)
+ (1 − p(x|y)). log2

(1 − p(x|y)
1 − p(x)

)

The value of cross-entropy depends on two values:

– p(x) The probability that the right-hand side (consequent) of the rule will
be satisfied if we have no other information (called the a priori probability
of the rule consequent)

– p(x|y) The probability that the right-hand side of the rule will be satisfied if
we know that the left-hand side is satisfied (read as ‘probability of x given
y’).

A plot of the j-measure for various values of p(x) is given in Figure 12.5.
In terms of the basic measures introduced in Section 12.2:

p(y) = NLEFT /NTOTAL

p(x) = NRIGHT /NTOTAL

p(x|y) = NBOTH/NLEFT

The J-measure has two helpful properties concerning upper bounds. First,
it can be shown that the value of J(X;Y = y) is less than or equal to

p(y). log2(
1

p(y)).

The maximum value of this expression, given when p(y) = 1/e, is log2 e/e,
which is approximately 0.5307 bits.

198 Principles of Data Mining

Figure 12.5 Plot of j-Measure for Various Values of p(x)

Second (and more important), it can be proved that the J value of any rule
obtained by specialising a given rule by adding further terms is bounded by
the value

Jmax = p(y).max{p(x|y). log2(
1

p(x)), (1 − p(x|y)). log2(
1

1−p(x))}

Thus if a given rule is known to have a J value of, say, 0.352 bits and the
value of Jmax is also 0.352, there is no benefit to be gained (and possibly harm
to be done) by adding further terms to the left-hand side, as far as information
content is concerned.

We will come back to this topic in the next section.

12.4.2 Search Strategy

There are many ways in which we can search a given search space, i.e. generate
all the rules of interest and calculate their quality measures. In this section we
will describe a method that takes advantage of the properties of the J-measure.

To simplify the description we will assume that there are ten attributes
a1, a2, . . . , a10 each with three possible values 1, 2 and 3. The search space
comprises rules with just one term on the right-hand side and up to nine terms
on the left-hand side.

Association Rule Mining I 199

We start by generating all possible right-hand sides. There are 30 of them,
i.e. each of the 10 attributes combined with each of its three values, e.g. a1 = 1
or a7 = 2.

From these we can generate all possible rules of order one, i.e. with one
term on the left-hand side. For each right-hand side, say ‘a2 = 2’, there are
27 possible left-hand sides, i.e. the other nine attributes combined with each of
their three possible values, and thus 27 possible rules of order one, i.e.

IF a1 = 1 THEN a2 = 2
IF a1 = 2 THEN a2 = 2
IF a1 = 3 THEN a2 = 2
IF a3 = 1 THEN a2 = 2
IF a3 = 2 THEN a2 = 2
IF a3 = 3 THEN a2 = 2

and so on.
We calculate the J-value for each of the 27× 30 possible rules. We put the

rules with the N highest J-values in the best rule table in descending order of
J .

The next step is to specialise the rules of order one to form rules of order
two, e.g. to expand

IF a3 = 3 THEN a2 = 2

to the set of rules

IF a3 = 3 AND a1 = 1 THEN a2 = 2
IF a3 = 3 AND a1 = 2 THEN a2 = 2
IF a3 = 3 AND a1 = 3 THEN a2 = 2
IF a3 = 3 AND a4 = 1 THEN a2 = 2
IF a3 = 3 AND a4 = 2 THEN a2 = 2
IF a3 = 3 AND a4 = 3 THEN a2 = 2

and so on.
We can then go on to generate all rules of order 3 and then all rules of

order 4, 5 etc. up to 9. This clearly involves generating a very large number
of rules. There are 262,143 possible left-hand sides for each of the 30 possible
right-hand sides, making a total of 7,864,290 rules to consider. However, there
are two ways in which the process can be made more computationally feasible.

The first is to expand only the best (say) 20 rules of order one with an ad-
ditional term. The J-values of the resulting rules of order 2 are then calculated
and the ‘best N rules’ table is adjusted as necessary. The best 20 rules of order
2 (whether or not they are in the best N rules table overall) are then expanded
by a further term to give rules of order 3 and so on. This technique is known
as a beam search, by analogy with the restricted width of the beam of a torch.

200 Principles of Data Mining

In this case the beam width is 20. It is not necessary for the beam width to be
a fixed value. For example it might start at 50 when expanding rules of order
one then reduce progressively for rules of higher orders.

It is important to appreciate that using a beam search technique to reduce
the number of rules generated is a heuristic, i.e. a ‘rule of thumb’ that is not
guaranteed to work correctly in every case. It is not necessarily the case that
the best rules of order K are all specialisations of the best rules of order K −1.

The second method of reducing the number of rules to be generated is
guaranteed always to work correctly and relies on one of the properties of the
J-measure.

Let us suppose that the last entry in the ‘best N rules table’ (i.e. the entry
with lowest J-value in the table) has a J-value of 0.35 and we have a rule with
two terms, say

IF a3 = 3 AND a6 = 2 THEN a2 = 2

which has a J-value of 0.28.
In general specialising a rule by adding a further term can either increase

or decrease its J-value. So even if the order 3 rule

IF a3 = 3 AND a6 = 2 AND a8 = 1 THEN a2 = 2

has a lower J-value, perhaps 0.24, it is perfectly possible that adding a fourth
term could give a higher J-value that will put the rule in the top N .

A great deal of unnecessary calculation can be avoided by using the Jmax

value described in Section 12.4.1. As well as calculating the J-value of the rule

IF a3 = 3 AND a6 = 2 THEN a2 = 2

which was given previously as 0.28, let us assume that we also calculate its
Jmax value as 0.32. This means that no further specialisation of the rule by
adding terms to the left-hand side can produce a rule (for the same right-hand
side) with a J-value larger than 0.32. This is less than the minimum of 0.35
needed for the expanded form of the rule to qualify for the best N rules table.
Hence the order 2 form of the rule can safely be discarded.

Combining a beam search with rule ‘pruning’ using the Jmax value can
make generating rules from even quite a large dataset computationally feasible.

In the next chapter we look at the problem of generating association rules
for market basket analysis applications, where the datasets are often huge, but
the rules take a restricted form.

Association Rule Mining I 201

Chapter Summary

This chapter looks at the problem of finding any rules of interest that can
be derived from a given dataset, not just classification rules as before. This is
known as Association Rule Mining or Generalised Rule Induction. A number of
measures of rule interestingness are defined and criteria for choosing between
measures are discussed. An algorithm for finding the best N rules that can be
generated from a dataset using the J-measure of the information content of a
rule and a ‘beam search’ strategy is described.

Self-assessment Exercises for Chapter 12

1. Calculate the values of Confidence, Completeness, Support, Discriminabil-
ity and RI for rules with the following values.

Rule NLEFT NRIGHT NBOTH NTOTAL

1 720 800 700 1000
2 150 650 140 890
3 1000 2000 1000 2412
4 400 250 200 692
5 300 700 295 817

2. Given a dataset with four attributes w, x, y and z, each with three values,
how many rules can be generated with one term on the right-hand side?

13
Association Rule Mining II

This chapter requires a basic knowledge of mathematical set theory. If you do
not already have this, the notes in Appendix A will tell you all you need to
know.

13.1 Introduction

This chapter is concerned with a special form of Association Rule Mining, which
is known as Market Basket Analysis. The rules generated for Market Basket
Analysis are all of a certain restricted kind.

Here we are interested in any rules that relate the purchases made by cus-
tomers in a shop, frequently a large store with many thousands of products, as
opposed to those that predict the purchase of one particular item. Although in
this chapter ARM will be described in terms of this application, the methods
described are not restricted to the retail industry. Other applications of the
same kind include analysis of items purchased by credit card, patients’ medical
records, crime data and data from satellites.

204 Principles of Data Mining

13.2 Transactions and Itemsets

We will assume that we have a database comprising n transactions (i.e.
records), each of which is a set of items.

In the case of market basket analysis we can think of each transaction as
corresponding to a group of purchases made by a customer, for example {milk,
cheese, bread} or {fish, cheese, bread, milk, sugar}. Here milk, cheese, bread
etc. are items and we call {milk, cheese, bread} an itemset. We are interested in
finding rules known as association rules that apply to the purchases made by
customers, for example ‘buying fish and sugar is often associated with buying
milk and cheese’, but only want rules that meet certain criteria for ‘interest-
ingness’, which will be specified later.

Including an item in a transaction just means that some quantity of it was
bought. For the purposes of this chapter, we are not interested in the quantity
of cheese or the number of cans of dog food etc. bought. We do not record the
items that a customer did not buy and are not interested in rules that include
a test of what was not bought, such as ‘customers who buy milk but do not
buy cheese generally buy bread’. We only look for rules that link all the items
that were actually bought.

We will assume that there are m possible items that can be bought and will
use the letter I to denote the set of all possible items.

In a realistic case the value of m can easily be many hundreds or even many
thousands. It partly depends on whether a company decides to consider, say,
all the meat it sells as a single item ‘meat’ or as a separate item for each type
of meat (‘beef’, ‘lamb’, ‘chicken’ etc.) or as a separate item for each type and
weight combination. It is clear that even in quite a small store the number of
different items that could be considered in a basket analysis is potentially very
large.

The items in a transaction (or any other itemset) are listed in a standard
order, which may be alphabetical or something similar, e.g. we will always write
a transaction as {cheese, fish, meat}, not {meat, fish, cheese} etc. This does
no harm, as the meaning is obviously the same, but has the effect of greatly
reducing and simplifying the calculations we need to do to discover all the
‘interesting’ rules that can be extracted from the database.

As an example, if a database comprises 8 transactions (so n = 8) and there
are only 5 different items (an unrealistically low number), denoted by a, b, c,
d and e, so we have m = 5 and I = {a, b, c, d, e}, the database might comprise
the transactions shown in Figure 13.1.

Note that the details of how the information is actually stored in the
database is a separate issue, which is not considered here.

For convenience we write the items in an itemset in the order in which they

Association Rule Mining II 205

Transaction number Transactions (itemsets)
1 {a, b, c}
2 {a, b, c, d, e}
3 {b}
4 {c, d, e}
5 {c}
6 {b, c, d}
7 {c, d, e}
8 {c, e}

Figure 13.1 A Database With Eight Transactions

appear in set I, the set of all possible items, i.e. {a, b, c} not {b, c, a}.
All itemsets are subsets of I. We do not count the empty set as an itemset

and so an itemset can have anything from 1 up to m members.

13.3 Support for an Itemset

We will use the term support count of an itemset S, or just the count of an
itemset S, to mean the number of transactions in the database matched by S.

We say that an itemset S matches a transaction T (which is itself an itemset)
if S is a subset of T , i.e. all the items in S are also in T . For example itemset
{bread, milk} matches the transaction {cheese, bread, fish, milk, wine}.

If an itemset S = {bread, milk} has a support count of 12, written as
count(S) = 12 or count({bread, milk}) = 12, it means that 12 of the transac-
tions in the database contain both the items bread and milk.

We define the support of an itemset S, written as support(S), to be the
proportion of itemsets in the database that are matched by S, i.e. the propor-
tion of transactions that contain all the items in S. Alternatively we can look
at it in terms of the frequency with which the items in S occur together in
the database. So we have support(S) = count(S)/n, where n is the number of
transactions in the database.

206 Principles of Data Mining

13.4 Association Rules

The aim of Association Rule Mining (ARM) is to examine the contents of the
database and find rules, known as association rules, in the data. For example
we might notice that when items c and d are bought item e is often bought
too. We can write this as the rule

cd → e

The arrow is read as ‘implies’, but we must be careful not to interpret this
as meaning that buying c and d somehow causes e to be bought. It is better to
think of rules in terms of prediction: if we know that c and d were bought we
can predict that e was also bought.

The rule cd → e is typical of most if not all of the rules used in Association
Rule Mining in that it is not invariably correct. The rule is satisfied for trans-
actions 2, 4 and 7 in Figure 13.1, but not for transaction 6, i.e. it is satisfied in
75% of cases. For basket analysis it might be interpreted as ‘if bread and milk
are bought, then cheese is bought too in 75% of cases’.

Note that the presence of items c, d and e in transactions 2, 4, and 7 can
also be used to justify other rules such as

c → ed

and
e → cd

which again do not have to be invariably correct.
The number of rules that can be generated from quite a small database

is potentially very large. In practice most of them are of little if any practical
value. We need some way of deciding which rules to discard and which to retain.

First we will introduce some more terminology and notation. We can write
the set of items appearing on the left- and right-hand sides of a given rule as
L and R, respectively, and the rule itself as L → R. L and R must each have
at least one member and the two sets must be disjoint, i.e. have no common
members. The left-hand and right-hand sides of a rule are often called its
antecedent and consequent or its body and head, respectively.

Note that with the L → R notation the left- and right-hand sides of rules are
both sets. However we will continue to write rules that do not involve variables
in a simplified notation, e.g. cd → e instead of the more accurate but also more
cumbersome form {c, d} → {e}.

The union of the sets L and R is the set of items that occur in either L or
R. It is written L∪R (read as ‘L union R’). As L and R are disjoint and each
has at least one member, the number of items in the itemset L ∪ R, called the
cardinality of L ∪ R, must be at least two.

Association Rule Mining II 207

For the rule cd → e we have L = {c, d}, R = {e} and L ∪ R = {c, d, e}. We
can count the number of transactions in the database that are matched by the
first two itemsets. Itemset L matches four transactions, numbers 2, 4, 6 and 7,
and itemset L ∪ R matches 3 transactions, numbers 2, 4 and 7, so count(L) =
4 and count(L ∪ R) = 3.

As there are 8 transactions in the database we can calculate

support(L) = count(L)/8 = 4/8

and
support(L ∪ R) = count(L ∪ R)/8 = 3/8

A large number of rules can be generated from even quite a small database
and we are generally only interested in those that satisfy given criteria for
interestingness. There are many ways in which the interestingness of a rule can
be measured, but the two most commonly used are support and confidence.
The justification for this is that there is little point in using rules that only
apply to a small proportion of the database or that predict only poorly.

The support for a rule L → R is the proportion of the database to which
the rule successfully applies, i.e. the proportion of transactions in which the
items in L and the items in R occur together. This value is just the support
for itemset L ∪ R, so we have

support(L → R) = support(L ∪ R).

The predictive accuracy of the rule L → R is measured by its confidence,
defined as the proportion of transactions for which the rule is satisfied. This can
be calculated as the number of transactions matched by the left-hand and right-
hand sides combined, as a proportion of the number of transactions matched
by the left-hand side on its own, i.e. count(L ∪ R)/count(L).

Ideally, every transaction matched by L would also be matched by L ∪ R,
in which case the value of confidence would be 1 and the rule would be called
exact, i.e. always correct. In practice, rules are generally not exact, in which
case count(L ∪ R) < count(L) and the confidence is less than 1.

Since the support count of an itemset is its support multiplied by the total
number of transactions in the database, which is a constant value, the confi-
dence of a rule can be calculated either by

confidence(L → R) = count(L ∪ R)/count(L)

or by
confidence(L → R) = support(L ∪ R)/support(L)

It is customary to reject any rule for which the support is below a minimum
threshold value called minsup, typically 0.01 (i.e. 1%) and also to reject all rules

208 Principles of Data Mining

with confidence below a minimum threshold value called minconf, typically 0.8
(i.e. 80%).

For the rule cd → e, the confidence is count({c, d, e})/count({c, d}), which
is 3/4 = 0.75.

13.5 Generating Association Rules

There are many ways in which all the possible rules can be generated from a
given database. A basic but very inefficient method has two stages.

We will use the term supported itemset to mean any itemset for which the
value of support is greater than or equal to minsup. The terms frequent itemset
and large itemset are often used instead of supported itemset.

1. Generate all supported itemsets L ∪ R with cardinality at least two.

2. For each such itemset generate all the possible rules with at least one
item on each side and retain those for which confidence ≥ minconf.

Step 2 in this algorithm is fairly straightforward to implement and will be
discussed in Section 13.8.

The main problem is with step 1 ‘generate all supported itemsets L∪R with
cardinality at least 2’, assuming we take this to mean that we first generate all
possible itemsets of cardinality two or greater and then check which of them are
supported. The number of such itemsets depends on the total number of items
m. For a practical application this can be many hundreds or even thousands.

The number of possible itemsets L∪R is the same as the number of possible
subsets of I, the set of all items, which has cardinality m. There are 2m such
subsets. Of these, m have a single element and one has no elements (the empty
set). Thus the number of itemsets L∪R with cardinality at least 2 is 2m−m−1.

If m takes the unrealistically small value of 20 the number of itemsets L∪R

is 220 − 20 − 1 = 1, 048, 555. If m takes the more realistic but still relatively
small value of 100 the number of itemsets L ∪ R is 2100 − 100 − 1, which is
approximately 1030.

Generating all the possible itemsets L ∪ R and then checking against the
transactions in the database to establish which ones are supported is clearly
unrealistic or impossible in practice.

Fortunately, a much more efficient method of finding supported itemsets is
available which makes the amount of work manageable, although it can still be
large in some cases.

Association Rule Mining II 209

13.6 Apriori

This account is based on the very influential Apriori algorithm by Agrawal
and Srikant [16], which showed how association rules could be generated in a
realistic timescale, at least for relatively small databases. Since then a great
deal of effort has gone into looking for improvements on the basic algorithm to
enable larger and larger databases to be processed.

The method relies on the following very important result.

Theorem 1
If an itemset is supported, all of its (non-empty) subsets are also supported.
Proof
Removing one or more of the items from an itemset cannot reduce and
will often increase the number of transactions that it matches. Hence the
support for a subset of an itemset must be at least as great as that for
the original itemset. It follows that any (non-empty) subset of a supported
itemset must also be supported.

This result is sometimes called the downward closure property of itemsets.
If we write the set containing all the supported itemsets with cardinality k

as Lk then a second important result follows from the above. (The use of the
letter L stands for ‘large itemsets’.)

Theorem 2
If Lk = ∅ (the empty set) then Lk+1, Lk+2 etc. must also be empty.
Proof
If any supported itemsets of cardinality k + 1 or larger exist, they will have
subsets of cardinality k and it follows from Theorem 1 that all of these
must be supported. However we know that there are no supported itemsets
of cardinality k as Lk is empty. Hence there are no supported subsets of
cardinality k + 1 or larger and Lk+1, Lk+2 etc. must all be empty.

Taking advantage of this result, we generate the supported itemsets in as-
cending order of cardinality, i.e. all those with one element first, then all those
with two elements, then all those with three elements etc. At each stage, the
set Lk of supported items of cardinality k is generated from the previous set
Lk−1.

The benefit of this approach is that if at any stage Lk is ∅, the empty set,
we know that Lk+1, Lk+2 etc. must also be empty. Itemsets of cardinality k+1
or greater do not need to be generated and then tested against the transactions
in the database as they are certain to turn out not to be supported.

210 Principles of Data Mining

We need a method of going from each set Lk−1 to the next Lk in turn. We
can do this in two stages.

First we use Lk−1 to form a candidate set Ck containing itemsets of car-
dinality k. Ck must be constructed in such a way that it is certain to include
all the supported itemsets of cardinality k but unavoidably may contain some
other itemsets that are not supported.

Next we need to generate Lk as a subset of Ck. We can generally discard
some of the members of Ck as possible members of Lk by inspecting the mem-
bers of Lk−1. The remainder need to be checked against the transactions in the
database to establish their support values. Only those itemsets with support
greater than or equal to minsup are copied from Ck into Lk.

This gives us the Apriori algorithm for generating all the supported itemsets
of cardinality at least 2 (Figure 13.2).

Create L1 = set of supported itemsets of cardinality one
Set k to 2
while (Lk−1 �= ∅) {

Create Ck from Lk−1

Prune all the itemsets in Ck that are not
supported, to create Lk

Increase k by 1
}
The set of all supported itemsets is L1 ∪ L2 ∪ · · · ∪ Lk

Figure 13.2 The Apriori Algorithm (adapted from [16])

To start the process we construct C1, the set of all itemsets comprising just
a single item, then make a pass through the database counting the number of
transactions that match each of these itemsets. Dividing each of these counts
by the number of transactions in the database gives the value of support for
each single-element itemset. We discard all those with support < minsup to
give L1.

The process involved can be represented diagrammatically as Figure 13.3,
continuing until Lk is empty.

Agrawal and Srikant’s paper also gives an algorithm Apriori-gen which
takes Lk−1 and generates Ck without using any of the earlier sets Lk−2 etc.
There are two stages to this. These are given in Figure 13.4.

To illustrate the method, let us assume that L4 is the list
{{p, q, r, s}, {p, q, r, t}, {p, q, r, z}, {p, q, s, z}, {p, r, s, z}, {q, r, s, z},
{r, s, w, x}, {r, s, w, z}, {r, t, v, x}, {r, t, v, z}, {r, t, x, z}, {r, v, x, y},
{r, v, x, z}, {r, v, y, z}, {r, x, y, z}, {t, v, x, z}, {v, x, y, z}}

Association Rule Mining II 211

Candidate
Itemset

Supported
Itemset

C1
L1

C2
L2

C3
L3

C4
L4

C5

Figure 13.3 Diagram Illustrating the Apriori Algorithm

(Generates Ck from Lk−1)
Join Step
Compare each member of Lk−1, say A, with every other member, say B, in
turn. If the first k − 2 items in A and B (i.e. all but the rightmost elements
of the two itemsets) are identical, place set A ∪ B into Ck.
Prune Step
For each member c of Ck in turn {
Examine all subsets of c with k − 1 elements
Delete c from Ck if any of the subsets is not a member of Lk−1

}

Figure 13.4 The Apriori-gen Algorithm (adapted from [16])

which contains 17 itemsets of cardinality four.
We begin with the join step.
There are only six pairs of elements that have the first three elements in

common. These are listed below together with the set that each combination
causes to be placed into C5.

212 Principles of Data Mining

First itemset Second itemset Contribution to C5

{p, q, r, s} {p, q, r, t} {p, q, r, s, t}
{p, q, r, s} {p, q, r, z} {p, q, r, s, z}
{p, q, r, t} {p, q, r, z} {p, q, r, t, z}
{r, s, w, x} {r, s, w, z} {r, s, w, x, z}
{r, t, v, x} {r, t, v, z} {r, t, v, x, z}
{r, v, x, y} {r, v, x, z} {r, v, x, y, z}

The initial version of candidate set C5 is

{{p, q, r, s, t}, {p, q, r, s, z}, {p, q, r, t, z}, {r, s, w, x, z}, {r, t, v, x, z}, {r, v, x, y, z}}

We now go on to the prune step where each of the subsets of cardinality
four of the itemsets in C5 are examined in turn, with the following results.

Itemset in C5 Subsets all in L4?
{p, q, r, s, t} No, e.g. {p, q, s, t} is not a member of L4

{p, q, r, s, z} Yes
{p, q, r, t, z} No, e.g. {p, q, t, z} is not a member of L4

{r, s, w, x, z} No, e.g. {r, s, x, z} is not a member of L4

{r, t, v, x, z} Yes
{r, v, x, y, z} Yes

We can eliminate the first, third and fourth itemsets from C5, making the
final version of candidate set C5

{{p, q, r, s, z}, {r, t, v, x, z}, {r, v, x, y, z}}

The three itemsets in C5 now need to be checked against the database to
establish which are supported.

13.7 Generating Supported Itemsets: An
Example

We can illustrate the entire process of generating supported itemsets from a
database of transactions with the following example.

Assume that we have a database with 100 items and a large number of
transactions. We begin by constructing C1, the set of itemsets with a single
member. We make a pass though the database to establish the support count
for each of the 100 itemsets in C1 and from these calculate L1, the set of
supported itemsets that comprise just a single member.

Association Rule Mining II 213

Let us assume that L1 has just 8 of these members, namely {a}, {b}, {c},
{d}, {e}, {f}, {g} and {h}. We cannot generate any rules from these, as they
only have one element, but we can now form candidate itemsets of cardinality
two.

In generating C2 from L1 all pairs of (single-item) itemsets in L1 are con-
sidered to match at the ‘join’ step, since there is nothing to the left of the
rightmost element of each one that might fail to match.

In this case the candidate generation algorithm gives us as members of C2

all the itemsets with two members drawn from the eight items a, b, c, . . . ,
h. Note that it would be pointless for a candidate itemset of two elements to
include any of the other 92 items from the original set of 100, e.g. {a, z}, as
one of its subsets would be {z}, which is not supported.

There are 28 possible itemsets of cardinality 2 that can be formed from the
items a, b, c, . . . , h. They are
{a, b}, {a, c}, {a, d}, {a, e}, {a, f}, {a, g}, {a, h},
{b, c}, {b, d}, {b, e}, {b, f}, {b, g}, {b, h},
{c, d}, {c, e}, {c, f}, {c, g}, {c, h},
{d, e}, {d, f}, {d, g}, {d, h},
{e, f}, {e, g}, {e, h},
{f, g}, {f, h},
{g, h}.

