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 PREFACE     

ix

  Pharmaceutical drug discovery and development have historically followed a 
sequential process in which relatively small numbers of individual compounds 
were synthesized and tested for bioactivity. The information obtained from 
such experiments was then used for optimization of lead compounds and their 
further progression to drugs. For many years, an expert equipped with the 
simple statistical techniques of data analysis was a central fi gure in the analysis 
of pharmacological information. With the advent of advanced genome and 
proteome technologies, as well as high - throughput synthesis and combinato-
rial screening, such operations have been largely replaced by a massive paral-
lel mode of processing, in which large - scale arrays of multivariate data are 
analyzed. The principal challenges are the multidimensionality of such data 
and the effect of  “ combinatorial explosion. ”  Many interacting chemical, 
genomic, proteomic, clinical, and other factors cannot be further considered 
on the basis of simple statistical techniques. As a result, the effective analysis 
of this information - rich space has become an emerging problem. Hence, there 
is much current interest in novel computational data mining approaches that 
may be applied to the management and utilization of the knowledge obtained 
from such information - rich data sets. It can be simply stated that, in the era 
of post - genomic drug development, extracting knowledge from chemical, bio-
logical, and clinical data is one of the biggest problems. Over the past few 
years, various computational concepts and methods have been introduced to 
extract relevant information from the accumulated knowledge of chemists, 
biologists, and clinicians and to create a robust basis for rational design of 
novel pharmaceutical agents. 

 Refl ecting the needs, the present volume brings together contributions 
from academic and industrial scientists to address both the implementation of 
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new data mining technologies in the pharmaceutical industry and the chal-
lenges they currently face in their application. The key question to be answered 
by these experts is how the sophisticated computational data mining tech-
niques can impact the contemporary drug discovery and development. 

 In reviewing specialized books and other literature sources that address 
areas relevant to data mining in pharmaceutical research, it is evident that 
highly specialized tools are now available, but it has not become easier for 
scientists to select the appropriate method for a particular task. Therefore, 
our primary goal is to provide, in a single volume, an accessible, concentrated, 
and comprehensive collection of individual chapters that discuss the most 
important issues related to pharmaceutical data mining, their role, and pos-
sibilities in the contemporary drug discovery and development. The book 
should be accessible to nonspecialized readers with emphasis on practical 
application rather than on in - depth theoretical issues. 

 The book covers some important theoretical and practical aspects of phar-
maceutical data mining within fi ve main sections: 

 • a general overview of the discipline , from its foundations to contemporary 
industrial applications and impact on the current and future drug 
discovery;  

 • chemoinformatics - based applications , including selection of chemical 
libraries for synthesis and screening, early evaluation of ADME/Tox   and 
physicochemical properties, mining high - throughput screening data, and 
employment of chemogenomics - based approaches;  

 • bioinformatics - based applications , including mining the gene expression 
data, analysis of protein – ligand interactions, analysis of toxicogenomic 
databases, and vaccine development;  

 • data mining methods in clinical development , including data mining in 
pharmacovigilance, predicting individual drug response, and data mining 
methods in pharmaceutical formulation;  

 • data mining algorithms, technologies, and software tools , with emphasis 
on advanced data mining algorithms and software tools that are currently 
used in the industry or represent promising approaches for future drug 
discovery and development, and analysis of resources available in special 
databases, on the Internet and in scientifi c literature.    

 It is my sincere hope that this volume will be helpful and interesting not 
only to specialists in data mining but also to all scientists working in the fi eld 
of drug discovery and development and associated industries. 

   Konstantin V. Balakin 
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4 A HISTORY OF THE DEVELOPMENT OF DATA MINING

  1.1   INTRODUCTION 

 From the earliest times, chemistry has been a classifi cation science. For 
example, even in the days when it was emerging from alchemy, substances 
were put into classes such as  “ metals. ”  This  “ metal ”  class contained things 
such as iron, copper, silver, and gold but also mercury, which, even though it 
was liquid, still had enough properties in common with the other members of 
its class to be included. In other words, scientists were grouping together 
things that were related or similar but were not necessarily identical, all impor-
tant elements of the subject of this book: data mining. In today ’ s terminology, 
there was an underlying data model that allowed data about the substances 
to be recorded, stored, analyzed, and conclusions drawn. What is remarkable 
in chemistry is that not only have the data survived more than two centuries 
in a usable way but that the data have continued to leverage contemporary 
technologies for its storage and analysis. 

 In the early 19th century, Berzelius was successful in persuading chemists 
to use alphabetic symbols for the elements:  “ The chemical signs ought to be 
letters, for the greater facility of writing, and not to disfi gure a printed book ”  
 [1] . This Berzelian system  [2]  was appropriate for the contemporary storage 
and communication medium, i.e., paper, and the related recording technology, 
i.e., manuscript or print. 

 One other thing that sets chemical data apart from other data is the need 
to store and to search the compound structure. These structural formulas are 
much more than just pictures; they have the power such that  “ the structural 
formula of, say, p - rosaniline represents the same substance to Robert B. 
Woodward say, in 1979 as it did to Emil Fischer in 1879 ”   [3] . As with the 
element symbols, the methods and conventions for drawing chemical struc-
tures were agreed at an international level. This meant that chemists could 
record and communicate accurately with each other, the nature of their work. 

 As technologies moved on and volumes of data grew, chemists would need 
to borrow methodology from other disciplines. Initially, systematic naming of 
compounds allowed indexing methods, which had been developed for text 
handling and were appropriate for punch card sorting, to deal with the explo-
sion of known structures. Later, graph theory was used to be able to handle 
structures directly in computers. Without these basic methodologies to store 
the data, data mining would be impossible. 

 The rest of this chapter represents the authors ’  personal experiences in the 
development of chemistry data mining technologies since the early 1970s.  

  1.2   TECHNOLOGY 

 When we began our careers in pharmaceutical research, there were no com-
puters in the laboratories. Indeed, there was only one computer in the company 
and that was dedicated to calculating the payroll! Well, this is perhaps a slight 
exaggeration. A Digital Equipment Corporation (DEC) PDP - 8 running in -
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 house regression software was available to one of us and the corporate main-
frames were accessible via teleprinter terminals, although there was little 
useful scientifi c software running on them. 

 This was a very different world to the situation we have today. Documents 
were typed by a secretary using a typewriter, perhaps one of the new electric 
golf ball typewriters. There was no e - mail; communication was delivered by 
post, and there was certainly no World Wide Web. Data were stored on sheets 
of paper or, perhaps, punched cards (see later), and molecular models were 
constructed by hand from kits of plastic balls. Compounds were characterized 
for quantitative structure – activity relationship (QSAR) studies by using 
lookup tables of substituent constants, and if an entry was missing, it could 
only be replaced by measurement. Mathematical modeling consisted almost 
entirely of multiple linear regression (MLR) analysis, often using self - written 
software as already mentioned. 

 So, how did we get to where we are today? Some of the necessary ele-
ments were already in existence but were simply employed in a different 
environment; statistical software such as BMDP  , for example, was widely 
used by academics. Other functionalities, however, had to be created. This 
chapter traces the development of some of the more important components 
of the systems that are necessary in order for data mining to be carried out 
at all.  

  1.3   COMPUTERS 

 The major piece of technology underlying data mining is, of course, the com-
puter. Other items of technology, both hardware and software, are of course 
important and are covered in their appropriate sections, but the huge advances 
in our ability to mine data have gone hand in hand with the development of 
computers. These machines can be split into four main types: mainframes, 
general - purpose computers, graphic workstations, and personal computers 
(PCs). 

  1.3.1   Mainframes 

 These machines are characterized by a computer room or a suite of rooms 
with a staff of specialists who serve the needs of the machine. Mainframe 
computers were expensive, involving considerable investment in resource, 
and there was thus a requirement for a computing department or even divi-
sion within the organizational structure of the company. As computing 
became available within the laboratories, a confl ict of interest was perceived 
between the computing specialists and the research departments with com-
petition for budgets, human resources, space, and so on. As is inevitable 
in such situations, there were sometimes  “ political ”  diffi culties involved in 
the acquisition of both hardware and software by the research functions. 
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Mainframe computers served some useful functions in the early days of data 
mining. At that time, computing power was limited compared with the 
requirements of programs such as ab initio and even semi - empirical quantum 
chemistry packages, and thus the company mainframe was often employed 
for these calculations, which could often run for weeks. As corporate 
databases began to be built, the mainframe was an ideal home for them since 
this machine was accessible company - wide, a useful feature when the orga-
nization had multiple sites, and was professionally maintained with scheduled 
backups, and so on.  

  1.3.2   General - Purpose Computers 

 DEC produced the fi rst retail computers in the 1960s. The PDP - 1 (PDP stood 
for programmable data processor) sold for $120,000 when other computers 
cost over a million. The PDP - 8 was the least expensive general - purpose com-
puter on the market  [4]  in the mid - 1960s, and this was at a time when all the 
other computer manufacturers leased their machines. The PDP - 8 was also a 
desktop machine so it did not require a dedicated computing facility with 
support staff and so on. Thus, it was the ideal laboratory computer. The PDP 
range was superseded by DEC ’ s VAX   machines and these were also very 
important, but the next major step was the development of PCs.  

  1.3.3   Graphic Workstations 

 The early molecular modeling programs required some form of graphic display 
for their output. An example of this is the DEC GT40, which was a mono-
chrome display incorporating some local processing power, actually a PDP - 11 
minicomputer. A GT40 could only display static images and was usually con-
nected to a more powerful computer, or at least one with more memory, on 
which the modeling programs ran. An alternative lower - cost approach was the 
development of  “ dumb ”  graphic displays such as the Tektronix range of 
devices. These were initially also monochrome displays, but color terminals 
such as the Tek 4015 were soon developed and with their relatively low cost 
allowed much wider access to molecular modeling systems. Where molecular 
modeling was made generally available within a company, usually using in -
 house software, this was most often achieved with such terminals. 

 These devices were unsuitable, however, for displaying complicated systems 
such as portions of proteins or for animations. Dedicated graphic worksta-
tions, such as the Evans and Sutherland (E & S) picture systems, were the fi rst 
workstations used to display the results of modeling macromolecules. These 
were expensive devices and thus were limited to the slowly evolving compu-
tational chemistry groups within the companies. E & S workstations soon faced 
competition from other companies such as Sun and, in particular, Silicon 
Graphics International Corporation   (SGI). As prices came down and comput-
ing performance went up, following Moore ’ s law, the SGI workstation became 



DATA STORAGE AND MANIPULATION 7

the industry standard for molecular modeling and found its way into the 
chemistry departments where medicinal chemists could then do their own 
molecular modeling. These days, of course, modeling is increasingly being 
carried out using PCs.  

  1.3.4    PC  s  

 IBM PCs or Apple Macintoshes gradually began to replace dumb terminals 
in the laboratories. These would usually run some terminal emulation software 
so that they could still be used to communicate with the large corporate com-
puters but would also have some local processing capability and, perhaps, an 
attached printer. At fi rst, the local processing would be very limited, but this 
soon changed with both the increasing sophistication of  “ offi ce ”  suites and the 
usual increasing performance/decreasing price evolution of computers in 
general. Word processing on a PC was a particularly desirable feature as there 
was a word processing program running on a DEC VAX (MASS - 11), which 
was nearly a WYSIWYG (what you see is what you get) word processor, but 
not quite! These days, the PC allows almost any kind of computing job to be 
carried out. 

 This has necessarily been a very incomplete and sketchy description of the 
application of computers in pharmaceutical research. For a detailed discus-
sion, see the chapter by Boyd and Marsh  [5] .   

  1.4   DATA STORAGE AND MANIPULATION 

 Information on compounds such as structure, salt, melting point, molecular 
weight, and so on, was fi led on paper sheets. These were labeled numerically 
and were often sorted by year of fi rst synthesis and would be stored as a com-
plete collection in a number of locations. The data sheets were also micro-
fi lmed as a backup, and this provided a relatively faster way of searching the 
corporate compound collection for molecules with specifi c structural features 
or for analogues of compounds of interest. Another piece of information 
entered on the data sheets was an alphanumeric code called the Wiswesser 
line notation (WLN), which provided a means of encoding the structure of 
the compound in a short and simple string, which later, of course, could be 
used to represent the compound in a computer record. WLN is discussed 
further in a later section. 

 Experimental data, such as the results of compound screening, were stored 
in laboratory notebooks and then were collated into data tables and eventually 
reports. Individual projects sometimes used a system of edge - notched cards 
to store both compound and experimental information. Figure  1.1  shows one 
of these edge - notched cards.   

 Edge - notched cards were sets of printed cards with usually handwritten 
information. Along the edge were a series of holes, which could be clipped to 
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form a notch. Each of these notches corresponded to some property of the 
item on the card. Which property corresponded to which notch did not matter, 
as long as all cards in a project used the same system. Then, by threading a 
long needle or rod through the hole corresponding to a desired property and 
by lifting the needle, all the cards that did  not  have that property were retained 
on the needle and were removed. (Note this is a principle applied to much 
searching of chemical data — fi rst remove all items that could not possibly 
match the query.) The cards with a notch rather than a complete hole fall from 
the stack. Repeating the process with a single needle allows a Boolean  “ and ”  
search on multiple properties as does using multiple needles. Boolean  “ or ”  
search was achieved by combining the results of separate searches  [6] . This 
method is the mechanical equivalent of the bit screening techniques used in 
substructure searching  [7] . The limitations of storing and searching chemical 
information in this way are essentially physical. The length of the needle and 
the dexterity of the operator gave an upper limit to the number of records 
that could be addressed in a single search, although decks of cards could be 
accessed sequentially. There was no way, though, that all of the company 
compound database could be searched, and the results of screening molecules 
in separate projects were effectively unavailable. This capability would have 
to wait until the adoption of electronic databases.  

  1.5   MOLECULAR MODELING 

 Hofmann was one of the earliest chemists to use physical models to represent 
molecules. In a lecture at the Royal Society in 1865, he employed croquet balls 
as the atoms and steel rods as the bonds. To this day, modeling kits tend to 
use the same colors as croquet balls for the atoms. In the 1970s, models of 

Figure 1.1     Edge - notched card and card punch.  
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small molecules or portions of proteins used in the research laboratories were 
physical models since computer modeling of chemistry was in its infancy. An 
extreme example of this is shown in Figure  1.2 , which is a photograph of a 
physical model of human hemoglobin built at the Wellcome research labora-
tories at Beckenham in Kent. This ingenious model was constructed so that 
the two α  and  β  subunits were supported on a Meccano framework, allowing 
the overall conformation to be changed from oxy -  to deoxy -  by turning a 
handle on the base of the model. To give an idea of the scale of the task 
involved in producing this model, the entire system was enclosed in a perspex 
box of about a meter cube.   

 Gradually, as computers became faster and cheaper and as appropriate 
display devices were developed (see Graphic Workstations above), so molecu-
lar modeling software began to be developed. This happened, as would be 
expected, in a small number of academic institutions but was also taking place 
in the research departments of pharmaceutical companies. ICI, Merck, SKF  , 
and Wellcome, among others, all produced in - house molecular modeling 
systems. Other companies relied on academic programs at fi rst to do their 
molecular modeling, although these were soon replaced by commercial 
systems. Even when a third party program was used for molecular modeling, 
it was usually necessary to interface this with other systems, for molecular 
orbital calculations, for example, or for molecular dynamics, so most of the 
computational chemistry groups would be involved in writing code. One of 
the great advantages of having an in - house system is that it was possible to 
add any new technique as required without having to wait for its implementa-
tion by a software company. A disadvantage, of course, is that it was necessary 

Figure 1.2     Physical model of hemoglobin in the deoxy conformation. The binding site 
for the natural effector (2,3 - bisphosphoglycerate) is shown as a cleft at the top.  
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to maintain the system as changes to hardware were made or as the operating 
systems evolved through new versions. The chapter by Boyd gives a nice 
history of the development of computational chemistry in the pharmaceutical 
industry  [8] . 

 The late 1970s/early 1980s saw the beginning of the development of the 
molecular modeling software industry. Tripos, the producer of the SYBYL 
modeling package, was formed in 1979 and Chemical Design (Chem - X) and 
Hypercube (Hyperchem) in 1983. Biosym (Insight/Discover) and Polygen 
(QUANTA/CHARMm) were founded in 1984. Since then, the software 
market grew and the software products evolved to encompass data handling 
and analysis, 3 - D QSAR approaches, bioinformatics, and so on. In recent 
times, there has been considerable consolidation within the industry with 
companies merging, folding, and even being taken into private hands. The 
article by Allen Richon gives a summary of the fi eld  [9] , and the network 
science web site is a useful source of information  [10] .  

  1.6   CHARACTERIZING MOLECULES AND  QSAR  

 In the 1970s, QSAR was generally created using tabulated substituent con-
stants to characterize molecules and MLR to create the mathematical models. 
Substituent constants had proved very successful in describing simple chemical 
reactivity, but their application to complex druglike molecules was more prob-
lematic for a number of different reasons: 

 •   It was often diffi cult to assign the correct positional substituent constant 
for compounds containing multiple, sometimes fused, aromatic rings.  

 •   Missing values presented a problem that could only be resolved by exper-
imental measurement, sometimes impossible if the required compound 
was unstable. Estimation was possible but was fraught with dangers.  

 •   Substituent constants cannot be used to describe noncongeneric series.    

 An alternative to substituent constants, which was available at that time, was 
the topological descriptors fi rst described by Randic  [11]  and introduced to 
the QSAR literature by Kier and Hall  [12] . These descriptors could be rapidly 
calculated from a 2 - D representation of any structure, thus eliminating the 
problem of missing values and the positional dependence of some substituent 
constants. The need for a congeneric series was also removed, and thus it 
would seem that these parameters were well suited for the generation of 
QSARs. There was, however, some resistance to their use. 

 One of the perceived problems was the fact that so many different kinds 
of topological descriptors could be calculated and thus there was suspicion 
that relationships might be observed simply due to chance effects  [13] . Another 
objection, perhaps more serious, was the diffi culty of chemical interpretation. 
This, of course, is a problem if the main aim of the construction of a QSAR 
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is the understanding of some biological process or mechanism. If all that is 
required, however, is some predictive model, then QSARs constructed using 
topological descriptors may be very useful, particularly when calculations are 
needed for large data sets such as virtual libraries  [14,15] . 

 One major exception to the use of substituent constants was measured, 
whole - molecule, partition coeffi cient (log  P ) values. The hydrophobic sub-
stituent constant,  π , introduced by Hansch et   al  .  [16] , had already been shown 
to be very useful in the construction of QSARs. The fi rst series for which this 
parameter was derived was a set of monosubstituted phenoxyacetic acids, but 
it soon became clear that π  values were not strictly additive across different 
parent series, due principally to electronic interactions, and it became neces-
sary to measure π  values in other series such as substituted phenols, benzoic 
acids, anilines, and so on  [17] . In the light of this and other anomalies in the 
hydrophobic behavior of molecules, experimental measurements of log  P
were made in most pharmaceutical companies. An important resource was set 
up at Pomona College in the early 1970s in the form of a database of measured 
partition coeffi cients, and this was distributed as a microfi che and computer 
tape (usually printed out for access) at fi rst, followed later by a computerized 
database. Figure  1.3  shows a screen shot from this database of some measured 
values for the histamine H2 antagonist tiotidine.   

 The screen shot shows the Simplifi ed Molecular Input Line Entry System 
(SMILES) and WLN strings, which were used to encode the molecular struc-

Figure 1.3     Entry from the Pomona College log  P  database for tiotidine.  
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ture (see later) and two measured log P  values. One of these has been selected 
as a log P   “ star ”  value. The  “ starlist ”  was a set of log  P  values that were con-
sidered by the curators of the database to be reliable values, often measured 
in their own laboratories. This database was very useful in understanding the 
structural features that affected hydrophobicity and proved vitally important 
in the development of the earliest expert systems used in drug research — log 
P  prediction programs. The two earliest approaches were the fragmental 
system of Nys and Rekker    [18] , which was based on a statistical analysis of a 
large number of log P  values and thus was called reductionist, and the alterna-
tive (constructionist) method due to Hansch and Leo, based on a small number 
of measured fragments  [19] . At fi rst, calculations using these systems had to 
be carried out by hand, and not only was this time - consuming but for compli-
cated molecules, it was sometimes diffi cult to identify the correct fragments 
to use. Computer programs were soon devised to carry out these tasks and 
quite a large number of systems have since been developed  [20,21] , often 
making use of the starlist database. 

 Theoretical properties were an alternative way of describing molecules, 
and there are some early examples of the use of quantities such as superde-
localizability  [22]  and Ehomo  [23,24] . It was not until the late 1980s, however, 
that theoretical properties began to be employed routinely in the creation of 
QSARs  [25] . This was partly due to the increasing availability of relatively 
easy - to - use molecular orbital programs, but mostly due to the recognition of 
the utility of these descriptors. Another driver of this process was the fact 
that many pharmaceutical companies had their own in - house software and 
thus were able to produce their own modules to carry out this task. Wellcome, 
for example, developed a system called PROFILES  [26]  and SmithKline 
Beecham added a similar module to COSMIC  [27] . Table  1.1  shows an early 
example of the types of descriptors that could be calculated using these 
systems.   

 Since then, the development of all kinds of descriptors has mushroomed 
until the situation we have today where there are thousands of molecular 
properties to choose from  [29,30] , and there is even a web site that allows their 
calculation  [31] . 

 The other component of the creation of QSARs was the tool used to estab-
lish the mathematical models that linked chemical structure to activity. As 
already mentioned, in the 1970s, this was almost exclusively MLR but there 
were some exceptions to this  [32,33] . MLR has a number of advantages in that 
the models are easy to interpret and, within certain limitations, it is possible 
to assess the statistical signifi cance of the models. It also suffers from some 
limitations, particularly when there are a large number of descriptors to choose 
from where the models may arise by chance  [13]    and where selection bias may 
infl ate the values of the statistics used to judge them  [34,35] . Thus, with the 
increase in the number of available molecular descriptors, other statistical and 
mathematical methods of data analysis began to be employed  [36] . At fi rst, 
these were the  “ regular ”  multivariate methods that had been developed and 
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applied in other fi elds such as psychology, but soon other newer techniques 
such as artifi cial neural networks found their way into the molecular design 
fi eld  [37] . As with any new technique, there were some problems with their 
early applications  [38] , but they soon found a useful role in the construction 
of QSAR models  [39,40] . 

 This section has talked about the construction of QSAR models, but of 
course this was an early form of data mining. The extraction of knowledge 
from information  [41]  can be said to be the ultimate aim of data mining. (See 
edge-notched cards above.) 

  1.7   DRAWING AND STORING CHEMICAL STRUCTURES 

 Chemical drawing packages are now widely available, even for free from the 
web, but this was not always the case. In the 1970s, chemical structures would 
be drawn by hand or perhaps by using a fi ne drawing pen and a stencil. The 
fi rst chemical drawing software package was also a chemical storage system 
called MACCS (Molecular ACCess System) produced by the software com-
pany MDL, which was set up in 1978. MDL was originally intended to offer 
consultancy in computer - aided drug design, but the founders soon realized 
that their customers were more interested in the tools that they had developed 

 TABLE 1.1     An Example of a Set of Calculated Properties   (Reproduced with 
Permission from Hyde and Livingstone  [28] )   

  Calculated Property Set (81 Parameters, 79 Compounds)  

  Whole - molecule properties  
   “ Bulk ”  descriptors    M.Wt  ., van der Waals ’  volume, dead space 

volume, collision diameter, approach 
diameter, surface area, molar refraction  

   “ Shape ”  descriptors    Moment of inertia in  x  - ,  y  - , and  z  - axes; 
principal ellipsoid axes in x, y , and  z
directions

  Electronic and energy descriptors    Dipole moment;  x, y , and  z  components of 
dipole moment; energies (total, core – core 
repulsion and electronic) 

  Hydrophobicity descriptors    Log  P

  Substituent properties  
  For two substituents    Coordinates ( x, y , and  z ) of the center, 

ellipsoid axes ( x, y , and  z ) of the substituent  

  Atom - centered properties  
  Electronic    Atom charges and nucleophilic and 

electrophilic superdelocalizability for atom 
numbers 1 – 14    

  Shape    Interatomic distances between six pairs of 
heteroatoms
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for handling chemical information and so MACCS was marketed in 1979. 
MDL may justly be regarded as the fi rst of the cheminformatics software 
companies. 

 MACCS allowed chemists to sketch molecules using a suitable graphics 
terminal equipped with a mouse or a light pen  [42]  and then to store the 
compound in a computer using a fi le containing the information in a format 
called a connection table. An example of a simple connection table for ethanol 
is shown in Figure  1.4 . The connection table shows the atoms, preceded in 
this case by their 3 - D coordinates, followed by a list of the connections 
between the atoms, hence the name. The MACCS system stored extra infor-
mation known as keys, which allowed a database of structures to be searched 
rapidly for compounds containing a specifi c structural feature or a set of 
features such as rings, functional groups, and so on. One of the problems with 
the use of connection tables to store structures is the space they occupy as 
they require a dozen or more bytes of data to represent every atom and bond. 
An alternative to connection tables is the use of line notation as discussed 
below.   

  1.7.1   Line Notations 

 Even though Berzelius had introduced a system that allowed chemical ele-
ments to be expressed within a body of text, there was still a need to show the 
structure of a polyatomic molecule. Structural formulas became more common, 
and the conventions used to express them were enforced by international 
committees, scientifi c publications, and organizations, such as Beilstein and 
Chemical Abstracts. However, there were two areas where the contemporary 
technology restricted the value of structural formula. 

Figure 1.4     Connection table for ethanol in the MDL mol fi le format  .  
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 First, in published articles, printing techniques often separated illustrative 
pictures from the text so authors attempted to put the formula in the body of 
the text in a line format. This gave it authority, as well as relevance to the 
surrounding text. Once you move away from linear formulas constrained to 
read left to right by the text in which they are embedded, you need to provide 
a whole lot of information like numbering the atoms to ensure that all the 
readers get the same starting point for the eye movement, which recognizes 
the structure. So linear representations continued, certainly as late as 1903, 
for structures as complicated as indigo  [43] . Even today we may write C 6 H 5 OH. 
It has the advantage of being compact and internationally understood and to 
uniquely represent a compound, which may be known as phenol or carbolic 
acid in different contexts. 

 Second, organizations such as Beilstein and Chemical Abstracts needed to 
be able to curate and search the data they were holding about chemicals. 
Therefore, attempts were made to introduce systematic naming. So addressing 
the numbering issues alluded to above. Unfortunately, different organizations 
had different systematic names (Chemical Abstracts, Beilstein, IUPAC), 
which   also varied with time so you needed to know, for instance, which 
Collective Index of Chemical Abstracts you were accessing to know what the 
name of a particular chemical was (see Reference  44  for details). The upside 
for the organization was that the chemical names,  within the organization , 
were standard so they could use the indexing and sorting techniques already 
available for text to handle chemical structures. With the advent of punched 
cards and mechanical sorting, the names needed to be more streamlined and 
less dependent on an arbitrary parent structure, and thus there was a need 
for a linear notation system that could be used to encode any complex 
molecule. 

 Just such a system of nomenclature, known as WLN, had been invented by 
William Wisswesser in 1949  [45] . WLN used a complex set of rules to deter-
mine how a molecule was coded. A decision had to be made about what was 
the parent ring system, for example, and the  “ prime path ”  through the mol-
ecule had to be recognized. WLN had the advantage that there was only one 
valid WLN for a compound, but coding a complex molecule might not be clear 
even to experienced people, and disputes were settled by a committee. Even 
occasional users of WLN needed to attend a training course lasting several 
days, and most companies employed one or more WLN  “ experts. ”  An example 
of WLN coding is shown below:

6 - dimethylamino - 4 - phenylamino  - naphthalene -  2 - sulfonic acid;    

 the WLN is

  L66J  BMR &    DSWQ   INI& 1 .   

 Here the four sections of the WLN have been separated by spaces (which does 
not happen in a regular WLN string) to show how the four sections of the 
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sulfonic acid, indicated by regular text, italic, underline, and bold, have been 
coded into WLN. 

 Beilstein, too, made a foray into line notations with ROSDAL, which 
required even more skill to ensure you had the correct structure. The corre-
sponding ROSDAL code for the sulfonic acid above is

1=  - 5 -  = 10 = 5,10 - 1,1 - 11N - 12 -  = 17 = 12,3 - 18S - 19O,18 = 20O,18 = 21O,
8 - 22N - 23,22 - 24  .  

 Despite the complexity of the system and other problems  [46] , WLN became 
heavily used by the pharmaceutical industry and by Chemical Abstracts and 
was the basis for CROSSBOW (Computerized Retrieval Of StructureS Based 
On Wiswesser), a chemical database system that allowed susbstructure search-
ing, developed by ICI pharmaceuticals in the late 1960s. 

 A different approach was taken by Dave Weininger, who developed 
SMILES in the 1980s  [47,48] . This system, which required only fi ve rules to 
specify atoms, bonds, branches, ring closures, and disconnections, was remark-
able easy to learn compared to any other line notation system. In fact it was 
so easy to learn that  “ SMILES ”  was the reaction from anyone accustomed to 
using a line notation system such as WLN when told that they could learn to 
code in SMILES in about 10   minutes since it only had fi ve rules. One of the 
reasons for the simplicity of SMILES is that coding can begin at any part of 
the structure and thus it is not necessary to determine a parent or any particu-
lar path through the molecule. This means that there can be many valid 
SMILES strings for a given structure, but a SMILES interpreter will produce 
the same molecule from any of these strings. 

 This advantage is also a disadvantage if the SMILES line notation is to be 
used in a database system because a database needs to have only a single 
entry for a given chemical structure, something that a system such as WLN 
provides since there is only one valid WLN string for a molecule. The solution 
to this problem was to devise a means by which a unique SMILES could be 
derived from any SMILES string  [49] . Table  1.2  shows some different valid 
SMILES strings for three different molecules with the corresponding unique 
SMILES.   

 Thus, the design aims of the SMILES line notation system had been 
achieved, namely, to encode the connection table using printable characters 
but allowing the same fl exibility the chemist had when drawing the structure 
and reserving the standardization, so the SMILES could be used in a data-
base system, to a computer algorithm. This process of canonicalization was 
exactly analogous to the conventions that the publishing houses had insti-
gated for structural diagrams. Thus, for the sulfonic acid shown earlier, a 
valid SMILES is c1ccccc1Nc2cc(S(=O)(=O)O)cc3c2cc(N(C)C)cc3  and the 
unique or canonical SMILES is CN(C)c1ccc2cc(cc(Nc3ccccc3)c2c1)S(=O)
(=O)O . 

 It was of concern to some that the SMILES canonicalizer was a proprietary 
algorithm, and this has led to attempts to create another linear representation, 
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 TABLE 1.2     Examples of Unique  SMILES  

   CH 3 CH 2 OH (1), CH 2  = CHCH 2 CH = CHCH 2 OH (2), 4 - Cl - 3Br - Phenol (3)  

   Compound     SMILES     Unique SMILES  

  1    OCC    CCO  
  1    CC(O)    CCO  
  1    C(O)C    CCO  
  2    C = CCC = CCO    OCC = CCC = C  
  2    C(C = C)C = CCO    OCC = CCC = C  
  2    OCC = CCC = C    OCC = CCC = C  
  3    OC1C = CC(Cl) = C(Br)C = 1    Oc1ccc(Cl)c(Br)c1  
  3    Oc1cc(Br)c(Cl)cc1    Oc1ccc(Cl)c(Br)c1  
  3    c(cc1O)c(Cl)c(Br)c1    Oc1ccc(Cl)c(Br)c1  

International Chemical Identifi er (InChI), initially driven by IUPAC and NIH 
  (for details, see Reference  50 ).   

  1.8   DATABASES 

 Nowadays, we take databases for granted. All kinds of databases are available 
containing protein sequences and structures, DNA sequences, commercially 
available chemicals, receptor sequences, small molecule crystal structures, and 
so on. This was not always the case, although the protein data bank was estab-
lished in 1971 so it is quite an ancient resource. Other databases had to be 
created as the need for them arose. One such need was a list of chemicals that 
could be purchased from commercial suppliers. Devising a synthesis of new 
chemical entities was enough of a time - consuming task in its own right without 
the added complication of having to trawl through a set of supplier catalogs to 
locate the starting materials. Thus, the Commercially Available Organic 
Chemical Intermediates (CAOCI) was developed. Figure  1.5  shows an example 
of a page from a microfi che copy of the CAOCI from 1978  [51] . The CAOCI 
developed into the Fine Chemicals Directory, which, in turn, was developed into 
the Available Chemicals Directory (ACD) provided commercially by MDL.   

 The very early databases were simply fl at computer fi les of information. 
These could be searched using text searching tools, but the ability to do 
complex searches depended on the way that the data fi le had been constructed 
in the fi rst place, and it was unusual to be able to search more than one fi le 
at a time. This, of course, was a great improvement on paper -  or card - based 
systems, but these early databases were often printed out for access. The 
MACCS chemical database system was an advance over fl at fi le systems since 
this allowed structure and substructure searching of chemicals. The original 
MACCS system stored little information other than chemical structures, but 
a combined data and chemical information handling system (MACCS - II) was 
soon developed. 
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 The great advance in database construction was the concept of relational 
databases as proposed by E.F. Codd, an IBM researcher, in 1970  [52] . At fi rst, 
this idea was thought to be impractical because the computer hardware of the 
day was not powerful enough to cope with the computing overhead involved. 
This soon changed as computers became more powerful. Relational databases 
are based on tables where the rows of the table correspond to an individual 
entry and the columns are the data fi elds containing an individual data item 
for that entry. The tables are searched (related) using common data fi elds. 
Searching requires the specifi cation of how the data fi elds should be matched, 
and this led to the development, by IBM, of a query  “ language ”  called 
Structured Query Language (SQL). 

 One of the major suppliers of relational database management software is 
Oracle Corporation. This company was established in 1977 as a consulting 
company, and one of their fi rst contracts was to build a database program for 
the CIA   code named  “ oracle. ”  The adoption of a relational database concept 
and the use of SQL ensured their success and as a reminder of how they got 
started, the company is now named after that fi rst project. 

 About 10   years ago, Oracle through its cartridges  [53] , along with other 
relational database providers such as Informix with its DataBlades    [54] , 
allowed users to add domain - specifi c data and search capability to a relational 
database. This is a key step forward as it allows chemical queries to be truly 

Figure 1.5     Entry (p. 3407) from the available chemical index of July 1978.  
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integrated with searches on related data. So, for instance, one can ask for  “ all 
compounds which are substructures of morphine which have activity in 
test1    >    20 and log  P     <    3 but have not been screened for mutagenicity, and 
there is > 0.01   mg available. ”  The databasing software optimizes the query and 
returns the results. These technologies, while having clear advantages, have 
not been taken up wholesale by the pharmaceutical industry. Some of this is 
for economic reasons, but also there has been a shift in the industry from a 
hypothesis - testing approach, which required a set of compounds to be prese-
lected to test the hypothesis  [55] , to a  “ discovery ”  - based approach driven by 
the ability to screen large numbers of compounds fi rst and to put the intel-
lectual effort into analyzing the results.  

  1.9   LIBRARIES AND INFORMATION 

 In the 1970s, each company would have an information (science) department 
whose function was to provide access to internal and external information. 
This broad description of their purpose encompassed such diverse sources as 
internal company reports and documents, the internal compound collection, 
external literature, patents both in - house and external, supplier ’ s collections, 
and so on. Part of their function included a library that would organize the 
circulation of new issues of the journals that the company subscribed to, the 
storage and indexing of the journal collection and the access, through interli-
brary loans, of other scientifi c journals, books, and information. Company 
libraries have now all but disappeared since the information is usually deliv-
ered directly to the scientist ’ s desk, but the other functions of the information 
science departments still exist, although perhaps under different names or in 
different parts of the organization. The potential downside to this move of 
chemical information from responsibility of the specialists is that there is a 
loss of focus in the curation of pharmaceutical company archives. Advances 
in data handling in other disciplines no longer have a channel to be adapted 
to the specialist world of chemical structures. The scientist at his/her desk is 
not likely to be able to infl uence a major change in company policy on com-
pound structure handling and so will settle for the familiar and will keep the 
status quo. This could effectively prevent major advances in chemical informa-
tion handling in the future.  

  1.10   SUMMARY 

 From the pen and paper of the 19th century to the super - fast desktop PCs of 
today, the representation of chemical structure and its association with data 
has kept pace with evolving technologies. It was driven initially by a need to 
communicate information about chemicals and then to provide archives, 
which could be searched or in today ’ s terminology  “ mined. ”  Chemistry has 
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always been a classifi cation science based on experiment and observation, so 
a tradition has built up of searching for and fi nding relationships between 
structures based on their properties. In the pharmaceutical industry particu-
larly, these relationships were quantifi ed, which allowed the possibility of 
predicting the properties of a yet unmade compound, totally analogous to the 
prediction of elements by Mendeleev through the periodic table. Data repre-
sentation, no matter what the medium, has always been  “ backward compati-
ble. ”  For instance, as we have described, for many pharmaceutical companies, 
it was necessary to be able to convert legacy WLN fi les into connection tables 
to be stored in the more modern databases. This rigor has ensured that there 
is a vast wealth of data available to be mined, as subsequent chapters in this 
book will reveal.  
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  2.1   THE PHARMACEUTICAL CHALLENGE 

  2.1.1   A Period of Transition 

 Healthcare and the pharmaceutical industry are going through a period of 
change and rapid evolution.  Evidence - based medicine  (EBM)  [1]  has been for 
some years promoted to replace physicians ’  textbooks, personal experience, 
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and anecdotal evidence by latest well - founded knowledge and statistical valida-
tion. In its most modern form, it represents a move to more  personalized medi-
cine   [2]  based on new patient data capture technologies and information 
technology (IT), becoming  information - based medicine , a further evolution of 
EBM primarily centered on the electronic medical record  [3] . In the movement 
toward personalized medicine, physicians will rely on the integration of pheno-
typic with genotypic data and on the identifi cation of  patient cohorts  as sub-
populations that are defi ned by shared genomic characteristics in particular. 

 Correspondingly, the biopharmaceutical industry is moving from its  “ block-
buster model ”  to a new  stratifi ed medicine  or  “ nichebuster ”  model  [4]  based 
on biomarkers . In one white paper  [5] , it has been pointed out that this 
research and development (R    &    D) approach will require further serious 
efforts to address R    &    D productivity issues. There will be potential longer -
 term benefi ts  [6]  at more imminent cost  [7] . The term biomarker has been 
coined for any parameter that helps distinguish a patient and actual or poten-
tial disease states. Though many authors include classical clinical descriptors 
such as gender, age, weight, blood pressure, and  “ blood work ”  results in that 
term, it is particularly used in regard to the new genomic  [8 – 10]  data, although 
also increasingly with medical imaging data  [11] . The general idea is not simply 
to achieve better diagnosis but, in addition, to use the biomarkers as the clues 
for the best possible drug, meaning both at the level of pharmaceutical R    &    D 
and in regard to the physician ’ s selection from currently marketed products. 

 At the same time, the growth of general understanding of bodily function 
and drug action in molecular terms offers hope that the emerging physico-
chemical principles can be applied not only to rationalize the relevance of 
individual molecular characteristics of genomic cohorts and even individual 
patients but also to exploit understanding of the mechanisms that determine 
how drug action is affected by them, that is to say, to develop methods with 
predictive power for more personalized drug design and for therapy selection  . 
In general, we would like an engineering - quality level of understanding about 
the fl ow of information from the individual patient DNA to the patients ’  
equally unique mixes of health and disease, as infl uenced by their own unique 
lifestyles and environments. To achieve this in atomic detail with the same 
capability as when a computational engineer architects a customized IT system, 
or when a structural engineer designs a bridge to specifi c needs and environ-
ment, is still probably a long way off. But we can at least try to ensure the best 
tools for analysis of empirical observations and to see what predictions can be 
made from them along with the use of such mechanistic understanding as we 
have available. From some perspectives, this is a critical fi rst step with a poten-
tial for a considerable return on effort.  

  2.1.2   The Dragon on the Gold 

 A previous review  [12]  by one of the authors (B. Robson) is entitled  “ The 
Dragon on the Gold: Myths and Realities for Data Mining in Biotechnology 
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using Digital and Molecular Libraries, ”  is a forerunner of the present review, 
and addresses analogous issues to those of the present paper, but now for the 
pharmaceutical industry  . The gold relates to the  relevant  knowledge inherent 
in huge heaps of data, while the dragon relates to the  “ universe ’ s protection ”  
against human access to that knowledge by the combinatorial problems that 
arise when attempting to extract knowledge from high - dimensional data. 

 A reason for starting with the biotechnology industry was that many math-
ematical issues for data mining digital data also apply to molecular libraries 
in the form of nucleic acid libraries, notably expression arrays. It is insightful 
to consider this to highlight the relative diffi culty that a pharmaceutical 
company (as opposed to a biotechnology company) faces. A query in IT is 
analogous to partial binding between nucleic acids, a fact that incidentally is 
of interest for a potential bio nanotechnology  approach to storage and data 
mining  [12] . The G – C, A – T, and A – U base pair binding has an effect remark-
ably like digital storage and information recovery, albeit in base 4  “ quits, ”  not 
base 2  “ bits. ”  Binding and recognition at the nucleic acid level even has a 
therapeutic role. For example, the potential use of small nuclear RNA inter-
ference (snRNAi) polynucleotides or simply RNAi depends on the particular 
use and administration of a competitive interference agent. 

 As a bonus, the biotechnology industry also has the benefi t of the ability 
to use biological systems to select peptides and proteins and even program 
antibodies for specifi c binding. Continuing the RNA world example, antibod-
ies against small nuclear ribonucleoproteins  (snRNPs) may be useful in devel-
oping biotechnological products that target that complex in systemic lupus 
erythematosus patients. The required protein – nucleic acid interactions are far 
more complex than the digital code of binding between nucleic acid and 
nucleic acid via base pairing, but, despite advances in antibody engineering, 
there is for the most part no great need to have intimate and 100% apprecia-
tion of the physicochemical details at the point of binding. The immune system 
of an animal does most of the critical  “ design work ”  through the immune 
system process of selection and maturation and does an outstanding job 
(despite attempts to reproduce the effect with receptor - induced chemical 
assembly or phage display). The simple interaction code here is (immune 
system) – (target), which magically translates through the mysteries of nature 
to (antibody) – (target). It is  “ simply ”  required to harvest, clean up, and check 
quality to Food and Drug Administration (FDA) standards. If biotechnology ’ s 
herding of antibodies can be compared to herding cattle, then to paraphrase 
the theme song of the old television cowboy series Rawhide ,  “ Don ’ t try to 
understand them, just rope them in and brand them. ”  The analogy is not inap-
propriate considering that fi elds of appropriately immunized cows or sheep 
can do the job of the R    &    D division and of the fi rst stage production plant. 

 Compared with the biotechnology industry, the pharmaceutical industry 
has it tougher, though the prizes are typically greater. It is constantly looking 
for drugs that are small  organic molecules. Building a specifi c binding surface 
to order is much harder than in the case of nucleic acids and antibodies, though 
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this is outweighed by the benefi ts of success, notably the ability to market the 
therapeutic agent in a long - life, orally administrable pill form. A promising 
ability to bind and/or to activate a receptor comes mainly from discovery by 
selection, i.e., systematic screening of large numbers of compounds in bioas-
says, selective optimization of known compounds on new pharmacological 
targets, chemical modifi cation of an existing lead or drug, or virtual docking 
(combined with attempts at rational design  of drugs from knowledge of bio-
molecular mechanism and theoretical chemistry).  Recognition  information, 
i.e., molecular, down - to - atomic details about the drug and its protein target 
and the interactions between them, is a complex matter and the holy grail for 
rational development. This is even though screening compounds blindly 
against receptors, cells, and tissues, and so on, in large robotically controlled 
laboratories currently continues with relative success and hence popularity 
irrespective of a lack of detail at the atomic level  [13] . Naturally, the same 
general  physicochemical information principles that apply to the interaction 
between nucleic acids must obviously inevitably still apply to molecular rec-
ognition encoded into the interacting surfaces of ligands and proteins, the 
important basis of pharmacology. However, the latter interactions are more 
complexly encoded at the level of van der Waals, coulomb, and solvent -
 dependent interactions in a nonsimple way, whereas the same forces in the 
Crick – Watson base pairing allow us to address nucleic acid interaction at a 
kind of  “ digital storage level ”  as mentioned above. 

 In the pharmaceutical industry, the role of information inherent in nucleic 
acid is emerging strongly through the discipline of pharmacogenomics and 
personalized medicine, with focus on genomic biomarkers. Nonetheless, while 
laboratory detection of biomarkers depends on simple complementary pairing 
of nucleic acids, the fi nal phenotypic effect is rarely conceivable in simple 
terms. Even for those genetic differences that most directly affect health and 
disease, it is necessary to consider a complicated interplay of many biomark-
ers, i.e., genomic and other factors. Although some thousands of genetic dis-
eases are known due to single or very few base pair changes and single 
biomarkers can by themselves govern phenotypic effects such as eye color, 
these have become the exception rather than the rule. The complexity of 
human physiology makes it intrinsically unlikely that any one new biomarker 
would alone explain or reveal a particular clinical diagnosis. For the time 
being, we can assume the unknown variables together with the known geno-
typic information by identifying the phenotypic affect on a particular indi-
vidual in terms of clinical affect. In practice, it is essential to reduce the 
dimensionality of the description to explore if all of the variables within this 
profi le are strongly  “ in play. ”  Typically, a large subset will remain strong 
players. In this regard, not only identifi cation of, but also the relationship 
between, many biomarkers within a cohort will most often be more represen-
tative in elucidating a particular diagnosis. However, in addition to a bewilder-
ing abundance of useful data, the broad lens of the methods used captures 
many incidental biomarkers, which may be harmless distinguishing (ideotypic) 
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or irrelevant distinguishing features, distracting the medical professionals and 
encouraging the need for even more tests  [14] . While many of the challenges 
can be met by sophisticated engineering in IT, the fundamental challenge 
posed by many parameters is a more fundamental and formidably mathemati-
cal one  [15] . The huge quantity of new parameters describing patients pushes 
existing data analytic tools  [16]  to the limit, stimulating the quest for heuristic 
approaches  [17]  and even new mathematical strategies  [18] .  

  2.1.3   The Pharmaceutical Industry Is an Information Industry 

 Drucker, a leading management thinker of the 20th century, described the 
pharmaceutical industry as an information industry  [19] . He noted that the 
value of the medicine lays not in the production and distribution of the fi nal 
product, which is a relatively negligible cost, but in the knowledge from years 
of data sifting and R    &    D. He considered that the hierarchy from data through 
information to knowledge is the discovery and application of relationships, 
patterns, and principles between each stage  [20,21] . It may be added that 
discovery in areas of little or known prior expectation is closely related to 
at least the R    &    D part of  innovation   [5] ; otherwise, it would be merely the 
that testing of prior hunches and hypotheses constitutes  validation    (of those 
hunches and hypotheses). The challenge of innovation is that it is much 
easier to fi nd that of which we have some knowledge than that of which we 
are completely ignorant. A theme of the present review is that the pharma-
ceutical industry process is indeed a sifting and processing of a very broad 
base of information to specifi c knowledge, and that classical statistics with 
its emphasis on formulating and testing hypotheses is not  well suited to meet 
the challenges of pharmacology and biomedicine in the  “ post - genomic era. ”  

 Until recently, medicinal chemists have typically started with one or several 
lead compounds, and then utilized an optimization process to turn lead com-
pounds into clinical candidates. This implies a restriction that can prohibit true 
discovery as discussed below, and in any event it looks like the  “ low - lying 
fruits ”  are running out. What does seem to be generally agreed is that most 
pharmaceutical R    &    Ds in 2007 start with a hypothesis picking a specifi c molec-
ular target (meaning here not the type of chemistry to be achieved for drug 
molecule but the molecule in the body with which it will interact to trigger the 
required effect). This is usually a protein (more rarely DNA or RNA, and 
even more rarely saccharides, lipids, etc.). The idea is to try and realize four 
primary goals: 

  1.    a drug molecule that affects the molecular target,  
  2.    a method to deliver this drug to the protein target,  
  3.    a choice of chemistry or vehicle that maintains effective drug concentra-

tion in the patient for a desired time, and  
  4.    minimal interaction with other protein targets (avoidance of adverse 

effects).    
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 Whatever the means by which the initial leads may be selected, there is still 
a needle - in - haystack problem. Each iteration usually includes a decision point 
concerning which molecules to make next: with  D  decision points each involv-
ing m  molecules, there are  Dm  possible   molecules to be synthesized and/or 
tested, which could often easily mean there are at least a billion. Ackoff and 
Emery  [20,21]  argue that the relevant knowledge to rationalize a path through 
this process constitutes effi ciency of choice   [20,21]  and consists of  possession
of facts  (or awareness of a state of affairs) and  possession of skills   [20,21] . The 
former, they consider, consists of  ontology , i.e., about what entities exist and 
what statements about them are true; the latter is about how we can obtain 
knowledge about facts in the world and how can we ascertain their reliability. 
From a data analytic perspective, this classifi cation is somewhat misleading. 
The two key issues are ontology and associations, which map to  universal  and 
existential  qualifi cation in higher - order human logic known as the predicate 
calculus (PC). Both at least most generally can be discovered from data analy-
sis and both initially at least may involve uncertainty, though there is a ten-
dency to assign ontology  a priori  as a self - evident or preset classifi cation 
(taxonomy) of things based on human judgment, and association analysis as 
a more research skill - driven process of relationship discovery (in this process, 
strong associations may also emerge as an ontological relationship). As dis-
cussed below, the number of rules or guidelines that may  empirically  be 
extracted from N  parameter data and that relate to ontologies and associations 
may be at least of the order of 2 N  where extracted rules cannot necessarily be 
deduced from simpler rules and vice versa. 

 No route nor stage in the journey seems to avoid the huge numbers of 
options to consider. Though the ultimate challenge here is mathematical, 
physics instead could have been blamed. The inexorable laws of thermody-
namics hold even broader sway across the industries. The automotive industry 
is ultimately an energy industry, progressing by respecting the laws of ther-
modynamics, not assuming that one may get more energy out than you put 
in, and not by working fl at out to make the perpetual motion machine. 

 The pharmaceutical industry as an information industry is also thus by 
defi nition a  negative entropy  industry. It too is bound by the laws of thermo-
dynamics. The pharmaceutical industry cannot ignore entropy (which is infor-
mation with change of sign). As the information content of a pharmaceutical 
company increases, its entropy by defi nition decreases    …    all other factors 
being equal! Key rules here are that you cannot have all the information you 
could use without someone or something somehow working hard to get it, you 
rarely get it all, and, compared with energy that is conserved (though because 
of entropy, degradable to heat), information that was almost in your hands 
can easily get lost forever.  

  2.1.4   Biological Information 

 There has always been proof of concept that biologically active chemical 
agents for humans can be discovered. It is represented by the biochemistry 
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and molecular biology of all humans who have ever lived on Earth. The bad 
news is that getting the implied information took some 3.5   billion years of 
running a trial - and - error - based evolutionary - genetic algorithm running with 
very high parallelism to attain these human beings. That is perhaps a quarter 
of the age of the entire universe, depending on current estimates. 

 The numbers arise as follows. Since humans are to a fi rst approximation 
rather similar, and since proteins including enzymes largely dictate the chem-
istry of the biological molecules in humans, then in principle the information 
content of all the biological molecules can be estimated through the proteome 
of a human by reference to the genes coding for them starting with a single 
human. For example, if in the human genome there are, say, 40,000 such genes 
and each had, say, an information content of 250 bits, then the total informa-
tion content of man is 8    ×    10 6    bits. We can go beyond the uniformity approxi-
mation. Since about two in every 1000 base pairs vary between humans in their 
DNA, we can estimate about 10 7  – 10 8  bits in the human race of recent history. 
The topic is of interest to astrophysicists since even higher information content 
is not beyond interstellar transmission. Their revised estimates indicate that 
between 10 13  and 10 14    bits per human should suffi ce to specify  “ genetic infor-
mation, neuronal interconnections and memory, and process or initialization 
information ”   [22] . 

 There are two interesting numbers here: the amount of information in a 
human, 10 13  – 10 14    bits, and the evolutionary rate at which it was generated. In 
3.5   billion years, it works out to imply roughly 10   bits/s or more based on the 
numbers discussed. That compares quite favorably with a clinical trial that, on 
the basis of accepting or rejecting a drug, implies 1   bit of information gained 
for a compound over what the FDA estimated in 2001 as an average 2   years 
for the overall process. It is a sobering thought that random mutation and 
natural selection seems to be some 100 times faster. But of course this is mis-
leading on several fronts. For one thing, there is no shortage of scientifi c data 
to help remove randomness from the overall drug selection process, and the 
generation rate will soon be dwarfi ng the process of natural evolution.  

  2.1.5   The Available Information in Medical Data 

 Capturing massive amounts of data from patients can help us get to the new 
chemical entity that represents a trial candidate, as well as understanding its 
action during trials  . Such scientifi c data that are currently being generated 
and are potentially relevant to a patient in clinical trials and the patient in 
the physician ’ s offi ce are often called  translational science  or  translational
research . Medical imaging alone is or soon will be producing many petabytes 
(1   byte   =   8    ×    10 15    bits) worldwide, with new imaging modalities pumping out 
as much as 13   GB/s per device (though it is signifi cantly reduced by consider-
ing resolution required on a local and on - demand basis). Other sources of 
biomedical information, from genomics and proteomics, and including 
human expertise and information in the form of medical text, add signifi -
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cantly to the still considerable load. All this can, in principle, be stored and 
transmitted (and the latter may be much more problematic because of the 
bandwidth issues). Note that artifi cial storage is not so effi cient: DNA could 
store at approximately 1   bit/nm 3 , while existing routine storage media require 
1012    nm 3  to store 1   bit. However, the universe has allocated the human race 
a lot more space to play with for artifi cial storage than has been allowed to 
the tiny living cell. 

 However, the universe has allocated the human race a lot more space to 
play with for artifi cial storage (say, soon some 10 17 bits) than has been allowed 
to the tiny living cell (10 10– 10 13 bits). The trick is in using this artifi cial data. It 
is still 10 17    bits that have to be sifted for relevance. It is not information  “ in 
the hand ”  but rather more like the virtual reservoir that evolution has tapped 
in its trial - and - error process. Looking at the above numbers and information 
rates suggests that normal processing, but using trial and error to sift the data, 
would demand some 8   billion years. Clearly, a strategy is required, and one 
that leaves little room for fundamental error, which will collapse some of it to 
a trial - and - error basis, or worse by pointing us in wrong directions. 

 An emerging dilemma for the physician refl ects that for the drug researcher. 
In fact, we are fast approaching an age when the physician will work hand in 
hand with the pharmaceutical companies, every patient a source of informa-
tion in a global cohort, that information being traded in turn for patient and 
physician access to the growing stockpile of collective wisdom of best diagno-
ses and therapies. But in an uncertain world that often seems to make the role 
of the physician as much as an art as a science, physicists are not surprised 
that medical inference has always been inherently probabilistic. The patient 
is a very complex open system of some 10 28  atoms interacting with a potentially 
accessible environment of perhaps 10 35  – 10 43  atoms. Just within each human, 
then, there are thus roughly 10 15  atoms mostly behaving unpredictably for 
every bit of information that we considered relevant above. There are many 
hidden variables, most of which will be inaccessible to the physician for the 
long foreseeable future. Balanced against this, the homeostatic nature of living 
organisms has meant that they show fairly predictable patterns in time and 
space. Thus so far, there have been relatively rigid guidelines of best practice 
and contraindications based on the notion of the more - or - less average patient, 
even if their practical application on a case - by - case basis still taxes daily the 
physician ’ s art. 

 Ironically, however, while the rise of genomics and proteomics substantially 
increases the number of medical clues or biomarkers relevant to each patient, 
and so provides massive amounts of personal medical data at the molecular 
level, it brings the physician and researcher closer to the atomic world of uncer-
tainty and underlying complexity. It demands a probabilistic approach to 
medical inference beyond the medical textbooks, notably since the develop-
ment of disease and the prognosis of the patient based on the molecular data 
are often inherently uncertain. Importantly, the high dimensionality of the 
data includes many relevant features, but also variations and abnormal 
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features that may be harmless or otherwise irrelevant. They are poised to over-
whelm the physician, increase the number of tests, and escalate clinical costs, 
thus imminently threatening rather than aiding the healthcare system  [14] .  

  2.1.6   The Information Flow 

 The useful information that is available in biomedicine is best understood as 
a fl ow, which it is pretty much the same in any discipline. We shall defi ne 
useful information as that which leads to an actionable decision with a required 
benefi cial outcome.

  Data    →    structured data    →    rules    →    inference    →    decisions    →    benefi cial outcome   

 In an overview of what follows, a brief comment may be made on this sequence. 
Data  (or  “ raw data ” ) should be necessarily qualifi ed as  accessible data  and 
should ideally be in a s tructured data  form suitable for analysis. In business 
and industry generally, roughly some 95% it is not. In medicine, medical text 
and medical images well exemplify unstructured forms. Explicitly or perhaps 
implicitly in an analysis procedure, conversion to at least a transient structured 
form is required. 

 This structured form is then transformed into a set of elemental statements 
about associations and correlations, above indicated as  rules , which express 
the content in a succinct way suitable for inference . However, classically, the 
rules step has been represented by statistical analysis, with inference and deci-
sion making left to the human expert based on the results. There are numerous 
tools that have of course been developed to analyze data, and these obviously 
remain of interest. The probability theory  [23]  underlines classical statistics 
 [24 – 26] . Of particular interest here, because of the high dimensionality of 
clinical with genomic and proteomic data, is multivariate analysis  [27 – 32] . 
Dimensional reduction techniques such as multidimensional scaling  [33]  and 
principal coordinate analysis are essentially clustering (and by implication 
dendrogram or  “ tree ” ) methods that reveal useful patterns in data in fewer 
dimensions while preserving the rank order of distances or the distances them-
selves, respectively. There are several pharmaceutical and biotechno-
logical applications. For example, multidimensional scaling in conjunction 
with structure – activity data seems very useful for identifi cation of active drug 
conformers  [34 – 37] . 

 Less classically, direct use of information (as opposed to probability) - based 
methods seems well suited to the automation of the above sequence, which is, 
after all, an information fl ow  . Information theory has already long been recog-
nized as of value in inference from rules, and the decision process based on that 
inference  [38,39] , whence it is closely related to decision theory  [40,41] . 
Application of information theory in commercial methods of data mining for 
the rules, i.e.,  empirical rule generation , as the fi rst step has been less common, 
though it is the approach taken by one of the authors (B. Robson)  [18,42,43]  
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and applied to 667,000 patient records  [44] . Because the method is somewhat 
less orthodox, it is worth stating that it has its roots in the theory of expected 
information  [44]  and in the subsequent widely used application as the Garnier -
 Osguthorpe - Robson (GOR)   method  [45]  for data mining protein sequences. 
Widely cited and used since its publication 1978, the latter had some 109,000 
Google hits on Robson GOR protein in September 2007. The  “ rules ”  here were 
basically rules in the same sense as in subsequent data mining efforts, though 
then known as the  “ GOR parameters, ”  and concerned the relationships 
between amino acid residues and their conformation in proteins. The diffi culty 
was that the GOR method and its rules took advantage of and was  “ hard wired ”  
to the chemistry and biology of protein structure. In effect, the more recent 
papers  [18,42,43]  developed a more general data mining approach where there 
is no imposition on what the rules are about, except for a choice of plug - in 
cartridges, which customized to particular domains such as clinical data. 

 A simple example of such a rule may be that if a patient is tall, he will be 
heavy. This illustrates that rules are not in general 100% guaranteed to be 
correct. Rather, rules will, in general, be associated with a quantity ( weight ) 
expressing uncertainty in an uncertain world, even if some or many of them, 
such as  “ if the patient is pregnant, the patient is female, ”  emerge as having a 
particular  degree of certainty of 100% and may constitute ontology in the 
sense of  “ All A are B. ”  In the abovementioned rule generation methods 
 [18,42 – 44] , the probabilistic weight was actually an estimate of the information 
available to the observer, refl ecting both the strength of the relationships and 
the amount of data available for estimating them (a natural and formal com-
bination; see below). Weights will be discussed in several contexts in what 
follows. 

 As in a large study of patient data  [44] , the rules themselves represented 
the end of the road as far as basic research is concerned, with the important 
qualifi cation that they were automatically fed to medical databases such as 
PubMed to ascertain how many hits were associated with the rule. Some (3 –
 4%) had few or no hits and represented potential new discoveries to be further 
investigated. The signifi cance of subsequent inference is that it allows for the 
fact that rules are not independent; indeed many weak positive and negative 
rules with topics in common like patient weight may add up to a strong weight 
of evidence regarding that topic. Rules interact to generate further rules 
within an inference process without further information except for certain 
established laws of inference  used in logical and probabilistic argument. It may 
be noted in passing that this is more easily said than done because some of 
the laws of higher - order logic required for much inference, such as syllogistic 
reasoning, are not well agreed upon in the matter of handling uncertainty. 
When focus is on a specifi c decision or a set of decisions as opposed to general 
discovery, there is funneling or selection, focusing on the domain of relevant 
rules. A  decision  is in that sense an inference step out of many possible infer-
ence steps. To choose the appropriate decision, one must consider what exactly 
benefi cial  means. In medicine, conveniently, we can characterize this in terms 
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of outcomes  and specifi cally a sense of enhancement in the well - being of a 
patient in particular and of the population in general. Of course, well - being is 
a somewhat fuzzy and not invariant concept, but then so is the sense of lack 
of well - being in the fi rst place; fuzziness and, conversely, distinguishability are 
some of the recurrent issues that are important to deal with at several points. 

 Though it seems odd at fi rst, the fi les containing extracted rules can  in
principle  be much larger (though in practice this is currently rarely so) than 
the fi les including the raw data analyzed. That does not mean that information 
is created, but that there is an overhead price to pay in putting data in a more 
knowledge - related form, which is appropriate for inference. The important 
notion is that these rules may be used to some fundamental underlying prin-
ciples comparable to laws of nature. The explosion potentially occurs because 
relations between things are rendered specifi c in terms of, behind the scenes 
at least, combinatorial mathematics. This can be glimpsed by stating that in 
studying the relationships in a mere four items, A, B, C, and D, the relation-
ships to be explored are (A, B) (B, C), (C, D), (A, B, C), (A, B, D), (B, C, 
D), (A, C, D), and (A, B, C, D). The consequent  “ combinatorial explosion ”  
as the number of items is increased is considerable. It is at least 10 30  for 100 
items, still an incredibly small number of items for, for example, a patient 
record including genomic and proteomic data and image data. This makes the 
discovery of relevant rules diffi cult and computationally expensive and repre-
sents the  “ dragon ”  protecting the discovery of the gold of knowledge therein. 

 There may also be more rules generated in the inference process, in the 
sense of logical or essentially probabilistic interim or fi nal deductions from the 
data - mined rules. For example, in the PC, the syllogisms generate a further 
rule, which can follow from two given rules. One may say that the increase of 
information available to the researcher  is inevitable because it is necessarily so 
that these interim or fi nal rules are unexpected or at least are hidden from 
consideration, else why acquire an  inference engine  software that performs the 
inference process? That accepted, then the data mining process, as a combi-
natorial expansion of the description of the relationship between things in the 
raw data, can be considered a part of inference, which is another reason why 
data mining and inference cannot be divorced. The feature that dictates the 
severity of combinatorial expansion is not the explicit information content of 
the whole fi le in terms of bits, but rather, the width of the data, refl ecting the 
number of parameters to consider, not the depth of data, refl ecting the sample 
size. The terms width and depth comes particularly from the concept of 
archives of analyzable records discussed below, the width of the record rep-
resenting the number of parameters and the depth representing the number 
of records. Width makes analysis more challenging; depth makes it statistically 
more reliable, and there is a relationship in that increasing width demands 
increasing the depth to obtain statistical signifi cance. The information is a 
logarithmic function of aspects arising from data and hence rises only as the 
logarithm of the depth. The information in terms of the actual rule content 
rises proportionally, however, to the width, this representing an explosive 
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increase. The width as number of parameters represents the true  complexity  
of any analogous problem in both the colloquial and mathematical sense, as 
follows.  

  2.1.7   The Information in Complexity 

 The diffi culty is the above  “ The Dragon on the Gold, ”  but at least it is quan-
tifi able: we can certainly know our enemy. The diffi culty of discovery increases 
as a power function,  x c  , where  x  is normally at least 2 depending on the nature 
of the data, and where the power  c  is the  degree of complexity  of the data 
being examined. Above it was discussed in terms of the  “ number of items. ”  
More precisely, it relates to the number of distinct  descriptors  (or  attributes ) 
that characterize what we want to be considered in our knowledge about a 
system. Complexity is thus mathematically the dimensionality of the problem, 
and a dimension is any kind of descriptor described in the next section, which 
becomes the  atomic object of analysis , i.e., the basic indivisible component. It 
can be related directly to information content  I  of data  D , viz,

    I D c x( ) = ⋅ ( )log .     (2.1)     

 Comparison with the above discussion of information would mean that log to 
the base 2 is used giving bits (binary units). Probably more frequently in data 
mining and in data analytics, log to the base e is used giving nats (natural 
units): simply multiply by 1.4427 …  to get bits. Where  x  is invariant in a study, 
 x  could be used as the basis of the logarithm, in which case  I ( D )   =    c  and  is  the 
complexity. An example of  x  is in fi tting or in deducing statistical parameters 
to any specifi ed error (on a scale from 0 to 1) that we are willing to tolerate. 
That error is 1/ x . Hence, we can write

    I D c( ) = − ⋅ ( )log .error     (2.2)   

 This useful way of writing the role of complexity can be used fairly generally 
as relating to the error with which one wishes to work when studying data, 
whenever one can formulate the study in terms of the error. Note that irre-
spective of the complexity  c , by Equation  2.2 , studying data without any error 
(error   =   0) will require infi nite information, which is not a recommended 
strategy, while studying data with total error (error   =   1) will require and imply 
zero information, which is not a very interesting strategy.  

  2.1.8   The Datum, Element of Information 

 When discussing the information content of a human being, the numbers 
obtained relate to storage  capacity , much as one would talk about a hard drive 
or the amount of RAM memory in a computer. A measure of information 
that is capable of imparting knowledge is information  about  something. Unlike 
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a computer, the associated information content does not come written on (or 
in a manual for) that something, but we must form opinions, statistically rigor-
ous or otherwise, based on multiple occurrences of it. 

 The basic something that is collected for analysis, say the  datum , is variously 
called an entry, item, observation, measurement, parameter, quality, property, 
event, or state. When discussing matters like patient records, the term entry 
is usually used. When discussing more abstract matters, and by analogy with 
quantum mechanics (QM) and statistical mechanics, the term  state  is fre-
quently used, perhaps even when it may be that the measurable valuable of 
the property of a state is the intended meaning. An example of a datum is the 
weight of a patient. 

 In the most general defi nition of a biomarker, a biomarker is simply a 
datum and vice versa, though often the term  “ biomarker ”  is reserved for 
genomic, proteomic, image, and clinical laboratory data for a patient. 

Structured data mining  (in contrast to  unstructured data mining , which 
addresses text and images) places emphasis not only on the datum but also 
on the record . The patient record, including specifi cally the clinical trial 
patient record, is an excellent example. The patient or the arbitrary unique 
patient identifi er is a kind of true underlying state, analogous to an eigen-
value in QM, of which there may be many observable properties or qualities 
over time. The datum represents such properties or qualities and corresponds 
to an entry on the record for that patient, such as patient name and identi-
fi cation (if the record is not  “ anonymized ” ), date of birth, age, ethnic group, 
weight, laboratory work results, outcomes of treatment, and so forth. They 
are observables of that patient. In the complicated world of  data analytics , 
including data mining, it is good news that in many respects, the above clini-
cal examples of a datum all describe a form that can, for present purposes, 
all be treated in the same way, as discussed in the following section. Better 
still, anything can have a record. A molecule can also have a record with 
entries on it, for example, indicating a molecular weight of 654. When con-
sidering theoretical aspects related to prior belief and its impact on statistics, 
then even more generally, a record is any kind of data structure that contains 
that entry, even if it is only a transient repository like the short - term working 
memory in our heads. The terms  observation  or  measurement  do imply a 
distinction as something that is done before placing it in a record, as the 
moment it is found that the patient weight is 200   lb. However, for analysts of 
other peoples ’  data, and for present purposes, it only comes into existence 
when we get our hands on a record and inspect it: that is an observation of 
a sort for the data analyst. 

 The set of records is an archive and the order of records in it is immaterial 
except of course when they are separated into specifi c cohorts or subcohorts, 
in which case each cohort relates to a distinct archive wherein the order in 
each cohort is immaterial  . Perhaps contrary to the reader ’ s expectations, the 
entries on each record can be rendered immaterial with respect to order on 
the record, as discussed below, though a meaning can be attached to entries 
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that occur more than once on the record, as, say, multiple measurements with 
error (see below). In contrast, records cannot recur twice. Even if the record 
is anonymized, it has an implied unique index (analogous to eigenvalue), 
which may simply be its arbitrary position in the list of records that comprises 
the archive. A duplicate entry such as  Hispanic  on different records is, however, 
considered the same state; it is just that it is  associated with  a particular patient, 
implicitly or explicitly in each record. Each occurrence is an  incidence  of that 
state. More importantly, an entry is  associated with  all of the other entries on 
a record.  Association analysis , which quantifi es that association as a kind of 
statistical summary over many records, is a key feature of data mining, both 
structured and unstructured. 

 Above all things, a datum is an observable, ideally based unambiguous state 
as in physics, though with the following two caveats (providing redundant 
information is removed in subsequent inference). First, a  degenerate  state, 
such that the blood pressure is greater than a specifi ed level, is allowable, 
whereas it is not in the world of QM. Second, states that show degrees of 
distinguishability (from none to complete distinguishability) are allowed. As 
the above examples imply, the observable may be qualitative or quantitative. 
If it is qualitative and distinguishable by recurrence, it is  countable ; if it is 
quantitative, it is  measurable . The counting implied in countable is typically 
over the analogous state. Because states can be degenerate, a range of values, 
e.g., blood hemoglobin, can be used to represent a state, e.g., the state of being 
in the normal range for hemoglobin, and can be counted. Measurements that 
relate to the same state distinguishable by recurrence  can also be counted. An 
event  can also be considered as the appearance of a state or measurable value 
of a property of that state distinguishable by recurrence, ideally qualifi ed or 
 “ time stamped ”  at a moment of time or a range of time. 

 A measurement may not yield the same value twice or more due to  error . 
An error is a process such that the measured values are random when applied 
to the same state or what is considered the same state, but are random in a 
way such that the mean square difference between measurements in an indefi -
nitely large sampling set of measured values is not considered signifi cantly 
different from that for many subsequent sampling sets of an indefi nitely large 
number of measured values. A state that shows continuity in time but with a 
change in the measurable value of a property of it that is not attributable to 
error is not strictly the same state but represents an evolution  of the previous 
state. However, a state that represents an evolution of a state or shows mul-
tiple occurrences at the same time may be held  to be the same state in an 
elected context, even if there are means to distinguish it outside that context. 
This is such that we may, for example, consider the patients in a cohort as 
subjected to repeated measurements on the same state and ameliorable to 
statistical analysis based on the concept of error in observation, even though 
there are means to distinguish those patients. The model here is that measure-
ments on different states are treated to represent repeated measurements on 
the same state with error, in which case the notion of the normal (Gaussian, 
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bell curve) distribution applies until proven otherwise. The mean or average 
value is the expectation  or  expected value  of the measured property, and the 
variance in the values from that expectation is a function of the magnitude of 
the error, specifi cally the mean square value. In practice, sometimes with the 
same raw data, account is taken of patient differences. For example, pharma-
cogenomics requires us to distinguish patients by their genomic characteristics, 
and if that is done, only patients with the same selected genomic features are 
treated as the same state (see below). 

 Countable states can be counted with one or more other states, so that the 
number of times that they occur together as opposed to separately is known. 
This usually means incrementing by one  counter function n ( A ) for   any state 
A  when encountering a state on a further record, and also  n ( A   &   B ),  n ( B   &  
F  ),  n ( A   &   B   &   C ),  n ( C   &   F   &   Y   &   Z ), and so on for all combinations of states 
with which it is associated on the record encountered. The functions with more 
than one argument, such as  n ( A   &   B ) and  n ( A   &   B   &   C ), represent the count-
ing of concurrences  of, here,  A  and  B , and  A ,  B , and  C , respectively. 
Combinatorial mathematics reveals that there are 2 N  such counter functions 
to be considered for a record of N  entries, though one usually writes 2 N     −    1 
  since one of these relates to the potential empty record and hence null entry. 
Because duplicate entries on a record can have meaning as discussed above, 
the counter function would be incremented n  times for  n  duplicate entries. 
When the value of the counter function is greater than zero, the occurrence 
of the state such as A  or the concurrence of states such as  A  and  B  indicates 
that the states are existentially qualifi ed , which means that the specifi ed state 
exists or the specifi ed states can coexist. For example, in terms of the PC 
discussed below, one can say that  “ Some  A  are  B  ”  and  “ Some  B  are  A , ”   some
meaning at least one. Computationally, that may be the fi rst time that a 
counter function is created to handle those arguments (why waste space creat-
ing variables otherwise?); hence, from a programming perspective, they are 
not of zero value but are undefi ned, which data mining interprets as zero. 

 The number of concurrences observed as indicated by the fi nal or latest 
value of a counter function with more than one argument is a raw measure of 
some degree of association  between the states, here  “ degree of ”  meaning that 
that as well as a tendency to occur together (positive association), random 
occurrence (zero association), and a tendency to avoid each other (negative 
association) are all degrees of association. A crude measure with these fea-
tures, which can be thought of as associated primarily with the  n ( A   &   B ) 
counter function, is the ratio  N     ×     n ( A   &   B )/[ n ( A )    ×     n ( B )], where  N  is the 
normalizing total amount of appropriate data. The value of the logarithm of 
this measure may be positive, zero, or negative relates to the notion of posi-
tive, zero, and negative association. As noted above, because states can show 
degeneracy, continuous values can be partitioned into states (e.g., low, normal, 
and high values in clinical laboratory measurements) and can be counted, 
including other states. Association can thus be applied to both qualitative and 
quantitative data. 
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 A related idea to association but applying only to quantitative data is that 
of a common trend in variance between lists of values, i.e.,  intervariance , 
covariance , or  multivariance . But furthermore, because states can show degen-
eracy  and  degrees of distinguishability, the results of intervariance between 
values could be expressed in a fuzzy set approach so that the result looks 
analogous to the case when the values are partitioned into two states above 
and below a value, say, a mean value. Essentially, a Pearson correlation coef-
fi cient (which lies on the range  − 1    …    +1) is rescaled by the number of values 
analyzed in such a way that the values for very strong positive or negative 
correlation cover the same range as the true association values. Since that 
aspect is  “ rigged, ”  by  “ looks analogous ”  is basically only meant that a positive 
correlation refl ects a positive association, a zero correlation refl ects a zero 
association, and a negative correlation refl ects a negative association, though 
data that refl ect a strong linear regression will also show a strong correlation 
between the values from association interpretations and corresponding values 
from the corresponding covariance interpretations. 

 Also, we will take here the position that even continuous data, like a car-
diogram, can be decomposed into datum elements for analysis. If a Fourier 
analysis is applied implying that the information is captured as a wave, the 
parameters of that wave still each represent a datum. It is true that much data 
can appear in forms that have various degrees of structure by virtue of their 
interrelationships , having a graphic structure or representing arrays like 
medical images or lists (such as biosequences, entities on a spreadsheet, or 
relational database), or data types called sets and collections. However, these 
distinctions are an illusion to the extent that each datum in such data can be 
represented in a form that can meaningfully stand alone (see next section).  

  2.1.9   Data and Metadata 

 Any datum (entry) is susceptible to data analysis because of its relationship 
to other data. Whether qualitative or quantitative, as far as the product of data 
mining is concerned, it is always a countable entity by defi nition even if in 
practice we postulate it and it is never seen at all. Nothing prevents nonethe-
less inserting rules into data - mined output that are based on human expertise 
and have appropriate weights representing human confi dence or degree of 
belief, and as described below, this can be a parameter combined with the 
count to obtain weights for data - mined rules too. 

 Even when it is countable does not mean that it is in a useful form. 
Even the basic datum can have a composite form enhancing its utility by 
enlarging on its meaning. In the form  age    :=   63, then it is  age    :=   63, which is 
the item,  age  is called metadata, and 63 is the data value (parameter 
value). Metadata is indicated by the symbol   :=, which we can consider as an 
operator meaning  “ is metadata of. ”  Optionally, there may or may not be 
metadata. Hence, other examples as actual plausible data items are  male , 
Asian ,  height    :=   6   ft,  systolic BP    :=   125,  weight    :=    > 200   lb,  Rx    :=    chloramphenicol , 
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outcome    :=    infection_eradicated . Though less commonly used in practice in 
the same context, there may be higher - order metadata, as in animal   :=   
vertebrate   :=   primate   :=   human   :=   patient_#65488, which reveals the relation to 
ontology or taxonomy, i.e., classifi cation of things. Incidentally, one can of 
course with the use of brackets write a taxonomic tree, but for the present 
purpose, the descriptor relates to just one path from a selected point, as from 
the trunk of the tree to one particular selected leaf node. Though above 
these descriptors were described as atomic , it is clear that operations could 
be applied to them and this could, for example, take place in inference. 
However, the above fundamental form represents the state in which they 
come to data mining, and they are typically immutable for the duration of 
that process. 

 The input for structured data mining can come in variety of formats, but 
very often as comma - separated value (CSV) fi les, which are interchangeable 
with Excel and Lotus spreadsheets, as well as relational databases such as 
Oracle and DB2. The records relate to patients, chemical compounds, and so 
on, and the fi rst or zero row, i.e., the column heads, is typically the metadata. 
These and more complex inputs such as graphs are really better classifi ed in 
a more fundamental way, however, since many of them are essentially the 
same thing. In contrast, a graph structure for data relationships can be placed 
on a spreadsheet where each row of a spreadsheet represents, say, a node 
followed by its input and output arcs to other nodes, but the implied data 
structure is fundamentally different. 

 It is clear that the above way of treating a composite datum provides a 
universal description into which more structured data can potentially be ren-
dered, even if the result of that rendering is as banal as Column_6   :=   smoker, 
Pixel_1073   :=   1, or Base_Pair_10073   :=   G. This theme can now be expanded 
upon. To begin, note that, typically,  structured records  of maximum interest 
in current data mining may be classifi ed into  

   1.  Graphs , in which data appear as nodes on a graph and are structured 
in their relationships by the arcs connecting them. They are harder to 
handle for data mining input since some self - consistent fragmentation 
of the network into maximally useful and logically sensible input chunks 
is required. Indeed it is best to think of this kind of data as a step in 
unstructured data analysis of which further kinds of further analysis 
transform the data into the following forms, 2 – 6. However, probabilistic 
semantic nets (concept maps, etc.) in which nodes are nouns or noun 
phrases connected by arcs representing verbs, prepositions, and so on, 
may themselves be the ultimate inference structure of the future.  

  2.  Trees . Easier to handle for data mining input are trees, in which all 
items are nodes on branches going back to a common root. They lend 
themselves to the extended higher - order metadata description such 
as A := B := C := D , and to ontological systems for holding data, notably 
XML.  
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  3.  Lists , such as biological sequences, spreadsheet rows, and relational data 
entries, in which a specifi c order has meaning for descriptors. An image 
might be included here, as an array, i.e., in general a multidimensional 
list, of pixels. A vector or matrix of  discrete  elements is thus a generaliza-
tion of a list, and so in principle is a continuous distribution, i.e., of 
indiscrete  elements, since by one means or another, it can be rendered 
as discrete data including data that are parameters of a distribution.  

  4.  Sets , in which descriptors can appear in any order but only once or not 
at all.  

  5.  Collections or bags , in which descriptors can occur in any order but now 
more than once (or once or not at all).  

  6.  Partially distinguishable item collections . Since an item can be counted 
more than once in a collection, the issue arises as to the extent to which 
they are really distinct. If  A  occurs twice or more and is not counted 
more than once, it refl ects the fact that they are considered identical, 
i.e., redundant duplications, and we are back to the set. If they are all 
counted, then they are  distinguishable by recurrence , and measurements 
become repeated measurements that happen to be identical, to be taken 
into account in the statistics. Between these two, there are potentially 
intermediate degrees of distinguishability that can be discovered as 
strong relationships by a fi rst pass of data mining. Then the degree of 
distinguishability entered in a second pass  .    

 The closer to the top of the list, the more rigid is the structure specifi cation. 
Nonetheless, that is an illusion and, transformed properly from one to the 
other, the information content is equivalent. Consistent with Equation  2.3  and 
the associated discussion, the notation used here has abolished the distinctions 
of graphs, lists, sets, and collections by making collections (also known as bags) 
the general case. We know that  G  is the 100th item in a DNA sequence (a list) 
because we now write Base_100   :=    G . At the very worst in a spreadsheet 
without specifi ed metadata, we can always write, e.g., Column_26   :=   yes. In 
consequence also, original data could be a mix of the above types 1 – 4 and could 
be converted to a collection as the lingua franca  form. Such mixed data are not 
unstructured, but are merely of mixed structure, providing the entries in each 
structure class of 1 – 4 are clearly indicated as such. 

 How does one build or chose such a composite datum? It is not always so 
easy. First, we specify a general principle of notation introduced informally 
above. In much of this review, it is found that it is convenient to use  A ,  B ,  C , 
and so on, to stand generally for a datum for whatever structured form it is 
in, much as mathematicians use  x  to stand for any number. Occasionally, to 
avoid cumbersome use of subscript indices where they would be abundant in 
equations, it is important to recognize that  B  immediately follows  A , and so 
on, i.e.,  A    =    X1 ,  B    =    X2 , and so on, and certainly  A ,  B ,  C ,    …     Z  means all the 
data that there are for consideration, not just 26 of them (the number of letters 
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in the alphabet). Each of  A ,  B ,  C , and so on, can stand for, for example, 
hydropathy of a molecule, the gender of a patient, the ethnic group, the height, 
weight, systolic blood pressure, an administered drug, a clinical outcome, and 
so on. At the point of structured data mining, a symbol such as  A  will be 
potentially a composite datum such as E    :=    F . Prior to that, however, the  A , 
B , may not have yet come together to form such a composite structure, e.g., 
prior to the reading of text. The most general approach for managing the  A , 
B ,  C ,    …    is to assume that all items are potentially data values, not just meta-
data, and then to discover ontological relations such as  A    :=    B  or  A    :=    C    :=    F  by 
unstructured data mining, being in part the process that defi nes which is the 
metadata. Where all nodes on a graph have unique names, one may note that 
one may fi nd  B    :=    A  where  A  is always associated with  B , though not the con-
verse, suggesting that  “ All  A  are  B . ”  Unstructured data analysis is not con-
fi ned to ontology. In other instances, the fact that  C  is merely sometimes 
associated with B  does not imply an ontological relationship. From the per-
spective of higher - order logic, an association is an  existential  relationship, e.g., 
 “ Some  A  are  B , ”  while an ontological relationship is a  universal  one, e.g.,  “ All 
A  are  B . ”  

 This building or choosing process for a composite datum is not always so 
easy. The human brain appears to handle concepts as a kind of concept map 
or semantic net , which is a graph that is used in a way that can handle uncer-
tainty, e.g., probabilities. Representing and utilizing such a structure as effi -
ciently as does a human is a holy grail of artifi cial intelligence and actually of 
data mining for rules and drawing inference from them. In the interim, in the 
absence of fulfi llment of that goal, defi ning and mining composite data (with 
metadata) in the best way can pose conceptual challenges that are practical 
matters. A descriptor can be a specifi c path through the graph represented by 
metadata of various orders (not just fi rst order) such as molecule   :=   pharma-
ceutical   :=antibiotic   :=   sulfonamide. A record could be transformed to a collec-
tion form with items representing several such paths as descriptors (and thus 
separated by  & s). The data mining then  “ merely ”  has to extract data leading 
to a terminal leaf node item such as  “ sulfonamide ”  to identify a descriptor. In 
this case, one is told or assumes that the structure is purely ontological 
(specifi cally, taxonomic). But there is, regarding the semantic net that the 
human brain somehow holds, more than one way to relate it to a 
practical graph for data analysis. One might have substance_abuse   :=   legal_
substance_abuse   :=   tobacco   :=   cigarettes   :=   emphysema. In such a case, one 
must extract indirectly linked combinations including, for example, substance_
abuse   :=   tobacco, and worse still, need to recognize it as analogous to simpler 
useful entries in isolation such as smoker   :=   yes. 

 To paraphrase the above, thinking about data and metadata in the above 
way provides a fl exible, though not traditional, way to think about proceeding. 
Once a composite datum is constructed including any metadata and higher -
 order metadata (involving several := symbols), it represents one of the data 
in the a bag  or  collection  form. To some extent, the data mining can be con-
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veniently phased: the data, whether structured, unstructured like images and 
text, or both, are converted fi rst to bag form, and then analysis proceeds again 
starting with that form. The fi rst phase is not considered much here because 
it is (arguably) starting to fall in the realm of unstructured data analysis and 
specifi cally analysis of written text. We are interested in the next step, consid-
ering what do we do with structured data.  

  2.1.10   Rule Weights 

 As discussed above, a rule represented by one datum or many  may  be associ-
ated with a weight. In the big picture, a rule is  always  explicitly or implicitly 
associated with a weight, which may be an implied logical value of  “ true ”  (or 
some other measure consistent with truth) if no further statement is made. 
That is to say, if someone fl atly states a rule, we may assume that he or she is 
attaching truth to it. For example one says,  “ The bank is closed on Sunday, ”  
without having to be as elaborate as  “ That the bank will be closed on Sunday 
has a logical value of  ‘ true ’ . ”  Used in logical reasoning, however, one may also 
allow for a value that relates to falsity so that the rule may be refuted and 
used as a variable in a chain of reasoning. With uncertainty, there are inter-
mediate values. The most commonly appreciated measure that ranges con-
tinuously from absolute falsity (taken as 0) to absolute truth (taken as 1 is of 
course probability).   

  2.2   PROBABILITIES, RULES, AND HYPOTHESES 

 Classical statistics also starts early with structured data. The statistician ’ s col-
lection sheets are highly structured, clearly identifying independent (e.g., 
patient age) and dependent variables (e.g., blood pressure as a function of 
age) and ordering them if appropriate. 

  2.2.1   Semantic Interpretation of Probabilities 

 Classical statistics being routed in probability theory is interested in the prob-
ability of any datum A . How it considers and calculates the values of forms 
P ( ) is discussed later below, but for probability theory in general, it is a rea-
sonably intuitive refl ection of probability as used in colloquial speech, not least 
in regard to laying bets. There are also coincident, conjoint, or compound 
probabilities such as P ( A   &   B ), which in everyday conversation might be 
paralleled by speaking the chances that A  and  B  are seen together, or the 
extent to which A  and  B  are two qualities or quantities describing a common 
thing. There may be several symbols,  A ,  B ,  C , and so on, as in  P ( A   &   B   &   C ); 
their number (here 3) is in fact the complexity of that probability expression, 
in the sense of the word complexity used above. The data as a whole will in 
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general be of much higher complexity, so  P ( A   &   B   &   C ) is just one facet of 
it. Probability  functions of states  like those above are basically associations 
and hence quantify existential  or  “ some ”  statements probabilistically. There 
is, however, a case for using  probability ratios P ( A   &   B )/[ P ( A )  P ( B )] express-
ing departure from randomness, because observing just one of few coinci-
dences of A  and  B  may not be meaningful as indicating  “ Some  A  are  B , ”  
perhaps representing experimental errors. In which case, for complexity 3 or 
more, there are complications. For example, note that  P ( A   &   B   &   C )/[ P ( A ) 
P ( B )  PC ] for quantifying existential statements is not necessarily the same 
quantity as P ( A   &   B   &   C )/[ P ( A   &   B )  P ( C )] and that  P ( A   &   B   &   C )/[ P ( A ) 
P ( B   &   C )] and  P ( A   &   B   &   C )/[ P ( A   &   C )  P ( B )] can be different again. The 
correct perspective is arguably that there should be associated distinguishing 
existential statements expressing departure from what kind of prior expecta-
tion  [3] , analogous to issues in defi ning the free energy of the ABC molecular 
complex relative interacting molecules A ,  B , and  C . There are also conditional 
probabilities such as P ( A    |    B ), equal to  P ( A   &   B )/ P ( B ) when  B  is defi ned, 
countable, and exists, such that  P ( A ) is greater than zero. These requirements 
are generally the case when P ( A   &  B) also satisfi es them, and then 
P ( A )   =    ΣX P   ( A   &   X ) for all possible  X  that may exist. An analogy exists with 
the above discussion on random association in that if P ( A    |    B ) indicates  “ All 
B  are  A , ”  i.e., a universal or  “ All ”  statement, just one single observation of  A
not being B , again perhaps an error, can break its validity and make  “ Some 
A  are  B  ”  the appropriate semantic interpretation  [3] . There are in fact ways 
of treating this problem for both Some and All statements by adding the 
caveat  “ for all practical purposes ”  to the statement, raising then the argument 
that perhaps we should take the square root of that probability, i.e., make the 
probability larger, because we hold a strong belief in a weaker statement  [3] . 
Semantically, this constitutes a  hedge  on a statement, as in  “  A  is fairly large ”  
compared with  “  A  is large. ”  Nonetheless, the general sense in human thought 
and conversation seems to be that one observation in a trillion that A  is  B
justifi es less the Some statement than that one observation in a trillion of  B
not being A  invalidates the All statement.  

  2.2.2   Probability Theory as Quantifi cation of Logic 

 Boole published binary logic as  “ the laws of thought, ”  so one should be able 
to drill deeper with this more rigorous perspective. The probability theory is 
actually a quantifi cation of binary logic, say, with functions of states such as 
L ( A   &   B ), which can only take the value 0 (false) or 1 (true).  P ( A ) would be 
a quantifi cation of statements like  L ( A )   =   1, which can be interpreted as a 
statement that A  exists. The probability theory thus handles uncertainty, i.e., 
intermediate values.  L ( A   &   B )   =   1 is an existential statement that  A  and  B
exist and coexist, i.e., and  P ( A   &   B ) quantifi es the extent to which  L ( A   &  
B )   =   1. If meaning can be attached to  L ( A    |    B ), it is the  universal  statement 
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that  “ All  B  are  A . ”  Existential and universal statements form the core of a 
higher - order logic called the PC, which goes back to the ancient Greeks. 
Interestingly, there is no widely agreed quantifi cation of that, handling uncer-
tainty in ontology combined with that for associations, in the same kind of 
sense that probability theory is a quantifi cation of binary logic, though some 
obvious methodologies follow from the following statements. This lack of 
agreement is a handicap in the inference to be deduced from data - mined 
rules.  

  2.2.3   Comparison of Probability and Higher - Order Logic Perspective 
Clarifi es the Notions of Hypotheses 

 Statements like  “ Refute the null hypothesis ”  sound scientifi cally compelling 
but do not mean much more than  “ Get rid of that notion that we don ’ t like. ”  
Clearer statements have a more elaborate higher - order logic  structure. PC is 
one example of a higher - order logic because we can write nested things like, 
L [ L ( A    |    B )   =   1  &   L ( B   &   C )]   =   1]   =   1   (All  B  are  A , some  B  are  C , so some  A
are C , an example of a  syllogism ). For a statement like this, all the values of 
1 refl ect that the syllogism is  valid , not necessarily true, as in the sense of  given
that L ( A    |    B )   =   1 and  L ( B   &   C )]   =   1, then  L [ L ( A    |    B )   =   1  &   L ( B   &   C )]   =   1]   =   1 
(but L ( A    |    B ) and  L ( B   &   C ) may not actually equal 1). In that sense, it is 
useful to consider them, and certainly the inner terms, as hypotheses, hunches, 
or postulates or propositions, which do not actually have to be the case, reserv-
ing L  for actual empirical truth (maybe  T  instead of  L  for  “ truth of, ”  or  R  for 
 “ reality ”  would be better than  L ). Then one writes  H  in place of  L  as, e.g., 
H ( A    |    B ). Despite the above comments on quantifi cation, it is certainly mean-
ingful to build quantifi ed examples, e.g., as  P [ H ( A    |    B )   =   1   |    L ( A    |    B )]   =   1  ], 
meaning the probability that the hypothesis that  “ All  B  are  A  ”  takes a truth 
value of 1 when it is empirically true, a semantic overkill which statisticians 
use (or ought to, see below) in the form contracted to  P ( H+    |    D ). This is the 
probability of the positive hypothesis H ( A    |    B )   =   1 being true given data  D , 
which means that L ( A    |    B )   =   1. Alternatively, there is  P ( H –     |    D ), the probabil-
ity of the negative hypothesis H ( A    |    B )   =   0 being consistent with data  D , which 
actually means here L ( A    |    B )   =   0. In practice, as analyzed below, the prefer-
ence in classical statistics is to use the probability of the null hypothesis . By 
analogy to the above, this would be  P ( H0    |    D ), which ought by that name and 
0 subscript to be the type of hypothesis associated with H ( A    |    B )   =   0. One 
hopes the probability is low so that the hypothesis can be rejected. Actually, 
it relates something like H ( A′    |    B )   =   1, where  A′  is variously some most 
expected state or the most boring, or even the most costly, and such that 
H ( A′    |    B )   =   1 implies something much closer to  H ( A    |    B )   =   0 than  H ( A    |    B )   =   1. 
This unsatisfactory account of a state is discussed below. As it happens, things 
are even more tortuous because it is P ( D    |    H0 ), which is used in classical sta-
tistics, a matter also discussed below.  
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  2.2.4   Pharmaceutical Implications 

 For simplicity, we start off with the  positive hypothesis H+ . This seems reason-
able, and arguably it is the basis of the inference process that often goes on 
(and should go on) at least qualitatively behind the scenes in R    &    D before a 
more classically framed statistical report is produced. After all, in any scien-
tifi c paper about drug action or in a project of drug R    &    D, the  hope  that a 
new drug will work is H+ . The probability of that being true prior to generat-
ing or seeing any hard data is the prior probability P ( H+ ). With the data 
subsequently considered, the probability of the hypothesis typically changes 
for better or worse, to the  posterior probability , which is the conditional prob-
ability P ( H+    |    D )   =    P ( H+   &   D )/ P ( D ). The vertical bar again means  “ condi-
tional on. ”  

 As indicated above, the writing of  P ( H+ ) and  P ( H+    |    D ) is really shorthand 
because inference involving hypotheses has a more complex higher - order 
structure. For easy comprehension, this will be framed in terms of more spe-
cifi c examples and need not drill down quite as far, at least in terms of symbolic 
overkill, as the previous section. It still requires a signifi cant elaboration. In 
the pharmaceutical industry, even the so - called prior probability  P ( H+ ) typi-
cally really corresponds to a conditional probability such as P (drug works   |   drug 
X   &  disease  Y ), a probability which as written is thus really of complexity 3. 
An even greater complexity may emerge as important for proper analysis. 
Notably, while the above notation should convey adequate sense, something 
such as Pr[ P (disease  Y  at time  T    +    t    =   false   |   drug  X  given at time  T   &  disease 
Z  at time  T    =   true)    >    0.9   |    D ] is implied. By analogy with the discussion above 
on higher - order logic, this new  P  implies a higher - order inference process, and 
here a higher - order probability theory. In practice, Pr signifi es a  probability
distribution  ( probability density ) or one value on such, and  X ,  Y ,  T , and  t  are 
all variables underlying that density, as follows.  

  2.2.5   Probability Distributions 

 In reality, no one but a mathematician interested in statistical methodology 
wants a probability distribution . It implies uncertainty (perhaps even uncer-
tainty about degrees of uncertainty about specifi c things) and ultimately that 
we can at best expect  rather than  rely  on something (and perhaps not expect 
with any great reliability). From a Bayesian perspective (see below), it can 
represent a spread of different degrees of belief in the observer ’ s brain as 
opposed to a fi rm, judiciously held opinion (which would appear as a single 
spike — a so - called delta function — if the distribution perspective is still taken). 
This all refl ects ignorance. A distribution arises instead of discrete points 
because we are, for example, pooling studies on many clinical trial patients. 
Here is impossible to completely know and control the observation system 
and process: there are experimental errors. Even if we could, we cannot know 
and, with some 10 10  – 10 13  bits of information capacity to potentially worry 
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about, may perhaps never be able to know all the features and mechanism of 
each patient and environment. 

 Challenges can arise even in a single dimension, say, along a single param-
eter like height in a population. For example, even when there is an inkling 
of the genes involved, the genes can of course interact to express phenotype 
in a complex way with each other and with the environment. It is thus diffi cult 
to set up the many detailed conditional probabilities; conditional, that is, on 
each relevant factor, which if fi nely conditional enough would be a sharp spike 
(a delta function). Without complete resolution onto different conditions, one 
might at least hope that separate peaks would be seen to inspire the hunt for 
appropriate conditions. Unfortunately, that does not always happen. There 
are, for example, not just two variations of a single gene that would make 
patients fi ve foot tall and six foot tall, and no other height, but many. All 
unknown factors may effectively appear as a random infl uence when taken 
together, and a typical distribution is thus the  normal  (Gaussian, bell curve) 
distribution, the basis of the  z  -  and  t  - tests. 

 Worse still, there is no reason  a priori  to expect that the ideal distribution 
based on many factors can be adequately expressed on a one - dimensional axis. 
In two dimensions, the probability peaks will look like hills on a cartographer ’ s 
contour map, yet hills seen in perspective from the roadway on the horizon 
as a one - dimensional axis can blur into an almost continuous if ragged moun-
tain range profi le. And if we use a two - dimensional map to plot the positions 
of currants in a three - dimensional bun (or berries in a blueberry muffi n), the 
picture will be confusing: some currants would overlap to look like a bigger, 
more diffuse, and perhaps irregularly shaped currant, and even those that 
remain look distinct and may look closer than they really are. With big enough 
currants, they can look like a normal distribution describing one big fuzzy 
currant. Many parameters as dimensions arise in  targeted medicine  where we 
wish to consider the application to specifi c cohort populations, and rather 
similarly  personalized medicine  where attention directs toward drug selection 
for a specifi c patient in the clinic. Keeping the fi rst notation (the one without 
 T  and  t ) for relative simplicity, a typical probability of interest, at least in the 
researcher ’ s head, elaborates to
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 Supposing that there is enough data for all this, which is as yet uncommon, 
the distribution seen in the full number of dimensions may have a potentially 
complicated shape (including, in many dimensions, complicated topology). 



50 DRUG GOLD AND DATA DRAGONS

The question is, when we have knowledge only of fewer dimensions (relevant 
parameters), when is the shape described real?   

  2.3   PATTERN AND NECESSITY 

  2.3.1   Mythological Constellations Can Appear in Projection 

 In many displays of data, the data may be very distinct, typically well - sepa-
rated points. That may of course be because there is simply not enough sam-
pling. However, there may be some very crisp measurements or collections of 
measurements that we know are functions of several parameters, but not all 
the relevant parameters are known. Only the perception of three dimensions 
of space, plus one more of time (and many more properties of the light from 
the stars), allows scientists to build a true picture of the universe and to deduce 
the underlying physical relationships of the stars in the night sky. The two -
 dimensional view of the night sky yields the constellations that are mostly 
artifacts of perspective, refl ecting the worldview of the observers. Many of the 
northern hemisphere were seen by the ancient civilizations, and are mytho-
logical in the traditional meaning of the word: fl ying horses and supernatural 
beings. However, even the stars that are contained within a constellation can 
vary with culture: the Chinese constellations are different from the European. 
The Southern Constellations were mostly named in modern times by European 
seamen and scientists and include the ship ’ s keel, the compass, the clock, the 
pump, and the microscope. 

 In the quest for real patterns, valid techniques exist for reducing such multi-
dimensional data into fewer dimensions. Principal coordinate analysis seeks 
to do so while preserving with minimal stress some metric of distance between 
the points, while multidimnsional scaling preserves the rank order of the such 
metrics  [4] . Both can produce meaning patterns, for example, clusters and 
clusters of clusters, and so on. With such a result, and with all points envisaged 
as the intersection of branches with a horizontal cross section through a tree, 
that tree may be deduced and may reveal genuine ontological relationships. 
However, this cross section may not produce an evenly spread or random 
distribution of points, such that many objects such as a circle (with many points 
clustered round the circumference) or part circle (crescent moon shape) may 
also appear. Occasionally, more angular shapes like triangles may emerge. 
While the dimensions into which reduction occurs may be arbitrary, they may 
not happen to correspond to the real parameters, or they may simply represent 
axes at non - right angles to the dimensions representing the real parameters. 
Correlating the shapes with the parameters describing the original points can 
yield genuine, if sometimes surprising relationships with physical meaning. 
The principle has been applied to drug design based on analysis of predicted 
conformers and in regard to protein structure analysis  [5 – 7] . 

 However, while such dimensional reduction approaches are valid, the 
golden rule should perhaps be that persuasive patterns based on a viewpoint 
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that implies a projection  like stars in the sky should always be suspect. The 
Ramsey theory  [8,9]  studies the conditions under which order  must  appear. In 
particular, how many elements of some structure must there be to guarantee 
that a particular property will hold? Consider the night sky as a graph of n
vertices (the stars) and each vertex is connected to every other vertex by an 
edge  (a line in the pictorial rendering of a constellation as an image). Now 
color every edge randomly green or red. Imagine that the ancient Chinese 
happened to pick constellations corresponding to the green lines, and 
observers of the ancient Middle East picked those correpsonding to the red. 
How large must n  be in order to ensure that there we see  either  a green 
triangle or  a red triangle? It turns out that the answer is just 6, and the dif-
ferent triangles emerged with equal probability. A common party puzzle of 
the same structure is this: what is the minimum number of people at a party 
such that there are either three people who are all mutual acquaintances 
(each one knows the other two) or mutual strangers (each one does not know 
either of the other two). The answer is again six.  

  2.3.2   The Hunger for Higher Complexity 

 To avoid the above and other problems, there is of course, or should be, a 
hunger. Throughout, an important bottom line is that expansion of human 
knowledge is refl ected by our ability to  increase the complexity of probability 
terms  or other measures of uncertainty that we are able to  quantify . Each term, 
A ,  B ,  C ,    …    that makes up the complexity of a probability,  P ( A   &   B   &   C ,    … ), 
represents a dimension. A rule of high complexity can be very strong, yet rules 
of lower dimensionality like P ( A   &   B ) may not be deducible from it and vice 
versa. That there were no pregnant males is not deducible from the abundance 
of male patients and the abundance of female patients (see below). This is not 
always the case. In a study of some kind of metric distances between using 
multidimensional scaling, principal coordinate analysis, and clustering and 
other techniques, things can produce meaningful patterns and relationships. 
But that depends on the nature of the system under study and is not in general 
true. 

 Obviously, a critical factor in that is the amount of data available. The 
sparseness of data points increases as the number of dimensions, that is, the 
number of parameters represented, and hence with the complexity of any rule 
associated with a probability P ( A   &   B   &   C   &     … ). This means of course that 
we have much less data to deduce any n  - dimensional probability distribution 
from P ( A   &   B   &   C   &   D   &   E ) than from  P ( A   &   B   &   C ). The number of pos-
sible potentially interesting combinations P ( A   &   B ),  P ( A   &   D   &   H   &   Q ), and 
so on, rises as at least approximately 2 N  for  N  parameters  A ,  B ,  C ,    … . Data 
thus run out fast. Many thousands of complexity 2 and complexity 3 rules, 
mostly known but many new, came from an analysis of 667,000 patient records. 
Yet many rules of complexity just 4 and especially 5 might be represented by 
a single observation, if any. That said, a few strong rules of much higher com-



52 DRUG GOLD AND DATA DRAGONS

plexity can show up. Nonetheless, there is always a level of analysis plowing 
into higher dimensions, which, in principle, can contain data and the tendency 
to overreach the interpretation of the sparse data encountered.  

  2.3.3   Does Sparseness of Data Breed Abundance of Pattern? 

 At fi rst inspection, the answer is no (but see Discussion and Conclusions). 
When data is sparse, it at least  tends  to look more random, in the sense that 
a true pattern distinct from randomness will only emerge as data build up. We 
tend to look forward to, for example, the beautiful and smooth normal curve 
that will one day emerge from our ragged bar chart that currently looks more 
like the Manhattan sky line. The reliability of our statistical summaries assum-
ing the normal curve is the right choice, and the convergence of our bar chart 
to it, rises as   N  the amount of data, a consideration taken into account more 
robust  t  - test making it more robust than the  z  - test in utilizing the normal curve 
model  . In gathering data to plot a normal distribution, there may be many 
modes that appear, meaning that several values will be the same or similar. 
But our dreams of convergence to that curve refl ect our expectation that the 
normal curve is the correct underlying model. For distributions in general, 
such modes in the raw data may, but may well not, survive to be ultimately 
perceived as the true modes of a multimodal (i.e., non - normal) probability 
distribution. 

 So our occasional initial assumption that we might adequately pool data 
into a single dimension may be too optimistic. In any event, whether or not a 
multidimensional description is reached or there from the outset, increasing 
the number of dimensions increases the opportunities for greater separation 
between points. In many dimensions, rogue outlying points due to experimen-
tal error and representing a rare probability of belonging to a cluster (while 
physically, chemically, or biologically entitled to belong to it nonetheless) tend 
to lie at greater Euclidean distances when that distance is in more dimensions. 
This can be distracting to visual analysis, attracting too much attention to it. 
Now it may be countered that the Ramsey theory does lead to increased 
chances that we might read too much into them as these sparse data are 
encountered. The Ramsey theory does indeed mean that we will tend to fi nd 
irrelevant patterns in any data, and this presents a particular lure to the 
unwary when there is not enough data to be convergent to true distributions. 
But in another sense, the Ramsey theory runs in the opposite direction. It 
predicts that more elaborate patterns will emerge as the number of data points 
 increases , and that the number of them rises explosively.  

  2.3.4   Sparse Data Can in Context Be Strong Data When Associated with 
Contrary Evidence 

 High dimensionality is not the only cause of sparse data in certain specifi c 
circumstances, and there can be a strong pattern of sorts by absence of obser-
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vations. This applies to  negative associations . Obviously, noting an unexpected 
large black hole in a starry sky will be signifi cant — hopefully indicating just a 
cloud! The case where there is just one dimension, a marked local gap or gaps 
in data may be equally signifi cant. However, with two or more dimensions, it 
is also true that the hole represents less data than we would expect on the 
basis of the projections onto to the axes. In other words, data may be sparser 
in the volume or hypervolume in many dimensions than it ought to be, based 
on the data for fewer dimensions. A negative association expressed most 
simply means, for example, that  P ( A   &   B   &   C ) is much lower than we would 
expect on chance bases, as calculated by  P ( A )    ×     P ( B )    ×     P ( C ) and  P ( A )    ×P ( B
 &   C ) and  P ( A   &   B )    ×     P ( C ) and  P ( A   &   C )    ×     P ( B ). The fi rst of these is the 
projection on three one - dimensional axes, the others on one axis and the 
implied plane formed by the two remaining axes. As with the  “ black hole, ”  
strong negative associations ( “ pregnant males ” ) in the limit mean that the 
events linked by  &  in the probability measure never show up at all. That does 
not  mean that there is inadequate data to support the implied negative associa-
tion rule. The weight of such a rule is  strengthened  by the fact that  P ( A   &   B
 &   C ) seems to be zero or close to it as well as by a large value of  P ( A   &   
B   &   C ) recalculated on the above bases of random association, say, as 
P ( A )    ×     P ( B )    ×     P ( C ). In the above, notice that there is strong data, a kind of 
prior data, of lower dimensionality, that sets an expectation of something. 
That it does not occur is  evidence to the contrary .   

  2.4   CONTRARY EVIDENCE 

  2.4.1   Lack of Contrary Evidence Breeds Superstition and Mythology 

 In the next section, it is discussed how prior opinions, assuming them to be 
rational and judiciously considered, can formally dominate over weak data. 
Following up the preceding sections and of interest in the present section is 
the matter of how, when there is no such strong prior opinion and no evidence 
to the contrary, the sparse data itself can set dominant prior probability dis-
tributions in the mind of the observer as far as what a fuller study would reveal, 
if possible. Since the true pattern is not refl ected but there is a strong random 
element, and importantly there is a lack of control study and contradictory 
evidence, there is a greater opportunity for mythology and superstition. 

 Information theory points out that in any decision, the information for a 
hypothesis should be supplemented by subtracting the evidence for the con-
trary hypothesis; in probability theory, that implies the use of the ratio 
P ( H+    |    D )/ P ( H –     |    D ), while in the fullest forms of decision theory, there is a 
further combined ratio $( H –     |    D )/$( H+    |    D ), which relates to the cost of the 
consequences associated with accept and refuting hypotheses  [19] . We can 
also, guided by the Bayesian approach discussed below, elaborate our decision 
equation to include P ( H+ )/ P ( H –  ), representing our prior view, which we may 
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well believe is rational and judicious. However, there does seem to be a fun-
damental difference between any prior sense of cost and a prior sense about 
the truth of hypotheses  per se , and much human behavior seems to be implic-
itly linked to the cost issue, as follows. 

 The problem is that it typically does not cost too much to be superstitious. 
The effect of the weakness of the data for the  P ( H  +    |    D )/ P ( H   –     |    D ) ratio 
combined with a weak prior ratio  P ( H  + )/ P ( H   –  ) and a strong sense about the 
$( H   –     |    D )/$( H  +    |    D ) ratio can be dramatic  . That magic amulet seems to work 
well in protecting you from wild bears in the streets of Manhattan, and how 
insignifi cant is the cost of the failure of that lucky rabbit ’ s foot compared to 
the potential benefi ts of discovering a blockbuster drug? Are there those 
among us who, on a honeymoon or before an important business meeting, 
would still avoid hotel room 13, all other rooms being equally satisfactory? 
And if just one friend has a total remission from aggressive pancreatic cancer 
on trying two herbal remedies, a high dose of aspirin, and moving to a high 
altitude on a vegetarian diet, who would not be tempted to try the same com-
bination if found in the same medical position? Not only is there an absence 
of contradictory data, but an appreciation that even if not all these factors are 
relevant, why take a chance on the potentially terrible consequences of missing 
one? In many statistical approaches, such a therapy scenario is still a maximum 
likelihood or represents the expectation in the absence of contrary data from 
control studies. It is just not a big maximum likelihood and not a very reliable 
expectation, a defi ciency swamped by the fact that a decision process often 
deliberately, and almost always subjectively, includes a component, which is 
the ratio of the cost of success and the cost of failure.   

  2.5   SOME PROBLEMS OF CLASSICAL STATISTICAL THINKING 

  2.5.1   Statistical Myth 1: Classical Statistics Is Objective against the 
Yardstick of Bayesian Thinking, Which Is Subjective 

 The analysis of raw data gives us probabilities about the data, not the hypoth-
esis, via, for example, the binomial or multinomial function of the number of 
times that actually count things. Probabilities imply degrees of certainty or 
uncertainty or more precisely information that are relative, however, and in 
this case it is necessarily a probability conditional on the data  D  that is exam-
ined. Hence, what is directly obtained is the  likelihood P ( D    |    H  + ), not the 
probability  P ( H  +    |    D ). According to bishop Bayes publishing in 1763, this is 
no problem because we can calculate the latter from the above likelihood 
using the defi nition of quantifi able conditional probabilities, i.e.,

    P H D P D H P H P D( ) = ( )× ( ) ( ).     (2.4)   

 The term  P ( D ) is a bit diffi cult to grasp in some respects. If there are just 
two states, the positive and the complimentary negative hypothesis, 
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 P ( D )   =    P ( H  +   &   D )   +    P ( H   –    &   D ). More generally, we can sum overall well -
 defi ned nonoverlapping states. This is implied by considering 1/ P ( D ) as the 
multiplicative term required for normalization, i.e., such that all appropriate 
posterior probabilities add up to one. Loosely speaking, then, it can allow us 
to  “ soak up ”  the meaning of  P ( D ) to make the fi nal interesting probabilities 
make sense. 

 Bayes ’  point, however, was that  P ( H  + ) is an ever - present factor that does 
not disappear just because it is ignored, and in modern times we saw no such 
 “ soaking up ”  liberties applied to  P ( H    + ). It expresses prior belief without 
seeing data  D , a potentially highly variable determining factor. Notably, recall-
ing that the  P  ’ s should really be expressed as distributions on underlying 
variables, a strong prior degree of belief represented as a prior distribution 
 P ( H  + ) that is far from fl at can swamp the contribution of the distribution of 
 P ( D    |    H  + ) to that of  P ( H  +    |    D ).  Classical  statistics with its probabilities rooted 
in observations, measurements, and counting, hates the notion of a probabil-
ity,  P ( H  + ), which can exist without data  D . 

 Since classical statistics ignores the prior probability, and yet it is there 
behind the scenes, it is effectively out of control. Its presence is active, if 
hidden, inside the recipes that the classical statisticians develop for statistical 
tests, and the recommended modes of use. Its problems (as data  D  becomes 
sparse) are refl ected in much disagreement between classical statisticians 
about what is an appropriate level of data to justify analysis or to avoid 
pooling to increase it. By recognizing the beast, Bayesian statistics seeks to 
control and either to exploit the prior probabilities where appropriate, as in 
the obvious case where there is prior data or just infl uential common sense, 
or to reduce the element of subjectivity where it is not appropriate. It has not 
itself, however, escaped from some discussion about what a distribution rep-
resenting no prior knowledge should look like. The so - called Dirichlet choice, 
on mathematical grounds, is a binomial (or analogous multinomial)  P   − 1  
(1    −     P )  − 1 . That cannot even be integrated (i.e., it is  “ improper ” ), though of 
course the posterior probability arising from it and the likelihood can be 
integrated. 

 Many theorists have argued that  any  conditional probabilities are axiom-
atic, and that there is always some kind of condition. In practice, there is 
always a kind of  implicit  data as prior data  D  * , which relates to prior data: it 
is just that it is rendered most tangible by reference to the researcher ’ s mind, 
which can be rendered explicit by querying the researcher. So what we really 
mean by  P ( H  + ) is  P ( H  +    |    D  * ), and what we really mean by  P ( D    |    H  + ) is 
 P ( D    |    H  +   &   D  * ). The contribution of  D  *  cannot magically go away in the 
answer any more than the implication of  P ( H  + ) could — we are not free to 
discard contributions in which we truly believe. Used to reformulate the Bayes 
equation, it can be seen that one is really discussing the consequences of 
 upgrading D  to  D  * :

    P H D D P D H D P H D P D D+ + +( ) = ( )⋅ ( ) ( )  *   *   *   & & & & * .     (2.5)     
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 So what kind of data is  D  * ? It can be well - founded prior information. For 
example, statistical predictions of polypeptide conformation could use as a 
prior probability the fact that proline is relatively fi xed in conformation 
because of the constraint implied by the proline ring. At its least tangible in 
drug design, this data  D  *  will most likely refl ect the pharmaceutical spirit of 
the times, anecdotal evidence inferred from streetwise chat in the under-
ground network of researchers. At its most tacit, it could be simply this morn-
ing ’ s scientifi c news. Somewhere in between is the  “ hot tip ”  at the conference 
bar.  D  *  has no role in classical statistics nor in submissions to the FDA, but 
(1) it does refl ect decisions in the mind of the observer, sometimes appropri-
ately so, and most reputably, (2) it could well have a role in a decision support 
system where it would be assigned a quantitative role on the basis of expert 
opinion.  

  2.5.2   Statistical Myth 2:  Ho , the Null Hypothesis 

 For reasons discussed in the next section, classical statistical testing does not 
address H+ . Rather, it directly employs the null hypothesis, the one we wish to 
falsify in order to give a fi ghting chance that we are  “ on to something ”  in R    &    D. 
Unfortunately, it is not simply a negative hypothesis,  H –  , like  “ drug does not 
work. ”   P ( H+   &   D )   +    P ( H0   &   D )   =   1 is not true.  H0  as a general concept has a 
level of fuzziness refl ected by diversity of interpretation that truly borders on 
making it mythological. As generally defi ned,  Ho  is the expected, the norm, the 
establishment view, or simply the costly and risky alternative, in such a way 
that the onus is on the researcher to reject that view.  “ Dull ”  is in fact a term 
commonly used to explain the null hypothesis in a U.S. Medical Licensing 
Examination (USMLE) course to budding U.S. physicians. By the basic text-
book defi nitions, the null hypothesis typically does not actually exist in any 
specifi c context, or ought not to, since it is not a well - defi ned state. In contrast, 
the hoped - for positive hypothesis can, as long as it is crisply defi ned. 

 What seems to be historically behind the null hypothesis is that there is 
sometimes potentially a multiplicity of states with probabilities adding up to 
1, the specifi c state space of the null hypothesis being defi ned in some way, 
which minimizes the expectations of the establishment while maximizing the 
extent to which the hypothesis is dull. Importantly moreover, the remaining 
set of states being complementary to the null hypothesis represents the alter-
nate hypothesis H1 that the drug does work in one of some possible variety of 
ways. This set  H1 contains  H+. H1 is classically held to be what a statistical 
hypothesis test is set up to establish. 

 In pharmaceutical R    &    D, the null hypothesis typically predicts  “ no differ-
ence ”  situations, e.g., that the rates of symptom relief in a sample of patients 
who received a placebo and in a sample who received a medicinal drug will 
be equal. Rejection of it allows one to make the alternative that the rates  did
differ. It does not prove that the drug worked, though intellectually it gives 
us greater confi dence in this alternative hypothesis. A null hypothesis is of 
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course only useful if in principle it is possible to calculate the probability of 
observing relevant data  D . In general, it is harder to be precise about the 
probability of getting  D  if the alternative hypothesis were true. Concerns 
about the power of statistical tests to distinguish genuine  “ difference ”  and  “ no 
difference ”  situations in large samples have led to suggested redefi nitions; 
some are attempts to resolve the confusion between  signifi cant  and  substantial . 
That is to say, large enough samples are even more likely to be able to indicate 
the presence of differences, though they may be small. 

 It all seems intellectually unsatisfactory anyway, when the alternative 
hypothesis is suspected to be true at the outset of the experiment, making the 
null hypothesis the opposite of what the experimenter actually believes.  

  2.5.3   Statistical Myth 3: Rejection and the Falsifi ability Model 

 The modern justifi cation of classical statistics is that the formulation, testing, 
and rejection of null hypotheses is  methodologically consistent  with the  falsifi -
ability model  of scientifi c discovery formulated by Karl Popper. It is widely 
held to apply to most kinds research. Hence, the FDA and the pharmaceutical 
industry follow or are formally supposed to follow the decision process advo-
cated by classical statistics; that is,

    P D Ho( ) < α.     (2.6)   

  H  o  is the  null hypothesis , a hypothesis that we wish to falsify. Strictly speaking, 
we should somewhat better write, with some variation on the range part 
according to the question of interest,  P ( D    |    H  o ) as  P f   x   f X    |    H  o ), where  P  is 
now known as the  p  value. This is, say, the probability that any selected value 
such as systolic blood pressure  x  from a blood pressure - reducing drug will 
equal or exceed a specifi ed  X  given the null hypothesis is true.  X  would typi-
cally be the  clinically worthwhile effect  that we wish to achieve, in which case 
the minimum amount of data (sample size) required is said to be 16 (standard 
deviation) 2  by common agreement. The argument for using  P ( D    |    H  o )   =    P ( x  
 f X    |    H  o ) to simply illustrate the points of interest below is that  “  x f   X  ”  relates 
 indirectly  to the data  D  as follows.  x  is actually a range of values determined 
by the data; that range and all the remaining values in the data presume here 
a normal curve and that we do not have to see all the data in detail, just the 
statistical summary based on the mean and standard deviation ( z  - test) or the 
standard error ( t  - test). By  statistical summary  is meant that the common  z  -  and 
 t  - tests give formulas for  z  and  t  to obtain standard values that can be addressed 
in a table to look up  P ; they essentially imply a result  as if  one has processed 
the normal curve such that the mean is always zero and the standard deviation 
1 ( z  - test) or standard error 1 ( t  - test). The data  D  directly implied by  “  x f   X  ”  
is thus a symbolic representation of data assuming the normal distribution and 
the fact that the mean and the standard deviation (or standard error) are 
parameters that adequately describe it. 
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 It is at least a simple matter to take  P ( x     <     X    |    Ho )   =   1    −     P ( x f   X    |    Ho ) or 
other ranges of interest (cf.  “ two - tailed testing ” ) as the  p  value, if we are 
interested in them. The net effect of the above example is that we are hoping 
to see the lowest possible probability that the systolic blood pressure will fall 
below a specifi ed value if, in effect, the drug is useless. If that is a suffi ciently 
small probability, the null hypothesis is  unlikely  to be true; so, it is  likely  that 
the drug did do something useful in lowering blood pressure.  “ Likely ”  and 
 “ unlikely ”  are of course matters of degree. Actually, the modern trend in 
research is just to quote this p  value. The  “  >α  ”  part comes in because it is 
often necessary to make a decision to act on the result in clinical practice or 
business, where  α  is 0.95 or occasionally 0.9 are arbitrary but agreed  decision
points   . 

 This is manifestly complicated, with several pitfalls. Many objections have 
been raised (see, for example, references to classical hypothesis testing, null 
hypothesis, and  p  value in Wikipedia), of which only the most relevant ones 
will be raised below. Despite the invoked authority of Karl Popper to justify 
the classical statistical approach, he was somewhat quoted out of context since 
he was essentially considering positive and negative evidence in a large and 
complex world. Related notions, such as there are so many potential things 
that might be but are not, do crop up in data mining and negative associations, 
and hence contrary evidence, as a combinatorial diffi culty despite their equal 
importance a priori . Hence, associations occurring less than they should are 
not generally reported in unstructured  data mining (e.g., text and image analy-
sis), which studies an open system representing the larger real world. The 
output would be huge. However, the fact is that in structured data analytics 
and experimental designs which will employ it, we are free to choose our 
highly controlled micro - universe of study, and for example, design tests in 
which the drugs work in the way we are testing. Apart from the fact that any 
positive rule can usually be reexpressed in a form that renders it as a negative 
one (as in associations of emphysema with smokers and nonsmokers, respec-
tively), the negative associations between disease and genomic propensity to 
disease and between disease and preventative therapy are the associations of 
interest in preventative medicine.  

  2.5.4   Statistical Myth 4: The Value of  P ( D    |    Ho ) Is Interesting 

 Note that, when pressed, everyone appears to agree that it is  P ( H+    |    D   ), the 
probability of the positive hypothesis  that the drug works given good data  D , 
which is interesting,  in principle . This is the  alternative hypothesis  to the null 
hypothesis in classical statistics jargon, or would be if the null hypothesis were 
better defi ned. Especially, the critically ill patient is even less likely to be 
interested in the probability with which you might get your tediously boring 
data given some vaguely opposite hypothesis in which the patient has by defi -
nition the least possible interest. Including  D  * , an acceptance/rejection crite-
rion, would be
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    P H D D f a+( )  *   & ,     (2.7)  

where  a  is again an inevitably arbitrary but nonetheless agreed threshold 
probability. This can be converted to the analogue of Equation  2.6 . Since 
 P ( H  +    |    D   &   D  * )   +    P ( H   –     |    D   &   D  * )   =   1, we can also write

    P H D D a−( ) < −  *& ,1     (2.8)  

that is, cognizant of Bayes ’  Equation  3 ,

    P D H D P H D P D D a− −( ) ⋅ ( ) ( ) < −& & & ,* * * 1     (2.9)  

so

    P D H D−( ) <& .* α     (2.10)    

  2.5.5   Statistical Myth 5: The Value of  P  (  H  o    |    D ) Is Interesting 

 It is indeed a bit more interesting than  P ( D    |    H  o ). However, it of little use to 
classical statisticians, in practice. They are not allowed to use it, for the fol-
lowing reasons. First, they are not allowed to accept the concept of prior 
probability  P ( H  o ) and hence they cannot use Bayes ’  equation above to get 
 P ( H  o    |    D ). And moreover, second, rejecting the null hypothesis  P ( D    |    H  o ) says 
very little about the likelihood  P ( H  o    |    D ) that the null is true. Actually, clas-
sical statistics considers probabilities as the result of counting things in  infi -
nitely  large data, so it is not quite so clear why it has the nerve to quibble with 
the notion of probability when there is no data! It suggests of course abandon-
ing counting - based notions of probability in favor of degrees of belief, which 
is what Bayesian statisticians do.  

