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Preface

The purpose of this book is to provide up-to-date progress both in Multiple Criteria
Programming (MCP) and Support Vector Machines (SVMs) that have become pow-
erful tools in the field of data mining. Most of the content in this book are directly
from the research and application activities that our research group has conducted
over the last ten years.

Although the data mining community is familiar with Vapnik’s SVM [206] in
classification, using optimization techniques to deal with data separation and data
analysis goes back more than fifty years. In the 1960s, O.L. Mangasarian formulated
the principle of large margin classifiers and tackled it using linear programming.
He and his colleagues have reformed his approaches in SVMs [141]. In the 1970s,
A. Charnes and W.W. Cooper initiated Data Envelopment Analysis, where linear or
quadratic programming is used to evaluate the efficiency of decision-making units
in a given training dataset. Started from the 1980s, F. Glover proposed a number
of linear programming models to solve the discriminant problem with a small-size
of dataset [75]. Since 1998, the author and co-authors of this book have not only
proposed and extended such a series of optimization-based classification models
via Multiple Criteria Programming (MCP), but also improved a number of SVM
related classification methods. These methods are different from statistics, decision
tree induction, and neural networks in terms of the techniques of separating data.

When MCP is used for classification, there are two common criteria. The first
one is the overlapping degree (e.g., norms of all overlapping) with respect to the
separating hyperplane. The lower this degree, the better the classification. The sec-
ond is the distance from a point to the separating hyperplane. The larger the sum of
these distances, the better the classification. Accordingly, in linear cases, the objec-
tive of classification is either minimizing the sum of all overlapping or maximizing
the sum of the distances. MCP can also be viewed as extensions of SVM. Under
the framework of mathematical programming, both MCP and SVM share the same
advantage of using a hyperplane for separating the data. With certain interpretation,
MCP measures all possible distances from the training samples to separating hy-
perplane, while SVM only considers a fixed distance from the support vectors. This
allows MCP approaches to become an alternative for data separation.
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viii Preface

As we all know, optimization lies at the heart of most data mining approaches.
Whenever data mining problems, such as classification and regression, are formu-
lated by MCP or SVM, they can be reduced into different types of optimization
problems, including quadratic, linear, nonlinear, fuzzy, second-order cone, semi-
definite, and semi-infinite programs.

This book mainly focuses on MCP and SVM, especially their recent theoretical
progress and real-life applications in various fields. Generally speaking, the book is
organized into three parts, and each part contains several related chapters. Part one
addresses some basic concepts and important theoretical topics on SVMs. It con-
tains Chaps. 1, 2, 3, 4, 5, and 6. Chapter 1 reviews standard C-SVM for classification
problem and extends it to problems with nominal attributes. Chapter 2 introduces
LOO bounds for several algorithms of SVMs, which can speed up the process of
searching for appropriate parameters in SVMs. Chapters 3 and 4 consider SVMs for
multi-class, unsupervised, and semi-supervised problems by different mathemati-
cal programming models. Chapter 5 describes robust optimization models for sev-
eral uncertain problems. Chapter 6 combines standard SVMs with feature selection
strategies at the same time via p-norm minimization where 0 < p < 1.

Part two mainly deals with MCP for data mining. Chapter 7 first introduces basic
concepts and models of MCP, and then constructs penalized Multiple Criteria Linear
Programming (MCLP) and regularized MCLP. Chapters 8, 9 and 11 describe sev-
eral extensions of MCLP and Multiple Criteria Quadratic Programming (MCQP)
in order to build different models under various objectives and constraints. Chap-
ter 10 provides non-additive measured MCLP when interactions among attributes
are allowed for classification.

Part three presents a variety of real-life applications of MCP and SVMs models.
Chapters 12, 13, and 14 are finance applications, including firm financial analy-
sis, personal credit management and health insurance fraud detection. Chapters 15
and 16 are about web services, including network intrusion detection and the anal-
ysis for the pattern of lost VIP email customer accounts. Chapter 17 is related to
HIV-1 informatics for designing specific therapies, while Chap. 18 handles anti-
gen and anti-body informatics. Chapter 19 concerns geochemical analyses. For the
convenience of the reader, each chapter of applications is self-contained and self-
explained.

Finally, Chap. 20 introduces the concept of intelligent knowledge management
first time and describes in detail the theoretical framework of intelligent knowledge.
The contents of this chapter go beyond the traditional domain of data mining and
look for how to produce knowledge support to the end users by combing hidden
patterns from data mining and human knowledge.

We are indebted to many people around the work for their encouragement and
kind support of our research on MCP and SVMs. We would like to thank Prof. Nai-
yang Deng (China Agricultural University), Prof. Wei-xuan Xu (Institute of Policy
and Management, Chinese Academy of Sciences), Prof. Zhengxin Chen (Univer-
sity of Nebraska at Omaha), Prof. Ling-ling Zhang (Graduate University of Chi-
nese Academy of Sciences), Dr. Chun-hua Zhang (RenMin University of China),
Dr. Zhi-xia Yang (XinJiang University, China), and Dr. Kun Zhao (Beijing WuZi
University).
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Dr. Xing-sen Li, Dr. Peng Zhang, Dr. Dong-ling Zhang, Dr. Zhi-wang Zhang, Dr.
Yue-jin Zhang, Zhan Zhang, Guang-li Nie, Ruo-ying Chen, Zhong-bin OuYang,
Wen-jing Chen, Ying Wang, Yue-hua Zhang, Xiu-xiang Zhao, Rui Wang.
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Part I
Support Vector Machines:

Theory and Algorithms





Chapter 1
Support Vector Machines for Classification
Problems

Support vector machines (SVMs), introduced by Vapnik in the early 1990’s
[23, 206], are powerful techniques for machine learning and data mining. Recent
breakthroughs have led to advancements in the theory and applications. SVMs were
developed to solve the classification problem at first, but they have been extended
to the domain of regression [198], clustering problems [243, 245]. Such standard
SVMs require the solution of either a quadratic or a linear programming.

The classification problem can be restricted to considering the two-class problem
without loss of generality. It can be described as follows: suppose that two classes
of objects are given, we are then faced a new object, and have to assign it to one of
the two classes.

This problem is formulated mathematically [53]: Given a training set

T = {(x1, y1), . . . , (xl, yl)} ∈ (Rn × {−1,1})l, (1.1)

where xi = ([xi]1, . . . , [xi]n)T is called an input with the attributes [xi]j , j =
1, . . . , n, and yi = −1 or 1 is called the corresponding output, i = 1, . . . , l. The
question is, for a new input x̄ = ([x̄1], . . . , [x̄n])T, to find its corresponding ȳ.

1.1 Method of Maximum Margin

Consider the example in Fig. 1.1. Here the problem is called linearly separable be-
cause that the set of training vectors (points) belong to two separated classes, there
are many possible lines that can separate the data. Let us discuss which line is bet-
ter.

Suppose that the direction of the line is given, just as the w in Fig. 1.2. We can see
that line l1 with direction w can separate the points correctly. If we put l1 right-up
and left-down until l1 touches some points of each class, we will get two “support”
lines l2 and l3, all the lines parallel to and between them can separate the points
correctly also. Obviously the middle line l is the “best”.

Y. Shi et al., Optimization Based Data Mining: Theory and Applications,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-0-85729-504-0_1, © Springer-Verlag London Limited 2011
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Fig. 1.1 Linearly separable
problem

Fig. 1.2 Two support lines
with fixed direction

Fig. 1.3 The direction with
maximum margin

Now how to choose the direction w of the line? Just as the description above, for a
given w, we will get two support lines, the distance between them is called “margin”
corresponding to w. We can image that the direction with maximum margin should
be chosen, as in Fig. 1.3.
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If the equation of the separating line is given as

(w · x) + b = 0, (1.2)

there is some redundancy in (1.2), and without loss of generality it is appropriate to
consider a canonical hyperplane, where the parameters w,b are constrained so that
the equation of line l2 is

(w · x) + b = 1, (1.3)

and line l3 is given as

(w · x) + b = −1. (1.4)

So the margin is given by 2
‖w‖ . The idea of maximizing the margin introduces the

following optimization problem:

min
w,b

1

2

∥
∥w

∥
∥2

, (1.5)

s.t. yi((w · xi) + b) ≥ 1, i = 1, . . . , l. (1.6)

The above method is deduced for classification problem in 2-dimensional space, but
it also works for general n dimension space, where the corresponding line becomes
hyperplane.

1.2 Dual Problem

The solution to the optimization problem (1.5)–(1.6) is given by its Lagrangian dual
problem,

min
α

1

2

l
∑

i=1

l∑

j=1

yiyjαiαj (xi · xj ) −
l

∑

j=1

αj , (1.7)

s.t.
l

∑

i=1

yiαi = 0, (1.8)

αi ≥ 0, i = 1, . . . , l. (1.9)

Theorem 1.1 Considering the linearly separable problem. Suppose α∗ =
(α∗

1 , . . . , α∗
l )T is a solution of dual problem (1.7)–(1.9), so α∗ �= 0, i.e. there is a

component α∗
j > 0, and the solution (w∗, b∗) of primal problem (1.5)–(1.6) is given

by

w∗ =
l

∑

i=1

α∗
i yixi, (1.10)
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b∗ = yj −
l

∑

i=1

yiα
∗
i (xi · xj ); (1.11)

or

w∗ =
l

∑

i=1

α∗
i yixi, (1.12)

b∗ = −
(

w∗ ·
l

∑

i=1

α∗
i xi

)/(

2
∑

yi=1

α∗
i

)

. (1.13)

After getting the solution (w∗, b∗) of primal problem, the optimal separating
hyperplane is given by

(w∗ · x) + b∗ = 0. (1.14)

Definition 1.2 (Support vector) Suppose α∗ = (α∗
1 , . . . , α∗

l )T is a solution of dual
problem (1.7)–(1.9). The input xi corresponding to α∗

i > 0 is termed support vector
(SV).

For the case of linearly separable problem, all the SVs will lie on the hyperplane
(w∗ · x) + b∗ = 1 or (w∗ · x) + b∗ = −1, this result can be derived from the proof
above, and hence the number of SV can be very small. Consequently the separating
hyperplane is determined by a small subset of the training set; the other points could
be removed from the training set and recalculating the hyperplane would produce
the same answer.

1.3 Soft Margin

So far the discussion has been restricted to the case where the training data is linearly
separable. However, in general this will not be the case if noises cause the overlap of
the classes, e.g., Fig. 1.4. To accommodate this case, one introduces slack variables
ξi for all i = 1, . . . , l in order to relax the constraints of (1.6)

yi((w · xi) + b) ≥ 1 − ξi, i = 1, . . . , l. (1.15)

A satisfying classifier is then found by controlling both the margin term ‖w‖ and the
sum of the slacks

∑l
i=1 ξi . One possible realization of such a soft margin classifier

is obtained by solving the following problem.

min
w,b,ξ

1

2

∥
∥w

∥
∥2 + C

l
∑

i=1

ξi, (1.16)
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Fig. 1.4 Linear classification
problem with overlap

s.t. yi((w · xi) + b) + ξi ≥ 1, i = 1, . . . , l, (1.17)

ξi ≥ 0, i = 1, . . . , l, (1.18)

where the constant C > 0 determines the trade-off between margin maximization
and training error minimization.

This again leads to the following Lagrangian dual problem

min
α

1

2

l
∑

i=1

l
∑

j=1

yiyjαiαj (xi · xj ) −
l

∑

j=1

αj , (1.19)

s.t.
l

∑

i=1

yiαi = 0, (1.20)

0 ≤ αi ≤ C, i = 1, . . . , l. (1.21)

where the only difference from problem (1.7)–(1.9) of separable case is an upper
bound C on the Lagrange multipliers αi .

Similar with Theorem 1.1, we also get a theorem as follows:

Theorem 1.3 Suppose α∗ = (α∗
1 , . . . , α∗

l )T is a solution of dual problem (1.19)–
(1.21). If there exist 0 < α∗

j < C, then the solution (w∗, b∗) of primal problem
(1.16)–(1.18) is given by

w∗ =
l

∑

i=1

α∗
i yixi (1.22)

and

b∗ = yj −
l

∑

i=1

yiα
∗
i (xi · xj ). (1.23)
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Fig. 1.5 Nonlinear
classification problem

And the definition of support vector is the same with Definition 1.2.

1.4 C-Support Vector Classification

For the case where a linear boundary is totally inappropriate, e.g., Fig. 1.5. We
can map the input x into a high dimensional feature space x = �(x) by introducing
a mapping �, if an appropriate non-linear mapping is chosen a priori, an optimal
separating hyperplane may be constructed in this feature space. And in this space,
the primal problem and dual problem solved becomes separately

min
w,b,ξ

1

2

∥
∥w

∥
∥2 + C

l
∑

i=1

ξi, (1.24)

s.t. yi((w · �(xi)) + b) + ξi ≥ 1, i = 1, . . . , l, (1.25)

ξi ≥ 0, i = 1, . . . , l. (1.26)

min
α

1

2

l
∑

i=1

l
∑

j=1

yiyjαiαj (�(xi) · �(xj )) −
l

∑

j=1

αj , (1.27)

s.t.
l∑

i=1

yiαi = 0, (1.28)

0 ≤ αi ≤ C, i = 1, . . . , l. (1.29)

As the mapping appears only in the dot product (�(xi) · �(xj )), so by intro-
ducing a function K(x,x′) = (�(x) ·�(x ′)) termed kernel function, the above dual
problem turns to be

min
α

1

2

l
∑

i=1

l∑

j=1

yiyjαiαjK(xi, xj ) −
l

∑

j=1

αj , (1.30)

s.t.
l

∑

i=1

yiαi = 0, (1.31)

0 ≤ αi ≤ C, i = 1, . . . , l. (1.32)
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Theorem 1.4 Suppose α∗ = (α∗
1 , . . . , α∗

l )T is a solution of dual problem (1.30)–
(1.32). If there exist 0 < α∗

j < C, then the optimal separating hyperplane in the
feature space is given by

f (x) = sgn((w∗ · x) + b∗) =
l

∑

i=1

α∗
i yiK(xi, x) + b∗, (1.33)

where

b∗ = yj −
l

∑

i=1

yiα
∗
i K(xi, xj ). (1.34)

If K(x,x ′) is a symmetric positive definite function, which satisfies Mercer’s
conditions, then the function represents an inner product in feature space and termed
kernel function. The idea of the kernel function is to enable operations to be per-
formed in the input space rather than the potentially high dimensional feature space.
Hence the inner product does not need to be evaluated in the feature space. This
provides a way of addressing the curse of dimensionality.

Examples of kernel function are now given [174]:

(1) linear kernels

K(x,x′) = (x · x′); (1.35)

(2) polynomial kernels are popular methods for non-linear modeling,

K(x,x′) = (x · x′)d, (1.36)

K(x,x ′) = ((x · x′) + 1)d ; (1.37)

(3) radial basis kernels have received significant attention, most commonly with a
Gaussian of the form

K(x,x′) = exp(−‖x − x′‖2/σ 2); (1.38)

(4) sigmoid kernels

K(x,x′) = tanh(κ(x · x′) + ϑ), (1.39)

where κ > 0 and ϑ < 0.

Therefore, based on Theorem 1.4, the standard algorithm of Support Vector Ma-
chine for classification is given as follows:

Algorithm 1.5 (C-Support Vector Classification (C-SVC))

(1) Given a training set T = {(x1, y1), . . . , (xl, yl)} ∈ (Rn × {−1,1})l ;
(2) Select a kernel K(·, ·), and a parameter C > 0;
(3) Solve problem (1.30)–(1.32) and get its solution α∗ = (α∗

1 , . . . , α∗
l )T;
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(4) Compute the threshold b∗, and construct the decision function as

f (x) = sgn

(
l

∑

i=1

α∗
i yiK(xi, x) + b∗

)

. (1.40)

1.5 C-Support Vector Classification with Nominal Attributes

For the classification problem, we are often given a training set like (1.1), where the
attributes [xi]j and [x̄]j , j = 1, . . . , n, are allowed to take either continuous values
or nominal values [204].

Now we consider the training set (1.1) with nominal attributes [199]. Suppose
the input x = ([x]1, . . . , [x]n)T, where the j th nominal attribute [x]j take Mj states,
j = 1, . . . , n. The most popular approach in classification method is as follows: Let
RMj be the Mj -dimensional space. The j th nominal attribute [x]j is represented as
one of the Mj unit vectors in RMj . Thus the input space of the training set (1.1)
can be embedded into a Euclidean space with the dimension M1 × M2 × · · · ×
Mn, and every input x is represented by n unit vectors which belong to the spaces
RM1 ,RM2, . . . ,RMn−1 and RMn respectively.

However, the above strategy has a severe shortcoming in distance measure. The
reason is that it assumes that all attribute values are of equal distance from each
other. The equal distance implies that any two different attribute values have the
same degree of dissimilarities. Obviously this is not always to be preferred.

1.5.1 From Fixed Points to Flexible Points

Let us improve the above most popular approach by overcoming the shortcoming
pointed out in the end of the last section.