As mentioned previously, it is convenient always to list the elements of an
itemset in a standard order. Thus we do not include, say, {e, d} because it is
the same set as {d, e}.

We now need to make a second pass through the database to find the
support counts of each of these itemsets, then divide each of the counts by
the number of transactions in the database and reject any itemsets that have
support less than minsup. Assume in this case that only 6 of the 28 itemsets
with two elements turn out to be supported, so L2 = {{a, c}, {a, d}, {a, h},
{c, g}, {c, h}, {g, h}}.

The algorithm for generating C3 now gives just four members, i.e. {a, c, d},
{a, c, h}, {a, d, h} and {c, g, h}.

Before going to the database, we first check whether each of the candidates
meets the condition that all its subsets are supported. Itemsets {a, c, d} and
{a, d, h} fail this test, because their subsets {c, d} and {d, h} are not members
of L2. That leaves just {a, c, h} and {c, g, h} as possible members of L3.

We now need a third pass through the database to find the support counts
for itemsets {a, c, h} and {c, g, h}. We will assume they both turn out to be
supported, so L3 = {{a, c, h}, {c, g, h}}.

We now need to calculate C4. It has no members, as the two members of L3

do not have their first two elements in common. As C4 is empty, L4 must also

214 Principles of Data Mining

be empty, which implies that L5, L6 etc. must also be empty and the process
ends.

We have found all the itemsets of cardinality at least two with just three
passes through the database. In doing so we needed to find the support counts
for just 100 + 28 + 2 = 130 itemsets, which is a huge improvement on checking
through the total number of possible itemsets for 100 items, which is approxi-
mately 1030.

The set of all supported itemsets with at least two members is the union of
L2 and L3, i.e. {{a, c}, {a, d}, {a, h}, {c, g}, {c, h}, {g, h}, {a, c, h}, {c, g, h}}.
It has eight itemsets as members. We next need to generate the candidate rules
from each of these and determine which of them have a confidence value greater
than or equal to minconf.

Although using the Apriori algorithm is clearly a significant step forward,
it can run into substantial efficiency problems when there are a large number
of transactions, items or both. One of the main problems is the large number
of candidate itemsets generated during the early stages of the process. If the
number of supported itemsets of cardinality one (the members of L1) is large,
say N , the number of candidate itemsets in C2, which is N(N − 1)/2, can be
a very large number.

A fairly large (but not huge) database may comprise over 1,000 items and
100,000 transactions. If there are, say, 800 supported itemsets in L1, the number
of itemsets in C2 is 800 × 799/2, which is approximately 320,000.

Since Agrawal and Srikant’s paper was published a great deal of research
effort has been devoted to finding more efficient ways of generating supported
itemsets. These generally involve reducing the number of passes through all
the transactions in the database, reducing the number of unsupported itemsets
in Ck, more efficient counting of the number of transactions matched by each
of the itemsets in Ck (perhaps using information collected in previous passes
through the database), or some combination of these.

13.8 Generating Rules for a Supported Itemset

If supported itemset L ∪ R has k elements, we can generate all the possible
rules L → R systematically from it and then check the value of confidence for
each one.

To do so it is only necessary to generate all possible right-hand sides in turn.
Each one must have at least one and at most k− 1 elements. Having generated
the right-hand side of a rule all the unused items in L∪R must then be on the
left-hand side.

Association Rule Mining II 215

For itemset {c, d, e} there are 6 possible rules that can be generated, as
listed below.

Rule L → R count(L ∪ R) count(L) confidence(L → R)
de → c 3 3 1.0
ce → d 3 4 0.75
cd → e 3 4 0.75
e → cd 3 4 0.75
d → ce 3 4 0.75
c → de 3 7 0.43

Only one of the rules has a confidence value greater than or equal to minconf
(i.e. 0.8).

The number of ways of selecting i items from the k in a supported itemset
of cardinality k for the right-hand side of a rule is denoted by the mathematical
expression kCi which has the value k!

(k−i)!i! .
The total number of possible right-hand sides L and thus the total number

of possible rules that can be constructed from an itemset L ∪ R of cardinality
k is kC1 +k C2 + · · · +k Ck−1. It can be shown that the value of this sum is
2k − 2.

Assuming that k is reasonably small, say 10, this number is manageable.
For k = 10 there are 210−2 = 1022 possible rules. However as k becomes larger
the number of possible rules rapidly increases. For k = 20 it is 1,048,574.

Fortunately we can reduce the number of candidate rules considerably using
the following result.

Theorem 3
Transferring members of a supported itemset from the left-hand side of a
rule to the right-hand side cannot increase the value of rule confidence.
Proof
For this purpose we will write the original rule as A ∪ B → C, where sets
A, B and C all contain at least one element, have no elements in common
and the union of the three sets is the supported itemset S.
Transferring the item or items in B from the left to the right-hand side then
amounts to creating a new rule A → B ∪ C.
The union of the left- and right-hand sides is the same for both rules, namely
the supported itemset S, so we have
confidence(A → B ∪ C) = support(S)

support(A)

confidence(A ∪ B → C) = support(S)
support(A∪B)

It is clear that the proportion of transactions in the database matched by
an itemset A must be at least as large as the proportion matched by a larger
itemset A ∪ B, i.e. support(A) ≥ support(A ∪ B).
Hence it follows that confidence(A → B ∪ C) ≤ confidence(A ∪ B → C).

216 Principles of Data Mining

If the confidence of a rule ≥ minconf we will call the itemset on its right-
hand side confident. If not, we will call the right-hand itemset unconfident. From
the above theorem we then have two important results that apply whenever
the union of the itemsets on the two sides of a rule is fixed:

Any superset of an unconfident right-hand itemset is unconfident.
Any (non-empty) subset of a confident right-hand itemset is confident.

This is very similar to the situation with supported itemsets described in
Section 13.6. We can generate confident right-hand side itemsets of increasing
cardinality in a way similar to Apriori, with a considerable reduction in the
number of candidate rules for which the confidence needs to be calculated. If
at any stage there are no more confident itemsets of a certain cardinality there
cannot be any of larger cardinality and the rule generation process can stop.

13.9 Rule Interestingness Measures: Lift and
Leverage

Although they are generally only a very small proportion of all the possible
rules that can be derived from a database, the number of rules with support
and confidence greater than specified threshold values can still be large. We
would like additional interestingness measures we can use to reduce the number
to a manageable size, or rank rules in order of importance. Two measures that
are often used for this are lift and leverage.

The lift of rule L → R measures how many more times the items in L and
R occur together in transactions than would be expected if the itemsets L and
R were statistically independent.

The number of times the items in L and R occur together in transactions
is just count(L ∪ R). The number of times the items in L occur is count(L).
The proportion of transactions matched by R is support(R). So if L and R

were independent we would expect the number of times the items in L and R

occurred together in transactions to be count(L) × support(R). This gives the
formula for lift:

lift(L → R) =
count(L ∪ R)

count(L) × support(R)
This formula can be written in several other forms, including

lift(L → R) =
support(L ∪ R)

support(L) × support(R)

lift(L → R) =
confidence(L → R)

support(R)

Association Rule Mining II 217

lift(L → R) =
n × confidence(L → R)

count(R)

where n is the number of transactions in the database, and

lift(L → R) =
confidence(R → L)

support(L)

Incidentally, from the second of these five formulae, which is symmetric in
L and R, we can also see that

lift(L → R) = lift(R → L)

Suppose we have a database with 2000 transactions and a rule L → R with
the following support counts

count(L) count(R) count(L ∪ R)
220 250 190

We can calculate the values of support and confidence from these:

support(L → R) = count(L ∪ R)/2000 = 0.095

confidence(L → R) = count(L ∪ R)/count(L) = 0.864

lift(L → R) = confidence(L ∪ R) × 2000/count(R) = 6.91

The value of support(R) measures the support for R if we examine the
whole of the database. In this example the itemset matches 250 transactions
out of 2000, a proportion of 0.125.

The value of confidence(L → R) measures the support for R if we only
examine the transactions that match L. In this case it is 190/220 = 0.864. So
purchasing the items in L makes it 0.864/0.125 = 6.91 times more likely that
the items in R are purchased.

Lift values greater than 1 are ‘interesting’. They indicate that transactions
containing L tend to contain R more often than transactions that do not contain
L.

Although lift is a useful measure of interestingness it is not always the best
one to use. In some cases a rule with higher support and lower lift can be more
interesting than one with lower support and higher lift because it applies to
more cases.

Another measure of interestingness that is sometimes used is leverage. This
measures the difference between the support for L∪R (i.e. the items in L and
R occurring together in the database) and the support that would be expected
if L and R were independent.

218 Principles of Data Mining

The former is just support(L∪R). The frequencies (i.e. supports) of L and
R are support(L) and support(R), respectively. If L and R were independent
the expected frequency of both occurring in the same transaction would be the
product of support(L) and support(R).

This gives a formula for leverage:

leverage(L → R) = support(L ∪ R) − support(L) × support(R).

The value of the leverage of a rule is clearly always less than its support.
The number of rules satisfying the support ≥ minsup and confidence ≥

minconf constraints can be reduced by setting a leverage constraint, e.g. lever-
age ≥ 0.0001, corresponding to an improvement in support of one occurrence
per 10,000 transactions in the database.

If a database has 100,000 transactions and we have a rule L → R with these
support counts

count(L) count(R) count(L ∪ R)
8000 9000 7000

the values of support, confidence, lift and leverage can be calculated to be
0.070, 0.875, 9.722 and 0.063 respectively (all to three decimal places).

So the rule applies to 7% of the transactions in the database and is satisfied
for 87.5% of the transactions that include the items in L. The latter value is
9.722 times more frequent than would be expected by chance. The improvement
in support compared with chance is 0.063, corresponding to 6.3 transactions
per 100 in the database, i.e. approximately 6300 in the database of 100,000
transactions.

Chapter Summary

This chapter is concerned with a special form of Association Rule Mining known
as Market Basket Analysis, the most common application of which is to relate
the purchases made by the customers in a shop. An approach to finding rules
of this kind, with support and confidence measures above specified thresh-
olds, is described. This is based on the idea of supported itemsets. The Apriori
algorithm for finding supported itemsets is described in detail. Further rule
interestingness measures, lift and leverage, which can be used to reduce the
number of rules generated are introduced.

Association Rule Mining II 219

Self-assessment Exercises for Chapter 13

1. Suppose that L3 is the list

{{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {b, c, w}, {b, c, x},

{p, q, r}, {p, q, s}, {p, q, t}, {p, r, s}, {q, r, s}}

Which itemsets are placed in C4 by the join step of the Apriori-gen algo-
rithm? Which are then removed by the prune step?

2. Suppose that we have a database with 5000 transactions and a rule L → R

with the following support counts

count(L) = 3400
count(R) = 4000
count(L ∪ R) = 3000

What are the values of support, confidence, lift and leverage for this rule?

14
Clustering

14.1 Introduction

In this chapter we continue with the theme of extracting information from
unlabelled data and turn to the important topic of clustering. Clustering is
concerned with grouping together objects that are similar to each other and
dissimilar to the objects belonging to other clusters.

In many fields there are obvious benefits to be had from grouping together
similar objects. For example

– In an economics application we might be interested in finding countries whose
economies are similar.

– In a financial application we might wish to find clusters of companies that
have similar financial performance.

– In a marketing application we might wish to find clusters of customers with
similar buying behaviour.

– In a medical application we might wish to find clusters of patients with
similar symptoms.

– In a document retrieval application we might wish to find clusters of docu-
ments with related content.

– In a crime analysis application we might look for clusters of high volume
crimes such as burglaries or try to cluster together much rarer (but possibly
related) crimes such as murders.

222 Principles of Data Mining

There are many algorithms for clustering. We will describe two methods for
which the similarity between objects is based on a measure of the distance
between them.

In the restricted case where each object is described by the values of just
two attributes, we can represent them as points in a two-dimensional space
(a plane) such as Figure 14.1.

x
x
x

x
xx

x
x

x
x
x

x
x

x

x

x

x
x

x
x
xx

x
x
xx

Figure 14.1 Objects for Clustering

It is usually easy to visualise clusters in two dimensions. The points in
Figure 14.1 seem to fall naturally into four groups as shown by the curves
drawn surrounding sets of points in Figure 14.2.

However there is frequently more than one possibility. For example are the
points in the lower-right corner of Figure 14.1 one cluster (as shown in Figure
14.2) or two (as shown in Figure 14.3)?

In the case of three attributes we can think of the objects as being points in
a three-dimensional space (such as a room) and visualising clusters is generally
straightforward too. For larger dimensions (i.e. larger numbers of attributes) it
soon becomes impossible to visualise the points, far less the clusters.

The diagrams in this chapter will use only two dimensions, although in
practice the number of attributes will usually be more than two and can often
be large.

Before using a distance-based clustering algorithm to cluster objects, it is
first necessary to decide on a way of measuring the distance between two points.
As for nearest neighbour classification, discussed in Chapter 2, a measure com-
monly used when clustering is the Euclidean distance. To avoid complications

Clustering 223

x
x
x

x
xx

x
x

x
x
x

x
x

x

x

x

x
x

x
x
xx

x
x
xx

Figure 14.2 Clustering of Objects in Figure 14.1(a)

x
x
x

x
xx

x
x

x
x
x

x
x

x

x

x

x
x

x
x
xx

x
x
xx

Figure 14.3 Clustering of Objects in Figure 14.1(b)

we will assume that all attribute values are continuous. (Attributes that are
categorical can be dealt with as described in Chapter 2.)

We next need to introduce the notion of the ‘centre’ of a cluster, generally
called its centroid.

Assuming that we are using Euclidean distance or something similar as a
measure we can define the centroid of a cluster to be the point for which each
attribute value is the average of the values of the corresponding attribute for
all the points in the cluster.

So the centroid of the four points (with 6 attributes)

224 Principles of Data Mining

8.0 7.2 0.3 23.1 11.1 −6.1
2.0 −3.4 0.8 24.2 18.3 −5.2
−3.5 8.1 0.9 20.6 10.2 −7.3
−6.0 6.7 0.5 12.5 9.2 −8.4

would be

0.125 4.65 0.625 20.1 12.2 −6.75

The centroid of a cluster will sometimes be one of the points in the cluster,
but frequently, as in the above example, it will be an ‘imaginary’ point, not
part of the cluster itself, which we can take as marking its centre. The value of
the idea of the centroid of a cluster will be illustrated in what follows.

There are many methods of clustering. In this book we will look at two of
the most commonly used: k-means clustering and hierarchical clustering.

14.2 k-Means Clustering

k-means clustering is an exclusive clustering algorithm. Each object is assigned
to precisely one of a set of clusters. (There are other methods that allow objects
to be in more than one cluster.)

For this method of clustering we start by deciding how many clusters we
would like to form from our data. We call this value k. The value of k is generally
a small integer, such as 2, 3, 4 or 5, but may be larger. We will come back later
to the question of how we decide what the value of k should be.

There are many ways in which k clusters might potentially be formed. We
can measure the quality of a set of clusters using the value of an objective
function which we will take to be the sum of the squares of the distances of
each point from the centroid of the cluster to which it is assigned. We would
like the value of this function to be as small as possible.

We next select k points (generally corresponding to the location of k of the
objects). These are treated as the centroids of k clusters, or to be more precise
as the centroids of k potential clusters, which at present have no members. We
can select these points in any way we wish, but the method may work better
if we pick k initial points that are fairly far apart.

We now assign each of the points one by one to the cluster which has the
nearest centroid.

When all the objects have been assigned we will have k clusters based on the
original k centroids but the ‘centroids’ will no longer be the true centroids of the
clusters. Next we recalculate the centroids of the clusters, and then repeat the

Clustering 225

previous steps, assigning each object to the cluster with the nearest centroid
etc. The entire algorithm is summarised in Figure 14.4.

1. Choose a value of k.
2. Select k objects in an arbitrary fashion. Use these as the initial set of k

centroids.
3. Assign each of the objects to the cluster for which it is nearest to the
centroid.
4. Recalculate the centroids of the k clusters.
5. Repeat steps 3 and 4 until the centroids no longer move.

Figure 14.4 The k-Means Clustering Algorithm

14.2.1 Example

We will illustrate the k-means algorithm by using it to cluster the 16 objects
with two attributes x and y that are listed in Figure 14.5.

x y

6.8 12.6
0.8 9.8
1.2 11.6
2.8 9.6
3.8 9.9
4.4 6.5
4.8 1.1
6.0 19.9
6.2 18.5
7.6 17.4
7.8 12.2
6.6 7.7
8.2 4.5
8.4 6.9
9.0 3.4
9.6 11.1

Figure 14.5 Objects For Clustering (Attribute Values)

226 Principles of Data Mining

The 16 points corresponding to these objects are shown diagrammatically
in Figure 14.6. The horizontal and vertical axes correspond to attributes x and
y, respectively.

0

5

10

15

20

0 5 10 15 20

Figure 14.6 Objects For Clustering

Three of the points shown in Figure 14.6 have been surrounded by small
circles. We will assume that we have chosen k = 3 and that these three points
have been selected to be the locations of the initial three centroids. This initial
(fairly arbitrary) choice is shown in Figure 14.7.

Initial
x y

Centroid 1 3.8 9.9
Centroid 2 7.8 12.2
Centroid 3 6.2 18.5

Figure 14.7 Initial Choice of Centroids

The columns headed d1, d2 and d3 in Figure 14.8 show the Euclidean dis-
tance of each of the 16 points from the three centroids. For the purposes of
this example, we will not normalise or weight either of the attributes, so the
distance of the first point (6.8, 12.6) from the first centroid (3.8, 9.9) is simply

√
(6.8 − 3.8)2 + (12.6 − 9.9)2 = 4.0 (to one decimal place)

The column headed ‘cluster’ indicates the centroid closest to each point and
thus the cluster to which it should be assigned.

Clustering 227

x y d1 d2 d3 cluster
6.8 12.6 4.0 1.1 5.9 2
0.8 9.8 3.0 7.4 10.2 1
1.2 11.6 3.1 6.6 8.5 1
2.8 9.6 1.0 5.6 9.5 1
3.8 9.9 0.0 4.6 8.9 1
4.4 6.5 3.5 6.6 12.1 1
4.8 1.1 8.9 11.5 17.5 1
6.0 19.9 10.2 7.9 1.4 3
6.2 18.5 8.9 6.5 0.0 3
7.6 17.4 8.4 5.2 1.8 3
7.8 12.2 4.6 0.0 6.5 2
6.6 7.7 3.6 4.7 10.8 1
8.2 4.5 7.0 7.7 14.1 1
8.4 6.9 5.5 5.3 11.8 2
9.0 3.4 8.3 8.9 15.4 1
9.6 11.1 5.9 2.1 8.1 2

Figure 14.8 Objects For Clustering (Augmented)

The resulting clusters are shown in Figure 14.9 below.

0
0 5 10

5

10

15

20

15 20

3

2

1

Figure 14.9 Initial Clusters

The centroids are indicated by small circles. For this first iteration they are
also actual points within the clusters. The centroids are those that were used

228 Principles of Data Mining

to construct the three clusters but are not the true centroids of the clusters
once they have been created.

We next calculate the centroids of the three clusters using the x and y values
of the objects currently assigned to each one. The results are shown in Figure
14.10.

Initial After first iteration
x y x y

Centroid 1 3.8 9.9 4.6 7.1
Centroid 2 7.8 12.2 8.2 10.7
Centroid 3 6.2 18.5 6.6 18.6

Figure 14.10 Centroids After First Iteration

The three centroids have all been moved by the assignment process, but the
movement of the third one is appreciably less than for the other two.

We next reassign the 16 objects to the three clusters by determining which
centroid is closest to each one. This gives the revised set of clusters shown in
Figure 14.11.

0

0 5

5

10

15

20

10 15 20

3

2

1

Figure 14.11 Revised Clusters

The centroids are again indicated by small circles. However from now on the
centroids are ‘imaginary points’ corresponding to the ‘centre’ of each cluster,
not actual points within the clusters.

These clusters are very similar to the previous three, shown in Figure 14.9.

Clustering 229

In fact only one point has moved. The object at (8.3, 6.9) has moved from
cluster 2 to cluster 1.

We next recalculate the positions of the three centroids, giving Figure 14.12.

Initial After first iteration After second iteration
x y x y x y

Centroid 1 3.8 9.9 4.6 7.1 5.0 7.1
Centroid 2 7.8 12.2 8.2 10.7 8.1 12.0
Centroid 3 6.2 18.5 6.6 18.6 6.6 18.6

Figure 14.12 Centroids After First Two Iterations

The first two centroids have moved a little, but the third has not moved at
all.

We assign the 16 objects to clusters once again, giving Figure 14.13.

0
0 5

5

10

15

20

10 15 20

3

2

1

Figure 14.13 Third Set of Clusters

These are the same clusters as before. Their centroids will be the same as
those from which the clusters were generated. Hence the termination condition
of the k-means algorithm ‘repeat ... until the centroids no longer move’ has
been met and these are the final clusters produced by the algorithm for the
initial choice of centroids made.

230 Principles of Data Mining

14.2.2 Finding the Best Set of Clusters

It can be proved that the k-means algorithm will always terminate, but it does
not necessarily find the best set of clusters, corresponding to minimising the
value of the objective function. The initial selection of centroids can significantly
affect the result. To overcome this, the algorithm can be run several times for
a given value of k, each time with a different choice of the initial k centroids,
the set of clusters with the smallest value of the objective function then being
taken.

The most obvious drawback of this method of clustering is that there is no
principled way to know what the value of k ought to be. Looking at the final set
of clusters in the above example (Figure 14.13), it is not clear that k = 3 is the
most appropriate choice. Cluster 1 might well be broken into several separate
clusters. We can choose a value of k pragmatically as follows.

If we imagine choosing k = 1, i.e. all the objects are in a single cluster, with
the initial centroid selected in a random way (a very poor idea), the value of
the objective function is likely to be large. We can then try k = 2, k = 3 and
k = 4, each time experimenting with a different choice of the initial centroids
and choosing the set of clusters with the smallest value. Figure 14.14 shows the
(imaginary) results of such a series of experiments.

Value of k Value of
objective function

1 62.8
2 12.3
3 9.4
4 9.3
5 9.2
6 9.1
7 9.05

Figure 14.14 Value of Objective Function For Different Values of k

These results suggest that the best value of k is probably 3. The value of
the function for k = 3 is much less than for k = 2, but only a little better than
for k = 4. It is possible that the value of the objective function drops sharply
after k = 7, but even if it does k = 3 is probably still the best choice. We
normally prefer to find a fairly small number of clusters as far as possible.

Note that we are not trying to find the value of k with the smallest value of
the objective function. That will occur when the value of k is the same as the

Clustering 231

number of objects, i.e. each object forms its own cluster of one. The objective
function will then be zero, but the clusters will be worthless. This is another
example of the overfitting of data discussed in Chapter 8. We usually want a
fairly small number of clusters and accept that the objects in a cluster will be
spread around the centroid (but ideally not too far away).

14.3 Agglomerative Hierarchical Clustering

Another very popular clustering technique is called Agglomerative Hierarchical
Clustering.

As for k-means clustering we need to choose a way of measuring the distance
between two objects. Also as for that method a commonly used distance mea-
sure is Euclidean distance (defined in Chapter 2). In two dimensions Euclidean
distance is just the ‘straight line’ distance between two points.

The idea behind Agglomerative Hierarchical Clustering is a simple one.
We start with each object in a cluster of its own and then repeatedly merge
the closest pair of clusters until we end up with just one cluster containing
everything. The basic algorithm is given in Figure 14.15.

1. Assign each object to its own single-object cluster. Calculate the dis-
tance between each pair of clusters.
2. Choose the closest pair of clusters and merge them into a single cluster
(so reducing the total number of clusters by one).
3. Calculate the distance between the new cluster and each of the old
clusters.
4. Repeat steps 2 and 3 until all the objects are in a single cluster.

Figure 14.15 Agglomerative Hierarchical Clustering: Basic Algorithm

If there are N objects there will be N − 1 mergers of two objects needed at
Step 2 to produce a single cluster. However the method does not only produce
a single large cluster, it gives a hierarchy of clusters as we shall see.

Suppose we start with eleven objects A, B, C, . . . , K located as shown in
Figure 14.16 and we merge clusters on the basis of Euclidean distance.

It will take 10 ‘passes’ through the algorithm, i.e. repetitions of Steps 2
and 3, to merge the initial 11 single object clusters into a single cluster. Let
us assume the process starts by choosing objects A and B as the pair that are
closest and merging them into a new cluster which we will call AB. The next
step may be to choose clusters AB and C as the closest pair and to merge them.