  2.5.6   Statistical Myth 6: Rejecting the Null Hypotheses Is a 
Conservative Choice 

 It certainly is if one wishes to satisfy the FDA, and so on, but this does not 
have to be assumed lightly for internal R    &    D. The willingness of the pharma-
ceutical companies to use rejection of the likelihood of the null hypothesis is 
said to reside in the fact that it is a conservative choice. More generally, the 
rejection of the null hypothesis is said to mean that the onus is on the more 
general researcher to make a especially strong case to overthrow the establish-
ment view. This concept has been important to the pharmaceutical industry: 
since drugs are expensive to develop and can carry both medical and com-
mercial risks, having to make a strong case seems attractive too. Importantly, 
though not often stated this way in statistics books, it seems as if this would 
be a powerful fi lter in selecting   from a bewildering array of opportunities in 



60 DRUG GOLD AND DATA DRAGONS

early preclinical studies. However, as to whether it is a conservative choice, 
the classical decision point is equivalent to rejecting if

    P D H D a P D D P H D− −( ) < ⋅ ( ) ( )& .* * *     (2.11)     

 Refuting the negative hypothesis is thus

    α < ⋅ ( ) ( ) = ( ) −( )− −a P D D P H D P D D P H D& & .* * * *     (2.12)   

 We may deduce that the fi nal decision criterion depends on the relative prob-
abilities of obtaining the hard data  D  to the hypothesis given the prior more 
subjective data  D  * . Again, we want to refute the contrary of the positive 
hypothesis. Evidently  ,  α  is not a constant of fi xed meaning, so whether it is a 
conservative choice depends on the value of  P ( D    |    D  * )/ P ( H   –     |    D  * ). In some 
cases, we can reject the negative hypothesis (or the null hypothesis) when they 
are virtually certain to be true. If observations contraindicate the null hypoth-
esis, it means either (1) the null hypothesis is false or (2) certain relevant 
aspects of data occur very improbably, say, overall that there is a low  P ( D ). 
This gives confi dence in the falsity of the null hypothesis, a confi dence that 
rises in proportion to the number of trials conducted. Accepting the alterna-
tive to the null hypothesis does not, however, prove that the idea that pre-
dicted such a difference is true. There could be differences due to additional 
factors not recognized by theory.   

  2.6   DATA MINING VERSUS THE MOLECULE WHISPERER 
PRIOR DATA  D  *  

  2.6.1   The Two - Edged Sword 

 In the pharmaceutical industry,  D  *  is a two - edged sword. A hot tip from the 
 “ horse whisperer ”  at the racecourse may occasionally work in your favor, but 
no one regards anecdotal evidence rooted in vaguely defi ned sources as a 
general strategy. Having a good implicit data  D  *  in the mind of the researcher 
will direct, as if through a powerful fi lter, toward answers in a problem of 
incredible complexity. However, a manager may feel that a researcher was not 
innovative in a special if rather unforgiving sense. He or she already had the 
hunch that (1) some  particular H  +  is interesting and that (2) it represented a 
reasonable bet for investigation in the sense that the prior probability  P (drug 
works   |   drug  X   &  disease  Z ), held before examining any data  D , is at least not 
too low. Recall that the data  D  *  will most likely refl ect things like the phar-
maceutical spirit of the times, anecdotal evidence including streetwise chat in 
the underground network of researchers, or simply this morning ’ s scientifi c 
news. Given that, the novelty and uniqueness are in question. Even if the 
origin of  D  *  lies within the confi nes of a particular company, it does carry 
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some aspect of needless use of resource for  “ reinventing the wheel ”  when 
discovery is paramount. In fact, under the enticing burden of  D  * , the more 
the researcher is judicious and correct in the hypotheses selected, that means 
that the hard data  D  does not make too much difference to  D  * , and hence the 
data analysis does not make too much difference to the positive hypothesis.  

  2.6.2   Types of Data Mining Refl ect Types of Measure 

 The various data mining techniques differ primarily by  normalization , though 
sometimes in the more general sense of ensuring that all probabilities add to 
1. For simplicity, we shall neglect  D  *  here, bringing it back in the next section 
with an example from a specifi c data mining approach. In many cases, nor-
malization means what the raw numbers such as  n ( A   &   B   &   C ) are divided 
by. The parameter  n ( A   &   B   &   C ) is the number of times that  A ,  B , and  C  are 
observed together. The following examples also use  A   &   B   &   C  and can be 
extended to an indefi nite number of states  A ,  B ,  C ,  D ,    … , which may be vari-
ously described as states, events, objects, observations, measurements, proper-
ties, parameters, or descriptors, among other things. These are not conceptually 
all the same thing, though it is interesting that with few modifi cations, they 
can be treated statistically in exactly the same way.  n ( A   &   B   &   C ) can be 
written as  n ( A ,  B ,  C ), which highlights the fact that  A ,  B , and  C  are dimen-
sions, but the nature of logical  &  is that this comes to the same thing. 

  2.6.2.1   Pattern Recognition     This  “ simply ”  notes that  A ,  B , and C are 
observed to occur together more than  k  times, where  k  is at least 2:

    n A B C f k& & .( )       (2.13)   

 This does allow for effi cient identifi cation of events of high complexity, though 
not a strong negative association when the pattern does not occur (bust sta-
tistically should). Assuming  n ( A   &   B   &   C ) are reasonable large, a method can 
also report a probability, i.e.,

    P A B C n A B C N& & & & .( ) = ( )     (2.14)   

  N  is the total amount of data, which is not quite as simple as it sounds. In data 
mining, it can often be stated more accurately as the number of (patient, 
chemical compound, etc.) records mined. However, that is not in general true 
because, although it is rarely considered,  A ,  B , and  C  may be not completely 
distinguishable. The three major degrees of distinguishability correspond to 
the maximum number of times that, say,  A  can be observed on a record and 
how they are counted. If  A  can only occur once on a record (i.e., the record 
is a  set ), it is said to be  fully distinguishable . If it can occur more than once 
and can be counted each time it is seen (i.e., the record is a  bag  or  collection ), 
it is  indistinguishable except by recurrence . If it can occur more than once on 
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a record and is counted only once, it is  fully indistinguishable . Intermediate 
cases can occur if the defi nition is deliberately fuzzy or simply prone to uncer-
tainty  . Similar arguments in distinguishing or in occurrences of  A  on a record, 
i.e.,  “ comparing ”   A  with  A , equally apply to  “ comparing ”   A  with  B  or  C , and 
so on, since in theory  B , for example, may turn out to be  A . Even if  A  is fully 
distinguishable from  B , it does not mean that  A  and  B  are mutually exclusive. 
 N  is not in general  n ( A )   +    n ( B )   +    n ( C )   +    …  because  A ,  B , and  C  may not be 
mutually exclusive, e.g., female patients, overweight patients, and high blood 
pressure patients. If we can treat  A ,  B , and  C  as parameters each with a 
number of possible values such as 1, 2, 3,    … , then  n ( A   &   B   & C)   =    Σ   B   Σ   C    n ( A  
 &   B   &   C ),  n ( A )   =    Σ   B   Σ   C  n ( A   &   B   &   C ), and  N    =    Σ   A   Σ   B   Σ   C  n ( A   &   B   &   C ).  

  2.6.2.2   Predictive Analysis     This is common and generates conditional 
probabilities that quantify statements such as  “ All  B   &   C  are  A . ”  For reason-
ably large  n ( A   &   B   &   C ), this may be written as

    P A B C P A B C P B C n A B C n B C& & & & & & & .( ) = ( ) ( ) = ( ) ( )     (2.15)   

 Though conditional probabilities like the above can be applied to quantifi ca-
tions of semantic IF statements  , the problem is that they make no statement 
about the probability that  A  would have occurred anyway.  

  2.6.2.3   Association Analysis     Association analysis does take the above 
into account by means of an association ratio. By analogy to Equation  2.16 , 
there is an association ratio that, when  n ( A   &   B   &   C ) is suffi ciently large, is

    

K A B C P A B C P A
P A B C P A P B C
N n A B C

    
  

; & &
& & &

& &

( ) = ( ) ( )
= ( ) ( ) ( )[ ]
= ⋅ ( ) nn A n B C( ) ( )[ ]& .     (2.16)   

 The notation is a glimpse at a more general language. It is to be understood 
throughout all the above that there may be more states such as  D ,  E ,  F ,    …  and 
that any state can also be expressed as a conditional; that is, there may be one 
of more states written to the right of a  “ | ”  symbol. Also, there can be more 
than one  “ ;. ”  So, for example,
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and

    

K A B C K A B C K B C
P A B C P A P B P C
N

          ; ; ; & ;
& &

( ) = ( ) ( )
= ( ) ( ) ( ) ( )[ ]
= 22 ⋅ ( ) ( ) ( ) ( )[ ]n A B C n A n B n C& & ,     (2.18)  
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which perhaps makes clearer that  K  is analogous to a chemical equilibrium 
constant.  

  2.6.2.4   Mutual Information Analysis     This is actually association analysis 
in an information theoretic form. It is in essence the use of logarithms of  K  
measures defi nes the limit of infi nitely large data general logarithms plus some 
further sophistication  . Analogous to Equations  17 – 19 , there are correspond-
ing forms of  Fano ’ s mutual information ,
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P A B C P A P B
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e e e
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(2.19)
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  2.6.2.5   Atomic Rule Data Mining     This is a term used by the authors and 
colleagues that seems to coincidentally turn up in discussions with other 
research teams. It implies simply that in just a particular defi nition of informa-
tion measure (or analogous  K  measure) such that after the rules are generated, 
one focuses on mining those, and other rues can be deduced from them, as 
opposed to attempting to generate them in the data mining from the outset. 
The advantage of the form in which all  “  &  ”  are replaced by  “ ; ”  (conditionals 
placed after  “ | ”  may remain) is that it is more  “ atomic, ”  i.e., other forms can 
be deduced from such. For example,

    I A B C I A B C I B C        ; & ; ; ; .( ) = ( ) − ( )     (2.22)   

 Note how the information theory representation forms can be used in an 
algebra of inference and in predictive methods, based on rules obtained by 
data mining. For example,

   I A B C D I A B I A C B I A D B C        ; & & & ; ; ; &…( ) = ( ) + ( ) + ( ) +…  
  (2.23)   

 A convenient concept is that neglecting complex terms at some arbitrary point 
to the right neglects more complex, high - dimensional, and sparse data, so 
allowing estimates in the absence of data. So - called Bayesian networks (more 
properly, conditional probability networks) are analogous exponential forms 
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of such equations. What is not explicitly represented in the  “ Bayes network ”  
implies analogous neglect.  

  2.6.2.6   Inclusion of Complementary Information     This produces informa-
tion expressions awfully close to those of  decision theory , or the equivalent 
probability ratios of most formulations of that subject. It involves a form of 
further information in inference that is so fundamental that it need not be 
included in inference but built into measures from the outset. To include the 
fullest possible information in regard to, say,  A , it may be noted that informa-
tion for the complementary state  ∼  A  is information against  A , i.e., negative 
information for  A . The information measure uses the colon (:) to indicate use 
of two alternative states in this way.

    I A A B C I A B C I A B C:~ ; ; ; ; ; ; ; ; ;                  …( ) = = …( ) − = …( )
=

1 1
llog & & log ~ & &
log log ~

e e

e e

n A B C n A B C
n A n A

( )[ ] − ( )[ ] −
( )[ ] + ( )[ ]

   
 (2.24)   

 Again this assumes reasonably large  n ( A   &   B   &   C ) and  n ( ∼  A   &   B   &   C ), 
and again  ∼  A  means  “ not  A , ”  i.e., the complementary state to  A . Equation 
 2.15  is a perfect equation for a perfect (classical statistics?) world of indefi -
nitely large amounts of data to defi ne the probabilities. It says nothing about 
information given levels of data, however, and it should. If there are several 
data, the information should conform to Equation  2.15  with probabilities  P  
evaluated for very large numbers of observations. But if we have no data, we 
have no information (except that in prior belief). Between those two extremes, 
the information should rise as the amount of information available to us rises 
as data increases.  

  2.6.2.7   Zeta Theory  [12,18,19]      Proposed by one of the authors (B. Robson), 
zeta theory allows a more general strategy by controlling a parameter,  s , as 
described below. It links to number theory in order to develop powerful 
mining algorithms and to characterize the combinatorial explosion of rules. 
Most importantly for present purposes, it  “ normalizes ”  according to the 
amount of data in a natural way. Expected values of the information measures 
so that the amounts of data are taken into account. Clearly there is a problem 
with Equation  2.21  if  n ( A   &   B   &   C ) and  n ( ∼  A   &   B   &   C ) are not suffi ciently 
large. In fact, if they are both zero,  I ( A :  ∼  A  ;  B  ;  C  ;    … )   =    – log e  [ n ( A )]   +   log e  
[ n ( ∼  A   )]. In other words, we obtain information about the relation between  A  
and  B  and  C  even without data concerning that relation, which is unreason-
able. The above measures are not  “ normalized ”  or adjusted in any kind of 
way according to the amount of data, yet we know that if there is no data, 
there is no information. The adjustment comes naturally on theoretical 
grounds, as discussed below, as an expectation of the information on data  D , 
i.e.,  E [ I ( A  ;  B  ;  C  ;    … )   |    D ]. This expectation converges to  E [ I ( A  ;  B  ; 
 C  ;    … )   |    D ] as  n ( A   &   B   &   C ) increases:
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and so also
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 Here  o [ A   &   B   &   C ]   =    n [ A   &   B   &   C ], the observed frequency (number of 
occurrences of)  A  and  B  and  C , and so on, all together, and  e [ A   &   B   &   C ]) 
is the expected frequency:

    e A B C n A n B n C N t& & & ,[ ]) = [ ] [ ] [ ] − +1     (2.27)  

where  N  is the total amount of data as discussed above, and there are  t  terms 
 A ,  B ,  C     …  Though it looks complicated, this is the same expected frequency 
as in the chi - square test. For present purposes, we may adequately defi ne  ζ  
for values of  s  of 1 and greater

    ζ s n n s fs s s s, , .( ) = + + + +…+− − − −1 2 3 4 1      (2.28)   

 However, using much more complicated expressions, it can be defi ned for all 
real and even complex numbers (including an imaginary component) of  s  and 
 n . Note that Equation  2.27 , which gives a possible value for  n , is most gener-
ally a real, not integer, value, and that more general defi nitions of  z  can handle 
this. For data mining, interpolation from integer values of  n  in Equation  2.28  
suffi ces. The interesting case for real values of  s    =   0 and greater covers several 
lines of text  [42] . Though  s    =   1 defi nes information, other values relate to 
moments of information (square, etc.) and other measures of surprise. For 
example, with a suffi ciently large value of  s  (in the tens or hundreds is an 
adequate approximation), the zeta function converges to a binary logic value, 
0 or 1  .   

  2.6.3   Including  D  *  

 Consider fi rst that the  new  probability as a consequence of the data is on the 
basis of something closer to classical likelihood testing (but focusing on the 
positive hypothesis as in this case the compliment of the null hypothesis):
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 This is typically close to 1 because the researcher was focusing on a particu-
lar hypothesis such that his  D  *  was already relatively strong and  D  was con-
sistent with it. Rather, one is interested in the mutual information
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 (2.30)   

 Here the focus is on the information concerning the  mutual information  
between  drug works  and  drug X  &  disease Y  (how much information one gives 
about the other) not the correlation with the data, albeit that the informational 
value is conditional on  D  and  D  * . The  “ ; ”  symbol indicates what the mutual 
information is between. It is symmetrical; we could interchange the parts on 
either side of the  “ ; ”  (but must leave any conditional factors after the  “ | ” ). 
That the drug works is here  H  + . In practice, there is generally at least one 
further piece of information that cannot be ignored, the information, if any, 
that the drug does not work, here  H   –  . Formally, this is included even though 
information for  H   –   is simply and conveniently one minus that for  H  + . This 
contrary information is negative information for the positive hypothesis, and 
should be subtracted, viz,
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 (2.31)   

 Note that log  P (drug  X   &  disease  Y   &   D   &   D  * ) has disappeared due to 
cancellation. 

 How is  D  *  quantifi ed? The zeta theory (see below) makes that easy and 
leads naturally to the ability to add numbers, say,  a  and  ∼  a , which represent 
our prior degree of belief relating to  n [ A   &   B   &   C   &     … ] and  n [ ∼  A   &   B   &   C  
 &     … ] in a Bayesian sense. They come from the parameters of an implied prior 
binomial or multinomial distribution. They express belief in terms of a sense 
of virtual frequencies of observation, the sense that we would expect to see  A  
 &   B   &   C   &     …   a  times in the study, on the basis of  D  * .
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 If  a    =    a ′   and  ∼  a    =    ∼  a ′   are distinct values, this is the  “ quench choice ” ; it takes 
a stricter view and demands that we have to obtain more data to get the same 
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amount of information  . Having parameters different in all four terms will 
obviously give a nonzero information value when all o  and  e  are zero, quan-
tifying that prior knowledge. Expert human judgment would assign the values 
on the view that this is the same strength of information as if  the numbers had 
been real numbers of observations. Optionally, choosing a prior probability 
P ( A   &   B   &   C   & )    ×     N  where  N  is the total amount of data or strength analo-
gous to a given amount of data, allows estimates based on a sense of propor-
tional probabilities and the amount of data available. 

 Strictly speaking, since such parameters as  a  are themselves dependent on 
the data, they should be written as  a [ A   &   B   &   C   &     … ]. Also,  a  [ A   &   B   &  
C   &     … ] is subject to the same constraints as  n [ A   &   B   &   C   &     … ]. The  n [ A ], 
n [ A   &   B ], and  n [ A   &   B   &   C ],    …  are not generally the same value as each 
other, and there is a  marginal sum  constraint when we reduce dimensionality 
such that n [ A ]   =    ΣX ,  n [ A   &   X ],  n [ A   &   B   &   X ]   =    ΣX  n [ A   &   B   &   X ], and so 
on. This still applies replacing all the  n  by  a . However, this most seriously 
becomes an issue when information terms of different complexity are added 
together in inference. Moreover, there is (at least arguably) a philosophical 
position that the parameters like a  relate to  absolutely prior information  and 
need not be subject to these considerations in the same way as more tangible 
early data based on n . For example, the probability theorist Dirichlet pro-
posed what is equivalent to using a    =    – 1 as relating to the absolutely prior 
probability distribution  [45] , a choice that many purist theoreticians still 
insist on today. As long as there is no real counting involved,  D  *  can be 
considered of the absolutely prior class, and fi xed value parameters can be 
used. This is not, however, a universally held opinion in analogous other 
contexts. It becomes a diffi cult conceptual point if it is argued that only gut 
feeling, or arcane matters of mathematical best choice to represent zero prior 
information, can represent the absolutely prior case.  D  *  is a little more tan-
gible than these.  

  2.6.4    D  *  and the Filtering Effect 

 Filtering for gold is good, providing the easy - to - spot lumps that are caught 
are not worthless rock and the value is not in the massive amounts of gold 
dust that fl ushes way. None of the above considerations avoid the luring 
effect of D  * ; it merely makes its involvement clearer and allows a means to 
quantify its effect at least based on human judgment. Let us allow that this 
nonclassical approach was what the researcher favors and that he or she 
constructs some such test accordingly. The information gained may be much 
higher, but the particular hypothesis being tested still relates to a particular 
hypothesis, say,  H+  (1)   =    “ drug works  &  drug  X   &  disease  Y . ”  From the 
larger perspective, the researcher perhaps unwittingly used a heuristic: he or 
she prefi ltered the larger mass of data available by focusing on  H+  (1). The 
good news for the industry and the bad news for the overworked researcher 
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is that there are in fact H+  (1),  H+  (2),  H+  (3),    …     H+ (2 N     −    1) hypotheses related 
to the N  probabilities of increasing complexity with which  N  things show 
up and, importantly, the probabilities of the 2 N     −     N     −    1 combinations in 
which they show up. For  N    =   100, 2 N     −     N     −    1 is circa 10 30 . Hidden in this data, 
like needles in a haystack, are many events, associations, and correlations 
that relate to many hypotheses, some much weaker, some much stronger than 
H+  (1).  

  2.6.5   No Prior Hunch, No Hypothesis to Test 

 As a consequence of the above arguments, the underlying special nature of 
data mining is underlined. Data mining is not the testing of a hypothesis. That 
would be in database terms highly analogous to a directed query to a database, 
asking  “ Is this true? ”  or  “ Does this occur? ”  Data mining is  undirected  and 
unsupervised . Of course it is easy to add a focus, with, for example, command 
specifi ying things that are interesting and not interesting, even down to a 
specifi c hypothesis test or query. But ideally, it seeks to obey the command 
 “ Find me everything interesting, irrespective of any prior views or data and 
without focus on the relationships between particular  things. ”  This ambitious 
aim does not of itself get round the fact that fi nding everything of potential 
interest is very diffi cult to do and is sometimes astronomically impossible if 
there is no guidance at all. Hitting upon what is interesting is still a matter of 
entropy, a combinatorial explosion problem representing the  “ dragon on the 
gold. ”   

  2.6.6   Good Data Mining Is Not Just Testing Many Randomly 
Generated Hypotheses 

 Even if the core parts of a data mining program look like iteration over many 
arbitrary hypotheses, the code overall, and its effect, is much larger than the 
sum of those parts. If it were not, we would simply run out of project time, 
patience, or computer power long before all the space was covered for discov-
ery (i.e., generating all the possible rules), and there would be an arbitrary 
focus on what was examined fi rst. Thus, data mining really implies many 
algorithms to try and enhance genuine discovery. 

 At its rawest, data mining has no sense of what is interesting, or even new, 
to the researcher. It has no sense of physics, chemistry, or biology. It reports 
or should report the surprising absence of pregnant males with equal enthu-
siasm to relationships implying a potential cure for cancer. Of course, well -
 founded prior judgment is not excluded, and it is useful to have  “ interesting ”  
and importantly  “ not interesting ”  commands, ideally with a probabilistic 
element rather than being commands set in stone, so that related matters do 
not avoid discovery. However, these imply the presence and application of 
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D  * . They draw data mining back toward classical hypothesis testing. This is 
sometimes a good thing, but it runs the risk of the dangers as well as the ben-
efi ts posed by  D  * . 

 There is much that can be done with more general heuristic algorithms that 
are relatively  “  D  *  free ”  and yet restrict the early calculations and search to 
where it counts  [16 – 18] . Most abundant of these is based on the amount of 
data, related to  “ the level of support for a rule. ”  Where there is inadequate 
data, why bother to calculate? But inadequate data does  not  mean, however, 
that n ( A   &   B   &   C   &     … ) counts as a small number of observations. Consider 
the situation that thousands of female patients taking, say, a cholesterol -
 lowering drug  X  for a month never get pregnant. Here  n (female  &  pregnant 
 &  drug  X ) equals zero, yet the effect is very signifi cant indeed. 

 The information theoretic approach makes the situation clearer. In the 
huge number of potential rules above, most are not likely to be rules in the 
everyday colloquial sense. Some will contain little information: their probabil-
ity is close to what we might expect on a chance basis. On the face of it, we 
would have to look at every possible rule to calculate that. However, rules 
could be avoided from further consideration where there is enough data to 
obtain reliable rules. The value can be positive or negative, and that it is close 
to zero implies no information  . Thus, the algorithm would typically be to halt 
calculation where early it is detected that information greater than + x  or less 
than  –  x  cannot be obtained. The rule for this is again not that  n ( A   &   B   &   C
 &     … ) are below a critical number, but that the terms of lower complexity are 
below a critical number. Moreover, we may start with the terms of least com-
plexity n ( A ) working up to  n ( A   &   B ),  n ( A   &   B   &   C )    … , which are inevitably 
always smaller values. When that complexity falls below a critical value for 
any subset of the parameters in the full set A   &   B   &   C   &     …  of interest, we 
may halt. 

 Note that this impact of data has nothing to do with estimates of probabili-
ties P ( A ),  P ( A   &   B ), and so on,  per se , since this conveys nothing about the 
levels of data involved. We might get the same probability (depending on the 
estimate measure) by taking a subset of just one thousandth of the overall 
data. 

 A direct measure of information including the level of data is philosophi-
cally sound and feasible. It measures the information in a system that is avail-
able to the observer. On such grounds, the real form of interest having the 
above properties dependent on data levels arises naturally. It is an  expectation
calculated by integration over Bayesian probabilities given the data  [18,12,20] . 
This was used in the GOR method in bioinformatics  [20] , which was based on 
several preceding studies including Robson ’ s expected theory of information 
 [21] . In the latter study, the integration of information functions log e   P  is made 
over the probability distribution Pr( P    |   ) dP, where Pr[ P    |    D ] is given by Bayes ’  
equation as Pr[ D    |    P ]Pr( P )/ P ( D ). Consider also that what we imply by Pr( P ) 
is really the estimate or expectation E ( P    |    D ) of an underlying  P   “ out there 
in nature, ”  conditional on data  D , say,  D    =   [ n ( A ),  n ( B ),  n ( A   &   B )]. It means 
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that the estimate arises only by considering cases when here  D    =   [ n ( A ),  n ( B ), 
 n ( A   &   B )]. 

 The integration over information measures is similar. The most general way 
to write it is to simply state  I ( P ) as some function of  P , viz,
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 Equation  2.18  is in some respects the most complete because it includes not 
only  A  but the contrary information in  ∼  A . In fact, whatever terms  A ,  ∼  A , and 
 B ,  C ,  D  are implied in  P ( ) introduced either with the use of  “  &  ”  or the con-
ditional bar  “ |, ”  we can write
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and
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 Since the log terms are separable, we may focus on
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 The  “ plug - in ”  point in the above for actually introducing the counted numbers 
is the  likelihood , whence one must be specifi c about the arguments of  P . It is 
a binomial, or in general multinomial, function of the number of observations 
of something (or joint occurrences of something, say,  n . The integration then 
yields

    E I D s n C( ) = =( ) +ζ 1, .    (2.37)   

 Here  z  is the incomplete Riemann zeta function discussed above, actually 
more general than the complete one, which implies  n    =    ∞ . 

 When  n  becomes indefi nitely large,

    ζ γs n n n=( ) − → ( ) → ∞1, log ,e     (2.38)  

    E I D s n n( ) = =( ) − → ∞ζ γ1, , .     (2.39)   
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 Constant  γ    =   0.5772156649    …  is the Euler – Mascheroni constant. In fact, there 
seems no interesting case in data mining yet noted where one zeta function is 
not subtracted from another, so the constant  C  always cancels, as when we 
wrote for Equation  2.27 

    

E I A A B C D
s o A B C s e A B C
:~ ; ; ;

, & & & , & & &
      
 

…( )[ ]
= = …[ ]( ) − = …[ ]ζ ζ1 1(( )
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  2.7   INFERENCE FROM RULES 

  2.7.1   Rule Interaction 

 Rules may not stand in isolation, but when they have a common parameter, 
 A ,  B ,  C , and so on, they may interact. Negative rules about, say,  A  may cancel 
positive rules about  A , while many weak rules about  A  could add to a strong 
weight of evidence about  A .  

  2.7.2   It Is Useful to Have Rules in Information Theoretic Form 

 The methods of one of the authors  [12,18,42,43]  use Fano ’ s mutual informa-
tion measures such as  I ( A  ;  B ) are weights about the rule ( A  ;  B   ). However, 
the output of other data mining and data analytic methods in general can be 
converted to this form. They describe the degree of  association  (positive, zero, 
or negative) of  A  and  B , and on a fuzzy set argument we can also express 
 correlations  in the same way, as arising from a multivariate analysis of trends 
between quantities  [42] . These, however, may be said to differ in  type , and 
more types can be defi ned. The information theoretic approach is convenient 
because all rules irrespective of type and complexity (say,  I ( A   &   B  ;  C   &   D  
 &   E ), which is of complexity 5) can be co - ranked in the same list from large 
positive down to large negative.  

  2.7.3   A  PC  under Uncertainty 

 It would be nice if the inference method using such rules could handle a quan-
titative form of the PC in which both statements such as  “ All  A  are  B  ”  and 
 “ Some  A  are  B  ”  can be quantifi ed to express uncertainty and can be repre-
sented in a common measure. Importantly, this would allow handling of  uncer-
tain ontology . It would also be nice if that measure can perform such inference 
in both directions of reasoning. Conceptually,  P ( A    |    B ) quantifi es  “ All  B  are 
 A  ”  in that  P ( “ All  B  are  A  ” )   =   1 and  P ( “ No  B  are  A  ” )   =   0 for absolute cer-
tainty that it is true, and  P ( “ All  B  are  A  ” )   =   0 and  P ( “ No  B  are  A  ” )   =   1 for 
absolute certainty that it is not true. 

 In moving into the intermediate range of uncertainty, however, there are 
necessary complications.   P A B( ) is held to be a quantifi cation of  “ All  B  are 
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 A  for all practical purposes ”  and   P B A( ) is held to be a quantifi cation of 
 “ All  A  are  B  for all practical purposes. ”  The arguable signifi cance of  “ for all 
practical purposes ”  is that statements in PC are too strict to handle uncer-
tainty. Just one observation of  A  and  B  together on a record for a patient or 
a molecule would otherwise convert  “ No  A  are  B , ”  i.e.,  P ( “ Some  A  are 
 B  ” )   =   0 to  “ Some  A  are  B  ”  with  P ( “ Some  A  are  B  ” )   =   1, while just one case 
where  A  occurs without  B  would fl ip  P ( “ All  A  are  B  ” )   =   1 to  P ( “ All  A  are 
 B  ” )   =   0. The square root is a  “ hedge, ”  i.e., a common practice in automated 
inference founded on set theory to take the square root to strengthen a prob-
ability if a weaker statement is made. Note that   P P>  except at  P    =   0 and 
 P    =   1. 

 This taking the square root may or may not be considered a rather forced 
device because that is exactly what is needed to bring everyday inference use-
fully into line with the amplitudes of QM as follows. Perhaps so, but it is at 
least a happy coincidence.  

  2.7.4   Borrowing from Dirac 

 To embrace the above considerations, one of the authors (B. Robson) pro-
posed such a method called quantitative predicate calculus (QPC)  [46]  based 
on Dirac ’ s system of inference  [47]  in QM  [48 – 50] . Though this method may 
be read in the spirit of an example as just one possible method of inference, 
it has two entwined considerations. The fi rst is that it can be made suffi ciently 
general to represent (or critique) many other inference methods. The second 
is that it ought to be best practice, if realized correctly. It is intriguing that 
QM and Dirac ’ s system is supposed to be universally applicable, not just to 
the world of the very small. Indeed it has been applied by cosmologists to the 
entire universe. We can, however, promise some changes in what follows, for 
the familiar everyday world of human experience. Manifestly, for example, 
the patient cannot be alive and dead with the same or different weights at the 
same time, in what QM calls a superposition of states. It is, however, a valid 
description expressing uncertainty in everyday inference when we do not see 
the evidence directly or when it is a prediction for the future (a distinction not 
made in certain languages like Mayan!). The difference seems to be that in 
the world of molecules and smaller things, such superposition actually exists 
now (if that has any meaning in QM) and, as much as we can tell, in the past. 
We can use that principle, for example, to calculate the molecular orbitals   and 
energies of molecules and their conformations and interactions in the course 
of drug design. 

 The description of the QPC can be rephrased as making fundamental use 
of the constants

 = +( )1 2h and     (2.40)  

 * = −( )1 2h ,     (2.41)  
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where in QM

    hh = −1,     (2.42)  

in which case   h = = −( )I 1 , and in everyday inference in the everyday world 
of human experience,

    hh = 1,     (2.43)  

a so - called  split complex number  or hidden root of 1. 
 The basic idea is that Dirac ’ s basic element  [50]  of QM inference, the bra -

 ket  �  A    |    B  � , can be expressed in terms of linear algebra as

    A B P A B P B A= ( ) + ( )* .     (2.44)   

 Actually, even more fundamental in QM are the basic indefi nite vectors, the 
bra  �  A | and the ket | B  � , and while relevant to inference (notably  incomplete 
inference , on incomplete data  [40] ), they are not needed here. Note that 
 �  A    |    B  �  is in QM a  probability amplitude  and has analogy with probability 
 P ( A    |    B ) (while containing  P ( B    |    A ) too), and the case for two states, events, 
or measurements, and so on.  A  and  B  are easily extensible to more such,  D , 
 E , and so on, as in the above probability measures. The constants   ι   and   ι   *  
imply a normalization for inference that confi nes values to a particular part 
of the complex plane, but this is not itself considered a fundamental difference 
from QM and indeed values not so confi ned can be defi ned by use of some 
operator  O  as in the QM notation  � A   |    O    |   B � . They also imply that

    A B B A= *,     (2.45)  

where  *  indicates taking the complex conjugate, i.e., fl ips the sign of the part 
of the value proportional to  h  (i.e., the imaginary part, in QM). This represents 
 conditionality reversal  and allows inference to be performed in both directions. 
Depending on interpretation, it may also represent  causality reversal  or  time 
reversal . 

 The  P ( A    |    B ) and  P ( B    |    A ) are the required PC quantifi cations for universal 
qualifi cation, to do with ontology (classifi cation, taxononomy, metadata), and 
semantic forms of IF, i.e.,  P ( B    |    A ) also quantifi es  “ If  A  then  B . ”  

 The existential qualifi cation related to  “ Some  A  are  B  ”  and describing the 
degree of association of  A  and  B  is inherent, however, in the same equation 
(Eq.  2.41 , which may be rewritten as

    A B c A c B e I A B= ( ) + ( )[ ] ( )1
2   ; ,     (2.46)  

where the  I ( A  ;  B ) is Fano ’ s mutual information describing the degree of 
association of  A  and  B  and which can be obtained directly from data mining, 
and the weights  c  are
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    c A P A( ) = ( ) and     (2.47)  

    c B P B( ) = ( )* .     (2.48)   

 For fi nite amounts of data, which is always the case, the above may be expressed 
in terms of the Riemann zeta function discussed above, and a prior degree of 
belief  α . Strictly speaking, these relate to an expectation  �  A    |     ζ  [ D ]   |   B � , but 
can be operationally regarded as the more general solution for  �  A    |    B  �  on fi nite 
as well as on infi nite data.

    c A e s o A N s N( ) = + −[ ]= [ ]+ −( )( )− =( )[ ]√ ζ α ζ α1 1 1 1, ,     (2.49)  

    c B e s o B N s N( ) = + −[ ]= [ ]+ −( )( )− =( )[ ]*√ ζ α ζ α1 1 1 1, ,     (2.50)   

 Actually, one should write  α [ A ] and  α [ B ] since the value can vary with the 
state, event, measurement, and so on, and may be needed to satisfy certain 
marginal constraints (see above) that apply to the frequencies themselves, 
such that  α [ A ] is not independent of  α [ A   &   C ], for example. The information 
part related to existential qualifi cation can also readily encompass  α  in terms 
of adding to observed  o  and expected  e  frequencies and corresponding virtual 
frequency (1    −     α ) N    where  N  is here the total amount of data:

    I A B e s o A B A B N s e A B A B   ; , & & , & &( ) = = [ ]+ − [ ]( )( )− [ ]+ − [ ](1
2 1 1 1ζ α ζ α ))( )[ ]N .     (2.51)   

 In more realistic inference,  A  of course may be exchanged with  B  or by other 
simple, e.g.,  C ,  D , or conjugate states, e.g.,  F   &   G   &   H  states. What matters 
is whether the state  A , and so on, referred to are associated with the bra side 
or the ket side of  �  A    |    B  � ; hence,  c ( �  A |) and  c (| B  � ). They may, however, be 
interconverted via the complex conjugate as described above. 

 Now inference net  N  can be built up as in QM. For example, the inference 
net

    A B B C C D D E C F F G G H,(  

defi nes three chains  �  A    |    B�    �  B    |    C  � ,  �  C    |    D  �  �  D    |    E  � , and  �  C    |    F  �  �  F    |    G  �  �  G    |    H  �  
meeting at a fork node,  C , and it is convenient to think of this as defi ning an 
operator and with some mathematical liberties so write

    A E H A B B C C D D E C F G HN & ,= ( )     (2.52)   

 Multiplication follows the rules analogous to complex multiplication but 
such that  hh    =   1 in the QPC. This may be used to embrace any Bayesian net 
 [40] . The above relates to logical AND: the OR case can be defi ned by 
addition essentially as in QM. Finally, there is nothing to stop use of forms 
such as  �  A   &   B    |    B   &   C   &   D  � . This may be used to embrace any Bayesian 
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net  [40] . For such (as discussed in a manuscript in preparation by the pre-
sent authors), the use of normal complex numbers but replacing  �A    |    B�  by an 
expected value of information �A    |    I    |    B� , and then using addition such as 
�A    |    I    |    B�    +    �B    |    I    |    C� , is equivalent  .   

  2.8   CLINICAL APPLICATIONS 

 Much of the above is naturally general, and data mining is by no means of 
interest only to the pharmaceutical industry. However, as described above, 
many of the above more unusual techniques have been motivated specifi cally 
to meet the challenges of medical data  [18,42 – 44] , including genomic  [42]  and 
proteomic medical  [43]  data, and to perform clinical inference  [46] . Of interest 
here to the pharmaceutical industry are clinical trials, and the notion of the 
larger population of patients as a global cohort to feedback information about 
the outcomes and contraindications for already marketed drugs, including 
genomic and other biomarker information. As such, there is a need for systems 
that prepare patient data from a variety of legacy record forms and that feed 
the data in a unifi ed form to R    &    D workfl ows including data mining, modeling 
of patient polymorphic protein targets, and so forth. Since clinical examples 
have been the primary examples used above, it is mainly necessary to add how 
these data are ultimately linked back to patient source data and to the role 
that data mining plays in an R    &    D workfl ow. The safest statement is to say 
that these can be quite varied, so IT solutions should allow for that. 

 One difference between records for patients and for chemical compounds 
is that the former is much more strongly affected by law and guidelines for 
best practice, imposed from without on any R    &    D. Data mining and the 
system that embeds it needs to take account of laws that require compliance. 
It would be desirable to have built - in tools not only to ensure patient privacy 
but also for conditional, fi ne - grained consent from the patient about what 
R    &    D can be done with the data. This needs some explanation. Current U.S. 
regulations basically deny any rights to a patient on what research is done if 
the patient ceases to be a human being. Federal law 45CFR46.102.f supporting 
the Health Insurance Portability and Accountability Act (HIPAA) regula-
tions seeks to promote research through privacy, but, in effect, it reads that a 
de - identifi ed human being is not a human being, and thus the patient has no 
rights over the data. In practice, that also tends to mean de - identifi ed and/or 
dead. However, not everyone agrees with that, and there is no reason why IT 
should not add the ability for patients to have say on use of their data beyond 
the basic regulations. Then a great deal of data can be used that would be 
discarded under blanket consent. 

 Whereas many patients say at fi rst that they do not care if they are de -
 identifi ed, consent for research requires them to be well informed. To make 
the patient more aware, it is not hard to construct a list of some 40 possible 
R    &    D uses that give many patients course to rethink: uses for military pur-
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poses, research involving conscious animals, R    &    D by tobacco companies, 
uses in context with religious principles, ethical issues of the stem cell type, 
and so forth, plus the desire (or not) to be informed of risks detected for the 
patient in the course of the R    &    D. 

 Though current legislation is well intended to restore the balance of solidar-
ity (pooling data for common good) against autonomy (patient self - interest), 
signifi cant documentation and intuitive reasoning in bioethics support the 
above kinds of concern. The patient already also has rights in any event 
notably in relation to living will and patient ’ s bill of rights. Hence, the law may 
be ready for change. One reason is that the regulations are not well consistent 
at all levels anyway. In an interview by one of the authors with Cynthia L. 
Hahn, research privacy offi cer at The Feinstein Institute for Medical Research, 
Manhasset, NY, startling differences showed up between the federal defi nition 
of a human subject and the state defi nition, notably, 

 •   Federal Law 45CFR46.102.f:  “ Human subject means a living 
individual    …  ”   

 •   New York State (NYS) (Article 24A, Section   2441):  “ Human subject ”  
shall mean any individual    …  ”   

 •   The Federal Law overrides in case of doubt, but if the State Law confl icts, 
many extenuating circumstances may be allowed according to weight.  

 •   The North Shore Long Island Jewish Health System extrapolates that 
in New York, research regulations apply to both the living and the 
deceased.  

 •   However, NYS rules actually exclude epidemiological studies which the 
federal rules   do not and the HIPAA does not apply to the information 
of the deceased, except again NYS does not create that distinction.  

 •   Federal law regarding legally authorized representatives defers to state 
law, and state law makes no mention of research.  

 •   Most International Rugby Boards have structured policies relating to the 
above that await legal challenge.    

 To encompass many scientifi c, technical, and compliance considerations is not 
trivial. One example effort, again an arguably good example because it 
embraces many other approaches, is the  “ genomic messaging system ”  (GMS) 
or more generally, clinical messaging system  [51,52]  developed by one of the 
authors and colleagues. It could be regarded as a storage and transmission 
protocol in the style of a specialized data exchange protocol as, for example, 
HTTP  , but specialized for biomedical applications. However, it has much 
more elaborate capabilities. It translates HL7, other XML documents, and 
other legacy records into a lingua franca language called GMSL  , from which 
the same or other format documents, or IT - driven R    &    D workfl ows, can be 
constructed. It thus obtained great interest in the press from XML.org and a 
variety of healthcare IT journals. Nonetheless, its fl exibility has made it hard 
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for many to grasp. Apart from a rich set of encryption, compliance, DNA and 
protein management, various data porting types including medical images and 
software, and workfl ow control tools, the language is also interesting in that 
it can carry XML, can be carried in XML, or can be a combination of both. 
In addition, it follows the rules for writing DNA and protein sequences with 
extensions represented by the automatic and interactive annotation tools, and 
the compliance and workfl ow tools, so that it could be actually written into 
DNA sequences. It is an interesting concept that one could synthesize or clone 
a DNA sequence that can readily carry the language with sequencing and 
appropriate interpretation software. This bizarre notion, plus the fact that it 
is a concise language that is ( “ under the hood ” ) machine coded in which every 
bit (meaning unit of information) counts  , makes it of theoretical interest in 
studying the amounts of information in the interaction between patients and 
healthcare systems. 

 As one may imagine from the above, a degree of popularity of GMS on the 
Internet has been outweighed by lack of implementation in the healthcare 
fi eld. Indeed GMS was intended to provide appropriate concepts and several 
novel concepts rather than a specifi c solution, so it remains at time of writing 
a research code. But all of the above capabilities and others not mentioned 
here (see above references) touch on issues that are relevant to feeding real 
clinical data to data mining as well as computational biology tools. The notion 
that each gene or other data is protected by nested passwords ensures compli-
ance especially with patient wishes on what research can be carried out. Any 
system like GMS and  the subsequent data mining must have the ability to 
preserve privacy, yet, for those patients who wish it, must have the ability to 
report back to the physician if the research shows the patient to be at risk. In 
general, this means a unique identifi er assigned to the patient after de - identi-
fi cation, the key for which is held only by the physician and/or patient.  

  2.9   MOLECULAR APPLICATIONS 

  2.9.1   Molecular Descriptors 

 For a patient record, the datum was identifi ed as a biomarker, at least if one 
adopts the most general description of the latter. For the molecule record, it 
is a molecular descriptor .  “ The molecular descriptor is the fi nal result of a logic 
and mathematical procedure which transforms chemical information encoded 
within a symbolic representation of a molecule into a useful number or the 
result of some standardized experiment ”   [53] . Common examples are chemi-
cal formulas, molecular weight, molecular dimensions, net charge, polarity, 
polarizability, dipole moments, hydrophobicity/hydrophilicity, melting and 
boiling points, and numbers of rotameric forms. In addition, there are phar-
maceutically important biological data such as applications, effi cacy, and toxic-
ity, delivery and transport, renal clearance and active half - life data. Ease and 
cost of synthesis can also be appropriate data.  
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  2.9.2   Complex Descriptors 

 There are also more complex and detailed gross descriptions of the molecular 
fi eld including multipole (as opposed to simple dipole) descriptions, and the 
detailed spatial distribution of the van der Waals and electrostatic surface of 
the molecule. Typically, molecule representations may be divided into  molecu-
lar fi eld description s and more idealized and schematic  scaffolds  or  frame-
works , the latter often being the intended binding compliment to a similar 
representation framework for the binding site. There are also clustering rep-
resentations of the classifi cations of the large number of conformers of fl exible 
molecules with their relative energies. 

  “ More complex ”  is to be taken in the sense of complexity used above. 
These cannot usefully be represented as a single rule relating to  A , but require 
A   &   B   &   C   &     … . For optimal treatment in the same manner as described 
above, each of these will represent a separate column. Associations and cor-
relations between columns in that set  are typically not of interest since it is 
known that they are associated conceptually by relating to the same com-
pound. It is not hard to set a powerful data mining tool to avoid calculating 
associations within the set, though relatively few methods seem set up to do 
that. Generally speaking, the complexity (number of states  A   &   B , etc.) is of 
the order of 5 – 50, and up to a 100 or so in rare cases. The situation for analysis 
is thus challenging, but, roughly speaking, no worse than consideration of the 
number of parameters affecting complicated disease states such as cardiovas-
cular diseases and certain cancers.  

  2.9.3   Global Invariance of Complex Descriptors 

 Though data preparation and in general preanalytic curation lies outside 
present scope, some comments on general concepts is important. In the above 
more complex cases, the parameters within a set have to be prepared in a way 
that shows global invariance ; that is, they make sense in isolation when com-
pared with descriptors outside that set. For example, a partial charge  q  with 
coordinates ( x ,  y ,  z ) is only meaningful in the  reference frame  represented by 
the complex set describing the molecule. A simple step in the right direction 
would be use of polar coordinates with rotation – translation superposition, 
though in practice more elaborate schemas based on solid ellipses and so forth 
are desirable. Also, taking all possible sets of four properties like charge and 
assignation, the distances between them, as well as the handedness of the 
implied tetrahedron, is helpful, ideally described as a single state of which 
there may be many thousands. Clearly, the number of molecular records 
should exceed this by at least a factor of 10 and ideally much more. This is 
most appropriate in the case of a scaffold or framework representing the 
molecule. The general idea is to make the description as meaningful as pos-
sible to data mining by stating that property A  is located  at  a relative location 
where the latter has global not just local signifi cance and has the fewest para-
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meters possible. In practice, these methods are likely to work best in the pre-
sent state of the art when confi ned to a drug series, i.e., with related chemistry. 

 A seeming alternative approach to global invariance comes to the same 
thing. Globally meaningful descriptors are generated at run time. An approach 
used in the data mining techniques of one of the authors  [42,43]  is that a datum 
can be a variable  that ultimately gets replaced by a meaningful value. That 
means for the most part that entries can make reference (1) to further data 
such as graph data, a medical image, or a complex molecular descriptor, and 
(2) a pointer to a program or mode of use of a program that returns a (numeric 
or text) value to the datum, such that having a tangible value, it can now be 
data mined. This can be done prior to the main data mining exercise in a pre -
 run, or at run time). Since the value returned should be as a single scalar 
quantity or text string for each entry on a record, several entries may be 
needed to return the full set of information. For example, when a graph is 
processed by polynomial regression to a polynomial of degree 6 (up to the 
sixth power), seven entries on a record (the zeroth term, i.e., intercept, plus 
those six x ,  x2 ,    …     x6 ) will have the above pointers to the external data and 
programs. This could be achieved in other more elaborate ways, but the above 
fi ts rather nicely into the simple theoretical - based schema of the method. The 
above example is insightful because it is typical that in the general case, the 
lower - order and/or stronger terms be data mined fi rst, whether directly rep-
resented by polynomial coeffi cients or not. For example, the intercept can 
represent the basal level of a metabolite in a patient without administration 
of a drug, while the fi rst - order term shows how the metabolite increases with 
the dosage. In the case of complex molecular descriptors, the process of con-
verting the datum variable to a constant can of course be time consuming. 

 There is a special natural affi nity of thermodynamic and statistical - mechan-
ical processes with data mining principles and  with the notion of a global 
descriptor that is simple but of global power. The underlying mathematics of 
data capture, storage, query, and mining issues applies not only to artifi cial 
electronic systems but to molecular systems  [12] . The binding of a chemical 
compound and biological response at one target against many is a form of 
query subject to the same combinatorial and information theoretic consider-
ations. In particular, it includes the concept of  “ partial match ”  (fi t) to many 
targets, and the capability to understand the number of potential partial 
matches (interestingly, again using the Riemann zeta function)  [12] . This 
opens the opportunity to link the data analytic to the biophysical aspects of 
the problem. Ultimately, it is the free energy of the drug at the target  in the 
active conformation of both , meaning of the drug – target complex, which is 
responsible for the primary  effect  [54] , and in this one may include the binding 
at false and/or toxicity generating targets. This is an information measure and 
specifi cally a mutual association information measure,  I ( D  ;  P ), an  “ ultimate 
descriptor ”  that relates to  −Δ F *   , which may be considered as a kind of mutual 
information measure with units in terms of the Boltzmann kT component. 
This is here best considered as the free energy for drug species and protein 
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species forming an activated complex, say, relative to isolated molecule con-
former ground states D  and  P , but forming complex  D  *  P  * . Individually,  D  *  
and P  *  are the active, effect - triggering, conformational states of drug and 
protein  [54] . Thus,  I ( D  ;  P ) has a special meaning as output, and the free 
energy of binding to a named target to an input descriptor has a special affi nity 
with it. Ultimately, the key considerations can, as a fi rst pass, be phrased in 
terms of the above free energy. Even effects of risk and cost can ultimately 
be included insomuch as the discussed above information theory is part of the 
broader fi eld of decision theory. However, exploitation of such considerations 
has not, to the authors ’  knowledge, been made so far.  

  2.9.4   Peptide and Protein Structures 

 The biotechnology industry has it somewhat easier in that biosequences can 
be directly represented as lists for analysis. In other words, for each record 
is a peptide or protein sequence rendered ultimately as Residue [1]    :=   A, 
Residue [2]    :=   E, Residue [3]    :=   V, Residue [4]    :=   V, and so on. This makes data 
mining ideal for protein engineering. However, peptides developed as 
peptidomimetics and then with progressive development to a nonpeptide 
compound do represent a valid route in the pharmaceutical industry. In 
addition, one may make  staggered segment  choices like Residues [1 – 10]    :=   
AEVVQLNATW, Residues [2 – 11]    :=   EVVQLNATWC, Residues [2 – 11]    :=   
EVVQLNATWC, and so on. The general method of rendering sequences for 
mining is included in the data mining of one of the authors  [42,43] , with a 
specifi c study for enhancement of enzymic activity for a biotechnology 
company  [43] . It is not surprising that these methods should work well with 
the particular software since as mentioned above, it has its roots in the widely 
used GOR method  [45,55] . Thus, these mining techniques may be considered 
here as that method with the physical, biological, and chemical constraints 
removed. In particular, the analysis need not be confi ned to the effects of 
residues on the conformation of a residue 8 distant (the strongest effect, 
because of the local effects of secondary structure formation). Rather, rules 
for tertiary structure from the point of view of residue conformations and the 
effect on biological activity should emerge if there is appropriate and suffi cient 
data. 

 Above, for design of small compounds suitable for tablet drugs, it was 
stated that  “ In practice, these methods are likely to work best in the present 
state of the art when confi ned to a drug series, i.e. with related chemistry. ”  
This is also true in a protein engineering study, where typically the records 
analyzed all relate to each other by homology, and may be natural proteins 
and/or proteins from previous engineering studies  [43] . However, there is 
nothing to stop an application to all known protein sequences as in the GOR 
method, whence conformation prediction is likely to be the prime target unless 
there are, for example, specifi c descriptors about, say, enzymic activity or 
immunological effect. Clearly, such studies will require a great deal of data, 
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but bearing in mind that the early forms of GOR method  [45]  had to work 
with a handful of sequences of known conformation, there is now public access 
to roughly 700,000 sequences of which about half can be related in part to 
protein domains of known conformation by virtue of more than 16,000 or 
more protein structures known by X - ray crystallography or nuclear magnetic 
resonance (NMR). One important consequence of the GOR method is its use 
of the  “ # ”  function, which may now be identifi ed with the Riemann zeta func-
tion and is well suited to handling low amounts of data. In data mining, protein 
sequences, and in general, there is always some complex data of interest for 
which the data are sparse.  

  2.9.5   Mining Systems Biology Input and Output 

 Often data mining can be considered as mining the input and output of a black 
box. For example, the above GOR methods was in fact specifi cally defi ned as 
an attempt to defi ne the transform  T  in { S }   =    T { R }, where  R  is the amino acid 
residue sequence and { S } is the corresponding sequence of residue states. 
Similar notions can be applied to the complex system represented by a patient. 
By extension, these notions also be applied potentially to the input and output 
of simulations in systems biology, including simulations supported by animal 
studies and linked to human clinical trials. When analyzing a simulation, 
however, there is nothing to stop sampling internal variables of this system.   

  2.10   DISCUSSION AND CONCLUSIONS 

 This review has focused on general principles that will hopefully inspire some 
thoughts, and perhaps the revision of some thoughts, in the analysis of the 
abundance of data available for analysis in the pharmaceutical industry. 

 A great deal could be written on specifi c techniques such as time series 
analysis, though in general, the above principles apply. Time series analysis is 
very much like time stamping data with an added function to interpolate 
effect. As with any parametric statistical method, this adds further powerful 
information, providing the functional form is right. Clustering and data reduc-
tion techniques have been signifi cantly if relatively briefl y mentioned. Perhaps 
they play a deeper role in data mining, but whether one considers them best 
as matters of processing input, output, or even intermediate steps is at present 
a matter of taste. The notion of dimensional reduction closely relates to the 
extent to which a rule,  A   &   B   &   C   &   D   &     …  can be reduced to simpler rules 
such as A   &   B ,  A   &   C ,  A   &  IB  &   D ), and so forth. The ability to deduce this 
is in the natural domain of data mining, by inspection of the output rules and 
their weights. 

 Though medicinal chemistry remains a mainstay of the pharmaceutical 
industry, its conditioning to deal with specifi c patients or at least cohorts of 
them is profoundly impacted by the move to personalized medicine. Each 
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patient has his or her unique spectrum of delivery issues, target properties, 
responses to target activation, and toxicity due to unwanted targets.

  I believe we are moving into a remarkable and powerful new era in medicine 
and particularly in prescription drugs. I ’ d refer to it as an era of personalized 
medicine. During the next decade, the practice of medicine will change dramati-
cally through genetically based diagnostic tests and personalized, targeted phar-
macologic treatments that will enable a move beyond prevention to preemptive 
strategies. (M. Leavitt, pers. comm.)     

 This demands that there will ultimately be a need for a fundamental linkage 
between data mining patient records and data mining molecular records. At 
its most complete, this would, in principle, be to some extent a joint data  , to 
the extent that each patient record shows personal differentiating biomolecu-
lar detail and specifi c outcomes to molecules of certain properties. Though 
this sounds lavish, it is not beyond imminent and future storage capacity, 
though bandwidth, aggregation, and distribution is an issue. Perhaps, for 
example, secure software robots roaming cyberspace and sending back rele-
vant fi ndings as rules will be required. 

 The key bottleneck lies in the  “ needle - in - a - haystack ”  hunt implied in pro-
cessing that data, and particularly in a balance  . This balance lies in the discov-
ery of new unexpected relationships of enormous pharmaceutical worth, 
balanced against a preconstructed or reconstructed focus ( D  * ) to make an 
investigation tractable in reasonable time. 

 At present, no embracing rationale exists for addressing that balance. One 
may imagine that some stochastic element with weighting allows a focus while 
having an appropriate decreasing probability of discovery for progressively 
less relevant associations and correlations. To allow an appropriate distribu-
tion for this, with new focuses on areas of potential interest and capability to 
a company, the world would of course benefi t from a pooling of new dis-
coveries into a database from which all might draw. At present, pragmatic 
commercial considerations limit (though do not eliminate all of the time) such 
a global communal activity.  
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  3.1   INTRODUCTION 

 Data mining can be defi ned as the extraction of signifi cant, previously 
unknown, and potentially useful information from data. In areas other than 
the life sciences and health care, the industries that actively use different data 
mining approaches include marketing, manufacturing, the fi nancial industry, 
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government, engineering, and many others. In general, these industries all 
have massive amounts of information accumulated in special databases. In 
order to maximize the usefulness of this information, the mentioned industries 
apply specifi c computational approaches to discover specifi c patterns and 
trends from the data and to make predictions. Today, data mining is a huge 
industry providing a wide array of products and services that help obtain, 
generate, and analyze large quantities of data. 

 For the pharmaceutical industry inundated with truly massive amounts of 
chemical, biological, and clinical data, sophisticated data mining tools employ-
ing a variety of conceptually different methodologies are of vital importance. 
The specifi c applications range from a wide number of advanced chemoinfor-
matics -  and bioinformatics - based approaches to employment of toxicoge-
nomic and chemogenomic databases, data mining in pharmacovigilance, 
predicting individual drug response, analysis of individual and population 
clinical trial results, and so on. Somewhat conditionally, the pharmaceutical 
data mining applications can be classifi ed according to Figure  3.1 .   

 The technological aspects of data mining, underlying algorithms, and soft-
ware tools are described in a wide number of excellent publications  [1 – 3]  as 
well as throughout this book. In general, data mining uses a variety of machine 
learning approaches and also statistical and visualization methodologies to 
discover and represent knowledge in a form that can be easily understood by 
a human researcher. The objective is to extract as much relevant and useful 
information from data sets as possible. This chapter outlines different applica-
tions of data mining approaches in contemporary pharmaceutical R  &  D 
process, with some illustrations representing the authors ’  personal experiences 
in chemical data mining.  

Chemoinformatics based:

Selection of chemical libraries

for synthesis and screening

Data mining methods

in clinical development:

Data mining in pharmacovigilance

Data mining methods

in pharmaceutical formulation

Predicting individual drug response

Early evaluation of ADME/Tox

and physicochemical properties

Mininig high-throughput screening

data

Bioinformatics based:

Mining the gene expression data

Post-genome data mining:

Pharmaceutical

data mining:

Applications

Analysis of toxicogenomic

and chemogenomic databases

Employment of annotated

chemical libraries

Analysis of protein–ligand

interactions

Proteome analysis

     Figure 3.1     Main areas of application of data mining algorithms in contemporary 
pharmaceutical research and development  . ADME/Tox   =   absorption, distribution, 
metabolism, and excretion/toxicity.  
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  3.2   CHEMOINFORMATICS - BASED APPLICATIONS 

 Current chemoinformatics - based applications of data mining represent a 
large, well - developed group of technologies aimed in the rationalization of 
research efforts at early drug discovery stages. Somewhat conditionally, they 
can be divided into three specifi c subgroups, depicted in Figure  3.1  and dis-
cussed below. 

  3.2.1   Analysis of  HTS  Data   

 With the advent of high - throughput synthesis and screening technologies, 
simple statistical techniques of data analysis have been largely replaced by a 
massive parallel mode of processing, in which many thousands of molecules 
are synthesized, tested, and analyzed. As a result, the complete analysis of 
large sets of diverse molecules and their structural activity patterns has become 
an emerging problem. Hence, there is much current interest in novel compu-
tational approaches that may be applied to the management, condensation, 
and utilization of the knowledge obtained from such data sets. Among them, 
the modern data mining approaches to processing HTS data and developing 
biological activity models represent an important cluster of technologies that 
provide a functional interface between real and virtual screening programs 
 [4 – 7] . 

 The analysis of HTS data has many challenges and typical problems: 
(1) dramatic imbalance between the number of active and inactive com-
pounds; (2) structure – activity relationship (SAR) data recovered during HTS 
analysis inevitably involve threshold and nonlinear effects; (3) large amounts 
of random or systematic measurement errors, noisy nature of the data, which 
can cause signifi cant false positive and false negative levels; (4) real chemical 
databases usually have strong local clustering in the descriptor space; (5) 
potent compounds belonging to different chemotypes may be acting in differ-
ent ways in the same assay; as a result, different mechanisms might require 
different sets of descriptors within particular regions of the descriptor space 
to operate, and a single mathematical model is unlikely to work well for all 
mechanisms. Because of these and other complexities discussed in literature 
 [8,9] , traditional statistical analysis methods are often ineffective in handling 
HTS analysis problems and tend to give low accuracy in classifying molecules. 
To meet these challenges and to open the way for the full exploitation of HTS 
data, sophisticated data mining methods and specialized software are required. 
The ultimate goal of the research efforts in this fi eld is to develop smart and 
error - tolerant ways to measure and interpret raw HTS data and to transform 
them into a knowledge of target – ligand interactions. 

 Several comprehensive reviews describe contemporary approaches to HTS 
data mining  [7,10,11] . Chapter  7  of this book describes theoretical and practi-
cal aspects of a knowledge - based optimization analysis (KOA) algorithm and 
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illustrates its applications in high - throughput data mining at several different 
stages of the drug discovery process. 

 To address specifi c issues associated with high - throughput data mining, in 
the last decade, there has been a signifi cant increase in the number of indus-
trial software tools that aim to provide complex solutions for the analysis of 
HTS results (Table  3.1 ). These tools, typically integrated in multifunctional 
chemoinformatics platforms, can be used for HTS quality control, data visu-
alization, clustering, classifi cation, generation of SAR models, and integration 
with genomic data.   

 As an example, Leadscope (Leadscope, Inc.) offers a portfolio of advanced 
solutions useful in the analysis of HTS data. The software package was used 
for the solution of several practical HTS data mining tasks (for example, see 
references 12 and 13). The procedure of HTS data analysis in Leadscope 
comprises three major phases. At the fi rst phase, the primary screening set is 
fi ltered to identify and/or to remove undesirable compounds based on physical 
properties, the presence of toxic or reactive groups, or more subtle distinctions 
based on  “ drug likeness. ”  Phase 2 seeks to identify local structural neighbor-
hoods around active compound classes and includes similar inactive com-
pounds. One of the used algorithms representing a combination of recursive 
partitioning and simulated annealing methods consistently identifi es structur-
ally homogeneous classes with high mean activity. Phase 3 is the analysis of 
SARs within local structural neighborhoods. The local neighborhoods are 
structurally homogeneous and include both active and inactive compounds. 
These tools comprise R - group analysis, macrostructure assembly, and building 
local prediction models. 

 The rapid growth of the integrated program tools for HTS data analysis 
refl ects the increasing need in sophisticated technologies that open the way 
for the full exploitation of HTS data and meet the associated challenges. 

 In addition to fi nding active compounds among those screened, it would be 
very useful to know how to fi nd additional active compounds without having 
to screen each compound individually. Sequential HTS (also known as recur-
sive screening and progressive screening) screens compounds iteratively for 
activity, analyzes the results using data mining approaches, and selects a new 
set of compounds for the next screening based on what has been learned from 
the previous screens. The purpose of this iterative process is to maximize 
information about ligand – receptor interactions by using high - throughput 
screening and synthesis technologies to ultimately minimize early - stage dis-
covery costs. Several cycles of screening appeared to be more effi cient than 
screening all the compounds in large collections  [14 – 16] . In most of the 
reported examples of the practical application of this technology, compound 
selection during these iterative cycles is driven by rapid SAR analyses using 
recursive partitioning techniques. Blower et al.  [17]  studied the effects of three 
factors on the enrichment ability of sequential screening: the method used to 
rank compounds, the molecular descriptor set, and the selection of the initial 
training set. The primary factor infl uencing recovery rates was the method of 
selecting the initial training set. Because structure – activity information is 
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 TABLE 3.1    Chemoinformatics Software (with Focus on  HTS  Data Mining) 

   Name     Developer     Features  

  Leadscope    Leadscope 
  http://www.leadscope.com/   

  Software for end - to - end analysis of 
HTS data sets; includes special 
tools for fi ltering, clusterization 
(RPSA   method, hierarchical 
agglomerative clustering), and 
SAR analysis  

  Screener    GeneData AG, Switzerland 
  http://www.genedata.com/   

  An integrated tool for 
comprehensive analysis of HTS 
data, including quality control, 
standardization, compound 
classifi cation, biological - chemical 
evaluation and pharmacological 
classifi cation  

  SARNavigator    Tripos 
  http://www.tripos.com/   

  Suite of HTS data analysis tools, 
including computation of 
molecular descriptors, SAR 
analysis of scaffolds and R - group 
fragments, visualization, and 
QSAR modeling  

  QuaSAR - Binary    Chemical Computing Group Inc. 
  http://www.chemcomp.com/   

  HTS data analysis tool based on 
the binary QSAR approach  

  ClassPharmer    Bioreason, Inc.    Suite of programs for HTS data 
analysis, including data 
normalization, classifi cation 
(based on adaptively grown 
phylogenetic- like trees), and 
SAR extraction  

  HTSview    The Fraunhofer Institute for 
Algorithms and Scientifi c 
Computing

  http://www.scai.fraunhofer.de/   

  Program for interactive analysis 
and visualization of HTS data 
and extraction of SAR 
(defi nition of  “ biophores ” )  

  GoldenHelix    GoldenHelix 
  http://www.goldenhelix.com/   

  Program for molecular data 
analysis based on recursive 
partitioning

  BioAssay HTS 
and BioSAR 
Browser

  CambridgeSoft Corporation 
  http://www.cambridgesoft.com/   

  Suite of programs for HTS data 
analysis, including quality 
control, visualization, data 
mining, and SAR extraction  

  DecisionSite    Spotfi re, Inc. 
  http://www.spotfi re.com/   

  HTS data analysis program with 
powerful quality control system, 
interactive data visualization, 
and integrated web browser 

  Accord HTS    Accelrys 
  http://www.accelrys.com/   

  HTS data management system, 
including data analysis and 
visualization

   RPSA   =   recursive partitioning and simulated annealing.   
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incrementally enhanced in intermediate training sets, sequential screening 
provides signifi cant improvement in the average rate of recovery of active 
compounds when compared to noniterative selection procedures.  

  3.2.2   Target - Specifi c Library Design 

 Data mining methods used for correlation of molecular properties with spe-
cifi c activities play a signifi cant role in modern drug discovery strategies. Since 
the current drug discovery paradigm states that mass random synthesis and 
screening do not necessarily provide a suffi ciently large number of high -
 quality leads, such computational technologies are of great industrial demand 
as a part of a virtual screening strategy  [18 – 20] . The most typical application 
of such algorithms includes development of predictive models that can further 
be used for selection of screening candidates from chemical databases. 

 Among a big variety of data mining algorithms used for the design of target -
 directed libraries, the artifi cial neural networks (ANNs) are about to become 
de facto  standard  [21] . ANN is relatively easy to use yet is a powerful and 
versatile tool. However, despite these clear advantages, ANN suffers from 
some drawbacks discussed in literature, such as a  “ black box ”  character of 
ANN, which may hamper analysis and interpretation of developed models, 
and may result in possible overfi tting   (i.e., ability to fi t for training data noise 
rather than actual data, which results in poor generalization). Support vector 
machine (SVM) algorithm  [22]  (see Chapter  15  of this book) represents a 
useful alternative, at least as powerful and versatile as ANNs. In the last 
decade, SVM approach has been used in various areas, from genomics and 
face recognition to drug design. The researchers at ChemDiv tested SVM as 
a classifi cation tool in several drug discovery programs and found it typically 
outperforming ANNs  [23,24] . 

 As an illustration, SVM algorithm was used for selection of compounds for 
primary and secondary screening against abl  tyrosine kinase  [24] . A set of 1249 
known tyrosine kinase (TK)   ligands from different classes was used as a posi-
tive training set, TK(+), and a set of over 8592 compounds, representing over 
200 various nonkinase activities, was considered a negative training set, TK( − ). 
The training set compounds represented late - stage (pre)clinical candidates 
and marketed drugs. A total of 65 molecular descriptors were calculated, which 
encode lipophilicity, charge distribution, topological features, and steric and 
surface parameters. The redundant variables were removed using sensitivity 
analysis, and the resulting eight molecular descriptors were used for generation 
of the SVM classifi cation model. For the model validation, an internal test set 
(25% of the entire training database) was used. Curves 1 and 2 (Fig.  3.2 ) show 
the distributions of calculated SVM scores for compounds in TK(+) and TK( − ) 
internal test sets, correspondingly. With the threshold score 0.4, the model 
correctly classifi ed up to 70% of TK(+) and 80% of TK( − ) compounds.   

 Then we carried out a wet laboratory experimental validation of the devel-
oped model via high - throughput screening of 5000 compounds from ChemDiv ’ s 
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Training set:

1249 TK-active compounds

8592 TK-inactive compounds

Experimental set:

35 “active” libraries

395 “inactive” libraries
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     Figure 3.2     SVM score distribution for the training set compounds (curves 1 and 2) 
and for the experimental database screened against  abl  kinase (I. Okun and K.V. 
Balakin, unpublished data).  

corporate compound database against  abl  kinase (I. Okun and K.V. Balakin, 
unpublished data). The total experimental databases consisted of 430 small 
congeneric combinatorial subsets (libraries) typically represented by 5 – 15 
compounds. Based on experimental results, all these libraries were divided 
into two categories,  “ active ”  and  “ inactive. ”  The  “ active ”  subsets were defi ned 
as having at least one active compound (35 combinatorial subsets in total); 
 “ inactive ”  subsets had no active compounds (395 combinatorial subsets in 
total). This categorization model is reasonable for distinguishing between two 
categories of chemotypes: (1)  “ active ”  chemotypes suitable for further devel-
opment (for example, via quantitative structure activity relationships [QSAR] 
  modeling, SAR library generation, and further optimization) and (2) chemo-
types with few or no  “ actives ”  for which no effective development can be 
anticipated. For each combinatorial subset, an average SVM score was calcu-
lated. It was observed that the developed SVM model was able to discriminate 
between  “ active ”  and  “ inactive ”  libraries (histograms on Fig.  3.2 ). Although 
there is a certain overlap between SVM score regions of active and inactive 
libraries, these distributions are clearly distinct, thus indicating a good dis-
crimination power of the trained network. We observe a signifi cant enrich-
ment in the high - scoring regions with TK inhibitor chemotypes: the portion 
of active chemotypes in the high - scoring regions is almost an order of magni-
tude higher than in the initial database. The developed model permits early 
evaluation of the protein kinase inhibition potential of small molecule combi-
natorial libraries. It can also be used as an effective  in silico  fi ltering tool for 
limiting the size of combinatorial selections.  
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  3.2.3   Assessment of  ADME /Tox and Physicochemical Properties 

 Binding to the target protein is only part of the process of drug discovery, 
which requires molecules that are readily synthesizable with favorable molec-
ular properties or what has been termed  “ drug likeness ”   [25 – 28] . Drug like-
ness studies are an attempt to understand the chemical properties that make 
molecules either successful or possibly expensive clinical failures. Similarly, 
ADME/Tox properties are recognized alongside therapeutic potency as key 
determinants of whether a molecule can be successfully developed as a drug. 
As a result,  in silico  assessment of such properties of compounds is one of the 
key issues at early drug discovery stages. To address this need, many different 
data mining approaches and tools were developed for prediction of key 
ADME/Tox and physical - chemical   parameters. 

 Thus, human intestinal absorption (HIA) and blood – brain barrier (BBB) 
permeability are the major issues in the design, optimization, and selection of 
candidates for the development of orally active and/or central nervous 
system –     active pharmaceuticals  [29 – 37] . In general, the molecular properties 
affecting HIA and BBB penetration via passive diffusion mechanisms are well 
understood, and the reported models adequately describe this phenomenon. 
However, while much effort continues to be expended in this fi eld with some 
success on existing data sets, perhaps the most pressing need at this time is 
for considerably larger, high - quality sets of experimental data and for an effec-
tive data mining algorithm to provide a sound basis for model building  [38] . 

 There are also many complex properties related to ADME/Tox that have 
been modeled in silico using data mining approaches. Thus, molecular clear-
ance, which is indicative of elimination half - life that is of value for selecting 
drug candidates, has been modeled using ANNs and multivariate statistical 
techniques  [39] . Another complex property is the volume of distribution that 
is a function of the extent of drug partitioning into tissue versus plasma; along 
with the plasma half - life, it determines the appropriate dose of a drug, and 
there have been several attempts at modeling this property  [40 – 43] . The 
plasma half - life and the integral plasma protein binding have been modeled 
with Sammon and Kohonen maps using data for 458 drugs from the literature 
and several molecular descriptors  [42] . Metabolic effects, CYP450 - mediated 
drug – drug interactions and other complex ADME/Tox - related phenomena 
were also modeled using data mining techniques  [44 – 47] . 

 Combinations of different computational models for ADME are applicable 
to the selection of molecules during early drug discovery and represent an 
approach to fi ltering large libraries alongside other predicted properties. With 
the addition of further data, it is likely that even more signifi cant models can 
be generated. At present, the different methods we have used could be com-
bined and used in parallel as a consensus modeling approach to perhaps 
improve the predictions for external molecules (for example, see reference 47). 

 Several comprehensive reviews elucidate the current state in the develop-
ments of predictive ADME/Tox models based on data mining approaches 
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 [48 – 52] . While considerable progress has been achieved in ADME predic-
tions, many challenges remain to be overcome. It was argued that the robust-
ness and predictive capability of the ADME models are directly associated 
with the complexity of the ADME property  [53] . For the ADME properties 
involving complex phenomena, such as bioavailability, the  in silico  models 
usually cannot give satisfactory predictions. Moreover, the lack of large 
and high - quality data sets also greatly hinders the reliability of ADME 
predictions. 

 Early assessment of the potential toxicity of chemical compounds is another 
important issue in today ’ s drug discovery programs. There are numerous limi-
tations that affect the effectiveness of the early toxicity assessment, which can 
create a signifi cant bottleneck in the drug discovery process. The ability to 
predict the potential toxicity of compounds based on the analysis of their 
calculated descriptors and structural characteristics prior to their synthesis 
would be economically benefi cial when designing new drugs. Although various 
in silico  algorithms of toxicity prediction have been reported  [54,55] , in general, 
the quantitative relationship between the toxicity of structurally diverse com-
pounds and their physicochemical/structural properties has proved to be an 
elusive goal due, in part, to the complexity of the underlying mechanisms 
involved. Chapter  5  discusses data mining approaches and tools for the predic-
tion of the toxic effects of chemical compounds. 

 Prediction of key physicochemical properties of chemical compounds is 
another serious problem in modern drug discovery, which can be addressed 
using different data mining approaches. In particular, solubility of chemical 
compounds represents a highly important issue critically infl uencing the 
success of early drug discovery projects  [56 – 58] . As one practical example 
from the authors ’  experience, clusterization based on structural fi ngerprints 
can be used for discrimination between soluble and insoluble compounds 
in dimethyl sulfoxide (DMSO)  . Poor DMSO solubility represents a serious 
problem for large - scale automatic bioscreening programs, and several compu-
tational models have been developed for the prediction of this property 
(reviewed in reference 57). In particular, in 2004, we have described a com-
putational approach based on the Kohonen self - organizing map (SOM)   algo-
rithm and a large proprietary training database consisting of 55,277 compounds 
with good DMSO solubility and 10,223 compounds with poor DMSO solubil-
ity  [59] . The developed model was successful in classifi cation of DMSO well -
 soluble and poorly soluble compounds from the internal test set. 

 Later, we have performed a nonhierarchical clusterization of the same 
database using the Jarvis – Patric method  [60]  based on the nearest - neighbor 
principle. Daylight fi ngerprints were used as molecular descriptors. A total of 
68,124 structures (93%   of the whole database) were clustered yielding 3409 
clusters (average cluster size of 20 compounds). Graphically, the results of the 
clusterization procedure are presented in Figure  3.3 . We have obtained three 
principal types of clusters: (1) clusters with domination of soluble compounds, 
(2) intermediate type in which soluble and insoluble compounds are present 
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in approximately equal proportion, and (3) clusters with domination of insol-
uble compounds. The obtained data suggest that for clusters of the fi rst and 
third types, the Jarvis – Patrick clusterization provides a reasonable and com-
putationally inexpensive tool for the classifi cation of compounds based on 
their DMSO solubility. However, there is a need in further SAR refi nement 
for the clusters of type 2, since clusterization based on structural fi nger-
prints only does not lead to discrimination between these categories of 
compounds.   

 In order to classify compounds within clusters of this type, we used a 
special data dimensionality reduction algorithm, Sammon nonlinear mapping 
(NLM)  [61] . Figure  3.4  depicts Sammon maps of two large clusters, which 
contain congeneric compounds of the shown general structures. On each 
map, well - soluble compounds (black crosses) occupy regions distinctly differ-
ent from the areas of location of poorly soluble compounds (gray triangles). 
The map is based on the eight calculated molecular descriptors, the same 
used for generation of SOM  [59] . Similar results were obtained for most of 
the other individual clusters of the second type. Obviously, in this case, 
physicochemical rather than substructural determinants play a key role in 
DMSO solubility.   

 The ability to optimize different molecular parameters (such as target -
 specifi c activity and ADME/Tox - related and physicochemical properties) in a 
parallel fashion is a characteristic feature of many chemoinformatics - based 
data mining methods. In this case, we have a multiobjective optimization 

Figure 3.3     Irregularity of distribution of DMSO well - soluble and poorly soluble 
compounds across the training data set (K.V. Balakin and Y.A. Ivanenkov, unpub-
lished data).  
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problem, which has become a topic of growing interest over the last decade 
in the pharmaceutical industry. The general idea of multiobjective optimiza-
tion is to incorporate as much knowledge into the design as possible. Many 
factors can be taken into consideration, such as diversity, similarity to known 
actives, favorable physicochemical and ADME/Tox profi le, cost of the library, 
and many other properties. Several groups have developed computational 
approaches to allow multiobjective optimization of library design  [62,63] . 
One method developed by researchers from 3 - Dimensional Pharmaceuticals 
employs an objective function that encodes all of the desired selection criteria 
and then identifi es an optimal subset from the vast number of possibilities  [63] . 
This approach allows for the simultaneous selection of compounds from mul-
tiple libraries and offers the user full control over the relative signifi cance of 
a number of objectives. These objectives include similarity, diversity, pre-
dicted activity, overlap of one set of compounds with another set, property 
distribution, and others.   

  3.3   BIOINFORMATICS - BASED APPLICATIONS 

 A plethora of bioinformatics - based applications is focused on sequence - based 
extraction of specifi c patterns or motifs from genomes and proteomes and also 
on specifi c pattern matching. Thus, as an essential part of bioinformatics - based 
applications, microarray analysis technologies have become a powerful tech-
nique for simultaneously monitoring the expression patterns of thousands of 
genes under different conditions. The principal goal is to identify groups of 
genes that manifest similar expression patterns and are activated by similar 

Figure 3.4     Sammon map classifi cations of well - soluble (black crosses) and poorly 
soluble (gray triangles) compounds in DMSO from two congeneric compound sets 
(K.V. Balakin and Y.A. Ivanenkov, unpublished data).  
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conditions. A general view of data mining techniques used in gene expression 
analysis is presented in Chapter  8 . Biological interpretation of large gene lists 
derived from high - throughput experiments, such as genes from microarray 
experiments, is a challenging task. A wide number of publicly available high -
 throughput functional annotation tools, such as those listed in Table  3.2 , 
partially address the challenge.   

 TABLE 3.2    Bioinformatics Software (with Focus on Gene Expression Data 
Analysis)

   Software     Web Site     Description  

  BioWeka     http://www.bioweka.org     A popular and freely available 
framework that contains 
many well - known data 
mining algorithms. This 
software allows users to 
easily perform different 
operations with 
bioinformatics data, such as 
classifi cation, clustering, 
validation, and visualization, 
on a single platform  

  DAVID Functional 
Annotation Tool 
Suite

   http://david.abcc.ncifcrf.gov/
summary.jsp   

  A component in the DAVID 
Bioinformatics Resources 
(http://david.niaid.nih.gov/)
for biological interpretation 
of large gene lists derived 
from high - throughput 
experiments, such as genes 
from microarray experiments 

  SIGMA     http://sigma.bccrc.ca/     A publicly available application 
to facilitate sophisticated 
visualization and analysis of 
gene expression profi les  

  MIAMExpress     http://www.ebi.ac.uk/
miamexpress/

  An annotation tool at the 
European Bioinformatics 
Institute (EBI) database  

  Gene Traffi c     http://www.stratagene.com/     A microarray data 
management and analysis 
software

  Ipsogen Cancer 
Profi ler  

   http://www.ipsogen.com/     A bioinformatics system 
composed of Discovery 
Software tools and of 
ELOGE database, utilized 
to identify transcriptional 
signatures belonging to each 
cancer type  



   Software     Web Site     Description  

  BioArray Software 
Environment
(BASE)  

   http://base.thep.lu.se/     A web - based open source 
microarray database   and 
analysis platform  

  GeneData 
Expressionist™

   http://www.genedata.com/
products/expressionist/

  A computational system that 
effi ciently processes gene 
expression data generated by 
high - throughput microarray 
technologies

  GeneDirector     http://www.biodiscovery.
com/index/genedirector

  An image and data analysis 
platform with Oracle 
database capability to 
enhance microarray 
discovery

  Multiconditional 
Hybridization
Intensity
Processing
System
(MCHIPS)

   http://www.dkfz - heidelberg.
de/mchips/   

  A system for microarray data 
warehousing and microarray 
data analysis  

  maxd     http://www.bioinf.man.
ac.uk/microarray/maxd/   

  A data warehouse and 
visualization environment for 
genomic expression data 

  Genowiz ™      http://www.ocimumbio.com/
web/default.asp

  A comprehensive 
multiplatform package for 
tracking and analyzing Gene 
Expressions data 

  TeraGenomics ™      http://www.teragenomics.
com/   

  A scalable, high - performance 
data warehousing solution 
for analyzing and sharing 
Affymetrix ®   GeneChip  ®   data  

  TM4     http://www.tm4.org/     The TM4 suite of tools consist 
of four major applications, 
Microarray Data Manager 
(MADAM), TIGR_
Spotfi nder, Microarray Data 
Analysis System (MIDAS), 
and Multiexperiment Viewer 
(MeV), as well as a Minimal 
Information about a 
Microarray Experiment 
(MIAME)- compliant 
MySQL database  

  GenStat     http://www.vsn - intl.com/
genstat/gsprod_details.
htm   

  A comprehensive statistics 
system for gene data analysis 

  GeneMaths XT     http://www.applied - maths.
com/genemaths/
genemaths.htm   

  A complete and professional 
software package for 
microarray analysis 

TABLE 3.2 Continued
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 The concept of genome mining for novel natural product discovery  [64]  
promises to provide new bioactive natural compounds. This approach exploits 
the huge and constantly increasing quantity of DNA sequence data from a 
wide variety of organisms that is accumulating in publicly accessible databases. 
Using computational sequence comparison tools, genes encoding enzymes 
likely to be involved in natural product biosynthesis can be readily identifi ed 
in genomes. This information can be exploited in a variety of ways in the 
search for new bioactive natural products. 

 Data mining of biomedical data has boosted the post - genome target dis-
covery, which is one of the key steps in the biomarker and drug discovery 
pipeline to diagnose and fi ght human diseases. A recent review explicates 
various data mining approaches and their applications to target discovery with 
emphasis on text and microarray data analysis  [65] . 

 Proteomic studies involve the identifi cation as well as the qualitative and 
quantitative comparison of proteins expressed under different conditions, 
and the elucidation of their properties and functions, usually in a large - scale, 
high - throughput format  [66,67] . The high dimensionality of data generated 
from these studies requires the development of improved bioinformatics 
tools and data mining approaches for effi cient and accurate data analysis of 
biological specimens from healthy and diseased individuals. 

 Protein – ligand interactions are crucial in many biological processes with 
implications to drug targeting and gene expression. The nature of such interac-
tions can be studied by analyzing local sequence and structure environments 
in binding regions in comparison to nonbinding regions. With an ultimate aim 
of predicting binding sites from sequence and structure, such methods, 
described in Chapter  9 , constitute an important group of data mining 
approaches in the fi eld of bioinformatics. 

 Immunoinformatics (Chapter  11 ) is a new discipline in the fi eld of bio-
informatics that deals with specifi c problems of the immune system. As 
interest in the vaccine sector grows, the highly empirical disciplines of 
immunology and vaccinology are on the brink of reinventing themselves as 
a quantitative science based on data delivered by high - throughput, post -
 genomic technologies. Immunoinformatics addresses problems such as the 
accurate prediction of immunogenicity, manifest as the identifi cation of 
epitopes or the prediction of whole protein antigenicity. Application of such 
methods will greatly benefi t immunology and vaccinology, leading to the 
enhanced discovery of improved laboratory reagents, diagnostics, and 
vaccines. 

 To date, while the developed data mining tools   and approaches for bioin-
formatics - based applications are extremely useful and have been employed in 
hundreds of research projects, the development of other effective data mining 
algorithms, as additional components to the already existing programs, will 
improve the power of investigators to analyze their gene and protein sequences 
from different biological angles.  



POST-GENOME DATA MINING 101

  3.4   POST - GENOME DATA MINING 

 Post - genome data mining tends to combine techniques and data sources 
employed by chemoinformatics and bioinformatics. We are now witnessing 
rapid development of new methods for mining the chemical genomics data 
based on the integration of these important disciplines. 

 The effective identifi cation and optimization of high - quality pharmaceutical 
leads across diverse classes of therapeutic targets can be based on the system-
atic analysis of structural genomics data  [68,69] . In particular, annotated com-
pound libraries have emerged as an interesting phenomenon in drug discovery 
in the post - genomic era  [70] . The underlying strategy behind the selection of 
these biased libraries is to bring together information pertaining to the rela-
tionships between biological targets, respective small molecule ligands and 
their biological functions in a single knowledge management platform. Specifi c 
issues discussed in Chapter  6  include chemogenomics databases, annotated 
libraries, homology - based ligand design, and design of target - specifi c libraries, 
in the context of G protein - coupled receptor (GPCR)   - targeted drug design. 

 For example, a collection of properly characterized ligands covering a 
diverse set of mechanisms of action can be an extremely useful tool to 
probe disease pathways and to identify new disease - associated targets 
belonging to well - validated target families within these pathways. A method 
was reported for testing many biological mechanisms and related biotargets 
in cellular assays using an annotated compound library  [71] . This library 
represents a collection of 2036 biologically active compounds with 169 
diverse, experimentally confi rmed biological mechanisms and effects. These 
compounds were screened against A549 lung carcinoma cells, and subse-
quent analysis of the screen results allowed the determination of 12 previ-
ously unknown mechanisms associated with the proliferation of the studied 
carcinoma cells. 

 Rapid growth of researches demonstrating the value of chemogenomic 
libraries in drug discovery triggered rapid growth of supporting industrial 
technological solutions, such as BioPrint  ®    [72,73]  and DrugMatrix  ®    [74] . 
Another recent example is GLIDA  , a novel public GPCR - related chemical 
genomics database that is primarily focused on the correlation of information 
between GPCRs and their ligands  [75] . The database is integrated with an  in
silico  screening module based on statistical machine learning of the conserved 
patterns of molecular recognition extracted from comprehensive compound –
 protein interaction data. 

 The combination of HTS and genome data analysis provides novel oppor-
tunities in drug design. The achievements in genome researches allow for 
establishing the relationships between ligands and targets, and thus offer the 
potential for utilizing the knowledge obtained in the screening experiments 
for one target in lead fi nding for another one. In particular, activity profi les 
based on parallel high - throughput assays can be used to generate the ligand –
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 target arrays. Using such arrays, subtle correlations between gene expression 
and cell sensitivity to small molecule compounds can be identifi ed. For 
example, in - depth investigations of compound mode of action and side effects 
can be conveniently provided by analysis of cellular gene expression patterns 
and their modifi cation by small molecule compounds  [76] . In another work 
 [77] , 60 cancer cell lines were exposed to numerous compounds at the National 
Cancer Institute (NCI)   and were determined to be either sensitive or resistant 
to each compound. Using a Bayesian statistical classifi er, it was shown that for 
at least one - third of the tested compounds, cell sensitivity can be predicted 
with the gene expression pattern of untreated cells. The gene expression pat-
terns can be related not just to the drugs as entities but to particular substruc-
tures and other chemical features within the drugs  [78] . Using a systematic 
substructure analysis coupled with statistical correlations of compound activ-
ity with differential gene expression, two subclasses of quinones were identi-
fi ed whose patterns of activity in the NCI ’ s 60 - cell line screening panel correlate 
strongly with the expression patterns of particular genes. The researchers from 
GeneData (GeneData AG, Basel, Switzerland;  http://www.genedata.com/ ) 
developed a software for the analysis of HTS data integrated with gene expres-
sion databases. On the basis of this integrated system, hypotheses about pos-
sible biotargets for the analyzed hits can be generated. 

 Despite tremendous efforts of computational chemists, effective prediction 
of toxic effects remains an elusive goal. This is due, in part, to the fact that 
drug candidates generally target multiple tissues rather than single organs and 
result in a series of interrelated biochemical events. These challenges are best 
addressed through data collection into a well - designed toxicogenomic data-
base. Successful toxicogenomic databases serve as a repository for data sharing 
and as resources for data mining that pave the way to effective toxicity predic-
tion  . Chapter  10  describes the existing toxicogenomic databases and approaches 
to their analysis. 

 It can be envisaged that a meaningful integration of chemical and biological 
data with advanced methods of data analysis will signifi cantly facilitate the 
future efforts of the drug discovery community directed to effi cient discovery 
of leads across diverse classes of biological targets.  

  3.5   DATA MINING METHODS IN CLINICAL DEVELOPMENT 

 The past decade has seen a signifi cant increase in the number of reported 
applications of data mining tools being used in clinical development. 

 Thus, in a search for the personalized therapies, the researchers actively 
used various pharmacogenomic data mining approaches to identify a genetic 
marker, or a set of genetic markers, that can predict how a given person will 
respond to a given medicine. A signifi cant challenge for pharmacogenetic 
researchers is therefore to identify and to apply appropriate data mining 
methods for fi nding such predictive marker combinations. Chapter  13  of this 
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book describes how data mining tools can be used for fi nding such combina-
tions, with the main focus on methods based on partitioning the data along a 
tree with various optimization criteria, methods based on combinatorial pro-
cedures searching for the best combination of input genetic variables as pre-
dictive of the phenotype of interest, and neural network methods that attempt 
to classify phenotype by training successive layers through an activation 
function. 

 Another interesting area of application of data mining tools is the develop-
ment of pharmaceutical formulation. These applications include, for instance, 
immediate and controlled release tablets, skin creams, hydrogel ointments, 
liposomes and emulsions, and fi lm coatings. Traditionally, formulators used 
statistical techniques such as a response surface methodology to investigate 
the design space. However, for the complex formulations, this method can be 
misleading. As a result, more advanced data mining techniques have been 
actively implemented during the last decade in the fi eld. Among them are 
ANNs, genetic algorithms, neurofuzzy logic, and decision trees. Chapter  14  of 
this book reviews the current state of the art and provides some examples to 
illustrate the concept. 

 Possible benefi ts associated with wide application of data mining in phar-
maceutical formulation include effective and rapid analysis of available data 
sets, effective exploration of the total design space, irrespective of its complex-
ity, ability to accommodate constraints and preferences and to generate simple 
rules intuitively understandable for human researchers. Business benefi ts are 
primarily associated with enhancement of product quality and performance at 
low cost. 

 The principal concern of pharmacovigilance is the detection of adverse drug 
reactions (ADRs) as soon as possible with minimum patient exposure. A key 
step in the process is the detection of  “ signals ”  using large databases of clinical 
information; such an analysis directs safety reviewers to associations that 
might be worthy of further investigation. In the last decade, several health 
authorities, pharmaceutical companies, and academic centers are developing, 
testing, and/or deploying various data mining tools to assist human reviewers. 
For example, since 1998, Bayesian Confi dence Propagation Neural Network 
(BCPNN) data mining has been in routine use for screening of the World 
Health Organization (WHO) adverse reaction database, Vigibase  [79] . The 
identifi cation of drug/ADR combinations that have disproportionately high 
reporting relative to the background of all reports constitutes the fi rst quan-
titative step in the Uppsala Monitoring Centre (UMC) signal - detection 
process. A computerized system for drug/ADR signal detection in a spontane-
ous reporting system (SRS) has recently been developed in Shanghai  [80] . This 
system is very useful for post - marketing surveillance on both chemical medi-
cine and Chinese traditional medicine. 

 Data mining analyses for the purposes of pharmacovigilance are usually 
performed on existing databases such as those exemplifi ed in Table  3.3 . The 
necessary size of the data set depends on the data quality, the background 
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frequency of the event, and the strength of the association of the event with 
the drug. However, for even moderately rare events, large databases are 
required. The characteristics of the different large databases are discussed 
elsewhere  [81] .   

 One of the commonly used data mining algorithms involves disproportion-
ality analysis that projects high - dimensional data onto two - dimensional (2    ×    2) 
contingency tables in the context of an independence model. For example, 
this algorithm was used to compare reporting frequencies of hepatic adverse 
events between PEGylated and non - PEGylated formulations of active medici-
nal compounds in SRSs  [87] . As a further illustration, data mining of an 
adverse event database was used to assist in the identifi cation of hypothermia 
associated with valproic acid therapy and adjunctive topiramate  [88] . Two 
statistical data mining algorithms, proportional reporting ratios (PRRs) and 
multi - item gamma Poisson shrinker (MGPS), were applied to an SRS data-
base to identify signals of disproportionate reporting (SDRs)  [89] . The analy-
sis reveals the potential utility of data mining to direct attention to more subtle 
indirect drug adverse effects in SRS databases that as yet are often identifi ed 
from epidemiological investigations. 

 Chapter  12  of this book discusses the evaluation, potential utility, and limi-
tations of the commonly used data mining algorithms in pharmacovigilance 
by providing a perspective on their use as one component of a comprehen-
sive suite of signal - detection strategies incorporating clinical and statistical 
approaches to signal detection. For illustration, data mining exercises involv-
ing spontaneous reports submitted to the U.S. Food and Drug Administration 
(FDA) are used. Several comprehensive reviews were also published (for 
example, see reference 81). 

 Despite reported limitations and residual uncertainties associated with the 
application of computer - based data mining methods in pharmacovigilance, it 

 TABLE 3.3    Examples of Databases Used for Data Mining for the Purposes of 
Pharmacovigilance 

   Type of Database     Example     Reference  

  Spontaneous reporting 
database

  WHO Uppsala Monitoring Centre 
 FDA ’ s spontaneous reporting 

database, Silver Spring, 
MD, USA    

   [79]  
  [82]   

  Prescription event 
monitoring database  

  Drug Safety Research Unit, 
Southampton, UK  

   [83]   

  Large linked administrative 
database

  Medicaid, Baltimore, MD, USA     [84]   

  Clinical trial databases    Cardiovascular clinical trial 
database

 U.S. Vaccine Adverse Event 
Reporting System  

   [85]  
  [86]   
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can be argued that such methods have expanded the range of credible options 
available to major healthcare organizations dealing with huge amounts of 
complex and diverse clinical data to the benefi t of patients.  

  3.6   THE FUTURE 

 The development and effective use of data mining technologies is considered 
now a signifi cant competitive advantage in the pharmaceutical industry. Key 
applications of data mining range from a wide number of advanced chemoin-
formatics -  and bioinformatics - based approaches to employment of toxicoge-
nomic and chemogenomic databases, analysis of clinical data, development of 
personalized therapies, and so on. Several conceptually different data mining 
algorithms and software tools have been developed to handle these complex 
tasks, and we will see further development of these approaches and tools in 
the future. 

 In particular, data mining methods will be actively used to rationalize 
computer - aided drug design to detect specifi c molecular features that deter-
mine pharmacological activity profi le, ADME/Tox and physicochemical prop-
erties, pharmacokinetic behavior, and so on. This type of analysis used for 
correlation of molecular properties with specifi c activities will seriously infl u-
ence modern strategies of drug design as relatively inexpensive yet compre-
hensive tools, and therefore will have major importance for the industry. 
However, it was argued that there is universal agreement that more good 
experimental ADME/Tox data are needed for use in  in silico  model develop-
ment, for models are only as good as the data on which they are based  . 

 A plethora of bioinformatics - based applications will play an increasingly 
signifi cant role in the identifi cation of specifi c patterns or motifs from genomes 
and proteomes and thus will provide new insights into human disease and 
possible therapeutic interventions. This research area will be more and more 
infl uenced by post - genome drug discovery strategies integrating chemoinfor-
matics and bioinformatics. An obvious trend in the fi eld is extensive utilization 
of specifi c computational approaches to the management, condensation, and 
utilization of the knowledge obtained from high - throughput screening experi-
ments, and their combination with genome and proteome data. 

 Another major development for the future is the application of data mining 
to clinical information databases. The methodology can help reveal patients 
at higher risk for specifi c diseases and therefore promises signifi cant preventa-
tive potential. In addition, data mining methods for the purposes of pharma-
covigilance can help detect ADRs as soon as possible with minimum patient 
exposure. Wide application of immunoinformatics methods will greatly benefi t 
future immunology and vaccinology, leading to discovery of more effective 
diagnostics and vaccines. 

 Data mining methods will also be increasingly applied to the extraction of 
information not only from chemical, biological, and clinical data, but also from 
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scientifi c literature. With the increase in electronic publications, there is an 
opportunity and a need to develop automated ways of searching and sum-
marizing the literature.  
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  4.1   INTRODUCTION 

 Advances in genomics, large - scale combinatorial synthesis, and high - through-
put biological screening have provided pharmaceutical research with exceed-
ingly large amounts of compounds and biological data. The large body of 

4

Pharmaceutical Data Mining: Approaches and Applications for Drug Discovery,
Edited by Konstantin V. Balakin 
Copyright © 2010 John Wiley & Sons, Inc.

115



116 DATA MINING APPROACHES

available data presents the fi eld of data mining with unprecedented opportuni-
ties to design and apply computational models, to infer structure – activity 
relationships, and to prioritize candidate compounds for biological evaluation 
or library design. Thus, computational analysis and modeling aids in the design 
of experiments and complements the high - throughput technology - driven 
approach to drug discovery in a rational manner. 

 Data mining approaches are an integral part of chemoinformatics and 
pharmaceutical research. Besides its practical relevance, this fi eld is intellectu-
ally stimulating because of the many conceptually diverse methods that have 
been developed or adapted for chemical and biological data mining. For data 
mining approaches, a major target area within the chemoinformatics spectrum 
is virtual compound screening, i.e., the application of computational methods 
to search large databases for novel molecules having a desired biological activ-
ity. The two principal approaches are protein structure - based virtual screen-
ing, or docking, and small molecule - based similarity searching. Docking 
algorithms rely on the knowledge of the three - dimensional (3 - D) structure 
of proteins and their binding sites. A detailed discussion of the multitude of 
available algorithms and docking techniques is provided, for example, in 
reviews by Halperin et al.  [1]  or Klebe  [2] . Ligand - based similarity methods 
are as popular for virtual screening as docking. 3 - D approaches such as docking 
or 3 - D ligand similarity searching using pharmacophore representations  [3]  or 
shape information  [4]  have, in principle, higher information content than 
similarity methods that are based on two - dimensional (2 - D) molecular repre-
sentations. However, a number of studies have shown that docking and other 
3 - D search techniques are not principally superior to 2 - D ligand - based methods 
 [5,6] . For example, in a recent study, McGaughey et al.  [6]  found that 2 - D 
ligand - based searching performed better than 3 - D ligand - based similarity 
searching or docking on different test cases. Generally, enrichment factors 
were higher for ligand - based methods than docking, although correctly identi-
fi ed actives were structurally less diverse compared to docking methods. 
Possible explanations for the often favorable performance of 2 - D methods 
include that the  “ connection table of a molecule encodes so much implicit 
information about the 3D structure that using actual 3D coordinates adds little 
more information, ”  as pointed out by Sheridan and Kearsley  [5] , and that 
2 - D methods are not prone to errors associated with modeling of active 
conformations. 

 From a data mining point of view, compound classifi cation and fi ltering 
techniques are related to similarity analysis. Compound classifi cation methods 
are often, but not always, used to separate compounds into groups of similar 
ones or for class label prediction, i.e., a label is assigned to each test com-
pound, which effectively separates a compound collection into two or more 
distinct classes or sets. Frequently, binary classifi cation models are derived on 
the basis of learning sets to distinguish, for example, between active and inac-
tive compounds. Furthermore, compound fi ltering techniques attempt to 
remove molecules with undesirable properties (e.g., little solubility, toxicity, 
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synthetic inaccessibility). Such fi lters are often rule - based and designed to 
eliminate compounds having known toxic or reactive groups. Filter functions 
have become especially popular since the introduction of Lipinski ’ s  rule of fi ve
 [7] , deduced from a statistical survey of known drugs in order to identify 
compounds having a low probability to be orally available. 

 Among the long - standing and most widely used data mining methods in 
chemoinformatics are compound clustering  [8 – 11]  and partitioning  [12]  algo-
rithms that organize database compounds into groups of similar ones with 
respect to chosen molecular descriptors and chemical reference spaces. 
Among many different applications, partitioning and clustering are often 
applied to preselect compounds from screening libraries for biological testing 
on the basis of already known active molecules. Subsequent iterations of 
subset selection and biological evaluation often help to substantially reduce 
the number of compounds that need to be screened in order to identify a 
suffi cient number of novel hits, a process referred to as sequential screening 
 [13] . Moreover, these classifi cation methods are also applied to select com-
pounds for the assembly of target - focused compound libraries  [14] . Thus, 
taken together, there is a broad spectrum of applications for data mining 
approaches in computer - aided drug discovery and chemoinformatics that 
makes it attractive to review selected approaches and to highlight their appli-
cation potential. 

 This chapter will discuss data mining approaches that are particularly 
relevant for chemoinformatics applications. Because data mining techniques 
and their relative performance cannot be separated from the molecular rep-
resentations that are employed, the chapter will begin with a brief review of 
popular descriptors. Then exemplary clustering tools and similarity search 
techniques will be presented. A major focal point will be a discussion of 
the theoretical foundations of three major data mining approaches that cur-
rently experience much attention in chemoinformatics and virtual compound 
screening: Bayesian modeling, binary kernel discrimination, and support 
vector machines. We will introduce an approach to predict compound recall 
rates for Bayesian screening from property distributions of reference and 
database compounds and, fi nally, will highlight iterative screening and the 
assembly of target - focused libraries as attractive application areas for data 
mining.  

  4.2   MOLECULAR REPRESENTATIONS AND DESCRIPTORS 

 The performance of data mining approaches does not only depend on the 
method itself but also on the chosen molecular representations. Often combi-
nations of numerical chemical descriptors are used to represent a molecule as 
a vector of descriptor values in descriptor space. Typically, descriptor combi-
nations capture only a part of the chemical information content of a molecule 
and, although seemingly a triviality, data mining algorithms can only exploit 
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this information. If it is too limited, data mining will fail. Thus, the choice of 
molecular representations is indeed a major determinant for the outcome of 
data mining, regardless of the algorithms that are used. Many different types 
of descriptors  [15]  and molecular representations have been introduced  [16] . 
A reason for the continued interest in deriving novel molecular representa-
tions might be that confl icting tasks often infl uence chemical similarity analy-
sis: one aims at the identifi cation of molecules that are similar in activity to 
known reference compounds, but these molecules should then be as structur-
ally diverse as possible. So, it is desirable for representations to focus on rel-
evant attributes for activity rather than on structural resemblance. 

 Representations can roughly be separated into three types: one - dimensional 
(1 - D) representations include the chemical composition formula, the simplest 
molecular view, but also more complex representations such as linear nota-
tions including the pioneering SMILES language  [17,18]  and InChI    [19] . 
SMILES and InChI capture the structure of a molecule in a unique way and 
are well suited for database searching and compound retrieval. Although not 
specifi cally designed for similarity searching, SMILES representations have 
been used for database mining by building feature vectors from substrings 
 [20 – 22] . Molecular 2 - D representations include connection tables, graph rep-
resentations, and reduced graphs  [23] . Molecular graphs are often employed 
as queries in similarity searching using algorithms from graph theory for the 
detection of common substructures. Typically, those algorithms are time -
 consuming, which limits their applicability for screening large databases. 3 - D 
representations include, for example, molecular surfaces or volumes calcu-
lated from molecular conformations. If these representations should be related 
to biological activity, then binding conformations of test compounds must be 
known. However, for large compound databases, conformations must usually 
be predicted, which introduces uncertainties in the use of such representations 
for compound activity - oriented applications. Pharmacophore models are 3 - D 
representations that reduce molecules to spatial arrangements of atoms, 
groups, or functions that render them active and are among the most popular 
tools for 3 - D database searching. 

 Combinations of calculated molecular descriptors are also used to repre-
sent molecules and/or to position them in chemical space. Descriptors are in 
general best understood as numerical mathematical models designed to 
capture different chemical properties  [15] . In many cases, descriptors calculate 
chemical properties that can be experimentally measured such as dipole 
moments, molecular refractivity, or log  P ( o / w   ), the octanol/water partition 
coeffi cient, a measure of hydrophobicity. Descriptors are often organized 
according to the dimensionality - dependent classifi cation scheme, as discussed 
above for molecular representations. Thus, dependent on the dimensionality 
of the molecular representation from which they are calculated, we distinguish 
1 - D, 2 - D, and 3 - D descriptors. 1 - D descriptors are constitutional descriptors 
requiring little or no knowledge about the structure of a molecule such as 
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molecular mass or atom type counts. 2 - D descriptors are based upon the graph 
representation of a molecule. Large numbers of descriptors are calculated 
from the 2 - D structure of chemical compounds. For example, topological 
descriptors describe properties such as connectivity patterns, molecular com-
plexity (e.g., degree of branching), or approximate shape. Other 2 - D descrip-
tors are designed to approximate 3 - D molecular features like van der Waals 
volume or surface area using only the connectivity table of a molecule as input. 
3 - D descriptors and representations both require knowledge about molecular 
conformations and geometrical properties of the molecules  . Many 2 - D and 
3 - D descriptors vary greatly in their complexity. For example, complex 
molecular descriptors have been designed to combine multiple descriptor 
contributions related to biological activity  [12]  or model surface properties 
such as the distribution of partial charges on the surface of a molecule  [24] . 
In the following, we will describe graph representations and fi ngerprint 
descriptors in more detail. 

  4.2.1   Graph Representations 

 In canonical molecular graph representations, nodes represent atoms and 
edges represent bonds. The use of graph - based algorithms has a long tradition 
in chemical database searching  [25] . The identifi cation of substructures in 
molecular graphs is hindered by subgraph isomorphism identifi cation, which 
is a hard problem in computer science and for the treatment of which, in 
general, no effi cient algorithms exist  [25] . A special case of compound similar-
ity evaluation on the basis of graph - based representations is to consider the 
maximum common subgraph (MCS)  [26,27] , i.e., the largest common sub-
structure. MCS comparison retains most of the structural information of a 
molecule and consequently detects distinctly similar compounds in a database 
search. Reduced graphs  [23,28]  or feature trees  [29]  simplify graph - based 
molecular comparisons by combining characteristic chemical features like 
aromatic rings or functional groups into single nodes and abstract from 2 - D 
structure. This simplifi es graph - based comparisons and increases computa-
tional effi ciency as well as the potential of  scaffold hopping   [30] , i.e., the 
identifi cation of compounds having similar activity but diverse structures.  

  4.2.2   Fingerprints 

 Fingerprints are special kinds of descriptors that characterize a molecule and 
its properties as a binary bit vector. Since many fi ngerprints have unique 
designs and are used for similarity searching in combination with selected 
similarity metrics, they are often also regarded as search methods. In structural 
fi ngerprints, each bit represents a specifi c substructural feature, like an aro-
matic ring or a functional group of a molecule, and the bit setting accounts 
either for its presence (i.e., the bit is set on) or absence (off). Fixed - size bit 
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string representations, where each bit encodes the presence or absence of a 
predefi ned structural feature, simplify substructure searching and circumvent 
the computational complexity associated with the use of graph isomorphism 
algorithms. Once fi ngerprints for all compounds in a database have been 
computed, quantitative fi ngerprint overlap between query and database com-
pounds is calculated as a measure of molecular similarity. The set of 166 MDL 
  structural keys (MACCS)  [31,32]  represents a widely used prototype of a 
fragment - based fi ngerprint. An early search strategy has been to use fragment -
 based fi ngerprints in a fast prescreening step to eliminate large numbers of 
database compounds lacking encoded fragments present in a query, followed 
by a subgraph isomorphism search on the remaining molecules  [25] . In recent 
years, increasingly sophisticated fi ngerprint designs have been introduced that 
enable database searching beyond prescreening or fragment matching includ-
ing, for example, pharmacophore fi ngerprints  [33] . These types of fi ngerprints 
systematically account for 2 - D or 3 - D patterns of two to four features such as 
hydrogen bond donor or acceptor functions, hydrophobic or aromatic moi-
eties, or charged groups, and pairwise distance ranges separating them. For 
3 - D pharmacophore fi ngerprinting, test molecules are subjected to systematic 
conformational search and matches of fi ngerprint - encoded pharmacophore 
patterns are monitored. In 2 - D pharmacophore fi ngerprints, bond distances 
replace spatial distances between feature points, and atom types are often 
used instead of pharmacophore functions, which is reminiscent of atom pair -
 type descriptors  [34] . Due to the combinatorial nature of pharmacophore 
patterns, especially 3 - D pharmacophore fi ngerprints can be exceedingly large 
and often consist of millions of bit positions. Other types of 2 - D fi ngerprints 
systematically account for connectivity pathways through molecules up to a 
predefi ned length. This fi ngerprint design was pioneered by Daylight  [35] . The 
Daylight fi ngerprints employ hashing and folding techniques to map the large 
number of possible pathways to a small number of bits. Furthermore, atom 
environment fi ngerprints developed by Glen and coworkers  [36]  encode the 
local environment of each atom in a molecule as strings and assemble charac-
teristic strings. Here collections of strings represent the molecular fi ngerprint, 
which departs from the classical fi xed - length design. Similarly, extended 
connecti vity fi ngerprints (ECFPs)  [37,38]  also capture local atom environ-
ments. MOLPRINT   codes each individual atom environment (either in 2 - D 
or 3 - D) up to a certain bond distance range as a fi ngerprint bit and has been 
implemented together with Bayesian modeling using multiple template com-
pounds for similarity searching  [39,40] . 

 Encoding of numerical property descriptors in a fi ngerprint format is also 
possible. For example, the MP - MFP   fi ngerprint  [41]  assigns 61 property 
descriptors to individual bits by partitioning their ranges at the median of a 
compound database (i.e., through binary transformation). Moreover, through 
equifrequent binning of database descriptor value distributions, the PDR - FP 
  fi ngerprint encodes a set of 93 molecular property descriptors using only 500 
bit positions  [42] .   
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  4.3   DATA MINING TECHNIQUES 

  4.3.1   Clustering and Partitioning 

 Clustering algorithms have been, and continue to be, widely used for com-
pound classifi cation  [8 – 10]  and for both diversity -  and activity - oriented com-
pound selection. Partitioning algorithms  [12]  are applied for the same purposes 
but do not have such a long history in chemoinformatics as clustering methods. 
Clustering and partitioning methods are often not clearly distinguished in the 
literature, although they do have a principal difference that is relevant for 
compound classifi cation and selection: regardless of their algorithmic details, 
clustering methods involve at some stage pairwise distance or similarity com-
parisons, whereas partitioning algorithms do not; rather, they generally create 
coordinate systems in chemical reference spaces into which test compounds 
fall based on their calculated feature values. As a consequence, partitioning 
methods can be applied to much larger data sets than conventional clustering 
techniques, which has become particularly relevant during the age of combi-
natorial library generation. Both clustering and partitioning methods repre-
sent a form of unsupervised learning and thus do not require training sets of 
known active compounds  [43] . Instead, they organize a chemical library into 
subsets of compounds that are similar according to a chosen metric, given a 
chemical reference space. Clustering and partitioning are often applied to 
cover available chemical space by selecting representative compounds from 
all clusters or partitions. Accordingly, these methods have also been adapted 
for sequential screening where representative compound subsets are initially 
selected from a library and are tested to identify novel hits. Then, during 
iterative rounds, newly identifi ed hits are added to the classifi cation process 
to select similar compounds from the library for further evaluation  [13,44] . 
Thus, sequential screening integrates diversity -  and activity - oriented com-
pound selection schemes. 

 As already mentioned above, clustering depends on the calculation of 
intermolecular distances in chemical reference spaces, whereas partitioning is 
based on establishing a consistent reference frame that allows the independent 
assignment of coordinates to each database molecule. With the increasing size 
of data sets, clustering algorithms can become computationally expensive, if 
not prohibitive. This is especially the case for hierarchical clustering methods 
where all intermolecular distances need to be considered. For hierarchical -
 agglomerative clustering methods, clusters are obtained by iteratively combin-
ing smaller clusters to form larger ones, beginning with singletons (i.e., 
single - compound clusters). By contrast, hierarchical - divisive methods start 
with a single large cluster consisting of all compounds and iteratively split 
clusters into smaller ones  [45] . Besides distinguishing between top – down and 
bottom – up approaches, hierarchical clustering methods differ in they way by 
which intercluster distances are measured. Popular methods consider either 
the minimum, maximum, or average distance of compounds of two clusters. 
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For example, Ward ’ s clustering algorithm minimizes intracluster variance and 
maximizes intercluster variance and thus attempts to minimize the increase in 
information loss when joining clusters  [46] . 

 Nonhierarchical methods are generally faster but require to preset the 
total number of clusters, as in  k  - means clustering  [47] , or defi ne what con-
stitutes a neighborhood , as in Jarvis – Patrick clustering  [48] . Cell - based 
partitioning methods  [12,49]  and variants like median partitioning  [50]  are an 
attractive alternative because of their computational effi ciency. These 
methods assign molecules to cells defi ned by a combination of descriptor 
ranges. A prominent and widely applied supervised learning variant for clas-
sifi cation problems is the recursive partitioning approach  [51,52] . Recursive 
partitioning divides compound sets along decision trees and attempts to gen-
erate homogeneous subsets at the leaves, thereby separating molecules 
according to activity.  

  4.3.2   Similarity Searching 

 Like compound clustering, similarity searching is among the most widely 
employed approaches in chemoinformatics. The notion of compound similar-
ity and the search for similar molecules are at the core of ligand - based virtual 
screening concepts. Since the explicit formulation of the  similarity property 
principle , which simply states that similar molecules should have similar bio-
logical activities  [53] , a wide variety of concepts of what constitutes molecular 
similarity have been developed, and a multitude of computational methods 
for identifying similar molecules in compound databases have been devised. 
In its most basic form, similarity searching detects common 2 - D substructures 
in the chemical graphs of molecules  [25] . As mentioned above, these graph -
 based approaches are computationally quite expensive, and the need for more 
effi cient alternatives has boosted the popularity of fi ngerprints to a large 
extent. Another reason for the popularity of fi ngerprints is that they can be 
used to generate search queries if only single bioactive compounds are avail-
able as templates, in contrast to other compound classifi cation approaches 
including machine learning methods. 

 As discussed above, fi ngerprints abstract from the chemical structure and 
make searching of large databases feasible. Importantly, they decouple simi-
larity assessment from direct structural comparisons through the evaluation 
of bit string similarity. In general, fi ngerprint - based similarity evaluation 
depends on two criteria: the type of fi ngerprint that is used and the chosen 
similarity measure. Fingerprints can often be easily modifi ed. For example, 
for structural fi ngerprints, Durant et al.  [32]  systematically investigated subsets 
of the MDL keys for their ability to detect molecules having similar activity 
in order to optimize sets of structural keys for similarity searching. 

 In addition to differences in fi ngerprint design, there also is a variety of 
similarity measures available for fi ngerprint comparison  [54]  including, for 
example, the Hamming and Euclidean distance. For binary vectors, the 
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Hamming distance simply counts the number of bit differences between two 
fi ngerprints and the Euclidean distance is the square root of the Hamming 
distance. Most popular in chemical similarity searching is the Tanimoto or 
Jaccard coeffi cient, which accounts for the ratio of the number of bits set on 
in both fi ngerprints relative to the number of bits set on in either fi ngerprint. 
The Hamming and Euclidean distances equally account for the presence or 
absence of features, i.e., binary complement fi ngerprints yield the same dis-
tance, whereas the Tanimoto coeffi cient only takes into account bit positions 
that are set on. For instance, if we consider two fi ngerprints where 75% of all 
bits are set on and the two fi ngerprints overlap in 50% of these bits, then a 
Tanimoto coeffi cient of 0.5 is obtained. However, if we take the complement 
instead, i.e., count the absence of features instead of their presence, a Tanimoto 
coeffi cient of 0 is obtained because there is no overlap in missing features (i.e., 
bit positions set to zero). 

 Similarity measures enable the ranking of database compounds based on 
similarity to single or multiple reference compounds and, in successful applica-
tions, achieve an enrichment of novel active molecules among the top - ranked 
compounds. However, the most similar compounds are typically analogues of 
active reference molecules, and one can therefore not expect to identify 
diverse structures having similar activity by simply selecting top - ranked data-
base compounds. For the identifi cation of different active chemotypes, similar-
ity value ranges where scaffold hopping  occurs must be individually determined 
for combinations of fi ngerprints and similarity coeffi cients, which represents 
a nontrivial task. 

 In part due to the availability of large databases consisting of different 
classes of bioactive compounds like the MDDR (a database compiled from 
patent literature)  [55]  or WOMBAT    [56] , similarity searching using multiple 
reference molecules has become increasingly popular and is typically found 
to produce higher recall of active molecules compared with calculations using 
single templates. These fi ndings are intuitive because the availability of multi-
ple compounds increases the chemical information content of the search cal-
culations. For fi ngerprint searching using multiple reference molecules, 
different search strategies have been developed that combine compound 
information either at the level of similarity evaluation or at the level of fi n-
gerprint generation. One principal approach is data fusion, which merges the 
results from different similarity searches  [57 – 60]  either by fusing the search 
results based on the rank of each compound or by using the compound score. 
This can be achieved, for example, by considering only the highest rank of a 
database compound relative to each individual template, by calculating the 
sum of ranks, or by averaging the similarity values of the nearest neighbors. 
At the level of fi ngerprints, information from multiple reference molecules 
can be taken into account by calculation of consensus fi ngerprints  [61] , scaling 
of most frequently occurring bit positions  [62] , or by determining and using 
feature value ranges that are most characteristic of template sets  [63,64] . 
Similarity searching is clearly not limited to the use of fi ngerprint descriptors. 
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As stated above, reduced graph representations or pharmacophore models 
are also employed. 

 Having discussed clustering and similarity search techniques that have a 
long history in chemical database analysis, in the following, we will focus on 
three data mining approaches that are based on statistics and machine learn-
ing. Because these data mining approaches have in recent years become 
increasingly popular in chemoinformatics, we discuss their theoretical founda-
tions in some detail.   

  4.4   BAYESIAN MODELING 

 Bayesian modeling and Bayesian na ï ve classifi ers are currently widely used 
for different types of applications in virtual screening  [36,65 – 68]  and in com-
pound classifi cation  [69 – 71] . The attractiveness of the Bayesian approach 
might at least in part be due to its inherent simplicity and the ease of inter-
pretation of the results. Bayesian modeling produces an estimate of the likeli-
hood that compounds exhibit a desired property such as a target - specifi c 
activity. Bayesian principles may equally well be applied to continuous, dis-
crete valued descriptors and binary fi ngerprints. The key aspect of Bayesian 
modeling is the interpretation of descriptors as random variables following 
different distributions depending on a certain property or target - specifi c activ-
ity. The Bayesian approach has a sound basis in statistics and relies on some 
assumptions concerning the representation of compounds. Importantly, it 
assumes that features are randomly distributed according to a probability 
distribution that is dependent on the type of compound. Thus, active com-
pounds are expected to show different distributions than inactive ones for 
descriptors that are relevant for activity. When considering multiple dimen-
sions, i.e., multiple descriptors or different bits in a fi ngerprint, the assumption 
that the dimensions have conditionally independent distributions plays a 
crucial role. The quality of a Bayesian model will largely depend on the knowl-
edge of the distribution of the descriptors and on the validity of the inde-
pendence assumption. The independence assumption is called the  na ï vety
assumption, which will hardly ever be fully met. Nevertheless, Bayesian 
models have proven to be very successful in practice. Knowledge about the 
descriptor distributions has to be estimated from the training data. In contrast 
to similarity search methods where single template searches are feasible, esti-
mates of value distributions cannot be obtained from individual molecules. 
Discrete descriptors like fi ngerprint bits can be estimated using frequency 
counting, which is usually combined with some form of Laplacian correction, 
because the number of training data points tends to be small. For continuous 
data, assumptions about the distributions also need to be made. In the absence 
of further knowledge, generically assuming the presence of Gaussian distribu-
tions has been shown to yield promising results in many applications  [66,72] . 
An alternative to assuming specifi c types of distributions is to discretize con-
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tinuously valued descriptors using binning schemes  [72,73] . One major draw-
back of discretization is that a fairly large number of active training compounds 
are required in order to obtain meaningful histograms for probability estima-
tions. As will be explained below, distance measures in chemical descriptor 
space can be interpreted in a probabilistic way as likelihoods and yield a theo-
retical foundation for the appropriateness of metrics like the Euclidean dis-
tance. The basic approach is to consider the probability of a compound,  c , 
represented by the (multidimensional) descriptor  x c   to show a desired prop-
erty,  A . This probability cannot be estimated directly. Instead, from a set of 
training compounds known to possess property  A , one can estimate the prob-
abilities  P ( x c     |    A ), i.e., the probability of a compound,  c , to show descriptor 
value  x c   given that the compound has property A. Both probabilities are 
related by the Bayes theorem:
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 The probability  P ( x c  ) may be estimated from the training data. However, the 
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 will give a relative likelihood measure of compound  c  having the desired 
property  A  when compared to compounds belonging to a set  B  not having 
property  A . Figure  4.1  shows Gaussian distributions estimated from samples 
of a hypothetical descriptor for sets of active and inactive compounds. The 
height of the curves is dependent on the overall probability for a compound 
to be active (and is artifi cially increased for visualization purposes). If 
compound  c  is represented by continuous descriptors  x    =   ( x i  )  i   =1 …    n   in an  n  -
 dimensional chemical space and the assumptions of descriptor independence 
and Gaussian distributions are made, then from  
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where  μ   i   and  σ   i   are the mean and standard deviation of descriptor  i , it follows 
by considering the negative log likelihood that
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 Note that for continuous distributions, the conditional probabilities  P ( x    |    A ) 
are replaced by the probability density functions  p ( x    |    A ). Thus, normalized 
Euclidean distance  [74]  in chemical space is related to the assumed Gaussian 
distributions of the descriptor values. The ability to relate similarity metrics 
to descriptor value distributions, given the basic assumption of independence, 
makes it possible to assess the quality of these measures. It should be noted 
that the likelihood  L ( A    |    x )    ∝     P ( x    |    A ) is only a relative measure of probabil-
ity. For instance, if  x  represents a structural feature that is present in 70% of 
a class of active compounds  A , it might be an indicator of activity. But if this 
feature is also present in 90% of the compound database, the probability of 
activity is about 3.8 times higher for the 10% of the molecules that do not 
possess the structural element. 

 Bayesian classifi cation takes the likelihoods  L ( B    |    x ) of compounds not 
possessing property  A  into account by considering the ratio of these:

    R x
L A x
L B x

P x A
P x B

i

ii

n

( ) = ( )
( )

= ( )
( )=

∏
1

    (4.5)   

     Figure 4.1     Bayesian screening and estimation of probability densities. This schematic 
representation shows estimates for Gaussian distributions of a hypothetical descriptor 
based upon a small number of reference samples of inactive (indicated by    ×    curve B) 
and active (indicated by   +   curve A) compounds. For illustrative purposes, the curves 
are scaled assuming that 10% of a compound set is active. The region between the 
dotted lines indicates the descriptor range for which compounds are more likely to be 
active than inactive. In practice, the ratio of actives to inactives in a database is 
unknown, but usually very small, so that still most compounds within the indicated 
descriptor range will be inactive. However, they are expected to show considerable 
enrichment in activity compared to a random selection, especially if multiple (uncor-
related) descriptors are combined  .  
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 Taking the logarithm yields the  log - odds  score:

    log log log .R x P x A P x Bi i
i

n

( ) = ( ) − ( )( )
=
∑

1

    (4.6)   

 By using the negative of the logarithm, minimizing the  “ distance ”  log  R ( x   ) 
corresponds to maximizing the odds. Following this approach for (a) an  n  -
 dimensional continuous descriptor space and (b) an  m  - dimensional binary 
fi ngerprint representation yields the following similarity measures:
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 Here   μi
A  and   σi

A are the sample mean and standard deviation for descriptor 
 i  for a set of training compounds  A  with the desired property like bioactivity, 
and   μi

B and   σi
B are the sample mean and standard deviation of descriptor  i  of 

training compounds  B  not possessing that property.
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 For a fi ngerprint  v    =   ( v i  )  i   =1 …    m  , the Bayesian approach yields a weighting factor

of   log log
p
p

p
p

i
A

i
B

i
A

i
B

− −
−

1
1

 for bit position  i , where   pi
A  is the relative frequency

of bit  i  being set on for  A , and   pi
B is the relative frequency of bit  i  being 

set on for  B . Similar weighting schemes for binary fi ngerprints have been 
introduced  [75,76]  in the context of substructural analysis methods  [77] . 

 When searching for active compounds in a large compound library using a 
relatively small set of active reference structures, the vast majority of library 
compounds will be inactive and only relatively few compounds will also be 
active. In this case, the training set for estimating the probability distributions 
of active compounds consists of the reference structures and, for all practical 
purposes, the distributions of the inactive compounds can be well approxi-
mated by considering the total compound library, including potential actives, 
as they only marginally infl uence the estimates. 