We deal with the training set (1.1) in the following way. Suppose that the j th
nominal attribute [x]j takes values in Mj states

[x]j ∈ {vj1, vj2, . . . , vjMj
}, j = 1, . . . , n. (1.41)

We embed the j th nominal attribute [x]j into an Mj − 1 dimensional Euclidean
space RMj −1: the first value vj1 corresponds to the point (0, . . . ,0)T, the second

value vj2 corresponds to the point (σ
j

1 ,0, . . . ,0)T, the third value vj3 correspond to

the point (σ
j

2 , σ
j

3 ,0, . . . ,0)T, . . . , and the last value vjMj
corresponds to the point

(σ
j

qj +1, . . . , σ
j

qj +Mj −1)
T, where qj = (Mj −1)(Mj −2)

2 . Therefore for the j th nominal

attribute [x]j , there are pj variables {σ j

1 , σ
j

2 , . . . , σ
j
pj

} to be determined, where

pj = Mj(Mj − 1)

2
. (1.42)
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In other words, for j = 1, . . . , n, the j th nominal attribute [x]j corresponds to a
matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎝

vj1
vj2
vj3
...

vjMj

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0
σ

j

1 0 0 · · · 0
σ

j

2 σ
j

3 0 · · · 0
...

...
...

...
...

σ
j

qj +1 σ
j

qj +2 σ
j

qj +2 · · · σ
j
pj

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

� Hj ∈ RMj ×(Mj −1).

(1.43)
Suppose an input x = ([x]1, . . . , [x]n)T taking nominal value (v1k1, v2k2 , . . . , vnkn),
where kj is the kj th value in {vj1, vj2, . . . , vjMj

}. Then x corresponds to a vector

x → x̃ = ((H1)k1 , . . . , (Hn)kn
)T, (1.44)

where (Hj )kj
is the kj th row of Hj , j = 1, . . . , n. Thus the training set (1.1) turns

to be

T̃ = {(x̃1, y1), . . . , (x̃l , yl)}, (1.45)

where x̃i is obtained from xi by the relationship (1.44) and (1.43).
Obviously, if we want to construct a decision function based on the training set

(1.45) by C-SVC, the final decision function depends on the positions of the above
embedded points, in other words, depends on the set

� = {σ j

1 , σ
j

2 , . . . , σ
j
pj

, j = 1, . . . , n}, (1.46)

where pj is given by (1.42).

1.5.2 C-SVC with Nominal Attributes

The values of {σj

1 , σ
j

2 , . . . , σ
j
pj

, j = 1, . . . , n} in � in (1.46) can be obtained by
learning. For example, it is reasonable to select them such that the LOO error for
SVC is minimized, see, e.g. [207].

The definition of LOO error for Algorithm 1.5 is given as follows:

Definition 1.6 Consider Algorithm 1.5 with the training set (1.45). Let f
T̃ |t (x) be

the decision function obtained by the algorithm from the training set T̃ |t = T̃ \
{(x̃t , yt )}, then the LOO error of the algorithm with respect to the loss function
c(x, y, f (x)) and the training set T̃ is defined as

RLOO(T̃ ) =
l

∑

i=1

c(x̃i , yi, f (x̃i)). (1.47)
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In the above definition, the loss function is usually taken to be the 0–1 loss func-
tion

c(x̃i , yi, f (x̃i)) =
{

0, yi = f (x̃i);
1, yi �= f (x̃i).

(1.48)

Therefore, we investigate the LOO error with (1.48) below.
Obviously, the LOO error RLOO(T̃ ) depends on the set (1.46)

RLOO(T̃ ) = RLOO(T̃ ;�). (1.49)

The basic idea of our algorithm is: First, select the values in � by minimizing the
LOO error, i.e. by solving the optimization problem:

min
�

RLOO(T̃ ;�). (1.50)

Then, using the learned values in � to train SVC again, and construct the final
decision function. This leads to the following algorithm—C-SVC with Nominal
attributes (C-SVCN):

Algorithm 1.7 (C-SVCN)

(1) Given a training set T defined in (1.1) with nominal attributes, where the j th
nominal attribute [x]j takes values in Mj states (1.41));

(2) Introducing a parameter set � = {σj

1 , σ
j

2 , . . . , σ
j
pj

, j = 1, . . . , n} appeared in

(1.43) and turn T (1.1) to T̃ (1.45);
(3) Select a kernel K(·, ·) and a parameter C > 0;
(4) Solve problem (1.50) with replacing T by T̃ , and get the learned values �̄ =

{σ̄ j

1 , σ̄
j

2 , . . . , σ̄
j
pj

, j = 1, . . . , n};
(5) Using the parameter values in �̄, turn T to T̄ = {(x̄1, y1), . . . , (x̄l, yl)} via

(1.45) with replacing “the wave ∼” by “the bar –”;
(6) Solve problem (1.30)–(1.32) with replacing T by T̄ and get the solution α∗ =

(α∗
1 , . . . , α∗

l )T;
(7) Compute the threshold b by KKT conditions, and construct the decision func-

tion as

f (x̄) = sgn

(
l

∑

i=1

α∗
i yiK(x̄i , x̄) + b

)

. (1.51)

where x̄ is obtained from x by the relationship (1.44) with replacing x̃ by x̄.

1.5.3 Numerical Experiments

In this section, the preliminary experiments on Algorithm 1.7 are presented. As
shown in Table 1.1, some standard data sets in [21] are tested by executing Algo-
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Table 1.1 Data sets

Data set 	 Nominal attributes 	 Training patterns 	 Test patterns

monks-1 6 300 132

monks-3 6 300 132

tic-tac-toe 9 500 458

Table 1.2 Classification
errors on testing set Data set Popular SVCN New SVCN

monks-1 21.2% 18.9%

monks-3 19.7% 16.7%

tic-tac-toe 22.9% 19.87%

rithm 1.7. For every set, we split it into two parts, one is for training, and the other
for testing.

When we choose RBF kernel function K(x,x′) = exp(
−‖x−x ′‖

2δ2 ), and choose
(δ,C) = (0.1,10), (δ,C) = (0.7,10), (δ,C) = (3,0.1), (δ,C) = (3,100) respec-
tively, we compare Algorithm 1.7 with the most popular approach using unit vectors
(Popular SVCN), the mean classification errors on testing sets are listed in Table 1.2.
It is easy to see that Algorithm 1.7 leads to smaller classification errors.

Another simplified version of dealing with the j th nominal attribute with Mj

states, j = 1, . . . , n, is also another choice. Here (1.43) is replaced by

⎛

⎜
⎜
⎜
⎜
⎜
⎝

vj1
vj2
vj3
...

vjMj

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−→

⎛

⎜
⎜
⎜
⎝

σ
j

1 0 0 · · · 0
0 σ

j

2 0 · · · 0
· · ·
0 0 0 · · · σ

j
Mj

⎞

⎟
⎟
⎟
⎠

� Hj ∈ RMj ×Mj . (1.52)

Of course, extend Algorithm 1.7 to deal with the problem with both nominal and
real attributes and the problem of feature selection are also interesting.





Chapter 2
LOO Bounds for Support Vector Machines

2.1 Introduction

The success of support vector machine depends on the tuning of its several param-
eters which affect the generalization error. For example, when given a training set,
a practitioner will ask how to choose these parameters which will generalize well.
An effective approach is to estimate the generalization error and then search for pa-
rameters so that this estimator is minimized. This requires that the estimators are
both effective and computationally efficient. Devroye et al. [57] give an overview
of error estimation. While some estimators (e.g., uniform convergence bounds) are
powerful theoretical tools, they are of little use in practical applications, since they
are too loose. Others (e.g., cross-validation, bootstrapping) give good estimates, but
are computationally inefficient.

Leave-one-out (LOO) method is the extreme case of cross-validation, and in this
case, a single point is excluded from the training set, and the classifier is trained
using the remaining points. It is then determined whether this new classifier cor-
rectly labels the point that was excluded. The process is repeated over the en-
tire training set, and the LOO error is computed by taking the average over these
trials. LOO error provides an almost unbiased estimate of the generalization er-
ror.

However one shortcoming of the LOO method is that it is highly time consum-
ing, thus methods are sought to speed up the process. An effective approach is to
approximate the LOO error by its upper bound that is a function of the parameters.
Then, we search for parameter so that this upper bound is minimized. This approach
has successfully been developed for both support vector classification machine [97,
114, 119, 207] and support vector regression machine [34].

In this chapter we will introduce other LOO bounds for several algorithms of
support vector machine [200, 201, 231].

Y. Shi et al., Optimization Based Data Mining: Theory and Applications,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-0-85729-504-0_2, © Springer-Verlag London Limited 2011
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2.2 LOO Bounds for ε-Support Vector Regression

2.2.1 Standard ε-Support Vector Regression

First, we introduce the standard ε-support vector regression (ε-SVR). Consider a
regression problem with a training set

T = {(x1, y1), . . . , (xl, yl)} ∈ (Rn × Y )
l
, (2.1)

where xi ∈ Rn, yi ∈ Y = R, i = 1, . . . , l. Suppose that the loss function is selected
to be the ε-insensitive loss function

c(x, y, f (x)) = |y − f (x)|ε = max{0, |y − f (x)| − ε}. (2.2)

In support vector regression framework, the input space is first mapped to a higher
dimensional space H by

x = �(x), (2.3)

and the training set T turns to be

T̄ = {(x1, y1), . . . , (xl , yl)} ∈ (H × Y )l, (2.4)

where xi = �(xi) ∈ H, yi ∈ Y = R, i = 1, . . . , l. Then in space H, the following
primal problem is constructed:

min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

l
∑

i=1

(ξi + ξ∗
i ), (2.5)

s.t. (w · xi) + b − yi ≤ ε + ξi, i = 1, . . . , l, (2.6)

yi − (w · xi ) − b ≤ ε + ξ∗
i , i = 1, . . . , l, (2.7)

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l. (2.8)

And ε-SVR solves this problem by introducing its dual problem

max
α

(∗)
T

JT (α(∗)) = −1

2

l
∑

i,j=1

(α∗
i − αi)(α

∗
j − αj )K(xi, xj )

− ε

l
∑

i=1

(α∗
i + αi) +

l
∑

i=1

yi(α
∗
i − αi), (2.9)

s.t.
l

∑

i=1

(α∗
i − αi) = 0, (2.10)

0 ≤ αi,α
∗
i ≤ C, i = 1, . . . , l, (2.11)
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where α
(∗)
T = (α1, α

∗
1 , . . . , αl, α

∗
l )T, and K(xi, xj ) = (xi · xj ) = (�(xi) · �(xj )) is

the kernel function. Thus, the algorithm can be established as follows:

Algorithm 2.1 (ε-SVR)

(1) Given a training set T defined in (2.1);
(2) Select a kernel K(·, ·), and parameters C > 0 and ε > 0;
(3) Solve problem (2.9)–(2.11) and get its solution ᾱ

(∗)
T = (ᾱ1, ᾱ

∗
1 , . . . , ᾱl , ᾱ

∗
l )T;

(4) Construct the decision function as

f (x) = fT (x) = (w̄ · x) + b̄ =
l

∑

i=1

(ᾱ∗
i − ᾱi )K(xi, x) + b̄, (2.12)

where b̄ is computed as follows: either choose one ᾱj ∈ (0,C), then

b̄ = yj −
l

∑

i=1

(ᾱ∗
i − ᾱi )K(xi, xj ) + ε; (2.13)

or choose one ᾱ∗
k ∈ (0,C), then

b̄ = yk −
l

∑

i=1

(ᾱ∗
i − ᾱi )K(xi, xk) − ε. (2.14)

The uniqueness of the solution of primal problem (2.5)–(2.8) is shown by the
following theorem [29].

Theorem 2.2 Suppose ᾱ
(∗)
T = (ᾱ1, ᾱ

∗
1 , . . . , ᾱl , ᾱ

∗
l )T is an optimal solution of dual

problem (2.9)–(2.11), and there exists a subscript i such that either 0 < ᾱi < C or
0 < ᾱ∗

i < C. Then the decision function

f (x) = fT (x) = (w · x) + b =
l

∑

i=1

(ᾱ∗
i − ᾱi )K(x, xi) + b

obtained by Algorithm 2.1 is unique.

2.2.2 The First LOO Bound

The kernel and the parameters in Algorithm 2.1 are reasonably selected by minimiz-
ing the LOO error or its bound. In this section, we recall the definition of this error
at first, and then estimate its bound.

The definition of LOO error with respect to Algorithm 2.1 is given as follows:
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Definition 2.3 For Algorithm 2.1, consider the ε-insensitive loss function (2.2) and
the training set

T = {(x1, y1), . . . , (xl, yl)} ∈ {Rn × Y }l, (2.15)

where xi ∈ Rn, yi ∈ Y = R. Let fT |t (x) be the decision function obtained by Al-
gorithm 2.1 from the training set T |t = T \ {(xt , yt )}, then the LOO error of Algo-
rithm 2.1 (with respect to the loss function (2.2) and the training set T ) is defined as

RLOO(T ) =
l

∑

t=1

|fT |t (xt ) − yt |ε. (2.16)

Obviously, the computation cost of the LOO error is very expensive if l is large.
In fact, for a training set including l points, the computing of the LOO error implies
l times of training. So finding a more easily computed approximation of the LOO
error is necessary. An interesting approach is to estimate an upper bound of the LOO
error, such that this bound can be computed by training only once.

Now we derive an upper bound of the LOO error for Algorithm 2.1. Obviously,
its LOO bound is related with the training set T |t = T \{(xt , yt )}, t = 1, . . . , l. The
corresponding primal problem is

min
wt ,ξ t ,ξ t∗

1

2
‖wt‖2 + C

l
∑

i=1

(ξ t
i + ξ∗t

i ), (2.17)

s.t. (wt · xi ) + bt − yi ≤ ε + ξ t
i , i = 1, . . . , t − 1, t + 1, . . . , l, (2.18)

yi − (wt · xi ) − bt ≤ ε + ξ∗t
i , i = 1, . . . , t − 1, t + 1, . . . , l, (2.19)

ξ t
i , ξ

∗t
i ≥ 0, i = 1, . . . , t − 1, t + 1, . . . , l. (2.20)

Its dual problem is

max
α

(∗)
T |t

JT |t (α(∗)
T |t ) = −1

2

∑

i,j �=t

(α∗
i − αi)(α

∗
j − αj )K(xi, xj )

− ε
∑

i �=t

(α∗
i + αi) +

∑

i �=t

yi(α
∗
i − αi), (2.21)

s.t.
∑

i �=t

(α∗
i − αi) = 0, (2.22)

0 ≤ αi,α
∗
i ≤ C, i = 1, . . . , t − 1, t + 1, . . . , l, (2.23)

where α
(∗)
T |t = (α1, α

∗
1 , . . . , αt−1, α

∗
t−1, αt+1, α

∗
t+1, . . . , αl, α

∗
l )T.

Now let us introduce useful lemmas:

Lemma 2.4 Suppose problem (2.9)–(2.11) has a solution ᾱ
(∗)
T = (ᾱ1, ᾱ

∗
1 , . . . ,

ᾱl, ᾱ
∗
l )T with a subscript i such that either 0 < ᾱi < C or 0 < ᾱ∗

i < C. Suppose

also that, for all any t = 1, . . . , l, problem (2.21)–(2.23) has a solution α̃
(∗)
T |t =

(α̃1, α̃
∗
1 , . . . , α̃t−1, α̃

∗
t−1, α̃t+1, α̃

∗
t+1, . . . , α̃l, α̃

∗
l )T with a subscript j such that either
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0 < α̃j < C or 0 < α̃∗
j < C. Let fT (x) and fT |t (x) be the decision functions ob-

tained by Algorithm 2.1 respectively from the training set T and T |t = T \{xt , yt }.
Then for t = 1, . . . , l, we have

(i) If ᾱt = ᾱ∗
t = 0, then |fT |t (xt ) − yt | = |f (xt ) − yt |;

(ii) If ᾱt > 0, then fT |t (xt ) ≥ yt ;
(iii) If ᾱ∗

t > 0, then fT |t (xt ) ≤ yt .

