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About This Book

This book is designed to be suitable for an introductory course at either un-

dergraduate or masters level. It can be used as a textbook for a taught unit in

a degree programme on potentially any of a wide range of subjects including

Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioin-

formatics and Forensic Science. It is also suitable for use as a self-study book for

those in technical or management positions who wish to gain an understanding

of the subject that goes beyond the superficial. It goes well beyond the gener-

alities of many introductory books on Data Mining but—unlike many other

books—you will not need a degree and/or considerable fluency in Mathematics

to understand it.

Mathematics is a language in which it is possible to express very complex

and sophisticated ideas. Unfortunately it is a language in which 99% of the hu-

man race is not fluent, although many people have some basic knowledge of it

from early experiences (not always pleasant ones) at school. The author is a for-

mer Mathematician who now prefers to communicate in plain English wherever

possible and believes that a good example is worth a hundred mathematical

symbols.

One of the author’s aims in writing this book has been to eliminate math-

ematical formalism in the interests of clarity wherever possible. Unfortunately

it has not been possible to bury mathematical notation entirely. A ‘refresher’

of everything you need to know to begin studying the book is given in Ap-

pendix A. It should be quite familiar to anyone who has studied Mathematics

at school level. Everything else will be explained as we come to it. If you have

difficulty following the notation in some places, you can usually safely ignore

it, just concentrating on the results and the detailed examples given. For those

who would like to pursue the mathematical underpinnings of Data Mining in

greater depth, a number of additional texts are listed in Appendix C.
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vi Principles of Data Mining

No introductory book on Data Mining can take you to research level in

the subject— the days for that have long passed. This book will give you a

good grounding in the principal techniques without attempting to show you

this year’s latest fashions, which in most cases will have been superseded by

the time the book gets into your hands. Once you know the basic methods,

there are many sources you can use to find the latest developments in the field.

Some of these are listed in Appendix C.

The other appendices include information about the main datasets used in

the examples in the book, many of which are of interest in their own right and

are readily available for use in your own projects if you wish, and a glossary of

the technical terms used in the book.

Self-assessment Exercises are included for each chapter to enable you to

check your understanding. Specimen solutions are given in Appendix E.

Note on the Second Edition

This edition has been expanded by the inclusion of four additional chapters

covering Dealing with Large Volumes of Data, Ensemble Classification, Com-

paring Classifiers and Frequent Pattern Trees for Association Rule Mining and

by additional material on Using Frequency Tables for Attribute Selection in

Chapter 6.
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1
Introduction to Data Mining

1.1 The Data Explosion

Modern computer systems are accumulating data at an almost unimaginable

rate and from a very wide variety of sources: from point-of-sale machines in the

high street to machines logging every cheque clearance, bank cash withdrawal

and credit card transaction, to Earth observation satellites in space, and with

an ever-growing volume of information available from the Internet.

Some examples will serve to give an indication of the volumes of data in-

volved (by the time you read this, some of the numbers will have increased

considerably):

– The current NASA Earth observation satellites generate a terabyte (i.e. 109

bytes) of data every day. This is more than the total amount of data ever

transmitted by all previous observation satellites.

– The Human Genome project is storing thousands of bytes for each of several

billion genetic bases.

– Many companies maintain large Data Warehouses of customer transactions.

A fairly small data warehouse might contain more than a hundred million

transactions.

– There are vast amounts of data recorded every day on automatic recording

devices, such as credit card transaction files and web logs, as well as non-

symbolic data such as CCTV recordings.

– There are estimated to be over 650 million websites, some extremely large.

– There are over 900 million users of Facebook (rapidly increasing), with an

estimated 3 billion postings a day.

M. Bramer, Principles of Data Mining, Undergraduate Topics
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2 Principles of Data Mining

– It is estimated that there are around 150 million users of Twitter, sending

350 million Tweets each day.

Alongside advances in storage technology, which increasingly make it pos-

sible to store such vast amounts of data at relatively low cost whether in com-

mercial data warehouses, scientific research laboratories or elsewhere, has come

a growing realisation that such data contains buried within it knowledge that

can be critical to a company’s growth or decline, knowledge that could lead

to important discoveries in science, knowledge that could enable us accurately

to predict the weather and natural disasters, knowledge that could enable us

to identify the causes of and possible cures for lethal illnesses, knowledge that

could literally mean the difference between life and death. Yet the huge volumes

involved mean that most of this data is merely stored—never to be examined

in more than the most superficial way, if at all. It has rightly been said that

the world is becoming ‘data rich but knowledge poor’.

Machine learning technology, some of it very long established, has the po-

tential to solve the problem of the tidal wave of data that is flooding around

organisations, governments and individuals.

1.2 Knowledge Discovery

Knowledge Discovery has been defined as the ‘non-trivial extraction of im-

plicit, previously unknown and potentially useful information from data’. It is

a process of which data mining forms just one part, albeit a central one.

Figure 1.1 The Knowledge Discovery Process

Figure 1.1 shows a slightly idealised version of the complete knowledge

discovery process.
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Data comes in, possibly from many sources. It is integrated and placed

in some common data store. Part of it is then taken and pre-processed into a

standard format. This ‘prepared data’ is then passed to a data mining algorithm

which produces an output in the form of rules or some other kind of ‘patterns’.

These are then interpreted to give—and this is the Holy Grail for knowledge

discovery—new and potentially useful knowledge.

This brief description makes it clear that although the data mining algo-

rithms, which are the principal subject of this book, are central to knowledge

discovery they are not the whole story. The pre-processing of the data and the

interpretation (as opposed to the blind use) of the results are both of great

importance. They are skilled tasks that are far more of an art (or a skill learnt

from experience) than an exact science. Although they will both be touched on

in this book, the algorithms of the data mining stage of knowledge discovery

will be its prime concern.

1.3 Applications of Data Mining

There is a rapidly growing body of successful applications in a wide range of

areas as diverse as:

– analysing satellite imagery

– analysis of organic compounds

– automatic abstracting

– credit card fraud detection

– electric load prediction

– financial forecasting

– medical diagnosis

– predicting share of television audiences

– product design

– real estate valuation

– targeted marketing

– text summarisation

– thermal power plant optimisation

– toxic hazard analysis
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– weather forecasting

and many more. Some examples of applications (potential or actual) are:

– a supermarket chain mines its customer transactions data to optimise tar-

geting of high value customers

– a credit card company can use its data warehouse of customer transactions

for fraud detection

– a major hotel chain can use survey databases to identify attributes of a

‘high-value’ prospect

– predicting the probability of default for consumer loan applications by im-

proving the ability to predict bad loans

– reducing fabrication flaws in VLSI chips

– data mining systems can sift through vast quantities of data collected during

the semiconductor fabrication process to identify conditions that are causing

yield problems

– predicting audience share for television programmes, allowing television ex-

ecutives to arrange show schedules to maximise market share and increase

advertising revenues

– predicting the probability that a cancer patient will respond to chemotherapy,

thus reducing health-care costs without affecting quality of care

– analysing motion-capture data for elderly people

– trend mining and visualisation in social networks.

Applications can be divided into four main types: classification, numerical

prediction, association and clustering. Each of these is explained briefly below.

However first we need to distinguish between two types of data.

1.4 Labelled and Unlabelled Data

In general we have a dataset of examples (called instances), each of which

comprises the values of a number of variables, which in data mining are often

called attributes. There are two types of data, which are treated in radically

different ways.

For the first type there is a specially designated attribute and the aim is to

use the data given to predict the value of that attribute for instances that have

not yet been seen. Data of this kind is called labelled. Data mining using labelled
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data is known as supervised learning. If the designated attribute is categorical,

i.e. it must take one of a number of distinct values such as ‘very good’, ‘good’

or ‘poor’, or (in an object recognition application) ‘car’, ‘bicycle’, ‘person’,

‘bus’ or ‘taxi’ the task is called classification. If the designated attribute is

numerical, e.g. the expected sale price of a house or the opening price of a

share on tomorrow’s stock market, the task is called regression.

Data that does not have any specially designated attribute is called un-

labelled. Data mining of unlabelled data is known as unsupervised learning.

Here the aim is simply to extract the most information we can from the data

available.

1.5 Supervised Learning: Classification

Classification is one of the most common applications for data mining. It corre-

sponds to a task that occurs frequently in everyday life. For example, a hospital

may want to classify medical patients into those who are at high, medium or

low risk of acquiring a certain illness, an opinion polling company may wish to

classify people interviewed into those who are likely to vote for each of a num-

ber of political parties or are undecided, or we may wish to classify a student

project as distinction, merit, pass or fail.

This example shows a typical situation (Figure 1.2). We have a dataset in

the form of a table containing students’ grades on five subjects (the values of

attributes SoftEng, ARIN, HCI, CSA and Project) and their overall degree

classifications. The row of dots indicates that a number of rows have been

omitted in the interests of simplicity. We want to find some way of predicting

the classification for other students given only their grade ‘profiles’.

SoftEng ARIN HCI CSA Project Class

A B A B B Second

A B B B B Second

B A A B A Second

A A A A B First

A A B B A First

B A A B B Second

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A A B A B First

Figure 1.2 Degree Classification Data
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There are several ways we can do this, including the following.

Nearest Neighbour Matching. This method relies on identifying (say) the five

examples that are ‘closest’ in some sense to an unclassified one. If the five

‘nearest neighbours’ have grades Second, First, Second, Second and Second

we might reasonably conclude that the new instance should be classified as

‘Second’.

Classification Rules. We look for rules that we can use to predict the classi-

fication of an unseen instance, for example:

IF SoftEng = A AND Project = A THEN Class = First

IF SoftEng = A AND Project = B AND ARIN = B THEN Class = Second

IF SoftEng = B THEN Class = Second

Classification Tree. One way of generating classification rules is via an inter-

mediate tree-like structure called a classification tree or a decision tree.

Figure 1.3 shows a possible decision tree corresponding to the degree clas-

sification data.

Figure 1.3 Decision Tree for Degree Classification Data
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1.6 Supervised Learning: Numerical Prediction

Classification is one form of prediction, where the value to be predicted is a

label. Numerical prediction (often called regression) is another. In this case we

wish to predict a numerical value, such as a company’s profits or a share price.

A very popular way of doing this is to use a Neural Network as shown in

Figure 1.4 (often called by the simplified name Neural Net).

Figure 1.4 A Neural Network

This is a complex modelling technique based on a model of a human neuron.

A neural net is given a set of inputs and is used to predict one or more outputs.

Although neural networks are an important technique of data mining, they

are complex enough to justify a book of their own and will not be discussed

further here. There are several good textbooks on neural networks available,

some of which are listed in Appendix C.

1.7 Unsupervised Learning: Association Rules

Sometimes we wish to use a training set to find any relationship that exists

amongst the values of variables, generally in the form of rules known as associ-

ation rules. There are many possible association rules derivable from any given

dataset, most of them of little or no value, so it is usual for association rules

to be stated with some additional information indicating how reliable they are,

for example:
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IF variable 1 > 85 and switch 6 = open

THEN variable 23 < 47.5 and switch 8 = closed (probability = 0.8)

A common form of this type of application is called ‘market basket analysis’.

If we know the purchases made by all the customers at a store for say a week,

we may be able to find relationships that will help the store market its products

more effectively in the future. For example, the rule

IF cheese AND milk THEN bread (probability = 0.7)

indicates that 70% of the customers who buy cheese and milk also buy bread, so

it would be sensible to move the bread closer to the cheese and milk counter, if

customer convenience were the prime concern, or to separate them to encourage

impulse buying of other products if profit were more important.

1.8 Unsupervised Learning: Clustering

Clustering algorithms examine data to find groups of items that are similar. For

example, an insurance company might group customers according to income,

age, types of policy purchased or prior claims experience. In a fault diagnosis

application, electrical faults might be grouped according to the values of certain

key variables (Figure 1.5).

Figure 1.5 Clustering of Data



2
Data for Data Mining

Data for data mining comes in many forms: from computer files typed in by

human operators, business information in SQL or some other standard database

format, information recorded automatically by equipment such as fault logging

devices, to streams of binary data transmitted from satellites. For purposes of

data mining (and for the remainder of this book) we will assume that the data

takes a particular standard form which is described in the next section. We will

look at some of the practical problems of data preparation in Section 2.3.

2.1 Standard Formulation

We will assume that for any data mining application we have a universe of

objects that are of interest. This rather grandiose term often refers to a col-

lection of people, perhaps all human beings alive or dead, or possibly all the

patients at a hospital, but may also be applied to, say, all dogs in England, or

to inanimate objects such as all train journeys from London to Birmingham,

all the rocks on the moon or all the pages stored in the World Wide Web.

The universe of objects is normally very large and we have only a small

part of it. Usually we want to extract information from the data available to

us that we hope is applicable to the large volume of data that we have not yet

seen.

Each object is described by a number of variables that correspond to its

properties. In data mining variables are often called attributes. We will use both

terms in this book.

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 2,
© Springer-Verlag London 2013
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The set of variable values corresponding to each of the objects is called a

record or (more commonly) an instance. The complete set of data available to

us for an application is called a dataset. A dataset is often depicted as a table,

with each row representing an instance. Each column contains the value of one

of the variables (attributes) for each of the instances. A typical example of a

dataset is the ‘degrees’ data given in the Introduction (Figure 2.1).

SoftEng ARIN HCI CSA Project Class

A B A B B Second

A B B B B Second

B A A B A Second

A A A A B First

A A B B A First

B A A B B Second

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A A B A B First

Figure 2.1 The Degrees Dataset

This dataset is an example of labelled data, where one attribute is given

special significance and the aim is to predict its value. In this book we will

give this attribute the standard name ‘class’. When there is no such significant

attribute we call the data unlabelled.

2.2 Types of Variable

In general there are many types of variable that can be used to measure the

properties of an object. A lack of understanding of the differences between the

various types can lead to problems with any form of data analysis. At least six

main types of variable can be distinguished.

Nominal Variables

A variable used to put objects into categories, e.g. the name or colour of an

object. A nominal variable may be numerical in form, but the numerical values

have no mathematical interpretation. For example we might label 10 people

as numbers 1, 2, 3, . . . , 10, but any arithmetic with such values, e.g. 1 + 2 = 3
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would be meaningless. They are simply labels. A classification can be viewed

as a nominal variable which has been designated as of particular importance.

Binary Variables

A binary variable is a special case of a nominal variable that takes only two

possible values: true or false, 1 or 0 etc.

Ordinal Variables

Ordinal variables are similar to nominal variables, except that an ordinal vari-

able has values that can be arranged in a meaningful order, e.g. small, medium,

large.

Integer Variables

Integer variables are ones that take values that are genuine integers, for ex-

ample ‘number of children’. Unlike nominal variables that are numerical in

form, arithmetic with integer variables is meaningful (1 child + 2 children = 3

children etc.).

Interval-scaled Variables

Interval-scaled variables are variables that take numerical values which are

measured at equal intervals from a zero point or origin. However the origin

does not imply a true absence of the measured characteristic. Two well-known

examples of interval-scaled variables are the Fahrenheit and Celsius tempera-

ture scales. To say that one temperature measured in degrees Celsius is greater

than another or greater than a constant value such as 25 is clearly meaningful,

but to say that one temperature measured in degrees Celsius is twice another

is meaningless. It is true that a temperature of 20 degrees is twice as far from

the zero value as 10 degrees, but the zero value has been selected arbitrarily

and does not imply ‘absence of temperature’. If the temperatures are converted

to an equivalent scale, say degrees Fahrenheit, the ‘twice’ relationship will no

longer apply.
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Ratio-scaled Variables

Ratio-scaled variables are similar to interval-scaled variables except that the

zero point does reflect the absence of the measured characteristic, for example

Kelvin temperature and molecular weight. In the former case the zero value

corresponds to the lowest possible temperature ‘absolute zero’, so a temperature

of 20 degrees Kelvin is twice one of 10 degrees Kelvin. A weight of 10 kg is

twice one of 5 kg, a price of 100 dollars is twice a price of 50 dollars etc.

2.2.1 Categorical and Continuous Attributes

Although the distinction between different categories of variable can be impor-

tant in some cases, many practical data mining systems divide attributes into

just two types:

– categorical corresponding to nominal, binary and ordinal variables

– continuous corresponding to integer, interval-scaled and ratio-scaled vari-

ables.

This convention will be followed in this book. For many applications it is

helpful to have a third category of attribute, the ‘ignore’ attribute, correspond-

ing to variables that are of no significance for the application, for example the

name of a patient in a hospital or the serial number of an instance, but which

we do not wish to (or are unable to) delete from the dataset.

It is important to choose methods that are appropriate to the types of vari-

able stored for a particular application. The methods described in this book are

applicable to categorical and continuous attributes as defined above. There are

other types of variable to which they would not be applicable without modifi-

cation, for example any variable that is measured on a logarithmic scale. Two

examples of logarithmic scales are the Richter scale for measuring earthquakes

(an earthquake of magnitude 6 is 10 times more severe than one of magnitude

5, 100 times more severe than one of magnitude 4 etc.) and the Stellar Mag-

nitude Scale for measuring the brightness of stars viewed by an observer on

Earth.

2.3 Data Preparation

Although this book is about data mining not data preparation, some general

comments about the latter may be helpful.
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For many applications the data can simply be extracted from a database

in the form described in Section 2.1, perhaps using a standard access method

such as ODBC. However, for some applications the hardest task may be to

get the data into a standard form in which it can be analysed. For example

data values may have to be extracted from textual output generated by a fault

logging system or (in a crime analysis application) extracted from transcripts

of interviews with witnesses. The amount of effort required to do this may be

considerable.

2.3.1 Data Cleaning

Even when the data is in the standard form it cannot be assumed that it

is error free. In real-world datasets erroneous values can be recorded for a

variety of reasons, including measurement errors, subjective judgements and

malfunctioning or misuse of automatic recording equipment.

Erroneous values can be divided into those which are possible values of the

attribute and those which are not. Although usage of the term noise varies, in

this book we will take a noisy value to mean one that is valid for the dataset,

but is incorrectly recorded. For example the number 69.72 may accidentally be

entered as 6.972, or a categorical attribute value such as brown may accidentally

be recorded as another of the possible values, such as blue. Noise of this kind

is a perpetual problem with real-world data.

A far smaller problem arises with noisy values that are invalid for the

dataset, such as 69.7X for 6.972 or bbrown for brown. We will consider these to

be invalid values, not noise. An invalid value can easily be detected and either

corrected or rejected.

It is hard to see even very ‘obvious’ errors in the values of a variable when

they are ‘buried’ amongst say 100,000 other values. In attempting to ‘clean

up’ data it is helpful to have a range of software tools available, especially to

give an overall visual impression of the data, when some anomalous values or

unexpected concentrations of values may stand out. However, in the absence of

special software, even some very basic analysis of the values of variables may be

helpful. Simply sorting the values into ascending order (which for fairly small

datasets can be accomplished using just a standard spreadsheet) may reveal

unexpected results. For example:

– A numerical variable may only take six different values, all widely separated.

It would probably be best to treat this as a categorical variable rather than

a continuous one.

– All the values of a variable may be identical. The variable should be treated

as an ‘ignore’ attribute.



14 Principles of Data Mining

– All the values of a variable except one may be identical. It is then necessary

to decide whether the one different value is an error or a significantly differ-

ent value. In the latter case the variable should be treated as a categorical

attribute with just two values.

– There may be some values that are outside the normal range of the variable.

For example, the values of a continuous attribute may all be in the range

200 to 5000 except for the highest three values which are 22654.8, 38597 and

44625.7. If the data values were entered by hand a reasonable guess is that

the first and third of these abnormal values resulted from pressing the initial

key twice by accident and the second one is the result of leaving out the

decimal point. If the data were recorded automatically it may be that the

equipment malfunctioned. This may not be the case but the values should

certainly be investigated.

– We may observe that some values occur an abnormally large number of times.

For example if we were analysing data about users who registered for a web-

based service by filling in an online form we might notice that the ‘country’

part of their addresses took the value ‘Albania’ in 10% of cases. It may be

that we have found a service that is particularly attractive to inhabitants of

that country. Another possibility is that users who registered either failed to

choose from the choices in the country field, causing a (not very sensible)

default value to be taken, or did not wish to supply their country details and

simply selected the first value in a list of options. In either case it seems likely

that the rest of the address data provided for those users may be suspect

too.

– If we are analysing the results of an online survey collected in 2002, we may

notice that the age recorded for a high proportion of the respondents was 72.

This seems unlikely, especially if the survey was of student satisfaction, say.

A possible interpretation for this is that the survey had a ‘date of birth’ field,

with subfields for day, month and year and that many of the respondents did

not bother to override the default values of 01 (day), 01 (month) and 1930

(year). A poorly designed program then converted the date of birth to an

age of 72 before storing it in the database.

It is important to issue a word of caution at this point. Care is needed when

dealing with anomalous values such as 22654.8, 38597 and 44625.7 in one of

the examples above. They may simply be errors as suggested. Alternatively

they may be outliers, i.e. genuine values that are significantly different from

the others. The recognition of outliers and their significance may be the key to

major discoveries, especially in fields such as medicine and physics, so we need
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to be careful before simply discarding them or adjusting them back to ‘normal’

values.

2.4 Missing Values

In many real-world datasets data values are not recorded for all attributes. This

can happen simply because there are some attributes that are not applicable for

some instances (e.g. certain medical data may only be meaningful for female

patients or patients over a certain age). The best approach here may be to

divide the dataset into two (or more) parts, e.g. treating male and female

patients separately.

It can also happen that there are attribute values that should be recorded

that are missing. This can occur for several reasons, for example

– a malfunction of the equipment used to record the data

– a data collection form to which additional fields were added after some data

had been collected

– information that could not be obtained, e.g. about a hospital patient.

There are several possible strategies for dealing with missing values. Two

of the most commonly used are as follows.

2.4.1 Discard Instances

This is the simplest strategy: delete all instances where there is at least one

missing value and use the remainder.

This strategy is a very conservative one, which has the advantage of avoid-

ing introducing any data errors. Its disadvantage is that discarding data may

damage the reliability of the results derived from the data. Although it may be

worth trying when the proportion of missing values is small, it is not recom-

mended in general. It is clearly not usable when all or a high proportion of all

the instances have missing values.

2.4.2 Replace by Most Frequent/Average Value

A less cautious strategy is to estimate each of the missing values using the

values that are present in the dataset.
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A straightforward but effective way of doing this for a categorical attribute

is to use its most frequently occurring (non-missing) value. This is easy to

justify if the attribute values are very unbalanced. For example if attribute X

has possible values a, b and c which occur in proportions 80%, 15% and 5%

respectively, it seems reasonable to estimate any missing values of attribute X

by the value a. If the values are more evenly distributed, say in proportions

40%, 30% and 30%, the validity of this approach is much less clear.

In the case of continuous attributes it is likely that no specific numerical

value will occur more than a small number of times. In this case the estimate

used is generally the average value.

Replacing a missing value by an estimate of its true value may of course

introduce noise into the data, but if the proportion of missing values for a

variable is small, this is not likely to have more than a small effect on the

results derived from the data. However, it is important to stress that if a variable

value is not meaningful for a given instance or set of instances any attempt to

replace the ‘missing’ values by an estimate is likely to lead to invalid results.

Like many of the methods in this book the ‘replace by most frequent/average

value’ strategy has to be used with care.

There are other approaches to dealing with missing values, for example

using the ‘association rule’ methods described in Chapter 16 to make a more

reliable estimate of each missing value. However, as is generally the case in

this field, there is no one method that is more reliable than all the others for

all possible datasets and in practice there is little alternative to experimenting

with a range of alternative strategies to find the one that gives the best results

for a dataset under consideration.

2.5 Reducing the Number of Attributes

In some data mining application areas the availability of ever-larger storage

capacity at a steadily reducing unit price has led to large numbers of attribute

values being stored for every instance, e.g. information about all the purchases

made by a supermarket customer for three months or a large amount of detailed

information about every patient in a hospital. For some datasets there can be

substantially more attributes than there are instances, perhaps as many as 10

or even 100 to one.

Although it is tempting to store more and more information about each

instance (especially as it avoids making hard decisions about what information

is really needed) it risks being self-defeating. Suppose we have 10,000 pieces

of information about each supermarket customer and want to predict which
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customers will buy a new brand of dog food. The number of attributes of any

relevance to this is probably very small. At best the many irrelevant attributes

will place an unnecessary computational overhead on any data mining algo-

rithm. At worst, they may cause the algorithm to give poor results.

Of course, supermarkets, hospitals and other data collectors will reply that

they do not necessarily know what is relevant or will come to be recognised

as relevant in the future. It is safer for them to record everything than risk

throwing away important information.

Although faster processing speeds and larger memories may make it possible

to process ever larger numbers of attributes, this is inevitably a losing struggle

in the long term. Even if it were not, when the number of attributes becomes

large, there is always a risk that the results obtained will have only superficial

accuracy and will actually be less reliable than if only a small proportion of

the attributes were used—a case of ‘more means less’.

There are several ways in which the number of attributes (or ‘features’)

can be reduced before a dataset is processed. The term feature reduction or

dimension reduction is generally used for this process. We will return to this

topic in Chapter 10.

2.6 The UCI Repository of Datasets

Most of the commercial datasets used by companies for data mining are—

unsurprisingly—not available for others to use. However there are a number of

‘libraries’ of datasets that are readily available for downloading from the World

Wide Web free of charge by anyone.

The best known of these is the ‘Repository’ of datasets maintained by

the University of California at Irvine, generally known as the ‘UCI Reposi-

tory’ [1]. The URL for the Repository is http://www.ics.uci.edu/~mlearn/

MLRepository.html. It contains approximately 120 datasets on topics as di-

verse as predicting the age of abalone from physical measurements, predicting

good and bad credit risks, classifying patients with a variety of medical con-

ditions and learning concepts from the sensor data of a mobile robot. Some

datasets are complete, i.e. include all possible instances, but most are rela-

tively small samples from a much larger number of possible instances. Datasets

with missing values and noise are included.

The UCI site also has links to other repositories of both datasets and pro-

grams, maintained by a variety of organisations such as the (US) National

Space Science Center, the US Bureau of Census and the University of Toronto.
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The datasets in the UCI Repository were collected principally to enable data

mining algorithms to be compared on a standard range of datasets. There are

many new algorithms published each year and it is standard practice to state

their performance on some of the better-known datasets in the UCI Repository.

Several of these datasets will be described later in this book.

The availability of standard datasets is also very helpful for new users of data

mining packages who can gain familiarisation using datasets with published

performance results before applying the facilities to their own datasets.

In recent years a potential weakness of establishing such a widely used set

of standard datasets has become apparent. In the great majority of cases the

datasets in the UCI Repository give good results when processed by standard

algorithms of the kind described in this book. Datasets that lead to poor results

tend to be associated with unsuccessful projects and so may not be added to

the Repository. The achievement of good results with selected datasets from

the Repository is no guarantee of the success of a method with new data, but

experimentation with such datasets can be a valuable step in the development

of new methods.

A welcome relatively recent development is the creation of the UCI ‘Knowl-

edge Discovery in Databases Archive’ at http://kdd.ics.uci.edu. This con-

tains a range of large and complex datasets as a challenge to the data mining

research community to scale up its algorithms as the size of stored datasets,

especially commercial ones, inexorably rises.

2.7 Chapter Summary

This chapter introduces the standard formulation for the data input to data

mining algorithms that will be assumed throughout this book. It goes on to

distinguish between different types of variable and to consider issues relating to

the preparation of data prior to use, particularly the presence of missing data

values and noise. The UCI Repository of datasets is introduced.

2.8 Self-assessment Exercises for Chapter 2

Specimen solutions to self-assessment exercises are given in Appendix E.

1. What is the difference between labelled and unlabelled data?

2. The following information is held in an employee database.
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Name, Date of Birth, Sex, Weight, Height, Marital Status, Number of Chil-

dren

What is the type of each variable?

3. Give two ways of dealing with missing data values.
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3
Introduction to Classification: Näıve

Bayes and Nearest Neighbour

3.1 What Is Classification?

Classification is a task that occurs very frequently in everyday life. Essentially

it involves dividing up objects so that each is assigned to one of a number

of mutually exhaustive and exclusive categories known as classes. The term

‘mutually exhaustive and exclusive’ simply means that each object must be

assigned to precisely one class, i.e. never to more than one and never to no

class at all.

Many practical decision-making tasks can be formulated as classification

problems, i.e. assigning people or objects to one of a number of categories, for

example

– customers who are likely to buy or not buy a particular product in a super-

market

– people who are at high, medium or low risk of acquiring a certain illness

– student projects worthy of a distinction, merit, pass or fail grade

– objects on a radar display which correspond to vehicles, people, buildings or

trees

– people who closely resemble, slightly resemble or do not resemble someone

seen committing a crime

M. Bramer, Principles of Data Mining, Undergraduate Topics
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– houses that are likely to rise in value, fall in value or have an unchanged

value in 12 months’ time

– people who are at high, medium or low risk of a car accident in the next 12

months

– people who are likely to vote for each of a number of political parties (or

none)

– the likelihood of rain the next day for a weather forecast (very likely, likely,

unlikely, very unlikely).

We have already seen an example of a (fictitious) classification task, the

‘degree classification’ example, in the Introduction.

In this chapter we introduce two classification algorithms: one that can be

used when all the attributes are categorical, the other when all the attributes

are continuous. In the following chapters we come on to algorithms for gener-

ating classification trees and rules (also illustrated in the Introduction).

3.2 Näıve Bayes Classifiers

In this section we look at a method of classification that does not use rules,

a decision tree or any other explicit representation of the classifier. Rather, it

uses the branch of Mathematics known as probability theory to find the most

likely of the possible classifications.

The significance of the first word of the title of this section will be explained

later. The second word refers to the Reverend Thomas Bayes (1702–1761), an

English Presbyterian minister and Mathematician whose publications included

“Divine Benevolence, or an Attempt to Prove That the Principal End of the

Divine Providence and Government is the Happiness of His Creatures” as well

as pioneering work on probability. He is credited as the first Mathematician to

use probability in an inductive fashion.

A detailed discussion of probability theory would be substantially outside

the scope of this book. However the mathematical notion of probability corre-

sponds fairly closely to the meaning of the word in everyday life.

The probability of an event, e.g. that the 6.30 p.m. train from London to

your local station arrives on time, is a number from 0 to 1 inclusive, with 0

indicating ‘impossible’ and 1 indicating ‘certain’. A probability of 0.7 implies

that if we conducted a long series of trials, e.g. if we recorded the arrival time

of the 6.30 p.m. train day by day for N days, we would expect the train to be

on time on 0.7×N days. The longer the series of trials the more reliable this

estimate is likely to be.
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Usually we are not interested in just one event but in a set of alternative

possible events, which are mutually exclusive and exhaustive, meaning that one

and only one must always occur.

In the train example, we might define four mutually exclusive and exhaus-

tive events

E1 – train cancelled

E2 – train ten minutes or more late

E3 – train less than ten minutes late

E4 – train on time or early.

The probability of an event is usually indicated by a capital letter P , so we

might have

P (E1) = 0.05

P (E2) = 0.1

P (E3) = 0.15

P (E4) = 0.7

(Read as ‘the probability of event E1 is 0.05’ etc.)

Each of these probabilities is between 0 and 1 inclusive, as it has to be to

qualify as a probability. They also satisfy a second important condition: the

sum of the four probabilities has to be 1, because precisely one of the events

must always occur. In this case

P (E1) + P (E2) + P (E3) + P (E4) = 1

In general, the sum of the probabilities of a set of mutually exclusive and

exhaustive events must always be 1.

Generally we are not in a position to know the true probability of an event

occurring. To do so for the train example we would have to record the train’s

arrival time for all possible days on which it is scheduled to run, then count

the number of times events E1, E2, E3 and E4 occur and divide by the total

number of days, to give the probabilities of the four events. In practice this is

often prohibitively difficult or impossible to do, especially (as in this example)

if the trials may potentially go on forever. Instead we keep records for a sample

of say 100 days, count the number of times E1, E2, E3 and E4 occur, divide

by 100 (the number of days) to give the frequency of the four events and use

these as estimates of the four probabilities.

For the purposes of the classification problems discussed in this book, the

‘events’ are that an instance has a particular classification. Note that classifi-

cations satisfy the ‘mutually exclusive and exhaustive’ requirement.

The outcome of each trial is recorded in one row of a table. Each row must

have one and only one classification.
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For classification tasks, the usual terminology is to call a table (dataset)

such as Figure 3.1 a training set. Each row of the training set is called an

instance. An instance comprises the values of a number of attributes and the

corresponding classification.

The training set constitutes the results of a sample of trials that we can use

to predict the classification of other (unclassified) instances.

Suppose that our training set consists of 20 instances, each recording the

value of four attributes as well as the classification. We will use classifications:

cancelled, very late, late and on time to correspond to the events E1, E2, E3

and E4 described previously.

day season wind rain class

weekday spring none none on time

weekday winter none slight on time

weekday winter none slight on time

weekday winter high heavy late

saturday summer normal none on time

weekday autumn normal none very late

holiday summer high slight on time

sunday summer normal none on time

weekday winter high heavy very late

weekday summer none slight on time

saturday spring high heavy cancelled

weekday summer high slight on time

saturday winter normal none late

weekday summer high none on time

weekday winter normal heavy very late

saturday autumn high slight on time

weekday autumn none heavy on time

holiday spring normal slight on time

weekday spring normal none on time

weekday spring normal slight on time

Figure 3.1 The train Dataset

How should we use probabilities to find the most likely classification for an

unseen instance such as the one below?

weekday winter high heavy ????



Introduction to Classification: Näıve Bayes and Nearest Neighbour 25

One straightforward (but flawed) way is just to look at the frequency of

each of the classifications in the training set and choose the most common one.

In this case the most common classification is on time, so we would choose

that.

The flaw in this approach is, of course, that all unseen instances will be

classified in the same way, in this case as on time. Such a method of classification

is not necessarily bad: if the probability of on time is 0.7 and we guess that

every unseen instance should be classified as on time, we could expect to be

right about 70% of the time. However, the aim is to make correct predictions

as often as possible, which requires a more sophisticated approach.

The instances in the training set record not only the classification but also

the values of four attributes: day, season, wind and rain. Presumably they are

recorded because we believe that in some way the values of the four attributes

affect the outcome. (This may not necessarily be the case, but for the purpose

of this chapter we will assume it is true.) To make effective use of the additional

information represented by the attribute values we first need to introduce the

notion of conditional probability.

The probability of the train being on time, calculated using the frequency

of on time in the training set divided by the total number of instances is known

as the prior probability. In this case P (class = on time) = 14/20 = 0.7. If we

have no other information this is the best we can do. If we have other (relevant)

information, the position is different.

What is the probability of the train being on time if we know that the

season is winter? We can calculate this as the number of times class = on time

and season = winter (in the same instance), divided by the number of times the

season is winter, which comes to 2/6 = 0.33. This is considerably less than the

prior probability of 0.7 and seems intuitively reasonable. Trains are less likely

to be on time in winter.

The probability of an event occurring if we know that an attribute has a

particular value (or that several variables have particular values) is called the

conditional probability of the event occurring and is written as, e.g.

P (class = on time | season = winter).

The vertical bar can be read as ‘given that’, so the whole term can be read

as ‘the probability that the class is on time given that the season is winter ’.

P (class = on time | season = winter) is also called a posterior probability.

It is the probability that we can calculate for the classification after we have

obtained the information that the season is winter. By contrast, the prior prob-

ability is that estimated before any other information is available.

To calculate the most likely classification for the ‘unseen’ instance given
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previously we could calculate the probability of

P (class = on time | day = weekday and season = winter

and wind = high and rain = heavy)

and do similarly for the other three possible classifications. However there are

only two instances in the training set with that combination of attribute values

and basing any estimates of probability on these is unlikely to be helpful.

To obtain a reliable estimate of the four classifications a more indirect ap-

proach is needed. We could start by using conditional probabilities based on a

single attribute.

For the train dataset

P (class = on time | season = winter) = 2/6 = 0.33

P (class = late | season = winter) = 1/6 = 0.17

P (class = very late | season = winter) = 3/6 = 0.5

P (class = cancelled | season = winter) = 0/6 = 0

The third of these has the largest value, so we could conclude that the

most likely classification is very late, a different result from using the prior

probability as before.

We could do a similar calculation with attributes day, rain and wind. This

might result in other classifications having the largest value. Which is the best

one to take?

The Näıve Bayes algorithm gives us a way of combining the prior prob-

ability and conditional probabilities in a single formula, which we can use to

calculate the probability of each of the possible classifications in turn. Having

done this we choose the classification with the largest value.

Incidentally the first word in the rather derogatory sounding name Näıve

Bayes refers to the assumption that the method makes, that the effect of the

value of one attribute on the probability of a given classification is independent

of the values of the other attributes. In practice, that may not be the case.

Despite this theoretical weakness, the Näıve Bayes method often gives good

results in practical use.

The method uses conditional probabilities, but the other way round from

before. (This may seem a strange approach but is justified by the method that

follows, which is based on a well-known Mathematical result known as Bayes

Rule.)

Instead of (say) the probability that the class is very late given that the

season is winter, P (class = very late | season = winter), we use the condi-

tional probability that the season is winter given that the class is very late, i.e.

P (season = winter | class = very late). We can calculate this as the number of

times that season = winter and class = very late occur in the same instance,

divided by the number of instances for which the class is very late.
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In a similar way we can calculate other conditional probabilities, for example

P (rain = none | class = very late).

For the train data we can tabulate all the conditional and prior probabilities

as shown in Figure 3.2.

class = on
time

class = late class = very
late

class = can-
celled

day =
weekday

9/14 = 0.64 1/2 = 0.5 3/3 = 1 0/1 = 0

day =
saturday

2/14 = 0.14 1/2 = 0.5 0/3 = 0 1/1 = 1

day = sunday 1/14 = 0.07 0/2 = 0 0/3 = 0 0/1 = 0
day = holiday 2/14 = 0.14 0/2 = 0 0/3 = 0 0/1 = 0
season =
spring

4/14 = 0.29 0/2 = 0 0/3 = 0 1/1 = 1

season =
summer

6/14 = 0.43 0/2 = 0 0/3 = 0 0/1 = 0

season =
autumn

2/14 = 0.14 0/2 = 0 1/3 = 0.33 0/1 = 0

season =
winter

2/14 = 0.14 2/2 = 1 2/3 = 0.67 0/1 = 0

wind = none 5/14 = 0.36 0/2 = 0 0/3 = 0 0/1 = 0
wind = high 4/14 = 0.29 1/2 = 0.5 1/3 = 0.33 1/1 = 1
wind =
normal

5/14 = 0.36 1/2 = 0.5 2/3 = 0.67 0/1 = 0

rain = none 5/14 = 0.36 1/2 =0.5 1/3 = 0.33 0/1 = 0
rain = slight 8/14 = 0.57 0/2 = 0 0/3 = 0 0/1 = 0
rain =
heavy

1/14 = 0.07 1/2 = 0.5 2/3 = 0.67 1/1 = 1

Prior
Probability

14/20 =
0.70

2/20 =
0.10

3/20 =
0.15

1/20 = 0.05

Figure 3.2 Conditional and Prior Probabilities: train Dataset

For example, the conditional probability P (day = weekday | class = on time)

is the number of instances in the train dataset for which day = weekday and

class = on time, divided by the total number of instances for which class = on

time. These numbers can be counted from Figure 3.1 as 9 and 14, respectively.

So the conditional probability is 9/14 = 0.64.

The prior probability of class = very late is the number of instances in

Figure 3.1 for which class = very late divided by the total number of instances,

i.e. 3/20 = 0.15.

We can now use these values to calculate the probabilities of real interest to

us. These are the posterior probabilities of each possible class occurring for a

specified instance, i.e. for known values of all the attributes. We can calculate

these posterior probabilities using the method given in Figure 3.3.
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Näıve Bayes Classification

Given a set of k mutually exclusive and exhaustive classifications c1, c2, . . . ,

ck, which have prior probabilities P (c1), P (c2), . . . , P (ck), respectively, and

n attributes a1, a2, . . . , an which for a given instance have values v1, v2,

. . . , vn respectively, the posterior probability of class ci occurring for the

specified instance can be shown to be proportional to

P (ci)× P (a1 = v1 and a2 = v2 . . . and an = vn | ci)

Making the assumption that the attributes are independent, the value of

this expression can be calculated using the product

P(ci)×P(a1 = v1 | ci)×P(a2 = v2 | ci)× . . .×P(an = vn | ci)

We calculate this product for each value of i from 1 to k and choose the

classification that has the largest value.

Figure 3.3 The Näıve Bayes Classification Algorithm

The formula shown in bold in Figure 3.3 combines the prior probability of

ci with the values of the n possible conditional probabilities involving a test

on the value of a single attribute.

It is often written as P (ci)×
n∏

j=1

P (aj = vj | class = ci).

Note that the Greek letter
∏

(pronounced pi) in the above formula is not

connected with the mathematical constant 3.14159. . . . It indicates the product

obtained by multiplying together the n values P (a1 = v1 | ci), P (a2 = v2 | ci)
etc.

(
∏

is the capital form of ‘pi’. The lower case form is π. The equivalents in

the Roman alphabet are P and p. P is the first letter of ‘Product’.)

When using the Näıve Bayes method to classify a series of unseen instances

the most efficient way to start is by calculating all the prior probabilities and

also all the conditional probabilities involving one attribute, though not all of

them may be required for classifying any particular instance.

Using the values in each of the columns of Figure 3.2 in turn, we obtain the

following posterior probabilities for each possible classification for the unseen

instance:

weekday winter high heavy ????

class = on time

0.70× 0.64× 0.14× 0.29× 0.07 = 0.0013
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class = late

0.10× 0.50× 1.00× 0.50× 0.50 = 0.0125

class = very late

0.15× 1.00× 0.67× 0.33× 0.67 = 0.0222

class = cancelled

0.05× 0.00× 0.00× 1.00× 1.00 = 0.0000

The largest value is for class = very late.

Note that the four values calculated are not themselves probabilities, as

they do not sum to 1. This is the significance of the phrasing ‘the posterior

probability . . . can be shown to be proportional to’ in Figure 3.3. Each value

can be ‘normalised’ to a valid posterior probability simply by dividing it by the

sum of all four values. In practice, we are interested only in finding the largest

value so the normalisation step is not necessary.

The Näıve Bayes approach is a very popular one, which often works well.

However it has a number of potential problems, the most obvious one being that

it relies on all attributes being categorical. In practice, many datasets have a

combination of categorical and continuous attributes, or even only continuous

attributes. This problem can be overcome by converting the continuous at-

tributes to categorical ones, using a method such as those described in Chapter

8 or otherwise.

A second problem is that estimating probabilities by relative frequencies can

give a poor estimate if the number of instances with a given attribute/value

combination is small. In the extreme case where it is zero, the posterior proba-

bility will inevitably be calculated as zero. This happened for class = cancelled

in the above example. This problem can be overcome by using a more compli-

cated formula for estimating probabilities, but this will not be discussed further

here.

3.3 Nearest Neighbour Classification

Nearest Neighbour classification is mainly used when all attribute values are

continuous, although it can be modified to deal with categorical attributes.

The idea is to estimate the classification of an unseen instance using the

classification of the instance or instances that are closest to it, in some sense

that we need to define.
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Supposing we have a training set with just two instances such as the fol-

lowing
a b c d e f Class

yes no no 6.4 8.3 low negative

yes yes yes 18.2 4.7 high positive

There are six attribute values, followed by a classification (positive or neg-

ative).

We are then given a third instance

yes no no 6.6 8.0 low ????

What should its classification be?

Even without knowing what the six attributes represent, it seems intuitively

obvious that the unseen instance is nearer to the first instance than to the

second. In the absence of any other information, we could reasonably predict

its classification using that of the first instance, i.e. as ‘negative’.

In practice there are likely to be many more instances in the training set

but the same principle applies. It is usual to base the classification on those of

the k nearest neighbours (where k is a small integer such as 3 or 5), not just the

nearest one. The method is then known as k-Nearest Neighbour or just k-NN

classification (Figure 3.4).

Basic k-Nearest Neighbour Classification Algorithm

– Find the k training instances that are closest to the unseen instance.

– Take the most commonly occurring classification for these k instances.

Figure 3.4 The Basic k-Nearest Neighbour Classification Algorithm

We can illustrate k-NN classification diagrammatically when the dimension

(i.e. the number of attributes) is small. The following example illustrates the

case where the dimension is just 2. In real-world data mining applications it

can of course be considerably larger.

Figure 3.5 shows a training set with 20 instances, each giving the values of

two attributes and an associated classification.

How can we estimate the classification for an ‘unseen’ instance where the

first and second attributes are 9.1 and 11.0, respectively?

For this small number of attributes we can represent the training set as 20

points on a two-dimensional graph with values of the first and second attributes

measured along the horizontal and vertical axes, respectively. Each point is

labelled with a + or − symbol to indicate that the classification is positive or

negative, respectively. The result is shown in Figure 3.6.
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Attribute 1 Attribute 2 Class

0.8 6.3 −
1.4 8.1 −
2.1 7.4 −
2.6 14.3 +

6.8 12.6 −
8.8 9.8 +

9.2 11.6 −
10.8 9.6 +

11.8 9.9 +

12.4 6.5 +

12.8 1.1 −
14.0 19.9 −
14.2 18.5 −
15.6 17.4 −
15.8 12.2 −
16.6 6.7 +

17.4 4.5 +

18.2 6.9 +

19.0 3.4 −
19.6 11.1 +

Figure 3.5 Training Set for k-Nearest Neighbour Example

A circle has been added to enclose the five nearest neighbours of the unseen

instance, which is shown as a small circle close to the centre of the larger one.

The five nearest neighbours are labelled with three + signs and two − signs,

so a basic 5-NN classifier would classify the unseen instance as ‘positive’ by a

form of majority voting. There are other possibilities, for example the ‘votes’

of each of the k nearest neighbours can be weighted, so that the classifications

of closer neighbours are given greater weight than the classifications of more

distant ones. We will not pursue this here.

We can represent two points in two dimensions (‘in two-dimensional space’

is the usual term) as (a1, a2) and (b1, b2) and visualise them as points in a

plane.

When there are three attributes we can represent the points by (a1, a2, a3)

and (b1, b2, b3) and think of them as points in a room with three axes at right

angles. As the number of dimensions (attributes) increases it rapidly becomes

impossible to visualise them, at least for anyone who is not a physicist (and

most of those who are).
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Figure 3.6 Two-dimensional Representation of Training Data in Figure 3.5

When there are n attributes, we can represent the instances by the points

(a1, a2, . . . , an) and (b1, b2, . . . , bn) in ‘n-dimensional space’.

3.3.1 Distance Measures

There are many possible ways of measuring the distance between two instances

with n attribute values, or equivalently between two points in n-dimensional

space. We usually impose three requirements on any distance measure we use.

We will use the notation dist(X,Y ) to denote the distance between two points

X and Y .

1. The distance of any point A from itself is zero, i.e. dist(A,A) = 0.

2. The distance from A to B is the same as the distance from B to A, i.e.

dist(A,B) = dist(B,A) (the symmetry condition).

The third condition is called the triangle inequality (Figure 3.7). It cor-

responds to the intuitive idea that ‘the shortest distance between any two

points is a straight line’. The condition says that for any points A, B and Z:

dist(A,B) ≤ dist(A,Z) + dist(Z,B).
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As usual, it is easiest to visualise this in two dimensions.

Figure 3.7 The Triangle Inequality

The equality only occurs if Z is the same point as A or B or is on the direct

route between them.

There are many possible distance measures, but the most popular is almost

certainly the Euclidean Distance (Figure 3.8). This measure is named after the

Greek Mathematician Euclid of Alexandria, who lived around 300 bc and is

celebrated as the founder of geometry. It is the measure of distance assumed

in Figure 3.6.

We will start by illustrating the formula for Euclidean distance in two di-

mensions. If we denote an instance in the training set by (a1, a2) and the unseen

instance by (b1, b2) the length of the straight line joining the points is

√
(a1 − b1)2 + (a2 − b2)2

by Pythagoras’ Theorem.

If there are two points (a1, a2, a3) and (b1, b2, b3) in a three-dimensional

space the corresponding formula is

√
(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2

The formula for Euclidean distance between points (a1, a2, . . . , an) and

(b1, b2, . . . , bn) in n-dimensional space is a generalisation of these two results.

The Euclidean distance is given by the formula

√
(a1 − b1)2 + (a2 − b2)2 + . . .+ (an − bn)2
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Figure 3.8 Example of Euclidean Distance

Another measure sometimes used is called Manhattan Distance or City

Block Distance. The analogy is with travelling around a city such as Man-

hattan, where you cannot (usually) go straight from one place to another but

only by moving along streets aligned horizontally and vertically.

Figure 3.9 Example of City Block Distance

The City Block distance between the points (4, 2) and (12, 9) in Figure 3.9

is (12− 4) + (9− 2) = 8 + 7 = 15.

A third possibility is the maximum dimension distance. This is the largest

absolute difference between any pair of corresponding attribute values. (The

absolute difference is the difference converted to a positive number if it is

negative.) For example the maximum dimension distance between instances

6.2 −7.1 −5.0 18.3 −3.1 8.9

and

8.3 12.4 −4.1 19.7 −6.2 12.4
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is 12.4− (−7.1) = 19.5.

For many applications, Euclidean distance seems the most natural way of

measuring the distance between two instances.

3.3.2 Normalisation

A major problem when using the Euclidean distance formula (and many other

distance measures) is that the large values frequently swamp the small ones.

Suppose that two instances are as follows for some classification problem

associated with cars (the classifications themselves are omitted).

Mileage (miles) Number of doors Age (years) Number of owners

18,457 2 12 8

26,292 4 3 1

When the distance of these instances from an unseen one is calculated, the

mileage attribute will almost certainly contribute a value of several thousands

squared, i.e. several millions, to the sum of squares total. The number of doors

will probably contribute a value less than 10. It is clear that in practice the

only attribute that will matter when deciding which neighbours are the nearest

using the Euclidean distance formula is the mileage. This is unreasonable as the

unit of measurement, here the mile, is entirely arbitrary. We could have chosen

an alternative measure of distance travelled such as millimetres or perhaps

light years. Similarly we might have measured age in some other unit such as

milliseconds or millennia. The units chosen should not affect the decision on

which are the nearest neighbours.

To overcome this problem we generally normalise the values of continuous

attributes. The idea is to make the values of each attribute run from 0 to 1.

Suppose that for some attribute A the smallest value found in the training data

is −8.1 and the largest is 94.3. First we adjust each value of A by adding 8.1 to

it, so the values now run from 0 to 94.3+8.1 = 102.4. The spread of values from

highest to lowest is now 102.4 units, so we divide all values by that number to

make the spread of values from 0 to 1.

In general if the lowest value of attribute A is min and the highest value is

max, we convert each value of A, say a, to (a−min)/(max−min).

Using this approach all continuous attributes are converted to small num-

bers from 0 to 1, so the effect of the choice of unit of measurement on the

outcome is greatly reduced.

Note that it is possible that an unseen instance may have a value of A that

is less than min or greater than max. If we want to keep the adjusted numbers
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in the range from 0 to 1 we can just convert any values of A that are less than

min or greater than max to 0 or 1, respectively.

Another issue that occurs with measuring the distance between two points

is the weighting of the contributions of the different attributes. We may be-

lieve that the mileage of a car is more important than the number of doors

it has (although no doubt not a thousand times more important, as with the

unnormalised values). To achieve this we can adjust the formula for Euclidean

distance to

√
w1(a1 − b1)2 + w2(a2 − b2)2 + . . .+ wn(an − bn)2

where w1, w2, . . . , wn are the weights. It is customary to scale the weight values

so that the sum of all the weights is one.

3.3.3 Dealing with Categorical Attributes

One of the weaknesses of the nearest neighbour approach to classification is

that there is no entirely satisfactory way of dealing with categorical attributes.

One possibility is to say that the difference between any two identical values of

the attribute is zero and that the difference between any two different values

is 1. Effectively this amounts to saying (for a colour attribute) red − red = 0,

red − blue = 1, blue − green = 1, etc.

Sometimes there is an ordering (or a partial ordering) of the values of an

attribute, for example we might have values good, average and bad. We could

treat the difference between good and average or between average and bad as

0.5 and the difference between good and bad as 1. This still does not seem

completely right, but may be the best we can do in practice.

3.4 Eager and Lazy Learning

The Näıve Bayes and Nearest Neighbour algorithms described in Sections 3.2

and 3.3 illustrate two alternative approaches to automatic classification, known

by the slightly cryptic names of eager learning and lazy learning, respectively.

In eager learning systems the training data is ‘eagerly’ generalised into

some representation or model such as a table of probabilities, a decision tree

or a neural net without waiting for a new (unseen) instance to be presented for

classification.
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In lazy learning systems the training data is ‘lazily’ left unchanged until an

unseen instance is presented for classification. When it is, only those calcula-

tions that are necessary to classify that single instance are performed.

The lazy learning approach has some enthusiastic advocates, but if there are

a large number of unseen instances, it can be computationally very expensive

to carry out compared with eager learning methods such as Näıve Bayes and

the other methods of classification that are described in later chapters.

A more fundamental weakness of the lazy learning approach is that it does

not give any idea of the underlying causality of the task domain. This is also

true of the probability-based Näıve Bayes eager learning algorithm, but to a

lesser extent. X is the classification for no reason deeper than that if you do

the calculations X turns out to be the answer. We now turn to methods that

give an explicit way of classifying any unseen instance that can be used (and

critiqued) independently from the training data used to generate it. We call

such methods model-based.

3.5 Chapter Summary

This chapter introduces classification, one of the most common data mining

tasks. Two classification algorithms are described in detail: the Näıve Bayes

algorithm, which uses probability theory to find the most likely of the possible

classifications, and Nearest Neighbour classification, which estimates the classi-

fication of an unseen instance using the classification of the instances ‘closest’ to

it. These two methods generally assume that all the attributes are categorical

and continuous, respectively.

3.6 Self-assessment Exercises for Chapter 3

1. Using the Näıve Bayes classification algorithm with the train dataset, cal-

culate the most likely classification for the following unseen instances.

weekday summer high heavy ????

sunday summer normal slight ????

2. Using the training set shown in Figure 3.5 and the Euclidean distance

measure, calculate the 5-nearest neighbours of the instance with first and

second attributes 9.1 and 11.0, respectively.
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4
Using Decision Trees for Classification

In this chapter we look at a widely-used method of constructing a model from a

dataset in the form of a decision tree or (equivalently) a set of decision rules. It is

often claimed that this representation of the data has the advantage compared

with other approaches of being meaningful and easy to interpret.

4.1 Decision Rules and Decision Trees

In many fields, large collections of examples, possibly collected for other pur-

poses, are readily available. Automatically generating classification rules (often

called decision rules) for such tasks has proved to be a realistic alternative to

the standard Expert System approach of eliciting the rules from experts. The

British academic Donald Michie [1] reported two large applications of 2,800

and 30,000+ rules, developed using automatic techniques in only one and 9

man-years, respectively, compared with the estimated 100 and 180 man-years

needed to develop the celebrated ‘conventional’ Expert Systems MYCIN and

XCON.

In many (but not all) cases decision rules can conveniently be fitted together

to form a tree structure of the kind shown in the following example.

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 4,
© Springer-Verlag London 2013
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4.1.1 Decision Trees: The Golf Example

A fictitious example which has been used for illustration by many authors,

notably Quinlan [2], is that of a golfer who decides whether or not to play each

day on the basis of the weather.

Figure 4.1 shows the results of two weeks (14 days) of observations of

weather conditions and the decision on whether or not to play.

Outlook Temp

(°F)
Humidity

(%)

Windy Class

sunny 75 70 true play

sunny 80 90 true don’t play

sunny 85 85 false don’t play

sunny 72 95 false don’t play

sunny 69 70 false play

overcast 72 90 true play

overcast 83 78 false play

overcast 64 65 true play

overcast 81 75 false play

rain 71 80 true don’t play

rain 65 70 true don’t play

rain 75 80 false play

rain 68 80 false play

rain 70 96 false play

Classes

play, don’t play

Outlook

sunny, overcast, rain

Temperature

numerical value

Humidity

numerical value

Windy

true, false

Figure 4.1 Data for the Golf Example

Assuming the golfer is acting consistently, what are the rules that deter-

mine the decision whether or not to play each day? If tomorrow the values of

Outlook, Temperature, Humidity and Windy were sunny, 74°F, 77% and false

respectively, what would the decision be?

One way of answering this is to construct a decision tree such as the one

shown in Figure 4.2. This is a typical example of a decision tree, which will

form the topic of several chapters of this book.

In order to determine the decision (classification) for a given set of weather

conditions from the decision tree, first look at the value of Outlook. There are

three possibilities.

1. If the value of Outlook is sunny, next consider the value of Humidity. If the

value is less than or equal to 75 the decision is play. Otherwise the decision

is don’t play.
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Figure 4.2 Decision Tree for the Golf Example

2. If the value of Outlook is overcast, the decision is play.

3. If the value of Outlook is rain, next consider the value of Windy. If the

value is true the decision is don’t play, otherwise the decision is play.

Note that the value of Temperature is never used.

4.1.2 Terminology

We will assume that the ‘standard formulation’ of the data given in Chapter 2

applies. There is a universe of objects (people, houses etc.), each of which can

be described by the values of a collection of its attributes. Attributes with a

finite (and generally fairly small) set of values, such as sunny, overcast and rain,

are called categorical. Attributes with numerical values, such as Temperature

and Humidity, are generally known as continuous. We will distinguish between

a specially-designated categorical attribute called the classification and the

other attribute values and will generally use the term ‘attributes’ to refer only

to the latter.

Descriptions of a number of objects are held in tabular form in a training

set. Each row of the figure comprises an instance, i.e. the (non-classifying)

attribute values and the classification corresponding to one object.

The aim is to develop classification rules from the data in the training set.

This is often done in the implicit form of a decision tree.

A decision tree is created by a process known as splitting on the value of

attributes (or just splitting on attributes), i.e. testing the value of an attribute

such as Outlook and then creating a branch for each of its possible values.

In the case of continuous attributes the test is normally whether the value is

‘less than or equal to’ or ‘greater than’ a given value known as the split value.
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The splitting process continues until each branch can be labelled with just one

classification.

Decision trees have two different functions: data compression and prediction.

Figure 4.2 can be regarded simply as a more compact way of representing the

data in Figure 4.1. The two representations are equivalent in the sense that

for each of the 14 instances the given values of the four attributes will lead to

identical classifications.

However, the decision tree is more than an equivalent representation to the

training set. It can be used to predict the values of other instances not in the

training set, for example the one given previously where the values of the four

attributes are sunny, 74, 77 and false respectively. It is easy to see from the

decision tree that in this case the decision would be don’t play. It is important

to stress that this ‘decision’ is only a prediction, which may or may not turn

out to be correct. There is no infallible way to predict the future!

So the decision tree can be viewed as not merely equivalent to the original

training set but as a generalisation of it which can be used to predict the

classification of other instances. These are often called unseen instances and

a collection of them is generally known as a test set or an unseen test set, by

contrast with the original training set.

4.1.3 The degrees Dataset

The training set shown in Figure 4.3 (taken from a fictitious university) shows

the results of students for five subjects coded as SoftEng, ARIN, HCI, CSA

and Project and their corresponding degree classifications, which in this sim-

plified example are either FIRST or SECOND. There are 26 instances. What

determines who is classified as FIRST or SECOND?

Figure 4.4 shows a possible decision tree corresponding to this training set.

It consists of a number of branches, each ending with a leaf node labelled with

one of the valid classifications, i.e. FIRST or SECOND. Each branch comprises

the route from the root node (i.e. the top of the tree) to a leaf node. A node

that is neither the root nor a leaf node is called an internal node.

We can think of the root node as corresponding to the original training set.

All other nodes correspond to a subset of the training set.

At the leaf nodes each instance in the subset has the same classification.

There are five leaf nodes and hence five branches.

Each branch corresponds to a classification rule. The five classification rules

can be written in full as:

IF SoftEng = A AND Project = A THEN Class = FIRST

IF SoftEng = A AND Project = B AND ARIN = A AND CSA = A
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SoftEng ARIN HCI CSA Project Class

A B A B B SECOND

A B B B A FIRST

A A A B B SECOND

B A A B B SECOND

A A B B A FIRST

B A A B B SECOND

A B B B B SECOND

A B B B B SECOND

A A A A A FIRST

B A A B B SECOND

B A A B B SECOND

A B B A B SECOND

B B B B A SECOND

A A B A B FIRST

B B B B A SECOND

A A B B B SECOND

B B B B B SECOND

A A B A A FIRST

B B B A A SECOND

B B A A B SECOND

B B B B A SECOND

B A B A B SECOND

A B B B A FIRST

A B A B B SECOND

B A B B B SECOND

A B B B B SECOND

Classes

FIRST, SECOND

SoftEng

A,B

ARIN

A,B

HCI

A,B

CSA

A,B

Project

A,B

Figure 4.3 The degrees Dataset

THEN Class = FIRST

IF SoftEng = A AND Project = B AND ARIN = A AND CSA = B

THEN Class = SECOND

IF SoftEng = A AND Project = B AND ARIN = B

THEN Class = SECOND

IF SoftEng = B THEN Class = SECOND

The left-hand side of each rule (known as the antecedent) comprises a num-

ber of terms joined by the logical AND operator. Each term is a simple test on

the value of a categorical attribute (e.g. SoftEng = A) or a continuous attribute

(e.g. in Figure 4.2, Humidity > 75).
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Figure 4.4 Decision Tree for the degrees Dataset

A set of rules of this kind is said to be in Disjunctive Normal Form (DNF).

The individual rules are sometimes known as disjuncts.

Looking at this example in terms of data compression, the decision tree can

be written as five decision rules with a total of 14 terms, an average of 2.8

terms per rule. Each instance in the original degrees training set could also be

viewed as a rule, for example

IF SoftEng = A AND ARIN = B AND HCI = A AND CSA = B

AND Project = B THEN Class = SECOND

There are 26 such rules, one per instance, each with five terms, making a

total of 130 terms. Even for this very small training set, the reduction in the

number of terms requiring to be stored from the training set (130 terms) to the

decision tree (14 terms) is almost 90%.

The order in which we write the rules generated from a decision tree is

arbitrary, so the five rules given above could be rearranged to (say)

IF SoftEng = A AND Project = B AND ARIN = A AND CSA = B

THEN Class = SECOND

IF SoftEng = B THEN Class = SECOND

IF SoftEng = A AND Project = A THEN Class = FIRST

IF SoftEng = A AND Project = B AND ARIN = B

THEN Class = SECOND
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IF SoftEng = A AND Project = B AND ARIN = A AND CSA = A

THEN Class = FIRST

without any change to the predictions the ruleset will make on unseen instances.

For practical use, the rules can easily be simplified to an equivalent nested

set of IF . . . THEN . . . ELSE rules, with even more compression, e.g. (for the

original set of rules)

if (SoftEng = A) {
if (Project = A) Class = FIRST

else {
if (ARIN = A) {
if (CSA = A) Class = FIRST

else Class = SECOND

}
else Class = SECOND

}
}
else Class = SECOND

4.2 The TDIDT Algorithm

Decision trees are widely used as a means of generating classification rules

because of the existence of a simple but very powerful algorithm calledTDIDT,

which stands for Top-Down Induction of Decision Trees. This has been known

since the mid-1960s and has formed the basis for many classification systems,

two of the best-known being ID3 [3] and C4.5 [2], as well as being used in many

commercial data mining packages.

The method produces decision rules in the implicit form of a decision tree.

Decision trees are generated by repeatedly splitting on the values of attributes.

This process is known as recursive partitioning.

In the standard formulation of the TDIDT algorithm there is a training set

of instances. Each instance corresponds to a member of a universe of objects,

which is described by the values of a set of categorical attributes. (The algo-

rithm can be adapted to deal with continuous attributes, as will be discussed

in Chapter 8.)

The basic algorithm can be given in just a few lines as shown in Figure 4.5.

At each non-leaf node an attribute is chosen for splitting. This can poten-

tially be any attribute, except that the same attribute must not be chosen twice

in the same branch. This restriction is entirely innocuous, e.g. in the branch
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TDIDT: BASIC ALGORITHM

IF all the instances in the training set belong to the same class

THEN return the value of the class

ELSE (a) Select an attribute A to split on+

(b) Sort the instances in the training set into subsets, one

for each value of attribute A

(c) Return a tree with one branch for each non-empty subset,

each branch having a descendant subtree or a class

value produced by applying the algorithm recursively
+ Never select an attribute twice in the same branch

Figure 4.5 The TDIDT Algorithm

corresponding to the incomplete rule

IF SoftEng = A AND Project = B . . . . . .

it is not permitted to choose SoftEng or Project as the next attribute to split

on, but as their values are already known there would be no point in doing so.

However this harmless restriction has a very valuable effect. Each split on

the value of an attribute extends the length of the corresponding branch by one

term, but the maximum possible length for a branch is M terms where there

are M attributes. Hence the algorithm is guaranteed to terminate.

There is one important condition which must hold before the TDIDT algo-

rithm can be applied. This is the Adequacy Condition: no two instances with

the same values of all the attributes may belong to different classes. This is sim-

ply a way of ensuring that the training set is consistent. Dealing with training

sets that are not consistent is the subject of Section 9.1.

A major problem with the TDIDT algorithm, which is not apparent at first

sight, is that it is underspecified. The algorithm specifies ‘Select an attribute A

to split on’ but no method is given for doing this.

Provided the adequacy condition is satisfied the algorithm is guaranteed to

terminate and any selection of attributes (even random selection) will produce

a decision tree, provided that an attribute is never selected twice in the same

branch.

This under-specification may seem desirable, but many of the resulting de-

cision trees (and the corresponding decision rules) will be of little, if any, value

for predicting the classification of unseen instances.

Thus some methods of selecting attributes may be much more useful than

others. Making a good choice of attributes to split on at each stage is crucial to

the success of the TDIDT approach. This will be the main topic of Chapters 5

and 6.
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4.3 Types of Reasoning

The automatic generation of decision rules from examples is known as rule

induction or automatic rule induction.

Generating decision rules in the implicit form of a decision tree is also often

called rule induction, but the terms tree induction or decision tree induction

are sometimes preferred. We will end this chapter with a digression to explain

the significance of the word ‘induction’ in these phrases and will return to the

topic of attribute selection in Chapter 5.

Logicians distinguish between different types of reasoning. The most famil-

iar is deduction, where the conclusion is shown to follow necessarily from the

truth of the premises, for example

All Men Are Mortal

John is a Man

Therefore John is Mortal

If the first two statements (the premises) are true, then the conclusion must

be true.

This type of reasoning is entirely reliable but in practice rules that are 100%

certain (such as ‘all men are mortal’) are often not available.

A second type of reasoning is called abduction. An example of this is

All Dogs Chase Cats

Fido Chases Cats

Therefore Fido is a Dog

Here the conclusion is consistent with the truth of the premises, but it may

not necessarily be correct. Fido may be some other type of animal that chases

cats, or perhaps not an animal at all. Reasoning of this kind is often very

successful in practice but can sometimes lead to incorrect conclusions.

A third type of reasoning is called induction. This is a process of generali-

sation based on repeated observations.

After many observations of x and y occurring together, learn the rule

if x then y

For example, if I see 1,000 dogs with four legs I might reasonably conclude

that “if x is a dog then x has 4 legs” (or more simply “all dogs have four legs”).

This is induction. The decision trees derived from the golf and degrees datasets

are of this kind. They are generalised from repeated observations (the instances

in the training sets) and we would expect them to be good enough to use for
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predicting the classification of unseen instances in most cases, but they may

not be infallible.

4.4 Chapter Summary

This chapter introduces the TDIDT (Top-Down Induction of Decision Trees)

algorithm for inducing classification rules via the intermediate representation

of a decision tree. The algorithm can always be applied provided the ‘adequacy

condition’ holds for the instances in the training set. The chapter ends by

distinguishing three types of reasoning: deduction, abduction and induction.

4.5 Self-assessment Exercises for Chapter 4

1. What is the adequacy condition on the instances in a training set?

2. What are the most likely reasons for the condition not to be met for a given

dataset?

3. What is the significance of the adequacy condition to automatic rule gen-

eration using the TDIDT algorithm?

4. What happens if the basic TDIDT algorithm is applied to a dataset for

which the adequacy condition does not apply?
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5
Decision Tree Induction: Using Entropy

for Attribute Selection

5.1 Attribute Selection: An Experiment

In Chapter 4 it was shown that the TDIDT algorithm is guaranteed to termi-

nate and to give a decision tree that correctly corresponds to the data, provided

that the adequacy condition is satisfied. This condition is that no two instances

with identical attribute values have different classifications.

However, it was also pointed out that the TDIDT algorithm is underspeci-

fied. Provided that the adequacy condition is satisfied, any method of choosing

attributes will produce a decision tree. We will begin this chapter by consid-

ering the decision trees obtained from using some poorly chosen strategies for

attribute selection and then go on to describe one of the most widely used

approaches and look at how the results compare.

First we look at the decision trees produced by using the three attribute

selection strategies listed below.

– takefirst – for each branch take the attributes in the order in which they

appear in the training set, working from left to right, e.g. for the degrees

training set in the order SoftEng, ARIN, HCI, CSA and Project.

– takelast – as for takefirst, but working from right to left, e.g. for the degrees

training set in the order Project, CSA, HCI, ARIN and SoftEng.

– random – make a random selection (with equal probability of each attribute

being selected).

M. Bramer, Principles of Data Mining, Undergraduate Topics
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As always no attribute may be selected twice in the same branch.

Warning: these three strategies are given here for purposes of illustration

only. They are not intended for serious practical use but provide a basis for

comparison with other methods introduced later.

Figure 5.1 shows the results of running the TDIDT algorithm with attribute

selection strategies takefirst, takelast and random in turn to generate decision

trees for the seven datasets contact lenses, lens24, chess, vote, monk1, monk2

and monk3. These datasets will be mentioned frequently as this book pro-

gresses. Information about all of them is given in Appendix B. The random

strategy was used five times for each dataset. In each case the value given in

the table is the number of branches in the decision tree generated.

The last two columns record the number of branches in the largest and the

smallest of the trees generated for each of the datasets. In all cases there is a

considerable difference. This suggests that although in principle the attributes

can be chosen in any arbitrary way, the difference between a good choice and

a bad one may be considerable. The next section looks at this issue from a

different point of view.

Dataset take take random most least

first last 1 2 3 4 5

contact lenses 42 27 34 38 32 26 35 42 26

lens24 21 9 15 11 15 13 11 21 9

chess 155 56 94 52 107 90 112 155 52

vote 40 79 96 78 116 110 96 116 40

monk1 60 75 82 53 87 89 80 89 53

monk2 142 112 122 127 109 123 121 142 109

monk3 69 69 43 46 62 55 77 77 43

Figure 5.1 Number of Branches Generated by TDIDT with Three Attribute

Selection Methods

5.2 Alternative Decision Trees

Although (as was illustrated in the last section) any method of choosing at-

tributes will produce a decision tree that does not mean that the method chosen

is irrelevant. Some choices of attribute may be considerably more useful than

others.
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5.2.1 The Football/Netball Example

A fictitious university requires its students to enrol in one of its sports clubs,

either the Football Club or the Netball Club. It is forbidden to join both clubs.

Any student joining no club at all will be awarded an automatic failure in their

degree (this being considered an important disciplinary offence).

Figure 5.2 gives a training set of data collected about 12 students, tabulating

four items of data about each one (eye colour, marital status, sex and hair

length) against the club joined.

eyecolour married sex hairlength class

brown yes male long football

blue yes male short football

brown yes male long football

brown no female long netball

brown no female long netball

blue no male long football

brown no female long netball

brown no male short football

brown yes female short netball

brown no female long netball

blue no male long football

blue no male short football

Figure 5.2 Training Set for the Football/Netball Example

What determines who joins which club?

It is possible to generate many different trees from this data using the

TDIDT algorithm. One possible decision tree is Figure 5.3. (The numbers in

parentheses indicate the number of instances corresponding to each of the leaf

nodes.)

This is a remarkable result. All the blue-eyed students play football. For

the brown-eyed students, the critical factor is whether or not they are married.

If they are, then the long-haired ones all play football and the short-haired

ones all play netball. If they are not married, it is the other way round: the

short-haired ones play football and the long-haired ones play netball.
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Figure 5.3 Football/Netball Example: Decision Tree 1

This would be an astonishing discovery, likely to attract worldwide atten-

tion, if it were correct—but is it?

Another decision tree that can be generated from the training set is Fig-

ure 5.4. This one looks more believable but is it correct?

Figure 5.4 Football/Netball Example: Decision Tree 2

Although it is tempting to say that it is, it is best to avoid using terms such

as ‘correct’ and ‘incorrect’ in this context. All we can say is that both decision

trees are compatible with the data from which they were generated. The only

way to know which one gives better results for unseen data is to use them both

and compare the results.