 The Bayesian approach as described above is not limited to a single type 
of representation but can also successfully be applied to the combination of 
different representations like continuous descriptors and binary fi ngerprints. 
The MetaBDACCS   approach  [67]  combines descriptors and different fi nger-
prints in a single model and shows a signifi cant increase in performance for a 
number of biological activity classes  [67] . 

  4.4.1   Predicting the Performance of Bayesian Screening 

 Given the statistical nature of the approach, its success relies on the difference 
in distribution of descriptors for sets of compounds  A  and  B . In short, the 



128 DATA MINING APPROACHES

more the distributions of descriptors differ, the larger the discriminatory 
power of the descriptors. A suitable quantitative measure for the difference 
of distributions is the Kullback – Leibler divergence  [78] :

    D p x A p x B p x A
p x A
p x B

dx( ) ( )[ ] = ( ) ( )
( )∫ log .     (4.9)   

 The Kullback – Leibler divergence corresponds to the expected score of the 
log - likelihood ratio log  R ( x ) for compound class  A . Given estimates for the 
conditional distributions  p ( x    |    A ) and  p ( x    |    B ), the Kullback – Leibler diver-
gence can be calculated analytically. For normally distributed descriptors,
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and for fi ngerprints,
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 In practice, Equation  4.9  can be used to analyze the fi tness of chemical descrip-
tor spaces for virtual screening. The Kullback – Leibler divergence can be used 
to assess the importance of individual descriptors for the detection of activity 
for specifi c biological targets  [72] . It is thus possible, by considering only the 
most discriminating descriptors, to select low - dimensional descriptor repre-
sentations of molecules individually for virtual screening on specifi c targets 
 [72] . 

 The relation of the Kullback – Leibler divergence to the log - likelihood ratio 
can be exploited to establish a quantitative relationship between the Kullback –
 Leibler divergence and the expected performance of virtual screening calcula-
tions  [79,80] . The performance of a virtual screening trial can be measured as 
the ratio of the number of active compounds retrieved in the selected set to 
the total number of actives in the compound database (i.e., the recall rate). In 
a fi rst step, virtual screening benchmark trials are performed using a number 
of different activity classes from a database like the MDDR by calculating the 
Kullback – Leibler divergence from training sets and by determining the recall 
rates of actives from a compound database using the Bayesian models based 
on those training sets. In a second step, a linear regression model relating the 
logarithm of the Kullback – Leibler divergence to the recall rate is derived to 
predict recall rates. Figure  4.2  shows two such models based on 40 activity 
classes from the MDDR using continuous descriptors (A) or MACCS   fi nger-
prints (B) to predict the recall rate of the top 100 compounds of a database 
of 1.4 million molecules  [79,80] . The recall rates obtained using seven test 
classes are seen to correspond well to the rates predicted by the regression 
model.    
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  4.4.2   Binary Kernel Discrimination 

 The Bayesian modeling approach described above makes explicit assumptions 
about feature distributions, specifi cally assuming independence and the pres-
ence of normal distributions for continuous variables. As long as those assump-
tions are not substantially violated, Bayesian models can be effi ciently trained 
and require only relatively small learning sets because only a limited number 
of parameters need to be estimated from the data. However, departures from 
the underlying assumptions might signifi cantly impair the performance of a 
Bayesian model. If little is known about feature distributions, other nonpara-
metric methods can be used to estimate them. A technique from machine 
learning applies kernel functions to estimate probability densities, an approach 
also known as the Parzen window method  [47] . 

 The binary kernel discrimination approach  [81]  introduced Parzen windows 
applied to binary fi ngerprints for compound classifi cation and virtual screen-
ing. In analogy to Bayesian classifi cation, the likelihood ratio

    R x
L A v
L B v

p v A
p v B

( ) = ( )
( )

∝ ( )
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    (4.12)   

 is considered and compounds are prioritized accordingly. Suppose training 
sets  A  and  B  containing  m A   and  m B   compounds, respectively, are given, with 
 A  containing compounds having a desired property and  B  containing others. 
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     Figure 4.2     Estimation of recall rates based on a set of training classes. The graphs 
show the relation between Kullback – Leibler (KL) divergence and the recall rate of 
active compounds from a database. Forty activity classes (small dots) were used in a 
benchmark approach to establish a linear relationship between the logarithm of KL 
divergences and the recall rates for the top 100 compounds of a database of about 1.4 
million molecules. A linear regression model was trained and seven other classes were 
used to test the accuracy of the predicted recall. The measured recall rates are repre-
sented as squares. (A) shows the result using 142 continuous - valued descriptors and 
(B) shows the result using the MACCS fi ngerprint.  
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Then probability densities  p ( v    |    A ) and  p ( v    |    B ) are estimated using kernel 
functions:
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 Here   vi
A and   vi

B are the descriptor values or fi ngerprints for compounds 
from  A  and  B , respectively.  K   λ   is a symmetric multidimensional density func-
tion and  λ  is a smoothing parameter. The estimate  p ( v    |    A ) is a linear combi-
nation of probability density functions centered at each point of the training 
set. The parameter  λ  controls the  smoothness  of the estimate, i.e., the range 
of infl uence around each data point. When continuity is assumed, the estimate 
converges to the true density function  [47] . Figure  4.3 A shows the probability 
density estimate using Gaussian kernel functions with varying standard devia-
tions  σ  as smoothing parameter for a sample of seven data points. The quality 
of the estimates will mainly depend on two factors: (1) the number of com-
pounds in the training set and (2) the  nonbias  of the training data. This means 
that the training data should ideally be a representative subset of test com-
pounds with respect to the descriptor space used for representation. For 
compound classifi cation, for example, this can only be achieved when learning 
sets are not merely dominated by analog series, which would skew the data 
distribution toward a single chemotype.   

 For fi ngerprints, i.e., binary vectors  v  and  w  of length  n , the following kernel 
function has been suggested:

    K v w n v w v w
λ λ λ, ,( ) = −( )− − −1     (4.15)  

where || · || is the Hamming distance and  λ , the smoothing parameter, ranges 
from 1 to 0.5. Figure  4.3 B illustrates the effect of the smoothing parameter 
of the binary kernel function on an embedding of data points in a 2 - D 
Euclidean plane. Training must determine an appropriate value for  λ . Harper 
et al.  [81]  have suggested to increase  λ  in a stepwise manner from 0.50 to 0.99 
and to use leave - one - out cross validation to determine the best parameter 
setting. Typically, one can expect the parameter  λ  to increase when more 
training data become available because each data point needs to cover less 
range. 

 Binary kernel discrimination has been shown to be an effective approach 
to classify and rank test compounds according to their likelihood of activity 
 [82] . An interesting variant of the approach has been introduced by Chen et 
al.  [83] , who replaced the Hamming distance with other similarity measures. 
Their experiments revealed overall preferred performance of the Tanimoto 
and Dice coeffi cients over the Hamming distance.   
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     Figure 4.3     Density estimation using Parzen windows. The fi gures show the nonpara-
metric estimation of probability densities with Parzen windows using different kernel 
functions. (A) shows the infl uence of the smoothing parameter  σ  of a Gaussian kernel 
function on the estimation of a 1 - D probability distribution. (B) schematically illus-
trates the binary kernel function. Points correspond to compounds embedded in a 2 - D 
plane. The infl uence of different parameter settings on the smoothness of the resulting 
probability distribution is shown as gray intensity levels.  
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  4.5   SUPPORT VECTOR MACHINES 

 In recent years, applications of support vector machines have become very 
popular in chemoinformatics. Support vector machines are a supervised binary 
classifi cation approach  [84,85] . The basic underlying idea is to linearly sepa-
rate two classes of data in a suitable high - dimensional space representation 
such that (1) the classifi cation error is minimized and (2) the margin separating 
the two classes is maximized. Accordingly, the popularity and success of this 
method can be attributed to that fact that instead of only trying to minimize 
the classifi cation error, support vector machines employ structural risk mini-
mization methods to avoid overfi tting effects. The structural risk minimization 
principle implies that the quality of a model does not only depend on minimiz-
ing the number of classifi cation errors but also on the inherent complexity of 
the model. That is, models with increasingly complex structures involve more 
risk, which means that they do not generalize well, but display signifi cant 
trends of overfi t relative to the training data. Thus, following basic ideas of 
support vector machines, fi nding a  maximal  separating hyperplane corre-
sponds to  minimizing  the structural risk. 

 Overfi tting is generally known to be a serious problem in machine learning, 
which is typically a consequence of using only small training sets but many 
variables. For classifi cation machines, this would mean using sparse training 
data, but permitting many degrees of freedom to fi t a data - separating bound-
ary. Generally, this situation is referred to as the  curse of dimensionality  and 
means that with the increase of (feature) dimensionality, the size of training 
data sets to sample feature space with constant resolution needs to grow 
exponentially. In principle, a support vector machine implements a linear 
classifi er; however, using the so - called  kernel trick , i.e., the mapping of data 
into a high - dimensional space via a kernel function, it also is capable of deriv-
ing nonlinear classifi ers. 

 Let us consider a training set of overall size  m  split into two classes,  A  and 
 B , of, for instance, active and inactive compounds. Each compound is described 
by an  n  - dimensional vector  x   i   of numerical features such as descriptor values. 
Compounds of class  A  are assigned the value  y i     =   +1,  i     ∈     A  and those of class 
B the value  y i     =    − 1,  i     ∈     B . If linear separation is possible, the support vector 
machine is defi ned by a hyperplane that maximizes the margin, i.e., the closest 
distance from any point to the separating hyperplane. A hyperplane,  H , is 
defi ned by a normal vector,  w , and a scalar,  b , so that

    H b: , ,x w + = 0     (4.16)  

where  〈  · , ·  〉  defi nes a scalar product. 
 For the hyperplane  H  to separate classes  A  and  B , it is required that all 

points  x   i  ,  i     ∈     A  lie on one side of the hyperplane and all points  x   i  ,  i     ∈     B  on 
the other. In algebraic terms, this is expressed as
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    x wi ib i A y, , ,+ ≥ + ∈ = +1 1 for i.e.     (4.17)  

    x wi ib i B y, , , .+ ≤ − ∈ = −1 1 for i.e.     (4.18)   

 Combining these inequalities yields

    y b i mi ix w, +( ) − ≥ = …1 0 1for     (4.19)   

 Points that meet the equality condition and are closest to the separating hyper-
plane defi ne two hyperplanes,

    H bi+ + = +1 1: ,x w     (4.20)  

and

    H bi− + = −1 1: , ,x w     (4.21)   

 parallel to the separating hyperplane  H , which determine the margin. Their 
separating distance is 2/|| w ||. So, minimizing || w || with respect to the inequality 
constraints yields the maximum margin hyperplane, where the inequalities 
ensure correct classifi cation and the minimization produces the minimal risk, 
i.e., the best generalization of performance. Those points that lie on the 
margin are called the  support vectors  because they defi ne the hyperplane  H , 
as can be seen from Figure  4.4 . These are the points for which equality holds 
in Equations  4.17  and  4.18 .   

     Figure 4.4     Maximal margin hyperplane. The maximal margin hyperplane  H  is defi ned 
by the vector  w  and the distance | b |/|| w || from the origin. The support vectors are indi-
cated by solid circles. The classifi cation errors are indicated by the dotted circles. 
The lines from the margins to the dotted circles indicate the magnitude of the slack 
variables.  
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 The basic technique for solving optimization problems under constraints is 
to introduce Lagrange multipliers αi . The Langrangian

L y bP i i i
i

m

i
i

m

= − +( ) +
= =
∑ ∑1

2
2

1 1

w x wα α,  (4.22)

 must be minimized with respect to  w  and  b , and the derivatives of  LP  with 
respect to αi  need to disappear, given the constraints  αi     ≥    0. Calculating the 
derivatives with respect to w  and  b  yields the conditions
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 Combining Equations  4.23  and  4.24  with Equation  4.22  yields the dual 
formulation
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 that must be maximized with respect to  αi  under the constraint that  αi     ≥    0 

and   αi i
i

m

y
=
∑ =

1

0. This corresponds to a convex quadratic optimization problem 

that can be solved using iterative methods to yield a global maximum. If the 
problem is solved,  w  is obtained from Equation  4.23  and  b  can be obtained 
from

y bi ix w, +( ) − =1 0  (4.26)

 for any vector  i  with  αi     ≠    0. The vectors  i  with  αi     ≠    0 are exactly the support 
vectors, as the Lagrangian multipliers will be 0 when equality does not hold 
in Equations  4.17  and  4.18 . Once the hyperplane has been determined, com-
pounds can be classifi ed using the decision function
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    (4.27)   

 Usually, the condition of linear separability is too restrictive and, therefore, 
slack variables  are introduced to the conditions, Equations  4.17  and  4.18 , 
thereby relaxing them to permit limited classifi cation errors:

x wi ib i A, + ≥ + − ∈1 ξ for  (4.28)

x wi ib i B, + ≤ − + ∈1 ξ for  (4.29)

ξi i m≥ = …0 1for .  (4.30)
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 Figure  4.4  illustrates the introduction of slack variables. The dotted lines 
from the margins represent slack variables with positive values allowing 
for classifi cation errors of the hyperplane. The objective function to be 

minimized under those constraints becomes   1
1

w + ⎛
⎝⎜

⎞
⎠⎟=

∑C i
i

m k

ξ , where usually 

 k    =   1 or  k    =   2 and  C  is a parameter controlling the penalty of classifi cation 
errors. 

 As stated above, support vector machines are not limited to linear boundar-
ies. Nonlinear boundaries can also be achieved by introducing kernel func-
tions. Equation  4.25  only requires the calculation of the scalar product between 
two vectors and does not require an explicit representation of the vectors. 
Conceptually, kernel functions correspond to a mapping of the original vectors 
into a high - dimensional space and calculating the scalar product. Popular 
kernel functions include, for example, the Gaussian kernel function, polyno-
mial functions, or sigmoid functions:
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    Kp
px x x x1 2 1 2 1, ,( ) = +( )     (4.32)  

    Kκ δ κ δ, , tanh , .x x x x1 2 1 2( ) = −( )     (4.33)   

 The fl exibility of the kernel approach also makes it possible to defi ne kernel 
functions on a wide variety of molecular representations that need not be 
numerical in nature. Azencott et al.  [22]  provide examples of a variety of 
kernel functions. For 1 - D SMILES and 2 - D graph representations, a spectral 
approach is used by building feature vectors recording either the presence or 
the absence or the number of substrings or substructures. The constructed 
vectors are essentially fi ngerprints, and the kernel function is subsequently 
defi ned as a similarity measure on the basis of those fi ngerprints. Using 3 - D 
structures, kernel functions can also be constructed for surface area represen-
tations and pharmacophores, or by considering pairwise distances between 
atoms recorded in histograms. Thus, different types of kernel functions make 
it possible to tackle diverse classifi cation problems and ensure the general 
fl exibility of the support vector machine approach.  

  4.6   APPLICATION AREAS 

 In chemoinformatics and computer - aided drug discovery, support vector 
machines and binary kernel discrimination have thus far mostly been used for 
distinguishing between active and inactive compounds in the context of virtual 
screening  [76,81,82] . However, Bayesian models and classifi ers have also been 
used for different applications beyond prediction of active compounds. For 
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example, Bayesian modeling has been applied to predict compound recall for 
fi ngerprint search calculations  [79] , multidrug resistance  [69] , or biological 
targets of test compounds  [70] . Nevertheless, for all of these advanced data 
mining approaches, virtual compound screening is a major application area 
where the derivation of predictive models from experimental screening data 
presents a particularly attractive aspect. Models from screening data for activ-
ity predictions have also been built using recursive partitioning and hierarchi-
cal clustering techniques, but their quality is typically rather sensitive to 
systematic errors and noise in the data, from which essentially any high -
 throughput screening (HTS)   data set suffers. This is why advanced data mining 
methods like Bayesian modeling or binary kernel discrimination have become 
very attractive for these purposes, because these approaches have been shown 
to be capable of deriving robust models from noisy screening data  [73,83] . 

 Typically, models are built from screening data to search other databases 
for novel active compounds. Thus, HTS data serve as a learning set to derive 
a support vector machine or a Bayesian or binary kernel discrimination 
model to classify other database compounds as active or inactive. This makes 
these data mining approaches also very attractive to aid in iterative experi-
mental and virtual screening campaigns that are often described as sequential 
screening  [86,87] . Iterative cycles of virtual compound preselection from 
screening libraries and experimental evaluation can substantially reduce the 
number of compounds that need to be screened in order to identify suffi cient 
numbers of hits for follow - up  [86,88] . During these iterations, newly identi-
fi ed hits are usually included in model refi nement for subsequent rounds of 
compound selection. The major aim of these calculations is to continuously 
enrich small compound sets with active compounds, and this selection scheme 
can be quite powerful. For example, if only a moderate overall enrichment 
factor of fi ve is achieved, this means that only 10% of a screening library 
needs to be tested in order to identify 50% of potentially available hits. 
Initial approaches to establish sequential screening schemes have predomi-
nantly employed recursive partitioning  [89,90]  or recursion forest analysis 
 [91] , but machine learning techniques have recently also been applied  [92] . 
For advanced data mining approaches, sequential screening represents a 
highly attractive application scenario for several reasons. For example, 
Bayesian or kernel - based classifi ers are much less infl uenced by screening 
data noise than standard compound classifi cation methods and, moreover, 
classifi ers can be trained not only to select active compounds but also to 
deselect effi ciently database molecules having a very low probability of activ-
ity. Given the fact that the vast majority of database compounds are poten-
tial false positives for a given target, effi cient compound deselection becomes 
an important task in screening database analysis and can greatly contribute 
to achieving favorable enrichment factors during iterative screening cam-
paigns. Thus, we can expect that the interest in machine learning and data 
mining approaches in virtual and iterative compound screening will further 
increase. 
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 Another attractive application area for advanced data mining methods is 
the assembly of target - focused compound libraries. A variety of approaches 
have been introduced to design target - focused libraries based on ligand or 
target structure information or a combination of both  [14] . In recent years, 
there has been a clear trend to employ structure design techniques for the 
generation of focused libraries  [93,94] , more so than data mining methods. 
However, conceptually similar to the tasks at hand in iterative screening, 
major goals of targeted library design include a signifi cant enrichment of mol-
ecules having a high probability to display a target - specifi c activity in com-
pound sets that are much smaller in size than diverse screening libraries. 
Therefore, data mining also becomes highly attractive for these applications. 
For example, the ability to predict biological targets for large numbers of 
database compounds using multiple Bayesian models  [70]  is expected to sub-
stantially aid in prioritizing compounds for the assembly of target - focused 
libraries. Thus, similar to iterative screening, we can expect that the design of 
specialized compound libraries will also be a future growth area for data 
mining applications.  

  4.7   CONCLUSIONS 

 In this chapter, we have discussed various data mining approaches and have 
selected applications in the context of chemoinformatics. Since the perfor-
mance of data mining methods cannot be separated from the molecular rep-
resentations that are employed, prominent types of molecular descriptors and 
representations have also been reviewed. Special emphasis has been put on 
discussing theoretical foundations of three advanced data mining approaches 
that are becoming increasingly popular in chemoinformatics and in pharma-
ceutical research: Bayesian modeling, binary kernel discrimination, and 
support vector machines. We have particularly highlighted virtual and inte-
grated compound screening schemes and the design of target - focused com-
pound libraries as attractive application areas with future growth potential.  
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  5.1   INTRODUCTION 

 This chapter describes the prediction of toxic effects with data mining tech-
niques in a stepwise approach. Methods are characterized in terms of prin-
cipal advantages and shortcomings and interpretability of the results. We 
seek to present techniques that are effective as well as universally applicable. 
We also give some software recommendations focusing on open source soft-
ware, which is not only free but is also transparent and extensible. All pack-
ages for the R environment for statistical computing (as well as R itself) are 
available from CRAN (Comprehensive R Archive Network)  , the central R 
repository  [1]  [( http://www.r-project.org/ ). 

  5.1.1   Problem Description 

 Chemicals infl uence biological systems in a huge variety of biochemical inter-
actions, mostly on the cellular and molecular level. In toxicology, the aim is 
to understand the biochemical mechanisms involved and the degree to which 
chemicals induce toxicological activity in living organisms with respect to a 
well - defi ned end point. 

 In predictive toxicology, we exploit the toxicological knowledge about a set 
of chemical compounds in order to predict the degree of activity of other 
compounds. More specifi cally, we mathematically model the relationship 
between specifi c properties of training compounds (i.e., compounds for which 
the degree of activity is known) and their toxicological activity and apply the 
model to query compounds (i.e., compounds for which the degree of activity 
is not known) to obtain predicted activities. 

 The process of model building is called (quantitative) structure – activity 
relationship ([Q]SAR). Structure – activity relationships (SARs) are models 
based on structural features, and quantitative structure – activity relationships 
(QSARs) rely on quantitative (frequently physicochemical) properties. The 
most general mathematical form of a (Q)SAR is

    Activity physicochemical properties and or structural feat= f uures( ).     (5.1)   

 The training compounds are stored in databases together with their activity 
values. Formally, we have observed data for  n  cases (( x  1 ,  y  1 ),  … , ( x n  ,  y n  )), 
where each  x i     =   ( x i   1 ,  … ,  x im  ) 1  is a feature vector of  m  input values and each  y i   
is the associated activity (dependent variable). The observations and corre-
sponding activities can therefore be compactly represented in a data matrix, 
 X  (sometimes also referred to as set  X ), and a corresponding activity vector 
 y . Our primary interest is to predict the unknown activity value  y q   for a query 
compound  x q  . A predicted value for  x q   is commonly referred to as  f ( x q  ), associ-
ated with a confi dence value,  c , which is derived from certain properties of 
the model that describe the goodness of the fi t. One of these properties is the 
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chemical similarity between training compounds and the query compound, 
denoted as  sim ( x i  ,  x q  ). For quantitative activities, the prediction process is 
called regression; for qualitative activities (i.e., a fi nite set of activity classes), 
it is called classifi cation.  

  5.1.2   Predictive Toxicology Approaches 

 According to Richard  [2]  and Richard and Williams [3  ], predictive toxicology 
models can be classifi ed as statistical and expert/rule - based approaches (see 
Fig.  5.1 ). Statistical approaches use general toxic end points and activity values 
gathered for a wide range of structures and are primarily driven by informa-
tion inherently present in the data, not from human expert knowledge. Expert/
rule - based approaches build (Q)SAR generalizations from individual chemi-
cals to chemical classes based on prior knowledge, heuristics, expert judgment 
and chemical and biological mechanism considerations.   

 For the purpose of this chapter, we will focus on statistical (Q)SAR tech-
niques and on the expert system aspects (e.g., categorization, feature selec-
tion) that are frequently used in (Q)SAR modeling. 

  5.1.2.1   Traditional ( Q ) SAR  Models     Traditional (Q)SAR methods use 
linear regression techniques to identify a relationship between chemical fea-
tures and experimental activities. They rely on the idea that structural proper-
ties contribute in a linearly additive way to activity. Usually, the critical molar 
concentrations  C  are modeled. The classical approaches are 

Analog search

Expert/rule based

Class assignment

Mechanistic-based hypothesis

Patterns and rules

Chemical representation

Structures, quantitative activities

Statisitical

     Figure 5.1     Types of (Q)SAR modeling: While expert systems make use of expert 
knowledge, specifi cally with feature selection and modeling, statistical approaches 
derive most things in an automated fashion.  
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  1.     Hansch analysis.       Physicochemical properties are used as descriptor 
values (QSAR):

   log log log ,
1 2

c
a P b P cE dS e( ) = + + + +  

where log  P  is the octanol – water partition coeffi cient, describing the 
ability of the agent to reach the target site, and  E  and  S  are electronic 
and steric terms, respectively. Electronic properties relate to binding 
ability and steric properties describe the bulk and shape of the com-
pound. Descriptor values can be drawn from literature or calculated by 
computer programs. Relatively few descriptors are needed and they can 
be interpreted in biochemical terms.  

  2.     Free – Wilson analysis.     Structural features are used in a group contribu-
tion approach (substituents, SAR).

   
log ,

1
c

a xi i
i

( ) = +∑ μ
 

where  x i   denotes the presence of group  i  (0 or 1) and  μ  the contribution 
of the unsubstituted compound. Predictions can only be made for sub-
stituents already included in the training set. Therefore, a large number 
of compounds are needed, which yield a large number of features. 
Hansch analysis and Free – Wilson can also be combined.    

 The interpretation of linear (Q)SAR models is done rather straightforward 
by inspecting the most important features (i.e., features with high coeffi cients). 
Overfi tting is rarely a problem because of the limited expressiveness of the 
model. For the same reason, the applicability of linear models is restricted to 
congeneric series with similar modes of action. Another problem with tradi-
tional (Q)SAR techniques is the selection of features for end points that are 
very complex and that incorporate many different and potentially unknown 
biological mechanisms. In this case, it is very likely to miss important features 
or to suffer from the  “ curse of dimensionality ”  if too many features have been 
selected.  

  5.1.2.2   Constraints in Predictive Toxicology     Toxicological experiments 
are frequently expensive, time - consuming, and may require a large number of 
animal experiments. Therefore, it is usually impossible to create experimental 
data for congeneric series specifi cally for (Q)SAR modeling. For this reason, 
most toxicological (Q)SARs have to rely on existing data sets, which are in 
many cases very diverse in respect to structure, biological mechanisms, data 
origin, and quality. 

 Fortunately, publicly available structural and biological databases (e.g., 
PubChem [ http://pubchem.ncbi.nlm.nih.gov/ ], Toxnet [ http://toxnet.nlm.nih.
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gov/ ], DSSTox [ http://www.epa.gov/nheerl/dsstox/ ]) have grown substantially 
in recent years. Despite this wealth of information, databases are often char-
acterized by the following properties that make modeling diffi cult: 

 •      The chemicals are not congeneric; i.e., they do not share a common sub-
structure and act by a common mechanism.  

 •      The activities are noisy with missing values.  
 •      The activity distributions are skewed and/or have other non - normal 

properties.  
 •      A substantial amount of toxicity data is confi dential and is not accessible 

to the general public.    

 With data mining techniques from artifi cial intelligence research, it is possible 
to use information from diverse databases much more effi ciently than tradi-
tional (Q)SAR approaches that rely on congeneric compounds. Many of these 
techniques can be seen as automation of various aspects from the (Q)SAR 
modeling process. They work similar to a human (Q)SAR expert, who sepa-
rates the training set into subsets with similar mechanisms, selects and calcu-
lates chemical features, and builds (Q)SAR models for the individual subsets. 
Many of them can be also seen as an attempt to base scientifi c decisions on 
sound statistical criteria.  

5.1.2.3 Data Mining in ( Q)SAR Modeling Data mining can be described 
as fi nding nontrivial, previously unknown, and potentially useful information 
in large amounts of data. In predictive toxicology, data mining techniques can 
be used for all model building tasks that will be described in the following 
sections. It is, e.g., possible to create, aggregate, and select relevant features, 
to group chemicals according to their similarity, or to create complex predic-
tion models. In this context, we see traditional (Q)SAR techniques also as 
data mining tools that identify linear models in databases with chemical fea-
tures and experimental toxicity data.   

  5.1.3   ( Q ) SAR  Model Development 

 Independent of algorithmic and implementation details, the process of (Q)
SAR modeling can be subdivided into fi ve basic steps:

  Feature generation    →    feature selection    →    model learning    →    model 
validation    →    model interpretation   

 The following sections will be organized according to this sequence, but we 
can also refi ne the whole procedure into more detail: 

  1.     defi nition of the goal of the project and the purpose of the (Q)SAR 
models;  

  2.     creation or selection of the training set;  
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  3.     checking the training set for mistakes and inconsistencies and perform-
ing corrections;  

  4.     selection of the features relevant to the project (by expert knowledge or 
data mining);  

  5.     selection of the modeling technique;  
  6.     exploratory application and optimization of the modeling and feature 

selection techniques to see if it provides useful results;  
  7.     application of the selected and optimized techniques to the training set;  
  8.     interpretation of the derived model and evaluation of its performance; 

and
  9.     application of the derived model, e.g., to predict the activity of untested 

compounds, or an external test set with known activity values.    

 It is usually impossible to use all features because they are highly correlated 
and contain much noise. A high - dimensional feature space is also sparsely 
populated and hardly interpretable. For this reason, a thorough selection of 
features is extremely important (step 4). This can be achieved through a com-
bination of objective feature selection and a further refi nement step (projec-
tion - based or supervised method). 

 Steps 5 – 7 employ data mining techniques for distance weighting and dis-
tance measures as well as for similarity measurements and regression. 

 A software package that implements a rather complete (Q)SAR solution 
using data mining methods is Waikato Environment for Knowledge Analysis 
(WEKA)  [4]  ( http://www.cs.waikato.ac.nz/ml/weka/ ). There are also several 
packages that make chemoinformatics libraries written in other languages 
available in R  [1,5] . A high - level visual workfl ow approach to data exploration 
and analysis with interfaces to both WEKA and R is KNIME, the Konstanz 
information miner ( http://www.knime.org/ ). The OpenTox project ( http://
www.opentox.org/ ) aims to build an open source framework for predictive 
toxicology. It will incorporate many of the tools mentioned in this chapter 
together with automated validation routines and facilities to build graphical 
user interfaces. 

5.1.3.1 Criteria for the Selection and Evaluation of Data Mining 
Algorithms  The Organisation for Economic Co - operation and Development 
(OECD) has developed acceptance criteria for (Q)SARs for regulatory pur-
poses  [6,7] . Specifi cally, these are 

  1.     a defi ned end point;  
  2.     an unambiguous algorithm with a clear description of the mathematical 

procedure;  
  3.     a defi ned applicability domain with descriptor and structure space 

defi nitions;  
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  4.     measures of goodness of fi t ( r ), robustness ( q2 ) and predictivity (external 
prediction); and  

  5.     a mechanistic interpretation shall be given, if possible.    

 These rather broad criteria contain essential aspects of good practice in (Q)
SAR modeling. However, for the purpose of data mining applications, these 
criteria are rather general and do not provide enough algorithmic details for 
their implementation. Within the following sections, we will propose formal 
defi nitions and algorithms for OECD criteria, especially for the assessment of 
feature space properties, applicability domains, and model validation (items 
3 and 4).

 The following section will provide more detail about the individual steps 
that are involved in the development of predictive toxicology models.    

  5.2   FEATURE GENERATION 

 The goal of feature generation is the description of chemical structures. There 
is no set of universal features that describes a compound equally well for all 
purposes. 

 The classical (Q)SAR methods (Hansch analysis and Free – Wilson) both 
employ multiple linear regression to build a model. Hansch analysis was 
historically used to derive a statistical relationship between measured quanti-
ties of chemicals and toxicological activities exhibited by those chemicals. 
The octanol – water partition coeffi cient (log  P ), for example, is closely related 
to lipophilicity and describes the ability of a chemical to pass membranes in 
the body. It is therefore correlated with many toxic effects and can be used 
to statistically model these end points. Hansch analysis uses physicochemical 
properties and substituent constants, while Free – Wilson uses chemical frag-
ments derived from the 2 - D structure. Such descriptors can be (among 
others)

  1.     Structural properties (structural alerts/substructures from general 
feature mining):  

   a.     structural alerts from experts (substituent constants),  
   b.     hybrid (refi nement of structural alerts by data mining techniques),  
   c.     substructures derived by graph mining algorithms, and  
   d.     spectroscopic data;    

  2.     Experimental and calculated physicochemical properties, quantum 
chemical parameters or graph theoretical indices (electronic, hydropho-
bic, or steric), e.g., log  P , pKa: 
    a.     measured biological properties, e.g., from short - term assays, high -

 throughput screening,  - omics data  .      
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 Structural properties can be obtained directly from chemical compounds and 
are called primary features, while experimental or calculated quantities are 
called secondary features. 

 The selected feature type affects not only the predictive performance but 
also the biological rationale for the algorithm and the interpretation of indi-
vidual predictions. The interpretability of models and predictions benefi ts 
from features that are well known to chemists and toxicologists and that have 
a clear mechanistic relevance. 

 From a statistical point of view, it is important to classify features as quali-
tative or quantitative. Qualitative features indicate the presence or absence 
of some feature, while quantitative features give a measured or calculated 
amount on some numerical scale. Structural features are frequently qualita-
tive, e.g., they indicate the presence or absence of some substructure, and 
experimental features are frequently quantitative. Historically, both types 
were used and models are referred to as either SAR or QSAR for qualitative 
and quantitative features, respectively. Hansch and Free – Wilson analyses use 
quantitative and qualitative features, respectively (Fig.  5.2   )  . 

 Open source software projects that provide chemical toolkits and libraries 
for feature generation and for many other purposes are associated in the blue 
obelisk group  [8] , e.g., OpenBabel, CDK, JOELib ( http://www.blueobelisk.
org/ ).  
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     Figure 5.2     Features obtained from a chemical. Upper: qualitative primary features 
(SAR), below: quantitative secondary features (QSAR).  
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  5.3   FEATURE SELECTION 

 Traditionally, the (Q)SAR modeler has to use his/her knowledge about toxi-
cological mechanisms to decide which features will be included in a (Q)SAR 
model. Especially with complex and poorly understood toxic effects, the selec-
tion of features is likely to be incomplete and error prone. With data mining, 
we can use objective criteria to select relevant features automatically from a 
large set of features in order to fi lter out noise and to fi nd informative patterns 
within the data. Using a large feature space together with objective criteria 
for feature selection reduces the risk of ignoring important features and allows 
an automated detection of new structural alerts. A basic understanding of 
statistical tests is vital for the application of feature selection algorithms  [9] . 

  5.3.1   Unsupervised Techniques 

 Methods that do not consider toxic activities (the dependent variable) are 
called unsupervised techniques. They remove redundant information and/or 
construct fewer, more informative features. Table  5.1  lists some popular unsu-
pervised techniques for feature selection.   

 With objective feature selection, each pair of features is compared. This is 
usually implemented by iteratively adding features to the data matrix X when 
they pass the tests. In SAR modeling, i.e., with qualitative features, objective 
feature selection can contain identity, zero and singularity tests, checking for 
features that occur in the same structures and for features that do not occur 
or occur only once in the training compounds. In QSAR modeling, i.e., with 
quantitative features, it is possible to check for standard deviation (a feature 
carries little information when it has a low standard deviation), singularity 
(where the values are the same for all compounds except one), and 
correlation. 

 Cluster analysis is a procedure for grouping together similar features in 
clusters, thus enabling the algorithm to pick one representative for each 
cluster. The problem is to decide  a priori  how many groups should be built as 
this depends to a large extent on the data. Most popular are techniques that 
recursively partition the features. A very advanced technique is known as 
self - organizing maps  [10] . Computational complexity varies greatly for these 
approaches. 

 TABLE 5.1     Some Popular Unsupervised Techniques for Feature Selection 

   Name     Theory of Operation     Retains Features?  

  Objective feature selection    Selects features iteratively    Yes  
  Cluster analysis    Group correlated features    Yes  
  Principal component analysis    Projects data to a lower 

dimension
  No  
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 Principal component analysis is a projection of the data to a lower - 
dimensional vector space, thereby eliminating correlations between features. 
It works by fi nding the eigenvalues and eigenvectors of the covariance matrix 
of X . A rotation matrix is created that projects the data into the vector space 
made up by the most infl uential eigenvectors (the principle components), 
accounting for most of the data ’ s variance. Usually, a decision is made before-
hand for a specifi c percentage of variance and the algorithm uses only the most 
infl uential eigenvectors to reach this threshold. By not using all eigenvectors, 
data compression through dimensionality reduction is achieved. The amount 
of compression depends on the correlation within the original data. Principal 
component analysis is a frequently applied technique and well documented 
 [11] . It is available as a function in R  [1] . 

 Using principal component analysis harms the interpretability of a model, 
as the original feature space gets lost. However, the loadings can be inspected 
to assess the infl uence of the original features present in the principal compo-
nents. Objective feature selection and clustering techniques are well behaved 
in this respect. Unsupervised techniques are not prone to overfi tting since only 
redundant information is removed.  

  5.3.2   Supervised Techniques 

 Supervised feature selection tries to select features that correlate well with the 
dependent variable, i.e., the activities. In the SAR case (i.e., with qualitative 
features), it is possible to assign signifi cance values to features which can be 
used as a preprocessing step to selection, and this is discussed fi rst  . Similar 
techniques are available for quantitative features. Signifi cance values for fea-
tures are also valuable when it comes to model building. 

5.3.2.1 Signifi cance Tests  Given two different sets of compounds (e.g., 
compounds with/without a certain substructure), it is interesting to fi nd out 
whether the two samples differ signifi cantly in respect to their toxicological 
activities. The activity values form sample distributions and we can use statisti-
cal tests to fi nd out if the distributions of both sets differ signifi cantly (see Fig. 
 5.3 ). If the difference is signifi cant, it is possible that the investigated substruc-
ture contributes to the toxic activity. This association is of course purely sta-
tistical, and human expert knowledge is still needed to determine the exact 
biological mechanisms.   

 A popular choice for the comparison of qualitative results (e.g., carcinogen/
noncarcinogen classifi cations) is the  χ2  test, whereas the Kolmogorov – Smirnov 
test can be used for the comparison of qualitative data (e.g., LD 50  values). The 
probability ( p  value) that an observed difference is due to chance can be cal-
culated from the test statistics. A common signifi cance threshold is 0.05, which 
means that one false positive is accepted in 20 cases. 

 If multiple tests are performed (e.g., for the evaluation of sets of substruc-
tures), the  p  values have to be corrected. If  p  is the signifi cance threshold for 
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a specifi c test, then 1    –     p  is the probability of drawing a negative feature  f i  . 
For  n  independent tests, the probability that no single test is positive for  f i   is 
(1    –     p )  n  , which converges to 0 for growing  n . This increases the probability of 
type I errors (false discovery rate). A simple correction is the Bonferroni cor-
rection, which divides each  p  value by  n . More sophisticated methods to 
control the false discovery rate exist  [12] . In settings where the absolute values 
are less important than rankings, corrections can be omitted. There exists an 
R package for multiple tests (multitest)  [13]  that features also functions for 
permutation tests, bootstrapping, and jackknifi ng procedures that increase the 
reliability of tests. 

 The set size is very important for signifi cance tests. A set size below 12 is 
usually considered  “ very small, ”  and that below 30 is  “ small. ”  Mean values 
differ greatly for very small sets and are still unstable for small sets  [9] . In 
other words, to avoid chance effects, no signifi cance tests should be performed 
for very small sets. For small sets, permutation tests can be helpful.  

  5.3.2.2   Supervised Selection     In supervised feature selection, a particular 
selection of features is evaluated and assigned a score (reward signal). This 
process is iterated many times to identify an optimal feature set. This makes 
the method computationally expensive and bears the danger of overfi tting the 
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     Figure 5.3     A comparison of the cumulative activity distributions of two sets of activity 
values  x  and  y  with sizes 100 and 35, respectively. The mean value of  x  is 1.0; the mean 
value of  y  is 2.0. It is highly unlikely (Kolmogorov – Smirnov test gives  p    =   0.0001319) 
that  x  and  y  have been drawn from the same data source.  
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selection with respect to the training data, reducing the ability to predict 
external data. Signifi cance tests for features can be used as a preliminary step 
for supervised feature selection, which is a special case of reinforcement learn-
ing  [14] . Table  5.2  lists some popular supervised techniques for supervised 
feature selection.   

 The naive approach in supervised feature selection is to evaluate all pos-
sible subsets of features. However, most of the time, this is computationally 
too expensive.  Forward selection  starts with an empty set of features and suc-
cessively adds features that increase the fi t, starting with the most signifi cant 
features. But forward selection has drawbacks, including the fact that each 
addition of a new feature may render one or more of the already included 
features nonsignifi cant. Backward elimination goes the other way round: it 
starts with all features and removes those that have little contribution to the 
model. This method also has limitations; sometimes features that would be 
signifi cant when added to the fi nal reduced model are dropped. Stepwise selec-
tion is a compromise between the two methods, allowing moves in either 
direction. 

Simulated annealing  switches in each iteration to a different selection of 
features with a probability that depends on the goodness of fi t and a  “ tem-
perature ”  parameter,  t . The lower the fi t and the higher  t , the greater the 
probability for switching.  t  is decreased with every iteration (therefore the 
name) until a certain threshold is reached. The idea is to overcome local 
maxima by  “ jumping. ”  

Genetic algorithm  subset selection successively narrows down the feature 
space by evolutionary means. It recombines pairs of sets of features by mim-
icking crossover and mutation to obtain better features. In each  “ generation, ”  
the remaining candidates are evaluated by a  “ fi tness function ”  and the process 
repeats itself with the more successful ones.    

  5.4   MODEL LEARNING 

  5.4.1   Data Preprocessing 

 Most predictive toxicology techniques do not work directly on raw experimen-
tal measurements but rely on some sort of preprocessing. This can involve 
statistical calculations (e.g., for the determination of TD 50  or LD 50  values) as 

 TABLE 5.2     Some Popular Supervised Techniques for Feature Selection 

   Name     Theory of Operation     Retains Features?  

  Forward selection/backward elimination    Iterative (de)selection    Yes  
  Simulated annealing    Probabilistic selection    Yes  
  Genetic algorithm subset selection    Probabilistic selection    Yes  
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well as expert knowledge (e.g., human carcinogenicity classifi cations) to aggre-
gate replicates, doses, or multiple experiments into a single value. It is impor-
tant to understand the properties and limitations of these techniques before 
attempting to model a derived variable (e.g., Are assumptions behind the 
procedures verifi ed? Are quantitative values good indicators of toxic poten-
cies? Are the results expressed in molar values?). A description of the data 
aggregation procedures should be part of the documentation for the fi rst 
OECD criterium (defi ned end point). 

 A common (Q)SAR practice is to log transform quantitative variables to 
the range of values and to achieve a normally distributed data set. It is still 
important to check the normality assumption for each data set before para-
metric methods are applied. If the normality assumption is not met,  “ binning ”  
the data into discrete values might help. A more generally applicable solution 
is to use nonparametric methods that make no assumptions about data distri-
butions (Fig.  5.4   ).    

  5.4.2   Modeling Techniques 

 Table  5.3  lists popular modeling techniques for (Q)SAR regression and 
classifi cation.   

 Multilinear models have been in use for a long time. As linear equations, 
they are easy to use and are relatively straightforward to interpret. For  n  
instances, they are defi ned as the coeffi cients that minimize the error on a 
system of  n  linear equations,

    y b b d i nx mxi im= + + + ∈{ }1 1 1… …, , , ,     (5.2)  

or, in a more compact notation,
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     Figure 5.4     Histogram of original (left) and log - transformed database activities (right).  
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    y X b d= +, ,     (5.3)  

where  〈  �  〉  denotes the normal dot product, and  b  and  d  are the coeffi cients to 
learn. Multilinear models assume linear relationships between features and 
activities; therefore, the expressiveness is limited and the model will perform 
poorly if these conditions are not met. The remaining (nonlinear) models are 
able to fi t diverse data structures (in fact, many can fi t arbitrary data), but are 
frequently too complex for interpretation or have a poor biological rationale. 
Learning can take very long and overfi tting is more likely. For both types of 
neural networks, several decisions have to be made about architecture, learn-
ing rate, and activation functions. 

  Support vector  machines are perhaps the most prominent approach that 
represents the family of kernel - based techniques (kernel machines). Another 
member of this family that is quite new to machine learning are Gaussian 
processes  [21] . Successful approaches have demonstrated that kernel machines 
are more solid than, and can serve as a replacement for, artifi cial neural net-
works in a wide variety of fi elds  [22] . 

 To see how support vector machines work, let us consider a classifi cation 
problem, i.e.,  y    =   { − 1, +1}  n  . The same techniques are applicable to regression 
or principal component analysis or any other linear algorithm that relies 
exclusively on dot products between the inputs. The prediction  f ( x q  ) is obtained 
by

    f x x b dq q( ) = +( )sign , ,     (5.4)  

where sign(.) denotes the sign of the prediction; i.e.,  f  gives a prediction 
depending on which side of the hyperplane  〈  x ,  b  〉    +    d    =   0 the query structure 
 x q   lies. Finding an optimal separating hyperplane constitutes a quadratic opti-

 TABLE 5.3     Popular Modeling Techniques 

   Name     Theory of Operation  

  Traditional QSARs (Hansch, 
Free – Wilson)  [15]   

  Multilinear regression on physicochemical 
properties/structural features  

  Artifi cial neural networks  [16 – 18]     Nonlinear multidimensional parameterized 
model mimicking the function of neurons  

  Support vector machines  [19]     Robust classifi cation algorithm using 
hyperplanes to split the feature space into 
class regions  

  Decision trees and rule learners  [20]     Hierarchical rules from recursive partitioning 
of the training data  

   k  - Nearest neighbor techniques  [20]     Derive the prediction from the activities of 
structurally similar compounds  
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mization problem. The coeffi cient  b  is then a linear combination of some 
training vector  x i   (the support vector):

    b a y xj i n i i i= =Σ 1… ,     (5.5)  

which allows to rewrite Equation  5.4  as an integration over the training data

    f x a y x x dq i n i i q i( ) = +( )=sign Σ 1… , .     (5.6)   

 The dot product  〈  x q  ,  x i   〉  denotes the cosine of the angle between  x q   and  x i   
(assuming unit length of the vectors). It can thus be seen as a similarity 
measure with geometric interpretation. The dot product is the simplest instance 
of a kernel function. However, support vector machines usually do not perform 
learning in the original feature space. The key is to replace  x q   and  x i   in the 
right - hand side of Equation  5.6  by higher - dimensional representations  ϕ ( x q  ) 
and  ϕ ( x i  ), where  ϕ    :   R  n      →    R  m     with  m     >     n  is called a map. 

 The expression  ϕ ( x ) is not calculated directly in practice due to combinato-
rial explosion. Support vector machines exploit the fact that it only occurs in 
dot products in the algorithms. This allows to bypass direct calculation of the 
map. Instead, a so - called kernel function,  k    :   R  m      ×    R  m      →    R  , is used, which 
calculates  〈  ϕ ( x q  ),  ϕ ( x i  ) 〉  directly in the input space ( “ kernel trick ” ). In fact,  k  
can be any positive defi nite function denoting similarity. The fi nal predictive 
equation is then given by

    f x a y k x x dq i n i i q i( ) = +( )=sign Σ 1… , .     (5.7)    

  5.4.3   Global Models 

 If a model is fi tted to training data in advance, i.e., without knowing the query 
structure, then the model is called  “ global. ”  At query time, global models 
simply evaluate the model function on the training instance to obtain a predic-
tion. Therefore, global models require low memory and give fast predictions 
once the training phase is over. However, complex functions in a high - 
dimensional feature space suffer from data sparseness and are easily overfi t-
ted, thereby destroying its predictive ability for new compounds. 

 Overfi tting is the process of fi tting a model with many parameters too 
accurately to the training data. Despite a perfect fi t for the training data, the 
resulting model has poor generalization capabilities and is not predictive for 
unknown query instances. To avoid overfi tting, it is necessary to use additional 
techniques (e.g., cross validation, Bayesian priors on parameters or model 
comparison that can indicate when further training does not result in better 
generalization). The process of overfi tting a neural network during training is 
also known as overtraining. 

 The effect of data sparseness in high dimensions is due to the so - called 
curse of dimensionality  [23] . Roughly speaking, with increasing dimensions, 
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subsets of the data span a growing subspace that approaches the whole feature 
space rapidly. In other words, with a high number of dimensions, the distance 
between compounds increases and the neighborhoods get sparse.  

  5.4.4   Instance - Based Techniques (Local Models) 

 It is frequently possible to identify congeneric subsets within diverse data sets. 
Such a group of structures can be said to represent a local (Q)SAR. Global 
(Q)SAR methods may not recognize such local relationships if they do not 
use very complex (nonlinear) functions and many features. 

 Local models obtain a prediction for a query structure using its  “ local 
neighborhood ”  rather then considering the whole data set; i.e., they only use 
training compounds that are similar to the query structure with respect to 
some distance measure. They can also use fewer features than global models. 
Local models cannot be built before the query instance is known. Most local 
models not only defer model learning but also defer clustering the training 
compounds into neighborhoods until a query instance is to be predicted. 
Because of that they are also termed  “ lazy. ”  

 With lazy learning, for each distinct query, a new approximation to the 
target function is created. The approximations are local and differ from one 
another; therefore, for the whole feature space, many different approxima-
tions are used at different locations. The single approximations maybe simple 
(e.g., linear), but seen as a whole, they can approximate a complex function. 
They are also robust because they depend only on the data points close to 
the query instance. In contrast to eager learning, the computational burden 
for the prediction is higher, since all the training is done at query time. 

5.4.4.1 Similarity Measures  The idea is to cluster congeneric compounds 
by chemical similarity and to use only the nearest neighbors as training 
instances and/or to weight the contribution by distance. The similarities 
between the query compound and the training compounds are also useful 
for determining applicability domains and prediction confi dences (see 
Section  5.6 ).

 Traditionally, chemical similarity is determined by expert knowledge to 
obtain clusters of congeneric chemicals (chemical classes). The assignment of 
chemical classes is, however, frequently ambiguous and does not necessarily 
refl ect biological mechanisms. For fully automated data mining approaches, a 
wide variety of similarity indices have been proposed  [24] . 

 Willet et al.  [24]  have reviewed 22 structural similarity indices by searching 
databases for chemical analogues. They showed that combinations of descrip-
tors perform best, among them the Tanimoto, the Russel – Rao, the simple 
matching, and the Stiles coeffi cients. They all work on 2 - D fragment bit strings, 
indicating the presence or absence of structural features in a compound. The 
Tanimoto index, for example, calculates the ratio of common features between 
two compounds. 

 For quantitative features, distance - based indices are also well suited 
(Euclidean or Mahalanobis distance). A data structure that can be used for 
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an effi cient calculation are kd - trees (libkdtree++ [ http://libkdtree.alioth.
debian.org/ ]). 

 Chemical similarity can also be assessed by supervised techniques (i.e., by 
taking the training activities into account). The contribution of each feature 
to the Tanimoto index can be weighted, for example, with the  p  values of 
statistical signifi cance tests  [25] .  

  5.4.4.2   Prediction from Neighbors and Distance Weighting     Having deter-
mined the similarities between the query structure and each training structure, 
these values can be used to select a local neighborhood to the query structure 
and to train the model on these compounds only. Different methods are avail-
able for neighbor selection: 

   •      Counting cutoff: Use the  k  nearest neighbors, where  k  is a fi xed number.  
   •      Similarity cutoff: Use the neighbors that are more similar than some fi xed 

similarity threshold.  
   •      Soft selection: Use all compounds and weight their contribution to the 

model by their similarity values, where more similar compounds get 
higher weights. Doing so is no harm to model precision because distant 
training points will have little effect on the approximation. The only 
drawback is that model building takes longer.    

 Of course, distance weighting can also be applied in the cutoff approaches. 
In dense populations, a kernel function is frequently used to additionally 
smooth the similarity. A variety of smoothing functions have been reviewed 
in  [26] . Most widely used are Gaussian kernels of the squared exponential 
form

    sim x x sim x xg i q i q, exp , .( ) = − ( )( )1
2

2     (5.8)   

 This kernel creates a progression phase in the neighborhood and generally 
ameliorates conditions. It can also be stretched by using the general Gaussian 
probability distribution function with adjustable width. 

 The actual prediction can then be obtained by rather simple models, e.g., 
with distance weighted majority votes for classifi cation problems and multi-
linear regression for regression problems. More complex models can be tried 
if the simple approaches do not give satisfactory results.    

  5.5   COMBINATION OF ( Q ) SAR  STEPS 

 Effi cient graph mining techniques are currently a strong research focus of the 
data mining community. As chemicals can be represented as graphs, many of 
these techniques can also be used for chemoinformatics and (Q)SAR 
problems. Most of them focus on the effi cient identifi cation of relevant 
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substructures (combining the feature generation and selection steps) or on 
using graph structures directly for classifi cation/regression. 

  5.5.1   Constraint - Based Feature Selection 

 Complete feature sets can be built by decomposing the structures of the train-
ing set into all subgraphs of a certain type (e.g., paths, trees, graphs). As this 
process is computationally very expensive, various techniques to reduce the 
search space have been developed. Traditionally, size limits have been used, 
but this can lead to the loss of large signifi cant fragments. More recently, 
frequency - based constraints have been introduced (e.g., in MolFea  [27] , 
FreeTreeMiner  [28] , gSpan  [29] , and Gaston  [30] ). The idea is to restrict the 
search space by stating the minimal and/or maximal frequencies in two classes 
of compounds (e.g., carcinogens/noncarcinogens), and the algorithm fi nds 
effi ciently all subgraphs that fulfi ll these constraints. 

 Although restricting the search for substructures by minimum/maximum 
constraints is intriguing at fi rst glance, there are several problems associated 
with this approach: 

   •      The goal of feature selection is to fi nd fragments that are signifi cantly 
correlated with a toxicological outcome. Most graph mining algorithms 
support only monotonic constraints (e.g., minimum and maximum fre-
quencies), but test statistics are usually convex. Although extensions for 
convex functions (e.g.,  χ  2 ) exist, they prune the search space rather inef-
fi ciently in our experience.  

   •      As frequency - based searches use activity information, it is important to 
repeat the search whenever the training set changes (e.g., if a query 
compound has been identifi ed and removed from the database and for 
each fold during cross validation; see Section  5.7 ). Having to repeat the 
fragment search frequently (e.g., for model development or cross - 
validation runs) may render the initial performance advantage useless. 
Storing the complete fragment search and repeating only the selection 
process can be a more effi cient alternative.     

  5.5.2   Graph Kernels 

 Graph kernels have been developed to incorporate graph structures into 
support vector predictions (see Section  5.2 ).The crucial part is to defi ne a 
kernel that indicates the chemical similarity of two compounds (see also 
Section  5.4.1 ). An example that uses substructure fi ngerprints is the Tanimoto 
kernel. For two compounds,  x i   and  x j  , the kernel function is the proportion of 
feature  f  that is shared between  x i   and  x j  :

    k x x
f f x f x

f f x f x
i j

i j

i j

τ , .( ) =
⊆ ∧ ⊆[ ]
⊆ ∨ ⊆[ ]

    (5.9)     



APPLICABILITY DOMAIN 163

 Different techniques have been proposed that work on the adjacency 
matrix of graphs and derive different features (directed or undirected, labeled 
or unlabeled subgraphs, etc.) as well as marginalized graph kernels that obtain 
features from Markov random walks. In practice, support vector machines 
with graph kernels can perform remarkably well (for an extended discussion, 
see, e.g., Reference  31 ).   

  5.6   APPLICABILITY DOMAIN 

  5.6.1   Defi nition and Purpose of Applicability Domains 

 Jaworska et al. defi ne the applicability domain of a (Q)SAR as  “ the physico -
 chemical, structural or biological space, knowledge or information on which 
the training set of the model has been developed, and for which it is applicable 
to make predictions for new compounds ”   [32] . A critical assessment of the 
applicability domain is important to distinguish between reliable and unreli-
able predictions.

 The purpose of applicability domains is to tell whether the modeling assump-
tions are met. With data mining methods, this is a twofold task: (1) Are training 
compounds similar enough to the query instance? (2) How is the descriptor 
space populated (e.g., How dense are the training compounds? Is the query 
compound within the subspace spanned by the training compounds?)?  

  5.6.2   Determination of Applicability Domains 

 In traditional (Q)SAR approaches, the applicability domain is determined by 
the modeled end point and by the selection of compounds and features. In the 
Hansch analysis, for example, features triggering the end point are selected, 
and consequently, the applicability domain consists of compounds that contain 
those features or whose features lie in the respective range, i.e., those that 
belong to a certain chemical class.

 With data mining methods, the practical application of the applicability 
domain concept requires an operational defi nition that permits the design of 
an automatic (computerized), quantitative procedure to determine a model ’ s 
applicability domain. Although up to now there is no single generally accepted 
algorithm for determining the applicability domain, there exists a rather sys-
tematic approach for defi ning interpolation regions  [33] . The process involves 
the removal of outliers with the help of a probability density distribution 
estimation using different distance measures. When using distance metrics, 
care should be taken to use an orthogonal and signifi cant feature space. This 
can be achieved by a different means of feature selection and by successive 
principal component analysis. 

 For practical applications, a viable approach consists of two steps: (1) trans-
form the training data so that the feature space has acceptable properties (low 
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dimensionality and orthogonality) and (2) generate a probability density 
allowing to assess important aspects of the distribution. More specifi cally, the 
following steps can serve as a guide toward a reliable confi dence index: 

   •      Create a low - dimensional, orthogonal feature space and prune redundant 
information with objective feature selection followed by principal com-
ponent analysis with a threshold for variance loss. The optimal threshold 
can be estimated by cross validation.  

   •      For normally distributed training compounds, create a probability density 
distribution estimation, taking into account the data ’ s  “ shape ”  using 
Mahalanobis distance,  D M  , defi ned as

    D x x R xM i i X x i X( ) = −( ) −( )−μ μT 1     (5.10)     

for any data point  x i  , where  μ   x   is the center of the distribution  X  and  R x   is the 
covariance matrix of the data. Leverage  h , which is directly related to 
Mahalanobis distance, is defi ned as  h ( x i  )   =    D M  ( x i  )/ n     –    1   (see Fig.  5.5 ). For 
non - normally distributed data, nonparametric methods have to be applied 
 [33] : 

   •      Identify if the query compound is an outlier with the estimated density 
distribution. As a rule of thumb, a compound,  x   i  , is an outlier if 
 h ( x i  )    >    2 p / n   , where  p  is the number of parameters in the model  [9] .  

   •      Create a confi dence value,  c , for every prediction by combining density 
distribution estimates and a global chemical similarity index (e.g., 
Tanimoto index). Typically, a well - spread neighborhood in feature 
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     Figure 5.5     Probability density estimation using Euclidean distance (left) and 
Mahalanobis distance (right) (taken with permission from Reference  33 ).  
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space combined with high chemical similarity should give high - quality 
predictions. Typical implementations use a fi xed ratio of chemical 
similarity and density distribution estimation to determine the confi -
dence. By convention,  c  ranges between 0 (lowest confi dence) and 1 
(highest confi dence).      

 A recent approach in this direction, termed  “ automated lazy learning 
QSAR, ”  achieved high accuracy using an automatically calculated applicabil-
ity domain from distributional properties of the training set  [34] . Specifi cally, 
the applicability domain incorporated the average (Euclidean) distance and 
standard deviation of distances to the center of the distribution. To account 
for chemical similarity, the lazy learning approach used similarity weighting 
based on Gaussian kernels. 

 Suitable open source software for these purposes is available from the R 
project  [1] .   

  5.7   MODEL VALIDATION 

 The goal of model validation is to evaluate the performance for untested 
compounds, i.e., the predictive power of the model. This step is often inter-
leaved with applicability domain estimation: by predicting compounds, it can 
be assessed how well the applicability domain discriminates between good and 
bad predictions. 

  5.7.1   Validation Procedures 

5.7.1.1 Retrofi tting the Training Set  Especially with multilinear (Q)SAR 
models, predicting the compounds in the training set is still a popular  “ valida-
tion ”  method, although this technique does not evaluate the performance for 
unseen instances. The problem is less obvious for multilinear regression 
because it cannot fi t the training data exactly, but many data mining tech-
niques can accommodate any data distribution   (e.g., neural networks). If no 
precautions against overfi tting are taken, they achieve 100% accuracy on the 
training set, but the overfi tted function performs poorly for new predictions. 
For this reason, it is crucial to test every model performance with structures 
that have not been used for model building.  

5.7.1.2 Artifi cial Validation Sets  As it is usually impossible to create 
experimental data for validation purposes, it is common practice is to split the 
available data into training and test sets prior to modeling. The model is 
developed with the training set and the test set is used to validate the model 
prediction. Although the procedure may seem to be simple and straightfor-
ward, there are several possible pitfalls: 
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 •      All test set information has to be excluded from the training set. This 
means that all supervised feature selection methods have to be performed 
only with training set information.  

 •      The composition of the test set has a huge impact on validation results. 
If the test set has many compounds within the applicability domain, pre-
diction accuracies will increase; test sets that are very dissimilar to the 
training set will achieve low accuracies.  

 •      As validation results depend strongly on the test set composition, it 
would be ideal to validate with a test set that has been drawn randomly 
from future prediction instances — unfortunately, these are rarely known 
to the model developer.  

 •      If the training and test set are drawn from the same source, they still 
share common information, e.g., about activity distributions. This will 
lead to overly optimistic results for techniques that derive a priori  prob-
abilities from training set distributions (e.g., naive Bayes).  

 •      If the same test set is used repeatedly for model development and param-
eter optimization, it is likely that the resulting model is overfi tted for a 
particular test set and will perform poorly for other instances.  

 •      There is a trade - off between training and test set sizes: large training sets 
improve the model performance, but large test sets improve the accuracy 
of validation results.    

 We will argue later in Section  5.7.2.3  that the inclusion of applicability 
domains in validation results will resolve some of these problems. To enable 
accurate performance indicators for smaller data sets, cross - validation tech-
niques have been developed. The complete data set is divided into  n  folds. 
Each fold serves once as test set for a model based on the remaining n     –    1 
folds. With this procedure, it is possible to obtain unbiased predictions for 
all compounds of the original data set. It is, however, important to repeat 
feature selection and parameter optimizations within each cross - validation 
fold.  

5.7.1.3 External Validation Sets  The  “ gold standard ”  to evaluate model 
performance is to determine the end point experimentally and to compare the 
results with predictions. In this case, it is impossible to cheat voluntarily or 
involuntarily or to use information about the test set distribution for model 
development. However, external validation sets share two important limita-
tions with other test sets: 

 •      The validation results depend to a large extent on the test set composition 
and on the fraction of compounds within the applicability domain of the 
model.  

 •      Validation results with large test set are more reliable than results from 
small test sets. As a rule of thumb, test sets should contain at least 30 
compounds.      
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  5.7.2   Performance Measures 

 The following discussion of performance measures assumes that a validation 
set  X  of size  n  has been predicted and the goal is to assess the predictive power 
of the model. 

  5.7.2.1   Classifi cation     We assume a twofold classifi cation; i.e.,  f ( x i  ) and  y i   
can only take two possible values, e.g., active and inactive for all  x i    ∈   X . The 
simplest measure for the potential of the model to differentiate between right 
and wrong predictions is precision. It is defi ned as the ratio of correct predic-
tions with respect to a certain confi dence threshold, ad, as

    prec ad
ad

ad
( ) =

( ) = ∧ >
>

x f x y c
x c

i i i i

i i

.     (5.11)       

 A counting statistic can be obtained in a contingency table that counts clas-
sifi cations based on the predicted and database activity. When this data is 
combined with the confi dence value  c i   obtained from applicability domain 
estimation (see Section  5.6 ), a receiver operating characteristic (ROC) curve 
 [35]  can be generated. For every confi dence threshold, ad, it is possible to 
calculate the true positive ratio and the false positive ratio as

    tpr ad
active active ad

active ad
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.   

  (5.12)

   

 The true positive rate, tpr, indicates the sensitivity or recall of the model, 
i.e., how easy the model recognizes actives, and 1    –    fpr indicates the specifi city 
of the model, i.e., how robust it is against false alarms at a confi dence level of 
ad. Plotting tpr against fpr for many possible values of ad between 0 and 1 
gives the ROC curve (see Fig.  5.6 ).   
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     Figure 5.6     An example contingency table and ROC curve  .  
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 An ROC curve shows several things. First, it demonstrates that any increase 
in sensitivity will be accompanied by a decrease in specifi city; i.e., there is a 
trade - off between the two. Second, the closer the curve follows the left - hand 
border and then the top border of the ROC space, the more accurate the 
model, and the closer the curve comes to the 45    °  diagonal of the ROC space, 
the less accurate the model. Furthermore, the slope of the tangent line at a 
specifi c confi dence threshold gives the likelihood ratio for that confi dence 
value of the model. Finally, the area between the curve and the diagonal is a 
measure of model accuracy. This is a very valuable and usable parameter 
because it is nonparametric; i.e., it assumes no specifi c data distribution. 

 ROCR  , a rather powerful library for ROC analysis, which is able to gener-
ate a wealth of performance measures for classifi cation, is available for R  [36] .  

  5.7.2.2   Regression     Choosing a performance measure for regression, i.e., 
when predicting quantitative values, is not so easy because a counting statistic 
is not available. A straightforward and nonparametric measure is the mean 
squared error. It is defi ned as

    mse = − ( )( )
=
∑ x f xi i

j m1

2

…

.   

 The mean squared error should always be calculated as an unambiguous 
performance measure. However, this quantity is sensitive to the overall scale 
of the target values, and it makes sense to normalize by the variance of the 
training activities to obtain the standardized mean squared error (smse). 

 If the sample size is not small (i.e.,  > 30) and the data are normally distrib-
uted, the degree of correlation between predicted and database activities can 
be measured with  r  2 , the squared correlation coeffi cient. For two normally 
distributed variables,  F  and  Y , the correlation coeffi cient is defi ned as

    r F Y
F Y

F Y

,
cov ,

,( ) =
( )

σ σ2 2
    (5.13)  

where   σF
2  is the variance of  F  and   σY

2  is the variance of  Y . More common 
than  r  is  r  2 , the square of  r . It can be interpreted as the proportion of the vari-
ance explained by the model. 

 Generally, the higher the  r  2 , the better the fi t of the model, because  r  2  
describes how well a linear approximation would fi t the plot of pairs of  Y  and 
 F . However,  r  2  can only be applied if the two variables are normally distributed 
 [9,37] , and this has to be verifi ed in every case unless nonparametric alterna-
tives are used. Acceptable values for (Q)SAR models are  r  2     ≥    0.64 ( r     ≥    0.8) 
 [38] . 

 Because of the variability of experimental results, it has been argued that 
the fraction of predictions within one log unit of error (assuming that the data 
is log transformed) is  “ acceptable and closer to regulatory needs ”  than correla-
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tion coeffi cients  [6] . This way, the ease of counting statistics is regained and 
it is possible to perform ROC analysis. Correlation coeffi cients maybe also 
diffi cult to interpret for nonstatisticians (see Fig.  5.7 ).    

  5.7.2.3   Impact of Applicability Domains on Validation Results     The 
purpose of applicability domains is to discriminate reliable from unreliable 
predictions. For individual predictions, a confi dence value can indicate the 
distance to the applicability domain and the expected quality of the prediction. 
The actual confi dence values depend on the composition of the training set 
and on the query structure. 

 For an easier interpretation of results, a cutoff for acceptable confi d-
ence indices (and thus an applicability domain with fi xed borders) can be 
introduced. 

 Validation results depend to a large extent on the test set composition and 
on the fraction of test compounds within the applicability domain. To com-
pensate for this effect, it is advisable to use only the test set compounds within 
the applicability domain for model validation, which gives more consistent 
validation results  [39] . Another alternative would be to weight individual 
predictions with their associated confi dence index. 

 If a counting statistic is available, i.e., a classifi cation of predictions 
into correct and wrong, a very simple tool related to ROC analysis is 
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     Figure 5.7     Left: predicted versus database activities for the FDAMDD (Federal Drug 
Administration Maximum Recommended Daily Dose)   data set (Matthews EJ, Kruhlak 
NL, Benz RD, Contrera JF. Assessment of the health effects of chemicals in humans: 
I. QSAR estimation of the maximum recommended therapeutic dose (MRTD) and no 
effect level (NOEL) of organic chemicals based on clinical trial data.  Curr Drug Discov 
Technol  2004;1:61 – 76) obtained by leave - one - out cross validation. Compounds within 
the applicability domain are drawn black, the rest gray. The error limit of one log unit 
is depicted as parallel to the diagonal. Right: precision versus recall with regard to the 
error limit (unpublished material by the authors).  
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cumulative accuracy (ca). For the  k  predictions with the highest confi dence, 
calculate

    ca =
∗

=

=

∑
∑

c

c

i ii

n

ii

n

δ
1

1

,     (5.14)  

where  δ   i     =   1 if prediction  i  is correct and  δ   i     =   0 else, and  c i   is the confi dence 
of prediction  i . This calculates the confi dence - weighted correct prediction 
ratio and removes the bias induced by high confi dence values from precision 
(see Section  5.7.2.1 ).   

  5.7.3   Mechanistic Interpretation 

 Many (Q)SAR and data mining techniques can be used to derive a hypothesis 
about biological mechanisms. However, it is important to remember that most 
of these techniques have no knowledge about chemical and biological pro-
cesses. Thus, they cannot reason about mechanisms, but they can provide 
information that is relevant for a mechanistic assessment (e.g., structural 
alerts, compounds with similar modes of action). This means that a toxicologi-
cal researcher has to evaluate only a limited number of possible hypotheses, 
but expert knowledge is still needed for the identifi cation of mechanisms. 

 The interpretability of models and individual predictions may depend on 
several factors: 

   •      Model complexity.     Interpretability decreases with model complexity and 
abstraction level, but complex models are frequently needed to accom-
modate for real world situations. It is, however, not always necessary to 
interpret complete models. The extraction of specifi c information (e.g., 
relevant substructures/properties) and the inspection of rationales for 
individual predictions may provide more information for toxicologists 
that complete models.  

   •      Biological rationale for the algorithm.     Most scientists fi nd it easier to 
interpret models that have a biological rationale and/or resemble their 
way of thinking about toxicological phenomena. Techniques based on 
chemical similarities are very useful in this respect because they support 
the search for analogs and chemical classes. A mechanistic hypothesis 
(and a critical evaluation of individual predictions) can be obtained from 
the inspection of relevant features and from the mechanisms of structur-
ally similar compounds.  

   •      Visual presentation of the results.     Most data mining programs are hard 
to use for nondata mining experts and have great shortcomings in the 
visual presentation of their results. End users with a toxicological back-
ground should not be confused with data mining/(Q)SAR terminology 
and with detailed options for algorithms and parameter settings. The 
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interface should provide instead an intuitive and traceable presentation 
of the rationales for a prediction together with links for the access of 
supporting information (e.g., original data, results in other assays, 
literature).      

  5.8   CONCLUSION 

 The most frequent application of data mining in predictive toxicology is the 
development of (Q)SAR models. The development of (Q)SAR models 
requires (1) the generation of features that represent chemical structures, (2) 
the selection of features for a particular end point, (3) the development of a 
(Q)SAR model, (4) the validation of the model, and (5) the interpretation of 
the model and of individual predictions.

 For each of these tasks, a large number of data mining techniques are 
available. Selecting and combining suitable algorithms for the individual steps 
allows us to develop problem - specifi c solutions with capabilities that go 
beyond standardized solutions. However, it is important to understand the 
properties and limitations of the applied techniques and to communicate 
them clearly to the model users.  

  REFERENCES 

1.    R Development Core Team . R: A Language and Environment for Statistical 
Computing R. Foundation for Statistical Computing, Vienna, Austria.  2007 . 
Available at  http://www.R-project.org . ISBN 3 - 900051 - 07 - 0 (accessed June 6, 2008).  

2.     Richard   AM  .  Commercial toxicology prediction systems: A regulatory perspective . 
Toxicol Lett   1998 ; 102 - 103 : 611  –  616 .  

3.     Richard   AM  ,   Williams   CR  . Public sources of mutagenicity and carcinogenicity 
data: Use in structure - activity relationship models    . In:  Quantitative Structure -
 Activity Relationship (QSAR) Models of Mutagens and Carcinogens , edited by 
  Benigni   R  .  Boca Raton, FL :  CRC Press ,  2003 .  

4.     Witten   IH  ,   Frank   E  .  Data Mining: Practical Machine Learning Tools and 
Techniques .  San Francisco, CA :  Morgan Kaufmann .  2005 . Available at  http://www.
cs.waikato.ac.nz/ml/weka/  (accessed August 6, 2008).  

5.     Guha   R  .  Chemical informatics functionality in R .  J Stat Softw   2007 ; 18 : 00  –  00   . 
Available at  http://www.jstatsoft.org/v18/i05  (accessed August 6, 2008).  

6.     Benigni   R  ,   Bossa   C  ,   Netzeva   T  ,   Worth   A  . Collection and evaluation of (Q)SAR 
models for mutagenicity and carcinogenicity. 2007.  http://ecb.jrc.ec.europa.eu/
documents/QSAR/EUR_22772_EN.pdf  (accessed June 25, 2008) . 

7.     Pavan   M  ,   Netzeva   T  ,   Worth   A  .  Validation of a QSAR model for acute toxicity . 
SAR QSAR Environ Res   2006 ; 17 : 147  –  171 .  

8.     Guha   R  ,   Howard   MT  ,   Hutchison   GR  ,   Murray - Rust   P  ,   Rzepa   H  ,   Steinbeck   C  , 
  Wegner   JK  ,   Willighagen   EL  .  The blue obelisk – interoperability in chemical infor-
matics .  J Chem Inf Model   2006 ; 46 : 991  –  998 .  

9.     Crawley   MJ  .  Statistics: An Introduction Using R .  Chichester, UK   :  Wiley ,  2005 .  



172 PREDICTION OF TOXIC EFFECTS OF PHARMACEUTICAL AGENTS

10.     Guha   R  ,   Serra   JR  ,   Jurs   PC  .  Generation of QSAR sets with a self - organizing map . 
J Mol Graph Model   2004 ; 23 : 1  –  14 .  

11.     Jolliffe   IT  .  Principal Components Analysis .  New York   :  Springer ,  2002 .  

12.     Yoav   B  ,   Yekutieli   D  .  The Control of the False Discovery Rate in Multiple Testing 
Under Uncertainty .  Ann Stat   2001 ; 29 : 1165  –  1188 .  

13.     Pollard   KS    Dudoit   S    van der   Laan   MJ  .  Multiple testing procedures: R multitest 
package and applications to genomics . In:  Bioinformatics and Computational Bio-
logy Solutions Using R and Bioconductor , pp.  251  –  272  (edited by   Gentleman   R  , 
et al.).  New York :  Springer Science   +   Business Media ,  2005 .  

14.     Russell   SJ  ,   Norvig   P  .  Artifi cial Intelligence: A Modern Approach ,  2nd edn.   Upper 
Saddle River, NJ   :  Prentice Hall ,  2002 .  

15.     Franke   R  ,   Gruska   A  .  General introduction to QSAR . In:  Quantitative Structure -
 Activity Relationship (QSAR) Models of Mutagens and Carcinogens , edited by 
  Benigni   R .   Boca Raton, FL :  CRC Press ,  2003 .  

16.     Papa   E  ,   Villa   F  ,   Gramatica   P  .  Statistically validated QSARs, based on theoretical 
descriptors, for modeling aquatic toxicity of organic chemicals in  Pimephales
promelas  (fathead minnow) .  J Chem Inf Model   2005 ; 45 : 1256  –  1266 .  

17.     Eldred   DV  ,   Weikel   CL  ,   Jurs   PC  ,   Kaiser   KL  .  Prediction of fathead minnow acute 
toxicity of organic compounds from molecular structure .  Chem Res Toxicol
 1999 ; 12 : 670  –  678 .  

18.     Serra   JR  ,   Jurs   PC  ,   Kaiser   KL  .  Linear regression and computational neural network 
prediction of tetrahymena acute toxicity for aromatic compounds from molecular 
structure .  Chem Res Toxicol   2001 ; 14 : 1535  –  1545 .  

19.     Chang   CC  ,   Lin   CJ  . LIBSVM: A library for support vector machines.  2001 . Software 
available at  http://www.csie.ntu.edu.tw/~cjlin/libsvm  (accessed July 6, 2008).  

20.     Mitchell   TM  .  Machine Learning .  Columbus, OH :  The McGraw - Hill Companies, 
Inc. ,  1997 .  

21.     Rasmussen   CE  ,   Williams   CKI  .  Gaussian Processes for Machine Learning (Adaptive 
Computation and Machine Learning) .  London :    MIT Press ,  2005 .  

22.     Sch ö lkopf   B  ,   Smola   AJ  .  Learning with Kernels .  London   :  MIT Press ,  2002 .  

23.     Bellman   R  .  Dynamic Programming .  Princeton, NJ :  Princeton University Press , 
 1957 .  

24.     Holliday   J  ,   Hu   C  ,   Willett   P  .  Grouping of coeffi cients for the calculation of inter -
 molecular similarity and dissimilarity using 2D fragment bit - strings .  Comb Chem 
High Throughput Screen   2002 ; 5 : 155  –  166 .  

25.     Helma   C  .  Lazy structure - activity relationships (lazar) for the prediction of 
rodent carcinogenicity and salmonella mutagenicity .  Mol Divers   2006 ; 10 : 147  – 
 158 .  

26.     Atkeson   CG  ,   Moore   AW  ,   Schaal   S  .  Locally weighted learning .  Artif Intell Rev
 1997 ; 11 : 11  –  73 .  

27.     Helma   C  ,   Kramer   S  ,   De   Raedt   L  .  The molecular feature miner MolFea .  Proceedings 
of the Beilstein - Institut, Workshop , Bozen, Italy, May 13 – 16,  2002   .  

28.     R ü ckert   U  ,   Kramer   S  .  Frequent free tree discovery in graph data . In:  Proceed-
ings of the ACM Symposium on Applied Computing (SAC 2004) , 2005, 
pp.  564  –  570     .  



REFERENCES 173

29.     Yan   X  ,   Han   J  .  gSpan: Graph - based substructure pattern mining . In:  ICDM  ’ 02: 
Proceedings of the 2002 IEEE International Conference on Data Mining . 
 Washington, DC :  IEEE Computer Society ,  2002   .  

30.     Nijssen   S  ,   Kok   JN  .  The Gaston tool for frequent subgraph mining. Electronic notes 
in theoretical computer science . In:   Proceedings of the International Workshop on 
Graph - Based Tools (GraBaTs 2004)  , vol. 127, issue 1. Elsevier,  2005 .  

31.     Ralaivola   L  ,   Swamidass   SJ  ,   Saigo   H  ,   Baldi   P  .  Graph kernels for chemical informat-
ics .  Neural Netw   2005 ; 18 : 1093  –  1110 .  

32.     Jaworska   JS  ,   Comber   M  ,   Auer   C  ,   Van   Leeuwen   CJ  .  Summary of a workshop on 
regulatory acceptance of (Q)SARs for human health and environmental end-
points .  Environ Health Perspect   2003 ; 111 : 1358  –  1360 .  

33.     Jaworska   J  ,   Nikolova - Jeliazkova   N  ,   Aldenberg   T  .  QSAR applicability domain 
estimation by projection of the training set descriptor space: A review .  Altern Lab 
Anim   2005 ; 33 ( 5   ): 445  –  459 .  

34.     Zhang   S  ,   Golbraikh   A  ,   Oloff   S  ,   Kohn   H  ,   Tropsha   A  .  A novel automated lazy 
learning QSAR (ALLQSAR) approach: Method development, applications, and 
virtual screening of chemical databases using validated ALL - QSAR models . 
J Chem Inf Model   2006 ; 46 : 1984  –  1995 .  

35.     Egan   JP  .  Signal Detection Theory and ROC Analysis .  New York :  Academic Press , 
 1975 .  

36.     Sing   T  ,   Sander   O  ,   Beerenwinkel   N  ,   Lengauer   T  .  ROCR: Visualizing classifi er 
performance in R .  Bioinformatics   2005 ; 21 : 3940  –  3941 .  

37.     Anscombe   FJ  .  Graphs in statistical analysis .  Am Stat   1973 ; 27 : 17  –  21 .  
38.     Cronin   MT  ,   Livingstone   DJ  .  Predicting Chemical Toxicity and Fate .  Boca Raton, 

FL   :  CRC Press ,  2004 .  
39.     Benigni   R  ,   Netzeva   TI  ,   Benfenati   E  ,   Bossa   C  ,   Franke   R  ,   Helma   C  ,   Hulzebos   E  , 

  Marchant   C  ,   Richard   A  ,   Woo   YT  ,   Yang   C  .  The expanding role of predictive toxi-
cology: An update on the (Q)SAR models for mutagens and carcinogens .  J Environ 
Sci Health C Environ Carcinog Ecotoxicol Rev   2007 ; 25 : 53  –  97 .   





 CHEMOGENOMICS - BASED DESIGN 
OF  GPCR  - TARGETED LIBRARIES 
USING DATA MINING TECHNIQUES  

  Konstantin V.   Balakin   and   Elena V.   Bovina       

                   Table of Contents 
    6.1     Introduction   175  
  6.2     Data Mining Techniques in the Design of GPCR - Targeted 

Chemical Libraries   176  
  6.3     Mining the Chemogenomics Space   181  

  6.3.1     Annotated Libraries   181  
  6.3.2     Technologies Based on Annotated Databases   182  
  6.3.3     Chemogenomics - Based Design of GPCR Ligands   186    

  6.4     Chemogenomics - Based Analysis of Chemokine Receptor Ligands   190 
   6.4.1     Mapping the Chemogenomic Space of GPCR Ligands   190  
  6.4.2     GPCR Target Classes   194  
  6.4.3     Similarity across the Chemokine Receptor Superfamily   195    

  6.5     Conclusion   198  
     References   199           

  6.1   INTRODUCTION 

 Modern chemogenomics is a special discipline studying the biological effect of 
chemical compounds on a wide spectrum of biological targets. Currently, 
insights from chemogenomics are increasingly used for the rational compilation 
of screening sets and for the rational design and synthesis of directed chemical 
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libraries to accelerate drug discovery. However, considering huge amounts of 
existing chemical and biological data (compounds, targets, and assays), analysis 
and effective exploration of the data represent a very complex problem. This 
chapter discusses specifi c issues associated with the chemogenomics - based data 
mining strategies including chemogenomics databases, annotated libraries, 
homology - based ligand design, and design of target - specifi c libraries, in the 
context of G protein - coupled receptor (GPCR) - targeted drug design. 

 GPCRs are the largest family of membrane - bound receptors and are also 
the targets of an estimated 30% of marketed drugs. About 400 GPCRs identi-
fi ed in the genome are considered to be good therapeutic targets  [1,2] . At the 
same time, only 30 receptors are currently addressed by marketed drugs sug-
gesting great potential for the development of novel chemical entities that 
modulate the activity of GPCRs. 

 Over the past few years, numerous computational algorithms have been 
introduced to build a robust basis for the rational design of chemical libraries, 
including GPCR - focused sets. The observed trend is that a molecular diver-
sity alone cannot be considered to be a suffi cient component of a library 
design. High - throughput screening (HTS) of large diversity - based libraries is 
still a common strategy within many pharmaceutical companies for the dis-
covery of GPCR leads. However, as noted by many researchers in the fi eld, 
there is no evidence that high - throughput technologies, including parallel 
synthesis/combinatorial chemistry and HTS, provided the expected imped-
ance to the lead discovery process  [3,4] . A number of computational 
approaches have been implemented for the design of GPCR - focused libraries. 
These include pharmacophore and target structure - based design strategies, 
approaches based on specifi c structural recognition motifs, and specifi c 
methods of data mining  . 

 Despite successful application in several lead discovery programs  [5,6] , 
practical utility of the target structure - based approach in the screening 
of GPCR - biased chemical libraries is still limited. This is presumably due to 
the lack of structural data, detailed knowledge of the ligand binding mode, 
and inherent issues concerning scoring functions. In addition, there are 
specifi c concerns associated with particular classes of GPCRs. For example, 
assembly of meaningful compound sets targeting peptidergic G protein -
 coupled receptors ( p GPCRs) still poses a considerable challenge. In this situ-
ation, rapid, reliable, and conceptually simple ligand - based strategies are of 
importance, especially for cases when the structural information is scarce. 

 Knowledge - based data mining methods discussed in the following section 
successfully complement modern strategies in GPCR - directed drug discovery.  

  6.2   DATA MINING TECHNIQUES IN THE DESIGN OF  GPCR  -
 TARGETED CHEMICAL LIBRARIES 

 Dimensionality reduction techniques belong to a powerful cluster of methods 
in data mining, which can identify nonobvious relevant information for 
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further exploitation. In the case of compounds represented either by fi nger-
prints or by a number of descriptors, a set of available data is multidimen-
sional. To explore such information, it is necessary to map the data points 
into two - dimensional (2 - D) or three - dimensional (3 - D) space. The aim of the 
mapping procedure is to preserve the topology of the multidimensional 
matrix, so that data points that are close together in the multidimensional 
environment are accurately represented by the space with a reduced number 
of variants. 

 There are several methods for projection computation based on neural and 
statistical approaches. Specifi cally, topology -  and distance - preserving map-
pings, e.g., self - organizing feature map of Kohonen  [7]  or distance - preserving 
nonlinear mapping of Sammon  [8]  (discussed in Chapter  16  of this book), are 
well suited for data visualization and data mining purposes. 

 As an illustration, Savchuk et al. used self - organizing maps (SOMs) for 
analysis and visualization of different groups of GPCR ligands based on seven 
calculated molecular descriptors  [9] . In this experiment, tachykinin NK 1  antag-
onists (1400 compounds), muscarinic M 1  agonists (563 compounds), and  β3  -
 adrenoceptor agonists (433 compounds) appeared to be clustered at distinctly 
different areas of the map. Such maps for particular groups of ligands can be 
used for predicting potential subtype - specifi c activity. 

 A virtual screening procedure based on a topological pharmacophore 
similarity and SOMs was applied to optimizing a library of P 1  purinergic 
human A 2A  receptor antagonists  [10] . Initially, a SOM was developed using 
a set of biologically tested molecules to establish a preliminary structure –
 activity relationship (SAR). A combinatorial library design was performed 
by projecting virtually assembled new molecules onto the SOM. A small 
focused library of 17 selected combinatorial products was synthesized and 
tested. On average, the designed structures yielded a threefold smaller 
binding constant ( ∼ 33 versus  ∼ 100   nM) and 3.5 - fold higher selectivity (50 
versus 14) than the initial library. A most selective compound revealed a 
121 - fold relative selectivity for A 2A  versus A 1 . This result demonstrated that 
it was possible to design a small, activity - enriched focused library with an 
improved property profi le using the SOM virtual screening approach. The 
strategy might be particularly useful in projects where structure - based design 
cannot be applied because of a lack of receptor structure information, for 
example, in the many projects aiming at fi nding orphan G protein - coupled 
receptor (oGPCR) modulators. 

 By contrast to SOM, nonlinear maps (NLMs) represent all relative dis-
tances between all pairs of compounds in the 2 - D version of a descriptor space. 
The distance between two points on the map directly refl ects similarity of 
compounds. NLMs have been initially used for the visualization of protein 
sequence relationships in 2 - D and for comparisons between large compound 
collections, represented by a set of molecular descriptors  [11] . 

 Differences between several receptor - specifi c groups of GPCR ligands 
were investigated by using Kohonen SOMs  [9] . Because of some problems in 
the analysis of multidimensional property spaces inherent to Kohonen SOM 
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methodology, the same team of researchers performed a complementary 
study using the algorithm of nonlinear mapping (N.P. Savchuk, S.E. Tkachenko, 
and K.V. Balakin, unpublished data). The specifi c aim of this work was to 
discriminate synthetic small - molecule ligands to  p GPCRs and nonpeptidergic 
G protein - coupled receptors (non -  p GPCRs). As input variables, electrotopo-
logical state (E - state) indices  [12]  were used, which encode information about 
the both topological environment of an atom and the electronic interactions 
resulting from all other atoms in the molecule. Unlike other types of molecular 
descriptors, E - state indices are easily and unambiguously calculated, and, at 
the same time, they encode some essential molecular features characterizing 
the topology, polarity, and hydrogen - bonding capabilities of a molecule. A 
593 - compound database of known GPCR modulators was collected including 
both launched drugs as well as compounds that entered preclinical and clinical 
trials. Two nonoverlapping data sets were included in the database: the fi rst 
data set consisted of 186 p GPCR ligands; the second data set included 407 
agents active against non -  p GPCRs. A total of 24 E - state indices were calcu-
lated for each molecule. 

 Figure  6.1  shows distributions of compound categories on the Sammon 
map. Small - molecule  p GPCR ligands are shown as black circles and non -
p GPCR - active drugs are indicated as white circles. There are clear differences 

Figure 6.1     Nonlinear map illustrating the differences between small - molecule syn-
thetic ligands to peptidergic (black circles) and nonpeptidergic (white circles) GPCRs 
expressed in terms of atomic electrotopological state.  
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in their location. Shown structures and locations of three launched  p GPCR -
 active drugs (on the left) and three non - pGPCR - active drugs (on the right) 
provide some visual clues for their discrimination. In general,  p GPCR ligands 
are topologically more complex and have an increased number of polar func-
tional groups. This method provides a reasonable basis for the assessment of 
the p GPCR activity potential. For example, it can be used as a computation-
ally inexpensive virtual fi ltering procedure in the design of  p GPCR - targeted 
libraries. The described exercise also illustrates the increased complexity of 
synthetic p GPCR ligands, expressed in terms of atomic E - state, as compared 
to non -  p GPCR ligands.   

 Recently, Vogt and Bajorath reported the design of target - selective chemi-
cal spaces using CA - DynaMAD, a mapping algorithm that generates and 
navigates fl exible space representations for the identifi cation of active or selec-
tive compounds  [13] . The algorithm iteratively increases the dimensionality of 
reference spaces in a controlled manner by evaluating a single descriptor per 
iteration. For seven sets of closely related biogenic amine GPCR antagonists 
with different selectivity, target - selective reference spaces were designed and 
used to identify selective compounds by screening a biologically annotated 
database. 

 The modern computational tools provide interactive, fast, and fl exible data 
visualizations that help analyze complex structure – activity dependencies. 
However, visualization alone is often inadequate when large numbers of data 
points need to be considered. Powerful data mining methods that are to search 
for meaningful intervariable relationships in large multidimensional databases 
are now being used for the design of GPCR - targeted libraries. 

 Recursive partitioning (RP) is simple yet powerful statistical method of 
choice for the analysis of SAR in large complex data sets  [14,15] . In the fi eld 
of GPCR - targeted library design, RP algorithm was used for the analysis of a 
large number of μ  - opioid receptor ligands  [16] . It was shown that the opti-
mized RP model  “ discovered ”  the existence of the two main ( “ morphine - like ”  
and  “ meperidine - like ” )  μ  ligand subtypes, represented as the two main  “ active 
nodes ”  of the receptor modulator tree. 

 The RP technique can also be applied to a sequential screening  [17]  of 
compound libraries for a particular GPCR activity. The sequential approach 
screens compounds iteratively for activity, analyzes the results, and selects a 
new set of compounds for the next screening round based on a previous data 
set. The purpose of this iterative process is to maximize information about 
ligand – receptor interactions and to minimize early - stage discovery costs. 
Jones - Hertzog et al. employed the sequential approach to the analysis of 
data obtained from 14 GPCR assays  [18] . Several cycles of screening appeared 
to be more effi cient than screening all the compounds in a large collection. 

 Another study  [19]  was focused on GPCRs that are activated by positively 
charged peptide (GPCR - PA + ) ligands. Using special partitioning algorithm 
based on fi ve calculated molecular descriptors, a region of chemical property 
space enriched in GPCR ligands was identifi ed. This information was used to 
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build a  “ test ”  library of 2025 individual compounds to probe space associated 
with the endogenous GPCR - PA +  ligands. The library was evaluated by HTS 
against three different p GPCRs, namely, rMCH, hMC4, and hGnRH. It 
yielded considerably more active ligands (4.5 – 61.0 - fold) compared with a 
control set of 2024 randomly selected compounds. 

 In the past 10 – 15 years, methods based on artifi cial neural networks (ANNs) 
have been shown to effectively aid in the design of target - specifi c libraries. 
Several papers have appeared in the literature that describe successful use of 
different neural network approaches to distinguish different categories of 
GPCR - active compounds in large data sets  [20 – 22] . 

 Researchers from Nippon Shinyaku studied the probabilistic neural 
network (PNN), a variant of normalized radial basis function (RBF) neural 
networks, as a predictive tool for a set of 799 compounds having activities 
against seven biological targets including histamine H 3  and serotonin 5 - HT 2A

GPCRs  [23] . The compounds were taken from the MDL Drug Data Report 
(MDDR) database to represent both distinct biological activities and diverse 
structures. Structural characteristics of compounds were represented by a set 
of 24 atom - type descriptors defi ned by 2 - D topological chemical structures. 
The modeling was done in two ways: (1) compounds having one certain activ-
ity were discriminated from those not having that activity, and (2) all com-
pounds were classifi ed into seven classes corresponding to their biological 
target. In both cases, around 90% of the compounds were correctly classifi ed 
in the internal test sets. For example, in the binary classifi cation task, the 
percentages of correctly classifi ed histamine H 3  and serotonin 5 - HT 2A  ligands 
were 81.4% and 90.8%, respectively. 

 The data mining algorithms mentioned here were successfully employed to 
identify regions of  “ chemical space ”  occupied by GPCR ligands. These rela-
tively inexpensive and comprehensive algorithms correlating molecular prop-
erties with specifi c activities play an increasingly signifi cant role in chemical 
library design. The ability to identify compounds with the desired target -
 specifi c activity and to optimize a large number of other molecular parameters 
(such as absorption, distribution, metabolism, and excretion/toxicity [ADME/
Tox] related properties, lead -  and drug - likeness) in a parallel fashion is a 
characteristic feature of these methods. In the latter case, library design can 
be considered a multiobjective optimization problem, which has become a 
topic of growing interest over the last decade in the pharmaceutical industry. 
An overview of the general methodology for designing combinatorial and 
HTS experiments rooted in the principles of multiobjective optimization has 
been presented by Agrafi otis  [24] . 

 As further enhancement of data mining strategies, chemogenomics 
approaches provide novel opportunities in the design of targeted libraries 
through better understanding of the relationships between GPCR sequence 
and compounds that interact at particular receptors. In the following section, 
we describe key technologies that have been developed to date in the fi eld of 
chemogenomics - based drug discovery.  
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  6.3   MINING THE CHEMOGENOMICS SPACE 

  6.3.1   Annotated Libraries 

 A key specifi c tool usually used in chemogenomics - based applications is anno-
tated libraries, which can be defi ned as chemical databases of compounds 
tested in a variety of biological assays such as an extensive series of gene 
expression analyses,  in vitro  and  in vivo  target - specifi c activity assays, phar-
macokinetics and toxicity experiments, and other similar data collected from 
scientifi c literature to yield an integrated chemoinformatics system. Such 
annotated libraries allow for the annotation - based exploration of the informa-
tion - rich space. To address this need, most of the developed technologies 
based on annotated libraries integrate chemical database management plat-
forms with data mining and modeling tools making it possible to establish the 
relationships between chemical structures and their multiple biological activ-
ity profi les. 

 Historically, one of the fi rst attempts to analyze a complex annotated 
ligand – target space was the work published in 1997 by Weinstein et al.  [25] . 
The authors proposed a general concept of  “ information - intensive approach ”  
for the analysis of biological activity patterns in the National Cancer Institute ’ s 
(NCI ’ s) screening panel. Recent years witnessed rapid development and mat-
uration of technologies based on annotated libraries  [26 – 29] . Notably, this 
progress was paralleled by the technological advances in combinatorial chem-
istry, HTS, cheminformatics, protein crystallography, and data mining. As a 
drug discovery tool, the annotated libraries can be used in a wide variety of 
applications. 

 For example, NCI ’ s annotated screening database has been extensively 
analyzed to identify novel antitumor compounds with better potential for suc-
cessful clinical trials and for market approval  [30 – 33] . Thus, an extensive study 
of ca. 20,000 compounds tested against 80 of NCI ’ s tumor cell lines was per-
formed using Kohonen SOMs  [31] . Figure  6.2  shows a fragment of this map, 
which defi nes locations of several groups of antitumor drugs; this map served 
for generation of hypotheses for the rational discovery of antitumor agents. 
Annotated library was applied for probing a variety of biological mechanisms 
and related biological targets in cellular assays  [34]  and for identifying a bio-
logical target or mechanism of action of a chemical agent  [35] .   

 A classifi cation scheme based on annotated library was used to identify 
cysteine protease targets in complex proteomes and predicts their small - mol-
ecule inhibitors  [36] . Publicly available selectivity data were employed to 
create a chemogenomic kinase dendrogram for 43 kinases  [37] . An annotated 
library representing a map of small molecule – protein interaction for 20 clinical 
compounds across 119 related protein kinases has been created using 
KinomeScan technology  [38] . Using this map, many novel interactions were 
identifi ed, including tight binding of the p38 inhibitor BIRB - 796 to an 
imatinib - resistant variant of the Abl kinase and binding of imatinib to the Src 
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family kinase Lck. Analysis of annotated library directed toward nuclear 
receptors has yielded scaffolds with highly promiscuous nuclear receptor pro-
fi les and nuclear receptor groups with similar scaffold promiscuity patterns 
 [39] . This information is useful in the design of probing libraries for deorpha-
nization of activities as well as for devising screening batteries to address the 
selectivity issues. Researchers at Amphora Discovery Corp. reported the 
design of an annotated knowledge database currently consisting of > 30 million 
data points based on the screening of 130,000 compounds versus 88 targets 
 [40] . 

 Annotated library analyzed with a powerful data mining algorithm can be 
a useful cheminformatics tool to address ADME/Tox issues  [41 – 43] . For 
example, a nonlinear map demonstrated differences in the sites of preferable 
localization of compounds with good human intestinal absorption (HIA) and 
agents well permeable trough blood – brain barrier   (BBB)  [41] . These observa-
tions, which are consistent with the fact that the phenomena of BBB and HIA 
permeability are different in their nature, are valuable in the design of orally 
active drugs, which are not intended to cross the BBB (for example, to avoid 
their central nervous system [CNS] toxicity).  

  6.3.2   Technologies Based on Annotated Databases 

 The mentioned researches demonstrating the value of annotated libraries in 
drug discovery triggered rapid growth of supporting industrial technological 
solutions (Table  6.1 ).    

Figure 6.2     Fragment of Kohonen SOM, which defi nes the location of several tumor -
 specifi c groups of drugs  [31] .  
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 The BioPrint database was constructed by scientists at Cerep using a sys-
tematic profi ling of over 2500 marketed drugs, failed drugs, and reference 
compounds, in a panel of 159 well - characterized  in vitro  assays including 105 
binding assays (nonpeptide, peptide and nuclear receptors, ion channels, 
amine transporters), 34 enzyme assays (10 kinases, 10 proteases, 5 phospho-
dieterases), and 20 ADME/Tox assays (solubility, absorption, Cytochrome 
P450 [CYP] mediated drug – drug interaction). BioPrint also includes a large 
in vivo  data set based on clinical information (therapeutic uses, adverse drug 
reactions, pharmacokinetics, and drug – drug interactions) for nearly all active 
agents. In addition, BioPrint presents a system for understanding the relation-
ships between all in vitro  pharmacology assays in the database and reported 
adverse drug reactions. All  in vitro  data are produced in Cerep ’ s laboratories 

 TABLE 6.1     Technologies Based on Annotated Compound Databases 

   Technology     Company     Type of Technology  

  BioPrint  ®      Cerep,  http://www.cerep.fr/     Totally annotated 
multipurpose database  

  DrugMatrix  ®      Iconix Biosciences, Inc., 
 http://www.
iconixbiosciences.com     

  Totally annotated 
multipurpose database  

  WOMBAT    Sunset Molecular Discovery 
LLC,  http://www.
sunsetmolecular.com/ 

  General - purpose databases 
with experimental data 
obtained from literature  

  StARlite ™     Inpharmatica Ltd.,  http://
www.inpharmatica.co.uk/   

  General - purpose databases 
with experimental data 
obtained from literature  

  WOMBAT - PK    Sunset Molecular Discovery 
LLC,  http://www.
sunsetmolecular.com 

  Annotated databases with a 
focus on ADME/Tox data  

  AurSCOPE ADME/
Drug – Drug 
Interactions, 
AurSCOPE hERG 
Channel

  Aureus Pharma,  http://www.
aureus - pharma.com/   

  Annotated databases with a 
focus on ADME/Tox data  

  Kinase 
Knowledgebase™   

  Eidogen - Sertanty,  http://
www.eidogen - sertanty.
com/   

  Annotated databases with a 
focus on specifi c protein 
targets

  AurSCOPE GPCR, 
AurSCOPE Ion 
Channels, 
AurSCOPE Kinase  

  Aureus Pharma,  http://www.
aureus - pharma.com/   

  Annotated databases with a 
focus on specifi c protein 
targets

  ChemBioBase ™     Jubilant Biosys Ltd.,  http://
www.jubilantbiosys.com/ 

  Annotated databases with a 
focus on specifi c protein 
targets
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with controlled overall data quality including test compound identity, purity, 
and stability. The BioPrint platform integrates proprietary software as well as 
data mining and modeling tools, which make it possible to determine  in vitro
pharmacology and/or ADME patterns that correlate with specifi c biological 
activities or clinical effects (for example, see References 44 – 46). 

 DrugMatrix is a fl agship technology at Iconix ( http://www.iconixbiosci-
ences.com/ ), one of the fi rst comprehensive research tools in the new fi eld of 
toxicogenomics  [43] . DrugMatrix consists of data from profi les on drugs and 
toxic substances using more than 10,000 large - scale gene expression micro-
arrays,  in vivo  histopathology data, molecular pharmacology assays, and 
literature curation studies  [47] . The latest release of DrugMatrix contains the 
profi les derived from administering 638 different compounds to rats. 
Compounds include Food and Drug Administration (FDA) - approved drugs, 
drugs approved in Europe and Japan, withdrawn drugs, drugs in preclinical 
and clinical studies, biochemical standards, and industrial and environmental 
toxicants. Analysis of toxicogenomic data from DrugMatrix allowed to accu-
rately predict 28 - day pathology from the gene expression readout at day 5, a 
time point when classic tools (clinical chemistry and histopathology) showed 
no evidence of toxicity in low - dose protocols  [47] . This work demonstrated 
that genomic biomarkers can be more sensitive than traditional measure-
ments of drug - induced biological effects. 

 BioPrint and DrugMatrix are totally annotated databases based on in -
 house bioactivity assays. Uniform and comprehensive annotations using 
advanced technological platforms create many valuable opportunities for 
pharmaceutical developers. However, a relatively small number of compounds 
in these databases still limit their utility in the design and analysis of novel 
lead chemotypes. 

 Other databases listed in Table  6.1  generally include information collected 
by manual or automatic literature screening, which remains the most popular 
approach for assembling annotated compound libraries. A massive amount of 
information is available in scientifi c literature about the active compounds and 
their biological properties, and thorough analysis of the literature is an essen-
tial yet resource - intensive knowledge generation method. Information from 
the diverse data sources is extracted using expert curators and is then placed 
into a database in a uniform format. The automatic buildup of compound 
annotation can be based on Medline literature reports  [34]  or web - based 
resources screened using special search engines (for example, Aureus Pharma ’ s 
AurQUEST technology). The curated literature information on known bio-
chemistry, pharmacology, toxicology, and other aspects of a drug ’ s activity 
allows users to effectively mine and interpret experimental information related 
to their candidate molecules. 

 World of Molecular Bioactivity (WOMBAT) is a technology developed at 
Sunset Molecular Discovery ( http://www.sunsetmolecular.com/ )  [48] . The 
latest version of WOMBAT (2008.1) contains 220,733 entries (192,529 unique 
SMILES) representing 1979 unique targets, captured from 10,205 papers 
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published in medicinal chemistry journals between 1975 and 2007. Annotated 
WOMBAT - PK database integrates knowledge from target - driven medicinal 
chemistry and clinical pharmacokinetics data. WOMBAT - PK is integrated 
within the WOMBAT database; its current version contains 1125 entries (1125 
unique SMILES), totaling over 6509 clinical pharmacokinetic measurements. 
WOMBAT database was used for prediction of biological targets for chemical 
compounds  [49,50] . 

 StARlite annotated database ( http://www.admensa.com/StARlite/ ) 
launched in 2005 by Inpharmatica comprises information on ca. 300,000 
bioactive compounds including related pharmacology and target information 
abstracted from two journals,  Journal of Medicinal Chemistry  (from 1980 to 
the present) and Bioorganic and Medicinal Chemistry Letters  (from 1991 to 
the present). Chemical structures in StARlite are available in 2 - D and 3 - D 
forms enabling 2 - D and 3 - D searching. There are over 1.3 million activity data 
points, which cover functional, binding, and ADME/Tox assays as well as 
some calculated molecular parameters. There are over 5000 unique molecular 
targets searchable by sequence and by various accession codes such as Swiss -
 Prot  , TREMBL, and GenBank. This database can be used for navigating 
through compound, assay, activity, and target relationships, for obtaining 
target family chemotype portfolios, and for elucidating SAR, selectivity, and 
potency profi les. 

 AurSCOPE  ®   developed at Aureus Pharma is a series of annotated chemi-
cal databases containing biological and chemical information related to a 
given pharmacological effect. Current databases available include AurSCOPE 
Global Pharmacology Space (GPS), AurSCOPE GPCR, AurSCOPE Kinase, 
AurSCOPE Ion Channels, AurSCOPE Nuclear Receptor, AurSCOPE 
Protease, AurSCOPE ADME/Drug – Drug Interactions, and AurSCOPE 
hERG Channel. Using AurSCOPE databases, specifi c  in silico  predictive 
models have been developed, useful for the design of focused libraries with 
decreased hERG - related side effects  [51] , as well as increased kinase  [52]  and 
ion channel  [53]  potency. 

 Kinase Knowledgebase developed at Eidogen - Sertanty is a database of 
biological activity data, SARs, and chemical synthesis data focused on protein 
kinases. It is based on Eidogen - Sertanty ’ s proprietary web - based technology 
for capture, curation, and display of biological activity and chemical synthesis 
data from scientifi c literature and patents. This database currently covers more 
than 4600 journal articles and patents with over 370,000 SAR data points. The 
overall number of unique small - molecule structures for kinase modulators is 
greater than 469,000. The number of kinase targets with assay data is more 
than 390, and the number of annotated assay protocols is more than 16,700. 
Structural data available in Kinase Knowledgebase allow researchers to group 
known kinase inhibitors in scaffold groups and to lay out a project plan around 
patentable chemotypes  [54] . 

 ChemBioBase is a set of annotated target - specifi c ligand databases devel-
oped at Jubilant Biosys Ltd. The ChemBioBase products integrate assay data 
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and target information with chemical structure data collected from published 
patents and articles. Currently available databases are targeted toward protein 
kinases, GPCR, nuclear hormone receptors, ion channels, proteases, and 
phosphodiesterases. 

 It should be noted that the huge amount of literature data is highly hetero-
geneous in terms of organization of publication, scientifi c quality and protocol 
description. The systematic procedure of data collection and analysis should 
ensure that the context is always described as exhaustively as possible, and 
without variation due to publication analysts. A principal problem for many 
technologies from Table  6.1  is a nonuniform annotation of compounds. The 
gaps can create serious diffi culties in data mining and thus reduce practical 
utility of these technologies in the analysis of complex interrelated biological 
activity phenomena. 

 In summary, current industrial technologies based on annotated libraries 
provide valuable possibilities in the design of novel chemistry to improve 
overall lead and library quality. The total activity profi le of a compound in an 
annotated library comprises multiple signatures representing its structure, 
on -  and off - target mechanistic effects, ADME/Tox data, and so on. The key 
problem is how to make use of these profi les in making decisions that improve 
the quality of drug discovery and development.  

  6.3.3   Chemogenomics - Based Design of  GPCR  Ligands 

 Effective identifi cation of high - quality hits and leads across diverse classes of 
GPCR targets can also be based on a systematic analysis of structural genom-
ics data  [55] . Several approaches to explore the chemogenomics knowledge 
space of GPCR ligands and their receptors were recently reported, combined 
with their use in generating GPCR - directed libraries. 

 Researchers at Cerep reported an analysis of properties for more than 500 
drugs screened against 42 targets. Based on this target – ligand database, they 
derived similarity metrics for both targets and ligands based on fuzzy bipolar 
pharmacophore fi ngerprints  [45] . It was observed that ligands to subtypes of 
one target or closely related target families usually have similar ligand binding 
profi les, whereas homologically distant targets (such as 5 - HT - binding GPCRs 
and ion channels), despite the common endogenous ligand, have a different 
ligand binding profi le. 

 BioPrint database developed at Cerep can support medicinal chemists in 
the prioritization of hit series from HTS and in lead optimization stages. It 
can also be used as a computational tool for the development and improve-
ment of SAR models, for  in silico  screening, and for the rational design of 
compound libraries. As an illustration, a QSAR model accounting for 
 “ average ”  GPCR binding was built from a large set of experimental standard-
ized binding data extracted from the BioPrint database (1939 compounds 
systematically tested over 40 different GPCRs)  [46] . The model was applied 
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to the design of a library of  “ GPCR - predicted ”  compounds. To validate the 
model, a 10% sample of the proposed GPCR - targeted library (240 randomly 
selected products) was experimentally assayed for binding on a panel of 21 
diverse GPCRs. A 5.5 - fold enrichment in positives was observed when com-
paring the  “ GPCR - predicted ”  compounds with 600 randomly selected com-
pounds predicted as  “ non - GPCR ”  from a general collection. The obtained 
results suggest the usefulness of the model for the design of ligands of newly 
identifi ed GPCRs, including orphan receptors. 

 Annotated ligand – target libraries provide reference sets for homology -
 based focused library design. Based on the structure – activity relationship 
homology (SARAH) principle formulated by Frye in 1999  [56] , the knowledge 
obtained in the screening experiments for one target could be directly applied 
to lead discovery for its homologues and isoforms. Based on the concept of 
homology - based similarity searching, the researchers at Novartis developed 
an annotation scheme for the ligands of four major target classes, enzymes, 
GPCRs, nuclear receptors, and ligand - gated ion channels for  in silico  screen-
ing and combinatorial design of targeted libraries  [57] . According to their 
approach, the homology - based library design consists of several principal 
steps (Fig.  6.3 A). Initially, gene sequences for targets that have been identifi ed 
by genomics approaches are cloned and expressed as target proteins that are 
suitable for screening. Using the annotated ligand – target database, at least 
one target with known ligands is selected that is homologous to this new target. 
Then the known ligands of the selected target are combined to a reference 
set. Finally, the potential ligands for the new target are searched based on 
their similarity to the reference set.   

 Figure  6.3 B shows a part of this annotation scheme. It contains information 
about the amine - binding class A GPCRs and their ligands. As an example, a 
retrospective in silico  experiment was described, in which 270 dopamine D 2
receptor ligands were used as a reference set. All compounds in the candidate 
set were ranked by their similarity to a reference compound set, and then 
compounds with Tanimoto similarity indices from 1 to 0.6 were analyzed. 
Authors noted that this homology - based similarity search is suitable for the 
identifi cation of ligands binding to receptors closely related to a reference 
system. As an illustration, Figure  6.4  shows structures of dopamine D 2  (left 
column) and serotonin 5 - HT 1A  (right column) receptor ligands as examples 
for structurally similar ligands of two relatively distant amine - binding class A 
GPCRs. The same group of scientists reported modifi ed  [58]  homology - based 
similarity searching based on special molecular representations, so - called 
Similog keys.   

 Another chemogenomics approach to the design of GPCR - targeted 
libraries has been developed by scientists at BioFocus  [59] . Thematic analysis 
defi nes a common consensus binding site for all GPCRs in the upper half of 
the transmembrane (TM) region. Commonly occurring small sets of amino 
acids (themes) are identifi ed from primary sequence overlays and are associ-
ated with ligand fragments (motifs) using SAR information. Multiple themes 
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Figure 6.3     (A) Homology - based targeted library design. (B) Part of ligand – target 
classifi cation scheme (amine - binding class A GPCR) used for homology - based similar-
ity search  [57] .  

have been identifi ed across the GPCR family and these have been associated 
with motifs to create a design tool for combinatorial libraries and lead 
optimization. 

 A combination of chemogenomics and target structure - based approaches 
is expected to lead to an increase in the effi cacy of HTS. Mutagenesis 
and SAR studies furnished the notion of a central binding site consisting of 
three subsites within the TM region of GPCRs  [60] . Using this hypothesis, 
researchers at Biovitrum classifi ed GPCRs via a chemogenomics approach, 
which defi nes the three subsites of the binding sites by manual docking of 
5 - HT, propranolol, and 8 - OH - DPAT into a homology model of the 5 - HT 1A

receptor with experimentally verifi ed interactions as constraints  [61] . The 
chemogenomic classifi cation was followed by a collection of bioactive molec-
ular fragments and virtual library generation. By applying the strategy to the 
serotonin 5 - HT 7  receptor, a focused virtual library with 500 members was 
created. To evaluate the library, compounds active at the 5 - HT 7  receptors 
were collected from the literature. Furthermore, a virtual library was created 
from all commercially available building blocks of a similar composition to 
assess the benefi t of the design process. Principal component analysis of 
molecular descriptors suggested library focus to the region in the chemical 
space defi ned by the reported actives. An enrichment factor in the range of 
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2 – 4 was reported for the 5 - HT 7  - targeted library when compared to the refer-
ence library. 

 Using an annotated set based on screening of 130,000 compounds versus 
88 different targets  [40] , multiple chemical scaffolds were identifi ed, allowing 
for prioritization and expanding SAR through medicinal chemistry efforts. 
Target selection in the annotated library encompassed both target families 
(kinases, proteases, phosphatases, GPCRs, ion channels, and lipid - modifying 
enzymes) and pathways. 

 Bock and Gough developed a virtual screening methodology  [62]  that gen-
erated a ranked list of high - binding small - molecule ligands for oGPCRs. They 
merged descriptors of ligands and targets to describe putative ligand – receptor 
complexes and used support vector machine (SVM) algorithm to discriminate 
real complexes from ligand – receptor pairs that do not form complexes. A 
similar approach was used to correlate ligand – receptor descriptions to the 

Figure 6.4     Serotonin 5 - HT 1A  receptor binding compounds can be identifi ed using 
similarity to the D 2  reference set  [57] . Tanimoto similarity coeffi cients are shown for 
each pair of ligands.  
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corresponding binding affi nities  [63] . The authors of this work modeled the 
interaction of psychoactive organic amines with the fi ve known families of 
amine GPCRs. The model exploited data for the binding of 22 compounds to 
31 amine GPCRs, correlating chemical descriptions and cross descriptions of 
compounds and receptors to binding affi nity. 

 Jacob et al. presented an  in silico  chemogenomics approach specifi cally 
tailored for the screening of GPCRs  [64] , which allowed to systematically test 
a variety of descriptors for both the molecules and the GPCRs. The authors 
tested 2 - D and 3 - D descriptors to describe molecules and fi ve ways to describe 
GPCRs, including a description of their relative positions in current hierarchi-
cal classifi cations of the superfamily and information about key residues likely 
to be in contact with the ligand  . The performance of all combinations of these 
descriptions was evaluated on the data of the GLIDA   database  [65] , which 
contains 34,686 reported interactions between human GPCRs and small mol-
ecules. It was observed that the choice of the descriptors has a signifi cant 
impact on the accuracy of the models. The developed method based on SVM 
algorithm was able to predict ligands of oGPCRs with an estimated accuracy 
of 78.1%. 

 In summary, a systematic exploration of the annotated ligand – target matrix 
for selected target families appears to be a promising way to speed up the 
GPCR - directed drug discovery. The principal challenge for technological plat-
forms and computational approaches mentioned in previous sections of this 
chapter is to develop computational methods capable of deciphering infor-
mation contained in annotated libraries and effectively displaying the results 
for more effective  “ next - step ”  decisions in drug candidate selection and 
development.   

  6.4   CHEMOGENOMICS - BASED ANALYSIS OF CHEMOKINE 
RECEPTOR LIGANDS 

 The following exercise focuses specifi cally on the application of a specifi c 
multidimensionality reduction technique in the context of the chemogenomics 
approach to derive information from simultaneous biological evaluation of 
multiple compounds on a set of coherent biological targets belonging to an 
actual class of GPCRs, chemokine receptors. 

  6.4.1   Mapping the Chemogenomics Space of  GPCR  Ligands 

 Kohonen SOMs, a compound classifi cation method used in this work for cor-
relation of molecular properties with specifi c activities, play a signifi cant role 
in modern virtual screening strategies. Applications of this algorithm ranges 
from the identifi cation of compounds with desired target - specifi c activity, 
which constitutes an essential part of the virtual screening ideology, to the 
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prediction of a wide spectrum of key pharmacologically relevant features 
including biological activity, pharmacokinetic and ADME/Tox profi les, and 
various physicochemical properties. 

6.4.1.1 Annotated Knowledge Database      As a fi rst step in the analysis of 
the chemogenomics space, we collected a knowledge database. It included 
a set of drug compounds with experimentally defi ned activity against the 
biological targets of interest. The information was extracted from several 
commercially available pharmaceutical databases, such as Prous Ensemble 
( http://www.prous.com/ ) and WOMBAT  [48]  databases, as well as proprie-
tary knowledge databases that can be easily used as the separate or joint 
source of information about structures and their specifi c activities. In addi-
tion to approved therapeutic drugs, the database also included lead com-
pounds entered in advanced clinical/preclinical trials. Structures were 
extracted according to the assigned activity class, where the class indicates 
a common target - specifi c group such as GPCRs, kinases and proteases, 
nuclear receptors and ion channels as well as more than 150 subclasses 
(specifi c GPCRs, kinase and protease enzymes, etc.). Prior to the statistical 
experiments, the molecular structures were fi ltered and normalized in order 
to fulfi ll certain criteria (by analogy to Reference 21). The fi nal database 
used in the modeling experiments included ca. 16,500 structures of drug 
compounds. The overall objective was to investigate differences between 
various groups of GPCR - specifi c ligands based on their physicochemical 
properties.  

6.4.1.2 Software In the described experiments, we used SmartMining 
( http://www.chemdiv.com/ ) and InformaGenesis ( http://www.informagenesis.
com/ ) programs, which are originally developed and scientifi cally validated as 
specifi c computational tools for chemical database management, descriptor 
calculation, and data mining. Thus, InformaGenesis is a powerful software 
with an integrated module for Kohonen SOM generation and a wide number 
of advanced modifi cations and complex - specifi c modalities. The program has 
been designed to work under Windows operating system. In addition to basic 
Kohonen settings and learning parameters, InformaGenesis includes signifi -
cant algorithmic - based improvements, such as  “ Neural Gas, ”   “ Duane 
Desieno, ”   “ Noise Technique, ”   “ Two Learning Stages and 3D Architecture ”  
as well as several unique algorithms and specifi c methods, for instance, 
 “ Corners, ”   “ Gradient, ”  and  “ Automatic Descriptor Selection Algorithm   ”  
(ADSA). InformaGenesis is completely adapted for the analysis of large sets 
of data of different types and dimensionality. For descriptor calculation, we 
used SmartMining program ( http://www.chemdiv.com/ ). It calculates more 
than a hundred fundamental molecular descriptors that are generally divided 
into several logical and functional categories, including the basic specifi c 
physicochemical features such as log P , number of H - bond donors, H - bond 
acceptors, and rotatable bonds; topological and electrotopological descrip-
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tors, such as Zagreb, Wiener, and E - state indexes; as well as  quasi  - 3 - D 
descriptors, such as van der Waals volume and surface. All descriptors are 
directly calculated by using well - known common models and approximations 
borrowed from the scientifi c literature  [66] . In addition, several algorithms 
have been progressively modifi ed to obtain more exact feature prediction or/
and calculation; for example, van der Waals parameters are calculated fairly 
accurately considering the overlapped volumes and/or surfaces. The theoreti-
cal aspects of Kohonen SOMs are described in several comprehensive papers 
including Chapter  16  of this book.  

6.4.1.3 Generation of the Map    Then more than 100 different molecular 
descriptors including physicochemical properties (for example, log  P , VDW vol/

surf  and MW), topological descriptors, such as Zagreb, Winner, and E - state 
indexes, as well as various structural descriptors, such as number of H - bond 
acceptors/donors and rotatable bond number (RBN), were calculated. For 
reduction of the number of input variables, we used a special algorithm, auto-
matic descriptor selection (ADS), implemented in InformaGenesis software. 
The ADS method is based generally on preorganization of Kohonen neurons 
and assigned weight coeffi cients according to several common principles. 
Conceptually, the method resembles a sensitivity analysis widely used in com-
putational modeling. Gradually adding the next descriptor, it painstakingly 
attempts to fi nd the optimal positions of input objects with a maximum degree 
of dissimilarity between each other following the corresponding metric dis-
tances. Starting from any corner of the Kohonen map, each subsequent vector 
of descriptor values passing straight through the map walks step by step across 
the perimeter until the best separation among the input objects is achieved. 
During each cycle, it can also be amplifi ed by a minor learning procedure to 
estimate the total sensitivity of a temporary fi xed vector net. As a rule, the 
selection procedure is continued until the predefi ned number of descriptors is 
achieved. As a result of the ADS procedure, the fi nal descriptor set included 
seven molecular descriptors: Zagreb index; E - state indexes for structural frag-
ments > C – ,  – CH 2  – , and  – CH 3 ; the number of H - bond donors; HB2 (a struc-
tural descriptor that encodes the strength of H - bond acceptors following an 
empirical rule); log  P . 

 After all the preparatory procedures were complete, the reference database 
with selected molecular descriptors was used for the development of a SOM -
 based  in silico  model. The whole self - organizing Kohonen map of ca. 16,500 
pharamaceutical leads and drugs (not shown) demonstrates that the studied 
compounds occupy a wide area on the map, which can be characterized as the 
area of drug - likeness. 

 Distribution of various target - specifi c groups of ligands on the Kohonen 
map demonstrates that most of these groups have distinct locations in specifi c 
regions of the map. As an illustration, Figure  6.5  shows the population of 
four large target - specifi c groups, which occupy distinct regions of the map. 
A possible explanation of differences in their location is in the fact that 
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closely related biotargets often share a structurally conserved ligand binding 
site. The structure of this site determines molecular properties that a recep-
tor - selective ligand should possess to effectively bind to the site. These prop-
erties include specifi c spatial, lipophilic, and H - binding parameters, as well 
as other features infl uencing the pharmacodynamic characteristics. Therefore, 
every group of active ligand molecules can be characterized by a specifi c 
combination of physicochemical parameters statistically differentiating it 
from other target - specifi c groups of ligands. This observation is consistent 
with the basic principle of chemogenomics originally formulated by Klabunde 
 [67] :  “ similar receptors bind similar ligands. ”  Another possible explanation 
of the observed phenomenon is different pharmacokinetic requirements to 
drugs acting on different biotargets. For example, organ -  and tissue - specifi c 
distribution of biotargets can infl uence physicochemical properties of their 
ligands.   

 The described algorithm represents an effective and relatively simple com-
putational procedure for the selection of target - biased compound subsets 
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     Figure 6.5     Distribution of four large target - specifi c groups of ligands on the Kohonen 
map. NMDA   =   N - methyl - D - aspartate.  
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compatible with high - throughput  in silico  evaluation of large virtual chemical 
libraries. Whenever a large enough training set of active ligands is available 
for a particular receptor, the Kohonen map can be generated to identify 
specifi c sites of location of target activity groups of interest. Then the devel-
oped map can be used for testing any available chemical databases with the 
same calculated descriptors. The Kohonen mapping procedure is computa-
tionally inexpensive and permits real - time calculations with moderate hard-
ware requirements. Thus, for a training database consisting of 16,500 molecules 
with seven descriptors using standard settings, approximately 1 hour is 
required for a standard PC (Pentium 3 - GHz processor) on a Windows XP 
platform to train the network; the time increases almost linearly with the size 
of the database. 

 Our own experience and literature data demonstrate that Kohonen SOMs 
are an effi cient data mining and visualization tool very useful in the design 
of chemical libraries, including the design of focused compound sets in the 
context of the chemogenomics approach. The approach, however, has some 
limitations. First of all, SOM algorithm is designed to preserve the topology 
between the input and grid spaces; in other words, two closely related input 
objects will be projected on the same or on close nodes. At the same time, 
the SOM algorithm does not preserve distances: there is no relation between 
the distance between two points in the input space and the distance between 
the corresponding nodes. The latter fact sometimes makes the training pro-
cedure unstable, when the minor changes in the input parameters lead to 
serious perturbation in the output picture. As a result, it is often diffi cult 
to fi nd the optimal training conditions for better classifi cation. Another 
potential problem is associated with the quantization of the output space. 
As a result, the resolution of low - sized maps can be insuffi cient for effec-
tive visualization of subtle differences between the studied compound 
categories.   

  6.4.2    GPCR  Target Classes 

 Using the constructed map, it is possible to explore the area of GPCR ligands. 
Thus, compounds acting specifi cally on different GPCR subclasses including 
α / β  - adrenoceptors, dopamine D1 – D4 receptors, tachykinin NK1/NK2, and 
serotonin and chemokine receptors can also be successfully separated within 
the same map. For illustration, Figure  6.6  shows the distribution of four GPCR 
ligand subclasses, which are located separately in different areas within the 
Kohonen map with insignifi cant overlap.   

 Since a key objective of our research is to analyze the chemokine receptor 
superfamily, generally, in the context of the chemogenomics approach adopted 
specifi cally for compound library design, we have also studied the distribution 
of compounds within the Kohonen map active against different chemokine 
subclasses.  
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  6.4.3   Similarity across the Chemokine Receptor Superfamily 

 Following the fundamental principle of chemogenomics, receptors are no 
longer viewed as single entities but are grouped into sets of related proteins 
or receptor families that are explored in a systematic manner. This interdisci-
plinary approach aimed primarily to fi nd the links between the chemical 
structures of bioactive molecules and the receptors with which these molecules 
interact. 