Proof Prove the case (i) first: Consider the primal problem (2.5)–(2.8) corre-
sponding to the problem (2.9)–(2.11). Denote its solution as (w̄, b̄, ξ̄ (∗)). Note
that the corresponding Lagrange multiplier vector is just the solution ᾱ

(∗)
T =

(ᾱ1, ᾱ
∗
1 , . . . , ᾱl , ᾱ

∗
l )T of the problem (2.9)–(2.11). Therefore the KKT conditions

can be represented as

w̄ =
l

∑

i=1

(ᾱ∗
i − ᾱi)xi , (2.24)

l
∑

i=1

(ᾱ∗
i − ᾱi ) = 0, (2.25)

(w̄ · xi ) + b̄ − yi ≤ ε + ξ̄i , i = 1, . . . , l, (2.26)

yi − (w̄ · xi ) − b̄ ≤ ε + ξ̄∗
i , i = 1, . . . , l, (2.27)

ξ̄i , ξ̄
∗
i ≥ 0, i = 1, . . . , l, (2.28)

((w̄ · xi ) + b̄ − yi − ε − ξ̄i )ᾱi = 0, i = 1, . . . , l, (2.29)

((w̄ · xi ) + b̄ − yi + ε − ξ̄∗
i )ᾱ∗

i = 0, i = 1, . . . , l, (2.30)

(C − ᾱi )ξ̄i = 0, (C − ᾱ∗
i )ξ̄∗

i = 0, i = 1, . . . , l, (2.31)

0 ≤ ᾱi , ᾱ
∗
i ≤ C, i = 1, . . . , l. (2.32)

Define

w̃ = w̄, b̃ = b̄, (2.33)

ξ̃ (∗) � (ξ̃1, ξ̃
∗
1 , . . . , ξ̃t−1, ξ̃

∗
t−1, ξ̃t+1, ξ̃

∗
t+1, . . . , ξ̃l , ξ̃

∗
l )T

= (ξ̄1, ξ̄
∗
1 , . . . , ξ̄t−1, ξ̄

∗
t−1, ξ̄t+1, ξ̄

∗
t+1, . . . , ξ̄l , ξ̄

∗
l )T, (2.34)

and

α̃
(∗)
T |t � (α̃1, α̃

∗
1 , . . . , α̃t−1, α̃

∗
t−1, α̃t+1, α̃

∗
t+1, . . . , α̃l , α̃

∗
l )T

= (ᾱ1, ᾱ
∗
1 , . . . , ᾱt−1, ᾱ

∗
t−1, ᾱt+1, ᾱ

∗
t+1, . . . , ᾱl , ᾱ

∗
l )T. (2.35)

It is not difficult to see, from (2.24)–(2.32), that (w̃, b̃, ξ̃ (∗)) with the vector α̃
(∗)
T |t

satisfies the KKT conditions of problem (2.17)–(2.20). Therefore, (w̃, b̃, ξ̃ (∗)) is
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the optimal solution of the problem (2.17)–(2.20). Noticing (2.33) and using Theo-
rem 2.2, we claim that fT |t (x) = f (x), so

|fT |t (xt ) − yt | = |f (xt ) − yt |. (2.36)

Next, prove the case (ii): Consider the solution with respect to (w, b) of prob-
lem (2.5)–(2.8) and problem (2.17)–(2.20). There are two possibilities: They have
respectively solution (w̄, b̄) and (w̃, b̃) with (w̄, b̄) = (w̃, b̃), or have no these so-
lutions. For the former case, it is obvious, from the KKT condition (2.29), that we
have

fT |t (xt ) = (w̃ · xt ) + b̃ = (w̄ · xt ) + b̄ = yt + ε + ξ̄t > yt . (2.37)

So we need only to investigate the latter case.
Let (w̄, b̄, ξ̄ (∗)) and (w̃, b̃, ξ̃ (∗)) respectively be the solution of primal problem

(2.5)–(2.8) and problem (2.17)–(2.20) with

(w̄, b̄) �= (w̃, b̃). (2.38)

We prove fT |t (xt ) ≥ yt by a contradiction. Suppose that ᾱt > 0, and fT |t (xt ) < yt .
From the KKT condition (2.29), we have

(w̄ · xt ) + b̄ = yt + ε + ξ̄t ≥ yt + ε > yt > fT |t (xt ) = (w̃ · xt ) + b̃. (2.39)

Therefore, there exists 0 < p < 1 such that

(1 − p)((w̄ · xt ) + b̄) + p((w̃ · xt ) + b̃) = yt . (2.40)

Let

(ŵ, b̂, ξ̂ (∗)) = (1 − p)(w̄, b̄, ξ̄ (∗)) + p(w̃, b̃, ξ̌ (∗)), (2.41)

where ξ̌ (∗) is obtained from ξ̃ (∗) by

ξ̌ = (ξ̃1, ξ̃
∗
1 , . . . , ξ̃t−1, ξ̃

∗
t−1,0,0, ξ̃t+1, ξ̃

∗
t+1, . . . , ξ̃l , ξ̃

∗
l )T. (2.42)

Thus, (ŵ, b̂, ξ̂ (∗)) with deleting the (2t)th and (2t +1)th components of ξ̂ (∗) is a fea-
sible solution of problem (2.17)–(2.20). Therefore, noticing the convexity property,
we have

1

2
(ŵ · ŵ) + C

∑

i �=t

(ξ̂i + ξ̂∗
i )

≤ (1 − p)

(
1

2
(w̄ · w̄) + C

∑

i �=t

(ξ̄i + ξ̄∗
i )

)

+ p

(
1

2
(w̃ · w̃) + C

∑

i �=t

(ξ̃i + ξ̃∗
i )

)

<
1

2
(w̄ · w̄) + C

∑

i �=t

(ξ̄i + ξ̄∗
i ), (2.43)
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where the last inequality comes from the fact that (w̄, b̄, ξ̄ (∗)) with deleting the
(2t)th and (2t + 1)th components of ξ̄ (∗) is a feasible solution of problem (2.17)–
(2.20).

On the other hand, the fact ᾱt > 0, implies that ξ̄t ≥ 0 and ξ̄∗
t = 0. Thus, accord-

ing to (2.42),

ξ̂t = (1 − p)ξ̄t + pξ̌t = (1 − p)ξ̄t ≤ ξ̄t , ξ̂∗
t = (1 − p)ξ̄∗

t + pξ̌∗
t = 0. (2.44)

From (2.40), we know that (ŵ, b̂, ξ̂ , ξ̂∗) satisfies the constraint

−ε − ξ̂∗
t ≤ (ŵ · xt ) + b̂ − yt = 0 ≤ ε + ξ̂t , (2.45)

so it is also a feasible solution of problem (2.5)–(2.8). However from (2.43) and
(2.44) we have

1

2
(ŵ · ŵ) + C

l
∑

i=1

(ξ̂i + ξ̂∗
i ) = 1

2
(ŵ · ŵ) + C

∑

i �=t

(ξ̂i + ξ̂∗
i ) + C(ξ̂t + ξ̂∗

t )

<
1

2
(w̄ · w̄) + C

∑

i �=t

(ξ̄i + ξ̄∗
i ) + C(ξ̄t + ξ̄∗

t )

= 1

2
(w̄ · w̄) + C

l
∑

i=1

(ξ̄i + ξ̄∗
i ), (2.46)

which is contradictive with that (w̄, ξ̄ , ξ̄∗) is the solution of problem (2.5)–(2.8).
Thus if αt > 0, there must be fT |t (xt ) ≥ yt .

The proof of the case (iii) is similar to case (ii) and is omitted here. �

Theorem 2.5 Consider Algorithm 2.1. Suppose ᾱ
(∗)
T = (ᾱ1, ᾱ

∗
1 , . . . , ᾱl , ᾱ

∗
l )T is the

optimal solution of problem (2.9)–(2.11) and f (x) is the corresponding decision
function. Then the LOO error of this algorithm satisfies

RLOO(T ) ≤
l

∑

t=1

|f (xt ) − yt − (ᾱ∗
t − ᾱt )(R

2 + K(xt , xt ))|ε

=
l

∑

t=1

∣
∣
∣
∣
∣

l
∑

i=1

(ᾱ∗
i − ᾱi )K(xi, xt ) + b̄ − yt − (ᾱ∗

t − ᾱt )(R
2 + K(xt , xt ))

∣
∣
∣
∣
∣
ε

,

(2.47)

where

R2 = max{K(xi, xj ) | i, j = 1, . . . , l}. (2.48)

Proof It is sufficient to prove that, for t = 1, . . . , l,

|f (xt ) − yt − (ᾱ∗
t − ᾱt )(R

2 + K(xt , xt ))|ε ≥ |yt − fT |t (xt )|ε. (2.49)

Its validity will be shown by investigating three cases separately:
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(i) The case ᾱ∗
t = ᾱt = 0. In this case, by Lemma 2.4, |fT |t (xt ) − yt | = |f (xt ) −

yt |, it is obvious that

|f (xt ) − yt − (ᾱ∗
t − ᾱt )(R

2 + K(xt , xt ))| = |fT |t (xt ) − yt |, (2.50)

so the conclusion (2.49) is true.
(ii) The case ᾱt > 0. In this case, we have ᾱ∗

t = 0.
First we will construct a feasible solution of problem (2.9)–(2.11) from the solu-

tion of problem (2.21)–(2.23) to get some equality.
Suppose problem (2.21)–(2.23) has a solution α̃

(∗)
T |t = (α̃1, α̃

∗
1 , . . . , α̃t−1, α̃∗

t−1,

α̃t+1, α̃
∗
t+1, . . . , α̃l , α̃

∗
l )T, and there exists a subscript j such that 0 < α̃j < C or

0 < α̃∗
j < C. Now construct γ (∗) = (γ1, γ

∗
1 , . . . , γl, γ

∗
l )T as follows:

γ
(∗)
i =

⎧

⎪⎨

⎪⎩

α̃
(∗)
i , if α

(∗)
i = 0 or α

(∗)
i = C,

α̃
(∗)
i − ν

(∗)
i , if i ∈ SV t ,

ᾱ
(∗)
i , if i = t,

(2.51)

where SV t = {i | 0 < α̃
(∗)
i < C, i = 1, . . . , t − 1, t + 1, l}, and ν = (ν1, ν

∗
1 , . . . ,

νl, ν
∗
l )T ≥ 0 satisfies

∑

i∈SV t

ν∗
i = ᾱ∗

t = 0,
∑

i∈SV t

νi = ᾱt , νi = 0 ∀i /∈ SV t . (2.52)

It is easy to verify that

l
∑

i=1

(γ ∗
i − γi) = 0, 0 ≤ γi, γ

∗
i ≤ C, i = 1, . . . , l, (2.53)

so γ (∗) is a feasible solution of problem (2.9)–(2.11),

J (γ (∗)) = JT |t (α̃(∗)
T |t ) − 1

2
(ᾱ∗

t − ᾱt )
2K(xt , xt ) − ε(ᾱ∗

t + ᾱt ) + yt (ᾱ
∗
t − ᾱt )

− (ᾱ∗
t − ᾱt )

∑

i �=t

(α̃∗
i − α̃i )K(xt , xi)

−
∑

i∈SV t

(ν∗
i − νi)

(

yi + ε −
∑

j �=t

(α̃∗
j − α̃j )K(xi, xj )

)

− 1

2

∑

i,j∈SV t

(ν∗
i − νi)(ν

∗
j − νj )K(xi, xj )

+ (ᾱ∗
t − ᾱt )

∑

i∈SV t

(ν∗
i − νi)K(xi , xt ). (2.54)
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Because there exist 0 < α̃i < C or 0 < α̃∗
i < C, so the solution with respect to b of

problem (2.21)–(2.23) is unique, and we have

yi + ε −
∑

j �=t

(α̃∗
j − α̃j )K(xi, xj ) = b̃; (2.55)

furthermore, by

∑

i∈SVT

(ν∗
i − νi) =

∑

i �=t

(ν∗
i − νi) = (ᾱ∗

t − ᾱt ), (2.56)

we get

(ᾱ∗
t − ᾱt )

(
∑

i �=t

(α̃∗
i − α̃i )K(xt , xi) + b̃

)

= −J (γ (∗)) + JT |t (α̃(∗)
T |t ) − 1

2
(ᾱ∗

t − ᾱt )
2K(xt , xt ) − ε(ᾱ∗

t + ᾱt ) + yt (ᾱ
∗
t − ᾱt )

− 1

2

∑

i,j∈SV t

(ν∗
i − νi)(ν

∗
j − νj )K(xi, xj )

+ (ᾱ∗
t − ᾱt )

∑

i∈SV t

(ν∗
i − νi)K(xi, xt ). (2.57)

Next, we will construct a feasible solution of problem (2.21)–(2.23) from the
solution of problem (2.9)–(2.11) to get another equality.

Similarly, we construct β
(∗)
T |t = (β1, β

∗
1 , . . . , βt−1, β

∗
t−1, βt+1, β

∗
t+1, . . . , βl, β

∗
l )T

from the solution ᾱ(∗) of problem (2.9)–(2.11) as follows:

β
(∗)
i =

{

ᾱ
(∗)
i , if ᾱ

(∗)
i = 0 or ᾱ

(∗)
i = C,

ᾱ
(∗)
i + η

(∗)
i , if i ∈ SV\{t}, (2.58)

where SV = {i | 0 < ᾱ
(∗)
i < C, i = 1, . . . , l}, and η

(∗)
T |t = (η1, η

∗
1, . . . , ηt−1, η

∗
t−1,

ηt+1, η
∗
t+1, . . . , ηl, η

∗
l )

T ≥ 0 satisfies

∑

i∈SV\{t}
η∗

i = ᾱ∗
t = 0,

∑

i∈SV\{t}
ηi = ᾱt . (2.59)

It is easy to verify that

∑

i �=t

(β∗
i − βi) = 0, 0 ≤ βi,β

∗
i ≤ C, i = 1, . . . , t − 1, t + 1, . . . , l. (2.60)

So β
(∗)
T |t is a feasible solution of problem (2.21)–(2.23), and we have
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JT |t (β(∗)
T |t ) = J (ᾱ(∗)) + 1

2
(ᾱ∗

t − ᾱt )
2K(xt , xt ) + ε(ᾱ∗

t + ᾱt ) − yt (ᾱ
∗
t − ᾱt )

+ (ᾱ∗
t − ᾱt )

∑

i �=t

(ᾱ∗
i − ᾱi )K(xt , xi)

+
∑

i∈SV\{t}
(η∗

i − ηi)

(

yi + ε −
∑

j �=t

(ᾱ∗
j − ᾱj )K(xi, xj )

)

− 1

2

∑

i,j∈SV\{t}
(η∗

i − ηi)(η
∗
j − ηj )K(xi, xj )

+ (ᾱ∗
t − ᾱt )

∑

i∈SV\{t}
(η∗

i − ηi)K(xi, xt ). (2.61)

Because there exist 0 < ᾱi < C or 0 < ᾱ∗
i < C, so the solution with respect to b of

problem (2.9)–(2.11) is unique, and we have

yi + ε −
∑

j �=t

(ᾱ∗
j − ᾱj )K(xi, xj ) = b̄; (2.62)

furthermore,

−J (ᾱ(∗)) = −JT |t (β(∗)
T |t ) + 1

2
(ᾱ∗

t − ᾱt )
2K(xt , xt ) + ε(ᾱ∗

t + ᾱt ) − yt (ᾱ
∗
t − ᾱt )

+ (ᾱ∗
t − ᾱt )

(
∑

i �=t

(ᾱ∗
i − ᾱi )K(xt , xi) + b̄

)

− 1

2

∑

i,j∈SV\{t}
(η∗

i − ηi)(η
∗
j − ηj )K(xi, xj )

+ (ᾱ∗
t − ᾱt )

∑

i∈SV\{t}
(η∗

i − ηi)K(xi , xt ). (2.63)

Now, by the above two equalities (2.57) and (2.63), and the obvious facts
J (γ (∗)) ≤ J (ᾱ∗) and JT |t (β(∗)

T |t ) ≤ JT |t (α(∗)
T |t ), we get

(ᾱ∗
t − ᾱt )

(
∑

i �=t

(α̃∗
i − α̃i )K(xt , xi) + b̃

)

≥ (ᾱ∗
t − ᾱt )

(
∑

i �=t

(ᾱ∗
i − ᾱi )K(xt , xi) + b̄

)

− 1

2

∑

i,j∈SV t

(ν∗
i − νi)(ν

∗
j − νj )K(xi, xj )
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− 1

2

∑

i,j∈SV\{t}
(η∗

i − ηi)(η
∗
j − ηj )K(xi, xj )

+ (ᾱ∗
t − ᾱt )

∑

i∈SV t

(ν∗
i − νi)K(xi, xt )

+ (ᾱ∗
t − ᾱt )

∑

i∈SV\{t}
(η∗

i − ηi)K(xi, xt ). (2.64)

By (2.52) and (2.59),

(ᾱ∗
t − ᾱt )

∑

i∈SV t

(ν∗
i − νi)K(xi, xt ) ≥ 0, (2.65)

(ᾱ∗
t − ᾱt )

∑

i∈SV\{t}
(η∗

i − ηi)K(xi, xt ) ≥ 0. (2.66)

Reminding the definition (2.48), we have

1

2

∑

i,j∈SV t

(ν∗
i − νi)(ν

∗
j − νj )K(xi, xj ) ≤ 1

2
(ᾱ∗

t − ᾱt )
2R2, (2.67)

1

2

∑

i,j∈SV\{t}
(η∗

i − ηi)(η
∗
j − ηj )K(xi, xj ) ≤ 1

2
(ᾱ∗

t − ᾱt )
2R2, (2.68)

therefore

∑

i �=t

(α̃∗
i − α̃i )K(xt , xi) + b̃

≤
(

∑

i �=t

(ᾱ∗
i − ᾱi)K(xt , xi) + b̄

)

− (ᾱ∗
t − ᾱt )R

2. (2.69)

By Lemma 2.4, the fact ᾱt > 0 implies that fT |t (xt ) ≥ yt . Therefore

0 ≤
(

∑

i �=t

(α̃∗
i − α̃i )K(xt , xi) + b̃

)

− yt

≤
(

∑

i �=t

(ᾱ∗
i − ᾱi )K(xt , xi) + b̄

)

− (ᾱ∗
t − ᾱt )R

2 − yt

= f (xt ) − yt − (ᾱ∗
t − ᾱt )(R

2 + K(xt , xt )), (2.70)

that is,



26 2 LOO Bounds for Support Vector Machines

∣
∣
∣
∣

(
∑

i �=t

(α̃∗
i − α̃i )K(xt , xi) + b̃

)

− yt

∣
∣
∣
∣

≤ |f (xt ) − yt − (ᾱ∗
t − ᾱt )(R

2 + K(xt , xt ))| (2.71)

and because the function | · |ε is monotonically increasing, so the conclusion (2.49)
is true.