Despite this, it is hard to avoid the belief that Figure 5.4 is right and

Figure 5.3 is wrong. We will return to this point.
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5.2.2 The anonymous Dataset

Now consider the different example in Figure 5.5.

a1 a2 a3 a4 class

a11 a21 a31 a41 c1

a12 a21 a31 a42 c1

a11 a21 a31 a41 c1

a11 a22 a32 a41 c2

a11 a22 a32 a41 c2

a12 a22 a31 a41 c1

a11 a22 a32 a41 c2

a11 a22 a31 a42 c1

a11 a21 a32 a42 c2

a11 a22 a32 a41 c2

a12 a22 a31 a41 c1

a12 a22 a31 a42 c1

Figure 5.5 The anonymous Dataset

Here we have a training set of 12 instances. There are four attributes, a1,

a2, a3 and a4, with values a11, a12 etc., and two classes c1 and c2.

One possible decision tree we can generate from this data is Figure 5.6.

Figure 5.6 Anonymous Data: Decision Tree 1
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Another possible tree is Figure 5.7.

Figure 5.7 Anonymous Data: Decision Tree 2

Which tree is better?

This is the football/netball example in anonymised form, of course.

The effect of replacing meaningful attribute names such as eyecolour and

sex with meaningless names such as a1 and a3 is considerable. Although we

might say that we prefer Figure 5.7 because it is smaller, there seems no reason

why Figure 5.6 should not be acceptable.

Data mining algorithms generally do not allow the use of any background

knowledge the user has about the domain from which the data is drawn, such

as the ‘meaning’ and relative importance of attributes, or which attributes are

most or least likely, to determine the classification of an instance.

It is easy to see that a decision tree involving tests on eyecolour, hairlength

etc. is meaningless when it is given in isolation, but if those attributes were

part of a much larger number (possibly many thousands) in a practical appli-

cation what would there be to prevent meaningless decision rules from being

generated?

Apart from vigilance and a good choice of algorithm, the answer to this is

‘nothing at all’. The quality of the strategy used to select the attribute to split

on at each stage is clearly of vital importance. This is the topic to which we

now turn.

5.3 Choosing Attributes to Split On: Using
Entropy

The attribute selection techniques described in Section 5.1 (takefirst, takelast

and random) were included for illustrative purposes only. For practical use

several much superior methods are available. One commonly used method is to

select the attribute that minimises the value of entropy, thus maximising the
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information gain. This method will be explained later in this chapter. Other

commonly used methods will be discussed in Chapter 6.

Figure 5.8 is based on Figure 5.1, which gave the size of the tree with most

and least branches produced by the takefirst, takelast and random attribute se-

lection strategies for a number of datasets. The final column shows the number

of branches generated by the ‘entropy’ attribute selection method (which has

not yet been described). In almost all cases the number of branches is substan-

tially reduced. The smallest number of branches, i.e. rules for each dataset, is

in bold and underlined.

Dataset excluding entropy entropy

most least

contact lenses 42 26 16

lens24 21 9 9

chess 155 52 20

vote 116 40 34

monk1 89 53 52

monk2 142 109 95

monk3 77 43 28

Figure 5.8 Most and Least Figures from Figure 5.1 Augmented by Informa-

tion about Entropy Attribute Selection

In all cases the number of rules in the decision tree generated using the

‘entropy’ method is less than or equal to the smallest number generated using

any of the other attribute selection criteria introduced so far. In some cases,

such as for the chess dataset, it is considerably fewer.

There is no guarantee that using entropy will always lead to a small de-

cision tree, but experience shows that it generally produces trees with fewer

branches than other attribute selection criteria (not just the basic ones used

in Section 5.1). Experience also shows that small trees tend to give more ac-

curate predictions than large ones, although there is certainly no guarantee of

infallibility.

5.3.1 The lens24 Dataset

Before explaining the method of attribute selection using entropy, it will be

helpful to say more about one of the small datasets used in Figures 5.1 and 5.8.

The lens24 dataset is ophthalmological data about contact lenses. It comprises
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24 instances linking the values of four attributes age (i.e. age group), specRx

(spectacle prescription), astig (whether astigmatic) and tears (tear production

rate) with one of three classes 1, 2 and 3 (signifying respectively that the patient

should be fitted with hard contact lenses, soft contact lenses or none at all).

The complete training set is given as Figure 5.9.

Value of attribute Class

age specRx astig tears

1 1 1 1 3

1 1 1 2 2

1 1 2 1 3

1 1 2 2 1

1 2 1 1 3

1 2 1 2 2

1 2 2 1 3

1 2 2 2 1

2 1 1 1 3

2 1 1 2 2

2 1 2 1 3

2 1 2 2 1

2 2 1 1 3

2 2 1 2 2

2 2 2 1 3

2 2 2 2 3

3 1 1 1 3

3 1 1 2 3

3 1 2 1 3

3 1 2 2 1

3 2 1 1 3

3 2 1 2 2

3 2 2 1 3

3 2 2 2 3

classes

1: hard contact lenses

2: soft contact lenses

3: no contact lenses

age

1: young

2: pre-presbyopic

3: presbyopic

specRx

(spectacle prescription)

1: myopia

2: high hypermetropia

astig

(whether astigmatic)

1: no

2: yes

tears

(tear production rate)

1: reduced

2: normal

Figure 5.9 Training Set for lens24 Data
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5.3.2 Entropy

Note: This description relies on an understanding of the mathe-

matical function log2 X. If you are unfamiliar with this function, a

brief summary of the essential points is given in Appendix A.3.

Entropy is an information-theoretic measure of the ‘uncertainty’ contained

in a training set, due to the presence of more than one possible classification.

If there are K classes, we can denote the proportion of instances with clas-

sification i by pi for i = 1 to K. The value of pi is the number of occurrences

of class i divided by the total number of instances, which is a number between

0 and 1 inclusive.

The entropy of the training set is denoted by E. It is measured in ‘bits’ of

information and is defined by the formula

E = −
K∑

i=1

pi log2 pi

summed over the non-empty classes only, i.e. classes for which pi �= 0.

An explanation of this formula will be given in Chapter 10. At present it is

simplest to accept the formula as given and concentrate on its properties.

As is shown in Appendix A the value of −pi log2 pi is positive for values of pi
greater than zero and less than 1. When pi = 1 the value of −pi log2 pi is zero.

This implies that E is positive or zero for all training sets. It takes its minimum

value (zero) if and only if all the instances have the same classification, in which

case there is only one non-empty class, for which the probability is 1.

Entropy takes its maximum value when the instances are equally distributed

amongst the K possible classes.

In this case the value of each pi is 1/K, which is independent of i, so

E = −
K∑

i=1

(1/K) log2(1/K)

= −K(1/K) log2(1/K)

= − log2(1/K) = log2 K

If there are 2, 3 or 4 classes this maximum value is 1, 1.5850 or 2, respec-

tively.

For the initial lens24 training set of 24 instances, there are 3 classes. There

are 4 instances with classification 1, 5 instances with classification 2 and 15

instances with classification 3. So p1 = 4/24, p2 = 5/24 and p3 = 15/24.

We will call the entropy Estart. It is given by

Estart = −(4/24) log2(4/24)− (5/24) log2(5/24)− (15/24) log2(15/24)

= 0.4308 + 0.4715 + 0.4238
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= 1.3261 bits (these and subsequent figures in this chapter are given to four

decimal places).

5.3.3 Using Entropy for Attribute Selection

The process of decision tree generation by repeatedly splitting on attributes

is equivalent to partitioning the initial training set into smaller training sets

repeatedly, until the entropy of each of these subsets is zero (i.e. each one has

instances drawn from only a single class).

At any stage of this process, splitting on any attribute has the property

that the average entropy of the resulting subsets will be less than

(or occasionally equal to) that of the previous training set. This is an

important result that we will state here without proof. We will come back to

it in Chapter 10.

For the lens24 training set, splitting on attribute age would give three

subsets as shown in Figures 5.10(a), 5.10(b) and 5.10(c).

Training set 1 (age = 1)

Value of attribute Class

age specRx astig tears

1 1 1 1 3

1 1 1 2 2

1 1 2 1 3

1 1 2 2 1

1 2 1 1 3

1 2 1 2 2

1 2 2 1 3

1 2 2 2 1

Figure 5.10(a) Training Set 1 for lens24 Example

Entropy E1 = −(2/8) log2(2/8)− (2/8) log2(2/8)− (4/8) log2(4/8)

= 0.5 + 0.5 + 0.5 = 1.5

Training set 2 (age = 2)

Entropy E2 = −(1/8) log2(1/8)− (2/8) log2(2/8)− (5/8) log2(5/8)

= 0.375 + 0.5 + 0.4238 = 1.2988

Training Set 3 (age = 3)

Entropy E3 = −(1/8) log2(1/8)− (1/8) log2(1/8)− (6/8) log2(6/8)

= 0.375 + 0.375 + 0.3113 = 1.0613



Decision Tree Induction: Using Entropy for Attribute Selection 59

Value of attribute Class

age specRx astig tears

2 1 1 1 3

2 1 1 2 2

2 1 2 1 3

2 1 2 2 1

2 2 1 1 3

2 2 1 2 2

2 2 2 1 3

2 2 2 2 3

Figure 5.10(b) Training Set 2 for lens24 Example

Value of attribute Class

age specRx astig tears

3 1 1 1 3

3 1 1 2 3

3 1 2 1 3

3 1 2 2 1

3 2 1 1 3

3 2 1 2 2

3 2 2 1 3

3 2 2 2 3

Figure 5.10(c) Training Set 3 for lens24 Example

Although the entropy of the first of these three training sets (E1) is greater

than Estart, the weighted average will be less. The values E1, E2 and E3 need

to be weighted by the proportion of the original instances in each of the three

subsets. In this case all the weights are the same, i.e. 8/24.

If the average entropy of the three training sets produced by splitting on at-

tribute age is denoted by Enew, then Enew = (8/24)E1+(8/24)E2+(8/24)E3 =

1.2867 bits (to 4 decimal places).

If we define Information Gain = Estart − Enew then the information gain

from splitting on attribute age is 1.3261 − 1.2867 = 0.0394 bits (see Fig-

ure 5.11).

The ‘entropy method’ of attribute selection is to choose to split on the

attribute that gives the greatest reduction in (average) entropy, i.e. the one

that maximises the value of Information Gain. This is equivalent to minimising

the value of Enew as Estart is fixed.
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Figure 5.11 Information Gain for Splitting on Attribute age

5.3.4 Maximising Information Gain

The values of Enew and Information Gain for splitting on each of the four

attributes age, specRx, astig and tears are as follows:

attribute age

Enew = 1.2867

Information Gain = 1.3261 − 1.2867 = 0.0394 bits

attribute specRx

Enew = 1.2866

Information Gain = 1.3261 − 1.2866 = 0.0395 bits

attribute astig

Enew = 0.9491

Information Gain = 1.3261 − 0.9491 = 0.3770 bits

attribute tears

Enew = 0.7773

Information Gain = 1.3261 − 0.7773 = 0.5488 bits

Thus, the largest value of Information Gain (and the smallest value of the

new entropy Enew) is obtained by splitting on attribute tears (see Figure 5.12).

The process of splitting on nodes is repeated for each branch of the evolving

decision tree, terminating when the subset at every leaf node has entropy zero.
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Figure 5.12 Splitting on Attribute tears

5.4 Chapter Summary

This chapter examines some alternative strategies for selecting attributes at

each stage of the TDIDT decision tree generation algorithm and compares the

size of the resulting trees for a number of datasets. The risk of obtaining decision

trees that are entirely meaningless is highlighted, pointing to the importance

of a good choice of attribute selection strategy. One of the most widely used

strategies is based on minimising entropy (or equivalently maximising infor-

mation gain) and this approach is illustrated in detail.

5.5 Self-assessment Exercises for Chapter 5

1. By constructing a spreadsheet or otherwise, calculate the following for the

degrees dataset given in Section 4.1.3, Figure 4.3:

a) the initial entropy Estart

b) the weighted average entropy Enew of the training (sub)sets resulting

from splitting on each of the attributes SoftEng, Arin, HCI, CSA and

Project in turn and the corresponding value of Information Gain in

each case.

Using these results, verify that the attribute that will be chosen by the

TDIDT algorithm for the first split on the data using the entropy selection

criterion is SoftEng.
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2. Suggest reasons why entropy (or information gain) is one of the most effec-

tive methods of attribute selection when using the TDIDT tree generation

algorithm.
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Decision Tree Induction: Using Frequency

Tables for Attribute Selection

6.1 Calculating Entropy in Practice

The detailed calculations needed to choose an attribute to split on at a node

in the evolving decision tree were illustrated in Section 5.3.3. At each node a

table of values such as Figure 5.10(a), reproduced here as Figure 6.1, needs to

be calculated for every possible value of every categorical attribute.

Value of attribute Class

age specRx astig tears

1 1 1 1 3

1 1 1 2 2

1 1 2 1 3

1 1 2 2 1

1 2 1 1 3

1 2 1 2 2

1 2 2 1 3

1 2 2 2 1

Figure 6.1 Training Set 1 (age = 1) for lens24 Example

For practical use a more efficient method is available which requires only a

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 6,
© Springer-Verlag London 2013
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single table to be constructed for each categorical attribute at each node. This

method, which can be shown to be equivalent to the one given previously (see

Section 6.1.1), uses a frequency table. The cells of this table show the number

of occurrences of each combination of class and attribute value in the training

set. For the lens24 dataset the frequency table corresponding to splitting on

attribute age is shown in Figure 6.2.

age = 1 age = 2 age = 3

Class 1 2 1 1

Class 2 2 2 1

Class 3 4 5 6

Column sum 8 8 8

Figure 6.2 Frequency Table for Attribute age for lens24 Example

We will denote the total number of instances by N , so N = 24.

The value of Enew, the average entropy of the training sets resulting from

splitting on a specified attribute, can now be calculated by forming a sum as

follows.

(a) For every non-zero value V in the main body of the table (i.e. the part

above the ‘column sum’ row), subtract V × log2 V .

(b) For every non-zero value S in the column sum row, add S × log2 S.

Finally, divide the total by N .

Figure 6.3 gives the value of log2 x for small integer values of x for reference.

Using the frequency table given as Figure 6.2, splitting on attribute age

gives an Enew value of

−2 log2 2− 1 log2 1− 1 log2 1− 2 log2 2− 2 log2 2− 1 log2 1

−4 log2 4− 5 log2 5− 6 log2 6 + 8 log2 8 + 8 log2 8 + 8 log2 8

divided by 24. This can be rearranged as

(−3× 2 log2 2− 3 log2 1− 4 log2 4− 5 log2 5− 6 log2 6 + 3× 8 log2 8)/24

= 1.2867 bits (to 4 decimal places), which agrees with the value calculated

previously.

6.1.1 Proof of Equivalence

It remains to be proved that this method always gives the same value of Enew

as the basic method described in Chapter 5.
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x log2 x

1 0

2 1

3 1.5850

4 2

5 2.3219

6 2.5850

7 2.8074

8 3

9 3.1699

10 3.3219

11 3.4594

12 3.5850

Figure 6.3 Some values of log2 x (to 4 decimal places)

Assume that there are N instances, each relating the value of a number

of categorical attributes to one of K possible classifications. (For the lens24

dataset used previously, N = 24 and K = 3.)

Splitting on a categorical attribute with V possible values produces V sub-

sets of the training set. The jth subset contains all the instances for which the

attribute takes its jth value. Let Nj denote the number of instances in that

subset. Then
V∑

j=1

Nj = N

(For the frequency table shown in Figure 6.2, for attribute age, there are three

values of the attribute, so V = 3. The three column sums are N1, N2 and N3,

which all have the same value (8). The value of N is N1 +N2 +N3 = 24.)

Let fij denote the number of instances for which the classification is the ith

one and the attribute takes its jth value (e.g. for Figure 6.2, f32 = 5). Then

K∑

i=1

fij = Nj

The frequency table method of forming the sum for Enew given above

amounts to using the formula

Enew = −
V∑

j=1

K∑

i=1

(fij/N). log2 fij +

V∑

j=1

(Nj/N). log2 Nj
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The basic method of calculating Enew using the entropies of the j subsets

resulting from splitting on the specified attribute was described in Chapter 5.

The entropy of the jth subset is Ej where

Ej = −
K∑

i=1

(fij/Nj). log2(fij/Nj)

The value of Enew is the weighted sum of the entropies of these V subsets.

The weighting is the proportion of the original N instances that the subset

contains, i.e. Nj/N for the jth subset. So

Enew =
V∑

j=1

NjEj/N

= −
V∑

j=1

K∑

i=1

(Nj/N).(fij/Nj). log2(fij/Nj)

= −
V∑

j=1

K∑

i=1

(fij/N). log2(fij/Nj)

= −
V∑

j=1

K∑

i=1

(fij/N). log2 fij +
V∑

j=1

K∑

i=1

(fij/N). log2 Nj

= −
V∑

j=1

K∑

i=1

(fij/N). log2 fij +
V∑

j=1

(Nj/N). log2 Nj [as
K∑

i=1

fij = Nj ]

This proves the result.

6.1.2 A Note on Zeros

The formula for entropy given in Section 5.3.2 excludes empty classes from the

summation. They correspond to zero entries in the body of the frequency table,

which are also excluded from the calculation.

If a complete column of the frequency table is zero it means that the categor-

ical attribute never takes one of its possible values at the node under consider-

ation. Any such columns are ignored. (This corresponds to ignoring empty sub-

sets whilst generating a decision tree, as described in Section 4.2, Figure 4.5.)

6.2 Other Attribute Selection Criteria: Gini
Index of Diversity

As well as entropy (or information gain) many other methods have been pro-

posed for selecting the attribute to split on at each stage of the TDIDT algo-

rithm. There is a useful review of several methods by Mingers [1].
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One measure that is commonly used is the Gini Index of Diversity. If there

are K classes, with the probability of the ith class being pi, the Gini Index is

defined as 1−
K∑

i=1

p2i .

This is a measure of the ‘impurity’ of a dataset. Its smallest value is zero,

which it takes when all the classifications are the same. It takes its largest value

1− 1/K when the classes are evenly distributed between the instances, i.e. the

frequency of each class is 1/K.

Splitting on a chosen attribute gives a reduction in the average Gini Index

of the resulting subsets (as it does for entropy). The new average value Gininew
can be calculated using the same frequency table used to calculate the new

entropy value in Section 6.1.

Using the notation introduced in that section, the value of the Gini Index

for the jth subset resulting from splitting on a specified attribute is Gj , where

Gj = 1−
K∑

i=1

(fij/Nj)
2

The weighted average value of the Gini Index for the subsets resulting from

splitting on the attribute is

Gininew =
V∑

j=1

Nj.Gj/N

=
V∑

j=1

(Nj/N)−
V∑

j=1

K∑

i=1

(Nj/N).(fij/Nj)
2

= 1−
V∑

j=1

K∑

i=1

f2
ij/(N.Nj)

= 1− (1/N)
V∑

j=1

(1/Nj)
K∑

i=1

f2
ij

At each stage of the attribute selection process the attribute is selected which

maximises the reduction in the value of the Gini Index, i.e. Ginistart−Gininew.

Again taking the example of the lens24 dataset, the initial probabilities of

the three classes as given in Chapter 5 are p1 = 4/24, p2 = 5/24 and p3 = 15/24.

Hence the initial value of the Gini Index is Gstart = 0.5382.

For splitting on attribute age the frequency table, as before, is shown in

Figure 6.4.

We can now calculate the new value of the Gini Index as follows.

1. For each non-empty column, form the sum of the squares of the values in

the body of the table and divide by the column sum.

2. Add the values obtained for all the columns and divide by N (the number

of instances).
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age = 1 age = 2 age = 3

Class 1 2 1 1

Class 2 2 2 1

Class 3 4 5 6

Column sum 8 8 8

Figure 6.4 Frequency Table for Attribute age for lens24 Example

3. Subtract the total from 1.

For Figure 6.4 we have

age = 1: (22 + 22 + 42)/8 = 3

age = 2: (12 + 22 + 52)/8 = 3.75

age = 3: (12 + 12 + 62)/8 = 4.75

Gnew = 1− (3 + 3.75 + 4.75)/24 = 0.5208.

Thus the reduction in the value of the Gini Index corresponding to splitting

on attribute age is 0.5382− 0.5208 = 0.0174.

For the other three attributes, the corresponding values are

specRx: Gnew = 0.5278, so the reduction is 0.5382− 0.5278 = 0.0104

astig: Gnew = 0.4653, so the reduction is 0.5382− 0.4653 = 0.0729

tears: Gnew = 0.3264, so the reduction is 0.5382− 0.3264 = 0.2118

The attribute selected would be the one which gives the largest reduction

in the value of the Gini Index, i.e. tears. This is the same attribute that was

selected using entropy.

6.3 The χ2 Attribute Selection Criterion

Another useful attribute selection measure that can be calculated using a fre-

quency table is the χ2 value. χ is the Greek letter often rendered in the Ro-

man alphabet as chi (pronounced ‘sky’ without the initial ‘s’). The term χ2 is

pronounced ‘chi-square’ or ‘chi-squared’. It is commonly used in statistics. Its

relevance to attribute selection will soon become apparent.

The method will be described in more detail and in a fuller form in a

later chapter on discretisation of continuous attributes, so only a fairly brief

description will be given here.
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Suppose that for some dataset with three possible classifications c1, c2 and

c3 we have an attribute A with four values a1, a2, a3 and a4, and the frequency

table given in Figure 6.5.

a1 a2 a3 a4 Total

c1 27 64 93 124 308

c2 31 54 82 105 272

c3 42 82 125 171 420

Total 100 200 300 400 1000

Figure 6.5 Frequency Table for Attribute A

We start by making the assumption that the value of A has no effect what-

soever on the classification and look for evidence that this assumption (which

statisticians call the null hypothesis) is false.

It is quite easy to imagine four-valued attributes that are certain or almost

certain to be irrelevant to a classification. For example the values in each row

might correspond to the number of patients achieving a large benefit, a little

benefit or no benefit (classifications c1, c2 and c3) from a certain medical

treatment, with attribute values a1 to a4 denoting a division of patients into

four groups depending on the number of siblings they have (say zero, one, two,

three or more). Such a division would appear (to this layman) highly unlikely to

be relevant. Other four-valued attributes far more likely to be relevant include

age and weight, each converted into four ranges in this case.

The example may be made more controversial by saying that c1, c2 and

c3 are levels achieved in some kind of intelligence test and a1, a2, a3 and a4

denote people who are married and male, married and female, unmarried and

male or unmarried and female, not necessarily in that order. Does the test

score obtained depend on which category you are in? Please note that we are

not trying to settle such sensitive questions in this book, especially not with

invented data, just (as far as this chapter is concerned) deciding which attribute

should be selected when constructing a decision tree.

From now on we will treat the data as test results but to avoid controversy

will not say anything about the kind of people who fall into the four categories

a1 to a4.

The first point to note is that from examining the Total row we can see that

the people who took the test had attribute values a1 to a4 in the ratio 1:2:3:4.

This is simply a fact about the data we happen to have obtained and in itself

implies nothing about the null hypothesis, that the division of test subjects

into four groups is irrelevant.
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Next consider the c1 row. We can see that a total of 308 people obtained

classification c1. If the value of attribute A were irrelevant we would expect

the 308 values in the cells to split in the ratio 1:2:3:4.

In cell c1/a1 we would expect a value of 308*100/1000 = 30.8.

In c1/a2 we would expect twice this, i.e. 308*200/1000 = 61.6.

In c1/a3 we would expect 308*300/1000 = 92.4.

In c1/a4 we would expect 308*400/1000 = 123.2.

(Note that the total of the four values comes to 308, as it must.)

We call the four calculated values above the expected values for each

class/attribute value combination. The actual values in the c1 row: 27, 64,

93 and 124 are not far away from these. Do they and the expected values for

the c2 and c3 rows support or undermine the null hypothesis, that attribute A

is irrelevant?

Although the ‘ideal’ situation is that all the expected values are identical

to the corresponding actual values, known as the observed values, this needs a

strong caveat. If you ever read a published research paper, newspaper article

etc. where for some data the expected values all turn out to be exact integers

that are exactly the same as the observed values for all classification/attribute

value combinations, by far the most likely explanation is that the published

data is an exceptionally incompetent fraud. In the real world, such perfect

accuracy is never achieved. In this example, as with most real data it is in any

case impossible for the expected values to be entirely identical to the observed

ones, as the former are not usually integers and the latter must be.

Figure 6.6 is an updated version of the frequency table given previously,

with the observed value in each of the cells from c1/a1 to c3/a4 followed by

its expected value in parentheses.

a1 a2 a3 a4 Total

c1 27 (30.8) 64 (61.6) 93 (92.4) 124 (123.2) 308

c2 31 (27.2) 54 (54.4) 82 (81.6) 105 (108.8) 272

c3 42 (42.0) 82 (84.0) 125 (126.0) 171 (168.0) 420

Total 100 200 300 400 1000

Figure 6.6 Frequency Table for Attribute A Augmented by Expected Values

The notation normally used is to represent the observed value for each cell

by O and the expected value by E. The value of E for each cell is just the

product of the corresponding column sum and row sum divided by the grand

total number of instances given in the bottom right-hand corner of the table.

For example the E value for cell c3/a2 is 200*420/1000 = 84.0.
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We can use the values of O and E for each cell to calculate a measure of how

far the frequency table varies from what we would expect if the null hypothesis

(that attribute A is irrelevant) were correct. We would like the measure to

be zero in the case that the E values in every cell are always identical to the

corresponding O values.

The measure generally used is the χ2 value, which is defined as the sum of

the values of (O − E)2/E over all the cells.

Calculating the χ2 value for the updated frequency table above, we have

χ2 = (27 − 30.8)2/30.8 + . . . + (171 − 168.0)2/168.0 = 1.35 (to two decimal

places).

Is this χ2 value small enough to give support for the null hypothesis that

attribute A is irrelevant to the classification? Or is it large enough to suggest

that the null hypothesis is false?

This question will be important when the same method is used later in

connection with the discretisation of continuous attributes, but as far as this

chapter is concerned we will ignore the question of the validity of the null

hypothesis and simply record the value of χ2. We then repeat the process with

all the attributes under consideration as the attribute to split on in our decision

tree and choose the one with the largest χ2 value as the one likely to have the

greatest power of discrimination amongst the three classifications.

6.4 Inductive Bias

Before going on to describe a further method of attribute selection we will in-

troduce the idea of inductive bias, which will help to explain why other methods

are needed.

Consider the following question, which is typical of those that used to be

(and probably still are) set for school children to answer as part of a so-called

‘intelligence test’.

Find the next term in the sequence

1, 4, 9, 16, . . .

Pause and decide on your answer before going on.

Most readers will probably have chosen the answer 25, but this is misguided.

The correct answer is 20. As should be obvious, the nth term of the series is

calculated from the formula:

nth term = (−5n4 + 50n3 − 151n2 + 250n− 120)/24

By choosing 25, you display a most regrettable bias towards perfect squares.
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This is not serious of course, but it is trying to make a serious point. Math-

ematically it is possible to find some formula that will justify any further de-

velopment of the sequence, for example

1, 4, 9, 16, 20, 187,−63, 947

It is not even necessary for a term in a sequence to be a number. The sequence

1, 4, 9, 16, dog, 36, 49

is perfectly valid mathematically. (A restriction to numerical values shows a

bias towards numbers rather than the names of types of animal.)

Despite this, there is little doubt that anyone answering the original question

with 20 will be marked as wrong. (Answering with ‘dog’ is definitely not to be

recommended.)

In practice we have a strong preference for hypothesising certain kinds of

solution rather than others. A sequence such as

1, 4, 9, 16, 25 (perfect squares)

or 1, 8, 27, 64, 125, 216 (perfect cubes)

or 5, 8, 11, 14, 17, 20, 23, 26 (values differ by 3)

seems reasonable, whereas one such as

1, 4, 9, 16, 20, 187,−63, 947

does not.

Whether this is right or wrong is impossible to say absolutely— it depends

on the situation. It illustrates an inductive bias, i.e. a preference for one choice

rather than another, which is not determined by the data itself (in this case,

previous values in the sequence) but by external factors, such as our preferences

for simplicity or familiarity with perfect squares. In school we rapidly learn

that the question-setter has a strong bias in favour of sequences such as perfect

squares and we give our answers to match this bias if we can.

Turning back to the task of attribute selection, any formula we use for it,

however principled we believe it to be, introduces an inductive bias that is not

justified purely by the data. Such bias can be helpful or harmful, depending

on the dataset. We can choose a method that has a bias that we favour, but

we cannot eliminate inductive bias altogether. There is no neutral, unbiased

method.

Clearly it is important to be able to say what bias is introduced by any

particular method of selecting attributes. For many methods this is not easy to

do, but for one of the best-known methods we can. Using entropy can be shown

to have a bias towards selecting attributes with a large number of values.
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For many datasets this does no harm, but for some it can be undesirable. For

example we may have a dataset about people that includes an attribute ‘place

of birth’ and classifies them as responding to some medical treatment ‘well’,

‘badly’ or ‘not at all’. Although the place of birth may have some effect on the

classification it is probably only a minor one. Unfortunately, the information

gain selection method will almost certainly choose it as the first attribute to

split on in the decision tree, generating one branch for each possible place of

birth. The decision tree will be very large, with many branches (rules) with

very low value for classification.

6.5 Using Gain Ratio for Attribute Selection

In order to reduce the effect of the bias resulting from the use of information

gain, a variant known as Gain Ratio was introduced by the Australian aca-

demic Ross Quinlan in his influential system C4.5 [2]. Gain Ratio adjusts the

information gain for each attribute to allow for the breadth and uniformity of

the attribute values.

The method will be illustrated using the frequency table given in Section 6.1.

The value of Enew, the average entropy of the training sets resulting from

splitting on attribute age, has previously been shown to be 1.2867 and the

entropy of the original training set Estart has been shown to be 1.3261. It

follows that

Information Gain = Estart − Enew = 1.3261− 1.2867 = 0.0394.

Gain Ratio is defined by the formula

Gain Ratio = Information Gain/Split Information

where Split Information is a value based on the column sums.

Each non-zero column sum s contributes −(s/N) log2(s/N) to the Split

Information. Thus for Figure 6.2 the value of Split Information is

−(8/24) log2(8/24)− (8/24) log2(8/24)− (8/24) log2(8/24) = 1.5850

Hence Gain Ratio = 0.0394/1.5850 = 0.0249 for splitting on attribute age.

For the other three attributes, the value of Split Information is 1.0 in each

case. Hence the values of Gain Ratio for splitting on attributes specRx, astig

and tears are 0.0395, 0.3770 and 0.5488 respectively.

The largest value of Gain Ratio is for attribute tears, so in this case Gain

Ratio selects the same attribute as entropy.
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6.5.1 Properties of Split Information

Split Information forms the denominator in the Gain Ratio formula. Hence the

higher the value of Split Information, the lower the Gain Ratio.

The value of Split Information depends on the number of values a categorical

attribute has and how uniformly those values are distributed (hence the name

‘Split Information’).

To illustrate this we will examine the case where there are 32 instances and

we are considering splitting on an attribute a, which has values 1, 2, 3 and 4.

The ‘Frequency’ row in the tables below is the same as the column sum row

in the frequency tables used previously in this chapter.

The following examples illustrate a number of possibilities.

1. Single Attribute Value

a = 1 a = 2 a = 3 a = 4

Frequency 32 0 0 0

Split Information = −(32/32)× log2(32/32) = − log2 1 = 0

2. Different Distributions of a Given Total Frequency

a = 1 a = 2 a = 3 a = 4

Frequency 16 16 0 0

Split Information = −(16/32) × log2(16/32) − (16/32) × log2(16/32) =

− log2(1/2) = 1

a = 1 a = 2 a = 3 a = 4

Frequency 16 8 8 0

Split Information = −(16/32) × log2(16/32) − 2 × (8/32) × log2(8/32) =

−(1/2) log2(1/2)− (1/2) log2(1/4) = 0.5 + 1 = 1.5

a = 1 a = 2 a = 3 a = 4

Frequency 16 8 4 4

Split Information = −(16/32) × log2(16/32) − (8/32) × log2(8/32) − 2 ×
(4/32)× log2(4/32) = 0.5 + 0.5 + 0.75 = 1.75

3. Uniform Distribution of Attribute Frequencies

a = 1 a = 2 a = 3 a = 4

Frequency 8 8 8 8

Split Information = −4× (8/32)× log2(8/32) = − log2(1/4) = log2 4 = 2

In general, if there areM attribute values, each occurring equally frequently,

the Split Information is log2 M (irrespective of the frequency value).
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6.5.2 Summary

Split Information is zero when there is a single attribute value.

For a given number of attribute values, the largest value of Split Information

occurs when there is a uniform distribution of attribute frequencies.

For a given number of instances that are uniformly distributed, Split Infor-

mation increases when the number of different attribute values increases.

The largest values of Split Information occur when there are many possible

attribute values, all equally frequent.

Information Gain is generally largest when there are many possible attribute

values. Dividing this value by Split Information to give Gain Ratio substantially

reduces the bias towards selecting attributes with a large number of values.

6.6 Number of Rules Generated by Different
Attribute Selection Criteria

Figure 6.7 repeats the results given in Figure 5.8, augmented by the results for

Gain Ratio. The largest value for each dataset is given in bold and underlined.

Dataset Excluding Entropy and Gain Ratio Entropy Gain Ratio

most least

contact lenses 42 26 16 17

lens24 21 9 9 9

chess 155 52 20 20

vote 116 40 34 33

monk1 89 53 52 52

monk2 142 109 95 96

monk3 77 43 28 25

Figure 6.7 TDIDT with Various Attribute Selection Methods

For many datasets Information Gain (i.e. entropy reduction) and Gain Ratio

give the same results. For others using Gain Ratio can give a significantly

smaller decision tree. However, Figure 6.7 shows that neither Information Gain

nor Gain Ratio invariably gives the smallest decision tree. This is in accord with

the general result that no method of attribute selection is best for all possible

datasets. In practice Information Gain is probably the most commonly used

method, although the popularity of C4.5 makes Gain Ratio a strong contender.
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6.7 Missing Branches

The phenomenon of missing branches can occur at any stage of decision tree

generation but is more likely to occur lower down in the tree where the number

of instances under consideration is smaller.

As an example, suppose that tree construction has reached the following

stage (only some of the nodes and branches are labelled).

The left-most node (marked as ∗) corresponds to an incomplete rule

IF X =1 AND Y = 1 . . .

Suppose that at ∗ it is decided to split on categorical attribute Z, which has

four possible values a, b, c and d. Normally this would lead to four branches

being created at that node, one for each of the possible categorical values. How-

ever it may be that for the instances being considered there (which may be only

a small subset of the original training set) there are no cases where attribute

Z has the value d. In that case only three branches would be generated, giving

the following.
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There is no branch for Z = d. This corresponds to an empty subset of

instances where Z has that value. (The TDIDT algorithm states ‘divide the

instances into non-empty subsets’.)

This missing branch phenomenon occurs quite frequently but generally has

little impact. Its drawback (if it is one) occurs when the tree is used to classify

an unseen instance for which attributes X, Y and Z have the values 1, 1 and

d respectively. In this case there will be no branches of the tree corresponding

to the unseen instance and so none of the corresponding rules will fire and the

instance will remain unclassified. This is not usually a significant problem as

it may well be considered preferable to leave an unseen instance unclassified

rather than to classify it wrongly. However it would be easy for a practical rule

induction system to provide a facility for any unclassified instances to be given

a default classification, say the largest class.

6.8 Chapter Summary

This chapter describes an alternative method of calculating the average entropy

of the training (sub)sets resulting from splitting on an attribute, which uses

frequency tables. It is shown to be equivalent to the method used in Chapter 5

but requires less computation. Two alternative attribute selection criteria, the

Gini Index of Diversity and the χ2 statistic, are illustrated and it is shown how

they can also be calculated using a frequency table.

The important issue of inductive bias is introduced. This leads to a descrip-

tion of a further attribute selection criterion, Gain Ratio, which was introduced

as a way of overcoming the bias of the entropy minimisation method, which is

undesirable for some datasets.

6.9 Self-assessment Exercises for Chapter 6

1. Repeat Exercise 1 from Chapter 5 using the frequency table method of

calculating entropy. Verify that the two methods give the same results.

2. When using the TDIDT algorithm, with the degrees dataset, find the at-

tribute that will be chosen for the first split on the data using the Gain

Ratio and Gini Index attribute selection strategies.

3. Suggest two datasets for which the Gain Ratio attribute selection strategy

may be preferable to using entropy minimisation.
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7
Estimating the Predictive Accuracy of a

Classifier

7.1 Introduction

Any algorithm which assigns a classification to unseen instances is called a

classifier. A decision tree of the kind described in earlier chapters is one very

popular type of classifier, but there are several others, some of which are de-

scribed elsewhere in this book.

This chapter is concerned with estimating the performance of a classifier of

any kind but will be illustrated using decision trees generated with attribute

selection using information gain, as described in Chapter 5.

Although the data compression referred to in Chapter 4 can sometimes

be important, in practice the principal reason for generating a classifier is to

enable unseen instances to be classified. However we have already seen that

many different classifiers can be generated from a given dataset. Each one is

likely to perform differently on a set of unseen instances.

The most obvious criterion to use for estimating the performance of a clas-

sifier is predictive accuracy, i.e. the proportion of a set of unseen instances that

it correctly classifies. This is often seen as the most important criterion but

other criteria are also important, for example algorithmic complexity, efficient

use of machine resources and comprehensibility.

For most domains of interest the number of possible unseen instances is

potentially very large (e.g. all those who might develop an illness, the weather

for every possible day in the future or all the possible objects that might appear

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 7,
© Springer-Verlag London 2013
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on a radar display), so it is not possible ever to establish the predictive accuracy

beyond dispute. Instead, it is usual to estimate the predictive accuracy of a

classifier by measuring its accuracy for a sample of data not used when it was

generated. There are three main strategies commonly used for this: dividing

the data into a training set and a test set, k-fold cross-validation and N-fold

(or leave-one-out) cross-validation.

7.2 Method 1: Separate Training and Test Sets

For the ‘train and test’ method the available data is split into two parts called

a training set and a test set (Figure 7.1). First, the training set is used to

construct a classifier (decision tree, neural net etc.). The classifier is then used

to predict the classification for the instances in the test set. If the test set

contains N instances of which C are correctly classified the predictive accuracy

of the classifier for the test set is p = C/N . This can be used as an estimate of

its performance on any unseen dataset.

Figure 7.1 Train and Test

NOTE. For some datasets in the UCI Repository (and elsewhere) the data

is provided as two separate files, designated as the training set and the test set.

In such cases we will consider the two files together as comprising the ‘dataset’

for that application. In cases where the dataset is only a single file we need to

divide it into a training set and a test set before using Method 1. This may be

done in many ways, but a random division into two parts in proportions such

as 1:1, 2:1, 70:30 or 60:40 would be customary.
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7.2.1 Standard Error

It is important to bear in mind that the overall aim is not (just) to classify

the instances in the test set but to estimate the predictive accuracy of the

classifier for all possible unseen instances, which will generally be many times

the number of instances contained in the test set.

If the predictive accuracy calculated for the test set is p and we go on to

use the classifier to classify the instances in a different test set, it is very likely

that a different value for predictive accuracy would be obtained. All that we

can say is that p is an estimate of the true predictive accuracy of the classifier

for all possible unseen instances.

We cannot determine the true value without collecting all the instances and

running the classifier on them, which is usually an impossible task. Instead, we

can use statistical methods to find a range of values within which the true value

of the predictive accuracy lies, with a given probability or ‘confidence level’.

To do this we use the standard error associated with the estimated value p.

If p is calculated using a test set of N instances the value of its standard error

is
√
p(1− p)/N . (The proof of this is outside the scope of this book, but can

readily be found in many statistics textbooks.)

The significance of standard error is that it enables us to say that with a

specified probability (which we can choose) the true predictive accuracy of the

classifier is within so many standard errors above or below the estimated value

p. The more certain we wish to be, the greater the number of standard errors.

The probability is called the confidence level, denoted by CL and the number

of standard errors is usually written as ZCL.

Figure 7.2 shows the relationship between commonly used values of CL and

ZCL.

Confidence Level (CL) 0.9 0.95 0.99

ZCL 1.64 1.96 2.58

Figure 7.2 Values of ZCL for Certain Confidence Levels

If the predictive accuracy for a test set is p, with standard error S, then

using this table we can say that with probability CL (or with a confidence level

CL) the true predictive accuracy lies in the interval p± ZCL × S.
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Example

If the classifications of 80 instances out of a test set of 100 instances were

predicted accurately, the predictive accuracy on the test set would be 80/100

= 0.8. The standard error would be
√
0.8× 0.2/100 =

√
0.0016 = 0.04. We can

say that with probability 0.95 the true predictive accuracy lies in the interval

0.8± 1.96× 0.04, i.e. between 0.7216 and 0.8784 (to four decimal places).

Instead of a predictive accuracy of 0.8 (or 80%) we often refer to an error

rate of 0.2 (or 20%). The standard error for the error rate is the same as that

for predictive accuracy.

The value of CL to use when estimating predictive accuracy is a matter of

choice, although it is usual to choose a value of at least 0.9. The predictive ac-

curacy of a classifier is often quoted in technical papers as just p±
√

p(1− p)/N

without any multiplier ZCL.

7.2.2 Repeated Train and Test

Here the classifier is used to classify k test sets, not just one. If all the test sets

are of the same size, N , the predictive accuracy values obtained for the k test

sets are then averaged to produce an overall estimate p.

As the total number of instances in the test sets is kN , the standard error

of the estimate p is
√
p(1− p)/kN .

If the test sets are not all of the same size the calculations are slightly more

complicated.

If there are Ni instances in the ith test set (1 ≤ i ≤ k) and the predictive

accuracy calculated for the ith test set is pi the overall predictive accuracy p

is
i=k∑

i=1

piNi/T where
i=k∑

i=1

Ni = T , i.e. p is the weighted average of the pi values.

The standard error is
√
p(1− p)/T .

7.3 Method 2: k-fold Cross-validation

An alternative approach to ‘train and test’ that is often adopted when the

number of instances is small (and which many prefer to use regardless of size)

is known as k-fold cross-validation (Figure 7.3).

If the dataset comprises N instances, these are divided into k equal parts,

k typically being a small number such as 5 or 10. (If N is not exactly divisible

by k, the final part will have fewer instances than the other k − 1 parts.) A
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series of k runs is now carried out. Each of the k parts in turn is used as a test

set and the other k − 1 parts are used as a training set.

The total number of instances correctly classified (in all k runs combined) is

divided by the total number of instances N to give an overall level of predictive

accuracy p, with standard error
√
p(1− p)/N .

Figure 7.3 k-fold Cross-validation

7.4 Method 3: N -fold Cross-validation

N -fold cross-validation is an extreme case of k-fold cross-validation, often

known as ‘leave-one-out’ cross-validation or jack-knifing, where the dataset is

divided into as many parts as there are instances, each instance effectively

forming a test set of one.

N classifiers are generated, each from N − 1 instances, and each is used to

classify a single test instance. The predictive accuracy p is the total number

correctly classified divided by the total number of instances. The standard error

is
√

p(1− p)/N .

The large amount of computation involved makes N -fold cross-validation

unsuitable for use with large datasets. For other datasets, it is not clear whether

any gain in the accuracy of the estimates produced by using N -fold cross-

validation justifies the additional computation involved. In practice, the method
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is most likely to be of benefit with very small datasets where as much data as

possible needs to be used to train the classifier.

7.5 Experimental Results I

In this section we look at experiments to estimate the predictive accuracy of

classifiers generated for four datasets.

All the results in this section were obtained using the TDIDT tree induction

algorithm, with information gain used for attribute selection.

Basic information about the datasets is given in Figure 7.4 below. Further

information about these and most of the other datasets mentioned in this book

is given in Appendix B.

Dataset Description classes attributes+ instances

categ cts training test

set set

vote Voting in US

Congress in 1984 2 16 300 135

pima- Prevalence of

indians Diabetes in Pima

Indian Women 2 8 768

chess Chess Endgame 2 7 647

glass Glass Identification 7 9* 214

+ categ: categorical; cts: continuous

∗ plus one ‘ignore’ attribute

Figure 7.4 Four Datasets

The vote, pima-indians and glass datasets are all taken from the UCI Repos-

itory. The chess dataset was constructed for a well-known series of machine

learning experiments [1].

The vote dataset has separate training and test sets. The other three

datasets were first divided into two parts, with every third instance placed

in the test set and the other two placed in the training set in both cases.

The result for the vote dataset illustrates the point that TDIDT (along

with some but not all other classification algorithms) is sometimes unable to

classify an unseen instance (Figure 7.5). The reason for this was discussed in

Section 6.7.
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Dataset Test set Correctly classified Incorrectly Unclassified

(instances) classified

vote 135 126 (93% ± 2%) 7 2

pima-indians 256 191 (75% ± 3%) 65

chess 215 214 (99.5% ± 0.5%) 1

glass 71 50 (70% ± 5%) 21

Figure 7.5 Train and Test Results for Four Datasets

Unclassified instances can be dealt with by giving the classifier a ‘default

strategy’, such as always allocating them to the largest class, and that will be

the approach followed for the remainder of this chapter. It could be argued that

it might be better to leave unclassified instances as they are, rather than risk

introducing errors by assigning them to a specific class or classes. In practice the

number of unclassified instances is generally small and how they are handled

makes little difference to the overall predictive accuracy.

Figure 7.6 gives the ‘train and test’ result for the vote dataset modified to

incorporate the ‘default to largest class’ strategy. The difference is slight.

Dataset Test set (instances) Correctly classified Incorrectly classified

vote 135 127 (94% ± 2%) 8

Figure 7.6 Train and Test Results for vote Dataset (Modified)

Figures 7.7 and 7.8 show the results obtained using 10-fold and N -fold

Cross-validation for the four datasets.

For the vote dataset the 300 instances in the training set are used. For the

other two datasets all the available instances are used.

Dataset Instances Correctly classified Incorrectly classified

vote 300 275 (92% ± 2%) 25

pima-indians 768 536 (70% ± 2%) 232

chess 647 645 (99.7% ± 0.2%) 2

glass 214 149 (70% ± 3%) 65

Figure 7.7 10-fold Cross-validation Results for Four Datasets

All the figures given in this section are estimates. The 10-fold cross-

validation and N -fold cross-validation results for all four datasets are based
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Dataset Instances Correctly classified Incorrectly classified

vote 300 278 (93% ± 2%) 22

pima-indians 768 517 (67% ± 2%) 251

chess 647 646 (99.8% ± 0.2%) 1

glass 214 144 (67% ± 3%) 70

Figure 7.8 N -fold Cross-validation Results for Four Datasets

on considerably more instances than those in the corresponding test sets for

the ‘train and test’ experiments and so are more likely to be reliable.

7.6 Experimental Results II: Datasets with
Missing Values

We now look at experiments to estimate the predictive accuracy of a classifier

in the case of datasets with missing values. As before we will generate all the

classifiers using the TDIDT algorithm, with Information Gain for attribute

selection.

Three datasets were used in these experiments, all from the UCI Repository.

Basic information about each one is given in Figure 7.9 below.

Dataset Description classes attributes+ instances

categ cts training test

set set

crx Credit Card 2 9 6 690 200

Applications (37) (12)

hypo Hypothyroid 5 22 7 2514 1258

Disorders (2514) (371)

labor-ne Labor Negotiations 2 8 8 40 (39) 17 (17)

+ categ: categorical; cts: continuous

Figure 7.9 Three Datasets with Missing Values

Each dataset has both a training set and a separate test set. In each case,

there are missing values in both the training set and the test set. The values

in parentheses in the ‘training set’ and ‘test set’ columns show the number of

instances that have at least one missing value.

The ‘train and test’ method was used for estimating predictive accuracy.
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Two strategies for dealing with missing attribute values were described in

Section 2.4. We give results for each of these in turn.

7.6.1 Strategy 1: Discard Instances

This is the simplest strategy: delete all instances where there is at least one

missing value and use the remainder. This strategy has the advantage of avoid-

ing introducing any data errors. Its main disadvantage is that discarding data

may damage the reliability of the resulting classifier.

A second disadvantage is that the method cannot be used when a high

proportion of the instances in the training set have missing values, as is the case

for example with both the hypo and the labor-ne datasets. A final disadvantage

is that it is not possible with this strategy to classify any instances in the test

set that have missing values.

Together these weaknesses are quite substantial. Although the ‘discard in-

stances’ strategy may be worth trying when the proportion of missing values

is small, it is not recommended in general.

Of the three datasets listed in Figure 7.9, the ‘discard instances’ strategy

can only be applied to crx. Doing so gives the possibly surprising result in

Figure 7.10.

Dataset MV strategy Rules Test set

Correct Incorrect

crx Discard Instances 118 188 0

Figure 7.10 Discard Instances Strategy with crx Dataset

Clearly discarding the 37 instances with at least one missing value from the

training set (5.4%) does not prevent the algorithm constructing a decision tree

capable of classifying the 188 instances in the test set that do not have missing

values correctly in every case.

7.6.2 Strategy 2: Replace by Most Frequent/Average
Value

With this strategy any missing values of a categorical attribute are replaced by

its most commonly occurring value in the training set. Any missing values of a

continuous attribute are replaced by its average value in the training set.
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Figure 7.11 shows the result of applying the ‘Most Frequent/Average Value’

strategy to the crx dataset. As for the ‘Discard Instances’ strategy all instances

in the test set are correctly classified, but this time all 200 instances in the test

set are classified, not just the 188 instances in the test set that do not have

missing values.

Dataset MV strategy Rules Test set

Correct Incorrect

crx Discard Instances 118 188 0

crx Most Frequent/Average Value 139 200 0

Figure 7.11 Comparison of Strategies with crx Dataset

With this strategy we can also construct classifiers from the hypo and crx

datasets.

In the case of the hypo dataset, we get a decision tree with just 15 rules.

The average number of terms per rule is 4.8. When applied to the test data this

tree is able to classify correctly 1251 of the 1258 instances in the test set (99%;

Figure 7.12). This is a remarkable result with so few rules, especially as there

are missing values in every instance in the training set. It gives considerable

credence to the belief that using entropy for constructing a decision tree is an

effective approach.

Dataset MV strategy Rules Test set

Correct Incorrect

hypo Most Frequent/Average Value 15 1251 7

Figure 7.12 Most Frequent Value/Average Strategy with hypo Dataset

In the case of the labor-ne dataset, we obtain a classifier with five rules,

which correctly classifies 14 out of the 17 instances in the test set (Figure 7.13).

Dataset MV strategy Rules Test set

Correct Incorrect

labor-ne Most Frequent/Average Value 5 14 3

Figure 7.13 Most Frequent Value/Average Strategy with labor-ne Dataset
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7.6.3 Missing Classifications

It is worth noting that for each dataset given in Figure 7.9 the missing values are

those of attributes, not classifications. Missing classifications in the training set

are a far larger problem than missing attribute values. One possible approach

would be to replace them all by the most frequently occurring classification but

this is unlikely to prove successful in most cases. The best approach is probably

to discard any instances with missing classifications.

7.7 Confusion Matrix

As well as the overall predictive accuracy on unseen instances it is often helpful

to see a breakdown of the classifier’s performance, i.e. how frequently instances

of class X were correctly classified as class X or misclassified as some other

class. This information is given in a confusion matrix.

The confusion matrix in Figure 7.14 gives the results obtained in ‘train and

test’ mode from the TDIDT algorithm (using information gain for attribute se-

lection) for the vote test set, which has two possible classifications: ‘republican’

and ‘democrat’.

Correct Classified as

classification democrat republican

democrat 81 (97.6%) 2 (2.4%)

republican 6 (11.5%) 46 (88.5%)

Figure 7.14 Example of a Confusion Matrix

The body of the table has one row and column for each possible classifi-

cation. The rows correspond to the correct classifications. The columns corre-

spond to the predicted classifications.

The value in the ith row and jth column gives the number of instances for

which the correct classification is the ith class which are classified as belonging

to the jth class. If all the instances were correctly classified, the only non-zero

entries would be on the ‘leading diagonal’ running from top left (i.e. row 1,

column 1) down to bottom right.

To demonstrate that the use of a confusion matrix is not restricted to

datasets with two classifications, Figure 7.15 shows the results obtained us-

ing 10-fold cross-validation with the TDIDT algorithm (using information gain
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for attribute section) for the glass dataset, which has six classifications: 1, 2,

3, 5, 6 and 7 (there is also a class 4 but it is not used for the training data).

Correct Classified as

classification 1 2 3 5 6 7

1 52 10 7 0 0 1

2 15 50 6 2 1 2

3 5 6 6 0 0 0

5 0 2 0 10 0 1

6 0 1 0 0 7 1

7 1 3 0 1 0 24

Figure 7.15 Confusion Matrix for glass Dataset

7.7.1 True and False Positives

When a dataset has only two classes, one is often regarded as ‘positive’ (i.e. the

class of principal interest) and the other as ‘negative’. In this case the entries

in the two rows and columns of the confusion matrix are referred to as true

and false positives and true and false negatives (Figure 7.16).

Correct classification Classified as

+ −
+ true positives false negatives

− false positives true negatives

Figure 7.16 True and False Positives and Negatives

When there are more than two classes, one class is sometimes important

enough to be regarded as positive, with all the other classes combined treated

as negative. For example we might consider class 1 for the glass dataset as the

‘positive’ class and classes 2, 3, 5, 6 and 7 combined as ‘negative’. The confusion

matrix given as Figure 7.15 can then be rewritten as shown in Figure 7.17.

Of the 73 instances classified as positive, 52 genuinely are positive (true

positives) and the other 21 are really negative (false positives). Of the 141

instances classified as negative, 18 are really positive (false negatives) and the

other 123 are genuinely negative (true negatives). With a perfect classifier there

would be no false positives or false negatives.
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Correct classification Classified as

+ −
+ 52 18

− 21 123

Figure 7.17 Revised Confusion Matrix for glass Dataset

False positives and false negatives may not be of equal importance, e.g.

we may be willing to accept some false positives as long as there are no false

negatives or vice versa. We will return to this topic in Chapter 12.

7.8 Chapter Summary

This chapter is concerned with estimating the performance of a classifier (of

any kind). Three methods are described for estimating a classifier’s predictive

accuracy. The first of these is to divide the data available into a training set used

for generating the classifier and a test set used for evaluating its performance.

The other methods are k-fold cross-validation and its extreme form N -fold (or

leave-one-out) cross-validation.

A statistical measure of the accuracy of an estimate formed using any of

these methods, known as standard error is introduced. Experiments to estimate

the predictive accuracy of the classifiers generated for various datasets are

described, including datasets with missing attribute values. Finally a tabular

way of presenting classifier performance information called a confusion matrix

is introduced, together with the notion of true and false positive and negative

classifications.

7.9 Self-assessment Exercises for Chapter 7

1. Calculate the predictive accuracy and standard error corresponding to the

confusion matrices given in Figures 7.14 and 7.15. For each dataset, state

the range in which the true value of the predictive accuracy can be expected

to lie with probability 0.9, 0.95 and 0.99.

2. Suggest some classification tasks for which either false positive or false neg-

ative classifications (or both) would be undesirable. For these tasks, what
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proportion of false negative (positive) classifications would you be willing

to accept in order to reduce the proportion of false positives (negatives) to

zero?

Reference

[1] Quinlan, J. R. (1979). Discovering rules by induction from large collections

of examples. In D. Michie (Ed.), Expert systems in the micro-electronic age

(pp. 168–201). Edinburgh: Edinburgh University Press.



8
Continuous Attributes

8.1 Introduction

Many data mining algorithms, including the TDIDT tree generation algorithm,

require all attributes to take categorical values. However, in the real world many

attributes are naturally continuous, e.g. height, weight, length, temperature and

speed. It is essential for a practical data mining system to be able to handle such

attributes. In some cases the algorithms can be adapted for use with continuous

attributes. In other cases, this is hard or impossible to do.

Although it would be possible to treat a continuous attribute as a categor-

ical one with values 6.3, 7.2, 8.3, 9.2 etc., say, this is very unlikely to prove

satisfactory in general. If the continuous attribute has a large number of dif-

ferent values in the training set, it is likely that any particular value will only

occur a small number of times, perhaps only once, and rules that include tests

for specific values such as X = 7.2 will probably be of very little value for

prediction.

The standard approach is to split the values of a continuous attribute into a

number of non-overlapping ranges. For example a continuous attributeX might

be divided into the four ranges X < 7, 7 ≤ X < 12, 12 ≤ X < 20 and X ≥ 20.

This allows it to be treated as a categorical attribute with four possible values.

In the figure below, the values 7, 12 and 20 are called cut values or cut points.

X < 7 7 ≤ X < 12 12 ≤ X < 20 X ≥ 20
7 12 20

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 8,
© Springer-Verlag London 2013
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As further examples, an age attribute might be converted from a continuous

numerical value into six ranges, corresponding to infant, child, young adult,

adult, middle-aged and old, or a continuous attribute height might be replaced

by a categorical one with values such as very short, short, medium, tall, very

tall.

Converting a continuous attribute to one with a discrete set of values, i.e.

a categorical attribute, is known as discretisation.

There are a number of possible approaches to discretising continuous at-

tributes. Ideally the boundary points chosen for the ranges (the cut points)

should reflect real properties of the domain being investigated, e.g. constant

values in a physical or mathematical law. In practice it is very rarely possi-

ble to give principled reasons for choosing one set of ranges over another (for

example where should the boundary be between tall and very tall or between

medium and tall?) and the choice of ranges will generally have to be made

pragmatically.

Suppose that we have a continuous attribute length, with values in the range

from 0.3 to 6.6 inclusive. One possibility would be to divide these into three

ranges of equal size, i.e.

0.3 ≤ length < 2.4

2.4 ≤ length < 4.5

4.5 ≤ length ≤ 6.6

This is known as the equal width intervals method. However there are ob-

vious problems. Why choose three ranges, not four or two (or twelve)? More

fundamentally it may be that some, or perhaps even many, of the values are in

a narrow range such as 2.35 to 2.45. In this case any rule involving a test on

length < 2.4 would include instances where length is say 2.39999 and exclude

those where length is 2.40001. It is highly unlikely that there is any real differ-

ence between those values, especially if they were all measured imprecisely by

different people at different times. On the other hand, if there were no values

between say 2.3 and 2.5, a test such as length < 2.4 would probably be far

more reasonable.

Another possibility would be to divide length into three ranges, this time so

that there are the same number of instances in each of the three ranges. This

might lead to a split such as

0.3 ≤ length < 2.385

2.385 ≤ length < 3.0

3.0 ≤ length ≤ 6.6

This is known as the equal frequency intervals method. It would seem to be

preferable to the equal width intervals method given above but is still prone
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to the same problem at cut points, e.g. why is a length of 2.99999 treated

differently from one of 3.00001?

The problem with any method of discretising continuous attributes is that of

over-sensitivity. Whichever cut points are chosen there will always be a poten-

tial problem with values that fall just below a cut point being treated differently

from those that fall just above for no principled reason.

Ideally we would like to find ‘gaps’ in the range of values. If in the length

example there were many values from 0.3 to 0.4 with the next smallest value

being 2.2, a test such as length < 1.0 would avoid problems around the cut

point, as there are no instances (in the training set) with values close to 1.0.

The value 1.0 is obviously arbitrary and a different cut point, e.g. 1.5 could

just as well have been chosen. Unfortunately the same gaps may not occur in

unseen test data. If there were values such as 0.99, 1.05, 1.49 and 1.51 in the

test data, whether the arbitrary choice of cut point was 1.0 or 1.5 could be of

critical importance.

Although both the equal width intervals and the equal frequency intervals

methods are reasonably effective, they both suffer from the fundamental weak-

ness, as far as classification problems are concerned, that they take no account

of the classifications when determining where to place the cut points, and other

methods which do make use of the classifications are generally preferred. Two

of these are described in Sections 8.3 and 8.4.

8.2 Local versus Global Discretisation

Some data mining algorithms, such as the TDIDT rule generation algorithm,

can be adapted so that each continuous attribute is converted to a categorical

attribute at each stage of the process (e.g. at each node of the decision tree).

This is known as local discretisation.

An alternative approach is to use a global discretisation algorithm to convert

each continuous attribute to a categorical one once and for all independently of

any data mining algorithm that may subsequently be applied to the converted

training set. For example, continuous attribute Age might be converted to

categorical attribute Age2, with four values A, B, C and D, corresponding to

ages in the intervals 0 to under 16, 16 to under 30, 30 to under 60 and 60

and over, respectively, with the three ‘split values’ 16, 30 and 60 determined

globally from consideration of the training set as a whole. Although attractive

in principle, finding an appropriate global discretisation is not necessarily easy

to achieve in practice.
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8.3 Adding Local Discretisation to TDIDT

The TDIDT algorithm is a widely used method of generating classification rules

via the intermediate representation of a decision tree. (For definiteness in the

description that follows we shall assume that the information gain attribute

selection criterion is used, but this is not essential.) TDIDT can be extended to

deal with continuous attributes in a number of ways. For example, at each node

in the decision tree each continuous attribute can be converted to a categorical

attribute with several values, by one of the methods described in Section 8.1

or otherwise.

An alternative approach is at each node to convert each continuous attribute

to a number of alternative categorical attributes. For example if continuous

attribute A has values −12.4, −2.4, 3.5, 6.7 and 8.5 (each possibly occurring

several times) a test such as A < 3.5 splits the training data into two parts,

those instances for which A < 3.5 and those for which A ≥ 3.5. A test such as

A < 3.5 can be considered as equivalent to a kind of categorical attribute with

the two possible values true and false. We will use the phrase pseudo-attribute

to describe it.

If a continuous attribute A has n distinct values v1, v2, . . . , vn (in ascending

numerical order) there are n− 1 possible corresponding pseudo-attributes (all

binary), i.e. A < v2, A < v3, . . . , A < vn (we omit A < v1 as no values of A

can be less than v1, the smallest value).

We can imagine that for the part of the training set under consideration at

each node all the continuous attribute columns are replaced by new columns

for each pseudo-attribute derived from each continuous attribute. They would

then be in competition for selection with each other and with any genuine

categorical attributes. This imaginary replacement table will probably have

far more columns than before but as all the attributes/pseudo-attributes are

categorical it can be processed by the standard TDIDT algorithm to find the

one with the largest corresponding information gain (or other measure).

If it turns out that one of the pseudo-attributes, say Age < 27.3, is selected

at a given node, we can consider the continuous attribute Age as having been

discretised into two intervals with cut point 27.3.

This is a local discretisation which does not (in the standard form of this

method) lead to the continuous attribute itself being discarded. Hence there

may be a further test such as Age < 14.1 at a lower level in the ‘yes’ branch

descending from the test Age < 27.3.

The process described above may seem resource intensive but it is not as

bad as it would first appear. We will come back to this point in Section 8.3.2,
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but leaving it aside at the moment, we have an algorithm for incorporating

local discretisation into TDIDT as follows.

At each node:

1. For each continuous attribute A

a) Sort the instances into ascending numerical order.

b) If there are n distinct values v1, v2, . . . , vn, calculate the values of

information gain (or other measure) for each of the n−1 corresponding

pseudo-attributes A < v2, A < v3, . . . , A < vn.

c) Find which of the n − 1 attribute values gives the largest value of

information gain (or optimises some other measure). If this is vi re-

turn the pseudo-attribute A < vi, and the value of the corresponding

measure.

2. Calculate the value of information gain (or other measure) for any categor-

ical attributes.

3. Select the attribute or pseudo-attribute with the largest value of informa-

tion gain (or which optimises some other measure).

8.3.1 Calculating the Information Gain of a Set of
Pseudo-attributes

At any node of the evolving decision tree the entropy values (and hence the

information gain values) of all the pseudo-attributes derived from a given

continuous attribute can be calculated with a single pass through the train-

ing data. The same applies to any other measure that can be calculated

using the frequency table method described in Chapter 6. There are three

stages.
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Stage 1

Before processing any continuous attributes at a node we first need to

count the number of instances with each of the possible classifications in

the part of the training set under consideration at the node. (These are

the sums of the values in each row of a frequency table such as Figure 6.2.)

These values do not depend on which attribute is subsequently processed

and so only have to be counted once at each node of the tree.

Stage 2

We next work through the continuous attributes one by one. We will

assume that a particular continuous attribute under consideration is named

Var and that the aim is to find the largest value of a specified measure for

all possible pseudo-attributes Var < X where X is one of the values of Var

in the part of the training set under consideration at the given node. We

will call the values of attribute Var candidate cut points. We will call the

largest value of measure maxmeasure and the value of X that gives that

largest value the cut point for attribute Var.

Stage 3

Having found the value of maxmeasure (and the corresponding cut points)

for all the continuous attributes, we next need to find the largest and then

compare it with the values of the measure obtained for any categorical

attributes to determine which attribute or pseudo-attribute to split on at

the node.

To illustrate this process we will use the golf training set introduced in

Chapter 4. For simplicity we will assume that we are at the root node of the

decision tree but the same method can be applied (with a reduced training set

of course) at any node of the tree.

We start by counting the number of instances with each of the possible

classifications. Here there are 9 play and 5 don’t play, making a total of 14.

We now need to process each of the continuous attributes in turn (Stage 2).

There are two: temperature and humidity. We will illustrate the processing

involved at Stage 2 using attribute temperature.

The first step is to sort the values of the attribute into ascending numer-

ical order and create a table containing just two columns: one for the sorted

attribute values and the other for the corresponding classification. We will call

this the sorted instances table.

Figure 8.1 shows the result of this for our example. Note that temperature

values 72 and 75 both occur twice. There are 12 distinct values 64, 65, . . . , 85.
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Temperature Class

64 play

65 don’t play

68 play

69 play

70 play

71 don’t play

72 play

72 don’t play

75 play

75 play

80 don’t play

81 play

83 play

85 don’t play

Figure 8.1 Sorted Instances Table for golf Dataset

The algorithm for processing the sorted instances table for continuous at-

tribute Var is given in Figure 8.2. It is assumed that there are n instances and

the rows in the sorted instances table are numbered from 1 to n. The attribute

value corresponding to row i is denoted by value(i) and the corresponding class

is denoted by class(i).

Essentially, we work through the table row by row from top to bottom,

accumulating a count of the number of instances with each classification. As

each row is processed its attribute value is compared with the value for the

row below. If the latter value is larger it is treated as a candidate cut point

and the value of the measure is computed using the frequency table method

(the example that follows will show how this is done). Otherwise the attribute

values must be the same and processing continues to the next row. After the

last but one row has been processed, processing stops (the final row has nothing

below it with which to compare).

The algorithm returns two values: maxmeasure and cutvalue, which are

respectively the largest value of the measure that can be obtained for a pseudo-

attribute derived from attribute Var and the corresponding cut value.
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Algorithm for Processing a Sorted Instances Table

Set count of all classes to zero

Set maxmeasure to a value less than the smallest

possible value of the measure used

for i = 1 to n− 1 {
increase count of class(i) by 1

if value(i) < value(i+ 1){
(a) Construct a frequency table for pseudo-attribute

Var < value(i+ 1)

(b) Calculate the value of measure

(c) If measure > maxmeasure {
maxmeasure = measure

cutvalue = value(i+ 1)

}
}

}

Figure 8.2 Algorithm for Processing a Sorted Instances Table

Returning to the golf training set and continuous attribute temperature,

we start with the first instance, which has temperature 64 and class play. We

increase the count for class play to 1. The count for class don’t play is zero. The

value of temperature is less than that for the next instance so we construct a

frequency table for the pseudo-attribute temperature < 65 (Figure 8.3(a)).

Class temperature < 65 temperature ≥ 65 Class total

play 1 * 8 9

don’t play 0 * 5 5

Column sum 1 13 14

Figure 8.3(a) Frequency Table for golf Example

In this and the other frequency tables in this section the counts of play and

don’t play in the ‘temperature < xxx’ column are marked with an asterisk.

The entries in the final column are fixed (the same for all attributes) and are

shown in bold. All the other entries are calculated from these by simple addition

and subtraction. Once the frequency table has been constructed, the values of
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measures such as Information Gain and Gain Ratio can be calculated from it,

as described in Chapter 6.

Figure 8.3(b) shows the frequency table resulting after the next row of the

sorted instances table has been examined. The counts are now play = 1, don’t

play = 1.

Class temperature < 68 temperature ≥ 68 Class total

play 1 * 8 9

don’t play 1 * 4 5

Column sum 2 12 14

Figure 8.3(b) Frequency Table for golf Example

The value of Information Gain (or the other measures) can again be cal-

culated from this table. The important point here is how easily this second

frequency table can be derived from the first. Only the don’t play row has

changed by moving just one instance from the ‘greater than or equal to’ col-

umn to the ‘less than’ column.

We proceed in this way processing rows 3, 4, 5 and 6 and generating a new

frequency table (and hence a new value of measure) for each one. When we come

to the seventh row (temperature = 72) we note that the value of temperature

for the next instance is the same as for the current one (both 72), so we do

not create a new frequency table but instead go on to row 8. As the value of

temperature for this is different from that for the next instance we construct a

frequency table for the latter value, i.e. for pseudo-attribute temperature < 75

(Figure 8.3(c)).

Class temperature < 75 temperature ≥ 75 Class total

play 5 * 4 9

don’t play 3 * 2 5

Column sum 8 6 14

Figure 8.3(c) Frequency Table for golf Example

We go on in this way until we have processed row 13 (out of 14). This ensures

that frequency tables are constructed for all the distinct values of temperature

except the first. There are 11 of these candidate cut values, corresponding to

pseudo-attributes temperature < 65, temperature < 68, . . . , temperature < 85.

The value of this method is that the 11 frequency tables are generated from

each other one by one, by a single pass through the sorted instances table.
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At each stage it is only necessary to update the relevant count of instances in

the appropriate class to move from one frequency table to the next. Having

duplicated attribute values is a complication, but it is easily overcome.

8.3.2 Computational Efficiency

This section looks at three efficiency issues associated with the method de-

scribed in Section 8.3.1.

(a) Sorting continuous values into ascending numerical order

This is the principal overhead on the use of the method and thus the prin-

cipal limitation on the maximum size of training set that can be handled. This

is also true of almost any other conceivable method of discretising continuous

attributes. For this algorithm it has to be carried out once for each continuous

attribute at each node of the decision tree.

It is important to use an efficient method of sorting, especially if the num-

ber of instances is large. The one most commonly used is probably Quicksort,

descriptions of which are readily available from books (and websites) about

sorting. Its most important feature is that the number of operations required

is approximately a constant multiple of n × log2 n, where n is the number of

instances. We say it varies as n × log2 n. This may not seem important but

there are other sorting algorithms that vary as n2 (or worse) and the difference

is considerable.

Figure 8.4 shows the values of n× log2 n and n2 for different values of n. It

is clear from the table that a good choice of sorting algorithm is essential.

n n× log2 n n2

100 664 10, 000

500 4, 483 250, 000

1, 000 9, 966 1, 000, 000

10, 000 132, 877 100, 000, 000

100, 000 1, 660, 964 10, 000, 000, 000

1, 000, 000 19, 931, 569 1, 000, 000, 000, 000

Figure 8.4 Comparison of Values of n log2 n and n2

The difference between the values in the second and third columns of this

table is considerable. Taking the final row for illustration, if we imagine a sorting
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task for 1,000,000 items (not a huge number) that takes 19,931,569 steps and

assume that each step takes just one microsecond to perform, the time required

would be 19.9 seconds. If we used an alternative method to perform the same

task that takes 1,000,000,000,000 steps, each lasting a microsecond, the time

would increase to over 11.5 days.

(b) Calculating the measure value for each frequency table

For any given continuous attribute, generating the frequency tables takes

just one pass through the training data. The number of such tables is the

same as the number of cut values, i.e. the number of distinct attribute values

(ignoring the first). Each table comprises just 2 × 2 = 4 entries in its main

body plus two column sums. Processing many of these small tables should be

reasonably manageable.

(c) Number of candidate cut points

As the method was described in Section 8.3.1 the number of candidate cut

points is always the same as the number of distinct values of the attribute

(ignoring the first). For a large training set the number of distinct values may

also be large. One possibility is to reduce the number of candidate cut points

by making use of class information.

Figure 8.5 is the sorted instances table for the golf training set and attribute

temperature, previously shown in Section 8.3.1, with the eleven cut values in-

dicated with asterisks (where there are repeated attribute values only the last

occurrence is treated as a cut value).

We can reduce this number by applying the rule ‘only include attribute

values for which the class value is different from that for the previous attribute

value’. Thus attribute value 65 is included because the corresponding class

value (don’t play) is different from the class corresponding to temperature 64,

which is play. Attribute value 69 is excluded because the corresponding class

(play) is the same as that for attribute value 68. Figure 8.6 shows the result of

applying this rule.

The instances with temperature value 65, 68, 71, 81 and 85 are included.

Instances with value 69, 70 and 83 are excluded.