 According to basic principles of chemogenomics, for a drug target of inter-
est, known drugs and ligands of similar receptors, as well as compounds similar 
to these ligands, can serve as a convenient starting point for drug discovery. 
The obvious question here is  “ How can a receptor similarity be defi ned? ”  A 
review by Rognan  [55]  provides a comprehensive classifi cation and overview 
of chemogenomics approaches, defi nes principles of receptor and/or ligand 
similarity, and presents case studies on how this knowledge has been applied 
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     Figure 6.6     Distribution of four large GPCR - specifi c groups of ligands on the Kohonen 
map. ETA/ETB   =   Endotheline receptors A and B; CCK - A/CCK - B   =   cholecystokinin 
receptors A and B.  
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to rational drug design. In particular, Rognan formulates the following levels 
of receptor similarity: 

 •   receptor class (e.g., GPCRs),  
 •   receptor subclass (e.g. chemokine receptors),  
 •   overall sequence homology (phylogenetic tree), and  
 •   similarity of active binding site (3 - D structure or one - dimensional [1 - D] 

sequence motifs).    

 It is important to note that the reported chemogenomics approaches usually 
apply the classifi cation of target families (such as ion channels, kinases, pro-
teases, nuclear receptors, and GPCRs) or protein subfamilies (such as tyrosine 
kinases, chemokine receptors, and serine proteases) without taking into 
account similarities of the determined or assumed ligand binding sites. 
However, there are strong evidences that only a complex analysis of receptors, 
which includes formal receptor classifi cation, sequence homology, 3 - D similar-
ity, and active binding site construction, provides a relevant and adequate 
strategy toward modern chemogenomics concepts. 

 Chemokines (chemotactic/chemoattractant cytokines) are highly basic, 
small, secreted proteins consisting on average 70 – 125 amino acids with molec-
ular masses ranging from 6 to 14   kDa, which mediate their effects through 
binding to seven transmembrane domains (7TMs) of the specifi c family of 
GPCRs located on target cell membranes. The chemokine superfamily includes 
a large number of ligands that bind to a smaller number of receptors  [68,69] . 
It is a well - known fact that multiple chemokine ligands can bind to the same 
receptor and vice versa, and such a complexity and promiscuity of receptor 
binding introduce an additional challenge in understanding the common 
mechanism of chemokine ligand binding. At the same time, with respect to 
chemogenomics, this feature of chemokine ligand – receptor recognition pro-
vides a valuable starting point to investigate key interrelationships across the 
chemokine receptor subfamily. 

 Since chemokine receptors are members of the common GPCR family, the 
two fi rst similarity criteria formulated by Rognan are being fulfi lled success-
fully. Currently, there are more than 20 functionally signaling chemokine 
receptors and more than 45 corresponding chemokine ligands in humans  [70] . 
The chemokine ligands and receptors have been divided into several major 
groups based on their expression patterns and functions. In addition, their 
genomic organization also provides an alternative chemokine classifi cation 
based on their phylogenetic trees. 

 The chemokine receptor CXCR4 possesses multiple fundamental functions 
in both normal and pathologic physiology. CXCR4 is a GPCR receptor that 
transduces signals of its endogenous ligand, the chemokine CXCL12 (stromal 
cell - derived factor - 1 [SDF - 1], previously SDF1 -  α ). The interaction between 
CXCL12 and CXCR4 plays a critical role in the migration of progenitors 
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during embryologic development of the cardiovascular system, the hemato-
poietic system, the CNS, and so on. This interaction is also known to be 
involved in several intractable disease processes, including HIV infection, 
cancer cell metastasis, leukemia cell progression, rheumatoid arthritis (RA), 
asthma, and pulmonary fi brosis. Unlike other chemokine receptors, CXCR4 
is expressed in many normal tissues, including those of the CNS, while it is 
also commonly expressed by over 25 different tumor cells including cancers 
of epithelial, mesenchymal, and hematopoietic origins.  [71] . Since CXCR4 
is the most actively studied chemokine receptor, and a number of small -
 molecule compounds are currently known to modulate its basic functions, it 
is quite reasonable to investigate similarity links between this and other che-
mokine receptors based on Rognan ’ s criteria. According to phylogenetic den-
dograms  [72] , CXCR4 is located closely to CXCR1, CXCR2, as well as 
CXCR3. This means primarily that these receptors possess a similar genotype 
and, based on this observation, they can be logically grouped into the common 
CXCR family differed genetically from the CCR subclass but not signifi cantly. 
It seems to be perfectly reasonable to investigate small - molecule space around 
the whole CXCR subclass; however, the last similarity criterion is still not 
considered. A binding site composition and a corresponding space cavity 
jointly play a key role in the ligand binding process. Furthermore, the majority 
of ligand – receptor complexes are not static structures; they can change 
dynamically upon ligand binding. In addition, enforced conformational 
changes across the active binding site can also be achieved by ligand partial 
binding followed by internal cavity formation fi tted appropriately for deep 
embedding. There are several scientifi c reports highlighting the partial 
sequence homology (25 – 30%) and high - binding site similarity between CCR5 
and CXCR4  [73] . For instance, using MembStruk methods to develop 3 - D 
protein structures for CXCR4 and CCR5 and the HierDock protocol to defi ne 
the binding site for both of these receptors, it was clearly shown that the two 
binding sites, even though being on different sides of their receptors, have 
similar characteristics  [74] .   In both cases, CCR5 and CXCR4 MembStruk 
structures are also used to correctly identify the binding site regions according 
to mutational studies. In addition, a high degree of similarity was also deter-
mined for CCR5 and CCR3  [75] . Therefore, from the chemogenomics point 
of view, it is of practical relevance to test the agents acting against CXCR4 
also on activity toward CXCR1 - 3 and CCR3/5. Thus, compounds are profi led 
against a set of receptors and are not tested against single targets. 

 Figure  6.7  shows a fragment of the phylogenetic tree for chemokine recep-
tors and sites of location of CXCR4 and CCR5 ligands on the Kohonen map 
described above. The fi gure demonstrates that ligands that bind to CCR5 are 
located closely to CXCR4 on the Kohonen map with signifi cant overlapping. 
Therefore, such a map can be used for chemogenomics - based discovery of 
either CXCR4 or CCR5 ligands.   

 Combining the results of our computational modeling and theoretical anal-
ysis, it can reasonably be concluded that the applied mapping technique rep-
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resents a useful approach to fi ltering combinatorial libraries for selection of 
target - specifi c subsets including those acting against the chemokine receptor 
superfamily. It permits to signifi cantly reduce the size of initial multidimen-
sional chemistry space and can be recommended as a classifi cation and 
visualization tool for practical combinatorial design. It is important that 
this method is complementary to other target and ligand structure - based 
approaches to virtual screening. In addition, Kohonen - based SOMs are fully 
compatible with both the high - throughput virtual screening protocols and the 
analysis of small -  to medium - sized combinatorial libraries.   

  6.5   CONCLUSION 

 At present, drug discovery technologies are undergoing radical changes 
due to both amazing progress in genomic research as well as the massive 
advent of combinatorial synthesis and high - throughput biological screening. 
Moreover, it can be argued that, during the past decade, the main paradigm 

Figure 6.7     Homology - based design of chemokine receptor ligands.  
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in medicinal chemistry has been turning gradually from traditional receptor -
 specifi c studies and biological assays to a novel cross - receptor vision. 
Currently, such approach becomes increasingly applied within the whole 
pharmaceutical research to enhance the effi ciency of modern drug discovery. 
Chemogenomics, as an alternative route to innovative drug discovery, pro-
vides novel insights into receptor – ligand interaction and molecular recogni-
tion by the analysis of large biological activity data sets. Rational drug design 
strategies that are based primarily on the chemogenomics approach often 
complement HTS for fi nding chemical starting points for novel drug discov-
ery projects. 

 The greatest impact of the chemogenomics approaches can be expected 
for targets with sparse or without ligand information as well as for targets 
lacking structural 3 - D data. For these targets, classical drug design strategies 
like ligand -  and structure - based virtual screening and/or de novo design 
cannot be applied. Key methodologies underlying the chemogenomics 
approaches are annotated knowledge databases and specifi c data mining 
tools. 

 In the described experiment illustrating one possible approach to the che-
mogenomics - based design of chemokine receptor - targeted libraries, we have 
applied the algorithm of self - organizing Kohonen maps for the analysis of 
clinically validated therapeutic agents and approved drug compounds. The 
developed models can be used for the selection of screening candidates from 
chemical databases. The applied virtual screening technology is focused on a 
small molecular level, as opposed to target structure - based design or docking 
methodology. A leitmotif of this method is a ligand - based strategy realized in 
the context of a chemogenomics concept. The described method represents a 
consistent and valuable approach toward both the rational drug design and 
gathering information from the simultaneous biological evaluation of many 
compounds on multiple biological targets.  
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  7.1   INTRODUCTION 

 Small - molecule drug discovery has evolved dramatically over the last two 
decades. First, most of the therapeutics that have been commercialized for the 
past 50 years were developed for approximately 500 known biological targets. 
It is now estimated, however, that the number of potential drug targets is at 
least an order of magnitude larger; this implies that a plethora of currently 
undiscovered therapeutic opportunities exists  [1] . In order to identify novel 
drug targets and to accelerate the development of innovative treatments, a 
myriad of technologies have been developed or revolutionized. These include 
various high - throughput (HT) and  “  - omics ”  technologies, which provide an 
opportunity to systematically address the function of each member of the 
genome, transcriptome, or proteome. Second, advancements in automation 
equipment, assay formats, and combinatorial chemical libraries have trans-
formed the small - molecule compound screening process. A common feature 
for all of these techniques is the generation of large data sets; it is not uncom-
mon to generate 1,000,000 plus data points from a single high - throughput 
screening (HTS) campaign. For example, from the public domain, the National 
Institutes of Health (NIH) Roadmap initiatives have made available the data 
from over 1,700 assays via the National Center for Biotechnology Information 
(NCBI) PubChem database. The data analysis approaches described in this 
chapter primarily are based on the HTS database extant at the Genomics 
Institute of the Novartis Research Foundation (GNF, San Diego, CA, USA), 
where over 1.6 million compounds have been evaluated in more than 200 HTS 
campaigns to date. 

 A representation of a typical workfl ow for an early - stage drug discovery 
program illustrates how informatics techniques can impact multiple aspects of 
the process. As shown in Figure  7.1 , the capacity in terms of the number of 
compounds being studied decreases rapidly as the workfl ow progresses; i.e., 
only a very limited number of compounds can be followed up at each following 
stage. However, the upsurge in primary data points that are now generated 
by a typical HTS has led to a concomitant increase in the number of candidate 
lead compounds for postscreening follow - up studies. To alleviate the potential 
bottleneck resulting from the increase in HTS capabilities, two general 
approaches have been undertaken: (1) accelerating the throughput of the 
downstream processes, e.g.,  in vitro  pharmacokinetic (PK) assays, and (2) 
applying informatics technologies in order to eliminate compounds that would 
likely be triaged at a later stage. If successful compound prioritization occurs 
at an early lead discovery phase, it has a far - reaching impact toward the overall 
success of the project.   

 Informatics approaches that can be employed readily and reliably in order 
to effectively analyze extensive and complex data sets are crucial components 
of the current drug discovery process. For example, it has been found that a 
signifi cant portion of confi rmed active HTS hits is triaged at a later stage due 
to undesirable selectivity and/or toxicity profi les. Those compounds are ini-



INTRODUCTION 207

tially determined as true positives since their unfavorable characteristics 
cannot be recognized from the analysis of individual data sets. With the rapidly 
growing HTS databases, it is possible to identify those frequent hitters by data 
mining existing database instead of carrying out laborious experimental profi l-
ing. The knowledge obtained from numerous HTS campaigns provides an 
opportunistic resource that can impact the prioritization of lead compounds 
for any future HTS. However, only a very small number of studies have been 
published that systematically mine large HTS databases  [2 – 4] . This is probably 
due to the fact that most existing chemoinformatics approaches were designed 
for analyzing individual HTS data sets rather than data matrices containing 
data from multiple assays, as well as the limited availability of large - scale HTS 
data sets that are usually proprietary for pharmaceutical companies. 

 Challenges listed above can be addressed by a novel algorithm dubbed 
knowledge - based optimization analysis (KOA). KOA was fi rst invented 
for gene expression - based gene function prediction based on the guilt - by -
 association (GBA) principle  [5] . The algorithm was initially named as 
ontology - based pattern identifi cation (OPI) according to this fi rst bioinfor-
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     Figure 7.1     A typical high - throughput (HT) early lead discovery workfl ow. Genome -
 wide function screens identify potential novel drug targets for HTS campaign. A full 
library (1,000,000 plus) HTS typically produces primary hits in the order of several 
thousands. In many cases, an aliquot of these compounds are plated, serially diluted, 
and then rescreened using the original primary assay for confi rmation of their activity 
along with a determination of their potency and effi cacy. Once confi rmed, the active 
hits are subsequently studied in a battery of secondary assays in order to assess their 
selectivity and toxicity profi les; this process normally leads to a small number of  “ lead 
candidates. ”  These molecules are then prioritized by several criteria, including their 
 in vitro  pharmacological profi le such as absorption, distribution, metabolism, and 
excretion (ADME), general cytotoxicity (TOX), scaffold structure – activity relation-
ship (SAR) strength, and potential intellectual property (IP) space. The desired 
outcome is the identifi cation of several lead scaffolds/templates suitable for further 
medicinal chemistry optimization  .  
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 TABLE 7.1     Published  KOA  Applications   

   Domain     Problem     Data Set     Knowledge     Reference  

  Bioinformatics    Predict gene 
function based 
on mRNA 
coexpression
patterns

  A gene by 
sample matrix, 
one genotype 
vector per 
gene

  Gene ontology 
(GO)

   [5 – 7]   

  Chemoinformatics    Improve primary hit 
confi rmation rate 
in an HTS 
campaign

  An activity 
vector, one 
number per 
compound

  Clusters of 
structurally
similar
compounds

   [8]   

  Chemoinformatics    Identify compounds 
that are both 
chemically and 
biologically
similar; identify 
promiscuous HTS 
hitters

  A compound by 
assay matrix, 
one activity 
profi le per 
compound

  Clusters of 
structurally
similar
compounds

   [2,9]   

  Chemoinformatics    Identify HTS 
fi ngerprints for a 
given mechanism 
of action (MOA) 

  A compound by 
assay matrix, 
one activity 
profi le per 
compound

  MOA database 
(e.g., Medical 
Subject
Headings
[MeSH]
  database)  

   [10]   

  Bioinformatics    Improve siRNA 
confi rmation rate 
in a functional 
genomic screen  

  An activity 
vector, one 
number per 
siRNA  

  siRNA – gene 
many - to - one 
mapping

   [11]   

  Bioinformatics    Discovery cis -
 regulatory motif 
elements

  Promoter 
sequences

  Clusters of 
coexpressed
genes

   [12]   

  Bioinformatics    Gene function 
prediction in 
high - content 
imaging screen  

  A gene by 
phenotype
matrix, one 
phenotype
vector per 
gene

  GO     [13]   

matics application; however, we have decided to use the term KOA in this 
chapter as this algorithm can take advantage of virtually any knowledge base, 
gene ontology (GO) information being only one of them. The KOA algorithm 
identifi es optimal data analysis protocols and yields reliable mining results 
through maximizing rediscovery of existing knowledge. The idea of KOA is 
indeed very general and therefore can be adapted to solve a wide range of 
informatics problems, particularly in relevance to drug discovery (Table  7.1 ). 
It is of no surprise that the original KOA algorithm was later modifi ed to take 
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advantage of the structure – activity relationship (SAR) principle and was aptly 
applied to better mine HTS data sets in order to address some of the chemoin-
formatics challenges mentioned above. In particular, KOA was applied to 
individual HTS campaigns for primary hit selection and showed a signifi cant 
improvement in hit confi rmation rate, i.e., as high as 80% compared to the 
typical 40% using the cutoff method  [8] . In addition, it was applied to mine 
large corporate HTS databases consisting of ∼ 80 different HTS campaigns and 
to identify compound families that demonstrate strong neighborhood behav-
ior in terms of their selectivity profi les  [9] . By combining both applications 
and without requiring additional experimental resource, single - dose HTS data 
sets can now be mined to provide high - quality HTS hits that have a high 
chance of not only being confi rmed but also of passing the later toxicity fi lter.   

 In this chapter, the KOA algorithm is explained in nonmathematical terms 
by using a single - assay small interfering RNA (siRNA) hit selection problem 
as an example. By explaining how one can identify more confi rmable targets 
in a single loss - of - function siRNA screen, we outline the ideas behind KOA. 
The resultant KOA solution was recently blindly tested in several whole -
 genome siRNA screens; experimental results provided solid validations for 
the knowledge - based optimization strategy. We then discuss the expression -
 based gene function prediction problem and show how KOA mines large data 
matrices. Analogous problems in the area of compound HTS are then dis-
cussed in detail. In particular, we demonstrate how KOA can effectively mine 
HTS data sets for better hit prioritization and identifi cation of promiscuous 
hits. Comparisons between KOA and other related algorithms found in the 
literature are also discussed.  

  7.2   KOA ALGORITHM — CONCEPT, VALIDATION, AND ITS 
APPLICATIONS IN TARGET IDENTIFICATION 

  7.2.1    KOA  Analysis for  HT   si  RNA  Function Screening 

 The advent of RNA interference (RNAi) technology has provided scientists 
with important screening tools to associate the reduction of expression of a 
particular mRNA with a cellular phenotype. siRNAs are a class of 19 – 29 base 
pair double - stranded RNA molecules that are designed to reduce the mRNA 
levels of a specifi c gene target. Knockdown of a specifi c gene candidate can 
be associated with a particular cellular phenotype, which may provide insights 
into a biological mechanism that can lead to a therapeutic target. The comple-
tion of the sequencing of the human genome enabled scientists with the ability 
to design siRNAs against each mRNA species and to allow siRNA screens 
on a  “ genome - wide ”  scale. In theory, the number of individual siRNAs 
required to assess the phenotypic effects of mRNA depletion for each indi-
vidual member of an entire genome is equivalent to the number of genes 
expressed for the particular organism. In practice, however, the number of 
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entities typically used for a genome - wide siRNA screening is much larger. 
This is because individual siRNAs typically have a range of specifi city and 
effi cacy against their intended target, which cannot be ascertained readily. In 
order to increase the probability that the library encompasses active siRNA 
for each gene and to reduce the likelihood that a screening hit is due to an 
off - target effect (OTE), two or more unique siRNAs targeted against the 
same gene are typically screened. One consequence of this approach is that 
the number of data points produced from each genome - wide siRNA screen 
can be extensive. Also, the decision to pursue further analysis of a gene target 
if only a single siRNA scored as a hit in the primary screen often is made 
arbitrarily. 

 Specifi cally, the data obtained from a large siRNA screen are traditionally 
ranked according to their individual activity scores, and the  “ top X ”  number 
of wells is  “ hit picked ”  for reconfi rmation and validation studies. In most 
cases, the cutoff assigned to top X is set by logistical constraints (e.g., given 
the available resources, how many siRNAs can be analyzed) and not all 
siRNAs with notable activity are hit picked. Our experience is that the hit 
confi rmation rates using the cutoff method are typically low (about  < 20%), 
which has been always considered as an important challenge in the interpreta-
tion of data sets obtained from several large - scale siRNA screens. However, 
the confi rmation rate can be signifi cantly improved by the KOA algorithm 
detailed in Scheme  7.1 .   

 To explain how KOA works, in this example, we assume a hypothetical 
small collection of 40 independently designed siRNAs that target 14 genes 
(one to four siRNAs per gene). A range of siRNAs per gene was chosen since 
this refl ects our personal experience; the number of siRNAs per target can 
fl uctuate over time due to the merger of multiple siRNA libraries, change in 
gene structures, elimination of nonspecifi c siRNAs, availability of reagent, and 
so on. The 40 siRNAs are shown in Figure  7.2 , ranked according to their 
activities so that the most potent wells are placed at the top. siRNAs are 
pattern - fi lled according to their intended target gene identities; i.e., each 
pattern represents a unique gene. For the purpose of discussion, we assume 
our follow - up capacity to be eight wells. Hits identifi ed by the cutoff method 
and KOA method are highlighted in the  “ cutoff hits ”  and  “ KOA hits ”  columns, 
respectively. Cutoff is the most popular hit - picking method, which goes for 
the top eight most potent wells.   

 For a given gene, the accumulative hypergeometric  p  values (Scheme  7.1 , 
Eq.  7.1 ) are calculated for each siRNA, and the curve dips at each siRNA 
targeting the gene itself (large fi lled circle in Fig.  7.2 B). The global minimum 
(indicated by arrow) is then identifi ed, which separates siRNAs into two 
groups: hits and outliers. KOA outliers are also marked as  “ X ”  in the  “ KOA 
outlier ”  column (Fig.  7.2 A). For gene C in black, its three siRNAs correspond 
to hypergeometric p  values of 0.08, 0.01, and 0.66, respectively. The minimum 
p  value 0.01 is obtained when its fi rst two siRNAs are considered as hits and 
the last as outlier (black circles in Fig.  7.2 B). Assuming gene C is a true nega-
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tive and all its three siRNA readings are noise, the chance of fi nding at least 
two out of three siRNAs in the top three activity slots is only 1%. Therefore, 
gene C is unlikely to be a negative and should be ranked high. All three 
siRNAs are assigned a KOA score of 0.01 (steps 3 – 6 in Scheme  7.1 ). Similarly, 
for gene D, its four siRNAs correspond to  p  values of 0.2, 1.0, 1.0, and 0.9, 
respectively (gray circles in Fig.  7.2 B). Only the fi rst siRNA is considered as a 
hit and the remaining three are removed as outliers. The hypergeometric 
model estimates the chance of fi nding at least one out of four siRNAs in the 
top two activity slots by chance is 20%, which means gene D is likely to be 
a negative and should be ranked low. This type of analysis is repeated for all 
the 14 genes, and positive siRNAs are initially ranked by their gene  p  values 
(ascending) and then by individual activities (potent to weak); the best eight 
siRNAs are highlighted as KOA hits and mostly inactive siRNAs are automati-
cally identifi ed as KOA outliers (marked as  “ X ”  in Fig.  7.2 A). Five out of the 
top eight hits between cutoff and KOA algorithms are in common (marked as 

Data set: an activity vector for a total of NT siRNAs, one activity number per 
siRNA

Knowledge: the design of the siRNA library, where Sij is the jth siRNA designed 
to target the ith gene, j = 1, ... , ni

Hypothesis: siRNAs of the same gene tend to be coactive or coinactive
Output: a list of siRNAs that are considered to be true hits
Algorithm:

1. Rank all siRNAs based on their activities in descending order (most potent 
on top).

2. For each gene i and
3. for each siRNAij (j = 1, ... , ni),

4. calculate enrichment factor fij = p(NT, ni , Rij , j);
5. j* = arg minj fij and f *i = fij*; assign f *i to all siRNAij (j = 1, ... , ni);
6. siRNAij with j ≤ j* are marked as positives; siRNAij with j > j* are

removed as outliers.
7. Rank all positive siRNAs based on f *i in ascending order, then by Rij in 

ascending order.

Rij = the rank number of siRNA Sij in the sorted list; p = accumulated
hypergeometric distribution function (Eq. 7.1). Assume a box contains n white 
balls, N − n black balls, and N in total. If one randomly takes R balls from the 
box, the probability of obtaining r or more white balls in the selection is
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Scheme 7.1     Outline of the KOA siRNA hit selection algorithm.    



212 MINING HIGH-THROUGHPUT SCREENING DATA

 “ O ”  in Fig.  7.2 A), although their hit ranks may differ. KOA - only hits are 
marked as  “  ↑  ”  and cutoff - only hits as  “  ↓ . ”  

 It is intuitive that a gene having four relatively active siRNAs is more 
likely to be confi rmed, relative to a gene with one very active siRNA and 
two inactive siRNAs. In the scenario above, the latter gene would be selected 
by the cutoff method due to the high ranking of the single very active siRNA. 
The KOA algorithm, however, incorporates the underlying siRNA library 
design and considers the behavior of all siRNAs of the same gene in its 
scoring function. In an activity - sorted list, multiple siRNAs for a true - positive 
gene would tend to be positioned toward the top. Such an upward bias in 
signal distribution would not occur if the gene were a true negative; the KOA 
scoring function essentially statistically characterizes such a bias in signal 
distribution. 

 The two methods result in six unique hits. For gene D, only one out of 
four siRNAs scored as a hit. Therefore, the active well was assigned as a false 
positive and thus was deprioritized by KOA ( ↓ ). Genes E and F both have 
two siRNAs each, all relatively active. Therefore, both were designated as hits 
by the cutoff method. However, gene G has three siRNAs and all are rela-
tively active as well. Since strong activity associated with three out of three 
siRNAs provides strong evidence that gene G is an authentic hit, KOA ranks 

A B

     Figure 7.2     Illustration of KOA algorithm in a hypothetical siRNA screen. (A) Hits 
selected by either KOA/OPI and cutoff methods. (B) Probability scoring curves for 
genes C and D. The activity threshold for each gene is determined by global minima 
as indicated by an arrow. siRNAs with activities weaker than the corresponding thresh-
olds (to the right) are considered as outliers and are eliminated    .  
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(↑ ) gene G ahead of genes E and F. By using individual siRNA signal alone, 
the cutoff method selects gene D, which is likely to be a false positive and fails 
to identify gene G, which is likely to be a false negative. The KOA algorithm, 
on the other hand, takes into account the predicted redundant activities of 
several siRNAs that target the same gene and scores the gene probabilistically. 
As the number of genes being studied increases and statistical fl uctuation 
decreases, the statistical advantage of KOA will be magnifi ed and the improve-
ment of its hit list is expected to be more pronounced. 

 The KOA algorithm may be biased toward genes where more targeted 
siRNAs are present in the screening collection. This can be clarifi ed by gene 
D (four siRNAs, discussed previously) being scored poorly and gene B (two 
siRNAs) being ranked as the second best gene for having both siRNAs deter-
mined to be highly potent. Even gene A with a single siRNA can still be 
ranked favorably under KOA for its unusually high potency. Nevertheless, 
the assessment of genes with single or fewer siRNAs being less compelling 
compared to genes with multiple active siRNAs agrees well with statistical 
sampling theory. Given a limited validation capacity, recruitment of genes 
with a single active siRNA (e.g., gene D) is often made at the expense of 
missing genes of multiple active siRNAs (e.g., gene G). This is why the cutoff 
method results in a much lower confi rmation rate at the end.  

  7.2.2   Experimental Validation of  KOA  by Genome - Wide 
 si  RNA  Screening 

 The fundamental biological assumption we made in the above KOA algorithm 
is that multiple siRNAs that target a  “ true - positive ”  gene will tend to be 
coactive probabilistically and those of a  “ true negative ”  gene will tend to be 
coinactive. However, exceptions to this conjecture could occur. The KOA 
algorithm aims to assess this possible scenario by using library design knowl-
edge, i.e., the library mapping between genes and their siRNA wells. Using 
the null hypothesis that each gene is inactive, KOA uses an iterative process 
to fi nd the minimum  p  value in order for each gene to be ranked as favorably 
as possible. We have used a small library of 40 siRNAs to explain how KOA 
models the amenability of a gene being validated and have shown that con-
ceptually it has many advantages over the cutoff method. However, it would 
be more compelling if the hits picked by both KOA and cutoff algorithms 
could be compared experimentally. A recent siRNA study by K ö nig et al. did 
exactly this  [11] , where the KOA algorithm was referred to as the  “ redundant 
siRNA activity (RSA) ”  analysis. Using a genome - wide siRNA library target-
ing approximately 19,628 human genes, containing on average three wells per 
gene and with two siRNAs per well ( ∼ 6 siRNAs per gene, total of 53,860 
wells), three independent inhibition biological assays were used to screen the 
complete collection. For simplicity, a summary of only the fi ndings for assay 
B mentioned in that study is reported. Both RSA and cutoff algorithms ini-
tially were applied in order to identify the top 55 wells. Interestingly, the two 
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Figure 7.3     Confi rmation curves of hits selected by KOA and cutoff methods in a 
genome - wide siRNA screen. KOA/RSA hits show a  “ normal ”  curve, where the most 
confi rmable siRNAs were picked fi rst and the confi rmation rate gradually decreases 
from 100% and plateaus at around 42%. The cutoff hits show an  “ abnormal ”  curve, 
where the low - quality hits are picked fi rst. As more hits are made available, the con-
fi rmation rate gradually increases to a level of approximately 18%. Figure courtesy of 
Nature Publishing Group.  

analyses shared an overlap of only 11 wells. Each siRNA that was identifi ed 
as a hit using either approach was rescreened independently using the original 
assay. A well was deemed reconfi rmed only if at least one of the siRNAs gave 
an assay signal less than 50% of the mean value for the respective assay plate. 
A gene was considered validated only when two or more siRNAs were 
confi rmed. 

 Figure  7.3  plots the reconfi rmation rate as a function of hit ranks in the 
initial screen analysis by either the KOA or the cutoff method. siRNAs identi-
fi ed using the KOA methodology clearly show higher rates of reconfi rmation, 
namely, 100 – 40% compared to 0 – 16% in the cutoff method. Careful inspec-
tion shows that the discrepancy between the two approaches is likely due to 
the reconfi rmation rates of the most active siRNAs predicted by each method 
(Fig.  7.3 ). For instance, the confi rmation rate for the most active siRNAs 
determined by the cutoff analysis is initially around 0% and then gradually 
increases. The cutoff method relies on the popular presumption that the wells 
with a higher activity have a higher reconfi rmation rate, which is unlikely to 
hold up based upon the experimental results. In contrast, our experience has 
been that the most active wells are often caused by experimental artifacts and, 
therefore, the primary result is diffi cult to reproduce. This phenomenon causes 
an  “ abnormal ”  confi rmation curve and has been previously documented for 
small - molecule HTS campaigns  [14,15] . If a gene is represented by a single 
well and scores as a positive, there is little choice but to treat the well as a true 
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hit. However, if a gene has several siRNAs across multiple wells and only a 
single well shows strong activity, one would reason the active well might be 
an artifact. It is such knowledge - based analysis strategy that helps the KOA/
RSA algorithm to avoid those superfi cial active wells picked by the cutoff 
method and instead improves the confi rmation rate through a more extensive 
sampling of the large - scale siRNA data sets. As there currently exists no paral-
lel methodology for the analysis of large - scale RNAi data sets  [16] , application 
of KOA should signifi cantly enhance the interpretation of large - scale RNAi 
data through the exclusion of false - positive activities derived from both exper-
imental artifacts and off - target activities.    

  7.2.3    KOA  for  In Silico  Gene Function Prediction 

 Quantifying a phenotype using a loss - of - function screen such as the one 
described above is an important HT target identifi cation approach that does 
not rely on any prior knowledge to the relevant cellular target. It can, in prin-
ciple, identify a new signal transduction pathway or a potential drug target. 
However, many screens are initiated with at least some prior knowledge of a 
relevant signal transduction pathway for what is being studied. Consequently, 
the project goal is often to distinguish new pathway members or additional 
biological activities of the known ones. Matured HT technologies, such as 
expression profi ling, have produced large data sets consisting of transcript 
abundance measurements for many different tissues, treatments, disease 
states, and pathological stages. A documented approach to correlate the func-
tions of known genes with those that have similar gene expression profi les is 
based on the GBA principle. This enables expeditious  in silico  gene function 
prediction for a signifi cant portion of the transcriptome. The KOA algorithm 
was in fact originally designed to take advantage of the existing GO knowl-
edge base for identifying statistically signifi cant gene expression patterns and 
was originally named as OPI. The gene function prediction problem bears a 
great deal of similarity to our latter discussion on the identifi cation of promis-
cuous HTS hits, showing the synergy of data mining tool development between 
bioinformatics and chemoinformatics. 

 Given a large gene expression matrix, where each row represents a gene 
and each column represents an array experiment, the goal of gene function 
prediction is the identifi cation of gene clusters that not only share a similar 
expression pattern but also share statistical enrichment in a certain functional 
category. Then all the cluster members are predicted to play a role in the cor-
responding function based on GBA. Traditionally, unsupervised clustering 
algorithms such as k  - means clustering  [17,18]  and hierarchical clustering  [19]  
have been applied to group genes based on their similarities in expression 
profi les fi rst, and then resultant clusters are examined for potential functional 
enrichments. This two - step approach is suboptimal for two reasons. First, 
unsupervised clustering algorithms rely on subjective parameters, such as the 
number of partitions in the k  - means clustering or the similarity threshold in 
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isolating subtrees in hierarchical clustering. Second, there are no readily avail-
able statistical controls, i.e., the odds of obtaining the resultant clusters as a 
matter of chance is diffi cult to measure. KOA outlined in Scheme  7.2  aims to 
overcome these shortcomings.   

 Using a previously published  Plasmodium falciparum  (malaria) cell cycle 
gene expression matrix (2234 genes across 16 parasite life stages) as an 
example, we attempted to identify new targets related to the  “ cell – cell adhe-
sion ”  (GO:0016337) GO term. Prior studies discovered 10 gene members 
(labels shown in Fig.  7.4 ), and we used their profi les as  “ baits ”  to recruit new 
GO members by detecting  “ unusual ”  similarity in their expression patterns. 
The quantifi cation of  “ unusualness ”  was an important factor in the evaluation. 
With a too stringent threshold most of the 10 known genes described above 
fell below the threshold and became false negatives. On the other hand, a too 
generous threshold would have led to low - quality predictions by including too 
many false positives. Other data analysis approaches simply applied a subjec-
tive cutoff, such as 0.8 in the Pearson correlation coeffi cient, regardless of 
which particular GO was being studied  [20] . However, the goal of KOA is to 
fi nd a balance between the two extremes of  “ unusualness without the applica-
tion of any subjective parameters. ”    

 The fi rst step entails the construction of a metaprofi le that best represents 
the GO:0016337 family by combining the expression patterns for the 10 known 
gene members. More specifi cally, one may either select one of the 10 profi les, 

Data set: an expression matrix for a total of NT genes, one expression profile per 
gene

Knowledge: gene ontology (GO), where Sij represents a piece of knowledge that 
gene j is a known member of the ith function category in GO, 
j = 1, ... , ni

Hypothesis: genes sharing the same function tend to share similar expression 
profiles

Output: a list of genes that are considered to be members of function category i
Algorithm:

1. Construct a metaprofile Qi for function i from all known gene members Sij,
j = 1, ... , ni.

2. Rank all NT genes based on their profile similarity against Qi in descending 
order (most similar on top).

3. For each gene Sij, j = 1, ... , ni,
4. calculate enrichment factor by fij = p(NT, ni, Rij, j);

5. j* = arg minj fij and f *i = fij*; assign f *i to gene Sij (j = 1, ... , ni);
6. Sij with j ≤ j* are marked as positives; Sij with j > j* are removed as outliers.

Rij = the rank number of Sij in the sorted list; p = accumulated hypergeometric 
distribution function (Eq. 7.1).

Scheme 7.2     Outline of the KOA gene function prediction algorithm.  
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where the greatest number of remaining GO members share a minimum 
degree of similarity  , or may simply take a weighted average of all 10 profi les 
(or any other reasonable approach). Our typical method is to obtain multiple 
metaprofi les and to interrogate the KOA algorithm in order to identify the 
profi le that results in the best knowledge optimization. Against the given 
metaprofi le, all 2234 genes are ranked according to their profi le similarities, 
and the 10 known genes are positioned between ranks 2nd to 300th. Genes 
ranked near the top of the list share a greater similarity to the metaprofi le. 
Therefore, these genes should have a greater likelihood of having the desired 
activity than genes near the bottom of the list. The next step is to determine 
a nonsubjective similarity threshold, so that the function label GO:0016337 
can be reassigned to as many of the 10 known genes as possible (knowledge 
rediscovery), while being assigned to as few unknown genes as possible 
(assuming that most of them are negatives). This is done by an iterative knowl-
edge optimization routine that is described below. 

 If one accepts the top two genes as the fi nal candidates, we rediscover 
the function for the second gene, PF07_0051, and predict the top gene to be 
a new function member   (Fig.  7.4 ). Statistically, if one randomly selects two 
out of the 2234 genes and at least one of the 10 known genes fall into the 
selection, the probability of this occurring by chance is about 1%. In the next 
iteration, if one accepts the top four genes as the fi nal candidates, i.e., we 
rediscover both PF07_0051 and PFD0635c (ranked fourth) and the analysis 
predicts two new function members, the false discovery rate (FDR) remains 
at 50% as before, but the true - positive rate (TPR) increases from 1/10 to 1/5, 

Figure 7.4     Illustration of the KOA algorithm in predicting new  “ cell – cell adhesion ”  
genes using Plasmodium falciparum  cell cycle microarray data. The gray lines repre-
sent probability curves obtained by shuffl ing gene labels. The black line stands for the 
real probability curve, of which the low  p  values observed are neither due to chance 
nor due to the multiple iterations. Figure courtesy of Oxford Journals.  
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since we now improved our knowledge set by correctly labeling PFD0635c. 
Statistically, if one randomly selects 4 out of 2234 genes and at least 2 of the 
10 known genes fall into the selection, the  p  value is 0.01%. Therefore, the 
quality of our prediction improves signifi cantly. In the  r th iteration, if one 
accepts the top R  genes containing  r  known genes, the chance of randomly 
selecting R  genes from  N  that also include at least  r  out of the  n  known genes 
by chance is p ( N ,  n ,  R ,  r ) (see Eq.  7.1 ). 

 Clearly, the smaller the probability, the more likely the resultant gene 
candidates have unusual associations with the given GO term. All of the 
iterations described above render a probability score curve (Fig.  7.4 ), where 
the global minimum is associated with the gene ranked 23rd, PF07_0049 ( p
value as low as 10 − 14 ). Therefore, the fi rst 23 genes are considered the best 
candidates with an FDR of 30% (only counting genes with some GO annota-
tions) and a TPR of 70% (7 out of 10 are rediscovered). Figure  7.4  also shows 
an attempt to recruit additional known genes from the remaining three outli-
ers (PFB0935w, PFC0120w, and PFC0110w) in order to increase the TPR at 
the expense of signifi cantly increasing the FDR. The knowledge of the 10 
known genes is therefore rediscovered to the best extent (7 out of 10) as 
quantitatively characterized by the probability scoring function (Eq.  7.1 ). The 
resultant 23 genes not only share the similar expression profi le (correlation 
coeffi cients  > 0.48) but also are highly enriched in GO:0016337 because they 
contain seven known members ( p  value   =   10 − 14 ). The KOA algorithm has 
been successfully applied to several gene function prediction studies, which 
has led to many robust predictions that have been cross validated by protein 
network data, by cross - species coexpression patterns  , and by other experi-
mental evidence (Table  7.1 )  [7] .   

  7.3   APPLICATIONS OF THE  KOA  APPROACH IN 
SMALL - MOLECULE  HTS  DATA MINING 

 We have shown how KOA can be applied to improve the confi rmation rate 
in siRNA screening by making use of both the gene - well mapping knowledge 
and the assumption that wells for the same gene tend to be coactive or coinac-
tive. We have also shown how KOA can identify a group of gene candidates 
that share unusual coexpression patterns by making use of both the prior 
ontology knowledge base available for a small collection of known genes and 
the GBA principle. Next, we will illustrate how KOA can be modifi ed and 
aptly applied to data mining single - assay and multiassay small - molecule HTS 
data and to detect relationships not easily obtainable by other methods. 
Considering the similarities between the expected goals for analyzing siRNA 
functional genomics and small - molecule HTS screening, it is intuitive that a 
parallel hit - picking strategy would work effi ciently for both types of screens. 
In this way, KOA provides an opportunity to synergize data mining efforts 
between bioinformatics and chemoinformatics. 
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 The top X method is still widely used in the HTS primary hit selection 
process, which often causes a rather low confi rmation rate largely due to the 
error - prone, noisy nature of single - dose HTS. Many data analysis methods 
used today  [21]  were originally designed for modeling data obtained from an 
old screening paradigm called sequential screening or smart screening  [22 – 24] , 
when the screening throughput was still relatively low. Although these methods 
are helpful for understanding the HTS data, they are not directly applicable 
to addressing many of the major challenges that are faced in the current HTS -
 based lead discovery process. For example, parameters such as compound 
structure analysis usually are not included as part of the decision making for 
the selection of primary hits; such consideration is introduced only after hit 
confi rmation. This is suboptimal since medicinal chemists often are willing to 
trade a potent scaffold with limited SAR opportunities for a scaffold with the 
opposite properties. This is because the SAR landscape of a scaffold is usually 
considered to be a critically important aspect of a lead candidate for its suit-
ability for further optimization. 

  7.3.1   Scaffold - Based  HTS  Compound Triage and Prioritization for 
Improved Lead Discovery 

 Similar to HT siRNA screening, a typical confi rmation rate using the top X 
method for primary HTS hit selection is in the range of low 40%, mainly 
because of the noisy and error - prone nature of single - dose HTS currently 
employed in most screens. Due to the limited capacity of the follow - up hit 
validation, which usually involves determining compound dose - dependent 
responses, and the associated higher cost, it is important to improve the 
primary hit confi rmation rate, which can help provide increased numbers of 
compounds of good quality for the ensuing lead discovery process. In addition, 
since the great majority of compounds tested in an HTS is triaged at this hit 
identifi cation phase, it obviously has an important far - reaching effect to the 
entire multistep drug discovery process  . Thus, extra care needs to be taken in 
this primary hit selection step. 

 Unlike siRNA screening libraries, small - molecule libraries typically are not 
designed to contain multiple samples of identical structures. Consequently, a 
single evaluation of a compound ’ s assay activity typically is the sole parameter 
that is employed for hit designation, and it may appear that the screening 
activity is the only parameter one can rely on and that the top X method is 
the only choice for selecting hits. Fortunately, in reality, large HTS compound 
libraries used in pharmaceutical companies usually carry a certain redundancy 
in terms of compound chemical structures  [25 – 28] ; i.e., structurally similar 
compounds are often screened together in one HTS campaign in a single - dose 
format. This is not surprising considering the source of compounds in the 
screening library, which includes (1) libraries purchased from vendors whose 
catalogs often overlap; (2) libraries from combinatorial synthesis often lead 
to intensive sampling of a small chemical space; (3) compounds synthesized 
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Data set: an activity score vector for a total of NT compounds, one activity score 
per compound

Knowledge: design of the compound library, where Sij is the jth compound in the 
ith scaffold family, j = 1, ... , ni

Hypothesis: SAR; structurally similar compounds tend to be coactive or 
coinactive

Output: a list of compounds that are considered to be true hits
Algorithm:

1. Cluster all compounds, C, based on their structure similarity into scaffold 
families.

2. Rank all compounds based on their activity scores in descending order 
(potent on top).

3. For each scaffold family i and
4. for each family member, compound Cij (j = 1, ... , ni),

5. calculate enrichment factor fij = p(NT, ni , Rij, j);
6. j* = argminj fij and f *i = fij*; assign f *i to all Cij (j = 1, ... , ni).
7. Cij with j > j* are removed as outliers from the data set.

8. Rank all remaining compounds based on f *i in ascending order, then by Rij

in ascending order.

Rij = the rank number of Cij in the sorted list; p = accumulated hypergeometric 
distribution function (Eq. 7.1).

Scheme 7.3     Outline of KOA hit selection algorithm for compound HTS.  

by previous lead optimization efforts and put back into the screening deck, in 
which case those advanced medicinal compounds typically share common 
scaffolds; (4) even if a company intentionally tries to construct a diversifi ed 
screening collection, they often have to purchase compounds in the unit of a 
plate instead of picked wells for cost consideration. The widely used SAR 
principle implies that structurally similar compounds may share similar activ-
ity, which further indicates that if a compound scaffold is truly active, activities 
from the scaffold family members tend to bias toward the high - activity region. 
This bias in distribution is unlikely to happen by chance when the scaffold is 
not actually active. Therefore, by clustering compounds into scaffold families, 
we create a knowledge set where members of the same compound family tend 
to be active and inactive coherently. By replacing siRNAs with compounds 
and genes with scaffolds, the abovementioned KOA algorithm applied in 
siRNA function screens can be modifi ed only slightly and can be readily 
applicable to HTS hit triage (Scheme  7.3 ).   

 Yan et al. applied this knowledge - based hit - picking approach to a cell -
 based HTS campaign carried out in - house using the internal corporate com-
pound library  [8] . Following quality control and normalization to eliminate 
obvious artifacts and outliers, a total of  ∼ 1.1 million compounds with single -
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 dose activity data were obtained, among which the 50,000 most active com-
pounds were analyzed by the KOA approach. Using Daylight fi ngerprints 
and the Tanimoto coeffi cient as chemical structure similarity measures  [29] , 
the 50,000 compounds were clustered into scaffold families based on a 
threshold value of 0.85  [30] . Then, each compound scaffold family was scored 
and prioritized according to Scheme  7.3 . Both KOA and the top X methods 
selected the 2000 best hits, respectively, and Figure  7.5 A shows the accumu-
lative confi rmation rate plots (i.e., the ratio between the number of con-
fi rmed actives over the number of selected compounds) for both approaches. 
It is noteworthy that the two methods selected distinctive sets of 
compounds.   

 As shown in Figure  7.5 A, in the top X method, the confi rmation rate is very 
low when only a small number of compounds are selected ( ∼ 200). This is 
mainly because the signifi cant number of compounds with erroneously high 
activities were potentially caused by experimental artifacts and were not iden-
tifi ed by the post - HTS quality control procedure  . The confi rmation rate gradu-
ally improved as more compounds were selected, reaching a maximum of 
about 55%, at which point about 1000 compounds were picked. In contrast, 
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     Figure 7.5     Primary hit selection in an HTS campaign. (A) Both KOA and cutoff 
methods were applied to pick the  ∼ 2000 best compounds and were assayed in a dose –
 response format for confi rmation. KOA hits show a  “ normal ”  curve, where the most 
confi rmable compounds were picked fi rst, and the confi rmation rate gradually decreases 
and plateaus at around 80%. The cutoff hits show an  “ abnormal ”  curve, where the 
low - quality hits were picked fi rst. As more hits were made available, the confi rmation 
rate gradually increased to a level around 50%. (B) The hits from KOA methods are 
projected into two - dimensional space by principal component analysis, where both the 
chemical diversity and the SAR strength of each scaffold family are readily visualized. 
This is because the KOA algorithm already incorporates the SAR principle in the 
process of hit ranking. Figure courtesy of American Chemical Society.  
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the KOA approach generated substantially better results. A high confi rmation 
rate of over 95% was achieved when only ∼ 150 compounds were picked. 
Furthermore, the false positives seen in the top X approach were effectively 
eliminated by this KOA approach. It was also able to maintain a high confi r-
mation rate ( ∼ 85%) with an increased number of selected compounds, and it 
consistently performed better than the top X method ( ∼ 55%). As the KOA 
and the top X approaches selected distinctive sets of compounds, additional 
experiments were carried out to retest those compounds picked by the KOA 
approach but not the top X method in order to estimate the potential false 
negative rate by the traditional cutoff - based method. A total of 825 com-
pounds out of the fi rst 1108 compounds picked by the KOA approach were 
considered as inactive based on the top X method. Furthermore, 202 of these 
 “ inactive ”  compounds were retested due to compound availability, and 144 
compounds were shown to be actually active. This resulted in a confi rmation 
rate of ∼ 71% for the  “ inactives, ”  even higher than the  “ active ”  compound 
confi rmation rate of  ∼ 55% by the top X method. This clearly demonstrates 
the ability of the KOA approach to effectively rescue false negatives deter-
mined by the cutoff - based method. By eliminating highly active false positives 
and retrieving false negatives, the KOA approach is able to substantially 
improve the quality of primary HTS hits. 

 The KOA - based HTS hit selection approach is in essence driven by the 
hypothesis of SAR; that is, chemically similar compounds within a scaffold 
shall demonstrate a certain level of similarity in assay activity. The KOA 
approach is capable of picking promising scaffolds with good activity and/or 
SAR, instead of individual, unrelated compounds like the top X method does. 
In addition, the SAR rule is just a probabilistic rule, which means that given 
two chemically similar compounds, there is a probability that they may have 
similar activity, i.e., for a compound family, only a fraction of its members 
may show similar activities. The KOA approach is able to provide an indi-
vidualized activity cutoff value Rij *   for each compound scaffold  i  based on a 
rigorous statistical test  [5]  (step 6 in Scheme  7.3 ), which in turn determines 
the fraction of the compound family that actually meets the SAR rule. This 
is in sharp contrast to the one - cutoff - fi ts - all approach employed by the top X 
method. Furthermore, the hits selected by this novel approach contain con-
siderably more information than those from the top X method. For example, 
as shown in Figure  7.5 B, it includes statistical signifi cance, scaffold informa-
tion, and SAR profi les. In addition, the KOA approach can also be applied 
to the secondary screening results when dose – response data are available, 
e.g., IC 50  or EC 50  data. Iteratively applying the knowledge - based KOA 
approach in the HTS compound selection process can signifi cantly improve 
  the quality of HTS hits from the very beginning of the drug discovery process 
and may help facilitate discovering lead series with high information content 
 [31] , as information such as scaffolds and SAR derived in this early HTS hit 
selection step are considered as favorable characteristics for promising lead 
series  [31 – 33] .  
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  7.3.2   Identify Promiscuous and Toxic Scaffolds by Mining 
Multiassay  HTS  Database 

 It has been observed that many confi rmed hits from a cell - based HTS study 
are later eliminated due to general toxicity. Indeed, toxic compounds identi-
fi ed in a cell - based  “ antagonist ”  screen are technically  “ authentic ”  hits but 
likely will be categorized as a  “ false positive ”  from a pharmacological point 
of view later in the project. On one hand, general cytotoxicity cannot be reli-
ably predicted by computational approaches and it requires using a signifi cant 
number of screens to profi le a series of confi rmed HTS hits in a panel of sec-
ondary assays that include an assessment of cellular viability. The repeated 
attrition of compounds with no selectivity in various HTS campaigns presents 
another bottleneck for lead discovery and a questionable use of limited avail-
able resources. On the other hand, since those generally cytotoxic compounds 
are likely to be found active across numerous cellular assays that are used to 
identify antagonists, it is possible to identify these compounds and/or com-
pound scaffolds by mining the HTS database. This would provide a  “ fi lter ”  
that could be used to eliminate these compounds and would shift the attention 
toward more promising chemical starting points in the lead discovery process. 

 Very few existing chemoinformatics algorithms have been described spe-
cifi cally for a corporate - wide HTS database, probably due to intellectual prop-
erty issues. Horvath and Jeandenans   demonstrated the concept of generalized 
neighborhood behavior; i.e., structurally similar compounds may have similar 
biological profi les in a small - scale multiassay (42 targets    ×    584 compounds) 
HTS data proof - of - concept study  [34] . In this study, such structure – profi le 
relationship (SPR) is characterized by the overall optimality criterion and 
consistency criterion, together with various descriptor - based structural simi-
larity measures  [34,35] . Similar successful applications of such analysis of 
compound HTS profi les across multiple assays have also been reported  [36,37] . 
However, in these studies, the probabilistic nature of the SPR is not suffi -
ciently considered, and each compound family is treated in the same way, 
much like the  “ one - size - fi ts - all ”  rule used in the top X approach for hit selec-
tion  [8] . Other HTS data mining methods, which attempt to delineate relation-
ships between compound scaffolds and target families, have also been reported 
 [38 – 45] . It should be noted that most previous studies focus on the relation-
ships between compounds and the  “ druggable ”  protein target families, such 
as G protein - coupled receptors (GPCRs), kinases, and proteases  [46,47] . 
These methods are not straightforwardly applicable to study promiscuous and/
or general toxic HTS hitters, where the targets may not be known and the 
HTS data can be intrinsically noisy  [48] . 

 Here we applied the KOA algorithm to study the correlations between 
compounds and assay formats on a scaffold level, which can be used to identify 
artifactual results and promiscuous hitters. In order to do so, fi rst we need to 
identify compound families (and the core members) with strong SPR. Two 
major challenges remain. First, the biological HTS profi le correlation among 
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Data set: an activity matrix of size NT × Q, i.e., a total of NT compounds across Q
HTS assays

Knowledge: design of the compound library, where Sij is the jth compound in the 
ith scaffold family, j = 1, ... , ni

Hypothesis: SPR; structurally similar compounds tend to share a similar activity 
profile

Output: lists of compounds that share both a similar scaffold and a similar 
selectivity profile across Q assays

Algorithm:

1. Cluster all compounds, C, based on their structure similarity into scaffold 
families.

2. For each scaffold i,
3. construct a representative biological profile QC;
4. score compound i based on the similarity of its profile, Qi, against QC;
5. rank all compounds based on their similarity score in descending order.
6. For each family member Cij (j = 1, ... , ni),

7. calculate enrichment factor fij = p(NT, ni, Rij, j);
8. j* = argminj fij and f *i = fij*; assign f *i to all Cij (j = 1, ... , ni).
9. Cij with j ≤ j*are marked as core members; Cij with j > j* are removed as

outliers.

Rij = the rank number of Cij in the sorted list; p = accumulated hypergeometric 
distribution function (Eq. 7.1).

Scheme 7.4     Outline of the KOA algorithm to identify the core members of each 
compound cluster.  

the member compounds can be simply caused by chance. In an extreme case, 
if the HTS profi le only contains two assays, any two compounds show either 
perfect Pearson correlation or anticorrelation, which, however, is only a sta-
tistical artifact. Second, as mentioned above, SAR and SPR are merely proba-
bilistic rules; i.e., given a family of compounds with similar structures, only a 
fraction of it may share the similar profi le. Therefore, it is important to identify 
those core members that do satisfy the SPR rule while excluding the outliers. 
Most existing data mining approaches employ some clustering analysis based 
on either compound structural similarity or biological profi le, but not both, 
e.g., the widely used cluster image map (CIM) method  [49] . However, when 
the biological profi les are used to cluster the compounds, it is found that 
compounds within the same scaffold are often scattered around on the clus-
tered map, which causes great diffi culty to visually identify reliable, meaning-
ful correlations between scaffolds and their biological effects. Visual inspection 
has also been applied to locate common tree components when both structural 
and biological profi le similarities are used  [50] . How to simultaneously take 
advantage of both chemical and biological data in data mining still remains a 
great challenge. The KOA algorithm described here (Scheme  7.4 ) can be 
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adapted to address these challenges and to extract meaningful knowledge 
from the large - scale, noisy HTS database by utilizing both biological and 
chemical data. Table courtesy of American Chemical Society.   

 We have compiled a data matrix from our internal HTS database, contain-
ing 33,107 compounds across 74 assays. Annotation of the assays is shown in 
Table  7.2 . Figure  7.6 A illustrates the KOA approach to mining multiassay 
HTS data. The heat map shows the biological profi les of a family of fi ve com-
pounds (compounds 1–5 ) across 74 HTS assays. If the average profi le of all 
fi ve compounds is used as the representative query pattern  QC  and all 33,107 
compounds are ranked based on the profi le similarity compared to  QC , these 
fi ve compounds of interest are ranked at the 2nd, 4th, 6th, 5162nd, and 6606th 
positions, respectively. Figure  7.6 A also shows how the logarithmic hypergeo-
metric p  value varies as the similarity cutoff value is lowered from 1.0 to 0.0, 
and it clearly shows that compounds 1–3  are the selected core members of this 
scaffold family and that their average profi le is considered as the true repre-
sentative profi le for the scaffold.     

 This result is also in line with the structural difference of the compounds 
within this family. As shown in Figure  7.6 A, the core members (compounds 
1–3 ) all have a propylpiperidine substitution attached to the nitrogen of the 
central pyrrolidine ring, while the substitution is isopropane for the two outli-
ers (compounds 4  and  5 ). It is noteworthy that based on chemical fi ngerprints 
alone, these two sets of compounds cannot be separated using a clustering 
program, while by including additional biological profi le data, the KOA algo-
rithm is able to effectively distinguish them. It is shown here that for com-
pounds with more than 85% chemical similarity in a compound scaffold family, 
only three out of fi ve compounds share the same HTS activity profi le, clearly 
demonstrating the probabilistic nature of the SPR. Furthermore, the KOA 
algorithm is able to identify the core subset of the compound family, which 
shares reliable SPR, indicated by a statistically signifi cant  p  value of 10 − 10 . This 
is highly benefi cial for developing reliable quantitative structure – activity rela-
tionship (QSAR) models, as the SAR principal is the underpinning of such 

 TABLE 7.2     List of the High - Throughput Screens Used in This Study 

   Classifi cation     Category     Inhibition     Induction  

  Assay format    Enzyme activity    12    1  
  Proliferation (cellular)    19    0  
  Reporter gene (cell - based assay)    19    23  

  Readout    Fluorescence    10    1  
  Alamar blue (fl uorescence)    17    0  
  Luciferase    21    25  

  Target type    GPCR    5    3  
  Kinase    10    1  
  Nuclear receptor    3    6  
  Protease    3    0  
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studies, and it has been shown that more data do not necessarily help develop 
a more accurate QSAR model  [51] . 

 The KOA algorithm was applied to all the scaffold families obtained from 
clustering the 33,107 compounds, and the representative HTS profi le from 
each of the family was determined. Approximately 50 out of the 74 assays in 
the HTS biological profi le are inhibition assays, where the assay conditions 
were optimized in order to identify antagonists. For each representative HTS 
profi le, the activity scores from the inhibition assays were grouped based on 
the categories in every assay classifi cation (Table  7.2 ). For instance, based on 
assay format, all the inhibition activity scores from a representative HTS 
profi le are grouped into three categories, namely, enzyme activity, prolifera-

Te

Br

Br

Te

Br

Br

HN

HN

N
NH

NH

O

O

O O

O

O

O

HN

N

N

NH

HN

N
NH

O

O
O

O

O O

O

O

NH

HN

N

O O

O

N

F

F
F

A B

C D

     Figure 7.6     (A) Illustration of the KOA algorithm. The compound family contains fi ve 
members, among which three core members share a similar activity profi le and a 
similar chemical scaffold. The other two outlier compounds, albeit structurally similar, 
are effectively identifi ed and excluded from subsequent analysis. Black in the heat map 
corresponds to a normalized activity score close to 1, and gray is for a score close to 
0. (B) Overview of representative biological profi les of selected compound scaffold 
families identifi ed in the data mining exercise. Each row in the heat map represents 
the median assay activity profi le for a differentially behaved scaffold family. The assays 
are sorted according to their formats; strong inhibition is represented by white and 
weak inhibition is in black. The hierarchical clustering revealed three generic patterns 
for a compound scaffold based on assay format — general toxic, tumor cytotoxic, and 
potential reporter gene assay artifact. (C) Tellurium - containing general toxic scaffold 
family. (D) Benzisothiazolone scaffold as a potential reporter gene assay artifact. 
Courtesy of American Chemical Society.  
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tion, and reporter gene (Table  7.2 ). Statistical tests such as analysis of variance 
(ANOVA) and Kruskal – Wallis tests, which are the multigroup version of the 
familiar parametric t  - test and the nonparametric Wilcoxon test, respectively 
 [52] , were then applied. Specifi cally, the null hypothesis here is that the assay 
activities from an HTS activity profi le shall not show differences among 
various categories, and a low probability value (usually defi ned as  < 0.01) 
rejects the null hypothesis, which implies statistically signifi cant differential 
activities among different categories. In this study, we assigned both ANOVA 
test and Kruskal – Wallis test probability scores to each compound scaffold to 
minimize false correlations, i.e., insignifi cant correlations due to randomness 
between compounds and biological profi les. The standard box plot, which 
shows median, lower, and upper quartile information in a succinct manner, is 
used for visualization (Fig.  7.6 C and  7.6 D). It offers an effective visual tool to 
further examine the behaviors of the compound families in each assay cate-
gory of interest (Fig.  7.6 ). 

 It is important for drug discovery programs if one can identify compound 
scaffolds that may give technology - related screening artifacts, such as promis-
cuous hitters, by mining the corporate HTS database using rigorous statistical 
methods. For example, generally cytotoxic compounds may show consistently 
high activities in many cell - based assays, while compounds that are known to 
form aggregates may also display misleadingly high activities in enzyme inhibi-
tion assays  [53] . An overview of the KOA results from data mining our HTS 
database is shown in Figure  7.6 B. 

 Indeed, compound scaffolds that appeared to have a screening profi le con-
sistent with a general cytotoxicity mechanism of action were clearly identifi ed 
(the bottom of the heat map in Fig.  7.6 B). Scaffolds that consistently showed 
inhibition in reporter gene assays are located in the middle of the heat map 
(also Fig.  7.6 D). The underlying pharmacological mechanism of a compound 
being a frequent hitter was recently studied  [4] . It was hypothesized that the 
mechanisms that cause promiscuity can be due to general cytotoxicity, modu-
lation of gene expression effi ciency, luciferase reporter gene artifacts, color 
shifting, and so on. Further mechanism - based analysis shows that frequent 
hitters are often related to apoptosis and cell differentiation, including kinases, 
topoisomerases, and protein phosphatases. When evaluating a particular com-
pound over a wide range of HTS, a typical hit rate as low as 2% is expected, 
whereas frequent hitters often are scored as hits in at least 50% of the assays 
performed. These numbers suggest the signifi cant value of deprioritizing such 
undesirable compounds at the early HTS hit selection stage. An  in silico
approach such as the KOA, mining can effectively address these practical lead 
discovery issues without additional laborious laboratory work. 

 Furthermore, Yan et al. has also demonstrated that the same KOA method 
can lead to the identifi cation of target classes for specifi c compound scaffolds 
by statistically testing target - type categories (Table  7.2 ) of the representative 
HTS profi le  [2] . This type of characterization of the compound families would 
be extremely helpful for designing more specifi c screening libraries, especially 
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for companies that wish to cover wide chemical space with limited screening 
efforts  [54,55]  or for those screens that are cost prohibitive or are not ame-
nable to HT formats. Compounds in a diversifi ed collection should represent 
different lead islands in the chemical space. As discussed above, the core 
members of a scaffold family identifi ed by the KOA algorithm belong to a 
subset of compounds that contain statistically reliable SAR/SPR. Those rep-
resentative compounds from each scaffold family might be suitable candidates 
for constructing such diversity - oriented libraries because of their capacity to 
best capture the SAR information with minimum structural redundancy.   

  7.4   OTHER RELATED APPROACHES FOR 
BIOLOGICAL DATA MINING 

 Although HTS compound activity data across a large number of screens are 
hard to obtain, gene expression data matrices consisting of thousands of genes 
across dozens of microarrays are fairly common. Such data are often mined 
by various unsupervised clustering algorithms, where clustering results tend 
to depend on several subjective parameters and there are no readily available 
statistical p  values to indicate their biological signifi cance or insignifi cance. 
The KOA algorithm is a knowledge - guided clustering algorithm, in the sense 
that it relies on existing knowledge to automatically determine the cluster 
boundaries. By optimally reproducing prior knowledge, KOA intrinsically 
contains a self - validation component for estimating both FDRs and  p  values 
of resultant clusters. Here, we summarize a few key differences between KOA 
and some related algorithms published by previous studies. 

  7.4.1    k  - Means Clustering Algorithm 

 The  k  - means clustering algorithm is a partitioning method that separates 
underlying objects into k  groups according to their similarities. This algorithm 
has been widely applied in summarizing unique patterns from many biological 
systems. The same malaria cell cycle data set mentioned above was also ana-
lyzed by a robust k -  means algorithm, resulting in 15 groups  [17] . However, 
there are several intrinsic disadvantages associated with this algorithm. First, 
the desirable number of clusters,  k , is not only diffi cult to determine but is 
often conceptually nonexistent. Second, genes are often involved in multiple 
biological processes; arbitrarily forcing each of them into one cluster distorts 
our biological understanding. Young et al. therefore compared the resultant 
clusters obtained by both k  - means and KOA methods  [6] . It was found that 
for almost all of the GO functional categories described by the k -  means clus-
ters, KOA - generated clusters had comparable or greater statistical signifi -
cance. For example, by switching to KOA algorithm,  “ antigenic variation ”  
(GO:0020033) cluster went from a p  value of 4    ×    10 − 8  to a  p  value of 9    ×    10 − 40 . 
In addition, by relying on each GO category as a piece of knowledge to seed 
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a cluster, KOA offered much higher resolution in functional space. For 
example, the  k  - means cluster #15 was found by KOA to further consist of 
subpatterns of a cell invasion cluster of 53 genes, an apical complex cluster of 
82 genes, and a rhoptry cluster of 6 genes.  

  7.4.2   Iterative Group Analysis Algorithm 

 Hierarchical clustering offers several advantages compared to the  k  - means 
algorithm, e.g., it does not require inputting a  k  value and, therefore, permits 
 “ fuzzy ”  cluster boundaries. However, the resultant tree can be diffi cult to 
interpret, and there are no objective ways to identify a local subtree for the 
purpose of function assignment. Breitling et al. introduced an iterative group 
analysis algorithm  [56]  and demonstrated a different application of the similar 
knowledge - based analysis approach in identifying differentially expressed 
gene classes. Toronen applied another knowledge - based analysis method to 
identify best - scoring clusters (subtrees) on top of an expression - based hierar-
chical gene tree  [57] . These algorithms share the similar idea as KOA that it 
is essential to use different similarity thresholds for different gene classes and 
that thresholds should be determined based on the GO knowledge base.  

  7.4.3   Gene Set Enrichment Analysis ( GSEA ) 

 Mootha et al. also designed a knowledge - based optimization algorithm called 
GSEA, which relies only on using annotated genes in the GO database to 
enrich weak differentially expressed signals  [58] . Using this approach, they 
were able to successfully determine the proliferator - activated receptor - gamma 
coactivator 1 (PGC - 1)   responsive pathway to be involved in type 2 diabetes 
mellitus. The GSEA algorithm, however, entirely relies on prior biological 
annotations, which makes it inapplicable to the functional annotation of 
uncharacterized genes in its original proposed form. Despite the limitations, 
GSEA has also found applications in many bioinformatics problems  [59,60] .   

  7.5   CONCLUSION 

 HT technologies are widely being used in the pharmaceutical industry, which 
has generated a vast amount, but often noisy, biological, chemical, and phar-
macological data. These large data sets clearly hold many potential discover-
ies, which can only be unearthed with robust data mining tools. Through the 
many successful applications of KOA algorithm in both target identifi cation 
and lead discovery processes, it has been demonstrated that KOA is one of 
such ideal tools that has been validated by solid experimental results. By 
exploiting the existing knowledge, such as library design or GO, and by making 
use of cornerstone principles or hypotheses such as guilt by association and 
SAR/SPR, KOA can address many bioinformatics and chemoinformatics 
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challenges. With an increasing number of applications in various drug discov-
ery phases, we expect KOA will play a more signifi cant role in contributing 
to a better lead discovery work fl ow, resulting in higher - quality lead series.  
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  8.1   INTRODUCTION 

 Investigating the effects of a compound at the cellular level is certainly an 
appealing challenge in the drug discovery and development process. That is 
especially true in the early phase of the discovery process during target iden-
tifi cation and validation. The identifi cation of intracellular pathways that are 
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perturbed by a chemical compound contributes to a better understanding of 
the mechanism of action of a drug and its possible side effects and potentially 
leads to the identifi cation of a gene signature correlated with effi cacy or 
safety  [1 – 5] . Moreover, the comparison of the effects at the cellular level of 
a lead compound on several pathological cell lines (e.g., several tumor cell 
lines) may allow to early highlight the class of pathology for which the com-
pound is promising. Several techniques are nowadays available for monitor-
ing the effects at both the protein and transcriptional levels. In particular, 
thanks to the recent advances in high - throughput technology and in molecu-
lar biological knowledge mainly by means of the Human Genome Project 
 [6,7]  and its correlated projects, it is now possible to detect and to monitor 
simultaneously the expression levels of thousands of genes (ideally even the 
whole genome) in only one experiment. There are many tools to measure 
gene expression, such as northern blotting, (quantitative) real - time poly-
merase chain reaction (RT - PCR) or serial analysis of gene expression 
(SAGE), but certainly the most appropriate tools for a parallel analysis of 
multiple genes are DNA microarrays  [8] . Since their appearance in the late 
1990s  [9,10] , they have become standard tools for genome - scale gene expres-
sion analysis with well - established biological protocols applied in research 
laboratories all over the world. They are currently used in several application 
fi elds ranging from cancer research to cell cycle investigation, from clinical 
diagnosis to drug discovery, from pattern discovery of coordinating genes to 
gene function discovery. However, the typology and the huge volume of col-
lected data create some peculiar diffi culties that a plethora of published 
methods tries to overcome. Adopting a suitable data analysis procedure 
selected in accordance with the conducted experiment and with the goal of 
the study is a nontrivial task. The purpose of this chapter is to present, after 
a brief introduction about microarray technology, a general view of data 
mining techniques currently used in gene expression analysis and to classify 
them, providing in such a way a sort of user ’ s guideline.  

  8.2   MICROARRAY TECHNOLOGY 

 Microarrays are small devices suitable for the parallel (or simultaneous) inves-
tigation of a hundred or thousand conditions of interest. The basic idea is to 
put on a small solid substrate with a surface of a few square centimeters a 
great number of probes, exploiting the advance of micrometer technology and 
image processing capabilities. The main conceptual ingredients at the basis of 
the microarray technology are (1) a device (called array) on which a great 
number of probes are orderly deposited along a prefi xed grid, (2) a  “ biological 
mechanism ”  that allows to  “ switch on ”  a detectable signal in a subset of probes 
on the basis of the conditions of the investigated sample, and (3) the acquisi-
tion of an image of the array and the subsequent  “ quantitative ”  evaluation of 
the intensity of its different spots corresponding to the different switched - on 
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probes. Microarrays differ from one another for the analyzed biological 
sample, for the exploited biological mechanism, for the chosen detectable 
signal, and for the technology adopted to build the array itself  . In any case, 
they allow to investigate previously intractable problems and to fi nd novel 
potential results. Researchers are using microarrays to try to identify crucial 
aspects of growth and development of several organisms, as well as to explore 
the genetic causes of many human diseases. 

  8.2.1   Types of Microarrays 

 Several types of microarrays have been developed for different purposes. A 
fi rst rough subdivision can be made on the basis of the adopted probes, i.e., 
tissues, antibodies, genomic DNA, cDNA, and mRNA. In the following, the 
most important devices are briefl y mentioned. 

 Tissue microarrays have been recently developed to facilitate tissue - based 
research  [11] . Core tissue biopsies are arrayed into a recipient paraffi n block 
by using a tissue arrayer, which generates a  “ fi ne ”  regular matrix of cores. 
DNA, RNA, or proteins are then targeted through  in situ  investigations as for 
conventional histological tissue. Typically, a block contains up to 600 tissue 
biopsies (sample diameter ranging from 0.6 to 2.0   mm). They are suitable for 
the analysis of multiple tissue samples  [12,13] . 

 Protein microarrays use antibodies as probes. They are suitable to simul-
taneously evaluate the expression profi le of multiple proteins for which 
antibodies are available  [14] . 

 Comparative genomic hybridization (CGH) and single nucleotide polymor-
phism (SNP) arrays are suitable for DNA analysis. They use genomic DNA 
probes. As DNA microarrays (see below), they represent the convergence of 
DNA hybridization, fl uorescence microscopy, and solid surface DNA capture. 
In particular, CGH arrays detect genomic DNA gains and losses due to inser-
tion/deletion events of large DNA regions (5 – 10   kb) also noncoding, or chang-
ing in the number of copies of particular genes. Several thousands of probes, 
derived from most of the known genes and interesting noncoding regions of 
the genome, are printed on a glass slide. DNA from two samples are differ-
ently labeled using different fl uorophores and are hybridized to probes. The 
ratio of the fl uorescence intensity of the samples in a probe is a measure of 
the copy number changes of the respective locus in the genome  [15 – 17] . 

 SNP arrays are used to detect mutations or single nucleotide polymor-
phisms within a population. As SNPs are highly conserved throughout evolu-
tion and within a population, the map of SNPs serves as an excellent genotypic 
marker for research. SNP arrays are a useful tool to study the whole genome 
 [18] . They are suitable for the investigation of individual disease susceptibility, 
disease evolution, or drug effects and therapy effi cacy. 

 DNA microarrays (sometimes also indicated as mRNA microarrays or 
expression arrays) instead are useful to monitor the transcriptional activity of 
cells and therefore to perform gene expression analysis. They are particularly 
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indicated to evaluate the effect of a disease, of a drug, or of the development 
and differentiation processes in cellular activity. 

 Although all the microarrays, as briefl y highlighted, exploit the same basic 
ideas and show common peculiarities also in data mining (at least for what 
concerns the fi rst steps of the analysis), they are quite different with respect 
to their goal, to the experimental procedure, and to the most advanced data 
mining techniques. This chapter focuses on DNA microarrays.  

  8.2.2    DNA  Microarrays 

 DNA microarrays can be divided in two main slightly different classes: cDNA 
spotted arrays  [9]  and oligonucleotide arrays  [10] . cDNA arrays exploit the 
competitive hybridization (like CGH arrays) of two labeled samples on 
several probes. Probes are  “ long ”  expressed sequence tags (ESTs) (1 – 2   kb 
long) obtained from cDNA libraries amplifi ed by PCR in separate physical 
containers and printed (ideally in the same quantity) to a glass slide by a robot 
following a regular grid (Fig.  8.1 ).   

 Ideally, one spot corresponds to one transcript. Typically, spots are 120 –
 250    μ m   separated, so that tens of thousands of transcripts can be spotted 
together in one slide. Obviously, in each spot, several copies of the same probe 
are spotted to allow a quantitative evaluation of the transcripts. 

“Normal”

Prepare cDNA probe Prepare microarray

Tumor

RT-PCR

Label with
fluorescent dyes

Combine
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Hybridize
probe to
microarray Scan
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     Figure 8.1     Robotically spotted cDNA microarrays hybridized to two samples: normal 
and tumor. Arrays are built by spotting PCR - amplifi ed cDNA. Two samples are 
labeled and hybridized.  
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 On the other hand, oligonucleotide arrays exploit the photolithographic 
technological abilities coming from microelectronic industry to synthesize  in 
situ  short oligonucleotides (25 bases long and thus these arrays are also called 
25   mers) (Fig.  8.2 ).   

 This automatic and highly standardized technique for the production of the 
arrays allows to obtain a high probe density and a high precision and repro-
ducibility of the building process. Differently from cDNA, one probe does not 
correspond to a transcript  , but several (10 – 20) probes are required to identify 
uniquely a transcript. Moreover, with this platform, the hybridization is made 
on a single sample basis, so that no simultaneous comparison is possible 
between two conditions. This means that typically, different arrays have to be 
compared applying a suitable normalization transformation across separate 
microarray data sets in order to make meaningful comparisons. Affymetrix 
GeneChip technology is nowadays the most popular one for what concerns 
oligonuclotide arrays. This technology allows to produce high - density arrays 
(about 600,000   probes in the same array) containing in only one chip the whole 
genome also of the most complex organisms, such as  Homo sapiens . 

 Other solutions have been recently proposed such as 60   mers by Agilent 
and Applied Biosystem. Agilent microarrays are spotted chips rely on the  in 
situ  synthesis of probes at or near the surface of the microarray slide by ink 

Mask

A

B

Chemical
coupling

Repeat

T –

C –

T T O O O

T T O O O

T T C C G

C A T A T

A G C T G

T T C C O

O O O O O OHO HO O O

Substrate

Mask

Light
(deprotection)

Light
(deprotection)

Mask

Lamp

Chip

Substrate

     Figure 8.2     The photolithographic construction of Affymetrix microarrays. Using 
selecting masks, photolabile protecting groups are light activated for DNA synthesis 
and photoprotected DNA bases are added and coupled to the intended coordinates.  
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jet printing using phosphoramidite chemistry  [19] . Longer nucleotides (60   mers 
instead of the 25   mers of Affymetrix) allow a more specifi c hybridization and 
thus one probe per gene is included on the array differently from Affymetrix 
and similarly to cDNA. The standard experimental paradigm of this chip 
compares mRNA abundance in two different biological samples on the same 
microarray (as cDNA). Agilent oligonucleotide microarrays like conventional 
spotted microarrays employ a two - color scheme (but also one - color chips are 
available). The reference is generated either from  “ normal ”  cells or tissues, 
or from a standardized mRNA mix, sometimes termed as  “ universal control, ”  
collected from the transcriptome of a variety of cells or tissues. The universal 
RNA provides a sort of reference signal for the majority of investigating 
conditions. 

 Applied Biosystems microarrays are 60 - mer oligonucleotide spotted chips 
too. They are a single - color channel platform; therefore, one sample for an 
array is analyzed as for the Affymetrix chip. They use chemiluminescence to 
measure gene expression levels and fl uorescence to grid, normalize, and iden-
tify microarray probes. Recently, an interesting work has compared this plat-
form with Affymetrix chip, investigating in both platforms the effect of a cell 
cycle inhibitor compound, previously characterized for mechanism of action, 
in tumor cells  [5] .  

  8.2.3   Sample Preparation, Labeling, and Hybridization 

 Every platform requires a specifi c protocol to be followed in sample prepara-
tion, labeling, and hybridization. Each producer delivers together with the 
chip a detailed experimental protocol, besides all the kits necessary to perform 
an experiment. As an example, in the following, the cDNA and Affymetrix 
protocols are summarized. The two procedures are quite different even if the 
conceptual steps are the same. 

 The typical workfl ow for the Affymetrix chip is depicted in Figure  8.3 .   
 Initially, sample preparation starts by isolating total RNA, from which 

mRNA is extracted and subsequently converted in cDNA using a reverse 
transcriptase enzyme and an oligo - dT primer containing a T7 polymerase site 
for 5 ′  to 3 ′  to start the retrotranscription. The resulting cDNA is purifi ed and, 
if necessary, stored in a freezer. This is the sample preparation part. The 
second step is labeling. cDNA is transcribed  in vitro  in cRNA (this step also 
allows amplifi cation) and is labeled with biotin. cRNA is purifi ed and frag-
mented in the presence of metal ions to allow the hybridization overnight of 
the prepared sample with the short oligonucleotide probes. The chip is then 
washed and an image is acquired by a high - resolution scanner. 

 The sample preparation procedure for cDNA experiments is the same as 
the one illustrated for the Affymetrix chip. The only difference is that mRNA 
has to be extracted from two samples (see Fig.  8.1 ). Both samples are labeled 
separately by a reverse transcription with different fl uorescent dyes (Cy3 -
 green and Cy5 - red). If required, labeled cDNA is amplifi ed by PCR and then 
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is hybridized to the cDNA clones spotted on the array. Finally, the array is 
scanned for both colors (corresponding to the two samples) separately and 
two images are acquired. Typically, the two images are fused into a singular 
one, building the well - known images with red, green, and yellow spots.  

  8.2.4   From Arrays to Numbers: Acquisition and Preprocessing 

 As already said, after sample preparation, labeling, and hybridization, all the 
platforms based on fl uorescence signals require a (one or two channels) scan-
ning of the array, a quantifi cation of the signal, and a so - called preprocessing 
of the obtained data in order to make comparable measurements of different 
arrays. At the end of this step, a matrix of gene expression levels with genes 
(or transcripts) on the rows and arrays on the columns on which data mining 
techniques have to be applied is obtained (Fig.  8.4 ).   

 In this section, the essential information about these steps will be provided, 
also because they are necessary to fully understand the nature of the data to 
be analyzed. 
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     Figure 8.3     Workfl ow of a typical experiment with Affymetrix arrays.  
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 In the fi rst step, a digital image is obtained by  “ reading ”  the array with 
high - resolution scanners. Probes are recognized by imaging software tools and 
are labeled by superimposing on the acquired image the  “ theoretical ”  grid of 
probes used to build the arrays. This phase is called gridding. Then, pixels are 
grouped around the center of each spot and are divided in the foreground and 
background (segmentation phase). The intensity extraction phase in which, 
for each probe, the intensities of the foreground and background pixels are 
summarized in the two respective signals follows. Both commercial and free-
ware softwares are available to perform gridding, segmentation, and signal 
extraction steps, e.g., ScanAlyze, GenePix, and QuantArray, which are the 
most popular ones. 

 The goal of these phases is to minimize the noise sources. Subsequently, 
the probes with low - quality signal, i.e., the ones in which the foreground is 
lower than the background, are removed. For the remaining ones, the fore-
ground signals of the probes related to the same transcript are further sum-
marized to obtain a single value for each transcript, after a background 
correction (summarizing phase). This step is particularly important for 
Affymetrix arrays in which several probes correspond to different portions of 
the same transcript (or gene). Even if this step is very important, it is not well 
established, and several algorithm have been proposed  [20 – 23]  and imple-
mented in software tools such as MAS5.0, dChip, or RMA - Bioconductor. 

 The last phase of preprocessing is normalization. Normalization is neces-
sary to make comparable different measurements and to remove systematic 
errors. Normalization can be viewed as a sort of calibration procedure  [24] . It 
can occur both within the array (to remove the intra - array variability) and 
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     Figure 8.4     DNA microarray data matrix. Gene expression levels coming from a DNA 
microarray experiment. On the rows are the monitored genes; on the columns are the 
investigated experimental conditions corresponding to the different arrays.  
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between arrays (to remove the interarray variability). The causes of the dif-
ference between two measurements can be numerous, e.g., a different effi -
ciency in fl uorescent incorporation during the sample preparation, a different 
effi ciency in scanning the arrays (within and between arrays), and a different 
effi ciency in the hybridization (within and between arrays), in addition to a 
different level of the gene expressions. Several normalization algorithms have 
been proposed. They are generally based on the hypothesis that the majority 
of the gene expression levels does not change over the different conditions 
(between arrays) or in each subregion of the array. Therefore, for example, 
the simplest methods assume that the median (or mean) is constant between 
arrays and in subregions of the same array. These methods, called global or 
linear normalization schemes, assume that all probes have to be scaled by the 
same normalization factor. More complex normalization procedures based on 
quartiles and percentiles have been proposed  [25,26] . Other methods are 
based on local linear corrections of the intensity (e.g., lowess normalization 
 [27] ). 

 After normalization, data are generally log transformed because of the 
large range of expression values and their high asymmetric distribution. 
Moreover, for the Affymetrix array, a linear dependence between gene expres-
sion level and log intensity has been shown too  [28] . 

 It is important to note that the complex measuring procedure of the gene 
expression is affected not only by systematic errors partially removed by the 
normalization, but also by a technical variability due to the overall experimen-
tal procedure, the array manufacturing process, the signal acquisition, or the 
image processing (Fig.  8.5 ).   

 For example, a recent study on tumor cells treated with anticancer com-
pounds has shown that also the day of the hybridization can induce an even 
greater variability than the effect of compounds  [29] . 

 To the technical variability, it is necessary to add the biological variability, 
owing to the genetic differences or the different environmental conditions. 
This variability is also present in synchronized cells coming from the same 
cellular line and grown in the same conditions. The greater the global experi-
mental variability, the lower the ability to fi nd genes differentially expressed 
in the different investigated conditions. Therefore, it is important to choose 
experimental designs that allow to evaluate, through technical replicates and 
biological pooling, the experimental variability and subsequently to reduce its 
effects on the results of the study by adopting suitable statistical techniques 
 [29] . Erroneous data can be identifi ed if a suffi cient number of repeated 
experiments are performed. However, economic constraints and biological 
sample availability have to be considered also for a good experimental design. 

 To conclude this discussion, some comments about the experimental repro-
ducibility are reported. A series of studies have been made for evaluating the 
comparability of the results across various commercial and homemade micro-
array platforms, with contradictory results. A number of groups have reported 
limited concordance of results across platforms  [30 – 32] , raising the crucial 
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question of the reliability of the DNA microarray techniques and their results. 
More recent studies have reached more positive conclusions about the possibil-
ity of comparing data coming from different centers or platforms, reinforcing 
the emerging concept that data treatment and choice of the comparison metric 
play a fundamental role in the analysis of gene expression data  [5,33 – 36] .   

  8.3   DATA MINING TECHNIQUES 

 To analyze the huge amount of data collected by microarray technologies, it 
is fundamental to select the most appropriate data mining instruments from 
statistics, artifi cial intelligence, signal analysis, patter recognition, and so on. 
Typically, data of microarray experiments coming from several arrays are 
related to different investigated phenotypes (e.g., normal and pathological 
subjects) or to the same subject under different conditions (e.g., after different 
drug treatments), or to different tissues. As already said, at the end of prepro-
cessing, microarray data can be represented by a matrix (Fig.  8.4 ) in which 
rows represent genes or transcripts and columns represent the different arrays. 
The two matrix dimensions are very different, with the matrix having several 
thousands of rows ( n ) and tens/hundreds of columns ( m ). It is important to 
note that in microarray analysis, the distinction between variables and obser-
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vations is not trivial: microarray data are an example of the so - called transpos-
able data, that is, data in which variables depend on the question around which 
the experiment is built. Therefore, the data matrix can be analyzed both on 
the rows and on the columns in accordance with the main question formulated 
by the researcher. 

  8.3.1   Kinds of Experiments 

 In the literature, there is a large amount of microarray experiments that differ 
from one another for the goal of the investigation. To better understand which 
are the most suitable data mining techniques that have to be used in different 
situations, it is useful to subdivide the typical experiments in homogeneous 
groups on the basis of simple characteristics. First, experiments can be divided 
in static and dynamic ones. The fi rst group includes experiments in which the 
time evolution is not explicitly investigated. The second one, instead, considers 
explicitly the evolution of the subject under study over time, monitoring its 
transcriptome over a time span. Classical experiments of the fi rst class concern 
the study of two or more groups of subjects that differ from one another for 
one characteristic that is the object of the study. Classical examples are the 
comparison of samples coming from normal or pathological subjects, or cells 
subjected to different treatments or behavioral conditions (e.g., cancer cells 
subjected to an anticancer drug). In these cases, each column of the data 
matrix (corresponding to a different array) can be associated with one of the 
investigated conditions. Two different questions can be formulated in these 
studies: one reading the matrix on the rows and the other reading the matrix 
on the columns. In the fi rst case, the question is gene oriented; that is, the 
investigation aims at fi nding genes that are differently expressed in the two or 
more investigated conditions. These studies correspond to the classical statisti-
cal studies of the biomedical research for group comparison (e.g., treated/
untreated, case/control) conducted at cellular level. The data mining tech-
niques used in these cases will be discussed in Section  8.3.2 . These gene selec-
tion techniques present some interesting peculiarities and pose some specifi c 
problems mainly due to the large amount of genes and the few observations. 
In the second case, the question is oriented to the subjects; that is, the inves-
tigation aims at discovering the so - called molecular fi ngerprint of each group. 
The problem can be approached as a feature selection/classifi cation problem 
by means of supervised techniques (Section  8.3.3 ). The main problem is again 
that the number of features (genes) is much larger than the number of obser-
vations in each class (arrays). To obtain a signature and to verify the goodness 
of the phenotypic class subdivision or the presence of possible genotypical 
subclasses, an unsupervised analysis can be also performed, neglecting the 
class information associated to each column. Arrays can be grouped by means 
of clustering techniques (Section  8.3.4 ) on the basis of the gene expression 
values. Therefore, an  a posteriori  evaluation and characterization of each 
cluster has to be made considering phenotypic class labels. Also in this situa-
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tion, a molecular fi ngerprint can be derived, even if it has only a descriptive 
purpose and is not appropriate for classifi cation because of overfi tting 
problems. 

 About dynamic investigations, classical experiments are related to the tem-
poral evolution study of the transcriptome of one subject in one or more dif-
ferent conditions. Classical examples are the study of the cell cycle, the 
differentiation and the development of an embryo, or the temporal effect of 
a specifi c substance as a drug on the cell activity. In these cases, each column 
of the data matrix (corresponding to a different array) can be associated with 
one of the time points of the investigated time span. Therefore, for each gene, 
an expression (temporal) profi le can be immediately obtained by reading the 
matrix on the rows and by sorting the columns in ascending order. Also for 
dynamic studies, two different questions can be formulated: one reading the 
matrix on the rows and another one reading the matrix on the columns, even 
if the column - oriented analysis is in general less interesting and frequent. In 
the fi rst case, the question is gene oriented; that is, the aim of the investigation 
is to fi nd genes that move over the time span. Data mining techniques suitable 
to cope with this problem will be discussed in Section  8.3.2 . They present some 
peculiarities from a statistical point of view, because, in time series, measure-
ments cannot be considered as independent samples  . It can also be of interest 
to group genes that show similar temporal profi les. Temporal clustering 
techniques have to be used and they are described in Section  8.3.4 . In the 
second case, the question is instead oriented to the time points; that is, the 
aim of the investigation is to group time points that show similar gene expres-
sions, clustering columns, and then, if it is of interest, to discover the molecular 
fi ngerprint characterizing each cluster. This problem can be approached as a 
feature selection/classifi cation problem by means of supervised techniques 
(Section  8.3.3 ).  

  8.3.2   Gene Selection 

 The main problem in the analysis of microarray data is the high number of 
genes and the low number of arrays. Therefore, the fi rst step of the analysis 
of gene expression data is gene selection. The main idea is to remove genes 
that are not signifi cant for the analysis. For this purpose, several techniques 
have been proposed and are often combined together. 

 Low expressed genes can be eliminated because the measured signal is 
particularly noisy. Although the idea is simple, the choice of the threshold is 
not trivial and it is platform dependent. Each technological platform has 
adopted a method to make this selection. Affymetrix, for example, defi nes 
probe signals as absent/marginal/present on the basis of a complex procedure 
that requires, also but not only, that the detected signal is over a certain 
threshold  . Applied Biosystem defi nes another criterion based on the com-
bined analysis of the fl uorescent and chemoiluminescent signals that both have 
to be over fi xed thresholds  . The selection criteria based on thresholds on the 
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detected probe values are based on a single array. However, the analysis we 
are interested in involves several arrays. In this way, additional gene selection 
criteria have been defi ned. For example, genes showing a limited variation 
across arrays are generally removed from the analysis, applying variational 
fi ltering methods, to avoid that variations due only to noise are attributed to 
the different investigated conditions  . 

 In static experiments, the method usually adopted in the literature in the 
early papers on microarray data analysis is the fold change approach. It is still 
widely used nowadays when no replicated measurements are available. A gene 
is not fi ltered out and is considered as differentially expressed over the inves-
tigated conditions if its expression level changes of a factor overcoming a 
threshold, Th  . In other words, a gene is differentially expressed if it happens 
that at least in two different arrays,  | log( x i  )    −    log( x j  ) |     >    Th. Note that this 
method fi xes a threshold that is intensity independent. However, it is known 
that measurement errors are intensity dependent and that low values are 
noisier (see Fig.  8.6  as an example).    

 Therefore, in the presence of replicates, it is possible to adopt an advanced 
formulation of the fold change method, normalizing the difference of logs 
through the intensity - dependent standard deviation (SD) estimated from rep-
licates  [37] . Then we have   log log log logx xi j x xi j

( ) − ( ) > × × ( )+ ( )( )2 2Th SD . 
 In the presence of replicates, it was also proposed to use statistical tests to 

select differentially expressed genes, distinguishing them from differences that 
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occur only by chance. In particular,  t  - test (to compare two conditions) and 
analysis of variance (ANOVA) (to compare more than two groups) were used. 
Both tests assume that data are normally distributed and that the variance is 
the same in the different groups. Normal assumption has never been demon-
strated in real data sets and seems to be particularly critical especially for 
Affymatrix data  [28,37] . For these reasons also, nonparametric statistical tests 
as the Wilcoxon – Mann – Whitney rank - sum test or the Kruskal – Wallis test 
have been proposed. Another problem in using statistical tests is that the few 
replicates available in each experiment do not generally allow to estimate 
accurately the null hypothesis. For example, it is diffi cult to estimate the 
experimental variability and in particular its dependence from the signal inten-
sity. Finally, the simultaneous application of statistical tests to thousands of 
genes requires a correction for multiple tests to control the type I error (i.e., 
the probability of considering as differentially expressed genes that are differ-
ent only by chance). A widely used correction (even if particularly conserva-
tive) is the Bonferroni correction, which suggests to perform multiple tests 
dividing the desired signifi cance level by the number of genes on which the 
test has to be applied. Being gene expression levels highly correlated or at 
least certainly not independent, this correction is very conservative, and the 
resulting test has a low potency. Note that the correction for multiple tests is 
particularly useful when genes have to be selected as biomarkers and then 
when the signifi cance level is the main focus, whereas the potency is not an 
important requirement. On the other hand, if the goal is only a reduction in 
gene numbers to be considered in further analysis, potency is an important 
parameter and signifi cance is less important. In other words, in the last situa-
tion, it is more important not excluding genes that are actually differently 
expressed  [38] . 

 Alternative to the Bonferroni correction, a plethora of modifi ed  t  - tests, 
accounting for multiple comparisons, has been proposed, even if they are not 
very popular. An alternative approach to the signifi cance level correction is 
the control of the false - positive rate or the false discovery rate, i.e., the number 
of the wrongly selected genes. Briefl y, in this approach, the signifi cance level 
of the statistical tests is fi xed in order to obtain a desired false discovery rate. 
In other cases, permutation strategies were instead adopted to derive the null 
hypothesis. In particular, the null hypothesis is obtained by simulation, dis-
tributing randomly the arrays in the investigated groups several times without 
considering their real membership. 

 Dynamic experiments require a supplementary discussion. In fact, in these 
experiments, gene temporal profi les are collected without or at least with very 
few replicates. The selection is usually performed to obtain the list of genes 
that show an expression level in one or more time points signifi cantly different 
from the baseline. The main problem of these experiments is that measure-
ments at the different time points are not independent samples, being gener-
ated from the same dynamic process. Therefore, statistical tests are no longer 
valid. However, to investigate only the effect of a treatment (e.g., a drug) and 



DATA MINING TECHNIQUES 251

to remove other effects from the analysis, the problem is often reformulated 
as the comparison of two dynamics experiments, one of which is a reference 
situation (e.g., treated and control cells). In this study, genes that show a dif-
ferent dynamics between the two experiments have to be selected. Frequently, 
in these cases, the time series obtained through the point - to - point differences 
between the two investigated situations is analyzed, as it is the time series to 
be studied (similarly to classical matched pairs study). 

 The fold change method has been used also for dynamic study. In fact, it 
does not require any assumption on the independence of the measurements, 
being a nonstatistical method. Alternatively, the interquartile range (IQR) is 
used as a measurement of the time series variability. A low IQR value is syn-
onymous with limited variability. 

 An ad hoc method has been developed to select genes in a dynamic experi-
ment in the presence of case/control experiments and of a certain number of 
replicates  [39] . More specifi cally, it is a statistical test based on the evaluation 
of the area between the two temporal profi les. The experimental area is then 
compared to that of the null hypothesis generated by assuming that the two 
temporal profi les are different only by chance. The null distribution is built 
randomly, generating a temporal profi le starting from the analysis of the 
replicates.  

  8.3.3   Classifi cation 

 Supervised classifi cation methods adopt different strategies to derive rules (the 
classifi er) able to establish the membership class of each example, minimizing 
classifi cation error. The main techniques are linear discriminant analysis, 
support vector machines, naive Bayes classifi ers, nearest neighbors, decision 
trees, induction of rules, and so on. Independent from the adopted specifi c 
classifi cation technique, the principal rule is that the performance of a classifi er 
has to be evaluated on a different data set from the one used to learn the clas-
sifi cation rule. Therefore, in general, the experimental data are divided into 
two groups called learning and test sets. They are not necessarily of the same 
dimension, but they preferably contain each class in the same proportion. 
Moreover, to make the evaluation of the classifi er independent from the spe-
cifi c test set and training set, several training and test sets are generated from 
the original data set and performances are averaged. Several methods are 
proposed to generate training and test sets. The 10 - fold cross validation, in 
which the full data set is divided in 10 parts (9 used as training set and 1 as test 
set by turns), is one of the best known among these methods. However, in the 
microarray case, which suffers from the small number of cases (or examples), 
a more suitable technique is the leave - one - out method in which by turns, one 
case is considered as a test set and all the others are used as a training set. 
Bootstrap techniques can also be adopted to generate training sets and test sets. 
The classifi cation performance expressed in terms of sensitivity and specifi city 
is often represented by the receiver operating characteristic (ROC) curve. 
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 Supervised classifi cation methods have been widely applied for mining 
DNA microarray data to derive new prognostic and diagnostic models, in 
particular, in cancer research and in pharmacology and in functional genomics. 
Some examples are reported here. 

 In clinical application mainly related to the oncology, DNA microarrays 
have been widely applied to perform molecular classifi cation. In this case, the 
classes are a certain number of mutually exclusive diseases. The classifi cation 
problem is thus to fi nd a decision rule that should correctly diagnose the 
patient ’ s disease on the basis of the DNA microarray data. From a method-
ological viewpoint, this problem suffers from the  “ small  m  – large  n  ”  situation, 
i.e., a small number of cases (few patients, tens/hundreds) and a large number 
of classifi cation attributes (many genes, tens of thousands). Thus, it is gener-
ally suitable to apply dimensionality reduction algorithms, such as principal 
component analysis or independent component analysis and/or gene selection 
methods, including statistical tests, as discussed in the previous section  [40] . 
However, it is important that gene selection is made by using only the training 
set and not the whole data set to avoid overfi tting. Note that, if gene selection 
is made as a part of a classifi cation procedure that involves an iterative process 
on different training sets (like in cross - validation methods), for each run, the 
feature selection has to be remade on the current training set and thus the 
selected features can differ from one run to another. Alternatively, to over-
come the problem of the large n  and the small  m , genes can be selected on 
the basis of the a priori  knowledge, for example, focusing the attention on 
those genes that are involved in some pathways of interest  [41] . 

 After gene selection and dimensionality reduction, many algorithms have 
been proposed to perform molecular diagnosis. Support vector machines and 
random forests are nowadays considered as the state - of - the - art approach to 
deal with this class of problems. 

 Supervised classifi cation algorithms are also applied to derive prognostic 
models from DNA microarrays, i.e., a prognosis on the outcomes of a certain 
disease on the basis of the molecular information coming from a certain 
patient. Many papers have been published in cancer research, although, due 
to the dimensionality problems previously mentioned, the model proposed has 
poor generalization properties and cannot be easily applied in clinic routine 
 [42] . 

 Another area of great interest from an application viewpoint is pharmacol-
ogy, with particular reference to the oncology fi eld. For example, the lym-
phoma leukemia project  [43]  has developed a method to predict survival after 
chemotherapy for diffuse large β  - cell lymphoma. In this study, the gene 
expressions of 160 patients treated with antracycline chemotherapy were used 
to build a Cox survival model. The model was then tested on 80 patients, 
showing good performances in predicting 5 - year survival and in providing 
interesting hypotheses on the patients who are good therapy responders. 

 Finally, in functional genomics, it is possible to build a training set with a 
number of gene expression profi les with known biological or molecular func-
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tions. The training set is used to learn a set of decision rules that allow to 
classify genes with unknown function on the basis of their expression values. 
For example, Brown et al.    [44]  successfully applied support vector machines 
to the analysis of yeast gene expression data. 

 Recently, a classifi cation method able to cope with replicates has been 
proposed to manage heterogeneity and uncertainty in a probabilistic frame-
work  [13] . It was originally applied to tissue microarrays, but it should be 
useful also in the case of DNA microarrays in the presence of replicate 
measurements.  

  8.3.4   Clustering 

 Clustering techniques are part of the standard bioinformatics pipeline in the 
analysis of DNA microarray data to group lines or rows of the matrix of data. 
Therefore, the main goals of cluster analysis are (1) fi nding groups of genes 
with similar expression profi les over different experimental conditions, includ-
ing different time points or different patients; (2) fi nding groups of experi-
mental conditions (patients, toxic agents) that are similar in terms of their 
genome - wide expression profi les. In the fi rst case (functional genomics), the 
main hypothesis underlying the application of clustering methods is that genes 
with similar expression patterns, i.e., coexpressed genes, are involved in the 
same cellular processes  [8] . In this case, in general, experiments collect samples 
over time. Sometimes, both genes and arrays are clustered in a two - step 
procedure. 

 All clustering approaches aim at fi nding a partition of a set of examples 
(genes) on the basis of a number of measurements (gene expression values); 
the partition corresponds to natural groups in the data or clusters. Clustering 
algorithms search partitions that satisfy two main criteria: (1) the internal 
cohesion; i.e., the examples of a cluster should be similar the others in the 
same cluster; and (2) the external separation; i.e., the examples of one cluster 
should be very different from the examples of every other cluster. 

 Among the different computational strategies proposed in the literature, 
we can distinguish three main classes of algorithms: (1) distance - based 
methods, (2) model - based methods, and (3) template - based methods. Below, 
a survey of these approaches is reported. In the following, we denote the set 
of expression measurements of the i th gene as  xi    =   { xil ,  …  ,  xim }, where  xij  is 
the j th measurement, with  j    =   1,  …  ,  m  and  i    =   1,  …  ,  n .  xi  will also be called 
expression profi le of the  i th gene. 

8.3.4.1 Distance-Based Methods   Clustering methods based on similarity 
are the most used approaches in the bioinformatics pipeline. These methods 
rely on the defi nition of a distance measure between gene expression profi les 
and group together genes with a low distance (or high similarity) between each 
other. The distance is computed in the  m  - dimensional space of the available 
measurements. The methods differ from one another for the adopted distance 
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measurement and for the strategy adopted to build up clusters. The most used 
distance measures are the Euclidean distance and the Pearson correlation 
coeffi cient. For what concerns the strategy applied to build up clusters, the 
two most popular families of methods are partitional clustering and hierarchi-
cal clustering. 

 In partitional clustering, the  m  - dimensional measurement space is divided 
in k  regions, corresponding to the  k  clusters; the number of regions is often 
defi ned in advance by the data analyst. The different partitional clustering 
methods, including  k  - means,  k  - medoids, and self - organizing maps  [40] , have 
been largely applied to the analysis of gene expression data. The  k  - means 
algorithm and its variants in general start by (randomly) selecting different 
k  cluster centers, assigning each gene to the nearest center. Then, the mean 
of each cluster is computed and centers are updated. The genes are then 
reassigned at the new centers and the algorithm is iterated until it con-
verges to a stable subdivision. Self - organizing maps are a technique starting 
from building a low - dimensional map (in general, two - dimensional maps 
are considered) in which each point represents a cluster. Genes are then 
associated with one or more points of the map in such a way that the 
clusters that are close in the map are also similar in the original m  - dimen-
sional space. 

 On the other hand, hierarchical clustering algorithms are divided into 
agglomerative and divisive ones. The former starts with  n  groups of one 
element, corresponding to the  n  examples, and then through  n     −    1 consecu-
tive steps, it progressively clusters the data into groups with a larger number 
of examples until a single cluster with n  examples is obtained  [40] . The latter 
starts with one group of n  genes and progressively splits the data in smaller 
clusters until n  clusters of one example are obtained. Agglomerative hierar-
chical clustering is the most used method in functional genomics  [45] . When 
the collected data are time series, the Pearson correlation coeffi cient is used 
as a similarity metric. As a matter of fact, the (standardized) correlation 
between two gene profi les well describes the biological notion of coex-
pressed, and maybe coregulated, genes  [45] : two genes are similar if their 
temporal profi les have the same  “ shape, ”  even if the absolute values are very 
different. Moreover, the correlation similarity allows to cluster counter - 
regulated genes. 

 The result of agglomerative clustering is depicted with a binary tree known 
as a dendrogram: the leaves of the dendrogram are the initial clusters with 
one example, while internal nodes represent the clusters obtained by grouping 
the examples that correspond to the child nodes. One of the main reasons of 
clustering technique success stands in the joint visualization of the dendro-
gram and of a color map (known as a heat map) of the gene expression levels 
in the different experimental conditions, as shown in Figure  8.7 .   

 This type of visualization clearly shows the homogeneity regions of the gene 
expression profi les, highlighting the natural clusters in the data and giving the 
user the possibility to assess the quality of the clusters obtained from the 
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algorithm. Hierarchical clustering and its tree visualization, although quite 
intuitive, are criticizable for the arbitrariness in determining the number of 
clusters.  

8.3.4.2 Model-Based Clustering   The use of distance - based methods for 
clustering gene expression time series may suffer from the failure of one of 
the assumptions underlying distance computation: the applied distance mea-
sures are usually invariant with respect to the order of measurements, assum-
ing them to be independent from one another. This assumption is clearly not 
valid in the case of time series. Several alternative approaches have been 
proposed to deal with this problem, ranging from a transformation of the 
original time series to an alternative defi nition of the distance function  [46] . 
However, given the nature of data, characterized by a small number of points 
(from some units to tens of measurements) and a small signal - to - noise ratio, 
an interesting solution is represented by a different class of clustering algo-

Figure 8.7     Results obtained by applying the hierarchical clustering algorithm to 20 
genes involved in the human cell cycle (for details, see Reference  57 ). Genes are 
grouped with a decreasing level of similarity from the right to the left. The length of 
each branch of the tree (dendrogram) is directly proportional to the distance between 
the clusters that are grouped together: the more similar the clusters are, the smaller 
the branch is and vice versa.  
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rithms, called model - based methods. The main assumption of model - based 
clustering is that the data are randomly extracted from a population made of 
a number of subpopulations, correspondent to the clusters, each one charac-
terized by a different probability density function  [47] . The subpopulations 
and their density functions are the model generating the data. Therefore, each 
gene profi le  x i   is assumed to be drawn from the probability distribution  f ( x i  , 
 θ ) given by

    f x p f xi k k i
k

c

, ,θ θ( ) = ( )
=

∑
1

  

 The clustering problem is thus transformed into a model - selection problem, 
which can be solved relying on probability and statistical modeling techniques. 
In time series analysis, each cluster is modeled by a different stochastic process, 
which is supposed to generate the data. Usually, it is assumed that all the time 
series can be described by the same class of stochastic process, and that the 
clusters differ from one another only because of different parameter values. 
Denoting with  Y  as the set of available examples (in our case, the  n     ×     m  matrix 
of DNA microarray data), with  M  as the clustering model of the data, and 
with  θ  as the parameter of the stochastic model generating the data, there are 
two main approaches for model selection that have been proposed in the lit-
erature: (1) the maximum likelihood approach, which searches the model that 
maximizes the likelihood function  p ( Y    |    θ ,  M ), i.e., the probability of the data 
given the model  M  and the parameter  θ ; and (2) the Bayesian approach, which 
searches the model that maximizes  p ( M    |    Y ), i.e., the posterior probability of 
the model  M  given the data  Y . 

 In the maximum likelihood approach, the likelihood in general cannot be 
directly maximized and the expectation maximization strategy can be usefully 
adopted. The problem is iteratively solved through a two - step procedure: in 
the fi rst one called E step, the probability that  x i   belongs to the  k th cluster is 
computed fi xing the model parameters; in the second one, called M step, the 
parameter estimates are properly updated  [48] . The number of cluster can be 
fi xed in advance or chosen by cross validation. 

 In the Bayesian approach, instead, the posterior probability of a model is 
computed by the Bayes theorem. The posterior distribution  p ( M    |    Y ) is pro-
portional to the product of the marginal likelihood  p ( Y    |    M ) and of the prior 
distribution  p ( M ). The prior distribution  p ( M ) is the estimate of the probabil-
ity of each model  M , before having observed the data. The marginal likelihood 
 p ( Y    |    M ) is a function of  θ  and  M  as follows:

    p Y M p Y M p M d( ) = ( ) ( )∫ , θ θ     (8.1)     

 Although the Bayesian approach allows to exploit prior information on the 
clusters, all the models are usually considered  a priori  equally likely and, thus, 
the marginal likelihood is maximized. If the number of available data  N    =    n     ×     m  
is high, maximizing the marginal likelihood is equivalent to fi nd a compromise 
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between the likelihood of a model and the number of its parameters. In fact, 
there exists a theorem showing that, if  N     →     ∞ ,

    log log , log ,P Y M P Y M N MM( )( ) = ( )( ) − ( ) ( ) + ( )θ ν
1
2

1Ο  

where  ν ( M ) is the number of the degrees of freedom of the model  M  and  θ   M   
is the estimate of the model parameters  [49] . If we choose  θ   M   as the maximum 
likelihood estimate, the Bayesian approach looks for models with high likeli-
hood and low dimensionality. 

 Model - based clustering has been successfully applied to cluster gene expres-
sion time series. The CAGED  [50]  software is one of the most interesting tools 
for clustering time series in functional genomics. CAGED assumes that the 
time series are generated by an unknown number of autoregressive stochastic 
processes. This assumption, together with a number of hypotheses on the 
probability distribution of the autoregressive model parameters and of the 
measurement error, allows to compute in close form the integral of Equation 
 8.1 , i.e., the marginal likelihood, for each model  M  and thus for each possible 
clustering of the data. Since it is computationally unfeasible to generate and 
to compare all possible models, it is necessary to couple marginal likelihood 
computation with an effi cient search strategy in the cluster space. For this 
purpose, CAGED exploits an agglomerative procedure, similar to the one 
used in hierarchical clustering. The time series are iteratively clustered, select-
ing at each step the aggregation that maximizes the marginal likelihood. In 
this way, CAGED is able to select the optimal number of clusters by ranking 
the marginal likelihood of each level of the hierarchy. Finally, the results can 
be shown in the same way of hierarchical clustering, with a dendrogram 
coupled with a heat map. 

 Recently, different methods have been proposed to improve the CAGED 
approach by relaxing some of its hypotheses, such as the stationary of the 
process generating the data or the regular sampling time grid. In particular, 
more general stochastic processes have been applied, such as random walks 
 [51]  or hidden Markov models  [52] . 

 In conclusion, the main advantages of the model - based clustering algo-
rithms when used to analyze dynamic DNA microarray experiments are 
(1) an explicit description of the autocorrelation model of the data, (2) the 
ability of working also with very short time series, (3) the possibility of manag-
ing missing data in a sound probabilistic framework, and (4) the opportunity 
to determine automatically the optimal number of clusters on the basis of data 
without being forced to fi x it in advance. The main problems are related to 
the necessity of assuming a reasonable model generating the data and the poor 
computational effi ciency.  

  8.3.4.3   Template - Based Clustering     Gene expression time series are 
usually characterized by a small number of time points. A recent review has 
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shown that more than 80% of the time series available in the Stanford 
Microarray Database has a number of points that are smaller or are equal to 
8. The main reasons are related to the high cost and high complexity of those 
experiments. Since the data are also noisy, alternative clustering strategies 
have been investigated. One of those strategies is to group the time series on 
the basis of the matching of the series with a pattern or a template, which may 
have qualitative characteristics, such as the presence of an increasing or 
decreasing trend, of an up and down behavior. If the templates are already 
available, the clustering problem becomes a pattern - matching one, which can 
be also carried on with qualitative templates  [53] . In most of the cases, the 
templates are not available and the template - based clustering approaches 
must automatically fi nd the qualitative templates in the data. For example, the 
method proposed in Reference  54  and implemented in the software STEM 
 [55]  starts by enumerating all possible qualitative patterns of a gene profi le of 
m  time points, given the parameter  c , which represents the possible unit 
changes of each gene from a time point to the next one. For example, if  c    =   2, 
each gene may increase or decrease of one or two qualitative units from one 
point to the next (or to remain steady). This allows to generate (2 c    +   1)( m     −    1) 
qualitative templates. The second step of the algorithm reduces the number 
of such templates to a number k  predefi ned by the user. The reduction is 
performed by clustering the qualitative profi les on the basis of their mutual 
distance. After this step, the original time series are assigned to the  k  clusters 
with a nearest neighbor strategy. The Pearson correlation is used as a similar-
ity function. Finally, the number of clusters is further reduced by (1) comput-
ing the statistical signifi cance of each group, through a permutation - based test, 
and by (2) eventually aggregating the remaining clusters that are closer than 
a predefi ned threshold. 

 Another template - based approach was proposed in Reference  53 , where 
the time series data are modeled as a set of consecutive trend temporal 
abstractions, i.e., intervals in which one of the increasing, decreasing, steady 
templates is verifi ed. Clustering is then performed in an effi cient way at three 
different levels of aggregation of the qualitative labels. At the fi rst level, gene 
expression time series with the same sequence of increasing or decreasing 
patterns are clustered together. At the second level, time series with the same 
sequence of increasing, steady, or decreasing patterns are grouped, while at 
the third level, the time series sharing the same labels on the same time inter-
vals are clustered together. The results of this method, known as temporal 
abstraction (TA) clustering, can be visualized as a three - level hierarchical tree 
and thus it is easy to be interpreted. Finally, an interesting knowledge - based 
template clustering has been presented by Hvidsten et al.  [56]   . In their work, 
whose main goal was to fi nd descriptive rules about the behavior of functional 
classes, they grouped and summarized the available gene expression time 
series by resorting to template - based clustering. They fi rst enumerated all 
possible subintervals in the time series and labeled them as increasing, decreas-
ing, and steady with a temporal abstraction - like procedure. Then, they 
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clustered together genes matching the same templates over the same subin-
tervals. In this way, a single gene may be present in more than one cluster. 

 Rather interestingly, the different clustering approaches can be now applied 
in an integrated way thanks to TimeClust, a new software tool freely down-
loadable, which allows the clustering of time series of gene expression data 
with distance - based, model - based, and template - based methods  [57] .    

  8.4   SUMMARY 

 The high - throughput technologies for the measurements of the gene expres-
sion represent an interesting opportunity but also propose a new challenge for 
drug discovery, evaluation, and administration processes. The main opportu-
nity is the possibility to overcome the classical reductionist paradigm that 
studies few genes at the same time, allowing the investigation of the whole 
transcriptome. On the other hand, these techniques create the problem of 
managing, analyzing, modeling and interpreting huge volumes of data. The 
complexity of this challenge is not only computational but is also due to the 
necessity to put microarray data in the context of the post - genomics informa-
tion. In this chapter, an overview of the main data mining techniques, useful 
to analyze microarray data, has been presented. It ranges from image acquisi-
tion and preprocessing to supervised and unsupervised classifi cation, through 
gene selection procedures. Although these techniques are very useful to select 
a molecular fi ngerprint of cellular life, it is necessary to remember that the 
functional interpretation of that molecular fi ngerprint is still a manual process 
and represents one of the most important obstacles to the full effi cacy of the 
microarray technology. In fact, the interpretation of the results and the for-
mulation of the hypothesis about biological mechanisms at the basis of the 
cellular behavior, monitored by microarrays, require the integration of infor-
mation about gene annotations and descriptions, about metabolic and cellular 
pathways, in which genes are involved, about their physical position on the 
genome, and so on.  [41] . 

 Despite their widespread use, DNA microarrays have limitations that 
researchers must consider. First of all, the analysis of the transcriptome is 
based on three hard assumptions: (1) there is a close correspondence between 
mRNA transcription and its associated protein translation; (2) all mRNA 
transcripts have an identical life span; and (3) all cellular activities and 
responses are entirely programmed by transcriptional events. Actually, mRNA 
activity and induced levels of proteins are not always well aligned. Translational 
and posttranslational regulatory mechanisms that affect the activity of various 
cellular proteins are not examined by the analysis of the transcriptome and 
thus by DNA microarrays. The promising fi eld of proteomics is starting to 
address these issues, for example, by using proteomic microarray. Moreover, 
differential gene expression analysis is not a stand - alone technique; results 
must be confi rmed through direct examination of selected genes. These analy-
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ses are typically done at the level of RNA blot or quantitative RT - PCR  , to 
examine transcripts of specifi c genes, and/or at the protein level, analyzing 
protein concentration using immunoblots or enzyme-linked immunosorbent 
assay (ELISA)  . 

 However, DNA microarrays are expected to become a routine, and they 
are widely used for disease diagnosis and classifi cation, which anticipates the 
future availability of home testing kits, for example, in cancer. Eventually, 
microarrays could be used as a routine diagnostic tool with which treatments 
could be tailored for an individual patient  [4] . 

 Moreover, the use of microarrays for target identifi cation and validation is 
currently being explored. The potential discovery of a gene, which, when 
knocked down, destroys only cancer cells, could indicate an approach for a 
new cancer therapy. The combination of DNA microarray analysis with the 
RNAi   technology is a very powerful tool for drug discovery  [58] . The use of 
cell microarrays for large - scale RNA interference studies should improve 
research in this fi eld  [59] .  
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  9.1   INTRODUCTION 

 Protein – ligand interactions are essential to all aspects of eukaryotic functions. 
A thorough understanding of such interactions is likely to provide us with a 
technology to better understand the mechanism of disease, to design novel 
drugs, and to control biological functions. Bioinformatics has played a signifi -
cant role in compiling information on known protein – ligand interactions and 
has made it possible to share and query that information, to predict interac-
tion regions and nature of interactions, and, fi nally, to design new molecules 
with desired interaction properties. In this chapter, we provide an overview 
of bioinformatics approaches to studying protein – ligand interactions and 
discuss some of the problems facing this enormously important subject of 
research.  

  9.2   LIGANDS IN BIOINFORMATICS 

  9.2.1   Defi nition of a Ligand 

 In the simplest sense, the term ligand in the current context refers to a (typi-
cally soluble) molecule that binds to another biological molecule to perform 
or to inhibit a specifi c (or nonspecifi c) function. The corresponding molecule 
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to which a ligand binds is called a receptor. The term ligand in chemistry is 
used to describe an atom (or a group of atoms) that is bound to a central 
(typically a metallic) atom in another molecule  [1,2] . Its biochemical defi nition 
is more permissive and states as follows [2  ]:

  If it is possible  or convenient  to regard  part of  a polyatomic molecular entity 
as central, then the atoms, groups  or molecules  bound to that part are called 
ligands.   

 Centrality here does not necessarily refl ect the geometric nature of a mol-
ecule but may refer to the active site or a functionally important region in a 
protein or DNA. Thus, a ligand may be most generally thought of as an atom 
or a molecule, attached to some specifi c location in a protein or DNA. For 
the purpose of elucidating protein – ligand interaction, the term may imply a 
metallic ion such as zinc or iron, a small molecule such as carbohydrate, 
another single protein such as a hormone or a neurotransmitter, or even a 
protein – protein complex of several peptide chains. In this widest sense of the 
term, ligands include DNA, RNA, and proteins. The process of attachment 
or binding of a ligand atom or molecule is correspondingly called ligation, and 
a ligand is said to be ligating its receptor during its activity. The arbitrariness 
or context dependence of the term ligand is obvious from the fact that the 
same atom or molecule may be differently called ligand or receptor in a 
sequence of biological events, depending upon the stage of the event being 
referred to. As an example taken from Reference 2,

  four calcium ions are ligands for calmodulin, when the protein is regarded as 
central; four carboxylate groups of calmodulin ligate (are ligands of) each 
calcium ion when this ion is regarded as central. It is the ligand that is said to 
ligate the central entity, which is said to be ligated.   

 It is clear that a ligand simply needs to be attached to a receptor, and the 
nature of attachment is not the main concern in designating it as a ligand. 
Indeed ligands are bound to their receptors or ligate other molecules utilizing 
all kinds of interactions ranging from ionic (as in the case of metallic ions), 
covalent (e.g., Gly-Tyr-Phe domains attached to proline - rich peptides) to 
hydrophobic (as in most protein – protein interactions) and hydrogen bonded 
(as in many protein – sugar and protein – DNA pairs). 

 Likewise, as is obvious from the above discussion, there is no limit on the 
size of an atom or a molecule to be called a ligand, as protein – protein com-
plexes composed of thousands of atoms qualify as ligands just as single - atom 
ions like zinc and copper do. In the next sections, we take a look at some 
examples of protein – ligand interactions, illustrating the diversity of molecular 
structures and biological functions in which protein – ligand interactions are 
observed.  
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  9.2.2   Inhibition of Enzyme Activity 

 Enzymes catalyze biochemical reactions by specifi cally acting on their sub-
strate molecules. Most enzymes have a specifi c smaller region that works as 
an active site and participates in the principal (enzymatic) activity. Another 
small molecule attached to these active sites may inhibit or activate this 
process. The Kyoto Encyclopedia of Genes and Genomes (KEGG) contains 
a database of ligands, which is linked to enzymes, providing information about 
enzyme activity and inhibition by ligands.  [3,4] . For example, an enzyme pro-
duced by malignant cells, cancer procoagulant, acts on peptide bonds and 
cleaves the Arg – Ile bond in factor X to form factor Xa  [5] . The activity of this 
enzyme can be inhibited by peptidyl diazomethyl ketones and peptidyl sulfo-
nium salts  [6] . In fact, peptidyl diazomethyl ketones are a class of ligands that 
specifi cally bind to proteinase enzymes, and the specifi city in these compounds 
is provided by two or three amino acids in its molecule, generally represented 
as Z - R1 - R2 - R3, where Z is the ketone functional group and R1, R2, and R3 
are amino acid residues attached by a peptide bond (R3 is optional)  [7,8] .  

  9.2.3   Metal Ligands 

 In some proteins, single metallic ions such as zinc and copper are essential to 
the function of a protein to which they are attached as a ligand (see, for 
example, Harris  [9]  and Karlin et al.  [10] ). Signifi cant conformational changes 
may occur in proteins due to the metallic ligand binding (e.g., Qin et al.  [11] ). 
These conformational changes throw a huge challenge for the comparative 
modeling of protein structures from sequence and are therefore a subject of 
intensive research. As a specifi c example, signifi cant conformational changes 
were observed when a zinc ion was replaced by copper in a zinc fi nger DNA -
 binding protein  [12] . Another class of DNA - binding proteins, called histones, 
is often reported to have a metal - binding domain  [13] . Another example of 
metal binding to proteins is that of a calcium - binding protein, calmodulin 
 [14,15] . Figure  9.1  shows the geometric arrangement of such interaction. 
Interaction of metals with proteins is also central in the studies on toxicity by 
mercury and other heavy metals  [16 – 18] .    

  9.2.4   Carbohydrate Ligands 

 Carbohydrate ligands interact with proteins in a wide range of biological pro-
cesses such as infection by invading microorganisms and the subsequent 
immune response, leukocyte traffi cking and infi ltration, and tumor metastasis 
 [19 – 27] . Bioinformatics approaches to studying these interactions are still in 
the early stages, particularly because few protein – carbohydrate complex struc-
tures are available and there is still a long way to predict the exact nature of 
these interactions. Although there are bioinformatics solutions, some of which 
predict binding sites and others can attach sugars to structure models, many 
more issues remain to be addressed  [28,29] .  
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  9.2.5   Other Small Molecules as Ligands 

 There are a large number of other ligands that are known to interact with 
proteins in various functions like charge transport, energy storage, and con-
trolling an enzymatic action. Examples include ATP, phosphate ions, sulfate 
ions, nitrate, oxygen, and carbon monoxide  [30 – 35] . Some statistics on their 
available structure complexes are presented in a later section. Here, it is 
enough to bear in mind that a ligand is not a homogeneous or similarly acting 
group of molecules but refers to almost an entire range of organic and inor-
ganic substances that interact with biological molecules in general but proteins 
in particular.  

  9.2.6   Protein Ligands 

 Many proteins interact with other proteins forming a ligand – receptor pair, 
which is one of the most common types of protein – protein interactions (higher -
 order oligomerization may be an example of another type of protein – protein 
interaction, not included in the ligand – receptor category). Protein – protein 
interactions in the signal transduction pathways form a typical example. A 
specifi c example of proteins involved in signaling could be that of transmem-
brane proteins, G protein - coupled receptors (GPCRs) that receive signals 

Figure 9.1     C - terminal of calcium - bound calmodulin protein (PDBID 1J7P). See color 
insert.  
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from hormone proteins (ligands)  [36] . GPCRs and their interactions with 
protein ligands are of enormous pharmaceutical interest as they form one of 
the most common targets of modern drugs  [37] . Many times hormone – recep-
tor interactions in GPCRs are accompanied by interactions with other (small) 
ligands, making the study of protein – ligand interactions much more complex 
and diverse (see example in Fig.  9.2 ).    

  9.2.7    DNA  and  RNA  Ligands 

 DNA and RNA are well - known molecules carrying all the hereditary informa-
tion in living organisms. Formation of proteins based on information encoded 
in DNA and with support from relevant RNA molecules is a task central to 
the origin, development, and regeneration of living systems. However, gene 
expression is tightly controlled by proteins such as transcription factors, 
enzymes, and histones. These proteins interact with nucleic acids in a specifi c 

Figure 9.2     G protein - coupled receptor kinase 6 bound to ligands Mg (red) and PO4 
(green) (PDBID 2ACX). See color insert.  
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or nonspecifi c manner and the study of such interactions is naturally of crucial 
importance. Structures of thousands of proteins, complexed with DNA and 
RNA, are now available in the Protein Data Bank (PDB), which allows a 
thorough inspection of their interaction geometries  [38 – 42] . Just as the most 
protein – nucleic acid interactions that occur on a specifi c location in DNA, the 
interaction site on the protein is also localized and binding residues on these 
proteins may also be clearly identifi ed  [39,43] . In this way, calling the protein 
or the nucleic acid as ligand and the other as target or ligated molecule seems 
to be largely a matter of syntax, and for the purpose of the current discussion, 
nucleic acid is treated as a ligand. 