232 Principles of Data Mining

After two passes the clusters then look as shown in Figure 4.17.

A

B

E

F

G

C
H

J
I

D

K

Figure 14.16 Original Data (11 Objects)

We will use notation such as A and B → AB to mean ‘clusters A and B are
merged to form a new cluster, which we will call AB’.

Without knowing the precise distances between each pair of objects, a plau-
sible sequence of events is as follows.

1. A and B → AB
2. AB and C → ABC
3. G and K → GK
4. E and F → EF
5. H and I → HI
6. EF and GK → EFGK
7. HI and J → HIJ
8. ABC and D → ABCD
9. EFGK and HIJ → EFGKHIJ
10. ABCD and EFGKHIJ → ABCDEFGKHIJ

The final result of this hierarchical clustering process is shown in Fig-
ure 14.18, which is called a dendrogram. A dendrogram is a binary tree (two
branches at each node). However, the positioning of the clusters does not corre-
spond to their physical location in the original diagram. All the original objects
are placed at the same level (the bottom of the diagram), as leaf nodes. The

Clustering 233

A

B

E

F

G

C

H

J
I

D

K

Figure 14.17 Clusters After Two Passes

root of the tree is shown at the top of the diagram. It is a cluster containing
all the objects. The other nodes show smaller clusters that were generated as
the process proceeded.

If we call the bottom row of the diagram level 1 (with clusters A, B, C, . . . ,
K), we can say that the level 2 clusters are AB, HI, EF and GK, the level 3
clusters are ABC, HIJ and EFGK, and so on. The root node is at level 5.

14.3.1 Recording the Distance Between Clusters

It would be very inefficient to calculate the distance between each pair of clus-
ters for each pass through the algorithm, especially as the distance between
those clusters not involved in the most recent merger cannot have changed.

The usual approach is to generate and maintain a distance matrix giving
the distance between each pair of clusters.

If we have six objects a, b, c, d, e and f , the initial distance matrix might
look like Figure 14.19.

Note that the table is symmetric, so not all values have to be calculated
(the distance from c to f is the same as the distance from f to c etc.). The
values on the diagonal from the top-left corner to the bottom-right corner must
always be zero (the distance from a to a is zero etc.).

234 Principles of Data Mining

I

AB

A B HC D J E KF G

HI EF GK

ABC HIJ EFGK

ABCDEFGKHIJ

EFGKHIJABCD

Figure 14.18 A Possible Dendrogram Corresponding to Figure 14.16

a b c d e f

a 0 12 6 3 25 4
b 12 0 19 8 14 15
c 6 19 0 12 5 18
d 3 8 12 0 11 9
e 25 14 5 11 0 7
f 4 15 18 9 7 0

Figure 14.19 Example of a Distance Matrix

From the distance matrix of Figure 14.19 we can see that the closest pair
of clusters (single objects) are a and d, with a distance value of 3. We combine
these into a single cluster of two objects which we will call ad. We can now
rewrite the distance matrix with rows a and d replaced by a single row ad and
similarly for the columns (Figure 14.20).

The entries in the matrix for the various distances between b, c, e and f

obviously remain the same, but how should we calculate the entries in row and
column ad?

We could calculate the position of the centroid of cluster ad and use that

Clustering 235

ad b c e f

ad 0 ? ? ? ?
b ? 0 19 14 15
c ? 19 0 5 18
e ? 14 5 0 7
f ? 15 18 7 0

Figure 14.20 Distance Matrix After First Merger (Incomplete)

to measure the distance of cluster ad from clusters b, c, e and f . However for
hierarchical clustering a different approach, which involves less calculation, is
generally used.

In single-link clustering the distance between two clusters is taken to be the
shortest distance from any member of one cluster to any member of the other
cluster. On this basis the distance from ad to b is 8, the shorter of the distance
from a to b (12) and the distance from d to b (8) in the original distance matrix.

Two alternatives to single-link clustering are complete-link clustering and
average-link clustering, where the distance between two clusters is taken to be
the longest distance from any member of one cluster to any member of the
other cluster, or the average such distance respectively.

Returning to the example and assuming that we are using single-link clus-
tering, the position after the first merger is given in Figure 14.21.

ad b c e f

ad 0 8 6 11 4
b 8 0 19 14 15
c 6 19 0 5 18
e 11 14 5 0 7
f 4 15 18 7 0

Figure 14.21 Distance Matrix After First Merger

The smallest (non-zero) value in the table is now 4, which is the distance
between cluster ad and cluster f , so we next merge these clusters to form a
three-object cluster adf. The distance matrix, using the single-link method of
calculation, now becomes Figure 14.22.

The smallest non-zero is now 5, the distance from cluster c to cluster e.
These clusters are now merged into a single new cluster ce and the distance
matrix is changed to Figure 14.23.

Clusters adf and ce are now the closest, with distance 6 so we merge them

236 Principles of Data Mining

adf b c e

adf 0 8 6 7
b 8 0 19 14
c 6 19 0 5
e 7 14 5 0

Figure 14.22 Distance Matrix After Two Mergers

adf b ce

adf 0 8 6
b 8 0 14
ce 6 14 0

Figure 14.23 Distance Matrix After Three Mergers

into a single cluster adfce. The distance matrix becomes Figure 14.24.

adfce b

adfce 0 8
b 8 0

Figure 14.24 Distance Matrix After Four Mergers

At the final stage clusters adfce and b are merged into a single cluster adfceb
which contains all the original six objects. The dendrogram corresponding to
this clustering process is shown in Figure 14.25.

14.3.2 Terminating the Clustering Process

Often we are content to allow the clustering algorithm to produce a complete
cluster hierarchy. However we may prefer to end the merger process when we
have converted the original N objects to a ‘small enough’ set of clusters.

We can do this in several ways. For example we can merge clusters until
only some pre-defined number remain. Alternatively we can stop merging when
a newly created cluster fails to meet some criterion for its compactness, e.g.
the average distance between the objects in the cluster is too high.

Clustering 237

ad

a d ef c b

adf

adfceb

adfce

ce

Figure 14.25 Dendrogram Corresponding to Hierarchical Clustering Process

Chapter Summary

This chapter continues with the theme of extracting information from unla-
belled data. Clustering is concerned with grouping together objects that are
similar to each other and dissimilar to objects belonging to other clusters.

There are many methods of clustering. Two of the most widely used, k-
means clustering and hierarchical clustering are described in detail.

238 Principles of Data Mining

Self-assessment Exercises for Chapter 14

1. Using the method shown in Section 14.2, cluster the following data into
three clusters, using the k-means method.

x y

10.9 12.6
2.3 8.4
8.4 12.6
12.1 16.2
7.3 8.9
23.4 11.3
19.7 18.5
17.1 17.2
3.2 3.4
1.3 22.8
2.4 6.9
2.4 7.1
3.1 8.3
2.9 6.9
11.2 4.4
8.3 8.7

2. For the example given in Section 14.3.1, what would be the distance matrix
after each of the first three mergers if complete-link clustering were used
instead of single-link clustering?

15
Text Mining

In this chapter we look at a particular type of classification task, where the
objects are text documents such as articles in newspapers, scientific papers
in journals or perhaps abstracts of papers, or even just their titles. The aim
is to use a set of pre-classified documents to classify those that have not yet
been seen. This is becoming an increasingly important practical problem as
the volume of printed material in many fields keeps increasing and even in
specialist fields it can be very difficult to locate relevant documents. Much
of the terminology used reflects the origins of this work in librarianship and
information science, long before data mining techniques became available.

In principle we can use any of the standard methods of classification (Näıve
Bayes, Nearest Neighbour, decision trees etc.) for this task, but datasets of text
documents have a number of specific features compared with the datasets we
have seen so far, which require separate explanation. The special case where
the documents are web pages will be covered in Section 15.9.

15.1 Multiple Classifications

An important issue that distinguishes text classification from the other classifi-
cation tasks discussed in this book is the possibility of multiple classifications.
Up to now we have assumed that there is a set of mutually exclusive categories
and that each object must inevitably fit into one and only one of these.

Text classification is rather different. In general we may have N categories

240 Principles of Data Mining

such as Medicine, Business, Finance, Historical, Biographical, Management and
Education and it is perfectly possible for a document to fit into several of these
categories, possibly even all of them or possibly none.

Rather than broaden the definition of classification used up to now we prefer
to think of the text classification task as N separate binary classification tasks,
e.g.

– Is the document about medicine? Yes/No

– Is the document about business? Yes/No

– Is the document about finance? Yes/No

and so on. The need to perform N separate classification tasks adds consider-
ably to the time involved for this form of classification, which even for a single
classification is usually computationally expensive.

15.2 Representing Text Documents for Data
Mining

For ‘standard’ data mining tasks the data is presented to the data mining
system in the standard form described in Chapter 1, or something similar. There
are a fixed number of attributes (or features) which were chosen before the data
was collected. For text mining the dataset usually comprises the documents
themselves and the features are extracted from the documents automatically
based on their content before the classification algorithm is applied. There are
generally a very large number of features, most of them only occurring rarely,
with a high proportion of noisy and irrelevant features.

There are several ways in which the conversion of documents from plain
text to instances with a fixed number of attributes in a training set can be
carried out. For example we might count the number of times specified phrases
occur, or perhaps any combination of two consecutive words, or we might count
the occurrence of two or three character combinations (known as bigrams and
trigrams respectively). For the purposes of this chapter we will assume that
a simple word-based representation is used, known as a bag-of-words repre-
sentation. With this representation a document is considered to be simply a
collection of the words which occur in it at least once. The order of the words,
the combinations in which they occur, paragraph structuring, punctuation and
of course the meanings of the words are all ignored. A document is just a col-
lection of words placed in some arbitrary order, say alphabetical, together with

Text Mining 241

a count of how many times each one occurs, or some other measure of the
importance of each word.

Assuming that we wish to store an ‘importance value’ for each word in a
document as one instance in a training set, how should we do it? If a given doc-
ument has say 106 different words, we cannot just use a representation with 106
attributes (ignoring classifications). Other documents in the dataset may use
other words, probably overlapping with the 106 in the current instance, but not
necessarily so. The unseen documents that we wish to classify may have words
that are not used in any of the training documents. An obvious—but extremely
bad—approach would be to allocate as many attributes as are needed to allow
for all possible words that might be used in any possible unseen document. Un-
fortunately if the language of the documents is English, the number of possible
words is approximately one million, which is a hopelessly impractical number
of attributes to use.

A much better approach is to restrict the representation to the words that
actually occur in the training documents. This can still be many thousands
(or more) and we will look at ways of reducing this number in Sections 15.3
and 15.4 below. We place all the words used at least once in a ‘dictionary’ and
allocate one attribute position in each row of our training set for each one. The
order in which we do this is arbitrary, so we can think of it as alphabetical.

The bag-of-words representation is inherently a highly redundant one. It
is likely that for any particular document most of the attributes/features (i.e.
words) will not appear. For example the dictionary used may have 10,000 words,
but a specific document may have just 200 different words. If so, its represen-
tation as an instance in the training set will have 9,800 out of 10,000 attributes
with value zero, indicating no occurrences, i.e. unused.

If there are multiple classifications there are two possibilities for construct-
ing the dictionary of words for a collection of training documents. Whichever
one is used the dictionary is likely to be large.

The first is the local dictionary approach. We form a different dictionary
for each category, using only those words that appear in documents classified
as being in that category. This enables each dictionary to be relatively small
at the cost of needing to construct N of them, where there are N categories.

The second approach is to construct a global dictionary, which includes all
the words that occur at least once in any of the documents. This is then used
for classification into each of the N categories. Constructing a global dictionary
will clearly be a lot faster than constructing N local dictionaries, but at the
cost of making an even more redundant representation to use for classifying
into each of the categories. There is some evidence to suggest that using a
local dictionary approach tends to give better performance than using a global
dictionary.

242 Principles of Data Mining

15.3 Stop Words and Stemming

With the bag-of-words approach, it is possible to have tens of thousands of
different words occurring in a fairly small set of documents. Many of them are
not important for the learning task and their usage can substantially degrade
performance. It is imperative to reduce the size of the feature space (i.e. the
set of words included in the dictionary) as far as possible. This can be looked
at as a variant of the methods of data preparation and data cleaning described
in Chapter 1.

One widely used approach is to use a list of common words that are likely to
be useless for classification, known as stop words, and remove all occurrences
of these words before creating the bag-of-words representation. There is no
definitive list of stop words that is universally used. The list would obviously
vary from language to language, but in English some obvious choices would be
‘a’, ‘an’, ‘the’, ‘is’, ‘I’, ‘you’ and ‘of’. Studying the frequency and distribution
of such words might be very useful for stylistic analysis, i.e. deciding which of
a number of possible authors wrote a novel or a play etc., but for classifying a
document into categories such as Medicine, Finance etc. they are clearly useless.
The University of Glasgow has a list of 319 English stop words beginning with
a, about, above, across, after, afterwards and ending with yet, you, your, yours,
yourself, yourselves. Up to a point the longer the list of stop words the better,
the only risk being the possible loss of useful classifying information if the list
becomes excessive.

Another very important way to reduce the number of words in the repre-
sentation is to use stemming.

This is based on the observation that words in documents often have many
morphological variants. For example we may use the words computing, com-
puter, computation, computes, computational, computable and computability
all in the same document. These words clearly have the same linguistic root.
Putting them together as if they were occurrences of a single word would prob-
ably give a strong indication of the content of the document whereas each word
individually might not.

The aim of stemming is to recognise sets of words such as ‘computing’ and
‘computation’ or ‘applied’, ‘applying’, ‘applies’ and ‘apply’ that can be treated
as equivalent. There are many stemming algorithms that have been developed
to reduce a word to its stem or root form, by which it is then replaced. For
example, ‘computing’ and ‘computation’ might both be stemmed to ‘comput’,
and ‘applies’ etc. to ‘appli’.

The use of stemming can be a very effective way of reducing the number
of words in a bag-of-words representation to a relatively manageable number.
However, as for stop words, there is no standard stemming algorithm that is

Text Mining 243

universally used and an over-zealous stemming algorithm can remove valuable
words from consideration. For example the word ‘appliqué’ in a document may
be an important guide to its classification, but might be reduced by stemming to
‘appli’, the same stem as if it were a much less significant word such as ‘applies’
(with which it is very unlikely to have any genuine linguistic connection).

15.4 Using Information Gain for Feature
Reduction

Even after removing stop words from a document and replacing each remaining
word by its stem, the number of words in a bag-of-words representation of a
set of documents can be very large.

One way to reduce the number of words for a given category of documents
Ck is to construct a training set where each instance comprises the frequency of
each word (or some similar measure) together with the value of the classification
Ck which must be a binary yes/no value.

The entropy of this training set can be calculated in the same way as in pre-
vious chapters. For example, if 10% of the training documents are in category
Ck, the entropy is −0.1 × log2 0.1 − 0.9 × log2 0.9 = 0.47.

Using a method such as the frequency table technique described in Chapter
5, we can now calculate the information gain as far as classifying a document
as belonging to category Ck or otherwise is concerned that would result from
knowing the value of each of the attributes in turn. Having done this we might
choose to use only the features with the highest (say) 20, 50 or 100 values of
information gain when classifying documents by whether or not they belong to
category Ck.

15.5 Representing Text Documents:
Constructing a Vector Space Model

We shall now assume that we have decided whether to use a local or a global
dictionary and have chosen a representation which replaces each document by
a number of features. For a bag-of-words representation each feature is a single
word, but for a different representation it may be something else, e.g. a phrase.
In the following we will assume that each feature is a term of some kind.

Once we have determined that the total number of features is N , we can

244 Principles of Data Mining

represent the terms in the dictionary in some arbitrary order as t1, t2, . . . , tN .
We can then represent the ith document as an ordered set of N values,

which we will call an N-dimensional vector and write as (Xi1, Xi2, ... , XiN).
These values are just the attribute values in the standard training set format
used elsewhere in this book, but with the classification(s) omitted. Writing
the values as N -dimensional vectors (i.e. as N values separated by commas
and enclosed in parentheses) is simply a more conventional way of looking at
the data in this branch of data mining. The complete set of vectors for all
documents under consideration is called a vector space model or VSM.

Up to now we have assumed that the values stored for each feature (at-
tribute) are the number of times each term occurs in the corresponding docu-
ment. However that does not have to be the case. In general we can say that
value Xij is a weight measuring the importance of the jth term tj in the ith
document.

One common way of calculating the weights is to count the number of
occurrences of each term in the given document (known as term frequency).
Another possibility is to use a binary representation, where 1 indicates the
presence and 0 indicates the absence of the term in the document.

A more complex way of calculating the weights is called TFIDF, which
stands for Term Frequency Inverse Document Frequency. This combines term
frequency with a measure of the rarity of a term in the complete set of docu-
ments. It has been reported as leading to improved performance over the other
methods.

The TFIDF value of a weight Xij is calculated as the product of two values,
which correspond to the term frequency and the inverse document frequency,
respectively.

The first value is simply the frequency of the jth term, i.e. tj , in document
i. Using this value tends to make terms that are frequent in the given (single)
document more important than others.

We measure the value of inverse document frequency by log2(n/nj) where
nj is the number of documents containing term tj and n is the total number
of documents. Using this value tends to make terms that are rare across the
collection of documents more important than others. If a term occurs in every
document its inverse document frequency value is 1. If it occurs in only one
document out of every 16, its inverse document frequency value is log2 16 = 4.

Text Mining 245

15.6 Normalising the Weights

Before using the set of N -dimensional vectors we first need to normalise the
values of the weights, for reasons similar to the need to normalise the value of
continuous attributes in Chapter 2.

We would like each value to be between 0 and 1 inclusive and for the values
used not to be excessively influenced by the overall number of words in the
original document.

We will take a much simplified example to illustrate the point. Suppose we
have a dictionary with just 6 members and let us assume that the weights
used are just the term frequency values. Then a typical vector would be
(0, 3, 0, 4, 0, 0). In the corresponding document the second term appeared 3
times, the fourth term occurred 4 times and the other four terms did not occur
at all. Overall only 7 terms occurred in the document, after removal of stop
words, stemming etc.

Suppose we now create another document by placing an exact duplicate of
its content at the end of the first one. What if by some printing aberration
there were other documents where the content of the original one was printed
10 times, or even a hundred times?

In these three cases the vectors would be (0, 6, 0, 8, 0, 0), (0, 30, 0, 40, 0, 0)
and (0, 300, 0, 400, 0, 0). These seem to have nothing in common with the orig-
inal vector, which was (0, 3, 0, 4, 0, 0). This is unsatisfactory. The four docu-
ments should obviously be classified in exactly the same way and the vector
space representation should reflect this.

The method that is generally used to normalise vectors neatly solves this
problem. We calculate the length of each vector, defined as the square root
of the sum of the squares of its component values. To normalise the values of
the weights we divide each value by the length. The resulting vector has the
property that its length is always 1.

For the above example the length of (0, 3, 0, 4, 0, 0) is
√

(32 + 42) = 5, so
the normalised vector is (0, 3/5, 0, 4/5, 0, 0), which has length 1. Note that the
zero values play no part in the calculations.

The calculations for the other three vectors given are as follows.

(0, 6, 0, 8, 0, 0)
The length is

√
(62 + 82) = 10, so the normalised vector is

(0, 6/10, 0, 8/10, 0, 0) = (0, 3/5, 0, 4/5, 0, 0).

(0, 30, 0, 40, 0, 0)
The length is

√
(302 + 402) = 50, so the normalised vector is

(0, 30/50, 0, 40/50, 0, 0) = (0, 3/5, 0, 4/5, 0, 0).

246 Principles of Data Mining

(0, 300, 0, 400, 0, 0)
The length is

√
(3002 + 4002) = 500, so the normalised vector is

(0, 300/500, 0, 400/500, 0, 0) = (0, 3/5, 0, 4/5, 0, 0).

In normalised form all four vectors are the same, as they should be.

15.7 Measuring the Distance Between Two
Vectors

One important check on the appropriateness of the normalised vector space
model representation of documents described in the last two sections is whether
we can make a sensible definition of the distance between two vectors. We would
like the distance between two identical vectors to be zero, the distance between
two vectors that are as dissimilar as possible to be 1 and the distance between
any other two vectors to be somewhere in between.

The standard definition of the distance between two vectors of length one,
known as unit vectors, meets these criteria.

We define the dot product of two unit vectors of the same dimension to be
the sum of the products of the corresponding pairs of values.

For example, if we take the two unnormalised vectors (6, 4, 0, 2, 1) and
(5, 7, 6, 0, 2), normalising them to unit length converts the values to
(0.79, 0.53, 0, 0.26, 0.13) and (0.47, 0.66, 0.56, 0, 0.19).

The dot product is now 0.79 × 0.47 + 0.53 × 0.66 + 0 × 0.56 + 0.26 × 0 +
0.13 × 0.19 = 0.74 approximately.

If we subtract this value from 1 we obtain a measure of the distance between
the two values, which is 1 − 0.74 = 0.26.

What happens if we calculate the distance between two identical unit vec-
tors? The dot product gives the sum of the squares of the values, which must
be 1 as the length of a unit vector is 1 by definition. Subtracting this value
from 1 gives a distance of zero.

If we take two unit vectors with no values in common (corresponding to
no terms in common in the original documents), say (0.94, 0, 0, 0.31, 0.16) and
(0, 0.6, 0.8, 0, 0) the dot product is 0.94×0+0×0.6+0×0.8+0.31×0+0.16×0 =
0. Subtracting this value from 1 gives a distance measure of 1, which is the
largest distance value achievable.

Text Mining 247

15.8 Measuring the Performance of a Text
Classifier

Once we have converted the training documents into normalised vector form,
we can construct a training set of the kind used in previous chapters for each
category Ck in turn. We can convert a set of test documents to a test set of
instances for each category in the same way as the training documents and ap-
ply whatever classification algorithm we choose to the training data to classify
the instances in the test set.

For each category Ck we can construct a confusion matrix of the kind dis-
cussed in Chapter 6.

Predicted class
Ck not Ck

Actual Ck a c

class not Ck b d

Figure 15.1 Confusion Matrix for Category Ck

In Figure 15.1 the values a, b, c and d are the number of true positive,
false positive, false negative and true negative classifications, respectively. For
a perfect classifier b and c would both be zero.

The value (a + d)/(a + b + c + d) gives the predictive accuracy. However, as
mentioned in Chapter 11, for information retrieval applications, which include
text classification, it is more usual to use some other measures of classifier
performance.

Recall is defined as a/(a + c), i.e. the proportion of documents in category
Ck that are correctly predicted.

Precision is defined as a/(a + b), i.e. the proportion of documents that are
predicted as being in category Ck that are actually in that category.

It is common practice to combine Recall and Precision into a single measure
of performance called the F1 Score, which is defined by the formula F1 =
2×Precision×Recall/(Precision+Recall). This is just the product of Precision
and Recall divided by their average.

Having generated confusion matrices for each of the N binary classifica-
tion tasks we can combine them in several ways. One method is called micro-
averaging. The N confusion matrices are added together element by element to
form a single matrix from which Recall, Precision, F1 and any other preferred
measures can be computed.

248 Principles of Data Mining

15.9 Hypertext Categorisation

An important special case of text classification arises when the documents are
web pages, i.e. HTML files. The automatic classification of web pages is usually
known as Hypertext Categorisation (or Hypertext Classification).

Hypertext Categorisation is similar to classifying ‘ordinary’ text, e.g. arti-
cles in newspapers or journals, on the basis of their content, but as we shall see
the former can often be considerably harder.

15.9.1 Classifying Web Pages

The most obvious question to ask is why should we bother to do hypertext
categorisation, when there are powerful search engines such as Google available
for locating web pages of interest.

It has been estimated that the World Wide Web comprises over 8 billion
pages and is growing at a rate of 1.5 million pages a day. The size of the web
will eventually overwhelm the conventional web search engine approach.

The present author lives in a small village in England. When he entered
the village name (a unique one for England) into Google a year ago he was
astonished to find it returned 87,200 entries—more than 50 times as many as
the number of people who live there. This seemed a little excessive. Making
the same query today we find that the number of entries has grown to 642,000.
We can only speculate on what events have occurred in the village in the
intervening year to warrant this much greater attention. For comparison the
number of Google entries for Science a year ago was 459,000,000. A year later
it has reached 4,570,000,000.