However, repeated attribute values lead to complications. Should 72, 75 and

80 be included or excluded? We cannot apply the rule ‘only include attribute

values for which the class value is different from that for the previous attribute

value’ to the two instances with attribute value 72 because one of their class

values (don’t play) is the same as for the previous attribute value and the other

(play) is not. Even though both instances with temperature 75 have class play,
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Temperature Class

64 play

65 * don’t play

68 * play

69 * play

70 * play

71 * don’t play

72 play

72 * don’t play

75 play

75 * play

80 * don’t play

81 * play

83 * play

85 * don’t play

Figure 8.5 Sorted Instances with Candidate Cut Values

Temperature Class

64 play

65 * don’t play

68 * play

69 play

70 play

71 * don’t play

72 play

72 ? don’t play

75 play

75 ? play

80 ? don’t play

81 * play

83 play

85 * don’t play

Figure 8.6 Sorted Instances with Candidate Cut Values (revised)
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we still cannot apply the rule. Which of the instances for the previous attribute

value, 72, would we use? It seems reasonable to include 80, as the class for both

occurrences of 75 is play, but what if they were a combination of play and don’t

play?

There are other combinations that can occur, but in practice none of this

need cause us any problems. It does no harm to examine more candidate cut

points than the bare minimum and a simple amended rule is: ‘only include

attribute values for which the class value is different from that for the previous

attribute value, together with any attribute which occurs more than once and

the attribute immediately following it’.

This gives the final version of the table shown in Figure 8.7, with eight

candidate cut values.

Temperature Class

64 play

65 * don’t play

68 * play

69 play

70 play

71 * don’t play

72 play

72 * don’t play

75 play

75 * play

80 * don’t play

81 * play

83 play

85 * don’t play

Figure 8.7 Sorted Instances with Candidate Cut Values (final)

8.4 Using the ChiMerge Algorithm for Global
Discretisation

ChiMerge is a well-known algorithm for global discretisation introduced by

Randy Kerber, an American researcher [1]. It uses a statistical technique for

discretising each continuous attribute separately.
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The first step in discretising a continuous attribute is to sort its values into

ascending numerical order, with the corresponding classifications sorted into

the same order.

The next step is to construct a frequency table giving the number of oc-

currences of each distinct value of the attribute for each possible classification.

It then uses the distribution of the values of the attribute within the different

classes to generate a set of intervals that are considered statistically distinct at

a given level of significance.

As an example, suppose that A is a continuous attribute in a training set

with 60 instances and three possible classifications c1, c2 and c3. A possible

distribution of the values of A arranged in ascending numerical order is shown

in Figure 8.8. The aim is to combine the values of A into a number of ranges.

Note that some of the attribute values occur just once, whilst others occur

several times.

Value of A Observed frequency for class Total

c1 c2 c3

1.3 1 0 4 5

1.4 0 1 0 1

1.8 1 1 1 3

2.4 6 0 2 8

6.5 3 2 4 9

8.7 6 0 1 7

12.1 7 2 3 12

29.4 0 0 1 1

56.2 2 4 0 6

87.1 0 1 3 4

89.0 1 1 2 4

Figure 8.8 ChiMerge: Initial Frequency Table

Each row can be interpreted not just as corresponding to a single attribute

value but as representing an interval, i.e. a range of values starting at the value

given and continuing up to but excluding the value given in the row below.

Thus the row labelled 1.3 corresponds to the interval 1.3 ≤ A < 1.4. We can

regard the values 1.3, 1.4 etc. as interval labels, with each label being used to

indicate the lowest number in the range of values included in that interval. The

final row corresponds to all values of A from 89.0 upwards.

The initial frequency table could be augmented by an additional column

showing the interval corresponding to each row (Figure 8.9).



Continuous Attributes 107

Value of A Interval Observed frequency for class Total

c1 c2 c3

1.3 1.3 ≤ A < 1.4 1 0 4 5

1.4 1.4 ≤ A < 1.8 0 1 0 1

1.8 1.8 ≤ A < 2.4 1 1 1 3

2.4 2.4 ≤ A < 6.5 6 0 2 8

6.5 6.5 ≤ A < 8.7 3 2 4 9

8.7 8.7 ≤ A < 12.1 6 0 1 7

12.1 12.1 ≤ A < 29.4 7 2 3 12

29.4 29.4 ≤ A < 56.2 0 0 1 1

56.2 56.2 ≤ A < 87.1 2 4 0 6

87.1 87.1 ≤ A < 89.0 0 1 3 4

89.0 89.0 ≤ A 1 1 2 4

Figure 8.9 ChiMerge: Initial Frequency Table with Intervals Added

In practice, the ‘Interval’ column is generally omitted as it is implied by the

entries in the Value column.

Starting with the initial frequency table, ChiMerge systematically applies

statistical tests to combine pairs of adjacent intervals until it arrives at a set

of intervals that are considered statistically different at a given level of signifi-

cance.

ChiMerge tests the following hypothesis for each pair of adjacent rows in

turn.

Hypothesis

The class is independent of which of the two adjacent intervals an instance

belongs to.

If the hypothesis is confirmed, there is no advantage in treating the intervals

separately and they are merged. If not, they remain separate.

ChiMerge works through the frequency table from top to bottom, examining

each pair of adjacent rows (intervals) in turn in order to determine whether the

relative class frequencies of the two intervals are significantly different. If not,

the two intervals are considered to be similar enough to justify merging them

into a single interval.

The statistical test applied is the χ2 test, pronounced (and often written)

as the ‘Chi square’ test. χ is a Greek letter, which is written as Chi in the

Roman alphabet. It is pronounced like ‘sky’, without the initial ‘s’.

For each pair of adjacent rows a contingency table is constructed giving the

observed frequencies of each combination of the two variables A and ‘class’. For
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the adjacent intervals labelled 8.7 and 12.1 in Figure 8.8 the contingency table

is shown below as Figure 8.10(a).

Value of A Observed frequency for class Total observed

c1 c2 c3

8.7 6 0 1 7

12.1 7 2 3 12

Total 13 2 4 19

Figure 8.10(a) Observed Frequencies for Two Adjacent Rows of Figure 8.8

The ‘row sum’ figures in the right-hand column and the ‘column sum’ figures

in the bottom row are called ‘marginal totals’. They correspond respectively to

the number of instances for each value of A (i.e. with their value of attribute

A in the corresponding interval) and the number of instances in each class for

both intervals combined. The grand total (19 instances in this case) is given in

the bottom right-hand corner of the table.

The contingency table is used to calculate the value of a variable called χ2

(or ‘the χ2 statistic’ or ‘the Chi-square statistic’), using a method that will

be described in Section 8.4.1. This value is then compared with a threshold

value T , which depends on the number of classes and the level of statistical

significance required. The threshold will be described further in Section 8.4.2.

For the current example we will use a significance level of 90% (explained

below). As there are three classes this gives a threshold value of 4.61.

The significance of the threshold is that if we assume that the classification

is independent of which of the two adjacent intervals an instance belongs to,

there is a 90% probability that χ2 will be less than 4.61.

If χ2 is less than 4.61 it is taken as supporting the hypothesis of indepen-

dence at the 90% significance level and the two intervals are merged. On the

other hand, if the value of χ2 is greater than 4.61 we deduce that the class and

interval are not independent, again at the 90% significance level, and the two

intervals are left unchanged.

8.4.1 Calculating the Expected Values and χ2

For a given pair of adjacent rows (intervals) the value of χ2 is calculated using

the ‘observed’ and ‘expected’ frequency values for each combination of class and

row. For this example there are three classes so there are six such combinations.

In each case, the observed frequency value, denoted by O, is the frequency that
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actually occurred. The expected value E is the frequency value that would be

expected to occur by chance given the assumption of independence.

If the row is i and the class is j, then let the total number of instances in

row i be rowsumi and let the total number of occurrences of class j be colsumj .

Let the grand total number of instances for the two rows combined be sum.

Assuming the hypothesis that the class is independent of which of the two

rows an instance belongs to is true, we can calculate the expected number of

instances in row i for class j as follows. There are a total of colsumj occurrences

of class j in the two intervals combined, so class j occurs a proportion of

colsumj/sum of the time. As there are rowsumi instances in row i, we would

expect rowsumi × colsumj/sum occurrences of class j in row i.

To calculate this value for any combination of row and class, we just have

to take the product of the corresponding row sum and column sum divided by

the grand total of the observed values for the two rows.

For the adjacent intervals labelled 8.7 and 12.1 in Figure 8.8 the six values

of O and E (one pair of values for each class/row combination) are given in

Figure 8.10(b).

Value of A Frequency for class Total observed

c1 c2 c3

O E O E O E

8.7 6 4.79 0 0.74 1 1.47 7

12.1 7 8.21 2 1.26 3 2.53 12

Total 13 2 4 19

Figure 8.10(b) Observed and Expected Values for Two Adjacent Rows of

Figure 8.8

The O values are taken from Figure 8.8 or Figure 8.10(a). The E values are

calculated from the row and column sums. Thus for row 8.7 and class c1, the

expected value E is 13× 7/19 = 4.79.

Having calculated the value of O and E for all six combinations of class and

row, the next step is to calculate the value of (O − E)2/E for each of the six

combinations. These are shown in the Val columns in Figure 8.11.

The value of χ2 is then the sum of the six values of (O − E)2/E. For the

pair of rows shown in Figure 8.11 the value of χ2 is 1.89.

If the independence hypothesis is correct the observed and expected values

O and E would ideally be the same and χ2 would be zero. A small value of

χ2 would also support the hypothesis, but the larger the value of χ2 the more

reason there is to suspect that the hypothesis may be false. When χ2 exceeds
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Value Frequency for class Total

of A c1 c2 c3 observed

O E Val* O E Val* O E Val*

8.7 6 4.79 0.31 0 0.74 0.74 1 1.47 0.15 7

12.1 7 8.21 0.18 2 1.26 0.43 3 2.53 0.09 12

Total 13 2 4 19

* Val columns give the value of (O − E)2/E

Figure 8.11 O, E and Val values for two adjacent rows of Figure 8.8

the threshold value we consider that it is so unlikely for this to have occurred

by chance that the hypothesis is rejected.

The value of χ2 is calculated for each adjacent pair of rows (intervals). When

doing this, a small but important technical detail is that an adjustment has to

be made to the calculation for any value of E less than 0.5. In this case the

denominator in the calculation of (O − E)2/E is changed to 0.5.

The results for the initial frequency table are summarised in Figure 8.12(a).

Value of A Frequency for class Total Value of χ2

c1 c2 c3

1.3 1 0 4 5 3.11

1.4 0 1 0 1 1.08

1.8 1 1 1 3 2.44

2.4 6 0 2 8 3.62

6.5 3 2 4 9 4.62

8.7 6 0 1 7 1.89

12.1 7 2 3 12 1.73

29.4 0 0 1 1 3.20

56.2 2 4 0 6 6.67

87.1 0 1 3 4 1.20

89.0 1 1 2 4

Total 27 12 21 60

Figure 8.12(a) Initial Frequency Table with χ2 Values Added

In each case, the χ2 value given in a row is the value for the pair of adjacent

intervals comprising that row and the one below. No χ2 value is calculated for

the final interval, because there is not one below it. As the table has 11 intervals

there are 10 χ2 values.
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ChiMerge selects the smallest value of χ2, in this case 1.08, corresponding

to the intervals labelled 1.4 and 1.8 and compares it with the threshold value,

which in this case is 4.61.

The value 1.08 is less than the threshold value so the independence hypoth-

esis is supported and the two intervals are merged. The combined interval is

labelled 1.4, i.e. the smaller of the two previous labels.

This gives us a new frequency table, which is shown in Figure 8.12(b). There

is one fewer row than before.

Value of A Frequency for class Total

c1 c2 c3

1.3 1 0 4 5

1.4 1 2 1 4

2.4 6 0 2 8

6.5 3 2 4 9

8.7 6 0 1 7

12.1 7 2 3 12

29.4 0 0 1 1

56.2 2 4 0 6

87.1 0 1 3 4

89.0 1 1 2 4

Figure 8.12(b) ChiMerge: Revised Frequency Table

The χ2 values are now calculated for the revised frequency table. Note that

the only values that can have changed from those previously calculated are

those for the two pairs of adjacent intervals of which the newly merged interval

(1.4) is one. These values are shown in bold in Figure 8.12(c).

Now the smallest value of χ2 is 1.20, which again is below the threshold

value of 4.61. So intervals 87.1 and 89.0 are merged.

ChiMerge proceeds iteratively in this way, merging two intervals at each

stage until a minimum χ2 value is reached which is greater than the threshold,

indicating that an irreducible set of intervals has been reached. The final table

is shown as Figure 8.12(d).

The χ2 values for the two remaining pairs of intervals are greater than

the threshold value. Hence no further merging of intervals is possible and the

discretisation is complete. Continuous attribute A can be replaced by a cate-

gorical attribute with just three values, corresponding to the ranges (for the

90% significance level):
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Value of A Frequency for class Total Value of χ2

c1 c2 c3

1.3 1 0 4 5 3.74

1.4 1 2 1 4 5.14

2.4 6 0 2 8 3.62

6.5 3 2 4 9 4.62

8.7 6 0 1 7 1.89

12.1 7 2 3 12 1.73

29.4 0 0 1 1 3.20

56.2 2 4 0 6 6.67

87.1 0 1 3 4 1.20

89.0 1 1 2 4

Total 27 12 21 60

Figure 8.12(c) Revised Frequency Table with χ2 Values Added

Value of A Frequency for class Total Value of χ2

c1 c2 c3

1.3 24 6 16 46 10.40

56.2 2 4 0 6 5.83

87.1 1 2 5 8

Total 27 12 21 60

Figure 8.12(d) Final Frequency Table

1.3 ≤ A < 56.2

56.2 ≤ A < 87.1

A ≥ 87.1

A possible problem with using these ranges for classification purposes is

that for an unseen instance there might be a value of A that is substantially

less than 1.3 (the smallest value of A for the training data) or substantially

greater than 87.1. (Although the final interval is given as A ≥ 87.1 the largest

value of A for the training data was just 89.0.) In such a case we would need

to decide whether to treat such a low or high value of A as belonging to either

the first or last of the ranges as appropriate or to treat the unseen instance as

unclassifiable.
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8.4.2 Finding the Threshold Value

Threshold values for the χ2 test can be found in statistical tables. The value

depends on two factors:

1. The significance level. 90% is a commonly used significance level. Other

commonly used levels are 95% and 99%. The higher the significance level,

the higher the threshold value and the more likely it is that the hypothesis

of independence will be supported and thus that the adjacent intervals will

be merged.

2. The number of degrees of freedom of the contingency table. A full expla-

nation of this is outside the scope of this book, but the general idea is as

follows. If we have a contingency table such as Figure 8.10(a) with 2 rows

and 3 columns, how many of the 2 × 3 = 6 cells in the main body of the

table can we fill independently given the marginal totals (row and column

sums)? The answer to this is just 2. If we put two numbers in the c1 and

c2 columns of the first row (A = 8.7), the value in the c3 column of that

row is determined by the row sum value. Once all three values in the first

row are fixed, those in the second row (A = 12.1) are determined by the

three column sum values.

In the general case of a contingency table with N rows and M columns the

number of independent values in the main body of the table is (N−1)×(M−1).

For the ChiMerge algorithm the number of rows is always two and the number

of columns is the same as the number of classes, so the number of degrees of

freedom is (2− 1)× (number of classes− 1) = number of classes− 1, which in

this example is 2. The larger the number of degrees of freedom is, the higher

the threshold value.

For 2 degrees of freedom and a 90% significance level, the χ2 threshold value

is 4.61. Some other values are given in Figure 8.13 below.

Choosing a higher significance level will increase the threshold value and

thus may make the merging process continue for longer, resulting in categorical

attributes with fewer and fewer intervals.

8.4.3 Setting minIntervals and maxIntervals

A problem with the ChiMerge algorithm is that the result may be a large

number of intervals or, at the other extreme, just one interval. For a large

training set an attribute may have many thousands of distinct values and the

method may produce a categorical attribute with hundreds or even thousands

of values. This is likely to be of little or no practical value. On the other hand,



114 Principles of Data Mining

Degrees 90% Significance 95% Significance 99% Significance

of freedom level level level

1 2.71 3.84 6.64

2 4.61 5.99 9.21

3 6.25 7.82 11.34

4 7.78 9.49 13.28

5 9.24 11.07 15.09

6 10.65 12.59 16.81

7 12.02 14.07 18.48

8 13.36 15.51 20.09

9 14.68 16.92 21.67

10 15.99 18.31 23.21

11 17.28 19.68 24.72

12 18.55 21.03 26.22

13 19.81 22.36 27.69

14 21.06 23.69 29.14

15 22.31 25.00 30.58

16 23.54 26.30 32.00

17 24.77 27.59 33.41

18 25.99 28.87 34.80

19 27.20 30.14 36.19

20 28.41 31.41 37.57

21 29.62 32.67 38.93

22 30.81 33.92 40.29

23 32.01 35.17 41.64

24 33.20 36.42 42.98

25 34.38 37.65 44.31

26 35.56 38.89 45.64

27 36.74 40.11 46.96

28 37.92 41.34 48.28

29 39.09 42.56 49.59

30 40.26 43.77 50.89

Figure 8.13 χ2 Threshold Values
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if the intervals are eventually merged into just one that would suggest that

the attribute value is independent of the classification and the attribute would

best be deleted. Both a large and a small number of intervals can simply reflect

setting the significance level too low or too high.

Kerber [1] proposed setting two values, minIntervals and maxIntervals. This

form of the algorithm always merges the pair of intervals with the lowest value of

χ2 as long as the number of intervals is more than maxIntervals. After that the

pair of intervals with the smallest value of χ2 is merged at each stage until either

a χ2 value is reached that is greater than the threshold value or the number of

intervals is reduced tominIntervals. In either of those cases the algorithm stops.

Although this is difficult to justify in terms of the statistical theory behind

the χ2 test it can be very useful in practice to give a manageable number

of categorical values. Reasonable settings for minIntervals and maxIntervals

might be 2 or 3 and 20, respectively.

8.4.4 The ChiMerge Algorithm: Summary

With the above extension, the ChiMerge algorithm is summarised in

Figure 8.14.

8.4.5 The ChiMerge Algorithm: Comments

The ChiMerge algorithm works quite well in practice despite some theoretical

problems relating to the statistical technique used, which will not be discussed

here (Kerber’s paper [1] gives further details). A serious weakness is that the

method discretises each attribute independently of the values of the others,

even though the classifications are clearly not determined by the values of just

a single attribute.

Sorting the values of each continuous attribute into order can be a significant

processing overhead for a large dataset. However this is likely to be an overhead

for any method of discretisation, not just ChiMerge. In the case of ChiMerge

it needs to be performed only once for each continuous attribute.



116 Principles of Data Mining

1. Set values of minIntervals and maxIntervals (2 ≤ minIntervals ≤ max-

Intervals).

2. Decide on a significance level (say 90%). Using this and the number of

degrees of freedom (i.e. number of classes −1) look up the threshold value

to use.

3. For each continuous attribute in turn:

(a) Sort the values of the attribute into ascending numerical order.

(b) Create a frequency table containing one row for each distinct attribute

value and one column for each class. Label each row with the correspond-

ing attribute value. Enter the number of occurrences of each attribute

value/class combination in the training set in the cells of the table.

(c) If (number of rows = minIntervals) then stop, otherwise go on to next

step.

(d) For each pair of adjacent rows in the frequency table in turn:

For each combination of row and class:

(i) calculate O, the observed frequency value for that combination

(ii) calculate E, the expected frequency value for that combination, from

the product of the row and column sums divided by the total number

of occurrences in the two rows combined

(iii) calculate the value of (O − E)2/E *

Add the values of (O − E)2/E to give χ2 for that pair of adjacent rows.

(e) Find the pair of adjacent rows with the lowest value of χ2.

(f) If the lowest value of χ2 is less than the threshold value OR (number of

rows > maxIntervals), merge the two rows, setting the attribute value label

for the merged row to that of the first of the two constituent rows, reduce

the number of rows by one and go back to step (c). Otherwise stop.

* If E < 0.5, replace E in the denominator of this formula by 0.5.

Figure 8.14 The ChiMerge Algorithm

8.5 Comparing Global and Local Discretisation
for Tree Induction

This section describes an experiment aimed at comparing the effectiveness of

using the local discretisation method for TDIDT described in Section 8.3 with

that of using ChiMerge for global discretisation of continuous attributes fol-

lowed by using TDIDT for rule generation, with all attributes now categorical.
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For convenience information gain will be used for attribute selection through-

out.

Seven datasets are used for the experiment, all taken from the UCI Repos-

itory. Basic information about each dataset is given in Figure 8.15.

Dataset Instances Attributes Classes

Categ. Contin.

glass 214 0 9 7

hepatitis 155 13 6 2

hypo 2514 22 7 5

iris 150 0 4 3

labor-ne 40 8 8 2

pima-indians 768 0 8 2

sick-euthyroid 3163 18 7 2

Figure 8.15 Datasets Used in ChiMerge Experiments

The version of ChiMerge used is a re-implementation by the present author

of Kerber’s original algorithm.

The value of each set of classification rules can be measured by the number

of rules generated and the percentage of instances that they correctly classify.

The methodology chosen for these experiments is 10-fold cross-validation. First

the training set is divided into 10 groups of instances of equal size. TDIDT is

then run 10 times with a different 10% of the instances omitted from the rule

generation process for each run and used subsequently as an unseen test set.

Each run produces a percentage of correct classifications over the unseen test

set and a number of rules. These figures are then combined to give an average

number of rules and the percentage of correct classifications. The ‘default to

largest class’ strategy is used throughout.

Figure 8.16 shows the results of applying TDIDT directly to all the datasets,

compared with first using ChiMerge to discretise all the continuous attributes

globally (90% significance level).

The percentage of correct classifications for the global discretisation ap-

proach is comparable with those achieved by local discretisation. However,

local discretisation seems to produce an appreciably smaller number of rules,

at least for these datasets. This is particularly the case for the pima-indians

and sick-euthyroid datasets.

On the other hand, the global discretisation approach has the considerable

advantage that the data only has to be discretised once and can then be used

as the input to any data mining algorithm that accepts categorical attributes,

not only TDIDT.
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Dataset Local discretisation Global discretisation

Number Correct % Number of Correct %

of rules of rules

glass 38.3 69.6 88.2 72.0

hepatitis 18.9 81.3 42.0 81.9

hypo 14.2 99.5 46.7 98.7

iris 8.5 95.3 15.1 94.7

labor-ne 4.8 85.0 7.6 85.0

pima-indians 121.9 69.8 328.0 74.0

sick-euthyroid 72.7 96.6 265.1 96.6

Figure 8.16 TDIDT with Information Gain. Local Discretisation v Global

Discretisation by ChiMerge (90% significance level). Results from 10-fold Cross-

validation

8.6 Chapter Summary

This chapter looks at the question of how to convert a continuous attribute

to a categorical one, a process known as discretisation. This is important as

many data mining algorithms, including TDIDT, require all attributes to take

categorical values.

Two different types of discretisation are distinguished, known as local and

global discretisation. The process of extending the TDIDT algorithm by adding

local discretisation of continuous attributes is illustrated in detail, followed by

a description of the ChiMerge algorithm for global discretisation. The effective-

ness of the two methods is compared for the TDIDT algorithm for a number

of datasets.

8.7 Self-assessment Exercises for Chapter 8

1. Using the amended form of the rule given in Section 8.3.2, what are the can-

didate cut points for the continuous attribute humidity in the golf training

set given in Chapter 4?

2. Starting at Figure 8.12(c) and the resulting merger of intervals 87.1 and

89.0, find the next pair of intervals to be merged.
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9
Avoiding Overfitting of Decision Trees

The Top-Down Induction of Decision Trees (TDIDT) algorithm described in

previous chapters is one of the most commonly used methods of classifica-

tion. It is well known, widely cited in the research literature and an important

component of many successful commercial packages. However, like many other

methods, it suffers from the problem of overfitting to the training data, re-

sulting in some cases in excessively large rule sets and/or rules with very low

predictive power for previously unseen data.

A classification algorithm is said to overfit to the training data if it generates

a decision tree (or any other representation of the data) that depends too much

on irrelevant features of the training instances, with the result that it performs

well on the training data but relatively poorly on unseen instances.

Realistically, overfitting will always occur to a greater or lesser extent simply

because the training set does not contain all possible instances. It only becomes

a problem when the classification accuracy on unseen instances is significantly

downgraded. We always need to be aware of the possibility of significant over-

fitting and to seek ways of reducing it.

In this chapter we look at ways of adjusting a decision tree either while it

is being generated, or afterwards, in order to increase its predictive accuracy.

The idea is that generating a tree with fewer branches than would otherwise be

the case (known as pre-pruning) or removing parts of a tree that has already

been generated (known as post-pruning) will give a smaller and simpler tree.

This tree is unlikely to be able to predict correctly the classification of some of

the instances in the training set. As we already know what those values should

be this is of little or no importance. On the other hand the simpler tree may be
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able to predict the correct classification more accurately for unseen data—a

case of ‘less means more’.

We will start by looking at a topic that at first sight is unrelated to the

subject of this chapter, but will turn out to be important: how to deal with

inconsistencies in a training set.

9.1 Dealing with Clashes in a Training Set

If two (or more) instances in a training set have the same combination of

attribute values but different classifications the training set is inconsistent and

we say that a clash occurs.

There are two main ways this can happen.

1. One of the instances has at least one of its attribute values or its classifi-

cation incorrectly recorded, i.e. there is noise in the data.

2. The clashing instances are both (or all) correct, but it is not possible to

discriminate between them on the basis of the attributes recorded.

In the second case the only way of discriminating between the instances is

by examining the values of further attributes, not recorded in the training set,

which in most cases is impossible. Unfortunately there is usually no way except

‘intuition’ of distinguishing between cases (1) and (2).

Clashes in the training set are likely to prove a problem for any method of

classification but they cause a particular problem for tree generation using the

TDIDT algorithm because of the ‘adequacy condition’ introduced in Chapter 4.

For the algorithm to be able to generate a classification tree from a given

training set, it is only necessary for one condition to be satisfied: no two or more

instances may have the same set of attribute values but different classifications.

This raises the question of what to do when the adequacy condition is not

satisfied.

It is generally desirable to be able to generate a decision tree even when

there are clashes in the training data, and the basic TDIDT algorithm can be

adapted to do this.

9.1.1 Adapting TDIDT to Deal with Clashes

Consider how the TDIDT algorithm will perform when there is a clash in the

training set. The method will still produce a decision tree but (at least) one of

the branches will grow to its greatest possible length (i.e. one term for each of
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the possible attributes), with the instances at the lowest node having more than

one classification. The algorithm would like to choose another attribute to split

on at that node but there are no ‘unused’ attributes and it is not permitted

to choose the same attribute twice in the same branch. When this happens we

will call the set of instances represented by the lowest node of the branch the

clash set.

A typical clash set might have one instance with classification true and one

with classification false. In a more extreme case there may be several possible

classifications and several instances with each classification in the clash set, e.g.

for an object recognition example there might be three instances classified as

house, two as tree and two as lorry.

Figure 9.1 shows an example of a decision tree generated from a training

set with three attributes x, y and z, each with possible values 1 and 2, and

three classifications c1, c2 and c3. The node in the bottom row labelled ‘mixed’

represents a clash set, i.e. there are instances with more than one of the three

possible classifications, but no more attributes to split on.

Figure 9.1 Incomplete Decision Tree (With Clash Set)

There are many possible ways of dealing with clashes but the two principal

ones are:

(a) The ‘delete branch’ strategy: discard the branch to the node from the

node above. This is similar to removing the instances in the clash set from

the training set (but not necessarily equivalent to it, as the order in which the

attributes were selected might then have been different).

Applying this strategy to Figure 9.1 gives Figure 9.2. Note that this tree

will be unable to classify unseen instances for which x = 1, y = 1 and z = 2,

as previously discussed in Section 6.7.
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Figure 9.2 Decision Tree Generated from Figure 9.1 by ‘Delete Branch’ Strat-

egy

(b) The ‘majority voting’ strategy: label the node with the most common

classification of the instances in the clash set. This is similar to changing the

classification of some of the instances in the training set (but again not neces-

sarily equivalent, as the order in which the attributes were selected might then

have been different).

Applying this strategy to Figure 9.1 gives Figure 9.3, assuming that the

most common classification of the instances in the clash set is c3.

The decision on which of these strategies to use varies from one situation

to another. If there were, say, 99 instances classified as yes and one instance

classified as no in the training set, we would probably assume that the no

was a misclassification and use method (b). If the distribution in a weather

forecasting application were 4 rain, 5 snow and 3 fog, we might prefer to discard

the instances in the clash set altogether and accept that we are unable to make

a prediction for that combination of attribute values.

A middle approach between the ‘delete branch’ and the ‘majority voting’

strategies is to use a clash threshold. The clash threshold is a percentage from

0 to 100 inclusive.

The ‘clash threshold’ strategy is to assign all the instances in a clash set

to the most commonly occurring class for those instances provided that the

proportion of instances in the clash set with that classification is at least equal

to the clash threshold. If it is not, the instances in the clash set (and the

corresponding branch) are discarded altogether.
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Figure 9.3 Decision Tree Generated from Figure 9.1 by ‘Majority Voting’

Strategy

Setting the clash threshold to zero gives the effect of always assigning to the

most common class, i.e. the ‘majority voting’ strategy. Setting the threshold

to 100 gives the effect of never assigning to the most common class, i.e. the

‘delete branch’ strategy.

Clash threshold values between 0 and 100 give a middle position between

these extremes. Reasonable percentage values to use might be 60, 70, 80 or 90.

Figure 9.4 shows the result of using different clash thresholds for the same

dataset. The dataset used is the crx ‘credit checking’ dataset modified by delet-

ing all the continuous attributes to ensure that clashes will occur. The modified

training set does not satisfy the adequacy condition.

The results were all generated using TDIDT with attributes selected using

information gain in ‘train and test’ mode.

Clash threshold Training set Test set

Correct Incorr. Unclas Correct Incorr. Unclas

0% Maj. Voting 651 39 0 184 16 0

60% 638 26 26 182 10 8

70% 613 13 64 177 3 20

80% 607 11 72 176 2 22

90% 552 0 138 162 0 38

100% Del. Branch 552 0 138 162 0 38

Figure 9.4 Results for crx (Modified) With Varying Clash Thresholds



126 Principles of Data Mining

From the results given it is clear that when there are clashes in the training

data it is no longer possible to obtain a decision tree that gives 100% predictive

accuracy on the training set from which it was generated.

The ‘delete branch’ option (threshold = 100%) avoids making any errors

but leaves many of the instances unclassified. The ‘majority voting’ strategy

(threshold = 0%) avoids leaving instances unclassified but gives many classi-

fication errors. The results for threshold values 60%, 70%, 80% and 90% lie

between these two extremes. However, the predictive accuracy for the train-

ing data is of no importance—we already know the classifications! It is the

accuracy for the test data that matters.

In this case the results for the test data are very much in line with those

for the training data: reducing the threshold value increases the number of

correctly classified instances but it also increases the number of incorrectly

classified instances and the number of unclassified instances falls accordingly.

If we use the ‘default classification strategy’ and automatically allocate each

unclassified instance to the largest class in the original training set, the picture

changes considerably.

Clash threshold Training set Test set

Correct Incorr. Unclas Correct Incorr.

0% maj. voting 651 39 0 184 16

60% 638 26 26 188 12

70% 613 13 64 189 11

80% 607 11 72 189 11

90% 552 0 138 180 20

100% del. branch 552 0 138 180 20

Figure 9.5 Results for crx (Modified) With Varying Clash Thresholds (Using

Default to Largest Class)

Figure 9.5 shows the results given in Figure 9.4 modified so that for the test

data any unclassified instances are automatically assigned to the largest class.

The highest predictive accuracy is given for clash thresholds 70% and 80% in

this case.

Having established the basic method of dealing with clashes in a training

set, we now turn back to the main subject of this chapter: the problem of

avoiding the overfitting of decision trees to data.
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9.2 More About Overfitting Rules to Data

Let us consider a typical rule such as

IF a = 1 and b = yes and z = red THEN class = OK

Adding an additional term to this rule will specialise it, for example the aug-

mented rule

IF a = 1 and b = yes and z = red and k = green THEN class = OK

will normally refer to fewer instances than the original form of the rule (possibly

the same number, but certainly no more).

In contrast, removing a term from the original rule will generalise it, for

example the depleted rule

IF a = 1 and b = yes THEN class = OK

will normally refer to more instances than the original form of the rule (possibly

the same number, but certainly no fewer).

The principal problem with TDIDT and other algorithms for generating

classification rules is that of overfitting. Every time the algorithm splits on an

attribute an additional term is added to each resulting rule, i.e. tree generation

is a repeated process of specialisation.

If a decision tree is generated from data containing noise or irrelevant at-

tributes it is likely to capture erroneous classification information, which will

tend to make it perform badly when classifying unseen instances.

Even when that is not the case, beyond a certain point, specialising a rule

by adding further terms can become counter-productive. The generated rules

give a perfect fit for the instances from which they were generated but in some

cases are too specific (i.e. specialised) to have a high level of predictive accuracy

for other instances. To put this point another way, if the tree is over-specialised,

its ability to generalise, which is vital when classifying unseen instances, will

be reduced.

Another consequence of excessive specificity is that there is often an un-

necessarily large number of rules. A smaller number of more general rules may

have greater predictive accuracy on unseen data.

The standard approach to reducing overfitting is to sacrifice classification

accuracy on the training set for accuracy in classifying (unseen) test data. This

can be achieved by pruning the decision tree. There are two ways to do this:

– Pre-pruning (or forward pruning)

Prevent the generation of non-significant branches

– Post-pruning (or backward pruning)

Generate the decision tree and then remove non-significant branches.
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Pre- and post-pruning are both methods to increase the generality of deci-

sion trees.

9.3 Pre-pruning Decision Trees

Pre-pruning a decision tree involves using a ‘termination condition’ to decide

when it is desirable to terminate some of the branches prematurely as the tree

is generated.

Each branch of the evolving tree corresponds to an incomplete rule such as

IF x = 1 AND z = yes AND q > 63.5 . . . THEN . . .

and also to a subset of instances currently ‘under investigation’.

If all the instances have the same classification, say c1, the end node of the

branch is treated by the TDIDT algorithm as a leaf node labelled by c1. Each

such completed branch corresponds to a (completed) rule, such as

IF x = 1 AND z = yes AND q > 63.5 THEN class = c1

If not all the instances have the same classification the node would normally

be expanded to a subtree by splitting on an attribute, as described previously.

When following a pre-pruning strategy the node (i.e. the subset) is first tested

to determine whether or not a termination condition applies. If it does not, the

node is expanded as usual. If it does, the subset is treated as a clash set in

the way described in Section 9.1, using a ‘delete branch’, a ‘majority voting’

or some other similar strategy. The most common strategy is probably the

‘majority voting’ one, in which case the node is treated as a leaf node labelled

with the most frequently occurring classification for the instances in the subset

(the ‘majority class’).

The set of pre-pruned rules will wrongly classify some of the instances in

the training set. However, the classification accuracy for the test set may be

greater than for the unpruned set of rules.

There are several criteria that can be applied to a node to determine whether

or not pre-pruning should take place. Two of these are:

– Size Cutoff
Prune if the subset contains fewer than say 5 or 10 instances

– Maximum Depth Cutoff
Prune if the length of the branch is say 3 or 4.

Figure 9.6 shows the results obtained for a variety of datasets using

TDIDT with information gain for attribute selection. In each case 10-fold cross-

validation is used, with a size cutoff of 5 instances, 10 instances or no cutoff
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(i.e. unpruned). Figure 9.7 shows the results with a maximum depth cutoff of

3, 4 or unlimited instead. The ‘majority voting’ strategy is used throughout.

No cutoff 5 Instances 10 Instances

Rules % Acc. Rules % Acc. Rules % Acc.

breast-cancer 93.2 89.8 78.7 90.6 63.4 91.6

contact lenses 16.0 92.5 10.6 92.5 8.0 90.7

diabetes 121.9 70.3 97.3 69.4 75.4 70.3

glass 38.3 69.6 30.7 71.0 23.8 71.0

hypo 14.2 99.5 11.6 99.4 11.5 99.4

monk1 37.8 83.9 26.0 75.8 16.8 72.6

monk3 26.5 86.9 19.5 89.3 16.2 90.1

sick-euthyroid 72.8 96.7 59.8 96.7 48.4 96.8

vote 29.2 91.7 19.4 91.0 14.9 92.3

wake vortex 298.4 71.8 244.6 73.3 190.2 74.3

wake vortex2 227.1 71.3 191.2 71.4 155.7 72.2

Figure 9.6 Pre-pruning With Varying Size Cutoffs

No cutoff Length 3 Length 4

Rules % Acc. Rules % Acc. Rules % Acc.

breast-cancer 93.2 89.8 92.6 89.7 93.2 89.8

contact lenses 16.0 92.5 8.1 90.7 12.7 94.4

diabetes 121.9 70.3 12.2 74.6 30.3 74.3

glass 38.3 69.6 8.8 66.8 17.7 68.7

hypo 14.2 99.5 6.7 99.2 9.3 99.2

monk1 37.8 83.9 22.1 77.4 31.0 82.2

monk3 26.5 86.9 19.1 87.7 25.6 86.9

sick-euthyroid 72.8 96.7 8.3 97.8 21.7 97.7

vote 29.2 91.7 15.0 91.0 19.1 90.3

wake vortex 298.4 71.8 74.8 76.8 206.1 74.5

wake vortex2 227.1 71.3 37.6 76.3 76.2 73.8

Figure 9.7 Pre-pruning With Varying Maximum Depth Cutoffs

The results obtained clearly show that the choice of pre-pruning method is

important. However, it is essentially ad hoc. No choice of size or depth cutoff

consistently produces good results across all the datasets.
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This result reinforces the comment by Quinlan [1] that the problem with

pre-pruning is that the ‘stopping threshold’ is “not easy to get right—too

high a threshold can terminate division before the benefits of subsequent splits

become evident, while too low a value results in little simplification”. It would

be highly desirable to find a more principled choice of cutoff criterion to use

with pre-pruning than the size and maximum depth approaches used previously,

and if possible one which can be applied completely automatically without the

need for the user to select any cutoff threshold value. A number of possible

ways of doing this have been proposed, but in practice the use of post-pruning,

to which we now turn, has proved more popular.

9.4 Post-pruning Decision Trees

Post-pruning a decision tree implies that we begin by generating the (complete)

tree and then adjust it with the aim of improving the classification accuracy

on unseen instances.

There are two principal methods of doing this. One method that is widely

used begins by converting the tree to an equivalent set of rules. This will be

described in Chapter 11.

Another commonly used approach aims to retain the decision tree but to

replace some of its subtrees by leaf nodes, thus converting a complete tree to

a smaller pruned one which predicts the classification of unseen instances at

least as accurately. This method has several variants, such as Reduced Error

Pruning, Pessimistic Error Pruning, Minimum Error Pruning and Error Based

Pruning. A comprehensive study and numerical comparison of the effectiveness

of different variants is given in [2].

The details of the methods used vary considerably, but the following exam-

ple gives the general idea. Suppose we have a complete decision tree generated

by the TDIDT algorithm, such as Figure 9.8 below.

Here the customary information about the attribute split on at each node,

the attribute value corresponding to each branch and the classification at each

leaf node are all omitted. Instead the nodes of the tree are labelled from A to

M (A being the root) for ease of reference. The numbers at each node indicate

how many of the 100 instances in the training set used to generate the tree

correspond to each of the nodes. At each of the leaf nodes in the complete tree

all the instances have the same classification. At each of the other nodes the

corresponding instances have more than one classification.

The branch from the root node A to a leaf node such as J corresponds to a

decision rule. We are interested in the proportion of unseen instances to which
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that rule applies that are incorrectly classified. We call this the error rate at

node J (a proportion from 0 to 1 inclusive).

Figure 9.8 Initial Decision Tree

If we imagine the branch from the root node A to an internal node such as

G were to terminate there, rather than being split two ways to form the two

branches A to J and A to K, this branch would correspond to an incomplete

rule of the kind discussed in Section 9.3 on pre-pruning. We will assume that

the unseen instances to which a truncated rule of this kind applies are classified

using the ‘majority voting’ strategy of Section 9.1.1, i.e. they are all allocated

to the class to which the largest number of the instances in the training set

corresponding to that node belong.

When post-pruning a decision tree such as Figure 9.8 we look for non-leaf

nodes in the tree that have a descendant subtree of depth one (i.e. all the

nodes one level down are leaf nodes). All such subtrees are candidates for post-

pruning. If a pruning condition (which will be described below) is met the

subtree hanging from the node can be replaced by the node itself. We work

from the bottom of the tree upwards and prune one subtree at a time. The

method continues until no more subtrees can be pruned.

For Figure 9.8 the only candidates for pruning are the subtrees hanging

from nodes G and D.

Working from the bottom of the tree upwards we start by considering the

replacement of the subtree ‘hanging from’ node G by G itself, as a leaf node in
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a pruned tree. How does the error rate of the branch (truncated rule) ending

at G compare with the error rate of the two branches (complete rules) ending

at J and K? Is it beneficial or harmful to the predictive accuracy of the tree to

split at node G? We might consider truncating the branch earlier, say at node

F . Would that be beneficial or harmful?

To answer questions such as these we need some way of estimating the error

rate at any node of a tree. One way to do this is to use the tree to classify the

instances in some set of previously unseen data called a pruning set and count

the errors. Note that it is imperative that the pruning set is additional to the

‘unseen test set’ used elsewhere in this book. The test set must not be used

for pruning purposes. Using a pruning set is a reasonable approach but may

be unrealistic when the amount of data available is small. An alternative that

takes a lot less execution time is to use a formula to estimate the error rate.

Such a formula is likely to be probability-based and to make use of factors such

as the number of instances corresponding to the node that belong to each of

the classes and the prior probability of each class.

Figure 9.9 shows the estimated error rates at each of the nodes in Figure 9.8

using a (fictitious) formula.

Node Estimated

error rate

A 0.3

B 0.15

C 0.25

D 0.19

E 0.1

F 0.129

G 0.12

H 0.05

I 0.2

J 0.2

K 0.1

L 0.2

M 0.1

Figure 9.9 Estimated Error Rates at Nodes in Figure 9.8

Using Figure 9.9 we see that the estimated error rates at nodes J and K are

0.2 and 0.1, respectively. These two nodes correspond to 8 and 12 instances,

respectively (of the 20 at node G).
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Figure 9.10 Subtree Descending From Node G1

To estimate the error rate of the subtree hanging from node G (Figure 9.10)

we take the weighted average of the estimated error rates at J and K. This

value is (8/20) × 0.2 + (12/20) × 0.1 = 0.14. We will call this the backed-up

estimate of the error rate at node G because it is computed from the estimated

error rates of the nodes below it.

We now need to compare this value with the value obtained from Figure 9.9,

i.e. 0.12, which we will call the static estimate of the error rate at that

node.2

In the case of node G the static value is less than the backed-up value. This

means that splitting at node G increases the error rate at that node, which is

obviously counter-productive. We prune the subtree descending from node G

to give Figure 9.11.

The candidates for pruning are now the subtrees descending from nodes F

and D. (Node G is now a leaf node of the partly pruned tree.)

We can now consider whether or not it is beneficial to split at node F

(Figure 9.12). The static error rates at nodes G, H and I are 0.12, 0.05 and

0.2. Hence the backed-up error rate at node F is (20/50) × 0.12 + (10/50) ×
0.05 + (20/50)× 0.2 = 0.138.

The static error rate at node F is 0.129, which is smaller than the backed-up

value, so we again prune the tree, giving Figure 9.13.

The candidates for pruning are now the subtrees hanging from nodes B and

D. We will consider whether to prune at node B (Figure 9.14).

The static error rates at nodes E and F are 0.1 and 0.129, respectively, so

the backed-up error rate at node B is (10/60)× 0.1+ (50/60)× 0.129 = 0.124.

This is less than the static error rate at node B, which is 0.15. Splitting at

node B reduces the error rate, so we do not prune the subtree.

We next need to consider pruning at node D (Figure 9.15). The static error

rates at nodes L and M are 0.2 and 0.1, respectively, so the backed-up error

1 In Figure 9.10 and similar figures, the two figures in parentheses at each node
give the number of instances in the training set corresponding to that node (as in
Figure 9.8) and the estimated error rate at the node, as given in Figure 9.9.

2 From now on, for simplicity we will generally refer to the ‘backed-up’ error rate
and the ‘static error rate’ at a node, without using the word ‘estimated’ every
time. However it is important to bear in mind that they are only estimates not the
accurate values, which we have no way of knowing.
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Figure 9.11 Decision Tree With One Subtree Pruned

Figure 9.12 Subtree Descending From node F

Figure 9.13 Decision Tree With Two Subtrees Pruned

Figure 9.14 Subtree Descending From Node B
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Figure 9.15 Subtree Descending From Node D

rate at node D is (7/10)× 0.2+(3/10)× 0.1 = 0.17. This is less than the static

error rate at node D, which is 0.19, so we do not prune the subtree. There are

no further subtrees to consider. The final post-pruned tree is Figure 9.13.

In an extreme case this method could lead to a decision tree being post-

pruned right up to its root node, indicating that using the tree is likely to lead

to a higher error rate, i.e. more incorrect classifications, than simply assigning

every unseen instance to the largest class in the training data. Luckily such

poor decision trees are likely to be very rare.

Post-pruning decision trees would appear to be a more widely used and

accepted approach than pre-pruning them. No doubt the ready availability

and popularity of the C4.5 classification system [1] has had a large influence on

this. However, an important practical objection to post-pruning is that there

is a large computational overhead involved in generating a complete tree only

then to discard some or possibly most of it. This may not matter with small

experimental datasets, but ‘real-world’ datasets may contain many millions of

instances and issues of computational feasibility and scaling up of methods will

inevitably become important.

The decision tree representation of classification rules is widely used and it is

therefore desirable to find methods of pruning that work well with it. However,

the tree representation is itself a source of overfitting, as will be demonstrated

in Chapter 11.

9.5 Chapter Summary

This chapter begins by examining techniques for dealing with clashes (i.e. in-

consistent instances) in a training set. This leads to a discussion of methods for

avoiding or reducing overfitting of a decision tree to training data. Overfitting

arises when a decision tree is excessively dependent on irrelevant features of

the training data with the result that its predictive power for unseen instances

is reduced.

Two approaches to avoiding overfitting are distinguished: pre-pruning (gen-

erating a tree with fewer branches than would otherwise be the case) and post-
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pruning (generating a tree in full and then removing parts of it). Results are

given for pre-pruning using either a size or a maximum depth cutoff. A method

of post-pruning a decision tree based on comparing the static and backed-up

estimated error rates at each node is also described.

9.6 Self-assessment Exercise for Chapter 9

What post-pruning of the decision tree shown in Figure 9.8 would result from

using the table of estimated error rates given below rather than the values given

in Figure 9.9?
Node Estimated

error rate

A 0.2

B 0.35

C 0.1

D 0.2

E 0.01

F 0.25

G 0.05

H 0.1

I 0.2

J 0.15

K 0.2

L 0.1

M 0.1
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10
More About Entropy

10.1 Introduction

In this chapter we return to the subject of the entropy of a training set, which

was introduced in Chapter 5. The idea of entropy is not only used in data

mining; it is a very fundamental one, which is widely used in Information

Theory as the basis for calculating efficient ways of representing messages for

transmission by telecommunication systems.

We will start by explaining what is meant by the entropy of a set of distinct

values and then come back to look again at the entropy of a training set.

Suppose we are playing a game of the ‘twenty questions’ variety where we try

to identify one of M possible values by asking a series of yes/no questions. The

values in which we are really interested are mutually exclusive classifications of

the kind discussed in Chapter 3 and elsewhere, but the same argument can be

applied to any set of distinct values.

We will assume at present that all M values are equally likely and for

reasons that will soon become apparent we will also assume that M is an exact

power of 2, say 2N , where N ≥ 1.

As a concrete example we will take the task of identifying an unknown

capital city from the eight possibilities: London, Paris, Berlin, Warsaw, Sofia,

Rome, Athens and Moscow (here M = 8 = 23).

There are many possible ways of asking questions, for example random

guessing:
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Is it Warsaw? No

Is it Berlin? No

Is it Rome? Yes

This works well if the questioner makes a lucky guess early on, but (un-

surprisingly) it is inefficient in the general case. To show this, imagine that we

make our guesses in the fixed order: London, Paris, Berlin etc. until we guess

the correct answer. We never need guess further than Athens, as a ‘no’ answer

will tell us the city must be Moscow.

If the city is London, we need 1 question to find it.

If the city is Paris, we need 2 questions to find it.

If the city is Berlin, we need 3 questions to find it.

If the city is Warsaw, we need 4 questions to find it.

If the city is Sofia, we need 5 questions to find it.

If the city is Rome, we need 6 questions to find it.

If the city is Athens, we need 7 questions to find it.

If the city is Moscow, we need 7 questions to find it.

Each of these possibilities is equally likely, i.e. has probability 1/8, so on

average we need (1 + 2 + 3 + 4 + 5 + 6 + 7 + 7)/8 questions, i.e. 35/8 = 4.375

questions.

A little experiment will soon show that the best strategy is to keep dividing

the possibilities into equal halves. Thus we might ask

Is it London, Paris, Athens or Moscow? No

Is it Berlin or Warsaw? Yes

Is it Berlin?

Whether the third question is answered yes or no, the answer will tell us

the identity of the ‘unknown’ city.

The halving strategy always takes three questions to identify the unknown

city. It is considered to be the ‘best’ strategy not because it invariably gives

us the answer with the smallest number of questions (random guessing will

occasionally do better) but because if we conduct a long series of ‘trials’ (each

a game to guess a city, selected at random each time) the halving strategy will

invariably find the answer and will do so with a smaller number of questions on

average than any other strategy. With this understanding we can say that the

smallest number of yes/no questions needed to determine an unknown value

from 8 equally likely possibilities is three.

It is no coincidence that 8 is 23 and the smallest number of yes/no questions

needed is 3. If we make the number of possible values M a higher or a lower

power of two the same occurs. If we start with 8 possibilities and halve the

number by the first question, that leaves 4 possibilities. We can determine
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the unknown value with 2 further questions. If we start with 4 possibilities

and halve the number down to 2 by the first question we can determine the

unknown value by just one further question (‘is it the first one?’). So for M = 4

the smallest number of questions is 2 and for M = 2 the smallest number of

questions is 1.

We can extend the argument to look at higher values of M , say 16. It takes

one ‘halving’ question to reduce the number of possibilities to 8, which we know

we can handle with 3 further questions. So the number of questions needed in

the case of 16 values (M = 16) must be 4.

In general, we have the following result. The smallest number of yes/no

questions needed to determine an unknown value from M = 2N

equally likely possibilities is N .

Using the mathematical function log2,
1 we can rewrite the last result as: the

smallest number of yes/no questions needed to determine an unknown value

from M equally likely possibilities is log2 M (provided M is a power of 2; see

Figure 10.1).

M log2 M

2 1

4 2

8 3

16 4

32 5

64 6

128 7

256 8

512 9

1024 10

Figure 10.1 Some values of log2 M (where M is a power of 2)

We will define a quantity called the entropy of a set of M distinct values

as follows.

The entropy of a set of M distinct values that are equally likely is the

smallest number of yes/no questions needed to determine an unknown value

drawn from theM possibilities. As before, the words ‘in all cases’ are implicit

and by smallest we mean the smallest number of questions averaged over a

series of trials, not just one single trial (game).

1 The log2 function is defined in Appendix A for readers who are unfamiliar with it.



140 Principles of Data Mining

In the phrase ‘the smallest number of yes/no questions needed’ in the defi-

nition of entropy, it is implicit that each question needs to divide the remaining

possibilities into two equally probable halves. If they do not, for example with

random guessing, a larger number will be needed.

It is not sufficient that each question looked at in isolation is a ‘halving

question’. For example, consider the sequence

Is it Berlin, London, Paris or Warsaw? Yes

Is it Berlin, London, Paris or Sofia? Yes

Both questions are ‘halving questions’ in their own right, but the answers

leave us after two questions still having to discriminate amongst three possi-

bilities, which cannot be done with one more question.

It is not sufficient that each question asked is a halving question. It is

necessary to find a sequence of questions that take full advantage of the answers

already given to divide the remaining possibilities into two equally probable

halves. We will call this a ‘well-chosen’ sequence of questions.

So far we have established that the entropy of a set of M distinct values is

log2 M , provided that M is a power of 2 and all values are equally likely. We

have also established the need for questions to form a ‘well-chosen’ sequence.

This raises three questions:

– What if M is not a power of 2?

– What if the M possible values are not equally likely?

– Is there a systematic way of finding a sequence of well-chosen questions?

It will be easier to answer these questions if we first introduce the idea of

coding information using bits.

10.2 Coding Information Using Bits

There is an obvious everyday sense in which the more questions that are an-

swered the more information we have. We can formalise this by saying that the

answer to a question that can only be answered yes or no (with equal prob-

ability) can be considered as containing one unit of information. The basic

unit of information is called a bit (short for ‘binary digit’). This usage of the

word ‘bit’ has a close connection with its use for the basic unit of storage in

computer memory. It is a fundamental two-valued unit that corresponds to a

switch being open or closed, a light being on or off, an electric current flowing

or not flowing, or the dot and dash of Morse code.
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The unit of information can also be looked at as the amount of information

that can be coded using only a zero or a one. If we have two possible values,

say male and female, we might use the coding

0 = male

1 = female

We can encode four possible values (say: man, woman, dog, cat) using two

bits, e.g.

00 = man

01 = woman

10 = dog

11 = cat

To code eight values, say the eight capital cities, we need to use three bits,

for example

000 = London

001 = Paris

010 = Berlin

011 = Warsaw

100 = Sofia

101 = Rome

110 = Athens

111 = Moscow

Coding the 2N equally likely possibilities with N binary digits shows that

it is always possible to discriminate amongst the values with a sequence of N

well-chosen questions, for example:

Is the first bit zero?

Is the second bit zero?

Is the third bit zero?

and so on.

This leads to the following alternative (and equivalent) definition of entropy:

The entropy of a set of M distinct values is the number of bits needed to

encode the values in the most efficient way.

As for the previous definition, the words ‘in all cases’ are implicit and by

‘the most efficient way’ we mean the smallest number of bits averaged over a

series of trials, not just one single trial. This second definition also explains why

the entropy is often given not as a number but as so many ‘bits of information’.
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10.3 Discriminating Amongst M Values
(M Not a Power of 2)

So far we have established that the entropy of a set of M distinct values that

are equally likely is log2 M for cases where M is a power of 2. We now need to

consider the case when it is not.

Is there any sense in which we can say that the entropy is log2 M bits of

information? We cannot have a non-integer number of questions or encode with

a non-integer number of bits.

To answer this we need to think of identifying not just one value out of M

possibilities but a sequence of k such values (each one chosen independently of

the others). We will denote the smallest number of yes/no questions needed to

determine a sequence of k unknown values drawn independently from M pos-

sibilities, i.e. the entropy, by VkM . This is the same as the number of questions

needed to discriminate amongst Mk distinct possibilities.

To take a concrete example, say M is 7 and k is 6 and the task is to identify

a sequence of six days of the week, for example {Tuesday, Thursday, Tuesday,
Monday, Sunday, Tuesday}. A possible question might be

Is the first day Monday, Tuesday or Wednesday

and the second day Thursday

and the third day Monday, Saturday, Tuesday or Thursday

and the fourth day Tuesday, Wednesday or Friday

and the fifth day Saturday or Monday

and the sixth day Monday, Sunday or Thursday?

There are 76=117649 possible sequences of six days. The value of log2 117649

is 16.84413. This is between 16 and 17 so to determine any possible value of

a sequence of 6 days of the week would take 17 questions. The average num-

ber of questions for each of the six days of the week is 17/6 = 2.8333. This is

reasonably close to log2 7, which is approximately 2.8074.

A better approximation to the entropy is obtained by taking a larger value

of k, say 21. Now log2 M
k is log2(7

21) = 58.95445, so 59 questions are needed

for the set of 21 values, making an average number of questions per value of

59/21 = 2.809524.

Finally, for a set of 1000 values (k = 1000), log2 M
k is log2(7

1000) =

2807.3549, so 2808 questions are needed for the set of 1000 values, making

an average per value of 2.808, which is very close to log2 7.

It is not a coincidence that these values appear to be converging to log2 7, as

is shown by the following argument for the general case of sequences of length

k drawn from M distinct equally likely values.
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There are Mk possible sequences of k values. Assuming now that M is not

a power of 2, the number of questions needed, VkM is the next integer above

log2 M
k. We can put lower and upper bounds on the value of VkM by the

relation

log2 M
k ≤ VkM ≤ log2 M

k + 1

Using the property of logarithms that log2 M
k = k log2 M leads to the relation

k log2 M ≤ VkM ≤ k log2 M + 1

so log2 M ≤ VkM/k ≤ log2 M + 1/k.

VkM/k is the average number of questions needed to determine each of the

k values. By choosing a large enough value of k, i.e. a long enough sequence,

the value of 1/k can be made as small as we wish. Thus the average number

of questions needed to determine each value can be made arbitrarily close to

log2 M . Thus the entropy of a set of M distinct values can be said to be log2 M ,

even when M is not a power of 2 (see Figure 10.2).

M log2 M

2 1

3 1.5850

4 2

5 2.3219

6 2.5850

7 2.8074

8 3

9 3.1699

10 3.3219

Figure 10.2 log2 M for M from 2 to 10

10.4 Encoding Values That Are Not Equally
Likely

We finally come to the general case of encoding M distinct values that are not

equally likely. (We assume that values that never occur are not included.)

When M possible values are equally likely the entropy has previously been

shown to be log2 M . When M values are unequally distributed the entropy will
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always have a lower value than log2 M . In the extreme case where only one

value ever occurs, there is no need to use even one bit to represent the value

and the entropy is zero.

We will write the frequency with which the ith of the M values occurs as

pi where i varies from 1 to M . Then we have 0 ≤ pi ≤ 1 for all pi and
i=M∑

i=1

pi = 1.

For convenience we will give an example where all the pi values are the

reciprocal of an exact power of 2, i.e. 1/2, 1/4 or 1/8, but the result obtained

can be shown to apply for other values of pi using an argument similar to that

in Section 10.3.

Suppose we have four values A, B, C and D which occur with frequencies

1/2, 1/4, 1/8 and 1/8 respectively. Then M = 4, p1 = 1/2, p2 = 1/4, p3 = 1/8,

p4 = 1/8.

When representing A, B, C and D we could use the standard 2-bit encoding

described previously, i.e.

A 10

B 11

C 00

D 01

However, we can improve on this using a variable length encoding, i.e. one

where the values are not always represented by the same number of bits. There

are many possible ways of doing this. The best way turns out to be the one

shown in Figure 10.3.

A 1

B 01

C 001

D 000

Figure 10.3 Most Efficient Representation for Four Values with Frequencies

1/2, 1/4, 1/8 and 1/8

If the value to be identified is A, we need examine only one bit to establish

this. If it is B we need to examine two bits. If it is C or D we need to examine 3

bits. In the average case we need to examine 1/2×1+1/4×2+1/8×3+1/8×3 =

1.75 bits.

This is the most efficient representation. Flipping some or all of the bits

consistently will give other equally efficient representations that are obviously

equivalent to it, such as



More About Entropy 145

A 0

B 11

C 100

D 101

Any other representation will require more bits to be examined on average.

For example we might choose

A 01

B 1

C 001

D 000

With this representation, in the average case we need to examine 1/2× 2+

1/4 × 1 + 1/8 × 3 + 1/8 × 3 = 2 bits (the same as the number for the fixed

length representation).

Some other representations, such as

A 101

B 0011

C 10011

D 100001

are much worse than the 2-bit representation. This one requires 1/2×3+1/4×
4 + 1/8× 5 + 1/8× 6 = 3.875 bits to be examined on average.

The key to finding the most efficient coding is to use a string of N bits to

represent a value that occurs with frequency 1/2N . Writing this another way,

represent a value that occurs with frequency pi by a string of log2(1/pi) bits

(see Figure 10.4).

pi log2(1/pi)

1/2 1

1/4 2

1/8 3

1/16 4

Figure 10.4 Values of log2(1/pi)

This method of coding ensures that we can determine any value by asking

a sequence of ‘well-chosen’ yes/no questions (i.e. questions for which the two

possible answers are equally likely) about the value of each of the bits in turn.

Is the first bit 1?

If not, is the second bit 1?
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If not, is the third bit 1?

etc.

So in Figure 10.3 value A, which occurs with frequency 1/2 is represented

by 1 bit, value B which occurs with frequency 1/4 is represented by 2 bits and

values C and D are represented by 3 bits each.

If there are M values with frequencies p1, p2, . . . , pM the average number

of bits that need to be examined to establish a value, i.e. the entropy, is the

frequency of occurrence of the ith value multiplied by the number of bits that

need to be examined if that value is the one to be determined, summed over

all values of i from 1 to M . Thus we can calculate the value of entropy E by

E =
M∑

i=1

pi log2(1/pi)

This formula is often given in the equivalent form

E = −
M∑

i=1

pi log2(pi)

There are two special cases to consider. When all the values of pi are the

same, i.e. pi = 1/M for all values of i from 1 to M , the above formula reduces

to

E = −
M∑

i=1

(1/M) log2(1/M)

= − log2(1/M)

= log2 M

which is the formula given in Section 10.3.

When there is only one value with a non-zero frequency, M = 1 and p1 = 1,

so E = −1× log2 1 = 0.

10.5 Entropy of a Training Set

We can now link up the material in this chapter with the definition of the

entropy of a training set given in Chapter 5. In that chapter the formula for

entropy was simply stated without motivation. We can now see the entropy of

a training set in terms of the number of yes/no questions needed to determine

an unknown classification.

If we know that the entropy of a training set is E, it does not imply that we

can find an unknown classification with E ‘well-chosen’ yes/no questions. To

do so we would have to ask questions about the classification itself, e.g. ‘Is the

classification A or B, rather than C or D?’ Obviously we cannot find a way of

predicting the classification of an unseen instance by asking questions of this
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kind. Instead we ask a series of questions about the value of a set of attributes

measured for each of the instances in a training set, which collectively determine

the classification. Sometimes only one question is necessary, sometimes many

more.

Asking any question about the value of an attribute effectively divides the

training set into a number of subsets, one for each possible value of the at-

tribute (any empty subsets are discarded). The TDIDT algorithm described in

Chapter 4 generates a decision tree from the top down by repeatedly splitting

on the values of attributes. If the training set represented by the root node

has M possible classifications, each of the subsets corresponding to the end

nodes of each branch of the developing tree has an entropy value that varies

from log2 M (if the frequencies of each of the classifications in the subset are

identical) to zero (if the subset has attributes with only one classification).

When the splitting process has terminated, all the ‘uncertainty’ has been

removed from the tree. Each branch corresponds to a combination of attribute

values and for each branch there is a single classification, so the overall entropy

is zero.

Although it is possible for a subset created by splitting to have an entropy

greater than its ‘parent’, at every stage of the process splitting on an attribute

reduces the average entropy of the tree or at worst leaves it unchanged. This is

an important result, which is frequently assumed but seldom proved. We will

consider it in the next section.

10.6 Information Gain Must Be Positive or Zero

The Information Gain attribute selection criterion was described in Chapter 5.

Because of its name, it is sometimes assumed that Information Gain must

always be positive, i.e. information is always gained by splitting on a node

during the tree generation process.

However this is not correct. Although it is generally true that information

gain is positive it is also possible for it to be zero. The following demonstration

that information gain can be zero is based on the principle that for C possible

classifications, the entropy of a training set takes the value log2 C (its largest

possible value) when the classes are balanced, i.e. there are the same number

of instances belonging to each of the classes.

The training set shown in Figure 10.5 has two equally balanced classes.

The probability of each class is 0.5, so we have

Estart = −(1/2) log2(1/2)− (1/2) log2(1/2) = − log2(1/2) = log2(2) = 1
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X Y Class

1 1 A

1 2 B

2 1 A

2 2 B

3 2 A

3 1 B

4 2 A

4 1 B

Figure 10.5 Training Set for ‘Information Gain Can be Zero’ Example

This is the value of log2 C for C = 2 classes.

The training set has been constructed to have the property that whichever

attribute is chosen for splitting, each of the branches will also be balanced.

For splitting on attribute X the frequency table is shown in Figure 10.6(a).

Attribute value

Class 1 2 3 4

A 1 1 1 1

B 1 1 1 1

Total 2 2 2 2

Figure 10.6(a) Frequency Table for Attribute X

Each column of the frequency table is balanced and it can easily be verified

that Enew = 1.

For splitting on attribute Y the frequency table is shown in Figure 10.6(b).

Attribute value

Class 1 2

A 2 2

B 2 2

Total 4 4

Figure 10.6(b) Frequency Table for Attribute Y

Again both columns are balanced and Enew = 1. Whichever value is taken,

Enew is 1 and so the Information Gain = Estart − Enew = 0.
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The absence of information gain does not imply that there is no value in

splitting on either of the attributes. Whichever one is chosen, splitting on the

other attribute for all the resulting branches will produce a final decision tree

with each branch terminated by a leaf node and thus having an entropy of zero.

Although we have shown that Information Gain can sometimes be zero, it

can never be negative. Intuitively it would seem wrong for it to be possible to

lose information by splitting on an attribute. Surely that can only give more

information (or occasionally the same amount)?

The result that Information Gain can never be negative is stated by many

authors and implied by others. The name Information Gain gives a strong

suggestion that information loss would not be possible, but that is far from

being a formal proof.

The present author’s inability to locate a proof of this crucial result led him

to issue a challenge to several British academics to find a proof in the technical

literature or generate one themselves. An excellent response to this came from

two members of the University of Ulster in Northern Ireland who produced a

detailed proof of their own [1]. The proof is too difficult to reproduce here but

is well worth obtaining and studying in detail.

10.7 Using Information Gain for Feature
Reduction for Classification Tasks

We conclude this chapter by looking at a further use for entropy, in the form

of Information Gain, this time as a means of reducing the number of features

(i.e. attributes) that a classification algorithm (of any kind) needs to consider.

The method of feature reduction described here is specific to classification

tasks. It uses information gain, which was introduced in Chapter 5 as a criterion

for selecting attributes at each stage of the TDIDT tree generation algorithm.

However for purposes of feature reduction, information gain is applied at the

top level only as an initial pre-processing stage. Only the attributes meeting a

specified criterion are retained for use by the classification algorithm. There is

no assumption that the classification algorithm used is TDIDT. It can poten-

tially be any algorithm.

Broadly the method amounts to asking for each attribute in turn ‘how

much information is gained about the classification of an instance by knowing

the value of this attribute?’ Only the attributes with the largest values of

information gain are retained for use with the preferred classification algorithm.

There are three stages.
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1. Calculate the value of information gain for each attribute in the original

dataset.

2. Discard all attributes that do not meet a specified criterion.

3. Pass the revised dataset to the preferred classification algorithm.

The method of calculating information gain for categorical attributes using

frequency tables was described in Chapter 6. A modification that enables the

method to be used for continuous attributes by examining alternative ways of

splitting the attribute values into two parts was described in Chapter 8. The

latter also returns a ‘split value’, i.e. the value of the attribute that gives the

largest information gain. This value is not needed when information gain is

used for feature reduction. It is sufficient to know the largest information gain

achievable for the attribute with any split value.

There are many possible criteria that can be used for determining which

attributes to retain, for example:

– Only retain the best 20 attributes

– Only retain the best 25% of the attributes

– Only retain attributes with an information gain that is at least 25% of the

highest information gain of any attribute

– Only retain attributes that reduce the initial entropy of the dataset by at

least 10%.

There is no one choice that is best in all situations, but analysing the infor-

mation gain values of all the attributes can help make an informed choice.

10.7.1 Example 1: The genetics Dataset

As an example we will consider the genetics dataset, which is available from

the UCI Repository. Some basic information about this is given in Figure 10.7.

Although 60 attributes is hardly a large number, it may still be more than

is needed for reliable classification and is large enough to make overfitting a

realistic possibility.

There are three classifications, distributed 767, 768 and 1655 amongst the

three classes for the 3190 instances. The relative proportions are 0.240, 0.241

and 0.519, so the initial entropy is: −0.240× log2(0.240)−0.241× log2(0.241)−
0.519× log2(0.519) = 1.480.

The values of information gain for some of the attributes A0 to A59 are

shown in Figure 10.8.
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The genetics Dataset: Basic Information

The genetics dataset contains 3190 instances. Each instance comprises the

values of a sequence of 60 DNA elements and is classified into one of three

possible categories: EI, IE and N . Each of the 60 attributes (named A0

to A59) is categorical and has 8 possible values: A, T , G, C, N , D, S and R.

For further information see [2].

Figure 10.7 genetics Dataset: Basic Information

Attribute Information Gain

A0 0.0062

A1 0.0066

A2 0.0024

A3 0.0092

A4 0.0161

A5 0.0177

A6 0.0077

A7 0.0071

A8 0.0283

A9 0.0279

. . . . . . . . . . . .

A27 0.2108

A28 0.3426

A29 0.3896

A30 0.3296

A31 0.3322

. . . . . . . . . . . .

A57 0.0080

A58 0.0041

A59 0.0123

Figure 10.8 genetics Dataset: Information Gain for Some of the Attributes



152 Principles of Data Mining

The largest information gain is for A29. A gain of 0.3896 implies that the

initial entropy would be reduced by more than a quarter if the value of A29

were known. The second largest information gain is for attribute A28.

Comparing values written as decimals to four decimal places is awkward

(for people). It is probably easier to make sense of this table if it is adjusted by

dividing all the information gain values by 0.3896 (the largest value), making

a proportion from 0 to 1, and then multiplying them all by 100. The resulting

values are given in Figure 10.9. An adjusted information gain of 1.60 for at-

tribute A0 means that the information gain for A0 is 1.60% of the size of the

largest value, which was the one obtained for A29.

Attribute Info. Gain

(adjusted)

A0 1.60

A1 1.70

A2 0.61

A3 2.36

A4 4.14

A5 4.55

A6 1.99

A7 1.81

A8 7.27

A9 7.17

. . . . . . . . . . . .

A27 54.09

A28 87.92

A29 100.00

A30 84.60

A31 85.26

. . . . . . . . . . . .

A57 2.07

A58 1.05

A59 3.16

Figure 10.9 genetics Dataset: Information Gain as Percentage of Largest

Value

From this table it is clear that not only is the information gain for A29 the

largest, it is considerably larger than most of the other values. Only a small

number of other information gain values are even 50% as large.
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Another way of looking at the information gain values is to consider fre-

quencies. We can divide the range of possible adjusted values (0 to 100% in

this case) into a number of ranges, generally known as bins. These might be

labelled 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. (It is not essential for the

bins to be equally spaced.)

Each of the information gain values is then assigned to one of the bins. The

first bin corresponds to values from 0 to 10 inclusive, the second bin corresponds

to values greater than 10 but less than or equal to 20, and so on.

The frequency for each of the 10 bins is shown in Figure 10.10. The final

two columns show the cumulative frequency (i.e. the number of values that are

less than or equal to the bin label) and the cumulative frequency expressed as

a percentage of the total number of values (i.e. 60).

Bin Frequency Cumulative Cumulative

frequency frequency (%)

10 41 41 68.33

20 9 50 83.33

30 2 52 86.67

40 2 54 90.00

50 0 54 90.00

60 2 56 93.33

70 0 56 93.33

80 0 56 93.33

90 3 59 98.33

100 1 60 100.00

Total 60

Figure 10.10 genetics Dataset: Information Gain Frequencies

As many as 41 of the 60 attributes have an information gain that is no more

than 10% as large as that of A29. Only six attributes have an information gain

that is more than 50% of that of A29.

It is tempting to discard all but the best six attributes. Although this is not

necessarily the best policy, it is interesting to look at the change in predictive

accuracy that results if we do.

Using TDIDT with the entropy attribute selection criterion for classifica-

tion, the predictive accuracy obtained using 10-fold cross-validation is 89.5%

when all 60 attributes are used. This increases to 91.8% when only the best six

attributes are used. Although this improvement is quite small, it certainly is

an improvement and is obtained using only 6 out of the original 60 attributes.
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10.7.2 Example 2: The bcst96 Dataset

The next example makes use of a much larger dataset. The dataset bcst96 has

been used for experiments on automatic classification of web pages. Some basic

information about it is given in Figure 10.11.

The bcst96 Dataset: Basic Information

The bcst96 dataset comprises 1186 instances (training set) and a further

509 instances (test set). Each instance corresponds to a web page, which

is classified into one of two possible categories, B or C, using the values of

13,430 attributes, all continuous.

There are 1,749 attributes that each have only a single value for the in-

stances in the training set and so can be deleted, leaving 11,681 continuous

attributes.

Figure 10.11 bcst96 Dataset: Basic Information

In this case the original number of attributes is more than 11 times as large

as the number of instances in the training set. It seems highly likely that a

large number of the attributes could safely be deleted, but which ones?