 Based on proteins ’  ability to interact, several synthetic ligands have been 
designed, which specifi cally interact with proteins. Short fragments of nucleic 
acids designed for interaction with target proteins are termed as DNA -  or 
RNA aptamers (we call them simply aptamers in the current discussion, 
although we are aware that there are also peptide aptamers, which we shall 
specifi cally mention, if discussed). The typical target for interactions with 
DNA aptamers are proteins such as thrombin, PKC δ , and platelet - derived 
growth factors  [44 – 46]  (Fig.  9.3 ).   

 Synthetic DNA aptamers have also been shown to specifi cally recognize 
and bind to other molecules such as carbohydrates (e.g., Yang et al.  [47] ). 
However, current review has been limited to study DNA ligands interacting 
with proteins only.   

Figure 9.3     Thrombin - binding DNA aptamer (PDBID: 1HAP). See color insert.  
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  9.3   REPRESENTATION AND VISUALIZATION OF LIGANDS 

 With such a large number of ligands in play, it is a huge task to even name 
them in a systematic way. Just like naming any other biological entity such as 
an organism or a gene, different names for the same ligands may also be found. 
Thus, it is utterly important to have a uniform system that not only identifi es 
ligands by names but may also provide basic information about atomic arrange-
ments within them. Larger ligand molecules such as DNA and proteins follow 
the naming convention of their own; smaller ones may not be so easy to char-
acterize. The situation may become more complex for referring to a particular 
atom or a functional group within the ligand as the names and numbering 
assigned to them may vary in different systems of representation. More impor-
tantly, information about chemical bonds and branching of molecules should 
be readable by computers, for any large - scale processing such as fi ltering and 
screening, which form a very important area of application for studying ligands 
for their potential application as drugs. It is therefore necessary to take a brief 
look at the representation schemes and conventions that are most reliably 
used to identify and represent ligands. 

  9.3.1   Linear Text - Based Representations 

 The simplest way to present details of atomic arrangements within a molecule 
is to use one - dimensional character strings. For the most effi cient methods of 
writing, these methods should follow some basic principles: 

  1.    One molecule should be represented by one string.  
  2.    Representation should carry information about the atomic arrange-

ments and branching of chains and functional groups.  
  3.    There should be a way to represent most common types of bonds such 

as single, double, and triple bonds.  
  4.    Representations should be compact and should use minimum possible 

characters.  
  5.    Representations should (preferably) be unique, so that two - dimensional 

(2 - D) drawings, which are shown in various orientations, should have 
only one unique string corresponding to them. This imposes some stan-
dards on where to start writing the string and which branches of a chain 
should get preference.    

 Realizing the importance of these methods of representations, many linear 
input systems have been developed, both by individual groups as well as by 
large international committees such as the International Union of Pure and 
Applied Chemistry (IUPAC). Some of them are listed here.  
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  9.3.2   Simplifi ed Molecular Input Line Entry System ( SMILES ) 

 This method of representing 2 - D information of molecules on a one - dimen-
sional string was fi rst proposed by Weininger in 1988  [48]  and was further 
elaborated by Weininger et al. in 1989  [49] . 

 Despite a signifi cant contribution of SMILES in standardizing alphanu-
meric notations for representing molecules, there remain some issues in the 
fi ner aspects of details in their arrangements, hybridization state, chirality, and 
so on. Thus, ever since the fi rst standards were proposed by Weininger, modi-
fi cations were made, both to resolve ambiguities as well as to provide addi-
tional information. For a long time, a commercial company, Daylight Chemical 
Information Systems, Inc. ( http://www.daylight.com/ ), has led the standards 
and specifi cations of complete molecular notations in SMILES format. A 
recent effort by a community project called OpenSmiles ( http://www.opens-
miles.org/ ) has now been started to make a noncommercial and publicly avail-
able set of standards for SMILES. Elaborate details of proposed conventions 
and standards are available on their respective web sites, and brief summary 
of general principles in SMILES notation is given below. 

 SMILES notation recognizes that a molecule can be described by means of 
(1) the names of atoms, (2) linkages or chemical bond types between atoms, 
(3) spatial atomic arrangements such as branching of a molecule, and (4) 
aromatic character of connectivity, which requires additional information 
about chain closing. In addition to this, more elaborate ideas such as stereo-
chemistry (trans/cis nature of atomic arrangements), chirality, and isotope 
information may be added to give further details about the molecule. To 
achieve this, standard naming conventions are developed. For example, atoms 
are largely represented by their standard symbols (e.g., Na for sodium). To 
represent bonds, single bonds are assumed default and a notation is omitted; 
double bonds are shown by the  “ = ”  sign and a triple bond by  “ #. ”  Hydrogen 
atoms on carbon are not shown and are inferred from the bond notations. 
Thus, for example, SMILES notations for methane and ethane are  “ C ”  and 
 “ CC, ”  respectively, only; ethene is shown as  “ C = C ”  and ethyne as  “ C#C. ”  
Table  9.1  shows some more examples of molecules and their corresponding 
SMILES notation. Sometimes, group of atoms as a functional group are 

 TABLE 9.1      SMILES  Representations of Some Simple Molecules 

   Common Name     Chemical Formula     SMILES  

  Ethane    CH 3  – CH 3     CC  
  2 - Methyl pentane    CH 3  – CH(CH 3 ) – CH 2  – CH 2  – CH 2     CC(C)CCCC  
  Ethanoic acid    CH 3  – CH 2  – COOH    CCC( = O)O  
  Benzene    C 6 H 6     cccccc  
  Oxygen molecules    O 2     OO  
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needed to describe molecules and square brackets are used to do so, as also 
to denote the isotopes, e.g., [OH] shows alcohol and [13C] shows C13 isotope 
of carbon. Branching is shown by standard parentheses; e.g., CC (#N)(C)C is 
a notation for a (#N), (C), and C as three branches attached to CC. Further 
details may be seen in the user manuals from Daylight or OpenSMILES.    

  9.3.3    SMILES  Arbitrary Target Specifi cation ( SMARTS ) 

 Denoting molecules serves many purposes well but does not help if one wants 
to search through a large database of molecules based on small structural 
element within them, because small substructure information, most useful for 
molecular screening, may have been lost in the overall SMILES notation of 
the molecule. Moreover, an unambiguous standard to describe what one is 
looking for in a list of molecules needs to be defi ned. This task is achieved by 
an extension of SMILES, called SMARTS. As the name suggests an arbitrary 
target within a molecule can be searched by describing its substructure in 
terms of SMILES. Remember that SMILES represents a complete molecule 
and cannot be used to describe atoms without describing their complete 
bonding environment, which is not so for SMARTS. This notation is also 
maintained by Daylight Chemical Information Systems, Inc., and the detailed 
set of standards can be found on their website ( http://www.daylight.com/ ). 
There exists a variant of SMARTS, developed by OpenEye Scientifi c Software, 
Inc. ( http://www.eyesopen.com/ ). One important point of debate is how to 
describe complex aromatic elements. In daylight SMARTS, an aromatic part 
of molecules is annotated by fi rst identifying the  “ smallest set of smallest rings 
(SSSR), ”  whereas Openeye SMARTS prefers to count the number of aro-
matic rings attached to each atom and to design queries based on this count. 
A critical review of some of these issues was undertaken by Downs et al.  [50] , 
which can be referred to for further reading.  

  9.3.4    SYBYL  Line Notation ( SLN ) 

 This is another text - based method for representing molecules developed by 
the commercial company Tripos, Inc.  [51] . This notation tries to integrate 
information about the reactions, data search queries, and molecular informa-
tion in a single notation.  

  9.3.5   Formats for Writing 2 -  D  Coordinates 

 While SMILES, SMARTS and SLN are useful to unambiguously describe 
atomic arrangements within molecules, the detailed structures cannot be 
incorporated within them. Bond angle, actual bond lengths, and so on, require 
precise description of atomic positions of all atoms within the molecule. Many 
of these molecules may be projected on a plane, and therefore a simplifi ed 
structure can be written by describing x  and  y  coordinates of molecules just 
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like any other geometric object in a plane. More precise and complete three -
 dimensional (3 - D) structures can be shown by giving the Cartesian coordi-
nates of all atoms in molecules. However, coordinates of a large number of 
molecules again need to follow a standard way to write the atom names, their 
spatial positions, and their connectivities. There are a number of formats to 
write these coordinates, and these are reviewed elsewhere  [52] . Among them, 
PDB format, Tripos ’ s Mol2 format, Accelrys/MSI BGF, and Chem3D of 
Chemdraw are some of the most commonly used formats for writing atomic 
coordinates of small and large molecules. It may, however, be noted that the 
molecules written in one format can easily be converted to any other format 
by readily available software (e.g., OpenBabel,  http://openbabel.sourceforge.
net/wiki/Main_Page ).  

  9.3.6   Molecular Editors 

 There are a number of tools available for editing a molecular structure by 
drawing predefi ned rings and branches and by combining various substruc-
tures. They also provide facilities to convert formats of molecular information. 
Some of these tools are available to directly work on the web. A nonexhaus-
tive list of these tools is provided in Table  9.2 .     

  9.4   IDENTIFYING INTERACTIONS FROM STRUCTURE 

  9.4.1   Protein – Ligand Complexes and Their Databases 

 3 - D structures of ligand as well as protein molecules play a signifi cant role in 
the so - called lock - and - key mechanism of molecular recognition  [53] . 3 - D 
structures of proteins complexed with their ligands are obtained by X - ray, 
nuclear magnetic resonance (NMR) or other methods, and PDB is the primary 
source for such complex structures  [54] . Protein – ligand complex structures 
give detailed information about all atomic positions in a protein as well as its 
ligand. Most ligands (except nucleic acids and proteins) are identifi ed by the 
key word HETATM  . For our purpose, all HETATM records except water 
molecules may be treated as ligands. Based on this criterion, there are more 
than 7000 ligand molecules in PDB at the moment (December 2007). Among 
the most abundant ligands in PDB are some amino acids (e.g., alanine), sulfate 
(SO4), metallic ions (sodium, zinc, and calcium), and sugar derivatives such 
as glycerol. Interestingly, the number of protein – ligand complexes has grown 
more rapidly than proteins without a ligand during recent years. In fact, about 
70% of all PDB entries today have at least one ligand molecule in their struc-
ture. A simple count carried out at the time of fi nalizing this text (January 
2008) depicted that the number of ligands per PDB entry has grown from 1.3 
to 1.9 since 1993. This could, however, simply imply the availability of higher -
 resolution structures during recent years. 
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 TABLE 9.2     List of Molecular Editors and Commercial, Free, and Web - Based 
Applications     

   Editor     Citation     License  

  ACD/ChemSketch     http://www.acdlabs.com/
download/chemsk.html

  Commercial/freeware  

  ChemDraw     http://www.adeptscience.co.uk/
products/lab/chemoffi ce/
chemdraw.html   

  Propriety/commercial  

  XDrawChem     http://xdrawchem.sourceforge.
net/   

  Free software  

  Smormoed     http://www.hungry.com/ ∼ alves/
smormoed/   

  Free software/BSD 
license

  JChemPaint     http://almost.cubic.
unihyphen;koeln.de/cdk/jcp

  Free software  

  BKchem     http://bkchem.zirael.org/     Free software/GPL 
license

  OpenChem     http://openchemwb.sourceforge.
net/   

  Free software/GPL 
license

  ChemTool     http://ruby.chemie.
unihyphen;freiburg.
de/∼ martin/chemtool/   

  Free software  

  molsKetch     http://molsketch.sourceforge.net/     Free software/GPL  
  EasyChem     http://easychem.sourceforge.net/     Free software/GPL  
  Instant JChem Standard     http://www.chemaxon.com/

product/ijc.html   
  Commercial  

  Instant JChem personal     http://www.chemaxon.com/
product/ijc.html   

  Free software  

  Ghemical     http://www.uku.fi / ∼ hassine/
projects/ghemical/

  Free software/GPL  

  Avogadro0.0.3     http://avogadro.sourceforge.net/
wiki/Get_Avogadro   

  Free software  

  Online Editors  
  PubChem     http://pubchem.ncbi.nlm.nih.gov/

search/search.cgi
  Free software  

  Molinspiration WebME     http://www.molinspiration.com/
docu/webme/index.html

  Free software  

  O = CHem JME 
Molecular Editor 

   http://www.usm.maine.
edu/∼ newton/jme/index.htm   

  Free software  

  Marvin Molecule Editor 
and Viewer  

   http://www.chemaxon.com/
demosite/marvin/index.html

  Free for academic 
research and 
teaching

   GPL   =   GNU General Public License; BSD=Berkeley Software Distribution.   

 A huge number of protein – ligand complexes pose a data management and 
analysis challenge. This has led to a number of subsets of PDB as secondary 
databases, with ligand – protein complex information derived from PDB. Most 
prominent of these databases are Protein – Ligand Database (PLD), LIGAND, 
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and PDB - LIGAND databases  [3,55,56] . In addition PDBSite, EzCatDB, 
GLIDA, and Relibase are examples of specialized databases that provide 
useful information about protein – ligand complexes  [57 – 61] .  

  9.4.2   Binding Site From Complexes 

 In order to carry out any kind of analysis of protein – ligand interactions based 
on their complex structure, one often starts with the identifi cation of a binding 
site on protein. The purpose of this identifi cation can be either to determine 
amino acid preferences to be in the interface, machine readable notation to 
develop a prediction method, or to elaborately characterize a binding area to 
discover targets and design inhibitors  [62 – 64] . The defi nition of binding site 
may therefore vary in meaning and scope. For example, a whole patch on a 
protein surface may be considered a single binding region for a ligand even 
though some of the residues in protein form no physical contact with ligand. 
On the other hand labeling of each residue to be interacting or noninteracting 
may be required in some cases such as in the application of machine learning 
methods  [39,40,65] . Whether it is a hydrophobic or electrostatic patch, or it is 
a single amino acid residue in protein, the criterion to label it as interacting is 
neither unique nor obvious. Some of the most common methods to label 
binding sites or regions are thus listed in the following.  

  9.4.3   Defi nition Based on Change in Accessible Surface Area ( ASA ) 

 Regions of protein and ligand that come in contact with each other or partici-
pate in interactions are variously named as binding site, interface area, or, in 
a more specifi c context, active site. These terms are largely qualitative in 
nature and are therefore not very suitable for treatment by computers without 
manual assignment for each protein – ligand interaction. One of the more 
objective methods to annotate each residue or atom to be in the interface or 
not is to calculate the solvent accessibility or the ASA of protein (and ligand, 
if necessary) fi rst in their complexed state and then by removing protein and 
ligand and calculating the ASA again in the isolated environments  [66 – 68] . In 
other words, any atom or residue that becomes fully or partially inaccessible 
to solvent probes (typically water) in complex form and is accessible in its 
isolated components (free protein or free ligand) may be treated as the inter-
face or binding region. Using this method, each residue in the protein sequence 
can be labeled as binding or nonbinding, provided that its complex structures 
are available. There remain a few parameters that need to be fi xed for such a 
defi nition. First of all, how much change in ASA is large enough to label a 
residue to be interface residue? Many works use a permissive defi nition based 
on Δ ASA of as small as 1    Å  2 (Δ ASA is defi ned as the difference between the 
solvent ASA of a residue in its complex and isolated or free structure). 
However, some works have used a different criterion for  Δ ASA cutoff to 
defi ne interface residue  [69] . In some cases, proteins undergo signifi cant 
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conformational changes upon binding with ligands, and mapping of binding 
sites obtained from protein – ligand complexes to free proteins is possible by 
fi rst obtaining binding sites from complexed structures and then by fi nding 
exact alignments between the sequences of the complexed and free proteins 
 [66] . The probe radius of the solvent may be another concern, but most ASA 
calculation programs such as DSSP   use 1.4 -  Å  default size for water probe and 
are assumed to be satisfactory  [70] . 

 The defi nition of ASA change seems to be plausible and carries additional 
information about the strength of hydrophobic interactions  . However, this 
defi nition does not carry much information about the nature of contact 
between ligand and proteins and assigns more signifi cance to larger residues 
compared with smaller ones, in which change in ASA may be too small to 
measure. Also, some atomic pairs may interact at a distance too large to be 
captured by a small probe radius of 1.4    Å . Another problem with ASA - based 
defi nition is that the structures of some complexes may be solved at poor reso-
lution and ASA is calculated with much error, leaving a change in ASA with 
even greater statistical error. In published literature, binding or interface resi-
dues are often obtained based on defi nitions of direct geometric contacts 
between protein and ligand atoms  [39,40,65] .  

  9.4.4   Defi nition Based on Geometric Contacts 

 A defi nition of binding site or interface residue (or atom) based on geometric 
contacts is also derived from the structure of protein – ligand complexes, just 
as the defi nition based on  Δ ASA. Formally speaking, a residue or atom of the 
protein is considered to be in contact with that of the ligand if the distance 
between them is less than a predefi ned cutoff. In the case of atomic contact, 
it is straightforward, but in the case of residues, there is no single point that 
can naturally represent its position without loss of information; hence, instead 
of directly determining residue – residue contacts, information about atomic 
contacts between them is usually taken into consideration. In many cases, a 
residue may be considered in contact with a ligand if any atom of the residue 
is in geometric contact with the ligand. In some other cases, distance only from 
the backbone or side chain atoms of the protein is considered. In small data 
sets, each geometric contact may be physically examined for its likelihood of 
interaction, but in a large - scale bioinformatics approach, contacts must be 
automatically assigned. Some atomic pairs may be assigned meaningful physi-
cal contact such as hydrogen bonds with high confi dence, but that is not the 
case with most pairs of atoms in which we do not even know what kind of 
contact they might make or how much they may contribute to the interaction 
energy. This leaves the choice of cutoff distances somewhat uncertain. In a 
broader sense, any - to - any atomic pair contacts   are most widely used and 
typical cutoff distances range from 3 to 6    Å . Although it is unlikely that atomic 
pairs at 6 -  Å  distance will contribute signifi cantly to the overall energy, some 
authors have used these values apparently to artifi cially increase the number 
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of binding sites for dealing with prediction problems (trying to make the 
binding and nonbinding data more balanced). However, we have shown that 
increasing the cutoff distance for marking binding sites does not add any value 
to prediction, at least in the case of DNA - binding proteins  [28,71] . In our 
studies on predicting DNA - binding sites, we fi nd that a 3.5  Å  cutoff for any -
 to - any atomic contact is more effi cient than other prevailing defi nitions  [71] . 
Manual examination of binding sites is likely to do well for the purpose of 
developing elaborate empirical rules and may give additional insights into the 
nature of protein – ligand interactions  [29,72 – 74] . Usual tools for visualizing 
protein structure (e.g., VMD, RasMol, PyMol) and contact maps provide the 
most fundamental information about protein – ligand contacts  [75 – 77] . Some 
specialized tools have been developed for visual or quantitative analysis of 
protein – ligand contacts  [78] . LIGPLOT is one such powerful tool that pro-
vides a schematic 2 - D view of interactions between protein and ligand atoms. 
Figure  9.4  is a typical LIGPLOT representation of interaction between phos-
phopeptide A (Tyr - Val - Pro - Met - Leu, phosphorylated Tyr) and the SH2 
domain of the V - src tyrosine kinase transforming protein. The ligand (residues 
201 – 205 of chain B) has its phosphorylated tyrosine shown toward the bottom 
of the picture. The interactions shown are those mediated by hydrogen bonds 
and by hydrophobic contacts. Hydrogen bonds are indicated by dashed (green) 
lines between the atoms involved, while hydrophobic contacts are represented 
by an arc with spokes radiating toward the ligand atoms they contact. The 
contacted atoms are shown with spokes radiating back  [78] .    

  9.4.5   Solvent Accessibility and Binding Sites 

 Residues that are accessible to water are obviously also accessible at least 
partially to ligands, whereas buried residues are not. Thus, it is quite useful to 
know the solvent accessibility of each residue in order to do a fi rst level of 
fi ltering of candidate sites for ligand binding. Solvent accessibility of residues 
can be obtained from readily available software, databases, and web servers 
 [70,79 – 81] . Some servers provide additional information about cavities and 
pockets  [82] . Yet others give a graphical view of the arrangement of residues 
in various levels of solvent accessibility  [78,81] . All these methods require the 
knowledge of protein structures. However, solvent accessibility can also be 
predicted with reasonable confi dence from sequence information only  [83,84] . 
Thus, it may be possible to make a preliminary estimate of potential binding 
sites by looking at the amino acid sequence and ASA predictions, although at 
a very rough scale.   

  9.5   IDENTIFYING INTERACTIONS FROM  IN VITRO
THERMODYNAMIC DATA 

 Although protein – ligand complexes provide a huge insight into the spatial 
arrangement and nature of physical contact between atomic pairs, their exact 
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role remains uncertain. More decisive information about protein – ligand inter-
action may be obtained by measuring binding free energy and related param-
eters. Several experimental methods are available to do so, but here our 
concern is the computationally useful outcome of those experiments. A variety 
of information is sought in these methods. First, the strength of a known 
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protein – ligand interaction is estimated by performing binding experiments 
and by determining the amount of free energy released when a free protein –
 ligand pair is brought together to bind with each other under controlled condi-
tion  [85] . Second, the role of individual residues in the interaction is assessed 
by site - directed mutagenesis, where one residue is replaced by another and 
the binding free energy in the two cases is measured under identical condi-
tions — the difference being the effect of mutation  [86] . Also, binding of can-
didate inhibitors, potentially useful for drug design, is also estimated from free 
energy measurements. Finally, the competitive and reversible nature of 
protein – ligand interactions is studied to design novel inhibitors for targeted 
protein – ligand interactions. In the following, we give a brief account of 
most widely used parameters to measure the strength of protein – ligand 
interaction. 

  9.5.1   Measurement Units 

  9.5.1.1   Free Energy     Free energy in the context of protein – ligand inter-
actions typically refers to Gibbs ’ s energy, implying that the entropic contribu-
tions should be implicitly taken care of. Standard units for free energy and 
changes therein are kJ/mol and kcal/mol. Free energy of interaction between 
ligand and protein therefore would actually refer to the change in Gibbs ’ s 
energy values in the bound (complexed) and unbound (free) states of the 
proteins and ligands. Thus, it is customary to refer to  Δ  G  values by the term 
free energy, wherein the differential nature of measurement is understood. 
There is, however, another level of free energy change, especially in the 
context of stabilization or destabilization of protein – ligand interaction due to 
external factors such as temperature, pH, and buffers and evolutionary factors 
such as mutations in protein. Free energy changes in the stability of protein –
 ligand interactions in such cases are measured by the same units but refer to 
 Δ  Δ  G  instead of  Δ  G  and do not require explicit measurement or computation 
of  Δ  G  values.   

  9.5.2   Association and Dissociation Constants ( k d   and  k a  ) and  IC  50  

 The number of protein – ligand molecular pairs in the bound and unbound state 
at equilibrium depends on the concentration of the ligand. The ratio of 
the molecular concentrations in the bound and unbound states determines 
their association constants (the reciprocal is the dissociation constant). Free 
energy change upon binding is related to association constant by the simple 
expression

    ΔG RT Ka= − ( )log  

where  K a     =   [ AB ]/[ A ][ B ], where [ A ] and [ B ] are the concentrations of protein 
and ligand, respectively. Many times, the activity of an enzyme is inhibited by 
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a ligand, and the quantity of interest is the ligand concentration that could 
reduce the enzyme (protein) activity to 50% of its maximum value. This quan-
tity is called IC 50  and is measured in concentration units.   

  9.6   THERMODYNAMIC DATABASES OF 
PROTEIN – LIGAND INTERACTIONS 

 Large numbers of experiments reporting the strength of protein – ligand inter-
actions under different thermodynamic conditions have been carried out. 
Bioinformaticians have tried to compile them in the form of searchable data-
bases. The most prominent databases reporting the thermodynamic protein –
 ligand interactions are reviewed below. 

  9.6.1   Protein – Ligand Interaction Database ( P  ro  LINT ) 

 Sarai Lab (including one of the authors of this article [S. Ahmad]) has been 
compiling the thermodynamic data of protein – ligand interactions since 1998. 
Although a full public release has not been made, the database has often been 
previewed on several occasions  [87] . Each protein – ligand interaction is made 
up of several sets of information, viz, ligand information, protein information, 
thermodynamic information, clinical information, and literature information. 
Proteins and ligands are identifi ed by their PDB Code, Swiss - Prot   or Protein 
Information Resource (PIR) codes, SMILES notation, and enzyme classifi ca-
tion number. Thermodynamic information is in the form of association con-
stants and free energy changes. Each entry is drawn from published literature 
and hence literature information modules provide necessary citation informa-
tion. Each entry is also associated with any disease or clinical information and 
therefore the database has a huge promise of use in medically related bioin-
formatics research.  

  9.6.2    A  ffi n  DB  

 Developed at the University of Marburg, Germany, Affi nity database is actu-
ally a thermodynamic database linking all binding information to their PDB 
entries  [88] .Currently, Affi nDB consists of 748 affi nity data in the form of 
dissociation constants, IC50, or related binding units. This data correspond to 
474 entries in the PDB.  

  9.6.3    B  inding  DB  Database 

 BindingDB, developed at the Center for Advanced Research in Biotechnology, 
University of Maryland, is a database of experimentally determined binding 
affi nities for protein – ligand complexes  [89] .The main focus of this database 
is the proteins, which are drug targets or potential drug targets and for 
which structural information is available in the PDB. BindingDB currently 
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holds∼ 20,000 binding data for  ∼ 11,000 different small - molecule ligands and 
110 different drug targets. 

 There are other databases of structural and thermodynamic aspects of 
interactions (e.g., comprising protein – protein interactions  [90] ), but only those 
dealing with small ligands are included above.   

  9.7   DATA ANALYSIS AND KNOWLEDGE GENERATION 

 One of the principal goals of bioinformatics in the recent years has been the 
development and analysis of databases, more fashionably called knowledge 
bases, highlighting the fact that mere compilation of information is not enough, 
unless accompanied by relevant knowledge  [91,92] . Thermodynamic and 
structural data of protein – ligand interactions have been repeatedly analyzed, 
sometimes across a global set of interactions and other times in a particular 
family of proteins, type of ligands, or a group of interactions  [93 – 95] . Some of 
the databases of protein – ligand interactions, derived from their chemical 
structures (as against the thermodynamics) are discussed below: 

  9.7.1   Relibase+ and Its Retiring Precursor Relibase 

 Relibase is one of the early and most important databases of protein – ligand 
complexes and related information  [61] . Relibase+ is a more advanced version, 
available for commercial users only. Relibase is a database developed for 
the analysis of protein – ligand complex structures and allows additional 
features for the development of databases on structures drawn from these 
complexes. 

 Basic and advanced features of Relibase and/or Relibase+ are summarized 
as follows. 

9.7.1.1 Web -Based Access  Relibase can be accessed through a web inter-
face working on a client – server mode. This allows for extensive and easy 
sharing of information, without any portability concerns.  

9.7.1.2 Search Engine   On the server side, there is a search engine that can 
scan a large number of precompiled entries based on a variety of query terms 
such as ligand SMILES or SMARTS ligand name, protein name, and other 
information. Relibase provides for 2 - D and 3 - D substructure searches. Relibase 
allows visualizing protein – ligand interactions in three dimensions. One very 
powerful feature of Relibase+ is the automatic superposition of related binding 
sites to compare ligand binding modes, water positions, ligand - induced con-
formational changes, and so on. Relibase+ includes a crystal packing module 
for detailed investigation of crystallographic packing effects around ligand 
binding sites. It also provides functionality for detection of unexpected simi-
larities among protein cavities (e.g., active sites) that share little or no sequence 
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homology. The two most important aspects of any modern database system 
are their integration with other database and the ability of users to integrate 
or query them through their own applications; Relibase+ takes care of both 
of these requirements.   

  9.7.2    ZINC  Database 

 This database was developed by Irwin and Shoichet   at the University of 
California, San Francisco, CA, USA  [96] . Although ZINC does not explicitly 
deal with interactions, it is valuable in the analysis of interactions as it provides 
a comprehensive list of commercially available ligand molecules. Like Relibase, 
it has a powerful search engine, by which molecules satisfying particular condi-
tions may be searched. Queries to the database can be made among others by 
the chemical properties of molecules (e.g., net charge, log  P , rotatable bonds, 
and polar surface area), using full SMILES or SMARTS. This is extremely 
useful for the design of inhibitors and for fi nding out candidates for competi-
tive binding to proteins.  

  9.7.3    PROCOGNATE  

 Developed at European Bioinformatics Institute (EBI), PROCOGNATE is 
a database of cognate ligands for the domains of enzyme structures in CATH, 
SCOP, and Pfam    [97] . PROCOGNATE assigns PDB ligands to the domains 
of structures based on structure classifi cations provided by CATH, SCOP, and 
Pfam databases  [98 – 100] . Cognate ligands have been identifi ed using data 
from the ENZYME and KEGG databases and compared to the PDB ligand 
using graph matching to assess chemical similarity  [4,101] .Cognate ligands 
from the known reactions in ENZYME and KEGG for a particular enzyme 
are then assigned to enzyme structures that have Enzyme Commission (EC) 
numbers  [102] .   

  9.8   ANALYSIS OF DATABASES 

 As mentioned above, several primary and secondary sources of information 
on thermodynamic and structural aspects of protein – ligand interactions have 
been compiled. These databases result in useful knowledge, which is obtained 
by a thorough analysis of these databases and related information. Most 
widely analyzed aspects of protein – ligand interactions may be grouped under 
several categories, some of which are discussed below. 

  9.8.1   Binding Propensities 

 One of the fi rst analyses possible about protein – ligand interactions is that of 
residue preferences for binding to particular ligands. In essence, it is a measure 
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of the ratio of residue populations in the protein – ligand interface to the rest 
of the protein or in the overall protein including interface  [28] . In some cases, 
propensities are calculated within the surface residues, taking into account the 
fact that binding occurs only in the solvent - exposed residues  [103] . 

 Different residues have different propensities for different ligands, depend-
ing upon the nature of their interactions. For example, DNA and other ligands 
with negative charge on the surface prefer to interact with basic residues such 
as Lys and Arg. On the other hand, sugars and similar ligands preferentially 
interact with Trp due to their structural compatibility. As a case in point, 
propensity of 20 amino acids to interact with carbohydrates, DNA, and another 
well - known ligand ATP has been shown in Figure  9.5 .   

 Residue preference for a ligand may be derived from protein – ligand com-
plexes if and only if we know which residues take part in binding or interac-
tion. However simple it might look, it is a diffi cult task to identify each residue 
as binding or not, especially if one is dealing with a large data set, which 
requires automatic assignment or labeling of residues in terms of their binding. 
This issue has been discussed above in the section on defi nition of binding 
sites.  

  9.8.2   Neighbor Effects and Machine Learning Methods 

 If certain residues are preferred over others to bind to a given ligand, why not 
all residues of that kind do so? The answer lies in the environment in which 
a residue is found. This environment basically puts additional constraints on 
the viability of amino acid – ligand interaction. Second, a single residue may 
not be enough to complete the binding process. Thus, the sequence and struc-
tural neighbors and spatial arrangement of atoms play the role of ultimate 
selectivity of interaction. A big bioinformatics challenge is to automatically 
extract the knowledge of these neighbor and environmental effects and to 
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defi nitively tell (predict) which residues will interact to the ligand in question. 
For a large - scale prediction based on these considerations, machine learning 
methods have been shown to be particularly successful  [28,29,38,39,65,104 –
 106] . A general scheme to predict binding sites using a machine learning 
method may be schematically represented as in Figure  9.6 .   

 In brief, the whole idea may be summarized into four steps: 

  1.    Scan a protein ’ s amino acid sequence for each of its residues and char-
acterize the sequence or structural environment in a fi nite - dimensional 
vector (input vector).  

  2.    Defi ne binding state or label for each residue (target vector, which is 
actually a binary value scalar).  

  3.    Find a relationship between input vector and the target vector using a 
machine learning algorithm such as neural network, support vector 
machine, or any other model.  

  4.    Cross validate by fi tting several models on different data sets and by 
testing them on independent samples.    

 These methods are successful to a certain degree and may be powerful for 
a high - throughput analysis at a genomic scale. However, in most real cases, 
these models cannot utilize all the information that may be useful for making 

Figure 9.6     Neural network model for binding site prediction using evolutionary infor-
mation. SVM   =   support vector machines.  
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predictions. More accurate results are likely to come from docking experi-
ments (see later sections). Nonetheless, these models provide a powerful and 
fast platform to quickly scan thousands of sequences for potential binding sites 
and may even be used for constructing initial poses for a docking experiment. 
Work in that direction is rather rare and we are trying to take some early steps 
toward this course.   

  9.9   SIMULATIONS AND MOLECULAR DOCKING 

 Molecular docking is one of the most widely used techniques to predict the 
binding mode of protein – ligand interactions. It may be noted that docking of 
larger molecules such as proteins and DNA is not yet handy and hence most 
of the discussion in the following section refers to the docking of small ligands 
with proteins. The technique of docking arguably comes closest to the experi-
mentally verifi able nature of interactions and has been widely used for screen-
ing a small number of ligands for their potential use as drugs in the form of 
inhibitors, which selectively interact with targeted sites on the protein struc-
ture  [107 – 112] . Recent advancements have even allowed the use of docking 
at a large scale, extending the reach of this method to screen a large collection 
of potentially useful ligands  [113,114] . This latter method is called high -
 throughput docking (HTD). The basic principle of all docking methods, small 
or large scale, is the same, and they differ in their details and manner of 
implementation. In general, in a docking experiment, one attempts to fi nd the 
3 - D structure of a protein – ligand complex from the known structures of pro-
teins and ligands. It is obvious that the fundamental requirement to initiate 
docking is the availability of 3 - D structures of the interacting partners. Large 
numbers of proteins have been sequenced for which no such structure is avail-
able, and hence this method cannot deal with such proteins. However, advances 
in comparative modeling and structural genomics projects have made struc-
tures of many proteins available as structures of small ligands are relatively 
easy to model  [115] . These molecules are the principal target of application 
for docking studies. The problem of modeling the structure of the protein –
 ligand complex from the structure of its constituent protein and ligand —
docking  — may be broken into following stages: 

  1.  Generation of possible poses as an ensemble or a trajectory in time.     One 
of the major problems in docking, similar to any ab initio method of 
structure prediction, is the possibility that there is a prohibitively large 
number of geometric positions that need to be scanned for a possible 
mode of interaction. A single snapshot of such geometric arrangement 
is called a pose  [116,117] . Any docking method starts with some pose 
and an evaluation of its energetics  . If the starting pose is too far from a 
real situation, the system is most likely to attain a local minimum energy 
confi guration and no useful information will emerge. Thus, it is very 



290 BIOINFORMATICS APPROACHES FOR ANALYSIS

important to start with a reasonable pose close to the experimentally 
viable geometric arrangement. 

 In the drug - discovery scenario, binding sites are generally known and 
constructing a reasonable initial pose is not so diffi cult. However, in 
cases where there is no information about the sites of interaction or the 
availability of similar complexes, the problem becomes more challeng-
ing. This has led to the development of a number of methods to provide 
an estimate of interaction sites using which protein – ligand complex 
poses may be generated. In larger molecules, generating exact poses is 
a diffi cult task and many times, less ambitious approaches of fi nding 
potential interacting surfaces are used  [118] .  

  2.  Energy calculations or scoring functions to determine the suitability of 
each pose for interaction.     Once a candidate protein – ligand interaction 
pose has been generated, the next problem is to rank different poses on 
the bases of their energetics. In principle, we should be able to deter-
mine the most stable pose by the application of quantum mechanics and 
solve the problem exactly. However, the problem of protein – ligand inter-
action has rarely ever been solved from purely quantum - mechanical 
considerations because of the high complexity of such interactions and 
the strong effects of solvents, which are diffi cult for such handling 
 [119,120] . In a more practical sense, the problem has been divided into 
two parts: one is the development of force fi elds, which try to defi ne 
interaction energies in terms of pairs of atomic groups and distances 
between them, and the other is to score energies and to fi nd the best 
candidate interaction  [121 – 123] . Interaction energy between atomic 
groups largely comes from the structures of known complexes or their 
thermodynamic parameters and therefore often takes care of actual phys-
iological perturbations rather implicitly. Scoring interactions is another 
important problem of the energy calculation process  [106,124] . The 
problem of scoring docked pairs of protein – ligands is often encountered 
in drug - discovery technology  [124 – 126] . The problem arises from several 
reasons. First of all, some force fi elds such as those based on statistical 
potentials do not calculate energies in absolute units. Second, there are 
a number of energy terms coming from protein and ligand conformational 
changes on one hand and protein – ligand direct interaction on the other, 
further complicated by solvents and other environments. Third, different 
ligands may not necessarily bind exactly in the same way or in the same 
site on the protein, complicating their comparison. Thus, special scoring 
functions are required to rank a number of hits while searching for poten-
tial candidate ligands likely to interact with the protein. Many scoring 
functions derived from classical, statistical, and quantum mechanical 
considerations are available  [121,122,127,128] . However, it has been 
argued that there is no single scoring function that can be universally used 
for all protein – ligand interactions, and most scoring functions perform 
better for one or the other class of protein – ligand interactions  [124,126] .     
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  9.10    HIGH THROUGHPUT DOCKING (HTD)  

 As stated above, one important stage in  in silico  drug design is to scan a library 
of potential drugs (ligands) that can possibly bind to a selected target on 
protein. Since structures of proteins and ligands are known in most such cases, 
a reasonable set of candidate ligands may be obtained by systematically 
docking them on the target protein sites  [129] . Many tools are now available 
to achieve this task  [117,130 – 135] . It has been shown that the comparison of 
docking software is not easy as there is no universal principle to evaluate their 
performance. Some guiding principles have been reviewed in published litera-
ture  [124,136] . 

 Indiscriminate scanning of ligand databases for their interactions with pro-
teins has been replaced by additional fi ltering techniques  [137] . These tech-
niques allow input of additional information of protein – ligand interactions in 
order to carry out a screening of ligand databases and to create a smaller 
ensemble of ligands, which can then be used for HTD.  

  9.11   CONCLUSION 

 Almost all interaction of proteins may be regarded as protein – ligand interac-
tions, which occur in structurally and functionally diverse environments. The 
bioinformatics challenge is to understand the features of proteins important 
for interactions with known ligands and the ability to predict ligand binding 
sites in proteins, and to select ligands that could bind to a previously known 
binding site. Machine learning, docking, and other bioinformatics approaches 
have played important roles in the advancement of this subject, which pro-
vided not only a better understanding of the interaction but also technology 
to design novel ligands and proteins, with desired properties.  
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  10.1   INTRODUCTION 

 Toxicogenomics may improve quantitative safety and risk assessments by 
providing a wealth of data that investigators can correlate with mechanism of 
action and toxic responses through phenotypic anchoring. Organizations using 
toxicogenomics require data management solutions to manage the overabun-
dance of data generated by toxicogenomic studies, as well as the sample 
annotation and complementary toxicology and pathology data required for 
interpretation. 
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 Sample annotation allows investigators to identify trends in their data that 
correlate with phenotypes or which may explain spurious results. Sample 
annotation includes animal husbandry, caging information, sex, age, body 
weight, tissue/organ information, gross pathology, treatment/exposure 
protocols, surgical details,  in vitro  culture conditions, species, and strain 
information. 

 Complementary toxicology data allow investigators to correlate toxicoge-
nomic data with standard observable toxicological phenotypes. Investigators 
can begin to differentiate adaptive responses from mechanistic changes in 
gene expression through phenotypic anchoring. Complementary toxicology 
data include changes in body weight, changes in the rate of body weight gain, 
clinical chemistry, histopathology, changes in morphology, tumorigenesis, and 
cytotoxicity assays. 

 Toxicogenomic information management systems (TIMS), specialized 
relational databases, track these data for organizations. Under ideal condi-
tions, organizations unite their databases into federations or through ware-
houses to provide a unifi ed data sharing environment. Data federations 
use specialized software that accepts queries from users and maps the 
query across several databases. This allows a user to make complicated 
queries across databases with little knowledge of their structure or the 
data they contain. Data warehouses take snapshots of their member data-
bases and integrate the data into a larger database. Data integration across 
an organization within federations and warehouses allows multiple users to 
have access to the same information for data mining and decision - making 
purposes. 

 Many journals require authors to deposit their transcriptomic data within 
a public repository as a condition of publication. Repositories hold the promise 
of serving as open source intelligence (OSINT) points that organizations may 
leverage to obtain new knowledge. For instance, in the future, an organization 
may obtain all of the transcriptomic data for the members of a particular drug 
class to identify potential off - target affects. 

 Several challenges exist with respect to using TIMS and repositories for 
pharmaceutical data mining. This chapter will discuss these challenges and will 
address data mining methods using toxicogenomic databases. The chapter will 
also give several examples of databases and repositories and will discuss the 
need for toxicogenomic data standards.  

  10.2   TOXICOGENOMIC DATABASES AND REPOSITORIES 

 The major toxicogenomic database developers, representing academic, gov-
ernment, and industry interests, have been active since the beginning of the 
era. Two of the fi rst databases to emerge were dbZach ( http://dbzach.fst.msu.
edu/ ; initially, the database of testis expressed transcripts (dbTEST), later 
renamed as TIMS dbZach)  [1,2]  and the United States Food and Drug 
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Administration (U.S. FDA) ’ s ArrayTrack ( http://www.fda.gov/nctr/science/
centers/toxicoinformatics/ArrayTrack/ )  [3,4] . 

 Once toxicogenomic data began to emerge within the literature, the toxi-
cogenomic - specifi c data repository, Chemical Effects in Biological Systems 
(CEBS  ) knowledge base  [5] , became available. This repository became neces-
sary as the database developers and members of the community realized that 
the existing microarray repositories lacked support for the minimum informa-
tion required to interpret a toxicogenomic experiment. 

  10.2.1    TIMS  

 Organizations that adopted toxicogenomic methods quickly realized the need 
to develop data management strategies. Many of these groups decided to 
maintain the status quo : individual data producers/investigators would be 
required to manage their own data. Other groups decided to utilize their 
information technology (IT) expertise to adopt database approaches. Two of 
these database systems (TIMS dbZach and ArrayTrack) have emerged as 
full - service solutions, now termed TIMS. 

 The TIMS solutions emerged to address problems associated with data 
being scattered throughout an organization, issues with data access and data 
sharing. For instance, organizations that lack data management strategies 
must back up data located at each terminal, instead of a single database, 
increasing the risk of irreparable data loss. In addition, in order for individuals 
within the organization to share data, they must fi rst locate who is in charge 
of the data and must request access to it. If the user in charge of the data 
grants the request, both users must fi gure out a way to share the data with 
each other. 

 These issues with data access and sharing create internal data silos that may 
reinforce negative organizational politics. The problem with data silos is the 
creation of  “ gatekeeper ”  effects, where a single individual controls access to 
a segment of information/data. This creates a situation where the gatekeepers 
may feel that the data they control is theirs and are not the property of the 
organization. For example, if an investigator is trying to identify potential 
within - class toxic effects, but the data for each compound exists on several 
different systems controlled by different individuals, the investigator must 
communicate with each gatekeeper to access all of the information that they 
require. This breeds ineffi ciencies with respect to identifying the gatekeepers, 
requesting permission to obtain organizational data, and the associated wait 
times. Although less likely to occur within smaller organizational structures 
with a powerful centralized management, these types of counterproductive 
silos exist within all types of organizations, from small academic research labo-
ratories to large multinational corporations. 

 Database systems, including TIMS, prevent the gatekeeper effect by cen-
tralizing the access decisions for similar types of organizational data. For 
instance, a single TIMS could manage the data for an entire division or for an 
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entire laboratory, depending upon the organizational structure. TIMS built on 
scalable architectures, including server hardware and appropriate database 
software, would grow with the organization ’ s needs. TIMS also incorporate 
best practices for data security and risk management. Rather than requiring 
a complex data recovery plan for every terminal where data may reside, a 
more simplifi ed plan would cover the single source of data — the TIMS. 

 There are, however, drawbacks to implementing TIMS. If an organization 
hosts/implements an in - house TIMS, they will require a database administra-
tor to maintain the system, ensure it runs at peak performance, and secure the 
data. TIMS generally require specialized software and user training. Unless 
purchasing or acquiring an existing solution, the organization may have to 
create one, which can require signifi cant time and expense. However, investi-
gators have to weigh the return on investment (ROI) from implementing a 
TIMS against the cost of decreased or impaired user access to data, the exis-
tence of data silos, and impending ineffi ciencies. 

10.2.1.1 TIMS dbZach  and ArrayTrack   TIMS dbZach and ArrayTrack 
support local analysis and interpretation of toxicogenomic data, including 
gene, protein, and metabolite expression data  [1 – 4] . These TIMS systems 
consist of database back - end and front - end applications for users to query and 
upload to the database. Although an academic group created TIMS dbZach 
and the FDA created ArrayTrack, both systems aim to facilitate the data 
management and analysis needs of individual organizations. 

 TIMS dbZach grew out of the need to manage the entire microarray 
process, from construction to gene expression analysis through functional 
annotation and phenotypic anchoring. To accommodate growth, the system 
uses a modular design, with each module corresponding to a specifi c theme, 
such as subsystems for clone management, microarray data management, gene 
annotation, sample annotation, and toxicology. The modular design allows the 
developers to design modifi cations and upgrades with minimal impact on the 
rest of the system. This has facilitated the creation of new subsystems to 
manage orthologous gene relationships, metabolomics, and gene regulation 
 [1,2] . Currently TIMS dbZach is available through arrangement with Michigan 
State University ( http://dbzach.fst.msu.edu ). 

 ArrayTrack consists of a microarray database and an analysis suite devel-
oped by the National Center for Toxicology Research at the U.S. FDA 
( http://www.fda.gov/nctr/science/centers/toxicoinformatics/ArrayTrack/ ). 
ArrayTrack, similar to TIMS dbZach, stores the microarray data and allows 
users to perform functional analysis by linking the data to pathways and 
gene ontology data. Currently, the FDA uses ArrayTrack in the review of 
genomic data submitted by study sponsors. ArrayTrack also accepts data 
uploads in the SimpleTox format, based on the Standard for Exchange of 
Nonclinical Data (SEND) v2.3 and the Study Data Tabulation Model 
(SDTM)  [3,4] .   
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  10.2.2   Toxicogenomic Data Repositories 

 Investigators who intend to publish toxicogenomic data may be required to 
submit their data to a repository. Generally, most journals require authors to 
submit microarray data to either the Gene Expression Omnibus (GEO, 
National Institutes of Health) or ArrayExpress (European Bioinformatics 
Institute). The sentiment of the toxicogenomic community, however, has been 
that neither GEO  [6]  nor ArrayExpress  [7]  captures all of the information 
required to interpret a toxicogenomic experiment  [8] . 

 For instance, GEO and ArrayExpress both handle the descriptions of the 
biological specimen and the assays well; however, what they lack are the 
subject characteristics and handling of the study design and execution — spe-
cifi cally the procedures and their timeline. All of these study characteristics 
are essential attributes of any toxicology experiment that may place an experi-
ment within the proper context and may infl uence the data interpretation. 
These concerns, among others, motivated the creation of the CEBS knowl-
edge base  [5,9,10] . 

 CEBS builds upon the data management provided by the other microarray 
repositories. Specifi cally, CEBS includes the ability to manage complex exper-
imental timelines and exposure procedures, as well as histopathology and 
clinical pathology data. This allows users to view the gene expression data in 
light of the exposure parameters and any relevant toxicity data. Currently, 
CEBS contains 11 mouse and 22 rat studies across 136 chemicals and 32 
microarray studies ( http://cebs.niehs.nih.gov/ , accessed January 30, 2008).   

  10.3   TOXICOGENOMIC DATA STANDARDS 

 When mentioning gene expression data standards, most scientists think of 
Minimum Information about a Microarray Experiment (MIAME). The 
Microarray Gene Expression Data Society (MGED) created MIAME to 
guide scientifi c investigators, journal editors, and reviewers in the minimum 
amount of information required for a scientist to reproduce a microarray 
experiment  [11] . It is important to note that MIAME is not a standard,  per se , 
but rather a guidance. Unfortunately, many scientists, journal editors, and 
reviewers regard it to be the de facto  microarray data standard  [12] . 

 Regardless of its standing, several toxicologists associated with MGED 
expanded upon the MIAME document to create a toxicogenomic - specifi c 
version, called MIAME/Tox ( http://www.mged.org/MIAME1.1-DenverDraft.
DOC ). MIAME/Tox expanded many of the existing MIAME defi nitions 
within the experiment description section to include toxicologically relevant 
examples. For instance, MIAME/Tox suggests the inclusion of necropsy, his-
topathology, and clinical pathology data. 

 Recently, a diverse group of toxicogenomic scientists from government, 
academia, and industry proposed a preliminary checklist for toxicology data. 
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Although not yet a standard, this proposal outlines the details that the authors 
feel every toxicology study should include  [8] . Among the details are specifi ca-
tions of the subject and procedure characteristics, study design, execution, and 
timeline, as well as any clinical pathology and histopathology data. The authors 
also state that they would prefer to see complementary, corroborating data 
for each study (e.g., clinical pathology and histopathology, or gene expression 
and histopathology). 

  10.3.1   Regulatory Guidance from the  U . S .  FDA  and  U . S . Environmental 
Protection Agency ( EPA ) 

 The U.S. FDA and U.S. EPA have created guidance documents outlining 
their plans for using genomic data in their decision - making process. It is 
important to note that these documents are not regulatory standards and are 
only industry guidance that refl ects each agency ’ s current thinking on the topic 
of pharmaco -  and toxicogenomic data submissions. 

 Both agencies have stated that they will accept toxicogenomic data. 
However, neither agency believes that toxicogenomic data alone is suffi cient 
to make a regulatory decision  [13 – 16] . Generally, FDA regulatory mandates 
only exist if using known valid biomarkers, or probable valid biomarkers when 
the sponsor uses the data in the decision - making process ( http://www.fda.gov/
cder/genomics/QuickReference.pdf  and  http://www.fda.gov/cder/guidance/
6400fnlAttch.pdf ). The FDA encourages voluntary submission of genomic 
data through their Voluntary Genomic Data Submission program. The EPA 
still needs to work out how it will handle toxicogenomic data. The EPA ’ s 
current position, that there is a relationship between toxicogenomic data and 
adverse outcomes, remains unclear  . Thus, changes in gene expression are not 
subject to reporting under the Federal Insecticide, Fungicide, and Rodenticide 
Act (FIFRA) and the Toxic Substances Control Act (TSCA)  [14] . In addition, 
EPA reserves the right to use toxicogenomic data on a case - by - case basis when 
determining whether to list/delist a chemical from the Toxic Release Inventory 
 [14] .  

  10.3.2   Standards versus Guidelines 

 MIAME/Tox inherits all of the strengths and weaknesses of the parent 
MIAME document — a well - built guidance that the toxicogenomics commu-
nity has forced to become a standard. There is generally widespread confusion 
as to the difference between the terms  “ guidance ”  and  “ standard, ”  with the 
community using both terms interchangeably, or with signifi cant indifference. 
What the community does not realize is the impact that this indifference has 
created and the problems associated with misrepresenting and misinterpreting 
guidance as a standard  [12,17] . 

 Standards defi ne a strict set of properties that implementers must meet for 
compliance. However, guidelines defi ne the best practice. Standards denote 
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minimum requirements, allowing an implementer to be either within or out 
of compliance. Guidance documents differ from standards by not making any 
minimum requirements. Thus, when someone implements guidance, their data 
cannot be within or out of compliance. 

 Consider the GEO and ArrayExpress microarray data repositories. As of 
the time of writing, both repositories claimed to be  “ MIAME compliant. ”  
These organizations perceive MIAME to be a standard by their use of the 
term compliant, and use the term to help editors, reviewers, and authors to 
justify their use of these resources (e.g., when a journal requires adherence to 
MIAME). In spite of their compliance with MIAME, Table  10.1  shows dif-
ferences in their implementations and begins to demonstrate the danger inher-
ent with elevating guidance to a standard.   

 By applying the MIAME guidance as a standard, the National Center for 
Biotechnology Information (creator of GEO) and the European Bioinformatics 
Institute (creator of the ArrayExpress) have created a division within the 
microarray community. Specifi cally, users generally must choose whether they 
will submit to the GEO or ArrayExpress repository to meet their journal ’ s 
publication requirements governing microarray data deposition  [17] . Although 
it is possible for scientists to format their data for deposition in both systems, 
this would require far more time than to submit to only one system. If MGED 
had written MIAME as a proper standard, this would not be a problem as 
GEO and ArrayExpress could share data. 

 This demonstrates the point that toxicogenomics requires real standards. 
With real standards in place, with clear requirements, groups can begin to 
create databases that can automatically share data. Consider what is required 
for two computer systems to share data in a meaningful manner between 
organizations. Both systems must recognize and expect the same data in 
order to communicate — they have to agree on a communications protocol. For 
two preclinical toxicology database systems to intercommunicate, they must 
agree to use the same terminology and to expect drug dose information in a 
specifi c number and unit format, and alanine aminotransferase activity (ALT) 
data either numerically or as text ( “ high, ”   “ low, ”  or  “ normal ” ). If one system 
reports ALT data textually based on an internal standard, and another system 
reports the data as a number and unit, the two systems are not interoperable. 

 Just as an organization would not purchase a piece of software written to 
run on Windows for a Linux computer, they need to make sure that their 
choice of database software will enable them to use it in their downstream 
analyses, or to be included in any regulatory fi lings. This means organizations 
must consider how they plan to use their toxicogenomic data. If the organiza-
tion plans to deposit data into CEBS, it would be helpful to choose a system 
that has an automated upload path to CEBS (i.e., CEBS and that database 
system have pre - agreed on a set standard they will follow for communication). 
Until toxicogenomic standards emerge, investigators must ensure their analy-
sis and data management software interoperate with their proposed regulatory 
and data deposition workfl ows.   
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  10.4   DATA EXTRACTION AND DATA MINING 

 Useful databases share an important trait: the ability to extract data from it. 
Users accomplish this by querying the database using the structured query 
language (SQL). Database developers, software vendors, and others create 
graphical user interfaces (GUIs) and web interfaces to allow users to query 
the database without having to know SQL. However, users with SQL and 
analytical experience, as well as database access, may be able to use programs, 
such as R and SAS, to combine data extraction with data mining. 

 TIMS dbZach and ArrayTrack are distributed with GUIs to facilitate data 
extraction and analysis. The TIMS dbZach GUIs provide data extraction 
methods for sample and gene annotation analysis in other softwares. The 
GUIs extract the data in tab - delimited text fi les that are readable by other 
softwares, such as R, SAS, GeneSpring, and Microsoft Excel. ArrayTrack 
allows for similar data extraction; however, its intent is for the application to 
be a complete analytical suite. CEBS uses a web GUI for all user interactions, 
including data download. 

 Data mining does not occur within the database itself, but generally through 
specialized software. This software may interface directly with the database 
or it may require the user to extract the data from the database. For instance, 
the programming languages R and SAS provide direct communication to most 
database engines, including Oracle, Microsoft SQL Server, and MySQL. In 
some instances, database developers include specialized codes, referred to as 
stored procedures or functions, within the database to speed commonly used 
queries. For instance, the dbZach installation at Michigan State University 
includes stored procedures for reporting microarray data and for monitoring 
database use. This allows users to use more simplifi ed codes to query data 
from dbZach using R and SAS.  

  10.5   IS A TIMS RIGHT FOR YOU? 

 It is essential to understand the client ’ s needs and the current operating envi-
ronment when designing a data management solution. As noted previously, 
designers need to consider several factors, including the organization ’ s goals, 
the regulatory context, the data mining software used, the operating system 
and hardware used, whether the system integration into the organization ’ s IT 
infrastructure is necessary, and whether or not deposition in a repository is 
necessary. The designer must consider the requirements and constraints with 
respect to personnel expertise and additional training that may be required. 
For instance, does the organization have database administrators with the 
proper expertise to manage these databases? 

 Although a toxicogenomic database may be an asset in the business context 
(i.e., an item that adds value to the organization, or may generate revenue in 
some way), organizations must consider the ROI. For low - throughput orga-
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nizations, where toxicogenomics is not a key business activity, a database may 
be more of a liability, especially with respect to resources used to train person-
nel and acquisition of hardware. However, larger organizations that use toxi-
cogenomics on a regular basis may see benefi ts from using a database. For 
instance, our laboratory has seen strong ROI from automating portions of the 
data analysis pipeline, clone management during the construction process, 
development of quality assurance and quality control protocols, and from 
cross - study analyses that the database facilitated. 

 TIMS have helped several organizations with respect to their data manage-
ment and analysis needs. As toxicogenomic standards develop and as the 
regulatory community adopts toxicogenomic technologies, TIMS systems will 
align. Community data sharing facilitated by the use of repositories such as 
CEBS will increase, and automated data sharing pipelines will emerge. This 
will facilitate the integration and fusion of toxicogenomic data, including his-
topathology and clinical pathology, and other classic toxicology assays.  
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  11.1   INTRODUCTION 

 It is a truth universally acknowledged that mass vaccination, with the possible 
exception of public sanitation, is the most effective prophylactic for infectious 
disease. Over 70 infectious diseases commonly affect the human species. Many 
of these have been targeted successfully with vaccines, and there are now over 
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50 licensed vaccines, half in common use. Most prevent childhood infections 
or are used by travelers to tropical or subtropical regions; a signifi cant minor-
ity are used to combat disease in developing nations. In the First World, the 
annual mortality for diseases such as smallpox, polio, diphtheria, or measles 
is less than 0.1%. Activity in the vaccine arena, neglected for several decades, 
is now frantic. Dozens of vaccine candidates have passed through phase II 
clinical trials, and during the past decade, vaccines in late development have 
numbered over 150. Unlike antibiotics, resistance to vaccines is negligible. 

 Despite such palpable success, major problems remain. No licensed vac-
cines exist for HIV  [1]  and malaria  [2] , two of the World Health Organization 
(WHO) ’ s three big global killers, and there are no realistic hopes for such 
vaccines appearing in the short to medium term. The only vaccine licensed for 
the third major world disease, tuberculosis, has only limited effi cacy  [3] . 
Moreover, the mortality and morbidity for several diseases, which are targeted 
by vaccines, remain high, for example, infl uenza, with an annual global esti-
mate of half a million deaths. Add to this the 35 new, previously unknown 
infectious diseases identifi ed in the past 25 years: HIV, Marburg ’ s disease, 
severe acute respiratory syndrome (SARS), dengue, West Nile, and over 190 
human infections with the potentially pandemic H5N1 infl uenza. It is com-
monly believed that new contagious diseases will continue to emerge in the 
21st century. The world of the 21st century is threatened by parasitic diseases 
such as malaria, visceral leishmaniasis, tuberculosis, and emerging zoonotic 
infections, such as H5N1; antibiotic - resistant bacteria; and bioterrorism — a 
threat compounded by a growing world population, overcrowded cities, 
increased travel, climate change, and intensive food production. 

 An inability to exploit new disease targets and increased regulatory pres-
sure has reduced research and development pipelines within the pharmaceuti-
cal industry. At the same time, the industry has faced growing competition 
from generics  [4]  and so - called me - too drugs  [5] . Together this has led the 
industry to question the business models it has exploited so well over the last 
50 years: selling drugs of often marginal therapeutic advantage predominantly 
to the First World. Plugging the gap left by this dwindling pipeline has become 
a priority. Targeting infectious diseases is part of this. Infection can be con-
trolled using an intelligent combination of anti - infective drugs, both antivirals 
and antibiotics, vaccines, and diagnostics. Over the last decade, there has been 
a huge increase in the number of drugs targeting viruses. This was partly 
driven by attempts to contain pandemic HIV. Increased understanding of viral 
life cycles has identifi ed new viral target proteins, including neuraminidases 
needed for viral release from the cell, proteases that cleave viral polyproteins, 
RNA -  and DNA - dependent helicases and polymerases, and enzymes respon-
sible for viral genome replication. Most recently, understanding viral entry 
into cells has led to the development of so - called fusion inhibitors  [6]  such as 
the anti - AIDS drug enfuvirtide. The postwar golden age of antibiotics ended 
long ago. Now, widespread misuse of antibiotics has engendered equally 
widely spread antibiotic resistance. Despite success in discovering new vac-
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cines and antivirals, there has been little or no major success in developing 
novel antibiotics. Diseases can also be addressed using immunotherapy and 
biopharmaceuticals, such as therapeutic antibodies  [7] . 

 Persistent infection, which includes HIV, hepatitis B, hepatitis C, and tuber-
culosis, occurs when a pathogen evades or subverts T - cell responses and is a 
key therapeutic target. At the other extreme are benign yet economically 
important infections, such as the common cold. Respiratory tract infections 
remain the major cause of community morbidity and hospitalization in the 
developed world, accounting for about 60% of general practitioner referrals 
and causing the loss of a huge number of working days  . Sporadic or epidemic 
respiratory infections are causing by over 200 distinct viruses, including coro-
naviruses, rhinoviruses, respiratory syncytial virus (better known as RSV), 
parainfl uenza virus, infl uenza A and B, and cytomegalovirus. Antiallergy vac-
cination also offers great potential for successful commercial exploitation. 
This often relies on allergen - specifi c short - term immunotherapy (STI)  [8] , 
where patients are administered increasing quantities of allergen to augment 
their natural tolerance. STI, though often effective, is very time consuming 
and is not universally applicable. Recombinant hypoallergenic allergens are 
also of interest as they can target specifi c immune cells. New agents for the 
prophylaxis and treatment of allergic disease are legion: recombinant proteins, 
peptides, immunomodulatory therapy, and DNA vaccines, which are particu-
larly promising tools. Several antiallergy DNA vaccines are being developed, 
including optimized expression of allergen genes, CpG   enrichment of delivery 
vectors, and the targeting of hypoallergenic DNA vaccines. Vaccines against 
the common cold or antiallergy vaccines lie close to so - called lifestyle vaccines. 
None of these vaccines necessarily saves lives but does reduce hugely impor-
tant economic effects of disease morbidity. Lifestyle vaccines target dental 
caries and drug addiction, as well as genetic and civilization diseases, such as 
obesity. Genetic diseases arise from Mendelian or multifactorial inheritance. 
Multifactorial diseases arise from mutations in many different genes and have 
a major environmental component. Heart disease, diabetes, and asthma are 
in part all multifactorial disorders. 

 The other signifi cant area where vaccination strategies are being investi-
gated is cancer. An example is GARDASIL, the new human papillomavirus 
vaccine  [9] , licensed in 2006 with the aim of preventing 4000 deaths annually 
from cervical cancer. Cancer is the second greatest cause of death in the 
developed world after cardiovascular disease; yet most of the 250,000 deaths 
from cervical cancer occur in the third world. Cancer treatment typically 
involves a combination of chemotherapy, radiotherapy, and surgery. While 
treating primary tumors this way is largely successful, preventing the meta-
static spread of disease is not. Cancer vaccines are attractive, both clinically 
and commercially, since they exploit immunity ’ s ability to recognize and 
destroy tumors. Tumor cells express several mutated or differentially expressed 
antigens, enabling the immune system to discriminate between nonmalignant 
and cancerous cells. Tumor antigens form the basis of both subunit and 
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epitope - based vaccines. Host immune system responses to tumor antigen 
cancer vaccines are often weak, necessitating the use of adjuvants. 

 In 2000, the annual sales of vaccines stood at approximately $5 billion; 6 
years on and the global vaccine marketplace had grown to $10.8 billion in 
2006. Of course, such a fi gure needs to be set against the total size of the 
pharmaceutical market. In 2000, the total sales for all human therapies (small 
molecules, vaccines, therapeutic antibodies, etc.) were about $350 billion. By 
2004, global sales had reached $550 billion. This represented a 7% increase 
on 2003 sales, which in turn was a 9% rise compared to 2002. At the same 
time, the farm livestock health market was worth around $18 billion and the 
companion animal health market was valued at about $3 billion. Currently, 
vaccines form only a very small part of the wider marketplace for medicines 
and pharmaceutical therapy. Compared to drugs designed to battle choles-
terol, high blood pressure, and depression, vaccines have long been the poor 
relations of the pharmaceutical industry, and it is still true that vaccines remain 
a neglected corner of the global drug industry. Indeed, at $10.8 billion, vac-
cines make less than the $13 billion generated by Lipitor, which, as we saw, is 
currently the world ’ s top seller. Likewise, we see a similar phenomenon if we 
compare vaccines to the protein therapeutics market, which was valued at $57 
billion in 2005. The market for therapeutic antibodies was worth an estimated 
$13.6 billion, accounting for more than 24% of the total biotech market. 
However, sales of vaccines have been growing at or about 10 – 12%, compared 
to a more modest annual fi gure of 5 – 6% for small - molecule drugs. Annual 
growth in the vaccine sector is expected to approach 20% during the next 5 
years. 

 Viewed commercially, vaccines have many attractive characteristics; com-
pared to small - molecule drugs, vaccines are more likely to escape the develop-
ment pipeline and to reach the market, with 70% of programs gaining 
regulatory approval. Vaccines also enjoy long product half - lives since vaccine 
generics are virtually nonexistent. About 90% of all vaccines are sold directly 
to governments and public health authorities, so they have much smaller 
marketing costs. However, until relatively recently, vaccines were not consid-
ered to be an attractive business, since pricing was unattractive, profi t margins 
slight, and there was an unvarying threat of litigation. 

 Vaccination, until relatively recently, has been a highly empirical science, 
relying on tried - and - tested yet poorly understood approaches to vaccine 
development. As a consequence of this, relatively few effective vaccines were 
developed and deployed during the 150 years following Jenner. What low -
 hanging fruit there was could be picked with ease, but most targets remained 
tantalizingly out of reach. A vaccine is a molecular or supramolecular agent 
that can elicit specifi c protective immunity and can ultimately mitigate the 
effect of subsequent infection. Vaccination is the use of a vaccine, in what-
ever form, to produce prophylatic active immunity in a host organism. 
Vaccines have taken many forms. Until recently, they have been attenuated 
or inactivated whole pathogen vaccines such as antituberculosis Bacille 
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Calmette-Gu é rin (BCG) or Sabin ’ s vaccine against polio. Safety diffi culties 
have lead to the subsequent development of other strategies for vaccine 
development. The most successful alternative has focused on the antigen or 
subunit vaccine, such as the recombinant hepatitis B vaccine  [10] . Vaccines 
based around sets of epitopes have also gained ground in recent years. They 
can be delivered into the host in many ways: as naked DNA vaccines, using 
live viral or bacterial vectors, and via antigen - loaded antigen - presenting cells. 
Adjuvants are substances, such as alum, that are used with weak vaccines to 
increase immune responses  [11] . 

 Immunomics is a post - genomic systems biology approach to immunology 
that explores mechanistic aspects of the immune system  [12] . It subsumes 
immunoinformatics and computational vaccinology, combining several fi elds, 
including genomics, proteomics, immunology, and clinical medicine. To date, 
a key focus of immunomics has been the development of algorithms for the 
design and discovery of new vaccines. The success of a vaccine can be mea-
sured by its strength, its specifi city, the duration of the immune response, and 
its capacity to create immunological memory. While it is possible to assess 
these properties in the laboratory, it is not feasible to do on the scale of a large 
pathogenic genome. With more and more pathogen genomes being fully or 
partially determined, developing  in silico  methods able to identify potential 
vaccine candidates has become an imperative. To that end, many computa-
tional techniques have been applied to vaccine design and delivery. Here we 
outline currently available techniques and software for vaccine discovery as 
well as examples of how such algorithms can be applied. We concentrate on 
four areas: antigen prediction, epitope prediction, vector design, and adjuvant 
identifi cation.  

  11.2   PREDICTING ANTIGENS 

 The word antigen has a wide meaning in immunology. We use it here to mean 
a protein, specifi cally one from a pathogenic microorganism, that evokes a 
measurable immune response. Pathogenic proteins in bacterial are often 
acquired, through a process summarized by the epithet horizontal transfer, in 
groups. Such groups are known as pathogenicity islands. The unusual G   +   C 
content of genes and particularly large gene clusters is tantamount to a signa-
ture characteristic of genes acquired by horizontal transfer. Genome analysis 
at the nucleic acid level can thus allow the discovery of pathogenicity islands 
and the virulence genes they encode. 

 Perhaps the most obvious antigens are virulence factors (VFs): proteins 
that enable a pathogen to colonize a host or to induce disease. Analysis of 
pathogens, such as  Vibrio cholerae  or  Streptococcus pyogenes , has identifi ed 
coordinated  “ systems ”  of toxins and VFs which may comprise over 40 distinct 
proteins. Traditionally, VFs have been classifi ed as adherence/colonization 
factors, invasions, exotoxins, transporters, iron - binding siderophores, and 
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miscellaneous cell surface factors. A broader defi nition groups VFs into three: 
 “ true ”  VF genes, VFs associated with the expression of true VF genes, and 
VF  “ lifestyle ”  genes required for colonization of the host  [13] . 

 Several databases that archive VFs exist. The Virulence Factor Database 
(VFDB) contains 16 characterized bacterial genomes with an emphasis on 
functional and structural biology and can be searched using text, Basic Local 
Alignment Search Tool (BLAST), or functional queries  [14] . The ClinMalDB 
U.S. database was established following the discovery of multigene families 
encoding VFs within the subtelomeric regions of  Plasmodium falciparum   [15]  
and Plasmodium vivax   [16] . TVFac (Los Alamos National Laboratory Toxin 
and VFDB) contains genetic information on over 250 organisms and separate 
records for thousands of virulence genes and associated factors. The Fish 
Pathogen Database, set up by the Bacteriology and Fish Diseases Laboratory, 
has identifi ed over 500 virulence genes using fi sh as a model system. Pathogens 
studied include Aeromonas hydrophila ,  Edwardsiella tarda , and many  Vibrio
species.  Candida albicans  virulence factor (CandiVF) is a small species - 
specifi c database that contains VFs, which may be searched using BLAST or 
a HLA - DR   hotspot prediction server  [17] . PHI - base is a noteworthy develop-
ment since it seeks to integrate a wide range of VFs from a variety of patho-
gens of plants and animals  [18] . Obviously, antigens need not be VFs, and 
another nascent database is intending to capture a wider tranche of data. We 
are helping to develop the AntigenDB database ( http://www.imtech.res.in/
raghava/antigendb/ ), which will aid considerably this endeavor. 

 Historically, antigens have been supposed to be secreted or exposed mem-
brane proteins accessible to surveillance of the immune system. Subcellular 
location prediction is thus a key approach to predicting antigens. There are 
two basic kinds of prediction method: manual construction of rules of what 
determines subcellular location and the application of data - driven machine 
learning methods, which determine factors that discriminate between proteins 
from different known locations. Accuracy differs markedly between different 
methods and different compartments, mostly due to a paucity of data. Data 
used to discriminate between compartments include the amino acid composi-
tion of the whole protein; sequence - derived features of the protein, such as 
hydrophobic regions; the presence of certain specifi c motifs; or a combination 
thereof. 

 Different organisms evince different locations. PSORT   is a knowledge -
 based, multicategory prediction method, composed of several programs, for 
subcellular location  [19] ; it is often regarded as a gold standard. PSORT I 
predicts 17 different subcellular compartments and was trained on 295 differ-
ent proteins, while PSORT II predicts 10 locations and was trained on 1080 
yeast proteins. Using a test set of 940 plant proteins and 2738 nonplant pro-
teins, the accuracy of PSORT I and II was 69.8% and 83.2%, respectively. 
There are several specialized versions of PSORT. iPSORT   deals specifi cally 
with secreted, mitochondrial, and chloroplast locations; its accuracy is 83.4% 
for plants and 88.5% for nonplants. PSORT - B   only predicts bacterial sub-
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cellular locations. It reports precision values of 96.5% and recall values of 
74.8%. PSORT - B is a multicategory method that combines six algorithms 
using a Bayesian network. 

 Among binary approaches, arguably the best method is SignalP, which 
employs neural networks and predicts N - terminal Spase - I - cleaved secretion 
signal sequences and their cleavage site  [20] . The signal predicted is the type 
II signal peptide common to both eukaryotic and prokaryotic organisms, for 
which there is a wealth of data, in terms of both quality and quantity. A recent 
enhancement of SignalP is a hidden Markov model (HMM) version able to 
discriminate uncleaved signal anchors from cleaved signal peptides. 

 One of the limitations of SignalP is overprediction, as it is unable to dis-
criminate between several very similar signal sequences, regularly predicting 
membrane proteins and lipopteins as type II signals. Many other kinds of 
signal sequence exist. A number of methods have been developed to predict 
lipoproteins, for example. The prediction of proteins that are translocated via 
the twin arginine translocation (TAT) dependent pathway is also important 
but is not addressed yet in any depth. 

 We have developed VaxiJen ( http://www.jenner.ac.uk/VaxiJen/ ), which 
implements a statistical model able to discriminate between candidate vac-
cines and nonantigens, using an alignment - free representation of the protein 
sequence  [21] . Rather than concentrate on epitope and nonepitope regions, 
the method used bacterial, viral, and tumor protein data sets to derive sta-
tistical models for predicting whole - protein antigenicity. The models showed 
prediction accuracy up to 89%, indicating a far higher degree of accuracy 
than has been obtained previously, for example, for B - cell epitope predic-
tion. Such a method is an imperfect beginning; future research will yield 
signifi cantly more insight as the number of known protective antigens 
increases.  

  11.3   REVERSE VACCINOLOGY 

 Reverse vaccinology is a principal means of identifying subunit vaccines and 
involves a considerable computational contribution. Conventional experimen-
tal approaches cultivate pathogens under laboratory conditions, dissecting 
them into their components, with proteins displaying protective immunity 
identifi ed as antigens. However, it is not always possible to cultivate a particu-
lar pathogen in the lab nor are all proteins expressed during infection are 
easily expressed in vitro , meaning that candidate vaccines can be missed. 
Reverse vaccinology, by contrast, analyzes a pathogen genome to identify 
potential antigens and is typically more effective for prokaryotic than eukary-
otic organisms. 

 Initially, an algorithm capable of identifying open reading frames (ORFs) 
scans the pathogenic genome. Programs that can do this include ORF Finder 
 [22] , Glimmer  [23] , and GS - Finder  [24] . Once all ORFs have been identifi ed, 
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proteins with the characteristics of secreted or surface molecules must be 
identifi ed. Unlike the relatively straightforward task of identifying ORFs, 
selecting proteins liable to immune system surveillance is challenging. 
Programs such as ProDom  [25] , Pfam  [26] , and PROSITE  [27]  can identify 
sequence motifs characteristic of certain protein families and can thus help 
predict if a protein belongs to an extracellular family of proteins. 

 The NERVE program has been developed to further automate and refi ne 
the process of reverse vaccinology, in particular the process of identifying 
surface proteins  [28] . In NERVE, the processing of potential ORFs is a six -
 step process. It begins with the prediction of subcellular localization, followed 
by the calculation of probability of the protein being adhesion, the identifi ca-
tion of transmembrane (TM) domains, a comparison with the human pro-
teome and then with that of the selected pathogen, after which the protein is 
assigned a putative function. The vaccine candidates are then fi ltered and 
ranked based upon these calculations. While it is generally accepted that 
determining ORFs is a relatively straightforward process, the algorithm used 
to defi ne extracellular proteins from other proteins needs to be carefully 
selected. One of the most effective programs that can be used for this purpose 
is HensBC, a recursive algorithm for predicting the subcellular location of 
proteins  [29] . The program constructs a hierarchical ensemble of classifi ers by 
applying a series of if – then rules. HensBC is able to assign proteins to one of 
four different types (cytoplasmic, mitochondrial, nuclear, or extracellular) 
with approximately 80% accuracy for gram - negative bacterial proteins. The 
algorithm is nonspecialized and can be applied to any genome. Any protein 
identifi ed as being extracellular could be a potential vaccine candidate. 

 The technique of reverse vaccinology was pioneered by a group investigat-
ing Neisseria meningitidis , the pathogen responsible for sepsis and meningo-
coccal meningitis. Vaccines based upon the capsular proteins have been 
developed for all of the serotypes with the exception of subgroup B. The  N.
meningitidis  genome was scanned for potential ORFs  [30,31] . Out of the 570 
proteins that were identifi ed, 350 could be successfully expressed  in vitro , 
and 85 of these were determined to be surface exposed. Seven identifi ed 
proteins conferred immunity over a broad range of strains within the natural 
N. meningitidis  population, demonstrating the viability of  in silico  analysis as 
an aid to fi nding candidates for the clinical development of a MenB vaccine. 
Other examples of the successful application of reverse vaccinology is 
Streptococcus pneumoniae , a major cause of sepsis, pneumonia, meningitis, 
and otitis media in young children  [32,33] . Mining of the genome identifi ed 
130 potential ORFs with signifi cant homology to other bacterial surface 
proteins and VFs. One hundred eight of 130 ORFs were successfully 
expressed and purifi ed; six proteins were found to induce protective anti-
bodies against pneumococcal challenge in a mouse sepsis model. All six of 
these candidates showed a high degree of cross reactivity against the majority 
of capsular antigens expressed in vivo  and which are believed to be immu-
nogenic in humans. 
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 Another example is  Porphyromonas gingivalis  is a gram - negative anaerobic 
bacterium present in subgingival plaques present in chronic adult periodonti-
tis, an infl ammatory disease of the gums. Shotgun sequences of the genome 
identifi ed approximately 370 ORFS  [34] . Seventy - four of these had signifi cant 
global homology to known surface proteins or an association with virulence. 
Forty - six had signifi cant similarity with other bacterial outer membrane pro-
teins. Forty - nine proteins were identifi ed as surface proteins using PSORT 
and 22 through motif analysis. This generated 120 unique protein sequences, 
40 of which were shown to be positive for at least one of the sera. These were 
used to vaccinate mice, with only two of the antigens demonstrating signifi cant 
protection.  Chlamydia pneumoniae  is an obligate intracellular bacterium asso-
ciated with respiratory infections and cardiovascular and atherosclerotic dis-
eases. One hundred forty - one ORFS were selected through  in silico  analysis 
 [35] , and 53 putative surface - exposed proteins identifi ed. If reverse vaccinol-
ogy is applied appropriately in vaccine design, it can save enormous amounts 
of money, time, and wasted labor.  

  11.4   EPITOPE PREDICTION 

 Complex microbial pathogens, such as  Mycobacterium tuberculosis , can inter-
act within the immune system in a multitude of ways  [36] . For a vaccine to be 
effective, it must invoke a strong response from both T cells and B cells; 
therefore, epitope mapping is a central issue in their design.  In silico  prediction 
methods can accelerate epitope discovery greatly. B - cell and T - cell epitope 
mapping has led to the predictive scanning of pathogen genomes for potential 
epitopes  [37] . There are over 4000 proteins in the tuberculosis genome; this 
means that experimental analysis of host – pathogen interactions would be 
prohibitive in terms of time, labor, and expense. 

 T - cell epitopes are antigenic peptide fragments derived from a pathogen 
that, when bound to a major histocompatibility complex (MHC) molecule, 
interact with T - cell receptors after transport to the surface of an antigen -
 presenting cell. If suffi cient quantities of the epitope are presented, the T 
cell may trigger an adaptive immune response specifi c for the pathogen. 
MHC class I and class II molecules form complexes with different types of 
peptide. The class I molecule binds a peptide of 8 – 15 amino acids in length 
within a single closed groove. The peptide is secured largely through interac-
tions with anchoring residues at the N and C termini of the peptide, while 
the central region is more fl exible  [38] . Class II peptides vary in length from 
12 – 25 amino acids and are bound by the protrusion of peptide side chains 
into cavities within the groove and through a series of hydrogen bonds 
formed between the main - chain peptide atoms and the side - chain atoms of 
the MHC molecule  [39] . Unlike the class I molecule, where the binding site 
is closed at either end, the peptide can extend out of both open ends of the 
binding groove. 
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 B cells generate antibodies when stimulated by helper T cells as part of the 
adaptive immune response. The antibodies act to bind and neutralize patho-
genic material from a virus or bacterium. Individual antibodies are composed 
of two sets of heavy and light chains. Each B cell produces a unique antibody 
due to the effects of somatic hypermutation and gene segment rearrangement. 
Those cells, within the primary repertoire whose antibodies convey antigen 
recognition, are selected for clonal expansion, an iterative process of directed 
hypermutation and antigen - mediated selection. This facilitates the rapid mat-
uration of antigen - specifi c antibodies with a high affi nity for a specifi c epitope. 
A B cell appropriate to deal with a specifi c infection is selected and cloned to 
deal with the primary infection, and a population of the B cell is then main-
tained in the body to combat secondary infection. It is the capacity to produce 
a huge variety of different antibodies that allows the immune system to deal 
with a broad range of infections. 

 Experimentally determined IC 50  and BL 50  affi nity data have been used to 
develop a variety of MHC - binding prediction algorithms, which can distin-
guish binders from nonbinders based on the peptide sequence. These include 
motif - based systems, support vector machines (SVMs)  [40 – 42] , HMMs  [43] , 
quantitative structure-activity relationship (QSAR) analysis    [44] , and struc-
ture - based approaches  [45 – 47] . MHC - binding motifs are a straightforward 
and easily comprehended method of epitope detection, yet produce many 
false - positive and many false - negative results. SVMs are machine learning 
algorithms based on statistical theory that seeks to separate data into two 
distinct classes (in this case binders and nonbinders). HMMs are statistical 
models where the system being modeled is assumed to be a Markov process 
with unknown parameters. In an HMM, the internal state is not visible directly, 
but variables infl uenced by the state are. HMMs aim to determine the hidden 
parameters from observable ones. An HMM profi le can be used to determine 
those sequences with  “ binderlike ”  qualities. QSAR analysis techniques have 
been used to refi ne the peptide interactions with the MHC class I groove by 
incrementally improving and optimizing the individual residue - to - residue 
interactions within the binding groove. This has led to the design of so - called 
superbinders that minimize the entropic disruption in the groove and are 
therefore able to stabilize even disfavored residues within so - called anchor 
positions. Finally, molecular dynamics has been used to quantify the energetic 
interactions between the MHC molecule and peptide for both classes I and II 
by analysis of the three - dimensional structure of the MHC – peptide complex. 

 Several programs are available that can help design and optimize vaccines. 
In this section, some of the most effective algorithms for each form of vaccine 
design are discussed. For T - cell epitope prediction, many programs are avail-
able. A sensible approach for a new user would be to use MHCBench  [48] , 
an interface developed specifi cally for evaluating the various MHC - binding 
peptide prediction algorithms. MHCBench allows users to compare the 
performance of various programs with both threshold - dependent and 
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 - independent parameters. The server can also be extended to include new 
methods for different MHC alleles. 

 B - cell prediction is more problematic due to the diffi culties in correctly 
defi ning both linear and discontinuous epitopes from the rest of the protein. 
The epitope of a B cell is defi ned by the discrete surface region of an antigenic 
protein bound by the variable domain of an antibody. The production of 
specifi c antibodies for an infection can boost host immunity in the case of both 
intracellular and extracellular pathogens. The antibody ’ s binding region is 
composed of three hypervariable loops that can vary in both length and 
sequence so that the antibodies generated by an individual cell present a 
unique interface  [49] . All antibodies contain two antigen - binding sites, com-
posed of complementary determining (CDR) loops. The three CDR loops of 
the heavy and light chains form the  “ paratope, ”  the protein surface that binds 
to the antigen. The molecular surface that makes specifi c contact with the 
residues of the paratope is termed an  “ epitope. ”  A B - cell epitope can be an 
entire molecule or a region of a larger structure. The study of the paratope –
 epitope interaction is a crucial part of immunochemistry, a branch of chemis-
try that involves the study of the reactions and components on the immune 
system. 

 Despite the extreme variability of the region, the antibody - binding site is 
more hydrophobic than most protein surfaces with a signifi cant predilection 
for tyrosine residues. B - cell epitopes can be divided into continuous (linear) 
and discontinuous (conformational), the latter being regions of the antigen 
separated within the sequence but brought together in the folded protein to 
form a three - dimensional interface. Another problem with B - cell epitopes 
relates to the fact that they are commonly divided into two groups: continuous 
epitopes and discontinuous epitopes. Continuous epitopes correspond to short 
peptide fragments of a few amino acid residues that can be shown to cross 
react with antibodies raised against the intact protein. Since the residues 
involved in antibody binding represent a continuous segment of the primary 
sequence of the protein, they are also referred to as  “ linear ”  or  “ sequential ”  
epitopes. Studies have shown that this class of epitope often contains residues 
that are not implicated in antibody interaction, while some residues play a 
more important role than others in antibody binding. Discontinuous epitopes 
are composed of amino acid residues that are not sequential in the primary 
sequence of a protein antigen but are brought into spatial proximity by the 
three - dimensional folding of the peptide chain  [50] . 

 There is considerable interest in developing reliable methods for predicting 
B - cell epitopes. However, to date, the amino acid distribution of the comple-
mentary antigen surface has been diffi cult to characterize, presenting no 
unique sequential or structural features upon which to base a predictive 
system. It is partly for this reason that the B - cell epitope has lagged far behind 
T - cell prediction in terms of accuracy but also because much of the data upon 
which predictions are based remain open to question due to the poorly under-
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stood recognition properties of cross - reactive antibodies. One of the central 
problems with B - cell epitope prediction is that the epitopes themselves are 
entirely context dependent. The surface of a protein is, by defi nition, a con-
tinuous landscape of potential epitopes that is without borders. Therefore, 
both epitope and paratope are fuzzy recognition sites, forming not a single 
arrangement of specifi c amino acids but a series of alternative conformations. 
In this instance, a binary classifi cation of binder and nonbinder may simply 
not refl ect the nature of the interaction. A factor also to be considered is that 
the average paratope consists of only a third of the residues within the CDR 
loops, suggesting the remaining two - thirds could potentially bind to an antigen 
with an entirely different protein surface. 

 Often, a short length of amino acids can be classifi ed as a continuous 
epitope, though in fact it may be a component of a larger discontinuous 
epitope; this can be a result of the peptide representing a suffi cient proportion 
of the discontinuous epitope to enable cross reaction with the antibody. Since 
the majority of antibodies raised against complete proteins do not cross react 
with peptide fragments derived from the same protein, it is thought that the 
majority of epitopes are discontinuous. It is estimated that approximately 10% 
of epitopes on a globular protein antigen are truly continuous in nature. In 
spite of this, the majority of research into B - cell epitope prediction has focused 
largely on linear peptides on the grounds that they are discrete sequences and 
are easier to analyze. This can only be resolved by examination of the three -
 dimensional structure of the protein where the distinction between the con-
tinuous and discontinuous forms is not relevant. 

 Initial research into B - cell epitope prediction looked for common pat-
terns of binding or  “ motifs ”  that characterize epitopes from nonepitopes. 
Unfortunately, the wide variety of different epitope surfaces that can be 
bound made it impossible to determine any such motifs. More sophisticated 
machine learning approaches such as artifi cial neural networks have also been 
applied but never with an accuracy exceeding 60%. More recently, structural 
analysis of known antigens has been used to determine the surface accessibility 
of residues as a measure of the probability that they are part of an epitope 
site. Despite these fundamental limitations, several B - cell epitope prediction 
programs are available, including Discotope  [51] , 3DEX  [52] , and CEP    [53] . 
Both conformational epitope prediction (CEP) and Discotope measure the 
surface accessibility of residues, although neither has been developed to the 
point where they can identify coherent epitope regions rather than individual 
residues. A recent review of B - cell epitope software  [54]  calculated the  AROC

curves for the evaluated methods were about 0.6 (indicating 60% accuracy) 
for DiscoTope, ConSurf (which identifi es functional regions in proteins), and 
PPI - PRED   (protein – protein interface analysis) methods, while protein – 
protein docking methods were in the region of 65% accuracy, never exceeding 
70%. The remaining prediction methods assessed were all close to random. 
In spite of this, the increasing number of available antigen – antibody structures 
combined with sophisticated techniques for structural analysis suggests a more 
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methodical approach to the study interface will yield a better understanding 
of what surfaces can and cannot form stable epitopes. The proposed research 
will take several different approaches to this problem, which will lead to a 
more comprehensive understanding of antibody – antigen interactions.  

  11.5   DESIGNING DELIVERY VECTORS 

 Safe and effective methods of gene delivery have been sought for 30 years. 
Viral delivery of genes has effectively targeted inter alia hemophilia, coronary 
heart disease, muscular dystrophy, arthritis, and cancer. Despite their imma-
nent capacity to transfer genes into cells, concerns over safety, manufacturing, 
restricted targeting ability, and plasmid size have limited deployment of effec-
tive and generic gene therapy approaches. This remains a key objective for 
vaccinology. Vectors for gene therapy and vaccines differ in their require-
ments, yet both must overcome issues of targeting, plasmid cargo, and adverse 
immunogenicity. For example, up to 10% of the vaccinia genome can be 
replaced by DNA coding for antigens from other pathogens. The resulting 
vector generates strong antibody and T - cell responses and is protective. 
Viruses commonly used as vectors include poxviruses, adenovirus  , varicella, 
polio, and infl uenza. Bacterial vectors include both  Mycobacterium bovis  and 
salmonella. Adding extra DNA coding for large molecule adjuvants greatly 
can exacerbate antibody or T - cell responses. 

 Successful transfection is hampered by DNA degradation within and 
outside the cell, by inadequate cell penetration, by poor intracellular traffi ck-
ing, and by ineffi cient nuclear localization. The material can enter cells in 
many ways. Following clathrin - dependent endocytosis or endocytosis via lipid 
raft and/or membrane microdomains, the material transfers from early endo-
somes to sorting endosomes, where it may be exocytosed or may transfer to 
late endosomes. From late endosomes, material transfers to lysosomes for 
acidic and enzymatic digestion. Gene delivery requires both vector escape 
from digestion in late endosomes and nuclear translocation. Caveolin -
 dependent endocytosis, phagocytosis, and macropinocytosis do not transfer 
the material to the endolysosomal pathway. Some internalized material is 
released into the cytosol through unknown mechanisms. However, creating 
vectors with such desirable properties is diffi cult, and their effectiveness may 
be compromised by their capacity to downregulate other immune responses. 
The effi cient and rational design of effective vaccine vectors is an area where 
informatic techniques could play a large role. 

 Similar to, yet simpler than, viral vectors are so - called DNA vaccines; they 
are plasmids capable of expressing antigenic peptide within the host  [55] . They 
are an attractive alternative to conventional vaccines, generating both a cel-
lular and a humoral immune response, which are effective versus intracellular 
pathogens. The effi ciency of a DNA vaccine has been successfully enhanced 
using codon optimization  [56] , CpG motif engineering  [57,58] , and the intro-
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duction of promoter sequences  [59,60] . Codon optimization has been the most 
effective in enhancing protein expression effi ciency. Codons optimal for trans-
lation are those recognized by abundant tRNAs  [61] . Within a phylogenetic 
group, codon frequency is highly correlated with gene expression levels. 
Immunogenicity depends upon effective translation and transcription of the 
antigen; it is possible to enhance this by selecting optimal codons for the 
vaccine. 

 The most comprehensive approach to vaccine optimization is taken by 
DyNAVacs, an integrative bioinformatics tool that optimizes codons for het-
erologous expression of genes in bacteria, yeasts, and plants  [62] . The program 
is also capable of mapping restriction enzyme sites, primer design, and design-
ing therapeutic genes. The program calculates the optimal code for each 
amino acid encoded by a stretch of DNA by using a codon usage table, which 
contains codon frequencies for a variety of different genomes. 

 A similar technique, CpG optimization, may be used to optimize the codons 
in respect to CG   dinucleotides. Pattern recognition receptors that form part 
of the innate immune system can often distinguish prokaryotic DNA from 
eukaryotic DNAs by detecting unmethylated CpG dinucleotides, in particular 
base contexts, which are termed  “ CpG motifs. ”  The presence of such motifs 
in the sequence can be highly advantageous so long as it does not interfere 
with the process of codon optimization.  

  11.6   ADJUVANT DISCOVERY 

 Another technique for optimizing the effi cacy of vaccines is to develop an 
effi cient adjuvant. An adjuvant is defi ned as any chemical that is able to 
enhance an immune response when applied simultaneously with a vaccine and 
thus improves the effi cacy of vaccination  [63,64] . It is possible that some adju-
vants act as immune potentiators, triggering an early innate immune response 
that enhances the vaccine effectiveness by increasing the vaccine uptake. 
Adjuvants may also enhance vaccination by improving the depot effect, the 
colocalization of the antigen and immune potentiators, by delaying the spread 
of the antigen from the site of infection so that absorption occurs over a 
prolonged period  [65] . Aluminum hydroxide or alum is the only adjuvant 
currently licensed in humans. Aluminum - based adjuvants prolong antigen 
persistence due to the depot effect, stimulating the production of IgG1 and 
IgE antibodies  [66]  and triggering the secretion of interleukin - 4. There are 
also several small - molecule, druglike adjuvants, such as imiquimod, resiqui-
mod, and other imidazoquinolines  [67 – 69] . Other small molecules that have 
been investigated for adjuvant properties include monophosphoryl lipid A, 
muramyl dipeptide, QS21, polylactide co-glycolide (PLG) and Seppic ISA -
 51 [70] . In many cases, the adjuvant molecules have displayed toxic properties 
or have shown poor adsorption, making them unsuitable for use. Thus, there 
is a great demand for new compounds that can be used as adjuvants. 
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 Chemokine receptors are a family of G protein - coupled receptors 
(GPCRs) that transduce chemokines, leukocyte chemoattractant peptides 
that are secreted by several cell types in response to infl ammatory stimuli 
 [71 – 73] . GPCRs are a superfamily of transmembrane proteins responsible 
for the transduction of a variety of endogenous extracellular signals into 
an intracellular response  [74 – 76] . Activation of the chemokine receptors 
triggers an infl ammatory response by inducing migration of the leukocytes 
from circulation to the site of injury or infection. The receptors play a 
pivotal role in angiogenesis, hematopoiesis, and brain and heart develop-
ment, and there is also evidence that CCR5 precipitates the entry of HIV - 1 
into CD4+ T cells by the binding of the viral envelope protein gp120 
 [77,78] . There are 18 chemokine receptors and over 45 known chemokine 
ligands. The chemokines can be divided into the CC and CXC family; the 
former contains two cysteine residues adjacent within the protein sequence, 
while in the latter, they are separated by a single amino acid. CCR4 is a 
chemokine receptor expressed on Th2 - type CD4+ T cells and has been 
linked to allergic infl ammation diseases such as asthma, atopic dermatitis, 
and allergic rhinitis. There are two chemokines that bind the CCR4 recep-
tor exclusively: CCL22 and CCL17  [79] . Inhibition of the two ligands has 
been shown to reduce the migration of T cells to sites of infl ammation, 
suggesting than any CCR4 antagonist could provide an effective treatment 
for allergic reactions, specifi cally in the treatment of asthma. Anti - CCL17 
and anti - CCL22 antibodies have both been observed to have effi cacy, the 
property that enables a molecule to impart a pharmacological response, in 
murine asthma models. 

 It is possible for the CCR4 receptor to act as an adjuvant due to its expres-
sion by regulatory T cells (Tregs) that normally downregulate an immune 
response  [80] . The Tregs inhibit dendritic cell maturation and thus downregu-
late expression of the costimulatory molecule. A successful CCR4 antagonist 
would therefore be able to enhance human T - cell proliferation in an  in vitro
immune response model by blocking the Treg proliferation. This suggests that 
an effective CCR4 antagonist would have the properties of an adjuvant. A 
combination of virtual screening and experimental validation has been used 
to identify several potential adjuvants capable of inhibiting the proliferation 
of Tregs. Small - molecule adjuvant discovery is amenable to techniques used 
routinely by the pharmaceutical industry. Three - dimensional virtual screening 
is a fast and effective way of identifying molecules by docking a succession of 
ligands into a defi ned binding site  [81] . A large database of small molecules 
can be screened quickly and effi ciently in this way. Using  “ targeted ”  libraries 
containing a specifi c subset of molecules is often more effective. It is possible 
to use  “ privileged fragments ”  to construct combinatorial libraries, those which 
are expected to have an increased probability of success. A pharmacophore 
is a specifi c three - dimensional map of biological properties common to all 
active confi rmations of a set of ligands exhibiting a particular activity that can 
be used to discover new molecules with similar properties. Several small mol-
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ecules have been investigated for adjuvant properties in this way  [82] . More 
recently, molecules that selectively interfere with chemokine - mediated T - cell 
migration have shown the potential to act as adjuvants by downregulating 
the expression of costimulatory molecules, limiting T - cell activation. Small -
 molecule chemokine receptor antagonists have been identifi ed and have 
shown to be effective at blocking chemokine function in vivo   [83,84] , although 
to date, no compound has reached a phase II clinical trial.  

  11.7   DISCUSSION 

 Vaccine design and development is an inherently laborious process, but the 
programs and techniques outlined here have the potential to simplify the 
process greatly. The techniques described also have the potential to identify 
candidate proteins that would be overlooked by conventional experimenta-
tion. Reverse vaccinology has, in particular, proved effective in the discovery 
of antigenic subunit vaccines that would otherwise remain undiscovered. 

 It is sometimes diffi cult for outsiders to assess properly the relative merits 
of in silico  vaccine design compared to mainstream experimental studies. The 
potential, albeit largely unrealised, is huge, but only if people are willing to 
take up the technology and use it appropriately. People ’ s expectations of 
computational work are often largely unrealistic and highly tendentious. Some 
expect perfection and are soon disappointed, rapidly becoming vehement 
critics. Others are highly critical from the start and are nearly impossible to 
reconcile with informatic methods. Neither appraisal is correct, however. 
Informatic methods do not replace, or even seek to replace, experimental 
work, only to help rationalize experiments, saving time and effort. They are 
slaves to the data used to generate them. They require a degree of intellectual 
effort equivalent in scale yet different in kind to that of so - called experimental 
science. The two disciplines, experimental and informatics, are thus comple-
mentary albeit distinct. 

 Like the discovery process of small molecules, vaccines also suffer from 
the process of attrition. Few notional vaccines ever get tested in the labora-
tory. Few candidate vaccines successful in laboratory tests on small animals 
ever get tested in man. Few vaccines entering phase I trials ever reach phase 
III. Not all phase III candidates reach the marketplace. The development 
of a new drug or vaccine is a risky business, but is ultimately a benefi cial 
one; despite all the cant and hypocrisy that surrounds and permeates these 
endeavors, in the end, lives are saved or lives are improved. The pharma-
ceutical industry is doubtless brazen and profi t hungry. This, I am afraid, is 
a necessary and probably unavoidable evil. Without the industry, the public 
health tools that drugs and vaccines represent would not exist and all those 
lives would not be saved. Ignoring the nuances and counter arguments, 
when push comes to shove, as the saying goes, the bottom line is as simple 
as that.  
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  12.1   INTRODUCTION 

 The stages in the drug development continuum collectively comprise a pro-
longed time span marked by the accumulation of increasing amounts of 
complex scientifi c information generated in the quest to understand drug 
effi cacy and safety. Thus, discovery of drug information continues long after 
drug discovery and regulatory approval. Some of these data are useful and 
some are redundant. The challenge is to distill out the useful information from 
the useless information at each stage of development so as to facilitate the 
movement of helpful drugs through the development continuum so that the 
right drugs get to the right patient. To date, data mining has a played a role 
in each stage. Data mining has been used to support high - throughput screen-
ing  [1] , lead optimization  [2] , predictive toxicology  [3] , pharmacokinetic cal-
culations  [4] , predicting treatment options  [5] , and adverse event detection 
both pre -   [6]  and post marketing  [7] . Clearly, the discovery of knowledge of 
a drug extends well beyond the discovery of the drug and is a long - term 
commitment. 

 The effective application of medical therapy requires a judicious assess-
ment of the patient under treatment, the treatment indication, the therapeutic 
benefi ts of the administered drug(s), and their side - effect profi les. Such inte-
grated risk – benefi t assessments necessarily take place at both the level of the 
individual patient and also as part of a public health remit on a population 
level. Therapeutic effects are the focus of many early controlled studies in 
clinical development, and the therapeutic profi le is quite well defi ned at the 
time of marketing authorization. The other side of the benefi t – risk assessment 
is somewhat more tricky in that only a fraction of the side effects have been 
completely defi ned at the time of marketing. Therefore, systems must be in 
place for continuous monitoring for new side effects of drugs, even for 
approved indications after marketing authorization. 

 With an increasing number of molecular - level therapeutic targets being 
identifi ed and with demographic changes associated with increased comorbid 
illnesses and polypharmacy, it is not surprising that it is becoming more chal-
lenging for some organizations to implement the aforementioned continuous 
surveillance. Herein we describe how statistics and technology can be lever-
aged to support the process of drug safety surveillance.  

  12.2   THE NEED FOR POST - MARKETING DRUG 
SAFETY SURVEILLANCE 

 The evolution of modern drug safety surveillance thinking has often been 
driven by various public health tragedies. Understanding this connection is 
not only of historical interest but yields insights into some of the traditional 
approaches to surveillance that might have to be modifi ed to meet modern - day 
challenges. 
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 The fi rst prominent episode was the 1937 elixir sulfanilamide incident in 
which Massengill  &  Co. produced a liquid preparation of sulfanilamide in 
which the active moiety was intentionally dissolved in diethylene glycol 
in demand for a liquid formulation of the drug, and while it passed tests of 
appearance and fragrance, it was unfortunately never tested for toxicity. At 
the time, there was no legal or regulatory mandates for safety/toxicity testing 
of new drugs and so, when the formulation was manufactured and distributed, 
not surprisingly (with hindsight), the highly toxic diethylene glycol resulted in 
the deaths of more than 100 people  [8] . Tragically, international safety inci-
dents due to the use of diethylene glycol continue periodically to modern times 
 [9 – 11] . 

 The next major safety incident catalyzed the institution of post - marketing 
surveillance (PMS) requirements that are still used today. In 1961, the  Lancet
published a letter by McBride  [12] , an Australian physician, noting that con-
genital anomalies are present in 1.5% of births overall but almost 20% of 
pregnancies in women given thalidomide as a sedative or as an antiemetic. 
The thalidomide - treated mothers delivered babies with multiple severe con-
genital abnormalities involving mesenchymal - derived musculoskeletal struc-
tures. This is the paradigm of the  “ astute clinician model ”   [13]  in which the 
observational acumen of the clinician results in the detection of an event(s) 
that is clinically and/or quantitatively distinctive. 

 In the wake of the thalidomide disaster, it was clear that there were 
inadequate systems for the ongoing surveillance of medicinal products after 
drug launches, and it was agreed that such a disaster should never be allowed 
to happen again. As a consequence, surveillance systems were set up in several 
countries. The fi rst systematic collection of reports occurred in Australia, Italy, 
the Netherlands, New Zealand, Sweden, the United Kingdom, the United 
States, and West Germany, and in 1968, 10 countries from Australasia, Europe, 
and North America agreed to pool all their data in a World Health Organization 
(WHO) - sponsored project with the intention of identifying rare but serious 
reactions as early as possible. This project became the WHO Program for 
International Drug Monitoring, and this pooling of spontaneously reported 
data in a central database continued. The number of member countries and 
the rate of the increase of reports has continued, and currently, there are 70 
countries that contribute data and nearly 4 million case reports in the WHO 
database of suspected adverse drug reactions (ADRs)  [14] . In parallel to these 
organizations, pharmaceutical companies have also developed in - house data-
bases of case reports involving their own drugs. Most pharmaceutical compa-
nies ’  databases are a fraction of the size of the above databases, but some 
larger organizations with large product portfolios have very large databases 
that are of the same order of magnitude of size. Thus, most monitoring of 
approved medicinal products refl ects a parallel and interactive collaboration 
between government, industry, transnational, drug monitoring centers, with 
other stakeholders such as patient organizations playing an increasingly active 
role.  
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  12.3   THE RELATIONSHIP BETWEEN DATA QUANTITY 
AND QUALITY 

 The fundamental lessons of history and contemporary pharmacovigilance 
(PhV) reinforce the important reality that the unraveling of the safety profi le 
of a drug is a continuous process that begins with the early drug development 
phases (see Chapter  10 ) and lasts as long as the medicine is dispensed to 
patients. As the knowledge of a drug accumulates, so does the quantity of 
information on the product; however, the increasing data are of variable 
quality and completeness. The fi rst human studies ( “ fi rst - in - human ” ) are a 
critical juncture in which there is great concern about the safety of the 
patients because of the absence of any human experience with medicine. As 
such, the numbers of patients are quite small, and the patients are typically 
healthy volunteers without signifi cant medical or comedication history and 
are monitored very closely in in - patient study units  . If the drug passes this 
and subsequent tests, the increased understanding of the safety profi le leads 
to a greater comfort level with administering the drug to human beings and 
therefore progresses to studies that employ an increasing number of subjects 
who are not always healthy volunteers, may be taking comedications, and 
suffer comorbid illnesses. So, with increasing understanding comes increased 
numbers and trial subjects increasingly similar to the potential patients antic-
ipated to be the main benefi ciaries of treatment. Nonetheless, even the 
largest randomized studies are very structured and impose signifi cant con-
straints on the number, size, and complexity of patients in order to be logisti-
cally feasible and to allow for the application of inferential statistics. Finally, 
when a critical evidentiary mass is reached, the drug may be approved. The 
natural progression from low to high in terms of patient numbers and com-
plexity and from greater to less in the intensity of individual patient monitor-
ing takes a quantum leap after marketing authorization. After that milestone, 
the number of patients treated and their medical complexity may explode, 
with patient monitoring becoming unavoidably more relaxed and variable. 
Consequently, it is well understood in the specialist community that inevita-
bly some knowledge about the safety profi le of a product will only be estab-
lished after a product has received marketing authorization. This is not the 
case with the general public and perhaps explains the disproportionate media 
impact that concerns of possible rare side effects can have, often with very 
limited or erroneous evidential basis such as the inappropriate measles, 
mumps, rubella (MMR)   autism scare  [15] . 

 Given the above relationships and evolving information streams, post -
 marketing drug surveillance is a keystone surveillance activity that aims 

  1.    to protect patients from inappropriate drug use,  
  2.    to reassure patients that their health is protected,  
  3.    to protect a product from inappropriate and unfounded safety 

concerns,  
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  4.    to provide an avenue for patients to express their concerns about medici-
nal treatments,  

  5.    to help develop new products without the harmful profi les   of current 
best therapeutic interventions, and  

  6.    to help develop new indications of products based on unpredicted side 
effects when in routine use.    

 As an indication of the ongoing importance of this activity in the post -
 approval phase of drug development, Table  12.1  presents data on 12 post -
 approval drug withdrawals in the United States, which occurred between 1997 
and 2001 as listed in the January – February 2002 Food and Drug Administration 
(FDA) consumer magazine  [16] .   

 Drug safety surveillance objectives (1) – (4) listed above are probably the 
most widely but it is worth mentioning that point number 5 is not entirely 
theoretical  . New indications have emerged from observation of adverse 
effects. The fi rst suggestion that the central  α  - adrenergic antihypertensive 
agent clonidine, originally synthesized as a nasal decongestant, might have 
useful blood pressure - lowering properties, appeared when a member of the 
original nasal decongestant trial group allowed his secretary to self - administer 
clonidine intranasally for a cold. She subsequently developed low blood pres-
sure, bradycardia, and slept for 24 hours (the self - administered dose amounted 
to an overdose with 20 tablets). This observation was replicated and reinforced 
during the initial trials  [17] . The hair - restorative properties of topical minoxi-
dil were pursued based on the observed side effect of hypertrichosis with oral 

 TABLE 12.1     Post - Approval Drug Withdrawals in the United States, 1997 – 2001   

   Drug Name     Use     Adverse Risk  
   Year 

Approved
   Year 

Withdrawn  

  Cerivastatin    LDL reduction    Rhabdomyolysis    1997    2001  
  Rapaccuronium Br    Anesthesia    Bronchospasm    1999    2001  
  Alosetron    Irritable bowel    Ischemic colitis    2000    2000  
  Cisapride    Heartburn    Arrhythmia    1993    1993  
  Phenylpropanolamine    Decongestant    Stroke    Pre - 1962    2000  
  Troglitazone    Type 2 diabetes    Liver toxicity    1997    2000  
  Astemizole    Antihistamine    Arrhythmia    1988    1999  
  Grepafl oxcin    Antibiotic    Arrhythmia    1997    1999  
  Mibefradil    High BP and 

angina
  Arrhythmia    1997    1998  

  Bromfenac    Analgesia    Liver toxicity    1997    1998  
  Terfenadine    Antihistamine    Arrhythmia    1985    1998  
  Fenfl uramine    Appetite 

suppressant
  Valve disease    1973    1997  

  Dexfenfl uramine    Appetite 
suppressant

  Valve disease    1996    1997  

   LDL   =   low density lipoprotein; BP   =   blood pressure.   
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minoxidil  [18] , and the development of phosphodiesterase (PDE) - 5   inhibitors 
for erectile dysfunction sprang from the observation of penile erections as a 
common side effect in multiple - dose phase I trials  [19] . Identifying unantici-
pated therapeutic effects of drugs and new indications by systematically 
screening safety databases is still in the embryonic stage  [20] . Drug safety data 
on products could and should be increasingly used to help in future drug 
development. 

 Drug development is often considered fi nished when the effi cacy of a 
product has been demonstrated beyond reasonable doubt, with limited focus 
on safety. For example, consider the following defi nition of drug discovery 
from the School of Pharmacy, University of California  [21] :  “ research process 
following drug discovery that takes a molecule with desired biological effects 
in animal models and prepares it as a drug that can be used in humans. ”  Even 
when a broader defi nition of drug development is considered and includes 
randomized clinical trials in humans, this is still only considered to the point 
of approval, with some increased focus on safety, as well as effectiveness 
rather than effi cacy. 

 Traditional segmentation of the drug life cycle into discrete phases may 
foster parochial views that limit the full potential of drug discovery. In fact, 
these segments are not discrete but overlap, and there is much feedback and 
communication between them. It is well established that much important 
useful information about the side effect of a medicinal product is only estab-
lished after drug launch. In addition to side - effect information as a source of 
previously unexpected new indications as described above, a better under-
standing of the side - effect profi les of products on the market can be used to 
determine and investigate possible side effects (or even likely spurious asso-
ciations) of new medical therapies, issues of central concern in PhV, and risk 
management planning. It may also help in the prioritization of candidates 
based on their likely approval post marketing, and may possibly reduce the 
number of good candidates dropped because of unwarranted concern about 
apparent markers for side effects if these fi ndings were seen for similar prod-
ucts but did not in the end lead to the anticipated side - effect profi le. Similarly, 
there is a huge amount of potentially relevant data collected while a compa-
ny ’ s earlier product or competitor products are marketed, which could be 
relevant during early drug development.  

  12.4   SIGNAL DETECTION — THE FRONT LINE OF  P h V  

  12.4.1    P h V  

 PhV has been defi ned as  “ the science and activities relating to the detection, 
assessment, understanding and prevention of adverse effects or any other 
drug - related problem ”   [22] . It has often been used synonymously with PMS 
or with drug safety monitoring. The historic equation of  “ PhV ”  with  “ PMS ”  
relates to the fact that clinical trials in support of drug applications, with their 



SIGNAL DETECTION—THE FRONT LINE OF PhV 347

necessary constraints on size, duration, and patient heterogeneity cannot reli-
ably capture the full range of ADRs. Therefore, ADRs that are rare or occur 
only after prolonged latency are often unknown at the time of initial approval. 
However, just as the drug discovery process is continuous with no rigid bound-
aries despite the classic segmentation used to depict drug development, PhV 
is becoming more holistic and integrative and is commencing earlier in the 
drug development process. 

 PhV entails activities founded on a complex knowledge base involving 
clinical, informatics, and statistical domains  . A quote attributed to Edward 
Shortliffe describing medical decision making would probably strike a chord 
with those working in the complex and often uncertain world of PhV as an 
apt description:  “ making acceptable decisions in an imperfectly understood 
problem space often using incomplete or erroneous information. ”   

  12.4.2   Signal Detection in  P h V  

 The  “ front line ”  of PhV consists of signal detection — the expeditious identi-
fi cation of early clues of potential ADRs that may be novel by virtue of their 
nature, severity, and/or frequency. 

 There is an extensive suite of activities, strategies, techniques, and data 
streams linked with this surveillance activity, the  “ front - end ”  goal of which is 
to expeditiously detect potential  “ signals ”  of possible novel safety phenom-
ena. When a credible signal of a new adverse event is detected, it triggers an 
evaluation, which usually begins with a detailed review of individual case 
reports of the association, which are submitted to spontaneous reporting 
system (SRS) databases as described below. The initial investigation of a 
signal may determine that a causal relationship is suffi ciently likely to warrant 
some action (e.g., labeling amendment), that the relationship is most likely 
noncausal, or that it is unclear, but continued monitoring and/or further 
studies are indicated. 

 While there is semantic ambiguity, imprecision, and variability in the use 
of the term  “ signal, ”  one commonly used defi nition is that of the WHO: 
 “ reported information on a possible causal relationship between an adverse 
event and drug, the relationship being unknown or incompletely documented 
previously. Usually more than a single report is required to generate a signal, 
depending on seriousness of the event and quality of information ”   [23] . 
Another comprehensive defi nition  [24]  that emphasizes the need for rational 
thought prior to concluding a signal exists is  “ a set of data constituting a 
hypothesis that is relevant to the rational and safe use of a medicine. Such 
data are usually clinical, pharmacological, pathological, or epidemiological in 
nature. A signal consists of data and arguments. ”  Credible signals that are 
returned to analysts as a result of the PhV activities are then subjected to 
various analytical investigations, which hopefully provide convergent lines of 
evidence that illuminate the possible relationship, either strengthening/weak-
ening it, and ultimately confi rming/refuting it under ideal circumstances, 
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though PhV often involves decision making in the setting of residual uncer-
tainty. The process from initial detection of a possible signal to confi rmation/
refutation with suffi cient certitude for decision making is rarely based on a 
single technique or tool and is not typically a rapid discrete process or pre-
cisely delineated steps. It often involves iterative assessment of clinical and 
numerical data streams over time. Meyboom et al.  [25]  has depicted the 
process with a logistic - type curve (see Fig.  12.1  [with kind permission from 
Adis International]).   

 Collectively, these activities form a major component of  “ phase IV research ”  
or  “ post - marketing research, ”  which has been defi ned as a  “ generic term used 
to describe all activities after drug approval by the regulatory agency  …  ”   [26] . 
While SRS data have been a cornerstone of PhV for decades, data sets from 
claims databases, epidemiological databases, and clinical trial databases all 
play key roles in PhV primarily in the steps after signal detection as subse-
quent assessments that strengthen or weaken a signal. The role of these data-
bases in initial signal detection is increasing and is likely to increase further 
 [27] . Nonetheless, SRS data will continue to play a central role  [27] .   

  12.5   TARGETS, TOOLS, AND DATA SETS 

 To fully appreciate the landscape or  “ application domain ”   [28]  of post -
 approval safety surveillance and the role that data mining can play in it, a 
review of its elements is in order. This domain consists of the adverse events 
under surveillance, the mechanism by which adverse drug effects (ADEs, 
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     Figure 12.1     The lengthy process of the discovery of a drug - induced disorder, from 
the earliest suspicion via a credible signal to a fully explained and understood 
phenomenon.  
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defi ned as any injury resulting from drug therapy) are reported, the available 
data sets that permanently record the observed and reported occurrences of 
these events, and the methods and tools used to interrogate these data sets.  

  12.6   THE SAMPLE SPACE OF ADVERSE EVENTS 

 PhV is rather unique among surveillance systems in terms of the range and 
variety of the disease under surveillance. The variety is in terms of pathophysi-
ological mechanisms, clinical phenotypes, and quantitative representation, by 
which we mean their frequency/risk of occurrence in exposed versus unex-
posed populations. 

 The diversity is perhaps most striking with respect to clinical phenotypes. 
With increasing numbers of drugs targeting increasing numbers of identifi ed 
molecular targets within complex signal transduction cascades, adverse drug 
reactions (ADRs) may rival syphilis and miliary tuberculosis, which are often 
called  “ great imitators ”  in medicine   due to their extremely protean clinical 
phenotypes. The full range of specifi c clinical presentations is beyond the 
scope of this article, but in addition to the more widely appreciated ADRs 
such as allergic reactions, hepatitis, rashes, and gastrointestinal disturbances, 
medicines may also induce kidney stones, biliary stones, many forms of vas-
culitis, pneumothorax, tendon rupture, myopia, pyloric stenosis, hiccups, 
hypothermia, noncardiogenic pulmonary edema, and cardiomyopathy, to 
name just a few. In some instances, the ADR may go exactly counter to what 
one would expect from the pharmacological properties or intended purpose 
of the drug, for example, anaphylactic reactions to corticosteroids or hyper-
tensive reactions from drugs given to lower blood pressure. The latter have 
been referred to as paradoxical reactions  [29] . This underscores the impor-
tance of the prepared mind expecting the unexpected  [30] . The clinical and 
mechanistic variety of ADEs has inspired the development of various ADR 
classifi cation schemes and conceptual frameworks  [31] . 

 The quantitative dimension of ADR variety refers to the fact that some 
ADEs are relatively common and some are rare. For example, headache, rash, 
abdominal pain, and diarrhea are rather common events in the general popula-
tion, in populations under treatment with drugs, and in SRS databases. Other 
events are rare in general populations, drug - treated populations, and SRS 
databases such as pure - red cell aplasia, aplastic anemia, agranulocytosis, and 
Creutzfeld – Jacob disease, to name a few. The relative frequency of events in 
treated populations versus the general/untreated populations and in SRS data-
bases infl uences the optimum method and likelihood of detection. An event 
that is extremely rare in all populations is so striking that it is likely amenable 
to detection through clinical observation ( “ acute clinician paradigm). An illus-
tration is iatrogenic Creutzfeld – Jakob disease, a very rare and fatal spongiform 
encephalopathy now known to be caused by a prion. Three cases in association 
with the human growth hormone treatment in the 1980s were considered so 
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striking and unlikely to be due to a chance association that the National 
Hormone and Pituitary Program, the main source of human growth hormone 
(hGH) in the United States, was terminated  [32] . Common events that are 
induced by drugs only rarely are diffi cult to detect by any means because the 
risk attributable to the drug is so small relative to the baseline risk. Other 
combinations of frequency in treated and untreated populations are displayed 
in Table  12.2   [31] . While this table is constructed from the perspective of 
substantiating adverse events, the implications are similar for signal detection. 
For example, it may be quite diffi cult to detect a small increase in risk of an 
event that is very common in the background population.   

 It is possible to blend clinical and quantitative elements to arrive at addi-
tional classifi cations that may be then used to positively infl uence monitoring 
strategy. For example, so - called designated medical events (DMEs) are rare 
(quantitative), serious (clinical), and have a high drug - attributable risk (i.e., a 
signifi cant proportion of occurrences of these events are drug induced) (quan-
titative). Although there is no single universally accepted DME list, Table  12.3  
shows some ADRs generally considered DMEs.   

 Similarly, the WHO critical term listing is a list of ADR terms defi ned as 
 “ adverse reaction terms referring to, or possibly being indicative of, serious 
disease states, which have been regarded as particularly important to follow 
up. A serious disease is one that may be fatal, life - threatening, or causing 
prolonged inpatient hospitalization, or resulting in persistent or signifi cant 

 TABLE 12.2     Quantitative Range of Events of Interest in  P h V , as Listed in 
Reference  31  

   Incidence in Patients 
Taking the Drug  

   Background 
Incidence of the 

Event    Example  
   Ease of Proving 
the Association 

  Common    Rare    Phocomelia due 
to thalidomide  

  Easy clinical 
observation

  Rare    Rare    ASA and Reye ’ s 
syndrome

  Less easy clinical 
observation

  Common    Common    ACEI and cough    Diffi cult, large 
observational
study

  Uncommon    Moderately common    HRT and breast 
carcinoma

  Very diffi cult, 
large trial  

  Rare    Common    None established    Impossible  

 TABLE 12.3     Some Examples of  DME s 

  Aplastic anemia    Steven – Johnson syndrome  
  Agranulocytosis    Torsade des pointes  
  Hepatic failure    Toxic epidermal necrolysis  
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disability or incapacity. ”  The critical term listing has been an integral part of 
the WHO ’ s signal - detection strategy since its introduction in the 1970s. Given 
these characteristics and the comparative consequences of false alarms versus 
missed signals, they are often considered sentinel events irrespective of drug, 
meaning that one to three cases may be considered an alert  [33] . A similar 
concept is the targeted medical event (TME) similar to a DME, but it is based 
on clinical/pharmacological characteristics specifi c to a drug, its treatment 
indication(s), and/or the patient - specifi c characteristics.  

  12.7   REPORTING MECHANISM 

 While the rules, regulations, and procedures governing the spontaneous 
reporting of ADRs vary, there are basic commonalities: 

  1.    With the exception of pharmaceutical companies that are legally bound 
to report ADRs to health authorities, it is a voluntary activity by the 
source reporter (e.g., healthcare practitioner, patient). This is the basis 
for the term  “ spontaneous reporting ”  or  “ spontaneous report. ”   

  2.    The reporter does not have to be certain that the drug caused the 
event – any suspicion, however tentative, is suffi cient for spontaneous 
reporting.  

  3.    There must be an identifi able drug, patient, and event. However, source 
documentation to verify the reports does not have to be submitted by 
the reporter, though pharmaceutical companies and, to a lesser extent, 
health authorities typically request this information.  

  4.    The total number of people exposed to the drug and the total number 
that experiences/did not experience an event are unknown. In other 
words, the complete numerator and denominator fi gures that are a pre-
requisite for quantifying risk are unavailable, and it is not appropriate 
to use SRS data to estimate absolute or relative risk for the occurrence 
of ADRs.    

 There is no clear probability structure underlying the overall sampling 
scheme since these reports are anecdotal and are voluntarily submitted. Thus, 
there are differential infl uences, including confounding factors (discussed in 
detail below) and various reporting artifacts, that may result in some drugs, 
events, and/or drug – event combinations being preferentially reported or not 
reported. Finally, the data elements within individual reports are subject to 
considerable qualitative and quantitative defi cits in the form of missing or 
incorrect information. Some of these may be combined to result in a phe-
nomenon such as duplicate reporting, which is particularly problematic with 
SRSs  . 

 The many quantitative and qualitative defects associated with spontane-
ously reported data, including duplicate reporting, along with a sometimes 
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redundant drug nomenclature, result in the need for considerable preprocess-
ing of the data prior to data mining analysis. Current preprocessing procedures 
are demonstrably imperfect. For example, while the scale of the problem is 
unclear, duplicate reports, which escape contemporary duplicate detection 
procedures, can complicate clinical and quantitative analysis of the data  [34] . 
New approaches to preprocessing, such as the application of a hit - miss model 
adapted from record linkage  [35] , can be used to weight reports by similarity 
and to cluster those that are particularly similar. This better identifi cation of 
likely duplicates saves resources for signal detection by reducing the number 
of false - positive leads. 

 Many factors can infl uence the entire process from observation of an 
adverse event, attribution/misattribution to a drug(s), to completing and 
submitting a report. (It is important to emphasize that individual reports 
may refl ect attribution/misattribution since studies have documented high 
rates of misattribution to drugs  [36] .) Some of these factors are cultural/
behavioral/attitudinal and result in substantial underreporting, which can 
range enormously. Inman has delineated the  “ seven deadly sins ”  of ADR 
reporting that exert an inhibitory infl uence on reporting behavior 
(Box  12.1 ).    

  12.8   THE ANATOMY OF  SRS  DATABASES 

 One of the most challenging aspects of PhV are the large repositories of spon-
taneous reports that are routinely employed to monitor the safety of marketed 
drug products by health authorities and large pharmaceutical companies. 
These are maintained by health authorities, transnational drug monitoring 
centers, and pharmaceutical companies. Understanding the anatomy of the 
individual records and overall architecture of such databases, especially their 
size and sparsity, is key to understanding the challenges faced in monitoring 

        Box 12.1  

•     Fear of litigation  
•     Lethargy/indifference about contributing to the general advancement of 

knowledge
•     Ambition to collect and publish a personal case series  
•     Guilt at having caused an ADR  
•     Complacency — the mistaken belief that only safe drugs are licensed  
 •     Ignorance of the need for reporting  
•     Diffi dence about reporting a mere suspicion     

Inman’ s Seven Deadly Sins of Reporting  ADR s
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drug safety and important considerations for the development of technologies 
to assist human reviewers. 

 To understand the basic data representation of the individual reports that 
comprise these databases, Table  12.4  shows two fi ctitious but entirely typical 
entries corresponding to two reports in the SRS database.   

 Of note is the fact that every record may be considered to consist of very 
high dimensional information with each demographic variable, drug, and 
adverse event corresponding to a dimension. There are also additional vari-
ables related to medical history, and in addition, spontaneous reports some-
times have a narrative that may range from extremely scant to extremely 
detailed, possibly including source document information such as hospital 
discharge summaries and diagnostic laboratory records. 

 Two features of SRS data loom large in understanding the challenges pre-
sented by such data sets and the unique challenges encountered when trying 
to apply statistical methods to the analysis of such data. 