In practice it is clear that many (probably most) Google users only ever
look at the first screenful or two of the entries returned or try a more elaborate
search. What else can they do? No one can possibly examine 4,570 million
entries on anything. Unfortunately even highly specific queries can easily return
many thousands of entries and this number can only grow as time goes by.
Looking at only the first screenful or two of entries is placing a huge amount of
reliance on the algorithm used by Google to rank the relevance of its entries—far
more than can realistically be justified. This is in no way to criticise or denigrate
a very successful company—just to point out that the standard approach used
by web search engines will not keep working successfully for ever. We can be
sure that the search engine companies are well aware of this. It is perhaps
not surprising that there are studies that suggest that many users prefer to
navigate through directories of pre-classified content and that this frequently
enables them to find more relevant information in a shorter time.

Text Mining 249

When attempting to classify web pages we immediately run into the problem
of finding any classified pages to use as training data. Web pages are uploaded
by a very large number of individuals, operating in an environment where no
widely agreed standard classification scheme exists. Fortunately there are ways
of overcoming this problem, at least partially.

The search engine company, Yahoo, uses hundreds of professional classifiers
to categorise new web pages into a (nearly) hierarchical structure, comprising
14 main categories, each with many sub-categories, sub-sub-categories etc. The
complete structure can be found on the web at http://dir.yahoo.com. Users
can search through the documents in the directory structure either using a
search engine approach or by following links through the structure. For example
we might follow the path from ‘Science’ to ‘Computer Science’ to ‘Artificial
Intelligence’ to ‘Machine Learning’ to find a set of links to documents that
human classifiers have placed in that category. The first of these (at the time
of writing) is to the UCI Machine Learning Repository, which was discussed in
Chapter 1.

The Yahoo system demonstrates the potential value of classifying web pages.
However, only a very small proportion of the entire web could possibly be
classified this way ‘manually’. With 1.5 million new pages being added each
day the volume of new material will defeat any conceivable team of human
classifiers. An interesting area of investigation (which the present author and
his research group are currently pursuing) is whether web pages can be classified
automatically using the Yahoo classification scheme (or some other similar
scheme) by supervised learning methods of the kind described in this book.

Unlike many other task areas for data mining there are few ‘standard’
datasets available on which experimenters can compare their results. One excep-
tion is the BankSearch dataset available from the University of Reading, which
includes 11,000 web pages pre-classified (by people) into four main categories
(Banking and Finance, Programming, Science, Sport) and 11 sub-categories,
some quite distinct and some quite similar.

15.9.2 Hypertext Classification versus Text Classification

Classifying hypertext has some important differences from classifying ‘stan-
dard’ text. Only a small number of web pages (manually classified) are avail-
able for supervised learning and it is often the case that much of the content
of each web page is irrelevant to the topic of the page (links to photographs of
the creator’s family, train timetables, advertisements etc.).

However one difference is fundamental and unavoidable. In text classifica-
tion the words that the human reader sees are very similar to the data provided

250 Principles of Data Mining

to the classification program. Figure 15.2 is a typical example.

Marley was dead: to begin with. There is no doubt whatever about that.
The register of his burial was signed by the clergyman, the clerk, the
undertaker, and the chief mourner. Scrooge signed it: and Scrooge’s name
was good upon ’Change, for anything he chose to put his hand to. Old
Marley was as dead as a door-nail.

Mind! I don’t mean to say that I know, of my own knowledge, what there
is particularly dead about a door-nail. I might have been inclined, myself,
to regard a coffin-nail as the deadest piece of ironmongery in the trade.
But the wisdom of our ancestors is in the simile; and my unhallowed hands
shall not disturb it, or the Country’s done for. You will therefore permit
me to repeat, emphatically, that Marley was as dead as a door-nail.

Source: Charles Dickens. A Christmas Carol.

Figure 15.2 Text Classification: An Example

Automating the classification of a document based on its content is a hard
task (for the example above we might perhaps decide on the categories ‘death’
and ‘ironmongery’). However the problems pale into insignificance compared
with classifying even a fairly short piece of hypertext.

Figure 15.3 shows the first few lines of the text form of a well-known web
page. It is a small extract from the text that an automatic hypertext categori-
sation program would need to process. It contains precisely one word of useful
information, which occurs twice. The rest is HTML markup and JavaScript
that gives no clue to the correct classification of the page.

It is usually considerably easier (for humans) to classify web pages from
the ‘pictorial’ form of the pages displayed by a web browser. In this case, the
equivalent web page is a very familiar one (see Figure 15.4).

It is worth noting that most of the words on this page are of little or no
use to human classifiers, for example ‘images’, ‘groups’, ‘news’, ‘preferences’
and ‘We’re Hiring’. There are only two clues to the correct classification of
this page: the phrase ‘Searching 8,058,044,651 web pages’ and the name of the
company. From these we can correctly deduce that it is the home page of a
widely used search engine.

A program that attempts to classify this page automatically has to contend
with not only the scarcity of useful information in the page, even for human
classifiers, but the abundance of irrelevant information in the textual form that
it is given.

Text Mining 251

<html><head><meta http-equiv="content-type"

content="text/html; charset=UTF-8">

<title>Google</title><style>

<!--

body,td,a,p,.h{font-family:arial,sans-serif;}

.h{font-size: 20px;}

.q{color:#0000cc;}

//-->

</style>

<script>

<!--

function sf(){document.f.q.focus();}

function clk(el,ct,cd) {if(document.images){(new Image()).src=

"/url?sa=T&ct="+es

cape(ct)+"&cd="+escape(cd)+"&url="

+escape(el.href)+"&ei=gpZNQpzEHaSgQYCUwKoM";}return true;}

// -->

</script>

</head><body bgcolor=#ffffff text=#000000 link=#0000cc vlink=

#551a8b alink=#ff00

00 onLoad=sf()><center><img src="/intl/en_uk/images/logo.gif"

width=276 height=1

10 alt="Google">

Figure 15.3 Hypertext Classification: An Example

We can deal with the second problem to some extent by removing HTML
markup and JavaScript when we create a representation of a document such
as a ‘bag-of-words’, but the scarcity of relevant information on most web pages
remains a problem. We must be careful not to assume that HTML markup is al-
ways irrelevant noise—the only two useful words in Figure 15.3 (both ‘Google’)
appear in the HTML markup.

Even compared with articles in newspapers, papers in scientific journals etc.
web pages suffer from an extremely diverse authorship, with little consistency
in style or vocabulary, and extremely diverse content. Ignoring HTML markup,
JavaScript, irrelevant advertisements and the like, the content of a web page
is often quite small. It is not surprising that classification systems that work
well on standard text documents often struggle with hypertext. It is reported
that in one experiment, classifiers that were 90% accurate on the widely used
Reuters dataset (of standard text documents) scored only 32% on a sample of
Yahoo classified pages.

252 Principles of Data Mining

Figure 15.4 Web Page Corresponding to Figure 15.3

To counter the scarcity of textual information in the typical web page we
need to try to take advantage of the information given in the tags, links etc.
in the HTML markup (whilst of course removing the markup itself before
converting the document to a bag-of-words representation or similar).

The information embedded in HTML markup can include:

– a title for the page

– ‘metadata’ (keywords and a description of the page)

– information about headers etc.

– words considered important enough to place in bold or italic

– the text associated with links to other pages.

How much of this information to include and how to do so is an open re-
search question. We have to beware of ‘game playing’, where a page deliberately
includes misleading information about its content with the aim of fooling inter-
net search engines. Despite this, experience suggests that extracting important
words from the markup (especially the ‘metadata’) and including them in the
representation can significantly improve classification accuracy, especially if the

Text Mining 253

words are given greater weighting (say, 3 times greater) than those extracted
from the basic text content of the page.

To improve classification accuracy further we could look at the possibility
of including some of the information in the ‘linked neighbourhood’ of each web
page, i.e. the pages to which it points and the pages that point to it. However
this is considerably beyond the scope of an introductory text.

Chapter Summary

This chapter looks at a particular type of classification task, where the objects
are text documents. A method of processing the documents for use by the
classification algorithms given earlier in this book using a bag-of-words repre-
sentation is described.

An important special case of text classification arises when the documents
are web pages. The automatic classification of web pages is known as hypertext
categorisation. The differences between standard text classification and hyper-
text categorisation are illustrated and issues relating to the latter are discussed.

Self-assessment Exercises for Chapter 15

1. Given a document, drawn from a collection of 1,000 documents, in which
the four terms given in the table below occur, calculate the TFIDF values
for each one.

Term Frequency in Number of documents
current document containing term

dog 2 800
cat 10 700
man 50 2
woman 6 30

2. Normalise the vectors (20, 10, 8, 12, 56) and (0, 15, 12, 8, 0).

Calculate the distance between the two normalised vectors using the dot
product formula.

References

[1] Blake, C.L. and Merz, C.J. (1998). UCI Repository of Ma-
chine Learning Databases. Irvine, CA: University of Cali-
fornia, Department of Information and Computer Science.
[http://www.ics.uci.edu/∼mlearn/MLRepository.html]

[2] Michie, D. (1990). Machine Executable Skills from ‘Silent’ Brains. In Re-
search and Development in Expert Systems VII, Cambridge University
Press.

[3] Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan Kauf-
mann.

[4] Quinlan, J.R. (1986). Induction of Decision Trees. Machine Learning, vol.
1, pp. 81–106.

[5] Mingers, J. (1989). An Empirical Comparison of Pruning Methods for
Decision Tree Induction. Machine Learning, vol. 4, pp. 227–243.

[6] Quinlan, J.R. (1979). Discovering Rules by Induction from Large Col-
lections of Examples. In Michie, D. (ed.), Expert Systems in the Micro-
electronic Age. Edinburgh University Press, pp. 168–201.

[7] Kerber, R. (1992). ChiMerge: Discretization of Numeric Attributes. In Pro-
ceedings of the 10 th National Conference on Artificial Intelligence. AAAI
Press, pp. 123–128.

[8] Esposito, F., Malerba, D. and Semeraro, G. (1997). A Comparative Analy-
sis of Methods for Pruning Decision Trees. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 19 (5).

256 Principles of Data Mining

[9] McSherry, D. and Stretch, C. (2003). Information Gain. University of Ul-
ster Technical Note.

[10] Noordewier, M.O., Towell, G.G. and Shavlik, J.W. (1991). Training
Knowledge-Based Neural Networks to Recognize Genes in DNA Sequences.
Advances in Neural Information Processing Systems, vol. 3, Morgan Kauf-
mann.

[11] Cendrowska, J. (1987). PRISM: An Algorithm for Inducing Modular Rules.
International Journal of Man-Machine Studies, vol. 27, pp. 349–370.

[12] Cendrowska, J. (1990). Knowledge Acquisition for Expert Systems: Induc-
ing Modular Rules from Examples. PhD Thesis, The Open University.

[13] Bramer, M.A. (2000). Automatic Induction of Classification Rules from
Examples Using N-Prism. In Research and Development in Intelligent Sys-
tems XVI, Springer-Verlag, pp. 99–121.

[14] Piatetsky-Shapiro, G. (1991). Discovery, Analysis and Presentation of
Strong Rules. In Piatetsky-Shapiro, G. and Frawley, W.J. (eds.), Knowl-
edge Discovery in Databases, AAAI Press, pp. 229–248.

[15] Smyth, P. and Goodman, R.M. (1992). Rule Induction Using Information
Theory. In Piatetsky-Shapiro, G. and Frawley, W.J. (eds.), Knowledge Dis-
covery in Databases, AAAI Press, pp. 159–176.

[16] Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Mining As-
sociation Rules in Large Databases. In Bocca, J.B., Jarke, M. and
Zaniolo, C. (eds.), Proceedings of the 20th International Conference
on Very Large Databases (VLDB94), Morgan Kaufmann, pp. 487–499.
[http://citeseer.nj.nec.com/agrawal94fast.html]

A
Essential Mathematics

This appendix gives a basic description of the main mathematical notation and
techniques used in this book. It has four sections, which deal with, in order:

– the subscript notation for variables and the Σ (or ‘sigma’) notation for sum-
mation (these are used throughout the book, particularly in Chapters 3–5)

– tree structures used to represent data items and the processes applied to
them (these are used particularly in Chapters 3, 4 and 8)

– the mathematical function log2 X (used particularly in Chapters 4, 5 and 9)

– set theory (which is used in Chapter 13).

If you are already familiar with this material, or can follow it fairly easily,
you should have no trouble reading this book. Everything else will be explained
as we come to it. If you have difficulty following the notation in some parts of
the book, you can usually safely ignore it, just concentrating on the results and
the detailed examples given.

A.1 Subscript Notation

This section introduces the subscript notation for variables and the Σ (or
‘sigma’) notation for summation which are used throughout the book, par-
ticularly in Chapters 3–5.

258 Principles of Data Mining

It is common practice to use variables to represent numerical values. For
example, if we have six values we can represent them by a, b, c, d, e and f ,
although any other six variables would be equally valid. Their sum is a + b +
c + d + e + f and their average is (a + b + c + d + e + f)/6.

This is fine as long as there are only a small number of values, but what
if there were 1,000 or 10,000 or a number that varied from one occasion to
another? In that case we could not realistically use a different variable for each
value.

The situation is analogous to the naming of houses. This is reasonable for
a small road of 6 houses, but what about a long road with 200 or so? In the
latter case, it is greatly more convenient to use a numbering system such as 1
High Street, 2 High Street, 3 High Street etc.

The mathematical equivalent of numbering houses is to use a subscript
notation for variables. We can call the first value a1, the second a2 and so on,
with the numbers 1, 2 etc. written slightly ‘below the line’ as subscripts. (We
pronounce a1 in the obvious way as the letter ‘a’ followed by the digit ‘one’.)
Incidentally, there is no need for the first value to be a1. Subscripts beginning
with zero are sometimes used, and in principle the first subscript can be any
number, as long as they then increase in steps of one.

If we have 100 variables from a1 up to a100, we can write them as a1, a2, . . . ,
a100. The three dots, called an ellipsis, indicate that the intermediate values a3

up to a99 have been omitted.
In the general case where the number of variables is unknown or can vary

from one occasion to another, we often use a letter near the middle of the
alphabet (such as n) to represent the number of values and write them as a1,
a2, . . . , an.

A.1.1 Sigma Notation for Summation

If we wish to indicate the sum of the values a1, a2, . . . , an we can write it
as a1 + a2 + · · · + an. However there is a more compact and often very useful
notation which uses the Greek letter Σ (‘sigma’). Sigma is the Greek equivalent
of the letter ‘s’, which is the first letter of the word ‘sum’.

We can write a ’typical’ value from the sequence a1, a2, . . . , an as ai. Here
i is called a dummy variable. We can use other variables instead of i, of course,
but traditionally letters such as i, j and k are used. We can now write the sum
a1 + a2 + · · · + an as

i=n∑

i=1

ai

(This is read as ‘the sum of ai for i equals 1 to n’ or ‘sigma ai for i = 1 to n’.)

Essential Mathematics 259

The notation is often simplified to
n∑

i=1

ai

The dummy variable i is called the index of summation. The lower and
upper bounds of summation are 1 and n, respectively.

The values summed are not restricted to just ai. There can be any formula,
for example

i=n∑

i=1

a2
i or

i=n∑

i=1

(i.ai).

The choice of dummy variable makes no difference of course, so
i=n∑

i=1

ai =
j=n∑

j=1

aj

Some other useful results are
i=n∑

i=1

k.ai = k.
i=n∑

i=1

ai (where k is a constant)

and
i=n∑

i=1

(ai + bi) =
i=n∑

i=1

ai +
i=n∑

i=1

bi

A.1.2 Double Subscript Notation

In some situations a single subscript is not enough and we find it helpful to use
two (or occasionally even more). This is analogous to saying ‘the fifth house on
the third street’ or similar.

We can think of a variable with two subscripts, e.g. a11, a46, or in general
aij as representing the cells of a table. The figure below shows the standard
way of referring to the cells of a table with 5 rows and 6 columns. For example,
in a45 the first subscript refers to the fourth row and the second subscript refers
to the fifth column. (By convention tables are labelled with the row numbers
increasing from 1 as we move downwards and column numbers increasing from
1 as we move from left to right.) The subscripts can be separated by a comma
if it is necessary to avoid ambiguity.

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

We can write a typical value as aij , using two dummy variables i and j.
If we have a table with m rows and n columns, the second row of the

table is a21, a22, . . . , a2n and the sum of the values in the second row is
a21 + a22 + · · · + a2n, i.e.

260 Principles of Data Mining

j=n∑

j=1

a2j

In general the sum of the values in the ith row is
j=n∑

j=1

aij

To find the total value of all the cells we need to add the sums of all m rows
together, which gives

i=m∑

i=1

j=n∑

j=1

aij

(This formula, with two ‘sigma’ symbols, is called a ‘double summation’.)
Alternatively we can form the sum of the m values in the jth column, which

is
i=m∑

i=1

aij

and then form the total of the sums for all n columns, giving
j=n∑

j=1

i=m∑

i=1

aij

It does not matter which of these two ways we use to find the overall total.
Whichever way we calculate it, the result must be the same, so we have the
useful result

i=m∑

i=1

j=n∑

j=1

aij =
j=n∑

j=1

i=m∑

i=1

aij .

A.1.3 Other Uses of Subscripts

Finally, we need to point out that subscripts are not always used in the way
shown previously in this appendix. In Chapters 4, 5 and 9 we illustrate the
calculation of two values of a variable E, essentially the ‘before’ and ‘after’
values. We call the original value Estart and the second value Enew. This is
just a convenient way of labelling two values of the same variable. There is no
meaningful way of using an index of summation.

A.2 Trees

Computer Scientists and Mathematicians often use a structure called a tree to
represent data items and the processes applied to them.

Trees are used extensively in the first half of this book, especially in Chap-
ters 3, 4 and 8.

Essential Mathematics 261

Figure A.1 is an example of a tree. The letters A to M are labels added for
ease of reference and are not part of the tree itself.

A

I

E ML

DCB

K

G

F

H

J

Figure A.1 A Tree with 13 Nodes

A.2.1 Terminology

In general a tree consists of a collection of points, called nodes, joined by straight
lines, called links. Each link has a single node at each end. This is an example
of a link joining two nodes G and J.

G

J

Figure A.1 comprises 13 nodes, labelled from A to M, joined by a total of
12 links.

The node at the top of the tree is called the root of the tree, or the root
node or just the root. (In Computer Science, trees grow downwards from their
roots.)

262 Principles of Data Mining

There is an implicit notion of movement down the tree, i.e. it is possible to
go from the root node A to node D, or from node F to node H via a link. There
is also a path from node A to node H via the ‘chain’ of links A to B, B to F, F
to H and a path from node F to node K via links F to G then G to K. There
is no way of going from B to A or from G to B, as we cannot go ‘backwards’
up the tree.

There are a number of conditions that must be satisfied to make a structure
such as Figure A.1 a tree:

1. There must be a single node, the root, with no links ‘flowing into’ it from
above.

2. There must be a path from the root node A to every other node in the tree
(so the structure is connected).

3. There must be only one path from the root to each of the other nodes. If
we added a link from F to L to Figure A.1 it would no longer be a tree, as
there would be two paths from the root to node L: A to B, B to F, F to L
and A to D, D to L.

Nodes such as C, E, H, I, J, K, L and M that have no other nodes below
them in the tree are called leaf nodes or just leaves. Nodes such as B, D, F
and G that are neither the root nor a leaf node are called internal nodes. Thus
Figure A.1 has one root node, eight leaf nodes and four internal nodes.

The path from the root node of a tree to any of its leaf nodes is called a
branch. Thus for Figure A.1 one of the branches is A to B, B to F, F to G, G
to K. A tree has as many branches as it has leaf nodes.

A.2.2 Interpretation

A tree structure is one with which many people are familiar from family trees,
flowcharts etc. We might say that the root node A of Figure A.1 represents the
most senior person in a family tree, say John. His children are represented by
nodes B, C and D, their children are E, F, L and M and so on. Finally John’s
great-great-grandchildren are represented by nodes J and K.

For the trees used in this book a different kind of interpretation is more
helpful.

Figure A.2 is Figure A.1 augmented by numbers placed in parentheses at
each of the nodes. We can think of 100 units placed at the root and flowing
down to the leaves like water flowing down a mountainside from a single source
(the root) to a number of pools (the leaves). There are 100 units at A. They
flow down to form 60 at B, 30 at C and 10 at D. The 60 at B flow down to E

Essential Mathematics 263

A (100)

I (20)

E (10) F (50) M (3)L (7)

D (10)C (30)B (60)

K (12)

G (20) H (10)

J (8)

Figure A.2 Figure A.1 (revised)

(10 units) and F (50 units), and so on. We can think of the tree as a means
of distributing the original 100 units from the root step-by-step to a number
of leaves. The relevance of this to using decision trees for classification will
become clear in Chapter 3.

A.2.3 Subtrees

If we consider the part of Figure A.1 that hangs below node F, there are
six nodes (including F itself) and five links which form a tree in their own
right (see Figure A.3). We call this a subtree of the original tree. It is the
subtree ‘descending from’ (or ‘hanging from’) node F. A subtree has all the
characteristics of a tree in its own right, including its own root (node F).

Sometimes we wish to ‘prune’ a tree by removing the subtree which descends
from a node such as F (leaving the node F itself intact), to give a simpler tree,
such as Figure A.4. Pruning trees in this way is dealt with in Chapter 8.

264 Principles of Data Mining

I

F

K

G H

J

Figure A.3 Subtree Descending From Node F

A

E ML

DCB

F

Figure A.4 Pruned Version of Figure A.1

A.3 The Logarithm Function log2 X

The mathematical function log2 X, pronounced ‘log to base 2 of X’, ‘log 2 of
X’ or just ‘log X’ is widely used in scientific applications. It plays an important
part in this book, especially in connection with classification in Chapters 4 and
5 and in Chapter 9.

log2 X = Y means that 2Y = X.
So for example log2 8 = 3 because 23 = 8.
The 2 is always written as a subscript. In log2 X the value of X is called

the ‘argument’ of the log2 function. The argument is often written in paren-
theses, e.g. log2(X) but we will usually omit the parentheses in the interests of
simplicity when no ambiguity is possible, e.g. log2 4.

The value of the function is only defined for values of X greater than zero.
Its graph is shown in Figure A.5. (The horizontal and vertical axes correspond
to values of X and log2 X, respectively.)

Some important properties of the logarithm function are given in Figure
A.6.

Essential Mathematics 265

-3

-2

-1

0

1

2

3

4

0 2 4 6 8 10 12 14 16

Figure A.5 The log2 X Function

The value of log2 X is

– negative when X < 1

– zero when X = 1

– positive when X > 1

Figure A.6 Properties of the Logarithm Function

Some useful values of the function are given below.

log2(1/8) = −3
log2(1/4) = −2
log2(1/2) = −1
log2 1 = 0
log2 2 = 1
log2 4 = 2
log2 8 = 3
log2 16 = 4
log2 32 = 5

The log2 function has some unusual (and very helpful) properties that

266 Principles of Data Mining

greatly assist calculations using it. These are given in Figure A.7.

log2(a × b) = log2 a + log2 b

log2(a/b) = log2 a − log2 b

log2(an) = n × log2 a

log2(1/a) = − log2 a

Figure A.7 More Properties of the Logarithm Function

So, for example,

log2 96 = log2(32 × 3) = log2 32 + log2 3 = 5 + log2 3
log2(q/32) = log2 q − log2 32 = log2 q − 5
log2(6 × p) = log2 6 + log2 p

The logarithm function can have other bases as well as 2. In fact any positive
number can be a base. All the properties given in Figures A.6 and A.7 apply
for any base.

Another commonly used base is base 10. log10 X = Y means 10Y = X, so
log10 100 = 2, log10 1000 = 3 etc.

Perhaps the most widely used base of all is the ‘mathematical constant’
with the very innocuous name of e. The value of e is approximately 2.71828.
Logarithms to base e are of such importance that instead of loge X we often
write ln X and speak of the ‘natural logarithm’, but explaining the importance
of this constant is considerably outside the scope of this book.

Few calculators have a log2 function, but many have a log10, loge or ln
function. To calculate log2 X from the other bases use log2 X = loge X/0.6931
or log10 X/0.3010 or lnX/0.6931.

A.3.1 The Function −X log2 X

The only base of logarithms used in this book is base 2. However the log2

function also appears in the formula −X log2 X in the discussion of entropy in
Chapters 4 and 9. The value of this function is also only defined for values of
X greater than zero. However the function is only of importance when X is
between 0 and 1. The graph of the important part of this function is given in
Figure A.8.

The initial minus sign is included to make the value of the function positive
(or zero) for all X between 0 and 1.

Essential Mathematics 267

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

Figure A.8 The function −X log2 X

It can be proved that the function −X log2 X has its maximum value when
X = 1/e = 0.3679 (e is the ‘mathematical constant’ mentioned above). When
X takes the value 1/e, the value of the function is approximately 0.5307.