(iii) The case ᾱ∗
t > 0. Similar with the discussion of case (ii), the conclu-

sion (2.49) is true. �

2.2.3 A Variation of ε-Support Vector Regression

If we consider the decision function with the formulation f (x) = (w · x) in ε-SVR,
we will get the primal problem

min
w,ξ,ξ∗

1

2
‖w‖2 + C

l
∑

i=1

(ξi + ξ∗
i ), (2.72)

s.t. (w · xi ) − yi ≤ ε + ξi, i = 1, . . . , l, (2.73)

yi − (w · xi ) ≤ ε + ξ∗
i , i = 1, . . . , l, (2.74)

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l. (2.75)

The corresponding dual problem is

max
α

(∗)
T

JT (α
(∗)
T ) = −1

2

l
∑

i,j=1

(α∗
i − αi)(α

∗
j − αj )K(xi, xj )

− ε

l
∑

i=1

(α∗
i + αi) +

l
∑

i=1

yi(α
∗
i − αi), (2.76)

s.t. 0 ≤ αi,α
∗
i ≤ C, i = 1, . . . , l, (2.77)

where α
(∗)
T = (α1, α

∗
1 , . . . , αl, α

∗
l )T, and K(xi, xj ) = (xi · xj ) = (�(xi) · �(xj )) is

the kernel function.
Thus the algorithm can be established as follows:

Algorithm 2.6 (A variation of the standard ε-SVR)

(1) Given a training set T defined in (2.1);
(2) Select a kernel K(·, ·), and parameters C and ε;
(3) Solve problem (2.76)–(2.77) and get its solution ᾱ

(∗)
T = (ᾱ1, ᾱ

∗
1 , . . . , ᾱl , ᾱ

∗
l )T;
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(4) Construct the decision function

f (x) = fT (x) = (w · x) =
l

∑

i=1

(ᾱ∗
i − ᾱi )K(x, xi). (2.78)

Because the objective function of problem (2.72) is strictly convex with respect
to w, so the solution of problem (2.72)–(2.75) with respect to w is unique. Therefore
we have the following theorem.

Theorem 2.7 The decision function

f (x) = fT (x) = (w · x) =
l

∑

i=1

(ᾱ∗
i − ᾱi )K(x, xi)

obtained by Algorithm 2.6 is unique.

2.2.4 The Second LOO Bound

Now we derive an upper bound of the LOO error for Algorithm 2.6. Obviously,
its LOO bound is related with the training set T |t = T \{(xt , yt )}, t = 1, . . . , l. The
corresponding primal problem should be

min
wt ,ξ t ,ξ t∗

1

2
‖wt‖2 + C

l
∑

i=1

(ξ t
i + ξ∗t

i ), (2.79)

s.t. (wt · xi) − yi ≤ ε + ξ t
i , i = 1, . . . , t − 1, t + 1, . . . , l, (2.80)

yi − (wt · xi) ≤ ε + ξ∗t
i , i = 1, . . . , t − 1, t + 1, . . . , l, (2.81)

ξ t
i , ξ

∗t
i ≥ 0, i = 1, . . . , t − 1, t + 1, . . . , l. (2.82)

Its dual problem is

max
α

(∗)
T |t

JT |t (α(∗)
T |t ) � −1

2

∑

i,j �=t

(α∗
i − αi)(α

∗
j − αj )K(xi, xj )

− ε
∑

i �=t

(α∗
i + αi) +

∑

i �=t

yi(α
∗
i − αi), (2.83)

s.t. 0 ≤ αi,α
∗
i ≤ C, i = 1, . . . , t − 1, t + 1, . . . , l, (2.84)

where α
(∗)
T |t = (α1, α

∗
1 , . . . , αt−1, α

∗
t−1, αt+1, αt+1∗, . . . , αl, α

∗
l )T.

Now let us introduce two useful lemmas:
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Lemma 2.8 Suppose problem (2.76)–(2.77) has a solution ᾱ
(∗)
T = (ᾱ1, ᾱ

∗
1 , . . . ,

ᾱl, ᾱ
∗
l )T. Let fT (x) and fT |t (x) be the decision functions obtained by Algorithm 2.6

respectively from the training set T and T |t = T \{xt , yt }. Then for t = 1, . . . , l, we
have

(i) If ᾱt = ᾱ∗
t = 0, then |fT |t (xt ) − yt | = |f (xt ) − yt |;

(ii) If ᾱt > 0, then fT |t (xt ) ≥ yt ;
(iii) If ᾱ∗

t > 0, then fT |t (xt ) ≤ yt .

Proof It’s proof is similar with Lemma 2.4, and is omitted here. �

Lemma 2.9 Suppose problem (2.76)–(2.77) has a solution ᾱ
(∗)
T = (ᾱ1, ᾱ

∗
1 , . . . ,

ᾱl, ᾱ
∗
l )T. Let fT |t (x) be the decision function obtained by Algorithm 2.6 from the

training set T |t = T − {(xt , yt )}. Then for t = 1, . . . , l, we have

−(ᾱ∗
t − ᾱt )

∑

i �=t

(ᾱ∗
i − ᾱi )K(xi, xt ) ≥ −(ᾱ∗

t − ᾱt )fT |t (xt ). (2.85)

Proof Obviously problem (2.76)–(2.77) can be expressed as

max
α

(∗)
T

JT (α
(∗)
T ) = JT |t (α(∗)

T |t ) − (α∗
t − αt )

∑

i �=t

(α∗
i − αi)K(xi, xt )

− 1

2
(α∗

t − αt )
2K(xt , xt ) − ε(α∗

t + αt ) + yt (α
∗
t − αt ), (2.86)

s.t. 0 ≤ αi,α
∗
i ≤ C, i = 1, . . . , l, (2.87)

where JT |t (α(∗)
T |t ) is given by (2.83). Because ᾱ

(∗)
T = (ᾱ1, ᾱ

∗
1 , . . . , ᾱl , ᾱ

∗
l )T is the so-

lution of problem (2.76)–(2.77) or (2.86)–(2.87), then problem (2.86)–(2.87) can be
rewritten as

max
α

(∗)
T

JT |t (α(∗)
T |t ) = (α∗

t − αt )
∑

i �=t

(α∗
i − αi)K(xi, xt )

− 1

2
(α∗

t − αt)
2K(xt , xt ) − ε(α∗

t + αt ) + yt (α
∗
t − αt ), (2.88)

s.t. 0 ≤ αi,α
∗
i ≤ C, i = 1, . . . , t − 1, t + 1, . . . , l, (2.89)

α
(∗)
t = ᾱ

(∗)
t . (2.90)

Substitute the equality (2.90) into the objective function directly, the problem
(2.88)–(2.90) turns to be

max
α

(∗)
T |t

ĴT (α
(∗)
T |t ) � JT |t (α(∗)

T |t ) − (ᾱ∗
t − ᾱt )

∑

i �=t

(α∗
i − αi)K(xi, xt ), (2.91)

s.t. 0 ≤ αi,α
∗
i ≤ C, i = 1, . . . , t − 1, t + 1, . . . , l. (2.92)
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It is easy to see that

α̂
(∗)
T |t � (α̂1, α̂

∗
1 , . . . , α̂t−1, α̂

∗
t−1, α̂t+1, α̂

∗
t+1, . . . , α̂l , α̂

∗
l )T

= (ᾱ1, ᾱ
∗
1 , . . . , ᾱt−1, ᾱ

∗
t−1, ᾱt+1, ᾱ

∗
t+1, . . . , ᾱl , ᾱ

∗
l )T (2.93)

is an optimal solution of problem (2.91)–(2.92). Because α̃
(∗)
T |t is the optimal solution

of problem (2.83)–(2.84), and is also a feasible solution of problem (2.91)–(2.92),
we have

ĴT (α̂
(∗)
T |t ) ≥ ĴT (α̃

(∗)
T |t ). (2.94)

Therefore by (2.91) and (2.93),

JT |t (α̂(∗)
T |t ) − (ᾱ∗

t − ᾱt )
∑

i �=t

(α̂∗
i − α̂i )K(xi, xt )

≥ JT |t (α̃(∗)
T |t ) − (ᾱ∗

t − ᾱt )
∑

i �=t

(α̃∗
i − α̃i )K(xi, xt ), (2.95)

that is

−(ᾱ∗
t − ᾱt )

∑

i �=t

(ᾱ∗
i − ᾱi)K(xi, xt )

≥ JT |t (α̃(∗)
T |t ) − JT |t (α̂(∗)

T |t ) − (ᾱ∗
t − ᾱt )

∑

i �=t

(α̃∗
i − α̃i )K(xi, xt ). (2.96)

Because α̃
(∗)
T |t maximizes the objective function JT |t (α(∗)

T |t ), we have

JT |t (α̃(∗)
T |t ) − JT |t (α̂(∗)

T |t ) ≥ 0. (2.97)

So the conclusion comes from (2.96) and (2.97). �

Now we are in a position to show our main conclusion.

Theorem 2.10 Consider Algorithm 2.6. Suppose ᾱ
(∗)
T = (ᾱ1, ᾱ

∗
1 , . . . , ᾱl , ᾱ

∗
l )T is the

optimal solution of problem (2.76)–(2.77) and f (x) is the decision function. Then
the LOO error of this algorithm satisfies

RLOO(T ) ≤ 1

l

l
∑

t=1

|yt − f (xt ) + (ᾱ∗
t − ᾱt )K(xt , xt )|ε. (2.98)

Proof It is sufficient to prove that, for t = 1, . . . , l,

|yt − f (xt ) + (ᾱ∗
t − ᾱt )K(xt , xt )|ε ≥ |yt − fT |t (xt )|ε. (2.99)

We complete the proof by investigating three cases separately:
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(i) The case ᾱ∗
t > 0. In this case, we have ᾱt = 0, so (ᾱ∗

t − ᾱt ) > 0. Thus by
Lemma 2.9,

−
∑

i �=t

(ᾱ∗
i − ᾱi )K(xi, xt ) ≥ −fT |t (xt ). (2.100)

Furthermore, by Lemma 2.8, the fact ᾱ∗
t > 0 implies that fT |t (xt ) ≤ yt . Therefore,

inequality (2.100) leads to

yt −
∑

i �=t

(ᾱ∗
i − ᾱi )K(xi, xt ) ≥ yt − fT |t (xt ) ≥ 0, (2.101)

and because the function | · |ε is monotonically increasing, so the conclusion (2.99)
is true.

(ii) The case ᾱt > 0. In this case, we have ᾱ∗
t = 0, so −(ᾱ∗

t − ᾱt ) > 0. Thus, by
Lemma 2.9,

∑

i �=t

(ᾱ∗
i − ᾱi )K(xi, xt ) ≥ fT |t (xt ). (2.102)

Furthermore, by Lemma 2.8, the fact ᾱt > 0 implies that fT |t (xt ) ≥ yt . Therefore,
inequality (2.102) leads to

∑

i �=t

(ᾱ∗
i − ᾱi )K(xi, xt ) − yt ≥ fT |t (xt ) − yt ≥ 0, (2.103)

and because the function | · |ε is monotonically increasing, so the conclusion (2.99)
is true.

(iii) The validity of the conclusion (2.99) is obvious for the case ᾱ∗
t = ᾱt = 0 by

Lemma 2.9. �

2.2.5 Numerical Experiments

In this section, we will compare the proposed first LOO bound and second LOO
bound with the true corresponding LOO errors. Consider the real dataset—“Boston
Housing Data”, which is a standard regression testing problem. This dataset includes
506 instances, each instance has 13 attributes and a real-valued output.

Here we randomly choose 50 instances for training, and the Radial Basis Kernel

K(x,x′) = exp

(−‖x − x′‖2

σ 2

)

(2.104)

is applied, where σ is the kernel parameter. So the parameters to be chosen in Al-
gorithm 2.1 and Algorithm 2.6 include C, ε, σ , and in our experiments, we choose
these three parameters from the following sets:

C ∈ SC = {0.01,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,

1000,10000}, (2.105)
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Fig. 2.1 LOO errors and LOO bounds of Algorithm 2.1

ε ∈ Sε = {0.1,0.2,0.5,0.8,1,2,5,8,10,12,15,18,20,22,25}, (2.106)

σ ∈ Sσ = {0.001,0.002,0.005,0.008,0.01,0.02,0.05,0.08,0.1,0.2,0.5,1,2,

5,10}. (2.107)

However, we do not consider their all combinations. We will only perform three
experiments for each algorithm. In the first experiment, we fix ε = 10, σ = 0.01,
and choose C from SC . Applying these parameters in Algorithm 2.1 and Algo-
rithm 2.6, and using Definition 2.3, the two LOO errors are computed. On the other
hand, according to Theorem 2.5 and Theorem 2.10, the two corresponding LOO
error bounds are obtained. Both the LOO errors and the LOO bounds are showed
in Fig. 2.1(a) and Fig. 2.2(a), where “◦” denotes LOO error and “�” denotes the
corresponding LOO bound.

Similarly, in the second experiment, let C = 10, σ = 0.01, and choose ε from
Sε , the compared result is showed in Fig. 2.1(b) and Fig. 2.2(b). At last, in the
third experiment let C = 10, ε = 10, and choose σ from Sσ , the compared result is
showed in Fig. 2.1(c) and Fig. 2.2(c). Note that in order to be visible clearly, the
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Fig. 2.2 LOO errors and LOO bounds of Algorithm 2.6

values of LOO errors and LOO bounds in the figures are all be divided by 10, and
the values of [C,ε,σ ] are all changed to [log10(C), log10(ε), log10(σ )].

From Figs. 2.1 and 2.2, we see that our two LOO bounds are really upper bounds
of the corresponding true LOO errors, and more important, they almost have the
same trend with the corresponding true LOO errors when the parameters are chang-
ing. So in order to choose the optimal parameters in Algorithm 2.1 and Algo-
rithm 2.6, we only need to minimize the proposed LOO bound instead of LOO
error itself. Obviously it must cost much less time.

2.3 LOO Bounds for Support Vector Ordinal
Regression Machine

This section will focus on LOO bounds for support vector ordinal regression ma-
chine (SVORM) proposed in [177] which solves ordinal regression problem. Prob-
lem of ordinal regression arises in many fields, e.g., in information retrieval [109],
in econometric models [194], and in classical statistics [7]. It is complementary to
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classification problem and metric regression problem due to its discrete and ordered
outcome space. Several methods corresponding with SVM have been proposed to
solve this problem, such as in [110] which is based on a mapping from objects to
scalar utility values and enforces large margin rank boundaries. SVORM was con-
structed by applying the large margin principle used in SVM to the ordinal regres-
sion problem, and outperforms existing ordinal regression algorithms [177].

Selecting appropriate parameters in SVORM is also an important problem, tech-
niques such as cross-validation and LOO error can also be applied except for
their inefficient computation. Therefore, we will present two LOO error bounds for
SVORM. The first one corresponds to an upper bound for the C-SVC in [207] by
Vapnik and Chapelle, while the second one to an upper bound in [119] by Joachims.
Obviously, the derivation of our two bounds are more complicated because multi-
class classification, instead of 2-class classification, is solved by SVORM.

2.3.1 Support Vector Ordinal Regression Machine

Ordinal regression problem can be described as follows: Suppose a training set is
given by

T = {(xj
i , y

j
i )}j=1,...,k

i=1,...,lj
∈ (Rn × Y )l, (2.108)

where x
j
i ∈ Rn is the input, y

j
i = j ∈ Y = {1, . . . , k} is the output or the class label,

i = 1, . . . , lj is the index with each class and l = ∑k
j=1 lj is the number of sample

points. We need to find k−1 parallel hyperplanes represented by vector w and an or-
derly real sequence b1 ≤ · · · ≤ bk−1 defining the hyperplanes (w,b1), . . . , (w,bk−1)

such that the data are separated by dividing the space into equally ranked regions by
the decision function

f (x) = min
r∈{1,...,k}{r : (w · x) − br < 0}, (2.109)

where bk = +∞. In other words, all input points x satisfying br−1 < (w · x) < br

are assigned the rank r , where b0 = −∞.
Now we briefly introduce the fixed margin version of SVORM as a direct gener-

alization of C-SVM [206]. Figure 2.3 gives out the geometric interpretation of this
strategy.