 Perhaps most apparent is the size of the larger SRS databases. Large 
health authorities, pharmaceutical companies with large product portfolios, 
and large transnational drug monitoring centers maintain huge database con-
taining millions of records that are augmented with hundreds of thousands 
of reports per year. Smaller organizations with smaller databases may face 
similar problems when scaled to a lower number of reviewers. Perhaps 
slightly less well known is the number of drugs and adverse events that are 
encoded in the database. With 15,000 unique drug names and up to 16,000+ 
adverse event codes in the coding dictionaries and thesaurus used to memo-
rialize the data, the number of potential combinations is huge, at 240 million 
potential combinations. A further complication is that the ADE dictionaries 
are hypergranular, meaning that many literally distinct event codes may be 
used for a given medical concept. Third, large SRS databases are very sparse, 
by which we mean most potential drug – event combinations are never 
reported, and of those that are, the majority may have only one or two 
reports. Finally, related to bullet point 4 under  “ reporting mechanism, ”  each 
reported drug – ADE is only a subset of all occurrences of that drug – ADE, 
and there is no information in the data set on the number of times the drug 
was prescribed and ADE did not occur, nor on the rate of ADE in a nonex-
posed population.  

 TABLE 12.4     Representation of Two Records in an  SRS  Database   

   Age     Sex     Drug 1     Drug 2     Drug 3  
   Drug 
15,000     AE1     AE2     AE3  

   AE 
16,000

  42    M    Yes    No    Yes    No    Yes    No    Yes    Yes  
  36    F    No    Yes    Yes    Yes    Yes    Yes    No    No  

   AE   =   adverse effect.   
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  12.9   METHODS IN DRUG SAFETY SURVEILLANCE 

 Basically, drug safety surveillance methods can be divided into two categories. 
One is essentially heuristic, using rules of thumb based on astute clinical 
observations and sound public health principles. The other are structured 
quantitative methods, the focus of this chapter. Given their clinical and quan-
titative variety, it is not surprising that some ADRs are detected via clinical 
observations, while other ADRS may be fi rst recognized purely because of 
what seems to be a quantitatively higher - than - expected reporting frequency, 
i.e., after accumulation of a critical mass of cases, although later clinical 
review remains essential  [33]  and some by a combination of both strategies. 
Determining what constitutes a critical mass given the enormous limitations 
of the data and the data - generating mechanism, and the desire to maintain a 
rational balance of sensitivity and specifi city, is the key conundrum of quan-
titative approaches to signal detection  , which we will discuss in detail below.  

  12.10   TRADITIONAL APPROACHES TO DRUG 
SAFETY SURVEILLANCE 

 Since the institution of SRS databases, PV has relied heavily on the  “ astute 
clinician model ”  and on heuristics based on domain expertise and common -
 sense public health principles. Essentially, certain case reports or case series 
will appear  “ striking ”  to the data analyst and be considered for further inves-
tigation. A case or case series may appear striking to an observer for various 
reasons including the clinical nature of the event itself (e.g., the passage of a 
solid renal calculus composed of a drug), striking chronological features (e.g., 
the well - documented stereotypical recurrence of certain objective ADEs after 
multiple drug administrations, the fi rst occurrence of a very unusual event, or 
ADEs with cogent arguments for biological plausibility. Other features that 
may fl ag a case/case series as striking or likely to be informative have been 
discussed in detail  [24,33,37 – 40] ). Although the striking case  approach  is com-
monly used, how common/uncommon  “ striking  cases  ”  actually are is unknown. 

 However, determining that a case/case series is striking should always be 
determined with a refi ned understanding of the relevant pathophysiology, and 
fi rst instincts can be misleading. For example, it is not uncommon to see 
reports of noncytotoxic drug - induced hair loss within a week or two of com-
mencing a drug. At fi rst blush, such a rapid onset may seem compelling evi-
dence of drug causation, but in fact, such a time frame is incompatible with 
the known physiology of the human hair follicle, which involves time cycles 
of follicle/hair growth, growth arrest, quiescence, and regrowth. This overlaps 
the fi eld of causality assessment of ADEs, which is beyond the scope of this 
chapter but for which there is an abundant literature. 

 An important example of a commonly used heuristic is the maintenance of 
lists of DMEs that serve as sentinel ( “ worst fi rst ” ) events. As stated above, 
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because these are rare, serious, and have a high drug - attributable risk (not 
necessarily limited to specifi c drugs/drug classes), there is more of a premium 
placed on sensitivity versus specifi city, and as few as one to three cases get 
extra attention. When similar considerations are linked to the pharmacology, 
treatment indications, or treatment populations of specifi c drugs, a TME may 
be used in the same way as a DME list. In a sense, these are related to what 
Amery has called the  “ striking case method ”   [40] .Often, review of spontane-
ous reports will be triggered by concern emerging from other sources, such as 
an isolated case report in the literature or an unexpected occurrence of events 
in a clinical trial.  

  12.11   QUANTITATIVE APPROACHES 

 This conceptual foundation for quantitative approaches was formulated by 
David Finney in a seminal paper titled  “ The Design and Monitor of Drug 
Use ”   [41] . It was fi rst routinely operationalized by Dr. Ed Napke as a  “ pigeon-
hole ”  cabinet in 1968 for the Canadian adverse event reporting system  [42] . 
Each pigeonhole was a slot representing the intersection of a drug/event row 
and column. Reports involving that drug and event were fi led in the respective 
slot. Colored tabs were attached to reports involving events deemed severe 
or unusual. Accumulations of colored tabs in certain pigeonholes provided a 
visual clue that the reporting frequency of the association might be quantita-
tively distinctive, which in turn might trigger further investigation. This is 
consistent with a fundamental process of safety surveillance and assessment —
 determining if the occurrence of an ADE exceeds what one would expect by 
chance. In contemporary drug safety surveillance, the extent to which the 
number of reports observed exceeds this expectation is expressed as a ratio 
measure of disproportionality, generically known as an observed - to - expected 
ratio ( “ O/E ” ) or relative reporting ( “ RR ” ). 

 Contemporary quantitative methods, also known as data mining algorithms 
(DMAs), construct and present to the user virtual pigeonhole cabinets but 
employ more structured statistical approaches instead of subjective visual cues 
for distinguishing which adverse events are quantitatively interesting. 

 This is illustrated in Table  12.5  as a cross tabulation of all possible drugs 
and events in which the number of reports of the fi rst through the  M th AE is 
tabulated for the fi rst through the  N th drugs. Each cell is the number of reports 
of the mth  AE reported for the  nth  drug. This is, in effect, a huge, modern - day 
pigeonhole cabinet.   

 There is a way to condense Table  12.5  in accordance with the gray color -
 coding scheme, into a 2    ×    2 contingency table that perhaps facilitates an 
understanding of association patterns between a drug and an event and the 
calculation of O/Es (  Table  12.6 ).   

 The gray color - coding scheme that matches the expanded representation is 
intended to make quite obvious a fundamental characteristic of SRS data. The 
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 TABLE 12.5     The  SRS  Database as a Virtual  “ Pigeonhole Cabinet     ”  

AE1 AE2 AE3 AE4 AEM

Total
Reports

with Drug

Drug 1 N11 N12 N13 N14 N1M N1

Drug 2 N21 N22 N23 N24 N2M N2

Drug 3 N31 N3

Drug 4 N41 N4

Drug n Nn1 NN

Total
reports of 
event

N.1 N..

 TABLE 12.6     2    ×    2 Contingency Table      

Event of Interest + Event of Interest −

Drug of interest +

Drug of interest −

combination of interest (red) actually represents a small fraction of the data 
and even a small fraction of the adverse event data for that drug (red plus 
yellow). By far, the largest subset of the data (brown) represents other drugs 
and other events from the combination of interest. This has practical implica-
tions when we consider the measures of association that we calculate via such 
cross - classifi cation tables. These will be discussed in detail below. Also, for 
future reference, note that the 2    ×    2 table in sense loses or masks important 
information. For example, note that the information in the brown zone of the 
fully expanded contingency table involves numerous different drugs and 
events, yet this is all collapsed into a single cell — in other words, all  “ other ”  
events and  “ other ”  drugs are each collapsed into a separate single category. 

 The importance of the 2    ×    2 table is that it provides convenient bookkeep-
ing device by which we can tabulate the number of reports of a given drug -
 event combination (DEC) of interest and create a rational and structured 
model of what that number would be if it purely refl ected the play of chance 
if the drug and event were truly independent of each other in the database. 
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Expressed a little differently, we can use these tables to determine the prob-
ability that a randomly drawn report will list both the drug and the event if 
they are unrelated in the database. The greater the actual number of observed 
reports exceeds this expected number, the more interesting it potentially 
becomes (Table  12.7   ).   

 Confi dence intervals should also be calculated around the measures or a 
chi - squared test performed. 

 It is crucial to appreciate that a number of reports, exceeding that expected 
by chance, can never prove causality, and, considered alone, do not qualify as 
a credible signal. We illustrate this with examples below. There are several 
causes of a statistically disproportionate reporting frequency (a so - called 
signal of disproportionate reporting [SDR])  [43] . First, there will be variations 
in reporting that are essentially stochastic in nature and are especially prob-
lematic with rarely reported ADEs. For example, one can imagine that a 
misclassifi ed report can have a much bigger impact if it is the only report or 
one of two reports than if it is one of a hundred reports. So all other factors 
being equal (which of course they rarely are), one may have more confi dence 
in an O/E of 10 if that represents 100 observed compared to 10 expected versus 
1 observed compared to 0.01 expected. The important sources of systematic 
bias inherent to the spontaneously reported data (i.e., the aforementioned 
confounders, biases, and reporting artifacts) may be entirely or partially 
responsible for many SDRs. Contemporary data mining methods cannot cur-
rently effectively address these systematic biases, hence the need for clinical 
review of DMA outputs. 

 For much of the database, the background noise associated with variability 
of sparse data can present a challenge to discerning true signals. There are 
two basic approaches to controlling the variability. One is based on classical 

 TABLE 12.7     Common Measures of Association for 2    ×    2 Tables Used in 
Disproportionality Analysis 

   Measure of 
Association     Formula     Probabilistic Interpretation  

   Chance 
Expectation  

  Relative reporting 
(RR)   a     

  
   
A A B C D

A C A B
+ + +( )

+( ) +( )    
  
   
Pr

Pr
ae

ae
drug( )

( )    
  1  

  Proportional 
reporting rate 
ratio (PRR)  

  
   
A C D
C A B

+( )
+( )    

  
   

Pr
Pr ~

ae
ae

drug
drug

( )
( )    

  1  

  Reporting odds 
ratio (ROR)  

  
   
AD
CB    

  
   
Pr Pr
Pr Pr

~ ~

~ ~

ae ae
ae ae

drug drug
drug drug

( ) ( )
( ) ( )    

  1  

      
   
Log drug2 Pr

Pr
ae
ae

( )
( )    

  0  

     a   C  and RR formulated in a Bayesian framework in BCPNN and MGPS, respectively    .   
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or frequentist notions of statistical unexpectedness, and the other is based on 
Bayesian statistics.  

  12.12   CLASSICAL OR FREQUENTIST APPROACHES 

 In this case, classical statistical notions of unexpectedness are used to help 
improve the signal - to - noise ratio. The common feature of these approaches is 
that they rely only on information contained in the specifi c 2    ×    2 table cor-
responding to the DEC of interest. For example, when calculating a propor-
tional reporting ratio (PRR  ) for a given 2    ×    2 table, the analyst may also 
specify additional threshold criteria of at least three reports and an associated 
χ2  value of  > 3.85 (corresponding to a  p  value of  ≤ 0.05). A limitation in such a 
binary approach (i.e., a separating threshold dividing ADRs into two classes: 
SDR+ versus SDR – ) is that even with very small observed counts, if the 
expected count is small enough, the  χ2  value will be greater than 3.85, and the 
statistic will fail to screen out such associations, which may be false positives. 
A similar approach may be used with the p  value of each statistic. Alternatively, 
the standard error may be used to determine a credibility interval/lower limit 
(5% threshold) of the 90% confi dence interval of the statistic. This reduces 
the number of associations presented to the analyst and mitigates stochastic 
fl uctuations. 

 Of course, there is no restriction against using higher thresholds of statisti-
cal unexpectedness or using a ranking versus a binary classifi cation approach. 
By ranking classifi cation, we mean there is no discrete threshold of interesting-
ness, but rather, the associations are somehow ranked according to how quan-
titatively interesting they are relative to one another. One form of ranking 
implementation is a bivariate plot of the disproportionality metric (e.g., the 
PRR and the reporting odds ratio [ROR]) versus the measure of statistical 
unexpectedness. Analysts would then view the DECs in the upper right - hand 
corner as most quantitatively interesting, since they are both very dispropor-
tionate and are much less likely to represent stochastic fl uctuations, with the 
least quantitatively interesting DECs in the lower left corner. Figures  12.2  and 
 12.3  provide examples from the European Medicines Agency (EMEA) and 
the Swedish Medical Products Agency (MPA), which currently use PRRs for 
routine signal detection. The limitations of spontaneous reports means that 
caution is needed to not place inappropriate focus on the ranking order, but 
instead to see it, as with thresholds, as a pragmatic approach to focus on clini-
cal review on issues most likely to represent emerging drug safety issues.   

  12.12.1   Overview: The Bayesian Approach 

 The challenge of sparsity in spontaneous report data sets was one of the impe-
tuses for the development of Bayesian methodologies since in other arenas, 
Bayesian approaches have demonstrated superiority to frequentist approaches 
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when the available information is extremely limited. There are currently two 
major Bayesian techniques used for data mining in PhV, the Bayesian confi -
dence propagation neural network (BCPNN)  [44]  and the multi - item Gamma –
 Poisson shrinker (MGPS)  [45] . 

Log plot of proportional reporting ratio (PRR) versus chi square

PRR

1000

100

10

1

1 10 100 1000

chi square

I II

IV III

     Figure 12.2     PRR versus chi - square ( χ  2 ) bivariate plot  (courtesy of Gunilla Sjolin -
 Forsberg, Medical Products Agency [MPA], Sweden).   
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     Figure 12.3     PRR versus  χ  2  bivariate plot and case count  (courtesy of Francois 
Maignen, European Medicines Agency [EMEA  ]) .  
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 Bayesian methods, fi rst adapted to drug safety signal detection by the WHO 
Unifi ed Monte Carlo (UMC)  [44] , may be viewed as composite of two 
approaches to calculating an O/E ratio for each drug – event combination. One 
approach views each DEC as representing a realization of a unique process 
and that the huge numbers of spontaneously reported DECs have unrelated 
sources of variability. An alternative is to view all of the reported drug – event 
combinations as realizations of the same random process and just take an 
overall or grand mean of these O/E ratios based on marginal reporting fre-
quencies/probabilities — basically a null 2    ×    2 table. Neither view is absolutely 
correct, hence their combination in a Bayesian approach. This approach 
appeals to our prior knowledge and plausible belief that given the sparsity of 
the data, the numerous reporting artifacts, and confounders, most ADEs are 
not being reported unexpectedly frequently when stochastic fl uctuations are 
taken into account and do not have implications for public safety. 

 The grand or null mean refl ects our  “ prior belief ”  or fi rst guess about the 
O/E for any ADE, and in effect  “ shrinks ”  or pulls high local O/Es supported 
by minimal data toward this prior belief. This is the basis for the term 
 “ Bayesian shrinkage. ”  This grand mean O/E is also referred to as the  “ mod-
erating prior, ”  which in fact is not a single value but refl ects a range of plau-
sible values, each with an associated probability manifested as a probability 
distribution of possible O/Es. This amount of shrinkage is inversely related 
to the amount of data on the ADR of interest. In other words, for rarely 
reported ADRs, the null O/E is very infl uential on the weighted average, but 
as reports accumulate, this infl uence diminishes until a critical mass of cases 
is achieved and the effect of the moderating prior is then swamped by the 
local O/E  [46] . 

 With rare exceptions  [47] , shrinkage methods are presented as having only 
positive effects in their intended domains of application. However, caution is 
required. Bradley Effron, a renowned statistician and proponent of empirical 
Bayesian methodologies, puts it this way:  “ If you use an empirical Bayes esti-
mate, everything gets pulled toward the central bulge. You have to grit your 
teeth and believe the fact that even though any one estimate may be off, 
overall you ’ re getting a lot of improvement. That ’ s what we have to get people, 
including ourselves to believe ”   [48] . In other words, Bayesian methods increase 
the signal - to - noise ratio but not perfectly, and may result in loss of credible 
signals with the noise, either absolutely or relatively in terms of timing. 
However, these comments refer to the use of the methods in isolation and as 
we discuss below, both Bayesian and frequentist strategies should be used in 
combination with other fi lters as part of an overall signal - detection process.  

  12.12.2   The Principal Bayesian Methods:  BCPNN  and  MGPS  

 There are currently two major Bayesian methodologies based on 2    ×    2 tables: 
the BCPNN and the multi - item Gamma – Poisson shrinker. Fundamentally, the 
difference between the two approaches is the manner in which the moderating 
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prior is derived. The BCPNN uses a Bayesian approach, while MGPS uses an 
empirical Bayesian approach. 

 The Bayesian BCPNN effectively constructs a null 2    ×    2 table for each pos-
sible ADR that has a count in cell a   =   0.5 and for which the cell counts in all 
the cells of the null 2    ×    2 table conform to the prior belief that the drug and 
event are independent (O/E   =   1, information component [IC]     =   log 2 O/E   =   0). 
Thus, it amounts to an extra batch of data consisting of 0.5 reports for which 
the drug and event are independent. The constraint on cell count  “ a ”  of 0.5 
is titrated to achieve a desired level of shrinkage in the WHO database, and 
other databases might justify other values. 

 The empirical Bayesian MGPS allows the existing data to determine the 
null 2    ×    2 table and consequently the amount of shrinkage. This amounts to 
pooling, or borrowing information, from all possible 2    ×    2 tables to determine 
the moderating prior and then forming a weighted composite of the null O/E 
and the  “ local ”  O/E of the individual 2    ×    2 table. As the data is used to deter-
mine the null 2    ×    2 table, rather than a prior belief, the null 2    ×    2 table may 
have a mean O/E that is different from one, which in turn determines the 
extent of the shrinkage (Fig.  12.4   ).   

 As a specifi c illustration of what shrinkage actually  “ looks like ”  in a real 
example, Table  12.8  displays frequentist (PRR,  χ  2 ) and empirical Bayesian 
(lower 90% confi dence limit of the logarithmized EBGM — denoted EB05) 
disproportionality metrics for the association of amiodarone and basal cell 
carcinoma in the U.S. FDA database. Note that based on three reports in 1991, 
the frequentist PRR protocol returns very high disproportionalities, while the 
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     Figure 12.4     Scatterplot of frequentist (log RR) versus Bayesian Measure (log EBGM  ) 
measure of disporportionality as a function of the number of reports  (courtesy of David 
Madigan, PhD, Department of Statistics, Columbia University) . EBGM   =   empirical 
Bayes geometric mean.  
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empirical Bayesian approach pulls or shrinks the results very nearly to one. 
Also note that as additional reports are submitted to the database, the PRR 
values decrease dramatically.   

 The data mining exercise, as it does not take account of the clinical details 
of each case, should not be considered a form of causality assessment. However, 
neither should the fact that an initially high O/E decreases over time with 
increasing numbers of reports be considered to disprove causality. Clinical 
review is required before deciding whether an SDR can be considered a signal. 
However, in the absence of clinical factors suggestive of causality, such pat-
terns often represent stochastic fl uctuations or  “ noise. ”  Bayesian approaches 
can improve the signal - to - noise ratio, but in some instances, such methods, 
and indeed any that reduces the noise, will fi lter out/diminish true signals 
along with the noise. When examining this combination, there are features 
that argue for and against a possible association. As with any combination, 
the numbers above cannot be considered in a biological vacuum; the clinical 
features in the individual cases provide the required context. 

 Figures  12.5  and  12.6  illustrate additional data mining outputs in a graphical 
format to promote familiarity with the capabilities of these tools and to rein-
force an intuitive understanding of these calculations. As a point of orienta-
tion, the mining is performed with  “ cumulative subsetting, ”  in which the 
database is effectively rolled back in time so that we track its growth on the 
abscissa. So, 1984 represents the accumulated data to that point, and so on 
with subsequent years. The ordinate represents the value of the corresponding 
disproportionality metric. In some graphs, confi dence or posterior intervals 

 TABLE 12.8     Temporal Evolution of  PRR  and  EB 05   

   Year  

   Skin Carcinoma     Basal Cell Carcinoma     Combined Carcinoma  

   N     PRR     EB05     N     PRR     EB05     N     PRR     EB05  

  1990    0    0    0    0    0    0    0    0    0.09  
  1991    3    17.61    1.91    0    0    0    3    20.88    1.93  
  1992    3    12.17    1.22    0    0    0    3    13.63    1.49  
  1993    4    10.64    1.58    0    0    0    4    11.77    2.06  
  1994    4    17.07    1.05    0    0    0    4    7.98    1.45  
  1995    5    5.26    1.06    0    0    0    5    6.05    1.42  
  1996    8    5.5    1.6    0    0    0.06    8    6.33    2.34  
  1997    8    3.89    1.23    0    0    0.05    8    4.47    1.56  
  1998    8    2.77    0.99    0    0    0.04    8    3.1    1.04  
  1999    8    2.17    0.84    0    0    0.18    8    2.36    0.83  
  2000    8    1.78    0.73    1    1.23    0.3    9    2.08    0.8  
  2001    8    1.52    0.65    2    1.53    0.3    10    1.87    0.78  
  2002    8    1.14    0.53    6    2.65    0.8    14    1.88    0.91  
  2003    9    1.15    0.55    6    1.72    0.62    15    1.64    0.84  
  2004    10    1.13    0.57    9    1.66    0.73    19    1.66    0.92  
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are provided. Note that in the graphs of IC, the threshold value is 0 since it is 
a logarithmic metric.   

 Initially, an IC of zero with wide posterior intervals is calculated as the prior 
assumption of independence determines the weighted composite in the 
absence of any reports with suprofen in the database, though there are reports 
of back pain reported with other drugs. In the middle of 1983, reports of 
suprofen and other adverse events were submitted. These additional reports 
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     Figure 12.5     Cumulative change in time for the association of Suprofen – back pain 
based on spontaneous reports in the WHO database.  
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     Figure 12.6     IC time scan of topiramate – glaucoma in WHO UMC database.  
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increase the expected count of suprofen – back pain without incrementing the 
observed count of zero, so that the O/E becomes less than one, making the 
logarithm of this metric (the IC) drop below zero with somewhat narrowed 
posterior intervals. In the last quarter of 1983, the fi rst report of suprofen – back 
pain is submitted and the IC becomes positive (with wide credibility intervals) 
because the expected count for this DEC is so low (a total of 46 reports with 
suprofen). In the fourth quarter of 1985, the third suspected report of this 
DEC is submitted, pushing the lower 95% of the posterior interval over zero, 
which is a threshold criteria at WHO UMC. The IC continues to increase to 
over seven as more reports of the DEC are submitted. The posterior intervals 
become narrow because of large observed and expected ratio  . 

 The above examples are retrospective data mining exercises for which it is 
diffi cult to conclusively affi rm that data mining would have actually resulted 
in earlier detection and confi rmation of these events. In contrast, the fi gure 
illustrates an example where data mining prospectively identifi ed a drug – event 
combination that was subsequently adjudicated as being suffi ciently probable 
for action. 

 In this instance, the association met quantitative threshold criteria in the 
second quarter of 2000, which was published in the WHO signal report pub-
lished in April 2001. The fi rst literature report of this association appeared in 
July, and the FDA issued a  “ Dear Healthcare Professional ”  letter in October. 

 While the two Bayesian methods in routine use in PhV are the BCPNN 
and MGPS, variants of these approaches have also been suggested; see, for 
example, the Bayesian - based false discovery rate approach suggested by 
Gould  [49] . It should be noted that a Bayesian approach need not necessarily 
be complex, and some suggestions for possible simple alternatives are pro-
posed  [50,51] .   

  12.13   EVALUATING AND VALIDATING DATA MINING 
PERFORMANCE IN  P h V  

 Assessing the performance of these methods is extremely challenging. The 
discourse around it can get quite contentious and we are somewhat skeptical 
that any validation study will satisfy every interested party. 

 There are many published data mining exercises that yield some insight 
into data mining performance. Validation may be based on authentic SRS data 
or simulated SRS databases. Those using authentic data may be either retro-
spective or prospective in nature. The majority of published validation exer-
cises involve retrospective evaluations using a screening paradigm. By this we 
mean that a reference set of true - positive and true - negative adverse events is 
compiled, and the data mining outputs are adjudicated against this reference 
set with performance metrics consisting of sensitivity, specifi city, predictive 
values, and receiver operating characteristic (ROC) curves. A smaller number 
of published validation exercises involve the use of simulated data sets. 
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 These have involved specifi c PhV scenarios, such as adverse events in 
black box warnings and associated with drug withdrawals. However, it is 
important at the outset to summarize the considerable challenges to validat-
ing and assessing the comparative and incremental utility of these tools. We 
briefl y delineate these here and will subsequently discuss some in more detail 
below  : 

  1.    There is a large space of available choices of varying degrees of arbitrari-
ness that are available to the analyst (see Table  12.9   ). This is a double -
 edged sword. It maximizes exploratory capacity but complicates the 
design and comparison of data mining procedures and makes data 
mining exercises susceptible to confi rmation bias, in which an analysis is 
fi tted or selected based on the fi t of results to preexisting expectations. 

 Some of these choices actually infl uence the data mining output, while 
others infl uence the signifi cance and action taken for a given set of 
results, while some could affect both. Each set of choices is a defi ning 
confi guration for a given data mining run, and each confi guration may 
result in different data mining outputs and/or responses. 

 Analytical choices affect the actual numerical calculations. For 
example, data mining using suspect versus suspect plus concomitant 
drugs, stratifi ed versus nonstratifi ed analysis, analyzing each reporting 
year individually versus cumulative analyses, and restricting/excluding 
parts of the data to change expected counts can each result in different 
numerical outputs. 

 There are deployment choices that may not affect the numerical cal-
culations but determine the impact and signifi cance of the data mining 
fi ndings. For example, one organization may use a specifi c metric/thresh-
old as a signaling criterion, while another organization uses the same 
metric/threshold combination but in combination with additional  “ triage 
logic ”   [53]  based on common - sense public health notions. In each 
instance, the data mining is the same and the SDRs produced are the 
same, but if the association does not meet triage criteria, the fi nding will 
result in further action only by the fi rst organization. Other deployment 
choices include whether to use the DMA as a binary classifi er (i.e., SDR 
present/absent) versus a triage/ranking classifi er, to use the DMA in 
parallel versus in series with conventional procedures, and to use as a 
supplement or as a substitute for conventional procedures. 

 Perhaps the most fundamental choice once a decision is made to data 
mine with a specifi c DMA for purposes of binary classifi cation is which 
metric/threshold to use. Currently, there is a small set of commonly used/
endorsed thresholds of disproportionality, statistical unexpectedness 
and/or reporting frequency. These are often selected somewhat arbi-
trarily, based on individual organizational experience, validation studies 
of varying levels of rigor and generalizability, and/or the specifi c task at 
hand. Performance of these thresholds may be quite situation dependent 



 TABLE 12.9     Implementation Choices in the Use of a  DMA  on Spontaneous 
Reportsa

   Deployment Choices     Analytical Choices  

  Pharmacovigilance activity 
    Initial signal detection 
    Modifying an index of suspicion 
 Position of DMA within the 

organization
    In series with conventional 

procedures
    In parallel with conventional 

procedures
    As replacement for conventional 

procedures
 Classifi cation activity 
    Binary (SDR versus no SDR) 
    Triage/ranking (no cutoff defi ning 

SDR prioritization criteria) 
 Time of initiation in product life cycle 
    New drugs (high premium on 

sensitivity?)
    Old drugs 
    Single drugs versus between - drug 

comparisons
 Metrics/thresholds b

    Discrete metrics 
    Thresholds 
    Credibility intervals 
 Case count thresholds  

  Data/data source 
    Public databases 
    Proprietary database 
    Full database 
    Database restriction to lower background 

reporting of adverse events 
 Dictionary architecture/case defi nitions 
    WHOART versus MedDRA   
    Level of specifi city of terminology 

(e.g., preferred versus higher -  or 
lower - level term) 

    User - defi ned combinations of preferred 
terms

    Standardized MedDRA queries (SMQs) 
 Drugs analyzed 
    Suspect 
    Suspect plus concomitant 
    Drug specifi city (e.g., substance or salt, or 

therapy group) 
 Algorithm 
    PRR 
    ROR 
    BCPNN 
    MGPS 
 Stratifi ed versus unstratifi ed analysis 
    Age 
    Gender 
    Year of report 
    Country of origin 
    Other 
 Dimensionality 
    2 - D (i.e., drug – event pairs) 
    3 - D (e.g., drug – drug – event or 

interaction)
 Temporality 
    Cross - sectional analysis 
    Time - trend analysis 
 Metrics/thresholds b

    Discrete metrics (e.g., IC, EB05, EBGM) 
    Threshold 
    Interval metrics 
    Case count thresholds  

a Adapted from Hauben and Bate  [52] .  
b Depending on the mode of data presentation, these may be considered as elements of both 
deployment choices and analytical choices.  
  WHOART   =   World Health Organization Adverse Reactions Terminology; MedDRA   =   Medical 
Dictionary for Regulatory Activities.   
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and involves a trade - off between generating too many false negatives 
and identifying the truly positive.  

  2.    Another important source of debate relates to the lack of consensus on 
gold standards for adjudicating causality in PhV. The point at which 
causality is defi nitely established is also rarely clear, certainly retrospec-
tively. This pertains in part to which associations may serve as true/false/
positive/negative reference standards. A wide range of views have been 
expressed about adjudicating causality and what may or may not serve 
as reference drug – event associations, but it should be noted that the 
target environment of PhV is innately probabilistic in nature with resid-
ual uncertainty being the rule rather than the exception. Therefore, 
some have suggested a more fl exible view that may make more sense 
for real - world PhV scenarios. For example, events that are probably 
causal in nature, even if not guaranteed to be causal, or events for which 
further investigation is warranted at a given time point, even if the asso-
ciation is ultimately discounted, may be considered events that are true 
positives in the sense of being events worth detecting.  

  3.    The lack of a decision - theoretic calculus of opportunity costs and utilities 
is associated with the trade - off in sensitivity and specifi city  . Thus, some 
exercises use overall accuracy as the ultimate benchmark. Such an 
approach contains the implicit assumption that the opportunity costs and 
consequences of false - positive and false - negative fi ndings are equal 
when in fact, in certain scenarios, a certain level of some types of mis-
classifi cation errors may be desirable. Similarly, there are no clear deci-
sion rules for selecting between a less effi cient algorithm that produces 
a higher overall number of credible associations versus a more effi cient 
algorithm that identifi es less credible associations overall. This is quite 
important because it is understandable that analysts may have a prefer-
ence for approaches that are less labor intensive. It is tempting to focus 
exclusively on reducing false - positive and false - negative fi ndings when 
in fact, fi nding an optimum balance between sensitivity and specifi city is 
the target. The optimum balance may be highly situation dependent. For 
example, the relative premium of sensitivity versus specifi city may be a 
function of the nature of the event with a relatively higher premium 
on sensitivity versus specifi city during the early stages of a product ’ s 
life cycle. For older products with well - established safety profi les and 
a large corpus of data, there may be a relatively higher premium on 
specifi city.    

 There are additional performance factors not normally accounted for in 
published data mining exercises that may have practical implications in real -
 world PhV scenarios, which often involve a dynamically evolving hypothesis. 
One example is computational cost. Computational cost or expediency is quite 
variable with the frequentist methods being most computationally expedient, 
while other DMAs, such as logistic regression and MGPS, require intensive 
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computations and often require multiple scans of the entire database with 
resulting prolonged run times  [54] . Computational cost may have practical 
implications and should be considered with many other factors in algorithm 
selection. 

 There are many additional sources of variability in data mining outputs 
related to multiple factors, including inherent mathematical properties of the 
algorithms themselves  [55] . With the numerous aforementioned sources of 
residual uncertainty and challenges in accurately quantifying DMA perfor-
mance, it is impossible to declare the universal superiority of a single method 
or a single metric/threshold combination as superior in all PhV scenarios. 

 The diffi culties with validation of new techniques are of course not unique 
to the assessment of performance of DMAs in PMS. A similar debate occurs 
in the development of new biomarkers. With biomarkers, there is both techni-
cal/analytic validation and clinical validation. Lester  [56]  makes the point that 
in terms of clinical validation, there is no substitute for ongoing experience, 
and the more a test is used, the more it will be seen as  “ validated. ”  Lester  [56]  
quotes a recent FDA Science Forum, where it was suggested that rather than 
validation it should be more of reaching a “comfort zone,” referring to clinical 
validation. While this also applies to data mining, this does not afford us the 
luxury of being complacent about assessing the incremental benefi t of using 
DMAs routinely. 

 There is now almost a decade of experience with development, testing, and 
implementation of data mining in PhV. Such an approach has improved signal -
 detection practices to a marked degree at some organizations such as the 
WHO. For other organizations, the experience to date suggests that data 
mining as currently implemented may have a benefi t in some situations, but 
that this benefi t may be modest and that conventional PhV often identifi es 
credible associations in advance of data mining. However, for many organiza-
tions, data mining identifi ed associations that are already known, are under 
evaluation, or are noncausal after evaluation. This should not be interpreted 
to mean that DMAs are not useful. Rather, it suggests that the most useful 
view would fall between the extremes of  “ unbridled optimism ”  to  “ consider-
able pessimism ”  noted by Bate and Edwards  [57]  and that we must carefully 
consider both the strengths and weakness of these methods. Any cautionary 
emphasis in tone or content should not be construed as a condemnation of 
the quantitative methods but rather as a concern that tools with an impressive 
mathematical foundation may desensitize users to the rate - limiting nature of 
SRS data and may consequently amplify the potential for its misuse.  

  12.14   PRACTICAL IMPLEMENTATION 

 Most organizations and researchers maintain a position between the above 
two extremes, recognizing that disproportionality analysis represents a cred-
ible addition to the PhV tool kit that has enhanced the signal - detection 
performance of major PhV organizations when used responsibly and in light 
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of their inherent limitations and the profound rate - limiting defects in the data. 
Accordingly, these organizations use a comprehensive of strategies, tools, and 
data streams that include both clinical and computational approaches. 
Expressed a little differently, most organizations use these tools as supple-
ments to, and not substitutes for, traditional signal - detection practices. 
Therefore, quantitative calculations in combination with various forms of 
discerning parameters/triage logic are used  [53,58] . A schematic outline of the 
signaling procedure at one major PhV organization, the WHO UMC, is shown 
in Figure  12.7   , taken from Reference  59 .    

  12.15   THE NEED FOR COMPLEX METHODS 

 Some of the next generation of research in statistical methods in drug safety 
will focus on the use of more complex methods to make use of the information 
resolution that is lost with current methods. First, note that 2    ×    2 tables result 
in a loss of information. If you could  “ unpack ”  cells B, C, and D in the 2    ×    2 
table, you would be reminded that these single categories lump together huge 
numbers of drugs as  “ other drugs ”  and numerous events as  “ other events. ”  
Each of these drugs and events have their own relationships, which may be 
important to understanding safety phenomena, such as drug – drug interactions 
and bystander effects, in which a drug may be associated in the 2    ×    2 table 
because it is frequently coprescribed with another drug known to have that 
side effect. Furthermore, with only two variables displayed (drug and event), 
it is diffi cult to assess both complex interdependencies and the independent 
contribution of other covariates that could be confounding factors or effect 
modifi ers. 

 There is an additional impetus for the development of more complex 
methods. The exposition and examples to this point have focused on associa-
tions involving a single drug and single event, sometimes referred to as a 
two - dimensional (2 - D) phenomenon. While 2 - D associations account for the 
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     Figure 12.7     Outline of UMC signaling procedure.  
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bulk of phenomena encountered in day - to - day PhV, there are more complex 
higher - dimensional phenomenon of great public health importance. For 
example, instead of 2 - D drug – event associations, we may have associations 
involving multiple interacting drugs (e.g., drug 1  – drug 2  – event) or drug - induced 
syndromes in which a constellation of signs/symptoms is associated with the 
drug (e.g drug – event 1  – event 2  – event 3 ). Not only are these phenomena impor-
tant to detect, but once identifi ed, it is important to defi ne the full range of 
their clinical phenotypes and to distinguish distinct but clinically overlapping 
syndromes. For example, neuroleptic malignant syndrome and serotonin syn-
drome are distinct entities, but both overlap and involve neuromuscular and 
autonomic features. Another textbook example of complex ADRs are drug -
 induced embryopathies. 

 Intuitively, such higher - dimensional phenomena should be more challeng-
ing to detect from ADR listing because the  “ prepared mind ”  has to make 
multiple cognitive links by inspecting the data. However, it is important to 
emphasize that, among ADRs, drug – drug interactions may be particularly 
amenable to detection based on a sound understanding of clinical pharmaco-
logical principles and the extensive pharmacological data available at approval, 
and thus may be more amenable to knowledge - based inspection. Quantitative 
methods adapted for drug – drug interaction detection have been applied to 
spontaneous reports with limited practical success. Methods have been based 
on logistic regression  [60]  and extension of measure of disproportionality to 
focus on an unexpected three - way dependency compared to that expected 
from two - way dependencies  [45,61] . A three - way reporting dependency exists 
if the probability of a randomly selected report listing all three elements (e.g., 
drug – drug – event) is greater than the probability of a randomly selected report 
listing the most strongly dependent pairs among the former triplet (e.g., drug –
 drug or drug – event) The limited success has, at least in part, been due to the 
methods ’  focus on a multiplicative model; recent research has shown that an 
additive model can be more effective for spontaneous report screening  [51,62] . 

 Among the other information that is invisible in a 2    ×    2 table are data on 
variables that may be confounding factors (also known as  “ lurking variables ” ) 
or effect modifi ers. Some of these can be relatively easy to observe in certain 
circumstances such as confounding by age, gender, and year of report. 
However, the number of potential confounding factors and effect modifi ers, 
both recorded and unrecorded, presents diffi culties in that they can result in 
spurious or masked associations  [63] . Furthermore, the interplay of multiple 
variables can potentially reveal complex drug – drug interactions and drug -
 induced syndromes. 

 Since the simplest phenomenon of this nature is confounding, we illustrate 
with an elementary hypothetical example. Consider a fi ctitious drug, Rosinex, 
which causes nausea  [64] . Suppose that 90% of the individuals taking Rosinex 
experience nausea, whereas 10% of the individuals not taking Rosinex experi-
ence nausea. Further, suppose that Rosinex makes one susceptible to eye 
infections. Consequently, due to standard practice guidelines, 90% of the 
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Rosinex users also take a prophylactic antibiotic called Ganclex, whereas 
about 1% of the non - Rosinex users take Ganclex. Ganclex does not cause 
nausea. Figure  12.8  shows a causal model that describes the situation. Table 
 12.10  shows data that a+9re consistent with this description.     

 Considering only Ganclex and nausea, the observed count is 82 as com-
pared to an expected value of about 18, leading to an RR of over 4! The 
EBGM score would be similar. So, even though Ganclex has no causal rela-
tionship with nausea, the data mining approach based on 2    ×    2 tables would 
generate a Ganclex – nausea SDR. 

 This is a simple example of a more general phenomenon. In general, 
particular patterns of association between observed and unobserved vari-
ables can lead to essentially arbitrary measures of association involving the 
observed variables. These measures can contradict the true unknown under-
lying causal model that generated the data. For example, in addition to 
drug – drug interaction detection, other coreporting of pairs of drugs needs to 
be highlighted to prevent an  “ innocent bystander ”  being inappropriately 
associated with an apparent ADR, in fact caused by a coprescribed and 
reported drug  [65] . Screening out for confounders can be done, but adjust-
ment by too many variables can lead to the missing of signals in the applica-
tion of data mining  [63] . 

 There is a clear need to fi nd patterns involving many more variables on the 
spontaneous reports. One example is clustering of the different adverse events 

GanclexNausea

Rosinex

     Figure 12.8     Graphical causal model. Rosinex causes nausea and also causes individu-
als to take Ganclex. Taking Ganclex has no effect on the probability of experiencing 
nausea.  

 TABLE 12.10     2    ×    2    ×    2 Contingency Table from an  SRS  Database That is 
Consistent with These Probabilities and with the Causal Model   

             Nausea     No Nausea     Total  

  Rosinex    Ganclex    81    9    90  
  Rosinex    No Ganclex    9    1    10  
  No Rosinex    Ganclex    1    9    10  
  No Rosinex    No Ganclex    90    810    900  
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listed on similar reports This can represent several patterns of interest includ-
ing symptoms that constitute a syndrome. In an ADR database, the sparse 
nature of the data means that rarely, if ever, will all constituent symptoms of 
a syndrome be listed on any single case report. The individual ADR terms 
that make up a syndrome will not even necessarily show strong associations 
(positive scores of measure of disproportionality) with the drug causing the 
syndrome. The symptoms will occur sometimes with the drug in small groups 
of terms and have strong associations to other more common drug - related 
symptoms in the syndrome. Searching for coreporting of all symptoms has 
limited use, and more sophisticated methods are needed to fi nd such relation-
ships. A recurrent BCPNN has been applied to the WHO database of sus-
pected ADRs  [66] . This method is able to highlight clusters of ADR terms 
reported for specifi c drugs such as the following cluster of ADR terms high-
lighted within reporting of haloperidol suspected ADRs (Fig.  12.9 ).   

 The columns and rows list the same ADR codes that refer to specifi c ADR 
terms. The numbers in the body of the table are the number of suspected 
haloperidol where the pairs of ADR terms in the row and column are colisted. 
White squares represent pairs of ADR terms between which there is a positive 
IC value, the blue squares a negative IC value. The highlighted ADRs in 
the fi rst pattern were neuroleptic malignant syndrome (NMS), hypertonia, 
fever, tremor, confusion, increased creatine phosphokinase, agitation, coma, 
convulsions, tachycardia, stupor, hypertension, increased sweating, dysphagia, 
leukocytosis, urinary incontinence, and apnea. Only one ADR term (A0116 —
 hypertonia) had a positive IC with all other terms in the pattern; also, this list 
does not simply correspond to the most reported ADRs (not the highest IC 
value terms) for haloperidol. All ADRs are symptoms associated with NMS 
in standard literature sources, with the exception of dysphagia, for which 
published case reports exist of a possible link to NMS.  

Figure 12.9     ADR codes and specifi c ADR terms as a result of application of a 
recurrent Bayesian confi dence propagation neural network (BCPNN) to the WHO 
database  .  
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  12.16   DISCUSSION 

 DMAs are routinely used in PhV by some organizations. In comparison to 
methods routinely used in other parts of the pharmaceutical industry, data 
mining approaches in drug safety seem relatively unsophisticated. In practice, 
this perception may partly refl ect a failure to consider important elements in 
the relevant application domain. We suggest that the subtleties of the methods 
and the diffi culties examining performance make the use of these methods 
challenging. The complexity of the data also argues for simple methods to 
maximize transparency and to make the volatility of quantitative outputs to 
data quality issues visible. We hope that despite these limitations and residual 
uncertainties, it is clear that computer - based quantitative methods have 
expanded the range of credible options available to major PhV organizations 
facing the challenge of processing vast and rapidly increasing quantities of 
complex and diverse data in the setting of constrained resources to the benefi t 
of patients. 

 Not every organization will benefi t from the application of DMAs for the 
task of PhV, and of those that do, some may benefi t more than others. 
However, having a comprehensive menu of signal - detection tools and strate-
gies that includes both clinical and quantitative approaches will allow orga-
nizations to customize a suite of signal - detection procedures that is best 
suited for their situation. While proprietary software will inevitably be 
aggressively promoted as a one - size - fi ts - all solution, it is likely that all the 
available quantitative methods represent viable options when intelligently 
deployed, and that the more important question for organizations using these 
tools is how to optimize the deployment of whichever tool they select, as 
part of a holistic approach to signal detection using multiple methods and 
data streams. 

 Stephen Hawking has said that a publisher warned him that for every equa-
tion he included in his books, sales would drop by half. We have observed an 
opposite effect in our fi eld, namely, a tendency to be overawed by more 
complex methods that may desensitize users to the limitations and complexi-
ties of the data that are not necessarily overcome by more elaborate mathe-
matical frameworks. We have no doubt that with increasing interest in 
accelerating statistical research in drug safety  [67] , there will be increasing 
experience with more sophisticated methods, and we will be better able to 
answer if and when more complex methods are more effective.  
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  13.1   THE PROMISE OF PHARMACOGENOMICS 

 There are often large differences among individuals in the way they respond 
to medications in terms of both host toxicity and treatment effi cacy. Individual 
variability in drug response varies from potentially life - threatening adverse 
drug reactions (ADRs) to equally serious lack of therapeutic effi cacy. Serious 
adverse drug reactions (SADRs) are estimated to be the fourth leading cause 
of death in the United States and each year, about 2 million patients in the 
United States experience an SADR when using marketed drugs, resulting in 
100,000 deaths  [1] . Similar numbers have been estimated for other Western 
countries  [2] . The resulting cost burden is enormous, representing tens of bil-
lions of dollars, and has an impact on both the healthcare and pharmaceutical 
industries internationally  [3,4] . Moreover, SADR can lead to drug withdraw-
als, depriving some patients of otherwise benefi cial drugs: between 1976 and 
2007, 28 drugs were withdrawn from the U.S. market for safety reasons  [5,6] . 
Regulators, drug companies, physicians, and their patients would all like tools 
to better predict the apparently unpredictable. 

 A variety of factors, including age, sex, diet, state of health, and concomi-
tant therapy, can infl uence a person ’ s response to drug therapy. However, it 
has become clear during the past 50 years that genetics can account for a large 
part of this interindividual variability (Fig.  13.1 ). Clinical observations of 
inherited differences in drug effects were fi rst documented in the 1950s  [7 – 9] , 
leading to the birth of pharmacogenetics.   

 The fi eld of pharmacogenetics seeks to identify genetic determinants of 
drug response, including both those that are inherited and those that arise 
within tumors. Once a drug is administered to a patient, it is absorbed and 
distributed to its site of action, where it interacts with targets (such as recep-
tors and enzymes), undergoes metabolism, and is then excreted. Each of these 
processes could potentially involve clinically signifi cant genetic variation. 
Absorption, distribution, metabolism, and excretion can all infl uence pharma-
cokinetics, that is, the fi nal concentration of the drug reaching its target. 
Genetic variation can also occur in the drug target itself or in signaling cas-
cades downstream from the target, in the latter case involving pharmacody-
namic factors (Fig.  13.1 ). 

 Initially, pharmacogenetic studies focused their attention on variations in 
single candidate genes chosen on the basis of our knowledge about the medi-
cation ’ s pharmacokinetics and mechanisms of action. They especially focused 
on drug metabolizing enzymes (DME) since genetic variation of drug metabo-
lism has long been considered as one of the major causes of interindividual 
variation in drug effects. However, contemporary studies increasingly involve 
entire  “ pathways ”  encoding proteins that infl uence both pharmacokinetics 
and pharmacodynamics, as well as genome - wide approaches. For this reason, 
some authors have suggested the term pharmacogenomics as a replacement 
for pharmacogenetics. The precise distinction between pharmacogenetics 
and pharmacogenomics remains unclear, but the term  “ pharmacogenomics ”  
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is usually employed to refer to the new genomic methodologies used to iden-
tify the network of genes that govern an individual ’ s response to drug therapy, 
such as genome - wide scans, haplotype tagging, gene expression profi ling, and 
proteomics  [10] . 

 Until recently, much of the research efforts in human genomics have 
focused on the genetic determinants of complex diseases rather than on the 
genetics of drug response. Yet, pharmacogenomics is likely to provide more 
immediate clinical returns than the study of common disease predisposition 
 [10] . When an association between a pharmacogenetic variant and a drug 
response phenotype is identifi ed, it can be of direct diagnostic use: such genetic 
predictors can be used to avoid rare ADRs, to adjust dose or to select which 
of several alternative drugs has the highest effi cacy  . By contrast, when a new 
variant predisposing to a complex disease is identifi ed, it may indicate a new 
therapeutic target, but it takes a long time to develop new medicines to hit 
this target. Finding such variants is therefore less immediately usable than 
identifying pharmacogenomic variants that, through diagnostic testing, can 
rapidly increase the effi cacy and safety of existing therapies. Another aim of 
pharmacogenomics is also to discover new therapeutic targets. Therefore, the 
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     Figure 13.1     The multifactorial nature of drug response. Most drug effects are deter-
mined by the interplay of several gene products that infl uence the pharmacokinetics 
and pharmacodynamics of medications as well as by nongenetic factors such as age, 
sex, state of health, and lifestyle.  
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enormous potential of pharmacogenomics and its high clinical relevance make 
it extremely attractive, and there is an increasing effort to discover new phar-
macogenomic variants. 

 By understanding the genetic factors that govern variable drug response, 
pharmacogenomics seeks to reduce the variation in how people respond to 
medicines by tailoring therapy to individual genetic makeup (Fig.  13.2 ). The 
ultimate goal is to yield a powerful set of molecular diagnostic methods that 
will become routine tools with which clinicians will select medications and 
drug doses for individual patients, with the goal of enhancing effi cacy and 
safety. Some tests that incorporate pharmacogenetic data into clinical practice 
are now available  [12] , with many more to follow. In addition to optimizing 
the use of currently prescribed medications, pharmacogenomics may also offer 
new strategies and effi ciencies in the drug development process. If nonre-
sponders (NRs) or toxic responders can be prospectively identifi ed by geno-
typing, it may be possible to reduce the number of subjects needed in phase 
II and phase III clinical trials by eliminating those who will not (cannot) 
respond due to inherited differences in DMEs or drug targets  [11] .    
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for toxicity
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favorable response

Genetic profile

for nonresponse

Treat with lower dose

or alternative drug

Treat with conventional drug or dose

Treat with higher dose or
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     Figure 13.2     The promise of pharmacogenomic testing. By applying the results 
of pharmacogenomic research to clinical practice, physicians will be able to use infor-
mation from patients ’  DNA to determine how patients are likely to respond to a 
particular medicine. The end result will be the optimal selection of medications and 
their dosages based on the individual patient and not treatment based on the average 
experience from the entire universe of patients with a similar diagnosis  (modifi ed from 
Reference  11 ) .    
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     Figure 13.3     (A) Frequency distribution of the debrisoquine/4 - hydroxydebrisoquine 
ratio in 1011 Swedish subjects. Poor metabolizers (PMs), extensive metabolizers 
(EMs), and ultrarapid metabolizer (UMs)  (modifi ed from References  13 – 15 ) . (B) 
Frequency distribution of the erythrocyte activity of the thiopurine S - methyltransferase 
(TPMT) in 298 unrelated subjects (164 males and 134 females), classifi ed depending 
on their genetic polymorphism at the  TPMT  gene  (modifi ed from Reference  16 ) .  

  13.2   COMBINATORIAL PHARMACOGENOMICS 

 Many of the fi rst pharmacogenetic traits that were identifi ed were mono-
genic — that is, they involved only a single gene. There are several examples 
of common pharmacogenetic variants that have essentially Mendelian effects 
on drug response, such as NAT2, cytochrome P450 2D6 (CYP2D6), and thio-
purine S - methyltransferase (TPMT) (Fig.  13.3 ). These monogenic traits, all 
involving drug metabolism, have a marked effect on pharmacokinetics, such 
that individuals who inherit an enzyme defi ciency must be treated with mark-
edly different doses of the affected medications. However, in most instances, 
the overall pharmacological effects of medications are more often polygenic 
traits determined by multiple polymorphisms in many genes that infl uence 
both the pharmacokinetics and pharmacodynamics of medications. Such more 
complex traits are more diffi cult to elucidate in clinical studies.   

 A recent review by Wilke et al.  [4]  highlights the potential genetic complex-
ity of drug response and susceptibility to ADRs. Most drugs are indeed metab-
olized by several different enzymes, can be transported by different types of 
proteins, and ultimately interact with one or more targets. If several steps in 
this type of pathway were to display genetic variation, multiple overlapping 
distributions would quickly replace multimodal frequency distributions like 
those shown in Fig.  13.3 . 

  13.2.1    DME  –  DME  Interactions 

 Many drugs are eliminated from the body by more than one metabolic 
pathway. The complex nature of each gene – gene (DME – DME) interaction is 
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then partly defi ned by the respective contribution of each gene product to the 
overall biological activity of the drug. Variables to be considered include the 
balance between metabolic activation and inactivation, the balance between 
phase I (oxidative) and phase II (conjugative) activity, and the relative potency 
of each metabolite with respect to the specifi c clinical phenotype being studied 
 [4] . 

 Consider the example of phenytoin, an important fi rst - line antiepileptic 
drug known to be metabolized by several phase I DMEs  [17] . At least two of 
these enzymes, cytochrome P450 2C9 (CYP2C9) and CYP2C19, are highly 
polymorphic in most human populations, and pharmacokinetic studies have 
demonstrated that abnormal CYP2C9  and  CYP2C19  alleles are associated 
with altered circulating drug levels  [18,19] . Therefore, although a nonfunc-
tional variant of either gene might not clearly predispose to increased risk of 
ADR in vivo , a combination of two nonfunctional variants in both genes 
might. Moreover, if the relative balance between different routes of phase I 
metabolism is likely to affect the overall clinical effi cacy of drugs, the situation 
is further compounded when one considers the impact of phase II metabolism. 
It is conceivable that a polymorphism causing subtle alterations in phase I 
enzyme activity that may not predispose patients to an ADR when considered 
alone could precipitate a phenotypic change in the presence of an otherwise 
subclinical phase II polymorphism. Such a relationship can only be elucidated 
through combinatorial analyses that account for variability in both enzyme 
systems.  

  13.2.2   Interactions between Pharmacokinetic Factors 

 Functional genetic polymorphisms are not limited exclusively to drug metabo-
lism and can affect the full spectrum of drug disposition, including a growing 
list of transporters that infl uence drug absorption, distribution, and excretion. 
The  ABCB1  (multidrug resistance 1 [ MDR1 ]) gene product P - glycoprotein is 
the most widely studied drug transporter: it has a recognized role in the bio-
availability and biliary, intestinal, and renal excretion of numerous drugs and 
has been a particular focus of attention as a putative mechanism of drug resis-
tance  [20] . Statins, which undergo oxidative phase I metabolism by polymor-
phic members of the cytochrome P450 family, additional modifi cations through 
phase II conjugation, and differential tissue distribution via membrane trans-
porters including ABCB1, provide a striking example of a situation in which 
genetic variation may affect a multitude of kinetic processes  [4] .  

  13.2.3   Interactions between Pharmacokinetic and 
Pharmacodynamic Factors 

 Genetic variation in pharmacodynamic processes can also lead to clinically 
recognizable differences in treatment outcome. This additional layer of com-
plexity takes us far beyond monogenic traits into a situation that most inves-
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tigators believe will represent a substantial, if not the major, component of 
the discipline ’ s future — polygenic variation in both pharmacokinetics and 
pharmacodynamics. A recent example that involves genes that infl uence both 
the pharmacokinetics and pharmacodynamics of the anticoagulant drug war-
farin illustrates that point. 

 Warfarin is a widely used coumarin anticoagulant that is diffi cult to use 
because of the wide variation in dose required to achieve a therapeutic effect, 
a narrow therapeutic range, and the risk of bleeding. At least 30 genes may 
be involved in the mode of action of warfarin, but the most important ones 
affecting the pharmacokinetic and pharmacodynamic parameters of warfarin 
are CYP2C9  and vitamin K epoxide reductase complex subunit 1 ( VKORC1 ). 
The  CYP2C9  gene product is the main enzyme involved in warfarin metabo-
lism and VKORC1  encodes the direct protein target of the drug. These two 
genes, together with environmental factors, have been shown to account for 
around 50 – 60% of the variance in warfarin dose requirement  [21] . This 
example represents, probably in simplifi ed form, the type of multifactorial 
model that many investigators expect to observe with increasing frequency in 
the future. 

 Another example illustrates the extent to which a combinatorial approach 
that considers multiple interacting genes could be benefi cial. Arranz et al.  [22]  
performed an association study using a multiple candidate gene approach to 
gain insight into the genetic contribution to response variability to clozapine 
in schizophrenic patients. They investigated 19 genetic polymorphisms in 10 
neurotransmitter receptor - related genes and looked for the combination of 
polymorphisms that gives the best predictive value of response to clozapine. 
A combination of the six polymorphisms showing the strongest association 
with response provided a positive predictive value of 76%, a negative predic-
tive value of 82%, with a sensitivity of 96% for identifying schizophrenic 
patients showing improvement with clozapine, and a specifi city of 38% for the 
identifi cation of patients who did not show a substantial improvement in 
response to clozapine treatment. 

 In conclusion, the behavior of most drugs may depend on a wide range 
of gene products (DMEs, transporters, targets, and others), and in many 
cases, the importance of polymorphisms in one of the relevant genes might 
depend on polymorphisms in other genes. It is therefore important that 
researchers investigate potential gene – gene interactions, or epistasis, and gene – 
environment interactions, which are increasingly recognized phenomena 
in the fi eld of human genetics and in pharmacogenomics.   

  13.3   IDENTIFYING USEFUL MARKER COMBINATIONS FOR 
THE PREDICTION OF INDIVIDUAL DRUG RESPONSE 

 The objective of pharmacogenomic research is to identify a genetic marker, 
or a set of genetic markers, that can predict how a given person will respond 
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to a given medicine. A signifi cant challenge for pharmacogenetic researchers 
is therefore to identify and apply useful statistical methods for fi nding such 
predictive marker combinations. 

  13.3.1   Logistic Regression 

 In clinical studies comparing the genotype frequencies between responder 
and nonresponder individuals for a given treatment, it is tempting to use 
logistic regression to model the relationship between a set of multilocus geno-
types and the treatment outcome. The logistic regression model consists of a 
weighted sum of predictors   linked to the outcome variable by the logit func-
tion. Weights are determined in such a way that the resulting sum discrimi-
nates in the best possible way between responder and nonresponder individuals 
by showing large values for the former and low values for the latter. If genetic 
markers are to be considered as potential predictors, the logistic regression 
model would be a weighted sum of genotype codes, where, for example, the 
three genotypes at a biallelic marker such as a single - nucleotide polymorphism 
(SNP) are assigned codes of 0, 1, or 2. This parametric statistical method is 
often applied in genetic epidemiology to analyze the effect of genetic and 
environmental predictors on a dichotomic outcome, such as drug response.  

  13.3.2   The Need for Higher - Order Computational Methods 

 The logistic regression approach, however, suffers from several shortcomings. 
First, logistic regression is not appropriate to detect complex gene – gene inter-
actions (e.g., situations where some gene variants act with others additively, 
in a multiplicative way, or with a compensatory effect) since, like other tradi-
tional regression methods, it relies on the basic assumption of linear combina-
tions only  [23,24] . Second, the rapid increase in the availability of large 
numbers of genetic markers makes the number of potential predictors very 
large and, when combined with the generally much smaller number of obser-
vations  , creates a statistical problem that has been referred to as the  “ curse 
of dimensionality ”   [25] . Because the number of possible interaction terms 
grows exponentially as each additional main effect is included in the model, 
logistic regression, like most parametric statistical methods, is limited in its 
ability to deal with interaction data involving many simultaneous factors  [4] . 
It has been shown through simulation studies that having fewer than 10 
outcome events per independent variable can lead to biased estimates of 
the regression coeffi cients and a consequent increase in type I and type II 
errors  [26] . 

 Therefore, higher - order computational methods are needed to select from 
the large amount of genetic and environmental predictors, a small group of 
predictors, and/or interactions between predictors that have a signifi cant effect 
on the treatment outcome.   
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  13.4   DATA MINING TOOLS AVAILABLE TO PREDICT 
INDIVIDUAL DRUG RESPONSE FROM GENETIC DATA 

 Several pattern recognition tools, described 15 – 20 years ago, have recently 
been applied in epidemiological genetic studies and have proven to be highly 
successful for modeling the relationship between combinations of polymor-
phisms and clinical end points  [27] . Compared to traditional techniques of 
analysis such as logistic regression, these nonparametric statistical methods 
offer the possibility to model complex nonlinear relationship between phe-
notype and genotype, without the explicit construction of a complicated 
statistical model. Hence, recent applications in the fi eld of genetic epidemiol-
ogy shifted toward data mining approaches, and a dramatic burst of methods 
occurred during the last decade (see, for review, References  28  and  29 ). 

 Because a comprehensive discussion of all available methods is beyond the 
scope of this chapter, we detail many of the most popular methods. In particu-
lar, we focus on methods based on partitioning the data along a tree with 
various optimization criteria, methods based on combinatorial procedures 
searching for the best combination of input genetic variables as predictive of 
the phenotype of interest, or neural network methods, which attempt to clas-
sify phenotype by training successive layers through an activation function, 
the genetic data being introduced as input. 

  13.4.1   Tree - Based Methods 

 Classifi cation tree methods, also called recursive partitioning (RP) methods, 
are tree - shaped structures representing sets of decisions that generate rules of 
classifi cation of a data set, the fi nal purpose being that the terminal leaves of 
the tree contain observations that are the most homogeneous in terms of drug 
response and that are linked to the genetic markers selected along the tree 
branching process. The fi rst step of the tree reconstruction is to fi nd the best 
screened genetic marker (SNP, haplotype, or genotype) that allows splitting 
the sample into two homogeneous subgroups contrasted for their drug response 
phenotype. This process of splitting is recursively continued until it meets a 
certain criterion or stops before the last leaves contain too few individuals. 
Then, the nodes of the tree are explored backward by a pruning procedure to 
test their signifi cance, removing those that are not signifi cant at a prespecifi ed 
p  level, by a  χ2    test for instance  [30 – 32] . These classifi cation tree methods have 
the advantage of allowing a large number of input predictors, such as genetic 
polymorphisms or SNPs, but are not suitable for identifying the possible 
effects of interactions between input variables when the marginal effects on 
the drug response are not signifi cant. 

 Cross - validation methods are used to estimate the prediction error of the 
constructed decision tree. The data set is randomly divided into  n  groups 
(typically 10). Only  n     −    1 groups are selected to construct the classifi cation 
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tree, and the remaining group is used to evaluate the prediction accuracy. This 
procedure is repeated a large number of times to fi nally obtain an averaged 
accuracy and the predicted drug response for each individual. 

 Random forest methods  [33,34]  are also based on classifi cation trees that 
are comparable to the previous one. However, the tree is not built by following 
a deterministic way. Indeed, multiple bootstrapped samples are fi rst built up. 
The individuals that are not randomly drawn during this resampling process 
will be used further to test the prediction error of the tree. Second, at each 
split, a random selection of predictors (as SNPs) is performed, and the selected 
ones are used to carry on dividing the tree. This procedure is repeatedly done 
a large amount of time. Finally, one counts how often, among the number of 
random trees, the phenotypes of the left - out individuals, which are different 
from one bootstrap to another, are allocated to the different class of predic-
tors. Finally, the largest class is viewed as the best predictor of a given phe-
notype. The random forest approach has been improved to take into account 
imbalanced data  [35] . 

 Random forests generally exhibit a substantial performance improvement 
over the single tree classifi er. Moreover, the predictive importance for each 
predictor variable can be scored by measuring the increase in misclassifi cation 
occurring when the values of the predictor are randomly permuted. These 
importance scores account for the contribution of a variable to the prediction 
of the response in the presence of all other variables in the model. They con-
sequently take into account interactions among variables and make interac-
tion variables more likely to be given high importance relative to other 
variables.  

  13.4.2   Combinatorial Methods 

 The goal of this family of methods is to search over all possible combinations 
of polymorphisms to fi nd the combination(s) that best predict the outcome of 
interest. These methods are particularly suited for the identifi cation of pos-
sible gene – gene interactions since no marginal main effects are needed during 
the training/model - building stage. Moreover, they have the advantage of being 
nonparametric and free of a specifi ed genetic model. 

 The multifactor dimensionality reduction (MDR  [36] ) method is specifi -
cally designed for the identifi cation of polymorphism combinations associated 
with a binary outcome (as responders versus NRs or as  “ + ” / versus  “  −  ”  pheno-
type). It uses a data reduction strategy for collapsing high - dimensional 
genetic data into a single multilocus attribute by classifying combinations of 
multilocus genotypes into high - risk and low - risk groups based on a compari-
son of the ratios of the numbers of  “ + ”  and  “  −  ”  individuals. Part of the task 
of MDR is to select the appropriate combination of genotypes to be used in 
the collapsed multilocus attribute. The new, one - dimensional multilocus vari-
able is then evaluated for its ability to classify and predict the clinical end 
points through cross - validation and permutation testing. The fi rst step consists 
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in randomly dividing the whole sample of individuals into n  groups for further 
cross validation. The second step, using only  n     −    1 groups, consists in selecting 
in turn k  polymorphic markers (e.g., SNPs or categorical predictors), among 
N , each having several possible classes. Then, within each cell obtained by 
crossing all classes of the k  markers, the ratio of  “ + ”  and  “  −  ”  individuals is 
evaluated. The next step is to pool all the cells having a ratio higher than a 
specifi ed value (e.g., 1), reducing the dimensionality from  k  to 1 (with two 
classes, i.e., high and low ratios). Then, the ability to predict the status is esti-
mated by testing the subsample initially left apart for this purpose. The pro-
portion of wrongly classifi ed individuals in this subsample is used as a prediction 
error. The procedure is repetitively performed, by randomization of the initial 
groups, to get an average prediction error. Moreover, all the combinations of 
k  markers can be explored,  k  starting from 2 to the largest value compatible 
with computational facilities. The combination of markers giving the smallest 
average prediction error is considered as the one giving the strongest asso-
ciation with the drug response. The statistical signifi cance can be obtained by 
usual permutation tests. Through simulated data, the MDR approach was 
shown to be quite powerful in the presence of genotyping errors or missing 
data, far less when proportions of phenocopy or genetic heterogeneity 
are large. 

 The MDR approach has been recently extended to take into account imbal-
anced data sets  [37] , to handle quantitative traits instead of binary ones, and 
to adjust for covariates such as sex, age, or ethnicity (generalized MDR  [38] ). 
Moreover, to facilitate the processing of large data sets, a more effi cient MDR 
algorithm has been developed to allow an unlimited number of study subjects, 
total variables, and variable states, thereby enabling a 150 - fold decrease in 
runtime for equivalent analyses  [39] . 

 Other approaches were proposed to predict a quantitative phenotype from 
multilocus data sets. For instance, combinatorial partitioning method (CPM) 
is a method looking for the optimal partitions of a set of genotypes minimizing 
the within - partition variance and maximizing the among - partitions variance 
of the trait  [40] . It considers all possible loci combinations and evaluates the 
amount of phenotype variability explained by partitions of multilocus geno-
types into sets of genotypic partitions. Those sets of genotypic partitions that 
explain a signifi cant amount of phenotypic variability are retained and vali-
dated using cross - validation procedures. However, CPM has to examine a 
number of partitions that enormously increase with the number of selected 
loci. To overcome the computationally intensive search technique used by 
CPM, Culverhouse et al.  [41]  developed the restricted partitioning method 
(RPM). RPM uses a search procedure that does not require to exhaustively 
compare all partitions, by fi rst performing a multiple comparison test and then 
by merging, within a new partition, the partitions showing no statistical differ-
ences in their mean quantitative trait. 

 Detection of informative combined effects (DICE) is another approach 
combining the advantages of the regressive approaches, in terms of modeling 
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and interpretation of effects, with those of data exploration tools  [42] . It aims 
at exploring all the major and combined effects of a set of polymorphisms 
(and other nongenetic covariates) on a phenotype of any kind (binary, quan-
titative, or censored). The DICE algorithm explores, using a forward proce-
dure, a set of competing regressive models for which an information criterion, 
Akaike ’ s information criterion  [43] , is derived. The model space is explored 
sequentially and in a systematic way, considering the inclusion of main and 
combined (additive and interactive) effects of the covariates and leading to 
the identifi cation of the most informative and parsimonious model(s) that 
minimize(s) the information criteria. This model - building approach is more 
similar to a traditional logistic regression framework than the other combina-
torial methods.  

  13.4.3   Artifi cial Neural Networks 

 Artifi cial neural networks (ANNs) is another tool that can be used to 
predict individual drug response using a set of predictor variables such as 
SNPs, genotypes, or haplotypes. The network is structured in an input layer 
composed of units, each of them corresponding to a specifi c predictor. Each 
input unit is connected to one or several units that belong to a fi rst hidden 
layer. These previous units can themselves be connected to units of a 
second hidden layer. The number of layers can be increased to optimize 
the prediction. Finally, the last hidden layer has its units connected to the 
output layer that contains the predicted value. The process consists in 
repeatedly introducing in the network several sets of input data with their 
associated output data, progressively adjusting the weight coeffi cient allo-
cated to links that connect units of successive layers. The process stops 
when there is no more improvement in prediction accuracy. An ANN model 
can be constructed for each combination of predictor variables (SNPs). 
Lastly, the most parsimonious combination of predictor showing the best 
performance is retained and its statistical signifi cance can be estimated using 
a permutation test strategy  [34,44] . The ANN has several features that are 
well adapted for pharmacogenetics since it can handle large quantities of 
data, does not require any particular genetic model, and can test interaction 
between variables. 

 The data mining tools discussed above can be readily applied in pharma-
cogenetic candidate gene studies as well as in genome - wide scans. However, 
for large - scale or genome - wide studies, it may be benefi cial to combine several 
approaches into a multistep methodological framework. For example, the fi rst 
step could involve a data mining tool to select from the large amount of genetic 
polymorphisms a small group of predictors and/or interactions between pre-
dictors that have a signifi cant effect on the treatment outcome. Subsequently, 
parameters for the selected predictors can be estimated by a traditional sta-
tistical method such as logistic regression analysis to put the model in a more 
interpretable or familiar framework.   
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  13.5   APPLICATIONS OF DATA MINING TOOLS 
IN PHARMACOGENOMICS 

 The empirical approach for the development of a genomic signature in phar-
macogenomics consists in measuring a large number of  “ features ”  (genetic or 
nongenetic variables) on each treated patient belonging to a body of  “ training 
data ”  and then selecting the combination of features that are most signifi cantly 
correlated with patient response. The features could, for example, be SNPs as 
measured by genotyping the patients ’  lymphocytes for a panel of candidate 
genes, or gene expression levels as determined by a whole genome microarray 
expression profi le of the patient ’ s tumor. As it is important that the genomic 
signature classifi er be reproducibly measurable and accurate in predicting 
treatment outcome, it must be validated on an independent test set to confi rm 
that it would generalize to new data. Ideally, for a genetics - based predictive 
assay to be useful, both its sensitivity and specifi city need to be as close to 
100% as possible. Of course, what might be considered adequate levels of 
sensitivity and specifi city will depend on the particular medicine and treatment 
outcome being evaluated. We review here some of the most successful applica-
tions of data mining approaches in the fi eld of pharmacogenomics for the 
development of genomic signatures using both genetic polymorphism data and 
gene expression data. 

  13.5.1   Development of Pharmacogenomic Classifi ers from 
Single - Nucleotide Germline Polymorphisms 

 Serretti and Smeraldi  [45]  reported the fi rst attempt to use ANN in pharma-
cogenetic analyses. They applied this technique to short - term antidepressant 
response in mood disorders. One hundred twenty - one depressed inpatients 
treated with fl uvoxamine were included in this study. All patients were evalu-
ated at baseline and weekly thereafter until the sixth week using the 21 - item 
Hamilton Rating Scale for Depression (HAM - D - 21)  [46] . A decrease in 
HAM - D   scores to 8 or less was considered the response criterion. According 
to this criterion, 81 patients were classifi ed as responders and 40 patients as 
NRs. Two gene polymorphisms located in the transcriptional control region 
upstream of the 5 - HTT coding sequence ( SERTPR ) and in the tryptophan 
hydroxylase ( TPH ) gene have previously been shown to be signifi cantly asso-
ciated with drug response, and the authors wanted to reanalyze the data by 
using a neural network strategy to evaluate the possible nonlinear interactions 
between these two gene polymorphisms. A multilayer perceptron network 
composed by one hidden layer with seven nodes was chosen. The inputs to 
the fi rst layer of the neural network consisted of  SERTPR  and  TPH  geno-
types, while the target outputs consisted of the response status. The network 
was then trained to attempt to predict response from genotypes. They per-
formed both training and testing on the entire data set, and the statistical 
signifi cance of any observed association between outputs and affection status 
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was estimated using a permutation test. A total of 77.5% of responders and 
51.2% of NRs were correctly classifi ed (empirical  p  value   =   0.0082). They 
performed a comparison with traditional techniques: a discriminant function 
analysis correctly classifi ed 34.1% of responders and 68.1% of NRs ( F    =   8.16, 
p    =   0.0005). The authors concluded that ANN may be a valid technique for 
the analysis of gene polymorphisms in pharmacogenetic studies. 

 An ANN - based approach was also used by Lin et al.  [47]  to address gene –
 gene and gene – environment interactions in interferon therapy for chronic 
hepatitis C (CHC) patients by using genetic and clinical factors. The combina-
tion of pegylated interferon and ribavirin is the gold standard for treating 
CHC patients. However, treatment failure occurs in about half of the patients, 
and therapy often brings signifi cant adverse reactions to some patients. 
Therefore, considering side effects and treatment cost, the prediction of treat-
ment response as early as possible, ideally before treatment, is of major inter-
est. In their study, Lin et al.  [47]  collected blood samples from 523 CHC 
patients who had received interferon and ribavirin combination therapy, 
including 350 sustained responders and 173 NRs. Based on the treatment 
strategy for CHC patients, they focused on candidate genes involved in path-
ways related to interferon signaling and immunomodulation. A total of 20 
SNPs were selected from six candidate genes ( ADAR ,  CASP5 ,  ICSBP1 ,  IFI44 , 
PIK3CG , and  TAP2 ). They implemented a feedforward neural network to 
model the responsiveness of interferon and the backpropagation algorithm 
was used for the learning scheme. Inputs were the genetic and clinical factors 
including SNP markers, viral genotype, viral load, age, and gender. Outputs 
were the interferon - responding status. The prediction accuracy of each model 
was estimated using a fi vefold cross - validation procedure, and a permutation 
test was applied to measure the statistical signifi cance of an association 
between predictors and drug response. All possible combinations of  N  factors 
were evaluated sequentially, and the  N  - factor model displaying the highest 
prediction accuracy was retained.  IFI44  was found in the signifi cant two - , 
three - , and four - locus gene – gene effect models as well as in the signifi cant 
two -  and three - factor gene – environment effect models. Furthermore, viral 
genotype remained in the best two - , three - , and four - factor gene – environment 
models. Thus, these results strongly support the hypothesis that  IFI44 , a 
member of the family of interferon - inducible genes, and viral genotype may 
play a role in the pharmacogenomics of interferon treatment. In addition, their 
approach identifi ed a panel of 10 factors that may be more signifi cant than the 
others for further investigation. Hence, their results suggest that an ANN -
 based approach may provide a useful tool to deal with the complex nonlinear 
relationship between genetic and clinical factors and the responsiveness of 
interferon. 

 Culverhouse et al. developed the RPM method to improve computation 
time as compared to CPM. To assess the properties of RPM on real data, 
Culverhouse et al.  [41]  applied the RPM algorithm on data involving the 
metabolism of irinotecan, a drug in common use in chemotherapy for a variety 
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of cancers. The data analyzed consisted of 10 quantitative measures of 
irinotecan metabolism and genotypes for 10 SNPs in seven candidate 
genes ( ABCB1 ,  ABCC1 ,  ABBC1 ,  XRCC1 ,  CYP3A4 ,  CYP3A5 , and  UGT1A1 ) 
thought to be related to irinotecan metabolism for 65 unrelated individuals. 
Initial analysis of these data using standard statistical methods found no sig-
nifi cant correlation between any single locus genotypes and any of the quan-
titative traits. RPM was then applied with the hope of revealing nonlinear 
gene – gene interactions associated with one of the quantitative phenotypes. 
They restricted their analysis to two - way interactions since performing tests 
for higher - order interactions would be expected to have very low power 
because of the sparseness of the multilocus observations   and the need to 
correct for many more tests. The empirical  p  values were obtained from per-
mutation tests based on a null distribution of 5000 points computed separately 
for each pair of loci. Nine combinations of two SNPs were found to be signifi -
cantly associated with one of the quantitative traits studied ( p     <    0.05). 

 In a recent study, Warren et al.  [48]  applied a tree - based data mining 
method to a pharmacogenetic study of the hypersensitivity reaction (HSR) 
associated with treatment with abacavir, an effective antiretroviral drug that 
is used to treat HIV - infected patients. Thirty - two genetic markers resulting 
from replication of genome scan discoveries, plus six markers found during 
candidate gene studies, were chosen as potential contributors to polygenic or 
epistatic effects leading to susceptibility to abacavir HSR. Among these 
markers,  HLA - B * 5701  possessed the highest performance characteristics, 
with a sensitivity of 56.4% and a specifi city of 99.1%. Although specifi city was 
quite high, sensitivity was only moderate. Therefore, RP was applied to evalu-
ate combinations of three or more markers with respect to their usefulness in 
estimating HSR risk. The goal was to identify a marker set with suffi cient 
sensitivity and specifi city to be clinically useful. One thousand random trees 
were generated using data from 349 white subjects, including 118 patients who 
developed presumed HSR (cases) and 231 patients who did not (controls). 
None of the RP trees produced displayed performance characteristics with 
both high sensitivity and high specifi city. However, the four most predictive 
RP trees resulted in performance characteristics slightly better than HLA -
 B * 5701  alone. Furthermore, RP results enabled the genetic delineation of 
multiple risk categories. For instance, if one of the most predictive RP tree 
was applied to a population of white abacavir - treated patients, it was esti-
mated that 17.4% of patients would be assigned to a group with a 0.2% risk 
of HSR. An additional 75.0% would be assigned to a group with a 2.7% risk 
of HSR. The remaining 3.6% of the patients would have an HSR risk of 
21.3%, or higher, including 2.5% of all patients whose estimated risk would 
be 100%. Hence, in contrast to traditional diagnostic tests that typically clas-
sify patients into one of two groups, the RP algorithm is able to identify 
subsets of a patient population for which the estimated risk may be extremely 
low — in the case of prediction of adverse events, a protective effect — or very 
high. 
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 Data mining approaches can also be applied at the level of single genes. 
For example, in situations where the drug response phenotype is mainly deter-
mined by a single gene, one may want to defi ne the most parsimonious com-
bination of polymorphisms within this gene that could predict individual drug 
response with a high accuracy. As an illustration of the application of data 
mining tools to data sets of polymorphisms typed in a single gene, we present 
here the results of a previous study where we investigated the ability of several 
pattern recognition methods to identify the most informative markers in the 
CYP2D6  gene for the prediction of CYP2D6 metabolizer status  [32] . CYP2D6 
plays a crucial role in the metabolism of xenobiotics and processes about 20% 
of all commonly prescribed drugs. Genetic polymorphism at the  CYP2D6
gene locus is responsible for pronounced interindividual and interethnic dif-
ferences in the catalytic activity of the enzyme (Fig.  13.3 ). Since therapeutic 
effi cacy and adverse events in treatment with many drugs depend on CYP2D6 
activity, it is anticipated that genotyping of  CYP2D6  may become an impor-
tant tool in individually optimized drug therapy. However, in many respects, 
the CYP2D6  gene represents a challenge for genotyping because (1) it is 
extremely polymorphic, with over 90 known allelic variants and subvariants 
reported to date, and (2) the polymorphisms reported are not only single 
nucleotide in nature but are also gene deletion, duplication, and pseudogene 
derivatives. Therefore, effi cient genetics - based assays, in which only the most 
informative markers for phenotype prediction would be screened, are needed 
to simplify the analyses while keeping a high predictive capacity. The goal of 
our study was to defi ne which set of  CYP2D6  polymorphisms should be rou-
tinely identifi ed to allow a suffi ciently reliable but still practicable estimation 
of an individual ’ s metabolic capacity. To address this issue, four data mining 
tools (classifi cation trees, random forests, ANN, and MDR) were applied to 
CYP2D6  genetic data from eight population samples of various ethnic origin. 
Marker selection was performed separately in each population sample in 
order to design ethnic - specifi c pharmacogenetic tests that take into account 
population - specifi c genetic features for  CYP2D6 . All possible combinations 
of polymorphisms in CYP2D6  were evaluated for their ability to correctly 
classify and predict individual metabolizer status from the provided multilocus 
genotypes. The prediction accuracy of each combination was estimated 
through cross - validation procedures, and the most parsimonious combination 
of polymorphisms showing the highest prediction accuracy was selected in 
each sample. Our results showed that the number of polymorphisms required 
to predict CYP2D6 metabolic phenotype with a high predictive accuracy can 
be dramatically reduced owing to the strong haplotype block structure 
observed at CYP2D6 . ANN and MDR provided nearly identical results and 
performed better than the tree - based methods. For almost all samples, the 
ANN and MDR methods enabled a two - third reduction in the number of 
markers, for a prediction accuracy still above 99% (Fig.  13.4 ). The most infor-
mative polymorphisms for phenotype prediction appeared to differ across 
samples of different ethnic origin. Nonetheless, a certain agreement among 
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populations of common ancestry was noted. Therefore, data mining methods 
appear as promising tools to improve the effi ciency of genotyping tests in 
pharmacogenomics with the ultimate goal of prescreening patients for indi-
vidual therapy selection with minimum genotyping effort.    

  13.5.2   Development of Pharmacogenomic Classifi ers from Gene 
Expression Data 

 Another area where predictive data mining has been applied is the analysis 
of gene expression data. Such data can be measured with DNA microarrays, 
which offer a powerful and effective technology for studying the expression 
patterns of thousands of distinct genes simultaneously, or with techniques that 
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     Figure 13.4     Results provided by the MDR method when applied to the eight  CYP2D6  
data sets  [32] . MDR was used to evaluate the ability of each combination of markers 
to discriminate poor and intermediate metabolizers versus rapid and ultrarapid ones. 
The best model retained was given by the most parsimonious combination of markers 
showing the highest prediction accuracy. Bars in dark grey indicate the initial number 
of polymorphic markers considered in each sample, and bars in light grey indicate the 
number of markers included in the selected model. Percentages in italics indicate the 
prediction accuracy achieved by the combination of all polymorphic markers consid-
ered in a sample (bars in dark grey) or the prediction accuracy achieved by the com-
bination of markers included in the selected model (bars in light grey). Prediction 
accuracy was defi ned as the ratio between the number of individuals correctly classifi ed 
and the total number of classifi ed individuals in a sample, and was estimated by using 
a fi vefold cross - validation procedure. All selected models were signifi cant at the 0.001 
level.  
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rely on a real - time polymerase chain reaction (RT - PCR) when the expression 
of only a few genes needs to be measured with greater precision. Gene expres-
sion predictive classifi ers of response to treatment are generated by correlat-
ing gene expression data, derived from biopsies taken before preoperative 
systemic therapy, with clinical and/or pathological response to the given treat-
ment. This strategy has already been applied successfully in several studies. 

 In a recent study, Asselah et al.  [49]  examined the liver gene expression 
profi les of CHC patients receiving pegylated interferon plus ribavirin with the 
aim of identifying a liver gene signature that would be able to predict sustained 
virological response prior to drug therapy. They indeed hypothesized that NRs 
and sustained virological responders (SVRs) might have different liver gene 
expression patterns prior to treatment. A total of 58 genes associated with 
liver gene expression dysregulation during CHC were selected from the litera-
ture. Quantitative RT - PCR assays were used to analyze the mRNA expression 
of these 58 selected genes in liver biopsy specimens taken from the patients 
before treatment. Prediction models were then built using a supervised learn-
ing classifi er, the  k  - nearest neighbor algorithm, for gene signature discovery. 
A gene signature was fi rst built on a training set of 40 patients with CHC 
including 14 NRs and 26 SVRs, and it was then validated on an independent 
validation set of 29 patients including 9 NRs and 20 SVRs. The  k  - nearest 
neighbor algorithm identifi ed a two - gene classifi er (including  IFI27  and 
CXCL9 ), which accurately predicted treatment response in 79.3% (23/29) of 
patients from the validation set, with a predictive accuracy of 100% (9/9) and 
of 70% (14/20) in NRs and SVRs, respectively. Hence, the results of this study 
demonstrated that NRs and SVRs have different liver gene expression pro-
fi les before treatment and that treatment response can be predicted with a 
two - gene signature. Moreover, since the two genes included in the signature 
encode molecules secreted in the serum, it may provide a logical functional 
approach for the development of serum markers to predict treatment response. 

 It is worth noting that the majority of studies that have attempted to defi ne 
a gene expression signature predictive of a treatment outcome using data 
mining tools are related to the fi eld of oncology, where there is a strong need 
for defi ning individualized therapeutic strategies. Most anticancer drugs are 
indeed characterized by a very narrow therapeutic index and severe conse-
quences of over -  or underdosing in the form of, respectively, life - threatening 
ADRs or increased risk of treatment failure. Such studies look for somatic 
predictors of drug response by examining gene expression profi les within 
tumors. For example, Heuser et al.  [50]  investigated whether resistance to 
chemotherapy in acute myeloid leukemia (AML) could be represented by 
gene expression profi les  , and which genes are associated with resistance. In 
AML, resistance to induction chemotherapy indeed occurs in 20 – 50% of 
patients. Accurate prediction of a patient ’ s individual risk is thus required to 
determine the appropriate treatment. In order to identify genes predictive of 
in vivo  drug resistance, Heuser et al.  [50]  used cDNA microarrays containing 
∼ 41,000 features to compare the gene expression profi le of AML blasts 
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between 22 patients with good response and 11 patients with poor response 
to induction chemotherapy. These 33 patients were used as a training set and 
104 patients with newly diagnosed AML, completely independent of the above 
mentioned 33 patients, were used as a test set for validation. Supervised pre-
diction analysis was performed with the method of nearest shrunken centroids, 
a clustering - based method  [51]  for the top differentially expressed genes 
between good and poor responders. Prediction analysis using 10 - fold cross 
validation revealed that response to induction chemotherapy could be pre-
dicted with an accuracy of 80%. Moreover, when applied to the independent 
test set, the treatment response signature divided samples into two subgroups 
with signifi cantly inferior response rate (43.5% versus 66.7%,  p    =   0.04), sig-
nifi cantly shorter event - free and overall survival ( p    =   0.01 and  p    =   0.03, 
respectively) in the poor - response compared to in the good - response signature 
group. These data indicate that resistance to chemotherapy is at least, in part, 
an intrinsic feature of AML blasts and can be evaluated by gene expression 
profi ling prior to treatment.   

  13.6   CONCLUSION 

 Predictability testing is one of the main aims of pharmacogenomics. The issue 
of selecting the most informative genetic markers for the prediction of a treat-
ment outcome is therefore of high clinical relevance and requires appropriate 
search methods due to the increased dimensionality associated with looking 
at multiple genotypes. Data mining approaches appear as promising tools for 
fi nding such predictive marker combinations and should facilitate the design 
of cost - effective and accurate genetics - based predictive assays. With gene –
 gene interactions playing an important role in individual drug response and 
with the increasing availability of genome - wide SNP data, the logical next step 
is a genome - wide, gene – gene interaction analysis. Yet, the data mining tools 
that could consider hundreds of thousands of SNPs and gene expression pro-
fi les of thousands of patients do not exist yet. A major challenge to computer 
scientists is therefore to make these tools available and to design effi cient 
heuristics to surpass the prohibitively complex exhaustive search for gene 
interactions.  
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  14.1   INTRODUCTION 

 Before a new drug can be released in the market, it needs to be formulated 
to produce a quality product that is acceptable to both regulatory bodies and 
patients and that can be manufactured on a large scale. There are many 
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formulation types depending on the route of administration of the active 
drug: 

 • Capsules.     These are primarily intended for oral administration and are 
solid preparations with hard or soft shells composed of gelatine or 
hydroxypropyl methyl cellulose and small amounts of other ingredients 
such as plasticizers, fi llers, and coloring agents. Their contents may be 
powders, granules, pellets, liquids, or pastes.  

 • Oral liquids.     These consist of solutions, suspensions, or emulsions of 
one or more active ingredients mixed with preservatives, antioxidants, 
dispersing agents, suspending agents, thickeners, emulsifi ers, solubiliz-
ers, wetting agents, colors, and fl avors in a suitable vehicle, generally 
water. They may be supplied ready for use or may be prepared before 
use from a concentrate or from granules or powders by the addition of 
water.  

 • Tablets.     These are solid preparations each containing a single dose 
of one or more active drugs mixed with a fi ller/diluent, a disintegrant, 
a binder, a lubricant, and other ingredients such as colors., fl avors, 
surfactants, and glidants. Tablets are prepared by compacting powders 
or granules in a punch and die and can exist in a variety of shapes and 
sizes. Tablets can also be formulated using a variety of polymers 
to provide a range of drug release profi les from rapid release over 
minutes to prolonged release over many hours. Tablets may also be 
coated either with sugar or with polymer fi lms. The latter may be 
applied to enhance identifi cation, in which case colored pigments may 
be added to increase stability, in which case opacifying agents may be 
added, or to provide varying release profi les throughout the gastrointes-
tinal tract.  

 • Parenterals.     These are sterile preparations intended for administration 
by injection, infusion, or implantation. Injections are sterile solutions, 
emulsions, or suspensions comprising the active drug together with suit-
able pH adjusters, tonicity adjusters, solubilizers, antioxidants, chelating 
agents, and preservatives in an appropriate vehicle, water or oil based. If 
there are stability issues, the formulation may be prepared as a freeze -
 dried sterile powder to which the appropriate sterile vehicle is added 
prior to administration. Infusions are sterile aqueous solutions or emul-
sions intended for administration in large volumes. Implants are sterile 
solid preparations designed to release their active drug over an extended 
period of time.  

 • Topicals.     These are semisolid preparations such as creams, ointments, or 
gels intended to be applied to the skin or to certain mucous membranes 
for local action. They may be single or multiphase, comprising one or 
more active drugs mixed with emulsifi ers, oils, soaps, gelling agents, or 
waxes with a continuous phase of either water or oil.  
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 • Eye preparations.     These are specifi cally intended for administration to 
the eye in the form of solutions, lotions, or ointments. All preparations 
must be sterile.  

 • Suppositories and pessaries.     These are preparations intended for either 
rectal or vaginal administration of drugs. They are formulated using a 
suitable base that melts at body temperature.  

 • Inhalation preparations.     These can be solutions, suspensions, or powders 
intended to be inhaled as aerosols for administration to the lung.    

 The development of a commercial product is a time - consuming and com-
plicated process, as the design space is multidimensional and virtually impos-
sible to conceptualize. It requires the optimization of both the formulation 
and the manufacturing process to produce a product with the required proper-
ties since these are determined not only by the ratios in which the ingredients 
are combined but also by the processing conditions used. Although relation-
ships between ingredient levels, processing conditions, and product perfor-
mance may be known anecdotally, rarely can they be quantifi ed, and hence 
formulation is often undertaken as an iterative process. Generally, one or 
more drugs are mixed with various ingredients (excipients) and, as develop-
ment progresses, the choice of these excipients and their levels as well as the 
manufacturing process are changed and optimized as a result of intensive, 
time - consuming experimentation. This in turn results in the generation of 
large amounts of data, the processing of which is challenging. 

 Traditionally, formulators have tended to use statistical techniques such as 
a response surface methodology to investigate the design space, but optimiza-
tion by this method can be misleading especially if the formulation is complex. 
Recent advances in mathematics and computer science have resulted in the 
development of other data mining techniques that can be used to remedy the 
situation — neural networks (for modeling the design space), genetic algo-
rithms (for optimizing the formulation and manufacturing process), and neuro-
fuzzy logic and decision trees (for exploring the relationships within the design 
space and for generating understandable rules that can be used in future 
work). This chapter reviews the current situation and provides some worked 
examples to illustrate the concept.  

  14.2   METHODOLOGY 

 Modeling the design space in formulation is an ideal application for neural 
networks. 

 Neural networks, like humans, learn directly from input data  . The learning 
algorithms take two main forms. Unsupervised learning, where the network 
is presented with input data and learns to recognize patterns in the data, is 
useful for organizing amounts of data into a smaller number of clusters. In 
supervised learning, which is analogous to  “ teaching ”  the network, the network 
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is presented with a series of matching input and output examples, and it learns 
the relationships connecting the inputs to the outputs. Supervised learning has 
proved most useful for formulation, where the goal is to determine cause - and -
 effect links between inputs (ingredients and processing conditions) and outputs 
(measured properties). 

 The basic component of a neural network is the neuron, a simple mathe-
matical processing unit that takes one or more inputs and produces an output. 
For each neuron, every input has an associated weight that defi nes its relative 
importance in the network, and the neuron simply computes the weighted sum 
of all the outputs and calculates an output. This is then modifi ed by means of 
a transformation function (sometimes called a transfer or activation function) 
before being forwarded to another neuron. This simple processing unit is 
known as a perceptron, a feedforward system in which the transfer of data is 
in the forward direction, from inputs to outputs only. 

 A neural network consists of many neurons organized into a structure 
called the network architecture. Although there are many possible network 
architectures, one of the most popular and successful is the multilayer percep-
tron (MLP) network. This consists of identical neurons all interconnected and 
organized in layers, with those in one layer connected to those in the next 
layer so that the outputs in one layer become the inputs in the subsequent 
layer. Data fl ow into the network via the input layer, pass through one or more 
hidden layers, and fi nally exit via the output layer, as shown in Figure  14.1 . In 
theory, any number of hidden layers may be added, but in practice, multiple 
layers are necessary only for those applications with extensive nonlinear 
behavior, and they result in extended computation time. It is generally accepted 
that the performance of a well - designed MLP model is comparable with that 
achieved by classical statistical techniques.   

Figure 14.1     Diagram of a multilayer perceptron neural network with one hidden 
layer.  
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 Unlike conventional computer programs, which are explicitly programmed, 
supervised neural networks are  “ trained ”  with previous examples. The network 
is presented with example data, and the weights of inputs feeding into each 
neuron are adjusted iteratively until the output for a specifi c network is close 
to the desired output. The method used to adjust the weights is generally 
called backpropagation, because the size of the error is fed back into the cal-
culation for the weight changes. There are a number of possible backpropaga-
tion algorithms, most with adjustable parameters designed to increase the rate 
and degree of convergence between the calculated and desired (actual) 
outputs. Although training can be a relatively slow process especially if there 
are large amounts of data, once trained, neural networks are inherently fast 
in execution. 

 Genetic algorithms are an ideal optimization technique based on the con-
cepts of biological evolution. Like the biological equivalent, genetic algo-
rithms require a defi nition of  “ fi tness, ”  which is assessed according to how well 
the solution meets user - specifi ed goals. Genetic algorithms work with a popu-
lation of individuals, each of which is a candidate solution to the problem. 
Each individual ’ s fi tness is assessed and unless an optimum solution is found, 
a further generation of possible solutions is produced by combining large 
chunks of the fi ttest initial solutions by a crossover operation (mimicking 
mating and reproduction). As in biological evolution, the population will 
evolve slowly, and only the fi ttest (i.e., best) solutions survive and are carried 
forward. Ultimately, after many generations, an optimum solution will be 
found. 

 Genetic algorithms are especially useful for complex multidimensional 
problems with local minima as well as the global minimum. Unlike conven-
tional, more directed searches (like steepest descent and conjugate gradient 
methods), they are capable of fi nding the global minimum reliably. Effective 
use of genetic algorithms requires rapid feedback of the success or failure of 
the possible solutions, as judged by the fi tness criteria. Hence, the combination 
of a genetic algorithm with a neural network is ideal. Such a combination 
(illustrated in Fig.  14.2 ) is used in INForm, a software package available from 
Intelligensys Ltd., UK, in which formulations can be modeled using a neural 
network and then optimized using genetic algorithms.   

 In defi ning the concept of fi tness, it is possible to give each property a dif-
ferent degree of importance in the optimization, using a weighting factor. This 
allows confl icting objectives to be examined and, combined with fuzzy logic, 
provides a useful framework for describing complex formulation goals. Fuzzy 
logic, as the name implies, blurs the clear - cut  “ true ”  and  “ false ”  of conven-
tional  “ crisp ”  logic by assigning a noninteger number that describes the  “ mem-
bership ”  in a particular set as somewhere between 0 (false) and 1 (true). 
Therefore, in additional to the  “ black and white ”  of conventional logic, fuzzy 
logic allows  “ shades of gray ”  to be described intuitively and accurately. So, if 
the formulator is seeking a tablet with a disintegration time of less than 300 
seconds, one with a disintegration time of, say, 310 seconds will not be rejected 
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out of hand but will be assigned a desirability of somewhat less than 100% (as 
shown in Fig.  14.3 ) according to its membership in the low set.   

 More recently, coupling fuzzy logic with neural networks has led to the 
development of neurofuzzy computing, a novel technology that combines the 
ability of neural networks to learn directly from data, with fuzzy logic ’ s capac-
ity to express the results clearly in linguistic form. Essentially, the neurofuzzy 
architecture is a neural network with two additional layers for fuzzifi cation 
and defuzzifi cation. This has led to a powerful new modeling capability that 
not only develops models that express the key cause - and - effect relationships 
within a formulation data set but also allows these to be expressed as simple 

Figure 14.2     Diagram of a genetic algorithm linked to a neural network for modeling 
and optimization.  

Figure 14.3     Fuzzy logic representation of the disintegration time of a tablet as low or 
high.  
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actionable rules in the form IF (ingredient)  …  THEN (property), with an 
associated  “ confi dence level. ”  Neurofuzzy computing underpins FormRules, 
a software package from Intelligensys Ltd., UK that allows rules to be extracted 
directly from formulation data. 

 Whereas neurofuzzy logic is ideally suited to the case where the measured 
properties take nonintegral numerical values, they do not work well when the 
properties are  “ classifi cations, ”  e.g., a simple pass/fail criterion. In the case 
where the properties lie within specifi c discrete classes, decision trees are more 
effective in encapsulating the information buried in the data. A number of 
decision tree algorithms have been proposed over the past few years; some 
deal effectively with numerical inputs, while others are designed more specifi -
cally to treat the case where the inputs, as well as the properties, lie in defi ned 
classes. Especially powerful algorithms that have been used successfully are 
ID3 and its successors C4.5 and C5, developed by Quinlan  [1,2] . The C4.5 and 
C5 algorithms are capable of dealing with numerical as well as  “ classifi ed ”  
inputs. 

 The ID3 and C4.5/C5 algorithms are based on the concept of information 
entropy, and both use a training data set of previously classifi ed examples from 
which to  “ learn. ”  The aim is to split the data set in a way that gives the 
maximum information gain (difference in entropy). Subsequent splits are 
made on subgroups arising from the initial split, producing a treelike structure. 
Simpler decision trees are preferred over more complex ones, with tree 
 “ pruning ”  used in C4.5 and C5 to remove branches that do not provide useful 
information.  

  14.3   APPLICATIONS 

 The past decade has seen a dramatic increase in the number of reported 
applications of data mining tools being used in pharmaceutical formulation 
 [3 – 7] . Applications now cover a variety of formulations — for example, imme-
diate and controlled release tablets, skin creams, hydrogel ointments, lipo-
somes and emulsions, and fi lm coatings. The following examples are by no 
means exhaustive, but show where data mining tools have been used 
successfully. 

  14.3.1   Tablet Formulations (Immediate Release) 

 Two papers in the mid - 1990s reported the earliest data mining studies on 
immediate release tablets. In the fi rst, tablet formulations of hydrochorothia-
zide  [8]  were modeled using neural networks in an attempt to maximize tablet 
strength and to select the best lubricant. In the other, a tablet formulation of 
caffeine was modeled  [9]  in order to relate both formulation and processing 
variables with granule and tablet properties. 

 Both these studies were successful in demonstrating that neural networks 
performed better than conventional statistical methods. In a later paper  [10] , 



408 DATA MINING METHODS IN PHARMACEUTICAL FORMULATION

the data from the caffeine tablet formulation were subsequently reanalyzed 
using a combination of neural networks and genetic algorithms. This study 
showed that the optimum formulation depended on the relative importance 
placed on the output properties and on constraints applied both to the levels 
of the ingredients used in the formulation and to the processing variables. 
Many  “ optimum formulations ”  could be produced, depending on the trade -
 offs that could be accepted for different aspects of product performance. In a 
more recent paper  [11] , the same data have been studied using neurofuzzy 
computing. Useful rules relating the disintegration time to both formulation 
and processing variables were automatically generated. 

 In a series of papers, personnel from Novartis and the University of Basel 
in Switzerland have highlighted the pros and cons of neural networks for 
modeling immediate release tablets  [12 – 15] . In other studies, neural networks 
have been found useful in modeling tablet formulations of antacids  [16] , plant 
extracts  [17] , theophylline  [18] , and diltiazem  [19] . In a recent paper, Lindberg 
and Colbourn  [20]  have used neural networks, genetic algorithms, and neu-
rofuzzy to successfully analyze historical data from three different immediate 
release tablet formulations. Using a data set published in the literature  [13] , 
Shao et al.  [21,22]  have critically compared the three data mining technolo-
gies of neural networks, neurofuzzy logic, and decision trees in both data 
modeling and rule generation. As expected, each has its own strengths and 
weaknesses. 

 Application of the technology is not limited to the tableting process alone. 
Pigmented fi lm coating formulations have recently been modeled and opti-
mized to enhance opacity and to reduce fi lm cracking using neural networks 
combined with genetic algorithms  [23,24]  as well as being studied using neu-
rofuzzy techniques  [25] . In the latter investigation, the rules discovered were 
consistent with known theory.  

  14.3.2   Tablet Formulations (Controlled Release) 

 In this domain, the fi rst studies were carried out in the early 1990s by 
Hussain and coworkers at the University of Cincinnati  [26] . They modeled 
the in vitro  release characteristics of a number of drugs from matrices con-
sisting of a variety of hydrophilic polymers and found that in the majority 
of cases, neural networks with a single hidden layer had a reasonable per-
formance in predicting drug release profi les. Later studies using similar 
formulations  [27]  have confi rmed these fi ndings as have recent studies in 
Japan  [28] . 

 Neural networks have also been used in Slovenia to model the release 
characteristics of diclofenac  [29] , in China to study the release of nifedipine 
and nomodipine  [30] , and in Yugoslavia to model the release of aspirin  [31] . 
More recently, work in this area has been extended to model osmotic pumps 
in China  [32]  and enteric coated tablets in Ireland  [33] .  
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  14.3.3   Topical Formulations 

 Topical formulations by their very nature are usually multicomponent, and it 
is not surprising that neural networks have been applied to deal with this 
complexity. The fi rst work was performed on hydrogel formulations contain-
ing anti - infl ammatory drugs in Japan in 1997  [34] , followed up by further 
studies in 1999  [35]  and in 2001  [36] . Lipophilic semisolid emulsion systems 
have been studied in Slovenia  [37,38] , and transdermal delivery formulations 
of melatonin in Florida  [39] . In all cases, the superiority of neural networks 
over conventional statistics has been reported.  

  14.3.4   Other Formulations 

 Neural networks have been applied to the modeling of pellet formulations to 
control the release of theophylline  [40]  and to control the rate of degradation 
of omeprazole  [41] . They have also been applied to the preparation of acrylic 
microspheres  [42]  and to model the release of insulin from an implant  [43] . In 
a recent study from Brazil, the release of hydrocortisone from a biodegradable 
matrix has been successfully modeled  [44] . Recent work has focused on the 
modeling of estradiol release from membranes  [45]  and the formulation of 
solid dispersions  [46] .   

  14.4   WORKED EXAMPLES 

 To illustrate what sorts of information can be extracted from various formula-
tion data sets, four different studies have been undertaken using commercially 
available software. The packages employed were INForm and FormRules. 
INForm uses MLP neural networks to model the data and incorporates a 
range of backpropagation algorithms. Additionally, it integrates a genetic 
algorithm approach to optimization. FormRules is based on neurofuzzy logic, 
using the adaptive spline modeling of data (ASMOD)  [47]  algorithm. In this 
approach, models of varying complexity are developed, and a model assess-
ment criterion is used to select the simplest model that best represents the 
data. Several different model assessment criteria are used in FormRules; the 
most common are structural risk minimization (SRM) and minimum descrip-
tor length (MDL). The output from FormRules is a linguistic rule of the form 
IF  …  AND  …  THEN, with a  “ confi dence level ”  analogous to the membership 
function, which is defi ned relative to the maximum and minimum values that 
the property can take. 

  14.4.1   Controlled Release Tablets 

 In the fi rst of these studies, a controlled release tablet formulation is investi-
gated, using data discussed in a paper by Chen et al.  [18] . Their tablet formula-
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tion uses two polymers, together with dextrose and a lubricant, in varying 
amounts. The amount of drug was held constant. In addition to the four ingre-
dients, three other variables (tablet hardness, percent moisture, and particle 
size) more related to processing aspects were also varied. Twenty - two unique 
formulations were made, and the  in vitro  amount of drug released at various 
time intervals, from 1 to 24 hours, was measured for each. At fi rst sight, it may 
seem surprising that good information can be extracted when there are seven 
input variables and only 22 formulations; however, using neurofuzzy logic, 
useful knowledge can be gained especially at the shorter release times where 
the release measurements are more accurate. 

 Using neurofuzzy techniques, separate models were developed for each 
specifi c release time. Analysis of variance (ANOVA) statistics were used to 
assess the quality of the models, and these showed that very good models 
could be found for short and intermediate release times. Only relatively poor 
models (ANOVA  R2  value less than 0.7) could be found for the longest release 
times, and a closer examination of the data revealed considerable scatter, 
refl ecting the diffi culties of making accurate measurements at these times. 
Nevertheless, the models were suffi ciently reliable for information to be 
extracted from them for release times of up to 16 hours. 

 The neurofuzzy data mining exercise shows clearly that just one of the 
polymers, described as Polymer A by Chen et al., dominates the short - term 
(1 – 2 hours) release, and that when the amount of this polymer is high, then 
the amount of drug released is low. At long times (above 10 hours), the 
amount of Polymer B controls the amount of drug released, with release being 
lowest when the amount of Polymer B is high. At intermediate times, both 
Polymers A and B control the amount of drug released. 

 Detailed examination of the rules shows that the amount of dextrose has 
no signifi cant effect on the amount of drug released at any given time. Particle 
size and tablet hardness also have a negligible effect, while the moisture per-
centage and the amount of lubricant have a minor effect on the release at 
intermediate times. Indeed, the data mining study highlighted an interaction 
between the amount of Polymer A and the lubricant on the 8 - hour release; 
this is shown in the full rule set for the 8 - hour release given in Table  14.1 , 

 TABLE 14.1     Rules Extracted from Data for Amount of Drug Released 
after 8 Hours   

  1.   IF Polymer B is LOW, then 8 - hour release is HIGH (0.91).  
  2.   IF Polymer B is HIGH, then 8 - hour release is LOW (1.00).  
  3.   IF Polymer A is LOW AND lubricant is LOW, then 8 - hour release is HIGH (1.00).  
  4.   IF Polymer A is LOW AND lubricant is HIGH, then 8 - hour release is LOW (1.00).  
  5.   IF Polymer A is HIGH AND lubricant is LOW, then 8 - hour release is LOW (1.00).  
  6.   IF Polymer A is HIGH AND lubricant is HIGH, then 8 - hour release is LOW (0.77).  
  7.   IF % moisture is LOW, then 8 - hour release is HIGH (0.70).  
  8.   IF % moisture is HIGH, then 8 - hour release is LOW (1.00).  
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where some of the rules, those describing the interactions, are of the form IF 
 …  AND  …  THEN. Rules 3 and 4 in Table  14.1  show that the lubricant affects 
the release signifi cantly when the amount of Polymer A is low; its infl uence 
when the amount of Polymer A is high is less marked, affecting only the con-
fi dence levels for the rules. In effect, rules 5 and 6 say that when the amounts 
of Polymer A and lubricant are both high, then the amount of drug released 
at 8 hours is not as low as when the amount of Polymer A is high, but the 
amount of lubricant is low.   
 By using the information that only Polymers A and B, the lubricant, and the 
percentage of water are important in controlling the release, more conven-
tional neural network models can be generated and used in conjunction with 
optimization methods (in the present case, genetic algorithms) to generate 
formulations that give a specifi c desired release profi le.  

  14.4.2   Immediate Release Tablets 

 In the second worked example, data published by Kesavan and Peck  [9]  have 
been analyzed. Their tablet formulation consisted of 

 •   anhydrous caffeine (40% w/w) as a model active drug,  
 •   dicalcium phosphate dihydrate (Ditab) or lactose (44.5 – 47.5% w/w) as a 

diluent,  
 •   polyvinylpyrrolidone (PVP) (2.0 – 5.0% w/w) as a binder,  
 •   corn starch (10% w/w) as a disintegrant, and  
 •   magnesium stearate (0.5% w/w) as a lubricant.    

 Two types of granulation equipment — fl uidized bed and high shear mix-
ing — were used, and the binder was added either wet or dry. Thirty - two dif-
ferent experiments were available. 

 This data set is interesting for data mining because three of the input vari-
ables (the diluent type, the type of granulation equipment, and the binder 
addition) are  “ classifi ed ”  rather than numerical values. However, all proper-
ties took numerical values, so the data set is not ideally suited to treatment 
using decision trees. Therefore, a neurofuzzy treatment was helpful in identi-
fying the key relationships in the data. Models of varying complexity can be 
developed by changing the model selection criterion, and the work reported 
here used the strictest criterion (SRM), which gives the simplest models. 

 The four tablet properties that were measured were hardness, friability, 
thickness, and disintegration time, and separate models were evolved for each. 
Tablet hardness depended most strongly on the two process conditions, i.e., 
the method of granulation and on whether the binder was added dry or in 
solution. There was a lesser dependence on the selection of diluent, with 
lactose leading to softer tablets, in line with the expectations of experienced 
formulators. The rules for tablet hardness are shown in Table  14.2 .   
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 Disintegration time, the other property of major importance, depends on 
all the variables except the diluent percentage. The most important variable 
is the diluent type, with lactose (which has been found to yield softer tablets) 
giving shorter disintegration times. The full rule set is given in Table  14.3 .   

 The second rule set in Table  14.3  shows that the main effect of PVP is to 
lower disintegration times, when it is added in relatively small quantities. With 

 TABLE 14.2     Rules Governing Hardness Discovered with Data Mining 

   Rule Set 1  

   Granulation 
Equipment    Binder Addition     Hardness     Confi dence (%)  

  Fluidized bed    Dry    Low    100  
  Fluidized bed    Wet    Low    92  
  High shear mixer    Dry    High    91  
   High shear mixer     Wet     High     52  

   Rule Set 2  

   Diluent     Hardness     Confi dence (%)       

  Lactose    Low    63      
  Ditab    High    91      

 TABLE 14.3     Rules Governing Disintegration Time 

   Rule Set 1  

  IF the diluent is lactose, THEN the disintegration time is LOW (0.87).  
   IF the diluent is Ditab, THEN the disintegration time is HIGH (1.00).  

   Rule Set 2  

  IF PVP % is LOW, THEN the disintegration time is LOW (1.00).  
  IF PVP % is MID, THEN the disintegration time is HIGH (0.70).  
   IF PVP % is HIGH, THEN the disintegration time is HIGH (0.82).  

   Rule Set 3  

  IF the granulation equipment is a fl uidized bed AND the binder addition is dry, 
THEN the disintegration time is LOW (0.58).  

  IF the granulation equipment is a fl uidized bed AND the binder addition is wet, 
THEN the disintegration time is HIGH (0.71).  

  IF the granulation equipment is high shear mixing AND the binder addition is dry, 
THEN the disintegration time is LOW (0.51).  

  IF the granulation equipment is high shear mixing AND the binder addition is wet, 
THEN the disintegration time is LOW (1.00).  



WORKED EXAMPLES 413

PVP in medium or larger quantities, the disintegration time is high. There is 
a complex interaction between the choice of granulation equipment and 
whether the binder is added dry or in solution, as shown in the third rule set. 
It is also worth noting the third rule of this set, which shows that when high 
shear mixing is used and binder addition is dry, then the disintegration time 
is low with a confi dence of only 51%. This rule actually illustrates that the 
disintegration time is neither low nor high (hence confi dence of about 50% 
that it is low) but lies in the middle of the range. 

 Generally, all of these rules are in line with those expected by expert 
formulators, with lactose giving softer tablets that disintegrate more 
quickly. 

 In their experimental work, Kesavan and Peck measured granule properties 
as well as properties of the fi nished tablet. One issue of interest in data mining 
is whether the granule properties are important in predicting the properties 
of the fi nished tablet or whether models can be developed to link the formula-
tion variables directly to the tablet properties. Various options have been 
investigated, and it has been found that good cause - and - effect models can be 
discovered without involving the granule properties as inputs for the tablet 
property models. This is a valuable insight since it means that changes in the 
formulation can be linked directly to tablet properties without requiring inter-
mediate measurements on the granules. Indeed, it allows an optimization of 
the tablet properties directly from the formulation. For example, if the for-
mulator is seeking a hard tablet that disintegrates quickly (which, as the neu-
rofuzzy data mining study shows, is diffi cult to achieve), then the various 
trade - offs can be examined. 

 In this application, the neural network was trained using a network archi-
tecture with a four - node hidden layer, and the goal was to look at the trade -
 offs between hardness and other properties (disintegration time, friability, and 
thickness). Various weightings of the different properties were investigated in 
an attempt to fi nd hard tablets that disintegrated quickly. 

 These studies show clearly that tablet hardness can be achieved only by 
sacrifi cing disintegration time. Furthermore, the optimized formulation 
shows that the percentage of diluent lies at the top of the experimental range, 
while the PVP concentration lies at the bottom of the range. This suggests that 
the experimental range should be expanded in order to look for a better 
formulation.  

  14.4.3   Drug - Loaded Nanoparticles 

 The above examples have both been concerned with tablets. However, data 
mining as the name suggests is  “ data driven ”  and as long as there are data 
available, then the techniques can be applied. One new issue that formulators 
recently have had to face is the delivery of novel peptides and proteins 
now being developed by biotechnology, for example, using drug - loaded 
nanoparticles. Data have been published by Attivi et al.  [48]  on insulin - loaded 
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nanoparticles produced by a water - in - oil - in - water emulsifi cation in an aqueous 
solution of polyvinyl alcohol (PVA), followed by a drying process. The study 
varied only three inputs; these were the ratio of the polymers used in the 
nanosphere, referred to as the PCL/RS   ratio (ratio of poly(epsiloncaprolactone) 
to Eudragit RS), the volume of the PVA aqueous solution, and the pH of the 
aqueous PVA solution. This restriction on the number of inputs was imposed 
largely because the authors were performing a statistical study, which (unlike 
the case for neurofuzzy data mining) can become very complex with larger 
numbers of variables. Eighteen unique formulations were produced, and fi ve 
properties (size, polydispersity index, zeta potential, amount of entrapped 
insulin, and amount of insulin released after 7 hours) were measured for each. 

 In the neurofuzzy study, the model selection criterion was selected for each 
model so that good ANOVA statistics were obtained. In all cases, the model 
statistics from the neurofuzzy study were as good as, or slightly better than, 
the original statistical study of Attivi et al.  [48] . 

 Particle size was found to depend on the PCL/RS ratio and on pH; these 
are the same variables as were found by the statistical study. There is an 
interaction between these two variables, as illustrated by the rules given in 
Table  14.4 .   

 Table  14.4  shows that, like the particle size, polydispersity depends on the 
PCL/RS ratio and on pH. Again, the same variables were found to be impor-
tant here as in the statistical study. 

 The model for zeta potential is a more interesting case, since a good model 
cold not be obtained using statistics. However, the MDL model assessment 
criterion allowed a model to be developed, although this was quite complex 
as Figure  14.4  shows. Again the PCL/RS ratio and the pH are the only con-
tributing factors.   

 The model for entrapped insulin depended primarily on the volume of 
PVA, although pH also had a role to play. The  “ combined rules ”  show that 
IF the volume of PVA   is LOW AND IF pH is MID, THEN the entrapped 
insulin is HIGH. There is a maximum in the amount of entrapped insulin when 
pH is in the midrange, and it decreases when pH is either LOW or HIGH. 

 There were repeated data points in the published formulations, and these 
show a fair degree of scatter. Therefore, not surprisingly, using SRM as the 

 TABLE 14.4     Rules for Size of Nanoparticles 

   PH     PCL/RS Ratio     Size     Confi dence (%)  

  Low    Low    Low    100  
  High    Low    Low    97  
  Medium    High    Low    96  
  Medium    Low    Low    94  
  Low    High    Low    81  
  High    High    High    100  
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model selection criterion gave poor results for the released insulin. A reason-
able model was developed using the MDL model assessment criterion, 
although the  R  2  value was lower than that reported from the statistical study. 
The PCL/RS ratio was the most important variable, with the volume of PVA 
playing a minor role.  

  14.4.4   Suspensions 

 The fi nal worked example concerns a redispersible suspension of rifampicin 
and was performed using data published by Elkheshen et al  .  [49] . In this study, 
the ingredients and the range over which they were allowed to vary (as per-
centages of the constituted suspension) were 

   •      sucrose (30%, 45%, or 60%),  
   •      Avicel (1%, 1.5%, or 2%),  
   •      Aerosil (0%, 0.5%, or 1%), and  
   •      aerosol (0%, 0.05%, or 0.01%).    

 In addition, there were other ingredients (rifampicin, sodium citrate, citric 
acid, sodium benzoate, and fl avor) that were not varied in the experiments. 

 Twenty - one experiments were performed using a 2 4  factorial design with 
fi ve replicates of the center point. The properties measured were bulk density, 
fl owability of the powder, viscosity of the suspension after 24 hours, sedimen-
tation volume as percentage of the initial volume, and percentage ease of 
redispersibility. 

 Good models (ANOVA  R  2  values in excess of 0.85) could be developed 
for all of the properties. Bulk density was shown by FormRules to depend on 
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     Figure 14.4     Graphical representation of model for zeta potential.  
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the percentages of sucrose and Aerosil. This is consistent with the results of 
Elkheshen et al.  [49]  from their statistical study. In addition, FormRules pro-
duced  “ rules ”  of the form given in Table  14.5 .   

 As the rules in Table  14.5  show, there is an interaction between the amount 
of sucrose and the amount of Aerosil. At low levels of sucrose, Aerosil has a 
marked effect. This is not the case when the percentage of sucrose is at the 
high end of the range. In that case, Aerosil has only a small effect. Just the 
confi dence level is affected; the conclusion is that bulk density will be high if 
sucrose % is high. 

 For fl owability, FormRules showed that only the percentage of Aerosil was 
important. This is consistent with the statistical study — although the statistical 
work also suggested that sucrose might play a role. Above about 0.5%, adding 
more Aerosil does not signifi cantly increase fl owability. 

 Viscosity was more complex, depending on the amounts of sucrose, Avicel, 
and Aerosil. Adding sucrose increased the viscosity in a linear fashion, as did 
adding Avicel. Aerosil had a complex effect, decreasing viscosity at low con-
centrations, but increasing it at higher ones. 

 Sedimentation volume was affected primarily by the amount of Aerosil. If 
the percentage of Aerosil is low, then the percentage of sedimentation is low. 
Sedimentation is higher when the amount of Aerosil is increased. 

 Redispersibility percentage was also affected mainly by Aerosil, with an 
approximately linear relationship between the amount of Aerosil and the 
redispersibility. This is consistent with the statistical results of Elkheshen et al. 
More complex models could be developed by changing the model selection 
criterion, showing that all four inputs have some role to play; however, this 
leads to rules that are very complicated to interpret, thus losing some of the 
key benefi ts of data mining.   

  14.5   BENEFITS AND ISSUES 

 Although there is a great deal of interest in data mining, quantifi ed informa-
tion on the benefi ts has been harder to fi nd. From the applications and worked 
examples discussed earlier in this chapter, benefi ts that can be seen include 

 •   effective use of incomplete data sets;  
 •   rapid analysis of data;  

 TABLE 14.5     Rules for Bulk Density from Neurofuzzy Data Mining 

   Sucrose Concentration     Aerosil Concentration     Bulk Density     Confi dence (%)  

  Low    Low    High    81  
  Low    High    Low    72  
  High    Low    High    78  
  High    High    High    89  
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 •   ability to accommodate more data and to retrain the network (refi ne the 
model);  

 •   effective exploration of the total design space, irrespective of 
complexity;  

 •   ability to accommodate constraints and preferences; and  
 •   ability to generate understandable rules.    

 Business benefi ts specifi cally for the domain of product formulation have 
been given as  [50] 

 •   enhancement of product quality and performance at low cost,  
 •   shorter time to market,  
 •   development of new products,  
 •   improved customer response,  
 •   improved confi dence, and  
 •   improved competitive edge.    

 As this new technology moves from the realm of academe into practical 
application, there are also issues regarding the implementation of neural 
computing. Early adopters found problems related to software and lack of 
development skills; this has been reduced as commercial packages have 
come into wider use, and there is less need for bespoke in - house systems 
with their high programming and maintenance burden. However, even when 
commercial packages are used, there are a number of features that should 
be present before data mining can be used to advantage. Reasonable quanti-
ties of reliable data should be available in order to train an adequate model, 
and these must encapsulate the cause - and - effect relationships within the 
problem. The selection of data mining technique will depend on whether 
the properties are numerical or  “ categorical, ”  with decision trees most 
appropriate for the latter. The greatest benefi ts are achieved for multidi-
mensional problems, where it is diffi cult to express any analytic model and 
diffi cult to abstract the rules by any other mechanism. It helps if the problem 
is of practical importance, part of the organization ’ s essential activity, and 
meets a real business need. Pharmaceutical formulation meets these criteria 
well, and data mining can be expected to provide signifi cant benefi ts in the 
industry in the future. 

 It is interesting to note that the fi eld is not stagnant. New applications of 
the technologies discussed above are being developed routinely. New 
approaches, such as mining  “ fractured ”  data, are being evaluated  [51] . New 
technologies are being investigated, with papers using model trees  [52]  and 
genetic programming  [53]  being published very recently. In addition, the 
knowledge generated from various data mining exercises has been integrated 
into decision support systems  [50,54] .  
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  15.1   INTRODUCTION   

 It has become increasingly evident that modern science and technology pres-
ents an ever - growing challenge of dealing with huge data sets. Some repre-
sentative examples are molecular properties of compounds in combinatorial 
libraries, expression profi les of thousands of genes, multimedia documents and 
fi les, marketing databases, and so on. 
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 Automatic extraction of the knowledge embedded within the large 
volumes of data — that is,  data mining  — is a prevalent research theme. 
Unfortunately, the inherent structures and relations that are sought for may 
not be easily recognizable due to a complexity of high - dimensional data. This 
is particularly true when chemical and biologic problems are considered. 
Therefore, the need for advanced tools transforming high - dimensional 
data into a lower dimensionality space ( dimensionality reduction ) cannot be 
overestimated. 

 This chapter describes a number of advanced dimensionality reduction tech-
niques, both linear and nonlinear (Fig.  15.1 ). The following linear methods are 
described: principal component analysis (PCA)  [1] , linear discriminant analysis 
(LDA)  [2] , and factor analysis (FA)  [3] . Among nonlinear methods are kernel 
PCA (KPCA)  [4] , diffusion maps (DMs)  [5] , multilayer autoencoders (MAs) 
 [6] , Laplacian eigenmaps  [7] , Hessian local linear embedding (HLLE)  [8] , local 
tangent space analysis (LTSA)  [9] , locally linear coordination (LLC)  [10] , mul-
tidimensional scaling (MDS)  [11] , local linear embedding (LLE)  [12] , and 
support vector machines (SVMs)  [13] . Though this list includes the most popular 
in computational chemistry techniques, it is not exhaustive; some less important 
approaches (e.g., independent component analysis [ICA]  [14] ) are deliberately 
omitted. Also, because of the space limitations some nonlinear techniques 
(which may often be considered  “ fl avors ”  of more general approaches) are not 
described. To only mention, they are principal curves    [15] , curvilinear compo-
nent analysis (CCA)  [16] , generalized discriminant analysis (GDA)  [17] , kernel 
maps  [18] , maximum variance unfolding (MVU)  [19] , conformal eigenmaps 
(CEMs)  [20] , locality preserving projections (LPPs)  [21] , linear local tangent 
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     Figure 15.1     A functional taxonomy of advanced dimensionality reduction techniques. 
GNA   =   geodesic nullspace analysis; SOM   =   self - organizing map  .  
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space alignment (LLTSA)  [22] , FastMap  [23] , geodesic nullspace analysis 
(GNA)  [24] , and various methods based on the global alignment of linear 
models  [25 – 27] .   

 Finally, it should be noted that several advanced mapping techniques (self -
 organizing Kohonen maps  [28] , nonlinear Sammon mapping  [29] , IsoMap 
 [30,31] , and stochastic proximity embedding [SPE]  [32] ) are described in more 
detail; see Chapter  16  of this book.  