Values of X from 0 to 1 can sometimes usefully be thought of as probabilities
(from 0 = impossible to 1 = certain), so we may write the function as −p log2(p).
The variable used is of course irrelevant as long as we are consistent. Using the
fourth property in Figure A.7, the function can equivalently be written as
p log2(1/p). This is the form in which it mainly appears in Chapters 4 and 9.

A.4 Introduction to Set Theory

Set theory plays an important part in Chapter 13: Association Rule Mining II.
A set is a sequence of items, called set elements or members, separated by

commas and enclosed in braces, i.e. the characters { and }. Two examples of
sets are {a, 6.4,−2, dog, alpha} and {z, y, x, 27}. Set elements can be numeric,
non-numeric or a combination of the two.

A set can have another set as a member, so {a, b, {a, b, c}, d, e} is a valid
set, with five members. Note that the third element of the set, i.e. {a, b, c} is
counted as a single member.

268 Principles of Data Mining

No element may appear in a set more than once, so {a, b, c, b} is not a valid
set. The order in which the elements of a set are listed is not significant, so
{a, b, c} and {c, b, a} are the same set.

The cardinality of a set is the number of elements it contains, so {dog, cat,
mouse} has cardinality three and {a, b, {a, b, c}, d, e} has cardinality five. The
set with no elements {} is called the empty set and is written as ∅.

We usually think of the members of a set being drawn from some ‘universe
of discourse’, such as all the people who belong to a certain club. Let us assume
that set A contains all those who are aged under 25 and set B contains all those
who are married.

We call the set containing all the elements that occur in either A or B or
both the union of the two sets A and B. It is written as A ∪ B. If A is the
set {John, Mary, Henry} and B is the set {Paul, John, Mary, Sarah} then
A ∪ B is the set {John, Mary, Henry, Paul, Sarah}, the set of people who are
either under 25 or married or both. Figure A.9 shows two overlapping sets. The
shaded area is their union.

Figure A.9 Union of Two Overlapping Sets

We call the set containing all the elements (if there are any) that occur in
both A and B the intersection of the two sets A and B. It is written A∩B. If
A is the set {John, Mary, Henry} and B is the set {Paul, John, Mary, Sarah}
as before, then A ∩ B is the set {John, Mary}, the set of people who are both
under 25 and married. Figure A.10 shows two overlapping sets. In this case,
the shaded area is their intersection.

Figure A.10 Intersection of Two Overlapping Sets

Essential Mathematics 269

Two sets are called disjoint if they have no elements in common, for ex-
ample A ={Max, Dawn} and B={Frances, Bryony, Gavin}. In this case their
intersection A∩B is the set with no elements, which we call the empty set and
represent by {} or (more often) by ∅. Figure A.11 shows this case.

Figure A.11 Intersection of Two Disjoint Sets

If two sets are disjoint their union is the set comprising all the elements in
the first set and all those in the second set.

There is no reason to be restricted to two sets. It is meaningful to refer to
the union of any number of sets (the set comprising those elements that appear
in any one or more of the sets) and the intersection of any number of sets (the
set comprising those elements that appear in all the sets). Figure A.12 shows
three sets, say A, B and C. The shaded area is their intersection A ∩ B ∩ C.

Figure A.12 Intersection of Three Sets

A.4.1 Subsets

A set A is called a subset of another set B if every element in A also occurs
in B. We can illustrate this by Figure A.13, which shows a set B (the outer
circle) with a set A (the inner circle) completely inside it. The implication is
that B includes A, i.e. every element in A is also in B and there may also be

270 Principles of Data Mining

one or more other elements in B. For example B and A may be {p, q, r, s, t}
and {q, t} respectively.

B

A

Figure A.13 A is a Subset of B

We indicate that A is a subset of B by the notation A ⊆ B. So {q, t} ⊆
{p, r, s, q, t}. The empty set is a subset of every set and every set is a subset of
itself.

We sometimes want to specify that a subset A of set B must have fewer
elements than B itself, in order to rule out the possibility of treating B as one
of its own subsets. In this case we say that A is a strict subset of B, written
A ⊂ B. So {q, t} is a strict subset of {p, r, s, q, t} but {t, s, r, q, p} is not a strict
subset of {p, r, s, q, t}, as it is the same set. (The order in which the elements
are written is irrelevant.)

If A is a subset of B, we say that B is a superset of A, written as B ⊇ A.
If A is a strict subset of B we say that B is a strict superset of A, written

as B ⊃ A.
A set with three elements such as {a, b, c} has eight subsets, including the

empty set and itself. They are ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c} and {a, b, c}.
In general a set with n elements has 2n subsets, including the empty set

and the set itself. Each member of the set can be included or not included in
a subset. The number of possible subsets is therefore the same as the total
number of possible include/do not include choices, which is 2 multiplied by
itself n times, i.e. 2n.

The set containing all the subsets of A is called the power set of A. Thus
the power set of {a, b, c} is {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

If set A has n elements its power set contains 2n elements.

Essential Mathematics 271

A.4.2 Summary of Set Notation

{} The ‘brace’ characters that enclose the elements of a
set, e.g. {apples, oranges, bananas}

∅ The empty set. Also written as {}
A ∪ B The union of sets A and B. The set that contains all

the elements that occur either in A or B or both.
A ∩ B The intersection of two sets A and B. The set that

includes all the elements (if there are any) that occur
in both A and B.

A ⊆ B A is a subset of B, i.e. every element in A also occurs
in B.

A ⊂ B A is a strict subset of B, i.e. A is a subset of B and
A contains fewer elements than B.

A ⊇ B A is a superset of B. True if and only if B is a subset
of A.

A ⊃ B A is a strict superset of B. True if and only if B is a
strict subset of A.

B
Datasets

The methods described in this book are illustrated by tests on a number of
datasets, with a range of sizes and characteristics. Basic information about
each dataset is summarised in Figure B.1.

Dataset Description classes* attributes** instances
categ cts training

set
test
set

anonymous Football/
Netball
Data
(anonymised)

2
(58%)

4 12

bcst96 Text Classi-
fication
Dataset

2 13430
!

1186 509

chess Chess
Endgame

2
(95%)

7 647

contact
lenses

Contact
Lenses

3
(88%)

5 108

crx Credit Card
Applica-
tions

2
(56%)

9 6 690
(37)

200
(12)

degrees Degree
Class

2
(77%)

5 26

274 Principles of Data Mining

football/
netball

Sports Club
Preference

2
(58%)

4 12

genetics DNA
Sequences

3
(52%)

60 3190

glass Glass Iden-
tification
Database

7
(36%)

9 !! 214

golf Decision
Whether to
Play

2
(64%)

2 2 14

hepatitis Hepatitis
Data

2
(79%)

13 6 155
(75)

hypo Hypothy-
roid
Disorders

5
(92%)

22 7 2514
(2514)

1258
(371)

iris Iris Plant
Classifica-
tion

3
(33.3%)

4 150

labor-ne Labor Ne-
gotiations

2
(65%)

8 8 40
(39)

17
(17)

lens24 Contact
Lenses
(reduced
version)

3
(63%)

4 24

monk1 Monk’s
Problem 1

2
(50%)

6 124 432

monk2 Monk’s
Problem 2

2
(62%)

6 169 432

monk3 Monk’s
Problem 3

2
(51%)

6 122 432

pima-
indians

Prevalence
of Diabetes
in Pima
Indian
Women

2
(65%)

8 768

sick-
euthyroid

Thyroid
Disease
Data

2
(91%)

18 7 3163

train Train
Punctuality

4
(70%)

4 20

Datasets 275

vote Voting in
US
Congress

2
(61%)

16 300 135

wake
vortex

Air Traffic
Control

2
(50%)

3 1 1714

wake
vortex2

Air Traffic
Control

2
(50%)

19 32 1714

* % size of largest class in training set is given in parentheses
** ‘categ’ and ‘cts’ stand for Categorical and Continuous, respectively
! Including 1749 with only a single value for instances in the training set
!! Plus one ‘ignore’ attribute

Figure B.1 Basic Information About Datasets

The degrees, train, football/netball and anonymous datasets were created
by the author for illustrative purposes only. The bcst96, wake vortex and
wake vortex2 datasets are not generally available. Details of the other datasets
are given on the following pages. In each case the class with the largest number
of corresponding instances in the training set is shown in bold.

Datasets shown as ‘Source: UCI Repository’ can be downloaded (sometimes
with slight differences) from the World Wide Web at
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Dataset chess

Description
This dataset was used for one of a well-known series of experiments by
the Australian researcher Ross Quinlan, taking as an experimental testbed
the Chess endgame with White king and rook versus Black king and
knight. This endgame served as the basis for several studies of Machine
Learning and other Artificial Intelligence techniques in the 1970s and 1980s.

The task is to classify positions (all with Black to move) as either ‘safe’
or ‘lost’, using attributes that correspond to configurations of the pieces.
The classification ‘lost’ implies that whatever move Black makes, White
will immediately be able to give checkmate or alternatively will be able to
capture the Knight without giving stalemate or leaving his Rook vulnerable
to immediate capture. Generally this is not possible, in which case the
position is ‘safe’. This task is trivial for human experts but has proved
remarkably difficult to automate in a satisfactory way. In this experiment
(Quinlan’s ‘third problem’), the simplifying assumption is made that the
board is of infinite size. Despite this, the classification task remains a hard
one. Further information is given in [6].

Source: Reconstructed by the author from description given in [6].

Classes
safe, lost

Attributes and Attribute Values

The first four attributes represent the distance between pairs of pieces (wk
and wr: White King and Rook, bk and bn: Black King and Knight). They
all have values 1, 2 and 3 (3 denoting any value greater than 2).

dist bk bn
dist bk wr
dist wk bn
dist wk wr

The other three attributes all have values 1 (denoting true) and 2 (denoting
false).

inline (Black King and Knight and White Rook in line)
wr bears bk (White Rook bears on the Black King)
wr bears bn (White Rook bears on the Black Knight)

Instances
Training set: 647 instances
No separate test set

Datasets 277

Dataset contact lenses

Description
Data from ophthalmic optics relating clinical data about a patient to a
decision as to whether he/she should be fitted with hard contact lenses,
soft contact lenses or none at all.

Source: Reconstructed by the author from data given in [12].

Classes
hard lenses: The patient should be fitted with hard contact lenses
soft lenses: The patient should be fitted with soft contact lenses
no lenses: The patient should not be fitted with contact lenses

Attributes and Attribute Values
age: 1 (young), 2 (pre-presbyopic), 3 (presbyopic)

specRx (Spectacle Prescription): 1 (myopia), 2 (high hypermetropia), 3
(low hypermetropia)

astig (Whether Astigmatic): 1 (no), 2 (yes)

tears (Tear Production Rate): 1 (reduced), 2 (normal)

tbu (Tear Break-up Time): 1 (less than or equal to 5 seconds), 2 (greater
than 5 seconds and less than or equal to 10 seconds), 3 (greater than 10
seconds)

Instances
Training set: 108 instances
No separate test set

278 Principles of Data Mining

Dataset crx

Description
This dataset concerns credit card applications. The data is genuine but the
attribute names and values have been changed to meaningless symbols to
protect confidentiality of the data.

Source: UCI Repository

Classes
+ and − denoting a successful application and an unsuccessful application,
respectively (largest class for the training data is −)

Attributes and Attribute Values
A1: b, a
A2: continuous
A3: continuous
A4: u, y, l, t
A5: g, p, gg
A6: c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff
A7: v, h, bb, j, n, z, dd, ff, o
A8: continuous
A9: t, f
A10: t, f
A11: continuous
A12: t, f
A13: g, p, s
A14: continuous
A15: continuous

Instances
Training set: 690 instances (including 37 with missing values)
Test set: 200 instances (including 12 with missing values)

Datasets 279

Dataset genetics

Description
Each instance comprises the values of a sequence of 60 DNA elements
classified into one of three possible categories. For further information see
[10].

Source: UCI Repository

Classes
EI, IE and N

Attributes and Attribute Values
There are 60 attributes, named A0 to A59, all of which are categorical.
Each attribute has eight possible values: A, T, G, C, N, D, S and R.

Instances
Training set: 3190 instances
No separate test set

280 Principles of Data Mining

Dataset glass

Description
This dataset is concerned with the classification of glass left at the scene
of a crime into one of six types (such as ‘tableware’, ‘headlamp’ or ‘build-
ing windows float processed’), for purposes of criminological investigation.
The classification is made on the basis of nine continuous attributes (plus
an identification number, which is ignored).

Source: UCI Repository

Classes
1, 2, 3, 5, 6, 7
Type of glass:
1 building windows float processed
2 building windows non float processed
3 vehicle windows float processed
4 vehicle windows non float processed (none in this dataset)
5 container
6 tableware
7 headlamp

Attributes and Attribute Values
Id number: 1 to 214 (an ‘ignore’ attribute)
plus nine continuous attributes
RI: refractive index
Na: Sodium (unit measurement: weight percent in corresponding oxide, as
are the attributes that follow)
Mg: Magnesium
Al: Aluminum
Si: Silicon
K: Potassium
Ca: Calcium
Ba: Barium
Fe: Iron

Instances
Training set: 214 instances
No separate test set

Datasets 281

Dataset golf

Description
A synthetic dataset relating a decision on whether or not to play golf to
weather observations.

Source: UCI Repository

Classes
Play, Don’t Play

Attributes and Attribute Values
outlook: sunny, overcast, rain
temperature: continuous
humidity: continuous
windy: true, false

Instances
Training set: 14 instances
No separate test set

282 Principles of Data Mining

Dataset hepatitis

Description
The aim is to classify patients into one of two classes, representing ‘will
live’ or ‘will die’, on the basis of 13 categorical and 9 continuous attributes.

Source: UCI Repository

Classes
1 and 2 representing ‘will die’ and ‘will live’ respectively

Attributes and Attribute Values
Age: continuous.
Sex: 1, 2 (representing male, female)
Steroid: 1, 2 (representing no, yes)
Antivirals: 1, 2 (representing no, yes)
Fatigue: 1, 2 (representing no, yes)
Malaise: 1, 2 (representing no, yes)
Anorexia: 1, 2 (representing no, yes)
Liver Big: 1, 2 (representing no, yes)
Liver Firm: 1, 2 (representing no, yes)
Spleen Palpable: 1, 2 (representing no, yes)
Spiders: 1, 2 (representing no, yes)
Ascites: 1, 2 (representing no, yes)
Varices: 1, 2 (representing no, yes)
Bilirubin: continuous
Alk Phosphate: continuous
SGOT: continuous
Albumin: continuous
Protime: continuous
Histology: 1, 2 (representing no, yes)

Instances
Training set: 155 instances (including 75 with missing values)
No separate test set

Datasets 283

Dataset hypo

Description
This is a dataset on Hypothyroid disorders collected by the Garvan
Institute in Australia. Subjects are divided into five classes based on the
values of 29 attributes (22 categorical and 7 continuous).

Source: UCI Repository

Classes
hyperthyroid, primary hypothyroid, compensated hypothyroid, secondary
hypothyroid, negative

Attributes and Attribute Values
age: continuous
sex: M, F
on thyroxine, query on thyroxine, on antithyroid medication, sick, pregnant,
thyroid surgery, I131 treatment, query hypothyroid, query hyperthyroid,
lithium, goitre, tumor, hypopituitary, psych, TSH measured ALL f, t
TSH: continuous
T3 measured: f, t
T3: continuous
TT4 measured: f, t
TT4: continuous
T4U measured: f, t
T4U: continuous
FTI measured: f, t
FTI: continuous
TBG measured: f, t
TBG: continuous
referral source: WEST, STMW, SVHC, SVI, SVHD, other

Instances
Training set: 2514 instances (all with missing values)
Test set: 1258 instances (371 with missing values)

284 Principles of Data Mining

Dataset iris

Description
Iris Plant Classification. This is one of the best known classification
datasets, which is widely referenced in the technical literature. The aim is
to classify iris plants into one of three classes on the basis of the values of
four categorical attributes.

Source: UCI Repository

Classes
Iris-setosa, Iris-versicolor, Iris-virginica (there are 50 instances in the
dataset for each classification)

Attributes and Attribute Values
Four continuous attributes: sepal length, sepal width, petal length and
petal width.

Instances
Training set: 150 instances
No separate test set

Datasets 285

Dataset labor-ne

Description
This is a small dataset, created by Collective Bargaining Review (a monthly
publication). It gives details of the final settlements in labor negotiations in
Canadian industry in 1987 and the first quarter of 1988. The data includes
all collective agreements reached in the business and personal services
sector for local organisations with at least 500 members (teachers, nurses,
university staff, police, etc).

Source: UCI Repository

Classes
good, bad

Attributes and Attribute Values
duration: continuous [1..7] *
wage increase first year: continuous [2.0..7.0]
wage increase second year: continuous [2.0..7.0]
wage increase third year: continuous [2.0..7.0]
cost of living adjustment: none, tcf, tc
working hours: continuous [35..40]
pension: none, ret allw, empl contr (employer contributions to pension
plan)
standby pay: continuous [2..25]
shift differential: continuous [1..25] (supplement for work on II and III
shift)
education allowance: yes, no
statutory holidays: continuous [9..15] (number of statutory holidays)
vacation: below average, average, generous (number of paid vacation days)
longterm disability assistance: yes, no
contribution to dental plan: none, half, full
bereavement assistance: yes, no (employer’s financial contribution towards
covering the costs of bereavement)
contribution to health plan: none, half, full

Instances
Training set: 40 instances (39 with missing values)
Test set: 17 instances (all with missing values)

* The notation [1..7] denotes a value in the range from 1 to 7 inclusive

286 Principles of Data Mining

Dataset lens24

Description
A reduced and simplified version of contact lenses with only 24 instances.

Source: Reconstructed by the author from data given in [12].

Classes
1, 2, 3

Attributes and Attribute Values
age: 1, 2, 3
specRx: 1, 2
astig: 1, 2
tears: 1, 2

Instances
Training set: 24 instances
No separate test set

Datasets 287

Dataset monk1

Description
Monk’s Problem 1. The ‘Monk’s Problems’ are a set of three artificial prob-
lems with the same set of six categorical attributes. They have been used to
test a wide range of classification algorithms, originally at the second Euro-
pean Summer School on Machine Learning, held in Belgium during summer
1991. There are 3 × 3 × 2 × 3 × 4 × 2 = 432 possible instances. All of them
are included in the test set for each problem, which therefore includes the
training set in each case.
The ‘true’ concept underlying Monk’s Problem 1 is: if (attribute#1 =
attribute#2) or (attribute#5 = 1) then class = 1 else class = 0

Source: UCI Repository

Classes
0, 1 (62 instances for each classification)

Attributes and Attribute Values
attribute#1: 1, 2, 3
attribute#2: 1, 2, 3
attribute#3: 1, 2
attribute#4: 1, 2, 3
attribute#5: 1, 2, 3, 4
attribute#6: 1, 2

Instances
Training set: 124 instances
Test set: 432 instances

288 Principles of Data Mining

Dataset monk2

Description
Monk’s Problem 2. See monk1 for general information about the Monk’s
Problems. The ‘true’ concept underlying Monk’s problem 2 is: if (at-
tribute#n = 1) for exactly two choices of n (from 1 to 6) then class = 1
else class = 0

Source: UCI Repository.

Classes
0, 1

Attributes and Attribute Values
attribute#1: 1, 2, 3
attribute#2: 1, 2, 3
attribute#3: 1, 2
attribute#4: 1, 2, 3
attribute#5: 1, 2, 3, 4
attribute#6: 1, 2

Instances
Training set: 169 instances
Test set: 432 instances

Datasets 289

Dataset monk3

Description
Monk’s Problem 3. See monk1 for general information about the Monk’s
Problems. The ‘true’ concept underlying Monk’s Problem 3 is:
if (attribute#5 = 3 and attribute#4 = 1) or (attribute#5 �= 4 and at-
tribute#2 �= 3) then class = 1 else class = 0
This dataset has 5% noise (misclassifications) in the training set.

Source: UCI Repository

Classes
0, 1

Attributes and Attribute Values
attribute#1: 1, 2, 3
attribute#2: 1, 2, 3
attribute#3: 1, 2
attribute#4: 1, 2, 3
attribute#5: 1, 2, 3, 4
attribute#6: 1, 2

Instances
Training set: 122 instances
Test set: 432 instances

290 Principles of Data Mining

Dataset pima-indians

Description
The dataset concerns the prevalence of diabetes in Pima Indian women. It
is considered to be a difficult dataset to classify.
The dataset was created by the (United States) National Institute of
Diabetes and Digestive and Kidney Diseases and is the result of a study on
768 adult female Pima Indians living near Phoenix. The goal is to predict
the presence of diabetes using seven health-related attributes, such as
‘Number of times pregnant’ and ‘Diastolic blood pressure’, together with
age.

Source: UCI Repository

Classes
0 (‘tested negative for diabetes’) and 1 (‘tested positive for diabetes’)

Attributes and Attribute Values
Eight attributes, all continuous: Number of times pregnant, Plasma glucose
concentration, Diastolic blood pressure, Triceps skin fold thickness, 2-Hour
serum insulin, Body mass index, Diabetes pedigree function, Age (in years).

Instances
Training set: 768 instances
No separate test set

Datasets 291

Dataset sick-euthyroid

Description Thyroid Disease data.

Source: UCI Repository

Classes
sick-euthyroid and negative

Attributes and Attribute Values
age: continuous
sex: M, F
on thyroxine: f, t
query on thyroxine: f, t
on antithyroid medication: f, t
thyroid surgery: f, t
query hypothyroid: f, t
query hyperthyroid: f, t
pregnant: f, t
sick: f, t
tumor: f, t
lithium: f, t
goitre: f, t
TSH measured: y, n
TSH: continuous
T3 measured: y, n
T3: continuous
TT4 measured: y, n
TT4: continuous
T4U measured: y, n
T4U: continuous.
FTI measured: y, n
FTI: continuous
TBG measured: y, n
TBG: continuous

Instances
Training set: 3163 instances
No separate test set

292 Principles of Data Mining

Dataset vote

Description
Voting records drawn from the Congressional Quarterly Almanac, 98th
Congress, 2nd session 1984, Volume XL: Congressional Quarterly Inc. Wash-
ington, DC, 1985.
This dataset includes votes for each of the US House of Representatives
Congressmen on the 16 key votes identified by the CQA. The CQA lists nine
different types of vote: voted for, paired for, and announced for (these three
simplified to yea), voted against, paired against, and announced against
(these three simplified to nay), voted present, voted present to avoid conflict
of interest, and did not vote or otherwise make a position known (these three
simplified to an unknown disposition).
The instances are classified according to the party to which the voter
belonged, either Democrat or Republican. The aim is to predict the voter’s
party on the basis of 16 categorical attributes recording the votes on topics
such as handicapped infants, aid to the Nicaraguan Contras, immigration,
a physician fee freeze and aid to El Salvador.

Source: UCI Repository

Classes
democrat, republican

Attributes and Attribute Values
Sixteen categorical attributes, all with values y, n and u (standing for
‘yea’, ‘nay’ and ‘unknown disposition’, respectively): handicapped infants,
water project cost sharing, adoption of the budget resolution, physician fee
freeze, el salvador aid, religious groups in schools, anti satellite test ban,
aid to nicaraguan contras, mx missile, immigration, synfuels corporation
cutback, education spending, superfund right to sue, crime, duty free
exports, export administration act south africa.

Instances
Training set: 300 instances
Test set: 135 instances

C
Sources of Further Information

Websites

There is a great deal of information about all aspects of data mining available on
the World Wide Web. A good place to start looking is the ‘Knowledge Discovery
Nuggets’ site at http://www.kdnuggets.com, which has links to information
on software, products, companies, datasets, other websites, courses, conferences
etc.

Another very useful source of information is The Data Mine at http://

www.the-data-mine.com.
The KDNet (Knowledge Discovery Network of Excellence) website at http:

//www.kdnet.org has links to journals, conferences, calls for papers and other
sources of information.

The Natural Computing Applications Forum (NCAF) is an active British-
based group specialising in Neural Nets and related technologies. Their website
is at http://www.ncaf.org.uk.

Books

There are many books on Data Mining. Some popular ones are listed below.

1. Data Mining: Concepts and Techniques by J. Han and M. Kamber.
Morgan Kaufmann, 2001. ISBN: 1-55860-489-8.

2. The Elements of Statistical Learning: Data Mining, Inference,

294 Principles of Data Mining

and Prediction by T. Hastie, R. Tibshirani and J. Friedman. Springer-
Verlag, 2001. ISBN: 0-38795-284-5.

3. Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations by I.H. Witten and E. Frank. Morgan Kauf-
mann, 2000. ISBN: 1-55860-552-5.

This book is based around Weka, a collection of open source machine learn-
ing algorithms for data mining tasks that can either be applied directly to
a dataset or called from the user’s own Java code. Full details are available
at http://www.cs.waikato.ac.nz/ml/weka/index.html.