The initial value of entropy is 0.996, indicating that the two classes are

fairly equally balanced.

As can be seen in Figure 10.11, having deleted the attributes that have a

single value for all instances in the training set, there are 11,681 continuous

attributes remaining.

Next we calculate the information gain for each of these 11,681 attributes.

The largest value is 0.381.

The frequency table is shown in Figure 10.12.

The most surprising result is that as many as 11,135 of the attributes

(95.33%) have an information gain in the 5 bin, i.e. no more than 5% of the

largest information gain available. Almost 99% of the values are in the 5 and

10 bins.

Using TDIDT with the entropy attribute selection criterion for classifica-

tion, the algorithm generates 38 rules from the original training set and uses

these to predict the classification of the 509 instances in the test set. It does this

with 94.9% accuracy (483 correct and 26 incorrect predictions). If we discard

all but the best 50 attributes, the same algorithm generates a set of 62 rules,

which again give 94.9% predictive accuracy on the test set (483 correct and 26

incorrect predictions).
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Bin Frequency Cumulative Cumulative

frequency frequency (%)

5 11,135 11,135 95.33

10 403 11,538 98.78

15 76 11,614 99.43

20 34 11,648 99.72

25 10 11,658 99.80

30 7 11,665 99.86

35 4 11,669 99.90

40 1 11,670 99.91

45 2 11,672 99.92

50 1 11,673 99.93

55 1 11,674 99.94

60 2 11,676 99.96

65 2 11,678 99.97

70 0 11,678 99.97

75 1 11,679 99.98

80 0 11,679 99.98

85 1 11,680 99.99

90 0 11,680 99.99

95 0 11,680 99.99

100 1 11,681 100.00

Total 11,681

Figure 10.12 bcst96 Dataset: Information Gain Frequencies

In this case just 50 out of 11,681 attributes (less than 0.5%) suffice to

give the same predictive accuracy as the whole set of attributes. However, the

difference in the amount of processing required to produce the two decision

trees is considerable. With all the attributes the TDIDT algorithm will need to

examine approximately 1, 186× 11, 681 = 13, 853, 666 attribute values at each

node of the evolving decision tree. If only the best 50 attributes are used the

number drops to just 1, 186× 50 = 59, 300.

Although feature reduction cannot always be guaranteed to produce re-

sults as good as those in these two examples, it should always be considered,

especially when the number of attributes is large.
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10.8 Chapter Summary

This chapter returns to the subject of the entropy of a training set. It explains

the concept of entropy in detail using the idea of coding information using bits.

The important result that when using the TDIDT algorithm information gain

must be positive or zero is discussed, followed by the use of information gain

as a method of feature reduction for classification tasks.

10.9 Self-assessment Exercises for Chapter 10

1. What is the entropy of a training set of 100 instances with four classes that

occur with relative frequencies 20/100, 30/100, 25/100 and 25/100? What

is the entropy of a training set of 10,000 instances with those frequencies

for its four classes?

2. Given the task of identifying an unknown person in a large group using

only yes/no questions, which question is it likely to be best to ask first?
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11
Inducing Modular Rules for Classification

Generating classification rules via the intermediate form of a decision tree is

a widely used technique, which formed the main topic of the first part of this

book. However, as pointed out in Chapter 9, like many other methods it suffers

from the problem of overfitting to the training data. We begin this chapter

by describing the ‘rule post-pruning’ method, which is an alternative to the

post-pruning method discussed in Chapter 9. This leads on to the important

topic of conflict resolution.

We go on to suggest that the decision tree representation is itself a major

cause of overfitting and then look at an algorithm which generates rules directly

without using the intermediate representation of a decision tree.

11.1 Rule Post-pruning

The Rule Post-pruning method begins by converting a decision tree to an equiv-

alent set of rules and then examines the rules with the aim of simplifying them

without any loss of (and preferably with a gain in) predictive accuracy.

Figure 11.1 shows the decision tree for the degrees dataset given in Chap-

ter 4. It consists of five branches, each ending with a leaf node labelled with

one of the valid classifications, i.e. FIRST or SECOND.

Each branch of the tree corresponds to a classification rule and so the rules

equivalent to the decision tree can be extracted from it branch by branch. The

order in which the branches are taken is arbitrary as for any unseen instance

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 11,
© Springer-Verlag London 2013
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Figure 11.1 Decision Tree for the degrees Dataset

only one rule (at most) can ever apply. The five rules corresponding to Figure

11.1 are as follows (in arbitrary order):

IF SoftEng = A AND Project = B AND

ARIN = A AND CSA = A THEN Class = FIRST

IF SoftEng = A AND Project = A THEN Class = FIRST

IF SoftEng = A AND Project = B AND ARIN = A AND

CSA = B THEN Class = SECOND

IF SoftEng = A AND Project = B AND ARIN = B THEN

Class = SECOND

IF SoftEng = B THEN Class = SECOND

We now examine each of the rules in turn to consider whether removing each

of its terms increases or reduces its predictive accuracy. Thus for the first rule

given above we consider the four terms ‘SoftEng = A’, ‘Project = B’, ‘ARIN

= A’ and ‘CSA = A’. We need some way of estimating whether removing each

of these terms singly would increase or decrease the accuracy of the resulting

rule set. Assuming we have such a method, we remove the term that gives the

largest increase in predictive accuracy, say ‘Project = B’. We then consider the

removal of each of the other three terms. The processing of a rule ends when

removing any of the terms would reduce (or leave unchanged) the predictive

accuracy. We then go on to the next rule.
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This description relies on there being some means of estimating the effect

on the predictive accuracy of a ruleset of removing a single term from one of

the rules. We may be able to use a probability-based formula to do this or

we can simply use the original and revised rulesets to classify the instances

in an unseen pruning set and compare the results. (Note that it would be

methodologically unsound to improve the ruleset using a test set and then

examine its performance on the same instances. For this method there needs

to be three sets: training, pruning and test.)

11.2 Conflict Resolution

A second important issue raised by the use of rule post-pruning is of much wider

applicability. Once even one term has been removed from a rule the property

that for any unseen instance only one rule (at most) can ever apply is no longer

valid.

The method of post-pruning described in Chapter 9, i.e. working bottom-up,

repeatedly replacing a subtree by a single node has the very desirable property

that the resulting branches will still fit together in a tree structure. For example

the method might (probably unwisely) lead to the replacement of the test on

the value of ARIN in Figure 11.1 and the subtree that hangs from it by a single

node labelled SECOND. The result will still be a tree, as shown in Figure 11.2.

Figure 11.2 Decision Tree for the degrees Dataset (revised)

Instead of this, suppose that, as part of a process such as rule post-pruning,

we wish to remove the link corresponding to ‘SoftEng = A’ near the top of the

tree, giving Figure 11.3.

If we do so, we will no longer have a tree— just two disconnected trees. It

is unclear whether and how these can be used. The five rules listed in Section
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Figure 11.3 Decision Tree for the degrees Dataset (revised – version 2)

11.1 have now become the following (the first four rules have changed).

IF Project = B AND ARIN = A AND CSA = A THEN Class = FIRST

IF Project = A THEN Class = FIRST

IF Project = B AND ARIN = A AND CSA = B

THEN Class = SECOND

IF Project = B AND ARIN = B THEN Class = SECOND

IF SoftEng = B THEN Class = SECOND

We will say that a rule fires if its condition part is satisfied for a given

instance. If a set of rules fits into a tree structure there is only one rule that

can fire for any instance. In the general case of a set of rules that do not fit

into a tree structure, it is entirely possible for several rules to fire for a given

test instance, and for those rules to give contradictory classifications.

Suppose that for the degrees application we have an unseen instance for

which the values of SoftEng, Project, ARIN and CSA are ‘B’, ‘B’, ‘A’ and ‘A’,

respectively. Both the first and the last rules will fire. The first rule concludes

‘Class = FIRST’; the last rule concludes ‘Class = SECOND’. Which one should

we take?

The problem can be illustrated outside the context of the degrees dataset

by considering just two rules from some imaginary ruleset:

IF x = 4 THEN Class = a
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IF y = 2 THEN Class = b

What should the classification be for an instance with x = 4 and y = 2?

One rule gives class a, the other class b.

We can easily extend the example with other rules such as

IF w = 9 and k = 5 THEN Class = b

IF x = 4 THEN Class = a

IF y = 2 THEN Class = b

IF z = 6 and m = 47 THEN Class = b

What should the classification be for an instance with w = 9, k = 5, x = 4,

y = 2, z = 6 and m = 47? One rule gives class a, the other three rules give

class b.

We need a method of choosing just one classification to give to the unseen

instance. This method is known as a conflict resolution strategy. There are

various strategies we can use, including:

– ‘majority voting’ (e.g. there are three rules predicting class b and only one

predicting class a, so choose class b)

– giving priority to certain types of rule or classification (e.g. rules with a

small number of terms or predicting a rare classification might have a higher

weighting than other rules in the voting)

– using a measure of the ‘interestingness’ of each rule (of the kind that will be

discussed in Chapter 16), give priority to the most interesting rule.

It is possible to construct quite elaborate conflict resolution strategies but

most of them have the same drawback: they require the condition part of all

the rules to be tested for each unseen instance, so that all the rules that fire are

known before the strategy is applied. By contrast, we need only work through

the rules generated from a decision tree until the first one fires (as we know no

others can).

A very basic but widely used conflict resolution strategy is to work through

the rules in order and to take the first one that fires. This can reduce the

amount of processing required considerably, but makes the order in which the

rules are generated very important.

Whilst it is possible using a conflict resolution strategy to post-prune a

decision tree to give a set of rules that do not fit together in a tree structure,

it seems an unnecessarily indirect way of generating a set of rules. In addition

if we wish to use the ‘take the first rule that fires’ conflict resolution strategy,

the order in which the rules are extracted from the tree is likely to be of crucial

importance, whereas it ought to be arbitrary.
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In Section 11.4 we will describe an algorithm that dispenses with tree gen-

eration altogether and produces rules that are ‘free standing’, i.e. do not fit

together into a tree structure, directly. We will call these modular rules.

11.3 Problems with Decision Trees

Although very widely used, the decision tree representation has a serious po-

tential drawback: the rules derived from the tree may be much more numerous

than necessary and may contain many redundant terms.

In a PhD project at the Open University, supervised by the present author,

Cendrowska [1], [2] criticised the principle of generating decision trees which

can then be converted to decision rules, compared with the alternative of gen-

erating decision rules directly from the training set. She comments as follows

[the original notation has been changed to be consistent with that used in this

book]:

“[The] decision tree representation of rules has a number of disadvan-

tages. . . . [Most] importantly, there are rules that cannot easily be represented

by trees.

Consider, for example, the following rule set:

Rule 1: IF a = 1 AND b = 1 THEN Class = 1

Rule 2: IF c = 1 AND d = 1 THEN Class =1

Suppose that Rules 1 and 2 cover all instances of Class 1 and all other

instances are of Class 2. These two rules cannot be represented by a single

decision tree as the root node of the tree must split on a single attribute, and

there is no attribute which is common to both rules. The simplest decision tree

representation of the set of instances covered by these rules would necessarily

add an extra term to one of the rules, which in turn would require at least one

extra rule to cover instances excluded by the addition of that extra term. The

complexity of the tree would depend on the number of possible values of the

attributes selected for partitioning. For example, let the four attributes a, b, c

and d each have three possible values 1, 2 and 3, and let attribute a be selected

for partitioning at the root node. The simplest decision tree representation of

Rules 1 and 2 is shown [in Figure 11.4].

The paths relating to Class 1 can be listed as follows:

IF a = 1 AND b = 1 THEN Class = 1

IF a = 1 AND b = 2 AND c = 1 AND d = 1 THEN Class = 1

IF a = 1 AND b = 3 AND c = 1 AND d = 1 THEN Class = 1

IF a = 2 AND c = 1 AND d = 1 THEN Class = 1
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Figure 11.4 Simplest Decision Tree Representation of Rules 1 and 2

IF a = 3 AND c = 1 AND d =1 THEN Class = 1

Clearly, the consequence of forcing a simple rule set into a decision tree rep-

resentation is that the individual rules, when extracted from the tree, are often

too specific (i.e. they reference attributes which are irrelevant). This makes

them highly unsuitable for use in many domains.”

The phenomenon of unnecessarily large and confusing decision trees de-

scribed by Cendrowska is far from being merely a rare hypothetical possibility.

It will occur whenever there are two (underlying) rules with no attribute in

common, a situation that is likely to occur frequently in practice.

All the rules corresponding to the branches of a decision tree must begin in

the same way, i.e. with a test on the value of the attribute selected at the top

level. Leaving aside issues of overfitting, this effect will inevitably lead to the

introduction of terms in rules (branches) which are unnecessary except for the

sole purpose of enabling a tree structure to be constructed.

Issues of the size and compactness of a rule set may not seem important

when the training sets are small, but may become very important as they scale

up to many thousands or millions of instances, especially if the number of

attributes is also large.

Although in this book we have generally ignored issues of the practicality

of and/or cost associated with finding the values of attributes, considerable

practical problems can arise when the values of some attributes are unknown

for an instance that needs to be classified or can only be obtained by means of
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tests that carry an unusually high cost or risk to health. For many real-world

applications a method of classifying unseen instances that avoided making un-

necessary tests would be highly desirable.

11.4 The Prism Algorithm

The Prism algorithm was introduced by Cendrowska [1], [2]. The aim is to in-

duce modular classification rules directly from the training set. The algorithm

assumes that all the attributes are categorical. When there are continuous at-

tributes they can first be converted to categorical ones (as described in Chap-

ter 8). Alternatively the algorithm can be extended to deal with continuous

attributes in much the same way as was described for TDIDT in Section 8.3.

Prism uses the ‘take the first rule that fires’ conflict resolution strategy

when the resulting rules are applied to unseen data, so it is important that as

far as possible the most important rules are generated first.

The algorithm generates the rules concluding each of the possible classes in

turn. Each rule is generated term by term, with each term of the form ‘attribute

= value’. The attribute/value pair added at each step is chosen to maximise

the probability of the target ‘outcome class’.

In its basic form, the Prism algorithm is shown in Figure 11.5. Note that

the training set is restored to its original state for each new class.

For each classification (class = i) in turn and starting with the complete

training set each time:

1. Calculate the probability that class = i for each attribute/value pair.

2. Select the pair with the largest probability and create a subset of

the training set comprising all the instances with the selected at-

tribute/value combination (for all classifications).

3. Repeat 1 and 2 for this subset until a subset is reached that contains

only instances of class i. The induced rule is then the conjunction of all

the attribute/value pairs selected.

4. Remove all instances covered by this rule from the training set.

Repeat 1–4 until all instances of class i have been removed

Figure 11.5 The Basic Prism Algorithm
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We will illustrate the algorithm by generating rules for the lens24 dataset

(classification 1 only). The algorithm generates two classification rules for that

class.

The initial training set for lens24 comprises 24 instances, shown in Figure

11.6.
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1 1 1 1 3

1 1 1 2 2

1 1 2 1 3

1 1 2 2 1

1 2 1 1 3

1 2 1 2 2

1 2 2 1 3

1 2 2 2 1

2 1 1 1 3

2 1 1 2 2

2 1 2 1 3

2 1 2 2 1

2 2 1 1 3

2 2 1 2 2

2 2 2 1 3

2 2 2 2 3

3 1 1 1 3

3 1 1 2 3

3 1 2 1 3

3 1 2 2 1

3 2 1 1 3

3 2 1 2 2

3 2 2 1 3

3 2 2 2 3

Figure 11.6 The lens24 Training Set

First Rule

Figure 11.7 shows the probability of class = 1 occurring for each at-

tribute/value pair over the whole training set (24 instances).

The maximum probability is when astig = 2 or tears = 2.

Choose astig = 2 arbitrarily.

Incomplete rule induced so far:

IF astig = 2 THEN class = 1
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Attribute/value pair Frequency Total frequency Probability

for class = 1 (out of 24

instances)

age = 1 2 8 0.25

age = 2 1 8 0.125

age = 3 1 8 0.125

specRx = 1 3 12 0.25

specRx = 2 1 12 0.083

astig = 1 0 12 0

astig = 2 4 12 0.33

tears = 1 0 12 0

tears = 2 4 12 0.33

Figure 11.7 First Rule: Probability of Attribute/value Pairs (Version 1)

The subset of the training set covered by this incomplete rule is given in

Figure 11.8.

age specRx astig tears class

1 1 2 1 3

1 1 2 2 1

1 2 2 1 3

1 2 2 2 1

2 1 2 1 3

2 1 2 2 1

2 2 2 1 3

2 2 2 2 3

3 1 2 1 3

3 1 2 2 1

3 2 2 1 3

3 2 2 2 3

Figure 11.8 First Rule: Subset of Training Set Covered by Incomplete Rule

(Version 1)

Figure 11.9 shows the probability of each attribute/value pair (not involving

attribute astig) occurring for this subset.

The maximum probability is when tears = 2.

Incomplete rule induced so far:
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Attribute/value pair Frequency Total frequency Probability

for class = 1 (out of 12

instances)

age = 1 2 4 0.5

age = 2 1 4 0.25

age = 3 1 4 0.25

specRx = 1 3 6 0.5

specRx = 2 1 6 0.17

tears = 1 0 6 0

tears = 2 4 6 0.67

Figure 11.9 First Rule: Probability of Attribute/value Pairs (Version 2)

IF astig = 2 and tears = 2 THEN class = 1

The subset of the training set covered by this rule is shown in Figure 11.10.

age specRx astig tears class

1 1 2 2 1

1 2 2 2 1

2 1 2 2 1

2 2 2 2 3

3 1 2 2 1

3 2 2 2 3

Figure 11.10 First Rule: Subset of Training Set Covered by Incomplete Rule

(Version 2)

Figure 11.11 shows the probability of each attribute/value pair (not involv-

ing attributes astig or tears) occurring for this subset.

The maximum probability is when age = 1 or specRx = 1.

Choose (arbitrarily) age = 1.

Incomplete rule induced so far:

IF astig = 2 and tears = 2 and age = 1 THEN class = 1

The subset of the training set covered by this rule is given in Figure 11.12.

This subset contains only instances of class 1.

The final induced rule is therefore

IF astig = 2 and tears = 2 and age = 1 THEN class = 1
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Attribute/value pair Frequency Total frequency Probability

for class = 1 (out of 6

instances)

age = 1 2 2 1.0

age = 2 1 2 0.5

age = 3 1 2 0.5

specRx = 1 3 3 1.0

specRx = 2 1 3 0.33

Figure 11.11 First Rule: Probability of Attribute/value Pairs (Version 3)

age specRx astig tears class

1 1 2 2 1

1 2 2 2 1

Figure 11.12 First Rule: Subset of Training Set Covered by Incomplete Rule

(Version 3)

Second Rule

Removing the two instances covered by the first rule from the training set

gives a new training set with 22 instances. This is shown in Figure 11.13.

The table of frequencies is now as given in Figure 11.14 for attribute/value

pairs corresponding to class = 1.

The maximum probability is achieved by astig = 2 and tears = 2.

Choose astig = 2 arbitrarily.

Incomplete rule induced so far:

IF astig=2 THEN class = 1

The subset of the training set covered by this rule is shown in Figure 11.15.

This gives the frequency table shown in Figure 11.16.

The maximum probability is achieved by tears = 2.

Incomplete rule induced so far:

IF astig = 2 and tears = 2 then class = 1

The subset of the training set covered by this rule is shown in Figure 11.17.

This gives the frequency table shown in Figure 11.18.

The maximum probability is for specRx = 1.

Incomplete rule induced so far:

IF astig = 2 and tears = 2 and specRx = 1 THEN class = 1
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age specRx astig tears class

1 1 1 1 3

1 1 1 2 2

1 1 2 1 3

1 2 1 1 3

1 2 1 2 2

1 2 2 1 3

2 1 1 1 3

2 1 1 2 2

2 1 2 1 3

2 1 2 2 1

2 2 1 1 3

2 2 1 2 2

2 2 2 1 3

2 2 2 2 3

3 1 1 1 3

3 1 1 2 3

3 1 2 1 3

3 1 2 2 1

3 2 1 1 3

3 2 1 2 2

3 2 2 1 3

3 2 2 2 3

Figure 11.13 The lens24 Training Set (Reduced)

Attribute/value pair Frequency Total frequency Probability

for class = 1 (out of 22

instances)

age = 1 0 6 0

age = 2 1 8 0.125

age = 3 1 8 0.125

specRx = 1 2 11 0.18

specRx = 2 0 11 0

astig = 1 0 12 0

astig = 2 2 10 0.2

tears = 1 0 12 0

tears = 2 2 10 0.2

Figure 11.14 Second Rule: Probability of Attribute/value Pairs (Version 1)
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age specRx astig tears class

1 1 2 1 3

1 2 2 1 3

2 1 2 1 3

2 1 2 2 1

2 2 2 1 3

2 2 2 2 3

3 1 2 1 3

3 1 2 2 1

3 2 2 1 3

3 2 2 2 3

Figure 11.15 Second Rule: Subset of Training Set Covered by Incomplete

Rule (Version 1)

Attribute/value pair Frequency Total frequency Probability

for class = 1 (out of 10

instances)

age = 1 0 2 0

age = 2 1 4 0.25

age = 3 1 4 0.25

specRx = 1 0 5 0

specRx = 2 2 5 0.4

tears = 1 0 6 0

tears = 2 2 4 0.5

Figure 11.16 Second Rule: Probability of Attribute/value Pairs (Version 2)

age specRx astig tears class

2 1 2 2 1

2 2 2 2 3

3 1 2 2 1

3 2 2 2 3

Figure 11.17 Second Rule: Subset of Training Set Covered by Incomplete

Rule (Version 2)
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Attribute/value pair Frequency Total Frequency Probability

for class = 1 (out of 4

instances)

age = 1 0 0 –

age = 2 1 2 0.5

age = 3 1 2 0.5

specRx = 1 2 2 1.0

specRx = 2 0 2 0

Figure 11.18 Second Rule: Probability of Attribute/value Pairs (Version 3)

age specRx astig tears class

2 1 2 2 1

3 1 2 2 1

Figure 11.19 Second Rule: Subset of Training Set Covered by Incomplete

Rule (Version 3)

The subset of the training set covered by this rule is shown in Figure 11.19.

This subset contains only instances of class 1. So the final induced rule is:

IF astig = 2 and tears = 2 and specRx = 1 THEN class = 1

Removing the two instances covered by this rule from the current version of

the training set (which has 22 instances) gives a training set of 20 instances from

which all instances of class 1 have now been removed. So the Prism algorithm

terminates (for classification 1).

The final pair of rules induced by Prism for class 1 are:

IF astig = 2 and tears = 2 and age = 1 THEN class = 1

IF astig = 2 and tears = 2 and specRx = 1 THEN class = 1

The algorithm will now go on to generate rules for the remaining classifica-

tions. It produces 3 rules for class 2 and 4 for class 3. Note that the training

set is restored to its original state for each new class.

11.4.1 Changes to the Basic Prism Algorithm

1. Tie-breaking

The basic algorithm can be improved slightly by choosing between at-

tribute/value pairs which have equal probability not arbitrarily as above

but by taking the one with the highest total frequency.
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2. Clashes in the Training Data

The original version of Prism does not include any method of dealing with

clashes in the training set encountered during rule generation.

However, the basic algorithm can easily be extended to deal with clashes as

follows.

Step 3 of the algorithm states:

Repeat 1 and 2 for this subset until a subset is reached that contains only

instances of class i.

To this needs to be added ‘or a subset is reached which contains instances

of more than one class, although values of all the attributes have already been

used in creating the subset’.

The simple approach of assigning all instances in the subset to the majority

class does not fit directly into the Prism framework. A number of approaches

to doing so have been investigated, and the most effective would appear to be

as follows.

If a clash occurs while generating the rules for class i:

1. Determine the majority class for the subset of instances in the clash set.

2. If this majority class is class i, then complete the induced rule by as-

signing all the instances in the clash set to class i. If not, discard the

rule.

11.4.2 Comparing Prism with TDIDT

Both the additional features described in Section 11.4.1 are included in a re-

implementation of Prism by the present author [3].

The same paper describes a series of experiments to compare the perfor-

mance of Prism with that of TDIDT on a number of datasets. The author

concludes “The experiments presented here suggest that the Prism algorithm

for generating modular rules gives classification rules which are at least as good

as those obtained from the widely used TDIDT algorithm. There are generally

fewer rules with fewer terms per rule, which is likely to aid their comprehen-

sibility to domain experts and users. This result would seem to apply even

more strongly when there is noise in the training set. As far as classification

accuracy on unseen test data is concerned, there appears to be little to choose

between the two algorithms for noise-free datasets, including ones with a sig-

nificant proportion of clash instances in the training set. The main difference
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is that Prism generally has a preference for leaving a test instance as ‘unclas-

sified’ rather than giving it a wrong classification. In some domains this may

be an important feature. When it is not, a simple strategy such as assigning

unclassified instances to the majority class would seem to suffice. When noise

is present, Prism would seem to give consistently better classification accuracy

than TDIDT, even when there is a high level of noise in the training set. . . .

The reasons why Prism should be more tolerant to noise than TDIDT are not

entirely clear, but may be related to the presence of fewer terms per rule in

most cases. The computational effort involved in generating rules using Prism

. . . is greater than for TDIDT. However, Prism would seem to have considerable

potential for efficiency improvement by parallelisation.”

These very positive conclusions are of course based on only a fairly limited

number of experiments and need to be verified for a much wider range of

datasets. In practice, despite the drawbacks of a decision tree representation

and the obvious potential of Prism and other similar algorithms, TDIDT is far

more frequently used to generate classification rules. The ready availability of

C4.5 [4] and related systems is no doubt a significant factor in this.

In Chapter 16 we go on to look at the use of modular rules for predicting

associations between attribute values rather than for classification.

11.5 Chapter Summary

This chapter begins by considering a method of post-pruning decision rules

generated via a decision tree, which has the property that the pruned rules

will not generally fit together to form a tree. Rules of this kind are known as

modular rules. When using modular rules to classify unseen test data a conflict

resolution strategy is needed and several possibilities for this are discussed. The

use of a decision tree as an intermediate representation for rules is identified as

a source of overfitting.

The Prism algorithm induces modular classification rules directly from a

training set. Prism is described in detail, followed by a discussion of its perfor-

mance as a classification algorithm relative to TDIDT.

11.6 Self-assessment Exercise for Chapter 11

What would be the first rule generated by Prism for the degrees dataset given

in Chapter 4, Figure 4.3, for class ‘FIRST’?
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12
Measuring the Performance of a Classifier

Up to now we have generally assumed that the best (or only) way of measuring

the performance of a classifier is by its predictive accuracy, i.e. the proportion

of unseen instances it correctly classifies. However this is not necessarily the

case.

There are many other types of classification algorithm as well as those

discussed in this book. Some require considerably more computation or memory

than others. Some require a substantial number of training instances to give

reliable results. Depending on the situation the user may be willing to accept

a lower level of predictive accuracy in order to reduce the run time/memory

requirements and/or the number of training instances needed.

A more difficult trade-off occurs when the classes are severely unbalanced.

Suppose we are considering investing in one of the leading companies quoted on

a certain stock market. Can we predict which companies will become bankrupt

in the next two years, so we can avoid investing in them? The proportion of

such companies is obviously small. Let us say it is 0.02 (a fictitious value), so

on average out of every 100 companies 2 will become bankrupt and 98 will not.

Call these ‘bad’ and ‘good’ companies respectively.

If we have a very ‘trusting’ classifier that always predicts ‘good’ under all

circumstances its predictive accuracy will be 0.98, a very high value. Looked at

only in terms of predictive accuracy this is a very successful classifier. Unfor-

tunately it will give us no help at all in avoiding investing in bad companies.

On the other hand, if we want to be very safe we could use a very ‘cautious’

classifier that always predicted ‘bad’. In this way we would never lose our money

in a bankrupt company but would never invest in a good one either. This is

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 12,
© Springer-Verlag London 2013
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similar to the ultra-safe strategy for air traffic control: ground all aeroplanes, so

you can be sure that none of them will crash. In real life, we are usually willing

to accept the risk of making some mistakes in order to achieve our objectives.

It is clear from this example that neither the very trusting nor the very

cautious classifier is any use in practice. Moreover, where the classes are severely

unbalanced (98% to 2% in the company example), predictive accuracy on its

own is not a reliable indicator of a classifier’s effectiveness.

12.1 True and False Positives and Negatives

The idea of a confusion matrix was introduced in Chapter 7. When there are

two classes, which we will call positive and negative (or simply + and −), the

confusion matrix consists of four cells, which can be labelled TP , FP , FN and

TN as in Figure 12.1.

Predicted class Total

+ − instances

Actual class + TP FN P

− FP TN N

Figure 12.1 True and False Positives and Negatives

TP: true positives

The number of positive instances that are classified as positive

FP: false positives

The number of negative instances that are classified as positive

FN: false negatives

The number of positive instances that are classified as negative

TN: true negatives

The number of negative instances that are classified as negative

P = TP + FN

The total number of positive instances

N = FP + TN

The total number of negative instances
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It is often useful to distinguish between the two types of classification error:

false positives and false negatives.

False positives (also known as Type 1 Errors) occur when instances that

should be classified as negative are classified as positive.

False negatives (also known as Type 2 Errors) occur when instances that

should be classified as positive are classified as negative.

Depending on the application, errors of these two types are of more or less

importance.

In the following examples we will make the assumption that there are only

two classifications, which will be called positive and negative, or + and −. The

training instances can then be considered as positive and negative examples

of a concept such as ‘good company’, ‘patient with brain tumour’ or ‘relevant

web page’.

Bad Company Application. Here we would like the number of false positives

(bad companies that are classified as good) to be as small as possible, ideally

zero. We would probably be willing to accept a high proportion of false negatives

(good companies classified as bad) as there are a large number of possible

companies to invest in.

Medical Screening Application. It would not be possible in any realistic sys-

tem of healthcare to screen the entire population for a condition that occurs

only rarely, say a brain tumour. Instead the doctor uses his or her experience

to judge (based on symptoms and other factors) which patients are most likely

to be suffering from a brain tumour and sends them to a hospital for screening.

For this application we might be willing to accept quite a high proportion

of false positives (patients screened unnecessarily) perhaps as high as 0.90, i.e.

only 1 in 10 of patients screened has a brain tumour, or even higher. However

we would like the proportion of false negatives (patients with a brain tumour

who are not screened) to be as small as possible, ideally zero.

Information Retrieval Application. A web search engine can be looked at as a

kind of classifier. Given a specification such as ‘pages about American poetry’ it

effectively classifies all pages on the web that are known to it as either ‘relevant’

or ‘not relevant’ and displays the URLs of the ‘relevant’ ones to the user. Here

we may be willing to accept a high proportion of false negatives (relevant pages

left out), perhaps 30% or even higher, but probably do not want too many false

positives (irrelevant pages included), say no more than 10%. In such information
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retrieval applications the user is seldom aware of the false negatives (relevant

pages not found by the search engine) but false positives are visible, waste time

and irritate the user.

These examples illustrate that, leaving aside the ideal of perfect classifica-

tion accuracy, there is no single combination of false positives and false neg-

atives that is ideal for every application and that even a very high level of

predictive accuracy may be unhelpful when the classes are very unbalanced. To

go further we need to define some improved measures of performance.

12.2 Performance Measures

We can now define a number of performance measures for a classifier applied

to a given test set. The most important ones are given in Figure 12.2. Several

measures have more than one name, depending on the technical area (signal

processing, medicine, information retrieval etc.) in which they are used.

For information retrieval applications the most commonly used measures

are Recall and Precision. For the search engine application, Recall measures

the proportion of relevant pages that are retrieved and Precision measures

the proportion of retrieved pages that are relevant. The F1 Score combines

Precision and Recall into a single measure, which is their product divided by

their average. This is known as the harmonic mean of the two values.

The values of P and N , the number of positive and negative instances, are

fixed for a given test set, whichever classifier is used. The values of the measures

given in Figure 12.2 will generally vary from one classifier to another. Given

the values of True Positive Rate and False Positive Rate (as well as P and N)

we can derive all the other measures.

We can therefore characterise a classifier by its True Positive Rate (TP

Rate) and False Positive Rate (FP Rate) values, which are both proportions

from 0 to 1 inclusive. We start by looking at some special cases.

A: The Perfect Classifier

Here every instance is correctly classified. TP = P , TN = N and the

confusion matrix is:

Predicted class Total

+ − instances

Actual class + P 0 P

− 0 N N
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True Positive

Rate

TP/P The proportion of

positive instances that

are correctly classified as

positive

or Hit Rate

or Recall

or Sensitivity or

TP Rate

False Positive

Rate

FP/N The proportion of

negative instances that

are erroneously classified

as positive

or False Alarm

Rate

or FP Rate

False Negative

Rate

FN/P The proportion of

positive instances that

are erroneously classified

as negative = 1 − True

Positive Rate

or FN Rate

True Negative

Rate

TN/N The proportion of

negative instances that

are correctly classified as

negative

or Specificity

or TN Rate

Precision TP/(TP+FP) Proportion of instances

or Positive

Predictive Value

classified as positive that

are really positive

F1 Score (2 × Precision × Recall) A measure that combines

/(Precision + Recall) Precision and Recall

Accuracy or

Predictive

Accuracy

(TP + TN)/(P + N) The proportion of

instances that are

correctly classified

Error Rate (FP + FN)/(P + N) The proportion of

instances that are

incorrectly classified

Figure 12.2 Some Performance Measures for a Classifier
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TP Rate (Recall) = P/P = 1

FP Rate = 0/N = 0

Precision = P/P = 1

F1 Score = 2× 1/(1 + 1) = 1

Accuracy = (P +N)/(P +N) = 1

B: The Worst Possible Classifier

Every instance is wrongly classified. TP = 0 and TN = 0. The confusion

matrix is:

Predicted class Total

+ − instances

Actual class + 0 P P

− N 0 N

TP Rate (Recall) = 0/P = 0

FP Rate = N/N = 1

Precision = 0/N = 0

F1 Score is not applicable (as Precision + Recall = 0)

Accuracy = 0/(P +N) = 0

C: The Ultra-liberal Classifier

This classifier always predicts the positive class. The True Positive rate is

1 but the False Positive rate is also 1. The False Negative and True Negative

rates are both zero. The confusion matrix is:

Predicted class Total

+ − instances

Actual class + P 0 P

− N 0 N

TP Rate (Recall) = P/P = 1

FP Rate = N/N = 1

Precision = P/(P +N)

F1 Score = 2× P/(2× P +N)

Accuracy = P/(P+N), which is the proportion of positive instances in the

test set.

D: The Ultra-conservative Classifier

This classifier always predicts the negative class. The False Positive rate is

zero, but so is the True Positive rate. The confusion matrix is:

Predicted class Total

+ − instances

Actual class + 0 P P

− 0 N N
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TP Rate (Recall) = 0/P = 0

FP Rate = 0/N = 0

Precision is not applicable (as TP + FP = 0)

F1 Score is also not applicable

Accuracy = N/(P +N), which is the proportion of negative instances in

the test set.

12.3 True and False Positive Rates versus
Predictive Accuracy

One of the strengths of characterising a classifier by its TP Rate and FP Rate

values is that they do not depend on the relative sizes of P and N . The same

applies to using the FN Rate and TN Rate values or any other combination

of two ‘rate’ values calculated from different rows of the confusion matrix. In

contrast, Predictive Accuracy and all the other measures listed in Figure 12.2

are derived from values in both rows of the table and so are affected by the

relative sizes of P and N , which can be a serious weakness.

To illustrate this, suppose that the positive class corresponds to those who

pass a driving test at the first attempt and that the negative class corresponds

to those who fail. Assume that the relative proportions in the real world are 9

to 10 (a fictitious value) and the test set correctly reflects this.

Then the confusion matrix for a particular classifier on a given test set

might be

Predicted class Total

+ − instances

Actual class + 8, 000 1, 000 9, 000

− 2, 000 8, 000 10, 000

This gives a true positive rate of 0.89 and a false positive rate of 0.2, which

we will assume is a satisfactory result.

Now suppose that the number of successes grows considerably over a period

of time because of improved training, so that there is a higher proportion of

passes. With this assumption a possible confusion matrix for a future series of

trials would be as follows.

Predicted class Total

+ − instances

Actual class + 80, 000 10, 000 90, 000

− 2, 000 8, 000 10, 000
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The classifier will of course still work exactly as well as before to predict

the correct classification of either a pass or a fail with which it is presented. For

both confusion matrices the values of TP Rate and FP Rate are the same (0.89

and 0.2 respectively). However the values of the Predictive Accuracy measure

are different.

For the original confusion matrix, Predictive Accuracy is 16,000/19,000 =

0.842. For the second one, Predictive Accuracy is 88,000/100,000 = 0.88.

An alternative possibility is that over a period of time there is a large

increase in the relative proportion of failures, perhaps because of an increase

in the number of younger people being tested. A possible confusion matrix for

a future series of trials would be as follows.

Predicted class Total

+ − instances

Actual class + 8, 000 1, 000 9, 000

− 20, 000 80, 000 100, 000

Here the Predictive Accuracy is 88,000/109,000 = 0.807.

Whichever of these test sets was used with the classifier the TP Rate and

FP Rate values would be the same. However the three Predictive Accuracy

values would vary from 81% to 88%, reflecting changes in the relative numbers

of positive and negative values in the test set, rather than any change in the

quality of the classifier.

12.4 ROC Graphs

The TP Rate and FP Rate values of different classifiers on the same test set are

often represented diagrammatically by a ROC Graph. The abbreviation ROC

Graph stands for ‘Receiver Operating Characteristics Graph’, which reflects its

original uses in signal processing applications.

On a ROC Graph, such as Figure 12.3, the value of FP Rate is plotted on

the horizontal axis, with TP Rate plotted on the vertical axis.

Each point on the graph can be written as a pair of values (x, y) indicating

that the FP Rate has value x and the TP Rate has value y.

The points (0, 1), (1, 0), (1, 1) and (0, 0) correspond to the four special cases

A, B, C and D in Section 12.2, respectively. The first is located at the best

possible position on the graph, the top left-hand corner. The second is at the

worst possible position, the bottom right-hand corner. If all the classifiers are

good ones, all the points on the ROC Graph are likely to be around the top

left-hand corner.
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Figure 12.3 Example of ROC Graph

The other six points shown are (0.1, 0.6), (0.2, 0.5), (0.4, 0.2), (0.5, 0.5),

(0.7, 0.7) and (0.2, 0.7).

One classifier is better than another if its corresponding point on the ROC

Graph is to the ‘north-west’ of the other’s. Thus the classifier represented by

(0.1, 0.6) is better than the one represented by (0.2, 0.5). It has a lower FP Rate

and a higher TP Rate. If we compare points (0.1, 0.6) and (0.2, 0.7), the latter

has a higher TP Rate but also a higher FP Rate. Neither classifier is superior

to the other on both measures and the one chosen will depend on the relative

importance given by the user to the two measures.

The diagonal line joining the bottom left and top right-hand corners corre-

sponds to random guessing, whatever the probability of the positive class may

be. If a classifier guesses positive and negative at random with equal frequency,

it will classify positive instances correctly 50% of the time and negative in-

stances as positive, i.e. incorrectly, 50% of the time. Thus both the TP Rate

and the FP Rate will be 0.5 and the classifier will lie on the diagonal at point

(0.5, 0.5).

Similarly, if a classifier guesses positive and negative at random with positive

selected 70% of the time, it will classify positive instances correctly 70% of the

time and negative instances as positive, i.e. incorrectly, 70% of the time. Thus

both the TP Rate and the FP Rate will be 0.7 and the classifier will lie on the

diagonal at point (0.7, 0.7).

We can think of the points on the diagonal as corresponding to a large

number of random classifiers, with higher points on the diagonal corresponding

to higher proportions of positive classifications generated on a random basis.
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Figure 12.4 Example of ROC Graph (Amended)

The upper left-hand triangle corresponds to classifiers that are better than

random guessing. The lower right-hand triangle corresponds to classifiers that

are worse than random guessing, such as the one at (0.4, 0.2).

A classifier that is worse than random guessing can be converted to one

that is better than random guessing simply by reversing its predictions, so that

every positive prediction becomes negative and vice versa. By this method the

classifier at (0.4, 0.2) can be converted to the new one at (0.2, 0.4) in Figure

12.4. The latter point is the former reflected about the diagonal line.

12.5 ROC Curves

In general, each classifier corresponds to a single point on a ROC Graph. How-

ever there are some classification algorithms that lend themselves to ‘tuning’,

so that it is reasonable to think of a series of classifiers, and thus points on a

ROC Graph, one for each value of some variable, generally known as a param-

eter. For a decision tree classifier such a parameter might be the ‘depth cutoff’

(see Chapter 9) which can vary from 1, 2, 3 etc.

In such a case the points can be joined to form a ROC Curve such as

Figure 12.5.
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Figure 12.5 Example of ROC Curve

Examining ROC curves can give insights into the best way of tuning a

classification algorithm. In Figure 12.5 performance clearly degrades after the

third point in the series.

The performance of different types of classifier with different parameters

can be compared by inspecting their ROC curves.

12.6 Finding the Best Classifier

There is no infallible way of finding the best classifier for a given application,

unless we happen to find one that gives perfect performance, corresponding

to the (0, 1) point on the ROC Graph. One approach that is sometimes used

is to measure the distance of a classifier on the ROC Graph from the perfect

classifier.

Figure 12.6 shows the points (fprate, tprate) and (0, 1). The Euclidean

distance between them is
√
fprate2 + (1− tprate)2.

We can write Euc =
√
fprate2 + (1− tprate)2.

The smallest possible value of Euc is zero, when fprate = 0 and tprate = 1

(the perfect classifier). The largest value is
√
2, when fprate is 1 and tprate is

zero (the worst possible classifier). We could hypothesise that the smaller the

value of Euc the better the classifier.

Euc is a useful measure but does not take into account the relative impor-

tance of true and false positives. There is no best answer to this. It depends on

the use to which the classifier will be put.
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Figure 12.6 Measuring the Distance from the Perfect Classifier

We can specify the relative importance of making tprate as close to 1 as

possible and making fprate as close to zero as possible by a weight w from 0 to

1 and define the Weighted Euclidean Distance as

WEuc =
√

(1− w)fprate2 + w(1− tprate)2

If w = 0 this reduces to WEuc = fprate, i.e. we are only interested in

minimising the value of fprate.

If w = 1 it reduces to WEuc = 1 − tprate, i.e. we are only interested in

minimising the difference between tprate and 1 (thus maximising tprate).

If w = 0.5 the formula reduces to

WEuc =
√

0.5 ∗ fprate2 + 0.5 ∗ (1− tprate)2

which is a constant multiple of√
fprate2 + (1− tprate)2, so the effect when comparing one classifier with

another is the same as if there were no weighting at all.

12.7 Chapter Summary

This chapter looks at the use of true and false positive and negative classi-

fications as a better way of measuring the performance of a classifier than

predictive accuracy alone. Other performance measures can be derived from

these four basic ones, including true positive rate (or hit rate), false positive

rate (or false alarm rate), precision, accuracy and F1 score.
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The values of true positive rate and false positive rate are often represented

diagrammatically by a ROC graph. Joining the points on a ROC graph to form

a ROC curve can often give insight into the best way of tuning a classifier. A

Euclidean distance measure of the difference between a given classifier and the

performance of a hypothetical perfect classifier is described.

12.8 Self-assessment Exercise for Chapter 12

Four classifiers are generated for the same training set, which has 100 instances.

They have the following confusion matrices.

Predicted class

+ −
Actual class + 50 10

− 10 30

Predicted class

+ −
Actual class + 55 5

− 5 35

Predicted class

+ −
Actual class + 40 20

− 1 39

Predicted class

+ −
Actual class + 60 0

− 20 20

Calculate the values of true positive rate and false positive rate for each

classifier and plot them on a ROC graph. Calculate the value of the Euclidean

distance measure Euc for each one. Which classifier would you consider the best

if you were equally concerned with avoiding false positive and false negative

classifications?
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13
Dealing with Large Volumes of Data

13.1 Introduction

In the not too far distant past, datasets with a few hundred or a few thousand

records would have been considered normal and those with tens of thousands

of records would probably have been considered very large. The ‘data explo-

sion’ that is so evident all around us has changed all that. In some fields only

quite a small amount of data is available and that is unlikely to change very

much (perhaps fossil data or data about patients with rare illnesses); in other

fields (such as retailing, bioinformatics, branches of science such as chemistry,

cosmology and particle physics, and the ever-growing area of mining data held

by Internet applications such as blogs and social networking sites) the volume

has greatly increased and seems likely to go on increasing rapidly.

Some of the best–known data mining methods were developed in those

far-off days and were originally tested on datasets such as the UCI Reposi-

tory [1]. It is certainly not self-evident that they will all scale up to much

larger datasets with acceptable runtimes or memory requirements. The most

obvious answer to this problem is to take a sample from a large dataset and use

that for data mining. Taking a 1% sample chosen at random from a 100 million

record dataset would leave ‘only’ a million records to analyse but that is itself a

substantial number. Also, however random the 1% selection process itself may

be, that does not guarantee that what results will be a random sample from

the underlying (probably far larger) population of possible records for that task

area, as that will depend on how the original data was collected. All that will

be certain is that 99 million data records will have been discarded.

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 13,
© Springer-Verlag London 2013
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In this chapter we will concentrate on classification rule induction as a

particularly important and widely-used area of data mining, but many of the

comments made will be more generally applicable.

Back in 1991, the Australian researcher Jason Catlett wrote a PhD thesis

entitled Megainduction: machine learning on very large databases [2] in which

he criticised the practice of sampling data before a classification rule induction

algorithm was applied, showing that the accuracy of an induced classifier in-

creases with an increasing size of training sample. The datasets that Catlett

regarded as very large would now be considered small, or at most ‘normal’, but

his warning remains a potent one. To add to this there is the consideration that

some application areas (especially in science) are concerned with the discovery

of new knowledge, where discarding a large proportion of the data is a very

risky business. For other applications, even a small sample of the available data

may still be massive.

For the purposes of this chapter we shall assume that you have a very large

dataset (which may be a sample from an even larger one) and want to analyse it

all. To tackle this problem, the methods of parallel and distributed computing

are increasingly likely to be used. This is a large and complex field which goes

far beyond data mining but in this chapter we will describe some of the issues

and illustrate them by some recent work.

We will start by assuming that the approach adopted is to use a distributed

local area network of personal computers (technically called a loosely-coupled

architecture), as for many organisations this will be a much cheaper and more

realistic option than the alternative of buying a high-performance supercom-

puter. Both ‘desktop’ and ‘notebook’ size computers are routinely sold in high-

street stores at readily affordable prices. Organisations such as schools and

university departments frequently throw away or give away ‘out of date’ mod-

els that are still perfectly usable. It is entirely realistic to think that even

an individual working alone with a small budget could build up a network of

say 20 machines at very low cost, each one of them with a speed and capac-

ity which in past years would have qualified them to be called supercomput-

ers.

In this chapter we will use the term processor to also include a local memory.

It will be assumed that each classification (or other data mining) program

is executed on a single processor using its local memory. Processors do not

necessarily all have to have the same processing speed and memory capacity,

but for simplicity we will generally assume that they do. We will sometimes

use the term ‘machine’ to mean a processor plus its local memory.

With a network of processors it is tempting for the näıve newcomer to think

that by dividing a task up to be performed by a network of say 100 identical

processors it would be achievable in one hundredth of the time it would take for
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one processor alone. A little experience will soon dispel this illusion. In reality

it can easily be the case that 100 processors take considerably longer to do

the job than just 10, because of communication and other overheads amongst

them. We might invent the term ‘the two many cooks principle’ to describe

this.

There are several ways in which a classification task could be distributed

over a number of processors.

(1) If all the data is together in one very large dataset, we can distribute

it on to p processors, run an identical classification algorithm on each one and

combine the results.

(2) The data may inherently ‘live’ in different datasets on different pro-

cessors, for example in different parts of a company or even in different co-

operating organisations. As for (1) we could run an identical classification al-

gorithm on each one and combine the results.

(3) An extreme case of a large data volume is streaming data arriving in

effectively a continuous infinite stream in real time, e.g. from a CCTV. If the

data is all coming to a single source, different parts of it could be processed

by different processors acting in parallel. If it is coming into several different

processors, it could be handled in a similar way to (2).

(4) An entirely different situation arises where we have a dataset that is not

particularly large, but we wish to generate several or many different classifiers

from it and then combine the results by some kind of ‘voting’ system in order

to classify unseen instances. In this case we might have the whole dataset on a

single processor, accessed by different classification programs (possibly identical

or possibly different) accessing all or part of the data. Alternatively, we could

distribute the data in whole or in part to each processor before running a set of

either identical or different classification programs on it. This topic is discussed

in Chapter 14 ‘Ensemble Classification’.

A common feature of all these approaches is that there needs to be some kind

of ‘control module’ to combine the results obtained on the p processors. De-

pending on the application, the control module may also need to distribute the

data to different processors, initiate the processing on each processor and per-

haps synchronise the p processors’ work. The control module might be running

on an additional processor or as a separate process on one of the p processors

mentioned previously.

In the next section we will focus on the first category of application, i.e. all

the data is together in one very large dataset, a part of which we can distribute

on to each of p processors, then run an identical classification algorithm on

each one and combine the results.
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13.2 Distributing Data onto Multiple Processors

Large data volumes are generally large in one of two ways:

– There are far more instances (records) than attributes. We will call such

datasets ‘portrait style’ and think about dividing them horizontally (called

horizontal partitioning) on to different processors. This is illustrated in

Figure 13.1 for a dataset with 17 instances × 4 attributes, divided into 5

parts.

– There are far more attributes than instances. We will call such datasets

‘landscape style’ and think about dividing them vertically (called vertical

partitioning) on to different processors. This is illustrated in Figure 13.2 for

a dataset with 3 instances × 25 attributes, divided into 7 parts.

Naturally a dataset can also be divided both horizontally and vertically

depending on the circumstances.

Figure 13.1 A Portrait-style Dataset with Horizontal Partitioning

This leads to a very rough outline for a possible way of distributing a classi-

fication task to a network of processors. For simplicity we will assume that the

aim is to generate a set of classification rules corresponding to a given dataset,

rather than some other form of classification model.
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Figure 13.2 A Landscape-style Dataset with Vertical Partitioning

(a) The data is divided up either vertically or horizontally (or perhaps both)

amongst the processors.

(b) The same algorithm is executed on each processor to analyse the corre-

sponding portion of the data.

(c) Finally the results obtained by each processor are passed to a ‘control

module’, which combines the results into a set of rules. It will also have been re-

sponsible for initiating steps (a) and (b) and for whatever action was necessary

to keep the processors in step during step (b).

A general model for distributed data mining of this kind is provided by the

Cooperating Data Mining (CDM) model introduced by Provost [3]. Figure 13.3

shows the basic architecture (reproduced from [4] with permission).

Figure 13.3 Cooperating Data Mining

The model has three layers:
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– Layer 1: the sample selection procedure, which partitions the data sample

S into subsamples (one for each of the processors available)

– Layer 2: For each processor there is a corresponding learning algorithm

Li which runs on the corresponding subsample Si and generates a concept

description Ci.

– Layer 3: the concept descriptions are then merged by a combining pro-

cedure to form a final concept description Cfinal (such as a set of classification

rules).

The model allows for the learning algorithms Li to communicate with each

other but does not specify how.

13.3 Case Study: PMCRI

Some rule generation algorithms lend themselves considerably better to par-

allelisation than others. An early attempt to parallelise the TDIDT decision

tree induction algorithm is described in [5]. The Prism algorithm for generat-

ing modular rules described in Chapter 11 is also one that lends itself well to

this approach. The PMCRI (Parallel Modular Classification Rule Induction)

framework [4, 6, 7] was developed by the German researcher Dr. Frederic Stahl

in association with the present author as a distributed version of Prism. In this

and the following section PMCRI will be used as a vehicle for explaining some

general principles, but the algorithm itself will not be described in detail here.

The account in these two sections draws heavily from [4]. Figures 13.5 to 13.7

are reproduced from [4] and Figures 13.4 and 13.8 are reproduced from [6] with

permission.

PMCRI uses a variant of the Prism algorithm described in Chapter 11,

called PrismTCS, but the differences are not important here. The important

point is how the CDM model is used to control the rule generation process.

Assuming that there are p processors, all roughly identical, the sample selection

procedure at Layer 1 divides the data up approximately evenly amongst them.

If we focus on landscape-style data, that is achieved by giving each processor

all the instances for 1/p th of the total number of attributes.

Without repeating the details of the original Prism algorithm here, the main

point is that each classification rule is generated term-by-term. For example we

may start with an outline rule

IF . . . . . . THEN class = 1

with an empty left-hand side and expand it progressively to

IF X = large . . . . . . THEN class = 1

IF X = large AND Z < 124.7 . . . . . . THEN class = 1
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IF X = large AND Z < 124.7 AND Q < 12.0 . . . . . . THEN class = 1

IF X = large AND Z < 124.7 AND Q < 12.0 AND M = green

THEN class = 1

which is its final form.

As each term of each rule is generated at Layer 2 there are a number of

possible attribute/value pairs to consider, e.g. X = large or Y < 23.4 and we

need to calculate the probability of each one. If we suppose that there are,

say, 200 attributes and 10 processors it is straightforward to allocate 20 at-

tributes to each of the ten processors. As each new term comes to be generated

each processor looks at all possible attribute/value pairs for its group of 20

attributes, finds the one with highest probability as a ‘locally best rule term’

and notifies the probability (but not the term itself) to the control module by

means of the Blackboard described below, as a kind of bid, essentially saying

(for example) ‘the best term processor 3 can find has a probability of 0.9’. It

is easy for the control program to combine the ‘bids’ from all 10 processors

to find the overall highest probability, corresponding to the ‘globally best rule

term’, at each stage.

PMCRI implements communication amongst the learning algorithms in the

second CDM layer by means of a distributed blackboard architecture, inspired

by the DARBS distributed blackboard system [8].

Figure 13.4 The architecture of the PMCRI framework using a distributed

blackboard system
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A Blackboard can be thought of as similar to a blackboard (on an easel)

of the sort that teachers used to write on (and some still possibly do) with a

piece of chalk in an old-fashioned classroom. A group of experts all work on

a common problem, but the only way they can communicate with each other

is by writing to or reading from the blackboard. Naturally, the ‘experts’ are

not human ones and in the case of PMCRI the experts (described as ‘Learner

KS Machines’ in Figure 13.4, for reasons that need not concern us) are just

the processors referred to previously, each working out the probabilities for all

possible attribute/value pairs for the attributes assigned to it. The Blackboard

is just a reserved storage area on one of the processors, or perhaps some separate

processor. There is a Local Rule Term Partition of the Blackboard to which

the experts write the probabilities corresponding to their ‘locally best rule

terms’ (although not the terms themselves). There is also a moderator program

(previously called a control module) which can write to the Global Information

Partition to tell the experts which one of them posted the highest probability

(implying that the corresponding term was the ‘globally best’) and/or what

to do next, e.g. start working on the next rule term or the next rule. The

moderator can also read from the local rule term partition so that when all

the probabilities (corresponding to the locally best term found by each expert)

have been posted it can examine them and find the highest (corresponding to

the globally best rule term).

The advantage of the PMCRI approach is that the workloads on the

processors stay in the same proportion as the rule generation process goes

on.

Once the rule generation process is finished, each expert will hold zero, one

or more of the constituent terms for each of the rules in its memory. These are

the terms corresponding to the probabilities it placed on the Blackboard that

turned out to be the highest ‘bids’. As an example, for expert number 3 the

terms might be z < 48.3 and q = green for rule 2, x < 99.1, w < 62.3 and

j < 82.67 for rule 9 and z < 112.9 for rule 17.

Next the ‘Combining Procedure’ in Layer 3 is started. Each expert sub-

mits its rule terms to the Global Information Partition, the moderator reads

the submitted terms (rule fragments) and constructs the full ruleset from

them.

Full details of the PMCRI algorithm are given in [4]. The aim of this chapter

is not to describe PMCRI in detail, but to sketch out a general approach.
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13.4 Evaluating the Effectiveness of a
Distributed System: PMCRI

A distributed data mining system such as PMCRI can be evaluated in terms

of three kinds of performance: its scale-up, its size-up and its speed-up. We will

consider each of these in turn.

In what follows we will assume that all the processors in the distributed

system are identical. We will use the term runtime to refer to the elapsed time

taken by the entire system to complete a specified data mining task, excluding

the time taken to load the data (Layer 1), which is a fixed overhead on any

system of this kind.

We will use the term the workload of a processor to mean the number of

instances held in its associated memory. Note however that a value of, say,

10,000 may mean 10,000 instances with all their attributes, or 20,000 instances

with half of the attributes each, or 100,000 instances with one tenth of the

attributes each, etc. We will assume that the workload is the same for each

processor that is in use in the network.

Finally we will use the term total workload of the system to mean the sum of

the workloads for each of the processors in use in the network, again measured

as a number of instances.

Scale-Up

Scale-up experiments evaluate the performance of the system with respect

to the number of processors for a fixed workload per processor. We keep the

workload per processor constant and measure the runtime as additional proces-

sors are added. Ideally the runtime measured this way would remain constant,

as for example, doubling the number of processors would double the amount

of data to be processed by the system as a whole but there would be twice

the number of processors to do it. A constant runtime would be indicated by

a horizontal line on a graph of runtime against the number of processors.

Figure 13.5 is one of several showing results obtained for PMCRI. The

runtime is plotted against the number of processors, increasing from 2 to 10,

for three values of the workload per processor: 130K, 300K and 850K instances.

We can see that rather than remaining horizontal, each plot increases as the

number of processors increases. This is caused by an additional communications

overhead in the network as more processors need to communicate information

via the blackboard. Unsurprisingly, the runtime even for just two processors

is greater when the workload per processor is larger. It is easier to see what
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Figure 13.5 Scale-up of PMCRI

is happening if we plot on the vertical axis not runtime but relative runtime,

i.e. (for each of the three plots) the runtime divided by the runtime for just

2 processors. This gives us Figure 13.6. Now each plot starts with a relative

runtime of one (for two processors) and we have added the ‘ideal’ situation of

a horizontal line of height one to the graph accordingly.

We can now see that the relative runtime is greatest for the smallest work-

load per processor (130K) and smallest for the largest workload (850K). So

with this algorithm, the effect of the communication overhead in increasing the

runtime above the ideal is lower as the workload per processor increases. As

we wish to be able to deal with very large datasets this is a most desirable

result.
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Figure 13.6 Scale-up of PMCRI Using Relative Runtimes

Size-Up

Size-up experiments evaluate the performance of the system with respect to

its total workload for a fixed configuration of processors. We keep the number

of processors constant and measure the runtime as the total number of training

instances is increased.

Figure 13.7 shows a graph of relative runtime against number of instances,

increasing from 17K to 8,000K, plotted for 1, 2, 5 and 10 processors. (Relative

runtime is the runtime divided by the runtime for 17K instances.) Each plot

shows an approximately linear size-up, i.e. the runtime is approximately a linear

function of the size of the training data.

We have added a plot of the ‘ideal’ size-up where increasing the number

of instances by a factor of N increases the relative runtime by a factor of

N. It can be seen that the serial (i.e. one processor) plot is worse (i.e. has a

greater runtime) than the ideal size-up, but the 2, 5 and 10 processor plots

are all appreciably better than the ‘ideal’ size-up. This is possible because of
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Figure 13.7 Size-up of PMCRI Using Relative Runtimes

the way the system handles the communication overheads. This is a very good

result.

Speed-Up

Speed-up experiments evaluate the performance of the system with respect

to the number of processors for a fixed total workload.

We keep the total workload of the system constant and measure the runtime

as the number of processors is increased. This shows how much a distributed

algorithm is faster than the serial (one processor) version, as a large dataset is

distributed to more and more processors.

We can define two performance metrics associated with speed-up.

– The speedup factor Sp is defined by Sp = R1/Rp, where R1 and Rp are the

runtimes of the algorithm on a single processor and on p processors, respec-

tively. This measures how much the runtime is faster using p processors than

just one. The ideal case is that Sp = p, but the usual situation is that Sp < p

because of communication or other overheads in the system.

– The efficiency Ep of using p processors rather than one is defined by Ep =

Sp/p (i.e. the speedup factor divided by the number of processors). Ep is
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usually a number between 0 and 1 but can occasionally be a value greater

than one, in the case of what is known as a superlinear speedup.

Figure 13.8 Speed-up of PMCRI

Figure 13.8 shows a graph of speedup factor against number of processors,

increasing from 1 to 12, plotted for a total workload from 174,999 to 740,000

instances. This form of display is often preferred to the more obvious plot of

runtime versus number of processors, as it makes it straightforward to see the

largest number of processors that has a positive impact on the runtime, for a

fixed workload.

We can see from Figure 13.8 that having more than four processors ei-

ther does not increase or reduces the speedup factor for the smallest workload

(174,999 instances) but using a larger number of processors (up to at least 10)

is beneficial for the two largest workloads. Thus the PMCRI approach appears

to be of most value with larger numbers of instances, which is clearly desirable.

13.5 Revising a Classifier Incrementally

In this book we have generally assumed that all the data needed to generate a

classifier has already been collected and is available in a training set, possibly

one that is so large that it needs to be sampled and/or distributed to a number

of processors.

A very different situation arises when a classifier has been constructed

and then a large volume of additional data comes in, for example data about
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customer choices in a retailing application. We may have a classifier constructed

using a training set of 100,000 instances and then receive an additional 10,000

instances of classified data every evening about that day’s transactions. After a

few weeks the amount of additional data will be much greater than the amount

in the training set from which the classifier was constructed, but even a small

number of additional instances (in an extreme case, even just one) can make

a considerable difference to a classifier such as a decision tree. In the interests

of reliable classification, we should take advantage of the availability of the ad-

ditional data by generating a new classifier but how often should we do this?

Once a day? Once a week? However often we do it, we would certainly not

want to have to re-process all the data that has already been used to generate

the classifier, starting ‘from scratch’ each time with an ever-growing volume of

data.

To deal with the frequent arrival of new training data we need to use a

classification algorithm that is incremental, i.e. where a classifier already con-

structed can be updated using new data without needing to re-process data

already used. Once processed the training data can then be discarded, if it is

not needed for other purposes.

An extreme version of this situation arises with streaming data, i.e. data

that arrives in real time as effectively an infinite stream, e.g. images from CCTV

or messages from telemetry devices or a news or information feed (such as the

latest share prices) or the transactions from a high-volume application such as

purchases made in a supermarket or by credit card.

Given an incremental classification algorithm, it is not realistic to update

the classifier for each single new instance that arrives, so we will generally batch

incoming instances into groups of N and update the classifier as each batch is

completed. Two important questions about this approach are:

1. How accurately will a classifier produced in this way approximate the clas-

sifier that would have been constructed if all the data had been available

for processing at the beginning as a single job?

2. To what extent does the choice of batch size N affect the answer to (1)?

A collection of algorithms and tools for mining streaming data is described

in [9] for those with a knowledge of the Java programming language.

In the remainder of this section we will consider a method of classification

which lends itself very well to an incremental approach: the Näıve Bayes

classifier which was described in Chapter 3. In this case processing the data as

batches of whatever size involves no loss of accuracy compared with collecting
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a potentially vast amount of data together and processing it all as a single job.

This is a highly desirable property.

We will only briefly summarise the description of the Näıve Bayes classifi-

cation algorithm here, using an example from Chapter 3. Given a training set

such as Figure 13.9:

day season wind rain class

weekday spring none none on time

weekday winter none slight on time

weekday winter none slight on time

weekday winter high heavy late
saturday summer normal none on time

weekday autumn normal none very late

holiday summer high slight on time

sunday summer normal none on time

weekday winter high heavy very late

weekday summer none slight on time

saturday spring high heavy cancelled
weekday summer high slight on time

saturday winter normal none late
weekday summer high none on time

weekday winter normal heavy very late

saturday autumn high slight on time

weekday autumn none heavy on time

holiday spring normal slight on time

weekday spring normal none on time

weekday spring normal slight on time

Figure 13.9 The train Dataset

We construct a probability table giving conditional probabilities (in the

body of the table) and prior probabilities (in the bottom row) corresponding

to the training data (Figure 13.10).
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class

on time late very late cancelled

day=weekday * 9/14=0.64 1/2=0.5 3/3=1 0/1=0

day= saturday 2/14=0.14 1/2=0.5 0/3=0 1/1=1

day= sunday 1/14=0.07 0/2=0 0/3=0 0/1=0

day=holiday 2/14=0.14 0/2=0 0/3=0 0/1=0

season= spring 4/14=0.29 0/2=0 0/3=0 1/1=1

season= summer * 6/14=0.43 0/2=0 0/3=0 0/1=0

season=autumn 2/14=0.14 0/2=0 1/3=0.33 0/1=0

season=winter 2/14=0.14 2/2=1 2/3=0.67 0/1=0

wind=none 5/14=0.36 0/2=0 0/3=0 0/1=0

wind=high * 4/14=0.29 1/2=0.5 1/3=0.33 1/1=1

wind=normal 5/14=0.36 1/2=0.5 2/3=0.67 0/1=0

rain=none 5/14=0.36 1/2=0.5 1/3=0.33 0/1=0

rain= slight 8/14=0.57 0/2=0 0/3=0 0/1=0

rain=heavy * 1/14=0.07 1/2=0.5 2/3=0.67 1/1=1

Prior Probability 14/20=0.70 2/20=0.10 3/20=0.15 1/20=0.05

Figure 13.10 Probability Table for the train Dataset

Then the score for each class for an unseen instance such as

weekday summer high heavy ????

can be calculated from the values in the rows shown above that are marked

with asterisks.

class = on time 0.70 * 0.64 * 0.43 * 0.29 * 0.07 = 0.0039

class = late 0.10 * 0.5 * 0 * 0.5 * 0.5 = 0

class = very late 0.15 * 1 * 0 * 0.33 * 0.67 = 0

class = cancelled 0.05 * 0 * 0 * 1 * 1 = 0

The class with the largest score is selected, in this case class = on time.

(There are complications with zero values which will be ignored here.)

First we note that there is no need to store all the values shown above.

All that needs to be stored for each of the attributes is a frequency table

showing the number of instances with each possible combination of the attribute

value and classification. For attribute day the table would be as shown in

Figure 13.11.
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class

on time late very late cancelled

weekday 9 1 3 0

saturday 2 1 0 1

sunday 1 0 0 0

holiday 2 0 0 0

Figure 13.11 Frequency Table for Attribute day

Together with a table for each attribute there needs to be a row show-

ing the frequencies of each of the four classes, as shown for this example in

Figure 13.12.

class

on time late very late cancelled

TOTAL 14 2 3 1

Figure 13.12 Class Frequencies

The values in the TOTAL row are used as the denominators when the values

in the frequency table for each attribute are used in calculations, e.g. for the

frequency table for attribute day, the value used for weekday/on time is 9/14.

The Prior Probability row in Figure 13.10 does not need to be stored at all as

in each case the value is the frequency of the corresponding class divided by

the total number of instances (20 in this example).

Even when the volume of data is very large the number of classes is often

small and even when there are a very large number of categorical attributes, the

number of possible attribute values for each one is likely to be quite small, so

overall it seems entirely practical to store a frequency table such as Figure 13.11

for each attribute plus a single table of class frequencies.

With this tabular representation for the probability model generated by

the Näıve Bayes algorithm, incrementally updating a classifier becomes trivial.

Suppose that based on 100,000 instances we have a frequency table for attribute

A as shown in Figure 13.13.

The frequency counts for the four classes are 50120, 19953, 14301 and 15626

making a grand total of 100,000.

Suppose that we now want to process a batch of 50,000 more instances with

a frequency table for attribute A as shown in Figure 13.14.
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class = c1 class = c2 class = c3 class = c4

a1 8201 8412 5907 8421

a2 34202 7601 6201 5230

a3 7717 3940 2193 1975

Figure 13.13 Frequency table for attribute A (first 100,000 instances)

class = c1 class = c2 class = c3 class = c4

a1 4017 5412 2907 6421

a2 15002 2601 4201 2230

a3 2289 1959 2208 753

Figure 13.14 Frequency table for attribute A (next 50,000 instances)

For these new instances the frequency counts of the classes are 21308, 9972,

9316 and 9404, making a total of 50,000.

In order to obtain the same classification for any unseen instance with the

training data received in two parts as if all 150,000 instances had been used

together to generate the classifier as a single job, it is only necessary to add

the two frequency tables for each attribute together element-by-element and to

add together the frequency totals for each class. This is simple to do with no

loss of accuracy involved.

Returning to the topic of distributing data to a number of processors by ver-

tical partitioning, i.e. allocating a portion of the attributes to each processor,

that approach fits well with the Näıve Bayes algorithm. All that each processor

would have to do is to count the frequency of each attribute value/class combi-

nation for each of the attributes allocated to it and pass a small table for each

one to the ‘control module’ whenever requested.

Experiments have shown that the classification accuracy of Näıve Bayes

is generally competitive with that of other methods. Its main drawbacks are

that it only applies when the attribute values are all categorical and that the

probability model generated is not as explicit as a decision tree, say. Depending

on the application, the explicitness of the model may or may not be a significant

issue.
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13.6 Chapter Summary

This chapter is concerned with issues relating to large volumes of data, in

particular the ability of classification algorithms to scale up to be usable for

such volumes.

Some of the ways in which a classification task could be distributed over a

local area network of personal computers are described and a case study using

an extended version of the Prism rule induction algorithm known as PMCRI is

presented. Techniques for evaluating a distributed system of this kind are then

illustrated.

The issue of streaming data is also considered, leading to a discussion of a

classification algorithm that lends itself well to an incremental approach: the

Näıve Bayes classifier.

13.7 Self-assessment Exercises for Chapter 13

After the data in the train dataset given in Figure 13.9 has been collected

records for another 10 days are collected, as shown in the table below.

day season wind rain class

weekday summer none none cancelled
weekday winter none none on time

weekday winter none none on time

weekday summer high heavy late
saturday summer normal none on time

weekday summer normal slight very late

holiday summer high slight on time

sunday summer normal none on time

weekday winter high heavy very late

weekday summer none slight on time

1. Construct a frequency table for each of the four attributes and a class

frequency table, using the data in the two train datasets combined.

2. Using these new tables find the most likely classification for the unseen

instance given below.

weekday summer high heavy ????
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14
Ensemble Classification

14.1 Introduction

The idea of ensemble classification is to learn not just one classifier but a set of

classifiers, called an ensemble of classifiers, and then to combine their predic-

tions for the classification of unseen instances using some form of voting. This

is illustrated in Figure 14.1 below. It is hoped that the ensemble will collec-

tively have a higher level of predictive accuracy than any one of the individual

classifiers, but that is not guaranteed.

The term ensemble learning is often used to mean the same as ensemble

classification, but the former is a more general technique where a set of models

is learnt that collectively can be applied to solving a problem of potentially any

kind, not just classification.

The individual classifiers in an ensemble are known as base classifiers. If

the base classifiers are all of the same kind (e.g. decision trees) the ensemble is

known as homogeneous. Otherwise it is known as heterogeneous.

A simple form of ensemble classification algorithm is:

1. Generate N classifiers for a given dataset

2. For an unseen instance X

a) Compute the predicted classification of X for each of the N classifiers

b) Select the classification that is most frequently predicted.

This is a majority voting model where each time a classifier predicts a

particular classification for an unseen instance it counts as one ‘vote’ for that

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 14,
© Springer-Verlag London 2013
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classification. With N classifiers in the ensemble there will be a total of N votes

and the classification with most votes wins, i.e. is deemed to be the ensemble’s

prediction of the correct classification.

Figure 14.1 Ensemble Classification

The obvious objection to an ensemble classifier approach is that generating

N classifiers takes much longer than only one and this additional effort is only

justified if the performance of the ensemble is substantially better than that

of just a single classifier. There is no guarantee that this will be the case for

a given set of test data and far less so for an individual unseen instance, but

intuitively it seems reasonable to believe that N classifiers ‘working together’

have the potential to give better predictive accuracy than one on its own. In

practice this is likely to depend on how the classifiers are generated and how

their predictions are combined (majority voting or otherwise).

In this chapter we will restrict our attention to the homogeneous case, where

all the classifiers are of the same kind, say decision trees. There are several ways

in which an ensemble can be formed, for example:

– N trees generated using the same tree generation algorithm, with different

parameter settings, all using the same training data.

– N trees generated using the same tree generation algorithm, all with different

training data and either with the same or with different parameter settings.

– N trees generated using a variety of different tree generation algorithms,

either with the same or with different training data.

– N trees generated using a different subset of the attributes for each one.

If the additional effort needed to generate an ensemble of classifiers is to be

worthwhile, the best approach is unlikely to be to generate trees that are all
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very similar, as they are all likely to give a very similar ‘standard’ performance.

A better strategy is likely to be to generate trees (or other classifiers) that are

diverse, in the hope that some will give much better than ‘standard’ perfor-

mance, even if others are much worse. Those in the latter category should not

be included in the ensemble; those in the former should be retained. This leads

naturally to the idea of generating a large number of classifiers in some random

way and then retaining only the best.