  15.2   DIMENSIONALITY REDUCTION BASICS 

In silico  pharmacology is an explosively growing area that uses various com-
putational techniques for capturing, analyzing, and integrating the biologic 
and medical data from many diverse sources. The term  in silico  is an indicative 
of procedures performed by a computer (silicon - based chip) and is reminis-
cent of common biologic terms in vivo  and  in vitro . Naturally,  in silico  approach 
presumes massive data mining, that is, extraction of the knowledge embedded 
within chemical, pharmaceutical, and biologic databases. 

 A particularly important aspect of data mining is fi nding an optimal data 
representation. Ultimately, we wish to be able to correctly recognize an inher-
ent structure and intrinsic topology of data, which are dispersed irregularly 
within the high - dimension feature space, as well as to perceive relationships 
and associations among the studied objects. 

 Data structures and relationships are often described with the use of some 
similarity measure calculated either directly or through the characteristic fea-
tures (descriptors) of objects. Unfortunately, the very essence of similarity 
measure concept is intimately connected with a number of problems, when 
applied to high - dimensional data. 

 First, the higher is the number of variables, the more probable is a possibil-
ity of intervariable correlations. While some computational algorithms are 
relatively insensitive to correlations, in general, redundant variables tend to 
bias the results of modeling. Moreover, if molecular descriptors are used 
directly for property prediction or object classifi cation, overfi tting can become 
a serious problem at the next stages of computational drug design. 

 Second, a common diffi culty presented by huge data sets is that the princi-
pal variables, which determine the behavior of a system, are either not directly 
observable or are obscured by redundancies. As a result, visualization and 
concise analysis may become nearly impossible. Moreover, there is always the 
possibility that some critical information buried deeply under a pile of redun-
dancies remains unnoticed. 

 Evidently, transforming raw high - dimensional data to the low - dimensional 
space of critical variables —  dimensionality reduction  — is a right tool to over-
come the problems. For visualization applications, an ideal would be a mapping 
onto two - dimensional or three - dimensional surface. 
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 The principal aim of dimensionality reduction is to preserve all or critical 
neighborhood properties ( data structure ). This presumes that the data points 
located close to each other in high - dimensional input space should also appear 
neighbors in the constructed low - dimensional feature space. Technically, 
there exist many approaches to dimensionality reduction. The simplest ones 
are linear ; they are based on the linear transformation of the original high -
 dimensional space to target a low - dimensional one. Advanced  nonlinear  tech-
niques use more complicated transforms. Evidently, nonlinear methods are 
more general and, in principle, applicable to a broader spectrum of tasks. This 
is why this chapter considers nonlinear techniques in more detail. However, 
it is worth mentioning that linear methods typically have mathematically strict 
formulation and, which is even more important, form a basis for sophisticated 
nonlinear techniques. 

 The classical linear methods widely used in chemoinformatics are PCA  [33]  
and MDS  [34] . PCA attempts to transform a set of correlated data into a 
smaller basis of orthogonal variables, with minimal loss in overall data vari-
ance. MDS produces a low - dimensional embedding that preserves original 
distances (=dissimilarity) between objects. Although these methods work suf-
fi ciently well in case of linear or  quasi  - linear subspaces, they completely fail 
to detect and reproduce nonlinear structures, curved manifolds, and arbitrarily 
shaped clusters. In addition, these methods, as many of stochastic partitioning 
techniques, can be most effectively used for the detailed analysis of a relatively 
small set of structurally related molecules. They are not well suited for the 
analysis of disproportionately large, structurally heterogeneous data sets, 
which are common in modern combinatorial techniques and high - throughput 
screening (HTS)  systems. One additional problem of MDS is that it unfavor-
ably scales quadratically with the number of input data points, which may 
require enormous com putational resources. Therefore, there exists a continu-
ing interest to novel approaches. Some examples of such advanced methods 
are agglomerative hierarchical clustering based on two - dimensional structural 
similarity measurement, recursive partitioning, and self - organizing mapping, 
as well as generative topographic mapping and truncated Newton optimiza-
tion strategy could be effectively used  [35 – 37] . Thus, a variety of different 
computational approaches were recently intended to apply neural net para-
digm toward a nonlinear mapping (NLM). The immense advantage of neural 
nets lies in their extraordinary ability to allocate the positions of new data 
points in the low - dimensional space producing signifi cantly higher predictive 
accuracy. A number of scientifi c studies have successfully applied the basic 
self - organizing principles, especially self - organizing Kohonen methodology 
for visualization and analysis of the diversity of various chemical databases 
 [38 – 40] . Sammon mapping  [29]  is another advanced technique targeted for 
dimensionality reduction, which is currently widely used in different scientifi c 
areas, including modern  in silico  pharmacology. Although the practical uses 
of this method is also weakened by the mentioned restriction relating to large 
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data sets, it has several distinct advantages as against to MDS. The basic prin-
ciples of Sammon algorithm are discussed in more detail below. 

  15.2.1   Clustering 

 Clustering is a common though simple computational technique widely used 
to partition a set of data points into groups ( clusters ) in such a manner that 
the objects in each group share the common characteristics, as expressed by 
some distance or similarity measure. In other words, the objects falling into 
the same cluster are similar to each other ( internally homogeneous ) and dis-
similar to those in other clusters ( externally heterogeneous ). 

 Based on the way in which the clusters are formed, all clustering techniques 
may be commonly divided into two broad categories:  hierarchical , which parti-
tions the data by successively applying the same process to clusters formed in 
previous iterations, or  nonhierarchical  ( partitional ), which determines the 
clusters in a single step  [41] . Hierarchical algorithms are more popular as they 
require very little or no a priori  knowledge. 

 Hierarchical methods are divided in two minor classes: agglomerative 
(bottom - up ) or divisive ( top - down ). In agglomerative analysis, clusters are 
formed by grouping samples into bigger and bigger clusters until all samples 
become members of a single cluster. Before the analysis, each sample forms 
its own, separate cluster. At the fi rst stage, two samples are combined in the 
single cluster, at the second, the third sample is added to the growing cluster, 
and so on. Graphically, this process is illustrated by agglomerative dendro-
gram. Inversely, a divisive scheme starts with the whole set and successively 
splits it into smaller and smaller groups. 

 There are two more important details: the way of measuring the distance 
between samples (metrics) and the way of measuring the distance between 
samples and cluster (linkage rule). The popular options are Euclidean, squared 
Euclidean, and Manhattan city - block metrics in combination with complete 
linkage, Ward ’ s linkage, and weighted/unweighted pair - group average linkage 
rules. 

 Cluster analysis already found numerous applications in various fi elds 
including chemoinformatics. Because of its close ties with molecular similarity, 
clustering is often a tool of choice in the diversity analysis allowing one to 
reduce the complexity of a large data set to a manageable size  [42,43] . 
Technically, clustering compounds comprises four principal steps. Initially, a 
rational set of molecular descriptors is selected (and, typically, scaled). Then 
pairwise distances between molecules are calculated and collected into simi-
larity matrix. After that, cluster analysis technique is used to iteratively assign 
objects to different clusters. Finally, the clustering is validated, visually and/
or statistically. 

 Many efforts to visualize the results of hierarchical and nonhierarchical 
clustering have been made based on graph drawing and tree layout algorithms. 
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One popular option is the Jarvis – Patrick algorithm. This method begins by 
determining the k  - nearest neighbors of each object within the collection. 
Members are placed in the same cluster if they have some predefi ned number 
of common nearest neighbors. The major advantage of this method lies in the 
speed of processing performance, but the main disadvantage is a regrettable 
tendency to generate either too many singletons or too few very large clusters 
depending on the stringency of the clustering criteria. Several key algorithms 
for graph construction, tree visualization, and navigation, including a section 
focused on hierarchical clusters, were comprehensively reviewed by Herman 
 [44] ; Strehl and Ghosh  [45]  inspected many computational algorithms for 
visualizing nonhierarchical clusters including similarity matrix plot. Still, a 
classical dendrogram remains the most popular cluster visualization method. 
This layout visually emphasizes both the neighbor relationship between data 
items in clusters ( horizontal ) and the number of levels in the cluster hierarchy 
(vertical ). The basic limitation of radial space - fi lling and linear tree visualiza-
tions is the decreasing size and resolution of clusters with many nodes or deep 
down in the hierarchy. 

 To overcome these challenges, Agrafi otis et al.  [46]  recently developed a 
new radial space - fi lling method targeted for visualizing cluster hierarchies. It 
is based on radial space - fi lling system and nonlinear distortion function, which 
transforms the distance of a vertex from the focal point of the lens. This tech-
nique has been applied (Fig.  15.2 A,B)  [47,48]  for the visualization and analysis 
of chemical diversity of combinatorial libraries and of conformational space 
of small organic molecules  [49] . In the fi rst case, the radial clustergram repre-
sented a virtual combinatorial library of 2500 structures produced by combin-
ing 50 amines and 50 aldehydes via  reductive amination. Each product was 
accurately described by 117 topological descriptors, which were normalized 
and decorrelated using PCA — to an orthogonal set of 10 latent variables 
accounting for 95% of the total variance in the input data. The obtained radial 
clustergram (Fig.  15.2   ) is coded in grayscale by the average molecular weight 
(A) and log P  (B) (dark gray corresponds to higher value); the two clusters 
designated as A and B are easily recognized. Note that color signifi cantly 
changes at cluster boundaries, so one may reveal structurally related chemical 
families with distinct properties.   

 While all of the tested structures share a common topology, which explains 
their proximity in diversity space, compounds located in cluster  “ A ”  contain 
several halogens as well as at least one bromine atom, which increases both 
their molecular weight and log P . There are no molecules in the fi rst cluster 
with bromine atom, and none of them carry more than one light halogen 
(F or Cl). 

 The second example (Fig.  15.2 C,D) illustrates the application of radial 
clustergram for visualization of conformational space. The data set consisted 
of 100 random conformations of known HIV protease inhibitor, Amprenavir. 
Each pair of conformers was superimposed using a least - squares fi tting pro-
cedure, and the resulting root mean square deviation (RMSD) was used as 



DIMENSIONALITY REDUCTION BASICS 431

a measure of the similarity between the two conformations. The radial clus-
tergram color coded by the radius of gyration (a measure of the extended-
ness or compactness of the conformation) is shown in Figure  15.2 C, while 
Figure  15.2 D shows a nonlinear SPE map of the resulting conformations 
(see Chapter  16 , Section  16.2.5    for SPE description; the method embeds 
original data into a two - dimensional space in such a way that the distances 
of points on the map are proportional to the RMSD distances of respective 
conformations). 

 Among other modern algorithms related to clustering that should be men-
tioned are the maximin algorithm  [50,51] , stepwise elimination and cluster 
sampling  [52] , HookSpace method  [53] , minimum spanning trees  [54] , graph 
machines  [55] , singular value decomposition (SVD), and generalized SVD 
 [56] .   
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     Figure 15.2     Radial clustergrams of a combinatorial library containing 2500 com-
pounds; grayscale coding is by average molecular weight (A) and log  P  (B), radial 
clustergram (C), and SPE map (D) of conformational space around Amprenavir.  
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  15.3   LINEAR TECHNIQUES FOR DIMENSIONALITY REDUCTION 

  15.3.1    PCA  

 PCA, also known as Karhunen – Loeve transformation in signal processing, is 
a quite simple though powerful and popular linear statistical technique with 
a long success history  [57 – 60] . It allows one to guess an actual number of 
independent variables and, simultaneously, to transform the data to reduced 
space. PCA is widely used to eliminate strong linear correlations within the 
input data space as well as to data normalization and decorrelation. 

 By its essence, PCA constructs a low - dimensional representation of the 
input data, which describes as much of the variance of source data as possible 
 [61] . Technically, it attempts to project a set of possibly correlated data into 
a space defi ned by a smaller set of orthogonal variables (principal components 
[PCs] or eigenvectors), which correspond to the maximum data variance. 
From a practical viewpoint, this method combines descriptors into a new, 
smaller set of noncorrelated (orthogonal) variables. 

 In mathematical terms, PCs are directly computed by diagonalizing the 
variance covariance matrix,  m ij  , a square symmetric matrix containing the 
variances of the variables in the diagonal elements and the covariances 

in the off - diagonal elements  :   m m
N

x x
N

xij ji ki i kj j i ij
i

N

= = −( ) −( ) =∑ ∑
=

1 1

1

ξ ξ ξ; , 

where   ξ  i   is the mean value of variable  x i  , and  N  is the number of observations 
in the input data set. Using this strategy, PCA attempts to fi nd a linear 
mapping basis  M  that maximizes   M MT

X Xcov −  where   covX X−  is the covariance 
matrix of zero mean data  X  ( D  - dimensional data matrix  X ). Such linear 
mapping can easily be formed by the  d  PCs derived from the covariance matrix 
 m ij  . Principally, PCA attempts to maximize   M MT

X Xcov −  with respect to  M , 
under the constraint | M |   =   1. This constraint, in turn, can be consistently 
enforced by introducing a Lagrange multiplier  λ . Hence, an unconstrained 
maximization of   M M M MT

X X
Tcov − + −( )λ 1  can be effi ciently performed, 

then a stationary point of this expression can be regularly found assuming that 
  covX X M M− = λ . Following this logic, PCA investigates the eigenproblem lying   
in   covX X M M− = λ , which can be solved successfully for the  d  principal eigen-
value  λ . The low - dimensional data representations encoded entirely by  y i   (the 
 i th row of the  D  - dimensional data matrix  Y ) of the sample point  x i   (high -
 dimensional data points or the  i th row of the  D  - dimensional data matrix  X ) 
can then be computed by mapping them onto the linear basis  M , i.e., 
  Y X X M= −( )   . Considering that the eigenvectors of covariance matrix are the 
PCs while the eigenvalues are their respective variances, the number of PCs 
directly corresponds to the number of the original variables. In other words, 
PCA reduces the dimensionality of input data points by throwing off the 
insignifi cant PCs that contribute the least to the variance of the data set (i.e., 
PCs with the smallest eigenvalues) until the maximum variance approximates 
manually or machine predefi ned threshold, typically defi ned in the range of 
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90 – 95% of the original input value. Finally, the input vectors are transformed 
linearly using the transposed matrix. At the output of PCA processing, the 
obtained low - dimensional coordinates of each sample in the transformed 
frame represent linear combinations of the original, cross - correlated variables. 
The immense advantage of PCA algorithm lies in the following statement: 
there are no assumptions toward the underlying probability distribution of the 
original variables, while the distinct disadvantage can be related meaningfully 
to a heightened sensibility to possible outliers, missing data, and poor correla-
tions among input variables due to irregular distribution within the input 
space. 

 Having due regard to all the advantages mentioned above, PCA is evidently 
not suitable for the study of complex chemoinformatics data characterized by 
a nonlinear structural topology. In this case, the modern advanced algorithms 
of dimensionality reduction should be used. For example, Das et al.  [62]  
recently effectively applied a nonlinear dimensionality reduction technique 
based on the IsoMap algorithm  [31]  (see Chapter  16 , Section  16.2.4 ).  

  15.3.2    LDA  

 LDA  [2]  is a linear statistical technique generally targeted for the separation 
of examined vector objects belonging to different categories. As PCA mainly 
operates on principle related to eigenvectors formation, LDA is generally 
based on a combination of the independent variables called discriminant func-
tion. The main idea of LDA lies in fi nding the maximal separation plan 
between external data points  [2] . In contrast to the majority of dimensionality 
reduction algorithms described in this chapter, LDA can be regarded as a 
supervised technique. In essence, LDA fi nds a linear mapping image  M  that 
provides the maximum linear separation among the estimated classes in the 
low - dimensional representation of the input data. The major criteria that are 
primarily used to formulate a linear class separability in LDA are the  within  -
 class scatter  Z w   and the  between  - class scatter Z  b  , which are correspondingly 
defi ned as   Z pw f X X

f

f f= −∑ cov ,   Z Zb X X w= −−cov , where  p f   is the class prior 

of class label  f ,   cov
X Xf f−  is the covariance matrix of the zero - mean data point 

 x i   directly assigned to class  f     ∈     F  (where  F  is the set of possible classes), while 
  covX X−  is the covariance matrix of the zero - mean data assigned to  X . In these 
terms, LDA attempts to optimize the critical ratio between  Z w   and  Z b   
in the low - dimensional representation of the input data set, by fi nding a 
linear mapping image  M  that maximizes the so - called Fisher criterion: 

  φ M
M Z M
M Z M

T
b

T
w

( ) = . The post maximization problem can be effi ciently solved 

by computing the  d  principal eigenvectors of   Z Zw b
−1  under the following 

requirement:  d     <    | F |. The low - dimensional data representation  Y  of the input 
data points dispersed within the high - dimensional space  X  can be easily com-
puted by embedding the input vector samples onto the linear basis  M , i.e., 
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  Y X X M−( ) . Similar to regression analysis, the mathematical probability of 
achieving adequate separation simply by chance increases proportionally with 
the number of variables used. Therefore, the ratio between input data points 
and descriptor variables should be fi xed preferably to at least 3. In addition, 
a bias distribution within the input data samples may become a signifi cant 
problem; therefore, the estimated categories should be uniformly distributed 
within the input space. Otherwise, a trivial separation may be simply achieved, 
despite the fact that the above - specifi ed ratio is greater than 3. 

 Typically, the regular output of LDA is commonly expressed as percentage 
of compounds correctly and incorrectly classifi ed. It should be noted that 
cross - validation strategy can also be fruitfully applied, as in the case of regres-
sion analysis, to cross - test the predictive ability of model. For the classifi cation 
of new objects from an independent external test set, the critical threshold 
value is commonly used. Thus, if the calculated value of the discriminant 
function for the tested object is lower than the critical/threshold value, the 
object is directly assigned to the  “ inactive ”  category, if it is higher — to the 
active one. In addition, LDA can also be benefi cially applied to handle more 
than two categories in accordance to a number of selected discriminant 
functions.  

  15.3.3    FA  

 FA is a statistical linear technique closely related to PCA that attempts to 
extract coherent subsets of variables that are relatively independent from one 
another  [57] . Both methods rely principally on an eigenvalue analysis of the 
covariance matrix, and both use linear combinations of variables to explain a 
set of observations. However, PCA is mainly focused on the observation of 
variables themselves, and the combination of these variables is used entirely 
for simplifying their analysis and interpretation. Conversely, in FA, the 
observed variables are of little intrinsic value; what is of interest is the underly-
ing factors ( “ hidden variables ” ). It is of paramount importance in many cases 
where an actually meaningful variable is not directly observable. The key goal 
of FA is to properly explain the possible correlations among the estimated 
variables referring to underlying factors, which are not directly observable. 
The factors are usually represented by linear combinations of original vari-
ables; they are thought to be a representative of the underlying process that 
has created the correlations. Factors may be associated with two or more of 
these variables ( common factors ) or with a single variable ( unique factor ). The 
relationship between the original variables and the derived factors is explicitly 
expressed in the form of factor loadings. Inherently, these loadings are stati-
cally indeterminate but at the same time they can be readily derived from the 
eigenvalues of covariance matrix. By using the rotation (of coordinate axes) 
procedure, each variable becomes highly loaded with one factor, and all the 
factor loadings are either large or nearly negligible. A number of different 
rotation methods are currently available, including varimax, quartimax, and 
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equimax. Varimax is the most widely used method maximizing the variance 
of the loadings. 

 FA has been widely used in different fi elds. For example, Cummins et al. 
 [63]  recently applied this method to reduce a set of 61 molecular descriptors 
to four factors, which were further used to compare the diversity of fi ve chemi-
cal databases. It was also employed by Gibson et al.  [60]  in their comparative 
study of 100 different heterocyclic aromatic systems.   

  15.4   NONLINEAR TECHNIQUES FOR 
DIMENSIONALITY REDUCTION 

 As was already mentioned, conventional linear methods of data mining and 
visualization are inadequate to represent the extremely large, high - dimen-
sional data sets that are frequently encountered in molecular diversity/similar-
ity analyses. So the various nonlinear techniques became a tool of choice in 
modern chemoinformatics. Despite utilizing a variety of mathematical formu-
lations, all of these methods are intended to preserve the global or local topol-
ogy of the original data. In other words, the data points (or clusters) located 
near each other in a high - dimensional space should also be neighbors in a 
low - dimensional representation. 

  15.4.1   Global Techniques 

  15.4.1.1    KPCA      KPCA is an advanced version of conventional (linear) 
PCA that is specifi cally adapted to the use of a kernel function  [64] . Notably, 
recent years have seen a dramatic reformulation of several linear techniques 
with the use of the  “ kernel trick, ”  which resulted in the development and 
expansion of, e.g., kernel ridge regression and SVMs (see Section  15.4.1.7 ). 
In contrast to the traditional linear PCA, KPCA computes the principal 
eigenvectors of the kernel matrix rather than those of the covariance matrix. 
The transformation of traditional PCA in the kernel basis through the 
kernel - based matrix by using different kernel functions is fairly straightfor-
ward. Since KPCA uses a kernel function, it evidently produces an NLM. 
In mathematical terms, KPCA computes the kernel matrix  M  of the data 
point  x i  . The components of the kernel matrix are defi ned as  m ij     =    f ( x i  ,  x j  ), 
where  f  is a kernel function  [65] . The constructed kernel matrix  M  is 
then centered using the following modifi cation of eigencomponents: 
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. One should note that this operation 

directly corresponds to subtracting the mean value in traditional PCA; it 
makes sure that the features defi ned by the kernel function in the high -
 dimensional input space have zero mean. Then, the principal eigenvector  v i   
(defi ned unambiguously by the modifi ed kernel matrix) is computed. Note 
that in a high - dimensional space, the eigenvector  α   i   of the covariance matrix 
constructed by  m  components represents scaled versions of the corresponding 
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eigenvector  v i   of the kernel - based matrix:   α
λ

i

i

iv=
1

. In order to obtain the 

low - dimensional data representation, the input data is projected onto the 
eigenvectors of the covariance matrix  α   i  . As a result, the low - dimensional 
data representation  Y  is constructed according to the following equation: 
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∑∑ ∑α α α1 2, , , , ..., , , where  f  is the predefi ned 

kernel function (also used in the computation of the corresponding kernel 
matrix). 

 Since KPCA is a kernel - based method, the mapping performed by KPCA 
relies greatly on the choice of the kernel function  f , which includes the linear 
kernel (making KPCA equal to traditional PCA), the polynomial kernel 
(homogeneous) and polynomial kernel (inhomogeneous), and the Gaussian 
radial basis function (RBF) and sigmoid kernel  [65] . KPCA has been success-
fully applied in various fi elds, including speech recognition  [66]  and novelty 
detection  [67] , as well as  in silico  drug design  [68] . The practical application 
of KPCA is inherently limited by the size of the kernel matrix, i.e., due to the 
squared relationship between the number of input samples and the number 
of kernel matrix components. To effectively overcome this drawback, some 
approaches have recently been proposed, for example in Reference  69 .  

  15.4.1.2    DM  s      Originated from the dynamical system theory, DM frame-
work is a spectral clustering algorithm, which is principally based on determi-
nation of the Markov random walk on the graph  [5,70] . Following the algorithm, 
a specifi c measure of proximity between the input data points, also called dif-
fusion distance, is implicitly defi ned through a number of time steps using a 
random walk strategy. In the low - dimensional representation of the data, the 
pairwise diffusion distances have assiduously abided by the initial ones as 
well as possible. In the DM structure, a completely regular graph of the data 
is primarily constructed, then the weight coeffi cient  w ij   of the edges in the 
graph is computed accurately using the Gaussian kernel function, resulting

in the construction of a matrix  M  with eigencomponents:   w eij

x xi j

=
−

− 2

22σ , where 
 σ  indicates the variance of the Gaussian distribution. Subsequently, the nor-
malization of the obtained matrix  M  can be routinely performed in such a 
way that each row adds up to one. In result, a matrix denoted by  F  (1)  is 

completely formed by the following entries:   f
w

w
ij

ij

ik
k

1( ) =
∑ . Since the DMs 

originate from dynamical systems theory, the obtained matrix  F   (1)  can be rea-
sonably considered as the Markov matrix that, in dynamical process, defi nes 
the forward transition probability matrix. Hence, the matrix  F   (1)  represents 
the probability of a transition from the initial data point into the corre-
sponding feature space image during a single time step, while the forward 
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probability matrix for  t  time steps,  F  (   t   )  can be denoted by ( F (   1) )  t  . Using the 
random walk forward probability  f ij   (   t   ) , the diffusion distance can be uniquely 
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more weights to parts of the graph with a high density and can be easily 
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, where  m i   is the degree 

of node  x i   defi ned by   m fi ij
j

= ∑ . Based on the above equation, it is clearly seen 

that the pairs of data points with a high forward transition probability are 
characterized by short diffusion distances. The key underlying principle of 
such diffusion distance lies in the large number of paths passing through the 
graph that makes this algorithm more robust to excessive noise level as com-
pared with, e.g., the geodesic distance. In the low - dimensional representation 
of the data  D , diffusion tactic attempts to completely retain the estimated 
diffusion distances. In accordance to spectral theory related to the random 
walk, it can be clearly shown that the low - dimensional representation  D  that 
retains conceptually the diffusion distances can be completely formed by the 
 d  unique principal eigenvectors in the context of the corresponding eigenpro-
blem:  F   (   t   )  D    =    λ  D . As the graph is fully connected, the largest eigenvalue is 
trivial (viz,  λ  1    =   1), and its eigenvector  v  1  is then irretrievably discarded. 
Finally, the low - dimensional representation  Y  of the initial sample space  X  
can be successfully performed by a number of principal eigenvalues, which 
are commonly used to normalize the corresponding eigenvectors. Thus, in this 
representation, the normalized eigenvectors, in turn, determine accurately the 
low - dimensional data representation following the defi nition of  D  by D   =   { λ  2   ν   2 , 
 λ  3   ν   3 ,  …  ,  λ   d   +1   ν  d   +1 }.  

  15.4.1.3    MA  s      In contrast to a variety of the above - described methods of 
dimensionality reduction, MAs belong to a class of feedforward neural net-
works with an odd number of hidden layers  [6] . While the middle hidden layer 
consists of  f  nodes, both the input and the output layers are commonly rep-
resented by  F  nodes. During the learning process, the key goal of this network 
is to minimize the mean squared error  E r   observed between the input and the 
output neurons. In other terms, training the neural network on the data point 
 x i   leads ultimately to a network in which the middle hidden layer provides 
the  d  - dimensional representation of the input vector samples preserving as 
much information in the high - dimensional space  X  as possible. When the data 
point  x i   is used as the input neural signal, the low - dimensional representation 
 y i   can be readily obtained by extracting node values, which constitute the 
middle hidden layer of the network. It should be highlighted that in the case 
of using the linear activation functions, the algorithm becomes very similar 
to PCA  [71] . In order to allow the MAs to produce an NLM between the 
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high - dimensional and low - dimensional data points, the more powerful non-
linear activation functions can be effectively used, for example, sigmoid of 
hypertangent sigmoid. Due to the presence of a large number of synaptic 
weights, backpropagation strategy, widely applied for the neural net learning, 
converges slowly and is likely to get stuck in local minima. Fortunately, there 
are several approaches that can elegantly overcome this complication by 
performing a pretraining procedure using restricted Boltzmann machines 
(RBMs)  [72] . In more detail, RBMs are neural networks composed entirely 
of the binary and stochastic units/neurons, where the internal connections 
among the hidden units are completely closed. Thus, RBMs can be success-
fully applied for training neural networks with many hidden layers using a 
learning approach based on simulated annealing algorithm. Thus, if the RBM -
 based pretraining procedure is performed, a fi ne - tuning of the total network 
weights can be immediately achieved using backpropagation learning strat-
egy. As an alternative approach, genetic algorithms can also be effectively 
applied to train MAs  [73] .  

15.4.1.4 MDS   Among various approaches extensively applied in modern 
computational chemistry, molecular similarity is one of the most ubiquitous 
concepts  [74] . This technique is widely used to analyze and categorize the 
chemical data of different types, rationalize the behavior and functions of 
organic molecules, and design novel chemical compounds with improved 
physical, chemical, and biologic properties. Usually, for the analysis of large 
collections of organic compounds, structural similarities can be uniquely 
defi ned by the symmetric matrix that contains all the pairwise relationships 
among the molecules presented in the external data set. However, it should 
be especially noted, that such pairwise similarity metric is not generally accept-
able for numerical processing and visual inspection. A reasonable, workable 
solution to this methodological problem lies in embedding the input objects 
into a low - dimensional Euclidean space in a way that preserves the original 
pairwise proximities as faithfully as possible. There are at least two basic 
approaches, MDS and NLM, that effectively convert the input data points into 
a set of feature vectors that can subsequently be used for a variety of pattern 
recognition and classifi cation tasks. 

 MDS is a positional - refi nement linear technique of data mining that 
emerged from the practical need to visualize a set of objects described by 
means of the similarity or dissimilarity matrix. Initially, this method has origi-
nated in the fi eld of psychology and can implicitly be traced back to the pio-
neering works of Torgerson  [75]  and Kruskal  [76] . As described above, one 
of the toughest problems of dimensionality reduction methodology is to con-
struct the acceptable and adequate representation of input data points in the 
low - dimensional feature space based generally on information related to 
the distances among these data samples buried deeply in the input 
space. Generally, this method consist mainly of the collection of statistical 
techniques that jointly attempt to map a set of input data points scattered 
randomly across the high - dimensional space and described by means of the 
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dissimilarity matrix into the low - dimensional display plane in a way that pre-
serves their original pairwise interrelationships as closely as possible according 
to different similarity metrics, for example, classical Euclidean distances,  d ij  , 
between the input points  [75,76] . The quality of the mapping is usually 
expressed in the stress function, a measure of the error that occurred between 
the pairwise distances   in the low - dimensional and high - dimensional represen-
tation of the data. 

 In mathematical terms, the main principle of MDS can be readily disclosed 
in the following way. Let us determine the set of  κ  input objects: the symmetric 
matrix  d ij   is composed of dissimilarities between the examined objects, and a 
set of feature images is projected onto the  m  - dimensional display plane: { y i  , 
 i    =   1, 2,  … ,  k ;  y i      ∈     �   m  }. MDS painstakingly attempts to map vectors  y i   onto 
the feature plane in such a way that their metric distances, usually Euclidean 
distances  d ij     =    ||  y i      −     y j   || , approximate the corresponding values  d ij   as closely as 
possible. Each learning iteration consists chiefl y of calculating the similarity 
distances  δ   ij   observed between each pair of input points in a lower - dimensional 
trial confi guration and, using a steepest descent algorithm, shifting the posi-
tions of those points so as to create a new confi guration characterized by a 
smaller sum - of - squares difference between  δ   ij   and  d ij  . For this purpose, at least 
four major functions are currently used; these include Kruskal ’ s stress: 

  ζ
δ

δ
=

−( )
<

<

∑
∑

ij ij
i j

ij
i j

d 2

2
, Lingoes ’  alienation coeffi cient:   ζ

δ

δ
= −

⋅( )
<

<

∑
∑

1

2

2

ij ij
i j

ij
i j

d

, raw 

stress function:   φ Y x x y yi j i j
ij

( ) = − − −( )∑ 2
, and Sammon ’ s cost function: 

  φ Y
x x

x x y y

x xi j
ij

i j i j

i jij

( ) =
−

− − −( )
−∑ ∑1 2

, in which  ||  x i      −     x j   ||  is the Euclidean 

distance between the high - dimensional data points  x i   and  x j  , while the term 
 ||  y i      −     y j   ||  is the Euclidean distance between the low - dimensional feature points 
 y i   and  y j  . Sammon ’ s cost function radically differs from the raw stress expres-
sion at the expense of putting greater emphasis on retaining all the distances 
observed among the initial space including  “ minor ”  distances that were origi-
nally small and often hastily assigned to insignifi cant category by other com-
putational algorithms. 

 The actual embedding is commonly carried out in an iterative fashion by 
generating the initial set of coordinate  y i  , computing the distance  δ   ij  , and fi nding 
a new set of the feature coordinate  y i   using the steepest descent algorithm, such 
as Kruskal ’ s linear regression or Guttman ’ s rank - image permutation, as well 
as eigendecomposition of the pairwise distance matrix and the conjugate gradi-
ent or pseudo - Newton methods. Following the strategy, MDS learning cycle 
keeps repeating until the change in the applied stress function falls below some 
manually predefi ned or hardware - generated threshold value then learning pro-
cedure is completely terminated. There is a wide variety of MDS - based algo-
rithms, involving different cost functions and optimization schemes  [34] . 
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Particularly, MDS is commonly used for visualization of multidimensional 
complex data sets arising in various scientifi c disciplines, e.g., in fMRI   analysis 
 [77]  and in molecular modeling  [78] . The enduring popularity of MDS has 
already led to the development of some advanced powerful computational 
techniques, such as SPE (see Section  15.4.1.7 ), stochastic neighbor embedding 
(SNE)  [79] , and FastMap  [23] . 

 Despite huge successes, the substantial computational cost of traditional 
MDS makes this technique particularly crude or completely inapplicable to 
large data sets. Thus, because of the quadratic dependence on the number of 
objects scaled, current MDS algorithms are notoriously slow and their applica-
tion in modern combinatorial library designs is strictly limited to relatively 
small data sets. In more detail, the chronic failure of MDS lies mainly in the 
fact that it attempts to maximally preserve all the pairwise distances observed 
among the input data space, both local and signifi cantly remote. Indeed, given 
a large set of input samples, the immense symmetric matrix composed of a 
number of interrelationships ( proximities ) between the input objects, and a 
set of images projected onto a D  - dimensional display map, MDS diligently 
attempts to arrange each point of a future space across the whole future plane 
in such a way that their metric distances approximate the corresponding com-
ponents of the initial matrix as closely as possible. It is typically accomplished 
by minimizing an error function that measures the discrepancy between the 
input and output distances, such as Kruskal ’ s stress (see below). However, it 
has been widely known that many conventional similarity measures such as 
the Euclidean distance tend strongly to underestimate the proximity of data 
points within a nonlinear manifold, thereby leading to erroneous or anoma-
lous embeddings  [80,81] . 

 To partly overcome these incurable problems, several advanced variants of 
the basic MDS algorithm were recently developed based generally on hybrid 
architecture. For example, a family of algorithms that cunningly combine NLM 
techniques with several types of neural networks, including feedforward nets, 
which in turn make it possible for the MDS   to approximate very large data 
sets that are too complex and analytically intractable for conventional meth-
odologies, were vividly described  [49,82] . The developed approach directly 
employs an NLM algorithm to accurately project a randomly selected sample, 
and then  “ learns ”  the underlying transform recruiting one or more multilayer 
perceptrons   (MLPs) trained following the basic backpropagation learning 
principle. The resulting nonlinear maps can be effectively used to train a series 
of neural networks, using the specifi c similarity channel connected to a small 
number of reference structures from the training set as the input signal. The 
distinct advantage of this approach is that it captures the NLM relationships 
in an explicit function, thereby allowing the scaling of additional patterns as 
they become available, without the need to reconstruct the entire map.  

15.4.1.5 SVM   Recently, a relatively novel method has become popular in 
machine learning community  [13,83,84] , which seems to be both powerful and 
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versatile. This is the so - called SVMs (originally proposed in the 1960s by 
Vladimir Vapnik), which exists in classifi cation and regression fl avors. Due to 
a solid theoretical basis, it is actively pursued now for applicability in various 
areas and already found numerous applications in chemistry, biochemistry, 
and  in silico  drug discovery. 

 There exists a number of excellent introductions into SVM methodology, 
so we will only summarize the main ideas and terms of the approach (following 
our description  [85] ). 

 A particularly important feature of SVM is that it explicitly relies on  statisti-
cal learning theory  and directly addresses an issue of avoiding overfi tting. The 
key concept here is  structural risk minimization  (SRM) principle proposed by 
Vapnik and Chervonenkis in the early 1970s. 

 Suppose we have a set of  m  training data points {( x  1 ,  y  1 )  …  ( x   m  ,  y m  )} where 
 x  is a feature (descriptors;  X  is called input space) and  y m   is a class label, typi-
cally,  − 1 and 1 in binary classifi cation tasks. Suppose also that there exists an 
unknown probability distribution P( x , y), which describes a relation of fea-
tures to classes. Classifi cation attempts to associate the descriptors with classes 
by introducing prediction, or decision, function f( x ,  a ), which value changes 
from  − 1 to +1, dependent on class. The decision function parameter  a  is to be 
found  via  minimization of the functional of expected error:

    I a Q x a y P x y dxdy( ) = ( ) ( )∫ , , , ,  

where  Q ( x ,  a ,  y ) is the so - called loss function. For example, choice of 
 Q    =   ( y     −     f ( x ,  a )) 2  corresponds to common least squares estimate. 

 Evident problem is that the integral depends on the unknown true distribu-
tion  P  defi ned for the whole input space while all that we actually have is some 
sampling from that distribution, the training set. So for practical purposes, the 
integral should be replaced with sum over training points only, the so - called 
 empirical risk . 

 Notably, there could be a number of different functions that all give a good 
classifi cation for training patterns but may differ in predictions. Evidently, one 
should select such a decision function that would perform best not only at 
training set examples but also on previously unseen data, that is, has the best 
 generalization  ability. According to SRM, this may be achieved by minimizing 
both empirical risk and  confi dence interval , the last term is proportional to the 
ratio of model complexity (measured with the so - called  Vapnik – Chervonenkis 
dimension ) to the number of training data points. Omitting mathematical 
details, SRM states that optimal classifi er is given by a trade - off between 
reduction of the training error and limiting model complexity, whence limiting 
chances for overfi tting. 

 Consider an example of classifi cation in two - dimensional input space (Fig. 
 15.3 ). Given the depicted training set, both solid and dashed separation lines 
are acceptable; which one is better? Intuitively, it is clear that the better gen-
eralizing is given by the line that is less sensitive to small perturbations in 
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placement of data points; this is a solid line on Figure  15.3 . More broadly, the 
decision line or hyperplane must lie maximally far apart from the training 
points of different classes. This is exactly what follows from SRM and what 
constitutes the essence of SVM: the optimal classifi er is the one providing the 
largest  margin  separating the classes (margin is defi ned as the sum of shortest 
distances from decision line to the closest points of both classes). Geometrically, 
the optimal line bisects the shortest line between the convex hulls of the two 
classes.   

 Notably, it appears that a relatively small number of data points, which are 
closest to the line (i.e., which lie on the margin; they are called  support vectors  
[SVs]), are completely enough to determine the position of optimal separation 
line ( optimal separation hyperplane  [OSH] for high - dimension case). 

 Both SVs and OSH can be found by solving quadratic programming pro-
blem. If separating hyperplane is  Wx    +    b    =   0, which implies  y i  ( Wx i     +   b)    ≥    1, 
 I    =   1  …   m , the decision is found by minimization Euclidian norm ½ ||  W  ||  2 :

    W y xi i i
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.   

 Only if the corresponding Lagrange multiplier  α   i      >    0, this  x i   is an SV  x . 
After minimization, decision function is written as

    f x sgn y x x bi i i
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⎞
⎠⎟=
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1

.   

 Note that only a limited subset of training points, namely SVs, do contrib-
ute to the expression. 

 In linearly inseparable case, where no error - free classifi cation can be 
achieved by hyperplane, there still exist two ways to proceed with SVM. 

Margin

     Figure 15.3     SVM classifi cation principle. From the two possible linear discriminant 
planes (left), the best selection is one maximizing the margin (right).  
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 The fi rst one is to modify linear SVM formulation to allow misclassifi cation. 
Mathematically, this is achieved by introducing classifi cation - error ( slack ) 
variables   ξ  i      >    0 and minimizing the combined quantity

    
1
2

2

1

W C i
i

m

+
=
∑ξ ,  

under the constraint defi ned as  y i  ( Wx i     +    b )    ≥    1    −      ξ  i  ,  I    =   1  …   m . Here, the 
parameter  C  regulates a trade - off between minimization of training error and 
maximization of margin. Such approach is known as  soft margin technique . 

 Another way is  nonlinear SVM , which achieved a great deal of attention in 
the last decade. The most popular current approach is  “ transferring ”  data 
points from the initial descriptor space to space of higher dimension, which is 
derived by adding new degrees of freedom through nonlinear transformations 
of initial dimensions. The hope is that nonlinear in original space problem may 
become linear in higher dimensions, so that linear solution technique becomes 
applicable. 

 Importantly, direct transfer of the points from original to higher - 
dimensionality space is even not necessary, as all the SVM mathematics deals 
with dot products of variables ( x  i ,  x  j ) rather than with variable values  x  i ,  x  j  
itself. All which is necessary is to replace dot products ( x  i ,  x  j ) with their higher -
 dimensionality analogues, functions  K ( x  i ,  x  j ) expressed over  original  variable 
 x . The suitable function  K  is called  kernel , and the whole approach is known 
as the  kernel trick . Decision function in this case is written as

    f x sgn y K x x bi i i
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 The most common kinds of kernels are

    K x x x xi j i j
d, , ,( ) = +( ) −1 polynomial  

    K x x r x xi j i j, exp ,( ) = − −( ) −2 RBF  

    K x x x x ai j i j,( ) = ( ) +( ) −sigmoid two-layer perceptron.η   

 Finally, let us list the main SVM advantages: 

  1.     We can build any complex classifi er and the solution is guaranteed to be 
the global optimum (no danger of getting stuck at local minima). It is a 
consequence of quadratic programming approach and of the restriction 
of space of possible decisions.  

  2.     There are few parameters to elucidate. Besides the main parameter  C , 
only one additional parameter is needed to determine polynomial or 
RBF kernels, which typically (as can be judged from literature) demon-
strate high classifi cation power.  
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  3.    The fi nal results are stable, reproducible, and largely independent of 
optimization algorithm. Absence of random constituent in SVM scheme 
guarantees that two users, which applied the same SVM model with the 
same parameters to the same data, will receive identical results (which 
is often not true with artifi cial neural networks).    

 In addition to topical application of SVM methodology toward various 
fi elds related to dimensionality reduction and pattern recognition, such as 
character recognition and text classifi cation, SVM is currently widely used for 
the analysis of chemical data sets. For example, L ’ Heureux et al  .  [86]  tested 
the ability of SVM, in comparison with well - known neural network tech-
niques  , to predict drug - likeness and agrochemical - likeness for large compound 
collections. For both kinds of data, SVM outperforms various neural networks 
using the same set of descriptors. Also, SVM was used for estimating the 
activity of carbonic anhydrase II (CA II) enzyme inhibitors; it was found that 
the prediction quality of the SVM model is better than that reported earlier 
for conventional quantitative structure activity relationships (QSAR). 

 Balakin et al.  [35]  effectively used a radial basis SVM classifi er for the sepa-
ration of compounds with different absorption, distribution, metabolism, and 
excretion (ADME) profi les within the Sammon maps (Fig.  15.4 ). To sum up, 
SVMs represent a powerful machine learning technique for object classifi ca-
tion and regression analysis, and they offer state - of - the - art performance. 
However, the training of SVM is computationally expensive and relies on 
optimization.     

  15.4.2   Local Techniques 

 Advanced mapping techniques described above are intended to embed global 
structure of input data into the space of low dimensionality. In contrast to this 
formulation, local nonlinear methods of dimensionality reduction are based 

Figure 15.4     Nonlinear Sammon models developed for compounds with different 
ADME properties supported by SVM classifi cation: (A) human intestinal absorption, 
(B) plasma protein binding affi nity, and (C)  P  - gp substrate effi cacy. HIA   =   human 
intestinal absorption; PPB   =   plasma protein binding.  
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solely on preserving structure of small neighborhood of each data point. The 
key local techniques include LLE, Laplacian eigenmaps, HLLE, and LTSA. 

 Of note, local techniques for dimensionality reduction can be freely viewed 
in the context of specifi c local kernel functions for KPCA. Therefore, these 
techniques can be cleverly redefi ned using the KPCA framework  [87,88] . 

  15.4.2.1    LLE      LLE is a simple local technique for dimensionality reduc-
tion, which is generally similar to IsoMap algorithm in relying on the nearest 
neighborhood graph representation of input data points  [12] . In contrast to 
IsoMap, LLE attempts to preserve solely the local structure of multivariate 
data. Therefore, the algorithm is much less sensitive to short - circuiting than 
IsoMap. Furthermore, the complete preservation of local properties often 
leads to successful embedding of nonconvex manifolds. 

 In formal terms, LLE tries to modify the local properties of the manifold 
around the processed data sample  x i   by representing the data point as a linear 
combination  w i   (the so - called reconstruction weight coeffi cients) of its  k  -
 nearest neighbor  x ij  . Hence, using the data point  x i   and a set of its nearest 
neighbors, LLE fi ts a hyperplane, making the bold assumption that the mani-
fold is locally linear (the reconstruction weight  w i   of the data point  x i   is 
completely invariant to space rotation and translation, as well as rescaling). 
Due to the invariance, any linear mapping of the hyperplane into a low -
 dimensional space faithfully preserves the reconstruction weights within 
the space of lower dimensionality. In other words, if the local topology and 
geometry of the manifold are largely preserved in low - dimensional data rep-
resentation, the reconstruction weight coeffi cient  w i  , which explicitly manipu-
lates the data point  x i   and its adjacent array in high - dimensional data 
representation, also reconstructs the data point  y i   from its neighbors in low -
 dimensional space. 

 The main idea of LLE is to fi nd the optimal  D  - dimensional data 
representation  F  by adaptive minimization of the cost function: 
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( ) = −
⎛
⎝⎜

⎞
⎠⎟=

∑∑
1

2

. It can be clearly shown that  φ ( F )   =   ( F     −     WF ) 2    =    

F T  ( I     −     W )  T  ( I     −     W ) F  is the common function that should to be further mini-
mized. In this conventional formulation,  I  is the  n     ×     n  identity matrix. Hence, 
the target coordinates of the low - dimensional representations  y i   that minimize 
the cost function  φ ( F ) can be easily found by computing the eigenvectors of 
( I     −     W )  T  ( I     −     W ) corresponding to the smallest  d  nonzero eigenvalues of the 
inproduct of ( I     −     W ) from the solution set. 

 LLE has been successfully applied in various fi elds of data mining, includ-
ing a super - resolution task  [89]  and sound source localization  [90] , as well as 
chemical data analysis  [86] . Reportedly, LLE demonstrated poor performance 
in chemoinformatics. For example, this method has recently been reported to 
persistently fail in the visualization of even simple synthetic biomedical data 
sets  [91] . It was also experimentally shown that in some cases, LLE performs 



446 DIMENSIONALITY REDUCTION TECHNIQUES 

worse than IsoMap  [92] . Probably, this may be attributed to the extreme sen-
sitivity of LLE learning algorithm to  “ holes ”  in the manifolds  [12] .  

  15.4.2.2    HLLE      HLLE is an advanced variant of the basic LLE tech-
nique that minimizes the curvilinear structure of high - dimensional manifold 
by embedding it into a low - dimensional space  , making a hypothetical 
assumption that the low - dimensional data representation is locally isometric 
 [8] . The basic principle of HLLE lies in the eigenanalysis of a matrix  Ω  that 
describes the curviness of the manifold determined around the processed 
data points, which is directly measured by means of the local Hessian. The 
key aspect of the local Hessian sack constructed in a local tangent space at 
the data point is invariance to differences in positions of the data points 
processed. It can be straightforwardly shown that the target low - dimensional 
coordinates can be easily found by performing an eigenanalysis of the core 
matrix  Ω . The algorithm starts with identifying the  k  - nearest neighbors for 
each data point  x i   based on Euclidean distance. Then, the local linearity of 
the manifold through the  x i   nearest neighborhood is conservatively assumed. 
Hence, a principal basis describing a local tangent space at the data point 
 x i   can be readily constructed using PCA performed across the  k  - nearest 
neighbor  x ij  . In mathematical terms, a basis for the local tangent space for 
every data point  x i   can be routinely determined by computing the  d  prin-
cipal eigenvectors  M    =   { m  1 ,  m  2 ,  …  ,  m d  } of the covariance matrix   cov x xij ij−
. It should be particularly noted that the above formulation strongly requires 
the following rigid restriction:  k     ≥     d . Subsequently, an unbiased machine 
estimator for the Hessian sack of the manifold at point  x i   in local tangent 
space coordinates is explicitly computed. For the practical realization of 
this computational task, the matrix  Z i   is then meticulously formed. 
Containing ( in the columns ) all the cross products of  M  up to the  d th order 
( including a column with ones ), this matrix becomes orthonormalized after 
applying the Gram – Schmidt procedure. The expression of the tangent 
Hessian  H i   can be further assayed by the transpose of the last   12 1d d +( ) 
columns of the orthonormalized matrix  Z i  . Using Hessian estimators in 
local tangent coordinates, the core matrix  Ω  can then be easily con 

structed basedon Hessian entries   H H Him i jl i jm
ji

= ( ) × ( )( )∑∑ . Consequently,  

the target matrix contains information related to the curviness of high - dimen-
sional data manifold. Thus, the eigenanalysis of the matrix  Ω  is performed 
mainly in order to fi nd the low - dimensional data representation that appro-
priately minimizes the curviness of the manifold, while the eigenvectors 
corresponding to the  d  smallest nonzero eigenvalues of matrix  Ω  are selected 
and, in turn, construct the feature matrix  Y , which contains a low - dimen-
sional representation of the input data space.  

  15.4.2.3   Laplacian Eigenmaps     Laplacian eigenmap algorithm  [7]  pre-
serves local data structure by computing a low - dimensional representation of 



NONLINEAR TECHNIQUES FOR DIMENSIONALITY REDUCTION 447

the data in which the distances between a data point and its  k  - nearest neigh-
bors are minimized as far as possible. To describe a local structure, the 
method uses a simple rule: The distance in the low - dimensional data repre-
sentation between the data point and the fi rst nearest neighbor contributes 
more to the cost function than the distance to the second nearest neighbor. 
Thus, the minimization of the cost function that can be formally defi ned as 
the key eigenproblem is effortlessly achieved in the context of spectral graph 
theory. Initially, the algorithm constructs the neighborhood graph  G  in which 
every data point  x i   is directly connected to its  k  - nearest neighbors. Then, 
using the Gaussian kernel function, the weight of the edge can be easily 
computed for all the data points  x i   and  x j   constructing the graph  G , thereby 
leading to a sparse adjacency matrix  W . During the computation of the low -
 dimensional representation  y i  , the core function can be strictly defi ned as 
  φ Y y y wi j ij

ij

( ) = −( )∑ 2 , where the large weight  w ij   corresponds to small 

distances between the processed data points  x i   and  x j  . Therefore, the potential 
difference between their low - dimensional representations  y i   and  y j   highly 
contributes to this cost function. As a consequence, nearby points in the high -
 dimensional space are also brought closer together in the low - dimensional 
representation. 

 In the context of the eigenproblem, the computation of the degree matrix 
 M  and the graph Laplacian  L  of the graph  W  jointly formulate the minimiza-
tion task postulated before, so that the degree matrix  M  of  W  is a diagonal 

matrix, whose entries are the row sums of  W  (i.e.,   m wij ij
j

= ∑ ), whereas the 

graph Laplacian  L  can be easily computed using the following defi nition: 
 L    =    M     −     W . Summarizing these basic postulates, the cost function can be

further redefi ned in
   

φ Y y y w Y LYi j ij
ij

T( ) = −( ) =∑ 2 2 .
 
Therefore, the minimi-

zation of the  φ ( Y ) can then be performed equivalently by minimizing 
the  Y T LY . Finally, for the  d  smallest nonzero eigenvalues, the low - dimen-
sional data representation  Y  can subsequently be found by solving the genera-
lized eigenvector problem defi ned as  L ν     =    λ  M ν  . Summing up the aspects and 
advantages listed above, we can reasonably conclude that Laplacian eigen-
maps represents at least not less powerful computational technique for low -
 dimensional data representation compared with LLE. It can be successfully 
applied in various fi elds of data mining, including chemoinformatics.  

  15.4.2.4    LTSA      LTSA, a technique that is quite similar to HLLE, attempts 
to screen local properties within the high - dimensional data manifold using the 
local tangent space of each data point  [9] . The fundamental principle of LTSA 
lies in the following statement: [being artifi cially restricted by the key assump-
tion of local linearity of the manifold] there exists a linear mapping from a 
high - dimensional data point to its local tangent space; also, there exists a linear 
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mapping from the corresponding low - dimensional data point to the same local 
tangent space  [9] . Thus, LTSA attempts to align these linear mappings in such 
a way that they construct a local tangent space of the manifold from a low -
 dimensional representation. In other words, the algorithm simultaneously 
searches for the feature coordinates of low - dimensional data representations 
as well as for the linear mappings of low - dimensional data points to the local 
tangent space of high - dimensional data. Similar to HLLE, the algorithm starts 
with computing specifi c bases (partly resembling Hessian sacks) for the local 
tangent spaces at data point  x i  . This can be successfully achieved by applying 
PCA toward the  k  data point  x ij   that   are neighbors of the data point  x i   results 
in a mapping ( M i  ) from the neighboring set of  x i   to the local tangent space  
Ω   i  . The most unique trait of this space lies in the existence of the linear 
mapping  L i   from the local tangent space coordinates  x ij   to the low - dimensional 
representations  y ij  . Using this property, LTSA performs the following minimi-
zation:   min

,Y L
i k i i

ii i

Y J L� −∑ Ω 2, where  J k   is the centering matrix of size  k   [67] . 

It can be mathematically shown that the target solution of the posed minimi-
zation problem can be found readily using the eigenvectors of an align-
ment matrix  B  that correspond to the  d  smallest nonzero eigenvalues of  B . 
For one turn, the components of the alignment matrix  B  can then be 
obtained as a result of iterative summation across all the matrices  V i   start-
ing from the initial values of  b ij     =   0, for   ∀  ij  . It can also be shown that 
  BN N BN N J I V V Ji i i i k i i

T
k= + −( ) , where  N i   is the selection matrix that con-

tains the indices of the nearest neighbors around the data point  x i  . Finally, the 
low - dimensional representation  Y  can be readily obtained by computation of 
the eigenvectors of the symmetric matrix   1

2 B BT+( )  that correspond to the  d  
smallest nonzero eigenvectors. LTSA have been successfully applied to solving 
various data mining tasks occurring widely in the chemoinformatic fi eld, such 
as the analysis of protein microarray data  [93] .  

  15.4.2.5   Global Alignment of Linear Models     In contrast to the sections 
presented previously, where we have willingly discussed two major approaches 
to construction of a low - dimensional data representation by preserving the 
global or local properties of input data, the current section briefl y describes 
key mapping techniques widely used for performing the global alignment of 
linear models, computing the corresponding number of linear models, and 
constructing a low - dimensional data representation by aligning the linear 
models obtained. 

 Among a small number of methods targeted for the global alignment of 
linear models, LLC is a hugely promising technique broadly used for dimen-
sionality reduction  [10] . The bright idea of this method lies in computing the 
set of factor analyzers (see Section  16.3   ) by which the global alignment of 
the mixture of linear models can be subsequently achieved. The algorithm 
mainly proceeds in two principal steps: (1) computing the mixture of factor 
analyzers for the input data set by means of an expectation maximization 
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(EM) algorithm and (2) subsequent aligning of the constructed linear models 
in order to obtain a low - dimensional data representation using a variant of 
LLE. It should be especially noted that besides LLC, a similar technique 
called manifold charting has also been developed recently on the bias of this 
common principle  [24] . 

 Initially, LLC recruits a group of  m  factor analyzers using the EM algorithm 
 [94] . Then, the obtained mixture outputs the local data representation  y ij   and 
corresponding responsibility  r ij   (where  j     ∈    {1,  …  ,  m }) for every input data 
point  x i  . In meticulous detail, the responsibility  r ij   describes the connection 
between extent data point  x i   and the linear model  j , so it trivially satisfi es 

  rij
i

=∑ 1. Using the set of estimated linear models and the corresponding 

responsibilities, responsibility - weighted data representations  w ij     =    r ij y ij   can be 
readily computed and stored in an  n     ×     mD  block matrix  W . The global align-
ment of the linear models is then performed based on matrix  W  and matrix 
 M  defi ned by  M    =   ( I     −     F )  T  ( I     −     F ), where  F  is the matrix containing the recon-
struction weight coeffi cients produced by LLE (see Section  15.4.2.1 ), and  I  
denotes the  n     ×     n  identity matrix. LLC analyzes a set of linear models by 
solving the generalized eigenproblem  A ν     =    λ  B ν   for the  d  smallest nonzero 
eigenvalues. In this equation,  A  denotes the inproduct of  M T W , whereas  B  
denotes the inproduct of  W . It can easily be shown that  d  eigenvector  v i   com-
puted from the matrix  L  uniquely defi nes a linear mapping projection from 
the responsibility - weighted data representation  W  to the underlying low -
 dimensional data representation  Y . Finally, the low - dimensional data repre-
sentation can be obtained immediately by computing the following equation: 
 Y    =    WL .    
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  16.1   INTRODUCTION 

In silico  pharmacology is a growing scientifi c area that broadly covers the 
development of various computational techniques for capture, analysis, and 
integration of the biologic and medical data from various diverse sources  [1,2]   . 
The key advantage of these computational methods is the possibility to sig-
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nifi cantly increase the number of potentially active molecules selected from 
databases as compared with a simple random selection  [3] . Such models are 
currently routinely used for discovery and further optimization of novel com-
pounds with specifi c activity toward different biologic targets; for addressing 
absorption, distribution, metabolism, and excretion (ADME) issues; cellular 
or organ - specifi c toxicity; physicochemical characterization; and so on. A 
variety of advanced computational algorithms and methods have been effec-
tively applied recently in medicinal chemistry for dimensionality reduction 
and visualization of the chemical data of different types and structure  [4] , for 
example, in diversity analysis  [5,6]  and quantitative structure activity relation-
ship (QSAR) modeling  [7,8] . The majority of these computational models are 
commonly based on the basic principles of dimensionality reduction and 
mapping. In turn, dimensionality reduction is an essential computational tech-
nique for the analysis of a large - scale, streaming and tangled data. 

 Humans can visualize very complex data to differing degrees depending 
upon individual memory. However, probably since prehistoric times, humans 
have also relied on maps to visualize very complex coordinates and topologies, 
as well as their relationship to the world. It is only since relatively recent times 
that we have turned our attention to mapping the universe at the molecular 
scale, and specifi cally determining the different molecules that inhabit this 
 “ space ”   [9 – 11] . Starting with the molecules themselves is just the beginning 
as one would also need to consider the physicochemical properties and the 
interactions with different biologic systems, an incredibly complex and over-
whelming amount of information. The classical methods of dimensionality 
reduction, for example, principal component analysis (PCA) and multidimen-
sional scaling (MDS), are not specifi cally adapted for large data sets and 
 “ straight ”  mapping. Therefore, there is a growing interest in novel soft - 
computing approaches that might be applicable to the analysis of such data 
sets providing a comprehensive visualization. As we shall see, some advanced 
mapping methods derive from our understanding of the neural networks 
involved in image perception by the primary visual cortex of the human brain.  

  16.2   ADVANCED COMPUTATIONAL TECHNIQUES FOR 
CHEMICAL DATA MINING 

  16.2.1   Preamble 

 Among the various dimensionality reduction techniques that have been 
recently described in the scientifi c literature, nonlinear and self - organizing 
mappings (SOMs) are the unique techniques due to their conceptual simplicity 
and ability to effectively reproduce the topology of the input data space in a 
faithful and unbiased manner. The fi rst method was initially designed to repro-
duce high - dimensional coordinates to the space of relatively low dimension 
based on distance measurement or similarity matrix, whereas the self - 
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organizing methodology implicitly uses the basic neural network principles, 
which can be successfully applied to construct a visual abstraction by means 
of rapid prototyping. In the fi rst technique, the dimensionality reduction is 
generally achieved by reconstructing a low - dimensional coordinate set directly 
computed from a higher - dimensional representation and stored in the distance 
matrix; in the latter one, the original property vectors are mapped onto a two -  
or three - dimensional cell array arranged in a way that preserves the internal 
topology, whole structure, and density distribution of the original data set. 
Such representations can be successfully used for a variety of pattern recogni-
tion and classifi cation tasks, including  in silico  drug design.  

  16.2.2   Nonlinear Sammon Mapping 

 Among various approaches extensively applied in modern computational 
chemistry, molecular similarity is one of the most ubiquitous concepts  [12] . 
This technique is widely used to analyze and categorize the chemical data of 
different types, rationalize the behavior and functions of organic molecules, 
and design novel chemical compounds with improved physical, chemical, and 
biologic properties. Usually, for the analysis of large collections of organic 
compounds, structural similarities can be uniquely defi ned by the symmetric 
matrix that contains all the pairwise relationships among the molecules pre-
sented in the external data set. However, it should be noted that such a pair-
wise similarity metric is not generally acceptable for numerical processing and 
visual inspection. A reasonable, workable solution to this methodological 
problem lies in embedding the input objects into a low - dimensional Euclidean 
space in a way that preserves the original pairwise proximities as faithfully as 
possible. There are at least two basic approaches, MDS and nonlinear mapping 
(NLM), that effectively convert the input data points into a set of feature 
vectors that can subsequently be used for a variety of pattern recognition and 
classifi cation tasks. 

 NLM is an advanced machine learning technique for improved data mining 
and visualization. This method, originally introduced by Sammon  [13] , repre-
sents a multivariate statistical technique closely related to MDS. Just like 
MDS, the main objective of the Sammon approach is to approximate local 
geometric and topological relationships on a visually intelligible two -  or three -
 dimensional plot, whereas the fundamental idea of this method is to substan-
tially reduce the high dimensionality of the initial data set into the low - dimension 
feature space, regardless of the number of dimensions from which it is 
constructed. 

 NLM can be metric or nonmetric, and is therefore equally applicable to 
a wide variety of input data. The basic difference between MDS and NLM 
is in the minimization procedure. The classical Sammon algorithm attempts 
to closely approximate global geometric relationships observed across the 
whole space of input vector samples basically in a two -  or three - dimensional 
representation. Sammon mapping strongly resembles the MDS algorithm; 
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the process starts from a given fi nite set of  n N  - dimensional vector sam-
ples  : { x i  ,  i    =   1,2,  …  ,  k ;  x i      ∈     �   N  }. A distance function between input data 
points  x i   and  x j   is randomly selected in the initial space then is simply cal-
culated by   d d x xij i j* ,= ( ); a target set of  n  images of  x i   projected onto the  M  - 
dimensional feature space  F : { y i  ,  i     =   1,2,  … ,  k ;  y i      ∈     �   M  } and a distance function 
between feature vectors  y i   and  y j   are also calculated by  d ij     =    d ( y i  ,  y j  ). For 
conceptual distance measurement, several space metrics can be effectively 
used, such as Euclidean or Manhattan distances. The main idea of Sammon 
mapping is to optimally arrange the feature images  y i   within the whole 
display feature plane in such a way that their Euclidean distances  d ij     =    
d ( y i  ,  y j  ) approximate as closely as possible to the corresponding original 
values   d d x xij i j* ,= ( ). This projection, which can only be made approximately, 
can be successfully carried out in an iterative fashion by minimizing the 
error function,  E ( k ), which in turn thoroughly estimates the deviation be-
tween similarity distances calculated for the original and projected/feature 
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 The Sammon algorithm is arguably the most commonly used approach for 
accurate dimensionality reduction, but the main problem arising from the 
aforementioned techniques is that it too does not scale well with the size of 
the input data set. Although nonlinear scaling becomes more problematic as 
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the original dimensionality of the input space increases, the internal structure 
and topology of the data are very frequently refl ected successfully on the 
resulting map. Several attempts have recently been undertaken to reduce the 
complexity and diffi culty of the task. For example, Chang and Lee  [14]  
proposed a heuristic relaxation approach in which a learning subject of the 
original objects (the frame) is progressively scaled using a Sammon - like 
methodology, and the remaining objects are then placed to the map by adjust-
ing their distances to the frame objects already embedded into a low - 
dimensional feature plane. Several other modifi cations were also introduced 
and validated  [15 – 17] . 

 To resolve this unwanted problem, a new variant of the original Sammon 
algorithm was recently developed by Agrafi otis  [5]  based on the combined 
self - organized and nonlinear principles. The method belongs to the family of 
nonmetric algorithms, and therefore, it can be equally applicable to a wide 
variety of input data. Thus, it is especially useful when the (dis)similarity 
measure is not a true metric, i.e., it does not obey the fundamental distance 
postulates and, in particular, the triangle inequality, such as the Tanimoto 
coeffi cient. Although an  “ exact ”  projection is only possible when the distance 
matrix is positive, meaningful projections can be readily obtained even when 
this criterion is not completely satisfi ed. In this case, the quality of the space 
approximation is generally determined by a sum - of - squares error function 

such as Kruskal ’ s stress:   ζ =
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NLM over the Kohonen network is that they often provide much greater 
detail about the individual compounds and the corresponding interrelation-
ships as demonstrated by the following example. The target projection was 
carried out entirely using a set of 12 - dimensional autocorrelation descriptors 
and the Euclidean metric as a pairwise measure of dissimilarity among the 
examined structures including xanthene, cubane, and adamantane libraries 
 [18] . The resulting two - dimensional plane is shown in Figure  16.1 .   

 It is also quite possible to use a multilayer backpropagation neural network 
with  n  input and  m  output neurons ( m    =   2, 3). In this case, a nonlinear output 
can be directly used as neural net input resembling hybrid neural nets  [19] . 
Results of numerical artifi cial simulation and real data show that the proposed 
technique is a promising approach to visualize multidimensional clusters by 
mapping the multidimensional data into a perceivable low - dimensional space. 
More recently, Agrafi otis and Lobanov slightly modifi ed this method  [20] . 
Instead of using the full data set, they have suggested to train a feedforward 
neural network to learn the projection obtained from conventional NLM of a 
subset of the total data. The trained network can subsequently be used to 
approximate the whole compound set. Based on modifi cation of the key simi-
larity function, several variants of the basic Sammon algorithm were recently 
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developed by Agrafi otis  [5] . As a result, a new family of projection algorithms 
that cleverly combine a stochastic search engine with a user - defi ned objective 
function that encodes any desirable selection criterion was developed and 
experimentally evaluated. 

 A wide number of different statistical problems can be effectively solved 
using the Sammon methodology. For example, a new method for analyzing 
protein sequences was also introduced by Agrafi otis  [21]  based on the Sammon 
NLM algorithm When applied to a family of homologous sequences, this 
method is quite able to capture the essential features of the similarity matrix 
and provides a faithful representation of chemical or evolutionary distance in 
a simple and intuitive way. The key merits of the new algorithm were clearly 
demonstrated using examples from the protein kinase family. This algorithm 
was also investigated as a means of visualizing and comparing large compound 
collections, represented generally by a set of various molecular descriptors 
 [22] . 

 Thus, it can be objectively concluded that the NLM strategy is very useful 
to represent a multidimensional data distribution in an intuitively intelligible 
manner. Unlike PCA, NLM preserves the spatial relationships among all the 
objects studied. However, NLM cannot be directly used to predict the position 
of new external objects because each axis of the constructed plot is not station-
ary and represents per se  a nonlinear combination of the original variables. 

Figure 16.1     A nonlinear projection of the xanthene (A), admantane (B), and cubane 
(C) libraries.  



ADVANCED COMPUTATIONAL TECHNIQUES 463

Furthermore, the projection onto the two -  or three - dimensional plane only 
makes sense if a majority of the variance is contained in few dimensions.  

  16.2.3   Self - Organizing Kohonen Maps 

 At least two different methods of self - organizing neural - based mapping are 
currently applied for dimensionality reduction as well as feature selection and 
topographic structure representation. The fundamental conception of self -
 organizing methodology initially originates from the experiments related to 
the investigation of the mechanism of image construction into realistic primary 
visual cortex of the human brain. Willshaw and von der Malsburg were pio-
neers in this fi eld who developed one of the fi rst computational models in 
which artifi cial neurons were tightly packed into the two interrelated lattices 
(Fig.  16.2 A)  [23] .   

 As shown in Figure  16.2 A, the  “ input ”  lattice is projected ingeniously onto 
the second two - dimensional plane by the corresponding synaptic route of 
weight coeffi cients. The fi rst lattice is simply constructed by the presynaptic 
neurons, while the second lattice consists of postsynaptic neurons, which are 
not formally assigned in accordance with the common principle —  “  winner 
takes all    (WTA). ”  Following both the  short -   and  long - range inhibitory mecha-
nisms , neuron weights attached to the postsynaptic surface are adjusted itera-
tively by the Hebb learning rule until the optimal values are reached. As a 
result, the increase of one synaptic weight directly leads to the decrease of 
others. Finally, it should be especially noted, that the described model is 
applicable solely for pattern recognition when the dimension of the input 
signal correlates closely to the dimension of the output feature image. 

Winning
neuron

Input signal

Two-dimensional image

of postsynaptic weights

Synaptic route of

weight coefficients

Active

neuron

A B

     Figure 16.2     (A) A Willshaw – Malsburg ’ s model of the self - organizing mapping; 
(B) a Kohonen - based approach for dimensionality reduction.  
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 The second fundamental methodology of neural mapping based on the 
self - organizing strategy is schematically outlined in Figure  16.2 B. This model, 
originally introduced by Teuvo Kohonen in 1988  [24] , allows one to construct 
a low - dimensional topological representation of a high - dimensional data set 
by the optimal fi xed amount of codebook feature vectors. Based primarily on 
the vector quantization  (VQ) strategy, these weight vectors are adjusted itera-
tively to the components of the input vector objects producing an intuitively 
comprehensible two -  or three - dimensional topological map. The SOM is one 
of the most popular and widely used neural network architectures. It is a 
powerful tool for visualization and data analysis that can be successfully 
applied in various scientifi c domains. Due to the limited space in the current 
chapter, we cannot dwell on this algorithm in too much detail. Briefl y, the 
fundamental idea of SOMs lies in embedding a set of vector samples onto a 
two -  or three - dimensional lattice in a way that preserves the relative topology 
and cluster structure of the original high - dimensional space. In the output, 
samples that are located close to each other in the input space should be 
closely embedded in the topologically isomorphic resulting space. Initially, all 
the Kohonen neurons receive identical input, and by means of lateral interac-
tions, they compete among themselves. 

 The SOM algorithm has attracted a great deal of interest among researches 
in a wide variety of scientifi c fi elds. To the present day, a number of variants 
and different modifi cations of SOM have been developed and, perhaps most 
importantly, it has been extensively applied in various scientifi c disciplines 
ranging from engineering sciences to chemistry, medicine, biology, economics, 
and fi nance. From a biologic point of view, the Kohonen network is also bio-
logically plausible just as in Willshaw – Malsburg ’ s model  [25,26] . In nature, the 
original prototype of this model is neatly presented in various brain structures 
to provide an ordered low - dimensional internal representation of the external 
complex information fl ow. Thus, self - organizing Kohonen maps were origi-
nally designed as an attempt to model intelligent information processing, i.e., 
the ability of the brain to form reduced representations of the most relevant 
facts and observations without signifi cant loss of information about their inter-
relationships and a common topology. From a functional point of view, SOM 
resembles closely the VQ algorithm previously described by Linde et al.  [27] , 
which accurately approximates, in an unsupervised way, the probability density 
functions of a vector of input variables by a fi nite set of reference vectors with 
the sole purpose of providing a low - dimensional data representation by using 
a nearest - neighbor rule. In the Kohonen network, a learning process is fi rmly 
based on unsupervised logic then the target residential property is not consid-
ered within the training procedure  . In contrast to supervised neural networks, 
SOM neurons are homogeneously arranged within the space spanned by a 
regular grid composed of many processing units (Kohonen neurons) in which 
the adaptation/learning process is generally performed by some predefi ned 
neighborhood rules. It produces both an iterative quantization of codebook 
vectors and an ordered representation of the original input data distribution. 
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In addition, since each neuron has well - defi ned, low - dimensional coordinates 
over the whole Kohonen lattice, SOM can also be properly considered as a 
backfi tting two -  or three - dimensional projection algorithm. 

 In an unsupervised environment, self - organizing maps can reasonably be 
assigned to a class of neural networks that are commonly based on a competi-
tive learning principle also widely known as a self - organizing methodology or 
network  [28] . In the basic variant of SOM, high - dimensional data are cleverly 
mapped onto a two - dimensional rectangular or hexagonal lattice of neurons 
in such a way as to preserve the internal topology and cluster structure of the 
original input space. The mapping implemented by the SOM algorithm can 
be mathematically formalized in the following manner: assume that the initial 
set of the input variables { x } is formally defi ned as a real input vector  x    =   [ x1,
x2, …  ,  xN ] T     ∈     �N  and that each element located in the SOM array is directly 
associated with the parametric reference vector ( synaptic weight vector ): 
w    =   [ w1 ,  w2 ,  …  ,  wN ] T     ∈     �N . As a role, some predefi ned arbitrary values 
assigned to the initial synaptic weight coeffi cients are initially randomly gener-
ated (they should, however, not be too different from the data values to facili-
tate the convergence of the training process). The network is then continuously 
trained in an iterative fashion until a predefi ned threshold value is achieved 
or the fi nal learning epoch is completed. Usually, a randomly chosen training 
sample,  xi  is directly presented to the Kohonen network in a random order, 
then the metric distance from each neuron is readily computed. After the 
competition is over, the neuron that appears to be the closest to the input data 
sample is uniquely assigned to the  “ winning neuron ”  following the fundamen-
tal self - organizing principle — WTA. Subsequently, the weight vectors of this 
neuron are optimally adapted to the input sample. After the learning cycle is 
complete, each data point is presented again to the network, and the matching 
neuron is also determined in the same manner. Thus, during the competitive 
learning, the majority of Kohonen neurons (ideally, each neuron) being com-
pletely tuned to the different domains dispersed irregularly or systematically 
within the input space, and acts as a specifi c decoder of such domains  . This 
process is repeated regularly until each training sample has been presented to 
the network, a phase referred to as a training epoch. After the training process 
is over, all the weight vectors are relaxed immediately and the constructed 
map becomes topologically ordered in accordance to the intrinsic structure of 
the input sample space. 

 As mentioned above, the unsupervised Kohonen methodology is closely 
similar to the fundamental principle of the VQ algorithm (Fig.  16.3 ). Thus, 
during the training process, the network weight vectors ( fi lled arrowheads ) 
move/quantized iteratively toward the topological centers of the input data 
distribution ( data points are drawn as vectors with open arrowheads ). As a 
result of the VQ process, it actually appears that the weight vectors before 
(Fig.  16.3 A) and after training (Fig.  16.3 B) principally differ in their location, 
resulting in two different clusters that are clearly formed by two neurons;  × 1 
and × 2 are two dimensions of the data space.   



466 THE DESIGN OF PHARMACEUTICAL AGENTS

 The SOM algorithm, based on the basic Kohonen learning principle, can 
be formally presented in a step - by - step manner in the following way  : 

  Step 1: At the beginning, the algorithm randomly selects a data point 
encoded by the vector  x  taken from the input data set.  

  Step 2: The corresponding low - dimensional image of the input vector  x  
within the SOM array is then immediately defi ned using a function, 
which is dependent solely on the measure of distance observed between 
the input vector  x  and the related synaptic weight  w . This criterion can 
be broadly defi ned as   c d x w

i
i= ( ){ }arg min , , where { d ( x ,  w )} denotes a 

general distance measure, for example, Euclidean metrics, while  c  is 
the index of the unit (neuron) in the SOM lattice. In other words, the 
algorithm accurately determines the corresponding output element for 
which the weight vector  w  is conceptually closest to the presented input 
vector sample ( “ winner neuron ” ,  wi

win),   w x w xi i
win − ≤ − , for all  i th 

elements.  
  Step 3: Subsequently, a fi nite set of codebook vectors { w i  } is collectively 

driven into the space of the  x  input patterns to approximate them by 
minimizing some reconstruction error measure/function. Let  p ( x ) be the 
probability density function of  x , and let  w c   be the corresponding code-
book vector that is closest to the  x  sample in the input space, i.e., the 
one for which  d ( x ,  w c  ) is smallest. The VQ procedure tries to minimize 
the average expected quantization error ( reconstruction error ), which 
can be concisely expressed by  E    =    ∫  f  [ d ( x ,  w c  )] p ( x ) d ( x ), where  f  is some 
monotonically increasing function of distance  d . It should be particularly 
noted that the index  c  is a function of  x  and  w i  , whereby the integrand 
is not continuously differentiable, i.e.,  c  changes abruptly when crossing 

×2

×1×1

×2Neuron 1

Neuron 2

Neuron 2

Neuron 1

A B

     Figure 16.3     The successful implementation of the fundamental VQ principle under-
pinned by the unsupervised Kohonen logic.  
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a border in the input space where two codebook vectors have the same 
value for the predefi ned distance function. After the competition is 
complete, the algorithm updates the weight coeffi cients of the winning 
neuron according to the following prescription:   Δw xj wij ij

win win= ⋅ −( )η , 
where  η  is a learning step size that usually represents the function of 
time,  η ( t ).  

  Step 4: The algorithm returns to step 1 or stops the training (e.g., if the 
value of  η  is below a critical threshold, or if the predefi ned number of 
cycles has passed).    

 WTA strategy forces the weight vectors of the network to move progres-
sively toward the topological centroids of data distribution, thereby becoming 
a set of specifi c prototype (feature) vectors. All the data points located close 
to the  “ receptive center ”  associated with an output neuron will be directly 
assigned to the same low - dimensional cluster. In other words, the input data, 
which are much closer to the weight vector of one neuron than to any other 
weight vector, belong wholly to their specifi c receptive fi eld. As briefl y 
described above, the main criterion employed to fi nd the winning neuron 
can be mathematically expressed as the similarity distance between a weight 
vector,  w , and the data vector,  x . The most frequently used similarity 

distances include Euclidian distance:   d w xi i
i

= −( )∑ 2 , Manhattan distance: 

  d w xi i
i

= −∑ , and the L ∞  norm or ultrametric distance that represents the 

maximum absolute parametric difference:   d x xij
k

K

ik jk= −
=

max
1

, where  x ik   is the 

 k th feature of the  i th pattern and  K  is the total number of features. These 
distances are all the members of the generalized Minkowski metric defi ned as 

  d x xij ik jk
r

k

K r

= −⎡
⎣⎢

⎤
⎦⎥=

∑
1

1

 and result by substituting  r  in the Minkowski metric with 

1, 2, and  ∞ , respectively. A complementary approach is to determine the 
Kohonen element with the maximal formal output:   output = ( )∑ w xi i

i

, . 

 Typically, many training epochs are needed to successfully complete the 
training process. During the completion, each neuron becomes peculiarly 
sensitive to a particular region of the original input space. The input samples, 
which fall into the same region, whether they were or were not included in 
the original training set, are directly mapped onto the same neuron. Due to 
the obvious simplicity and clarity of their output, SOMs can be remarkably 
effective in the analysis and visualization of large and complex chemical data 
sets of different types and structures, particularly when they are used in auto-
matic combination with advanced, interactive graphical tools. 

 Anzali et al  .  [29]  were the fi rst authors who successfully applied an SOM 
approach for the analysis and visualization of chemical data. Since then, a huge 
number of scientifi c papers dedicated to the application of the self - organizing 
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methodology in chemoinformatics were subsequently published. For instance, 
Balakin et al  .  [30]  recently collected a large number of experimental facts 
and observations as well as several theoretical studies of physicochemical 
determinants of dimethyl sulfoxide (DMSO) solubility of different organic 
substances. Initially, the authors compiled a comprehensive reference data-
base following the experimental protocol on compound solubility (55,277 
compounds with good DMSO solubility and 10,223 compounds with poor 
DMSO solubility), then calculated specifi c physicochemical molecular descrip-
tors (topological, electromagnetic, charge, and lipophilicity parameters), and 
fi nally, effectively applied an advanced machine - learning approach for train-
ing neural networks to adequately address the solubility. Both supervised 
(feedforward, backpropagated neural networks) and unsupervised (Fig. 
 16.4 A,B) (self - organizing Kohonen neural networks) learning were used. The 
resulting neural network models were then externally validated by successfully 
predicting the DMSO solubility of compounds in an independent test set.   

Figure 16.4     Distribution of DMSO(+) (A) and DMSO( – ) (B) compounds within the 
generated Kohonen map; Kohonen network developed for the prediction of cyto-
chrome P450 substrates (C) and products (D) processed within the same map.  
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 Korolev et al.  [31]  also successfully applied a self - organizing approach for 
the computational modeling of cytochrome - mediated metabolic reactions 
(Fig.  16.4 C,D). A training database consisted of many known human cyto-
chrome P450   substrates (485 compounds), products (523 compounds), and 
nonsubstrates for 38 enzyme - specifi c groups (total of 2200 compounds) was 
compiled, and most typical cytochrome - mediated metabolic reactions within 
each group as well as the substrates and products of these reactions were also 
determined. To assess the probability of P450 - related transformations of novel 
organic compounds, the authors constructed a nonlinear quantitative struc-
ture - metabolism relationship (QSMR) model based on the Kohonen self -
 organizing maps. The developed model incorporated a predefi ned set of 
several physicochemical descriptors encoding the key molecular properties 
that defi ned the metabolic fate of individual molecules. The result was that 
the isozyme - specifi c groups of substrate molecules were conveniently visual-
ized and effectively separated, thereby signifi cantly facilitating the prediction 
of metabolism. The developed computational model could be successfully 
applied in the early stages of drug discovery as an effi cient tool for the assess-
ment of human metabolism and toxicity of novel compounds, in designing 
discovery libraries and in lead optimization. 

 A useful modifi cation of a common WTA strategy originally implicated in 
the Kohonen algorithm is to use more than just one single winner neuron in 
the adaptation process repeated during each training cycle  [24,32] . As described 
above, in the Kohonen network, the output layer neurons are neatly arranged 
in low - dimensional geometry, usually in the two -  or three - dimensional plane. 
Thus, the basic idea of this variant is that during the training not only the 
winning neuron but also neurons closely located to a winning one within the 
output layer are also being updated in accordance to the specifi c neighborhood 
function. As a result, a new formulation of the average quantization error 
function  E q   (see equation below) has been introduced by Kohonen  [33] . 
Following the modifi cation, the smoothing kernel function  h ki  , which is a func-
tion of the distance between units  i  and  k  determined within the whole 
Kohonen map:  E q     =    ∫  h ki f  [ d ( x ,  w i  )] p ( x ) dx , was subsequently integrated into the 
key learning role. The minimization of  E q   imposes an ordering on the values 
of  w i   as if these vectors were located at the nodes of an elastic net fi tted to the 
density probability distribution  p ( x ) of the input space. Even in the most 
obvious cases, the minimization of  E q   constitutes a complicated nonlinear 
optimization problem resulting in sustainable solutions that are not explicitly 
evident immediately. Hence, specifi c approximation algorithms should be 
used to provide a successful high - dimensional data representation. 

 One such algorithm that is commonly based on minimization of  E q   is a 
stochastic approximation method leading to a fairly good approximation of 
the set of neural weights { w i  }. Following the mathematical defi nition of  E q  , let 
 x    =    x ( t ) at the discrete (iteration) time step  t . Let  w i  ( t ) be the approximation 
of  w i   at the time step  t  and consider the sample function  E q  ( t ) defi ned as 
  E t h f d x t w tq ki i

i

( ) = ( )( ) ( )[ ]∑ , ) . Then, for the dynamic minimization of  E q  , the 
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approximate optimization approach, which is primarily based on different 
gradient descent methods, can be effectively applied. Thus, starting from the 
initial values  w i  (0), all the synaptic weight coeffi cients are updated according 

to the following rule:   w t w t t
E t

w t
i i

q

i

+( ) = ( ) − ( ) ( )
∂ ( )
∂ ( )

1
1
2

λ , where  λ ( t ) is a small 

positive scalar factor that determines the size of the gradient step at the 
discrete time  t . If this function is chosen appropriately, the sequence of  w i  ( t ) 
will always converge to a set of   w ti

win ( )  values, which will accurately approxi-
mate the solution  w i  ( t ). Although this procedure does not guarantee that a 
global minimum will always be achieved, a local minimum provides a suffi -
ciently close approximation in many scientifi c applications. If required, a 
better local minimum can be readily reached by repeating this procedure with 
different starting values or using of advanced optimization techniques such 
as  “ simulated annealing. ”  Many different variants of the fundamental SOM 
algorithm can be adequately expressed by the mentioned equation. For 
example, if  d  is defi ned by the Euclidean norm  d ( x ,  w i  )   =    ||  x ,  w i   ||  and  f ( d )   =    d  2 , 
the traditional self - organizing algorithm can be easily obtained and conven-
tionally expressed by the following update rule:  w i  ( y    +   1)   =    w i  ( t )   +    h ki  ( t )
[ x ( t )    −     w i  ( t )]. The additional rate term  λ ( t ) can also be introduced in the 
neighborhood smoothing kernel function  h ki  ( t ) determined around the winner 
neuron  k  at the time step  t . In accordance with the original Kohonen formu-
lation, the kernel function should proactively be formed by at least two 
principal parts: by the neighborhood function  h ( d ,  t ) and by the  “ learning 
rate ”  term   α  ( t ) usually defi ned by  h ki  ( t )   =    h ( ||  r k      −     r i   || ,  t ) α ( t ). A widely used 
kernel - based function can be conveniently expressed by a Gauss (normal) 

distribution:   h t t
r r

t
ki

k i( ) = ( ) −
−
( )

⎛
⎝⎜

⎞
⎠⎟

α
σ

exp
2

22
, where index  k  corresponds to the 

neuron for which the Euclidean distance assigned to the input sample is the 
smallest,  r k   and  r i   are the respective locations of the  k th and  i th neurons 
within the Kohonen lattice ( r k  ,  r i      ∈     �  2 or 3 ), while  α ( t ) is a linear or exponen-
tially decreasing function defi ned over a fi nite interval of 0    <     α ( t )    <    1, and 
 σ ( t ) is the width of the Gaussian function (Fig.  16.5 ). To ultimately ensure 
that the convergence of the Kohonen algorithm is successfully achieved, it is 
extremely important to ascertain that  h ki  ( t )  →  0, whereas the learning time 
 t    →   ∞ . The developed approach in which the kernel function is a decreasing 
function of iteration time, and the distance travelled from the neuron  i  to the 
best matching unit  k  is dynamically changed through the learning time, 
thereby defi ning the region of principal infl uence of the input sample within 
the SOM.   

 The simplest defi nition of  h ki  ( t ) corresponds to a  “ bubble neighborhood 
function, ”  which is constant over the predefi ned number of Kohonen neurons 
located closely to the winning unit while turned to zero elsewhere. In this case, 
 h ki  ( t )   =    α ( t ), if  i  and  k  are neighboring units, and  h ki  ( t )   =   0 otherwise. Let us 
denote the corresponding set of these neighboring units as  N k  ( t ). Then, the 
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fundamental Kohonen learning paradigm can be neatly reformulated in 

  
w t w t t x t w t i N t
w t w t i N t

i i i k

i i k

+( ) = ( ) + ( ) ( ) − ( )[ ] ∈ ( )
+( ) = ( ) ∉ (

1
1

α ,
, )){ }. During the training process, 

the algorithm forms the elastic net that folds into a space formed originally 
by the input data, thereby trying to closely approximate the probability density 
function of the data examined by the recruitment of additional codebook 
vectors around the winning neuron. 

 The method called  “ dot product map ”  is another variant of the basic SOM 
algorithm, which is completely invariant to scale of the input variables. In this 
approach, the dot product   ηi i

Tw x=  defi ned between the input vector  x  and 
each weight vector  w i   can be creatively used as a similarity measure. 
Consequently, the best matching unit is then selected as soon as the maxi-
mum dot product  η   k     =   max  i  { η   i  } is found. The updated learning mechanism 
was designed specifi cally to normalize the value of the new codebook vector 

at each time step by the following rule:   w t
w t t x
w t t x

i
i

i

+( ) =
( ) + ( )
( ) + ( )

1
α
α

. This 

algorithm can be further simplifi ed in accordance to the following equilibrium 
condition at the convergence limit:   ψ h x mki i−( ){ } =win 0, where   Ψ   is the math-
ematical expectation operator. This expression can be easily reformulated in 

  w
h xp x dx

h p x dx
i

ki

ki

win =
( )

( )
∫
∫

. For instance, if  h ki   is uniquely defi ned by the  bubble 

neighborhood function ,   w

xp x dx

p x dx
i

y

y

i

i

win =

( )

( )

∫

∫
, where  y i   represents the predefi ned 

domain of vector  x , the nearest codebook vector belongs wholly to the neighborhood 
set  V i   of unit  i , also widely known as the Voronoi region. In turn, this transformation 

     Figure 16.5     A Gauss distribution, one of the most widely applied neighborhood func-
tions integrated in the Kohonen self - organizing algorithm.  
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leads to a more powerful variant of the SOM algorithm also known as  “ batch map, ”  
where the whole data set is directly presented jointly to the Kohonen transducer before 
any adjustment operations are commenced. The training procedure is simply based on 
the replacement of the prototype vector by a weighted average value calculated over 
the total input samples, where the weighting factors are the neighborhood function 
values  h ki  . Finally, to continually update the synaptic weights,  batch SOM  effectively 
uses the following learning rule:

    
w t

h t x

h t
i

ki j j
j

n

ki j
j

n+( ) =
( )

( )

( )
=

( )
=

∑

∑
1 1

1

.
  

  16.2.3.1   The Key Variants of  SOM  s      In order to create a benefi cial feature 
map and spatially organize representations of input samples within the 
Kohonen lattice, the most essential principle seems to be to restrict the learn-
ing corrections by subsets of the network units that are grouped in the topo-
logical neighborhood of the best - matching unit. It should be noted that a 
number of methods targeted to defi ne a better matching of an input occur-
rence with the internal images are currently applied. In addition, the activation 
neighborhood function, which modulates the sensitivity of each Kohohen 
element, can be defi ned in many ways. It is also absolutely necessary in the 
feature space to clearly and properly defi ne a learning role, for example, sig-
nifi cant improvements in matching may be conveniently achieved by using the 
batch computation or evolutionary tuning approach. Consequently, all such 
cases will henceforth be regarded as variants of self - organizing map algorithms 
belonging to the broader category. This category may also include both the 
supervised and the unsupervised learning methodology. Although a nonpara-
metric regression solution directly assigned to a class of VQ problems is tightly 
integrated in the SOM algorithm, it does not need any further modifi cations. 
There are a signifi cant number of related problems in which the key self -
 organizing philosophy can be effectively applied by means of various modifi ca-
tions, which include different matching criteria and a nonidentical input 
strategy. In accordance with the fi rst approach, the matching criteria applied 
to defi ne the winning neuron can be conceptually generalized in different 
ways, using either various distance metrics or other defi nitions of matching. 
The second approach emphasizes that a straightforward network generaliza-
tion would be to recruit the input vector  x  of the initial subsets of samples that 
is specifi cally assigned to different, eventually intersecting, areas of the SOM, 
so that the dimensionalities of  x  and the  m i   may also depend on the topological 
location. Both strategies include a wide variety of dozens of methods such as 
hierarchical searching for the  “ winning neuron ”  (three - search SOM and 
Hypermap), dynamic topology of the Kohonen map, and signal space neigh-
borhood function, as well as different methods for the acceleration of learning 
process. 
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 It seems to be quite interesting to review the key modifi cations of the self -
 organizing learning role and topological composition. Thus, there exist a 
number of unique combinations, alternative modifi cations, and advanced vari-
ants of the basic SOM algorithm reported in the scientifi c literature. These 
include the usage of specifi c neuron learning rate functions and neighborhood 
size rules, as well as growing map structures. The principal goal of these varia-
tions is to enable the SOM to follow the space topology and usually the nested 
structure of the underlying data set accurately, ultimately achieving more 
satisfactory results of VQ. The most algorithmically advanced variants and 
modifi cations of the fundamental SOM approach are listed briefl y below: 

   •      The  tree - structured SOM   [34]  is a very fast variant of the basic SOM 
algorithm, which consists of a set of Kohonen layers that routinely 
perform a complete quantization of the input data space. The principal 
differences among these layers lie in the number of codebook vectors, 
which increases exponentially while the tree is traversed downwards. 
Thus, data from the upper layers are directly used to train lower layers, 
reducing the amount of distance calculations needed to fi nd the winning 
neuron. Consequently, each Kohonen layer provides a more detailed 
interpretation of the data space.  

   •      The  minimum spanning tree SOM   [35]  uses a conventional tree structure 
as a neighborhood function, which defi nes the minimal set of key con-
nections needed in order to tightly link together related sets of codebook 
vectors. From the quantization point of view, the modifi ed algorithm is 
more stable as compared with the traditional SOM. In contrast, the posi-
tion of Kohonen elements within the feature space is not rigidly fi xed; 
therefore, in many cases a simple graphical visualization becomes signifi -
cantly more diffi cult.  

   •      The  neural gas   [36]  is a slightly modifi ed version of the fundamental 
Kohonen network, which uses a dynamic neighborhood composition that 
is dramatically changed through the whole training process by analogy 
with the nature of gas molecules moving. During the execution of the 
algorithm all Kohonen units are arrayed along the map lattice according 
to the Euclidean distances toward the input vector  x . After ordering is 
complete, neuron positions are ranked as follows:  d  0     <     d  1     <     d  2     <      …      <     d n    − 1 , 
where  d k     =    ||  x     −     w m   (   i   )  ||  indicates the Euclidean distances of  i th neuron 
located in  m  - position within the Kohonen map from the winning neuron 
fi xed in the position assigned to  d  0 . In this case, the neighborhood 

function can be defi ned narrowly as   G i x
m i, exp( ) = −( )( )

λ
, where the term 

 m  (   i   )  denotes a queue number determined by sequencing of Kohonen 
neurons according to ( m  (   i   )    =   0, 2,  …  ,  n     −    1), parameter  λ  is an analogue 
of the neighborhood level used originally in the basic Kohonen algo-
rithm, which decreases linearly or exponentially over the whole learning 
time. Thus, if  λ  is zero, the adaptation process is being carried out by 
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tuning the synaptic weight coeffi cients of the single winning neuron as 
such in the classical WTA algorithm, while if  λ  is not zero, a number of 
synaptic weight coeffi cients are being progressively adapted in relation 
to  G ( i ,  x ). In this context, the neural gas algorithm resembles the  “ fuzzy ”  
set strategy. 

 To achieve a benefi cial neuron composition, the learning process 
should be started from a high value of  λ  that decreases monotonically 
over the learning time by the linear of exponential functional dependen-
cies. In many cases, a monotonic decrease of the continuous function  λ ( k )  

can be realized by the following equation:   λ λ
λ
λ

k

k
k

( ) = ⋅⎛⎝
⎞
⎠max

min

max

max
, where 

 λ ( k ) is the value of  λ  at the  k th iteration, parameter  k  max  denotes 
the maximal number of iterations, while  λ  min  and  λ  max  are manually 
assigned the maximal and minimal values of  λ , respectively. The learn-
ing rate coeffi cient  η   i  ( k ) can also be changed following the linear 

or exponential decay laws, for instance,   η η
η
ηi i

i

k
k

k( ) = ( )⋅
( )
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⎞
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, by 

analogy to the previous equation used for  λ ( k ) calculation. Here,  η   i  (0) is 
the initial learning rate, while  η  min  takes  a priori  a minimum value cor-
responding to  k    =    k  max  conditions.  

   •      The  convex combination   [28]  is an additional method. In the case of 
nearby similar input objects belonging to the same class, initialization 
of weight coeffi cients by a random distribution can potentially lead to 
the erroneous fusion (or vice versa) to the over - fragmentation of the 
input data points. To successfully overcome this challenge, the ad vanced 
method called  convex combination  based on the key principles of 
the Kohonen network has recently been developed.  Convex combina-
tion  represents the effective learning algorithm used currently for 
pattern recognition, especially for the successful separation of input 
samples tightly packed into a multicluster structure. During the training 
process, weight coeffi cients are updated iteratively following the classi-
cal Kohonen algorithm in an attempt to accurately approximate the 
tuned components of each input vector. Following the algorithm, nor-
malized input vectors are initially modifi ed by the following equation:

   x t x t
n

w
n

i i o= ( )⋅ + − ( )( )⋅ =α α1
1 1

; , where  x i   is the  i th component of 

the input vector sample,  n  is the total number of its components, and  
α ( t ) is the coeffi cient increased from zero to one through the learning 
time according to the linear or exponential functional dependencies. In 
summary, each component of the input vector initially takes the same 
 “ forced ”  value (usually close to zero) and henceforth moves gradually 
toward the original value. At the output of the neural net, all the classes 
isolated are conveniently located in compact areas identifi ed within the 
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Kohonen lattice, signifi cantly simplifying the visual analysis of the con-
structed map.  

   •      The  Duane Desieno method   [37]  is based fundamentally on the  “ con-
science ”  or  “ memory ”  mechanism that effectively prevents each Kohonen 
processing unit from regularly overtaking the others during the competi-
tion. In summary, total control for the winning neurons is elegantly 
achieved to produce a more regular distribution of input samples over 
the Kohonen map. Following the algorithm, an excitatory neuron that 

wins the competition more than   
1
N

 times, immediately arouses the resi-

dent  “ conscience ”  keeping the  “ memory ”  of the current state during 
several further iterations. According to this conception, the remaining 
neurons can also win the competition with equal probability. This 
approach provides exceptionally smooth and regular maps where the 
distribution of excitatory neurons is close to normal. The ingenious idea 
of the algorithm is to trace the time  f j   for which the active neuron wins 
the competition. This parameter can be easily calculated through the 
total iterations by each neuron using the following equation:  f j  ( t    +   1)   =    
f j  ( t )   +    β ( Z j      −     f j  ( t )), where  Z j   is the key indicator of the winning state of 
each neuron ( Z j     =   0 or 1), while  β  is a manually assigned constant (usually 
a small positive value, for example,  β    =   10  − 4 ). The corresponding shift  b j   
is then calculated immediately after the current winning time  f j   is 

determined:   b
N

fj i= −( )γ
1 , where  γ  is a manually assigned constant 

(usually a positive value, for example,  γ     ∼    10). After these operations are 
complete, weight coeffi cients are tuned iteratively to their own values. In 
contrast to the classical Kohonen - based learning, the key exception of 
this method lies in the competition among neurons with the smallest 
value of the following criterion:  D ( W j  ,  X )    −     b j  . The practical role of the 
shift  b j   can be neatly reformulated in: for the too - often - winning neurons, 

 j  parameter   f
N

j >
1

 and  b j      <    0, therefore  D ( W j  ,  X )    −     b j   increases 

uniformly as compared with  D ( W j  ,  X ), while for the too - rare - winning 

neurons,   f
N

j <<
1

,  b j      >    0, and  D ( W j  ,  X )    −     b j   decreases resulting in the 

probability to become active to gradually increase  .  

   •      The overall goal of the  noise technique   [28]  is to promote and facilitate the 
achievement of focused distribution of the frequency function   ρ  ( x )    >    0 
within the whole range of defi nition of input vectors  x :  Ω   x  . In this method, 
a uniformly distributed noise is imposed on each component of the input 
vector sample that is automatically generated. At the beginning, the noise 
level should be assigned to a relatively high value so that the  “ noisy ”  vector 
components are signifi cantly different from their original values. By analogy 
to convex combination, the noise level decreased gradually with the 
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training epochs according to the linear or exponential functional dependen-
cies. Such tactics are absolutely correct and obviously useful, but  “ noisy ”  
vector components converge even more slowly toward eigenvalues as com-
pared with convex combination. As a result, a signifi cant excess of weight 
wj  is fi nally achieved in the areas occupied by high values of frequency 
function that completely covers the initial vector space and vice versa.  

 •   The  growing cell structures   [38]  method adds or removes map units as 
needed during the training process instead of working with a predefi ned 
number of codebook vectors.  

 •   In an attempt to address the absolute chaos over the input vector space 
and how a self - organizing engine produces optimal feature image as well 
as a good convergence of the algorithm, the  two learning stages   [28]  
method decomposes the total learning process into two principal stages: 
self - organization  and  convergence  or  ordering . During the fi rst training 
stage, a global, rough topological arrangement of the input samples is 
generally achieved due to the following machine parameters: number of 
iterations is close to 1000, the initial learning rate  η0 ( t ) should be selected 
in the range of 0.1 – 0.3. With great respect to the neighborhood activation 
function hj,i ( n ), it must be suffi ciently fl exible so that a majority of 
Kohonen neurons initially start to adapt their weight coeffi cients follow-
ing the Gauss law. After the fi rst stage is successfully complete, the 
Kohonen lattice has a rugged structure, which is further fi ne - adjusted 
iteratively to produce a smoothly organized map with a tweaking of the 
neuron weights. As a rule, the basic machine parameters should be 
assigned as follows: the number of iterations required generally for the 
convergence stage should be selected based on the role Niter    =   500 ·  Nwi , 
where Nwi  denotes the number of Kohonen neurons, the initial learning 
rate should be initially assigned to 0.01, and fi nally, the activation func-
tion must be selected so that the nearest processing units, located closely 
to the  “ winning neuron, ”  jointly adapt their weight coeffi cients to produce 
a highly sensitive state.  

 •   In many cases, the implementation of three - dimensional Kohonen lattice 
leads to relatively high - resolution maps, resulting in greater completeness 
and accuracy of a low - dimension representation, as well as an improved 
classifi cation of input objects can be correctly achieved. Following the  three -
 dimensional architecture   [28]  approach, the activation neighborhood func-
tion is commonly presented by a  “ quasi ”  normal three - dimensional 
distribution around the  “ winning neuron ”  as against to the two - dimen-
sional Kohonen lattice. Although, the key moments of the postulated learn-
ing role are similar to the classical Kohonen algorithm, several advanced 
training strategies conveniently adapted to the three - dimensional space 
architecture are also developed to accelerate the learning process.    

 Being signifi cantly hampered by the available space for the current review, 
we can only list other methods: bath SOM, operator maps, evolutionary 
learning SOM, structure - adaptive self - organizing map (SASOM), and adap-
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tive - subspace SOM (ASSOM) are related closely with the advanced  “ episode ”  
and  “ representative winner ”  techniques such as hypercube topological   and 
cyclic maps, evolutionary learning fi lters and functions, feedback - controlled 
adaptive - subspace SOM (FASSOM), probabilistic extension generative topo-
graphic mapping (GTM)  [39] , and soft - max function. 

 Although SOMs can be effectively used to solve different classifi cation 
tasks, there are a number of supervised variants of the basic Kohonen algo-
rithm such as learning vector quantization (LVQ) and the dynamically expand-
ing context (DEC) that, in many cases, may be more appropriate for this task 
 [28] . For example, LVQ - based algorithms are closely related to VQ and SOM. 
This abbreviation signifi es a class of related algorithms, such as LVQ1, LVQ2, 
LVQ3, and Hypermap - type LVQ, as well as a combined methodology based 
on SOM – LVQ cooperation and OLVQ1. While VQ and the basic SOMs are 
in priori unsupervised clustering/learning methods, LVQ uses the supervised 
principle. On the other hand, unlike SOM, no neighborhoods around the 
winning neuron are defi ned during the supervised learning in the basic version 
of LVQ, whereby also no spatial order of the codebook vectors is expected 
to ensue. Since LVQ is strictly meant for statistical classifi cation or recogni-
tion, its only purpose is to defi ne class regions within the input data space. To 
this end, a subset of similarly labeled codebook vectors is placed into each 
class region; even if the class distributions of the input samples would overlap 
at the class borders, the codebook vectors of each class in these algorithms 
can be placed in and shown to stay within each class region at all times. The 
quantization regions, like the Voronoi sets in VQ, are defi ned by hyperplanes 
between neighboring codebook vectors. An additional feature in LVQ is that 
for class borders, one can only take such borders of the Voronoi tessellation 
that separate Voronoi sets into different classes. The class borders thereby 
defi ned are piecewise linear. 

 At present, several software packages that deal with self - organizing 
Kohonen mapping are publicly available from the following resources: a 
computational program for the generation of the Kohonen maps has been 
developed by the Kohonen group ( http://www.cis.hut.fi  ), KMAP software 
(Computer - Chemie - Centrum, Germany) ( http://www2.chemie.uni - erlangen.
de ), and Molecular Networks (GmbH, Germany) ( http://www.mol - net.de ) 
primarily targeted for chemical applications, and so on. Among these software 
is InformaGenesis ( http://www.InformaGenesis.com ), which seems to be one 
of the most powerful computational programs developed recently for the 
generation and analysis of self - organizing Kohonen and Sammon maps (this 
program is discussed in more detail below).   

  16.2.4   IsoMap 

 MDS has proven to be hugely successful in many different applications. 
However, the main principle of MDS is generally based on Euclidean dis-
tances; therefore, it does not leave out of account the distribution of the 
nearest neighboring data points. If high - dimensional data points lie on or near 
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a curved manifold, MDS might consider two data points as near points, 
whereas their distance over the manifold is much larger than the typical inter-
point distance. IsoMap is a promising new technique, which has resolved this 
problem  [40] . By analogy with Sammon mapping, the algorithm attempts to 
preserve all pairwise geodesic ( curvilinear ) distances between the input data 
points within the whole feature space as close as possible. This distance is 
defi ned narrowly as the shortest path between a pair of sample points. The 
path is strictly confi ned to lie off the low - dimensional manifold, which is not 
known  a priori . The geodesic distance can be adequately approximated using 
the shortest path observed between two sample points obtained by adding all 
subpaths among the nearest neighboring points. It should be duly noted that 
this technique produces favorable results only when a representative sampling 
of input data points across the manifold is presented. 

 In IsoMap, the geodesic distances among the sample points  x i   are directly 
computed by constructing the neighborhood graph  G , in which every data 
point  x i   is intimately connected to its  k  - nearest neighbor  x ij   within the studied 
data set  X . In mathematical form, the shortest path observed between two 
data points can be readily computed using the Dijkstra  “ shortest - path ”  algo-
rithm. Using this strategy, the geodesic distances held among the data points 
 x ij   in the input space  X  can be easily computed, thereby instantly forming a 
complete pairwise geodesic distance matrix,   Mij

G. In the low - dimensional 
feature space  F , the feature image  y i   that corresponds to the data point  x i   is 
then computed by simply applying the fundamental principle of MDS toward 
the target matrix   Mij

G. A methodological weakness of the IsoMap algorithm 
lies in the potential topological instability  [41] . Thus, IsoMap may construct 
signifi cantly erroneous geodesic connections between data points in the neigh-
borhood graph  G . Such a local approximation can seriously impair the per-
formance of IsoMap  [42] . Fortunately, several advanced approaches were 
recently proposed to completely overcome this  “ short - circuiting ”  problem, for 
example, by removing data points with large total fl ows in the shortest - path 
algorithm  [43]  or by removing nearest neighbors that violate local linearity of 
the neighborhood graph  [44] . Furthermore, during the training process, 
IsoMap may be overly sensitive to  “ holes ”  (areas of poor/empty population) 
along the manifold  [42] . In addition, if the manifold is not suffi ciently convex, 
the IsoMap can occasionally fail  [45] . 

 Despite these drawbacks, IsoMap has been successfully applied for visual-
ization of different types of biomedical data  [46] . As recently shown, a graphi-
cal visualization of IsoMap models provides a useful tool for exploratory 
analysis of protein microarray data sets. In most cases, IsoMap planes can 
adequately explain more of the variance presented in the microarray data in 
contrast to PCA or MDS  [45,47] . Therefore, IsoMap represents a prominent 
modern algorithm targeted mainly for class discovery and class prediction 
within high - density oligonucleotide data sets. 

 In addition, for more detailed analysis of the large protein folding data sets 
(molecular dynamics trajectories of an Src - Homology 3 protein model), the 
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algorithm was subsequently modifi ed using landmark points in the geodesic 
distance calculations. Based on the results, it clearly showed that for an accu-
rate interpretation and analysis of the original data, the approach was far more 
effective than the linear technique of dimensionality reduction, such as PCA  . 
Whereas the Euclidean metric is based directly on quadratic relationships, 
IsoMap scales with the third power of the number of data points and then 
becomes computationally prohibitive for processing and visualizing large data 
sets. In contrast, the stochastic proximity embedding (SPE) algorithm (see 
Section  16.2.5   ) neatly avoids the need to estimate the geodesic distances. It 
scales linearly with the size of the data set and has been clearly shown to be 
equivalently effective in dimensionality reduction and NLM as compared with 
other modern computational algorithms. 

 To sum up all the arguments described above, the fi rst NLM algorithm 
introduced by Sammon as well as MDS is applicable solely to relatively small 
data sets. The Sammon NLM partly alleviates MDS -  and PCA - associated 
problems by introducing a normalization factor in the head error function to 
give increasing weight to short range distances over long range ones. This 
scheme, however, is quite arbitrary and fails utterly with highly folded topo-
logical structures. To partially overcome this problem, the IsoMap method 
was originally developed as an alternative approach for the dimensionality 
reduction and clustering of large data sets of high dimensionality. In stark 
contrast to MDS, this algorithm effectively uses an estimated geodesic dis-
tance instead of the conventional Euclidean one. However, IsoMap requires 
expensive nearest - neighbor and shortest - path computations, and scales expo-
nentially with the number of examined data points. Running slightly ahead, a 
similar scaling problem also strikes the SPE algorithm (see Section  16.2.5 ), a 
related approach that produces globally ordered maps by constructing locally 
linear relationships among the input data points.  

  16.2.5    SPE  

 This section is entirely devoted to a promising self - organizing algorithm 
named SPE. This technique was recently developed for embedding a set of 
related observations into a low - dimensional space that preserves the intrinsic 
dimensionality and metric structure of the data. 

 We must remember that extracting the minimum number of independent 
variables that can describe precisely a set of experimental observations, rep-
resents a problem of paramount importance in computational science. With 
regard to dimensionality reduction, the nonlinear structure of a manifold, 
which is often embodied in the similarity measure between the input data 
points, must be transformed ultimately into a low - dimensional space that faith-
fully preserves these similarities, in the hope that the intrinsic structure of the 
input data will be refl ected adequately in the resulting map  [48] . Among a 
variety of distance metrics, Euclidean geometry is widely used for pairwise 
comparison of objects represented by the multiparametric data. However, this 
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conventional similarity measure often tends to grossly underestimate the prox-
imity of data points on a nonlinear manifold and lead to erroneous embeddings. 
To partially remedy this problem, the IsoMap method (see Section  16.2.4   ) was 
recently developed based on the fundamental geodesic principle and classical 
MDS to fi nd the optimum low - dimensional confi guration. Although it has been 
shown that in the limit of infi nite training samples, IsoMap recovers the true 
dimensionality and geometric structure of the data if it belongs to a certain 
class of Euclidean manifolds; the proof is of little practical use because the (at 
least) quadratic complexity of the embedding procedure precludes its use with 
large data sets. A similar scaling problem plagues locally linear embedding 
 [49] , a related approach that produces globally ordered maps by constructing 
locally linear relationships between the data points. 

 To avoid these complications, an advanced technique of dimensionality 
reduction that addresses the key limitations of IsoMap and local linear embed-
ding (LLE) has recently been developed by Agrafi otis and Xu    [50] . Although 
SPE is based on the same geodesic principle fi rst proposed and exploited in 
IsoMap, it effectively introduces two important algorithmic advances. First, it 
circumvents the calculation of estimated geodesic distances between the 
embedded objects, and second, it uses a pairwise refi nement strategy that does 
not require the complete distance or proximity matrix maintaining a minimum 
separation between distant objects and scales linearly with the size of the data 
set. In other words, SPE skillfully utilizes the fact that the geodesic distance 
is always greater than or equal to the input proximity if the latter is an accurate 
metric. Unlike previous stochastic approaches of nonlinear manifold learning 
that preferentially preserve local over global distances, the method operates 
by estimating the proximities between remote objects as lower bounds of their 
true geodesic distances and uses them as a means to impose global structure. 
Thus, it can reveal the underlying geometry of the manifold without intensive 
nearest - neighbor or shortest - path computations. Therefore, it can preserve 
the local geometry and the global topology of the manifold better than previ-
ous approaches. Although SPE does not offer the global optimality guarantees 
of IsoMap or LLE, it works well in practice, above all due to the linear scaling 
with the number of points. Therefore, it can be effectively applied to very 
large data sets that are intractable by conventional embedding procedures. 

 In mathematical terms, the algorithm is carried out by minimizing the core 
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, where  y ij   is the input proximity between the    

ith and  j th points;  d ij   is their Euclidean distance in the low - dimensional space; 
 f ( d ij  ,  y ij  ) is the pairwise stress function defi ned as  f ( d ij  ,  y ij  )   =   ( d ij      −     y ij  ) 2  if  y ij      ≤     y c   
or  d ij      <     y ij  , and  f ( d ij  ,  y ij  )   =   0 if  y ij      >     y c   and  d ij      ≥     y ij  ; and  y c   is the neighborhood 
radius. The postulated function can be completely minimized by using a self -
 organizing algorithm that attempts to bring each individual term  f ( d ij  ,  y ij  ) 
rapidly to zero. SPE starts with an initial confi guration, and iteratively refi nes 



ADVANCED COMPUTATIONAL TECHNIQUES 481

it by repeatedly selecting pairs of objects at random, and adjusting their coor-
dinates so that their distances on the map  d ij   match more closely their respec-
tive proximities  y ij  . The algorithm proceeds as follows: 

  1.     Initialize the  D  - dimensional coordinates of the  N  points,  x i  . Select an 
initial learning rate  λ  (parameter that decreases linearly or exponentially 
through the learning time in order to avoid oscillatory behavior, 

 λ     >    0). The tuning is proportional to the disparity   λ
y d

d
ij ij

ij

−
.  

  2.     Select a pair of points,  i  and  j , at random and compute their Euclidean 
distance on the  D  - dimensional map following the equation  d ij     =    ||  x i      −     x j   || . 
If  y ij      >     y c   and  d ij      ≥     y ij  , where  y c   is a predefi ned neighborhood radius, i.e., 
if the points are nonlocal and their distance on the map is already greater 
than their proximity  y ij  , their coordinates remain unchanged. If  d ij      ≠     y ij  , 
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is a small number to avoid division by zero (usually 1.0 · 10  − 10 ).  
  3.     Repeat step 2 for a prescribed number of steps  M .  
  4.     Decrease the learning rate  λ  by prescribed decrement  δ  λ .  
  5.     Repeat steps 2 – 4 for a prescribed number of cycles  C .  
  6.     End of learning.    

 One potential limitation of SPE is basically related to numerous adjustable 
and internal parameters. Thus, just like IsoMap and LLE, SPE strongly depends 
on the choice of the neighborhood radius,  y c  . If  y c   is too large, the local neigh-
borhoods will include data points from other branches of the manifold, short-
cutting them and leading to substantial errors in the fi nal embedding. If it is 
too small, it may lead to discontinuities, causing the manifold to fragment into 
a large number of disconnected clusters. The ideal threshold can be determined 
by examining the stability of the algorithm over a range of neighborhood radii 
as prescribed by Balasubramanian and Schwartz  [41] . Superfi cially, in addition 
to the neighborhood radius  y c  , SPE also depends on the number of cycles  C , 
the number of steps per cycle  M , the initial learning rate  λ  0 , the annealing 
schedule for the learning rate, and the initial confi guration. It was experimen-
tally found that for most applications, the favorable result can be obtained 

using  C    =   100,  λ  0    =   2.0, and   δλ
λ λ

=
−
−

0 1

1C
, where  λ  1  is the fi nal learning rate 

that can be any arbitrary small number, typically between 0.01 and 0.1. The 
initial confi guration can be any random distribution of the  N  points in a  

D  - dimensional hypercube of side length   N Dyc

1

. The number of steps per 
cycle  M , or equivalently the total number of pairwise adjustments, therefore 
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remains as the only extra free parameter besides the neighborhood radius.  M
should be increased linearly with N  as SPE ’ s empirical characteristic of linear 
scaling suggests. Moreover, it was also found that the number of learning steps 
should be increased for structures with large curvatures. 

 SPE can be effectively applied in different classifi cation tasks. Thus, this 
method has been successfully used for the analysis of the Swiss roll data set 
(Fig.  16.6 )  [50] . The distances of the points on the two - dimensional map 
matched the true, analytically derived geodesic distances with a correlation 
coeffi cient of 0.9999, indicating a virtually perfect embedding.   

 SPE can also produce meaningful low - dimensional representations of 
more complex data sets that do not have a clear manifold geometry. The 
advantages of this method have been clearly demonstrated using various data 
sets of different origin, structure, and intrinsic dimensionality, especially in 
several different chemical data sets. The embedding of a combinatorial 
chemical library illustrated in Figure  16.7  shows that SPE is able to preserve 
local neighborhoods of closely related compounds while maintaining a chem-
ically meaningful global structure. For example, amination and Ugi virtual 
combinatorial libraries have been recently analyzed using the modifi ed SPE 
algorithm.   

 The fi rst data set represents a two - component virtual combinatorial library 
 [50]  containing 10,000 compounds, derived by combining 100 amines and 100 
aldehydes using the reductive amination reaction. Each of the products was 
described by 117 topological descriptors including molecular connectivity 
indices, kappa shape indices, subgraph counts, information - theoretic indices, 
Bonchev – Trinajstic indices, and topological state indices  [50] . To eliminate 
strong linear correlations, which are typical of graph - theoretic descriptors, the 
data were normalized and decorrelated using PCA. Molecular dissimilarity 

Figure 16.6     (A) Original three - dimensional space of the Swiss roll data set; (B) two -
 dimensional embedding of Swiss roll data set obtained by SPE.  
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Figure 16.7     (A) Two - dimensional stochastic proximity map of the amination library. 
Ten representative clusters of closely related compounds that can be seen on the 
map demonstrate the ability of SPE to preserve close proximities; (B) two - 
dimensional stochastic proximity map of the generated Ugi library; (C) two -
 dimensional stochastic proximity map of different types of organic compounds; 
(D) two - dimensional SPE maps of the Manning kinase domains using a neighborhood 
radius of 0.89  .  

was defi ned as the Euclidean distance in the latent variable space formed by 
the 23 principal components that accounted for 99% of the total variance in 
the data. 

 The second data set represents a four - component virtual combinatorial 
library containing 10,000 compounds derived by combining 10 carboxylic 
acids, 10 primary amines, 10 aldehydes and 10 isonitriles using the Ugi reac-
tion. Each of the products was described by an MDL   key 166 - dimensional 
binary fi ngerprint, where each bit encoded the presence or absence of a par-
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ticular structural feature in the target molecule, as defi ned in the ISIS   chemical 
database management system. Molecular dissimilarity was calculated based 
on the Tanimoto coeffi cient. 

 The resulting maps shown in Figure  16.7 A,B exhibit the compact clusters 
that correspond to distinct chemical classes of the tested structures resulting 
from the discrete nature of the descriptors and the diversity of the chemical 
fragments employed. 

 These maps, which are discussed in greater detail in Reference  51 , are 
illustrative of the ability of SPE to identify natural clusters in the data set 
without prior knowledge or expert guidance. In addition, this method was 
shown to be highly effective for mapping of different types of organic com-
pounds (Fig.  16.7 C). Therefore, this algorithm can be readily applied to other 
types of binary fi ngerprint descriptors (that typically consist of a few thousand 
bits) or to various high - dimensional descriptor spaces that are commonly 
employed in different QSAR studies. 

 Although the method is extremely fast, profi ling experiments showed that 
a very signifi cant fraction of the time required for the refi nement was spent 
inside the random number generator (RNG). SPE requires two calls to the 
RNG for every pairwise refi nement step, and for simple proximity measures 
such as the Euclidean distance or Tanimoto coeffi cient, this corresponds to a 
signifi cant fraction of the overall computational work. To avoid this problem, 
an alternative learning function that reduces the number of RNG calls and 
thus improves the effi ciency of the SPE algorithm was recently developed  [52] . 
Thus, a modifi ed update rule led to a reduction in stress over the course of 
the refi nement. In addition, due to the second term in the modifi ed error func-
tion that may be negative, the stress may temporarily increase, allowing the 
algorithm to escape from the local minima. 

 SPE can also be applied to an important class of distance geometry prob-
lems including conformational analysis  [53] , nuclear magnetic resonance 
(NMR) structure determination, and protein - structure prediction  [54] . For 
example, the effective implementation of SPE in combination with the self -
 organizing superimposition algorithm that has been successfully applied for 
conformational sampling and conformational search was recently described 
 [55 – 57] . Basically, the algorithm generates molecular conformations that are 
consistent with a set of geometric constraints, which include interatomic dis-
tance bounds and chiral volumes derived from the molecular connectivity 
table. SPE has recently been applied to the classifi cation and visualization of 
protein sequences as well as to reduce the intrinsic dimensionality and metric 
structure of the data obtained from genomic and proteomic research  [58] . 
Thus, the effectiveness of the algorithm can be illustrated using examples from 
the protein kinase and nuclear hormone receptor superfamilies (Fig.  16.7 D). 
When used with a distance metric based on a multiple sequence alignment 
(MSA), the method produced informative maps that preserve the intrinsic 
structure and clustering of the data. The MSA metric defi nes dissimilarity as 
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αik  and  αjk  as determined by a normalized exchange matrix, and  n  is the length 
of the alignment  [21] . 

 Finally, it should be noted, that Demartines and Herault    [59]  recently 
described a related method for nonlinear dimensionality reduction known as 
curvilinear component analysis (CCA). Although the key learning function is 
very different, CCA uses an optimization heuristic that is very similar to the 
one employed in SPE. The principal difference between these methods is that 
CCA utterly disregards remote distances, whereas SPE differentiates them 
from local distances by their intrinsic relationship to the true geodesic dis-
tances, and utilizes both types accordingly in order to improve the embedding. 
In essence, the SPE method views the input distances between remote points 
as lower bounds of their true geodesic distances, and uses them as a means to 
impose global structure.   

  16.3   MAPPING SOFTWARE 

 Over the past decade, the amount of data arising from various medicinal chemi-
cal disciplines, especially from biologic screening and combinatorial chemistry, 
has literally exploded and continues to grow at a staggering pace. Scientists are 
constantly being inundated with all types of chemical and biologic data. 
However, the computational tools for integrating and analysis of the data have 
largely failed to keep pace with these advances. The majority of computer 
programs targeted for dimensionality reduction, mapping, and throughput of 
data analysis have roughly been realized in simple, often inconvenient console 
format, or as external modules installed under the different pilot platforms, 
such as Microsoft Excel and MATLAB computing language; these include, but 
are not limited to, SOM_PAK ( console DOS - based version ) ( http://www.cis.
hut.fi  ), Ex - SOM ( Excel - based interface ) ( http://www.geocities.com ), and SOM 
Toolbox ( Matlab - based interface ) ( http://www.cis.hut.fi  ). Fortunately, to date, 
several novel powerful Windows - based programs in the fi eld of dimensionality 
reduction and multiparametric data analysis are currently available from dif-
ferent commercial and academic sources. Among these software, InformaGenesis 
( http://www.InformaGenesis.com ), NeuroSolutions ( http://www.nd.com ), and 
Neurok ( http://www.neurok.ru ) are typical examples of neural - based compu-
tational programs running under Windows and particularly targeted for 
Kohonen and Sammon mapping. However, there is a relatively small number 
of such software specialized for chemical data analysis. 

 InformaGenesis is a powerful software, which is primarily based on the 
Kohonen SOM algorithm and is enhanced by many advanced modifi cations 
and complex - specifi c modalities. This program has specifi cally been designed 
to work under the Windows operating system. In addition to the basic Kohonen 
settings and learning parameters, it includes signifi cant algorithmic - based 
improvements, such as  “ neural gas, ”   “ Duane Desieno, ”   “ noise technique, ”  
and  “ two learning stages and three - dimensional architecture, ”  as well as 
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several unique algorithms and specifi c methods, for instance,  “ corners, ”   
“ gradient, ”  and  “ automatic descriptor selection algorithm (ADSA) ” . 
Furthermore, the program is also completely adapted for the analysis of large 
sets of chemical data of different types and dimensionality. Thus, the specifi c 
calculation module SmartMining integrated into the master computing engine 
of InformaGenesis was also originally developed and scientifi cally validated 
in a wide number of drug discovery projects. For example, the SmartMining 
software calculates more than hundred fundamental molecular descriptors 
that are generally divided into several logical and functional categories, includ-
ing the basic specifi c physicochemical features, such as log  P , number of 
H - bond donors, H - bond acceptors and rotatable bonds; and topological and 
electrotopological descriptors, such as Zagreb, Wiener, and E - state indexes, 
as well as quasi  - 3D descriptors, such as van der Waals volume and surface. 
All descriptors are directly calculated by using well - known common models 
and approximations in the scientifi c literature  [60] . In addition, several algo-
rithms have been progressively modifi ed to obtain more exact feature predic-
tion or/and calculations; for example, van der Waals parameters are calculated 
fairly accurately considering the overlapped volumes and/or surfaces. 

 In fact, it becomes increasingly obvious that specifi c computational pro-
grams targeted at the complex analysis of multiparametric/multidimensional 
data sets are being demanded in modern drug discovery and development at 
present.  