For the training set (2.108), the input is mapped into a Hilbert space by a function
x = �(x) : x ∈ Rn → x ∈ H, where H is the Hilbert space. Then the primal problem
of SVORM is the following optimization problem:

min
w,b,ξ (∗)

1

2
‖w‖2 + C

k
∑

j=1

lj
∑

i=1

(ξ
j
i + ξ

∗j
i ), (2.110)

s.t. (w · �(x
j
i )) − bj ≤ −1 + ξ

j
i , j = 1, . . . , k, i = 1, . . . , lj , (2.111)
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Fig. 2.3 Fixed-margin policy for ordinal problem: the margin to be maximized is the one defined
by the closest (neighboring) pair of classes. Formally, let w,bj be the hyperplane separating the
two pairs of classes which are the closest among all the neighboring pairs of classes. Let w,bj be
scaled such the distance of the boundary points from the hyperplane is 1, i.e., the margin between
the classes j, j + 1 is 1/‖w‖. Thus, the fixed margin policy for ranking learning is to find the
direction w and the scalars b1, . . . , bk−1 such that ‖w‖ is minimized (i.e., the margin between
classes j, j + 1 is maximized) subject to the separability constraints (modulo margin errors in the
non-separable case)

(w · �(x
j
i )) − bj−1 ≥ 1 − ξ

∗j
i , j = 1, . . . , k, i = 1, . . . , lj , (2.112)

ξ
j
i ≥ 0, ξ

∗j
i ≥ 0, j = 1, . . . , k, i = 1, . . . , lj , (2.113)

where w ∈ H, b = (b1, . . . , bk−1)
T, b0 = −∞, bk = +∞, ξ(∗) = (ξ 1

1 , . . . , ξ1
l1
, . . . ,

ξ k
1 , . . . , ξ k

lk
, ξ∗1

1 , . . . , ξ∗1
l1

, . . . , ξ∗k
1 , . . . , ξ∗k

lk
) and the penalty parameter C > 0. The

dual of the problem (2.110)–(2.113) can be expressed as [42]:

min
α(∗)

1

2

∑

j,i

∑

j ′,i′
(α

∗j
i − α

j
i )(α

∗j ′
i′ − α

j ′
i′ )K(x

j
i , x

j ′
i′ ) −

∑

j,i

(α
j
i + α

∗j
i ), (2.114)

s.t.
lj

∑

i=1

α
j
i =

lj+1
∑

i=1

α
∗j+1
i , j = 1, . . . , k − 1, (2.115)

0 ≤ α
j
i , α

∗j
i ≤ C, j = 1, . . . , k, i = 1, . . . , lj , (2.116)

where α(∗) = (α1
1, . . . , α1

l1
, . . . , αk

1, . . . , αk
lk
, α∗1

1 , . . . , α∗1
l1

, . . . , α∗k
1 , . . . , α∗k

lk
)T, α∗1

i =
0, i = 1, . . . , l1, αk

i = 0, i = 1, . . . , lk .
For optimal solutions w and α(∗), the primal–dual relationship shows

w =
k

∑

j=1

lj
∑

i=1

(α
∗j
i − α

j
i )�(x

j
i ). (2.117)
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So in the decision function (2.109) the real value function g(x) is given by

g(x) = (w · x) =
k

∑

j=1

lj∑

i=1

(α
∗j
i − α

j
i )K(x

j
i , x), (2.118)

where K(x
j
i , x) = (�(x

j
i ) · �(x)) is the kernel function. The scalars b1, . . . , bk−1

can be obtained from the KKT conditions of primal problem (2.110)–(2.113).
This leads to the following algorithm:

Algorithm 2.11 (SVORM)

(1) Given a training set (2.108);
(2) Select a scalar C > 0 and a kernel function K(x,x′). Solve the dual problem

(2.114)–(2.116), and get its optimal solution α(∗) = (α1
1, . . . , α1

l1
, . . . , αk

1, . . . ,

αk
lk
, α∗1

1 , . . . , α∗1
l1

, . . . , α∗k
1 , . . . , α∗k

lk
)T;

(3) Compute

g(x) = (w · x) =
k

∑

j=1

lj
∑

i=1

(α
∗j
i − α

j
i )K(x

j
i , x); (2.119)

(4) For j = 1, . . . , k − 1, execute the following steps:
(4.1) Choose a component α

j
i ∈ (0,C) in α(∗). If we get such subscript i, set

bj = 1 +
k

∑

j ′=1

lj
′

∑

i′=1

(α
∗j ′
i′ − α

j ′
i′ )K(x

j ′
i′ , x

j
i );

otherwise go to step (4.2);
(4.2) Choose a component α

∗j+1
i ∈ (0,C) in α(∗). If we get such subscript i,

set

bj =
k

∑

j ′=1

lj
′

∑

i′=1

(ᾱ
∗j ′
i′ − ᾱ

j ′
i′ )K(x

j ′
i′ , x

j+1
i ) − 1;

otherwise go to step (4.3);
(4.3) Set

bj = 1

2
(bdn

j + b
up
j ),

where

bdn
j = max

{

max
i∈I

j
1

(g(x
j
i ) + 1),max

i∈I
j
4

(g(x
j+1
i ) − 1)

}

,

b
up
j = min

{

min
i∈I

j
3

(g(x
j
i ) + 1),min

i∈I
j
2

(g(x
j+1
i ) − 1)

}

,
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and

I
j

1 = {i ∈ {1, . . . , lj } | αj
i = 0}, I

j

2 = {i ∈ {1, . . . , lj+1} | α∗j+1
i = 0},

I
j

3 = {i ∈ {1, . . . , lj } | αj
i = C},

I
j

4 = {i ∈ {1, . . . , lj+1} | α∗j+1
i = C};

(5) If there exists j ∈ {1, . . . , k} such that bj ≤ bj−1, stop or go to step (2);
(6) Define bk = +∞, construct the decision function

f (x) = min
r∈{1,...,k}{r : g(x) − br < 0}. (2.120)

In addition, in order to derive the LOO error bounds for SVORM, we firstly give
the definitions of its support vector and its LOO error in the LOO procedure.

Definition 2.12 (Support vector) Suppose that α(∗) is the optimal solution of the
dual problem (2.114)–(2.116) for the training set T (2.108). Then

(i) The input x
j
i is called non-margin support vector about α = (α1

1, . . . , α1
l1
, . . . ,

αk
1, . . . , αk

lk
)T, if the corresponding component α

j
i of α(∗) is equal to C. For

j = 1, . . . , k define the index set

N(α, j) = {(j, i) | i = 1, . . . , lj , α
j
i = C}. (2.121)

The input x
j
i is called non-margin support vector about α∗ = (α∗1

1 , . . . , α∗1
l1

,

. . . , α∗k
1 , . . . , α∗k

lk
)T, if the corresponding component α

∗j
i of α(∗) is equal to C.

For j = 1, . . . , k define the index set

N(α∗, j) = {(j, i) | i = 1, . . . , lj , α
∗j
i = C}. (2.122)

The input x
j
i is called non-margin support vector about α(∗), if x

j
i is either

non-margin support vector about α or non-margin support vector about α∗.
For j = 1, . . . , k define the index set

N(α(∗), j) = N(α, j) ∪ N(α∗, j). (2.123)

(ii) The input x
j
i is called margin support vector about α = (α1

1, . . . , α1
l1
, . . . ,

αk
1, . . . , αk

lk
)T, if the corresponding component α

j
i of α(∗) is in the interval

(0,C) and the component α
∗j
i of α(∗) is not equal to C. For j = 1, . . . , l define

the index set

M(α, j) = {(j, i) | i = 1, . . . , lj , α
j
i ∈ (0,C)} \ N(α∗, j). (2.124)

The input x
j
i is called margin support vector about α∗ = (α∗1

1 , . . . , α∗1
l1

, . . . ,

α∗k
1 , . . . , α∗k

lk
)T, if the corresponding component α

∗j
i of α(∗) is in the interval
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(0,C) and the component α
j
i of α(∗) is not equal to C. For j = 1, . . . , l define

the index set

M(α∗, j) = {(j, i) | i = 1, . . . , lj , α
∗j
i ∈ (0,C)} \ N(α, j). (2.125)

The input x
j
i is called margin support vector about α(∗), if x

j
i is either margin

support vector about α or margin support vector about α∗. For j = 1, . . . , k

define the index set

M(α(∗), j) = M(α, j) ∪ M(α∗, j). (2.126)

(iii) The input xj
i is called support vector about α = (α1

1, . . . , α
1
l1
, . . . , αk

1, . . . , αk
lk
)T,

if x
j
i is either non-margin support vector about α or margin support vector

about α. For j = 1, . . . , k define the index set

V (α, j) = M(α, j) ∪ N(α, j). (2.127)

The input x
j
i is called support vector about α∗ = (α∗1

1 , . . . , α∗1
l1

, . . . , α∗k
1 ,

. . . , α∗k
lk

)T, if x
j
i is either non-margin support vector about α∗ or margin sup-

port vector about α∗. For j = 1, . . . , k define the index set

V (α∗, j) = M(α∗, j) ∪ N(α∗, j). (2.128)

The input x
j
i is called support vector about α(∗), if x

j
i is either non-margin

support vector about α(∗) or margin support vector about α(∗). For j = 1, . . . , k

define the index set

V (α(∗), j) = V (α, j) ∪ V (α∗, j). (2.129)

Definition 2.13 (LOO error) Consider the training set T
q
p = T \ {(xq

p, y
q
p)}, q =

1, . . . , k, p = 1, . . . , lq , where T is given by (2.108). Suppose that fT
q
p
(x) is the

decision function obtained by executing Algorithm 2.11 for T
q
p , then the leave-one-

out error, or LOO error for short, is defined as

RLOO(T ) = 1

l

k
∑

q=1

lq
∑

p=1

c(x
q
p, y

q
p, fT

q
p
(x

q
p)), (2.130)

where c is the 0–1 loss function

c(x, y, f (x)) = ĉ(y − f (x)),

with

ĉ(ξ ) =
{

0, if ξ = 0,

1, otherwise.
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From Definition 2.13 we can see that the computation of LOO error for
SVORM is time-consuming and inefficient. So researching for LOO error bounds
for SVORM will be necessary.

2.3.2 The First LOO Bound

In this section, we study the derivation of our first LOO bound for Algorithm 2.11
by the concept of a span.

Definition and Existence of Span

We now define an S-span of a margin support vector about α and α∗ respectively.

Definition 2.14 (S-span about α) For any margin support vector x
q
p about α, define

its S-span by

S2(q,p) := min{‖xq
p − x̃q

p‖2|x̃q
p ∈ �

q
p}, (2.131)

where �
q
p is

�
q
p :=

{
∑

i∈M
q
p(α,q)

λ
q
i xq

i +
∑

i∈M
q
p(α∗,q+1)

λ
q+1
i xq+1

i

}

, (2.132)

with the following conditions:

0 ≤ α
q
i + λ

q
i α

q
p ≤ C, 0 ≤ α

∗q
i + λ

q
i α

∗q
p ≤ C, (2.133)

0 ≤ α
q+1
i − λ

q+1
i α

∗q
p ≤ C, 0 ≤ α

∗q+1
i − λ

q+1
i α

q
p ≤ C, (2.134)

∑

i∈M
q
p(α,q)

λ
q
i +

∑

i∈M
q
p(α∗,q+1)

λ
q+1
i = 1, λ

q
p = −1, (2.135)

and

M
q
p(α, j) = M(α, j)\{(q,p)}, M

q
p(α∗, j) = M(α∗, j)\{(q,p)}. (2.136)

Definition 2.15 (S-span about α∗) For any margin support vector x
q
p about α∗, de-

fine its S-span by

S∗2(q,p) := min{‖xq
p − x̂q

p‖2|x̂q
p ∈ �

∗q
p }, (2.137)

where �
∗q
p is

�
∗q
p :=

{
∑

i∈M
q
p(α,q−1)

λ
q−1
i xq−1

i +
∑

i∈M
q
p(α∗,q)

λ
q
i xq

i

}

, (2.138)
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with the following conditions:

0 ≤ α
q−1
i − λ

q−1
i α

∗q
p ≤ C, 0 ≤ α

∗q−1
i − λ

q−1
i α

q
p ≤ C, (2.139)

0 ≤ α
q
i + λ

q
i α

q
p ≤ C, 0 ≤ α

∗q
i + λ

q
i α

∗q
p ≤ C, (2.140)

∑

i∈M
q
p(α,q−1)

λ
q−1
i +

∑

i∈M
q
p(α∗,q)

λ
q
i = 1, λ

q
p = −1, (2.141)

and

M
q
p(α, j) = M(α, j)\{(q,p)}, M

q
p(α∗, j) = M(α∗, j)\{(q,p)}. (2.142)

For the S-span S2(q,p) and S∗2(q,p) defined above, it is necessary to show
that the set �

q
p and �

∗q
p are non-empty. To this end, we make use of the following

lemma.

Lemma 2.16 The both sets �
q
p and �

∗q
p defined by (2.132) and (2.138) are non-

empty.

The proof is omitted here, which can be referred to [230] and [231].
According to the above Definition 2.14 and Definition 2.15, we have the follow-

ing two lemmas.

Lemma 2.17 Suppose that α(∗) is an optimal solution of the dual problem (2.114)–
(2.116) for the training set T (2.108) and x

q
p is a margin support vector about α.

Then we can construct a feasible solution α̃(∗) of the dual problem (2.114)–(2.116)
for the training set T

q
p = T \ {(xq

p, y
q
p)} by

α̃
q
i = α

q
i + λ

q
i α

q
p, α̃

∗q
i = α

∗q
i + λ

q
i α

∗q
p , i ∈ M

q
p(α,q), (2.143)

α̃
q+1
i = α

q+1
i − λ

q+1
i α

∗q
p , α̃

∗q+1
i = α

∗q+1
i − λ

q+1
i α

q
p,

i ∈ M
q
p(α∗, q + 1), (2.144)

α̃
q
i = α

q
i , α̃

∗q
i = α

∗q
i , i /∈ M

q
p(α,q), (2.145)

α̃
q+1
i = α

q+1
i , α̃

∗q+1
i = α

∗q+1
i , i /∈ M

q
p(α∗, q + 1), (2.146)

α̃
j
i = α

j
i , α̃

∗j
i = α

∗j
i , j = 1, . . . , q − 1, q + 2, . . . , k, i = 1, . . . , lj , (2.147)

and
∑

i∈M
q
p(α,q)

λ
q
i xq

i +
∑

i∈M
q
p(α∗,q+1)

λ
q+1
i xq+1

i ∈ �
q
p.

The proof is omitted here, which can be referred to [230] and [231].
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Lemma 2.18 Suppose that α(∗) is an optimal solution of the dual problem (2.114)–
(2.116) for the training set T (2.108) and x

q
p is a margin support vector about α∗.

Then we can construct a feasible solution α̃(∗) of the dual problem (2.114)–(2.116)
for the training set T

q
p = T \ {(xq

p, y
q
p)} by

α̂
q−1
i = α

q−1
i − λ

q−1
i α

∗q
p , α̂

∗q−1
i = α

∗q−1
i − λ

q−1
i α

q
p,

i ∈ M
q
p(α,q − 1), (2.148)

α̂
q
i = α

q
i + λ

q
i α

q
p, α̂

∗q
i = α

∗q
i + λ

q
i α

∗q
p , i ∈ M

q
p(α∗, q), (2.149)

α̂
q−1
i = α

q−1
i , α̂

∗q−1
i = α

∗q−1
i , i /∈ M

q
p(α,q − 1), (2.150)

α̂
q
i = α

q
i , α̂

∗q
i = α

∗q
i , i /∈ M

q
p(α∗, q), (2.151)

α̂
j
i = α

j
i , α̂

∗j
i = α

∗j
i , j = 1, . . . , q − 2, q + 1, . . . , k, i = 1, . . . , lj , (2.152)

and
∑

i∈M
q
p(α,q−1)

λ
q−1
i xq−1

i +
∑

i∈M
q
p(α∗,q)

λ
q
i xq

i ∈ �
∗q
p .

The proof is omitted here, which can be referred to [230] and [231].

The Bound

Now we are in a position to introduce our first LOO error bound:

Lemma 2.19 Suppose that α(∗) is the optimal solution the dual problem (2.114)–
(2.116) for the training set T (2.108) and fT

q
p

is the decision function obtained by

Algorithm 2.11 for the training set T
q
p = T \{(xq

p, y
q
p)}. For a margin support vector

x
q
p about α(∗), we have

(1) If x
q
p is a margin support vector about α and is recognized incorrectly by the

decision function f
q
p , then the following inequality holds

(α
∗q
p − α

q
p)2S2(p, q) ≥ min

(

C,
1

D2
q,q+1

)

, (2.153)

where Dq,q+1 is diameter of the smallest sphere containing the qth class train-
ing points and the (q + 1)th class training points in the training set T (2.108),
and we have the following expression

Dq,q+1 = min
Dq,q+1,c

{

Dq,q+1|‖xj
i − c‖2 ≤ D2

q,q+1

4
, j = q, q + 1, i = 1, . . . , lj

}

;
(2.154)
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(2) If x
q
p is a margin support vector about α∗ and is recognized incorrectly by the

decision function f
q
p , then the following inequality holds

(α
∗q
p − α

q
p)2S∗2(p, q) ≥ min

(

C,
1

D2
q−1,q

)

, (2.155)

where Dq−1,q is diameter of the smallest sphere containing the (q − 1)th class
training points and the qth class training points in the training set T (2.108),
and we have the following expression

Dq−1,q = min
Dq−1,q ,c

{

Dq−1,q |‖xj
i − c‖2 ≤ D2

q−1,q

4
,

j = q − 1, q, i = 1, . . . , lj
}

. (2.156)

The proof is omitted here, which can be referred to [230] and [231].
The above lemma leads to the following theorem:

Theorem 2.20 For Algorithm 2.11, the bound of LOO error is estimated by

RLOO(T ) ≤ 1

l

k
∑

q=1

lq∑

p=1

[∣
∣
∣
∣

{

(q,p) : (α∗q
p − α

q
p)2S2(q,p) ≥ min

(

C,
1

D2
q,q+1

)

or

(α
∗q
p − α

q
p)2S∗2(q,p) ≥ min

(

C,
1

D2
q−1,q

)}∣
∣
∣
∣
+ |N(α(∗), q)|

]

,

(2.157)

where Dq,q+1 and Dq−1,q are given by (2.154) and (2.156) respectively, N(α(∗), q)

is defined by (2.123) and | · | is the number of elements in the set.

Proof Considering the Definition 2.13 of LOO error. Denote the number of error
made by the LOO procedure as L(T )

L(T ) =
k

∑

q=1

lq
∑

p=1

c(x
q
p, y

q
p, fT

q
p
(x

q
p)) =

k
∑

q=1

lq
∑

p=1

I(wq
p·xq

p)−bq>0 or (wq
p·xq

p)−bq−1<0,

(2.158)
where

IP =
{

1, P is true;
0, P is false.