Two pioneering pieces of work in this field are the Random Decision Forests

system developed by Tin Kam Ho [1] and the Random Forests system of Leo

Breiman [2]. Both use the approach of generating a large number of decision

trees in a way that has a substantial random element, measuring their per-

formance and then selecting the best trees for the ensemble. To quote Stahl

and Bramer [3]: “Ho argues that traditional trees often cannot be grown over

a certain level of complexity without risking a loss of generalisation caused

by overfitting on the training data. Ho proposes inducing multiple trees in

randomly selected subsets of the feature space. He claims that the combined

classification will improve, as the individual trees will generalise better on the

classification for their subset of the feature space”.

Ho’s work introduced the idea of making a random selection of the attributes

to use when generating each classifier. Breiman added to this by introducing

a technique known as bagging for generating multiple different but related

training sets from a single set of training data, with the aim of reducing

overfitting and improving classification accuracy [4].

Naturally this is computationally expensive to do. Ho’s and Breiman’s

papers are both important contributions to the field and are well worth studying

in detail. However as usual there are many other ways of implementing the

same general ideas once they have been set out and the description given in

this chapter is our own.

To develop the idea of basing an ensemble on random classifiers further we

need:

– A means of generating a large number of classifiers (say 100) in a random

fashion and

– A way of measuring the performance of each one.

The final step is to choose all those that meet some criterion to include

in an ensemble. There are several ways of doing this. For example we may

select, say, the 10 classifiers with the best performance or all the classifiers

with performance above some threshold of accuracy.
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14.2 Estimating the Performance of a Classifier

Elsewhere in this book we have described the standard methodology for devel-

oping and estimating the performance of a classifier: divide the available data

into a training set and a test set, use the training set to develop the classi-

fier and then use the test set to estimate how the classifier will perform on

(genuinely) unseen data.

For an ensemble classifier the procedure requires an extra dataset called

a validation dataset associated with each classifier. The method is as fol-

lows:

1. Divide the available data into a test set and the remainder.

2. For each candidate classifier

a) Divide the remaining data from step (1) into training data and valida-

tion data in some suitable fashion.

b) Generate a classifier using the training data.

c) Run the classifier against the validation data to give an estimate of its

performance.

3. Use the performance estimates to find the best classifiers, e.g. all those with

predictive accuracy greater than a specified percentage or perhaps the best

X. If the number of classifiers remaining from this step is M, together they

comprise an ensemble of size M.

4. Use the ensemble to classify each of the instances in the test set selected

at step (1) and use the result as an estimate of the performance of the

ensemble on (genuinely) unseen data.

The method used to predict the classification of unseen instances at step (4)

is generally to use each of the M classifiers independently and then to combine

their ‘votes’ for the correct classification (see Section 14.5 below).

How many classifiers to use in an ensemble is a matter for experiment, but

to take advantage of the opportunity given by introducing a random element

into the classifier generation process, i.e. that some particularly good classifiers

will emerge by chance, a reasonable number might be, say, 100 with perhaps

the best 10 chosen to form the ensemble itself.
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14.3 Selecting a Different Training Set for Each
Classifier

One problem that arises when implementing step (2)(a) of the algorithm in

the previous section ‘divide the remainder of the data into training data and

validation data, in some suitable fashion’ is how best to do this a large number

of times, each giving a different division into the two datasets.

An approach to this which was implemented by Breiman [4] in a different

context and later used in his Random Forests system is called bagging. (Bagging

is short for ‘bootstrap aggregating’, but the significance of this term will not

be explained here.)

Let us assume that the data described as the ‘remaining data’ in the last

section, i.e. all the available data less instances removed to form a test set,

comprises N instances. The bagging method is then as follows, applied to form

each candidate classifier in turn.

– Randomly select N instances, one-by-one, at each stage selecting from the

full set of instances (we call this sampling with replacement). This will lead

to a training set of N instances in which inevitably some of the instances will

appear more than once, perhaps several times, and others will not appear at

all.

– There are likely to be many instances left unselected by this process. Collect

them together to form a validation set.

It is extremely unlikely that sampling with replacement N times from a

collection of N instances will lead to each instance being selected exactly once.

The opposite extreme, where a single instance happens to be selected N times,

is also extremely unlikely. To see what is likely to happen in the usual case

we start by asking what is the probability that a particular instance in the

’remaining data’ is never picked.

The probability of a particular instance being selected at the first ‘pick’ is

1/N , so the probability that it is not selected is 1−1/N . Each of the N picks is

independent of the others, as all N instances are available for picking each time,

so the probability of a particular instance never being picked as the training

set of N instances is assembled is (1− 1/N)N . As N becomes large, this value

can be proved to become extremely close to the value 1/e (mathematicians call

this its limiting value). The symbol e represents a well-known ‘mathematical

constant’ with the value 2.71828. Thus the limiting value is 1/e = 0.368. The

value of (1 − 1/N)N approximates this value to two decimal places for values

of N as small as 64.
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Since the same calculation applies to all instances and those never selected

form the validation dataset for the classifier, it follows that for a reasonably

large dataset of ‘remaining data’ we can expect that the validation dataset will

comprise (on average) 36.8% of the instances. It follows that the other 63.2%

go into the training set, some of them many times, to make a training set of N

instances.

The significance of the training set being ‘padded out’ to N instances with

duplicate values is far from negligible. Depending on the algorithm used, the

classifier generated may be substantially different from the one obtained if

duplicate values are deleted from the training set, which is a possible alternative

approach.

14.4 Selecting a Different Set of Attributes for
Each Classifier

One of the ideas introduced in Ho’s Random Decision Forests system was that

of processing only a subset of the available attributes (he uses the equivalent

term ‘features’), selected at random for each decision tree. The general idea is

that combining classifiers produced by trees generated this way will give greater

accuracy than a single classifier as the individual trees will generalise better on

their subset of the available features.

One way of selecting attributes at random is just to choose a random subset

from the total number available, with a different subset for each classifier.

Another more complex approach would be similar to that for selecting instances

for a training set in the previous section. If there are a total of N attributes,

then N attributes are picked one at a time, in each case from the full collection

of N possibilities. The analysis given in the previous section demonstrates that

on average approximately 63.2% of the attributes will be selected for each

decision tree by this method. In this case, the attributes not selected would

simply be discarded. Duplicates of attributes already selected would also be

discarded.

A random selection of attributes can be made just once for each decision

tree. An alternative would be to make a further random selection at each node

of an evolving decision tree from the attributes remaining under consideration

at that point.
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14.5 Combining Classifications: Alternative
Voting Systems

Having constructed an ensemble of N classifiers, how can their predictions of

the correct classification of an unseen instance (whether one in the test set or

a genuinely unseen instance) best be combined into a single prediction?

The method adopted in both Ho’s Random Decision Forests paper and

Breiman’s Random Forests paper is simply to treat each prediction as a vote

for a particular classification, giving a total of N votes, with the prediction

collecting the most votes being considered the winner. We will call this approach

majority voting or simple majority voting. As with real-world voting systems

for elections it is quite easy to point to possible flaws in this approach.

Classifier
Predicted

Class

1 A

2 B

3 A

4 B

5 A

6 C

7 C

8 A

9 C

10 B

Figure 14.2 Predicted Classes for an Ensemble of 10 Classifiers

Figure 14.2 shows a possible situation. Classification A gained 4 votes,

against 3 for B and 3 for C and so is ‘elected’, even though only 4 out of

10 classifiers made that prediction. Winning with a minority of the votes cast

may (or may not) be acceptable for elections where the government of a coun-

try is at stake. For the purposes of this book, the important question is how

reliable a prediction made this way is likely to be – to which the obvious answer

is ‘not very’.

Figure 14.3 is the same as Figure 14.2 but with an additional column:

‘Accuracy’. This shows the predictive accuracy of the classifier on its validation

dataset during the ensemble creation process, expressed as a proportion from 0

to 1. All the values are quite high, or the classifier would not have been included

in the ensemble, but some are appreciably higher than others.
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Classifier Accuracy
Predicted

Class

1 0.65 A

2 0.90 B

3 0.65 A

4 0.85 B

5 0.70 A

6 0.70 C

7 0.90 C

8 0.65 A

9 0.80 C

10 0.95 B

Total 7.75

Figure 14.3 An Ensemble of Classifiers with Predictive Accuracy Information

We can now adopt a weighted majority voting approach, with each vote for

a classification weighted by the proportion given in the middle column.

– Now classifier A gains 0.65 + 0.65 + 0.7 + 0.65 = 2.65 votes.

– Classifier B gains 0.9 + 0.85 + 0.95 = 2.7 votes.

– Classifier C gains 0.7 + 0.9 + 0.8 = 2.4 votes.

– The total number of votes available is 0.65 + 0.9 + . . .+ 0.95 = 7.75.

With this approach classifier B is now the winner. This seems reasonable as

it gained the votes of three of the best classifiers, judged by their performance

on their validation datasets (which vary from one classifier to another), whereas

candidate classifier A gained the votes of four relatively weak classifiers. In this

case choosing B as the winning classifier seems justified.

However it is possible to make the situation more complex still. An overall

predictive accuracy figure of say 0.85 can conceal considerable variation in

performance. We will focus on classifier 4 with overall predictive accuracy of

0.85 and consider a possible confusion matrix for it, assuming there were exactly

1,000 instances in its validation dataset. (Confusion matrices are discussed in

Chapter 7.)

From Figure 14.4 we can see that classification B was quite rare in the

validation dataset for classifier 4. Of the 100 instances with that classification

only 50 were correctly predicted. Even worse, if we look at the 120 times that

classification B was predicted by classifier 4, only 50 times was the prediction

correct. Now it seems as if giving classifier 4 a weighted value of 0.85 for its
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Predicted Class Total

A B C

Actual
A 550 30 20 600

B 20 50 30 100
Class C 10 40 250 300

Total 580 120 300 1000

Figure 14.4 Confusion Matrix for Classifier 4

prediction of classification B was far too optimistic. Perhaps it should have

been just 50/120 = 0.417.

Looking at confusion matrices gives us an approach to combining votes

from multiple classifiers, which we will call ‘track record voting’. For classifier

4, when it predicts class B : 30 times out of 120 the correct classification is A

(25%), 50 times out of 120 the correct classification is B (41.7%) and 40 times

out of 120 the correct classification is C (33.3%)

We say that a prediction of B by classifier 4 gives votes of 0.25, 0.417 and

0.333 for classifications A, B and C respectively. Note that these figures are all

far below the overall predictive accuracy of the classifier (0.85). The explanation

is that classifier 4 is very reliable when it predicts class A (correct 550 times

out of 580 = 94.8%) and class C (correct 250 times out of 300 = 83.3%) but

very unreliable when it predicts class B (correct only 50 times out of 120 =

41.7%).

Vote for Class Total

Classifier
Predicted

Class
A B C

1 A 0.80 0.05 0.15 1.0

2 B 0.10 0.80 0.10 1.0

3 A 0.75 0.20 0.05 1.0

4 B 0.25 0.42 0.33 1.0

5 A 0.40 0.20 0.40 1.0

6 C 0.05 0.05 0.90 1.0

7 C 0.10 0.10 0.80 1.0

8 A 0.75 0.20 0.05 1.0

9 C 0.10 0.00 0.90 1.0

10 B 0.10 0.80 0.10 1.0

Total 3.40 2.82 3.78 10.0

Figure 14.5 Ensemble of Classifiers with Voting Based on ‘Track Record’
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Figure 14.5 is a revised version of Figure 14.3. Now each classifier again has

one vote, which it casts as three proportions. For example classifier 4 predicts

class B for the unseen instance under consideration. This produces not a single

vote for class B, but a vote split into three parts cast for all three classes A, B

and C, in this case the values 0.25, 0.42 and 0.33 respectively. These proportions

are derived from the ‘Predicted Class B ’ column of the confusion matrix for

classifier 4 (Figure 14.4).

Adding the votes for each of the three classes in Figure 14.5, the winner

now (rather surprisingly) is class C, mainly because of the three high votes of

0.9 twice and 0.8.

Which of the three methods illustrated in this section is the most reliable?

The first predicted class A, the second class B and the third class C. There is

no clear-cut answer to this. The point is that there are a number of ways the

votes can be combined in an ensemble classifier rather than just one.

Looking again at Figure 14.5 there are further complications to take into

account. Classifier 5, which predicts class A has ‘votes’ of 0.4, 0.2 and 0.4. This

means that for its validation data when it predicted class A, only 40% of the

instances were actually of class A, 20% of the instances were class B and 40%

of the instances were class C. What credibility can be given to a prediction

of class A by that classifier? We can look at the three proportions for classi-

fier 5 as indications of its ‘track record’ when predicting class A. On that basis

there seems no reason at all to trust it and we might consider eliminating that

classifier from consideration any time its prediction is A, as well as eliminat-

ing classifier 4 when its prediction is class B. However, if we do so, we will

have implicitly moved from a ‘democratic’ model – one classifier, one vote – to

something closer to a ‘community of experts’ approach.

Suppose the 10 classifiers represent 10 medical consultants in a hospital

and A, B and C are three treatments to give a patient with a life-threatening

condition. The consultants are trying to predict which treatment is most likely

to prove effective. Why should anyone trust consultants 4 and 5, with their

poor track records when predicting B and A respectively?

By contrast consultant 6, whose prediction is that treatment C will prove

the most effective at saving the patient, has a track record of 90% success when

making that prediction. The only consultant to compare with consultant 6 is

number 9, who also has a track record of 90% success when predicting C. With

two such experts making the same choice, who would wish to contradict them?

Even the act of counting the votes seems not only pointless but unnecessarily

risky, just in case the other eight less successful consultants might happen to

outvote the two leading experts.

We could go on elaborating this example but will stop here. Clearly it

is possible to look at the question of how best to combine the classifications
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produced by the different classifiers in an ensemble in a variety of different

ways. Which way is most likely to give a high level of classification accuracy on

unseen data? As so often in data mining, only experimentation with different

datasets can give us the answer, but whatever the best approach turns out to

be for an ‘average’ dataset, it is most unlikely that a single method will be best

for all datasets or for all unseen instances and it is desirable to have a range of

options available.

14.6 Parallel Ensemble Classifiers

As mentioned previously, an important practical obstacle to an ensemble clas-

sifier approach is the computation time needed to generate N classifiers rather

than just one.

One way of dealing with this is to distribute the work around a local area

network of personal computers, with each machine responsible for generating

one or more classifiers and estimating its performance using a corresponding

validation dataset. This general approach is described in Chapter 13 in the

context of dealing with a large volume of data, rather than (as here) generating

a large number of classifiers.

Depending on the way in which the ensemble is formed (as discussed in

Section 14.1) the machines in the network might all make use of the same

data in a central location, or all have identical local copies of the data, or they

might begin by taking a sample of a common dataset (e.g. when using a bagging

approach, as described in Section 14.3).

If we envisage a network of say 10 machines, we might generate 500 clas-

sifiers (50 per machine), estimate the performance of each one using its own

validation dataset and retain (say) the 50 best. We might then rearrange the

locations of the best 50 classifiers so that there are 5 on each of the 10 machines,

or possibly we might put them all together on a single machine, if the volume

of unseen data that needs to be processed is expected to be small.

The field of Parallel Ensemble Classifiers is a relatively new one, but appears

promising. Two papers that give further information are [5] and [6].

14.7 Chapter Summary

This chapter is concerned with ensemble classification, i.e. using a set of clas-

sifiers to classify unseen data rather than just a single one. The classifiers in
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the ensemble all predict the correct classification of each unseen instance and

their predictions are then combined using some form of voting system.

The idea of a random forest of classifiers is introduced and issues relating

to the selection of a different training set and/or a different set of attributes

from a given dataset when constructing each of the classifiers are discussed.

A number of alternative ways of combining the classifications produced by

an ensemble of classifiers are considered. The chapter concludes with a brief

discussion of a distributed processing approach to dealing with the large amount

of computation often required to generate an ensemble.

14.8 Self-assessment Exercises for Chapter 14

Given the values shown in Figure 14.5:

1. What would be the effect of setting a threshold of 0.5, i.e. discounting any

classifier for which the entry in the table (the ‘vote’) for the predicted class

is less than 0.5?

2. What would be the effect of setting a threshold of 0.8?

References

[1] Ho, T. K. (1995). Random decision forests. International Conference on

Document Analysis and Recognition, 1, 278.

[2] Breiman, L. (2001). Random forests. Machine Learning, 45 (1), 5–32.

[3] Stahl, F., & Bramer, M. (2011). Random prism: an alternative to random

forests. In Research and development in intelligent systems XXVIII (pp. 5–

18). Springer.

[4] Breiman, L. (1996). Bagging predictors.Machine Learning, 24 (2), 123–140.

[5] Stahl, F., May, D., & Bramer, M. (2012). Parallel random prism: a com-

putationally efficient ensemble learner for classification. In Research and

development in intelligent systems XXIX. Springer.

[6] Panda, B., Herbach, J. S., Basu, S., & Bayardo, R. J. (2009). Planet: mas-

sively parallel learning of tree ensembles with mapreduce. Proceedings of

the VLDB Endowment, 2, 1426–1437.



15
Comparing Classifiers

15.1 Introduction

In Chapter 12 we considered how to choose between different classifiers applied

to the same dataset. For those with real datasets to analyse this is obviously

the principal issue.

However there is an entirely different category of data miner: those who

develop new algorithms or what they hope are improvements to existing al-

gorithms designed to give superior performance on not just one dataset but a

wide range of possible datasets most of which are not known or do not even

exist at the time the new methods are developed. Into this category fall both

academic researchers and commercial software developers.

Whatever new methods are developed in the future, we can be certain of

this: no one is going to develop a new algorithm that out-performs all estab-

lished methods of classification (such as those described in this book) for all

possible datasets. Data mining packages intended for use in a wide variety of

possible application areas will continue to need to include a choice of classifi-

cation algorithms to use. The aim of further development is to establish new

techniques that are generally preferable to well-established ones. To do this

it is necessary to compare their performance against at least one established

algorithm on a range of datasets.

There are many published papers giving descriptions of interesting new clas-

sification algorithms accompanied by a performance table such as Figure 15.1.

Each column gives the predictive accuracy, expressed as a percentage, of one of

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 15,
© Springer-Verlag London 2013
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Dataset

Established

Classifier

A

New

Classifier

B

dataset 1 80 85

dataset 2 73 70

dataset 3 85 85

dataset 4 68 74

dataset 5 82 71

dataset 6 75 65

dataset 7 73 77

dataset 8 64 73

dataset 9 75 75

dataset 10 69 76

Total 744 751

Average 74.4 75.1

Figure 15.1 Performance of classifiers A and B on 10 datasets

the classifiers on a range of datasets. (Note that for the method of comparison

we describe below multiplying all the values in both columns by a constant has

no effect on the outcome. Thus it makes no difference whether we represent

predictive accuracy by percentages as here or by proportions between 0 and 1,

such as 0.8 and 0.85.)

The production of tables of comparative values such as Figure 15.1 is a

considerable improvement over the position with some of the older Data Min-

ing literature where new algorithms are either not evaluated at all (leaving the

brilliance of the author’s ideas to speak for itself, one assumes) or are evalu-

ated on datasets that are only available to the author and/or are not named.

As time has gone by collections of ‘standard’ datasets have been assembled

that make it possible for developers to compare their results with those ob-

tained by other methods on the same datasets. In many cases the latter results

are only available in the published literature, since with a few honourable ex-

ceptions authors do not generally make software implementing their algorithms

accessible to other developers and researchers, except in the case of commercial

packages.

A very widely-used collection of datasets is the ‘UCI Repository’ [1] which

was introduced in Section 2.6. Being able to compare performance on the same

datasets as those used by previous authors clearly makes it far easier to evaluate

new algorithms. However the widespread use of such repositories is not an

unmixed blessing as will be explained later.
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Figure 15.1 shows the predictive accuracy of algorithms A and B on 10

datasets. We can see that in three cases A out-performed B, in two cases the

performance was equal and in five cases B out-performed A. The average ac-

curacy of A was 74.4% and the average accuracy of B was 75.1%. What can

we conclude from all this?

15.2 The Paired t-Test

A commonly used method of comparing classification algorithms is the paired

t-test. We will start by illustrating the method and then discuss a number of

issues relating to it.

First we add to Figure 15.1 a column of the differences between the A and B

values, i.e. B-A, which is traditionally denoted by the letter z. We also construct

a column showing the square of the differences, i.e. z2.

Dataset

Established

Classifier

A

New

Classifier

B

Difference

z

Square of

Difference

z2

dataset 1 80 85 5 25

dataset 2 73 70 −3 9

dataset 3 85 85 0 0

dataset 4 68 74 6 36

dataset 5 82 71 −11 121

dataset 6 75 65 −10 100

dataset 7 73 77 4 16

dataset 8 64 73 9 81

dataset 9 75 75 0 0

dataset 10 69 76 7 49

Total 744 751 7 437

Average 74.4 75.1 0.7 43.7

Figure 15.2 Performance of classifiers A and B on 10 datasets (with z and

z2 values)

We can see that the average difference between A and B is 0.7, i.e. 0.7% in

favour of classifier B. This does not seem very much. Is it sufficient to reject

the null hypothesis that the performance of classifiers A and B is effectively the

same? We will address this question using a paired t-test. The word ‘paired’

in the name refers to the fact that the results fall into natural pairs, i.e. it is
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sensible to compare the results for dataset 1 for classifiers A and B but these

are separate from those for dataset 2 etc.

To perform a paired t-test we need only three values: the total of the values

of z, the total of the z2 values and the number of datasets. We well denote

these by
∑

z,
∑

z2, and n, respectively, so
∑

z = 7,
∑

z2 = 437 and n = 10.1

From these three values we can calculate the value of a statistic which is

traditionally represented by the variable t. The t-statistic was introduced in

the early 20th century by an English statistician named William Gosset, who is

best known by his pen name of ‘Student’, and so this test is also often known

as Student’s t-test.

The calculation of the value of t can be broken down into the following

steps.

Step 1. Calculate the average value of z :
∑

z/n = 7/10 = 0.7.

Step 2. Calculate the value of (
∑

z)2/n. Here this gives 72/10 = 4.9.

Step 3. Subtract the result of step 2 from
∑

z2. Here this gives 437 − 4.9 =

432.1.

Step 4. Divide this value by (n − 1) to give the sample variance, which is

traditionally denoted by s2. Here s2 is 432.1/9 = 48.01.

Step 5. Take the square root of s2 to give s, known as the sample standard

deviation. Here the value of s is
√
48.01 = 6.93.

Step 6. Divide s by
√
n to give the standard error. Here the value is 6.93/

√
10=

2.19.

Step 7. Finally we divide the average value of z by the standard error to give

the value of the t statistic. Here t = 0.7/2.19 = 0.32.

The word ‘sample’ in both ‘sample variance’ and ‘sample standard devia-

tion’ refers to the fact that the 10 datasets given in the table are not all the

possible datasets that exist to which the two classifiers may be applied. They

are just a very small sample of all the possible datasets that exist or may exist in

the future. We are using them as ‘representatives’ of this much larger collection

of datasets. We will return to the question of how far this is reasonable.

The terms standard deviation and variance are commonly used in statistics.

Standard deviation measures the fluctuation of the values of z about the mean

1 For those not familiar with this notation, which uses the Greek letter
∑

(pro-
nounced ‘sigma’) to denote summation, it is explained in Appendix A.1.1. The
simplified variant used here leaves out the subscripts, as the values to be added
are obvious.

∑
z (read as ‘sigma z ’) denotes the sum of all values of z, which here

is 7,
∑

z2 (read as ‘sigma z squared’) represents the sum of all the values of z2,
which is 437. The latter is not to be confused with (

∑
z)2, which is the square of∑

z, i.e. 49.
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value, which here is 0.7. In Figure 15.2 the fluctuation is considerable: the

differences between the values of z and the average value (0.7) vary from −11.7

to +8.3 and this is reflected in a sample standard deviation, s, value of 6.93,

almost 10 times larger than the average itself. The calculation of the standard

error value adjusts s to allow for the number of datasets in the sample. Because

t is the average value of z divided by the standard error, it follows that the

smaller the value of s (i.e. the fluctuation of z values about the average), the

larger will be the value of t. (Readers interested in a full explanation of and

justification for the t-test are referred to the many statistics textbooks that are

available.)

Now we have calculated t, the next step is to use it to determine whether or

not to accept the null hypothesis that the performance of classifiers A and B

is effectively the same. We ask this question in an equivalent form: is the value

of t sufficiently far away from zero to justify rejecting the null hypothesis? We

say ‘sufficiently far away from zero’ rather than ‘sufficiently large’ because t

can have either a positive or a negative value. (The average value of z can be

positive or negative; standard error is always positive.)

We can now reformulate our question as: ‘how likely is a value of t outside

the range from −0.32 to +0.32 to occur by chance’? The answer to this depends

on the number of datasets n, but statisticians refer instead to the number of

degrees of freedom, which for our purposes is always one less than the number

of datasets, i.e. n− 1.

Figure 15.3 t-distribution for 9 degrees of freedom
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Figure 15.3 shows the distribution of the t-statistic for 9 degrees of freedom

(chosen because there are 10 datasets in the tables shown so far).

The left- and right-hand ends of the curve (called its ‘tails’) go on infinitely

in both directions. The area between the entire curve and the horizontal axis,

i.e. the t-axis, gives the probability that t will take one of its possible values,

which of course is one.

The figure has the values t = −1.83 and t = +1.83 marked with vertical

lines. The area between the parts of the curve that are to the left of t = −1.83

or to the right of t = +1.83 and the horizontal axis is the probability of the t

value being ≤ −1.83 or ≥ +1.83, i.e. at least as far away from zero as 1.83. We

need to look at both tails in this way as a negative value of −1.83 is just as

much evidence that the null hypothesis (that the two classifiers are equivalent)

is false as the positive value +1.83. When we compare two classifiers there is

no reason to believe that if A and B are significantly different then B must be

better than A; it might also be that B is worse than A.

The area shaded in Figure 15.3, i.e. the probability that t is at least 1.83

either side of zero can be calculated to be 0.1005.

Looking at the probability that t ≤ −1.83 or t ≥ +1.83, or in general that

t ≤ −a or t ≥ +a, for any positive value a, gives us what is known as a

two-tailed test of significance.

The value of the area under the two tails t ≤ −a and t ≥ +a have been

calculated for different degrees of freedom and values of a corresponding to

probabilities of particular interest. Some of these are summarised in Figure 15.4.

Figure 15.4 shows some key values for the t statistic for degrees of freedom from

1 to 19, i.e. for comparisons based on anything from 2 to 20 datasets. (Note

that because we are using a two-tailed test, probabilities 0.10, 0.05 and 0.01 in

the table correspond to a = 0.05, 0.025 and 0.005 respectively in the previous

discussion.)

Looking at the values for 9 degrees of freedom (i.e. for n = 10) the value

of 1.833 in the ‘Probability 0.10’ column indicates that a value of t ≥ 1.833

(or ≤ −1.833) would only be expected to happen by chance with probability

0.10 or less, i.e. no more than 1 time out of 10. If we had a t value of 2.1, say,

we could reject the null hypothesis ‘at the 10% level’, implying that such an

extreme value of t would only be expected to occur by chance fewer than one

time in 10. This is a commonly used criterion for rejecting a null hypothesis and

on this basis we could confidently say that classifier B is significantly better

than classifier A.

A value of t ≥ 2.262 (or ≤ −2.262) would enable us to reject the null

hypothesis at the 5% level, and a value of t ≥ 3.250 (or ≤ −3.250) would enable

us to reject the null hypothesis at the 1% level, as such values would only be

expected to occur by chance one time in 20 and 1 time in 100 respectively.
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Degrees of

Freedom

Probability

0.10

Probability

0.05

Probability

0.01

1 6.314 12.71 63.66

2 2.920 4.303 9.925

3 2.353 3.182 5.841

4 2.132 2.776 4.604

5 2.015 2.571 4.032

6 1.943 2.447 3.707

7 1.895 2.365 3.499

8 1.860 2.306 3.355

9 1.833 2.262 3.250

10 1.812 2.228 3.169

11 1.796 2.201 3.106

12 1.782 2.179 3.055

13 1.771 2.160 3.012

14 1.761 2.145 2.977

15 1.753 2.131 2.947

16 1.746 2.120 2.921

17 1.740 2.110 2.898

18 1.734 2.101 2.878

19 1.729 2.093 2.861

Figure 15.4 t values for 1 to 19 degrees of freedom (two-tailed test)

Naturally we could use other threshold values and work out a value of t

that would only be exceeded by chance one time in six on average, say, but

conventionally we use one of the thresholds shown in Figure 15.4. The least

restrictive condition generally imposed is that to reject a null hypothesis we

require a value of t that would occur no more than 1 time in 10 by chance.

Returning to our example, the value of t calculated was only 0.32, which

with 9 degrees of freedom is nowhere near the 1% value of 1.833. We can safely

reject the null hypothesis. On the basis of the evidence presented it would be

unsafe to say that the performance of classifier B was significantly different

from that of classifier A.

It is important to appreciate that the reason for this disappointing result

(certainly disappointing to the creator of classifier B) is not the relatively low

average value of z (0.7). It is the relatively high value of the standard error

(2.19) relative to the average value of z.

To illustrate this we will introduce a new classifier C, which will turn out

to be much more successful as a challenger to classifier A.
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Dataset

Established

Classifier

A

New

Classifier

C

Difference

z

Square of

Difference

z2

dataset 1 80 81 1 1

dataset 2 73 74 1 1

dataset 3 85 86 1 1

dataset 4 68 69 1 1

dataset 5 82 83 1 1

dataset 6 75 75 0 0

dataset 7 73 75 2 4

dataset 8 64 63 −1 1

dataset 9 75 75 0 0

dataset 10 69 70 1 1

Total 744 751 7 11

Average 74.4 75.1 0.7 1.1

Figure 15.5 Performance of classifiers A and C on 10 datasets

Figure 15.5 shows the percentage accuracy of each classifier on the 10

datasets. Once again the average value of z is 0.7 but this time there is far

less spread of z values around the average. The differences between the values

of z and the average value (0.7) vary from −1.7 to +1.3.

This time the significant values are
∑

z = 7,
∑

z2 = 11 and n = 10. Only

the second of these has changed but the effect is considerable. The seven step

calculation of t now goes as follows.

Step 1. Calculate the average value of z :
∑

z/n = 7/10 = 0.7 [as before].

Step 2. Calculate the value of (
∑

z)2/n. Here this gives 72/10 = 4.9 [as be-

fore].

Step 3. Subtract the result of step 2 from
∑

z2. Here this gives 11−4.9 = 6.1.

Step 4. Divide this value by (n − 1) to give the sample variance s2. Here s2

is 6.1/9 = 0.68.

Step 5. Take the square root of s2 to give the sample standard deviation. Here

the value of s is
√
0.68 = 0.82.

Step 6. Divide s by
√
n to give the standard error. Here the value is 0.82/

√
10=

0.26, which is considerably less than the standard error calculated from

Figure 15.2 (i.e. 2.19).

Step 7. Finally we divide the average value of z by the standard error to give

the value of the t statistic. Here t = 0.7/0.26 = 2.69.
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This value of t is greater than the 5% value for 9 degrees of freedom in

Figure 15.4. We can say that classifier C is significantly better than classifier

A at the 5% level.

The decisive difference between this example and the earlier one using Fig-

ure 15.2 was not the average value of z (they were the same) but the much

smaller standard error.

15.3 Choosing Datasets for Comparative
Evaluation

We will now return to the original problem of whether classifier B is better

than (or perhaps worse than) classifier A.

Suppose now that for whatever reason datasets 5 and 6, both of which

give results very favourable to classifier A, had been omitted from the sample

investigated. We would then have a revised version of Figure 15.2, with only 8

datasets, as shown in Figure 15.6.

Dataset

Established

Classifier

A

New

Classifier

B

Difference

z

Square of

Difference

z2

dataset 1 80 85 5 25

dataset 2 73 70 −3 9

dataset 3 85 85 0 0

dataset 4 68 74 6 36

dataset 7 73 77 4 16

dataset 8 64 73 9 81

dataset 9 75 75 0 0

dataset 10 69 76 7 49

Total 587 615 28 216

Average 73.375 76.875 3.5 27

Figure 15.6 Performance of classifiers A and B with datasets 5 and 6 re-

moved.

Now
∑

z = 28,
∑

z2 = 216 and n = 8.

The average value of z is 3.5. The standard error is 1.45 and the value of t

is 2.41. This is large enough for classifier B to be declared significantly better

than classifier A at the 5% level. (With 7 degrees of freedom the threshold value
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for probability 0.05 is 2.365.) The developer of classifier B is clearly fortunate

that datasets 5 and 6 were left out of the analysis.

Suppose now that datasets 5 and 6 were omitted, but two further datasets,

11 and 12, both of which are favourable to classifier B, were included in the

analysis, giving the results shown in Figure 15.7.

Dataset

Established

Classifier

A

New

Classifier

B

Difference

z

Square of

Difference

z2

dataset 1 80 85 5 25

dataset 2 73 70 −3 9

dataset 3 85 85 0 0

dataset 4 68 74 6 36

dataset 7 73 77 4 16

dataset 8 64 73 9 81

dataset 9 75 75 0 0

dataset 10 69 76 7 49

dataset 11 75 80 5 25

dataset 12 82 88 6 36

Total 704 783 39 277

Average 70.4 78.3 3.9 27.7

Figure 15.7 Performance of classifiers A and B with datasets 11 and 12

replacing 5 and 6.

Now
∑

z = 39,
∑

z2 = 277 and n = 10.

The average value of z is 3.9. The standard error is 1.18 and the value of t

is 3.31. This is large enough to be significant at the 1% level.

Paradoxically if the results for classifier B with datasets 11 and 12 had

been much better, say 95% and 99% respectively, the value of t would have

been lower at 2.81. Intuitively, we may say that by increasing the fluctuation

around the average value of z we make it more likely that the difference between

the classifiers has occurred by chance. To obtain a significant value of t, it is

generally far more important that the values of z have low variability than that

the average value of z is large.

It is clear that the choice of datasets to include in a performance table such

as Figure 15.1 is of critical importance. A comparison of the t values calculated

from Figures 15.2, 15.6 and 15.7 shows that leaving out (or including) datasets

on which the new algorithm B performs badly (or well) can make the difference

between a ‘no significant difference’ result and a significant improvement (or
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vice versa). Paradoxically, omitting particularly favourable results, by lowering

the standard error, can also increase the t value.

Is it too indelicate to raise here the issue of cheating? It would be very

easy to leave out a few unfavourable results to make the t-value come out as

significant. Naturally no reader of this book would ever be tempted to leave

out poor results just to gain public recognition, a higher degree, a pay bonus

or promotion, but it is possible that others are not always so scrupulous. Al-

though this is always a possibility, a much bigger problem may be that of

‘cheating oneself’. Having obtained good results for a new method, how much

incentive is there to hunt for other datasets for which the results may be far

worse?

15.3.1 Confidence Intervals

Having established that for the results given in Figure 15.6 classifier B is sta-

tistically significantly better than classifier A at the 5% level, and the average

improvement for the eight datasets listed is 3.5%, it would be helpful to estab-

lish a confidence interval for the average improvement to indicate within what

limits the true improvement for datasets not included in the table is likely to

lie.

For this example the average value of z is 3.5 and the standard error is 1.45.

As the t value in the ‘Probability 0.05’ column of Figure 15.4 for 7 degrees of

freedom is 2.365, we can say that the 95% confidence interval for the true

average difference is 3.5± (2.365 ∗ 1.45) = 3.5± 3.429. We can be 95% certain

that the true average improvement lies between 0.071% and 6.929%.

For the performance figures given in Figure 15.7 classifier B is significantly

better than classifier A at the 1% level. Here the average value of z is 3.9 and

the standard error is 1.18. There are 9 degrees of freedom and the value of t in

the ‘Probability 0.01’ column for that number of degrees of freedom is 3.250.

We can say that the 99% confidence interval for the true average difference is

3.9± (3.250 ∗ 1.18) = 3.9± 3.835. We can be 99% certain that the true average

improvement lies between 0.065% and 7.735%.

15.4 Sampling

So far we have shown how to test for the significance of a difference in per-

formance between two classifiers on some specified datasets. However in most

cases we do this not because we are particularly interested in those datasets but
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because we would like our new method to be considered better on all possible

datasets. This brings us to the issue of sampling.

Any collection of datasets can be considered to be a sample from the com-

plete collection of all the world’s datasets (which is not accessible to us of

course), but is it a representative sample, i.e. one that accurately reflects the

members of the entire population? If not, why should anyone imagine that a

classifier’s improved performance on datasets 1–10, say, should generalise to

imply improved performance on all other (or indeed any other) datasets?

The situation is similar to the world of advertising, where it is common to

see claims such as ‘8 out of 10 women prefer product B to product A’. (The

laws of libel prevent us using more realistic examples in this section.)

Does this claim mean that the advertiser has asked exactly 10 women,

perhaps all close friends, family members or employees? That would not be

very convincing. Why should those 10 speak for all the women of the world?

Even if we restrict ourselves to the aim of speaking for, say, all the women in

Great Britain, it is obvious that just asking 10 people is hopelessly inadequate.

Some advertisements go further and say (e.g.) ‘total number of women asked

= 94’. This is better, but how were the 94 selected? If they were all questioned

on the same Tuesday morning at the same shopping centre, or sports event

say, the bias towards selecting people living in a small geographical area with

particular interests and availability for answering surveys on Tuesday mornings

is surely obvious.

To make any meaningful statement about the views of the female popu-

lation of Great Britain we need to sub-divide the population into a number

of mutually exclusive and homogeneous sub-groups, based on features such as

geographical location, age group and socio-economic status and then ensure we

interview a reasonably large group of women that is broken down in the same

proportions for each sub-group as the overall population. This is known as strat-

ified sampling and is the approach typically adopted by companies conducting

opinion surveys.

Returning to data mining, a natural question to ask when faced with a

table showing the comparative performance of different classifiers on a number

of datasets is how were those datasets selected? It would be good to believe that

they were a carefully selected representative sample of all the world’s datasets,

but that is hardly realistic. Let us suppose that all the datasets were chosen

from a standard repository, such as the UCI one, which was established to

facilitate comparison with the work of previous software developers. Is there

any reason to suppose that they are a representative sample (rather than just

a sample) of all the datasets in the UCI Repository?

It would be possible to attempt to achieve this, although unavoidably im-

precisely, e.g. by choosing a number of datasets that are believed to include a



Comparing Classifiers 233

substantial proportion of noise, a number believed to be noise free, some with

all attributes categorical, some with all attributes continuous, and so on.

In practice, most authors make no attempt to claim that their datasets are a

representative sample of the UCI Repository. In many cases those chosen were

almost certainly just those that were readily available to the developers. This

is known as using an opportunity sample and is a reasonable way of proceeding

in some circumstances, but such a sample is most unlikely to be representative.

When the aim is to make a comparison with results published, perhaps years

earlier, by the celebrated Data Mining expert Professor X, there is really little

choice but to use the same datasets as were used by X in his or her celebrated

work. Developers of new methods can hardly be blamed for doing this, but

again it begs the question: how did X select those datasets?

Even assuming that we could find a way of selecting a representative sample

of the datasets in the UCI Repository would that guarantee that we had a

representative sample of all the world’s datasets? Unfortunately not. There is

no reason to believe that datasets are entered into the Repository in a random

fashion. We might hypothesise that in many cases they are datasets on which

well-established methods give good predictive accuracy, placed in a Repository

as a challenge for future workers to get even better results. Those who work on

‘difficult’ datasets and fail to make progress may be assumed to be much less

likely to place the datasets in a Repository as a reminder of their failure.

Unfortunately the problems relating to the widespread use of the UCI

Repository go far beyond this. They were discussed in a paper by Salzberg [2]

as far back as 1997, which refers to a ‘community experiments’ effect. He says:

‘many people are sharing a small repository of datasets and repeatedly using

those same datasets for experiments. Thus there is a substantial danger that

published results, even when using strict significance criteria and the appro-

priate significance tests, will be mere accidents of chance. . . . Suppose that 100

different people are studying the effects of algorithms A and B, trying to de-

termine which one is better. Suppose that in fact both have the same mean

accuracy (on some very large population of datasets), although the algorithms

vary randomly in their performance on specific datasets. Now, if 100 people

are studying the effect of algorithms A and B, we would expect that five of

them will get results that are statistically significant at the [0.05] level, and one

will get significance at the 0.01 level! . . . Clearly in this case these results are

due to chance, but if the 100 people are working separately, the ones who get

significant results will publish, while the others will simply move on to other

experiments’.

The problem of the community experiments effect can only have become

more severe since. In the short term, it can be countered by creating new

repositories, used by fewer people. However, in the long run the large number
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of people experimenting with classification algorithms and the desirability of

producing results that can be compared with those obtained by others in the

future mean that the community experiments effect will inevitably affect these

new repositories too.

It is perhaps becoming clear why evaluation is the Achilles Heel of much of

the published literature about new classification algorithms. At the very least

those publishing comparison tables such as Figure 15.1 should explain how the

datasets listed were selected – but remarkably few seem to do so.

Faced with these problems, all that can be asked is that developers do the

best they can. Publishing results for more datasets is obviously desirable, not

only for those trying to judge their work but as benchmarks for future work.

Most importantly, developers should always explain how and why they chose

the datasets they analysed – and of course that choice should always be made

before running any new algorithm on them.

15.5 How Bad Is a ‘No Significant Difference’
Result?

Whilst it is certainly desirable to have a range of classification algorithms avail-

able, as no one algorithm can ever be guaranteed to give the best possible per-

formance on all datasets, the comments about ‘community experiments’ quoted

above reflect a situation where many experiments with new classifiers have been

and continue to be carried out, most of them giving a very similar performance

across a range of familiar datasets.

The world does not need an endless supply of classification algorithms that

are not significantly different from well-established ones or give only slightly

better performance on a small number of datasets. Nevertheless there are rea-

sons why developing a new classification algorithm may be desirable even

though its performance measured by predictive accuracy is not significantly

different from that of well-known ‘standard’ classifiers.

Predictive accuracy is not the only way to judge the quality of a classifier.

A new classifier B may be better than an existing classifier A for other reasons,

for example:

– B may be better founded in theory than A

– B may be computationally more efficient than A

– B may produce a model that is more human-understandable than A does
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– B may give better performance for certain types of dataset than A, for ex-

ample where there are many missing values or where there is likely to be a

high proportion of noise present.

Given a performance table such as Figure 15.1 the question that needs to

be addressed is what distinguishes those datasets for which the B value is

greater than the A value from those the other way round. Often there may

be no discernible reason for the differences but, where there is, a valuable new

algorithm for particular types of dataset may have been found.

15.6 Chapter Summary

This chapter considers how to compare the performance of alternative classifiers

across a range of datasets. The commonly used paired t-test is described and

illustrated with worked examples, leading to the use of confidence intervals

when the predictive accuracies of two classifiers are found to be significantly

different.

Pitfalls involved in comparing classifiers are discussed, leading to alterna-

tive ways of comparing their performance that do not rely on comparisons of

predictive accuracy.

15.7 Self-assessment Exercises for Chapter 15

Given the following table showing the percentage accuracy of two classifiers A

and B on 20 datasets

1. Calculate the average value of the difference B −A.

2. Calculate the value of the standard error and the t-statistic.

3. Determine whether classifier B is significantly better or worse than classifier

A at the 5% level.

4. If the answer to question 3 is yes, calculate the 95% confidence interval for

the true difference in percentage accuracy between classifiers A and B.
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Dataset
Classifier

A

Classifier

B

1 74 86

2 69 75

3 80 86

4 67 69

5 84 83

6 87 95

7 69 65

8 74 81

9 78 74

10 72 80

11 75 73

12 72 82

13 70 68

14 75 78

15 80 78

16 84 85

17 79 79

18 79 78

19 63 76

20 75 71
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16
Association Rule Mining I

16.1 Introduction

Classification rules are concerned with predicting the value of a categorical

attribute that has been identified as being of particular importance. In this

chapter we go on to look at the more general problem of finding any rules of

interest that can be derived from a given dataset.

We will restrict our attention to IF . . . THEN . . . rules that have a conjunc-

tion of ‘attribute = value’ terms on both their left- and right-hand sides. We

will also assume that all attributes are categorical (continuous attributes can be

dealt with by discretising them ’globally’ before any of the methods discussed

here are used).

Unlike classification, the left- and right-hand sides of rules can potentially

include tests on the value of any attribute or combination of attributes, subject

only to the obvious constraints that at least one attribute must appear on both

sides of every rule and no attribute may appear more than once in any rule. In

practice data mining systems often place restrictions on the rules that can be

generated, such as the maximum number of terms on each side.

If we have a financial dataset one of the rules extracted might be as follows:

IF Has-Mortgage = yes AND Bank Account Status = In credit

THEN Job Status = Employed AND Age Group = Adult under 65

Rules of this more general kind represent an association between the values

of certain attributes and those of others and are called association rules. The

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 16,
© Springer-Verlag London 2013
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process of extracting such rules from a given dataset is called association rule

mining (ARM). The term generalised rule induction (or GRI) is also used,

by contrast with classification rule induction. (Note that if we were to apply

the constraint that the right-hand side of a rule has to have only one term

which must be an attribute/value pair for a designated categorical attribute,

association rule mining would reduce to induction of classification rules.)

For a given dataset there are likely to be few if any association rules that

are exact, so we normally associate with each rule a confidence value, i.e. the

proportion of instances matched by its left- and right-hand sides combined as

a proportion of the number of instances matched by the left-hand side on its

own. This is the same measure as the predictive accuracy of a classification

rule, but the term ‘confidence’ is more commonly used for association rules.

Association Rule Mining algorithms need to be able to generate rules with

confidence values less than one. However the number of possible Association

Rules for a given dataset is generally very large and a high proportion of the

rules are usually of little (if any) value. For example, for the (fictitious) financial

dataset mentioned previously, the rules would include the following (no doubt

with very low confidence):

IF Has-Mortgage = yes AND Bank Account Status = In credit

THEN Job Status = Unemployed

This rule will almost certainly have a very low confidence and is obviously

unlikely to be of any practical value.

The main difficulty with association rule mining is computational efficiency.

If there are say 10 attributes, each rule can have a conjunction of up to nine

‘attribute = value’ terms on the left-hand side. Each of the attributes can

appear with any of its possible values. Any attribute not used on the left-hand

side can appear on the right-hand side, also with any of its possible values.

There are a very large number of possible rules of this kind. Generating all of

these is very likely to involve a prohibitive amount of computation, especially

if there are a large number of instances in the dataset.

For a given unseen instance there are likely to be several or possibly many

rules, probably of widely varying quality, predicting different values for any

attributes of interest. A conflict resolution strategy of the kind discussed in

Chapter 11 is needed that takes account of the predictions from all the rules,

plus information about the rules and their quality. However we will concentrate

here on rule generation, not on conflict resolution.
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16.2 Measures of Rule Interestingness

In the case of classification rules we are generally interested in the quality of a

rule set as a whole. It is all the rules working in combination that determine

the effectiveness of a classifier, not any individual rule or rules.

In the case of association rule mining the emphasis is on the quality of each

individual rule. A single high quality rule linking the values of attributes in a

financial dataset or the purchases made by a supermarket customer, say, may

be of significant commercial value.

To distinguish between one rule and another we need some measures of

rule quality. These are generally known as rule interestingness measures. The

measures can of course be applied to classification rules as well as association

rules if desired.

Several interestingness measures have been proposed in the technical liter-

ature. Unfortunately the notation used is not yet very well standardised, so in

this book we will adopt a notation of our own for all the measures described.

In this section we will write a rule in the form

if LEFT then RIGHT

We start by defining four numerical values which can be determined for any

rule simply by counting:

NLEFT Number of instances matching LEFT

NRIGHT Number of instances matching RIGHT

NBOTH Number of instances matching both LEFT and RIGHT

NTOTAL Total number of instances

We can depict this visually by a figure known as a Venn diagram. In Fig-

ure 16.1 the outer box can be envisaged as containing all NTOTAL instances

under consideration. The left- and right-hand circles contain the NLEFT in-

stances that match LEFT and the NRIGHT instances that match RIGHT,

respectively. The hashed area where the circles intersect contains the NBOTH

instances that match both LEFT and RIGHT.

Figure 16.1 Instances matching LEFT, RIGHT and both LEFT and RIGHT
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The values NLEFT , NRIGHT , NBOTH and NTOTAL are too basic to be

considered as rule interestingness measures themselves but the values of most

(perhaps all) interestingness measures can be computed from them.

Three commonly used measures are given in Figure 16.2 below. The first

has more than one name in the technical literature.

Confidence (Predictive Accuracy, Reliability)

NBOTH / NLEFT

The proportion of right-hand sides predicted by the rule that are correctly

predicted

Support

NBOTH/NTOTAL

The proportion of the training set correctly predicted by the rule

Completeness

NBOTH/NRIGHT

The proportion of the matching right-hand sides that are correctly predicted

by the rule

Figure 16.2 Basic Measures of Rule Interestingness

We can illustrate this using the financial rule given in Section 16.1.

IF Has-Mortgage = yes AND Bank Account Status = In credit

THEN Job Status = Employed AND Age Group = Adult under 65

Assume that by counting we arrive at the following values:

NLEFT = 65

NRIGHT = 54

NBOTH = 50

NTOTAL = 100

From these we can calculate the values of the three interestingness measures

given in Figure 16.2.

Confidence = NBOTH/NLEFT = 50/65 = 0.77

Support = NBOTH/NTOTAL = 50/100 = 0.5

Completeness = NBOTH/NRIGHT = 50/54 = 0.93

The confidence of the rule is 77%, which may not seem very high. However

it correctly predicts for 93% of the instances in the dataset that match the
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right-hand side of the rule and the correct predictions apply to as much as 50%

of the dataset. This seems like a valuable rule.

Amongst the other measures of interestingness that are sometimes used is

discriminability. This measures how well a rule discriminates between one class

and another. It is defined by:

1− (NLEFT −NBOTH)/(NTOTAL −NRIGHT )

which is

1− (number of misclassifications produced by the rule) / (number of instances

with other classifications)

If the rule predicts perfectly, i.e. NLEFT = NBOTH , the value of discriminabil-

ity is 1.

For the example given above, the value of discriminability is

1− (65− 50)/(100− 54) = 0.67.

16.2.1 The Piatetsky-Shapiro Criteria and the RI
Measure

In an influential paper [1] the American researcher Gregory Piatetsky-Shapiro

proposed three principal criteria that should be met by any rule interestingness

measure. The criteria are listed in Figure 16.3 and explained in the text that

follows.

Criterion 1

The measure should be zero if NBOTH = (NLEFT ×NRIGHT )/NTOTAL

Interestingness should be zero if the antecedent and the consequent are

statistically independent (as explained below).

Criterion 2

The measure should increase monotonically with NBOTH

Criterion 3

The measure should decrease monotonically with each of NLEFT and

NRIGHT

For criteria 2 and 3, it is assumed that all other parameters are fixed.

Figure 16.3 Piatetsky-Shapiro Criteria for Rule Interestingness Measures



242 Principles of Data Mining

The second and third of these are more easily explained than the first.

Criterion 2 states that if everything else is fixed the more right-hand sides

that are correctly predicted by a rule the more interesting it is. This is clearly

reasonable.

Criterion 3 states that if everything else is fixed

(a) the more instances that match the left-hand side of a rule the less

interesting it is.

(b) the more instances that match the right-hand side of a rule the less

interesting it is.

The purpose of (a) is to give preference to rules that correctly predict a given

number of right-hand sides from as few matching left-hand sides as possible (for

a fixed value of NBOTH , the smaller the value of NLEFT the better).

The purpose of (b) is to give preference to rules that predict right-hand sides

that are relatively infrequent (because predicting common right-hand sides is

easier to do).

Criterion 1 is concerned with the situation where the antecedent and the con-

sequent of a rule (i.e. its left- and right-hand sides) are independent. How many

right-hand sides would we expect to predict correctly just by chance?

We know that the number of instances in the dataset is NTOTAL and that

the number of those instances that match the right-hand side of the rule is

NRIGHT . So if we just predicted a right-hand side without any justification

whatever we would expect our prediction to be correct for NRIGHT instances

out of NTOTAL, i.e. a proportion of NRIGHT /NTOTAL times.

If we predicted the same right-hand sideNLEFT times (one for each instance

that matches the left-hand side of the rule), we would expect that purely by

chance our prediction would be correct NLEFT ×NRIGHT /NTOTAL times.

By definition the number of times that the prediction actually turns out

to be correct is NBOTH . So Criterion 1 states that if the number of correct

predictions made by the rule is the same as the number that would be expected

by chance the rule interestingness is zero.

Piatetsky-Shapiro proposed a further rule interestingness measure called

RI, as the simplest measure that meets his three criteria. This is defined by:

RI = NBOTH − (NLEFT ×NRIGHT /NTOTAL)

RI measures the difference between the actual number of matches and the

expected number if the left- and right-hand sides of the rule were independent.

Generally the value of RI is positive. A value of zero would indicate that the

rule is no better than chance. A negative value would imply that the rule is

less successful than chance.

The RI measure satisfies all three of Piatetsky-Shapiro’s criteria.

Criterion 1 RI is zero if NBOTH = (NLEFT ×NRIGHT )/NTOTAL
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Criterion 2 RI increases monotonically with NBOTH (assuming that all other

parameters are fixed).

Criterion 3 RI decreases monotonically with each of NLEFT and NRIGHT

(assuming that all other parameters are fixed).

Although doubts have been expressed about the validity of the three criteria

and much research in this field remains to be done, the RI measure remains a

valuable contribution in its own right.

There are several other rule interestingness measures available. Some im-

portant ones are described later in this chapter and in Chapter 17.

16.2.2 Rule Interestingness Measures Applied to the
chess Dataset

Although Rule Interestingness Measures are particularly valuable for associa-

tion rules, we can also apply them to classification rules if we wish.

The unpruned decision tree derived from the chess dataset (with attribute

selection using entropy) comprises 20 rules. One of these (numbered rule 19 in

Figure 16.4) is

IF inline = 1 AND wr bears bk = 2 THEN Class = safe

For this rule

NLEFT = 162

NRIGHT = 613

NBOTH = 162

NTOTAL = 647

So we can calculate the values of the various rule interestingness measures

as follows:

Confidence = 162/162 = 1

Completeness = 162/613 = 0.26

Support = 162/647 = 0.25

Discriminability = 1− (162− 162)/(647− 613) = 1

RI = 162− (162× 613/647) = 8.513

The ‘perfect’ values of confidence and discriminability are of little value here.

They always occur when rules are extracted from an unpruned classification

tree (created without encountering any clashes in the training data). The RI

value indicates that the rule can be expected to correctly predict 8.513 more

correct classifications (on average) than would be expected by chance.
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Rule NLEFT NRIGHT NBOTH Conf Compl Supp Discr RI
1 2 613 2 1.0 0.003 0.003 1.0 0.105
2 3 34 3 1.0 0.088 0.005 1.0 2.842
3 3 34 3 1.0 0.088 0.005 1.0 2.842
4 9 613 9 1.0 0.015 0.014 1.0 0.473
5 9 613 9 1.0 0.015 0.014 1.0 0.473
6 1 34 1 1.0 0.029 0.002 1.0 0.947
7 1 613 1 1.0 0.002 0.002 1.0 0.053
8 1 613 1 1.0 0.002 0.002 1.0 0.053
9 3 34 3 1.0 0.088 0.005 1.0 2.842
10 3 34 3 1.0 0.088 0.005 1.0 2.842
11 9 613 9 1.0 0.015 0.014 1.0 0.473
12 9 613 9 1.0 0.015 0.014 1.0 0.473
13 3 34 3 1.0 0.088 0.005 1.0 2.842
14 3 613 3 1.0 0.005 0.005 1.0 0.158
15 3 613 3 1.0 0.005 0.005 1.0 0.158
16 9 34 9 1.0 0.265 0.014 1.0 8.527
17 9 34 9 1.0 0.265 0.014 1.0 8.527
18 81 613 81 1.0 0.132 0.125 1.0 4.257
19 162 613 162 1.0 0.264 0.25 1.0 8.513
20 324 613 324 1.0 0.529 0.501 1.0 17.026

NTOTAL = 647

Figure 16.4 Rule Interestingness Values for Rules Derived from chess Dataset

The table of interestingness values of all 20 classification rules derived from

the chess dataset, given as Figure 16.4, is very revealing.

Judging by the RI values, it looks as if only the last five rules are really

of any interest. They are the only rules (out of 20) that correctly predict the

classification for at least four instances more than would be expected by chance.

Rule 20 predicts the correct classification 324 out of 324 times. Its support value

is 0.501, i.e. it applies to over half the dataset, and its completeness value is

0.529. By contrast, Rules 7 and 8 have RI values as low as 0.053, i.e. they

predict only slightly better than chance.

Ideally we would probably prefer only to use rules 16 to 20. However in

the case of classification rules we cannot just discard the other 15 much lower

quality rules. If we do we will have a tree with only five branches that is unable

to classify 62 out of the 647 instances in the dataset. This illustrates the general

point that an effective classifier (set of rules) can include a number of rules that

are themselves of low quality.
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16.2.3 Using Rule Interestingness Measures for Conflict
Resolution

We can now return briefly to the subject of conflict resolution, when several

rules predict different values for one or more attributes of interest for an unseen

test instance. Rule interestingness measures give one approach to handling this.

For example we might decide to use only the rule with the highest interesting-

ness value, or the most interesting three rules, or more ambitiously we might

decide on a ‘weighted voting’ system that adjusts for the interestingness value

or values of each rule that fires.

16.3 Association Rule Mining Tasks

The number of generalised rules that can be derived from a given dataset is

potentially very large and in practice the aim is usually either to find all the

rules satisfying a specified criterion or to find the best N rules. The latter will

be discussed in the next section.

As a criterion for accepting a rule we could use a test on the confidence of

the rule, say ‘confidence > 0.8’, but this is not completely satisfactory. It is

quite possible that we can find rules that have a high level of confidence but

are applicable very rarely. For example with the financial example used before

we might find the rule

IF Age Group = Over seventy AND Has-Mortgage = no

THEN Job Status = Retired

This may well have a high confidence value but is likely to correspond to

very few instances in the dataset and thus be of little practical value. One way

of avoiding such problems is to use a second measure. One frequently used is

support. The value of support is the proportion of the instances in the dataset

to which the rule (successfully) applies, i.e. the proportion of instances matched

by the left- and right-hand sides together. A rule that successfully applied to

only 2 instances in a dataset of 10,000 would have a low value of support (just

0.0002), even if its confidence value were high.

A common requirement is to find all rules with confidence and support

above specified threshold values. A particularly important type of association

rule application for which this approach is used is known as market basket

analysis. This involves analysing very large datasets of the kind collected by

supermarkets, telephone companies, banks etc. about their customers’ transac-

tions (purchases, calls made, etc.) to find rules that, in the supermarket case,
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find associations between the products purchased by customers. Such datasets

are generally handled by restricting attributes to having only the values true

or false (indicating the purchase or non-purchase of some product, say) and

restricting the rules generated to ones where every attribute included in the

rule has the value true.

Market basket analysis will be discussed in detail in Chapter 17.

16.4 Finding the Best N Rules

In this section we will look at a method of finding the best N rules that can be

generated from a given dataset. We will assume that the value of N is a small

number such as 20 or 50.

We first need to decide on some numerical value that we can measure for any

rule which captures what we mean by ‘best’. We will call this a quality measure.

In this section we will use a quality measure (or measure of rule interestingness)

known as the J-measure.

Next we need to decide on some set of rules in which we are interested. This

could be all possible rules with a conjunction of ‘attribute = value’ terms on

both the left- and right-hand sides, the only restriction being that no attribute

may appear on both sides of a rule. However a little calculation shows that for

even as few as 10 attributes the number of possible rules is huge and in practice

we may wish to restrict the rules of interest to some smaller (but possibly still

very large) number. For example we might limit the rule ‘order’, i.e. the number

of terms on the left-hand side, to no more than four (say) and possibly also

place restrictions on the right-hand side, for example a maximum of two terms

or only a single term or even only terms involving a single specified attribute.

We will call the set of possible rules of interest the search space.

Finally we need to decide on a way of generating the possible rules in the

search space in an efficient order, so that we can calculate the quality measure

for each one. This is called a search strategy. Ideally we would like to find a

search strategy that avoids having to generate low-quality rules if possible.

As rules are generated we maintain a table of the best N rules so far found

and their corresponding quality measures in descending numerical order. If a

new rule is generated that has a quality measure greater than the smallest value

in the table the Nth best rule is deleted and the new rule is placed in the table

in the appropriate position.
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16.4.1 The J-Measure: Measuring the Information
Content of a Rule

The J-measure was introduced into the data mining literature by Smyth and

Goodman [2], as a means of quantifying the information content of a rule that

is soundly based on theory. Justifying the formula is outside the scope of this

book, but calculating its value is straightforward.

Given a rule of the form If Y = y, thenX = x using Smyth and Goodman’s

notation, the information content of the rule, measured in bits of information,

is denoted by J(X;Y = y), which is called the J-measure for the rule.

The value of the J-measure is the product of two terms:

– p(y) The probability that the left-hand side (antecedent) of the rule will

occur

– j(X;Y = y) The j-measure (note the small letter ‘j’) or cross-entropy.

The cross-entropy term is defined by the equation:

j(X;Y = y) = p(x|y). log2
(p(x|y)

p(x)

)
+ (1− p(x|y)). log2

(1− p(x|y)
1− p(x)

)

The value of cross-entropy depends on two values:

– p(x) The probability that the right-hand side (consequent) of the rule will

be satisfied if we have no other information (called the a priori probability

of the rule consequent)

– p(x|y) The probability that the right-hand side of the rule will be satisfied if

we know that the left-hand side is satisfied (read as ‘probability of x given

y’).

A plot of the j-measure for various values of p(x) is given in Figure 16.5.

In terms of the basic measures introduced in Section 16.2:

p(y) = NLEFT /NTOTAL

p(x) = NRIGHT /NTOTAL

p(x|y) = NBOTH/NLEFT

The J-measure has two helpful properties concerning upper bounds. First,

it can be shown that the value of J(X;Y = y) is less than or equal to

p(y). log2(
1

p(y) ).

The maximum value of this expression, given when p(y) = 1/e, is log2 e/e,

which is approximately 0.5307 bits.
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Figure 16.5 Plot of j-Measure for Various Values of p(x)

Second (and more important), it can be proved that the J value of any rule

obtained by specialising a given rule by adding further terms is bounded by

the value

Jmax = p(y).max{p(x|y). log2( 1
p(x) ), (1− p(x|y)). log2( 1

1−p(x) )}

Thus if a given rule is known to have a J value of, say, 0.352 bits and the

value of Jmax is also 0.352, there is no benefit to be gained (and possibly harm

to be done) by adding further terms to the left-hand side, as far as information

content is concerned.

We will come back to this topic in the next section.

16.4.2 Search Strategy

There are many ways in which we can search a given search space, i.e. generate

all the rules of interest and calculate their quality measures. In this section we

will describe a method that takes advantage of the properties of the J-measure.

To simplify the description we will assume that there are ten attributes

a1, a2, . . . , a10 each with three possible values 1, 2 and 3. The search space

comprises rules with just one term on the right-hand side and up to nine terms

on the left-hand side.
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We start by generating all possible right-hand sides. There are 30 of them,

i.e. each of the 10 attributes combined with each of its three values, e.g. a1 = 1

or a7 = 2.

From these we can generate all possible rules of order one, i.e. with one

term on the left-hand side. For each right-hand side, say ‘a2 = 2’, there are

27 possible left-hand sides, i.e. the other nine attributes combined with each of

their three possible values, and thus 27 possible rules of order one, i.e.

IF a1 = 1 THEN a2 = 2

IF a1 = 2 THEN a2 = 2

IF a1 = 3 THEN a2 = 2

IF a3 = 1 THEN a2 = 2

IF a3 = 2 THEN a2 = 2

IF a3 = 3 THEN a2 = 2

and so on.

We calculate the J-value for each of the 27× 30 possible rules. We put the

rules with the N highest J-values in the best rule table in descending order

of J .

The next step is to specialise the rules of order one to form rules of order

two, e.g. to expand

IF a3 = 3 THEN a2 = 2

to the set of rules

IF a3 = 3 AND a1 = 1 THEN a2 = 2

IF a3 = 3 AND a1 = 2 THEN a2 = 2

IF a3 = 3 AND a1 = 3 THEN a2 = 2

IF a3 = 3 AND a4 = 1 THEN a2 = 2

IF a3 = 3 AND a4 = 2 THEN a2 = 2

IF a3 = 3 AND a4 = 3 THEN a2 = 2

and so on.

We can then go on to generate all rules of order 3 and then all rules of

order 4, 5 etc. up to 9. This clearly involves generating a very large number

of rules. There are 262,143 possible left-hand sides for each of the 30 possible

right-hand sides, making a total of 7,864,290 rules to consider. However, there

are two ways in which the process can be made more computationally feasible.

The first is to expand only the best (say) 20 rules of order one with an ad-

ditional term. The J-values of the resulting rules of order 2 are then calculated

and the ‘best N rules’ table is adjusted as necessary. The best 20 rules of order

2 (whether or not they are in the best N rules table overall) are then expanded

by a further term to give rules of order 3 and so on. This technique is known

as a beam search, by analogy with the restricted width of the beam of a torch.



250 Principles of Data Mining

In this case the beam width is 20. It is not necessary for the beam width to be

a fixed value. For example it might start at 50 when expanding rules of order

one then reduce progressively for rules of higher orders.

It is important to appreciate that using a beam search technique to reduce

the number of rules generated is a heuristic, i.e. a ‘rule of thumb’ that is not

guaranteed to work correctly in every case. It is not necessarily the case that

the best rules of order K are all specialisations of the best rules of order K−1.

The second method of reducing the number of rules to be generated is

guaranteed always to work correctly and relies on one of the properties of the

J-measure.

Let us suppose that the last entry in the ‘best N rules table’ (i.e. the entry

with lowest J-value in the table) has a J-value of 0.35 and we have a rule with

two terms, say

IF a3 = 3 AND a6 = 2 THEN a2 = 2

which has a J-value of 0.28.

In general specialising a rule by adding a further term can either increase

or decrease its J-value. So even if the order 3 rule

IF a3 = 3 AND a6 = 2 AND a8 = 1 THEN a2 = 2

has a lower J-value, perhaps 0.24, it is perfectly possible that adding a fourth

term could give a higher J-value that will put the rule in the top N .

A great deal of unnecessary calculation can be avoided by using the Jmax

value described in Section 16.4.1. As well as calculating the J-value of the rule

IF a3 = 3 AND a6 = 2 THEN a2 = 2

which was given previously as 0.28, let us assume that we also calculate its

Jmax value as 0.32. This means that no further specialisation of the rule by

adding terms to the left-hand side can produce a rule (for the same right-hand

side) with a J-value larger than 0.32. This is less than the minimum of 0.35

needed for the expanded form of the rule to qualify for the best N rules table.

Hence the order 2 form of the rule can safely be discarded.

Combining a beam search with rule ‘pruning’ using the Jmax value can

make generating rules from even quite a large dataset computationally feasible.

In the next chapter we look at the problem of generating association rules

for market basket analysis applications, where the datasets are often huge, but

the rules take a restricted form.
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16.5 Chapter Summary

This chapter looks at the problem of finding any rules of interest that can

be derived from a given dataset, not just classification rules as before. This is

known as Association Rule Mining or Generalised Rule Induction. A number of

measures of rule interestingness are defined and criteria for choosing between

measures are discussed. An algorithm for finding the best N rules that can be

generated from a dataset using the J-measure of the information content of a

rule and a ‘beam search’ strategy is described.

16.6 Self-assessment Exercises for Chapter 16

1. Calculate the values of Confidence, Completeness, Support, Discriminabil-

ity and RI for rules with the following values.

Rule NLEFT NRIGHT NBOTH NTOTAL

1 720 800 700 1000

2 150 650 140 890

3 1000 2000 1000 2412

4 400 250 200 692

5 300 700 295 817

2. Given a dataset with four attributes w, x, y and z, each with three values,

how many rules can be generated with one term on the right-hand side?
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17
Association Rule Mining II

This chapter requires a basic knowledge of mathematical set theory. If you do

not already have this, the notes in Appendix A will tell you all you need to

know.

17.1 Introduction

This chapter is concerned with a special form of Association Rule Mining, which

is known as Market Basket Analysis. The rules generated for Market Basket

Analysis are all of a certain restricted kind.

Here we are interested in any rules that relate the purchases made by cus-

tomers in a shop, frequently a large store with many thousands of products, as

opposed to those that predict the purchase of one particular item. Although in

this chapter ARM will be described in terms of this application, the methods

described are not restricted to the retail industry. Other applications of the

same kind include analysis of items purchased by credit card, patients’ medical

records, crime data and data from satellites.
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17.2 Transactions and Itemsets

We will assume that we have a database comprising n transactions (i.e.

records), each of which is a set of items.

In the case of market basket analysis we can think of each transaction as

corresponding to a group of purchases made by a customer, for example {milk,

cheese, bread} or {fish, cheese, bread, milk, sugar}. Here milk, cheese, bread

etc. are items and we call {milk, cheese, bread} an itemset. We are interested in

finding rules known as association rules that apply to the purchases made by

customers, for example ‘buying fish and sugar is often associated with buying

milk and cheese’, but only want rules that meet certain criteria for ‘interest-

ingness’, which will be specified later.

Including an item in a transaction just means that some quantity of it was

bought. For the purposes of this chapter, we are not interested in the quantity

of cheese or the number of cans of dog food etc. bought. We do not record the

items that a customer did not buy and are not interested in rules that include

a test of what was not bought, such as ‘customers who buy milk but do not

buy cheese generally buy bread’. We only look for rules that link all the items

that were actually bought.

We will assume that there are m possible items that can be bought and will

use the letter I to denote the set of all possible items.

In a realistic case the value of m can easily be many hundreds or even many

thousands. It partly depends on whether a company decides to consider, say,

all the meat it sells as a single item ‘meat’ or as a separate item for each type

of meat (‘beef’, ‘lamb’, ‘chicken’ etc.) or as a separate item for each type and

weight combination. It is clear that even in quite a small store the number of

different items that could be considered in a basket analysis is potentially very

large.

The items in a transaction (or any other itemset) are listed in a standard

order, which may be alphabetical or something similar, e.g. we will always write

a transaction as {cheese, fish, meat}, not {meat, fish, cheese} etc. This does

no harm, as the meaning is obviously the same, but has the effect of greatly

reducing and simplifying the calculations we need to do to discover all the

‘interesting’ rules that can be extracted from the database.

As an example, if a database comprises 8 transactions (so n = 8) and there

are only 5 different items (an unrealistically low number), denoted by a, b, c,

d and e, so we have m = 5 and I = {a, b, c, d, e}, the database might comprise

the transactions shown in Figure 17.1.

Note that the details of how the information is actually stored in the

database is a separate issue, which is not considered here.
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Transaction number Transactions (itemsets)

1 {a, b, c}
2 {a, b, c, d, e}
3 {b}
4 {c, d, e}
5 {c}
6 {b, c, d}
7 {c, d, e}
8 {c, e}

Figure 17.1 A Database With Eight Transactions

For convenience we write the items in an itemset in the order in which they

appear in set I, the set of all possible items, i.e. {a, b, c} not {b, c, a}.
All itemsets are subsets of I. We do not count the empty set as an itemset

and so an itemset can have anything from 1 up to m members.

17.3 Support for an Itemset

We will use the term support count of an itemset S, or just the count of an

itemset S, to mean the number of transactions in the database matched by S.

We say that an itemset S matches a transaction T (which is itself an itemset)

if S is a subset of T , i.e. all the items in S are also in T . For example itemset

{bread, milk} matches the transaction {cheese, bread, fish, milk, wine}.
If an itemset S = {bread, milk} has a support count of 12, written as

count(S) = 12 or count({bread, milk}) = 12, it means that 12 of the transac-

tions in the database contain both the items bread and milk.

We define the support of an itemset S, written as support(S), to be the

proportion of itemsets in the database that are matched by S, i.e. the propor-

tion of transactions that contain all the items in S. Alternatively we can look

at it in terms of the frequency with which the items in S occur together in

the database. So we have support(S) = count(S)/n, where n is the number of

transactions in the database.
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17.4 Association Rules

The aim of Association Rule Mining (ARM) is to examine the contents of the

database and find rules, known as association rules, in the data. For example

we might notice that when items c and d are bought item e is often bought

too. We can write this as the rule

cd → e

The arrow is read as ‘implies’, but we must be careful not to interpret this

as meaning that buying c and d somehow causes e to be bought. It is better to

think of rules in terms of prediction: if we know that c and d were bought we

can predict that e was also bought.