  16.4   CONCLUSION 

 This chapter presents a detailed review specifi cally focused on advanced com-
putational mapping techniques currently applied to in silico  drug design and 
development. Several novel mapping approaches to analysis of the structure –
 activity relationships within the chemical space of different types and structure 
were comparatively discussed in order to provide a better understanding of 
the fundamental principles of dimensionality reduction. However, because of 
severe space limitations, several mapping techniques and their target applica-
tions remain beyond the scope of the current review. We strongly believe this 
computational mapping area will expand greatly in the future due to the 
increasing amounts of data being deposited in public databases as well as those 
that are internally generated in pharmaceutical companies.  
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  17.1   INTRODUCTION 

 Increasing amounts of data and information become available in the biologi-
cally related areas of chemistry, which lead to a stringent need to store, 
archive, organize, and systemize all this information. Such demands are being 
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met by developing comprehensive databases. A database is a collection of 
permanent data stored in electronic format in a logical and systematic manner, 
so that software or persons querying for information can easily retrieve them. 
Despite their increasing size, these collections of data are organized to support 
a simple mechanism for management and retrieval of information and have 
become useful in a wide range of applications. 

 Chemical biology, medicinal chemistry, and molecular biology call for an 
increased number of databases that index not only chemical information 
(SciFinder  [1] , Beilstein  [2] ) but also biological data (biological and target -
 specifi c assay details), chemoinformatics   data (calculated and measured prop-
erties associated with chemicals), and bioinformatics data (target - related 
information). The pharmaceutical industry counts on these types of databases 
for achieving milestones in the drug discovery process, namely, for target 
(macromolecule) and lead (small - molecule) identifi cation. Such databases, 
enabled with built - in search engines for appropriately querying chemical and 
biological information, have become integral to the discovery process and are 
continuously expanding. The integration process demands hierarchical clas-
sifi cation systems to facilitate simultaneous mining after information associ-
ated with target - focused chemical libraries and biological families  [3] . 

 In this chapter, we present some bioactivity databases having bioinformat-
ics and chemoinformatics content, discuss some aspects of their integration, 
and describe tools for mapping the edge between chemistry and biology. For 
a detailed review of bioactivity database assembly, the reader is referred to 
our earlier work  [4] .  

  17.2   DATABASE MANAGEMENT SYSTEMS FOR 
CHEMISTRY AND BIOLOGY 

 If biological information can easily be stored in a binary format, as text or 
graphics, chemical information cannot be captured in a similar manner because 
a standard database management system  [5]  (DBMS, software used for design-
ing databases) lacks the appropriate cognizance for handling chemical struc-
tures. In order to overcome this issue, special systems or extension modules 
had to be designed and implemented to enable storage, search, and retrieval 
of chemical information (data structures). Some representative systems that 
have been developed until now are presented in the following. 

 The  Catalyst   [6]  software suite from Accelrys provides an integrated envi-
ronment for three - dimensional (3 - D) information management and pharma-
cophore modeling, valuable in drug discovery research. This integrated 
environment allows for seamless access to complementary capabilities such as 
generation of multiple conformations with extensive coverage of conforma-
tional space, pharmacophore - based alignment of molecules, shape - based 3 - D 
searching, and automated generation of pharmacophore hypotheses based on 
structure – activity relationship (SAR) data. 
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ChemFinder  is a small - enterprise DBMS designed by CambridgeSoft 
Corporation  [7]  that has been providing free chemical searching to hundreds 
of thousands of scientists since 1995. It can be used as a stand - alone software 
or can be connected to Oracle  [8]  and Microsoft Access. Also, extension 
modules for Microsoft Word and Microsoft Excel are available. Another 
product offered by the same company is ChemOffi ce WebServer , an enterprise 
server for development and also a leading solution platform for scientifi c data 
storage and sharing. Accessible through a web browser, the ChemOffi ce 
WebServer provides an organized management system for chemical and bio-
logical databases. ChemOffi ce WebServer is included in all of the ChemOffi ce 
Enterprise suites (solutions for knowledge management, chemical informatics, 
biological informatics, and chemical databases). ChemOffi ce WebServer SDK 
extends the Microsoft and Oracle platforms, allowing information scientists 
to use the most powerful development tools.  ChemDraw  is the equivalent of 
MDL ’ s   ISIS/Draw  [9]  tool for chemical structure drawing  [7] . 

ChemoSoft   [10]  from Chemical Diversity Labs Inc. is an integrated software 
environment ensuring chemoinformatics solutions for drug design and for 
combinatorial and classical chemistry. ChemoSoft offers a low - cost, reliable, 
and effi cient solution due to an interface with standard SQL servers (Oracle, 
Microsoft SQL Server  [11]  and Borland Interbase  [12] ) and  ChemWebServer . 
The  SQL Link Library  is designed to connect ChemoSoft to the SQL server, 
where the user can export, import, browse, and edit data. The ChemWebServer 
is intended to expose chemical databases via the Internet. ChemoSoft provides 
useful utilities from the following groups: (1) tools for browsing, editing, and 
correcting fi les of certain formats that differ from ChemoSoft ones; (2) tools 
for correcting errors in database structures, search for tautomers (most prob-
ably, multiplicates of the same substance), the refi nement of the inconvenient 
display of structures, and the replacement of a certain moiety of database 
structures by another fragment; (3) utility for a multiple condition search; and 
(4) add - in storing and rendering trivial names for predefi ned structures. 

MDL ISIS/Base   [9]  from Symyx MDL  [13]  is a fl exible desktop database 
management system for storing, searching, and retrieving chemical structures 
and associated scientifi c data. Its form - based searching provides for the end 
user a customizable and simple exploitation, allowing a combination between 
chemical structure searches, text, and/or numeric queries. Another ISIS family 
member, MDL  Isentris   [14]  is a desktop environment for effi ciently searching 
data, analyzing results, reporting, and sharing and managing research informa-
tion in a collaborative manner. Using this product is possible to deliver essen-
tial scientifi c data into scientifi c workfl ows; to create solutions that combine 
proprietary data and commercial information, in - house applications, MDL 
applications, and specialized software from other vendors; and to search, 
browse fi lter, visualize and report warehouse data, and so on. 

 Isentris and ISIS/Base are enterprise solution chemical DBMSs that can be 
connected to Oracle  [8]  using the  MDL cartridge . These systems require  MDL/
Draw  (or  ISIS/Draw  — an older product) for structure drawing. The incorpo-
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rated development toolkit allows the creation of dialog boxes, tool bars, 
buttons, and special forms. Custom modules can be written using the ISIS 
programming language for automating procedures such as data registration. 
ISIS/Base/Draw is a good solution for Windows - based front - end systems  [9] . 

 Daylight CIS  [15]  offers a chemical database system that has built - in knowl-
edge about chemical graph theory and it achieves high performance when 
storing chemical information, Thesaurus Oriented Retrieval ( THOR )  [16] . 
THOR features extremely fast data - retrieval time, independent of database 
size or complexity. The primary key used in the database is the molecular struc-
ture stored in SMILES (Simplifi ed Molecular Input Line Entry Specifi cation) 
   [17,18]  format designed by Daylight — simple and comprehensive chemical lan-
guage in which molecules and reactions can be specifi ed using ASCII   characters 
representing atom and bond symbols. This feature distinguishes Daylight com-
ponents from competition, as they require minimal storage, provide space 
effi ciency, and very fast retrieval times; various toolkits are available for high -
 end customization, tailored to data visualization, query, and storage. 

Instant JChem  (IJC) is a Java  [19]  tool from ChemAxon Ltd.  [20] , based 
on JChem Base, for the development of applications that allow the searching 
of mixed chemical structure and nonstructural data and can integrate a variety 
of database systems (Oracle, SQL, Access, etc.) with web interfaces. By using 
the JChem Cartridge for Oracle, the user can acquire additional functionalities 
from within Oracle ’ s SQL. The system includes Marvin, a Java - based chemical 
editor and viewer. Marvin tool is in the same time a fast substructure, similar-
ity, and exact search engine using two - dimensional (2 - D) hashed fi ngerprints 
 [20] . IJC is a database - centric desktop application that merges MDL - like visual 
queries and Daylight - like SMARTS (SMiles ARbitrary Target Specifi cation) 
queries, enabling scientists to perform high - level searches on high - volume 
chemical databases. 

UNITY   [21] , a DBMS package accessible through SYBYL, the molecular 
modeling system from Tripos  [22] , combines database searching with molecu-
lar design and analysis tools. UNITY allows one to build structural queries 
based on molecules, molecular fragments, pharmacophore models, or receptor 
sites. In addition to atoms and bonds, 3 - D queries can include features such 
as lines, planes, centroids, extension points, hydrogen bond sites, and hydro-
phobic sites. The UNITY relational database interface within SYBYL pro-
vides access to Oracle data associated with structures.  

  17.3   INFORMATIONAL STRUCTURE OF 
BIOACTIVITY DATABASES 

  17.3.1   Chemical Information 

 Chemical information collected in any database is represented by chemical 
structures that are encoded into a machine - readable format. In this format, 
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the atomic connectivity, which is the main characteristic for storing chemical 
structures, is depicted by connection tables that store 2 - D and/or 3 - D atomic 
coordinates. The information comprised in a chemical structure can be illus-
trated hierarchically through one - dimensional (1 - D), 2 - D, or 3 - D representa-
tions (Fig.  17.1 ).   

 In 1 - D representation, chemical structures can be depicted as canonical 
nonisomeric SMILES  [17,18]  that do not contain stereochemical information. 
The SMILES code is a simple comprehensive chemical language that con-
tains the same information as is found in an extended connection table. A 
molecule is represented as a string using ASCII characters corresponding to 
atom and bond symbols. The SMILES string is small, taking approximately 
1.5 ASCII characters per atom, so it can be manipulated easily for query 
tasks in chemical databases. In order to simplify a query in chemical data-
bases and to obtain more specifi c results, one can use SMARTS  [23] , which 
is an ASCII character string very similar to SMILES language but different at 
the semantic level because SMILES describes molecules, whereas SMARTS 
describes patterns. 
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     Figure 17.1     The representation of chemical information exemplifi ed for rolipram.  
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 Molecular fi ngerprints are 1 - D descriptors used for exhaustive searches on 
chemical databases, mainly similarity queries. Fingerprints are a very abstract 
representation of certain structural features of a molecule, being a boolean 
array, or bitmap, with no assigned meaning to each bit. 

 An invariant character string representation of chemical structures is the 
International Chemical Identifi er (InChI)  [24] , a textual identifi er developed 
jointly by IUPAC (International Union of Pure and Applied Chemistry)     [25]  
and NIST (National Institute of Standards and Technology)    [26] . InChI was 
designed to provide a standardized method to encode chemical information 
and to facilitate the search for this information in databases. InChI enables 
an automatic conversion of graphical representations for chemical substances 
into the unique InChI labels, which can be later restored by any chemical 
structure drawing software. The convention for chemical structure representa-
tion in the InChI system uses IUPAC rules as an input structure representa-
tion for normalization and canonicalization. Like SMILES technologies from 
open source projects such as Open Babel  [27] , InChI is freely available. 

 2 - D representations of chemical structures are simplifi ed graphical models 
in which atoms are depicted by their atomic symbols and bonds are repre-
sented as lines between these symbols. In this type of representation, stereo-
chemical information may be encoded (Fig.  17.2   ). Many chemical database 
systems store chemical structures as 2 - D representation, perhaps adding iso-
meric SMILES along with other structural information. Chemical data formats 
that render chemical information into a machine - readable format are ASCII 
(text) or binary format. As a consequence of ASCII format redundancy, it is 
recommendable to deposit data in a compressed format when text format is 
used. Although data compression is a slow process, it is performed only once 
when records are registered into the database and a decompression step allows 
a quick execution. The binary format is less fl exible but is comparable in size 
with the compressed text format. More than a decade ago, Chemical Markup 
Language  [28,29]  (CML), a unifi er format, was developed as a new approach 
for managing molecular information using Internet tools like XLM  [30,31]  and 
Java  [19] . CML can hold very complex information structures and works as 
an information interchange mechanism.   

 3 - D representations of chemical structures extend the information existent 
in SMILES or 2 - D representations by introducing atomic coordinates, 
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     Figure 17.2     2 - D chemical representation of  propanolol and its enantiomers.  
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information that can be individually unique to conformers. In the 3 - D repre-
sentation, stereochemical information is preserved for both chiral centers and 
double bonds. The 3 - D level is dedicated to structures with  xyz  coordinates 
(e.g., small - molecule crystallographic data, molecular models, and known bio-
active conformers from experimental determinations) and for properties and 
characteristics that really depend on 3 - D structures (volumes, surfaces, VolSurf 
 [32]  descriptors, etc.). 

 In addition to atomic connectivity, annotations using external identifi ers 
and additional attributes regarding, e.g., known protomeric or tautomeric 
states, as well as structural keywords are important for accurate control of 
chemical information. Data regarding trivial or generic names, CAS   (Chemical 
Abstracts Service) registry numbers  [33,34] , or IUPAC nomenclature  [35]  are 
very helpful in elucidating some ambiguous records like chemical structure 
errors, different salt formulations, and tautomers.  

  17.3.2   Biological Activity Information 

 Biological activity information refers to bioactivity data, e.g., value and activ-
ity type, together with qualitative information, e.g., agonist or antagonist, as 
well as additional assay information regarding tissues or cells for in vitro  and 
whole organism for in vivo  determinations, assays protocols, and supporting 
literature. 

 Biological activity data are expressed as (1) inhibitory concentration at 50% 
(IC50 ), which represents the molar concentration of an inhibitor (antagonist) 
that reduces the biological response (reaction velocity) of a substrate (agonist) 
by 50%; also other percentage values can be determined — IC 30 , IC 90 , and so 
on; (2) effective concentration at 50% (EC 50 ), which refers to the molar con-
centration of a substrate (agonist) that produces 50% of the maximal biologi-
cal effect of that substrate (agonist); (3) inhibition constant ( Ki ) and direct 
binding experiment equilibrium dissociation constant ( Kd ); (4) A 2  — the molar 
concentration of an antagonist that requires double concentration of the 
agonist to elicit the same submaximal response, obtained in the absence of an 
antagonist; (5) effective dose at 50% (ED 50 ), which represents the dose of a 
drug that produces, on average, a specifi ed all - or - none response in 50% of the 
test population or, if the response is graded, the dose that produces 50% of 
the maximal response to that drug; and (6) minimum inhibitory concentration 
(MIC), the lowest concentration of an antimicrobial that will inhibit the visible 
growth of a microorganism during overnight incubation  [36] . 

 To facilitate data mining, activity values should be stored not only in the 
assay - specifi c format but also in the same scale, e.g., logarithmic. The stan-
dard error of the mean (SEM) got from multiple determinations or the 
special situations when one compound does not show biological activity or 
when the exact activity value cannot be the determined can also be stored 
together with normal activity because it represents useful information for 
further data mining activity  . 
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 Separate but also categorized as bioactivity data are end points relevant to 
the clinical context: oral bioavailability; metabolic stability; fraction of the 
drug bound to plasma proteins; renal, hepatic, and systemic clearance; volume 
of distribution at steady state; fraction of drug excreted unchanged; plasma 
half - life; maximum recommended daily dose; lethal dose 50%; and so on. 
These properties, generically classifi ed as absorption, distribution, metabo-
lism, excretion, and toxicity ( “ ADME/Tox ” ), are high - level end - point deter-
minations that are more often encountered in late - phase discovery, specifi cally 
for potential clinical candidates or drugs. Species - specifi c animal data, as well 
as human data, are often available for most drugs. Also, an increasing amount 
of data is becoming available in the context of allele determinations, whereby 
specifi c phenotypes are taken into account for the same biological properties. 
For example, the infl uence of  “ slow ”  or  “ fast ”  metabolizers with respect to 
drug metabolism is becoming increasingly relevant in the context of drug – drug 
and food – drug interactions.  

  17.3.3   Target Information 

 Besides chemical and biological information, it is increasingly expected that 
bioactivity databases store target - specifi c information, namely, target and 
gene data. Many bioinformatics databases are freely available on the 
Internet, yet some discrepancies exist, due to different audiences, the major 
purpose of each resource, and the diversity of classifi cation criteria. 
Nevertheless, navigation among them is possible due to a set of hyperlinked 
unique identifi ers (the equivalent of chemical names) or uniform resource 
locators  [37]  (URLs), which are constructed from the unique identifi ers of 
every entry. 

 Most bioactivity databases contain a target module where basic biological 
data and external identifi ers are stored. In a simplifi ed case, target informa-
tion is organized as follows: an internal identifi er, used to relate records 
within the bioactivity database; target description (fl at text) that contains 
the target name, perhaps some synonyms, as well as other information 
related to its function, classifi cation, and species; and searchable key words 
and comments related to specifi c bioassays. Therefore, target fi elds can cover 
a large amount of information that may be systematized using different 
criteria. For example, functional criteria allow targets to be categorized as 
proteins or as nucleic acids; furthermore, a protein target can be an enzyme, 
a receptor, an ion channel, a transporter, or perhaps some other (unspeci-
fi ed) protein. Enzymes can further be classifi ed according to the Enzyme 
Codebook (E.C  .) number, according to the six major biochemical classes 
 [38] : oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases; 
receptors may be categorized as G protein - coupled receptors (GPCRs)  [39] , 
nuclear receptors  [40]  (NRs), integrins, and so on, each with its own subclass 
hierarchy. 
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 Key words are equally important in database management since they often 
become an integral part of the query process. Each database should have a 
predefi ned dictionary, namely, a set of stored key words that enable the user 
to easily formulate queries and to navigate across (in particular large) data-
bases. These predefi ned key words should be descriptive and meaningful; i.e., 
they have to be signifi cant for a considerable number of entries. Should the 
key words prove to be too general and apply to the vast majority of the entries, 
the query outcome would not be relevant. At the opposite end of the spec-
trum, when the key words are too specifi c, they will only apply to a very small 
number of entries and the query will result in incomplete information. 
Therefore, special care has to be taken when such dictionaries are built. 
Furthermore, the dictionary is an important tool for the standardization of a 
database. For example, a signifi cant number of targets can have two or more 
names that are synonyms; this can be confusing not only to nonbiologists but 
also to the biologists themselves (see below). A dictionary should keep track 
of synonyms in order to provide a high success rate for queries. Swiss - Prot 
 [41] , a protein - oriented database, solves to some extent the target standardiza-
tion problem.  

  17.3.4   Information Drift 

 Chemical and biological data are subject to temporal drift, i.e., to the rather 
serious possibility that information changes over time. For example, numbers 
related to the affi nity of propranolol, the fi rst beta - adrenergic antagonist used 
in the clinic, moved from approximately 50 – 100   nM in the early 1960s, to a 
single - digit nanomolar   in current literature. This is caused not only by an 
increased accuracy in assay determination, but also by our deeper understand-
ing of the biology: at least three different beta - adrenergic receptor subtypes 
have been characterized to date — information that was not available at the 
time of propranolol ’ s discovery. The racemate has since been separated to its 
enantiopure components, and we now know that the S - isomer is primarily 
responsible for the receptor - mediated event, whereas R - propranolol tends to 
have membrane - specifi c activities that may relate to its use as antiarrhythmic. 
Bioactivity values for propranolol and its enantiomers, including affi nities to 
the β1 ,  β2 , and  β3  adrenoceptors, are summarized in Table  17.1 .   

 This rather simple example illustrates the magnitude of the problem:  “ old ”  
experiments, while valuable, are rendered obsolete in the light of novel dis-
coveries, and  “ new ”  experiments may be required to address specifi c issues. 
Chemical structures tend to be resolved into enantiopure components, and 
perhaps different salt formulations and/or different microenvironment values 
(such as pH, temperature) can signifi cantly impact the outcome. Furthermore, 
what initially was considered a single target receptor, e.g., the generically 
termed  “ beta ”  adrenergic receptor from the late 1940s, may prove to be a 
population of two, or perhaps more, receptors.  
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  17.3.5   Protocol Information 

 Most bioactivity databases also contain information related to  in vitro  and/or 
in vivo  experimental assays, grouped under  “ protocol information. ”  Such data 
usually capture information related to the specifi cs of individual assays: endog-
enous ligand for a specifi c target, substrate, radioligand, temperature, pH, 
buffer, incubation time, method used (spectrophotometric, fl uorimetric, etc.), 
as well as any number of details that may be useful within the context of a 
data mining experiment. 

 The protocols are usually standardized, but they are also subject to change, 
since methods have been constantly improved and technical accuracy contin-
ues to evolve. Due to the above, and because molecular biology has a dynamic 
character and targets are discovered and corrected all the time, updating is a 
necessity and has to be done on a monthly basis to ensure that the database(s) 
capture up - to - date, current information.  

  17.3.6   References 

 References are formatted bibliographic information fi elds that usually contain 
author or inventor names, reference titles, type and name of the publication 
(journal, patent, book, book chapter, etc.), as well as other specifi c record 
locators such as volume, issue or patent number, page numbers, and publisher. 
Literature data can be stored in full - text databases that capture the whole text 
of the original published work, or in bibliographic databases that contain only 
references, thus serving as a way to track specifi c documents. 

 TABLE 17.1     Propranolol and Some of Its Bioactivities   

   Ligand     Receptor     Action     Affi nity     Units     Database  

  S - Propranolol  β1  - Adrenergic 
(human)

  Antagonist    8.9 – 8.2    p Ki   IUPHAR  

  Propranolol  β2  - Adrenergic 
(human)

  Antagonist    9.5 – 9.1    p Ki   IUPHAR  

  Propranolol  β3  - Adrenergic 
(human)

  Antagonist    7.2 – 6.3    p Ki   IUPHAR  

  S - Propranolol    5 - HT 1A  (human)    Antagonist    7.5    p Ki   IUPHAR  
  S - Propranolol    5 - ht 5a  (human)    Antagonist    5.1    p Ki   IUPHAR  
  Propranolol    5 - HT 1B  (human)    Antagonist    5.38    p Ki   WOMBAT  
  Propranolol    5 - HT 1B  (human)    Antagonist    5.38    p Ki   WOMBAT  
  S - Propranolol    ABCB1 (human)    Inhibitor    3.24    p Ki   WOMBAT  
  R - Propranolol    ABCB1 (human)    Inhibitor    3.23    p Ki   WOMBAT  
  S - Propranolol    CYP2D6 (human)    Inhibitor    5.85    p Ki   WOMBAT  
  R - Propranolol    CYP2D6 (human)    Inhibitor    5.72    p Ki   WOMBAT  
  S - Propranolol    CYP1A2 (human)    Inhibitor    3.97    p Ki   WOMBAT  

   5 - HT   =   5 - hydroxytryptamine;   ABCB1   =   ATP - binding cassette B1 transporter; CYP   =   cyto-
chrome P450; IUPHAR   =   International Union of Basic and Clinical Pharmacology; WOMBAT 
= WOrld of Molecular BioAcTivity database.   



INFORMATIONAL STRUCTURE OF BIOACTIVITY DATABASES 501

 Relevant bibliographic databases for chemistry, medicinal chemistry, and 
biology are the Chemical Abstracts Service  [42] , Medline  [43]  (via PubMed), 
and BIOSIS  [44] . These databases index along structures, biological assay, or 
targets, references related to the captured information. The reference fi eld 
gives data that describe the content of a document (abstract), being the special 
feature design to identify an article, patent, book, and so on, related to the 
specifi ed query. 

 Bibliographic information may be stored in one or more fi elds, depending 
on the type and features of that particular database system. For example, the 
reference section of each publication captures, typically in text format, biblio-
graphic information that includes authors, title, journal/book name or patent 
number, page numbers, and so on. Because article and patent data types are 
different, this reference format is often divergent and sometimes makes refer-
ence information handling unproductive and not viable. The simplest solution 
to this issue is to use a multilevel hierarchical format (Fig.  17.3 ). A fi rst level 
should comprise the common elements of any document type like author 
names, title, or base URLs  [37] . Subsequently, the document type should be 
identifi ed. Based on this information, the following levels index particular 
elements of the document: journal name, volume and/or issue for a journal, 
publisher for a book or book chapter, applicants, and patent number for a 
patent. The more information that is captured, the higher the hit rate for a 
specifi c query will be. Additional fi elds can be assigned for web hyperlinks to 
the full - text publication, and/or cross - linking identifi ers. When online sub-
scription is not available, abstracts can be accessed via digital object identifi ers 
 [45,46]  (DOIs) or PubMed  [43]  identifi ers. The use of DOIs as identifi ers 
avoids the  “ information drift ”  phenomenon (see Section 17.3.4), since Internet -
 based information is in danger of vanishing due to  “ link rot ”  (expired web 
links). Any referred object can be easily located by accessing the hyperlink 
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     Figure 17.3     A multilevel hierarchical format for the references  .  
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resulted from the concatenation of the base URL  http:/dx.doi.org/  with the 
DOI value  [45,46] .    

  17.3.7   Integration with Other Databases 

 Automated data integration from multiple sources (databases) has become 
mandatory, since manual multidatabase queries involve large amounts of data 
transfer, in addition to being time - consuming. As a result of the multidisci-
plinary characteristics of research, heterogeneous databases no longer fulfi ll 
user requirements. For example, in order to get the desired results, the user 
many need to query a database, fi nd the data of interest by analyzing the results, 
then use this data to query other databases. It is almost impossible to manage 
the current information fl ow with a single DBMS, as different databases have 
different schemata, data types, and formats. In one data schemata scenario, it 
is diffi cult to collect diverse information from different sources, even if similar 
data sets are used, due to the discrepancy of purpose among various informa-
tion sources. Another scenario, more suitable for communication diversity, 
data interchanging between local databases and reinforcing data accessibility 
without affecting the local database autonomy, is the multidatabase. 

 The multidatabase supplies full database functionality and works to reso-
lute the discrepancies in data representation and functions between local 
DBMSs. Federated DBMSs allow a continuous function for existent applica-
tions, support controlled integration of existing databases, and make possible 
incorporation of new applications and new databases  [47,48] . Tools like 
CORBA  [49,50] , Java  [19] , XLM  [30,31] , and HTML  [51,52]  offer a dominant 
and fl exible technique for integrating data from different databases. 

 Another extensively used integration technique is the insertion of external 
identifi ers that point to related information from other databases. The fre-
quently used identifi ers — links to other web resources — are principally built 
based on URLs  [37] , which in turn act as entry points into databases, and 
associated numeric or alphanumeric identifi ers for a specifi c resource.   

  17.4   AVAILABLE BIOLOGICAL AND BIOACTIVITY DATABASES 

 In this section, we present a short overview of some relevant public or com-
mercially available databases that contain information on biological target or 
small - molecule ligands as well as a number of integrated databases. Due to the 
ever-changing nature of databases, any numbers and websites discussed here 
are for informative purpose only, and are likely to become less accurate over 
time. 

  17.4.1   Bioactivity Databases 

17.4.1.1 Free -Access Databases   The number of integrated database 
resources is increasing  [53] . Some of these open - access resources cover a wide 
range of chemical and biological information, which makes it daunting to 
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summarize. In what follows, we selectively present some of the most relevant 
and complete databases, as summarized in Table  17.2   . 

BIDD Database   [54]  is a collection of databanks that has been developed 
at the Computational Science Department of the National University of 
Singapore. These databases are divided in three categories: (1) pharmainfor-
matics databases provide information about therapeutic targets:  Therapeutic
Target Database (TTD)   [55]  contains 1535 targets and 2107 drugs/ligands; drug 
adverse reaction,  Drug Adverse Reaction Target (DART)   [56] ;  ADME/Tox , 
ADME - Associated Protein   [57]  has 321 protein entries and therapeutically 
relevant multiple pathways contain 11 entries of multiple pathways, 97 entries 
of individual pathways, 120 targets covering 72 disease conditions along with 
120 drugs; (2) bioinformatics databases are represented by the  Computed
Ligand Binding Energy (CLiBE)   [58]  database that contains 14731 entries 
(2803 distinctive ligands and 2256 distinctive receptors) and Kinetic Data of 
Biomolecular Interactions  ( KDBI)   [59] , which currently contains 20,803 
records, which involve 2934 protein/protein complexes, 870 nucleic acids, and 
6713 small molecules; and the third category is dedicated to (3) herbinformat-
ics databases:  Traditional Chinese Medicine Information Database (TCM - ID)
 [60] , which includes herbal and chemical composition, molecular structure, 
functional properties, and therapeutic and toxicity effects. Also, these data-
bases contain chemical structures, associated references, and cross - links to 
other relevant databases. 

ChemBank   [61,62] , developed at the Broad Institute, and funded in large 
part by the National Cancer Institute (NCI)  [63] , is a public, web - based infor-
matics. This database includes freely available data derived from small mole-
cules and small - molecule screens and provides resources for studying the effect 
that small molecules have on biological systems. This project is intended to 
help biologists develop new screening methods or biological assays for the 
identifi cation of chemical probes and to guide chemists to design novel com-
pounds or libraries. ChemBank stores over 1 million compounds, including 
150,000 commercially available compounds tagged with vendors ’  catalog 

 TABLE 17.2     Publicly Available Databases   

   Database Type     Database Name     Homepage  

  Target/bioactivity/
chemoinformatics

  BIDD 
(Bioinformatics
 &  Drug Design)  

   http://bidd.nus.edu.sg/group/bidd.htm   

  Bioactivity    ChemBank     http://chembank.broad.harvard.edu/   
  Bioactivity    Drugbank     http://www.drugbank.ca/   
  Target/bioactivity    KiBank     http://kibank.iis.u - tokyo.ac.jp/   
  Chemical    LigandInfo     http://ligand.info/   
  Target/bioactivity    PDSP Ki     http://pdsp.med.unc.edu/pdsp.php   
  Target/bioactivity    PubChem     http://pubchem.ncbi.nlm.nih.gov/   
  Chemical    ZINC     http://zinc.docking.org/   
   Medicinal chemistry   StARlite     Not yet available 
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numbers, varied sets of cell measurements derived from high - throughput 
screening, and small - molecule microarrays assays. This database is powered 
by Daylight  [15]  and has a large pool of analysis tools that allows the relation-
ships between cell states, cell measurements, and small molecules to be deter-
mined. ChemBank can be searched using different critera, e.g., molecule name, 
substructure or similarity search, and assay type. The query result provides 
information related with the compound (name, SMILES, 2 - D representa-
tion, molecular weight and formula), vendors, classifi cation, identifi ers (CAS 
numbers  [33,34]  and ICCB (Institute of Chemistry and Cell Biology) identifi er 
   [64] ). Also, one can fi nd other important information, namely, characterized 
activities and observed biological effects, as well as cross references to other 
databases, such as PubMed  [43]  supplementary resources relevant to small 
molecules, chemoinformatics, and high - throughput screening. The search 
results can be downloaded in two well - known formats, SDF   (structure-data 
fi le) and XML. 

Drugbank   [65,66]  is a web - based dual - purpose bioinformatics – chemoinfor-
matics initiative developed at the University of Alberta, Canada that combines 
quantitative, analytic, or molecular - scale information about drugs and drug 
targets. This database offers drug - related information, e.g., drug ’ s name, 
chemical structure, experimental and calculated physicochemical properties, 
pharmacology, mechanism of action, toxicity, and comprehensive data about 
drug targets, e.g., sequence, structure, and pathways. Drugbank contains 
detailed information about bibliographic references, interactions with other 
drugs, and patient information, e.g., clinical indications of a particular drug, 
dosage forms, and side effects. 

 Nearly 4800 drug entries in Drugbank are divided into four major catego-
ries: (1) Food and Drug Administration (FDA) - approved  [67]  small - molecule 
drugs — more than 1480 entries; (2) FDA - approved biotech (protein/peptide) 
drugs — 128 entries; (3) nutraceuticals or micronutrients such as vitamins and 
metabolites — 71 entries; and (4) experimental drugs, which include unap-
proved drugs, delisted drugs, illicit drugs, enzyme inhibitors, and potential 
toxins — more than 3200 entries. Also, more than 2500 nonredundant drug 
target protein sequences are related to the FDA - approved drug entries. Being 
a web - enabled database, it has many built - in tools and features for query and 
results display. The database may be queried in different ways: simple or 
extensive text queries; chemical structure searches using a drawing application 
(e.g., MarvinSketch  [20] ) or SMILES strings; sequence search for proteins, 
which allows user to carry out both simple and multiple sequence queries; and 
relational query searches permit to the user to select one or more data fi elds 
and to search for ranges, occurrences of numbers, words, or string. The results 
of queries are displayed as an HTML format. Additionally, many data fi elds 
are hyperlinked to other databases (ChEBI  [68] , PubChem  [69] , KEGG 
   (Kyoto Encyclopedia of Genes and Genomes) [70] , PDB (Protein Data Bank) 
   [71] , Swiss - Prot  [41] , GenBank  [72] ), abstracts, digital images and interactive 
applets (3 - D representations) for viewing molecular structures of drugs and 
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related targets. Most of the informational contain text, sequence, structure 
and image data, which can be freely downloaded. 

KiBank   [73,74]  is a free online project that has been developed at the 
University of Tokyo, Japan  [75] , and it is designed to support the scientifi c 
community, which is interested in structure - based drug design. This database 
stores information related to the biological activity of chemical compounds, 
namely, the inhibition constant (Ki) values, species and experimental proto-
col, as well as chemical information: 3 - D structures of target proteins and 
chemicals. Ki values are gathered from peer - reviewed literature searched via 
PubMed  [43] ; bibliographic references are indexed as hyperlinks; and bioactiv-
ity data can be downloadable in comma - separated fi le format. The 3 - D struc-
ture fi les of target proteins are originally from Protein Data Bank  [71] , while 
the 2 - D structure fi les of the chemicals are collected together with the Ki 
values and then converted into 3 - D ones, being stored in PDB format and 
MDL MOL  , respectively. There are two search methods available: by chemi-
cal name — this type of query retrieves a list with all targets that have biological 
activity data available for that particular compound; and by protein name/
function — this target - oriented query provides a list of all compounds that bind 
to a specifi ed target. These lists are cross referenced and the user can easily 
toggle between them. KiBank provides structure fi les of proteins and chemi-
cals ready for use in virtual screening through automated docking methods, 
while the Ki values can be applied for tests of docking/scoring combinations, 
program parameter settings, and calibration of empirical scoring functions. 
Additionally, the chemical structures and corresponding Ki values in KiBank 
are useful for lead optimization based on quantitative structure – activity rela-
tionship (QSAR) techniques. KiBank is updated regularly; the May 2008 
version has more than 16,000 entries for Ki values, 50 targets (protein struc-
tures), and 5900 chemical structures. 

Ligand Info: Small - Molecule Meta - Database   [76]  is a collection of biologi-
cally annotated compounds compiled from various publicly available sources, 
which are collections of small molecules such as ChemBank  [61] , ChemPdb 
 [77] , KEGG  [70] , NCI  [63] , Akos GmbH  [78] , Asinex Ltd.  [79] , and TimTec. 
The current size of this database is 1,159,274 entries. These compounds are 
collected from different sources and for this reason, different data are 
included such as FDA approval status and anti - HIV activity; some molecules 
have predicted biological activity including pharmacological effects, mecha-
nism of action, carcinogenicity, teratogenicity, mutagenicity, embriotoxicity, 
and druglikeness. The principle behind this project is based on the supposi-
tion that small molecules with similar structures have similar binding pro-
perties. The developed system allows the end user to search for similar 
compounds in the database using structural indices that are constructed by 
averaging indexes of related molecules. Thus, using a Java - based tool, the 
system can interactively cluster sets of molecules creating index profi les 
for the user and can automatically download similar molecules from the 
server in an SDF format. This resource was planned for online virtual screen-
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ing, and it enables a rapid and receptive index for compound similarity 
searching. 

PDSP Ki   [80]  database is free resource initiative developed at the University 
of North Carolina and is funded, mainly, by the National Institute of Mental 
Health. This database is a repository of experimental results (Ki), which pro-
vides information related with drugs and their binding properties to an out-
standing number of molecular targets. It was designed as a data warehouse 
for in - house and published Ki or affi nity values for a large number of drugs 
and candidate drugs binding to GPCRs, transporters, ion channels. and 
enzymes. The fl exible user interface provides tools for customized data mining 
(Ki graphs, receptor homology, and ligand selectivity). The queries can be 
performed on a well - designed interface, which includes the following search-
able fi elds: receptor name, species, tissue source, radiolabeled and tested 
ligand, bibliographic reference, and Ki values. The end user can search by 
any fi eld or a combination of them to refi ne the search criteria, and the system 
can retrieve the results list cross - linked with corresponding entries in PubChem 
 [69]  and PubMed  [43] ; also, this database can be downloaded as a compressed 
ASCII fi le and one can enter his results in the database using the provided 
input web page. The current size of the database is 46,249 Ki value entries. 

PubChem   [69]  — Public Cheminformatics Database — has been developed 
as a dedicated chemoinformatics resource by the National Institute of Health 
being a component of Molecular Libraries Roadmap Initiative  [81] , and it is 
hosted by the National Library of Medicine. PubChem is a public database 
that contains a huge amount of annotated information about the biological 
activities of small molecules. The chemical and biological information are 
linked to other databases, like ChemSpider  [82] , Drugbank  [65,66] , Sigma -
 Aldrich, or other Entrez databases allowing the user a direct access to infor-
mation update on chemical data and biological properties. Also, Pubchem is 
linked to NCBI ’ s (National Center for Biotechnology Information)   3 - D 
protein structure database and PubMed database, which contains biomedical -  
and life science - related literature. Powered by Openeye  [83]  and CACTUS 
 [84]  software, PubChem has a complex organization, as three linked databases 
within the NCBI ’ s Entrez information retrieval system. These are (1) PubChem 
Substance database, which contains complete descriptions of chemical samples 
deposited from a variety of sources and links to PubMed citations, 3 - D struc-
tures for proteins, and biological activity values available from screening, as 
well as links to the other two databases; (2) PubChem Compound comprises 
validated chemical depiction information provided to describe substances 
from PubChem Substance; structures stored are preclustered and cross refer-
enced by identity and similarity groups; furthermore, calculated properties 
and descriptors are available for searching and fi ltering of chemical structures; 
and (3) PubChem BioAssay database enclose bioactivity assays for chemical 
substances deposited in PubChem Substance; it provides searchable descrip-
tions of each bioassay, including descriptions of the conditions and readouts 
specifi c to that screening procedure. The entire information incorporated in 
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PubChem is free, and it is available and can be downloaded through the 
PubChem FTP site. The February 2008 release of Pubchem contains more 
than 40 million substances, 19 million compounds, and 1055 bioassays. 

 StARlite, a medicinal chemistry database developed for Inpharmatica and 
Galapagos NV (until 2008) was transferred to the public domain with support 
of a fi ve-year award from the Wellcome Trust. StARlite, now available from 
the European Bioinformatics Institute (EBI) is a chemogenomics database 
that indexes biological and chemical data abstracted from the primary medi-
cinal chemistry literature, for known compounds and their pharmacological 
effects. It currently contains around 450,000 compounds and covers about 
3,000 targets, of which approximately 1,700 are human proteins. StARlite has 
more than 2 million experimental bioactivities and is updated on a monthly 
basis, both with new data and also with error-checking. The anticipated growth 
of StARlite is around 10% per annum, and is intended as a complementary 
service to Pubchem and ChemBank. Together with other open-source data-
bases, DrugStore (a database of drugs) and CandiStore (a database of approx-
imately 10,000 compounds in clinical development), StARlite forms the 
ChEMBL chemical database, part of the EMBL (European Molecular Biology 
Laboratory). Using ChEMBL, one can track the progress of a structure from 
lead optimization through clinical development and launch phase  [85,86] . 
ZINC is a free database initiative that has been developed at the University 
of California, San Francisco  [86] , and it is a curate collection of commercially 
available chemical compounds, many of them  “ druglike ”  or  “ leadlike, ”  avail-
able in 3 - D formats ready for docking. Catalogs from more than 40 vendors 
are uploaded in ZINC, and compounds can be purchased directly from 
vendors. The user can search this databases using the Java Molecular Editor 
(JME) for chemical structures  [87] , which generates SMILES  [17,18] , or using 
directly SMILES or SMARTS  [23]  strings, or compose a query specifying 
molecular property constraints available in the specifi c fi elds. Also, one can 
search the database entering the vendor ’ s name, catalog number, and/or ZINC 
code. Additionally, different subsets are available for download, e.g., leadlike 
compounds, fragment - like, druglike, clean - leads, all - purchasable, etc., and it 
can be downloaded in different common fi le formats: mol2, SDF, SMILES, 
and fl exibase. The ZINC8 release contains over 10 million commercially avail-
able molecules ready for virtual screening.  

17.4.1.2 Commercially Available Databases   The trend observed in open -
 access resources is paralleled by commercial databases as well. The impor-
tance of curation and the presence of errors in the literature domain have been 
discussed elsewhere  [88] . Commercial reources can be invaluable for sum-
marizing project - specifi c information, e.g., bioisosterism, GPCR - active com-
pounds, and kinase inhibitors. Some of the most relevant examples of 
commercially available databases are summarized in Table  17.3   . 

BIOSTER   [89]  is a collection of bioanalogous pairs of molecules (bioiso-
steres), which contains over 45,000 examples of biologically active molecules 
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representing drugs, prodrugs, enzyme inhibitors, peptide mimetics, and agro-
chemicals selected from existent literature, offered by Accelrys. This database 
provides key words indicating the mode of action and cross references 
to reports for each active compound, being a powerful and helpful tool for 
discovering alternate structures with enhanced effi cacy, superior absorption, 
distribution, metabolism, excretion (ADME), toxicity profi les, and desired 
physical properties. The  Biotransformations  database offers information about 
metabolism of drugs, agrochemicals, food additives, and industrial and envi-
ronmental chemicals in vertebrates. Also, it contains the original literature, 
test systems, and a set of generic key words. Like BIOSTER, the  Metabolism
database has been designed for use with MDL ISIS. This product supplies 
biotransformations of organic molecules in a wide variety of species by provid-
ing primary information on the metabolic fate of organic molecules  [89] . 

 Aureus  [90]  offers several high - value knowledge databases ( AurSCOPE
 [91] ) of chemical and biological data, including quantitative activity data on 
GPCR, kinases, ion channel, and drug – drug interactions (generally Cyp450). 
These databases contain, besides chemical information,  in vitro  and  in vivo
biological data with complete descriptions of the biological assays.  AurSCOPE 
GPCR  is a fully annotated structured knowledge database containing chemi-
cal and biological information relating to GPCR (around 2300 targets) chem-
istry, pharmacology, and physiology. This product includes information 
regarding 500,000 biological activities for more than 100,000 ligands active on 
GPCR.  AurSCOPE Ion Channel  contains information about ion channel acti-
vators, openers, and blockers covering almost all ion channel targets: calcium 
channels, potassium channels, chloride channels, sodium channels, transmit-
ter - gated channels, and so on.  AurSCOPE Kinase  contains biological activity 
data mined from journals and patents associated with chemical SARs concern-
ing kinase – ligand interactions.  AurSCOPE ADME/Drug – Drug Interactions
encloses biological and chemical information (97,000 bioactivities for 4250 
molecules) related to metabolic properties of drugs (1770 metabolites and 420 
targets), which permits the identifi cation of potential drug – drug interaction. 
AurSCOPE hERG Channel  contains signifi cant biological and chemical infor-

 TABLE 17.3     Commercially Available Databases 

   Database Name     Homepage  

  AurSCOPE     http://www.aureus - pharma.com/   
  MediChem     http://www.cambridgesoft.com/   
  Merck Index     http://www.themerckindex.cambridgesoft.com/   
  Kinase Knowledgebase     http://www.eidogen - sertanty.com/   
  MDL Drug Data Report     http://www.mdli.com/   
  DiscoveryGate     http://www.discoverygate.com/   
  GVK Biosciences databases     http://http://www.gvkbio.com/   
  PathArt     http://www.jubilantbiosys.com/   
  WOMBAT, WOMBAT - PK     http://sunsetmolecular.com/   
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mation related to the human ether - a - go - go - related gene (hERG) (7750 bio-
activities for 1155 ligands). 

 CambridgeSoft and GVK Biosciences  [92]  have placed on market 
MediChem  database, which is a collection of over 500,000 compounds that 
have been selected from the top 25 medicinal chemistry journals. Data include 
chemical information, literature reference (records are also linked to PubMed 
via a hyperlink), target information (binding information for the target and 
its mutants), bioactivity information, reaction pathways, chemical properties, 
availability of reagents, and toxicological information. Records can be queried 
by target platform, e.g., GPCR, kinase, and ion channels.  Traditional Chinese 
Medicines  database (also available from Daylight CIS) consists of over 10,000 
compounds isolated from 4636 traditional Chinese medicine natural sources, 
which consisted generally of plants, minerals, and a small number of animals. 
Ashgate Drugs Synonyms and Properties  is a database of over 8000 drug sub-
stances currently in common use worldwide. The  Merck Index  database is a 
structure searchable encyclopedia of chemicals, drugs, and biological active 
compounds. It provides more than 10,000 monographs on single substances 
and related groups of compounds covering chemical, generic, and brand 
names. The queries may be performed in different fi elds like structure and 
stereochemistry, registry numbers, physical properties, toxicity information, 
therapeutic uses, and literature  [93] . 

 The  Kinase Knowledgebase   [94]  (KKB) is an Eidogen – Sertanty  [95]  data-
base of kinase structure – activity and chemical synthesis data, which provides 
an overview of published knowledge and patents around kinase targets of 
therapeutic importance, enabling a detailed understanding of the knowledge 
space around the target of interest and the relevant antitargets. The presenta-
tion of inhibitor structural data consents to group known inhibitors in scaffold 
groups and outlines a project plan around patentable chemotypes. The overall 
number of unique small - molecule structures in the KKB is now greater than 
440,000 records (with more than 140,000 tested molecules) for over 300 anno-
tated kinase targets, captured from over 3800 journal articles and patents. The 
curation process captures chemical synthesis steps for those kinase inhibitors 
with detailed experimental procedures. Chemical information incorporates 
synthetically feasible reagents that are reported in the context of the claims 
of a patent being structured in protocols of generic reaction sequences. This 
generates all specifi c examples from a patent and also a comprehensive ensem-
ble of structures (the patent space) that can possibly be made by the reported 
synthetic methodology, which are potentially relevant within the biological 
activity class. Synthetic pathways leading to these molecules are structurally 
linked to the biological information. QSAR models based on  in vitro  data and 
advanced activity models based on cellular activity and toxicity can further be 
selected. 

 MDL Discovery Knowledge package from Symyx  [13]  contains, besides 
reference works and literature links, one of the most comprehensive collection 
of bioactivity, chemical sourcing, synthetic methodology, metabolism, toxicol-
ogy, and environment, health, and safety (EH & S) databases.  MDL Drug Data 
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Report  (MDDR)  [96]  is focused on underdevelopment or launched drugs 
covering the patent literature, journals, meetings, and congresses since 1988. 
This database counts over 132,000 entries with detailed information regarding 
chemical structure, biological activity, description of the therapeutic action, 
patent information (patent number, title, source, and name of invertors), lit-
erature references, synonyms (company codes, generic name, trade names, 
trademark names, etc.), the originating company, and the development phase. 
The  National Cancer Institute Database 2001. 1     [97]  contains more than 213,000 
structures gathered in four available NCI databases: (1) the  NCI 127K  data-
base consisting of 127,000 structures with CAS registry numbers; (2) the  Plated
Compounds  database containing 140,000 nonproprietary samples, which are 
offered to the external research community; (3) the  AIDS  database, contain-
ing 42,687 entries that have been tested for AIDS antiviral activity; (4) the 
Cancer  database containing dose – response data for 37,836 compounds tested 
for the ability to inhibit the growth of human tumor cell lines. For each record, 
a 3 - D model generated with Corina  [98]  is available.  MDL Comprehensive 
Medicinal Chemistry  (CMC), derived from the Drug Compendium in 
Pergamon ’ s CMC, provides 3 - D models and important biochemical properties 
including drug class, log  P , and pKa values for over 8400 pharmaceutical 
compounds. The  MDL Patent Chemistry Database  indexes chemical reactions, 
substances, and substance - related information from organic chemistry and life 
sciences patent publications (world, U.S. and European) since 1976. The data-
base contains approximately 3 million reactions, along with at least 3.8 million 
organic, inorganic, organometallic (and polymeric) compounds, and asso-
ciated data. All these databases can be searched by compound and pro-
perty, using MDL ISIS/Base or MDL Database Browser via DiscoveryGate 
 [99] .  DiscoveryGate  is a web - enabled discovery environment that integrates, 
indexes, and links scientifi c information to provide direct access to compounds 
and related data, reactions, original journal articles and patents, and reliable 
reference works on synthetic methodologies.  CrossFire Beilstein  indexes three 
primary data domains: substances, reactions, and literature. The substance 
domain stores structural information with all associated facts and literature 
references, including chemical, physical, and bioactivity data. 

 The databases provided by GVK Biosciences  [92]  are large collections of 
compounds (more then one million) with further information regarding chem-
ical structures, biological activity, toxicity, and pharmacological data curated 
from existing literature. More then three million SAR points are indexed in 
Oracle, XML, and ISIS/Base formats.  MediChem Database , codistributed by 
CambridgeSoft, was previosly described.  Target Inhibitor Database  captures 
information about specifi c protein families: GPCRs, ion channels, NHRs, 
transporters, kinases, proteases, and phosphatases.  Natural Product Database
encloses compounds derived from animals, natural plants, marine, and micro-
bial sources. Services also include DNA and protein sequence analysis, protein 
structure analysis, homology modeling, and visualization tools.  Reaction
Database  registers reactions reported in medicinal chemistry journals  [100] . 
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 The bioinformatics division of Jubilant Biosys offers  PathArt  product as a 
comprehensive database of biomolecular interactions with tools for searching, 
analysis, and visualization of data. This product includes a database compo-
nent and a dynamic pathway articulator component, which build molecular 
interaction networks from curated databases. The comprised information 
allows users to upload and to map microarray expression data onto the path-
ways on over 900 regulatory as well as signaling pathways.  ePathArt  is a single -
 node locked web - enabled version of PathArt. The  GPCR Annotator  module 
allows users to classify the GPCR family hierarchy from sequence input and 
includes a wide range of therapeutically relevant areas related to GPCRs. The 
main product in the chemoinformatics area is the ChemBioChem suite, which 
includes curated databases addressed on specifi c targets.  GPCR ChemBioBase
contains over 400,000 small molecules acting as agonists or antagonists against 
60 GPCR receptor classes from 400 journal articles and 2000 patents.  Ion
Channel ChemBioBase  contains around 100,000 small molecules that act as 
ion channel blockers, openers, or activators against ion channels. The  Kinase
ChemBioBase  database, produced by Jubilant and codistributed by Accelrys, 
is a comprehensive collection of over 300,000 small - molecule inhibitors active 
on more than 700 kinases. Quality - checked SAR points with additional infor-
mation are collected from about 1500 patents and 500 journal articles.  Nuclear
Hormone Receptor ChemBioBase  is a library focused on small ligands pub-
lished as receptor agonists, antagonists, or modulators against NHRs.  Protease
ChemBioBase  is a compilation of 400,000 ligands for proteases active against 
more than 100 proteases.  Antibacterial and Antifungal Database  contain over 
20,000 compounds that possess activity against bacterial and fungal diseases. 
Another key product offered by this company is Drug Database , which cap-
tures over 1500 approved drugs related to biological targets  [101] . 

 Sunset Molecular Discovery LLC  [102]  integrates knowledge from target -
 driven medicinal chemistry with clinical pharmacokinetics data in the 
WOMBAT Database for Clinical Pharmacokinetics (WOMBAT - PK), and 
provides up - to - date coverage of the medicinal chemistry literature in 
WOMBAT, as it appears in peer - reviewed journals  [103] . The  WOMBAT
database  [104]  (current release 2009.1) captures 295,435 (242,485 unique 
SMILES) chemical structures and associated biological activities against more 
than 1966 unique targets (GPCRs, ion channels, enzymes, and proteins). 
Besides exact numeric values (the vast majority), WOMBAT now captures 
 “ inactives, ”   “ less than, ”   “ greater than, ”  as well as percent inhibition values. 
The The  Target and Biological Information  module provides detailed target 
information, including biological information (species, tissue, etc.), detailed 
target and target class information (including hierarchical classifi cation for 
GPCRs, NHRs, and enzymes), as well as further information regarding the 
bioassays (e.g., radioligand and assay type). Swiss - Prot reference IDs are 
stored for most targets ( ∼ 88%). Additional properties include several experi-
mental and calculated properties for each chemical structure, e.g., counts of 
miscellaneous atom types, Lipinski ’ s rule - of - fi ve  [105]  (Ro5) parameters, 
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including the calculated octanol/water partition coeffi cient, ClogP and Tetko ’ s 
calculated water solubility, polar surface area (PSA), and nonpolar surface 
area (NPSA). The Reference Database contains bibliographic information, 
including the DOI format with URL links to PDF fi les for all literature entries, 
as well as the PubMed ID for each paper. The  WOMBAT - PK  2009  [104]  
captures pharmacokinetic data (over 13,000 clinical pharmacokinetic [PK] 
measurements) in numerical searchable format for 1,230 drugs. Physico-
chemical characteristics and clinical data are brought together from multiple 
literature sources. The existent fi elds allow queries using chemical infor-
mation (chemical structure, SMILES codes), drug - marketed names, drug 
target information, multiple PK, and toxicity parameters, which are indexed 
in both numerical and text format. Both databases are available in the MDL 
ISIS/Base format, the RDF (Resource Description Framework) format, as 
well as the Oracle/Daycart  [106]  (Daylight) format.   

  17.4.2   Biological Information Databases 

 The European Bioinformatics Institute  [107]  (EBI) is a nonprofi t academic 
organization that provides freely available data and bioinformatics services, 
managing databases of biological data including nucleic acid, protein sequences, 
and macromolecular structures. The most popular database is the  UniProtKB/
Swiss - Prot Protein Knowledgebase Database (Swiss - Prot)   [41] , and it is main-
tained together with the Swiss Institute for Bioinformatics (SIB). Swiss - Prot 
is a curated protein sequence database that provides a high level of annota-
tion, a minimal level of redundancy, and a high level of integration with other 
databases. Together with UniProtKB/TrEMBL, it constitutes the Universal 
Protein Resource (UniProt) Knowledgebase, one component of the UniProt, 
which allows easy access to all publicly available information about protein 
sequences. The last release UniProtKB/Swiss - Prot contains 349,480 sequence 
entries abstracted from 164,703 references, and it is cross referenced with 
almost 60 different databases. Each sequence entry has captured two types of 
data: the core data, which correspond to sequence data, taxonomic data, and 
citation information, and the annotation data, which refer to protein function, 
secondary and quaternary structure, or similarities to other proteins. 

Enzyme Structures Database (EC - PDB)   [108]  contains the known enzyme 
structures (22,899 entries) that have been deposited in the Protein Data 
Bank  [71] . 

 The specialized  GPCRDB   [109]  and  NucleaRDB   [40]  databases collect 
information about GPCRs and intra - NHRs, respectively. They capture infor-
mation regarding sequence, structure mutation, and ligand binding data 
together with data resulting from computational work (phylogenetic trees, 
multiple sequence alignments, correlated mutation analysis). Each protein has 
a maximum degree of integration with other biomolecular databases. The two 
systems are extremely useful since they supply a large amount of the available 
data from a single source. The enclosed information can be easily accessed 
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through a hierarchical list of well - known families according to the pharmaco-
logical classifi cation of receptors. 

 The  MEROPS   [110]  is a resource for information on peptidases (also 
termed proteases, proteinases, and proteolytic enzymes) and the proteins that 
act as their inhibitors. Here are included almost 3000 individual peptidases 
and inhibitors that can be reached by use of an index under its name, MEROPS 
identifi er, or source organism. The MEROPS database uses a hierarchical, 
structure - based classifi cation of peptidases. For this, each peptidase is assigned 
to a family based on statistically signifi cant similarities in amino acid sequence, 
and families that are thought to be homologous are grouped together in a clan 
(last release contains 180 families and 49 clans). 

Transport Classifi cation Database (TCDB)   [111]  is a curated database of 
factual information from over 10,000 published references, containing a com-
prehensive International Union of Biochemistry and Molecular Biology 
(IUBMB) approved classifi cation system for membrane transport proteins 
known as the Transporter Classifi cation (TC) system  [112] . The TC system is 
equivalent to the Enzyme Commission (EC) system  [38]  for enzyme classifi ca-
tion but incorporates phylogenetic information as well. Based on the TC 
system, the enclosed 3000 protein sequences are classifi ed into over 550 trans-
porter families. 

TransportDB   [113]  is a relational database that describes the predicted 
cytoplasmic membrane transport protein complement for organisms having 
available the complete genome sequence  . The membrane transport comple-
ment is identifi ed and classifi ed into protein families according to the TC 
classifi cation system  [112]  for each organism. A regular update of this site is 
kept with the newly published genomes.   

  17.5   CONCLUSIONS 

 The age of informatics - driven pharmaceutical discovery has arrived  [53] . 
Learning how to query disjoint data sources to answer complex knowledge 
discovery - type questions remains a challenge, but some major hurdles, i.e., 
data collection and integration, now belong to the past. We are witnessing an 
unprecedented amount of data integration that enables us, effectively, to 
consider temporal aspects of the studied systems, an area we term systems 
chemical biology  [114] . 

 The large collection of chemical and biological databases enables discovery 
scientists to focus on knowledge creation, via data analysis and interpretation. 
This continues to require familiarity with fundamental principles in both 
chemistry and biology and in data mining skills. However, we are witnessing 
an unprecedented integration of bioinformatics and chemoinformatics 
resources, where data are seamlessly merged into a comprehensive picture. 
Thus, database systems that seamlessly mine chemical, biological, and target -
 related data in an integrated manner are as vital as computers.  
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  18.1   INTRODUCTION 

  18.1.1   Missed Information Costs Time and Money 

 Both academic and commercial research areas have a growing thirst for chemi-
cal knowledge. This thirst is starting to reach massive proportions  [1,2] . In 
economic terms, missed information in the chemical literature costs time, 
money, and quality, where both the quality of decisions made and the quality 
of subsequent research output are compromised. In fact, incorrect decisions 
along the drug pipeline life cycle can cost millions to billions of dollars  [3 – 9] . 
The cost of fi nding missed information early in the drug pipeline is relatively 
small compared to its discovery in the later stages when project teams have 
to be more reactive than proactive. While cost control is a high priority in the 
drug industry, there are claims in 2007 that priorities have inverted from 
(cost    >    time    >    quality) to (quality    >    time    >    cost)  [10] . The thinking is that better 
information translates into better quality compounds, and obtaining higher -
 quality drug candidates faster reduces costs. 

 Similarly, missed information in academic research frequently translates 
into substantial costs including missed funding opportunities, such as missed 
deadlines to fund seed projects. Limited access to the necessary information 
either due to licensing costs, copyright limitations, or technical issues, together 
with the inability to process the massive amounts of information available, is 
likely to result in missed information  [11] . Access limitations are worse in 
academia than in industry. Lowering these barriers has been the goal of many 
individuals such as Paul Ginsparg  [12] , who, in 1991 developed arXiv, the fi rst 
free scientifi c online archive of non - peer - reviewed physics articles that con-
tinues today  [13] . Many groups have formed to increase the accessibility of 
academic information such as Scholarly Publishing and Academic Resources 
Coalition (SPARC), the Science Commons group  [14] , and the World Wide 
Web Consortium  [15] . 

 There is an acute awareness that the traditional process of scientifi c publica-
tion results in lost information especially chemical structural and biological 
information, and the traditional business model this process is based on no 
longer meets the needs of publishers or subscribers. Traditional publication 
methods puts the onus on the reader to locate the pertinent articles, to fi nd a 
way to buy or to obtain access to the full - text article, to fi nd the necessary 
information within each article, and to recreate, in many cases, missing chemi-
cal structural information from the text and images provided. Requests by 
readers to authors for access to the underlying data are voluntary and fraught 
with many diffi culties  [11] .  

  18.1.2   Issues of Drug Safety Require Better Information 
Management Capabilities 

 As the public outcry increases for safe, novel, less expensive pharmaceuti-
cals, and given that 20% of drug projects are stopped due to drug safety, 
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researchers are talking about new methodologies for fi nding and managing 
relevant information  [1,11,16,17] . New methodologies like translational 
science (the relationship among data/information from different disciplines) 
and personalized medicine (treating patients based on their unique genetic 
and physiological profi les) rely on the identifi cation of key entities such as 
biomarkers  [4,18] . This reliance increases the urgency of information and 
knowledge management  [4] . The diffi culty of fi nding possible biomarkers in 
the published literature is a major challenge. Biomarkers for a disease or a 
response to a treatment can encompass many types of changes on many differ-
ent levels (e.g., biochemical, physiological, and cellular). Publications report 
many of these changes without ever mentioning the word  “ biomarker. ”  Hence, 
this information can be easily lost in a sentence or paragraph of an article.   

  18.2   DIFFERENT NEEDS, DIFFERENT CHALLENGES, AND THE 
CALL FOR STANDARDIZATION 

 Barriers to fi nding information within the literature include restrictive licens-
ing and copyright that can limit access to documents and to the information 
within the documents, technical restrictions preventing the extraction of key 
data, and cultural restrictions created from the legacies of a publishing world 
based on printed media  [19] . As scientifi c publication paradigm shifts to a 
more open - access electronic environment, publishers, authors, and readers 
each have different needs and challenges to contend with. But even if informa-
tion is freely available, free of the various legal/technical/cultural barriers, 
extraction of chemical structural information still remains a challenge. The 
primary barrier to chemical structure extraction is the lack of standards in 
expressing chemical nomenclature  [19] . 

  18.2.1   The Ultimate Backend Solution is Universal Standards, Especially 
for Chemical and Biological Information 

 The aeronautics industry recognized the importance of timely information 
gathering and was determined to minimize the frequency of adverse safety -
 related events  [20] :  “  …  By setting standards, maintaining multiple databases 
to monitor trends, and supporting research to constantly improve systems, the 
FAA (in collaboration with other agencies such as NASA and NTSB) has 
made fl ying safer. ”  The call for standards is an obvious solution for improving 
chemical information management and for minimizing drug safety issues. The 
primary barriers to standardization remain cultural and technical. 

 Publishers of scientifi c literature, patent fi lings, and clinical data and 
researchers from different commercial and academic institutions all have dif-
ferent priorities. For example, authors of published journal articles want wide 
readership, while journal publishers want a large - paying subscriber base. In 
another example, inventors of published patent fi lings need to balance the 
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coverage of their invention with the risk of revealing  “ too much, ”  while the 
patent authorities need to provide easy public access to these inventive pub-
lications. Overcoming cultural barriers requires establishing and accepting 
new processes and a general acceptance of what constitutes a standard. The 
exponential growth of the Semantic Web and an open - access culture are 
strongly driving this change. 

 Overcoming technical barriers requires new processes and tools to facilitate 
the creation and application of standards to published electronic literature. 
These processes and tools have to address the needs of the publishers, authors, 
and readers. Ultimately, these technical processes and tools have to work 
within the ever - growing translational scientifi c world that includes a crossover 
among different disciplines such as chemistry, physics, biology, pharmacology, 
and medicine.  

  18.2.2   Main Driver for Standardization with Life Science Literature is 
Drug Safety 

 Similar to the aeronautics industry, the healthcare area is looking for ways to 
improve safety. Innovations in information and knowledge management are 
one solution, and standardization of the primary literature is necessary to 
support this solution.   

  18.3   CURRENT METHODOLOGIES FOR CONVERTING 
CHEMICAL ENTITIES TO STRUCTURES 

  18.3.1   Multiple Types of Naming Schemes Require a Diverse Set of 
Conversion Capabilities 

 There are many ways to represent chemical compounds in the literature as 
illustrated in Figure  18.1  for aspirin. Conversion capabilities, as shown in 
Table  18.1 , are required to translate these multiple names into more meaning-
ful structures. Common or trivial compound names require an extensive dic-
tionary or look - up list for conversion to its intended structure. Common 
abbreviations for compounds, however, can be very ambiguous and require 
both a look - up list and some understanding of context. For example, the 
abbreviation,  PCA  has over 60 different expansions or meanings. Index and 
reference numbers, unlike abbreviations, may have a very specifi c meaning. 
The availability of this specifi c meaning might involve accessing a large variety 
of databases. Some of these databases, such as the Chemical Abstract Services 
(CAS), require licensing to capture that relationship between reference 
numbers and their structure. Misinterpretation and misuse of these reference 
numbers in the scientifi c community has frequently resulted in the wrong 
structures. Although registry/index numbers have been very instrumental in 
building the chemical databases, they are proprietary and contain no inherent 
structural information.     
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 Generic or fragmented names may relate to a family or class of compounds, 
e.g., salicylates or benzodiazapines. On one level, these can simply appear in 
a lookup that relates these names to its generalized parent compound. These 
family names may be available in ontologies that relate the parent, e.g., salicy-
lates and benzodiazepines, to specifi c compounds in that family, e.g., aspirin 
and xanax, respectively. Similarly, a family of structures may be drawn in a 
Markush format that defi nes the compounds without explicitly stating the 
naming compounds  [21] . Markush representations are typically used in chemi-
cal patenting as shown in Figure  18.2 .   

Figure 18.1     How many ways can you say  “ aspirin ” ? As shown here, there are at least 
nine different ways of expressing a chemical compound like aspirin.  

 TABLE 18.1     Different Ways of Expressing Chemical Structures in Text and of 
Interpreting Each Group 

   Chemical Nomenclature Types  
   Solutions for Interpreting Different 

Chemical Nomenclatures 

  Unsystematic names: common, trade 
names, company codes, index/reference 
numbers, abbreviations, fragmented 
names, and generalized structural names  

  Name lookup/thesaurus or ontologies  

  Systematic names: IUPAC, CAS, etc.    Name to structure conversion routines  
  Anaphors, including some abbreviations    Natural language processing  
  Structural image    Optical image recognition to structure 

conversion routines 
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 Systematic nomenclature is rule based, as discussed below. Several conver-
sion routines that provide a fair amount of success in interpreting the struc-
tures from these names are available. Standard rules like those provided 
through the International Union of Pure and Applied Chemistry (IUPAC) 
are not applied consistently. This inconsistency results in a huge variation of 
IUPAC - like names  [22] . In the case of CAS nomenclature, the rules generated 
had a practical purpose related to manual indexing of compounds. These 
variations in nomenclature are a constant challenge to scientists needing com-
prehensive conversion of names to structures. 

 The use of anaphors is generally defi ned within a document. An author 
might write the compound name once and put a number or code alongside of 
it as the anaphor or abbreviation for that compound. In these cases, the ability 
to identify these associations within the text requires the use of natural lan-
guage processing (NLP) technologies  [19,23] . 

 Finally, converting a picture/image of a structure to a machine - readable 
form has proven to be diffi cult to automate as a high - throughput capability. 
Some of the diffi culty is due to large variations in how structures are drawn 
and in the quality of these images. Chemical image to structure conversion 
can be broken down into three steps  [24] : (1) preprocessing to a identify the 
image in a document that contains chemical structural information; (2) recon-
struction of that chemical structure using vectorized graphical elements and 
the interpretation of those elements (e.g., dashed lines, wedges, and character 
recognition) with a compilation of those elements to construct a structure; 
and fi nally, (3) post processing to export the structural information and to 
display them. 

A1

A

B N
S

O

(57) Abstract: The invention provides compounds of formula (I):
wherein R1, R2, A1, and B are as defined in the specification, etc ...

(54) Title: Novel hydantoin derivatives as metalloproteinase inhibitors

O

O

O

NH

HN

R1

R2

     Figure 18.2     Example of generalized/Markush structures typically found in patent 
documents. These types of structures are named after a Hungarian - born chemist, 
Dr. Eugene Markush. Dr. Markush claimed generic chemical structures in addition 
to those actually synthesized in a 1924 patent. The  “ Markush doctrine ”  of patent 
law, which resulted from this patent award, greatly increased fl exibility in the prepara-
tion of claims for the defi nition of an invention  [21] .  
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 The earliest attempt in this area dates back to 1992 when McDaniel 
and Balmuth created Kekul é , an optical character recognition (OCR)/
chemical recognition capability  [25] . One year later, A. Peter Johnson ’ s group 
published a paper describing their OCR capability called Chemical Literature 
Data Extraction (CLiDE ™ ), a commercially available application  [26 – 28] . 
Conversion from a structural image to a computer - readable structure requires 
extensive error checking and correction. This fact combined with the need to 
be more comprehensive in the extraction of chemical image information from 
a multitude of published and internal documents has resulted in a renewed 
interest by others  [24,29,30] .  

  18.3.2   Systematic Chemical Name to Structure Conversion 

 Chemical nomenclature has evolved from the use of less descriptive, unsys-
tematic, or common/trivial names, like  mandelic acid , to more descriptive, 
systematic naming schemes like 2 - phenyl - 2 - hydroxyacetic acid  (IUPAC name) 
for mandelic acid . This need for descriptive systematic naming resulted in the 
fi rst conference on chemical nomenclature held in Geneva in 1892  [31] . 
Systematic chemical names follow a linguistic rule set  [32 – 35] . Practitioners 
with an expertise in generating chemical nomenclature frequently use linguis-
tic terminology to describe chemical naming. For example, the components of 
the IUPAC name for mandelic acid,  “ 2 - , ”   “ phenyl, ”   “ hydroxyl, ”  and  “ acetic 
acid, ”  are called the morphemes, and the arrangement of these morphemes is 
called the syntax of the name. The meaning behind the syntax is the semantics, 
and this defi nes the chemical structure. Two of the most commonly used sys-
tematic rule sets are from IUPAC and CAS. 

 Despite the existence of these two commonly used naming standards, com-
plications in naming and interpreting compounds arise for many reasons. First, 
the possible lexicons the chemical community draws from can vary consider-
ably. For example,  phthalonitrile  and  o - dicyanobenzene  are the same com-
pound but from a different lexicon. Second, many scientists using chemical 
nomenclature are not necessarily trained in the nuances of each system. Third, 
even well - trained chemists using the same lexicon and rules, such as IUPAC, 
can apply the rules correctly but still create different chemical names as shown 
in Figure  18.3 . Interpreting these names can be a challenge to even a trained 
chemist. Examples of some subtle and not so subtle naming nuances are shown 
in Table  18.2 .     

 In 1958, Garfi eld fi rst recognized that a systematic name could be algorith-
mically converted into a molecular formula and then to line notation  [36,37] . 
Nine years later, Vander Stouw created an automated approach to convert 
basic chemical names to structures  [38,39] . Another 9 years later, Raynor ’ s 
automated approach focused on IUPAC nomenclature limited to certain com-
pound classes and some trivial or common names  [35,40 – 43] . Many other 
approaches were highly focused on specifi c compound types (e.g., steroids or 
stereochemical nomenclature)  [44,45] . 
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 These early - automated systems that interpret IUPAC nomenclature gener-
ally assumed that chemists have strictly followed the rules. In acknowledging 
this misassumption, commercial conversion routines allow for some creative 
and known systematic deviations from the IUPAC rule set  [32,46] . As described 
in Brecher ’ s paper, for  Name    =    Struct , the use of spacing and punctuation plays 
a large role in chemical nomenclature, and subtle difference (intended or 
unintended) can result in both ambiguity and incorrect structures. Figure  18.4  
captures some of these more subtle ambiguities.  Name    =    Struct  preprocesses 
using a lexicon perform a series of steps that include appropriate removal of 
punctuation and correcting common typographical errors. This cleanup of the 
names also includes recognizing CAS names, inverting their order to be more 
IUPAC - like, and removing words that do not contribute to the structure such 
as  “ glacial ”  or  “ 95%. ”   Name    =    Struct  also divides input names into fragments 
and attempts to identify the root or parent structure that all the other terms 
modify. Ambiguities are abundant even at this step. For example,  azine  can 
refer to aromatic rings as in tetrasine ,  triasin , and  diasine  or an acyclic func-
tional group. A list of some known name to structure conversion capabilities 
are summarized in Table  18.3 .      

  18.3.3   Unsystematic Chemical Name Lookup 

 The conversion of unsystematic or trivial names to structures requires a the-
saurus or synonym look - up database. Unlike chemical research patents that 
typically provide systematic names, medical journal articles and conference 
abstracts typically use common drug names to describe compounds of bio-
medical and clinical interest. The name to structure conversion routines may 
provide a look - up capability for most common chemical and drug names, but 
this list is generally limited. Hence, more in - depth look - up databases are 
required to provide comprehensive coverage for this segment of the literature. 
While a number of free chemical sources for drug names on the Web abound 
 [47] , most are limited in content, search capabilities, quality, and focus. 

Figure 18.3     As shown in this example, one chemical structure can have multiple 
systematic names generated by the application of different rule sets and lexicons. Even 
experienced chemists can easily assign these chemical names to the wrong structures.  
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Figure 18.4     An illustration of how variations in spaces can result in different 
structures. In the case shown here, three components, methyl/ethyl/malonate, can be 
rewritten with spaces to generate four different chemical structures.  

 TABLE 18.3     A Summary of Some Commonly Known Chemical to Structure 
Conversion Capabilities 

   Application     Application Owner     Reference Links  

  ACD/Name ™     ACD/Labs     http://www.acdlabs.com/   
  ChemNomParse    University of Manchester    Downloaded OpenSource 

packages from  http://
sourceforge.net   

  nam2mol ™     OpenEye Lexichem     http://www.eyesopen.com/   
  Name to Structure 

Generation (soon 
to be released)  

  ChemAxon     http://www.chemaxon.com/   

  NamExpert ™     ChemInnovation Software     http://www.cheminnovation.com/   
  OPSIN    Peter Corbett, University 

of Cambridge 
  Downloaded as two stand - alone 

OpenSource packages from 
 http://SourceForge.net : Source 
Distribution and Jarfi le  

  Name   =   Struct ™     CambridgeSoft     http://www.cambridgesoft.com/   

Availability of more defi nitive sources for this information, such as the CAS 
Registry fi le, is limited by the end users ’  ability to pay the licensing costs. 
Sources such as PubChem are free to the public with 8 million plus compounds 
containing synonym lists. However, this is roughly one - fourth the size of 
CAS ’ s Registry fi le in number of compounds. 
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 One free source that claims nearly as many compounds as the commercially 
licensed CAS Registry fi le with its over 30 million compounds is NIH ’ s 
Chemical Search Locator Service (CSLS). However, the CSLS does not 
support an unsystematic name search and is not a database of structures and 
names, but is a search agent that is dependent on its 80+ host sources for its 
content and coverage. Some of these host sources are commercial and are only 
available to licensed users. In contrast, the CAS Registry fi le allows unsystem-
atic name searches and provides consistent predictable coverage in one data-
base. Ideally in the spirit of open access, a single wiki - style lookup should be 
available, which supports both unsystematic and structure searching capabili-
ties. Given the volume of chemical information available, it will take the 
combined efforts of many researchers to create this type of look - up capability. 
Until then, researchers are reliant on accessing a large variety of sources to 
gather and collect information - linking structures to a list of unsystematic 
nomenclature.   

  18.4   REPRESENTING CHEMICAL STRUCTURES IN 
MACHINE - READABLE FORMS 

 The ability to provide machine - readable representations of chemical struc-
tural information has been around for many years. The existence of the Web, 
together with Semantic Web technologies, is starting to provide some consen-
sus on possible standards. 

  18.4.1   The Language of e - Chem: International Chemical Identifi er 
( I  n  C  h  I ), Simplifi ed Molecular Input Line Entry Specifi cation ( SMILES ), 
Chemical Markup Language ( CML ), and More 

 For anyone routinely using chemical structural information, the simple way 
to communicate a structure is through some type of stick drawing. It is visual 
and easily communicates molecular information. For computers designed to 
read textual codes, these visual images are meaningless. The ability to repre-
sent chemical structures in machine - readable form becomes very compelling 
for researchers wanting to both fi nd key documents containing these struc-
tures and fi nd the structures  within  each key document  [30] . In the latter case, 
the structure can be understood in context. 

 The development of ways to identify and convert molecular information to 
a machine - readable form started in earnest in the late 1980s and the early 
1990s  [26,27,48 – 50] . As summarized in Table  18.4 , there are a variety of com-
monly used identifi er types: line notation identifi ers (e.g., SMILES and InChI), 
tabular identifi ers (e.g., Molfi le and its related SD fi le type), and portable 
markup language identifi ers (e.g., CML and FlexMol). Each is capable of 
meeting some of the needs for chemical structural information exchange with 
computers  [30,49,51 – 58] .   
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 TABLE 18.4     A Summary of Some Common Chemical Structure Identifi ers   

   Name     Descriptor     Reference  

  Simplifi ed Molecular Input 
Line Entry Specifi cation 
(SMILES) System  

  A proprietary line notation for molecules 
and reactions in a compact linguistic 
construct. Different types of SMILES 
can generate nonunique 
representations for a single structure.  

   [51]   

  Molfi le (.mol)    A proprietary fi le format (MDL Elsevier) 
that uses coordinate and connection 
information

   [53]   

  International Chemical 
Identifi er (InChI)  

  A nonproprietary (IUPAC) line notation 
for representing organic molecules in 
a compact linguistic construct. Each 
unique compound has only one unique 
InChI representation.  

   [54 – 57]   

  Chemical Markup 
Language (CML) 

  A nonproprietary domain - specifi c 
implementation of XML; capable of 
capturing a wide range of chemical 
concepts, e.g., molecules, reactions, 
and data  

   [58,59]   

  FlexMol    A nonproprietary domain - specifi c 
implementation of XML. Capable of 
capturing molecules. This was meant to 
address specifi c cases where CML fails 
to provide unique descriptors, e.g., 
ferrocene.  

   [60]   

 Chemical identifi ers found in a document can be packaged inside an exten-
sible markup language (XML) form of the document. As illustrated in Figure 
 18.5 , a name (or image) can be identifi ed and converted to a machine - readable 
structure such as SMILES and InChI. XML ’ s specialty area of CML allows 
the structural metadata to be embedded into the document. Ultimately, these 
chemical tags enrich the document with key structural information that allows 
researchers to (1) fi nd the documents tagged with their structures of interest 
and (2) to see how the compound is mentioned in the document. This contex-
tual component can be a very simple and powerful research tool.     

  18.5   BUILDING CONTEXT WITH  NLP  TODAY 

 NLP technology does not understand human speech but dissects language into 
the parts of speech such as nouns, verbs, and noun phrases. In the mid - 1960s, 
Weizenbaum created a computer program call  Eliza , which demonstrated 
the remarkable possibilities of NLP, highlighted the host of complexities 
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prevalent in human speech, and underlined the fact that NLP is not artifi cial 
intelligence  [59] . 

 Over 30 years later, NLP computer programs are available to provide end 
users with easier ways to organize and fi nd concepts of interest within unstruc-
tured text. In most scenarios, the user submits a query of interest and returns 
extracted facts. When using NLP queries, the user is faced with a trade - off 
between precision (the signal to noise or proportion of documents that are 
actually relevant) and recall (the  “ hit ratio ”  or proportion of documents 
returned). An ideal NLP capability has to provide a good framework for 
organizing and reviewing the concepts extracted. One possible breakdown of 
NLP steps is depicted in Figure  18.6  using common NLP terminology. 
Ultimately, the end user has to determine the accuracy of the information 
identifi ed especially at the level of  name entity recognition  (NER) (Did it cor-
rectly recognize the entities?) and syntactics (Did it correctly build the right 
associations, e.g., between a drug and its effect?). Semantically, the user has 
to derive meaning from this text.   

 Given the lack of standards in life science nomenclature on all levels includ-
ing biological, chemical, and pharmaceutical terminology, it is not surprising 
that the NER step shown in Figure  18.6  is the main focus of life science appli-
cations. Use of extensive data sources and ontologies to identify all the pos-
sible meanings behind a single life science term like PCA    requires a huge 
effort. An NLP capability might not understand what molecular anaphor 

Figure 18.5     An illustration of how an XML - formatted document can be tagged with 
chemical structural metadata using CML to capture the machine - readable data such 
as SMILES and InChI textual strings.  
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 “ compound (10) ”  refers to without additional information found in another 
part of the document. 

 In acknowledging the value of NER to capture the authors ’  science in a 
computer - readable form, a prominent publisher of chemical information, the 
Royal Society of Chemistry (RSC), initiated  Project Prospect . RSC ’ s Project 
Prospect is based on the premise that text annotation of chemical and other 
life science entities should be a part of the publication process. As shown in 
Figure  18.7 , chemists can go from reading untagged text to color - annotated 
text, improving their ability to identify key entities of interest while directly 
seeing the context in which these entities are being used. Once a chemical 
entity is identifi ed, links to other articles containing this entity can also be 
generated.   

 RSC ’ s project is an excellent example of how access to information can be 
improved using a set of core noncommercial capabilities summarized in Table 
 18.5   [49,55,56,60 – 67] . Project Prospect is exploring ways to build this annota-
tion into the natural publishing workfl ow while providing feedback to continu-
ously improve their NER capabilities. This feedback includes improving 
chemistry recognition within project SciBorg  and  Open Biomedical Ontology
(OBO) ’ s  Gene Ontology  (GO) and  Sequence Ontology  (SO).   

 In the future, if other publishers provide a similar NER capability, all pub-
lishers can benefi t by sharing cross - referenced links among their content. With 

Figure 18.6     One view of how natural language processing (NLP) breaks down scien-
tifi c literature using linguistic terminology. The process starts with the identifi cation of 
words and sentences (i.e., tokenization). Name entity recognition (NER) tries to defi ne 
key terminology (i.e.,  risperidone  versus  somnolence  as a  drug  and  symptom , respec-
tively). In practice, the researcher has to frequently validate many of these steps  .  
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Figure 18.7     The Royal Society of Chemistry (RSC) ’ s Project Prospect is illustrated 
here where application of open access/source capabilities can add real value to a lit-
erature document. As shown in the top panel, a typical document is an unstructured 
text that can be made more readable by applying NER annotation to the text. Color 
coding is used to highlight and distinguish different types of chemical and biological 
entities.  

cross referencing, it is possible to link a compound found in one article auto-
matically to all articles containing that same compound regardless of who the 
publisher is. Cross referencing among different publishers is becoming a 
necessity to manage the overfl ow of chemical information. 

 Commercial providers of chemical NER tools have focused mainly on 
patent NER or a broader remit of mining general document types. Unlike 
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publishers, these NER providers do not have control over the quality or 
format of this content, and the quality issue has a huge impact on their func-
tionality. A summary of some commercial providers is given in Table  18.6 . 
Patents are a logical focus for the NER providers since intellectual property 
is a rich area of research and business - related information. Since patent docu-
ments do not  require electronic submissions, most are available as image fi les 
that are not machine readable.   

 Any chemical NER capability focused on patents has to deal with OCR -
 generated text fi les. As shown in Figure  18.8 , OCR documents generally 
remove the formatting of the original image document (a PDF or TIFF fi le in 
general), resulting in many OCR - generated errors including the corruption of 
systematic chemical names. As discussed earlier, errors in spaces or punctua-
tion within a chemical name could result in failure to convert the name to a 
structure or to the wrong structure (see Figs.  18.4  and  18.9 ). Logistically, 
annotated patent documents have to be stored either at the vendor or at the 

 TABLE 18.5     Noncommercial Technologies Used by Project Prospect (See 
 http://www.rsc.org/  for Details on Project Prospect) 

   Type     Names     References  

  NLP    SciBorg and Open Source Chemical 
Analysis Routines 3 (OSCAR3)  

   [63 – 66]   

  Ontologies/terminologies    Gene Ontology (GO), Sequence 
Ontology (SO), Open Biomedical 
Ontology (OBO), European 
Commission— Chemical Entities of 
Biological Interest (ChEBI), Gold 
Book ( IUPAC  — chemical 
terminologies/symbols/units)

   [67 – 69]   

  Structural information  IUPAC  — International Chemical 
Identifi er (InChI), Simplifi ed 
Molecular Input Line Entry 
Specifi cation (SMILES), Chemical 
Markup Language (CML) 

   [51,57,58,59]   

 TABLE 18.6     Commercially Available Chemical NER Capabilities 

   Vendor Name     Tool Type  

  Accelrys    Workfl ow tool  
  Fraunhofer Institute and InfoChem    Tools  
  IBM    Tools and patent database  
  SureChem    Tools and patent database  
  TEMIS    Tools  
  InfoApps/MPERIC    Tools and patent database  
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Figure 18.8     (A) Most patent documents start out as images of text (not as text). 
(B) To apply mining capabilities like chemical NER, these image documents would 
have to be converted to text by optical character recognition (OCR) tools, but most 
OCR tools remove the formatting and fi gures. (C) An example of OCR - generated 
errors is shown here.  

customer ’ s site. The need for customer groups to repeat this process at their 
individual sites is very costly and time - consuming. Improvements in the patent 
fi ling process that encourage the availability of high - quality text documents 
(e.g., mandating electronic fi ling) would allow easier application of these 
chemical NER capabilities.   

 In summary, the nascent ability to automatically identify both chemical and 
biological entities and to present this back to the researcher for review is being 
recognized as a valid and necessary capability within the life science workfl ow. 
The ability to identify and to convert chemical names to structures is more 
dependent on the quality of the document but can be fairly successful as a 
part of the automated NER process. Image to structure conversion is more 
diffi cult. It is the author ’ s hope that efforts like those of RSC ’ s Project Prospect 
and many others will make this need for image conversion obsolete for future 
scientifi c literature  [55,65,67,68 – 70] . However, the need to process older lit-
erature will probably remain a continuing driver for improvements in this area 
 [27 – 29] . Finally, current state of the art in NLP and NER applications requires 
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the end user to provide easy inspection and validation. These validation tools 
are not necessarily standard in NLP and NER capabilities.  

  18.6   A VISION FOR THE FUTURE 

 Building NLP and NER in the life science workfl ow requires keeping good 
focus on the end goal, fi nding key information and building knowledge to 
drive the best research outcomes possible. 

  18.6.1   Crossing from Chemistry into Biomedical Space with Chemically 
Mined Information 

 Conceptually, a researcher may initiate an NLP/NER query from either chem-
istry space (i.e.,  Can I fi nd the compounds of interest ?) or biology space (i.e., 
Can I fi nd protein targets or diseases of interest? ). This is illustrated in Figure 
 18.10  where a biology query branches into chemistry space to address a key 
toxicity issue. This is one of many common workfl ows performed manually in 
life science areas when time permits.   

 Ultimately in the life science area, the question of multiple query spaces 
crosses into areas like drug discovery, drug safety, and trend analysis. 

 A blurring among multiple disciplines, e.g., chemical/biological/medical/
pharmaceutical areas, translates into an essential need to search both litera-
ture and other data sources in an integrated manner. A simple text search in 
any of these disciplines is no longer suffi cient to capture the chemical and 
biological information. 

Figure 18.9     Variations in punctuation such as parentheses and brackets, as shown 
here for trifl uormethylsilane , are a frequent source of structural misunderstanding.  
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Figure 18.10     Illustrates one possible workfl ow from biology space (hepatoxicity ques-
tion) to refocus literature searches and to make key decisions in chemistry space 
(focusing on compounds with a lower chance of causing hepatoxicity).  
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 The recent proliferation of chemical and biological databases suggests a 
few additional possibilities for the future: (1) that literature searching will 
expand to include literature and databases from a single query point  [71] ; 
(2) that the ability to easily extract chemical and biological entities from these 
multiple sources for additional further computational analysis will become 
more routine; (3) that the barriers to share public information among different 
research groups and institutions are lowering  [13 – 15] ; and (4) as technologies 
and standards are developed to manage this integrated capability, there will 
be an increasing demand on authors of journal articles to provide the underly-
ing data along with their report  [11] .  

  18.6.2   Text Mining is about the Generation of New Knowledge 

 The meaning of  text mining  has changed over the last 10 years to include any 
text analytic capability such as NLP or NER. Text mining was originally 
intended to mean the discovery of something not known explicitly from text 
documents but something deduced from textual information. The fi rst example 
of life science text mining from this perspective occurred in 1986 when a 
mathematician/information scientist, David R. Swanson examined informa-
tion on people who suffer from Raynaud ’ s syndrome, an episodic shutting off 
of blood to fi ngers and toes. He looked for a syllogism, an unknown connec-
tion between symptoms/causes and possible cures. In one case, he asked if 
there were any agents known to reverse symptomatic blood factors, high vis-
cosity, and cell rigidity/deformity. Literature searches for these blood factors 
highlighted fi sh oils that are known to lower blood viscosity and to reduce cell 
rigidity. Follow - up work in clinical studies successfully demonstrated that fi sh 
oils were a treatment for Raynaud ’ s syndrome. 

 Other examples of text mining can include multiple instances of  drug repur-
posing . Most drug repurposing (also known as drug  reprofi ling  or  reposition-
ing ) discoveries were the result of researchers connecting key information to 
generate a valid hypothesis that could be tested in the clinic  [69,70,72] . Access 
to good life science NLP and NER tools can provide easy extraction of key 
data points. In the hands of creative and experienced researchers, text mining 
with this extracted data will only serve to increase the opportunities within 
drug discovery and other areas of life science research.   
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511
AntigenDB, 322
antigens, predicting, 321–323
antiretrovirals, 393
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Neural Network (BCPNN), 103, 
360–364, 372
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performance of, predicting, 127–129
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Bayes theorem, 125
B-cell epitope prediction, 326–328
benzisothiazolone scaffold as potential 

assay artifact, 226f
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binary kernel discrimination, 129–131, 
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BindingDB, 284–285
bioactivity databases

informational structure in, 494–502
list of, 502–512

BioArray Software Environment 
(BASE), 99t



INDEX 547

BioAssay HTS, BioSAR Browser, 91t
bioinformatics

algorithms, 88f, 97–100, 105
ligands in, see ligands
microarray analysis, 97–100
software, 98–99t

biomarkers
combination identifi cation, 385–386
corrections, multiple tests, 250
defi ned, 38
detection of, 29–30
as model basis, 27
validation of, 368

BioPrint®, 101, 183, 186
BIOSTER, 507–508
biotechnology industry, 28
Biotransformations database, 508
BioWeka, 98t
bit screening techniques, history of, 8
BKchem, 278t
blood–brain barrier (BBB) permeability 

testing, 94
Bonferroni correction, 155, 250
Bromfenac, 345t

CA-DynaMAD, 179
caffeine, 407–408, 411–413
CAGED software, 257
calmodulin, ligand binding in, 269, 270, 

271f
cancer procoagulant, 270
CandiStore, 507
capsule formulations, 402
carbohydrate ligands, 270, 273
CASP5, 392
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C4.5/C5 algorithm, 407
CCL17, 331
CCL22, 331
CCR3, 197
CCR4, 331
CCR5, 197, 331
CCR4 antagonists, 331
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cDNA microarrays, 240, 242–243
CEP, 328
Cerivastatin, 345t
cetirizine, 178f

CGH microarrays, 239
challenges generally

associations, 31
drug information, obtaining, 27–30
models, transitions in, 26–27
ontology, 31
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ChemBank, 503–505, 507
ChEMBL, 507
ChemBioBaseTM, 183t, 185–186
ChemBioChem suite, 511
ChemDraw, 278t, 493
ChemFinder, 493
Chemical Effects in Biological Systems 

(CEBS), 303, 305, 307
Chemical Markup Language (CML), 

496, 531–532, 533f
chemical nomenclature, 527–531
Chemical Search Locator Service 

(CSLS), 531
chemical structures, 4, 13–14

entities, conversion to, 524–531
machine-readable forms, representing 

in, 531–532
natural language processing, 532–538

ChemOffi ce WebServer, 493
chemogenomics, 175–176, 199
chemoinformatics, 115–116, 468

algorithms, 88f, 89
ADME/Tox assessment, 94–97, 102, 

105, 180
HTS data, 89–92, 102, see also high-

throughput screening (HTS)
library design, target-specifi c, 92–93, 

137
chemokine receptors

as adjuvants, 331–332
GPCR-focused library design, 

195–198
ligand design, homology-based, 
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ChemoSoft, 493
chemotherapy prediction

resistance, 396–397
survival, 252

ChemPdb, 505
ChemSpider, 506
ChemTool, 278t
ChemWebServer, 493
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Cisapride, 345t
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ClassPharmer, 91t
clinical studies, 344
clinical trial databases, 103, 104t, 105
ClinMalDB, 322
clonidine, 345
clozapine, 385
cluster analysis, 153

algorithms, 117, 121–122
applications of, 34
dimensionality reduction, 429–431
distance-based, 253–255
Jarvis–Patrick algorithm, 95–96, 430
microarrays, 253
model-based, 255–257
partitional, 254
radial, 430–431
template-based, 257–259

colchicines, 182f
collections (bags), 43, 61–62
combinatorial partitioning method 

(CPM), 389
Commercially Available Organic 

Chemical Intermediates 
(CAOCI), 17, 18f

complex descriptors, 78–80
Computed Ligand Binding Energy 

(CLiBE) database, 503
computers in data mining, history of, 
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connection table, MDL format, 14
constraint-based feature selection, 162
constructionist method, log P “star” 

value measurement, 12
ConSurf, 328
contrary evidence, 52–54
convex combination, Kohonen SOMs, 

474–475
correlation coeffi cients, QSAR, 168–169
correlations, mutual information 

measures of, 71
COSMIC descriptor calculation, 12, 13f
CpG optimization, 330
Creutzfeldt–Jakob disease, 349–350
CROSSBOW, 16
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χ2 test applications, 154

cubane, 462f
cumulative accuracy, 169–170
curse of dimensionality, 132, 148
curvilinear component analysis (CCA), 

485
cutoff-based method, see top X method
CXCR4, 196–197
CYP3A4, 393
CYP3A5, 393
CYP2C9, 384, 385
CYP2C19, 384
CYP2D6, 394–395
cytochrome-mediated metabolic 

reactions studies, 468f, 469
cytochrome P450 2C9 (CYP2C9), 384, 

385
cytochrome P450 2C19 (CYP2C19), 384
cytochrome P450 2D6 (CYP2D6), 383

databases, 491–492. See also specifi c 
databases

analysis of, 286–289
annotated, GPCR-focused, 182–186, 

191
bioactivity, informational structure in, 

494–502
biological information, 512–513
clinical trial, 103, 104t, 105
data integration in, 502
history of, 17–19
large linked administrative, 

application of, 103, 104t
limitations of, 149
management systems, 492–494
multidatabases, 502
pharmacovigilance, 103–104
prescription event monitoring, 104
protein-ligand complexes, 277–279
spontaneous reporting system (SRS), 

103, 104t, 347, 349, 351–353, 
355–356

thermodynamic, 284–285
toxicogenomic, 301–305
virulence factors, 322

data mining
applications, 342
benefi ts, issues in, 416–417
described, 4, 87, 149
experiment types, 247–248
legal issues in, 75–77
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structured, 38
types as measurement tools, 61–65
unstructured, 38, 58

data repositories, 302–305
data storage/manipulation overview, 
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DAVID Functional Annotation Tool 

Suite, 98t
Daylight Chemical Information 

Systems, Inc., 275, 276
Daylight CIS, 494
Daylight fi ngerprints, 120
DBMS, 492
dbZach, 302–305, 313–314
debrisoquine/4-hydroxydebrisoquine 

ratio, 383f
DecisionSite, 91t
decision trees, 158t
delivery vector design, 329–330
delta functions, 48
dendrograms, 254, 255f, 429. See also

cluster analysis; hierarchical 
clustering methods

descriptors
complex, 78–80
described, 37, 42, 44
molecular, 77, 117–120

designated medical events (DMEs), 350, 
354–355

detection of informative combined 
effects (DICE), 389–390

Dexfenfl uramine, 345t
dexmedetomidine, 178f
diclofenac, 408
diethylene glycol, 343
diffusion maps (DMs), 436–437
dimensionality reduction, 425–427, 

458–459
clustering, 429–431
diffusion maps (DMs), 436–437
factor analysis (FA), 434–435
Hessian local linear embedding 

(HLLE), 446, 448
kernel PCA (KPCA), 435–436
Kohonen mapping, see Kohonen 

SOMs
Laplacian eigenmaps, 446–447
linear discriminant analysis (LDA), 

433–434

local linear embedding (LLE), 
445–446, 480, 481

locally linear coordination (LLC), 
448–449

local tangent space analysis (LTSA), 
447–448

multidimensional scaling, see
multidimensional scaling (MDS)

principal component analysis (PCA), 
see principal component analysis 
(PCA)

stochastic proximity embedding 
(SPE), 479–485

techniques, 176–180
Dirichlet choice, 55
Discotope, 328
DiscoveryGate, 508t, 510
distance, weights in, 161
DMEs, see designated medical events 

(DMEs); drug metabolizing 
enzymes (DMEs)

DMSO solubility studies, 95–96, 468
dopamine D2 ligand binding, 187, 188f, 

189f
dot product mapping, 471
drug adverse reaction target (DART) 

database, 503
Drugbank, 503t, 504, 506
Drug Database, 511
drug–drug interactions testing, 369–372. 

See also pharmacovigilance
drug likeness studies, 94
DrugMatrix®, 101, 183t, 184
drug metabolizing enzymes (DMEs), 

380, 383–384
DrugStore, 507
drug withdrawals, post-approval, 345t
DSSTox, 149
Duane Desieno method, 475
DyNAVacs, 330

EasyChem, 278t
edge-notched card, 7–8, 8f
empirical rule generation, application 

of, 34–35
enfuvirtide, development of, 318
enteric coated tablet modeling, 408
Entrez information retrieval system, 

506
enzyme activity inhibition, 270
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(EC-PDB), 512

EPA (Environmental Protection 
Agency), 306

ePathArt, 511
epipodopy 110-toxins, 182f
epitopes

prediction, B-cell, 326–328
vaccines, 321, 325–329

error
defi ned, 39–40
mean squared, 168
in patterns, 50–51

estradiol release modeling, 409
ethanol, connection table MDL format, 

14f
Euclidean distance, 123, 126, 160, 164f
event defi ned, 39
evidence-based medicine, 26–27
Ex-SOM, 485
extended connectivity fi ngerprints 

(ECFPs), 120
eye preparations, 403

factor analysis (FA), 434–435
falsifi ability model, rejection and, 57–58
FDA (Food and Drug Administration), 

306
feature selection, predictive toxicology

supervised, 154–156
unsupervised, 153–154

Federal Insecticide, Fungicide, and 
Rodenticide Act (FIFRA), 306

Fenfl uramine, 345t
fi ltering effect, prior data (D*), 67–68
fi ltering methods, 116–117
fi ngerprints, 119–120, 496

Bayesian principle application to, 
124–128

benefi ts of, 122
binary kernel discrimination, 

129–130
comparison, design of, 122–123, 

247–248, 259
DMSO solubility testing, 95–96
extended connectivity, 120
GPCR targeted library data mining 

techniques, 177
Instant JChem queries, 494

KOA algorithm applications, 208t, 
221, 225

limitations of, 225
molecular, 496
pharmacophore, 118, 120, 186
SPE applications, 483–484
substructure, in Tanimoto kernel, 162
SVM kernel functions, 135–136

Fish Pathogen Database, 322
FlexMol, 531–532
fl uvoxamine, 391
fold change approach, 249, 251
FormRules, 409, 415–416
formulation modeling

artifi cial neural networks in, 403–409, 
411–413

disintegration time rules, 412–413
genetic algorithms in, 405–408
hardness rules, 411, 412t
multilayer perceptron network 

modeling, 404, 409
nanoparticles, 413–415
neurofuzzy logic in, 405–411, 415–416
shear mixing, 412t, 413
suspensions, 415–416
tablets, 402, 407–413
topical, 402, 409
types, 402–403

forward selection testing, 156
frameworks, 78
FreeTreeMiner, 162
Free–Wilson analysis, 148, 151, 152, 158t
fusion inhibitors, development of, 318

GARDASIL, 319
Gaston, 162
GenBank, 504
GeneData ExpressionistTM, 99t
GeneDirector, 99t
gene expression analysis techniques

bioinformatics, 97–100
KOA, see knowledge-based 

optimization analysis (KOA) 
algorithms

microarrays, see microarray analysis 
technologies

post-genome data mining, 102
signature classifi er development, 

391–397
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Gene Expression Omnibus (GEO), 305, 
307, 308–312t

GeneMaths XT, 99t
gene set enrichment analysis (GSEA), 

229
genetic algorithm subset selection 

testing, 156
Gene Traffi c, 98t
GenowizTM, 99t
GenStat, 99t
geometric contact defi nition, protein-

ligand interactions, 280–281, 
282f

Ghemical, 278t
GLIDA, 101, 190
P-glycoprotein, 384
GoldenHelix, 91t
GOR method, 35, 69, 81
GPCR Annotator, 511
GPCR ChemBioBase, 511
GPCRDB database, 512
GPCR-focused library design

challenges in, 176
chemokine receptor superfamily, 

195–198
databases, annotated, 182–186, 191
homology-based focused, 187, 188f
libraries, annotated, 180–182
ligands, chemogenomics-based, 

186–190
ligands, chemogenomics space 

mapping, 190–194
target classes, 194
techniques, 176–180
thematic analysis, 187–188

GPCR-PA+ ligands, library design, 
179–180

G protein-coupled receptors (GPCRs), 
176. See also GPCR-focused 
library design

as adjuvants, 331–332
protein ligand interactions, 271–272

graphic workstations, 6–7
graph kernels, 162–163
graphs, 42, 119, 162
grepafl oxacin, 345t
growing cell structures method, 476
gSpan, 162
GVK Biosciences databases, 508t, 510

Hamming distance, 123
Hansch analysis, 148, 151, 152, 158t, 163
hemoglobin, physical model of, 9f
HensBC, 324
Hessian local linear embedding 

(HLLE), 446, 448
hidden Markov models (HMMs), 326
hierarchical clustering methods

agglomerative, 428, 429
described, 121–122, 254–255
divisive, 429
limitations of, 215–216, 226f, 229, 255

high-throughput docking (HTD), 289, 
291

high-throughput screening (HTS), 
206–207

chemical structure conversion, 
526–527

chemoinformatics-based algorithms, 
89–92, 102

dimensionality reduction in, 428
proof-of-concept study, 223

histamine antagonists, 178f
histamine ligand binding, 188f
histones, ligand binding, 270
history of data mining

databases, 17–19
libraries, 19
MACCS, 13–14, 14f, 17
molecular modeling, 5–6, 8–10
overview, 4, 19–20
QSAR, 5, 10–13
SMILES, 16–17
technology, 4–5
Wiswesser line notation (WLN), 7, 

14–17
HIV

abacavir testing, 393
drug activity databases, 505
vaccine, 318, 319

HLA-B*5701, 393
H5N1 vaccine, 318
HTS, see high-throughput screening 

(HTS)
HTSview, 91t
human genome, information bits in, 

32–34
human growth hormone ADR 

detection, 349–350
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human intestinal absorption (HIA) 
testing, 94

human trials, 344
hydrochlorothiazide, 407
hydrocortisone, 409
hydrophilic polymers, 408
hydrophobic substituent constant (π), 

QSAR, 11
hypersensitivity reaction (HSR) testing, 

393

ICSBP1, 392
ID3 algorithm, 407
IFI44, 392
imaging, information obtained from, 33
imatinib receptor binding testing, 

181–182
immune response prediction algorithms, 

88f, 90, 91t, 94–97, 102–103. See 
also pharmacogenetics

immunoinformatics, 100
immunomics, 321. See also vaccines
InChI (International Chemical 

Identifi er), 118, 496, 531–532
inclusion of complementary 

information, 64
inference

information fl ow in, 34–37
prior data in, 65–67
rules in, 71–75

infl uenza vaccine, 318
INForm, 405, 409
InformaGenesis, 191–192, 477, 485–486
information

biological, 31–32
biomedical, 32–34
chemically-mined, 538–540
data, 41–45
datum described, 37–41
degree of complexity in, 37, 51–52
drift in, 499–500
in drug safety, 522–523
economic value of, 522
fl ow, 34–37
inclusion of complementary, 64
metadata, 41–45
obtaining, challenges in, 27–30
pharmaceutical industry as 

generating, 30–31

standardization of, 523–524, 523–531
theory, 34–35, 69–71

information-based medicine, 27
inhalations, 403
innovation, 30
Instant JChem, 278t, 494
insulin modeling

implant release, 409
nanoparticles, 413–415

Ion Channel ChemBioBase, 511
Ipsogen Cancer Profi ler, 98t
iPSORT, 322
irinotecan, 392–393
IsoMap, 477–481
item collections, partially 

distinguishable, 43
iterative group analysis, 229

Jarvis–Patric method, physiochemical 
property assessment, 95–96, 430

JChemPaint, 278t
JOELib, 152

Karhunen–Loeve transformation, see
principal component analysis 
(PCA)

KEGG, 504, 505
kernel functions, 135
kernel PCA (KPCA), 435–436
kernel trick, 443
key word database queries, 499
KiBank, 503t, 505
Kinase ChemBioBase database, 511
Kinase KnowledgebaseTM, 183t, 185, 

508t, 509
Kinetic Data of Biomolecular 

Interactions (KDBI) database, 
503

KMAP software, 477
k-means clustering algorithm, 228–229, 

254
k-nearest neighbor techniques, 158t, 161

in cluster analysis, 429
described, 228–229
limitations of, 215–216
liver gene expression patterns, 396

KNIME, 150
knowledge-based optimization analysis 

(KOA) algorithms, 89–90
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applications of, 207–209, 218–219
bias in, 213
compound triage and prioritization, 

scaffold-based, 219–222
concept, 209–213
promiscuous, toxic scaffold 

identifi cation, 223–228
in silico gene function prediction, 

215–218
validation of, 213–215

KOA algorithms, see knowledge-based 
optimization analysis (KOA) 
algorithms

Kohonen SOMs
applications of, 199, 428
approximate optimization approach, 

470
cancer screening applications, 181, 

182f
convex combination, 474–475
described, 463–472
dot product mapping, 471
Duane Desieno method, 475
GPCR ligand screening applications, 

190–194, 195f
growing cell structures method, 476
learning vector quantization (LVQ), 

477
limitations of, 450
minimum spanning tree, 473
model, 463f, 464
neural gas, 473–474
noise technique, 475–476
software, 477, 485–486
three dimensional architecture 

approach, 476
tree-structured, 473
two learning stages method, 476
variations of, 469–477

Kolmogorov–Smirnov test applications, 
154

Kullback–Leibler divergence, 128
Kyoto Encyclopedia of Genes and 

Genomes (KEGG), 270

Laplacian eigenmaps, 446–447
large linked administrative databases, 

application of, 103, 104t
Leadscope, 90, 91t

learning vector quantization (LVQ), 477
libraries, 19

annotated, GPCR-focused, 180–182
design, target-specifi c 

chemoinformatics-based 
algorithms, 92–93, 137

GPCR-PA+ ligands, 179–180
optimization, pharmacophore/SOM 

technique, 177
LigandInfo, 503t, 505
ligands

adrenoreceptor binding, 188f
ASA change-based defi nition of, 

279–280
association/dissociation constants, 

283–284
binding, see ligation
carbohydrate, 270, 273
chemogenomics-based, 186–190
chemogenomics space mapping, 

190–194
chemokine receptor design, 

homology-based, 197–198
defi ned, 268–269
DNA/RNA, 272–273
dopamine D2 binding, 187, 188f, 189f
enzyme activity inhibition, 270
geometric contact defi nition, 280–281, 

282f
Gibbs’s free energy changes, 283
histamine, binding, 188f
histones, binding, 270
identifying from in vitro

thermodynamic data, 281–284
interactions, identifying from 

structure, 277–281
interactions databases, 285–286
linear text-based representation, 274
metal, 270
molecular editors, 277, 278t
muscarinic acetylcholine binding, 188f
neighbor effects, machine learning 

methods, 287–289
protein, 271–272
representation, visualization of, 

274–277
serotonin 5-HT1A, 187–189
small molecule, 271
SMARTS notation, 276
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SMILES notation, 275–276
solvent accessibility/binding sites 

identifi cation, 281
SYBYL line notation (SLN), 276
thermodynamic databases, 

284–285
2-D coordinate representation, 

276–277
ligation

adrenoreceptor, 188f
defi ned, 269
dopamine D2, 187, 188f, 189f
histamine, 188f
histones, 270
molecular docking, 289–291
muscarinic acetylcholine, 188f
neural network model, binding site 

prediction, 288
propensities, 286–287
serotonin 5-HT1A, 187–189
sites on complexes, 279

LIGPLOT, 281, 282f
linear discriminant analysis (LDA), 

433–434
liquid formulations. oral, 402
lists, 43
liver gene expression patterns, 396
local linear embedding (LLE), 445–446, 

480, 481
locally linear coordination (LLC), 

448–449
local tangent space analysis (LTSA), 

447–448
logic, binary, 46–47
logistic regression model, 386
log P “star” values, QSAR, 12
loperamide, 178f

macrolides, 182f
macrostructure assembly tools, 90, 91t
Mahalanobis distance, 160, 164
mainframes, 5–6
malaria, 216–218, 228–229, 318, 322
Manning kinase domains SPE mapping, 

483f
mapping methods, 457–459
Markush doctrine, 526
Marvin Molecule Editor and Viewer, 

278t, 494

mathematical modeling, see molecular 
modeling

matrices, 43
maximal margin hyperplane, 132–133
maximum common subgraph (MCS) 

analysis, 119
maximum likelihood approach, model-

based cluster analysis, 256
MCHIPS, 99t
MDDR database, 123
MDL cartridge, 493–494
MDL Comprehensive Medicinal 

Chemistry database, 510
MDL Discovery Knowledge package, 

509
MDL Drug Data Report, 508t, 509–510
MDL Isentris, 493–494
MDL ISIS/Base, 493–494
MDL Patent Chemistry Database, 510
MDL structural keys, 120
MDS, see multidimensional scaling 

(MDS)
MediChem, 508t, 509
Merck Index database, 508t, 509
MEROPS database, 513
MetaBDACCS approach, 127
Metabolism database, 508
metadata, 41–45
metal ligands, 270
MHCBench, 326–327
MHC-binding prediction algorithms, 

326–327
MIAME, 305–307, 308–312t
MIAME/Tox, 305, 306
MIAMExpress, 98t
Mibefradil, 345t
microarray analysis technologies

Affymetrix, see Affymetrix 
microarrays

Agilent, 241–242
Applied Biosystems, 242, 248
bioinformatic, 97–100
cDNA, 240, 242–243
chemotherapy resistance prediction, 

396–397
classifi cation, supervised, 248, 

251–253
clustering techniques, 253–259
data acquisition, preprocessing, 

243–246

ligands (cont’d)
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data mining techniques, 244f, 
246–247

data variability in, 244–245, 246f, 250, 
251

described, 238–239, 259
DNA (mRNA), 239–242, 252
experiment types, 247–248
gene selection, 248–251
limitations, 259–260
oligonucleotide, 240, 241
post-genome data mining, 102
sample preparation, loading, 

hybridization, 242–243
types of, 239–240

minimum spanning tree, 473
minoxidil, 345–346
model learning, QSAR

data preprocessing, 156–157
global models, 159–160
local models (instance-based 

techniques), 160–161
techniques, 157–159

model validation, QSAR
applicability domains in, 166, 169–170
artifi cial sets, 165–166
external sets, 166
interpretation, mechanistic, 170–171
performance measures, 167–170
procedures, 165–166
training set retrofi tting, 165

moderating prior (Bayesian shrinkage), 
360

Molecular Access System (MACCS), 
13–14, 17

molecular classifi cation, 252
molecular descriptors, 77, 117–120
molecular docking, protein-ligand 

interactions, 289–291
molecular dynamics in epitope 

prediction, 326
molecular fi eld descriptions, 78
molecular modeling, history of, 5–6, 

8–10
Molecular Networks, 477
molecular representations, 117–120
MolFea, 162
Molfi le, 531–532
Molinspiration WebME, 278t
molsKetch, 278t
MP-MFP fi ngerprint, 120

multidatabases, 502. See also databases
multidimensional scaling (MDS)

applications of, 34
described, 428, 438–440
IsoMap vs., 477–479

multifactor dimensionality reduction 
(MDR), 388–389, 394–395

multi-item Gamma-Poisson shrinker 
(MGPS), 104, 360–364

multilayer autoencoders (MAs), 
437–438

multilayer perceptron (MLP) network 
formulation modeling, 404

multiple sequence alignment (MSA), 
484–485

multivariate analysis, applications of, 34
muscarinic acetylcholine ligand binding, 

188f
muscarinic M1 agonists, 177
mutual information analysis (Fano’s 

mutual information), 63, 65–67, 
71

name entity recognition, 533–538
Name = StructTM, 530
Name to Structure Generation, 530
NamExpertTM, 530
naming standards in entity-structure 

conversions, 524–531
nam2molTM, 530
NAT2, 383
National Cancer Institute Database 

2001.1, 510
natural language processing (NLP), 

532–538
Natural Product Database, 510
NCI, 505
NCI 127K database, 510
Neisseria meningitidis, 324
NERVE, 324
neural gas, Kohonen SOMs, 473–474
neural network model, binding site 

prediction, 288
neuraminidases, 318
Neurok, 485
NeuroSolutions, 485
NMR structure determination, 484. See 

also stochastic proximity 
embedding (SPE)

noise technique, 475–476
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nonlinear maps (NLMs)
applications of, 177–179, 428
described, 458–459

nonlinear Sammon mapping
applications of, 176, 428–429
benefi ts of, 479
described, 459–463
physiochemical property assessment, 

96
radial basis SVM classifi er, 443
software, 477, 485–486

NucleaRDB database, 512
Nuclear Hormone Receptor 

ChemBioBase, 511
nucleic acid libraries, 28
null hypothesis

as myth, 56–57, 59
in probability, 47
rejection of as conservative choice, 

59–60
statistical correction for, 250

objective feature selection, 153
objective function-based testing, 

physiochemical properties, 97
O=CHem JME Molecular Editor, 278t
oligonucleotide microarrays, 240, 241
omeprazole, 409
OpenBabel, 152
OpenChem, 278t
open reading frames (ORFs), 

identifying, 323–324
OpenSmiles, 275
OpenTox project, 150
opioid agonists, 178f
OPSIN, 530
optimal separation hyperplane (OSH), 

442
Oracle, 18–19
organic compounds, SPE mapping, 483f, 

484
osmotic pump modeling, 408
overfi tting

in ANNs, 92
in gene expression analysis, 247–248, 

252
in machine learning, 133
molecular classifi cation, 252
molecular descriptors in, 427

in QSAR modeling, 148, 154–155, 158
in SVM modeling, 158–159, 165, 441

parenteral formulations, 402
partitional clustering, 254
partition coeffi cient (log P) values, 

QSAR, 11–12
partitioning algorithms, 117, 121–122
Parzen window method, 129–131
patent document chemical structures, 

525, 526f
PathArt, 508t, 511
patient cohorts, 27
pattern recognition in collections, 

61–62
patterns

abundance, data sparseness in, 52
errors in, 50–51
recognition, 61–62

PDB (Protein Data Bank), 504, 505
PDE-5 inhibitors, 346
PDP range computers, 6
PDSP Ki, 503t, 506
pegylated interferon, 396
peptidergic G protein coupled receptors 

(pGPCRs), 176–179
peptide structure analysis. See also

protein structure analysis
algorithms, 100
applications, 80–81

peptidyl diazomethyl ketones, 270
personal computers (PCs), 7
pessaries, 403
pharmaceutical formulation algorithms, 

88f, 103
pharmacogenetics, 380–381
pharmacogenomics, 380–381, 380–382

artifi cial neural networks, 390–392, 
394–395

classifi cation trees, 387, 393–395
combinatorial, 383–385
combinatorial partitioning method 

(CPM), 389
cross-validation, 387–388
data mining tools, 387–390
data mining tools applications, 

391–397
detection of informative combined 

effects (DICE), 389–390



INDEX 557

drug metabolizing enzymes (DMEs), 
380, 383–384

immune response prediction 
algorithms, 88f, 90, 91t, 94–97, 
102–103

marker combination identifi cation, 
385–386

multifactor dimensionality reduction 
(MDR), 388–389, 394–395

pharmacodynamic, pharmacokinetic 
factor interactions, 384–385

random forest methods, 388, 394–395
recursive partitioning (RP), 179, 

387–389, 393
signature classifi er development, 

391–397
pharmacokinetics

factor interactions, 384–385
factors affecting, 380, 381f, 383

pharmacophore fi ngerprints, 118, 120, 
186. See also fi ngerprints

pharmacovigilance
adverse events (ADRs) sample space, 

349–351
algorithms, 88f, 103–105
“astute clinician model,” heuristics 

approaches, 354–355
causality adjudication, 367
classical, frequentist approaches, 

358–364
complex method development, 

369–372
data mining algorithms (DMAs) in, 

355, 357, 365–368, 373
data quality/quantity relationships, 

344–346
defi ned, 346–347
methods, 354
misclassifi cation errors, 367
need for, 342–343
performance evaluation, validation, 

364–368
quantitative approaches, 355–358
reporting mechanisms, 351–352
signal detection in, 347–348, 368–369
spontaneous reporting system (SRS) 

databases, 347, 349, 351–353, 
355–356

targets, tools, data sets, 348–349

variability, controlling, 357–358
Phenylpropanolamine, 345t
phenytoin, 384
PHI-base, 322
pigeonhole cabinet approach, ADR 

testing, 355–357
PIK3CG, 392
Plasmodium falciparum, 216–218, 

228–229, 318, 322
Plated Compounds database, 510
Popper, K., 57, 58
Porphyromonas gingivalis, 325
positive (alternative) hypothesis as 

interesting, 58–59
positive ratio calculations, 167
posterior (conditional) probability 

P (H+ | D), 48
post-genomic data mining algorithms, 

88f, 101–102
postmarketing drug surveillance, see

pharmacovigilance
PPI-PRED, 328
precision defi ned, 167
predictive analysis described, 61
predictive toxicology. See also

quantitative structure-activity 
relationship (QSAR) modeling

approaches to, 147–148
constraints in, 148–149
issues in, 146–147

prescription event monitoring databases, 
104

principal component analysis (PCA)
described, 153t, 154, 428, 432–434, 

448, 458
domain concept application, 163, 

164
limitations, 478, 479
NLM vs., 462
in SVMs, 158

principal coordinate analysis, 34, 50
principles, 427–431
prior data (D*)

accounting for, 65–67
benefi ts/limitations of, 60–61
fi ltering effect, 67–68

prior probability P (H+), 48
probabilistic neural network, target-

specifi c library design, 180
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probabilities
ADR testing, 356–357
amplitude, quantitative predicate 

calculus, 72–75
applications of, 48
Bayesian modeling, see Bayesian 

modeling
contrary evidence in, 52–54
degree of complexity in, 37, 51–52
distributions, 48–50
estimates, data impact on, 69–71
hypotheses in, 47
objectivity vs. subjectivity in, 54–56
prior data distributions, 67
semantic interpretation of, 45–46
theory, 46–47

PROCOGNATE database, 286
PROFILES descriptor calculation, 12, 

13f
Project Prospect, 534, 536t
ProLINT, 284
proportional reporting rate ratio (PRR), 

104, 358, 359f, 361–362
propranolol, 499, 500t
Protease ChemBioBase, 511
proteases, 318
Protein Data Bank, 273, 277
protein-ligand interactions, 268. See 

also ligands
ASA change-based defi nition of, 

279–280
association/dissociation constants, 

283–284
binding propensities, 286–287
binding sites on complexes, 279
databases, 285–286
geometric contact defi nition, 280–281, 

282f
Gibbs’s free energy changes, 283
G protein-coupled receptors 

(GPCRs), 271–272
identifying from in vitro

thermodynamic data, 281–284
identifying from structure, 277–281
molecular docking, 289–291
neighbor effects, machine learning 

methods, 287–289
solvent accessibility/binding sites, 281
testing, 100
thermodynamic databases, 284–285

protein microarrays, 239
protein sequence analysis, 462, 484. See 

also nonlinear Sammon mapping; 
stochastic proximity embedding 
(SPE)

protein structure analysis
algorithms, 100
applications, 80–81
stochastic proximity embedding, 

479–485
virtual compound screening, 116

protocol information, 500
Prous Ensemble, 191
PSORT methods, 322–323
PubChem, 148, 206, 278t, 503t, 506–507
PubChem BioAssay, 506
PubChem Compound, 506
PubChem Substance, 506
PubMed, 504–506, 509

quantitative predicate calculus (QPC) 
described, 72–75

quantitative structure–activity 
relationship (QSAR) modeling

algorithm selection/evaluation 
criteria, 150–151

applicability domains, 163–165
described, 146–147, 158t, 458
in epitope prediction, 326
feature generation, 151–152
feature selection, 153–156, 162
history of, 5, 10–13
model development, 149–151, 

225–226
model learning, 156–161
model types, 147–148
model validation, 165–171
molecules, characterizing, 10–13
overfi tting in, 148, 154–155, 158
step combinations, 161–163

quantitative structure- metabolism 
relationship (QSMR) modeling, 
469

QuaSAR-Binary, 91t

radial cluster analysis, 430–431
Ramsey theory, 51, 52
random forests, applications, 252, 388, 

394–395
randomness, 52
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random number generator calls, SPE, 
484

Rapacuronium bromide, 345t
Reaction Database, 510
real-time polymerase chain reaction 

(RT-PCR), 396
records, 38–43
recursive partitioning (RP)

GPCR library design, 179
pharmacogenomics, 387–389, 393

reductionist method, log P “star” value 
measurement, 12

redundant siRNA activity (RSA), 213. 
See also knowledge-based 
optimization analysis (KOA) 
algorithms

references in databases, 500–502
regression, performance measure for, 

168–169
regulatory process, toxicogenomic data 

in, 306
relational databases, history of, 18
Relibase/Relibase+, 285–286
restricted Boltzmann machines (RBMs), 

438
restricted partitioning method (RPM), 

179, 387–389, 392–393
reverse vaccinology, 323–325, 332
R-group analysis software tools, 90, 91t
ribavirin, 396
rifampicin, 415–416
Roadmap initiatives, 206
Robson, B., 34–35, 64, 69
ROC curves, 167–168
ROCR, 168
rolipram, 495f, 496f
ROSDAL code, 16
R software, 150, 154, 155, 168
rules

content expression via, 34–37
in inference, 71–75
interactions, 71
learners, 158t
weights, 45

Russel–Rao coeffi cient, 160

Sammon mapping, see nonlinear 
Sammon mapping

sample annotation, 302
SARNavigator, 91t

scaffolds, 78, 123
schizophrenia, 385
Screener, 91t
searching data, 8, 18
self-organizing maps (SOMs), 177, 254

described, 458–459, 464–465
Kohonen, see Kohonen SOMs
Willshaw–Malsburg’s model of, 463f

semantic nets, 44
sequential screening, recursive 

partitioning in, 179
serotonin 5-HT1A ligand binding, 187–189
SERTPR, 391
sets, 43
SIGMA, 98t
Sigma-Aldrich, 506
signal of disproportionate reporting 

(SDR), 357
SignalP method, 323
signature classifi er development, 

391–397
signifi cance tests, predictive toxicology, 

154–155
similarity property principle, 122
similarity searching, 116, 119, 122–124, 

187–189, 459
simple matching coeffi cient, 160
simulated annealing testing, 156
single-nucleotide polymorphisms 

(SNPs), 386, 388, 389, 391–395
small interfering RNA (siRNA), 

209–210. See also knowledge-
based optimization analysis 
(KOA) algorithms

small nuclear ribonucleoproteins 
(snRNPs), 28

SmartMining, 486
SMARTS, 276, 495, 507
SMILES, 16–17, 118, 135, 275–276, 495, 

507, 531–532
Smormoed, 278t
SNP microarrays, 239
software. See also specifi c software 

packages
bioinformatics, 98–99t
database management systems, 

492–494
HTS, 90, 91t
Kohonen SOMs, 477, 485–486
molecular modeling, 9–10
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SOM_PAK, 485
SOM Toolbox, 485
spontaneous reporting system (SRS) 

databases, 103, 104t, 347, 349, 
351–353, 355–356

SQL Link Library, 493
standardization of information

benefi ts of, 523–524
naming standards, 524–531

StARliteTM database, 183t, 185, 503t, 
507

states
described, 38–41
probability functions of, 45–46

statins, 384
statistics, objectivity of, 54–56
STEM software, 258
Stiles coeffi cient, 160
stochastic proximity embedding (SPE), 

479–485
stratifi ed medicine (nichebuster) model, 

27
Streptococcus pneumoniae, 324
structural formulas, 4, 13–14. See also

chemical structures
structural risk minimization (SRM), 

441–442
structure–activity relationship (SAR) 

modeling
analysis of, 90, 91t
challenges in, 89, 223
described, 146, 222
objective feature selection, 153

structured data mining, 38
structure–profi le relationships (SPRs), 

KOA modeling, 223–228
structure-relationship profi ling, top X 

method, 223
substructure searching, bit screening 

techniques in, 8
subtype-specifi c activity, predicting, 177
sulfanilamide, 343
superbinders, 326
support vector machines (SVMs), 

440–444
algorithms, 92–93, 158–159
applications, 136, 189, 252
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Figure 9.1 C-terminal of calcium-bound calmodulin protein (PDBID 1J7P).



Figure 9.3 Thrombin-binding DNA aptamer (PDBID: 1HAP).

Figure 9.2 G protein-coupled receptor kinase 6 bound to ligands Mg (red) and PO4 
(green) (PDBID 2ACX).
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