In order to estimate L(T ), define two index sets

I
q

LOO � {(q,p) : (wq
p · xq

p) − bq > 0 or (wq
p · xq

p) − bq−1 < 0} ∪ N(α(∗), q),

Î
q

LOO � {(q,p) : (wq
p · xq

p) − bq > −1 or (wq
p · xq

p) − bq−1 < 1} ∪ N(α(∗), q).
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It is easy to see that

L(T ) = |Iq

LOO| ≤ |Î q

LOO|. (2.159)

By the Lemma 2.19, we have

|Î q

LOO| =
∣
∣
∣
∣

{

(q,p) : (α∗q
p − α

q
p)2S2(q,p) ≥ min

(

C,
1

D2
q,q+1

)

or (α
∗q
p − α

q
p)2S2(q,p) ≥ min

(

C,
1

D2
q−1,q

)}∣
∣
∣
∣
+ |N(α(∗), q)|. (2.160)

So the LOO error bound (2.157) is obtained from (2.159) and (2.160). �

2.3.3 The Second LOO Bound

In this section, we study the derivation our second LOO error bound.
Remind that the dual problem for the training set T (2.108) is presented in

(2.114)–(2.116). For the training set T
q
p = T/{(xq

p, y
q
p)}, the dual problem is

max
α

(∗)q
p

W
q
p (α(∗))

=
∑

(j,i)∈I\{(q,p)}
(α

j
i + α

∗j
i )

− 1

2

∑

(j,i)∈I\{(q,p)}

∑

(j ′,i′)∈I\{(q,p)}
(α

∗j
i − α

j
i )(α

∗j ′
i′ − α

j ′
i′ )K(x

j
i , x

j ′
i′ )

s.t.
lj∑

i=1

α
j
i =

lj+1
∑

i=1

α
∗j+1
i , j = 1, . . . , k − 1, (j, i) �= (q,p), (2.161)

0 ≤ α
j
i , α

∗j
i ≤ C, (j, i) ∈ I \ {(q,p)}, (2.162)

where α
(∗)q
p = (α

qT
p ,α

∗qT
p )T, α

q
p = (α1

1, . . . , α1
l1
, . . . , α

q

1 , . . . , α
q

p−1, α
q

p+1, . . . , α
q
lq ,

. . . , αk
1, . . . , αk

lk
)T, α

∗q
p = (α∗1

1 , . . . , α∗1
l1

, . . . , α
q

1 , . . . , α
q

p−1, α
q

p+1, . . . , α
q
lq , . . . ,

α∗k
1 , . . . , α∗k

lk
)T; α∗1

i = 0, i = 1,2, . . . , l1, αk
i = 0, i = 1,2, . . . , lk , I = {(j, i) | j =

1, . . . , k, i = 1, . . . , lj }.
In order to derive the second LOO error bound, we give the following lemma

firstly.

Lemma 2.21 Suppose that α(∗) is the optimal solution of the dual problem (2.114)–
(2.116) for the training set T (2.108), and fT

q
p

is the decision function obtained by
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Algorithm 2.11 for the training set T
q
p = T \ {(xq

p, y
q
p)}. For the components of

optimal solution α(∗): α
q
i , α

∗q
i , i = 1, . . . , lq ,

(1) If in {αq
i | i = 1, . . . , lq}, there exists some α

q
i ∈ (0,C) and x

q
p is recognized

incorrectly by the decision function f
q
p , then the following inequality holds

[
∑

j,i

(α
∗j
i − α

j
i )K(x

q
p, x

j
i ) − bq

]

− (α
∗q
p − α

q
p)(K(x

q
p, x

q
p) + R2) ≥ 0, (2.163)

where R2 = max{K(x
j
i , x

j
i ) | j = 1, . . . , k, i = 1, . . . , lj }.

(2) If in {α∗q
i | i = 1, . . . , lq}, there exists α

∗q
i ∈ (0,C) and x

q
p is recognized incor-

rectly by the decision function f
q
p , then the following inequality holds

−
[
∑

j,i

(α
∗j
i − α

j
i )K(x

q
p, x

j
i ) − bq−1

]

+ (α
∗q
p − α

q
p)(K(x

q
p, x

q
p) + R2) ≥ 0,

(2.164)

where R2 = max{K(x
j
i , x

j
i ) | j = 1, . . . , k, i = 1, . . . , lj }.

The proof is omitted here, which can be referred to [230] and [231].
The above lemma leads to the following theorem for Algorithm 2.11:

Theorem 2.22 For Algorithm 2.11 the bound of LOO error is estimated by

RLOO(T ) ≤ 1

l

{
∑

q∈I1

lq
∑

p=1

∣
∣
∣
∣

[
∑

j,i

(α
∗j
i − α

j
i )K(x

q
p, x

j
i ) − bq

]

− (α
∗q
p − α

q
p)(K(x

q
p, x

q
p) + R2) ≥ 0

or −
[
∑

j,i

(α
∗j
i − α

j
i )K(x

q
p, x

j
i ) − bq−1

]

+ (α
∗q
p − α

q
p)(K(x

q
p, x

q
p) + R2) ≥ 0

∣
∣
∣
∣
+

∑

q∈I2

lq
∑

p=1

|N(α(∗), q)|
}

,

(2.165)

where

I1 = {q | in (α
q

1 , . . . , α
q
lq ), (α

∗q+1
1 , . . . , α

∗q+1
lq+1 ) there exists α

q
i ∈ (0,C)

or α
∗q+1
i ∈ (0,C)},

I2 = {q | in (α
q

1 , . . . , α
q
lq ), (α

∗q+1
1 , . . . , α

∗q+1
lq+1 ) there exist not α

q
i ∈ (0,C)

and α
∗q+1
i ∈ (0,C)},

R2 = max{K(x
j
i , x

j
i ) | j = 1, . . . , k, i = 1, . . . , lj },

N(α(∗), q) is defined by (2.123) and | · | is the number of elements in the set.
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Proof Assume that the point x
q
p belongs to the class q ∈ I1 = {q | in (α

q

1 , . . . , α
q
lq ),

(α
∗q+1
1 , . . . , α

∗q+1
lq+1 ) there exists α

q
i ∈ (0,C) or α

∗q+1
i ∈ (0,C)}. Then according to

Lemma 2.21, when the LOO error procedure commits an error at the point x
q
p , the

following one of two inequalities holds

[
∑

j,i

(α
∗j
i − α

j
i )K(x

q
p, x

j
i ) − bq

]

− (α
∗q
p − α

q
p)(K(x

q
p, x

q
p) + R2) ≥ 0, (2.166)

−
[
∑

j,i

(α
∗j
i − α

j
i )K(x

q
p, x

j
i ) − bq−1

]

+ (α
∗q
p − α

q
p)(K(x

q
p, x

q
p) + R2) ≥ 0,

(2.167)

where R2 = max{K(x
j
i , x

j
i ) | j = 1, . . . , k, i = 1, . . . , lj }.

If being left out the point x
q
p belongs to the class q ∈ I2 = {q | in (α

q

1 , . . . , α
q
lq ),

(α
∗q+1
1 , . . . , α

∗q+1
lq+1 ) there does not exist α

q
i ∈ (0,C) and α

∗q+1
i ∈ (0,C)}, then the

number of error made by the LOO error procedure is |N(α(∗), q)|, where N(α(∗), q)

is defined by (2.123) and | · | is the number of elements in the set.
So we get the LOO error bound (2.165) for Algorithm 2.11. �

2.3.4 Numerical Experiments

In this section, we describe the performance of the two LOO error bounds with four
ordinal regression datasets [10]. The datasets are (1) “Employee Rejection\Accept-
ance” (ERA), (2) “Employee Selection” (ESL), (3) “Lecturers Evaluation” (LEV),
(4) “Social Workers Decisions” (SWD). A summary of the characteristics of these
datasets is presented in Table 2.1.

In our experiment, because the cost of computing LOO error is very high, we
select randomly only 60 training points from each dataset and merge these 4 multi-
class problems into 3-class problems. For each problem, we choose randomly 20
points from each class and get training set expressed as

T = {(x1
1 , y1

1), . . . , (x1
20, y

1
20), (x

2
1 , y2

1), . . . , (x2
20, y

2
20), (x

3
1 , y3

1), . . . , (x3
20, y

3
20)},
(2.168)

where x
j
i is the input, yj

i = j is the output. In this way, corresponding to ERA, ESL,
LEV and SWD, we obtain the following training sets

TERA, TESL, TLEV and TSWD, (2.169)

which are tested in our experiments.
Gaussian kernel function

K(x,x′) = exp

(−‖x − x′‖2

σ 2

)

(2.170)
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Table 2.1 Characteristics of
the selected datasets from the
ordinal datasets

Dataset Features Classes Patterns

ERA 4 9 1000

ESL 4 9 488

LEV 4 5 1000

SWD 10 4 1000

is selected in our experiment, while the parameters C and σ are selected respectively
from the following two sequences

C = logspace(−2,4,12), (2.171)

and

σ = logspace(−4,4,10), (2.172)

where logspace is a logarithmically spaced vector in MATLAB. More precisely,
firstly, we find the optimal parameters C∗, σ ∗2 in (2.171) and (2.172) to our four
training sets TERA, TESL, TLEV and TSWD by minimizing the LOO error respectively.
Secondly, either C or σ is fixed to be its optimal value obtained, while the other one
takes the values in (2.171) or (2.172). Figure 2.4 shows the performance of two LOO
error bounds and LOO error itself. For example, the top-left figure corresponds to
the training set TERA with σ = σ ∗ = 10−4, and C take the value in (2.171). “LOO
error” stands for the actual LOO error, “First LOO error bound” is the bound given
by Theorem 2.20 and “Second LOO error bound” by Theorem 2.22.

By and large, it can be observed from Fig. 2.4 that changing trend of both LOO
error bounds is almost consistent with that of LOO error itself. Concretely, when the
penalty parameter C is fixed and the kernel parameter σ 2 is changed, our proposed
both LOO error bounds are good performance. In other words, the lowest points of
both LOO error bounds are close to those of LOO error, some difference of only
one step length. So it is reasonable that the optimal parameters can be selected by
minimizing these LOO error bounds instead of LOO error itself. Obviously, this
strategy is highly efficient.

In this section, we derive two LOO error bounds for SVORM. The second LOO
error bound is more effective than the first LOO error bound, because if we will
compute the first LOO error bound, we must solve some quadratic programming
problems, whereas the second LOO error bound doesn’t need. Experiments demon-
strate that these bounds are valid and it is hopeful to get the optimal parameter by
minimizing the proposed bounds instead of the LOO error itself. In the further, we
improve our proposed both LOO error bounds by smart way handling non-margin
support vectors, due to the assumption that all non-margin support vectors are leave-
one-out errors. In addition, an interesting study is to apply the proposed bounds on
feature selection.
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Fig. 2.4 Results of two LOO error bounds and LOO error



Chapter 3
Support Vector Machines for Multi-class
Classification Problems

Multi-class classification refers to constructing a decision function f (x) defined
from an input space Rn onto an unordered set of classes Y = {�1,�2, . . . ,�K }
based on independently and identically distributed (i.i.d) training set

T = {(x1, y1), . . . , (xl, yl)} ∈ (Rn × Y )l. (3.1)

Currently, there are roughly two types of SVC algorithms to solve the multi-class
classification problems. One is the “decomposition-reconstruction” architecture ap-
proach which mainly makes direct use of binary SVC to tackle the tasks of multi-
class classification, such as the “one versus the rest” method [24], the “one ver-
sus one” method [106, 130], the “error-correcting output code” method [3, 61],
and the “one versus one versus rest” method [8, 249]. The other is the “all to-
gether” approach [49, 95, 136, 215], in other words, it solves the multi-class clas-
sification through only one optimization formulation. In this chapter, we first intro-
duce two algorithms which follow the idea of [8, 249], and then construct another
multi-class classification algorithm which is based on support vector ordinal regres-
sion [168, 202, 232].

3.1 K-Class Linear Programming Support Vector Classification
Regression Machine (K-LPSVCR)

First we briefly review SVC and SVR in linear programming formulation.
Consider a binary classification problem with a training set

T = {(x1, y1), . . . , (xl, yl)} ∈ (Rn × Y )l, (3.2)

where xi ∈ Rn, yi ∈ Y = {−1,1}, i = 1, . . . , l. The linear programming formulation
of SVC is given as follows:

Y. Shi et al., Optimization Based Data Mining: Theory and Applications,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-0-85729-504-0_3, © Springer-Verlag London Limited 2011
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min
α,α∗,ξ,b

l
∑

i=1

(αi + α∗
i ) + C

l
∑

i=1

ξi, (3.3)

s.t. yi

(
l

∑

j=1

(αj − α∗
j )K(xj , xi) + b

)

≥ 1 − ξi, i = 1, . . . , l, (3.4)

αi,α
∗
i , ξi ≥ 0, i = 1, . . . , l, (3.5)

where the constant C > 0 and the kernel function K(x,x′) are chosen prior. Sup-
pose (ᾱ, ᾱ∗, ξ̄ , b̄) is the optimal solution of problem (3.3)–(3.5), then the decision
function is constructed as

f (x) = sgn

(
l

∑

i=1

(ᾱi − ᾱ∗
i )K(xi, x) + b̄

)

. (3.6)

Consider a regression problem with a training set

T = {(x1, y1), . . . , (xl, yl)} ∈ (Rn × Y )
l
, (3.7)

where xi ∈ Rn, yi ∈ Y = R, i = 1, . . . , l. By using the ε-insensitive loss function

|f (x) − y|ε = max{0, |y − f (x)| − ε}, (3.8)

the linear programming formulation of SVR is given as follows:

min
β,β∗,η,η∗,b

l
∑

i=1

(βi + β∗
i ) + D

l
∑

i=1

(ηi + η∗
i ), (3.9)

s.t.
l

∑

j=1

(βj − β∗
j )K(xj , xi) + b − yi ≤ ε + ηi, i = 1, . . . , l, (3.10)

yi −
l∑

j=1

(βj − β∗
j )K(xj , xi) − b ≤ ε + η∗

i , i = 1, . . . , l, (3.11)

βi,β
∗
i , ηi, η

∗
i ≥ 0, i = 1, . . . , l, (3.12)

where D > 0, ε > 0 and the kernel function K(x,x ′) are chosen prior. Suppose
(β̄, β̄∗, η̄, η̄∗, b̄) is the optimal solution of problem (3.9)–(3.12), then the decision
function is constructed as

f (x) =
l

∑

i=1

(β̄i − β̄∗
i )K(xi, x) + b̄. (3.13)



3.1 K-LPSVCR 49

3.1.1 K-LPSVCR

Given the training set T defined by (3.1). For an arbitrary pair (�j ,�k) ∈ (Y × Y )

of classes with j < k, we will construct a decision function f�jk
(x) which divides

the inputs into three classes. In other words, it separates the two classes �j and �k

as well as the remaining classes. The corresponding training set is denoted as

T̃ = {(x̃1, ỹ1), . . . , (x̃l1 , ỹl1), (x̃l1+1, ỹl1+1), . . . ,

(x̃l1+l2 , ỹl1+l2), (x̃l1+l2+1, ỹl1+l2+1), . . . , (x̃l , ỹl)}, (3.14)

which is obtained from T in (3.1) by the following way:

{x̃1, . . . , x̃l1} = {xi | yi = �j },
{x̃l1+1, . . . , x̃l1+l2} = {xi | yi = �k}

(3.15)

and

ỹi =

⎧

⎪⎨

⎪⎩

+1, i = 1, . . . , l1

−1, i = l1 + 1, . . . , l1 + l2,

0, i = l1 + l2 + 1, . . . , l.

(3.16)

For C > 0, D > 0, ε > 0 and K(·, ·) chosen prior, combining SVC and SVR in
linear programming formulations, we thus obtain a linear programming problem

min
α,α∗,ξ,η,η∗,b

l
∑

i=1

(αi + α∗
i ) + C

l1+l2∑

i=1

ξi + D

l
∑

i=l1+l2+1

(ηi + η∗
i ), (3.17)

s.t. ỹi

(
l

∑

j=1

(αj − α∗
j )K(x̃j , x̃i ) + b

)

≥ 1 − ξi,

i = 1, . . . , l1 + l2, (3.18)

l
∑

j=1

(αj − α∗
j )K(x̃j , x̃i ) + b ≤ ε + ηi,

i = l1 + l2 + 1, . . . , l, (3.19)

l
∑

j=1

(αj − α∗
j )K(x̃j , x̃i ) + b ≥ −ε − η∗

i ,

i = l1 + l2 + 1, . . . , l, (3.20)

α,α∗, ξ, η, η∗ ≥ 0. (3.21)
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Suppose (ᾱ, ᾱ∗, ξ̄ , η̄, η̄∗, b̄) is an optimal solution of problem (3.17)–(3.21), the
decision function can be expressed as

f�j,k
(x) =

⎧

⎪⎪⎨

⎪⎪⎩

+1, if
∑l

i=1(ᾱi − ᾱ∗
i )K(x̃i , x) + b̄ ≥ ε;

−1, if
∑l

i=1(ᾱi − ᾱ∗
i )K(x̃i , x) + b̄ ≤ −ε;

0, otherwise.

(3.22)

Thus, in a K-class problem, for each pair (�j ,�k), we have a classifier (3.22) to
separate them as well as the remaining classes. So we have K(K − 1)/2 classifiers
in total. Hence, for a new input x, K(K − 1)/2 outputs are obtained. Now we give
the algorithm as follows

Algorithm 3.1 (K-Linear Programming Support Vector Classification Regression
(K-LPSVCR))

(1) Given the training set T (3.1), construct the corresponding training set T̃

as (3.14);
(2) Select appropriate kernel K(x,x′) and parameters C > 0, D > 0, ε > 0;
(3) Solve problem (3.17)–(3.21), get the solution (ᾱ, ᾱ∗, ξ̄ , η̄, η̄∗, b̄) and construct

decision function as (3.22);
(4) For a new input x, translate its K(K − 1)/2 outputs as follows:

(4.1) When f�j,k
(x) = +1, a positive vote is added to �j , and no votes are

added on the other classes;
(4.2) When f�j,k

(x) = −1, a positive vote is added to �k , and no votes are
added on the other classes;

(4.3) When f�j,k
(x) = 0 a negative vote is added to both �j and �k , and no

votes are added to the other classes.
(5) After translating all of the K(K − 1)/2 outputs, we get the total votes of each

class by adding the positive and negative votes on this class. Finally, x will be
assigned to the class that gets the most votes.