The rule cd → e is typical of most if not all of the rules used in Association

Rule Mining in that it is not invariably correct. The rule is satisfied for trans-

actions 2, 4 and 7 in Figure 17.1, but not for transaction 6, i.e. it is satisfied in

75% of cases. For basket analysis it might be interpreted as ‘if bread and milk

are bought, then cheese is bought too in 75% of cases’.

Note that the presence of items c, d and e in transactions 2, 4, and 7 can

also be used to justify other rules such as

c → ed

and

e → cd

which again do not have to be invariably correct.

The number of rules that can be generated from quite a small database

is potentially very large. In practice most of them are of little if any practical

value. We need some way of deciding which rules to discard and which to retain.

First we will introduce some more terminology and notation. We can write

the set of items appearing on the left- and right-hand sides of a given rule as

L and R, respectively, and the rule itself as L → R. L and R must each have

at least one member and the two sets must be disjoint, i.e. have no common

members. The left-hand and right-hand sides of a rule are often called its

antecedent and consequent or its body and head, respectively.

Note that with the L → R notation the left- and right-hand sides of rules are

both sets. However we will continue to write rules that do not involve variables

in a simplified notation, e.g. cd → e instead of the more accurate but also more

cumbersome form {c, d} → {e}.
The union of the sets L and R is the set of items that occur in either L or

R. It is written L∪R (read as ‘L union R’). As L and R are disjoint and each

has at least one member, the number of items in the itemset L ∪R, called the

cardinality of L ∪R, must be at least two.
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For the rule cd → e we have L = {c, d}, R = {e} and L ∪R = {c, d, e}. We

can count the number of transactions in the database that are matched by the

first two itemsets. Itemset L matches four transactions, numbers 2, 4, 6 and 7,

and itemset L ∪R matches 3 transactions, numbers 2, 4 and 7, so count(L) =

4 and count(L ∪R) = 3.

As there are 8 transactions in the database we can calculate

support(L) = count(L)/8 = 4/8

and

support(L ∪R) = count(L ∪R)/8 = 3/8

A large number of rules can be generated from even quite a small database

and we are generally only interested in those that satisfy given criteria for

interestingness. There are many ways in which the interestingness of a rule can

be measured, but the two most commonly used are support and confidence.

The justification for this is that there is little point in using rules that only

apply to a small proportion of the database or that predict only poorly.

The support for a rule L → R is the proportion of the database to which

the rule successfully applies, i.e. the proportion of transactions in which the

items in L and the items in R occur together. This value is just the support

for itemset L ∪R, so we have

support(L → R) = support(L ∪R).

The predictive accuracy of the rule L → R is measured by its confidence,

defined as the proportion of transactions for which the rule is satisfied. This can

be calculated as the number of transactions matched by the left-hand and right-

hand sides combined, as a proportion of the number of transactions matched

by the left-hand side on its own, i.e. count(L ∪R)/count(L).

Ideally, every transaction matched by L would also be matched by L ∪ R,

in which case the value of confidence would be 1 and the rule would be called

exact, i.e. always correct. In practice, rules are generally not exact, in which

case count(L ∪R) < count(L) and the confidence is less than 1.

Since the support count of an itemset is its support multiplied by the total

number of transactions in the database, which is a constant value, the confi-

dence of a rule can be calculated either by

confidence(L → R) = count(L ∪R)/count(L)

or by

confidence(L → R) = support(L ∪R)/support(L)

It is customary to reject any rule for which the support is below a minimum

threshold value called minsup, typically 0.01 (i.e. 1%) and also to reject all rules
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with confidence below a minimum threshold value called minconf, typically 0.8

(i.e. 80%).

For the rule cd → e, the confidence is count({c, d, e})/count({c, d}), which
is 3/4 = 0.75.

17.5 Generating Association Rules

There are many ways in which all the possible rules can be generated from a

given database. A basic but very inefficient method has two stages.

We will use the term supported itemset to mean any itemset for which the

value of support is greater than or equal to minsup. The terms frequent itemset

and large itemset are often used instead of supported itemset.

1. Generate all supported itemsets L ∪R with cardinality at least two.

2. For each such itemset generate all the possible rules with at least one

item on each side and retain those for which confidence ≥ minconf.

Step 2 in this algorithm is fairly straightforward to implement and will be

discussed in Section 17.8.

The main problem is with step 1 ‘generate all supported itemsets L∪R with

cardinality at least 2’, assuming we take this to mean that we first generate all

possible itemsets of cardinality two or greater and then check which of them

are supported. The number of such itemsets depends on the total number of

items m. For a practical application this can be very large.

The number of possible itemsets L∪R is the same as the number of possible

subsets of I, the set of all items, which has cardinality m. There are 2m such

subsets. Of these, m have a single element and one has no elements (the empty

set). Thus the number of itemsets L∪R with cardinality at least 2 is 2m−m−1.

If m takes the unrealistically small value of 20 the number of itemsets L∪R

is 220 − 20 − 1 = 1, 048, 555. If m takes the more realistic but still relatively

small value of 100 the number of itemsets L ∪ R is 2100 − 100 − 1, which is

approximately 1030.

Generating all the possible itemsets L ∪ R and then checking against the

transactions in the database to establish which ones are supported is clearly

unrealistic or impossible in practice.

Fortunately, a much more efficient method of finding supported itemsets is

available which makes the amount of work manageable, although it can still be

large in some cases.
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17.6 Apriori

This account is based on the very influential Apriori algorithm by Agrawal

and Srikant [1], which showed how association rules could be generated in a

realistic timescale, at least for relatively small databases. Since then a great

deal of effort has gone into looking for improvements on the basic algorithm to

enable larger and larger databases to be processed.

The method relies on the following very important result.

Theorem 1

If an itemset is supported, all of its (non-empty) subsets are also supported.

Proof

Removing one or more of the items from an itemset cannot reduce and

will often increase the number of transactions that it matches. Hence the

support for a subset of an itemset must be at least as great as that for

the original itemset. It follows that any (non-empty) subset of a supported

itemset must also be supported.

This result is sometimes called the downward closure property of itemsets.

If we write the set containing all the supported itemsets with cardinality k

as Lk then a second important result follows from the above. (The use of the

letter L stands for ‘large itemsets’.)

Theorem 2

If Lk = ∅ (the empty set) then Lk+1, Lk+2 etc. must also be empty.

Proof

If any supported itemsets of cardinality k+1 or larger exist, they will have

subsets of cardinality k and it follows from Theorem 1 that all of these

must be supported. However we know that there are no supported itemsets

of cardinality k as Lk is empty. Hence there are no supported subsets of

cardinality k + 1 or larger and Lk+1, Lk+2 etc. must all be empty.

Taking advantage of this result, we generate the supported itemsets in as-

cending order of cardinality, i.e. all those with one element first, then all those

with two elements, then all those with three elements etc. At each stage, the

set Lk of supported items of cardinality k is generated from the previous set

Lk−1.

The benefit of this approach is that if at any stage Lk is ∅, the empty set,

we know that Lk+1, Lk+2 etc. must also be empty. Itemsets of cardinality k+1

or greater do not need to be generated and then tested against the transactions

in the database as they are certain to turn out not to be supported.
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We need a method of going from each set Lk−1 to the next Lk in turn. We

can do this in two stages.

First we use Lk−1 to form a candidate set Ck containing itemsets of cardi-

nality k. Ck must be constructed in such a way that it is certain to include all

the supported itemsets of cardinality k but may contain some other itemsets

that are not supported.

Next we need to generate Lk as a subset of Ck. We can generally discard

some of the members of Ck as possible members of Lk by inspecting the mem-

bers of Lk−1. The remainder need to be checked against the transactions in the

database to establish their support values. Only those itemsets with support

greater than or equal to minsup are copied from Ck into Lk.

This gives us the Apriori algorithm for generating all the supported itemsets

of cardinality at least 2 (Figure 17.2).

Create L1 = set of supported itemsets of cardinality one

Set k to 2

while (Lk−1 �= ∅) {
Create Ck from Lk−1

Prune all the itemsets in Ck that are not

supported, to create Lk

Increase k by 1

}
The set of all supported itemsets with at least two members is L2∪· · ·∪Lk−2

Figure 17.2 The Apriori Algorithm (adapted from [1])

To start the process we construct C1, the set of all itemsets comprising just

a single item, then make a pass through the database counting the number of

transactions that match each of these itemsets. Dividing each of these counts

by the number of transactions in the database gives the value of support for

each single-element itemset. We discard all those with support < minsup to

give L1.

The process involved can be represented diagrammatically as Figure 17.3,

continuing until Lk is empty.

Agrawal and Srikant’s paper also gives an algorithm Apriori-gen which

takes Lk−1 and generates Ck without using any of the earlier sets Lk−2 etc.

There are two stages to this. These are given in Figure 17.4.

To illustrate the method, let us assume that L4 is the list

{{p, q, r, s}, {p, q, r, t}, {p, q, r, z}, {p, q, s, z}, {p, r, s, z}, {q, r, s, z},
{r, s, w, x}, {r, s, w, z}, {r, t, v, x}, {r, t, v, z}, {r, t, x, z}, {r, v, x, y},
{r, v, x, z}, {r, v, y, z}, {r, x, y, z}, {t, v, x, z}, {v, x, y, z}}
which contains 17 itemsets of cardinality four.
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Figure 17.3 Diagram Illustrating the Apriori Algorithm

(Generates Ck from Lk−1)

Join Step

Compare each member of Lk−1, say A, with every other member, say B, in

turn. If the first k− 2 items in A and B (i.e. all but the rightmost elements

of the two itemsets) are identical, place set A ∪B into Ck.

Prune Step

For each member c of Ck in turn {
Examine all subsets of c with k − 1 elements

Delete c from Ck if any of the subsets is not a member of Lk−1

}

Figure 17.4 The Apriori-gen Algorithm (adapted from [1])

We begin with the join step.

There are only six pairs of elements that have the first three elements in

common. These are listed below together with the set that each combination

causes to be placed into C5.
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First itemset Second itemset Contribution to C5

{p, q, r, s} {p, q, r, t} {p, q, r, s, t}
{p, q, r, s} {p, q, r, z} {p, q, r, s, z}
{p, q, r, t} {p, q, r, z} {p, q, r, t, z}
{r, s, w, x} {r, s, w, z} {r, s, w, x, z}
{r, t, v, x} {r, t, v, z} {r, t, v, x, z}
{r, v, x, y} {r, v, x, z} {r, v, x, y, z}

The initial version of candidate set C5 is

{{p, q, r, s, t}, {p, q, r, s, z}, {p, q, r, t, z}, {r, s, w, x, z}, {r, t, v, x, z}, {r, v, x, y, z}}

We now go on to the prune step where each of the subsets of cardinality

four of the itemsets in C5 are examined in turn, with the following results.

Itemset in C5 Subsets all in L4?

{p, q, r, s, t} No, e.g. {p, q, s, t} is not a member of L4

{p, q, r, s, z} Yes

{p, q, r, t, z} No, e.g. {p, q, t, z} is not a member of L4

{r, s, w, x, z} No, e.g. {r, s, x, z} is not a member of L4

{r, t, v, x, z} Yes

{r, v, x, y, z} Yes

We can eliminate the first, third and fourth itemsets from C5, making the

final version of candidate set C5

{{p, q, r, s, z}, {r, t, v, x, z}, {r, v, x, y, z}}

The three itemsets in C5 now need to be checked against the database to

establish which are supported.

17.7 Generating Supported Itemsets: An
Example

We can illustrate the entire process of generating supported itemsets from a

database of transactions with the following example.

Assume that we have a database with 100 items and a large number of

transactions. We begin by constructing C1, the set of itemsets with a single

member. We make a pass though the database to establish the support count

for each of the 100 itemsets in C1 and from these calculate L1, the set of

supported itemsets that comprise just a single member.
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Let us assume that L1 has just 8 of these members, namely {a}, {b}, {c},
{d}, {e}, {f}, {g} and {h}. We cannot generate any rules from these, as they

only have one element, but we can now form candidate itemsets of cardinality

two.

In generating C2 from L1 all pairs of (single-item) itemsets in L1 are con-

sidered to match at the ‘join’ step, since there is nothing to the left of the

rightmost element of each one that might fail to match.

In this case the candidate generation algorithm gives us as members of C2

all the itemsets with two members drawn from the eight items a, b, c, . . . ,

h. Note that it would be pointless for a candidate itemset of two elements to

include any of the other 92 items from the original set of 100, e.g. {a, z}, as
one of its subsets would be {z}, which is not supported.

There are 28 possible itemsets of cardinality 2 that can be formed from the

items a, b, c, . . . , h. They are

{a, b}, {a, c}, {a, d}, {a, e}, {a, f}, {a, g}, {a, h},
{b, c}, {b, d}, {b, e}, {b, f}, {b, g}, {b, h},
{c, d}, {c, e}, {c, f}, {c, g}, {c, h},
{d, e}, {d, f}, {d, g}, {d, h},
{e, f}, {e, g}, {e, h},
{f, g}, {f, h},
{g, h}.

As mentioned previously, it is convenient always to list the elements of an

itemset in a standard order. Thus we do not include, say, {e, d} because it is

the same set as {d, e}.
We now need to make a second pass through the database to find the

support counts of each of these itemsets, then divide each of the counts by

the number of transactions in the database and reject any itemsets that have

support less than minsup. Assume in this case that only 6 of the 28 itemsets

with two elements turn out to be supported, so L2 = {{a, c}, {a, d}, {a, h},
{c, g}, {c, h}, {g, h}}.

The algorithm for generating C3 now gives just four members, i.e. {a, c, d},
{a, c, h}, {a, d, h} and {c, g, h}.

Before going to the database, we first check whether each of the candidates

meets the condition that all its subsets are supported. Itemsets {a, c, d} and

{a, d, h} fail this test, because their subsets {c, d} and {d, h} are not members

of L2. That leaves just {a, c, h} and {c, g, h} as possible members of L3.

We now need a third pass through the database to find the support counts

for itemsets {a, c, h} and {c, g, h}. We will assume they both turn out to be

supported, so L3 = {{a, c, h}, {c, g, h}}.
We now need to calculate C4. It has no members, as the two members of L3

do not have their first two elements in common. As C4 is empty, L4 must also
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be empty, which implies that L5, L6 etc. must also be empty and the process

ends.

We have found all the itemsets of cardinality at least two with just three

passes through the database. In doing so we needed to find the support counts

for just 100+ 28+ 2 = 130 itemsets, which is a huge improvement on checking

through the total number of possible itemsets for 100 items, which is approxi-

mately 1030.

The set of all supported itemsets with at least two members is the union of

L2 and L3, i.e. {{a, c}, {a, d}, {a, h}, {c, g}, {c, h}, {g, h}, {a, c, h}, {c, g, h}}.
It has eight itemsets as members. We next need to generate the candidate rules

from each of these and determine which of them have a confidence value greater

than or equal to minconf.

Although using the Apriori algorithm is clearly a significant step forward,

it can run into substantial efficiency problems when there are a large number

of transactions, items or both. One of the main problems is the large number

of candidate itemsets generated during the early stages of the process. If the

number of supported itemsets of cardinality one (the members of L1) is large,

say N , the number of candidate itemsets in C2, which is N(N − 1)/2, can be

a very large number.

A fairly large (but not huge) database may comprise over 1,000 items and

100,000 transactions. If there are, say, 800 supported itemsets in L1, the number

of itemsets in C2 is 800× 799/2, which is approximately 320,000.

Since Agrawal and Srikant’s paper was published a great deal of research

effort has been devoted to finding more efficient ways of generating supported

itemsets. These generally involve reducing the number of passes through all

the transactions in the database, reducing the number of unsupported itemsets

in Ck, more efficient counting of the number of transactions matched by each

of the itemsets in Ck (perhaps using information collected in previous passes

through the database), or some combination of these.

17.8 Generating Rules for a Supported Itemset

If supported itemset L ∪ R has k elements, we can generate all the possible

rules L → R systematically from it and then check the value of confidence for

each one.

To do so it is only necessary to generate all possible right-hand sides in turn.

Each one must have at least one and at most k− 1 elements. Having generated

the right-hand side of a rule all the unused items in L∪R must then be on the

left-hand side.
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For itemset {c, d, e} there are 6 possible rules that can be generated, as

listed below.

Rule L → R count(L ∪R) count(L) confidence(L → R)

de → c 3 3 1.0

ce → d 3 4 0.75

cd → e 3 4 0.75

e → cd 3 4 0.75

d → ce 3 4 0.75

c → de 3 7 0.43

Only one of the rules has a confidence value greater than or equal to minconf

(i.e. 0.8).

The number of ways of selecting i items from the k in a supported itemset

of cardinality k for the right-hand side of a rule is denoted by the mathematical

expression kCi which has the value k!
(k−i)!i! .

The total number of possible right-hand sides L and thus the total number

of possible rules that can be constructed from an itemset L ∪ R of cardinality

k is kC1 + kC2 + · · · + kCk−1. It can be shown that the value of this sum is

2k − 2.

Assuming that k is reasonably small, say 10, this number is manageable.

For k = 10 there are 210−2 = 1022 possible rules. However as k becomes larger

the number of possible rules rapidly increases. For k = 20 it is 1,048,574.

Fortunately we can reduce the number of candidate rules considerably using

the following result.

Theorem 3

Transferring members of a supported itemset from the left-hand side of a

rule to the right-hand side cannot increase the value of rule confidence.

Proof

For this purpose we will write the original rule as A ∪ B → C, where sets

A, B and C all contain at least one element, have no elements in common

and the union of the three sets is the supported itemset S.

Transferring the item or items in B from the left to the right-hand side then

amounts to creating a new rule A → B ∪ C.

The union of the left- and right-hand sides is the same for both rules, namely

the supported itemset S, so we have

confidence(A → B ∪ C) = support(S)
support(A)

confidence(A ∪B → C) = support(S)
support(A∪B)

It is clear that the proportion of transactions in the database matched by

an itemset A must be at least as large as the proportion matched by a larger

itemset A ∪B, i.e. support(A) ≥ support(A ∪B).

Hence it follows that confidence(A → B ∪ C) ≤ confidence(A ∪B → C).
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If the confidence of a rule ≥ minconf we will call the itemset on its right-

hand side confident. If not, we will call the right-hand itemset unconfident. From

the above theorem we then have two important results that apply whenever

the union of the itemsets on the two sides of a rule is fixed:

Any superset of an unconfident right-hand itemset is unconfident.

Any (non-empty) subset of a confident right-hand itemset is confident.

This is very similar to the situation with supported itemsets described in

Section 17.6. We can generate confident right-hand side itemsets of increasing

cardinality in a way similar to Apriori, with a considerable reduction in the

number of candidate rules for which the confidence needs to be calculated. If

at any stage there are no more confident itemsets of a certain cardinality there

cannot be any of larger cardinality and the rule generation process can stop.

17.9 Rule Interestingness Measures: Lift and
Leverage

Although they are generally only a very small proportion of all the possible

rules that can be derived from a database, the number of rules with support

and confidence greater than specified threshold values can still be large. We

would like additional interestingness measures we can use to reduce the number

to a manageable size, or rank rules in order of importance. Two measures that

are often used for this are lift and leverage.

The lift of rule L → R measures how many more times the items in L and

R occur together in transactions than would be expected if the itemsets L and

R were statistically independent.

The number of times the items in L and R occur together in transactions

is just count(L ∪ R). The number of times the items in L occur is count(L).

The proportion of transactions matched by R is support(R). So if L and R

were independent we would expect the number of times the items in L and R

occurred together in transactions to be count(L)× support(R). This gives the

formula for lift:

lift(L → R) =
count(L ∪R)

count(L)× support(R)

This formula can be written in several other forms, including

lift(L → R) =
support(L ∪R)

support(L)× support(R)

lift(L → R) =
confidence(L → R)

support(R)
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lift(L → R) =
n× confidence(L → R)

count(R)

where n is the number of transactions in the database, and

lift(L → R) =
confidence(R → L)

support(L)

Incidentally, from the second of these five formulae, which is symmetric in

L and R, we can also see that

lift(L → R) = lift(R → L)

Suppose we have a database with 2000 transactions and a rule L → R with

the following support counts

count(L) count(R) count(L ∪R)

220 250 190

We can calculate the values of support and confidence from these:

support(L → R) = count(L ∪R)/2000 = 0.095

confidence(L → R) = count(L ∪R)/count(L) = 0.864

lift(L → R) = confidence(L ∪R)× 2000/count(R) = 6.91

The value of support(R) measures the support for R if we examine the

whole of the database. In this example the itemset matches 250 transactions

out of 2000, a proportion of 0.125.

The value of confidence(L → R) measures the support for R if we only

examine the transactions that match L. In this case it is 190/220 = 0.864. So

purchasing the items in L makes it 0.864/0.125 = 6.91 times more likely that

the items in R are purchased.

Lift values greater than 1 are ‘interesting’. They indicate that transactions

containing L tend to containRmore often than transactions that do not contain

L.

Although lift is a useful measure of interestingness it is not always the best

one to use. In some cases a rule with higher support and lower lift can be more

interesting than one with lower support and higher lift because it applies to

more cases.

Another measure of interestingness that is sometimes used is leverage. This

measures the difference between the support for L∪R (i.e. the items in L and

R occurring together in the database) and the support that would be expected

if L and R were independent.
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The former is just support(L∪R). The frequencies (i.e. supports) of L and

R are support(L) and support(R), respectively. If L and R were independent

the expected frequency of both occurring in the same transaction would be the

product of support(L) and support(R).

This gives a formula for leverage:

leverage(L → R) = support(L ∪R)− support(L)× support(R).

The value of the leverage of a rule is clearly always less than its support.

The number of rules satisfying the support ≥ minsup and confidence ≥
minconf constraints can be reduced by setting a leverage constraint, e.g. lever-

age ≥ 0.0001, corresponding to an improvement in support of one occurrence

per 10,000 transactions in the database.

If a database has 100,000 transactions and we have a rule L → R with these

support counts

count(L) count(R) count(L ∪R)

8000 9000 7000

the values of support, confidence, lift and leverage can be calculated to be

0.070, 0.875, 9.722 and 0.063 respectively (all to three decimal places).

So the rule applies to 7% of the transactions in the database and is satisfied

for 87.5% of the transactions that include the items in L. The latter value is

9.722 times more frequent than would be expected by chance. The improvement

in support compared with chance is 0.063, corresponding to 6.3 transactions

per 100 in the database, i.e. approximately 6300 in the database of 100,000

transactions.

17.10 Chapter Summary

This chapter is concerned with a special form of Association Rule Mining known

as Market Basket Analysis, the most common application of which is to relate

the purchases made by the customers in a shop. An approach to finding rules

of this kind, with support and confidence measures above specified thresh-

olds, is described. This is based on the idea of supported itemsets. The Apriori

algorithm for finding supported itemsets is described in detail. Further rule

interestingness measures, lift and leverage, which can be used to reduce the

number of rules generated are introduced.
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17.11 Self-assessment Exercises for Chapter 17

1. Suppose that L3 is the list

{{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {b, c, w}, {b, c, x},
{p, q, r}, {p, q, s}, {p, q, t}, {p, r, s}, {q, r, s}}

Which itemsets are placed in C4 by the join step of the Apriori-gen algo-

rithm? Which are then removed by the prune step?

2. Suppose that we have a database with 5000 transactions and a rule L → R

with the following support counts

count(L) = 3400

count(R) = 4000

count(L ∪R) = 3000

What are the values of support, confidence, lift and leverage for this rule?

Reference
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18
Association Rule Mining III: Frequent

Pattern Trees

18.1 Introduction: FP-Growth

The Apriori algorithm described in Chapter 17 is a successful method of de-

riving association rules from a transaction database. However it has important

shortcomings. In this chapter an alternative method, known as the FP-growth

algorithm is presented, which aims to overcome these. Before expanding on

this, we will start by recapping on some of the basic points from Chapter 17.

It is assumed that we have a database of transactions, each comprising a

number of items, such as

milk, fish, cheese

eggs, milk, pork, butter

cheese, cream, bread, milk, fish

Each record corresponds to a transaction such as one person’s purchases in

a supermarket. A collection of items, such as {fish, pork, cream} is known as

an itemset.

The support count (or just count) of an itemset is the number of times that

the items occur together in a transaction, possibly with other items. Thus for

the above database of three transactions count({milk}) = 3, count({pork}) =
1, count({cheese,milk}) = 2, count({fish,milk}) = 2 etc.

The support of an itemset is defined as the value of the support count

divided by the number of transactions in the database.

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 18,
© Springer-Verlag London 2013
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The aim is to find association rules linking the items in purchases together,

e.g.

eggs, milk → bread, cheese, pork

meaning that transactions that contain eggs and milk generally also include

bread, cheese and pork.

We do this in two stages:

1. Find itemsets such as {eggs, milk, bread} with a sufficiently high value of

support (defined by the user).

2. For each such itemset, extract one or more association rules, with all the

items in the itemset appearing on either the left- or the right-hand side.

This chapter is only concerned with step (1) of this process, i.e. finding the

itemsets. A method for extracting the association rules from the itemsets is

described in Section 17.8 of Chapter 17.

The term used in Chapter 17 for itemsets with a sufficiently high value of

support was supported itemsets. In view of the title of this chapter we will switch

here to using the equivalent term frequent itemsets, which is more commonly

used in the technical literature, although perhaps less meaningful. (We will use

the term frequent itemsets rather than frequent patterns.)

There is another detailed change from Chapter 17. In that chapter the

definition of a frequent (or supported) itemset was that the value of the support

count divided by the number of transactions in the database, i.e. the support,

was greater than or equal to a threshold value defined by the user, such as

0.01, called minsup. This is equivalent to saying that the support count must

be greater than or equal to the number of transactions multiplied by the value

of minsup. For a database with a million transactions the value of minsup

multiplied by the number of transactions would be a large number such as

10,000.

In this chapter we will define a frequent itemset as one for which the support

count is greater than or equal to a user-defined integer which we will call

minsupportcount.

These two definitions are clearly equivalent. The value of minsupportcount

will typically be a large integer, but for the example used in the remainder of

this chapter we will set it to the highly unrealistic value of three.

An important result which was established in Chapter 17 is the downward

closure property of itemsets: if an itemset is frequent, any (non-empty) subset

of it is also frequent. This is generally used in a different form: if an itemset

is infrequent then any superset of it must also be infrequent. For example if

{a, b, c, d} is infrequent then {a, b, c, d, e, f } must also be infrequent. If the
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latter were frequent, then {a, b, c, d} as a subset of it must also be frequent,

but we know that it is not. The practical significance of this result is that the

only itemsets with, say, 6 elements that are worth considering are those that

are created from a frequent itemset with 5 elements by adding an additional

item.

We now return to the Apriori algorithm. Although very effective, it suffers

from two disadvantages.

– The number of candidate itemsets to be considered can be very large, espe-

cially those with two elements. If there are n single-item itemsets, e.g. {fish}
that are frequent, the number of two-item itemsets generated for examina-

tion will be approximately n2/2. As n might easily be tens of thousands this

is a lot of itemsets to process, the large majority of which are likely to prove

infrequent.

– Even though Apriori reduces the number of database scans considerably

compared with more primitive methods, the number of scans can still be

substantial and this can place a large processing overhead on the system,

especially for large transaction databases.

One of the most popular alternative approaches to generating association

rules is the FP-Growth (standing for Frequent Pattern Growth) algorithm,

which was introduced by Han et al. [1]. The aim is to find all the frequent

itemsets that can be extracted from the transaction database as efficiently as

possible. One way of improving on the efficiency of the Apriori algorithm is

to reduce the number of database scans. Another is to examine as few of the

infrequent itemsets as possible. The number of possible (non-empty) itemsets

for a database with n different items is 2n − 1, of which only a relatively small

number are likely to be frequent, so reducing the number of infrequent ones

examined is very important. Even for the very small transaction database with

just three items shown above there are 8 different items, giving 28 − 1 = 255

possible itemsets. For even quite a small supermarket the number of items could

easily be several thousand.

The FP-growth algorithm has two stages.

– First the transaction database is processed to produce a data structure called

a FP-tree (Frequent Pattern Tree) which captures the essence of the database

as far as extracting frequent itemsets is concerned.

– Next the FP-tree is processed recursively, by constructing a sequence of re-

duced trees known as conditional FP-trees.

The transaction database is only processed at the first of these stages and

is only scanned twice. As for virtually any conceivable alternative method the
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database would have to be scanned at least once, reducing the number of scans

to just two is a very valuable feature of this algorithm.

In [1] it is claimed that FP-growth is an order of magnitude faster than

Apriori. Naturally this depends on a number of factors, for example whether

the FP-tree can be represented in a way that is compact enough to fit into main

memory. Like virtually all the algorithms in this book, there are a number of

variants of both Apriori and FP-growth that aim to make them less memory

or computationally expensive and there will no doubt be more in the future.

In the following sections the FP-growth algorithm is described and illus-

trated by a series of figures showing the FP-tree corresponding to an example

transaction database, followed by a sequence of conditional FP-trees from which

it is straightforward to extract the frequent itemsets.

18.2 Constructing the FP-tree

18.2.1 Pre-processing the Transaction Database

To illustrate the process we will use the transaction data from [1]. There are

just five transactions held in a transaction database, with each item represented

by a single letter:

f, a, c, d, g, i, m, p

a, b, c, f, l, m, o

b, f, h, j, o

b, c, k, s, p

a, f, c, e, l, p, m, n

The first step is to make a scan through the transaction database to count

the number of occurrences of each item, which is the same as the support count

of the corresponding single-item itemset. The result is as follows.

f, c: 4

a, m, p, b: 3

l, o: 2

d, g, i, h, j, k, s, e and n: 1

The user now needs to decide on a value forminsupportcount. As the amount

of data is so small, in this example we will use the highly unrealistic value:

minsupportcount = 3.

There are only six items for which the corresponding single-item itemset

has a support count of minsupportcount or more. In descending order of sup-
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port count they are: f, c, a, b, m and p. We store them in an array named

orderedItems (Figure 18.1).

index orderedItems

0 f

1 c

2 a

3 b

4 m

5 p

Figure 18.1 orderedItems array

As far as extracting frequent itemsets is concerned the items that are not

in the orderedItems array may as well not exist, as they cannot occur in any

frequent itemset. For example, if item g were a member of a frequent itemset

then by the downward closure property of itemsets any non-empty subset of

that itemset would also be frequent, so {g} would have to be frequent, but we

know by counting that it is not.

It is conventional and very important from a computational point of view

that the items in an itemset are written in a fixed order. In the case of

FP-growth they are written in descending order of their position in the

orderedItems array, i.e. in descending order of the number of transactions

in which each of them occurs. Thus {c, a, m} is a valid itemset, which may

be frequent or infrequent, but {m, c, a} and {c, m, a} are invalid. We are

only interested in whether itemsets that are valid in this sense are frequent

or infrequent.

We next make the second and final scan through the transaction database.

As each transaction is read all items that are not in orderedItems are removed

and the remaining items are sorted into descending order (i.e. the order of the

items in orderedItems) before being passed to the FP-tree construction process.

This gives the same effect as if the transaction data were originally the five

transactions

f, c, a, m, p

f, c, a, b, m

f, b

c, b, p

f, c, a, m, p
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but the transaction database itself is left unchanged.

We now go on to describe the process of creating the FP-tree and extracting

frequent itemsets from it. Although the transaction data is taken from [1] this

description and especially the method of representing the evolving trees by

arrays is the current author’s own and the responsibility for any accidental

errors or distortions is his alone.

18.2.2 Initialisation

Diagrammatically we can represent the initial state of the FP-tree by a single

node, representing the root.

We will also represent the evolving tree by the contents of four arrays:

– Two two-dimensional arrays nodes and child, with a numerical index that

will correspond to the numbering of the nodes in the tree (zero indicates the

root node). The names given to the columns of these arrays are shown in

Figure 18.2. Note that child can have an indefinite number of columns, but

only the first two are needed for this example.

– Single-dimensional arrays startlink and endlink indexed by the names of the

itemsets in the orderedItems array, i.e. f, c, a, b, m and p.

index
item

name
count linkto parent child1 child2

0 root
nodes array child array

index startlink endlink
f

c

a

b
m
p

link arrays

Figure 18.2 Arrays Corresponding to Initial Form of FP-tree: Root Node

Only
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18.2.3 Processing Transaction 1: f, c, a, m, p

Item f As this is the first item for the transaction we take the ‘current node’

to be the root node. In this case the current node does not have a descendant

node with item name f, so a new node for item f is added numbered 1, with

its parent node numbered 0 (indicating the root node) in Figure 18.4. Note

that an item with name f and support count 1 is indicated by f/1 in Fig-

ure 18.3.

Adding a new node numbered N, for an item with name Item with its

parent node numbered P

– A new node numbered N is added to the tree with item name Item and

support count 1 as a descendant of the node numbered P.

– A new row, numbered N, is added to the nodes array with itemname,

count and parent values Item, 1 and P respectively. The first unused

child value for node P is set to N.

– The value of the row with index Item in both array startlink and array

endlink is set to N.

Item c

The current node is now node 1, which does not have a descendant node with

item name c, so a new node is added numbered 2, for item c with its parent

node numbered 1.

Item a

The current node is now node 2, which does not have a descendant node with

item name a, so a new node is added numbered 3, for item a with its parent

node numbered 2.

Item m

The current node is now node 3, which does not have a descendant node with

item name m, so a new node is added numbered 4, for item m with its parent

node numbered 3.

Item p

The current node is now node 4, which does not have a descendant node with

item name p, so a new node is added numbered 5, for item p with its parent

node numbered 4.

This gives the partial tree and corresponding tables shown below.
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Figure 18.3 FP-tree After Processing Transaction 1

index
item

name
count linkto parent child1 child2

0 root 1

1 f 1 0 2

2 c 1 1 3

3 a 1 2 4

4 m 1 3 5

5 p 1 4
nodes array child array

index startlink endlink
f 1 1
c 2 2
a 3 3

b
m 4 4
p 5 5

link arrays

Figure 18.4 Arrays Corresponding to FP-tree After Processing Transaction 1
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18.2.4 Processing Transaction 2: f, c, a, b, m

Items f, c and a

There is already a chain of nodes from the root to f, c, and a nodes in turn, so

no changes are needed except to increase the counts of nodes 1, 2 and 3 and

the corresponding rows of array nodes by one, giving Figures 18.5 and 18.6.

Figure 18.5 FP-tree After Processing First Three Items of Transaction 2
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index
item

name
count linkto parent child1 child2

0 root 1

1 f 2 0 2

2 c 2 1 3

3 a 2 2 4

4 m 1 3 5

5 p 1 4
nodes array child array

index startlink endlink

f 1 1
c 2 2
a 3 3

b
m 4 4
p 5 5

link arrays

Figure 18.6 Arrays Corresponding to FP-tree After Processing First Three

Items of Transaction 2

Item b

There is no descendant of the current node (the last node accessed), i.e. node 3,

that has item name b, so a new node numbered 6 is added for item b with its

parent node numbered 3 (Figures 18.7 and 18.8).
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Figure 18.7 FP-tree After Processing First Four Items of Transaction 2

index
item

name
count linkto parent child1 child2

0 root 1

1 f 2 0 2

2 c 2 1 3

3 a 2 2 4 6

4 m 1 3 5

5 p 1 4

6 b 1 3
nodes array child array

index startlink endlink
f 1 1
c 2 2
a 3 3

b 6 6
m 4 4
p 5 5

link arrays

Figure 18.8 Arrays Corresponding to FP-tree After Processing First Four

Items of Transaction 2



282 Principles of Data Mining

Item m

A new node numbered 7 is added for item m with its parent node numbered 6.

For the first time in this example the endlink array has a non-null value for

a newly added node, as endlink[m] is 4. Because of this, a dashed line link is

made from node 4 to node 7 for item m (Figures 18.9 and 18.10).

Making a ‘dashed line’ link for item Item across the tree from node A

to node B

The linkto value in row A of the nodes array and the value of endlink[Item]

are both set to B.

Figure 18.9 FP-tree After Processing All of Transaction 2
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index
item

name
count linkto parent child1 child2

0 root 1

1 f 2 0 2

2 c 2 1 3

3 a 2 2 4 6

4 m 1 7 3 5

5 p 1 4

6 b 1 3 7

7 m 1 6
nodes array child array

index startlink endlink
f 1 1
c 2 2
a 3 3

b 6 6
m 4 7
p 5 5

link arrays

Figure 18.10 Arrays Corresponding to FP-tree After Processing All of Trans-

action 2

18.2.5 Processing Transaction 3: f, b

Item f

The count value for node 1 in the tree and row 1 in the nodes array are both

increased by 1.

Item b

There is no descendant of the current node, node 1, with item name b so a new

node numbered 8 is added for item b with its parent node numbered 1.

The endlink array has a non-null value for the new node, as endlink[b] is 6.

A dashed line link is made from node 6 to node 8 for item b (Figures 18.11

and 18.12).
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Figure 18.11 FP-tree After Processing All of Transaction 3

index
item

name
count linkto parent child1 child2

0 root 1

1 f 3 0 2 8

2 c 2 1 3

3 a 2 2 4 6

4 m 1 7 3 5

5 p 1 4

6 b 1 8 3 7

7 m 1 6

8 b 1 1
nodes array child array

index startlink endlink

f 1 1
c 2 2
a 3 3

b 6 8
m 4 7
p 5 5

link arrays

Figure 18.12 Arrays Corresponding to FP-tree After Processing All of Trans-

action 3
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18.2.6 Processing Transaction 4: c, b, p

Item c

The current node (the root node) does not have a descendant node with item

name c, so a new node is added numbered 9, for item c with its parent node

numbered 0 (indicating the root node). A dashed line link is made from node

2 to node 9.

Item b

The current node is now node 9, which does not have a descendant node with

item name b, so a new node is added numbered 10, for item b with its parent

node numbered 9. A dashed line link is made from node 8 to node 10.

Item p

The current node is now node 10, which does not have a descendant node

with item name p, so a new node is added numbered 11, for item p with its

parent node numbered 10. A dashed line link is made from node 5 to node 11

(Figures 18.13 and 18.14).

Figure 18.13 FP-tree After Processing Transaction 4
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index
item

name
count linkto parent child1 child2

0 root 1 9

1 f 3 0 2 8

2 c 2 9 1 3

3 a 2 2 4 6

4 m 1 7 3 5

5 p 1 11 4

6 b 1 8 3 7

7 m 1 6

8 b 1 10 1

9 c 1 0 10

10 b 1 9 11

11 p 1 10
nodes array child array

index startlink endlink
f 1 1
c 2 9
a 3 3

b 6 10
m 4 7
p 5 11

link arrays

Figure 18.14 Arrays Corresponding to FP-tree After Processing Transac-

tion 4
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18.2.7 Processing Transaction 5: f, c, a, m, p

There is already a chain of nodes from the root to f, c, a, m and p in turn, so

no changes are needed except to increase the counts of nodes 1, 2, 3, 4 and 5

and the corresponding rows of array nodes by one. This gives the final FP-tree

and corresponding set of arrays as follows (Figures 18.15 and 18.16).

Figure 18.15 Final FP-tree After Processing Transaction 5
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index
item

name
count linkto parent child1 child2

0 root 1 9

1 f 4 0 2 8

2 c 3 9 1 3

3 a 3 2 4 6

4 m 2 7 3 5

5 p 2 11 4

6 b 1 8 3 7

7 m 1 6

8 b 1 10 1

9 c 1 0 10

10 b 1 9 11

11 p 1 10
nodes array child array

index startlink endlink
f 1 1
c 2 9
a 3 3

b 6 10
m 4 7
p 5 11

link arrays

Figure 18.16 Arrays Corresponding to Final FP-tree After Processing Trans-

action 5

Once the FP-tree has been created arrays child and endlink can be dis-

carded. The contents of the tree are fully represented by arrays nodes and

startlink.

18.3 Finding the Frequent Itemsets from the
FP-tree

Having constructed the FP-tree, which is shown diagrammatically in

Figure 18.15 and is represented by the arrays nodes and startlink shown in

Figure 18.16, we can now analyse it to extract all the frequent itemsets for the

transaction database.
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We will illustrate the process by a series of diagrams and describe how the

frequent itemset extraction process can be implemented in a recursive fashion

by constructing a number of tables that are equivalent to reduced versions of

the FP-tree.

We start by observing some general points.

– The dashed lines (links) in Figure 18.15 are not part of the tree itself (if there

were links across the tree it would no longer be a tree structure). Rather,

they are a way of keeping track of all the nodes with a particular name, e.g.

b, wherever they occur in the tree. This will be very useful in what follows.

– The items used to label the nodes in each branch of the tree from the root

downwards are always in the same order as the items in the orderedItems

array, i.e. f, c, a, b, m, p. This is descending order of the support counts of the

corresponding itemsets (e.g. {f }) in the transaction database, or equivalently

the order of the items in the orderedItems array, which is repeated as Fig-

ure 18.17. (Not every branch of the tree includes all six of the items.)

– Although the nodes in Figure 18.15 are labelled with the names c, m, p

etc. these are just the rightmost items in the itemsets to which the nodes

correspond. Thus nodes 1, 2, 3, 4 and 5 correspond to the itemsets {f }, {f, c},
{f, c, a}, {f, c, a, m} and {f, c, a, m, p} respectively.

The orderedItems array is repeated here for convenience as Figure 18.17.

index orderedItems

0 f

1 c

2 a

3 b

4 m

5 p

Figure 18.17 orderedItems array
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The process of extracting all the frequent itemsets from the FP-tree is es-

sentially a recursive one which can be represented by a call to a recursively-

defined function findFrequent that takes four arguments:

– Two arrays representing the tree. Initially these are arrays nodes and

startlink, corresponding to the original FP-tree. For future calls to the

function these will be replaced by arrays nodes2 and startlink2 corre-

sponding to a conditional FP-tree, as will be explained subsequently.

– Integer variable lastitem, which initially is set to the number of elements

in the orderedItems array (6 in this example).

– A set named originalItemset, which is initially empty, i.e. {}.

We will start with an ‘original itemset’ with no members, i.e. {} and generate

all possible one-item itemsets derived from it by adding a new item to its

leftmost position in ascending order of the elements of orderedItems, i.e. {p},
{m}, {b}, {a}, {c} and {f } in that order1. For each of the itemsets that is

frequent2, say {m}, we next examine itemsets with an additional item in the

leftmost position, e.g. {b, m}, {a, m} or {c, m} to find any that are frequent.

Note that the additional item must be above m in the orderedItems array to

preserve the conventional ordering of the items in an itemset. If we find a

frequent itemset, e.g. {a, m}, we next construct itemsets with a further item

in the leftmost position, e.g. {c, a, m}, check whether each one is frequent and

so on. The effect is that having found a single-item itemset that is frequent we

will go on to find all the frequent itemsets that end in the corresponding item

before examining the next single-item itemset.

Constructing new itemsets by adding one new item at a time to the left,

maintaining the same order as in the orderedItems array, is a very efficient

way of proceeding. Having established that say {c, a} is frequent, the only

other itemset that needs checking is {f, c, a} as f is the only item above c

in orderedItems. It may be true (and it is true in this case) that some other

itemset such as {c, a, m} is also frequent but that will already have been dealt

with at another stage.

Examining itemsets in this order also takes advantage of the download clo-

sure property of itemsets. If we find that an itemset, say {b, m} is infrequent

1 This rather convoluted way of describing the generation of the itemsets {p}, {m},
{b}, {a}, {c} and {f } is for consistency with the description of the generation of
two-item, three-item etc. itemsets that follows.

2 All the single item itemsets must inevitably be frequent, as the items in the initial
tree were selected from those in the transaction database on that basis. However
this will often not be the case as we go on to use findFrequent recursively to analyse
reduced versions of the FP-tree.
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there is no point in examining any other itemsets with further items added.

If any of them, say {f, c, b, m} were frequent then by the downward closure

property {b, m} must be too, but we already know that it is not.

This strategy for generating frequent itemsets can be implemented in

function findFrequent by a loop for variable thisrow through values from

lastitem-1 down to zero.

– We set variable nextitem to orderedItems[thisrow] and then set firstlink

to startlink[nextitem].

– If firstlink is null we go on to the next value of thisrow.

– Otherwise we set variable thisItemset to be an expanded version of orig-

inalItemset with item nextitem as its leftmost item and then call func-

tion condfptree which takes four arguments: nodes, firstlink, thisrow and

thisItemset.

– Function condfptree first sets variable lastitem to the value of thisrow. It

then checks whether thisItemset is frequent. If it is, it goes on to generate

a conditional FP-tree for that itemset in the form of arrays nodes2 and

startlink2 and then calls findFrequent recursively with the two replace-

ment arrays, together with lastitem and thisItemset, as arguments.

18.3.1 Itemsets Ending with Item p

Itemset {p} – expanded from original itemset {}
We start by establishing whether itemset {p} is frequent. We can determine

this from the FP-tree by examining the two linked p nodes (nodes 5 and 11)

with support counts 2 and 1 respectively. The total count is 3, which is greater

than or equal to the value of minsupportcount (i.e. 3 for this example). So

itemset {p} is frequent.

It is straightforward to find the chain of p nodes from arrays nodes and

startlink in the FP-tree (Figure 18.16). The value of startlink[p] is 5, the value

in the linkto column of row 5 of the nodes array is 11 and the value in the linkto

column of row 11 of the nodes array is null, indicating ‘no further nodes’. Thus

there is a chain of p nodes from node 5 to node 11.

Generating a conditional FP-tree for itemset {p}
Rather than going on, at this stage, to examine the frequency of other

single-item itemsets {m}, {b}, {a}, {c} and {f }, the algorithm first generates

a sequence of two-item itemsets by extending the itemset {p} by adding an item

in the leftmost position. It does this for all the items that are above p in the
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orderedItems array in turn. Thus the two-item itemsets {m, p}, {b, p}, {a, p},
{c, p} and {f, p} are examined in turn. If any of them is frequent its conditional

FP-tree is constructed and a sequence of three-item itemsets is generated by

extending the two-item itemset by adding an item in the leftmost position.

The process continues in this fashion until the whole tree structure has been

examined. At each stage when the current itemset is expanded by adding an

extra item in the leftmost position, only those items in the orderedItems array

(Figure 18.17) above the one previously in the leftmost position are considered.

We now need to check whether any two-item itemsets formed by adding an

additional item to itemset {p} are also frequent. To do this we first construct

a conditional FP-tree for itemset {p}. This is a reduced version of the original

FP-tree that contains only the branches that begin at the root and end at the

two nodes labelled p, but with the nodes renumbered and often with different

support counts. (It may be helpful to look ahead to Figures 18.20 and 18.21 at

this point.)

Initialisation

Diagrammatically we can represent the initial state of the FP-tree by a

single unnumbered node, representing the root.

We will represent the evolving tree by the contents of four arrays, all initially

empty:

– A two-dimensional array nodes2, with a numerical index that will corre-

spond to the numbering of the nodes in the tree. The names given to the

columns of this array are the same as those for array nodes in Section 18.2.

– A single-dimensional array oldindex, which for each node holds the num-

ber of the corresponding node in the tree from which the evolving con-

ditional FP-tree is derived (initially the FP-tree shown in Figure 18.15).

– Single-dimensional arrays startlink2 and lastlink indexed by the names

of some or all of the itemsets in the orderedItems array.

We again work through the chain of linked p nodes, this time adding

branches to an evolving conditional FP-tree for itemset {p} and values to the

four equivalent arrays as we do so.

First Branch

Add the five nodes in the leftmost branch of the FP-tree (Figure 18.15),

numbering from the bottom upwards, as a branch leading up to the root, all

with the support count of the lowest node (i.e. the one with itemname p).

Values corresponding to each node in turn are added to the four arrays, as

described in the box below (note that this is not yet a complete description).
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Adding a branch that ends in a node with support count Count

Version 1

For each node

1. Set variables thisitem and thisparent to the values of itemname and

parent for the original node, respectively. Add a new row to the nodes2

array, with the value of itemname set to thisitem. Set the value of count

(for all the nodes) to Count.

2. Set the value in the oldindex array to the number of the node in the

tree from which the evolving conditional FP-tree is being derived.

3. Set the values of startlink2[thisitem] and lastlink[thisitem] to the new

row number.

4. If the value of thisparent is not zero or null, set the value of parent in

the nodes2 array to the number of the following row.

Figure 18.18 Conditional FP-tree for {p} – first branch only
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Note that in Figure 18.18 the numbering of the nodes is different from that

in Figure 18.15. It reflects the order in which this new tree has been generated,

working from bottom (the p node) to top (the root) for each branch. The root

node has not been numbered and the other nodes are numbered from 1 onwards.

index
item

name
count linkto parent oldindex

1 p 2 2 5

2 m 2 3 4

3 a 2 4 3

4 c 2 5 2

5 f 2 1
nodes2 array oldindex

index startlink2 lastlink
p 1 1
m 2 2
a 3 3
c 4 4

f 5 5

link arrays

Figure 18.19 Arrays Corresponding to Conditional FP-tree for {p} – first

branch only

The values in the nodes2, oldindex, startlink2 and lastlink arrays corre-

sponding to the first branch are shown in Figure 18.19.

The null value in the parent column of node 5 indicates a link to the root

node. The use of the linkto column in array nodes2 will be explained when we

go on to add the second branch. The use of the array oldindex will be explained

in Section 18.3.2.

Note that the support counts of the branch in Figure 18.18 are different

from those of the corresponding branch in the FP-tree (Figure 18.15). When

we constructed the original FP-tree we thought of a node such as node 3 as

representing an itemset {f, c, a} with support count 3. All the nodes in the

branch from node 1 down to node 5 represented itemsets beginning with f, e.g.

node 4 represented {f, c, a, m}. We need to think of a conditional FP-tree in a

different way, working from the bottom of each branch to the top. The lowest

node (now numbered 1) in Figure 18.18 now represents (part of) itemset {p},
node 2 represents itemset {m, p}, nodes 3, 4 and 5 represent itemsets {a, m, p},
{c, a, m, p} and {f, c, a, m, p} respectively. In all cases the itemset ends with
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item p rather than starting with item f. Looking at Figure 18.18 this way, the

support counts for the a, c and f nodes cannot be 3, 3 and 4 respectively as

they were in the FP-tree. If there are two transactions that include item p there

cannot be more than 2 transactions that include items a and p together, or

any other such combination.

For this reason the best approach to constructing the conditional FP-tree

for {p} is to construct the tree bottom-up, branch by branch, using the counts

of the p nodes. Each new node entered in the tree ‘inherits’ the support count

of the p node at the bottom of the branch.

Second Branch

We now add the second and final branch that ends in a node with itemname

p in the FP-tree.

This gives the final version of the conditional FP-tree for itemset {p} shown

in Figure 18.20.

Figure 18.20 Conditional FP-tree for {p} – final version

The important difference from adding the first branch is that now the dashed

line links have been added for nodes p and c. These are essential for determining

whether itemsets are frequent at each stage of the extraction process.
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The algorithm for adding additional nodes needs to be augmented to deal

with this. For example after node 6 (a second p node) is added, we can tell that

there is already a p node in the tree by the non-null value in lastlink[p]. The

current value of lastlink[p] is 1 so we set both the linkto value for row 1 and

the new value of lastlink[p] to the current row number (i.e. 6). This effectively

creates a chain of two p nodes from node 1 to node 6. A similar procedure

occurs when node 8 (a c node) is added.

A revised version of the algorithm for adding a new branch is given in the

box below (but this is still not a complete description).

Adding a branch that ends in a node with support count Count

Version 2

For each node

1. Set variables thisitem and thisparent to the values of itemname and

parent for the original node, respectively. Add a new row to the nodes2

array, with the value of itemname set to thisitem. Set the value of count

(for all the nodes) to Count.

2. Set the value in the oldindex array to the number of the node in the

tree from which the evolving conditional FP-tree is being derived.

3. Set lastval to lastlink[thisitem].

IF lastval is not null, set both the linkto value in row lastval and

lastlink[thisitem] to the current row number.

ELSE set the values of startlink2[thisitem] and lastlink[thisitem] to the

current row number.

4. If the value of thisparent is not zero or null, set the value of parent in

the nodes2 array to the number of the following row.

The values in the nodes2, oldindex, startlink2 and lastlink arrays corre-

sponding to the final version of the conditional FP-tree for itemset {p} are

shown in Figure 18.21.
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index
item

name
count linkto parent oldindex

1 p 2 6 2 5

2 m 2 3 4

3 a 2 4 3

4 c 2 8 5 2

5 f 2 1

6 p 1 7 11

7 b 1 8 10

8 c 1 9
nodes2 array oldindex

index startlink2 lastlink
p 1 6
m 2 2
a 3 3
c 4 8
f 5 5

b 7 7
link arrays

Figure 18.21 Arrays Corresponding to Conditional FP-tree for {p} – final

version

The null values in the parent column of nodes 5 and 8 indicate links to the

root node. The non-null values in the linkto column of array nodes2 correspond

to ‘dashed line’ links between nodes across the tree.

Two-item Itemsets

Having constructed the conditional FP-tree for itemset {p}, there are five

two-item itemsets to examine, starting with {m, p}. In each case we do it by

extracting the part of the tree that contains only the branches that begin at the

root and end at each of the nodes labelled m (or similarly for each of the other

items b, a, c, and f in turn). Note that the nodes in the conditional FP-tree

are numbered sequentially from 1 (in the order they are generated) each time.

To implement the creation and examination of the two-item itemsets ex-

panded from {p} we make a recursive call from function condfptree to

function findFrequent with four arguments: nodes2, startlink2, lastitem and

thisItemset. The last of these has the value {p}.

A sequence of itemsets with two items is now generated from the conditional

FP-tree for itemset {p} by making a loop through the orderedItems array from
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row lastitem-1 to row zero. As lastitem is now 5, this means that the items

used as a new leftmost item for the expanded itemsets are m, b, a, c and f in

that order (but not p).

Itemsets {m, p}, {b, p}, {a, p} and {c, p} – expanded from original

itemset {p}

{m, p}: There is only one m node, which has a count of 2. So {m, p} is

infrequent (Figure 18.22).

{b, p}: There is only one b node, which has a count of 1. So {b, p} is

infrequent (Figure 18.23).

Figure 18.22 Conditional FP-tree for {m, p}
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Figure 18.23 Conditional FP-tree for {b, p}

{a, p}: There is only one a node, which has a count of 2. So {a, p} is

infrequent (Figure 18.24).

Figure 18.24 Conditional FP-tree for {a, p}

{c, p}: There are two c nodes, with a total count of 3. So {c, p} is frequent

(Figure 18.25).



300 Principles of Data Mining

Figure 18.25 Conditional FP-tree for {c, p}

Before going on to examine {f, p} we now generate all three-item itemsets

formed by adding an additional item to the leftmost position of {c, p}. We only

consider those items above c in the orderedItems array. There is only one, i.e.

f. So we start by generating the conditional FP-tree for {f, c, p}.

We implement this by making a recursive call from function condfptree to

function findFrequent with four arguments: the arrays nodes2 and startlink2

that correspond to Figure 18.25, lastitem (which is now 1) and thisItemset,

which is now {c, p}.

Itemset {f , c, p} – expanded from original itemset {c, p}
There is only one f node, which has a count of 2 (Figure 18.26). So {f, c, p} is

infrequent. We go back to examining the two-item itemsets, the next of which

is {f, p}.

Figure 18.26 Conditional FP-tree for {f, c, p}

Itemset {f , p} – expanded from original itemset {p}
There is only one f node, which has a count of 2. So {f, p} is infrequent

(Figure 18.27).

We have found three frequent itemsets ending with item p: {p}, {c, p}
and {f, c, p}. There cannot be any other frequent itemsets ending with p. For

example if {f, c, b, p} were frequent then by the downward closure property

all its non-empty subsets would be frequent too. That would include itemset

{b, p}, which we already know is infrequent. There are 32 possible itemsets with
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Figure 18.27 Conditional FP-tree for {f, p}

p as the rightmost item and in descending order of the items in the orderedItems

array. We have only needed to examine seven of them (two frequent and five

infrequent).

For space reasons we will not examine all the other single-item itemsets

and those constructed by expanding them by adding additional items in the

leftmost position. However we will examine itemset {m} and its derivatives as

this will illustrate some important additional points.

18.3.2 Itemsets Ending with Item m

Itemset {m} – expanded from original itemset {}
The conditional FP-tree for {m} is shown as Figure 18.28.

Note that nodes 2, 3 and 4 inherit a support count of 2 from node 1 and a

support count of 1 from node 5. For that reason their (total) support counts

are shown as 3.

There are two m nodes, with a total count of 3. So {m} is frequent.

In constructing the tree bottom-up it is important to distinguish between

the case that applies here, where the parent of node 6 is an a node (node 2)

that has already been entered in the tree and the case where the parent is a

different a node, not yet in the tree, which needs to be created.

Figure 18.29 shows the state of the four arrays as node 6 in Figure 18.28 is

about to be added to the tree.

The first part of the processing is the same as for all other nodes. The new

node is part of a branch that ends in a m node with support count 1. As it

happens, the node was also numbered 6 in the original FP-tree, so variables

thisitem and thisparent are taken from row 6 of the nodes array and set to

b and 3 respectively. A new row, row 6, is added to nodes2 with the values

of itemname and parent set to b and 3 respectively. The value of element 6

in oldindex is set to 6. Next lastval is set to lastlink[b] which is null, so both

startlink2[b] and lastlink[b] are set to 6.
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Figure 18.28 Conditional FP-tree for itemset {m}

index
item

name
count linkto parent oldindex

1 m 2 5 2 4

2 a 2 3 3

3 c 2 4 2

4 f 2 1

5 m 1 7
nodes2 array oldindex

index startlink2 lastlink
m 1 5
a 2 2
c 3 3
f 4 4

link arrays

Figure 18.29 Arrays corresponding to Conditional FP-tree for itemset {m} –

first five nodes only

It is at the final stage that the processing of this node differs from the

algorithm used up to now. We check whether the value of thisparent (i.e. 3) is
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already in the oldindex array. Unlike for all the examples shown previously, it

is there in position 2, implying that the b node has a parent, node 2, which

is already present in the evolving tree structure. This in turn implies that the

new node 6 needs to be linked to the part of the tree structure that has already

been created. There are three stages to this.

– The value of parent in row 6 of nodes2 is set to 2.

– The adding of additional nodes for the current branch is aborted.

– The chain of parent nodes in the nodes2 array is followed from row 2, up to

immediately before the root, i.e. from 2 to 3 to 4, with the support count

being increased by the support count of the node at the bottom of the branch

(i.e. by 1) at each stage.

This concludes the construction of the arrays corresponding to the condi-

tional FP-tree for itemset {m}, giving Figure 18.30.

index
item

name
count linkto parent oldindex

1 m 2 5 2 4

2 a 3 3 3

3 c 3 4 2

4 f 3 1

5 m 1 6 7

6 b 1 2 6
nodes2 array oldindex

index startlink2 lastlink
m 1 5
a 2 2
c 3 3
f 4 4

b 6 6
link arrays

Figure 18.30 Arrays corresponding to Conditional FP-tree for itemset {m} –

all nodes

This leads to a revised and final version of the algorithm for adding a branch.
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Adding a branch that ends in a node with support count Count

Final version

For each node

1. Set variables thisitem and thisparent to the values of itemname and

parent for the original node, respectively. Add a new row to the nodes2

array, with the value of itemname set to thisitem. Set the value of count

(for all the nodes) to Count.

2. Set the value in the oldindex array to the number of the node in the

tree from which the evolving conditional FP-tree is being derived.

3. Set lastval to lastlink[thisitem].

IF lastval is not null, set both the linkto value in row lastval and

lastlink[thisitem] to the current row number.

ELSE set the values of startlink2[thisitem] and lastlink[thisitem] to the

current row number.

4. If the value of thisparent is not zero or null, test whether the value of

thisparent is already in array oldindex at position pos.

If it is {

(a) Set the value of parent for the current row of nodes2 to pos.

(b) Abort the adding of additional nodes for the current branch.

(c) Follow the chain of parent nodes in the nodes2 array from row pos up

to immediately before the root, increasing the support count by Count

for each one.

}

Otherwise set the value of parent for the current row of nodes2 to the

number of the following row.

Having done this the algorithm now goes on to consider the four possible

two-item itemsets {b, m}, {a, m}, {c, m} and {f, m} in turn (only items above

m in the orderedItems array need to be considered for the leftmost position).

The relevant conditional FP-trees in the order in which they are constructed

are as follows.

Itemsets {b, m} and {a, m} – expanded from original itemset {m}

{b, m}: There is only one b node, which has a count of 1. So {b,m} is infrequent.
Note that the count of 1 has been inherited from node 1 by nodes 2, 3 and 4

(Figure 18.31).
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Figure 18.31 Conditional FP-tree for itemset {b, m}

{a, m}: There is only one a node, which has a count of 3. So {a, m} is

frequent (Figure 18.32).

Figure 18.32 Conditional FP-tree for itemset {a, m}

We now examine all the three-item itemsets constructed by expanding

{a, m} by adding an item in the leftmost position. Only items above a in

the orderedItems array need to be considered, i.e. c then f.
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Itemset {c, a, m} – expanded from original itemset {a, m}

Figure 18.33 Conditional FP-tree for itemset {c, a, m}

There is only one c node, which has a count of 3 (Figure 18.33). So

{c, a, m} is frequent.

We now examine all the four-item itemsets constructed by expanding

{c, a, m} by adding an item in the leftmost position. Only items above c

in the orderedItems array need to be considered, i.e. f.

Itemset {f , c, a, m} – expanded from original itemset {c, a, m}

Figure 18.34 Conditional FP-tree for itemset {f, c, a, m}

There is only one f node, which has a count of 3 (Figure 18.34). So

{f , c, a, m} is frequent.

As there is no item above f in orderedItems and there are no other four-

item itemsets expanded from {c, a, m} to be considered, the examination of

itemsets expanded from {c, a, m} is concluded.
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This can be implemented by adding a test to function condfptree so that

having established that an itemset is frequent the function only goes on to

generate the conditional FP-tree etc. if the value of lastitem is greater than

zero.

Itemset {f , a, m} – expanded from original itemset {a, m}

Figure 18.35 Conditional FP-tree for itemset {f, a, m}

There is only one c node, which has a count of 3 (Figure 18.35). So

{f , a, m} is frequent.

As there is no item above f in orderedItems the examination of itemsets

with three items that are expanded versions of {a, m} is concluded.

Itemset {c, m} – expanded from original itemset {m}

Figure 18.36 Conditional FP-tree for itemset {c, m}

There is only one c node, which has a count of 3 (Figure 18.36). So {c, m}
is frequent.

We now examine all the three-item itemsets constructed by expanding

{c, m} by adding an item in the leftmost position. Only items above c in

the orderedItems array need to be considered, i.e. f.
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Itemset {f , c, m} – expanded from original itemset {c, m}

Figure 18.37 Conditional FP-tree for itemset {f, c, m}

There is only one f node, which has a count of 3 (Figure 18.37). So

{f , c, m} is frequent.

As there is no item above f in orderedItems the examination of itemsets

with three items that are expanded versions of {c, m} is concluded.

Itemset {f , m} – expanded from original itemset {m}

Figure 18.38 Conditional FP-tree for itemset {f, m}

There is only one f node, which has a count of 3 (Figure 18.38). So {f , m}
is frequent.

As there is no item above f in orderedItems and there are no more two-item

itemsets to be considered, the examination of itemsets with final item m is

concluded.

This time we have found 8 frequent itemsets ending with item m (there

cannot be any others) and have examined only one infrequent itemset. There

are 16 possible itemsets with m as the rightmost item that are in descending

order of the items in the orderedItems array. We have only needed to examine

a total of nine of them.

18.4 Chapter Summary

This chapter introduces the FP-growth algorithm for extracting frequent item-

sets from a database of transactions. First the database is processed to pro-

duce a data structure called a FP-tree, then the tree is processed recursively by
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constructing a sequence of reduced trees known as conditional FP-trees, from

which the frequent itemsets are extracted. The algorithm has the very desirable

feature of requiring only two scans through the database.

18.5 Self-assessment Exercises for Chapter 18

1. Draw the conditional FP-tree for itemset {c}.

2. How can the support count for {c} be determined from the conditional

FP-tree? What is it?

3. Is itemset {c} frequent?

4. What are the contents of the four arrays corresponding to the conditional

FP-tree for itemset {c}?
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19
Clustering

19.1 Introduction

In this chapter we continue with the theme of extracting information from

unlabelled data and turn to the important topic of clustering. Clustering is

concerned with grouping together objects that are similar to each other and

dissimilar to the objects belonging to other clusters.

In many fields there are obvious benefits to be had from grouping together

similar objects. For example

– In an economics application we might be interested in finding countries whose

economies are similar.

– In a financial application we might wish to find clusters of companies that

have similar financial performance.

– In a marketing application we might wish to find clusters of customers with

similar buying behaviour.

– In a medical application we might wish to find clusters of patients with

similar symptoms.

– In a document retrieval application we might wish to find clusters of docu-

ments with related content.

– In a crime analysis application we might look for clusters of high volume

crimes such as burglaries or try to cluster together much rarer (but possibly

related) crimes such as murders.

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 19,
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There are many algorithms for clustering. We will describe two methods for

which the similarity between objects is based on a measure of the distance

between them.

In the restricted case where each object is described by the values of just

two attributes, we can represent them as points in a two-dimensional space

(a plane) such as Figure 19.1.

Figure 19.1 Objects for Clustering

It is usually easy to visualise clusters in two dimensions. The points in

Figure 19.1 seem to fall naturally into four groups as shown by the curves

drawn surrounding sets of points in Figure 19.2.

However there is frequently more than one possibility. For example are the

points in the lower-right corner of Figure 19.1 one cluster (as shown in Figure

19.2) or two (as shown in Figure 19.3)?

Figure 19.2 Clustering of Objects in Figure 19.1(first version)
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Figure 19.3 Clustering of Objects in Figure 19.1(second version)

In the case of three attributes we can think of the objects as being points in

a three-dimensional space (such as a room) and visualising clusters is generally

straightforward too. For larger dimensions (i.e. larger numbers of attributes) it

soon becomes impossible to visualise the points, far less the clusters.

The diagrams in this chapter will use only two dimensions, although in

practice the number of attributes will usually be more than two and can often

be large.

Before using a distance-based clustering algorithm to cluster objects, it is

first necessary to decide on a way of measuring the distance between two points.

As for nearest neighbour classification, discussed in Chapter 3, a measure com-

monly used when clustering is the Euclidean distance. To avoid complications

we will assume that all attribute values are continuous. (Attributes that are

categorical can be dealt with as described in Chapter 3.)

We next need to introduce the notion of the ‘centre’ of a cluster, generally

called its centroid.

Assuming that we are using Euclidean distance or something similar as a

measure we can define the centroid of a cluster to be the point for which each

attribute value is the average of the values of the corresponding attribute for

all the points in the cluster.

So the centroid of the four points (with 6 attributes)

8.0 7.2 0.3 23.1 11.1 −6.1

2.0 −3.4 0.8 24.2 18.3 −5.2

−3.5 8.1 0.9 20.6 10.2 −7.3

−6.0 6.7 0.5 12.5 9.2 −8.4
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would be

0.125 4.65 0.625 20.1 12.2 −6.75

The centroid of a cluster will sometimes be one of the points in the cluster,

but frequently, as in the above example, it will be an ‘imaginary’ point, not

part of the cluster itself, which we can take as marking its centre. The value of

the idea of the centroid of a cluster will be illustrated in what follows.

There are many methods of clustering. In this book we will look at two of

the most commonly used: k-means clustering and hierarchical clustering.

19.2 k-Means Clustering

k-means clustering is an exclusive clustering algorithm. Each object is assigned

to precisely one of a set of clusters. (There are other methods that allow objects

to be in more than one cluster.)

For this method of clustering we start by deciding how many clusters we

would like to form from our data. We call this value k. The value of k is generally

a small integer, such as 2, 3, 4 or 5, but may be larger. We will come back later

to the question of how we decide what the value of k should be.

There are many ways in which k clusters might potentially be formed. We

can measure the quality of a set of clusters using the value of an objective

function which we will take to be the sum of the squares of the distances of

each point from the centroid of the cluster to which it is assigned. We would

like the value of this function to be as small as possible.

We next select k points (generally corresponding to the location of k of the

objects). These are treated as the centroids of k clusters, or to be more precise

as the centroids of k potential clusters, which at present have no members. We

can select these points in any way we wish, but the method may work better

if we pick k initial points that are fairly far apart.

We now assign each of the points one by one to the cluster which has the

nearest centroid.

When all the objects have been assigned we will have k clusters based on the

original k centroids but the ‘centroids’ will no longer be the true centroids of the

clusters. Next we recalculate the centroids of the clusters, and then repeat the

previous steps, assigning each object to the cluster with the nearest centroid

etc. The entire algorithm is summarised in Figure 19.4.
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1. Choose a value of k.

2. Select k objects in an arbitrary fashion. Use these as the initial set of k

centroids.

3. Assign each of the objects to the cluster for which it is nearest to the

centroid.

4. Recalculate the centroids of the k clusters.

5. Repeat steps 3 and 4 until the centroids no longer move.

Figure 19.4 The k-Means Clustering Algorithm

19.2.1 Example

We will illustrate the k-means algorithm by using it to cluster the 16 objects

with two attributes x and y that are listed in Figure 19.5.

x y

6.8 12.6

0.8 9.8

1.2 11.6

2.8 9.6

3.8 9.9

4.4 6.5

4.8 1.1

6.0 19.9

6.2 18.5

7.6 17.4

7.8 12.2

6.6 7.7

8.2 4.5

8.4 6.9

9.0 3.4

9.6 11.1

Figure 19.5 Objects for Clustering (Attribute Values)

The 16 points corresponding to these objects are shown diagrammatically

in Figure 19.6. The horizontal and vertical axes correspond to attributes x and

y, respectively.
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Figure 19.6 Objects for Clustering

Three of the points shown in Figure 19.6 have been surrounded by small

circles. We will assume that we have chosen k = 3 and that these three points

have been selected to be the locations of the initial three centroids. This initial

(fairly arbitrary) choice is shown in Figure 19.7.

Initial

x y

Centroid 1 3.8 9.9

Centroid 2 7.8 12.2

Centroid 3 6.2 18.5

Figure 19.7 Initial Choice of Centroids

The columns headed d1, d2 and d3 in Figure 19.8 show the Euclidean dis-

tance of each of the 16 points from the three centroids. For the purposes of

this example, we will not normalise or weight either of the attributes, so the

distance of the first point (6.8, 12.6) from the first centroid (3.8, 9.9) is simply
√

(6.8− 3.8)2 + (12.6− 9.9)2 = 4.0 (to one decimal place)

The column headed ‘cluster’ indicates the centroid closest to each point and

thus the cluster to which it should be assigned.

The resulting clusters are shown in Figure 19.9 below.

The centroids are indicated by small circles. For this first iteration they are

also actual points within the clusters. The centroids are those that were used

to construct the three clusters but are not the true centroids of the clusters

once they have been created.
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x y d1 d2 d3 cluster

6.8 12.6 4.0 1.1 5.9 2

0.8 9.8 3.0 7.4 10.2 1

1.2 11.6 3.1 6.6 8.5 1

2.8 9.6 1.0 5.6 9.5 1

3.8 9.9 0.0 4.6 8.9 1

4.4 6.5 3.5 6.6 12.1 1

4.8 1.1 8.9 11.5 17.5 1

6.0 19.9 10.2 7.9 1.4 3

6.2 18.5 8.9 6.5 0.0 3

7.6 17.4 8.4 5.2 1.8 3

7.8 12.2 4.6 0.0 6.5 2

6.6 7.7 3.6 4.7 10.8 1

8.2 4.5 7.0 7.7 14.1 1

8.4 6.9 5.5 5.3 11.8 2

9.0 3.4 8.3 8.9 15.4 1

9.6 11.1 5.9 2.1 8.1 2

Figure 19.8 Objects for Clustering (Augmented)

Figure 19.9 Initial Clusters

We next calculate the centroids of the three clusters using the x and y values

of the objects currently assigned to each one. The results are shown in Figure

19.10.

The three centroids have all been moved by the assignment process, but the

movement of the third one is appreciably less than for the other two.
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Initial After first iteration

x y x y

Centroid 1 3.8 9.9 4.6 7.1

Centroid 2 7.8 12.2 8.2 10.7

Centroid 3 6.2 18.5 6.6 18.6

Figure 19.10 Centroids After First Iteration

We next reassign the 16 objects to the three clusters by determining which

centroid is closest to each one. This gives the revised set of clusters shown in

Figure 19.11.

Figure 19.11 Revised Clusters

The centroids are again indicated by small circles. However from now on the

centroids are ‘imaginary points’ corresponding to the ‘centre’ of each cluster,

not actual points within the clusters.

These clusters are very similar to the previous three, shown in Figure 19.9.

In fact only one point has moved. The object at (8.3, 6.9) has moved from

cluster 2 to cluster 1.

We next recalculate the positions of the three centroids, giving Figure 19.12.

The first two centroids have moved a little, but the third has not moved at

all.

We assign the 16 objects to clusters once again, giving Figure 19.13.