4. C4.5: Programs for Machine Learning by Ross Quinlan. Morgan
Kaufmann, 1993. ISBN: 1-55860-238-0.

This book gives a detailed account of the author’s celebrated tree induction
system C4.5, together with a machine-readable version of the software and
some sample datasets.

5. Machine Learning by Tom Mitchell. McGraw-Hill, 1997. ISBN: 0-07042-
807-7.

6. Survey of Text Mining: Clustering, Classification, and Retrieval
edited by Michael Berry. Springer, 2003. ISBN: 0-38795-563-1.

Books on Neural Nets
Some introductory books on Neural Nets (a topic not covered in this book)

are:

1. Practical Guide to Neural Nets by Marilyn McCord Nelson and W.T.
Illingworth. Addison-Wesley, 1994. ISBN: 0-20163-378-7.

2. An Introduction to Neural Networks by K. Gurney. Routledge, 1997.
ISBN: 1-85728-503-4.

3. An Introduction to Neural Networks by Jeff T. Heaton. CRC Press,
1997. ISBN: 0-97732-060-X.

Conferences

There are many conferences and workshops on Data Mining every year. Two
of the most important regular series are:

The annual KDD-20xx series of conferences organised by SIGKDD (the
ACM Special Interest Group on Knowledge Discovery and Data Mining) in
the United States and Canada. For details see the SIGKDD website at http:
//www.acm.org/sigs/sigkdd.

Sources of Further Information 295

The annual IEEE ICDM (International Conferences on Data Mining) series.
These move around the world, with every second year in the United States. For
details see the ICDM website at http://www.cs.uvm.edu/∼icdm.

Information About Association Rule Mining

A valuable source of information about new methods is the series of interna-
tional workshops known as FIMI, standing for Frequent Itemset Mining Im-
plementations, which are run as part of the annual International Conference
on Data Mining organised by the Institution of Electrical and Electronic En-
gineering. The FIMI website at http://fimi.cs.helsinki.fi holds not only
a collection of research papers about new techniques but also downloadable
implementations of many of them and a collection of standard datasets that
researchers can use to test their own algorithms.

D
Glossary and Notation

a < b a is less than b

a ≤ b a is less than or equal to b

a > b a is greater than b

a ≥ b a is greater than or equal to b

ai i is a subscript. Subscript notation is explained in Ap-
pendix A

N∑

i=1

ai The sum a1 + a2 + a3 + · · · + aN

N∑

i=1

M∑

j=1

aij The sum a11 +a12 + · · ·+a1M +a21 +a22 + · · ·+a2M +
. . . +aN1 + aN2 + · · · + aNM

M∏

j=1

bj The product b1 × b2 × b3 × · · · × bM

P (E) The probability of event E occurring (a number from
0 to 1 inclusive)

P (E | x = a) The probability of event E occurring given that vari-
able x has value a (a conditional probability)

log2 X Logarithm to base 2 of X. Logarithms are explained in
Appendix A

dist(X,Y) The distance between two points X and Y

ZCL In Chapter 6, the number of standard errors needed
for a confidence level of CL

298 Principles of Data Mining

a ± b Generally ‘a plus or minus b’, e.g. 6±2 denotes a number
from 4 to 8 inclusive. In Chapter 6, a ± b is used to
indicate that a classifier has a predictive accuracy
of a with standard error b.

NLEFT The number of instances matching the left-hand side of
a rule

NRIGHT The number of instances matching the right-hand side
of a rule

NBOTH The number of instances matching both sides of a rule
NTOTAL The total number of instances in a dataset
{} The ‘brace’ characters that enclose the elements of a set,

e.g. {apples, oranges, bananas}
∅ The empty set. Also written as {}
A ∪ B The union of sets A and B. The set that contains all

the elements that occur either in A or B or both.
A ∩ B The intersection of two sets A and B. The set that

includes all the elements (if there are any) that occur in
both A and B

A ⊆ B A is a subset of B, i.e. every element in A also occurs
in B.

A ⊂ B A is a strict subset of B, i.e. A is a subset of B and
A contains fewer elements than B

A ⊇ B A is a superset of B. True if and only if B is a subset
of A

A ⊃ B A is a strict superset of B. True if and only if B is a
strict subset of A

count(S) The support count of itemset S. See Chapter 13
support(S) The support of itemset S. See Chapter 13
cd → e In Association Rule Mining used to denote the rule

‘if we know that items c and d were bought, predict that
item e was also bought’. See Chapter 13

Lk The set containing all supported itemsets with car-
dinality k. See Chapter 13

Ck A candidate set containing itemsets of cardinality
k. See Chapter 13

L → R Denotes a rule with antecedent L and consequent R

confidence(L → R) The confidence of the rule L → R

kCi Represents the value k!
(k−i)!i! (The number of ways of se-

lecting i values from k, when the order in which they are
selected is unimportant)

Glossary and Notation 299

‘a posteriori’ probability Another name for posterior probability

‘a priori’ probability Another name for prior probability

Abduction A type of reasoning. See Section 3.3

Adequacy Condition (for TDIDT algorithm) The condition that no two
instances with the same values of all the attributes may belong to dif-
ferent classes

Agglomerative Hierarchical Clustering A widely used method of clus-
tering

Antecedent of a Rule The ‘if’ part (left-hand side) of an IF. . .THEN rule

Apriori Algorithm An algorithm for Association Rule Mining. See
Chapter 13

Association Rule A rule representing a relationship amongst the values of
variables. A general form of rule, where a conjunction of attribute = value
terms can occur on both the left- and the right-hand side

Association Rule Mining (ARM) The process of extracting association
rules from a given dataset

Attribute An alternative name for variable, used in some areas of data
mining.

Attribute Selection In this book, generally used to mean the selection of
an attribute for splitting on when generating a decision tree

Attribute Selection Strategy An algorithm for attribute selection

Automatic Rule Induction Another term for Rule Induction

Average-link Clustering For hierarchical clustering, a method of calcu-
lating the distance between two clusters using the average distance from
any member of one cluster to any member of the other

Backed-up Error Rate Estimate (at a node in a decision tree) An
estimate based on the estimated error rates of the nodes below it in the
tree

Backward Pruning Another name for post-pruning

Bag-of-Words Representation A word-based representation of a text doc-
ument

Bigram A combination of two consecutive characters in a text document

Binary Variable A type of variable. See Section 1.2

300 Principles of Data Mining

Bit (short for ‘binary digit’) The basic unit of information. It corresponds to
a switch being open or closed or an electric current flowing or not flowing

Body of a Rule Another name for rule antecedent

Branch (of a decision tree) The path from the root node of a tree to any
of its leaf nodes

Candidate Set A set containing itemsets of cardinality k that includes
all the supported itemsets of that cardinality and possibly also some
non-supported ones

Cardinality of a Set The number of members of the set

Categorical Attribute An attribute that can only take one of a number
of distinct values, such as ‘red’, ‘blue’, ‘green’.

Centroid of a Cluster The ‘centre’ of a cluster

ChiMerge An algorithm for global discretisation. See Section 7.4

Chi Square Test A statistical test used as part of the ChiMerge algorithm

City Block Distance. Another name for Manhattan distance

Clash (in a training set) A situation where two or more of the instances in
a training set have identical attribute values but different classifications

Clash Set A set of instances in a training set associated with a clash

Clash Threshold A middle approach between the ‘delete branch’ and the
‘majority voting’ strategies for dealing with clashes when generating a
decision tree. See Chapter 8

Class One of a number of mutually exclusive and exhaustive categories
to which objects are assigned by a classification process or algorithm

Classification

1. A process of dividing up objects so that each object is assigned to one
of a number of mutually exclusive and exhaustive categories
known as classes

2. For labelled data the classification is the value of a specially des-
ignated categorical attribute. The aim is frequently to predict the
classification for one or more unseen instances

3. Supervised learning where the designated attribute has categorical
values

Glossary and Notation 301

Classification Rules A set of rules that can be used to predict the classi-
fication of an unseen instance

Classification Tree A way of representing a set of classification rules

Classifier Any algorithm that assigns a classification to unseen instances

Cluster A group of objects that are similar to one another and (relatively)
dissimilar to those in other clusters

Clustering Grouping together objects (e.g. instances in a dataset) that
are similar to each other and (relatively) dissimilar to the objects belonging
to other clusters

Complete-link Clustering For hierarchical clustering, a method of cal-
culating the distance between two clusters using the longest distance from
any member of one cluster to any member of the other

Completeness A rule interestingness measure

Conditional Probability The probability of an event occurring given that
we have additional information (as well as its observed frequency in a series
of trials).

Confidence Level The probability with which we know (or wish to know)
the interval in which the predictive accuracy of a classifier lies

Confidence of a Rule The predictive accuracy of a rule (a rule inter-
estingness measure)

Confident Itemset An itemset on the right-hand side of an association
rule for which the value of confidence is greater than or equal to a min-
imum threshold value

Conflict Resolution Strategy A strategy for deciding which rule or rules
to give priority when two or more rules fire for a given instance

Confusion Matrix A tabular way of illustrating the performance of a clas-
sifier. The table shows the number of times each combination of predicted
and actual classifications occurred for a given dataset

Consequent of a Rule The ‘then’ part (right-hand side) of an IF. . .THEN
rule

Continuous Attribute An attribute that takes numerical values

Count of an Itemset Another name for support count of an itemset

Cross-entropy An alternative name for j -measure

302 Principles of Data Mining

Cut Point An end point of one of a number of non-overlapping ranges into
which the values of a continuous attribute are split

Cut Value Another name for cut point

Data Compression Converting the data in a dataset to a more compact
form such as a decision tree

Data Mining The central data processing stage of Knowledge Discovery.
See Introduction

Dataset The complete set of data available for an application. Datasets are
divided into instances or records. A dataset is often represented by a
table, with each row representing an instance and each column containing
the values of one of the variables (attributes) for each of the instances

Decision Rule Another term for classification rule

Decision Tree Another name for a classification tree

Decision Tree Induction Another term for tree induction

Deduction A type of reasoning. See Section 3.3

Dendrogram A graphical representation of agglomerative hierarchical
clustering

Depth Cutoff A possible criterion for pre-pruning a decision tree

Dictionary (for text classification) See Local Dictionary and Global
Dictionary

Dimension The number of attributes recorded for each instance

Dimension Reduction An alternative term for feature reduction

Discretisation The conversion of a continuous attribute to one with a dis-
crete set of values, i.e. a categorical attribute

Discriminability A rule interestingness measure

Disjoint Sets Sets with no common members

Disjunct One of a set of rules in disjunctive normal form

Disjunctive Normal Form (DNF) A rule is in disjunctive normal form if
it comprises a number of terms of the form variable = value (or variable �=
value) joined by the logical ‘and’ operator. For example the rule IF x = 1
AND y = ‘yes’ AND z = ‘good’ THEN class = 6 is in DNF

Distance-based Clustering Algorithm A method of clustering that
makes use of a measure of the distance between two instances

Glossary and Notation 303

Distance Measure A means of measuring the similarity between two in-
stances. The smaller the value, the greater the similarity

Dot Product (of two unit vectors) The sum of the products of the corre-
sponding pairs of component values

Downward Closure Property of Itemsets The property that if an item-
set is supported, all its (non-empty) subsets are also supported

Eager Learning For classification tasks, a form of learning where the
training data is generalised into a representation (or model) such as a
table of probabilities, a decision tree or a neural net without waiting for
an unseen instance to be presented for classification. See Lazy Learning

Empty set A set with no elements, written as ∅ or {}

Entropy An information-theoretic measure of the ‘uncertainty’ of a training
set, due to the presence of more than one classification. See Chapters 4
and 9

Entropy Method of Attribute Selection (when constructing a decision
tree) Choosing to split on the attribute that gives the greatest value of
Information Gain. See Chapter 4

Entropy Reduction Equivalent to information gain

Equal Frequency Intervals Method A method of discretising a contin-
uous attribute

Equal Width Intervals Method A method of discretising a continuous
attribute

Error Rate The ‘reverse’ of the predictive accuracy of a classifier. A
predictive accuracy of 0.8 (i.e. 80%) implies an error rate of 0.2 (i.e. 20%)

Euclidean Distance Between Two Points A widely used measure of the
distance between two points.

Exact Rule One for which the value of confidence is 1

Exclusive Clustering Algorithm A clustering algorithm that places each
object in precisely one of a set of clusters

F1 Score A performance measure for a classifier

False Alarm Rate Another name for false positive rate

False Negative Classification The classification of an unseen instance
as negative, when it is actually positive

304 Principles of Data Mining

False Negative Rate of a Classifier The proportion of positive instances
that are classified as negative

False Positive Classification The classification of an unseen instance as
positive, when it is actually negative

False Positive Rate of a Classifier The proportion of negative instances
that are classified as positive

Feature Another name for attribute

Feature Reduction The reduction of the number of features (i.e. at-
tributes or variables) for each instance in a dataset. The discarding of
relatively unimportant attributes.

Feature Space For text classification, the set of words included in the
dictionary

Forward Pruning Another name for pre-pruning

Frequency Table A table used for attribute selection for the TDIDT
algorithm. It gives the number of occurrences of each classification for
each value of an attribute. See Chapter 5. (The term is used in a more
general sense in Chapter 10.)

Frequent Itemset Another name for supported itemset

Gain Ratio A measure used for attribute selection for the TDIDT algo-
rithm. See Chapter 5

Generalised Rule Induction (GRI) Another name for Association Rule
Mining

Generalising a Rule Making a rule apply to more instances by deleting
one or more of its terms

Gini Index of Diversity A measure used for attribute selection for the
TDIDT Algorithm. See Chapter 5

Global Dictionary In text classification a dictionary that contains all the
words that occur at least once in any of the documents under consideration.
See Local Dictionary

Global Discretisation A form of discretisation where each continuous
attribute is converted to a categorical attribute once and for all before
any data mining algorithm is applied

Head of a Rule Another name for rule consequent

Hierarchical Clustering In this book, another name for Agglomerative
Hierarchical Clustering

Glossary and Notation 305

Hit Rate Another name for true positive rate

Hypertext Categorisation The automatic classification of web documents
into predefined categories

Hypertext Classification Another name for hypertext categorisation

‘Ignore’ Attribute An attribute that is of no significance for a given ap-
plication

Induction A type of reasoning. See Section 3.3

Inductive Bias A preference for one algorithm, formula etc. over another
that is not determined by the data itself. Inductive bias is unavoidable in
any inductive learning system

Information Gain When constructing a decision tree by splitting on at-
tributes, information gain is the difference between the entropy of a node
and the weighted average of the entropies of its immediate descendants. It
can be shown that the value of information gain is always positive or zero

Instance One of the stored examples in a dataset. Each instance comprises
the values of a number of variables, which in data mining are often
called attributes

Integer Variable A type of variable. See Section 1.2

Internal Node (of a tree) A node of a tree that is neither a root node nor
a leaf node

Intersection (of two sets) The intersection of two sets A and B, written as
A∩B, is the set that includes all the elements (if there are any) that occur
in both of the sets

Interval-scaled Variable A type of variable. See Section 1.2

Invalid Value An attribute value that is invalid for a given dataset. See
Noise

Item For Market Basket Analysis, each item corresponds to one of the
purchases made by a customer, e.g. bread or milk. We are not usually
concerned with items that were not purchased

Itemset For Market Basket Analysis, a set of items purchased by a
customer, effectively the same as a transaction. Itemsets are generally
written in list notation, e.g. {fish, cheese, milk}

J -Measure A rule interestingness measure that quantifies the informa-
tion content of a rule

306 Principles of Data Mining

j -Measure A value used in calculating the J -measure of a rule

Jack-knifing Another name for N -fold cross-validation

k-fold Cross-validation A strategy for estimating the performance of a
classifier

k-Means Clustering A widely used method of clustering

k-Nearest Neighbour Classification A method of classifying an unseen
instance using the classification of the instance or instances closest to
it (see Chapter 2)

Knowledge Discovery The non-trivial extraction of implicit, previously un-
known and potentially useful information from data. See Introduction

Labelled Data Data where each instance has a specially designated at-
tribute which can be either categorical or continuous. The aim is gen-
erally to predict its value. See Unlabelled Data

Large Itemset Another name for Supported Itemset

Lazy Learning For classification tasks, a form of learning where the train-
ing data is left unchanged until an unseen instance is presented for
classification. See Eager Learning

Leaf Node A node of a tree which has no other nodes descending from it

Leave-one-out Cross-validation Another name for N -fold cross-valid-
ation

Length of a Vector The square root of the sum of the squares of its com-
ponent values. See Unit Vector

Leverage A rule interestingness measure

Lift A rule interestingness measure

Local Dictionary In text classification a dictionary that contains only
those words that occur in the documents under consideration that are
classified as being in a specific category. See Global Dictionary

Local Discretisation A form of discretisation where each continuous
attribute is converted to a categorical attribute at each stage of the
data mining process

Logarithm Function See Appendix A

Manhattan Distance A measure of the distance between two points

Market Basket Analysis A special form of Association Rule Mining.
See Chapter 13

Glossary and Notation 307

Matches An itemset matches a transaction if all the items in the former
are also in the latter

Maximum Dimension Distance A measure of the distance between two
points.

Missing Branches An effect that can occur during the generation of a deci-
sion tree that makes the tree unable to classify certain unseen instances.
See Section 5.6

Missing Value An attribute value that is not recorded

Model-based Classification Algorithm One that gives an explicit repre-
sentation of the training data (in the form of a decision tree, set of
rules etc.) that can be used to classify unseen instances without refer-
ence to the training data itself

Mutually Exclusive and Exhaustive Categories A set of categories cho-
sen so that each object of interest belongs to precisely one of the categories

Mutually Exclusive and Exhaustive Events A set of events, one and
only one of which must always occur

n-dimensional Space A point in n-dimensional space is a graphical way of
representing an instance with n attribute values

N -dimensional Vector In text classification, a way of representing a la-
belled instance with N attributes by its N attribute values (or other
values derived from them), enclosed in parentheses and separated by com-
mas, e.g. (2, yes, 7, 4, no). The classification is not generally included

N -fold Cross-validation A strategy for estimating the performance of a
classifier

Näıve Bayes Algorithm A means of combining prior and conditional
probabilities to calculate the probability of alternative classifications.
See Chapter 2

Näıve Bayes Classification A method of classification that uses Mathemat-
ical probability theory to find the most likely classification for an unseen
instance

Nearest Neighbour Classification See k-Nearest Neighbour Classifi-
cation

Node (of a decision tree) A tree consists of a collection of points, called
nodes, joined by straight lines, called links. See Appendix A.2

Noise An attribute value that is valid for a given dataset, but is incorrectly
recorded. See Invalid Value

308 Principles of Data Mining

Nominal Variable A type of variable. See Section 1.2

Normalisation (of an Attribute) Adjustment of the values of an attribute,
generally to make them fall in a specified range such as 0 to 1

Normalised Vector Space Model A vector space model where the com-
ponents of a vector are adjusted so that the length of each vector is 1

Numerical Prediction Supervised learning where the designated at-
tribute has a numerical value. Also called regression

Object One of a universe of objects. It is described by the values of a
number of variables that correspond to its properties

Objective Function For clustering, a measure of the quality of a set of
clusters

Order of a Rule The number of terms in the antecedent of a rule in
disjunctive normal form

Ordinal Variable A type of variable. See Section 1.2

Overfitting A classification algorithm is said to overfit to the training
data if it generates a decision tree, set of classification rules or any
other representation of the data that depends too much on irrelevant fea-
tures of the training instances, with the result that it performs well on the
training data but relatively poorly on unseen instances. See Chapter 8

Piatetsky-Shapiro Criteria Criteria that it has been proposed should be
met by any rule interestingness measure

Positive Predictive Value Another name for precision

Post-pruning a Decision Tree Removing parts of a decision tree that
has already been generated, with the aim of reducing overfitting

Posterior Probability The probability of an event occurring given addi-
tional information that we have

Pre-pruning a Decision Tree Generating a decision tree with fewer
branches than would otherwise be the case, with the aim of reducing
overfitting

Precision A performance measure for a classifier

Prediction Using the data in a training set to predict (as far as this book
is concerned) the classification for one or more previously unseen in-
stances

Glossary and Notation 309

Predictive Accuracy For classification applications, the proportion of a
set of unseen instances for which the correct classification is predicted.
A rule interestingness measure, also known as confidence

Prior Probability The probability of an event occurring based solely on its
observed frequency in a series of trials, without any additional information

Prism An algorithm for inducing classification rules directly, without using
the intermediate representation of a decision tree

Probability of an Event The proportion of times we would expect an event
to occur over a long series of trials

Pruned Tree A tree to which pre-pruning or post-pruning has been
applied

Pruning Set Part of a dataset used during post-pruning of a decision
tree

Pseudo-attribute A test on the value of a continuous attribute, e.g. A <

35. This is effectively the same as a categorical attribute that has only
two values: true and false

Ratio-scaled Variable A type of variable. See Section 1.2

Recall Another name for true positive rate

Receiver Operating Characteristics Graph The full name for ROC
Graph

Record Another term for instance

Recursive Partitioning Generating a decision tree by repeatedly split-
ting on the values of attributes

Reliability A rule interestingness measure. Another name for confidence

RI Measure A rule interestingness measure

ROC Curve A ROC Graph on which related points are joined together to
form a curve

ROC Graph A diagrammatic way of representing the true positive rate
and false positive rate of one or more classifiers

Root Node The top-most node of a tree. The starting node for every
branch

Rule The statement of a relationship between a condition, known as the
antecedent, and a conclusion, known as the consequent. If the condition
is satisfied, the conclusion follows

310 Principles of Data Mining

Rule Fires The antecedent of the rule is satisfied for a given instance

Rule Induction The automatic generation of rules from examples

Rule Interestingness Measure A measure of the importance of a rule

Ruleset A collection of rules

Search Space In Chapter 12, the set of possible rules of interest

Search Strategy A method of examining the contents of a search space
(usually in an efficient order)

Sensitivity Another name for true positive rate

Set An unordered collection of items, known as elements. See Appendix A.
The elements of a set are often written between ‘brace’ characters and
separated by commas, e.g. {apples, oranges, bananas}

Single-link Clustering For hierarchical clustering, a method of calcu-
lating the distance between two clusters using the shortest distance from
any member of one cluster to any member of the other

Size Cutoff A possible criterion for pre-pruning a decision tree

Specialising a Rule Making a rule apply to fewer instances by adding one
or more additional terms

Specificity Another name for true negative rate

Split Information A value used in the calculation of Gain Ratio. See
Chapter 5

Split Value A value used in connection with continuous attributes when
splitting on an attribute to construct a decision tree. The test is
normally whether the value is ‘less than or equal to’ or ‘greater than’ the
split value

Splitting on an Attribute (while constructing a decision tree) Testing the
value of an attribute and then creating a branch for each of its possible
values

Standard Error (associated with a value) A statistical estimate of the reli-
ability of the value. See Section 6.2.1

Static Error Rate Estimate (at a node in a decision tree) An esti-
mate based on the instances corresponding to the node, as opposed to a
backed-up estimate

Stemming Converting a word to its linguistic root (e.g. ‘computing’, ‘com-
puter’ and ‘computation’ to ‘comput’)

Glossary and Notation 311

Stop Words Common words that are unlikely to be useful for text classi-
fication

Strict Subset A set A is a strict subset of a set B, written as A ⊂ B, if A

is a subset of B and A contains fewer elements than B

Strict Superset A set A is a strict superset of a set B, written as A ⊃ B, if
and only if B is a strict subset of A

Subset A set A is a subset of a set B, written as A ⊆ B, if every element in
A also occurs in B

Subtree The part of a tree that descends from (or ‘hangs from’) one of its
nodes A (including node A itself). A subtree is a tree in its own right,
with its own root node (A) etc. See Appendix A.2

Superset A set A is a superset of a set B, written as A ⊇ B, if and only if
B is a subset of A

Supervised Learning A form of Data Mining using labelled data

Support Count of an Itemset For Market Basket Analysis, the number
of transactions in the database matched by the itemset

Support of a Rule The proportion of the database to which the rule suc-
cessfully applies (a rule interestingness measure)

Support of an Itemset The proportion of transactions in the database
that are matched by the itemset

Supported Itemset An itemset for which the support value is greater
than or equal to a minimum threshold value

Symmetry condition (for a distance measure) The distance from point
A to point B is the same as the distance from point B to point A

TDIDT An abbreviation for Top-Down Induction of Decision Trees. See
Chapter 3

Term In this book, a component of a rule. A term takes the form variable =
value. See Disjunctive Normal Form

Term Frequency In text classification, the number of occurrences of a
term in a given document

Test Set A collection of unseen instances

Text Classification A particular type of classification, where the objects
are text documents such as articles in newspapers, scientific papers etc. See
also Hypertext Categorisation

312 Principles of Data Mining

TFIDF (Term Frequency Inverse Document Frequency) In text clas-
sification, a measure combining the frequency of a term with its rarity in
a set of documents

Top Down Induction of Decision Trees A widely-used algorithm for clas-
sification. See Chapter 3

Train and Test A strategy for estimating the performance of a classifier

Training Data Another name for training set

Training Set A dataset or part of a dataset that is used for purposes of
classification

Transaction Another name for record or instance, generally used when the
application is Market Basket Analysis. A transaction generally repre-
sents a set of items bought by a customer

Tree A structure used to represent data items and the processes applied to
them. See Appendix A.2

Tree Induction Generating decision rules in the implicit form of a deci-
sion tree

Triangle Inequality (for a distance measure) A condition corresponding
to the idea that ‘the shortest distance between any two points is a straight
line’

Trigram A combination of three consecutive characters in a text document

True Negative Classification The correct classification of an unseen in-
stance as negative

True Negative Rate of a Classifier The proportion of negative instances
that are classified as negative

True Positive Classification The correct classification of an unseen in-
stance as positive

True Positive Rate of a Classifier The proportion of positive instances
that are classified as positive

Two-dimensional Space See n-dimensional Space

Type 1 Error Another name for false positive classification

Type 2 Error Another name for false negative classification

UCI Repository The library of datasets maintained by the University of
California at Irvine. See Section 1.6

Glossary and Notation 313

Unconfident Itemset An itemset which is not confident

Union of Two Sets The set of items that occur in either or both of the sets

Unit Vector A vector of length 1

Universe of Objects See Section 1.1

Unlabelled Data Data where each instance has no specially designated at-
tribute. See Labelled Data

Unseen Instance An instance that does not occur in a training set. We fre-
quently want to predict the classification of one or more unseen instances.
See also Test Set

Unseen Test Set Another term for test set

Unsupervised Learning A form of Data Mining using unlabelled data

Variable One of the properties of an object in a universe of objects

Vector In text classification, another name for N-dimensional vector

Vector Space Model (VSM) The complete set of vectors corresponding
to a set of documents under consideration. See N-dimensional vector

E
Solutions to Self-assessment Exercises

Self-assessment Exercise 1

Question 1

Labelled data has a specially designated attribute. The aim is to use the data
given to predict the value of that attribute for instances that have not yet
been seen. Data that does not have any specially designated attribute is called
unlabelled.