The K-LPSVCR can be considered to include the SVC with yi = ±1 (3.18)
and the SVR for regression with 0 being the target value (3.19)–(3.20). It makes
the fusion of the standard structures, “one versus one” and “one versus the rest”,
employed in the decomposition scheme of a multi-class classification procedure. On
one hand, each (�j ,�k)-K-LPSVCR classifier is trained to focus on the separation
between two classes, as “one versus one” does. On the other hand, the same time,
it also gives useful information about the other classes that are labeled 0, as “one
versus the rest” does.

3.1.2 Numerical Experiments

In this section, experiments are performed to compare K-LPSVCR with the coun-
terpart in [8, 249] on the same artificial and benchmark data sets. Experiments are
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Fig. 3.1 The effect of parameter ε

carried out using Matlab v7.0 on Intel Pentium III 800 MHz PC with 256 MHz of
RAM.

Experiments on Artificial Data Sets

The training set T is generated from a Gaussian distribution on R2, it contains
150 examples in K = 3 classes, each of which has 50 examples [8, 249]. In
this experiment, parameters C = 30, D = 400, and polynomial kernel K(x,x ′) =
exp(

−‖x−x′‖2

2σ 2 ) with σ = 3 is employed. The numerical results are summarized in
Fig. 3.1 and Table 3.1.

In Fig. 3.1, K(K−1)
2 = 3 ‘one-one-rest’ decision functions with ε = 0.05,0.5,

0.999 respectively are displayed.
From Fig 3.1, it can be observed that the behavior of algorithm K-LPSVCR

is similar to that in [8]. For example, the parameter ε has a high influence on the
optimal hyperplane determination. In addition, this similarity is also represented in
the numbers of the support vectors shown in Table 3.1. However, Table 3.1 shows
a great difference between K-LPSVCR and that in [8]: the time consumed here is
much less than in [8]. This point will be strengthened in the following experiments.
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Table 3.1 The values of ε and computation time, number of SVs

Figure

a b c d e f g h i

ε 0.05 0.05 0.05 0.5 0.5 0.5 0.999 0.999 0.999

One-one-rest 1-2-3 1-3-2 2-3-1 1-2-3 1-3-2 2-3-1 1-2-3 1-3-2 2-3-1

Number of SVs 5 6 4 4 4 4 3 2 2

Time (K-SVCR) 114.8 s 121.0 s 138.2 s 86.0 s 98.1 s 96.2 s 89.1 s 87.9 s 96.8 s

Time (K-LPSVCR) 8.41 s 8.44 s 8.35 s 7.90 s 7.78 s 7.89 s 6.97 s 6.97 s 6.96 s

Table 3.2 Results comparison

K-SVCR Time ν-K-SVCR Time K-LPSVCR Time

Iris [1.97,3.2] 154.23 s [1.42, 2.89] 145.27 s [1.64,3.2] 11.1 s

Wine [2.41,4.54] 178.11 s [2.74,3.98] 189.29 s [2.32,4.50] 13.2 s

Glass [31.23,37.42] 2577.20 s [33.48,37.21] 1765.56 s [31.23,36.34] 18.8 s

Experiments on Benchmark Data Sets

In this section three benchmark data sets “Iris”, “Wine” and “Glass” are collected
from the UCI machine learning repository [21]. Each data set is first split randomly
into ten subsets. Then one of these subsets is reserved as a test set and the others are
summarized as the training set; this process is repeated ten times.

For data sets “Iris”, “Wine”, the polynomial kernels K(x,x′) = (x ·x′)d with de-
gree d = 4 and d = 3 are employed respectively. For data set “Glass” the Gaussian

kernel K(x,x′) = exp(
−‖x−x ′‖2

2σ 2 ) with σ = 0.2236 is employed. Compared results
between K-LPSVCR, K-SVCR in [8] and ν-K-SVCR in [249] are listed in Ta-
ble 3.2.

In Table 3.2, [·, ·] refers to two kinds of error percentage. The first number is the
percentage of error when examples are finally assigned to the wrong classes, the
second number is the percentage of error when examples are assigned to the wrong
classes by any decision function f�jk

(x), j, k = 1, . . . , l.
More important, Table 3.2 shows that the time consumed in K-LPSVCR is

much less than that both in K-SVCR and ν-K-SVCR. Generally speaking, algo-
rithm K-LPSVCR is faster than both of them over ten times. Furthermore, because
K-LPSVCR has the same structure with the algorithm K-SVCR, it can also be
proved to have good robustness.

3.1.3 ν-K-LPSVCR

Follow the idea in Sect. 3.1.2, we can generalize algorithm K-LPSVCR to a new
multi-class algorithm: ν-K-class Linear Programming Support Vector Classifica-
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tion–Regression Machine (ν-K-LPSVCR), which can be realized by introducing
ν-SVC and ν-SVR in linear programming formulations described in [95] and [187]
respectively.

For fixed C > 0, D > 0, ν1, ν2 ∈ (0,1] and K(·, ·) chosen prior, a linear pro-
gramming for multi-class problem is given as

min
α,α∗,ξ,η,η∗,b,ρ,ε

1

l

l
∑

i=1

(αi + α∗
i ) + C

(

1

l1 + l2

l1+l2∑

i=1

ξi − ν1ρ

)

+ D

(

1

l − l1 − l2

l∑

i=l1+l2+1

(ηi + η∗
i ) + ν2ε

)

(3.23)

s.t.
1

l

l
∑

j=1

(αj + α∗
j ) = 1, (3.24)

ỹi

(
l

∑

j=1

(αj − α∗
j )K(x̃j , x̃i ) + b

)

≥ ρ − ξi, i = 1, . . . , l1 + l2, (3.25)

l
∑

j=1

(αj − α∗
j )K(x̃j , x̃i ) + b ≤ ε + ηi, i = l1 + l2 + 1, . . . , l, (3.26)

l
∑

j=1

(αj − α∗
j )K(x̃j , x̃i ) + b ≥ −ε − η∗

i , i = l1 + l2 + 1, . . . , l, (3.27)

α,α∗, ξ, η, η∗ ≥ 0, ρ ≥ ε ≥ 0, (3.28)

where α, α∗, ξ , η and η∗ are the vectors respectively with the components αi , α∗
i , ξi ,

ηi , η∗
i . Suppose (ᾱ, ᾱ∗, ξ̄ , η̄, η̄∗, b̄, ρ̄, ε̄) is an optimal solution of problem (3.23)–

(3.28), the decision function can be expressed as

f�j,k
(x) =

⎧

⎪⎨

⎪⎩

+1, if g(x) ≥ ε;
−1, if g(x) ≤ −ε;
0, otherwise,

(3.29)

where

g(x) =
l

∑

i=1

(ᾱi − ᾱ∗
i )K(x̃i , x) + b̄. (3.30)

According to (3.29) and (3.30), it is natural to define an input xi in the training
set to be a support vector (SV) if (ᾱi − ᾱ∗

i ) �= 0.
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Table 3.3 Results comparison

K-SVCR ν-K-SVCR ν-K-LPSVCR

Error Time Error Time Error Time

Iris [1.97,3.2] 154.23 s [1.42, 2.89] 145.27 s [1.62,3.2] 10.3 s

Wine [2.41,4.54] 178.11 s [2.74,3.98] 189.29 s [2.40,4.50] 14.6 s

Glass [31.23,37.42] 2577.20 s [33.48,37.21] 1765.56 s [31.34,36.51] 17.8 s

It should be pointed out that the parameter ν in the (�i,�k) classifier has a
similar meaning to that in ν-SVM [249].

For a K-class classification problem, follow the same voting strategy as in
K-LPSVCR, algorithm ν-K-LPSVCR is proposed as follows: for each pair
(�j ,�k) with j < k, we construct a (�j ,�k) classifier (3.29). So we have
K(K − 1)/2 classifiers in total. Hence, for a new input x, K(K − 1)/2 outputs
are obtained. We translate these outputs as follows: When f�j,k

(x) = +1, a pos-
itive vote is added on �j , and no votes are added on the other classes; when
f�j,k

(x) = −1, a positive vote is added on �k , and no votes are added on the
other classes; when f�j,k

(x) = 0 a negative vote is added on both �j and �k , and
no votes are added on the other classes. After translating all of the K(K − 1)/2 out-
puts, we get the total votes of each class by adding its positive and negative votes.
Finally, x will be assigned to the class that gets the most votes.

Experiments are carried out to compare algorithm ν-K-LPSVCR, K-SVCR in
[8] and algorithm ν-K-SVCR in [249] on benchmark data sets: “Iris”, “Wine” and
“Glass”, detailed description of experiments can be found in [168], the main results
is given in Table 3.3. Remarkably, Table 3.3 shows that the time consumed by algo-
rithm ν-K-LPSVCR is much less than the others while their errors are in the same
level. Generally speaking, algorithm ν-K-LPSVCR is faster than both of them over
ten times, therefore it is suitable for solving large-scale data sets.

3.2 Support Vector Ordinal Regression Machine for Multi-class
Problems

3.2.1 Kernel Ordinal Regression for 3-Class Problems

We have introduced Support vector Ordinal Regression in Sect. 2.3.1. Now, we first
consider a 3-class classification problem with a training set

T = {(x1, y1), . . . , (xl, yl)}
= {(x1,1), . . . , (xl1 ,1), (xl1+1,2), . . . , (xl1+l2 ,2),

(xl1+l2+1,3), . . . , (xl1+l2+l3 ,3)} ∈ (Rn × Y )l, (3.31)

where the inputs xi ∈ Rn, the outputs yi ∈ Y = {1,2,3}, i = 1, . . . , l.
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Let us turn to the ordinal regression described in Sect. 2.3.1. Its basic idea is: For
linearly separable case (see Fig. 2.3), the margin to be maximized is associated with
the two closest neighboring classes. As in conventional SVM, the margin is equal
to 2/‖w‖, thus maximizing the margin is achieved by minimizing ‖w‖. This leads
to the following algorithm through a rather tedious procedure.

Algorithm 3.2 (Kernel Ordinal Regression for 3-class problem)

(1) Given a training set (3.31);
(2) Select C > 0, and a kernel function K(x,x ′);
(3) Define a symmetry matrix

H =
(

H1 H2
H3 H4

)

, (3.32)

where

H1 =
(

(K(xi, xj ))l1×l1 (K(xi, xj ))l1×l2

(K(xi, xj ))l2×l1 (K(xi, xj ))l2×l2

)

,

H2 = HT
3 =

(−(K(xi, xj ))l1×l2 −(K(xi, xj ))l1×l3−(K(xi, xj ))l2×l2 −(K(xi, xj ))l2×l3

)

,

H4 =
(

(K(xi, xj ))l2×l2 (K(xi, xj ))l2×l3

(K(xi, xj ))l3×l2 (K(xi, xj ))l3×l3

)

,

and (K(xi, xj ))ln×lm denotes an ln × lm matrix with xi belonging to the nth
class and xj belonging to the mth class (n,m = 1,2,3).

Solve the following optimization problem:

min
μ

1

2
μT Hμ −

N
∑

i=1

μi, (3.33)

s.t. 0 ≤ μi ≤ C, i = 1, . . . ,N, (3.34)

l1∑

i=1

μi =
l1+2l2∑

i=l1+l2+1

μi, (3.35)

l1+l2∑

i=l1+1

μi =
N

∑

i=l1+2l2+1

μi, (3.36)

where N = 2l − l1 − l3, and get its solution μ = (μ1, . . . ,μN)T;
(4) Construct the function

g(x) = −
l1+l2∑

i=1

μiK(xi, x) +
N

∑

i=l1+l2+1

μiK(xi, x); (3.37)
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(5) Solve the following linear program problem:

min
b1,b2,ξ,ξ∗

l1+l2∑

i=1

ξi +
l2+l3∑

i=1

ξ∗
i , (3.38)

s.t. g(xi) − b1 ≤ −1 + ξi, i = 1, . . . , l1, (3.39)

g(xi) − b2 ≤ −1 + ξi, i = l1 + 1, . . . , l1 + l2, (3.40)

g(xi) − b1 ≥ 1 − ξ∗
i−l1

, i = l1 + 1, . . . , l1 + l2, (3.41)

g(xi) − b2 ≥ 1 − ξ∗
i−l1

, i = l1 + l2 + 1, . . . , l, (3.42)

ξi ≥ 0, i = 1, . . . , l1 + l2, (3.43)

ξ∗
i ≥ 0, i = 1, . . . , l2 + l3, (3.44)

where ξ = (ξ1, . . . , ξl1+l2)
T, ξ ∗ = (ξ∗

1 , . . . , ξ∗
l2+l3

)T, and get its solution (b̄1, b̄2,

ξ̄ , ξ̄∗)T;
(6) Construct the decision function

f (x) =

⎧

⎪⎨

⎪⎩

1, if g(x) ≤ b̄1;
2, if b̄1 < g(x) ≤ b2;
3, if g(x) > b̄2,

(3.45)

where g(x) is given by (3.37).

3.2.2 Multi-class Classification Algorithm

In this section, we propose the multi-class classification algorithm based on ordinal
regression described in above section. The question is, how to use 3-class classi-
fiers to solve a multi-class classification problem. There exist many reconstruction
schemes. Remind that, when 2-class classifiers are used, there are “one versus one“,
“one versus rest” and other architectures. When 3-class classifiers are used, it is ob-
vious that more architectures are possible. In order to compare this new algorithm
with the ones in [8] and [249], here we also apply “one versus one versus rest”
architecture.

Let the training set T be given by (3.1). For an arbitrary pair (�j ,�k) ∈ (Y × Y )

of classes with j < k, Algorithm 3.2 will be applied to separate the two classes �j

and �k as well as the remaining classes. To do so, we respectively consider the
classes �j , �k and Y \ {�j ,�k} as the classes 1, 3 and 2 in ordinal regression, i.e.,
the class �j corresponds to the inputs xi (i = 1, . . . , l1), the class �k corresponds
to the inputs xi (i = l1 + l2 + 1, . . . , l) and the remaining classes correspond to the
inputs xi (i = l1 + 1, . . . , l1 + l2).

Thus, in the K-class problem, for each pair (�j ,�k), we get by Algorithm 3.2
a classifier f�j,k

(x) to separate them as well as the remaining classes. So we get
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K(K − 1)/2 classifiers in total. Hence, for a new input x̄, K(K − 1)/2 outputs are
obtained. We adopt voting schemes, i.e., it is assumed that all the classifiers outputs
are in the same rank, and the ‘winner-takes-all’ scheme is applied. In other words,
x̄ will be assigned to the class that gets the most votes.

Now we give the detail of the multi-class classification algorithm as follows:

Algorithm 3.3 (Multi-class classification algorithm based on ordinal regression)

(1) Given the training set (3.1), construct a set P with K(K − 1)/2 elements:

P = {(�j ,�k) | (�j ,�k) ∈ (Y × Y ), j < k}, (3.46)

where Y = {�1, . . . ,�K }. Set m = 1;
(2) If m = 1, take the first pair in the set P ; otherwise take its next pair. Denote the

pair just taken as (�j ,�k);
(3) Transform the training set (3.1) into the following form:

T̃ = {(x̃1,1), . . . , (x̃l1 ,1), (x̃l1+1,2), . . . ,

(x̃l1+l2 ,2), (x̃l1+l2+1,3), . . . , (x̃l ,3)}, (3.47)

where

{x̃1, . . . , x̃l1} = {xi | yi = �j },
{x̃l1+1, . . . , x̃l1+l2} = {xi | yi ∈ Y \ {�j ,�k}},
{x̃l1+l2+1, . . . , x̃l} = {xi | yi = �k};

(4) Algorithm 3.2 is applied to the training set (3.47). Denote the decision function
obtained as f�j,k

(x);
(5) Vote: For an input x̄, when f�j,k

(x̄) = 1, a positive vote is added on �j , and
no votes are added on the other classes; when f�j,k

(x̄) = 3, a positive vote is
added on �k , and no votes are added on the other classes; when f�j,k

(x̄) = 2, a
negative vote is added on both �j and �k , and no votes are added on the other
classes;

(6) If m = K(K − 1)/2, go to the next step; otherwise set m = m + 1, return to the
step (3);

(7) Calculate the total votes of each class by adding the positive and negative votes
on this class. The input x̄ will be assigned to the class that gets the most votes.

3.2.3 Numerical Experiments

In this section, we present two types of experiments to evaluate Algorithm 3.3. All
test problems are taken from [8] and [249].
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Fig. 3.2 One-dimensional case. Class 1: ‘◦’; Class 2: ‘
’; Class 3: ‘♦’

Example in the Plane

According to Algorithm 3.3, for a K-class classification problem, Algorithm 3.2 is
used K(K − 1)/2 times and K(K − 1)/2 classifiers are constructed. In order to ex-
amine the validity of these classifiers, we study an artificial example in plane which
can be visualized. Note that this validity is not clear at a glance. For example, con-
sider 3-class classification problem. The “one versus one versus rest” architecture
implies that there are 3 training sets:

T1−2−3 = {Class 1 (one),Class 3 (rest),Class 2 (one)}, (3.48)

T1−3−2 = {Class 1 (one),Class 2 (rest),Class 3 (one)}, (3.49)

and

T2−3−1 = {Class 2 (one),Class 1 (rest),Class 3 (one)}, (3.50)

where Classes 3, 2, and 1 are respectively in the “middle” for ordinal regression.
Each of them is expected in our mind to be separated by 2 parallel hyperplanes in
feature space nicely. However, observe the simplest case when the input space is
one-dimensional, see Fig. 3.2.