These are the same clusters as before. Their centroids will be the same as

those from which the clusters were generated. Hence the termination condition

of the k-means algorithm ‘repeat . . . until the centroids no longer move’ has
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Initial After first iteration After second iteration

x y x y x y

Centroid 1 3.8 9.9 4.6 7.1 5.0 7.1

Centroid 2 7.8 12.2 8.2 10.7 8.1 12.0

Centroid 3 6.2 18.5 6.6 18.6 6.6 18.6

Figure 19.12 Centroids After First Two Iterations

Figure 19.13 Third Set of Clusters

been met and these are the final clusters produced by the algorithm for the

initial choice of centroids made.

19.2.2 Finding the Best Set of Clusters

It can be proved that the k-means algorithm will always terminate, but it does

not necessarily find the best set of clusters, corresponding to minimising the

value of the objective function. The initial selection of centroids can significantly

affect the result. To overcome this, the algorithm can be run several times for

a given value of k, each time with a different choice of the initial k centroids,

the set of clusters with the smallest value of the objective function then being

taken.

The most obvious drawback of this method of clustering is that there is no

principled way to know what the value of k ought to be. Looking at the final set

of clusters in the above example (Figure 19.13), it is not clear that k = 3 is the

most appropriate choice. Cluster 1 might well be broken into several separate

clusters. We can choose a value of k pragmatically as follows.
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If we imagine choosing k = 1, i.e. all the objects are in a single cluster, with

the initial centroid selected in a random way (a very poor idea), the value of

the objective function is likely to be large. We can then try k = 2, k = 3 and

k = 4, each time experimenting with a different choice of the initial centroids

and choosing the set of clusters with the smallest value. Figure 19.14 shows the

(imaginary) results of such a series of experiments.

Value of k Value of

objective function

1 62.8

2 12.3

3 9.4

4 9.3

5 9.2

6 9.1

7 9.05

Figure 19.14 Value of Objective Function for Different Values of k

These results suggest that the best value of k is probably 3. The value of

the function for k = 3 is much less than for k = 2, but only a little better than

for k = 4. It is possible that the value of the objective function drops sharply

after k = 7, but even if it does k = 3 is probably still the best choice. We

normally prefer to find a fairly small number of clusters as far as possible.

Note that we are not trying to find the value of k with the smallest value of

the objective function. That will occur when the value of k is the same as the

number of objects, i.e. each object forms its own cluster of one. The objective

function will then be zero, but the clusters will be worthless. This is another

example of the overfitting of data discussed in Chapter 9. We usually want a

fairly small number of clusters and accept that the objects in a cluster will be

spread around the centroid (but ideally not too far away).

19.3 Agglomerative Hierarchical Clustering

Another very popular clustering technique is called Agglomerative Hierarchical

Clustering.

As for k-means clustering we need to choose a way of measuring the distance

between two objects. Also as for that method a commonly used distance mea-
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sure is Euclidean distance (defined in Chapter 3). In two dimensions Euclidean

distance is just the ‘straight line’ distance between two points.

The idea behind Agglomerative Hierarchical Clustering is a simple one.

We start with each object in a cluster of its own and then repeatedly merge

the closest pair of clusters until we end up with just one cluster containing

everything. The basic algorithm is given in Figure 19.15.

1. Assign each object to its own single-object cluster. Calculate the dis-

tance between each pair of clusters.

2. Choose the closest pair of clusters and merge them into a single cluster

(so reducing the total number of clusters by one).

3. Calculate the distance between the new cluster and each of the old

clusters.

4. Repeat steps 2 and 3 until all the objects are in a single cluster.

Figure 19.15 Agglomerative Hierarchical Clustering: Basic Algorithm

If there are N objects there will be N − 1 mergers of two objects needed at

Step 2 to produce a single cluster. However the method does not only produce

a single large cluster, it gives a hierarchy of clusters as we shall see.

Suppose we start with eleven objects A, B, C, . . . , K located as shown in

Figure 19.16 and we merge clusters on the basis of Euclidean distance.

Figure 19.16 Original Data (11 Objects)
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It will take 10 ‘passes’ through the algorithm, i.e. repetitions of Steps 2

and 3, to merge the initial 11 single object clusters into a single cluster. Let

us assume the process starts by choosing objects A and B as the pair that are

closest and merging them into a new cluster which we will call AB. The next

step may be to choose clusters AB and C as the closest pair and to merge them.

After two passes the clusters then look as shown in Figure 19.17.

Figure 19.17 Clusters After Two Passes

We will use notation such as A and B → AB to mean ‘clusters A and B are

merged to form a new cluster, which we will call AB’.

Without knowing the precise distances between each pair of objects, a plau-

sible sequence of events is as follows.

1. A and B → AB

2. AB and C → ABC

3. G and K → GK

4. E and F → EF

5. H and I → HI

6. EF and GK → EFGK

7. HI and J → HIJ

8. ABC and D → ABCD

9. EFGK and HIJ → EFGKHIJ

10. ABCD and EFGKHIJ → ABCDEFGKHIJ
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The final result of this hierarchical clustering process is shown in Fig-

ure 19.18, which is called a dendrogram. A dendrogram is a binary tree (two

branches at each node). However, the positioning of the clusters does not corre-

spond to their physical location in the original diagram. All the original objects

are placed at the same level (the bottom of the diagram), as leaf nodes. The

root of the tree is shown at the top of the diagram. It is a cluster containing

all the objects. The other nodes show smaller clusters that were generated as

the process proceeded.

If we call the bottom row of the diagram level 1 (with clusters A, B, C, . . . ,

K), we can say that the level 2 clusters are AB, HI, EF and GK, the level 3

clusters are ABC, HIJ and EFGK, and so on. The root node is at level 5.

Figure 19.18 A Possible Dendrogram Corresponding to Figure 19.16

19.3.1 Recording the Distance Between Clusters

It would be very inefficient to calculate the distance between each pair of clus-

ters for each pass through the algorithm, especially as the distance between

those clusters not involved in the most recent merger cannot have changed.

The usual approach is to generate and maintain a distance matrix giving

the distance between each pair of clusters.
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If we have six objects a, b, c, d, e and f , the initial distance matrix might

look like Figure 19.19.

a b c d e f

a 0 12 6 3 25 4

b 12 0 19 8 14 15

c 6 19 0 12 5 18

d 3 8 12 0 11 9

e 25 14 5 11 0 7

f 4 15 18 9 7 0

Figure 19.19 Example of a Distance Matrix

Note that the table is symmetric, so not all values have to be calculated

(the distance from c to f is the same as the distance from f to c etc.). The

values on the diagonal from the top-left corner to the bottom-right corner must

always be zero (the distance from a to a is zero etc.).

From the distance matrix of Figure 19.19 we can see that the closest pair

of clusters (single objects) are a and d, with a distance value of 3. We combine

these into a single cluster of two objects which we will call ad. We can now

rewrite the distance matrix with rows a and d replaced by a single row ad and

similarly for the columns (Figure 19.20).

The entries in the matrix for the various distances between b, c, e and f

obviously remain the same, but how should we calculate the entries in row and

column ad?

ad b c e f

ad 0 ? ? ? ?

b ? 0 19 14 15

c ? 19 0 5 18

e ? 14 5 0 7

f ? 15 18 7 0

Figure 19.20 Distance Matrix After First Merger (Incomplete)

We could calculate the position of the centroid of cluster ad and use that

to measure the distance of cluster ad from clusters b, c, e and f . However for

hierarchical clustering a different approach, which involves less calculation, is

generally used.
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In single-link clustering the distance between two clusters is taken to be the

shortest distance from any member of one cluster to any member of the other

cluster. On this basis the distance from ad to b is 8, the shorter of the distance

from a to b (12) and the distance from d to b (8) in the original distance matrix.

Two alternatives to single-link clustering are complete-link clustering and

average-link clustering, where the distance between two clusters is taken to be

the longest distance from any member of one cluster to any member of the

other cluster, or the average such distance respectively.

Returning to the example and assuming that we are using single-link clus-

tering, the position after the first merger is given in Figure 19.21.

ad b c e f

ad 0 8 6 11 4

b 8 0 19 14 15

c 6 19 0 5 18

e 11 14 5 0 7

f 4 15 18 7 0

Figure 19.21 Distance Matrix After First Merger

The smallest (non-zero) value in the table is now 4, which is the distance

between cluster ad and cluster f , so we next merge these clusters to form a

three-object cluster adf. The distance matrix, using the single-link method of

calculation, now becomes Figure 19.22.

adf b c e

adf 0 8 6 7

b 8 0 19 14

c 6 19 0 5

e 7 14 5 0

Figure 19.22 Distance Matrix After Two Mergers

The smallest non-zero is now 5, the distance from cluster c to cluster e.

These clusters are now merged into a single new cluster ce and the distance

matrix is changed to Figure 19.23.

Clusters adf and ce are now the closest, with distance 6 so we merge them

into a single cluster adfce. The distance matrix becomes Figure 19.24.

At the final stage clusters adfce and b are merged into a single cluster adfceb

which contains all the original six objects. The dendrogram corresponding to

this clustering process is shown in Figure 19.25.
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adf b ce

adf 0 8 6

b 8 0 14

ce 6 14 0

Figure 19.23 Distance Matrix After Three Mergers

adfce b

adfce 0 8

b 8 0

Figure 19.24 Distance Matrix After Four Mergers

Figure 19.25 Dendrogram Corresponding to Hierarchical Clustering Process

19.3.2 Terminating the Clustering Process

Often we are content to allow the clustering algorithm to produce a complete

cluster hierarchy. However we may prefer to end the merger process when we

have converted the original N objects to a ‘small enough’ set of clusters.
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We can do this in several ways. For example we can merge clusters until

only some pre-defined number remain. Alternatively we can stop merging when

a newly created cluster fails to meet some criterion for its compactness, e.g.

the average distance between the objects in the cluster is too high.

19.4 Chapter Summary

This chapter continues with the theme of extracting information from unla-

belled data. Clustering is concerned with grouping together objects that are

similar to each other and dissimilar to objects belonging to other clusters.

There are many methods of clustering. Two of the most widely used, k-

means clustering and hierarchical clustering are described in detail.

19.5 Self-assessment Exercises for Chapter 19

1. Using the method shown in Section 19.2, cluster the following data into

three clusters, using the k-means method.

x y

10.9 12.6

2.3 8.4

8.4 12.6

12.1 16.2

7.3 8.9

23.4 11.3

19.7 18.5

17.1 17.2

3.2 3.4

1.3 22.8

2.4 6.9

2.4 7.1

3.1 8.3

2.9 6.9

11.2 4.4

8.3 8.7
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2. For the example given in Section 19.3.1, what would be the distance matrix

after each of the first three mergers if complete-link clustering were used

instead of single-link clustering?
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Text Mining

In this chapter we look at a particular type of classification task, where the

objects are text documents such as articles in newspapers, scientific papers

in journals or perhaps abstracts of papers, or even just their titles. The aim

is to use a set of pre-classified documents to classify those that have not yet

been seen. This is becoming an increasingly important practical problem as

the volume of printed material in many fields keeps increasing and even in

specialist fields it can be very difficult to locate relevant documents. Much

of the terminology used reflects the origins of this work in librarianship and

information science, long before data mining techniques became available.

In principle we can use any of the standard methods of classification (Näıve

Bayes, Nearest Neighbour, decision trees etc.) for this task, but datasets of text

documents have a number of specific features compared with the datasets we

have seen so far, which require separate explanation. The special case where

the documents are web pages will be covered in Section 20.9.

20.1 Multiple Classifications

An important issue that distinguishes text classification from the other classifi-

cation tasks discussed in this book is the possibility of multiple classifications.

Up to now we have assumed that there is a set of mutually exclusive categories

and that each object must inevitably fit into one and only one of these.

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5 20,
© Springer-Verlag London 2013
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Text classification is rather different. In general we may have N categories

such as Medicine, Business, Finance, Historical, Biographical, Management and

Education and it is perfectly possible for a document to fit into several of these

categories, possibly even all of them or possibly none.

Rather than broaden the definition of classification used up to now we prefer

to think of the text classification task as N separate binary classification tasks,

e.g.

– Is the document about medicine? Yes/No

– Is the document about business? Yes/No

– Is the document about finance? Yes/No

and so on. The need to perform N separate classification tasks adds consider-

ably to the time involved for this form of classification, which even for a single

classification is usually computationally expensive.

20.2 Representing Text Documents for Data
Mining

For ‘standard’ data mining tasks the data is presented to the data mining

system in the standard form described in Chapter 2, or something similar. There

are a fixed number of attributes (or features) which were chosen before the data

was collected. For text mining the dataset usually comprises the documents

themselves and the features are extracted from the documents automatically

based on their content before the classification algorithm is applied. There are

generally a very large number of features, most of them only occurring rarely,

with a high proportion of noisy and irrelevant features.

There are several ways in which the conversion of documents from plain

text to instances with a fixed number of attributes in a training set can be

carried out. For example we might count the number of times specified phrases

occur, or perhaps any combination of two consecutive words, or we might count

the occurrence of two or three character combinations (known as bigrams and

trigrams respectively). For the purposes of this chapter we will assume that

a simple word-based representation is used, known as a bag-of-words repre-

sentation. With this representation a document is considered to be simply a

collection of the words which occur in it at least once. The order of the words,

the combinations in which they occur, paragraph structuring, punctuation and

of course the meanings of the words are all ignored. A document is just a col-

lection of words placed in some arbitrary order, say alphabetical, together with
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a count of how many times each one occurs, or some other measure of the

importance of each word.

Assuming that we wish to store an ‘importance value’ for each word in a

document as one instance in a training set, how should we do it? If a given doc-

ument has say 106 different words, we cannot just use a representation with

106 attributes (ignoring classifications). Other documents in the dataset may

use other words, probably overlapping with the 106 in the current instance,

but not necessarily so. The unseen documents that we wish to classify may

have words that are not used in any of the training documents. An obvious—

but extremely bad—approach would be to allocate as many attributes as are

needed to allow for all possible words that might be used in any possible un-

seen document. Unfortunately if the language of the documents is English, the

number of possible words is approximately one million, which is a hopelessly

impractical number of attributes to use.

A much better approach is to restrict the representation to the words that

actually occur in the training documents. This can still be many thousands

(or more) and we will look at ways of reducing this number in Sections 20.3

and 20.4 below. We place all the words used at least once in a ‘dictionary’ and

allocate one attribute position in each row of our training set for each one. The

order in which we do this is arbitrary, so we can think of it as alphabetical.

The bag-of-words representation is inherently a highly redundant one. It

is likely that for any particular document most of the attributes/features (i.e.

words) will not appear. For example the dictionary used may have 10,000 words,

but a specific document may have just 200 different words. If so, its represen-

tation as an instance in the training set will have 9,800 out of 10,000 attributes

with value zero, indicating no occurrences, i.e. unused.

If there are multiple classifications there are two possibilities for construct-

ing the dictionary of words for a collection of training documents. Whichever

one is used the dictionary is likely to be large.

The first is the local dictionary approach. We form a different dictionary

for each category, using only those words that appear in documents classified

as being in that category. This enables each dictionary to be relatively small

at the cost of needing to construct N of them, where there are N categories.

The second approach is to construct a global dictionary, which includes all

the words that occur at least once in any of the documents. This is then used

for classification into each of the N categories. Constructing a global dictionary

will clearly be a lot faster than constructing N local dictionaries, but at the

cost of making an even more redundant representation to use for classifying

into each of the categories. There is some evidence to suggest that using a

local dictionary approach tends to give better performance than using a global

dictionary.
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20.3 Stop Words and Stemming

With the bag-of-words approach, it is possible to have tens of thousands of

different words occurring in a fairly small set of documents. Many of them are

not important for the learning task and their usage can substantially degrade

performance. It is imperative to reduce the size of the feature space (i.e. the

set of words included in the dictionary) as far as possible. This can be looked

at as a variant of the methods of data preparation and data cleaning described

in Chapter 2.

One widely used approach is to use a list of common words that are likely to

be useless for classification, known as stop words, and remove all occurrences

of these words before creating the bag-of-words representation. There is no

definitive list of stop words that is universally used. The list would obviously

vary from language to language, but in English some obvious choices would be

‘a’, ‘an’, ‘the’, ‘is’, ‘I’, ‘you’ and ‘of’. Studying the frequency and distribution

of such words might be very useful for stylistic analysis, i.e. deciding which of

a number of possible authors wrote a novel or a play etc., but for classifying a

document into categories such as Medicine, Finance etc. they are clearly useless.

The University of Glasgow has a list of 319 English stop words beginning with

a, about, above, across, after, afterwards and ending with yet, you, your, yours,

yourself, yourselves. Up to a point the longer the list of stop words the better,

the only risk being the possible loss of useful classifying information if the list

becomes excessive.

Another very important way to reduce the number of words in the repre-

sentation is to use stemming.

This is based on the observation that words in documents often have many

morphological variants. For example we may use the words computing, com-

puter, computation, computes, computational, computable and computability

all in the same document. These words clearly have the same linguistic root.

Putting them together as if they were occurrences of a single word would prob-

ably give a strong indication of the content of the document whereas each word

individually might not.

The aim of stemming is to recognise sets of words such as ‘computing’ and

‘computation’ or ‘applied’, ‘applying’, ‘applies’ and ‘apply’ that can be treated

as equivalent. There are many stemming algorithms that have been developed

to reduce a word to its stem or root form, by which it is then replaced. For

example, ‘computing’ and ‘computation’ might both be stemmed to ‘comput’,

and ‘applies’ etc. to ‘appli’.

The use of stemming can be a very effective way of reducing the number

of words in a bag-of-words representation to a relatively manageable number.

However, as for stop words, there is no standard stemming algorithm that is
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universally used and an over-zealous stemming algorithm can remove valuable

words from consideration. For example the word ‘appliqué’ in a document may

be an important guide to its classification, but might be reduced by stemming to

‘appli’, the same stem as if it were a much less significant word such as ‘applies’

(with which it is very unlikely to have any genuine linguistic connection).

20.4 Using Information Gain for Feature
Reduction

Even after removing stop words from a document and replacing each remaining

word by its stem, the number of words in a bag-of-words representation of a

set of documents can be very large.

One way to reduce the number of words for a given category of documents

Ck is to construct a training set where each instance comprises the frequency of

each word (or some similar measure) together with the value of the classification

Ck which must be a binary yes/no value.

The entropy of this training set can be calculated in the same way as in pre-

vious chapters. For example, if 10% of the training documents are in category

Ck, the entropy is −0.1× log2 0.1− 0.9× log2 0.9 = 0.47.

Using a method such as the frequency table technique described in Chapter

6, we can now calculate the information gain as far as classifying a document

as belonging to category Ck or otherwise is concerned that would result from

knowing the value of each of the attributes in turn. Having done this we might

choose to use only the features with the highest (say) 20, 50 or 100 values of

information gain when classifying documents by whether or not they belong to

category Ck.

20.5 Representing Text Documents:
Constructing a Vector Space Model

We shall now assume that we have decided whether to use a local or a global

dictionary and have chosen a representation which replaces each document by

a number of features. For a bag-of-words representation each feature is a single

word, but for a different representation it may be something else, e.g. a phrase.

In the following we will assume that each feature is a term of some kind.
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Once we have determined that the total number of features is N , we can

represent the terms in the dictionary in some arbitrary order as t1, t2, . . . , tN .

We can then represent the ith document as an ordered set of N values,

which we will call an N-dimensional vector and write as (Xi1, Xi2, . . . , XiN ).

These values are just the attribute values in the standard training set format

used elsewhere in this book, but with the classification(s) omitted. Writing

the values as N -dimensional vectors (i.e. as N values separated by commas

and enclosed in parentheses) is simply a more conventional way of looking at

the data in this branch of data mining. The complete set of vectors for all

documents under consideration is called a vector space model or VSM.

Up to now we have assumed that the values stored for each feature (at-

tribute) are the number of times each term occurs in the corresponding docu-

ment. However that does not have to be the case. In general we can say that

value Xij is a weight measuring the importance of the jth term tj in the ith

document.

One common way of calculating the weights is to count the number of

occurrences of each term in the given document (known as term frequency).

Another possibility is to use a binary representation, where 1 indicates the

presence and 0 indicates the absence of the term in the document.

A more complex way of calculating the weights is called TFIDF, which

stands for Term Frequency Inverse Document Frequency. This combines term

frequency with a measure of the rarity of a term in the complete set of docu-

ments. It has been reported as leading to improved performance over the other

methods.

The TFIDF value of a weight Xij is calculated as the product of two values,

which correspond to the term frequency and the inverse document frequency,

respectively.

The first value is simply the frequency of the jth term, i.e. tj , in document

i. Using this value tends to make terms that are frequent in the given (single)

document more important than others.

We measure the value of inverse document frequency by log2(n/nj) where

nj is the number of documents containing term tj and n is the total number

of documents. Using this value tends to make terms that are rare across the

collection of documents more important than others. If a term occurs in every

document its inverse document frequency value is 1. If it occurs in only one

document out of every 16, its inverse document frequency value is log2 16 = 4.
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20.6 Normalising the Weights

Before using the set of N -dimensional vectors we first need to normalise the

values of the weights, for reasons similar to the need to normalise the value of

continuous attributes in Chapter 3.

We would like each value to be between 0 and 1 inclusive and for the values

used not to be excessively influenced by the overall number of words in the

original document.

We will take a much simplified example to illustrate the point. Suppose we

have a dictionary with just 6 members and let us assume that the weights

used are just the term frequency values. Then a typical vector would be

(0, 3, 0, 4, 0, 0). In the corresponding document the second term appeared 3

times, the fourth term occurred 4 times and the other four terms did not occur

at all. Overall only 7 terms occurred in the document, after removal of stop

words, stemming etc.

Suppose we now create another document by placing an exact duplicate of

its content at the end of the first one. What if by some printing aberration

there were other documents where the content of the original one was printed

10 times, or even a hundred times?

In these three cases the vectors would be (0, 6, 0, 8, 0, 0), (0, 30, 0, 40, 0, 0)

and (0, 300, 0, 400, 0, 0). These seem to have nothing in common with the orig-

inal vector, which was (0, 3, 0, 4, 0, 0). This is unsatisfactory. The four docu-

ments should obviously be classified in exactly the same way and the vector

space representation should reflect this.

The method that is generally used to normalise vectors neatly solves this

problem. We calculate the length of each vector, defined as the square root

of the sum of the squares of its component values. To normalise the values of

the weights we divide each value by the length. The resulting vector has the

property that its length is always 1.

For the above example the length of (0, 3, 0, 4, 0, 0) is
√
(32 + 42) = 5, so

the normalised vector is (0, 3/5, 0, 4/5, 0, 0), which has length 1. Note that the

zero values play no part in the calculations.

The calculations for the other three vectors given are as follows.

(0, 6, 0, 8, 0, 0)

The length is
√

(62 + 82) = 10, so the normalised vector is

(0, 6/10, 0, 8/10, 0, 0) = (0, 3/5, 0, 4/5, 0, 0).

(0, 30, 0, 40, 0, 0)

The length is
√

(302 + 402) = 50, so the normalised vector is

(0, 30/50, 0, 40/50, 0, 0) = (0, 3/5, 0, 4/5, 0, 0).
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(0, 300, 0, 400, 0, 0)

The length is
√

(3002 + 4002) = 500, so the normalised vector is

(0, 300/500, 0, 400/500, 0, 0) = (0, 3/5, 0, 4/5, 0, 0).

In normalised form all four vectors are the same, as they should be.

20.7 Measuring the Distance Between Two
Vectors

One important check on the appropriateness of the normalised vector space

model representation of documents described in the last two sections is whether

we can make a sensible definition of the distance between two vectors. We would

like the distance between two identical vectors to be zero, the distance between

two vectors that are as dissimilar as possible to be 1 and the distance between

any other two vectors to be somewhere in between.

The standard definition of the distance between two vectors of length one,

known as unit vectors, meets these criteria.

We define the dot product of two unit vectors of the same dimension to be

the sum of the products of the corresponding pairs of values.

For example, if we take the two unnormalised vectors (6, 4, 0, 2, 1) and

(5, 7, 6, 0, 2), normalising them to unit length converts the values to

(0.79, 0.53, 0, 0.26, 0.13) and (0.47, 0.66, 0.56, 0, 0.19).

The dot product is now 0.79 × 0.47 + 0.53 × 0.66 + 0 × 0.56 + 0.26 × 0 +

0.13× 0.19 = 0.74 approximately.

If we subtract this value from 1 we obtain a measure of the distance between

the two values, which is 1− 0.74 = 0.26.

What happens if we calculate the distance between two identical unit vec-

tors? The dot product gives the sum of the squares of the values, which must

be 1 as the length of a unit vector is 1 by definition. Subtracting this value

from 1 gives a distance of zero.

If we take two unit vectors with no values in common (corresponding to

no terms in common in the original documents), say (0.94, 0, 0, 0.31, 0.16) and

(0, 0.6, 0.8, 0, 0) the dot product is 0.94×0+0×0.6+0×0.8+0.31×0+0.16×0 =

0. Subtracting this value from 1 gives a distance measure of 1, which is the

largest distance value achievable.
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20.8 Measuring the Performance of a Text
Classifier

Once we have converted the training documents into normalised vector form,

we can construct a training set of the kind used in previous chapters for each

category Ck in turn. We can convert a set of test documents to a test set of

instances for each category in the same way as the training documents and ap-

ply whatever classification algorithm we choose to the training data to classify

the instances in the test set.

For each category Ck we can construct a confusion matrix of the kind dis-

cussed in Chapter 7.

Predicted class

Ck not Ck

Actual Ck a c

class not Ck b d

Figure 20.1 Confusion Matrix for Category Ck

In Figure 20.1 the values a, b, c and d are the number of true positive,

false positive, false negative and true negative classifications, respectively. For

a perfect classifier b and c would both be zero.

The value (a+ d)/(a+ b+ c+ d) gives the predictive accuracy. However, as

mentioned in Chapter 12, for information retrieval applications, which include

text classification, it is more usual to use some other measures of classifier

performance.

Recall is defined as a/(a+ c), i.e. the proportion of documents in category

Ck that are correctly predicted.

Precision is defined as a/(a+ b), i.e. the proportion of documents that are

predicted as being in category Ck that are actually in that category.

It is common practice to combine Recall and Precision into a single measure

of performance called the F1 Score, which is defined by the formula F1 =

2×Precision×Recall/(Precision+Recall). This is just the product of Precision

and Recall divided by their average.

Having generated confusion matrices for each of the N binary classifica-

tion tasks we can combine them in several ways. One method is called micro-

averaging. The N confusion matrices are added together element by element to

form a single matrix from which Recall, Precision, F1 and any other preferred

measures can be computed.
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20.9 Hypertext Categorisation

An important special case of text classification arises when the documents are

web pages, i.e. HTML files. The automatic classification of web pages is usually

known as Hypertext Categorisation (or Hypertext Classification).

Hypertext Categorisation is similar to classifying ‘ordinary’ text, e.g. arti-

cles in newspapers or journals, on the basis of their content, but as we shall see

the former can often be considerably harder.

20.9.1 Classifying Web Pages

The most obvious question to ask is why should we bother to do hypertext

categorisation, when there are powerful search engines such as Google available

for locating web pages of interest.

It has been estimated that the World Wide Web comprises over 13 billion

pages and is growing at a rate of several million pages a day. The size of the

web will eventually overwhelm the conventional web search engine approach.

The present author lives in a small village in England. When he entered

the village name (a unique one for England) into Google a year ago he was

astonished to find it returned 87,200 entries—more than 50 times as many as

the number of people who live there. This seemed a little excessive. Making

the same query today we find that the number of entries has grown to 642,000.

We can only speculate on what events have occurred in the village in the

intervening year to warrant this much greater attention. For comparison the

number of Google entries for Science a few years ago was 459,000,000. A year

later it had reached 4,570,000,000.

In practice it is clear that many (probably most) Google users only ever

look at the first screenful or two of the entries returned or try a more elaborate

search. What else can they do? No one can possibly examine 4,570 million

entries on anything. Unfortunately even highly specific queries can easily return

many thousands of entries and this number can only grow as time goes by.

Looking at only the first screenful or two of entries is placing a huge amount of

reliance on the algorithm used by Google to rank the relevance of its entries—

far more than can realistically be justified. This is in no way to criticise or

denigrate a very successful company— just to point out that the standard

approach used by web search engines will not keep working successfully for

ever. We can be sure that the search engine companies are well aware of this.

It is perhaps not surprising that there are studies that suggest that many users

prefer to navigate through directories of pre-classified content and that this

frequently enables them to find more relevant information in a shorter time.
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When attempting to classify web pages we immediately run into the problem

of finding any classified pages to use as training data. Web pages are uploaded

by a very large number of individuals, operating in an environment where no

widely agreed standard classification scheme exists. Fortunately there are ways

of overcoming this problem, at least partially.

The search engine company, Yahoo, uses hundreds of professional classifiers

to categorise new web pages into a (nearly) hierarchical structure, comprising

14 main categories, each with many sub-categories, sub-sub-categories etc. The

complete structure can be found on the web at http://dir.yahoo.com. Users

can search through the documents in the directory structure either using a

search engine approach or by following links through the structure. For example

we might follow the path from ‘Science’ to ‘Computer Science’ to ‘Artificial

Intelligence’ to ‘Machine Learning’ to find a set of links to documents that

human classifiers have placed in that category. The first of these (at the time

of writing) is to the UCI Machine Learning Repository, which was discussed in

Chapter 2.

The Yahoo system demonstrates the potential value of classifying web pages.

However, only a very small proportion of the entire web could possibly be

classified this way ‘manually’. With 1.5 million new pages being added each

day the volume of new material will defeat any conceivable team of human

classifiers. An interesting area of investigation (which the present author and

his research group are currently pursuing) is whether web pages can be classified

automatically using the Yahoo classification scheme (or some other similar

scheme) by supervised learning methods of the kind described in this book.

Unlike many other task areas for data mining there are few ‘standard’

datasets available on which experimenters can compare their results. One ex-

ception is the BankSearch dataset created by the University of Reading, which

includes 11,000 web pages pre-classified (by people) into four main categories

(Banking and Finance, Programming, Science, Sport) and 11 sub-categories,

some quite distinct and some quite similar.

20.9.2 Hypertext Classification versus Text Classification

Classifying hypertext has some important differences from classifying ‘stan-

dard’ text. Only a small number of web pages (manually classified) are avail-

able for supervised learning and it is often the case that much of the content

of each web page is irrelevant to the topic of the page (links to photographs of

the creator’s family, train timetables, advertisements etc.).

However one difference is fundamental and unavoidable. In text classifica-

tion the words that the human reader sees are very similar to the data provided

to the classification program. Figure 20.2 is a typical example.
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Marley was dead: to begin with. There is no doubt whatever about that.

The register of his burial was signed by the clergyman, the clerk, the

undertaker, and the chief mourner. Scrooge signed it: and Scrooge’s name

was good upon ’Change, for anything he chose to put his hand to. Old

Marley was as dead as a door-nail.

Mind! I don’t mean to say that I know, of my own knowledge, what there

is particularly dead about a door-nail. I might have been inclined, myself,

to regard a coffin-nail as the deadest piece of ironmongery in the trade.

But the wisdom of our ancestors is in the simile; and my unhallowed hands

shall not disturb it, or the Country’s done for. You will therefore permit

me to repeat, emphatically, that Marley was as dead as a door-nail.

Source: Charles Dickens. A Christmas Carol.

Figure 20.2 Text Classification: An Example

Automating the classification of a document based on its content is a hard

task (for the example above we might perhaps decide on the categories ‘death’

and ‘ironmongery’). However the problems pale into insignificance compared

with classifying even a fairly short piece of hypertext.

Figure 20.3 shows the first few lines of the text form of a well-known web

page. It is a small extract from the text that an automatic hypertext categori-

sation program would need to process. It contains precisely one word of useful

information, which occurs twice. The rest is HTML markup and JavaScript

that gives no clue to the correct classification of the page.

It is usually considerably easier (for humans) to classify web pages from

the ‘pictorial’ form of the pages displayed by a web browser. In this case, the

equivalent web page is a very familiar one (see Figure 20.4).

It is worth noting that most of the words on this page are of little or no

use to human classifiers, for example ‘images’, ‘groups’, ‘news’, ‘preferences’

and ‘We’re Hiring’. There are only two clues to the correct classification of

this page: the phrase ‘Searching 8,058,044,651 web pages’ and the name of the

company. From these we can correctly deduce that it is the home page of a

widely used search engine.

A program that attempts to classify this page automatically has to contend

with not only the scarcity of useful information in the page, even for human

classifiers, but the abundance of irrelevant information in the textual form that

it is given.
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<html><head><meta http-equiv="content-type"

content="text/html; charset=UTF-8">

<title>Google</title><style>

<!--

body,td,a,p,.h{font-family:arial,sans-serif;}

.h{font-size: 20px;}

.q{color:#0000cc;}

//-->

</style>

<script>

<!--

function sf(){document.f.q.focus();}

function clk(el,ct,cd) {if(document.images){(new Image()).src=

"/url?sa=T&ct="+es

cape(ct)+"&cd="+escape(cd)+"&url="

+escape(el.href)+"&ei=gpZNQpzEHaSgQYCUwKoM";}return true;}

// -->

</script>

</head><body bgcolor=#ffffff text=#000000 link=#0000cc vlink=

#551a8b alink=#ff00

00 onLoad=sf()><center><img src="/intl/en_uk/images/logo.gif"

width=276 height=1

10 alt="Google"><br><br>

Figure 20.3 Hypertext Classification: An Example

We can deal with the second problem to some extent by removing HTML

markup and JavaScript when we create a representation of a document such

as a ‘bag-of-words’, but the scarcity of relevant information on most web pages

remains a problem. We must be careful not to assume that HTML markup

is always irrelevant noise— the only two useful words in Figure 20.3 (both

‘Google’) appear in the HTML markup.

Even compared with articles in newspapers, papers in scientific journals etc.

web pages suffer from an extremely diverse authorship, with little consistency

in style or vocabulary, and extremely diverse content. Ignoring HTML markup,

JavaScript, irrelevant advertisements and the like, the content of a web page

is often quite small. It is not surprising that classification systems that work

well on standard text documents often struggle with hypertext. It is reported

that in one experiment, classifiers that were 90% accurate on the widely used

Reuters dataset (of standard text documents) scored only 32% on a sample of

Yahoo classified pages.
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Figure 20.4 Web Page Corresponding to Figure 20.3

To counter the scarcity of textual information in the typical web page we

need to try to take advantage of the information given in the tags, links etc.

in the HTML markup (whilst of course removing the markup itself before

converting the document to a bag-of-words representation or similar).

The information embedded in HTML markup can include:

– a title for the page

– ‘metadata’ (keywords and a description of the page)

– information about headers etc.

– words considered important enough to place in bold or italic

– the text associated with links to other pages.

How much of this information to include and how to do so is an open re-

search question. We have to beware of ‘game playing’, where a page deliberately

includes misleading information about its content with the aim of fooling inter-

net search engines. Despite this, experience suggests that extracting important

words from the markup (especially the ‘metadata’) and including them in the

representation can significantly improve classification accuracy, especially if the

words are given greater weighting (say, 3 times greater) than those extracted

from the basic text content of the page.
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To improve classification accuracy further we could look at the possibility

of including some of the information in the ‘linked neighbourhood’ of each web

page, i.e. the pages to which it points and the pages that point to it. However

this is considerably beyond the scope of an introductory text.

20.10 Chapter Summary

This chapter looks at a particular type of classification task, where the objects

are text documents. A method of processing the documents for use by the

classification algorithms given earlier in this book using a bag-of-words repre-

sentation is described.

An important special case of text classification arises when the documents

are web pages. The automatic classification of web pages is known as hypertext

categorisation. The differences between standard text classification and hyper-

text categorisation are illustrated and issues relating to the latter are discussed.

20.11 Self-assessment Exercises for Chapter 20

1. Given a document, drawn from a collection of 1,000 documents, in which

the four terms given in the table below occur, calculate the TFIDF values

for each one.

Term Frequency in Number of documents

current document containing term

dog 2 800

cat 10 700

man 50 2

woman 6 30

2. Normalise the vectors (20, 10, 8, 12, 56) and (0, 15, 12, 8, 0).

Calculate the distance between the two normalised vectors using the dot

product formula.
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A
Essential Mathematics

This appendix gives a basic description of the main mathematical notation and

techniques used in this book. It has four sections, which deal with, in order:

– the subscript notation for variables and the Σ (or ‘sigma’) notation for sum-

mation (these are used throughout the book, particularly in Chapters 4, 5

and 6)

– tree structures used to represent data items and the processes applied to

them (these are used particularly in Chapters 4, 5 and 9)

– the mathematical function log2 X (used particularly in Chapters 5, 6 and 10)

– set theory (which is used in Chapter 17).

If you are already familiar with this material, or can follow it fairly easily,

you should have no trouble reading this book. Everything else will be explained

as we come to it. If you have difficulty following the notation in some parts of

the book, you can usually safely ignore it, just concentrating on the results and

the detailed examples given.

A.1 Subscript Notation

This section introduces the subscript notation for variables and the Σ (or

‘sigma’) notation for summation which are used throughout the book, par-

ticularly in Chapters 4, 5 and 6.

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5,
© Springer-Verlag London 2013
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It is common practice to use variables to represent numerical values. For

example, if we have six values we can represent them by a, b, c, d, e and f ,

although any other six variables would be equally valid. Their sum is a + b +

c+ d+ e+ f and their average is (a+ b+ c+ d+ e+ f)/6.

This is fine as long as there are only a small number of values, but what

if there were 1,000 or 10,000 or a number that varied from one occasion to

another? In that case we could not realistically use a different variable for each

value.

The situation is analogous to the naming of houses. This is reasonable for

a small road of 6 houses, but what about a long road with 200 or so? In the

latter case, it is greatly more convenient to use a numbering system such as 1

High Street, 2 High Street, 3 High Street etc.

The mathematical equivalent of numbering houses is to use a subscript

notation for variables. We can call the first value a1, the second a2 and so on,

with the numbers 1, 2 etc. written slightly ‘below the line’ as subscripts. (We

pronounce a1 in the obvious way as the letter ‘a’ followed by the digit ‘one’.)

Incidentally, there is no need for the first value to be a1. Subscripts beginning

with zero are sometimes used, and in principle the first subscript can be any

number, as long as they then increase in steps of one.

If we have 100 variables from a1 up to a100, we can write them as a1, a2, . . . ,

a100. The three dots, called an ellipsis, indicate that the intermediate values a3
up to a99 have been omitted.

In the general case where the number of variables is unknown or can vary

from one occasion to another, we often use a letter near the middle of the

alphabet (such as n) to represent the number of values and write them as a1,

a2, . . . , an.

A.1.1 Sigma Notation for Summation

If we wish to indicate the sum of the values a1, a2, . . . , an we can write it

as a1 + a2 + · · · + an. However there is a more compact and often very useful

notation which uses the Greek letter Σ (‘sigma’). Sigma is the Greek equivalent

of the letter ‘s’, which is the first letter of the word ‘sum’.

We can write a ‘typical’ value from the sequence a1, a2, . . . , an as ai. Here i

is called a dummy variable. We can use other variables instead of i, of course,

but traditionally letters such as i, j and k are used. We can now write the sum

a1 + a2 + · · ·+ an as
i=n∑

i=1

ai
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(This is read as ‘the sum of ai for i equals 1 to n’ or ‘sigma ai for i = 1 to n’.)

The notation is often simplified to
n∑

i=1

ai

The dummy variable i is called the index of summation. The lower and

upper bounds of summation are 1 and n, respectively.

The values summed are not restricted to just ai. There can be any formula,

for example
i=n∑

i=1

a2i or
i=n∑

i=1

(i.ai).

The choice of dummy variable makes no difference of course, so
i=n∑

i=1

ai =
j=n∑

j=1

aj

Some other useful results are
i=n∑

i=1

k.ai = k.
i=n∑

i=1

ai (where k is a constant)

and
i=n∑

i=1

(ai + bi) =
i=n∑

i=1

ai +
i=n∑

i=1

bi

A.1.2 Double Subscript Notation

In some situations a single subscript is not enough and we find it helpful to use

two (or occasionally even more). This is analogous to saying ‘the fifth house on

the third street’ or similar.

We can think of a variable with two subscripts, e.g. a11, a46, or in general

aij as representing the cells of a table. The figure below shows the standard

way of referring to the cells of a table with 5 rows and 6 columns. For example,

in a45 the first subscript refers to the fourth row and the second subscript refers

to the fifth column. (By convention tables are labelled with the row numbers

increasing from 1 as we move downwards and column numbers increasing from

1 as we move from left to right.) The subscripts can be separated by a comma

if it is necessary to avoid ambiguity.

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56

We can write a typical value as aij , using two dummy variables i and j.

If we have a table with m rows and n columns, the second row of the

table is a21, a22, . . . , a2n and the sum of the values in the second row is
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a21 + a22 + · · ·+ a2n, i.e.
j=n∑

j=1

a2j

In general the sum of the values in the ith row is
j=n∑

j=1

aij

To find the total value of all the cells we need to add the sums of all m rows

together, which gives
i=m∑

i=1

j=n∑

j=1

aij

(This formula, with two ‘sigma’ symbols, is called a ‘double summation’.)

Alternatively we can form the sum of the m values in the jth column, which

is
i=m∑

i=1

aij

and then form the total of the sums for all n columns, giving
j=n∑

j=1

i=m∑

i=1

aij

It does not matter which of these two ways we use to find the overall total.

Whichever way we calculate it, the result must be the same, so we have the

useful result
i=m∑

i=1

j=n∑

j=1

aij =
j=n∑

j=1

i=m∑

i=1

aij .

A.1.3 Other Uses of Subscripts

Finally, we need to point out that subscripts are not always used in the way

shown previously in this appendix. In Chapters 5, 6 and 10 we illustrate the

calculation of two values of a variable E, essentially the ‘before’ and ‘after’

values. We call the original value Estart and the second value Enew. This is

just a convenient way of labelling two values of the same variable. There is no

meaningful way of using an index of summation.

A.2 Trees

Computer Scientists and Mathematicians often use a structure called a tree to

represent data items and the processes applied to them.

Trees are used extensively in the first half of this book, especially in Chap-

ters 4, 5 and 9.
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Figure A.1 is an example of a tree. The letters A to M are labels added for

ease of reference and are not part of the tree itself.

Figure A.1 A Tree with 13 Nodes

A.2.1 Terminology

In general a tree consists of a collection of points, called nodes, joined by straight

lines, called links. Each link has a single node at each end. This is an example

of a link joining two nodes G and J.

Figure A.1 comprises 13 nodes, labelled from A to M, joined by a total of

12 links.

The node at the top of the tree is called the root of the tree, or the root

node or just the root. (In Computer Science, trees grow downwards from their

roots.)

There is an implicit notion of movement down the tree, i.e. it is possible to

go from the root node A to node D, or from node F to node H via a link. There
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is also a path from node A to node H via the ‘chain’ of links A to B, B to F, F

to H and a path from node F to node K via links F to G then G to K. There

is no way of going from B to A or from G to B, as we cannot go ‘backwards’

up the tree.

There are a number of conditions that must be satisfied to make a structure

such as Figure A.1 a tree:

1. There must be a single node, the root, with no links ‘flowing into’ it from

above.

2. There must be a path from the root node A to every other node in the tree

(so the structure is connected).

3. There must be only one path from the root to each of the other nodes. If

we added a link from F to L to Figure A.1 it would no longer be a tree, as

there would be two paths from the root to node L: A to B, B to F, F to L

and A to D, D to L.

Nodes such as C, E, H, I, J, K, L and M that have no other nodes below

them in the tree are called leaf nodes or just leaves. Nodes such as B, D, F

and G that are neither the root nor a leaf node are called internal nodes. Thus

Figure A.1 has one root node, eight leaf nodes and four internal nodes.

The path from the root node of a tree to any of its leaf nodes is called a

branch. Thus for Figure A.1 one of the branches is A to B, B to F, F to G, G

to K. A tree has as many branches as it has leaf nodes.

A.2.2 Interpretation

A tree structure is one with which many people are familiar from family trees,

flowcharts etc. We might say that the root node A of Figure A.1 represents the

most senior person in a family tree, say John. His children are represented by

nodes B, C and D, their children are E, F, L and M and so on. Finally John’s

great-great-grandchildren are represented by nodes J and K.

For the trees used in this book a different kind of interpretation is more

helpful.

Figure A.2 is Figure A.1 augmented by numbers placed in parentheses at

each of the nodes. We can think of 100 units placed at the root and flowing

down to the leaves like water flowing down a mountainside from a single source

(the root) to a number of pools (the leaves). There are 100 units at A. They

flow down to form 60 at B, 30 at C and 10 at D. The 60 at B flow down to E

(10 units) and F (50 units), and so on. We can think of the tree as a means

of distributing the original 100 units from the root step-by-step to a number
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Figure A.2 Figure A.1 (revised)

of leaves. The relevance of this to using decision trees for classification will

become clear in Chapter 4.

A.2.3 Subtrees

If we consider the part of Figure A.1 that hangs below node F, there are

six nodes (including F itself) and five links which form a tree in their own

right (see Figure A.3). We call this a subtree of the original tree. It is the

subtree ‘descending from’ (or ‘hanging from’) node F. A subtree has all the

characteristics of a tree in its own right, including its own root (node F).

Sometimes we wish to ‘prune’ a tree by removing the subtree which descends

from a node such as F (leaving the node F itself intact), to give a simpler tree,

such as Figure A.4. Pruning trees in this way is dealt with in Chapter 9.

A.3 The Logarithm Function log2 X

The mathematical function log2 X, pronounced ‘log to base 2 of X’, ‘log 2 of

X’ or just ‘log X’ is widely used in scientific applications. It plays an important
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Figure A.3 Subtree Descending From Node F

Figure A.4 Pruned Version of Figure A.1

part in this book, especially in connection with classification in Chapters 5 and

6 and in Chapter 10.

log2 X = Y means that 2Y = X.

So for example log2 8 = 3 because 23 = 8.

The 2 is always written as a subscript. In log2 X the value of X is called

the ‘argument’ of the log2 function. The argument is often written in paren-

theses, e.g. log2(X) but we will usually omit the parentheses in the interests of

simplicity when no ambiguity is possible, e.g. log2 4.

The value of the function is only defined for values of X greater than zero.

Its graph is shown in Figure A.5. (The horizontal and vertical axes correspond

to values of X and log2 X, respectively.)

Some important properties of the logarithm function are given in Figure

A.6.
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Figure A.5 The log2 X Function

The value of log2 X is

– negative when X < 1

– zero when X = 1

– positive when X > 1

Figure A.6 Properties of the Logarithm Function

Some useful values of the function are given below.

log2(1/8) = −3

log2(1/4) = −2

log2(1/2) = −1

log2 1 = 0

log2 2 = 1

log2 4 = 2

log2 8 = 3

log2 16 = 4

log2 32 = 5

The log2 function has some unusual (and very helpful) properties that

greatly assist calculations using it. These are given in Figure A.7.
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log2(a× b) = log2 a+ log2 b

log2(a/b) = log2 a− log2 b

log2(a
n) = n× log2 a

log2(1/a) = − log2 a

Figure A.7 More Properties of the Logarithm Function

So, for example,

log2 96 = log2(32× 3) = log2 32 + log2 3 = 5 + log2 3

log2(q/32) = log2 q − log2 32 = log2 q − 5

log2(6× p) = log2 6 + log2 p

The logarithm function can have other bases as well as 2. In fact any positive

number can be a base. All the properties given in Figures A.6 and A.7 apply

for any base.

Another commonly used base is base 10. log10 X = Y means 10Y = X, so

log10 100 = 2, log10 1000 = 3 etc.

Perhaps the most widely used base of all is the ‘mathematical constant’

with the very innocuous name of e. The value of e is approximately 2.71828.

Logarithms to base e are of such importance that instead of loge X we often

write lnX and speak of the ‘natural logarithm’, but explaining the importance

of this constant is considerably outside the scope of this book.

Few calculators have a log2 function, but many have a log10, loge or ln

function. To calculate log2 X from the other bases use log2 X = loge X/0.6931

or log10 X/0.3010 or lnX/0.6931.

A.3.1 The Function −X log2 X

The only base of logarithms used in this book is base 2. However the log2
function also appears in the formula −X log2 X in the discussion of entropy in

Chapters 5 and 10. The value of this function is also only defined for values

of X greater than zero. However the function is only of importance when X is

between 0 and 1. The graph of the important part of this function is given in

Figure A.8.

The initial minus sign is included to make the value of the function positive

(or zero) for all X between 0 and 1.
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Figure A.8 The function −X log2 X

It can be proved that the function −X log2 X has its maximum value when

X = 1/e = 0.3679 (e is the ‘mathematical constant’ mentioned above). When

X takes the value 1/e, the value of the function is approximately 0.5307.

Values ofX from 0 to 1 can sometimes usefully be thought of as probabilities

(from 0 = impossible to 1 = certain), so we may write the function as−p log2(p).

The variable used is of course irrelevant as long as we are consistent. Using the

fourth property in Figure A.7, the function can equivalently be written as

p log2(1/p). This is the form in which it mainly appears in Chapters 5 and 10.

A.4 Introduction to Set Theory

Set theory plays an important part in Chapter 17: Association Rule Mining II.

A set is a sequence of items, called set elements or members, separated by

commas and enclosed in braces, i.e. the characters { and }. Two examples of

sets are {a, 6.4,−2, dog, alpha} and {z, y, x, 27}. Set elements can be numeric,

non-numeric or a combination of the two.

A set can have another set as a member, so {a, b, {a, b, c}, d, e} is a valid

set, with five members. Note that the third element of the set, i.e. {a, b, c} is

counted as a single member.
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No element may appear in a set more than once, so {a, b, c, b} is not a valid

set. The order in which the elements of a set are listed is not significant, so

{a, b, c} and {c, b, a} are the same set.

The cardinality of a set is the number of elements it contains, so {dog, cat,
mouse} has cardinality three and {a, b, {a, b, c}, d, e} has cardinality five. The

set with no elements {} is called the empty set and is written as ∅.
We usually think of the members of a set being drawn from some ‘universe

of discourse’, such as all the people who belong to a certain club. Let us assume

that set A contains all those who are aged under 25 and set B contains all those

who are married.

We call the set containing all the elements that occur in either A or B or

both the union of the two sets A and B. It is written as A ∪ B. If A is the

set {John, Mary, Henry} and B is the set {Paul, John, Mary, Sarah} then

A ∪ B is the set {John, Mary, Henry, Paul, Sarah}, the set of people who are

either under 25 or married or both. Figure A.9 shows two overlapping sets. The

shaded area is their union.

Figure A.9 Union of Two Overlapping Sets

We call the set containing all the elements (if there are any) that occur in

both A and B the intersection of the two sets A and B. It is written A∩B. If

A is the set {John, Mary, Henry} and B is the set {Paul, John, Mary, Sarah}
as before, then A ∩B is the set {John, Mary}, the set of people who are both

under 25 and married. Figure A.10 shows two overlapping sets. In this case,

the shaded area is their intersection.

Figure A.10 Intersection of Two Overlapping Sets

Two sets are called disjoint if they have no elements in common, for example

A = {Max, Dawn} and B = {Frances, Bryony, Gavin}. In this case their
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intersection A∩B is the set with no elements, which we call the empty set and

represent by {} or (more often) by ∅. Figure A.11 shows this case.

Figure A.11 Intersection of Two Disjoint Sets

If two sets are disjoint their union is the set comprising all the elements in

the first set and all those in the second set.

There is no reason to be restricted to two sets. It is meaningful to refer to

the union of any number of sets (the set comprising those elements that appear

in any one or more of the sets) and the intersection of any number of sets (the

set comprising those elements that appear in all the sets). Figure A.12 shows

three sets, say A, B and C. The shaded area is their intersection A ∩B ∩ C.

Figure A.12 Intersection of Three Sets

A.4.1 Subsets

A set A is called a subset of another set B if every element in A also occurs

in B. We can illustrate this by Figure A.13, which shows a set B (the outer

circle) with a set A (the inner circle) completely inside it. The implication is

that B includes A, i.e. every element in A is also in B and there may also be

one or more other elements in B. For example B and A may be {p, q, r, s, t}
and {q, t} respectively.

We indicate that A is a subset of B by the notation A ⊆ B. So {q, t} ⊆
{p, r, s, q, t}. The empty set is a subset of every set and every set is a subset of

itself.
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Figure A.13 A is a Subset of B

We sometimes want to specify that a subset A of set B must have fewer

elements than B itself, in order to rule out the possibility of treating B as one

of its own subsets. In this case we say that A is a strict subset of B, written

A ⊂ B. So {q, t} is a strict subset of {p, r, s, q, t} but {t, s, r, q, p} is not a strict

subset of {p, r, s, q, t}, as it is the same set. (The order in which the elements

are written is irrelevant.)

If A is a subset of B, we say that B is a superset of A, written as B ⊇ A.

If A is a strict subset of B we say that B is a strict superset of A, written

as B ⊃ A.

A set with three elements such as {a, b, c} has eight subsets, including the

empty set and itself. They are ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c} and {a, b, c}.
In general a set with n elements has 2n subsets, including the empty set

and the set itself. Each member of the set can be included or not included in

a subset. The number of possible subsets is therefore the same as the total

number of possible include/do not include choices, which is 2 multiplied by

itself n times, i.e. 2n.

The set containing all the subsets of A is called the power set of A. Thus

the power set of {a, b, c} is {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
If set A has n elements its power set contains 2n elements.
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A.4.2 Summary of Set Notation

{} The ‘brace’ characters that enclose the elements of a

set, e.g. {apples, oranges, bananas}
∅ The empty set. Also written as {}
A ∪B The union of sets A and B. The set that contains all

the elements that occur either in A or B or both.

A ∩B The intersection of two sets A and B. The set that

includes all the elements (if there are any) that occur

in both A and B.

A ⊆ B A is a subset of B, i.e. every element in A also occurs

in B.

A ⊂ B A is a strict subset of B, i.e. A is a subset of B and

A contains fewer elements than B.

A ⊇ B A is a superset of B. True if and only if B is a subset

of A.

A ⊃ B A is a strict superset of B. True if and only if B is a

strict subset of A.
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B
Datasets

The methods described in this book are illustrated by tests on a number of

datasets, with a range of sizes and characteristics. Basic information about

each dataset is summarised in Figure B.1.

Dataset Description classes* attributes** instances

categ cts training

set

test

set

anonymous Football/

Netball

Data

(anonymised)

2

(58%)

4 12

bcst96 Text Classi-

fication

Dataset

2 13430

!

1186 509

chess Chess

Endgame

2

(95%)

7 647

contact

lenses

Contact

Lenses

3

(88%)

5 108

crx Credit Card

Applica-

tions

2

(56%)

9 6 690

(37)

200

(12)

degrees Degree

Class

2

(77%)

5 26

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5,
© Springer-Verlag London 2013
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football/

netball

Sports Club

Preference

2

(58%)

4 12

genetics DNA

Sequences

3

(52%)

60 3190

glass Glass Iden-

tification

Database

7

(36%)

9 !! 214

golf Decision

Whether to

Play

2

(64%)

2 2 14

hepatitis Hepatitis

Data

2

(79%)

13 6 155

(75)

hypo Hypothy-

roid

Disorders

5

(92%)

22 7 2514

(2514)

1258

(371)

iris Iris Plant

Classifica-

tion

3

(33.3%)

4 150

labor-ne Labor Ne-

gotiations

2

(65%)

8 8 40 (39) 17

(17)

lens24 Contact

Lenses

(reduced

version)

3

(63%)

4 24

monk1 Monk’s

Problem 1

2

(50%)

6 124 432

monk2 Monk’s

Problem 2

2

(62%)

6 169 432

monk3 Monk’s

Problem 3

2

(51%)

6 122 432

pima-

indians

Prevalence

of Diabetes

in Pima

Indian

Women

2

(65%)

8 768

sick-

euthyroid

Thyroid

Disease

Data

2

(91%)

18 7 3163

train Train

Punctuality

4

(70%)

4 20
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vote Voting in

US

Congress

2

(61%)

16 300 135

wake

vortex

Air Traffic

Control

2

(50%)

3 1 1714

wake

vortex2

Air Traffic

Control

2

(50%)

19 32 1714

* % size of largest class in training set is given in parentheses

** ‘categ’ and ‘cts’ stand for Categorical and Continuous, respectively

! Including 1749 with only a single value for instances in the training set

!! Plus one ‘ignore’ attribute

Figure B.1 Basic Information About Datasets

The degrees, train, football/netball and anonymous datasets were created

by the author for illustrative purposes only. The bcst96, wake vortex and

wake vortex2 datasets are not generally available. Details of the other datasets

are given on the following pages. In each case the class with the largest number

of corresponding instances in the training set is shown in bold.

Datasets shown as ‘Source: UCI Repository’ can be downloaded (sometimes

with slight differences) from the World Wide Web at

http://www.ics.uci.edu/~mlearn/MLRepository.html.
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Dataset chess

Description

This dataset was used for one of a well-known series of experiments by

the Australian researcher Ross Quinlan, taking as an experimental testbed

the Chess endgame with White king and rook versus Black king and

knight. This endgame served as the basis for several studies of Machine

Learning and other Artificial Intelligence techniques in the 1970s and 1980s.

The task is to classify positions (all with Black to move) as either ‘safe’

or ‘lost’, using attributes that correspond to configurations of the pieces.

The classification ‘lost’ implies that whatever move Black makes, White

will immediately be able to give checkmate or alternatively will be able to

capture the Knight without giving stalemate or leaving his Rook vulnerable

to immediate capture. Generally this is not possible, in which case the

position is ‘safe’. This task is trivial for human experts but has proved

remarkably difficult to automate in a satisfactory way. In this experiment

(Quinlan’s ‘third problem’), the simplifying assumption is made that the

board is of infinite size. Despite this, the classification task remains a hard

one. Further information is given in [1].

Source: Reconstructed by the author from description given in [1].

Classes

safe, lost

Attributes and Attribute Values

The first four attributes represent the distance between pairs of pieces (wk

and wr: White King and Rook, bk and bn: Black King and Knight). They

all have values 1, 2 and 3 (3 denoting any value greater than 2).

dist bk bn

dist bk wr

dist wk bn

dist wk wr

The other three attributes all have values 1 (denoting true) and 2 (denoting

false).

inline (Black King and Knight and White Rook in line)

wr bears bk (White Rook bears on the Black King)

wr bears bn (White Rook bears on the Black Knight)

Instances

Training set: 647 instances

No separate test set
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Dataset contact lenses

Description

Data from ophthalmic optics relating clinical data about a patient to a

decision as to whether he/she should be fitted with hard contact lenses,

soft contact lenses or none at all.

Source: Reconstructed by the author from data given in [2].

Classes

hard lenses: The patient should be fitted with hard contact lenses

soft lenses: The patient should be fitted with soft contact lenses

no lenses: The patient should not be fitted with contact lenses

Attributes and Attribute Values

age: 1 (young), 2 (pre-presbyopic), 3 (presbyopic)

specRx (Spectacle Prescription): 1 (myopia), 2 (high hypermetropia), 3

(low hypermetropia)

astig (Whether Astigmatic): 1 (no), 2 (yes)

tears (Tear Production Rate): 1 (reduced), 2 (normal)

tbu (Tear Break-up Time): 1 (less than or equal to 5 seconds), 2 (greater

than 5 seconds and less than or equal to 10 seconds), 3 (greater than 10

seconds)

Instances

Training set: 108 instances

No separate test set
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Dataset crx

Description

This dataset concerns credit card applications. The data is genuine but the

attribute names and values have been changed to meaningless symbols to

protect confidentiality of the data.

Source: UCI Repository

Classes

+ and − denoting a successful application and an unsuccessful application,

respectively (largest class for the training data is −)

Attributes and Attribute Values

A1: b, a

A2: continuous

A3: continuous

A4: u, y, l, t

A5: g, p, gg

A6: c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff

A7: v, h, bb, j, n, z, dd, ff, o

A8: continuous

A9: t, f

A10: t, f

A11: continuous

A12: t, f

A13: g, p, s

A14: continuous

A15: continuous

Instances

Training set: 690 instances (including 37 with missing values)

Test set: 200 instances (including 12 with missing values)
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Dataset genetics

Description

Each instance comprises the values of a sequence of 60 DNA elements

classified into one of three possible categories. For further information see

[3].

Source: UCI Repository

Classes

EI, IE and N

Attributes and Attribute Values

There are 60 attributes, named A0 to A59, all of which are categorical.

Each attribute has eight possible values: A, T, G, C, N, D, S and R.

Instances

Training set: 3190 instances

No separate test set
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Dataset glass

Description

This dataset is concerned with the classification of glass left at the scene

of a crime into one of six types (such as ‘tableware’, ‘headlamp’ or ‘build-

ing windows float processed’), for purposes of criminological investigation.

The classification is made on the basis of nine continuous attributes (plus

an identification number, which is ignored).

Source: UCI Repository

Classes

1, 2, 3, 5, 6, 7

Type of glass:

1 building windows float processed

2 building windows non float processed

3 vehicle windows float processed

4 vehicle windows non float processed (none in this dataset)

5 container

6 tableware

7 headlamp

Attributes and Attribute Values

Id number: 1 to 214 (an ‘ignore’ attribute)

plus nine continuous attributes

RI: refractive index

Na: Sodium (unit measurement: weight percent in corresponding oxide, as

are the attributes that follow)

Mg: Magnesium

Al: Aluminum

Si: Silicon

K: Potassium

Ca: Calcium

Ba: Barium

Fe: Iron

Instances

Training set: 214 instances

No separate test set
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Dataset golf

Description

A synthetic dataset relating a decision on whether or not to play golf to

weather observations.

Source: UCI Repository

Classes

Play, Don’t Play

Attributes and Attribute Values

outlook: sunny, overcast, rain

temperature: continuous

humidity: continuous

windy: true, false

Instances

Training set: 14 instances

No separate test set
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Dataset hepatitis

Description

The aim is to classify patients into one of two classes, representing ‘will

live’ or ‘will die’, on the basis of 13 categorical and 9 continuous attributes.

Source: UCI Repository

Classes

1 and 2 representing ‘will die’ and ‘will live’ respectively

Attributes and Attribute Values

Age: continuous.

Sex: 1, 2 (representing male, female)

Steroid: 1, 2 (representing no, yes)

Antivirals: 1, 2 (representing no, yes)

Fatigue: 1, 2 (representing no, yes)

Malaise: 1, 2 (representing no, yes)

Anorexia: 1, 2 (representing no, yes)

Liver Big: 1, 2 (representing no, yes)

Liver Firm: 1, 2 (representing no, yes)

Spleen Palpable: 1, 2 (representing no, yes)

Spiders: 1, 2 (representing no, yes)

Ascites: 1, 2 (representing no, yes)

Varices: 1, 2 (representing no, yes)

Bilirubin: continuous

Alk Phosphate: continuous

SGOT: continuous

Albumin: continuous

Protime: continuous

Histology: 1, 2 (representing no, yes)

Instances

Training set: 155 instances (including 75 with missing values)

No separate test set
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Dataset hypo

Description

This is a dataset on Hypothyroid disorders collected by the Garvan

Institute in Australia. Subjects are divided into five classes based on the

values of 29 attributes (22 categorical and 7 continuous).

Source: UCI Repository

Classes

hyperthyroid, primary hypothyroid, compensated hypothyroid, secondary

hypothyroid, negative

Attributes and Attribute Values

age: continuous

sex: M, F

on thyroxine, query on thyroxine, on antithyroid medication, sick, pregnant,

thyroid surgery, I131 treatment, query hypothyroid, query hyperthyroid,

lithium, goitre, tumor, hypopituitary, psych, TSH measured ALL f, t

TSH: continuous

T3 measured: f, t

T3: continuous

TT4 measured: f, t

TT4: continuous

T4U measured: f, t

T4U: continuous

FTI measured: f, t

FTI: continuous

TBG measured: f, t

TBG: continuous

referral source: WEST, STMW, SVHC, SVI, SVHD, other

Instances

Training set: 2514 instances (all with missing values)

Test set: 1258 instances (371 with missing values)
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Dataset iris

Description

Iris Plant Classification. This is one of the best known classification

datasets, which is widely referenced in the technical literature. The aim is

to classify iris plants into one of three classes on the basis of the values of

four categorical attributes.

Source: UCI Repository

Classes

Iris-setosa, Iris-versicolor, Iris-virginica (there are 50 instances in the

dataset for each classification)

Attributes and Attribute Values

Four continuous attributes: sepal length, sepal width, petal length and

petal width.

Instances

Training set: 150 instances

No separate test set
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Dataset labor-ne

Description

This is a small dataset, created by Collective Bargaining Review (a monthly

publication). It gives details of the final settlements in labor negotiations in

Canadian industry in 1987 and the first quarter of 1988. The data includes

all collective agreements reached in the business and personal services

sector for local organisations with at least 500 members (teachers, nurses,

university staff, police, etc).

Source: UCI Repository

Classes

good, bad

Attributes and Attribute Values

duration: continuous [1..7] *

wage increase first year: continuous [2.0..7.0]

wage increase second year: continuous [2.0..7.0]

wage increase third year: continuous [2.0..7.0]

cost of living adjustment: none, tcf, tc

working hours: continuous [35..40]

pension: none, ret allw, empl contr (employer contributions to pension

plan)

standby pay: continuous [2..25]

shift differential: continuous [1..25] (supplement for work on II and III

shift)

education allowance: yes, no

statutory holidays: continuous [9..15] (number of statutory holidays)

vacation: below average, average, generous (number of paid vacation days)

longterm disability assistance: yes, no

contribution to dental plan: none, half, full

bereavement assistance: yes, no (employer’s financial contribution towards

covering the costs of bereavement)

contribution to health plan: none, half, full

Instances

Training set: 40 instances (39 with missing values)

Test set: 17 instances (all with missing values)

* The notation [1..7] denotes a value in the range from 1 to 7 inclusive
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Dataset lens24

Description

A reduced and simplified version of contact lenses with only 24 instances.

Source: Reconstructed by the author from data given in [2].

Classes

1, 2, 3

Attributes and Attribute Values

age: 1, 2, 3

specRx: 1, 2

astig: 1, 2

tears: 1, 2

Instances

Training set: 24 instances

No separate test set
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Dataset monk1

Description

Monk’s Problem 1. The ‘Monk’s Problems’ are a set of three artificial prob-

lems with the same set of six categorical attributes. They have been used to

test a wide range of classification algorithms, originally at the second Euro-

pean Summer School on Machine Learning, held in Belgium during summer

1991. There are 3× 3× 2× 3× 4× 2 = 432 possible instances. All of them

are included in the test set for each problem, which therefore includes the

training set in each case.

The ‘true’ concept underlying Monk’s Problem 1 is: if (attribute#1 =

attribute#2) or (attribute#5 = 1) then class = 1 else class = 0

Source: UCI Repository

Classes

0, 1 (62 instances for each classification)

Attributes and Attribute Values

attribute#1: 1, 2, 3

attribute#2: 1, 2, 3

attribute#3: 1, 2

attribute#4: 1, 2, 3

attribute#5: 1, 2, 3, 4

attribute#6: 1, 2

Instances

Training set: 124 instances

Test set: 432 instances
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Dataset monk2

Description

Monk’s Problem 2. See monk1 for general information about the Monk’s

Problems. The ‘true’ concept underlying Monk’s problem 2 is: if (at-

tribute#n = 1) for exactly two choices of n (from 1 to 6) then class = 1

else class = 0

Source: UCI Repository.

Classes

0, 1

Attributes and Attribute Values

attribute#1: 1, 2, 3

attribute#2: 1, 2, 3

attribute#3: 1, 2

attribute#4: 1, 2, 3

attribute#5: 1, 2, 3, 4

attribute#6: 1, 2

Instances

Training set: 169 instances

Test set: 432 instances
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Dataset monk3

Description

Monk’s Problem 3. See monk1 for general information about the Monk’s

Problems. The ‘true’ concept underlying Monk’s Problem 3 is:

if (attribute#5 = 3 and attribute#4 = 1) or (attribute#5 	= 4 and at-

tribute#2 	= 3) then class = 1 else class = 0

This dataset has 5% noise (misclassifications) in the training set.

Source: UCI Repository

Classes

0, 1

Attributes and Attribute Values

attribute#1: 1, 2, 3

attribute#2: 1, 2, 3

attribute#3: 1, 2

attribute#4: 1, 2, 3

attribute#5: 1, 2, 3, 4

attribute#6: 1, 2

Instances

Training set: 122 instances

Test set: 432 instances
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Dataset pima-indians

Description

The dataset concerns the prevalence of diabetes in Pima Indian women. It

is considered to be a difficult dataset to classify.

The dataset was created by the (United States) National Institute of

Diabetes and Digestive and Kidney Diseases and is the result of a study on

768 adult female Pima Indians living near Phoenix. The goal is to predict

the presence of diabetes using seven health-related attributes, such as

‘Number of times pregnant’ and ‘Diastolic blood pressure’, together with

age.

Source: UCI Repository

Classes

0 (‘tested negative for diabetes’) and 1 (‘tested positive for diabetes’)

Attributes and Attribute Values

Eight attributes, all continuous: Number of times pregnant, Plasma glucose

concentration, Diastolic blood pressure, Triceps skin fold thickness, 2-Hour

serum insulin, Body mass index, Diabetes pedigree function, Age (in years).

Instances

Training set: 768 instances

No separate test set
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Dataset sick-euthyroid

Description Thyroid Disease data.

Source: UCI Repository

Classes

sick-euthyroid and negative

Attributes and Attribute Values

age: continuous

sex: M, F

on thyroxine: f, t

query on thyroxine: f, t

on antithyroid medication: f, t

thyroid surgery: f, t

query hypothyroid: f, t

query hyperthyroid: f, t

pregnant: f, t

sick: f, t

tumor: f, t

lithium: f, t

goitre: f, t

TSH measured: y, n

TSH: continuous

T3 measured: y, n

T3: continuous

TT4 measured: y, n

TT4: continuous

T4U measured: y, n

T4U: continuous.

FTI measured: y, n

FTI: continuous

TBG measured: y, n

TBG: continuous

Instances

Training set: 3163 instances

No separate test set
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Dataset vote

Description

Voting records drawn from the Congressional Quarterly Almanac, 98th

Congress, 2nd session 1984, Volume XL: Congressional Quarterly Inc. Wash-

ington, DC, 1985.

This dataset includes votes for each of the US House of Representatives

Congressmen on the 16 key votes identified by the CQA. The CQA lists nine

different types of vote: voted for, paired for, and announced for (these three

simplified to yea), voted against, paired against, and announced against

(these three simplified to nay), voted present, voted present to avoid conflict

of interest, and did not vote or otherwise make a position known (these three

simplified to an unknown disposition).

The instances are classified according to the party to which the voter

belonged, either Democrat or Republican. The aim is to predict the voter’s

party on the basis of 16 categorical attributes recording the votes on topics

such as handicapped infants, aid to the Nicaraguan Contras, immigration,

a physician fee freeze and aid to El Salvador.

Source: UCI Repository

Classes

democrat, republican

Attributes and Attribute Values

Sixteen categorical attributes, all with values y, n and u (standing for

‘yea’, ‘nay’ and ‘unknown disposition’, respectively): handicapped infants,

water project cost sharing, adoption of the budget resolution, physician fee

freeze, el salvador aid, religious groups in schools, anti satellite test ban,

aid to nicaraguan contras, mx missile, immigration, synfuels corporation

cutback, education spending, superfund right to sue, crime, duty free

exports, export administration act south africa.

Instances

Training set: 300 instances

Test set: 135 instances
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C
Sources of Further Information

Websites

There is a great deal of information about all aspects of data mining available on

the World Wide Web. A good place to start looking is the ‘Knowledge Discovery

Nuggets’ site at http://www.kdnuggets.com, which has links to information

on software, products, companies, datasets, other websites, courses, conferences

etc.

Another very useful source of information is The Data Mine at http://www.

the-data-mine.com.

The KDNet (Knowledge Discovery Network of Excellence) website at

http://www.kdnet.org has links to journals, conferences, calls for papers and

other sources of information.

The Natural Computing Applications Forum (NCAF) is an active British-

based group specialising in Neural Nets and related technologies. Their website

is at http://www.ncaf.org.uk.

Books

There are many books on Data Mining. Some popular ones are listed below.

1. Data Mining: Concepts and Techniques (second edition) by J. Han

and M. Kamber. Morgan Kaufmann, 2006. ISBN: 1-55860-901-6.

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5,
© Springer-Verlag London 2013
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2. The Elements of Statistical Learning: Data Mining, Inference and

Prediction by T. Hastie, R. Tibshirani and J. Friedman. Springer-Verlag,

2001. ISBN: 0-38795-284-5.

3. Data Mining: Practical Machine Learning Tools and Techniques

(third edition) by I.H. Witten, E. Frank and M.Hall. Morgan Kaufmann,

2011. ISBN: 978-0-12-374856-0.

This book is based around Weka, a collection of open source machine learn-

ing algorithms for data mining tasks that can either be applied directly to

a dataset or called from the user’s own Java code. Full details are available

at http://www.cs.waikato.ac.nz/ml/weka/.