Question 2

Name: Nominal
Date of Birth: Ordinal
Sex: Binary
Weight: Ratio-scaled
Height: Ratio-scaled
Marital Status: Nominal (assuming that there are more than two values, e.g.
single, married, widowed, divorced)
Number of Children: Integer

Question 3

– Discard all instances where there is at least one missing value and use the
remainder.

– Estimate missing values of each categorical attribute by its most frequently
occurring value in the training set and estimate missing values of each con-
tinuous attribute by the average of its values for the training set.

316 Principles of Data Mining

Self-assessment Exercise 2

Question 1

Using the values in Figure 2.2, the probability of each class for the unseen
instance

weekday summer high heavy ????

is as follows.
class = on time
0.70 × 0.64 × 0.43 × 0.29 × 0.07 = 0.0039
class = late
0.10 × 0.5 × 0 × 0.5 × 0.5 = 0
class = very late
0.15 × 1 × 0 × 0.33 × 0.67 = 0
class = cancelled
0.05 × 0 × 0 × 1 × 1 = 0
The largest value is for class = on time
The probability of each class for the unseen instance

sunday summer normal slight ????

is as follows.
class = on time
0.70 × 0.07 × 0.43 × 0.36 × 0.57 = 0.0043
class = late
0.10 × 0 × 0 × 0.5 × 0 = 0
class = very late
0.15 × 0 × 0 × 0.67 × 0 = 0
class = cancelled
0.05 × 0 × 0 × 0 × 0 = 0
The largest value is for class = on time

Question 2

The distance of the first instance in Figure 2.5 from the unseen instance is the
square root of (0.8 − 9.1)2 + (6.3 − 11.0)2, i.e. 9.538.

The distances for the 20 instances are given in the table below.

Attribute 1 Attribute 2 Distance
0.8 6.3 9.538
1.4 8.1 8.228

Solutions to Self-assessment Exercises 317

2.1 7.4 7.871
2.6 14.3 7.290
6.8 12.6 2.802 *
8.8 9.8 1.237 *
9.2 11.6 0.608 *
10.8 9.6 2.202 *
11.8 9.9 2.915 *
12.4 6.5 5.580
12.8 1.1 10.569
14.0 19.9 10.160
14.2 18.5 9.070
15.6 17.4 9.122
15.8 12.2 6.807
16.6 6.7 8.645
17.4 4.5 10.542
18.2 6.9 9.981
19.0 3.4 12.481
19.6 11.1 10.500

The five nearest neighbours are marked with asterisks in the rightmost
column.

Self-assessment Exercise 3

Question 1

No two instances with the same values of all the attributes may belong to
different classes.

Question 2

The most likely cause is probably noise or missing values in the training set.

Question 3

Provided the adequacy condition is satisfied the TDIDT algorithm is guaran-
teed to terminate and give a decision tree corresponding to the training set.

Question 4

A situation will be reached where a branch has been generated to the maximum
length possible, i.e. with a term for each of the attributes, but the corresponding
subset of the training set still has more than one classification.

318 Principles of Data Mining

Self-assessment Exercise 4

Question 1

(a) The proportions of instances with each of the two classifications are 6/26
and 20/26. So Estart = −(6/26) log2(6/26)− (20/26) log2(20/26) = 0.7793.

(b) The following shows the calculations.

Splitting on SoftEng
SoftEng = A
Proportions of each class: FIRST 6/14, SECOND 8/14
Entropy = −(6/14) log2(6/14) − (8/14) log2(8/14) = 0.9852
SoftEng = B
Proportions of each class: FIRST 0/12, SECOND 12/12
Entropy = 0 [all the instances have the same classification]
Weighted average entropy Enew = (14/26) × 0.9852 + (12/26) × 0 = 0.5305
Information Gain = 0.7793 − 0.5305 = 0.2488

Splitting on ARIN
ARIN = A
Proportions of each class: FIRST 4/12, SECOND 8/12
Entropy = 0.9183
ARIN = B
Proportions of each class: FIRST 2/14, SECOND 12/14
Entropy = 0.5917
Weighted average entropy Enew = (12/26)× 0.9183 + 14/26× 0.5917 = 0.7424
Information Gain = 0.7793 − 0.7424 = 0.0369

Splitting on HCI
HCI = A
Proportions of each class: FIRST 1/9, SECOND 8/9
Entropy = 0.5033
HCI = B
Proportions of each class: FIRST 5/17, SECOND 12/17
Entropy = 0.8740
Weighted average entropy Enew = (9/26)× 0.5033+ (17/26)× 0.8740 = 0.7457
Information Gain = 0.7793 − 0.7457 = 0.0337

Splitting on CSA
CSA = A
Proportions of each class: FIRST 3/7, SECOND 4/7
Entropy = 0.9852
CSA = B

Solutions to Self-assessment Exercises 319

Proportions of each class: FIRST 3/19, SECOND 16/19
Entropy = 0.6292
Weighted average entropy Enew = (7/26)× 0.9852+ (19/26)× 0.6292 = 0.7251
Information Gain = 0.7793 − 0.7251 = 0.0543

Splitting on Project
Project = A
Proportions of each class: FIRST 5/9, SECOND 4/9
Entropy = 0.9911
Project = B
Proportions of each class: FIRST 1/17, SECOND 16/17
Entropy = 0.3228
Weighted average entropy Enew = (9/26)× 0.9911+ (17/26)× 0.3228 = 0.5541
Information Gain = 0.7793 − 0.5541 = 0.2253
The maximum value of information gain is for attribute SoftEng.

Question 2

The TDIDT algorithm inevitably leads to a decision tree where all nodes have
entropy zero. Reducing the average entropy as much as possible at each step
would seem like an efficient way of achieving this in a relatively small number
of steps. The use of entropy minimisation (or information gain maximisation)
appears generally to lead to a small decision tree compared with other attribute
selection criteria. The Occam’s Razor principle suggests that small trees are
most likely to be the best, i.e. to have the greatest predictive power.

Self-assessment Exercise 5

Question 1

The frequency table for splitting on attribute SoftEng is as follows.

Attribute value
Class A B
FIRST 6 0
SECOND 8 12
Total 14 12

Using the method of calculating entropy given in Chapter 5, the value is:
−(6/26) log2(6/26) − (8/26) log2(8/26) − (12/26) log2(12/26)
+(14/26) log2(14/26) + (12/26) log2(12/26)
= 0.5305

This is the same value as was obtained using the original method for Self-
assessment Exercise 1 for Chapter 4. Similar results apply for the other at-
tributes.

320 Principles of Data Mining

Question 2

It was shown previously that the entropy of the chess dataset is: 0.7793.
The value of Gini Index is 1 − (6/26)2 − (20/26)2 = 0.3550.

Splitting on attribute SoftEng

Attribute value
Class A B
FIRST 6 0
SECOND 8 12
Total 14 12

The entropy is:
−(6/26) log2(6/26) − (8/26) log2(8/26) − (12/26) log2(12/26)
+(14/26) log2(14/26) + (12/26) log2(12/26)
= 0.5305
The value of split information is −(14/26) log2(14/26) − (12/26) log2(12/26)
= 0.9957
The information gain is 0.7793 − 0.5305 = 0.2488
Gain ratio is 0.2488/0.9957 = 0.2499

Gini Index Calculation
Contribution for ‘SoftEng = A’ is (62 + 82)/14 = 7.1429
Contribution for ‘SoftEng = B’ is (02 + 122)/12 = 12
New value of Gini Index = 1 − (7.1429 + 12)/26 = 0.2637

Splitting on attribute ARIN

Attribute value
Class A B
FIRST 4 2
SECOND 8 12
Total 12 14

The value of entropy is 0.7424
The value of split information is 0.9957
So the information gain is 0.7793 − 0.7424 = 0.0369
and the gain ratio is 0.0369/0.9957 = 0.0371
New value of Gini Index = 0.3370

Solutions to Self-assessment Exercises 321

Splitting on attribute HCI

Attribute value
Class A B
FIRST 1 5
SECOND 8 12
Total 9 17

The value of entropy is 0.7457
The value is split information is 0.9306
So the information gain is 0.7793 − 0.7457 = 0.0337
and the gain ratio is 0.0336/0.9306 = 0.0362
New value of Gini Index = 0.3399

Splitting on attribute CSA

Attribute value
Class A B
FIRST 3 3
SECOND 4 16
Total 7 19

The value of entropy is 0.7251
The value is split information is 0.8404
So the information gain is 0.7793 − 0.7251 = 0.0543
and the gain ratio is 0.0542/0.8404 = 0.0646
New value of Gini Index = 0.3262

Splitting on attribute Project

Attribute value
Class A B
FIRST 5 1
SECOND 4 16
Total 9 17

The value of entropy is 0.5541
The value of split information is 0.9306
So the information gain is 0.7793 − 0.5541 = 0.2253
and the gain ratio is 0.2252/0.9306 = 0.2421
New value of Gini Index = 0.2433
The largest value of Gain Ratio is when the attribute is SoftEng.

322 Principles of Data Mining

The largest value of Gini Index reduction is for attribute Project.
The reduction is 0.3550 − 0.2433 = 0.1117.

Question 3

Any dataset for which there is an attribute with a large number of values is a
possible answer, e.g. one that contains a ‘nationality’ attribute or a ‘job title’
attribute. Using Gain Ratio will probably ensure that such attributes are not
chosen.

Self-assessment Exercise 6

Question 1

vote Dataset, Figure 6.14
The number of correct predictions is 127 and the total number of instances

is 135.
We have p = 127/135 = 0.9407, N = 135, so the standard error is√

p × (1 − p)/N =
√

0.9407 × 0.0593/135 = 0.0203.
The value of the predictive accuracy can be expected to lie in the following

ranges:
probability 0.90: from 0.9407− 1.64× 0.0203 to 0.9407 + 1.64× 0.0203, i.e.

from 0.9074 to 0.9741
probability 0.95: from 0.9407− 1.96× 0.0203 to 0.9407 + 1.96× 0.0203, i.e.

from 0.9009 to 0.9806
probability 0.99: from 0.9407− 2.58× 0.0203 to 0.9407 + 2.58× 0.0203, i.e.

from 0.8883 to 0.9932

glass Dataset, Figure 6.15

The number of correct predictions is 149 and the total number of instances
is 214.

We have p = 149/214 = 0.6963, N = 214, so the standard error is√
p × (1 − p)/N =

√
0.6963 × 0.3037/214 = 0.0314.

The value of the predictive accuracy can be expected to lie in the following
ranges:

probability 0.90: from 0.6963− 1.64× 0.0314 to 0.6963 + 1.64× 0.0314, i.e.
from 0.6447 to 0.7478

probability 0.95: from 0.6963− 1.96× 0.0314 to 0.6963 + 1.96× 0.0314, i.e.
from 0.6346 to 0.7579

probability 0.99: from 0.6963− 2.58× 0.0314 to 0.6963 + 2.58× 0.0314, i.e.
from 0.6152 to 0.7774

Solutions to Self-assessment Exercises 323

Question 2

False positive classifications would be undesirable in applications such as the
prediction of equipment that will fail in the near future, which may lead to
expensive and unnecessary preventative maintenance. False classifications of
individuals as likely criminals or terrorists can have very serious repercussions
for the wrongly accused.

False negative classifications would be undesirable in applications such as
medical screening, e.g. for patients who may have a major illness requiring
treatment, or prediction of catastrophic events such as hurricanes or earth-
quakes.

Decisions about the proportion of false negative (positive) classifications
that would be acceptable to reduce the proportion of false positives (negatives)
to zero is a matter of personal taste. There is no general answer.

Self-assessment Exercise 7

Question 1

Sorting the values of humidity into ascending numerical order gives the follow-
ing table.

Humidity
(%)

Class

65 play
70 play
70 play
70 don’t play
75 play
78 play
80 don’t play
80 play
80 play
85 don’t play
90 don’t play
90 play
95 don’t play
96 play

The amended rule for selecting cut points given in Section 7.3.2 is: ‘only
include attribute values for which the class value is different from that for the
previous attribute value, together with any attribute which occurs more than
once and the attribute immediately following it’.

324 Principles of Data Mining

This rule gives the cut points for the humidity attribute as all the values in
the above table except 65 and 78.

Question 2

Figure 7.12(c) is reproduced below.

Value of A Frequency for class Total Value of χ2

c1 c2 c3
1.3 1 0 4 5 3.74
1.4 1 2 1 4 5.14
2.4 6 0 2 8 3.62
6.5 3 2 4 9 4.62
8.7 6 0 1 7 1.89
12.1 7 2 3 12 1.73
29.4 0 0 1 1 3.20
56.2 2 4 0 6 6.67
87.1 0 1 3 4 1.20
89.0 1 1 2 4
Total 27 12 21 60

After the 87.1 and 89.0 rows are merged, the figure looks like this.

Value of A Frequency for class Total Value of χ2

c1 c2 c3
1.3 1 0 4 5 3.74
1.4 1 2 1 4 5.14
2.4 6 0 2 8 3.62
6.5 3 2 4 9 4.62
8.7 6 0 1 7 1.89
12.1 7 2 3 12 1.73
29.4 0 0 1 1 3.20
56.2 2 4 0 6 6.67
87.1 1 2 5 8
Total 27 12 21 60

The previous values of χ2 are shown in the rightmost column. Only the
one given in bold can have been changed by the merging process, so this value
needs to be recalculated.

For the adjacent intervals labelled 56.2 and 87.1 the values of O and E are
as follows.

Solutions to Self-assessment Exercises 325

Value of A Frequency for class Total
c1 c2 c3 observed

O E O E O E

56.2 2 1.29 4 2.57 0 2.14 6
87.1 1 1.71 2 3.43 5 2.86 8

Total 3 6 5 14

The O (observed) values are taken from the previous figure. The E (ex-
pected) values are calculated from the row and column sums. Thus for row
56.2 and class c1, the expected value E is 3 × 6/14 = 1.29.

The next step is to calculate the value of (O − E)2/E for each of the six
combinations. These are shown in the Val columns in the figure below.

Value Frequency for class Total
of A c1 c2 c3 observed

O E Val O E Val O E Val
56.2 2 1.29 0.40 4 2.57 0.79 0 2.14 2.14 6
87.1 1 1.71 0.30 2 3.43 0.60 5 2.86 1.61 8
Total 3 6 5 14

The value of χ2 is then the sum of the six values of (O − E)2/E. For the
pair of rows shown the value of χ2 is 5.83.

This gives a revised version of the frequency table as follows.

Value of A Frequency for class Total Value of χ2

c1 c2 c3
1.3 1 0 4 5 3.74
1.4 1 2 1 4 5.14
2.4 6 0 2 8 3.62
6.5 3 2 4 9 4.62
8.7 6 0 1 7 1.89
12.1 7 2 3 12 1.73
29.4 0 0 1 1 3.20
56.2 2 4 0 6 5.83
87.1 1 2 5 8
Total 27 12 21 60

The smallest value of χ2 is now 1.73, in the row labelled 12.1. This value is
less than the threshold value of 4.61, so the rows (intervals) labelled 12.1 and
29.4 are merged.

326 Principles of Data Mining

Self-assessment Exercise 8

The decision tree shown in Figure 8.8 is reproduced below for ease of refer-
ence.

A (100)

I (20)

E (10) F (50) M (3)L (7)

D (10)C (30)B (60)

K (12)

G (20) H (10)

J (8)

The table of error rates specified in the question is as follows.

Node Estimated
error rate

A 0.2
B 0.35
C 0.1
D 0.2
E 0.01
F 0.25
G 0.05
H 0.1
I 0.2
J 0.15
K 0.2
L 0.1
M 0.1

The post-pruning process starts by considering the possibility of pruning at
node G.

Solutions to Self-assessment Exercises 327

The backed-up error rate at that node is (8/20)×0.15+(12/20)×0.2 = 0.18.
This is more than the static error rate, which is only 0.05. This means that
splitting at node G increases the error rate at that node so we prune the
subtree descending from G, giving the following figure [which is the same as
Figure 8.11].

A (100)

I (20)

E (10) F (50) M (3)L (7)

D (10)C (30)B (60)

G (20) H (10)

We now consider pruning at node F. The backed-up error rate is (20/50)×
0.05 + (10/50) × 0.1 + (20/50) × 0.2 = 0.12. This is less than the static error
rate. Splitting at node F reduces the average error rate so we do not prune.

The method given in Chapter 8 specifies that we only consider pruning at
nodes that have a descendant subtree of depth one (i.e. all the nodes one level
down are leaf nodes).

The only remaining candidate is node D. For this node the backed-up error
rate is (7/10) × 0.1 + (3/10) × 0.1 = 0.1. This is less than the static error rate
at the node, so we do not prune.

There are no further candidates for pruning, so the process terminates.

Self-assessment Exercise 9

Question 1

The entropy of a training set depends only on the relative proportions of the
classifications, not on the number of instances it contains. Thus for both train-
ing sets the answer is the same.

Entropy = −0.2× log2 0.2−0.3× log2 0.3−0.25× log2 0.25−0.25× log2 0.25
= 1.985

Question 2

It is best to ask any question that divides the people into two approximately
equal halves. An obvious question would be ‘Is the person male?’. This might

328 Principles of Data Mining

well be appropriate in a restaurant, a theatre etc. but would not be suitable for
a group where there is a large predominance of one sex, e.g. a football match.
In such a case a question such as ‘Does he or she have brown eyes?’ might be
better, or even ‘Does he or she live in a house or flat with an odd number?’

Self-assessment Exercise 10

The degrees dataset given in Figure 3.3 is reproduced below for ease of
reference.

SoftEng ARIN HCI CSA Project Class
A B A B B SECOND
A B B B A FIRST
A A A B B SECOND
B A A B B SECOND
A A B B A FIRST
B A A B B SECOND
A B B B B SECOND
A B B B B SECOND
A A A A A FIRST
B A A B B SECOND
B A A B B SECOND
A B B A B SECOND
B B B B A SECOND
A A B A B FIRST
B B B B A SECOND
A A B B B SECOND
B B B B B SECOND
A A B A A FIRST
B B B A A SECOND
B B A A B SECOND
B B B B A SECOND
B A B A B SECOND
A B B B A FIRST
A B A B B SECOND
B A B B B SECOND
A B B B B SECOND

The Prism algorithm starts by constructing a table showing the probability
of class = FIRST occurring for each attribute/value pair over the whole training
set of 26 instances.

Solutions to Self-assessment Exercises 329

Attribute/value pair Frequency
for class =
FIRST

Total
frequency
(out of 26
instances)

Probability

SoftEng = A 6 14 0.429
SoftEng = B 0 12 0
ARIN = A 4 12 0.333
ARIN = B 2 14 0.143
HCI = A 1 9 0.111
HCI = B 5 17 0.294
CSA = A 3 7 0.429
CSA = B 3 19 0.158

Project = A 5 9 0.556
Project = B 1 17 0.059

The maximum probability is when Project = A
Incomplete rule induced so far:

IF Project = A THEN class = FIRST

The subset of the training set covered by this incomplete rule is:

SoftEng ARIN HCI CSA Project Class
A B B B A FIRST
A A B B A FIRST
A A A A A FIRST
B B B B A SECOND
B B B B A SECOND
A A B A A FIRST
B B B A A SECOND
B B B B A SECOND
A B B B A FIRST

The next table shows the probability of class = FIRST occurring for each
attribute/value pair (not involving attribute Project) for this subset.

Attribute/value pair Frequency
for class =
FIRST

Total
frequency
(out of 9
instances)

Probability

SoftEng = A 5 5 1.0
SoftEng = B 0 4 0
ARIN = A 3 3 1.0

330 Principles of Data Mining

ARIN = B 2 6 0.333
HCI = A 1 1 1.0
HCI = B 4 8 0.5
CSA = A 2 3 0.667
CSA = B 3 6 0.5

Three attribute/value combinations give a probability of 1.0. Of these Soft-
Eng = A is based on most instances, so will probably be selected by tie-
breaking.

Incomplete rule induced so far:

IF Project = A AND SoftEng = A THEN class = FIRST

The subset of the training set covered by this incomplete rule is:

SoftEng ARIN HCI CSA Project Class
A B B B A FIRST
A A B B A FIRST
A A A A A FIRST
A A B A A FIRST
A B B B A FIRST

This subset contains instances with only one classification, so the rule is
complete.

The final induced rule is therefore:

IF Project = A AND SoftEng = A THEN class = FIRST

Self-assessment Exercise 11

The true positive rate is the number of instances that are correctly predicted
as positive divided by the number of instances that are actually positive.

The false positive rate is the number of instances that are wrongly predicted
as positive divided by the number of instances that are actually negative.

Predicted class
+ −

Actual class + 50 10
− 10 30

For the table above the values are:
True positive rate: 50/60 = 0.833
False positive rate: 10/40 = 0.25

The Euclidean distance is defined as: Euc =
√

fprate2 + (1 − tprate)2

For this table Euc =
√

(0.25)2 + (1 − 0.833)2 = 0.300.
For the other three tables specified in the Exercise the values are as follows.

Solutions to Self-assessment Exercises 331

Second table

True positive rate: 55/60 = 0.917
False positive rate: 5/40 = 0.125
Euc = 0.150

Third table

True positive rate: 40/60 = 0.667
False positive rate: 1/40 = 0.025
Euc = 0.334

Fourth table

True positive rate: 60/60 = 1.0
False positive rate: 20/40 = 0.5
Euc = 0.500
The following ROC graph shows the four classifiers as well as the four

hypothetical ones at (0, 0), (1, 0), (0, 1) and (1, 1).

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

FP Rate

T
P

 R
at

e

If we were equally concerned about avoiding false positive and false nega-
tive classifications we should choose the one given in the second table in the
Exercise, which has true positive rate 0.917 and false positive rate 0.125. This
is the one closest to (0, 1) the perfect classifier in the ROC graph.

332 Principles of Data Mining

Self-assessment Exercise 12

Question 1

Using the formulae for Confidence, Completeness, Support, Discriminability
and RI given in Chapter 12, the values for the five rules are as follows.

Rule Confid. Complete Support Discrim. RI
1 0.972 0.875 0.7 0.9 124.0
2 0.933 0.215 0.157 0.958 30.4
3 1.0 0.5 0.415 1.0 170.8
4 0.5 0.8 0.289 0.548 55.5
5 0.983 0.421 0.361 0.957 38.0

Question 2

Let us assume that the attribute w has the three values w1, w2 and w3 and
similarly for attributes x, y and z.

If we arbitrarily choose attribute w to be on the right-hand side of each
rule, there are three possible types of rule:

IF . . . THEN w = w1

IF . . . THEN w = w2

IF . . . THEN w = w3

Let us choose one of these, say the first, and calculate how many possible
left-hand sides there are for such rules.

The number of ‘attribute = value’ terms on the left-hand side can be one,
two or three. We consider each case separately.

One term on left-hand side

There are three possible terms: x, y and z. Each has three possible values,
so there are 3 × 3 = 9 possible left-hand sides, e.g.

IF x = x1

Two terms on left-hand side

There are three ways in which a combination of two attributes may appear
on the left-hand side (the order in which they appear is irrelevant): x and y,
x and z, and y and z. Each attribute has three values, so for each pair of
attributes there are 3 × 3 = 9 possible left-hand sides, e.g.

IF x = x1 AND y = y1

There are three possible pairs of attributes, so the total number of possible
left-hand sides is 3 × 9 = 27.

Solutions to Self-assessment Exercises 333

Three terms on left-hand side

All three attributes x, y and z must be on the left-hand side (the order in
which they appear is irrelevant). Each has three values, so there are 3×3×3 = 27
possible left-hand sides, ignoring the order in which the attributes appear, e.g.

IF x = x1 AND y = y1 AND z = z1

So for each of the three possible ‘w = value’ terms on the right-hand side, the
total number of left-hand sides with one, two or three terms is 9+27+27 = 63.
Thus there are 3 × 63 = 189 possible rules with attribute w on the right-hand
side.

The attribute on the right-hand side could be any of four possibilities (w,
x, y and z) not just w. So the total possible number of rules is 4× 189 = 756.

Self-assessment Exercise 13

Question 1

At the join step of the Apriori-gen algorithm, each member (set) is compared
with every other member. If all the elements of the two members are identical
except the right-most ones (i.e. if the first two elements are identical in the
case of the sets of three elements specified in the Exercise), the union of the
two sets is placed into C4.

For the members of L3 given the following sets of four elements are placed
into C4: {a, b, c, d}, {b, c, d, w}, {b, c, d, x}, {b, c, w, x}, {p, q, r, s}, {p, q, r, t} and
{p, q, s, t}.

At the prune step of the algorithm, each member of C4 is checked to see
whether all its subsets of 3 elements are members of L3.

The results in this case are as follows.

Itemset in C4 Subsets all in L3?
{a, b, c, d} Yes
{b, c, d, w} No. {b, d, w} and {c, d, w} are not members of L3

{b, c, d, x} No. {b, d, x} and {c, d, x} are not members of L3

{b, c, w, x} No. {b, w, x} and {c, w, x} are not members of L3

{p, q, r, s} Yes
{p, q, r, t} No. {p, r, t} and {q, r, t} are not members of L3

{p, q, s, t} No. {p, s, t} and {q, s, t} are not members of L3

So {b, c, d, w}, {b, c, d, x}, {b, c, w, x}, {p, q, r, t} and {p, q, s, t} are removed
by the prune step, leaving C4 as {{a, b, c, d}, {p, q, r, s}}.

334 Principles of Data Mining

Question 2

The relevant formulae for support, confidence, lift and leverage for a database
of 5000 transactions are:

support(L → R) = support(L ∪ R) = count(L ∪ R)/5000 = 3000/5000 =
0.6

confidence(L → R) = count(L ∪ R)/count(L) = 3000/3400 = 0.882
lift(L → R.) = 5000×confidence(L → R)/count(R) = 5000×0.882/4000 =

1.103
leverage(L → R) = support(L ∪ R) − support(L) × support(R)

= count(L ∪ R)/5000 − (count(L)/5000) × (count(R)/5000) = 0.056

Self-assessment Exercise 14

Question 1

We begin by choosing three of the instances to form the initial centroids. We
can do this in many possible ways, but it seems reasonable to select three
instances that are fairly far apart. One possible choice is as follows.

Initial
x y

Centroid 1 2.3 8.4
Centroid 2 8.4 12.6
Centroid 3 17.1 17.2

In the following table the columns headed d1, d2 and d3 show the Euclidean
distance of each of the 16 points from the three centroids. The column headed
‘cluster’ indicates the centroid closest to each point and thus the cluster to
which it should be assigned.

x y d1 d2 d3 cluster
1 10.9 12.6 9.6 2.5 7.7 2
2 2.3 8.4 0.0 7.4 17.2 1
3 8.4 12.6 7.4 0.0 9.8 2
4 12.1 16.2 12.5 5.2 5.1 3
5 7.3 8.9 5.0 3.9 12.8 2
6 23.4 11.3 21.3 15.1 8.6 3
7 19.7 18.5 20.1 12.7 2.9 3
8 17.1 17.2 17.2 9.8 0.0 3
9 3.2 3.4 5.1 10.6 19.6 1
10 1.3 22.8 14.4 12.4 16.8 2
11 2.4 6.9 1.5 8.3 17.9 1

Solutions to Self-assessment Exercises 335

12 2.4 7.1 1.3 8.1 17.8 1
13 3.1 8.3 0.8 6.8 16.6 1
14 2.9 6.9 1.6 7.9 17.5 1
15 11.2 4.4 9.8 8.7 14.1 2
16 8.3 8.7 6.0 3.9 12.2 2

We now reassign all the objects to the cluster to which they are closest and
recalculate the centroid of each cluster. The new centroids are shown below.

After first iteration
x y

Centroid 1 2.717 6.833
Centroid 2 7.9 11.667
Centroid 3 18.075 15.8

We now calculate the distance of each object from the three new centroids.
As before the column headed ‘cluster’ indicates the centroid closest to each
point and thus the cluster to which it should be assigned.

x y d1 d2 d3 cluster
10.9 12.6 10.0 3.1 7.9 2
2.3 8.4 1.6 6.5 17.4 1
8.4 12.6 8.1 1.1 10.2 2
12.1 16.2 13.3 6.2 6.0 3
7.3 8.9 5.0 2.8 12.8 2
23.4 11.3 21.2 15.5 7.0 3
19.7 18.5 20.6 13.6 3.2 3
17.1 17.2 17.7 10.7 1.7 3
3.2 3.4 3.5 9.5 19.4 1
1.3 22.8 16.0 12.9 18.2 2
2.4 6.9 0.3 7.3 18.0 1
2.4 7.1 0.4 7.1 17.9 1
3.1 8.3 1.5 5.9 16.7 1
2.9 6.9 0.2 6.9 17.6 1
11.2 4.4 8.8 8.0 13.3 2
8.3 8.7 5.9 3.0 12.1 2

We now again reassign all the objects to the cluster to which they are closest
and recalculate the centroid of each cluster. The new centroids are shown below.

336 Principles of Data Mining

After second iteration
x y

Centroid 1 2.717 6.833
Centroid 2 7.9 11.667
Centroid 3 18.075 15.8

These are unchanged from the first iteration, so the process terminates. The
objects in the final three clusters are as follows.

Cluster 1: 2, 9, 11, 12, 13, 14
Cluster 2: 1, 3, 5, 10, 15, 16
Cluster 3: 4, 6, 7, 8

Question 2
In Section 14.3.1 the initial distance matrix between the six objects a, b, c,

d, e and f is the following.

a b c d e f

a 0 12 6 3 25 4
b 12 0 19 8 14 15
c 6 19 0 12 5 18
d 3 8 12 0 11 9
e 25 14 5 11 0 7
f 4 15 18 9 7 0

The closest objects are those with the smallest non-zero distance value in
the table. These are objects a and d which have a distance value of 3. We
combine these into a single cluster of two objects which we call ad. We can now
rewrite the distance matrix with rows a and d replaced by a single row ad and
similarly for the columns.

As in Section 4.3.1, the entries in the matrix for the various distances be-
tween b, c, e and f obviously remain the same, but how should we calculate
the entries in row and column ad?

ad b c e f

ad 0 ? ? ? ?
b ? 0 19 14 15
c ? 19 0 5 18
e ? 14 5 0 7
f ? 15 18 7 0

The question specifies that complete link clustering should be used. For this
method the distance between two clusters is taken to be the longest distance

Solutions to Self-assessment Exercises 337

from any member of one cluster to any member of the other cluster. On this
basis the distance from ad to b is 12, the longer of the distance from a to b (12)
and the distance from d to b (8) in the original distance matrix. The distance
from ad to c is also 12, the longer of the distance from a to c (6) and the distance
from d to c (12) in the original distance matrix. The complete distance matrix
after the first merger is now as follows.

ad b c e f

ad 0 12 12 25 9
b 12 0 19 14 15
c 12 19 0 5 18
e 25 14 5 0 7
f 9 15 18 7 0

The smallest non-zero value in this table is now 5, so we merge c and e

giving ce.
The distance matrix now becomes:

ad b ce f

ad 0 12 25 9
b 12 0 19 15
ce 25 19 0 18
f 9 15 18 0

The distance from ad to ce is 25, the longer of the distance from c to ad

(12) and the distance from e to ad (25) in the previous distance matrix. Other
values are calculated in the same way.

The smallest non-zero in this distance matrix is now 9, so ad and f are
merged giving adf. The distance matrix after this third merger is given below.

adf b ce

adf 0 15 25
b 15 0 19
ce 25 19 0

Self-assessment Exercise 15

Question 1

The value of TFIDF is the product of two values, tj and log2(n/nj), where
tj is the frequency of the term in the current document, nj is the number of
documents containing the term and n is the total number of documents.

338 Principles of Data Mining

For term ‘dog’ the value of TFIDF is 2 × log2(1000/800) = 0.64
For term ‘cat’ the value of TFIDF is 10 × log2(1000/700) = 5.15
For term ‘man’ the value of TFIDF is 50 × log2(1000/2) = 448.29
For term ‘woman’ the value of TFIDF is 6 × log2(1000/30) = 30.35
The small number of documents containing the term ‘man’ accounts for the

high TFIDF value.

Question 2

To normalise a vector, each element needs to be divided by its length, which
is the square root of the sum of the squares of all the elements. For vector
(20, 10, 8, 12, 56) the length is the square root of 202 + 102 + 82 + 122 + 562

=
√

3844 = 62. So the normalised vector is (20/62, 10/62, 8/62, 12/62, 56/62),
i.e. (0.323, 0.161, 0.129, 0.194, 0.903).

For vector (0, 15, 12, 8, 0) the length is
√

433 = 20.809. The normalised form
is (0, 0.721, 0.577, 0.384, 0).

The distance between the two normalised vectors can be calculated using
the dot product formula as the sum of the products of the corresponding pairs
of values, i.e. 0.323×0+0.161×0.721+0.129×0.577+0.194×0.384+0.903×0
= 0.265.

Index

Abduction 49
Adequacy Condition 48, 51, 120
Agglomerative Hierarchical Clustering

231–233
Antecedent of a Rule 45, 191, 192, 206
Applications of Data Mining 3–4
Apriori Algorithm 209–212, 214
Association Rule 7, 187–188
Association Rule Mining 187–200,

203–218
Attribute 4, 11, 12, 18, See also

Variable
– categorical, 4, 14, 31, 38
– continuous, 14, 31, 93–118
– ignore, 14
Attribute Selection 48, 51–57, 59,

60–63, 65–70, 72–76, 145–148
Automatic Rule Induction. See Rule

Induction
Average-link Clustering 235
Backed-up Error Rate Estimate 131
Backward Pruning. See Post-pruning
Bag-of-Words Representation 240, 241,

242, 243
BankSearch Dataset 249
Bayes Rule 28
bcst96 Dataset 152, 273
Beam Search 199–200
Bigram 240
Binary Representation 244
Binary Variable 13
Bit 59, 138–139, 197
Body of a Rule 206

Branch (of a Decision Tree) 44,
121–122, 262. See also Missing
Branches

Candidate Set 210
Cardinality of a Set 206, 208, 209, 210,

268
Categorical Attribute 4, 14, 31, 38, 43,

45
Causality 39
Centroid of a Cluster 223–224
Chain of Links 262
chess Dataset 273, 276
Chi Square Test 107–116
ChiMerge 105–118
City Block Distance. See Manhattan

Distance
Clash 120–124, 126, 170
Clash Set 121, 126
Clash Threshold 122–124
Class 12, 23
Classification 4, 5–7, 13, 23–39, 41–50
Classification Accuracy 119, 170
Classification Error 175
Classification Rules. See Rule
Classification Tree. See Decision Tree
Classifier 79
– performance measurement, 173–184,

247
Clustering 8, 221–237
Complete–link Clustering 235
Completeness 190
Computational Efficiency 102–105,

340 Principles of Data Mining

188, 200
Conditional Probability 27, 28, 29, 30
Confidence Level 81
Confidence of a Rule 188, 190, 195,

207, 208, 214, 215, 217. See also
Predictive Accuracy

Confident Itemset 216
Conflict Resolution Strategy 157–160,

162, 195
Confusion Matrix 89–91, 174–175, 179,

247
Consequent of a Rule 191, 192, 206
contact lenses Dataset 273, 277
Contingency Table 107–108
Continuous Attribute 14, 31, 37, 38,

93–118
Count of an Itemset. See Support Count

of an Itemset
Cross-entropy 197
crx Dataset 273, 278
Cut Point 93, 94, 95, 98, 99, 101, 103,

105
Cut Value. See Cut Point
Data 11–20
– labelled, 4
– unlabelled, 4
Data Cleaning 15–17, 242
Data Compression 44, 46
Data Mining 2–3
– applications 3–4
Data Preparation 14–17, 242
Dataset 12, 273–292
Decision Rule. See Rules
Decision Tree 6, 41–44, 46, 47, 48,

52–56, 74, 75, 119–133, 157–162, 263
Decision Tree Induction 47–48, 49,

51–57, 60–63, 65–76, 116–118
Deduction 49
Default Classification 76, 85
Degrees of Freedom 113
Dendrogram 232, 234, 237
Depth Cutoff 126, 128, 182
Dictionary 241
Dimension 32
Dimension Reduction. See Feature

Reduction
Discretisation 94, 95, 96–105, 105–116,

116–118
Discriminability 191
Disjoint Sets 206, 269
Disjunct 46
Disjunctive Normal Form (DNF) 46
Distance Between Vectors 246

Distance-based Clustering Algorithm
222

Distance Matrix 233, 234–235, 236
Distance Measure 34–37, 222–223, 226,

231, 233, 235, 236
Dot Product 246
Downward Closure Property of Itemsets

209
Eager Learning 38–39
Elements of a Set 267–268
Empty Class 59, 68
Empty Set 48, 68, 76, 205, 208, 209,

268, 269, 270
Entropy 56, 59–63, 65–68, 72, 74,

97–98, 135–153, 243
Entropy Method of Attribute Selection

56, 60–63, 65–68
Entropy Reduction 74
Equal Frequency Intervals Method 94,

95
Equal Width Intervals Method 94, 95
Error Based Pruning 128
Error Rate 82, 129–133, 175, 177
Errors in Data 15
Euclidean Distance Between Two Points

35–36, 38, 183–184, 222–223, 226, 231
Exact Rule. See Rule
Exclusive Clustering Algorithm 224
Experts
– expert system approach, 41
– human classifiers, 249, 250
– rule comprehensibility to, 170
F1 Score 176, 177, 247
False Alarm Rate. See False Positive

Rate of a Classifier
False Negative Classification 90–91,

174, 175, 247
False Negative Rate of a Classifier 177
False Positive Classification 90–91,

174, 175, 247
False Positive Rate of a Classifier 176,

177, 179–180, 183–184
Feature. See Variable
Feature Reduction 19, 147–148, 153,

242, 243
Feature Space 242
Firing of a Rule 158
Forward Pruning. See Pre-pruning
Frequency Table 66, 98–101, 103, 106,

243
Frequent Itemset. See Supported Itemset
Gain Ratio 72–74
Generalisation 44, 49

Index 341

Generalised Rule Induction 188
Generalising a Rule 125
genetics Dataset 149, 274, 279
Gini Index of Diversity 68–70
glass Dataset 274, 280
Global Dictionary 241
Global Discretisation 95, 105, 116–118
golf Dataset 274, 281
Google 248, 251, 252
Harmonic Mean 176
Head of a Rule 206
hepatitis Dataset 274, 282
Hierarchical Clustering. See Agglomera-

tive Hierarchical Clustering
Hit Rate. See True Positive rate of a

Classifier
HTML Markup 252
Hypertext Categorisation 248, 250
Hypertext Classification 248
hypo Dataset 274, 283
IF . . . THEN Rules 187–188
‘Ignore’ Attribute 14
Independence Hypothesis 107, 108,

109, 111, 113
Induction 49–50. See also Decision

Tree Induction and Rule Induction
Inductive Bias 70–72
Information Content of a Rule 197
Information Gain 56–57, 61–63, 65–68,

72, 74, 97–98, 145–151, 243. See also
Entropy

Instance 4, 12, 26, 27
Integer Variable 13
Interestingness of a Rule. See Rule

Interestingness
Internal Node (of a tree) 44, 262
Intersection of Two Sets 268, 269
Interval Label 106
Interval-scaled Variable 13
Invalid Value 15
Inverse Document Frequency 244
iris Dataset 274, 284
Item 204
Itemset 204, 205, 206, 208, 209–212,

214–216
J-Measure 196, 197–200
j-Measure 197
Jack-knifing 83
k-fold Cross-validation 82–83
k-Means Clustering 224–229
k-Nearest Neighbour Classification 32,

33
Keywords 252

Knowledge Discovery 2–3
Labelled Data 4, 12
labor-ne Dataset 274, 285
Large Itemset. See Supported Itemset
Lazy Learning 38–39
Leaf Node 44, 128, 232, 262
Learning 4, 5–8, 38–39
Leave-one-out Cross-validation 83
Length of a Vector 245
lens24 Dataset 57–58, 274, 286
Leverage 216–218
Lift 216–217
Link 261
Linked Neighbourhood 253
Local Dictionary 241
Local Discretisation 95, 96–97, 116–118
Logarithm Function 137, 264–267
Manhattan Distance 36
Market Basket Analysis 7, 195,

203–218
Markup Information 252
Matches 205
Mathematics 257–271
Maximum Dimension Distance 36
maxIntervals 114–116
Members of a Set 267–268
Metadata 252
Microaveraging 247
Minimum Error Pruning 128
minIntervals 114–116
Missing Branches 75–76
Missing Value
– attribute, 17–18, 86–89
– classification, 89
Model-based Classification Algorithm

39
monk1 Dataset 274, 287
monk2 Dataset 274, 288
monk3 Dataset 274, 289
Morphological Variants 242
Multiple Classification 239–240, 241
Mutually Exclusive and Exhaustive

Categories (or Classifications) 23,
30, 239

Mutually Exclusive and Exhaustive
Events 25

n-dimensional Space 34, 35
N-dimensional Vector 244–245
N-fold Cross-validation 83–84
Näıve Bayes Algorithm 30
Näıve Bayes Classification 24–31,

38–39

342 Principles of Data Mining

Nearest Neighbour Classification 5,
31–39

Neural Network 6–7
Node (of a Decision Tree) 44, 261, 262
Noise 15, 18, 120, 125, 170–171, 251
Nominal Variable 12–13
Normalisation (of an Attribute) 37–38
Normalised Vector Space Model

245–246, 247
Numerical Prediction 4, 6–7
Object 11, 43, 47
Objective Function 224, 230–231
Order of a Rule 199, 200
Ordinal Variable 13
Outlier 16–17
Overfitting 119–120, 125–133, 160–161,

231
Parallelisation 171
Path 262
Pessimistic Error Pruning 128
pima-indians Dataset 274, 290
Piatetsky-Shapiro Criteria 191–193
Positive Predictive Value. See Precision
Post-pruning a Decision Tree 119, 125,

128–133
Post-pruning Rules 155–160
Posterior Probability (Or ‘a posteriori’

Probability) 27, 29, 30, 31
Power Set 270
Pre-pruning a Decision Tree 119,

125–128
Precision 176, 177, 247
Prediction 6, 44, 80, 206
Predictive Accuracy 79, 80, 119, 125,

130, 155, 156, 173, 177, 179–180, 188,
190, 207, 247

– estimation methods, 80–84
Prior Probability (Or ‘a priori’

Probability) 27, 28, 29, 30, 197
Prism 162–171
Probability 24–31, 81, 108, 130, 136,

162, 197
Probability of an Event 24
Probability Theory 24
Pruned Tree 129–130, 263–264
Pruning Set 130, 157
Pseudo–attribute 96, 97–105
Quality of a Rule. See Rule Interesting-

ness
Quicksort 102
Ratio-scaled Variable 14
Reasoning (types of) 49–50
Recall 176, 177, 247. See also True

Positive Rate of a Classifier
Receiver Operating Characteristics

Graph. See ROC Graph
Record 12, 204
Recursive Partitioning 47
Reduced Error Pruning 128
Regression 4, 6
Reliability of a Rule. See Confidence of

a Rule and Predictive Accuracy
RI Measure 192–193
ROC Curve 182–183
ROC Graph 180–182
Root Node 44, 233, 261, 262, 263
Rule 125, 155, 187–188,189
– association, 7, 187–188
– classification (or decision), 5–6, 41,

44–45, 46–47, 48, 155–171, 188
– exact, 188, 207
Rule Fires 158
Rule Induction 49, 155–171. See

also Decision Tree Induction and
Generalised Rule Induction

Rule Interestingness 159, 189–195,
196–200, 204, 207, 216–218

Rule Post-pruning. See Post-pruning
Rules

Rule Pruning 200
Ruleset 74, 157, 189
Search Engine 175, 176, 248–249
Search Space 196, 198
Search Strategy 196, 198–200
Sensitivity. See True Positive Rate of a

Classifier
Set 204, 205, 206, 267–270
Set Notation 206, 208, 271
Set Theory 267–271
sick-euthyroid Dataset 274, 291
Sigma (Σ) Notation 258–260
Significance Level 108, 113, 116
Single-link Clustering 235
Size Cutoff 126, 128
Sorting Algorithms 102
Specialising a Rule 125, 198, 200
Specificity See True Negative Rate of a

Classifier
Split Information 72, 73–74
Split Value 43, 95
Splitting on an Attribute 43–44, 60,

69, 145
Standard Error 81–82
Static Error Rate Estimate 131
Stemming 242–243
Stop Words 242

Index 343

Strict Subset 270
Strict Superset 270
Subscript Notation 257–258, 259–260
Subset 208, 209, 269–270
Subtree 128, 129, 131, 263–264
Summation 258–260
Superset 270
Supervised Learning 4, 5–7, 249
Support Count of an Itemset 205, 207
Support of a Rule 190, 195, 207, 217
Support of an Itemset 207
Supported Itemset 208, 209–212,

214–216
Symmetry condition (for a distance

measure) 34
TDIDT 47–48, 58, 96–97, 116–118,

119–124, 125, 126, 145, 147–148,
170–171

Term 45
Term Frequency 244
Test Set 44, 80, 130, 157
Text Classification 239–253
TFIDF (Term Frequency Inverse

Document Frequency) 244
Threshold Value 108, 113, 128, 195,

207–208
Tie Breaking 169
Top Down Induction of Decision Trees.

See TDIDT
Train and Test 80
Training Data See Training Set
Training Set 7, 26, 27, 60–61, 80, 120,

144–145, 157, 247
Transaction 204
Tree 6, 41–44, 46, 47, 48, 52–56, 74,

75, 119–133, 157–162, 260–261, 262,
263–264

Tree Induction. See Decision Tree
Induction

Triangle inequality (for a distance
measure) 34

Trigram 240
True Negative Classification 90, 174,

247
True Negative Rate of a Classifier 177
True Positive Classification 90–91, 174,

176, 247
True Positive Rate of a Classifier 176,

177, 179–180, 183–184
Two-dimensional Space. See n-

dimensional Space
Type 1 Error. See False Positive

Classification
Type 2 Error. See False Negative

Classification
UCI Repository 19–20, 80, 275
Unbalanced Classes 173–174
Unconfident Itemset 216
Union of Two Sets 206, 268
Unit Vector 246
Universe of Discourse 268
Universe of Objects 11, 43, 47
Unlabelled Data 4, 11, 12, 221
Unseen Instance 5, 44
Unseen Test Set 44
Unsupervised Learning 4, 7–8
Variable 4, 11, 12–14
Variable Length Encoding 142
Vector 244, 245, 246
Vector Space Model (VSM) 243–246
Venn Diagram 189
vote Dataset 275, 292
Web page Classification 248–253
Weighted Euclidean Distance 184
Weighting 33, 38, 159, 184, 195, 244,

245, 253
Yahoo 249

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	fulltext_014.pdf
	back-matter.pdf