4. C4.5: Programs for Machine Learning by Ross Quinlan. Morgan

Kaufmann, 1993. ISBN: 1-55860-238-0.

This book gives a detailed account of the author’s celebrated tree induction

system C4.5, together with a machine-readable version of the software and

some sample datasets.

5. Machine Learning by Tom Mitchell. McGraw-Hill, 1997. ISBN: 0-07042-

807-7.

6. Text Mining: Applications and Theory by Michael Berry and Jacob

Kogan. Wiley, 2010. ISBN: 978-0-470-74982-1.

Books on Neural Nets

Some introductory books on Neural Nets (a topic not covered in this book)

are:

1. Neural Networks for Pattern Recognition by Chris Bishop. Claren-

don Press: Oxford, 2004. ISBN: 978-0-19-853864-6.

2. Pattern Recognition and Neural Networks by Brian Ripley. Cam-

bridge University Press, 2007. ISBN: 978-0-521-71770-0.

Two other useful books that include material on neural nets are:

1. Intelligent Systems by Robert Schalkoff. Jones and Bartlett, 2011. ISBN-

10: 0-7637-8017-0.

2. Machine Learning (second edition) by Ethem Alpaydin. MIT Press,

2010. ISBN: 978-0-262-01243-0.
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Conferences

There are many conferences and workshops on Data Mining every year. Two

of the most important regular series are:

The annual KDD-20xx series of conferences organised by SIGKDD (the

ACM Special Interest Group on Knowledge Discovery and Data Mining) in the

United States and Canada. For details see the SIGKDD website at http://

www.acm.org/sigs/sigkdd.

The annual IEEE ICDM (International Conferences on Data Mining) series.

These move around the world, with every second year in the United States or

Canada. For details see the ICDM website at http://www.cs.uvm.edu/~icdm.

Information About Association Rule Mining

A valuable source of information is the repository established by two interna-

tional workshops known as FIMI (Frequent Itemset Mining Implementations),

which were run as part of the annual International Conference on Data Mining

organised by the Institution of Electrical and Electronic Engineering. The FIMI

website at http://fimi.ua.ac.be holds not only a collection of research pa-

pers but also downloadable implementations of many of them and a collection

of standard datasets that researchers can use to test their own algorithms.
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D
Glossary and Notation

a < b a is less than b

a ≤ b a is less than or equal to b

a > b a is greater than b

a ≥ b a is greater than or equal to b

ai i is a subscript. Subscript notation is explained in Ap-

pendix A
N∑

i=1

ai The sum a1 + a2 + a3 + · · ·+ aN

N∑

i=1

M∑

j=1

aij The sum a11 + a12 + · · ·+ a1M +a21 + a22 + · · ·+ a2M +

. . . +aN1 + aN2 + · · ·+ aNM
M∏

j=1

bj The product b1 × b2 × b3 × · · · × bM

P (E) The probability of event E occurring (a number from

0 to 1 inclusive)

P (E | x = a) The probability of event E occurring given that vari-

able x has value a (a conditional probability)

log2 X Logarithm to base 2 of X. Logarithms are explained in

Appendix A

dist(X,Y ) The distance between two points X and Y

ZCL In Chapter 7, the number of standard errors needed for

a confidence level of CL

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5,
© Springer-Verlag London 2013
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a± b Generally ‘a plus or minus b’, e.g. 6± 2 denotes a number

from 4 to 8 inclusive. In Chapter 7, a±b is used to indicate

that a classifier has a predictive accuracy of a with

standard error b

NLEFT The number of instances matching the left-hand side of

a rule

NRIGHT The number of instances matching the right-hand side

of a rule

NBOTH The number of instances matching both sides of a rule

NTOTAL The total number of instances in a dataset

{} The ‘brace’ characters that enclose the elements of a set,

e.g. {apples, oranges, bananas}
∅ The empty set. Also written as {}
A ∪B The union of sets A and B. The set that contains all

the elements that occur either in A or B or both

A ∩B The intersection of two sets A and B. The set that

includes all the elements (if there are any) that occur in

both A and B

A ⊆ B A is a subset of B, i.e. every element in A also occurs

in B

A ⊂ B A is a strict subset of B, i.e. A is a subset of B and A

contains fewer elements than B

A ⊇ B A is a superset of B. True if and only if B is a subset

of A

A ⊃ B A is a strict superset of B. True if and only if B is a

strict subset of A

count(S) The support count of itemset S. See Chapter 17

support(S) The support of itemset S. See Chapter 17

cd → e In Association Rule Mining used to denote the rule

‘if we know that items c and d were bought, predict that

item e was also bought’. See Chapter 17

Lk The set containing all supported itemsets with car-

dinality k. See Chapter 17

Ck A candidate set containing itemsets of cardinality k.

See Chapter 17

L → R Denotes a rule with antecedent L and consequent R

confidence(L → R) The confidence of the rule L → R

kCi Represents the value k!
(k−i)!i! (The number of ways of se-

lecting i values from k, when the order in which they are

selected is unimportant)
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‘a posteriori’ probability Another name for posterior probability

‘a priori’ probability Another name for prior probability

‘Ignore’ Attribute An attribute that is of no significance for a given ap-

plication

Abduction A type of reasoning. See Section 4.3

Adequacy Condition (for TDIDT algorithm) The condition that no two

instances with the same values of all the attributes may belong to dif-

ferent classes

Agglomerative Hierarchical Clustering A widely used method of clus-

tering

Antecedent of a Rule The ‘if’ part (left-hand side) of an IF. . .THEN rule

Apriori Algorithm An algorithm for Association Rule Mining. See

Chapter 17

Association Rule A rule representing a relationship amongst the values of

variables. A general form of rule, where a conjunction of attribute = value

terms can occur on both the left- and the right-hand side

Association Rule Mining (ARM) The process of extracting association

rules from a given dataset

Attribute An alternative name for variable, used in some areas of data

mining

Attribute Selection In this book, generally used to mean the selection of

an attribute for splitting on when generating a decision tree

Attribute Selection Strategy An algorithm for attribute selection

Automatic Rule Induction Another term for Rule Induction

Average-link Clustering For hierarchical clustering, a method of calcu-

lating the distance between two clusters using the average distance from

any member of one cluster to any member of the other

Backed-up Error Rate Estimate (at a node in a decision tree) An

estimate based on the estimated error rates of the nodes below it in the

tree

Backward Pruning Another name for post-pruning

Bag-of-Words Representation A word-based representation of a text doc-

ument
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Bagging A technique for constructing multiple training sets used in en-

semble classification

Base Classifier An individual classifier in an Ensemble of Classifiers

Bigram A combination of two consecutive characters in a text document

Binary Variable A type of variable. See Section 2.2

Bit (short for ‘binary digit’) The basic unit of information. It corresponds to

a switch being open or closed or an electric current flowing or not flowing

Blackboard See Blackboard Architecture

Blackboard Architecture An architecture for solving a problem analogous

to a group of experts all working together on the problem, communicating

with each other by writing to or reading from a common storage area known

as a blackboard

Body of a Rule Another name for rule antecedent

Bootstrap Aggregating See Bagging

Branch (of a decision tree) The path from the root node of a tree to any

of its leaf nodes

Candidate Set A set containing itemsets of cardinality k that includes

all the supported itemsets of that cardinality and possibly also some

non-supported ones

Cardinality of a Set The number of members of the set

Categorical Attribute An attribute that can only take one of a number

of distinct values, such as ‘red’, ‘blue’, ‘green’

CDM See Cooperating Data Mining

Centroid of a Cluster The ‘centre’ of a cluster

Chi Square Attribute Selection Criterion A measure used for attribute

selection for the TDIDT algorithm. See Chapter 6

Chi Square Test A statistical test used as part of theChiMerge algorithm

ChiMerge An algorithm for global discretisation. See Section 8.4

City Block Distance. Another name for Manhattan distance

Clash (in a training set) A situation where two or more of the instances in

a training set have identical attribute values but different classifications

Clash Set A set of instances in a training set associated with a clash



Glossary and Notation 391

Clash Threshold A middle approach between the ‘delete branch’ and the

‘majority voting’ strategies for dealing with clashes when generating a

decision tree. See Chapter 9

Class One of a number of mutually exclusive and exhaustive categories

to which objects are assigned by a classification process or algorithm

Classification

1. A process of dividing up objects so that each object is assigned to one

of a number of mutually exclusive and exhaustive categories

known as classes

2. For labelled data the classification is the value of a specially des-

ignated categorical attribute. The aim is frequently to predict the

classification for one or more unseen instances

3. Supervised learning where the designated attribute has categorical

values

Classification Rules A set of rules that can be used to predict the classi-

fication of an unseen instance

Classification Tree A way of representing a set of classification rules

Classifier Any algorithm that assigns a classification to unseen instances

Cluster A group of objects that are similar to one another and (relatively)

dissimilar to those in other clusters

Clustering Grouping together objects (e.g. instances in a dataset) that

are similar to each other and (relatively) dissimilar to the objects belonging

to other clusters

Community Experiments Effect The undesirable effect caused when many

people share a small repository of datasets and repeatedly use those

datasets for experiments. See Chapter 15

Complete-link Clustering For hierarchical clustering, a method of cal-

culating the distance between two clusters using the longest distance from

any member of one cluster to any member of the other

Completeness A rule interestingness measure

Conditional FP-tree An abbreviation for Conditional Frequent Pattern

Tree. A tree structure developed when executing the FP-Growth algo-

rithm

Conditional Probability The probability of an event occurring given that

we have additional information (as well as its observed frequency in a series

of trials)
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Confidence Interval A range of values within which it is estimated that a

unknown value of interest lies. See Chapter 15

Confidence Level The probability with which we know (or wish to know)

the interval in which the predictive accuracy of a classifier lies

Confidence of a Rule The predictive accuracy of a rule (a rule inter-

estingness measure)

Confident Itemset An itemset on the right-hand side of an association

rule for which the value of confidence is greater than or equal to a min-

imum threshold value

Conflict Resolution Strategy A strategy for deciding which rule or rules

to give priority when two or more rules fire for a given instance

Confusion Matrix A tabular way of illustrating the performance of a clas-

sifier. The table shows the number of times each combination of predicted

and actual classifications occurred for a given dataset

Consequent of a Rule The ‘then’ part (right-hand side) of an IF. . .THEN

rule

Continuous Attribute An attribute that takes numerical values

Cooperating Data Mining A model for distributed data mining. See

Chapter 13

Count of an Itemset Another name for support count of an itemset

Cross-entropy An alternative name for j-measure

Cut Point An end point of one of a number of non-overlapping ranges into

which the values of a continuous attribute are split

Cut Value Another name for cut point

Data Compression Converting the data in a dataset to a more compact

form such as a decision tree

Data Mining The central data processing stage of Knowledge Discovery.

See Introduction

Dataset The complete set of data available for an application. Datasets are

divided into instances or records. A dataset is often represented by a

table, with each row representing an instance and each column containing

the values of one of the variables (attributes) for each of the instances

Decision Rule Another term for classification rule

Decision Tree Another name for a classification tree
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Decision Tree Induction Another term for tree induction

Deduction A type of reasoning. See Section 4.3

Dendrogram A graphical representation of agglomerative hierarchical

clustering

Depth Cutoff A possible criterion for pre-pruning a decision tree

Dictionary (for text classification) See Local Dictionary and Global

Dictionary

Dimension The number of attributes recorded for each instance

Dimension Reduction An alternative term for feature reduction

Discretisation The conversion of a continuous attribute to one with a dis-

crete set of values, i.e. a categorical attribute

Discriminability A rule interestingness measure

Disjoint Sets Sets with no common members

Disjunct One of a set of rules in disjunctive normal form

Disjunctive Normal Form (DNF) A rule is in disjunctive normal form if

it comprises a number of terms of the form variable = value (or variable 	=
value) joined by the logical ‘and’ operator. For example the rule IF x = 1

AND y = ‘yes’ AND z = ‘good’ THEN class = 6 is in DNF

Distance-based Clustering Algorithm A method of clustering that

makes use of a measure of the distance between two instances

Distance Measure A means of measuring the similarity between two in-

stances. The smaller the value, the greater the similarity

Distributed Data Mining System A form of data mining that makes

use of more than one processor. See Chapter 13

Dot Product (of two unit vectors) The sum of the products of the corre-

sponding pairs of component values

Downward Closure Property of Itemsets The property that if an item-

set is supported, all its (non-empty) subsets are also supported

Eager Learning For classification tasks, a form of learning where the

training data is generalised into a representation (or model) such as a

table of probabilities, a decision tree or a neural net without waiting for

an unseen instance to be presented for classification. See Lazy Learning

Empty set A set with no elements, written as ∅ or {}
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Ensemble Classification A technique for improving the accuracy of clas-

sification by using a set of classifiers to make predictions rather than

just one. See Chapter 14

Ensemble Learning A technique where a set of models is learnt that collec-

tively can be applied to solving a problem. See Ensemble Classification

Ensemble of Classifiers A set of classifiers used for ensemble classifi-

cation

Entropy An information-theoretic measure of the ‘uncertainty’ of a training

set, due to the presence of more than one classification. See Chapters 5

and 10

Entropy Method of Attribute Selection (when constructing a decision

tree) Choosing to split on the attribute that gives the greatest value of

Information Gain. See Chapter 5

Entropy Reduction Equivalent to information gain

Equal Frequency Intervals Method A method of discretising a contin-

uous attribute

Equal Width Intervals Method A method of discretising a continuous

attribute

Error Rate The ‘reverse’ of the predictive accuracy of a classifier. A

predictive accuracy of 0.8 (i.e. 80%) implies an error rate of 0.2 (i.e. 20%)

Euclidean Distance Between Two Points A widely used measure of the

distance between two points

Exact Rule One for which the value of confidence is 1

Exclusive Clustering Algorithm A clustering algorithm that places each

object in precisely one of a set of clusters

F1 Score A performance measure for a classifier

False Alarm Rate Another name for false positive rate

False Negative Classification The classification of an unseen instance

as negative, when it is actually positive

False Negative Rate of a Classifier The proportion of positive instances

that are classified as negative

False Positive Classification The classification of an unseen instance as

positive, when it is actually negative
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False Positive Rate of a Classifier The proportion of negative instances

that are classified as positive

Feature Another name for attribute

Feature Reduction The reduction of the number of features (i.e. at-

tributes or variables) for each instance in a dataset. The discarding of

relatively unimportant attributes

Feature Space For text classification, the set of words included in the

dictionary

Forward Pruning Another name for pre-pruning

FP-Growth An abbreviation for Frequent Pattern Growth. An algorithm for

Association Rule Mining. See Chapter 18

FP-tree An abbreviation for Frequent Pattern Tree. A tree structure devel-

oped when executing the FP-Growth algorithm

Frequency Table A table used for attribute selection for the TDIDT

algorithm. It gives the number of occurrences of each classification for

each value of an attribute. See Chapter 6. (The term is used in a more

general sense in Chapter 11.)

Frequent Itemset Another name for supported itemset

Gain Ratio A measure used for attribute selection for the TDIDT algo-

rithm. See Chapter 6

Generalised Rule Induction (GRI) Another name for Association Rule

Mining

Generalising a Rule Making a rule apply to more instances by deleting

one or more of its terms

Gini Index of Diversity A measure used for attribute selection for the

TDIDT Algorithm. See Chapter 6

Global Dictionary In text classification a dictionary that contains all the

words that occur at least once in any of the documents under consideration.

See Local Dictionary

Global Discretisation A form of discretisation where each continuous

attribute is converted to a categorical attribute once and for all before

any data mining algorithm is applied

Head of a Rule Another name for rule consequent

Heterogeneous Ensemble An ensemble in which the classifiers are of

different kinds
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Hierarchical Clustering In this book, another name for Agglomerative

Hierarchical Clustering

Hit Rate Another name for true positive rate

Homogeneous Ensemble An ensemble in which all the classifiers are of

the same kind (e.g. decision trees)

Horizontal Partitioning of Data A method of dividing up a dataset

amongst a number of processors by giving a subset of the instances to

each one

Hypertext Categorisation The automatic classification of web documents

into predefined categories

Hypertext Classification Another name for hypertext categorisation

Incremental Classification Algorithm A type of classification algorithm

used when the data is not all available at the start of the process. The

classifier is created and then changed as further instances are collected

(usually in batches)

Induction A type of reasoning. See Section 4.3

Inductive Bias A preference for one algorithm, formula etc. over another

that is not determined by the data itself. Inductive bias is unavoidable in

any inductive learning system

Information Gain When constructing a decision tree by splitting on at-

tributes, information gain is the difference between the entropy of a node

and the weighted average of the entropies of its immediate descendants. It

can be shown that the value of information gain is always positive or zero

Instance One of the stored examples in a dataset. Each instance comprises

the values of a number of variables, which in data mining are often

called attributes

Integer Variable A type of variable. See Section 2.2

Internal Node (of a tree) A node of a tree that is neither a root node nor

a leaf node

Intersection (of two sets) The intersection of two sets A and B, written as

A∩B, is the set that includes all the elements (if there are any) that occur

in both of the sets

Interval-scaled Variable A type of variable. See Section 2.2

Invalid Value An attribute value that is invalid for a given dataset. See

Noise
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Item For Market Basket Analysis, each item corresponds to one of the

purchases made by a customer, e.g. bread or milk. We are not usually

concerned with items that were not purchased

Itemset For Market Basket Analysis, a set of items purchased by a

customer, effectively the same as a transaction. Itemsets are generally

written in list notation, e.g. {fish, cheese, milk}

J-Measure A rule interestingness measure that quantifies the informa-

tion content of a rule

j-Measure A value used in calculating the J-measure of a rule

Jack-knifing Another name for N-fold cross-validation

k-fold Cross-validation A strategy for estimating the performance of a

classifier

k-Means Clustering A widely used method of clustering

k-Nearest Neighbour Classification A method of classifying an unseen

instance using the classification of the instance or instances closest to

it (see Chapter 3)

Knowledge Discovery The non-trivial extraction of implicit, previously un-

known and potentially useful information from data. See Introduction

Labelled Data Data where each instance has a specially designated at-

tribute which can be either categorical or continuous. The aim is gen-

erally to predict its value. See Unlabelled Data

Landscape-style Dataset A dataset for which there are far more at-

tributes than instances

Large Itemset Another name for Supported Itemset

Lazy Learning For classification tasks, a form of learning where the train-

ing data is left unchanged until an unseen instance is presented for

classification. See Eager Learning

Leaf Node A node of a tree which has no other nodes descending from it

Leave-one-out Cross-validation Another name for N-fold cross-valid-

ation

Length of a Vector The square root of the sum of the squares of its com-

ponent values. See Unit Vector

Leverage A rule interestingness measure

Lift A rule interestingness measure
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Local Dictionary In text classification a dictionary that contains only

those words that occur in the documents under consideration that are

classified as being in a specific category. See Global Dictionary

Local Discretisation A form of discretisation where each continuous

attribute is converted to a categorical attribute at each stage of the

data mining process

Logarithm Function See Appendix A

Majority Voting A method for combining the predictions of the individual

classifiers in an ensemble

Manhattan Distance A measure of the distance between two points

Market Basket Analysis A special form of Association Rule Mining.

See Chapter 17

Matches An itemset matches a transaction if all the items in the former

are also in the latter

Maximum Dimension Distance A measure of the distance between two

points

Missing Branches An effect that can occur during the generation of a deci-

sion tree that makes the tree unable to classify certain unseen instances.

See Section 6.7

Missing Value An attribute value that is not recorded

Model-based Classification Algorithm One that gives an explicit repre-

sentation of the training data (in the form of a decision tree, set of

rules etc.) that can be used to classify unseen instances without refer-

ence to the training data itself

Mutually Exclusive and Exhaustive Categories A set of categories cho-

sen so that each object of interest belongs to precisely one of the categories

Mutually Exclusive and Exhaustive Events A set of events, one and

only one of which must always occur

n-dimensional Space A point in n-dimensional space is a graphical way of

representing an instance with n attribute values

N-dimensional Vector In text classification, a way of representing a la-

belled instance with N attributes by its N attribute values (or other

values derived from them), enclosed in parentheses and separated by com-

mas, e.g. (2, yes, 7, 4, no). The classification is not generally included
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N-fold Cross-validation A strategy for estimating the performance of a

classifier

Näıve Bayes Algorithm A means of combining prior and conditional

probabilities to calculate the probability of alternative classifications.

See Chapter 3

Näıve Bayes Classification A method of classification that uses Mathemat-

ical probability theory to find the most likely classification for an unseen

instance

Nearest Neighbour Classification See k-Nearest Neighbour Classifi-

cation

Node (of a decision tree) A tree consists of a collection of points, called

nodes, joined by straight lines, called links. See Appendix A.2

Noise An attribute value that is valid for a given dataset, but is incorrectly

recorded. See Invalid Value

Nominal Variable A type of variable. See Section 2.2

Normalisation (of an Attribute) Adjustment of the values of an attribute,

generally to make them fall in a specified range such as 0 to 1

Normalised Vector Space Model A vector space model where the com-

ponents of a vector are adjusted so that the length of each vector is 1

Null Hypothesis A default assumption, e.g. that the performance of two

classifiers A and B is effectively the same

Numerical Prediction Supervised learning where the designated at-

tribute has a numerical value. Also called regression

Object One of a universe of objects. It is described by the values of a

number of variables that correspond to its properties

Objective Function For clustering, a measure of the quality of a set of

clusters

Opportunity Sampling A method of sampling. See Chapter 15

Order of a Rule The number of terms in the antecedent of a rule in

disjunctive normal form

Ordinal Variable A type of variable. See Section 2.2

Overfitting A classification algorithm is said to overfit to the training

data if it generates a decision tree, set of classification rules or any
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other representation of the data that depends too much on irrelevant fea-

tures of the training instances, with the result that it performs well on the

training data but relatively poorly on unseen instances. See Chapter 9

Paired t-test A statistical test used in comparing classification algorithms.

See Chapter 15

Piatetsky-Shapiro Criteria Criteria that it has been proposed should be

met by any rule interestingness measure

Portrait-style Dataset A dataset for which there are far more instances

than attributes

Positive Predictive Value Another name for precision

Post-pruning a Decision Tree Removing parts of a decision tree that

has already been generated, with the aim of reducing overfitting

Posterior Probability The probability of an event occurring given addi-

tional information that we have

Pre-pruning a Decision Tree Generating a decision tree with fewer

branches than would otherwise be the case, with the aim of reducing

overfitting

Precision A performance measure for a classifier

Prediction Using the data in a training set to predict (as far as this book

is concerned) the classification for one or more previously unseen in-

stances

Predictive Accuracy For classification applications, the proportion of a

set of unseen instances for which the correct classification is predicted.

A rule interestingness measure, also known as confidence

Prior Probability The probability of an event occurring based solely on its

observed frequency in a series of trials, without any additional information

Prism An algorithm for inducing classification rules directly, without using

the intermediate representation of a decision tree

Probability of an Event The proportion of times we would expect an event

to occur over a long series of trials

Pruned Tree A tree to which pre-pruning or post-pruning has been

applied

Pruning Set Part of a dataset used during post-pruning of a decision

tree
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Pseudo-attribute A test on the value of a continuous attribute, e.g. A <

35. This is effectively the same as a categorical attribute that has only

two values: true and false

Random Decision Forests A method of ensemble classification

Random Forests A method of ensemble classification

Ratio-scaled Variable A type of variable. See Section 2.2

Recall Another name for true positive rate

Receiver Operating Characteristics Graph The full name for ROC

Graph

Record Another term for instance

Recursive Partitioning Generating a decision tree by repeatedly split-

ting on the values of attributes

Reliability A rule interestingness measure. Another name for confidence

RI Measure A rule interestingness measure

ROC Curve A ROC Graph on which related points are joined together to

form a curve

ROC Graph A diagrammatic way of representing the true positive rate

and false positive rate of one or more classifiers

Root Node The top-most node of a tree. The starting node for every

branch

Rule The statement of a relationship between a condition, known as the

antecedent, and a conclusion, known as the consequent. If the condition

is satisfied, the conclusion follows

Rule Fires The antecedent of the rule is satisfied for a given instance

Rule Induction The automatic generation of rules from examples

Rule Interestingness Measure A measure of the importance of a rule

Ruleset A collection of rules

Sample Standard Deviation A statistical measure of the ‘spread’ of the

numbers in a sample. The square root of the sample variance

Sample Variance A statistical measure of the ‘spread’ of the numbers in a

sample. The square of the sample standard deviation
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Sampling The selection of a subset of the members of a dataset (or other

collection of objects, people etc.) that it is hoped will accurately represent

the characteristics of the whole population

Sampling with Replacement A form of sampling where the whole popu-

lation of objects is available for selection at each stage (implying that the

sample may include an object two or more times)

Scale-up of a Distributed Data Mining System A measure of the per-

formance of a distributed data mining system

Search Space In Chapter 16, the set of possible rules of interest

Search Strategy A method of examining the contents of a search space

(usually in an efficient order)

Sensitivity Another name for true positive rate

Set An unordered collection of items, known as elements. See Appendix A.

The elements of a set are often written between ‘brace’ characters and

separated by commas, e.g. {apples, oranges, bananas}

Significance Test A test applied to estimate the probability that an apparent

relationship between two variables is (or is not) a chance occurrence

Simple Majority Voting See Majority Voting

Single-link Clustering For hierarchical clustering, a method of calcu-

lating the distance between two clusters using the shortest distance from

any member of one cluster to any member of the other

Size Cutoff A possible criterion for pre-pruning a decision tree

Size-up of a Distributed Data Mining System A measure of the perfor-

mance of a distributed data mining system

Specialising a Rule Making a rule apply to fewer instances by adding one

or more additional terms

Specificity Another name for true negative rate

Speed-up Factor of a Distributed Data Mining System A measure of

the performance of a distributed data mining system

Speed-up of a Distributed Data Mining System A measure of the per-

formance of a distributed data mining system

Split Information A value used in the calculation of Gain Ratio. See

Chapter 6
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Split Value A value used in connection with continuous attributes when

splitting on an attribute to construct a decision tree. The test is

normally whether the value is ‘less than or equal to’ or ‘greater than’ the

split value

Splitting on an Attribute (while constructing a decision tree) Testing the

value of an attribute and then creating a branch for each of its possible

values

Standard Deviation of a Sample See Sample Standard Deviation

Standard Error (associated with a value) A statistical estimate of the reli-

ability of the value. See Section 7.2.1

Static Error Rate Estimate (at a node in a decision tree) An esti-

mate based on the instances corresponding to the node, as opposed to a

backed-up estimate

Stemming Converting a word to its linguistic root (e.g. ‘computing’, ‘com-

puter’ and ‘computation’ to ‘comput’)

Stop Words Common words that are unlikely to be useful for text classi-

fication

Stratified Sampling A method of sampling. See Chapter 15

Streaming Data Data transferred in real-time as effectively an infinite con-

tinuous stream, for an application such as CCTV

Strict Subset A set A is a strict subset of a set B, written as A ⊂ B, if A

is a subset of B and A contains fewer elements than B

Strict Superset A set A is a strict superset of a set B, written as A ⊃ B, if

and only if B is a strict subset of A

Subset A set A is a subset of a set B, written as A ⊆ B, if every element in

A also occurs in B

Subtree The part of a tree that descends from (or ‘hangs from’) one of its

nodes A (including node A itself). A subtree is a tree in its own right,

with its own root node (A) etc. See Appendix A.2

Superset A set A is a superset of a set B, written as A ⊇ B, if and only if

B is a subset of A

Supervised Learning A form of Data Mining using labelled data

Support Count of an Itemset For Market Basket Analysis, the number

of transactions in the database matched by the itemset
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Support of a Rule The proportion of the database to which the rule suc-

cessfully applies (a rule interestingness measure)

Support of an Itemset The proportion of transactions in the database

that are matched by the itemset

Supported Itemset An itemset for which the support value is greater

than or equal to a minimum threshold value

Symmetry condition (for a distance measure) The distance from point

A to point B is the same as the distance from point B to point A

TDIDT An abbreviation for Top-Down Induction of Decision Trees. See

Chapter 4

Term In this book, a component of a rule. A term takes the form variable =

value. See Disjunctive Normal Form

Term Frequency In text classification, the number of occurrences of a

term in a given document

Test of Significance See Significance Test

Test Set A collection of unseen instances

Text Classification A particular type of classification, where the objects

are text documents such as articles in newspapers, scientific papers etc. See

also Hypertext Categorisation

TFIDF (Term Frequency Inverse Document Frequency) In text clas-

sification, a measure combining the frequency of a term with its rarity in

a set of documents

Top Down Induction of Decision Trees A widely-used algorithm for clas-

sification. See Chapter 4

Track Record Voting A method for combining the predictions of the

individual classifiers in an ensemble

Train and Test A strategy for estimating the performance of a classifier

Training Data Another name for training set

Training Set A dataset or part of a dataset that is used for purposes of

classification

Transaction Another name for record or instance, generally used when the

application is Market Basket Analysis. A transaction generally repre-

sents a set of items bought by a customer
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Tree A structure used to represent data items and the processes applied to

them. See Appendix A.2

Tree Induction Generating decision rules in the implicit form of a deci-

sion tree

Triangle Inequality (for a distance measure) A condition corresponding

to the idea that ‘the shortest distance between any two points is a straight

line’

Trigram A combination of three consecutive characters in a text document

True Negative Classification The correct classification of an unseen in-

stance as negative

True Negative Rate of a Classifier The proportion of negative instances

that are classified as negative

True Positive Classification The correct classification of an unseen in-

stance as positive

True Positive Rate of a Classifier The proportion of positive instances

that are classified as positive

Two-dimensional Space See n-dimensional Space

Two-tailed Significance Test A significance test in which a given null

hypothesis will be rejected when a calculated value is either sufficiently

small or sufficiently large. See Chapter 15

Type 1 Error Another name for false positive classification

Type 2 Error Another name for false negative classification

UCI Repository The library of datasets maintained by the University of

California at Irvine. See Section 2.6

Unconfident Itemset An itemset which is not confident

Union of Two Sets The set of items that occur in either or both of the sets

Unit Vector A vector of length 1

Universe of Objects See Section 2.1

Unlabelled Data Data where each instance has no specially designated at-

tribute. See Labelled Data

Unseen Instance An instance that does not occur in a training set. We fre-

quently want to predict the classification of one or more unseen instances.

See also Test Set
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Unseen Test Set Another term for test set

Unsupervised Learning A form of Data Mining using unlabelled data

Validation Dataset A dataset used by some classification algorithms to

assist in the development of a classifier, as opposed to a test set, which

is used to estimate a classifier’s accuracy once it is constructed

Variable One of the properties of an object in a universe of objects

Variance of a Sample See Sample Variance

Vector In text classification, another name for N-dimensional vector

Vector Space Model (VSM) The complete set of vectors corresponding

to a set of documents under consideration. See N-dimensional vector

Vertical Partitioning of Data A method of dividing up a dataset amongst

a number of processors by giving a subset of the attributes (for all the

instances) to each one

Weighted Majority Voting A method for combining the predictions of

the individual classifiers in an ensemble
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Solutions to Self-assessment Exercises

Self-assessment Exercise 2

Question 1

Labelled data has a specially designated attribute. The aim is to use the data

given to predict the value of that attribute for instances that have not yet

been seen. Data that does not have any specially designated attribute is called

unlabelled.

Question 2

Name: Nominal

Date of Birth: Ordinal

Sex: Binary

Weight: Ratio-scaled

Height: Ratio-scaled

Marital Status: Nominal (assuming that there are more than two values, e.g.

single, married, widowed, divorced)

Number of Children: Integer

Question 3

– Discard all instances where there is at least one missing value and use the

remainder.

– Estimate missing values of each categorical attribute by its most frequently

occurring value in the training set and estimate missing values of each con-

tinuous attribute by the average of its values for the training set.

M. Bramer, Principles of Data Mining, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-4884-5,
© Springer-Verlag London 2013

407



408 Principles of Data Mining

Self-assessment Exercise 3

Question 1

Using the values in Figure 3.2, the probability of each class for the unseen

instance

weekday summer high heavy ????

is as follows.

class = on time

0.70× 0.64× 0.43× 0.29× 0.07 = 0.0039

class = late

0.10× 0.5× 0× 0.5× 0.5 = 0

class = very late

0.15× 1× 0× 0.33× 0.67 = 0

class = cancelled

0.05× 0× 0× 1× 1 = 0

The largest value is for class = on time

The probability of each class for the unseen instance

sunday summer normal slight ????

is as follows.

class = on time

0.70× 0.07× 0.43× 0.36× 0.57 = 0.0043

class = late

0.10× 0× 0× 0.5× 0 = 0

class = very late

0.15× 0× 0× 0.67× 0 = 0

class = cancelled

0.05× 0× 0× 0× 0 = 0

The largest value is for class = on time

Question 2

The distance of the first instance in Figure 3.5 from the unseen instance is the

square root of (0.8− 9.1)2 + (6.3− 11.0)2, i.e. 9.538.

The distances for the 20 instances are given in the table below.

Attribute 1 Attribute 2 Distance

0.8 6.3 9.538

1.4 8.1 8.228
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2.1 7.4 7.871

2.6 14.3 7.290

6.8 12.6 2.802 *

8.8 9.8 1.237 *

9.2 11.6 0.608 *

10.8 9.6 2.202 *

11.8 9.9 2.915 *

12.4 6.5 5.580

12.8 1.1 10.569

14.0 19.9 10.160

14.2 18.5 9.070

15.6 17.4 9.122

15.8 12.2 6.807

16.6 6.7 8.645

17.4 4.5 10.542

18.2 6.9 9.981

19.0 3.4 12.481

19.6 11.1 10.500

The five nearest neighbours are marked with asterisks in the rightmost

column.

Self-assessment Exercise 4

Question 1

No two instances with the same values of all the attributes may belong to

different classes.

Question 2

The most likely cause is probably noise or missing values in the training set.

Question 3

Provided the adequacy condition is satisfied the TDIDT algorithm is guaran-

teed to terminate and give a decision tree corresponding to the training set.

Question 4

A situation will be reached where a branch has been generated to the maximum

length possible, i.e. with a term for each of the attributes, but the corresponding

subset of the training set still has more than one classification.
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Self-assessment Exercise 5

Question 1

(a) The proportions of instances with each of the two classifications are 6/26

and 20/26. So Estart = −(6/26) log2(6/26)− (20/26) log2(20/26) = 0.7793.

(b) The following shows the calculations.

Splitting on SoftEng

SoftEng = A

Proportions of each class: FIRST 6/14, SECOND 8/14

Entropy = −(6/14) log2(6/14)− (8/14) log2(8/14) = 0.9852

SoftEng = B

Proportions of each class: FIRST 0/12, SECOND 12/12

Entropy = 0 [all the instances have the same classification]

Weighted average entropy Enew = (14/26)× 0.9852 + (12/26)× 0 = 0.5305

Information Gain = 0.7793− 0.5305 = 0.2488

Splitting on ARIN

ARIN = A

Proportions of each class: FIRST 4/12, SECOND 8/12

Entropy = 0.9183

ARIN = B

Proportions of each class: FIRST 2/14, SECOND 12/14

Entropy = 0.5917

Weighted average entropy Enew = (12/26)× 0.9183+ 14/26× 0.5917 = 0.7424

Information Gain = 0.7793− 0.7424 = 0.0369

Splitting on HCI

HCI = A

Proportions of each class: FIRST 1/9, SECOND 8/9

Entropy = 0.5033

HCI = B

Proportions of each class: FIRST 5/17, SECOND 12/17

Entropy = 0.8740

Weighted average entropy Enew = (9/26)× 0.5033+ (17/26)× 0.8740 = 0.7457

Information Gain = 0.7793− 0.7457 = 0.0337

Splitting on CSA

CSA = A

Proportions of each class: FIRST 3/7, SECOND 4/7

Entropy = 0.9852

CSA = B
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Proportions of each class: FIRST 3/19, SECOND 16/19

Entropy = 0.6292

Weighted average entropy Enew = (7/26)× 0.9852+ (19/26)× 0.6292 = 0.7251

Information Gain = 0.7793− 0.7251 = 0.0543

Splitting on Project

Project = A

Proportions of each class: FIRST 5/9, SECOND 4/9

Entropy = 0.9911

Project = B

Proportions of each class: FIRST 1/17, SECOND 16/17

Entropy = 0.3228

Weighted average entropy Enew = (9/26)× 0.9911+ (17/26)× 0.3228 = 0.5541

Information Gain = 0.7793− 0.5541 = 0.2253

The maximum value of information gain is for attribute SoftEng.

Question 2

The TDIDT algorithm inevitably leads to a decision tree where all nodes have

entropy zero. Reducing the average entropy as much as possible at each step

would seem like an efficient way of achieving this in a relatively small num-

ber of steps. The use of entropy minimisation (or information gain maximisa-

tion) appears generally to lead to a small decision tree compared with other

attribute selection criteria. The Occam’s Razor principle suggests that small

trees are most likely to be the best, i.e. to have the greatest predictive power.

Self-assessment Exercise 6

Question 1

The frequency table for splitting on attribute SoftEng is as follows.

Attribute value

Class A B

FIRST 6 0

SECOND 8 12

Total 14 12

Using the method of calculating entropy given in Chapter 6, the value is:

−(6/26) log2(6/26)− (8/26) log2(8/26)− (12/26) log2(12/26)

+ (14/26) log2(14/26) + (12/26) log2(12/26)

= 0.5305

This is the same value as was obtained using the original method for Self-

assessment Exercise 1 for Chapter 5. Similar results apply for the other at-

tributes.



412 Principles of Data Mining

Question 2

It was shown previously that the entropy of the chess dataset is: 0.7793.

The value of Gini Index is 1− (6/26)2 − (20/26)2 = 0.3550.

Splitting on attribute SoftEng

Attribute value

Class A B

FIRST 6 0

SECOND 8 12

Total 14 12

The entropy is:

−(6/26) log2(6/26)− (8/26) log2(8/26)− (12/26) log2(12/26)

+ (14/26) log2(14/26) + (12/26) log2(12/26)

= 0.5305

The value of split information is −(14/26) log2(14/26)− (12/26) log2(12/26)

= 0.9957

The information gain is 0.7793− 0.5305 = 0.2488

Gain ratio is 0.2488/0.9957 = 0.2499

Gini Index Calculation

Contribution for ‘SoftEng = A’ is (62 + 82)/14 = 7.1429

Contribution for ‘SoftEng = B’ is (02 + 122)/12 = 12

New value of Gini Index = 1− (7.1429 + 12)/26 = 0.2637

Splitting on attribute ARIN

Attribute value

Class A B

FIRST 4 2

SECOND 8 12

Total 12 14

The value of entropy is 0.7424

The value of split information is 0.9957

So the information gain is 0.7793− 0.7424 = 0.0369

and the gain ratio is 0.0369/0.9957 = 0.0371

New value of Gini Index = 0.3370
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Splitting on attribute HCI

Attribute value

Class A B

FIRST 1 5

SECOND 8 12

Total 9 17

The value of entropy is 0.7457

The value is split information is 0.9306

So the information gain is 0.7793− 0.7457 = 0.0337

and the gain ratio is 0.0336/0.9306 = 0.0362

New value of Gini Index = 0.3399

Splitting on attribute CSA

Attribute value

Class A B

FIRST 3 3

SECOND 4 16

Total 7 19

The value of entropy is 0.7251

The value is split information is 0.8404

So the information gain is 0.7793− 0.7251 = 0.0543

and the gain ratio is 0.0542/0.8404 = 0.0646

New value of Gini Index = 0.3262

Splitting on attribute Project

Attribute value

Class A B

FIRST 5 1

SECOND 4 16

Total 9 17

The value of entropy is 0.5541

The value of split information is 0.9306

So the information gain is 0.7793− 0.5541 = 0.2253

and the gain ratio is 0.2252/0.9306 = 0.2421

New value of Gini Index = 0.2433

The largest value of Gain Ratio is when the attribute is SoftEng.
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The largest value of Gini Index reduction is for attribute Project.

The reduction is 0.3550− 0.2433 = 0.1117.

Question 3

Any dataset for which there is an attribute with a large number of values is a

possible answer, e.g. one that contains a ‘nationality’ attribute or a ‘job title’

attribute. Using Gain Ratio will probably ensure that such attributes are not

chosen.

Self-assessment Exercise 7

Question 1

vote Dataset, Figure 7.14

The number of correct predictions is 127 and the total number of instances

is 135.

We have p = 127/135 = 0.9407, N = 135, so the standard error is√
p× (1− p)/N =

√
0.9407× 0.0593/135 = 0.0203.

The value of the predictive accuracy can be expected to lie in the following

ranges:

probability 0.90: from 0.9407− 1.64× 0.0203 to 0.9407 + 1.64× 0.0203, i.e.

from 0.9074 to 0.9741

probability 0.95: from 0.9407− 1.96× 0.0203 to 0.9407 + 1.96× 0.0203, i.e.

from 0.9009 to 0.9806

probability 0.99: from 0.9407− 2.58× 0.0203 to 0.9407 + 2.58× 0.0203, i.e.

from 0.8883 to 0.9932

glass Dataset, Figure 7.15

The number of correct predictions is 149 and the total number of instances

is 214.

We have p = 149/214 = 0.6963, N = 214, so the standard error is√
p× (1− p)/N =

√
0.6963× 0.3037/214 = 0.0314.

The value of the predictive accuracy can be expected to lie in the following

ranges:

probability 0.90: from 0.6963− 1.64× 0.0314 to 0.6963 + 1.64× 0.0314, i.e.

from 0.6447 to 0.7478

probability 0.95: from 0.6963− 1.96× 0.0314 to 0.6963 + 1.96× 0.0314, i.e.

from 0.6346 to 0.7579

probability 0.99: from 0.6963− 2.58× 0.0314 to 0.6963 + 2.58× 0.0314, i.e.

from 0.6152 to 0.7774
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Question 2

False positive classifications would be undesirable in applications such as the

prediction of equipment that will fail in the near future, which may lead to

expensive and unnecessary preventative maintenance. False classifications of

individuals as likely criminals or terrorists can have very serious repercussions

for the wrongly accused.

False negative classifications would be undesirable in applications such as

medical screening, e.g. for patients who may have a major illness requiring

treatment, or prediction of catastrophic events such as hurricanes or earth-

quakes.

Decisions about the proportion of false negative (positive) classifications

that would be acceptable to reduce the proportion of false positives (nega-

tives) to zero is a matter of personal taste. There is no general answer.

Self-assessment Exercise 8

Question 1

Sorting the values of humidity into ascending numerical order gives the follow-

ing table.

Humidity

(%)

Class

65 play

70 play

70 play

70 don’t play

75 play

78 play

80 don’t play

80 play

80 play

85 don’t play

90 don’t play

90 play

95 don’t play

96 play

The amended rule for selecting cut points given in Section 8.3.2 is: ‘only

include attribute values for which the class value is different from that for the

previous attribute value, together with any attribute which occurs more than

once and the attribute immediately following it’.
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This rule gives the cut points for the humidity attribute as all the values in

the above table except 65 and 78.

Question 2

Figure 8.12(c) is reproduced below.

Value of A Frequency for class Total Value of χ2

c1 c2 c3

1.3 1 0 4 5 3.74

1.4 1 2 1 4 5.14

2.4 6 0 2 8 3.62

6.5 3 2 4 9 4.62

8.7 6 0 1 7 1.89

12.1 7 2 3 12 1.73

29.4 0 0 1 1 3.20

56.2 2 4 0 6 6.67

87.1 0 1 3 4 1.20

89.0 1 1 2 4

Total 27 12 21 60

After the 87.1 and 89.0 rows are merged, the figure looks like this.

Value of A Frequency for class Total Value of χ2

c1 c2 c3

1.3 1 0 4 5 3.74

1.4 1 2 1 4 5.14

2.4 6 0 2 8 3.62

6.5 3 2 4 9 4.62

8.7 6 0 1 7 1.89

12.1 7 2 3 12 1.73

29.4 0 0 1 1 3.20

56.2 2 4 0 6 6.67

87.1 1 2 5 8

Total 27 12 21 60

The previous values of χ2 are shown in the rightmost column. Only the

one given in bold can have been changed by the merging process, so this value

needs to be recalculated.

For the adjacent intervals labelled 56.2 and 87.1 the values of O and E are

as follows.
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Value of A Frequency for class Total

c1 c2 c3 observed

O E O E O E

56.2 2 1.29 4 2.57 0 2.14 6

87.1 1 1.71 2 3.43 5 2.86 8

Total 3 6 5 14

The O (observed) values are taken from the previous figure. The E (ex-

pected) values are calculated from the row and column sums. Thus for row

56.2 and class c1, the expected value E is 3× 6/14 = 1.29.

The next step is to calculate the value of (O − E)2/E for each of the six

combinations. These are shown in the Val columns in the figure below.

Value Frequency for class Total

of A c1 c2 c3 observed

O E Val O E Val O E Val

56.2 2 1.29 0.40 4 2.57 0.79 0 2.14 2.14 6

87.1 1 1.71 0.30 2 3.43 0.60 5 2.86 1.61 8

Total 3 6 5 14

The value of χ2 is then the sum of the six values of (O − E)2/E. For the

pair of rows shown the value of χ2 is 5.83.

This gives a revised version of the frequency table as follows.

Value of A Frequency for class Total Value of χ2

c1 c2 c3

1.3 1 0 4 5 3.74

1.4 1 2 1 4 5.14

2.4 6 0 2 8 3.62

6.5 3 2 4 9 4.62

8.7 6 0 1 7 1.89

12.1 7 2 3 12 1.73

29.4 0 0 1 1 3.20

56.2 2 4 0 6 5.83

87.1 1 2 5 8

Total 27 12 21 60

The smallest value of χ2 is now 1.73, in the row labelled 12.1. This value is

less than the threshold value of 4.61, so the rows (intervals) labelled 12.1 and

29.4 are merged.
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Self-assessment Exercise 9

The decision tree shown in Figure 9.8 is reproduced below for ease of refer-

ence.

The table of error rates specified in the question is as follows.

Node Estimated

error rate

A 0.2

B 0.35

C 0.1

D 0.2

E 0.01

F 0.25

G 0.05

H 0.1

I 0.2

J 0.15

K 0.2

L 0.1

M 0.1

The post-pruning process starts by considering the possibility of pruning at

node G.



Solutions to Self-assessment Exercises 419

The backed-up error rate at that node is (8/20)×0.15+(12/20)×0.2 = 0.18.

This is more than the static error rate, which is only 0.05. This means that

splitting at node G increases the error rate at that node so we prune the

subtree descending from G, giving the following figure [which is the same as

Figure 9.11].

We now consider pruning at node F. The backed-up error rate is (20/50)×
0.05 + (10/50) × 0.1 + (20/50) × 0.2 = 0.12. This is less than the static error

rate. Splitting at node F reduces the average error rate so we do not prune.

The method given in Chapter 9 specifies that we only consider pruning at

nodes that have a descendant subtree of depth one (i.e. all the nodes one level

down are leaf nodes).

The only remaining candidate is node D. For this node the backed-up error

rate is (7/10)× 0.1 + (3/10)× 0.1 = 0.1. This is less than the static error rate

at the node, so we do not prune.

There are no further candidates for pruning, so the process terminates.

Self-assessment Exercise 10

Question 1

The entropy of a training set depends only on the relative proportions of the

classifications, not on the number of instances it contains. Thus for both train-

ing sets the answer is the same.

Entropy = −0.2× log2 0.2−0.3× log2 0.3−0.25× log2 0.25−0.25× log2 0.25

= 1.985

Question 2

It is best to ask any question that divides the people into two approximately

equal halves. An obvious question would be ‘Is the person male?’. This might

well be appropriate in a restaurant, a theatre etc. but would not be suitable for
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a group where there is a large predominance of one sex, e.g. a football match.

In such a case a question such as ‘Does he or she have brown eyes?’ might be

better, or even ‘Does he or she live in a house or flat with an odd number?’

Self-assessment Exercise 11

The degrees dataset given in Figure 4.3 is reproduced below for ease of

reference.

SoftEng ARIN HCI CSA Project Class

A B A B B SECOND

A B B B A FIRST

A A A B B SECOND

B A A B B SECOND

A A B B A FIRST

B A A B B SECOND

A B B B B SECOND

A B B B B SECOND

A A A A A FIRST

B A A B B SECOND

B A A B B SECOND

A B B A B SECOND

B B B B A SECOND

A A B A B FIRST

B B B B A SECOND

A A B B B SECOND

B B B B B SECOND

A A B A A FIRST

B B B A A SECOND

B B A A B SECOND

B B B B A SECOND

B A B A B SECOND

A B B B A FIRST

A B A B B SECOND

B A B B B SECOND

A B B B B SECOND

The Prism algorithm starts by constructing a table showing the probability

of class = FIRST occurring for each attribute/value pair over the whole training

set of 26 instances.
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Attribute/value pair Frequency

for class =

FIRST

Total

frequency

(out of 26

instances)

Probability

SoftEng = A 6 14 0.429

SoftEng = B 0 12 0

ARIN = A 4 12 0.333

ARIN = B 2 14 0.143

HCI = A 1 9 0.111

HCI = B 5 17 0.294

CSA = A 3 7 0.429

CSA = B 3 19 0.158

Project = A 5 9 0.556

Project = B 1 17 0.059

The maximum probability is when Project = A

Incomplete rule induced so far:

IF Project = A THEN class = FIRST

The subset of the training set covered by this incomplete rule is:

SoftEng ARIN HCI CSA Project Class

A B B B A FIRST

A A B B A FIRST

A A A A A FIRST

B B B B A SECOND

B B B B A SECOND

A A B A A FIRST

B B B A A SECOND

B B B B A SECOND

A B B B A FIRST

The next table shows the probability of class = FIRST occurring for each

attribute/value pair (not involving attribute Project) for this subset.

Attribute/value pair Frequency

for class =

FIRST

Total

frequency

(out of 9

instances)

Probability

SoftEng = A 5 5 1.0

SoftEng = B 0 4 0

ARIN = A 3 3 1.0
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ARIN = B 2 6 0.333

HCI = A 1 1 1.0

HCI = B 4 8 0.5

CSA = A 2 3 0.667

CSA = B 3 6 0.5

Three attribute/value combinations give a probability of 1.0. Of these Soft-

Eng = A is based on most instances, so will probably be selected by tie-

breaking.

Incomplete rule induced so far:

IF Project = A AND SoftEng = A THEN class = FIRST

The subset of the training set covered by this incomplete rule is:

SoftEng ARIN HCI CSA Project Class

A B B B A FIRST

A A B B A FIRST

A A A A A FIRST

A A B A A FIRST

A B B B A FIRST

This subset contains instances with only one classification, so the rule is

complete.

The final induced rule is therefore:

IF Project = A AND SoftEng = A THEN class = FIRST

Self-assessment Exercise 12

The true positive rate is the number of instances that are correctly predicted

as positive divided by the number of instances that are actually positive.

The false positive rate is the number of instances that are wrongly predicted

as positive divided by the number of instances that are actually negative.

Predicted class

+ −
Actual class + 50 10

− 10 30

For the table above the values are:

True positive rate: 50/60 = 0.833

False positive rate: 10/40 = 0.25

The Euclidean distance is defined as: Euc =
√

fprate2 + (1− tprate)2

For this table Euc =
√

(0.25)2 + (1− 0.833)2 = 0.300.

For the other three tables specified in the Exercise the values are as follows.
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Second table

True positive rate: 55/60 = 0.917

False positive rate: 5/40 = 0.125

Euc = 0.150

Third table

True positive rate: 40/60 = 0.667

False positive rate: 1/40 = 0.025

Euc = 0.334

Fourth table

True positive rate: 60/60 = 1.0

False positive rate: 20/40 = 0.5

Euc = 0.500

The following ROC graph shows the four classifiers as well as the four

hypothetical ones at (0, 0), (1, 0), (0, 1) and (1, 1).

If we were equally concerned about avoiding false positive and false nega-

tive classifications we should choose the one given in the second table in the

Exercise, which has true positive rate 0.917 and false positive rate 0.125. This

is the one closest to (0, 1) the perfect classifier in the ROC graph.
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Self-assessment Exercise 13

Question 1

The frequency tables for the four attributes are given below, followed by the

class frequency table. The attribute values needed for part (2) are shown in

bold.

Attribute class
day on time late very late cancelled

weekday 12 2 5 1

saturday 3 1 0 1

sunday 2 0 0 0

holiday 3 0 0 0

Attribute class
season on time late very late cancelled

spring 4 0 0 1
summer 10 1 1 1

autumn 2 0 1 0

winter 4 2 3 0

Attribute class
wind on time late very late cancelled

none 8 0 0 1

high 5 2 2 1

normal 7 1 3 0

Attribute class
rain on time late very late cancelled

none 9 1 1 1

slight 10 0 1 0

heavy 1 2 3 1

class

on time late very late cancelled

TOTAL 20 3 5 2
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Question 2

For convenience we can put the rows shown in bold in the four attribute fre-

quency tables together in a single table, augmented by the corresponding class

frequencies and probabilities.

class

on time late very late cancelled

weekday 12/20=0.60 2/3=0.67 5/5=1.0 1/2=0.50

summer 10/20=0.50 1/3=0.33 1/5=0.20 1/2=0.50

high 5/20=0.25 2/3=0.67 2/5=0.40 1/2=0.50

heavy 1/20=0.05 2/3=0.67 3/5=0.60 1/2=0.50

We can also construct a table of prior probabilities from the class frequency

table, using the total frequency (30) as the denominator.

class

on time late very late cancelled

Prior

Probability
20/30=0.67 3/30=0.10 5/30=0.17 2/30=0.07

We can now calculate a score for each possible classification as follows:

class = on time 0.67 * 0.60 * 0.50 * 0.25 * 0.05 = 0.0025

class = late 0.10 * 0.67 * 0.33 * 0.67 * 0.67 = 0.0099

class = very late 0.17 * 1.0 * 0.20 * 0.40 * 0.60 = 0.0082

class = cancelled 0.07 * 0.50 * 0.50 * 0.50 * 0.50 = 0.0044

The class with the largest score is selected, in this case class = late.

Self-assessment Exercise 14

Question 1

Setting a threshold of 0.5 has the effect of eliminating classifiers 4 and 5, leaving

a reduced table as follows.
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Vote for Class Total

Classifier
Predicted

Class
A B C

1 A 0.80 0.05 0.15 1.0

2 B 0.10 0.80 0.10 1.0

3 A 0.75 0.20 0.05 1.0

6 C 0.05 0.05 0.90 1.0

7 C 0.10 0.10 0.80 1.0

8 A 0.75 0.20 0.05 1.0

9 C 0.10 0.00 0.90 1.0

10 B 0.10 0.80 0.10 1.0

Total 2.75 2.20 3.05 8.0

The winning class is C.

Question 2

Increasing the threshold to 0.8 has the further effect of eliminating classifiers 3

and 8, leaving a further reduced table.

Vote for Class Total

Classifier
Predicted

Class
A B C

1 A 0.80 0.05 0.15 1.0

2 B 0.10 0.80 0.10 1.0

6 C 0.05 0.05 0.90 1.0

7 C 0.10 0.10 0.80 1.0

9 C 0.10 0.00 0.90 1.0

10 B 0.10 0.80 0.10 1.0

Total 1.25 1.80 2.95 6.0

The winning class is again C, this time by a much larger margin.

Self-assessment Exercise 15

Question 1

The average value of B-A is 2.8.

Question 2

The standard error is 1.237 and the t value is 2.264.
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Question 3

The t value is larger than the value in the 0.05 column of Figure 4 for 19

degrees of freedom, i.e. 2.093, so we can say that the performance of classifier

B is significantly different from that of classifier A at the 5% level. As the answer

to Question 1 is a positive value we can say that classifier B is significantly

better than classifier A at the 5% level.

Question 4

The 95% confidence interval for the improvement offered by classifier B over

classifier A is 2.8 ± (2.093*1.237) = 2.8 ± 2.589, i.e. we can be 95% certain

that the true average improvement in predictive accuracy lies between 0.211%

and 5.389%.

Self-assessment Exercise 16

Question 1

Using the formulae for Confidence, Completeness, Support, Discriminability

and RI given in Chapter 16, the values for the five rules are as follows.

Rule Confid. Complete Support Discrim. RI

1 0.972 0.875 0.7 0.9 124.0

2 0.933 0.215 0.157 0.958 30.4

3 1.0 0.5 0.415 1.0 170.8

4 0.5 0.8 0.289 0.548 55.5

5 0.983 0.421 0.361 0.957 38.0

Question 2

Let us assume that the attribute w has the three values w1, w2 and w3 and

similarly for attributes x, y and z.

If we arbitrarily choose attribute w to be on the right-hand side of each

rule, there are three possible types of rule:

IF . . . THEN w = w1

IF . . . THEN w = w2

IF . . . THEN w = w3

Let us choose one of these, say the first, and calculate how many possible

left-hand sides there are for such rules.

The number of ‘attribute = value’ terms on the left-hand side can be one,

two or three. We consider each case separately.
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One term on left-hand side

There are three possible terms: x, y and z. Each has three possible values,

so there are 3× 3 = 9 possible left-hand sides, e.g.

IF x = x1

Two terms on left-hand side

There are three ways in which a combination of two attributes may appear

on the left-hand side (the order in which they appear is irrelevant): x and y,

x and z, and y and z. Each attribute has three values, so for each pair of

attributes there are 3× 3 = 9 possible left-hand sides, e.g.

IF x = x1 AND y = y1

There are three possible pairs of attributes, so the total number of possible

left-hand sides is 3× 9 = 27.

Three terms on left-hand side

All three attributes x, y and z must be on the left-hand side (the order in

which they appear is irrelevant). Each has three values, so there are 3×3×3 = 27

possible left-hand sides, ignoring the order in which the attributes appear, e.g.

IF x = x1 AND y = y1 AND z = z1

So for each of the three possible ‘w = value’ terms on the right-hand side, the

total number of left-hand sides with one, two or three terms is 9+27+27 = 63.

Thus there are 3× 63 = 189 possible rules with attribute w on the right-hand

side.

The attribute on the right-hand side could be any of four possibilities (w,

x, y and z) not just w. So the total possible number of rules is 4× 189 = 756.

Self-assessment Exercise 17

Question 1

At the join step of the Apriori-gen algorithm, each member (set) is compared

with every other member. If all the elements of the two members are identical

except the right-most ones (i.e. if the first two elements are identical in the

case of the sets of three elements specified in the Exercise), the union of the

two sets is placed into C4.

For the members of L3 given the following sets of four elements are placed

into C4: {a, b, c, d}, {b, c, d, w}, {b, c, d, x}, {b, c, w, x}, {p, q, r, s}, {p, q, r, t} and

{p, q, s, t}.
At the prune step of the algorithm, each member of C4 is checked to see

whether all its subsets of 3 elements are members of L3.
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The results in this case are as follows.

Itemset in C4 Subsets all in L3?

{a, b, c, d} Yes

{b, c, d, w} No. {b, d, w} and {c, d, w} are not members of L3

{b, c, d, x} No. {b, d, x} and {c, d, x} are not members of L3

{b, c, w, x} No. {b, w, x} and {c, w, x} are not members of L3

{p, q, r, s} Yes

{p, q, r, t} No. {p, r, t} and {q, r, t} are not members of L3

{p, q, s, t} No. {p, s, t} and {q, s, t} are not members of L3

So {b, c, d, w}, {b, c, d, x}, {b, c, w, x}, {p, q, r, t} and {p, q, s, t} are removed

by the prune step, leaving C4 as {{a, b, c, d}, {p, q, r, s}}.

Question 2

The relevant formulae for support, confidence, lift and leverage for a database

of 5000 transactions are:

support(L → R) = support(L ∪ R) = count(L ∪ R)/5000 = 3000/5000 =

0.6

confidence(L → R) = count(L ∪R)/count(L) = 3000/3400 = 0.882

lift(L → R.) = 5000×confidence(L → R)/count(R) = 5000×0.882/4000 =

1.103

leverage(L → R) = support(L ∪R)− support(L)× support(R)

= count(L ∪R)/5000− (count(L)/5000)× (count(R)/5000) = 0.056

Self-assessment Exercise 18

Question 1

The conditional FP-tree for itemset {c} is shown below.
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Question 2

The support count can be determined by following the link joining the two c

nodes and adding the support counts associated with each of the nodes together.

The total support count is 3 + 1 = 4.

Question 3

As the support count is greater than or equal to 3, itemset {c} is frequent.

Question 4

The contents of the four arrays corresponding to the conditional FP-tree for

itemset c are given below.

index
item

name
count linkto parent oldindex

1 c 3 3 2 1

2 f 3 2

3 c 1 9
nodes2 array oldindex

index startlink2 lastlink
p

m

a

c 1 3
f 2 2

b
link arrays

Self-assessment Exercise 19

Question 1

We begin by choosing three of the instances to form the initial centroids. We

can do this in many possible ways, but it seems reasonable to select three

instances that are fairly far apart. One possible choice is as follows.

Initial

x y

Centroid 1 2.3 8.4

Centroid 2 8.4 12.6

Centroid 3 17.1 17.2
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In the following table the columns headed d1, d2 and d3 show the Euclidean

distance of each of the 16 points from the three centroids. The column headed

‘cluster’ indicates the centroid closest to each point and thus the cluster to

which it should be assigned.

x y d1 d2 d3 cluster

1 10.9 12.6 9.6 2.5 7.7 2

2 2.3 8.4 0.0 7.4 17.2 1

3 8.4 12.6 7.4 0.0 9.8 2

4 12.1 16.2 12.5 5.2 5.1 3

5 7.3 8.9 5.0 3.9 12.8 2

6 23.4 11.3 21.3 15.1 8.6 3

7 19.7 18.5 20.1 12.7 2.9 3

8 17.1 17.2 17.2 9.8 0.0 3

9 3.2 3.4 5.1 10.6 19.6 1

10 1.3 22.8 14.4 12.4 16.8 2

11 2.4 6.9 1.5 8.3 17.9 1

12 2.4 7.1 1.3 8.1 17.8 1

13 3.1 8.3 0.8 6.8 16.6 1

14 2.9 6.9 1.6 7.9 17.5 1

15 11.2 4.4 9.8 8.7 14.1 2

16 8.3 8.7 6.0 3.9 12.2 2

We now reassign all the objects to the cluster to which they are closest and

recalculate the centroid of each cluster. The new centroids are shown below.

After first iteration

x y

Centroid 1 2.717 6.833

Centroid 2 7.9 11.667

Centroid 3 18.075 15.8

We now calculate the distance of each object from the three new centroids.

As before the column headed ‘cluster’ indicates the centroid closest to each

point and thus the cluster to which it should be assigned.

x y d1 d2 d3 cluster

10.9 12.6 10.0 3.1 7.9 2

2.3 8.4 1.6 6.5 17.4 1

8.4 12.6 8.1 1.1 10.2 2

12.1 16.2 13.3 6.2 6.0 3

7.3 8.9 5.0 2.8 12.8 2
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23.4 11.3 21.2 15.5 7.0 3

19.7 18.5 20.6 13.6 3.2 3

17.1 17.2 17.7 10.7 1.7 3

3.2 3.4 3.5 9.5 19.4 1

1.3 22.8 16.0 12.9 18.2 2

2.4 6.9 0.3 7.3 18.0 1

2.4 7.1 0.4 7.1 17.9 1

3.1 8.3 1.5 5.9 16.7 1

2.9 6.9 0.2 6.9 17.6 1

11.2 4.4 8.8 8.0 13.3 2

8.3 8.7 5.9 3.0 12.1 2

We now again reassign all the objects to the cluster to which they are closest

and recalculate the centroid of each cluster. The new centroids are shown below.

After second iteration

x y

Centroid 1 2.717 6.833

Centroid 2 7.9 11.667

Centroid 3 18.075 15.8

These are unchanged from the first iteration, so the process terminates. The

objects in the final three clusters are as follows.

Cluster 1: 2, 9, 11, 12, 13, 14

Cluster 2: 1, 3, 5, 10, 15, 16

Cluster 3: 4, 6, 7, 8

Question 2

In Section 19.3.1 the initial distance matrix between the six objects a, b, c, d,

e and f is the following.

a b c d e f

a 0 12 6 3 25 4

b 12 0 19 8 14 15

c 6 19 0 12 5 18

d 3 8 12 0 11 9

e 25 14 5 11 0 7

f 4 15 18 9 7 0

The closest objects are those with the smallest non-zero distance value in

the table. These are objects a and d which have a distance value of 3. We
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combine these into a single cluster of two objects which we call ad. We can now

rewrite the distance matrix with rows a and d replaced by a single row ad and

similarly for the columns.

As in Section 5.3.1, the entries in the matrix for the various distances be-

tween b, c, e and f obviously remain the same, but how should we calculate

the entries in row and column ad?

ad b c e f

ad 0 ? ? ? ?

b ? 0 19 14 15

c ? 19 0 5 18

e ? 14 5 0 7

f ? 15 18 7 0

The question specifies that complete link clustering should be used. For this

method the distance between two clusters is taken to be the longest distance

from any member of one cluster to any member of the other cluster. On this

basis the distance from ad to b is 12, the longer of the distance from a to b (12)

and the distance from d to b (8) in the original distance matrix. The distance

from ad to c is also 12, the longer of the distance from a to c (6) and the distance

from d to c (12) in the original distance matrix. The complete distance matrix

after the first merger is now as follows.

ad b c e f

ad 0 12 12 25 9

b 12 0 19 14 15

c 12 19 0 5 18

e 25 14 5 0 7

f 9 15 18 7 0

The smallest non-zero value in this table is now 5, so we merge c and e

giving ce.

The distance matrix now becomes:

ad b ce f

ad 0 12 25 9

b 12 0 19 15

ce 25 19 0 18

f 9 15 18 0
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The distance from ad to ce is 25, the longer of the distance from c to ad

(12) and the distance from e to ad (25) in the previous distance matrix. Other

values are calculated in the same way.

The smallest non-zero in this distance matrix is now 9, so ad and f are

merged giving adf. The distance matrix after this third merger is given below.

adf b ce

adf 0 15 25

b 15 0 19

ce 25 19 0

Self-assessment Exercise 20

Question 1

The value of TFIDF is the product of two values, tj and log2(n/nj), where

tj is the frequency of the term in the current document, nj is the number of

documents containing the term and n is the total number of documents.

For term ‘dog’ the value of TFIDF is 2× log2(1000/800) = 0.64

For term ‘cat’ the value of TFIDF is 10× log2(1000/700) = 5.15

For term ‘man’ the value of TFIDF is 50× log2(1000/2) = 448.29

For term ‘woman’ the value of TFIDF is 6× log2(1000/30) = 30.35

The small number of documents containing the term ‘man’ accounts for the

high TFIDF value.

Question 2

To normalise a vector, each element needs to be divided by its length, which

is the square root of the sum of the squares of all the elements. For vector

(20, 10, 8, 12, 56) the length is the square root of 202 + 102 + 82 + 122 + 562

=
√
3844 = 62. So the normalised vector is (20/62, 10/62, 8/62, 12/62, 56/62),

i.e. (0.323, 0.161, 0.129, 0.194, 0.903).

For vector (0, 15, 12, 8, 0) the length is
√
433 = 20.809. The normalised form

is (0, 0.721, 0.577, 0.384, 0).

The distance between the two normalised vectors can be calculated using

the dot product formula as the sum of the products of the corresponding pairs

of values, i.e. 0.323×0+0.161×0.721+0.129×0.577+0.194×0.384+0.903×0

= 0.265.
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Näıve Bayes Classification 22–29,

36–37, 202–205
n-dimensional Space 32, 33
N-dimensional Vector 334–335
Nearest Neighbour Classification 6,

29–37
Network of Computers 219
Network of Processors 190
Neural Network 7
N-fold Cross-validation 83–84
Node (of a Decision Tree) 42, 349, 350
Node (of a FP-tree) 276–308
Noise 13, 16, 122, 127, 172–173, 235,

341

Nominal Variable 10–11
Normalisation (of an Attribute) 35–36
Normalised Vector Space Model

335–336, 337
Null Hypothesis 69, 71, 223, 225, 226,

227
Numerical Prediction 4, 7
Object 9, 41, 45
Objective Function 314, 320–321
Observed Value 70–71
Opportunity Sampling 233 See

Chapter 15
Order of a Rule 249, 250
Ordinal Variable 11
Outlier 14–15
Overfitting 121–122, 127–135, 162–163,

321
Overheads 191, 200
Paired t-test 223–229
Parallel Ensemble Classifier 219
Parallelisation 173, 190, 219
Path 350
Pessimistic Error Pruning 130
Piatetsky-Shapiro Criteria 241–243
pima-indians Dataset 362, 378
PMCRI 194–201
Portrait-style Dataset 192
Positive Predictive Value See Precision
Posterior Probability (Or ‘a posteriori’

Probability) 25, 27, 28, 29
Post-pruning a Decision Tree 121, 127,

130–135
Post-pruning Rules 157–162
Power Set Precision 178, 179, 337
Prediction 7, 42, 80, 256
Predictive Accuracy 79, 80, 121, 127,

132, 157, 158, 175, 179, 181–182, 210,
215–216, 221–223, 234, 238, 240, 257,
337

– estimation methods, 80–84
Pre-pruning a Decision Tree 121,

127–130
Prior Probability (Or ‘a priori’

Probability) 25, 26, 27, 28, 203, 247
Prism 164–173, 194
Probability 22–29, 81, 108, 132, 138,

164, 195, 203, 213, 247
Probability of an Event 22
Probability Theory 22
Pruned Tree 131–132, 351–352
Pruning Set 132, 159
Pseudo-attribute 96, 97–105



Index 439

Quality of a Rule See Rule Interesting-
ness

Quicksort 102
Random Attribute Selection 214
Random Decision Forests 211, 214
Random Forests 211
Ratio-scaled Variable 12
Reasoning (types of) 47–48
Recall 178, 179, 337 See also True

Positive Rate of a Classifier
Receiver Operating Characteristics

Graph See ROC Graph
Record 10, 254
Recursive Partitioning 45
Reduced Error Pruning 126
Regression 5, 7
Reliability of a Rule See Confidence of a

Rule and Predictive Accuracy
Representative Sample 232, 233
RI Measure 242–243
ROC Curve 184–185
ROC Graph 182–184
Root Node 42, 277–288, 323, 349, 350,

351
Rule 127, 157, 237–238, 239
– association, 7–8, 237–238
– classification (or decision), 5–6, 39,

42–43, 44–45, 46, 157–173, 190–206,
238

– exact, 238, 257
Rule Fires 160
Rule Induction 47, 157–173, 190–206

See also Decision Tree Induction and
Generalised Rule Induction

Rule Interestingness 161, 239–245,
246–250, 254, 257, 266–268

Rule Post-pruning See Post-pruning
Rules

Rule Pruning 250
Ruleset 75, 159, 239
Runtime 197–201
Sample Standard Deviation 224–225
Sample Variance 224
Sampling 189, 194, 213, 224, 231–234
Sampling with Replacement 213
Scale-up of a Distributed Data Mining

System 197–198
Search Engine 177, 178, 338–339
Search Space 246, 248
Search Strategy 246, 248–250
Sensitivity See True Positive Rate of a

Classifier
Set 254, 255, 256, 355–358

Set Notation 256, 258, 359
Set Theory 355–359
sick-euthyroid Dataset 362, 379
Sigma (Σ) Notation 346–348
Significance Level 108, 113, 116
Significance Test 226
Simple Majority Voting See Majority

Voting
Single-link Clustering 325
Size Cutoff 128, 130
Size-up of a Distributed Data Mining

System 197, 199–200
Sorting Algorithms 102
Specialising a Rule 127, 248, 250
Specificity See True Negative Rate of a

Classifier
Speed-up Factor of a Distributed Data

Mining System 200
Speed-up of a Distributed Data Mining

System 197, 200–201
Split Information 73–75
Split Value 41, 95
Splitting on an Attribute 41–42, 58,

67, 147
Standard Deviation of a Sample See

Sample Standard Deviation
Standard Error 81–82, 225, 229, 231
Static Error Rate Estimate 133
Stemming 332–333
Stop Words 332
Stratified Sampling 232 See Chapter 15
Streaming Data 191, 202
Strict Subset 358
Strict Superset 358
Student’s t-test See Paired t-test
Subscript Notation 345–346, 347–348
Subset 258, 259, 357–358
Subtree 130, 131, 133, 351–352
Summation 346–348
Superset 358
Supervised Learning 5–7, 339
Support Count of an Itemset 255, 257
Support of a Rule 240, 245, 257, 267
Support of an Itemset 257, 272
Supported Itemset 258, 259–262,

264–266, 272
Symmetry condition (for a distance

measure) 32
TDIDT 45–46, 56, 96–97, 116–118,

121–126, 127, 128, 147, 149–150,
172–173

Term 43
Term Frequency 334



440 Principles of Data Mining
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