It is easy to see that it is impossible to separate all of the 3 training sets prop-
erly if the kernel in Algorithm 3.2 is linear. It can be imagine that similar difficulty
will also happen to the low dimensional case. But as pointed in [8], these separa-
tions turn to be practical when nonlinear kernel is introduced. They construct the
parallel separation hyperplanes in feature space by a combination of SVC and SVR
with a parameter δ. Its success is shown by their numerical experiments when their
parameter δ is chosen carefully. In the following, we shall show that this is also
implemented successfully by Algorithm 3.2. Note that there is no any parameter
corresponding to δ in our algorithm.

In our experiment, the training set T is generated following a Gaussian distribu-
tion on R2 with 150 training data equally distributed in three classes, marking three
classes by the following signs: Class 1 with ‘+’, Class 2 with ‘
’ and Class 3 with
‘♦’. The parameter C and the kernel K(·, ·) in Algorithm 3.2 are selected as follows:
C = 1000, and polynomial kernel K(x,x′) = ((x ·x′)+1)d with degree d = 2,3,4.
For each group parameters we have three decision functions corresponding to the
training sets: T1−2−3, T1−3−2 and T2−3−1 in (3.48)–(3.50), and the training sets are
marked as 1–2–3, 1–3–2 and 2–3–1. The numerical results are shown in Fig. 3.3.

From Fig. 3.3, it can be observed that the behavior of kernel ordinal regression
algorithm is reasonable. The training data are separated explicitly into arbitrary or-
der of classes. We get validity classifiers choosing different parameters of kernel.
And it is also similar to that in [8] and [249], when their parameters δ and ε are
chosen properly. Note that we need not make this choice.
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Fig. 3.3 Different kernel parameter d on artificial data set with C = 1000. (a) 1–3–2, d = 2;
(b) 1–2–3, d = 2; (c) 2–3–1, d = 2; (d) 1–3–2, d = 3; (e) 1–2–3, d = 3; (f) 2–3–1, d = 3;
(g) 1–3–2, d = 4; (h) 1–2–3, d = 4; (i) 2–3–1, d = 4

Experiments on Benchmark Data Sets

In this subsection, we test our multi-class classification algorithm on a collection of
three benchmark problems same with Sect. 3.1.2, ‘Iris’, ‘Wine’ and ‘Glass’, from
the UCI machine learning repository [21]. Each data set is first split randomly into
ten subsets. Then one of these subsets is reserved as a test set and the others are
summarized as the training set; this process is repeated ten times. Finally we com-
pute the average error of the ten times, where the error of each time is described by
the percentage of examples finally assigned to the wrong classes.

For data sets ‘Iris’ and ‘Wine’, the parameter C = 10 and the polynomial kernels
K(x,x′) = ((x ·x ′)+1)d with degree d = 2 and d = 3 are employed respectively in
our algorithm. For data set ‘Glass’, the parameter C = 1000 and the Gaussian kernel

K(x,x ′) = exp(−‖x−x ′‖2

2σ 2 ) with σ = 2 is employed. The averages errors are listed
in Table 3.4. In order to compare our algorithm with Algorithm K-SVCR in [8],
Algorithm ν-K-SVCR in [249], Algorithm ‘1-v-r’ in [24] and Algorithm ‘1-v-1’ in
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Table 3.4 Experiment results

# pts # atr # class err%

1-v-r 1-v-1 K-SVCR ν-K-SVCR Algorithm 3.3

Iris 150 4 3 1.33 1.33 1.93 1.33 2

Wine 178 13 3 5.6 5.6 2.29 3.3 2.81

Glass 214 9 6 35.2 36.4 30.47 32.47 26.17

# pts: the number of training data, # atr: the number of example attributes, # class: the number of
classes, err%: the percentage of error, 1-v-r: “one versus rest” , 1-v-1: “one versus one”

[106, 130], their corresponding errors are also listed in Table 3.4. This table also
displays the number of training data, attributes and classes for each database.

It can be observed that the performance of Algorithm 3.3 is generally compa-
rable to the other ones. Specifically, for the ‘Glass’ set, this algorithm outperforms
other algorithms. Comparing this algorithm with the Algorithm K-SVCR [8] and
Algorithm ν-K-SVCR [249], we have the following conclusions:

(a) Noticing their similar structure, all of them have the same nice properties, e.g.
good robustness;

(b) Algorithm 3.3 includes fewer parameters and therefore is easier to be imple-
mented;

(c) For a K-class classification problem (3.1), many variant algorithms can be ob-
tained by extending Algorithm 3.3, for example, using p-class classification
(2 ≤ p ≤ K) instead of 3-class classification.



Chapter 4
Unsupervised and Semi-supervised Support
Vector Machines

As an important branch in unsupervised learning, clustering analysis aims at par-
titioning a collection of objects into groups or clusters so that members within
each cluster are more closely related to one another than objects assigned to dif-
ferent clusters [105]. Clustering algorithms provide automated tools to help identify
a structure from an unlabeled set, in a variety of areas including bio-informatics,
computer vision, information retrieval and data mining. There is a rich resource of
prior works on this subject.

As we all know, efficient convex optimization techniques have had a profound
impact on the field of machine learning, such as quadratic programming and linear
programming techniques to Support Vector Machine and other kernel machine train-
ing [174]. Furthermore, Semi-definite Programming (SDP) extends the toolbox of
optimization methods used in machine learning, beyond the current unconstrained,
linear and quadratic programming techniques, which has provided effective algo-
rithms to cope with the difficult computational problem in optimization and obtain
high approximate solutions.

Semi-definite Programming has showed its utility in machine learning. Lanck-
reit et al. show how the kernel matrix can be learned from data via semi-definite
programming techniques [134]. De Bie and Cristanini develop a new method for
two-class transduction problem based on semi-definite relaxation technique [20].
Xu et al. based on [20, 134] develop methods to two-class unsupervised and semi-
supervised classification problems in virtue of relaxation to Semi-definite Program-
ming [227].

Given C ∈ Mn, Ai ∈ Mn and b ∈ Rm, where Mn is the set of symmetric matrix.
The standard Semi-definite Programming problem is to find a matrix X ∈ Mn for
the optimization problem [25]

min C • X (4.1)

(SDP) s.t. Ai • X = bi, i = 1,2, . . . ,m, (4.2)

X � 0, (4.3)

Y. Shi et al., Optimization Based Data Mining: Theory and Applications,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-0-85729-504-0_4, © Springer-Verlag London Limited 2011
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where the operation ‘•’ is the matrix inner product A • B = tr(ATB), the notation
X � 0 means that X is a positive semi-definite matrix. The dual problem to SDP
can be written as:

max bTλ (4.4)

(SDD) s.t. C −
m

∑

i=1

λiAi � 0. (4.5)

Here λ ∈ Rm. Interior point method has good effect for Semi-definite Programming,
moreover there exists several softwares such as SeDuMi [191] and SDP3.

Now, we will propose several algorithms for unsupervised and semi-supervised
problems based on SDP.

4.1 Unsupervised and Semi-supervised ν-Support Vector
Machine

In this section we construct unsupervised and semi-supervised classification algo-
rithms which are based on Bounded ν-Support Vector Machine (Bν-SVM) [78],
which have a univocal parameter.

4.1.1 Bounded ν-Support Vector Machine

Considering the supervised two-class classification problem with the training set

T = {(x1, y1), . . . , (xl, yl)}, (4.6)

where xi ∈ Rn, y ∈ {−1,1}, Bν-SVM is to find the linear discriminant f (x) =
(w · φ(x)) + b by constructing the primal problem in some Hilbert space H

min
w,b,ξ,ρ

1

2
‖w‖2 + 1

2
b2 − νρ + 1

l

l
∑

i=1

ξi, (4.7)

s.t. yi((w · φ(xi)) + b) ≥ ρ − ξi, (4.8)

ξi ≥ 0, i = 1, . . . , l, (4.9)

ρ ≥ 0. (4.10)

Its dual problem is

max
α

−1

2

l
∑

i=1

l
∑

j=1

yiyjαiαjK(xi · xj ) − 1

2

l
∑

i=1

l
∑

j=1

yiyjαiαj , (4.11)
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s.t. 0 ≤ αi ≤ 1

l
, i = 1, . . . , l, (4.12)

l
∑

i=1

αi ≥ ν, (4.13)

where K(x,x′) = (φ(x) · φ(x′)) is the kernel function. Algorithm Bν-SVM can be
described as follows:

Algorithm 4.1 (Bν-SVM)

(1) Given a training set T = {(x1, y1), . . . , (xl, yl)} ∈ (Rn × Y )l , xi ∈ Rn,yi ∈ Y =
{−1,1}, i = 1, . . . , l;

(2) Select a kernel K(x,x′) and a parameter C > 0;
(3) Solve problem (4.11)–(4.13) and get its solution α∗ = (α∗

1 , . . . , α∗
l )T;

(4) Construct the decision function f (x) = sgn(
∑l

i=1 α∗
i yi(K(x, xi) + 1)).

4.1.2 ν-SDP for Unsupervised Classification Problems

Now we will construct an algorithm for unsupervised classification problems based
on Algorithm Bν-SVM. For unsupervised two-class classification problem, the
training set is usually given as

T = {x1, . . . , xl}, (4.14)

where xi ∈ Rn, the task is to assign the inputs xi with labels −1 or 1.
Xu et al. based on C-SVM with b = 0 get the optimization problem [227] that

can solve unsupervised classification problem. In fact the Support Vector Machine
they used is Bounded C-Support Vector Machine (BC-SVM) [141]. However, in
BC-SVM, although the parameter C has explicit meaning in qualitative analysis, it
has no specific in quantification. Therefore we consider the qualified SVM, which
is Bν-SVM with the meaningful parameter ν [78].

The parameter ν varied between 0 and 1 places a lower bound on the sum of
the α∗

i , which causes the linear term to be dropped from the objective function.
It can be shown that the proportion of the training set that are margin errors is
upper bounded by ν, while ν provides a lower bound on the total number of support
vectors. Therefore ν gives a more transparent parameter of the problem which does
not depend on the scaling of the feature space, but only on the noise level in the
data [51].

Now, we use the same method in [20, 134] to get the optimization problem based
on Bν-SVM

min
yi∈{−1,+1}l

min
w,b,ξ,ρ

1

2
‖w‖2 + 1

2
b2 − νρ + 1

l

l
∑

i=1

ξi, (4.15)

s.t. yi((w · φ(xi)) + b) ≥ ρ − ξi, i = 1, . . . , l, (4.16)
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− ε ≤
l

∑

i=1

yi ≤ ε, (4.17)

ξi ≥ 0, i = 1, . . . , l, (4.18)

ρ ≥ 0. (4.19)

It is difficult to solve problem (4.15)–(4.19), so we will consider to get its approxi-
mate solutions. Since Semi-definite Programming can provide effective algorithms
to cope with the difficult computational problems and obtain high approximate solu-
tions, it seems better to relax problem (4.15)–(4.19) to Semi-definite Programming.
In order to relax it to SDP, we will change the form of primal Bν-SVM in use
of duality, that means finding its dual problem’s dual. Set y = (y1, . . . , yl)

T and
M = yyT, moreover A ◦ B denotes component-wise matrix multiplication. Relax
M = yyT to M � 0 and diag(M) = e, then the dual of Bν-SVM is

max
α

−1

2
αT((K + eeT) ◦ M)α, (4.20)

s.t. 0 ≤ αi ≤ 1

l
, i = 1, . . . , l, (4.21)

l
∑

i=1

αi ≥ ν. (4.22)

Now we will find the dual of the problem above for relaxation to SDP, problem
(4.20)–(4.22)’s Lagrange function is

L(α,u, r,β) = −1

2
αT((K + eeT) ◦ M)α

+ u(eTα − ν) + rTα + βT
(

1

l
− α

)

= −1

2
αT((K + eeT) ◦ M)α

+ (ue + r − β)Tα − uν + 1

l
βTe. (4.23)

Suppose K + eeT 
 0,

∇Lα = −((K + eeT) ◦ M)α + ue + r − β, (4.24)

and at the optimum, we have

α = ((K + eeT) ◦ M)−1(ue + r − β). (4.25)

Therefore the dual problem of problem (4.20)–(4.22) is

min
u,r,β

1

2
(ue + r − β)T((K + eeT) ◦ M)−1(ue + r − β) − uν + 1

l
βTe, (4.26)

s.t. u ≥ 0, r ≥ 0, β ≥ 0, (4.27)
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Using the same method in [134], letting

1

2
(ue + r − β)T((K + eeT) ◦ M)−1(ue + r − β) − uν + 1

l
βTe ≤ δ, (4.28)

then we will get linear matrix inequality by Schur Complement lemma,

(
(K + eeT) ◦ M ue + r − β

(ue + r − β)T 2(δ + uν − 1
l
βTe)

)

� 0, (4.29)

finally we obtain the optimization problem below as SDP

min
M,δ,u,r,β

δ, (4.30)

s.t.

(
(K + eeT) ◦ M ue + r − β

(ue + r − β)T 2(δ + uν − 1
l
βTe)

)

� 0, (4.31)

− εe ≤ Me ≤ εe, (4.32)

M � 0, diag(M) = e, (4.33)

r ≥ 0, u ≥ 0, β ≥ 0. (4.34)

When we get the solution M∗, set y∗ = sgn(t1), where t1 is eigenvector cor-
responding to the maximal eigenvalue of M∗, therefore we classify the inputs of
training set T into two classes −1 and 1. So we construct the following algorithm:

Algorithm 4.2 (ν-SDP for Unsupervised Classification problems)

(1) Given the training set T = {x1, . . . , xl}, where xi ∈ Rn, i = 1, . . . , l;
(2) Select an appropriate kernel K(x,x ′), and parameters ν, ε, construct and solve

the problem (4.30)–(4.34) and get the solution M∗, δ∗, u∗, r∗ and β∗;
(3) Construct y∗ = sgn(t1), where t1 is eigenvector corresponding to the maximal

eigenvalue of M∗.

4.1.3 ν-SDP for Semi-supervised Classification Problems

It is easy to extend Algorithm 4.2 to semi-supervised classification algorithm. For
semi-supervised two-class classification problem, the training set is usually given as

T = {(x1, y1), . . . , (xl, yl)} ∪ {xl+1, . . . , xl+N }, (4.35)

where xi ∈ Rn, i = 1, . . . , l + N , yi ∈ {−1,1}, i = 1, . . . , l, the task is to assign the
inputs xi, i = l+1, . . . , l+N with labels −1 or 1, and also to assign an unknown in-
put x with label −1 or 1. We only need to add a constraint Mij = yiyj , i, j = 1, . . . , l
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to the problem (4.30)–(4.34), and construct the programming for semi-supervised
classification problem.

min
M,δ,u,r,β

δ, (4.36)

s.t.

(
(K + eeT ◦ M) ue + r − β

(ue + r − β)T 2(δ + uν − 1
l+N

βTe)

)

� 0, (4.37)

− εe ≤ Me ≤ εe, (4.38)

M � 0, diag(M) = e, (4.39)

Mij = yiyj , i, j = 1, . . . , l, (4.40)

r ≥ 0, u ≥ 0, β ≥ 0. (4.41)

Algorithm 4.3 (ν-SDP for Semi-supervised Classification problems)

(1) Given the training set (4.35);
(2) Select an appropriate kernel K(x,x′), and parameters ν, ε, construct and solve

the problem (4.36)–(4.41) and get the solution M∗, δ∗, u∗, r∗ and β∗;
(3) Construct y∗ = sgn(t1), where t1 is eigenvector corresponding to the maximal

eigenvalue of M∗, assign the inputs xl+1, . . . , xl+N with labels y∗
l+1, . . . , y

∗
l+N ;

(4) Construct decision function

f (x) = sgn

(
l

∑

i=1

α∗
i yi(K(x, xi) + 1) +

l+N
∑

i=l+1

α∗
i y∗

i (K(x, xi) + 1)

)

, (4.42)

where α∗ = ((K + eeT) ◦ M∗)−1(u∗e + r∗ − β∗).

4.2 Numerical Experiments

4.2.1 Numerical Experiments of Algorithm 4.2

We will test Algorithm 4.2 on various data sets using SeDuMi library. In order to
evaluate the influence of the meaningful parameter ν, we will set value of ν from 0.1
to 1 with increment 0.1 on four synthetic data sets including data set ‘AI’, ‘Gaus-
sian’, ‘circles’ and ‘joined-circles’ [225], which every data set has sixty points. ε = 2
and Gaussian kernel with appropriate parameter σ = 1 are selected. Results are
showed in Table 4.1, in which the number is the misclassification percent.

From Table 4.1 we can find that the result is better when ν is in [0.3,0.8] than in
other intervals. So the parameter ν in ν-SDP has the same meaning as in ν-SVM.
The value of ν is too large or too small also results badly.

Furthermore, in order to evaluate the performance of Algorithm 4.2, we will
compared it with Algorithm C-SDP [225], straightforward k-means algorithm and
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Table 4.1 Algorithm 4.2 with changing ν

ν AI Gaussian Circles Joined-circles

0.1 8.2 3.3 13.3 18.03

0.2 8.2 5 1.67 14.75

0.3 9.83 1.67 10 9.83

0.4 11.48 1.67 1.67 11.48

0.5 3.28 1.67 1.67 6.67

0.6 9.83 1.67 1.67 8.1

0.7 22.95 1.67 1.67 8.1

0.8 11.48 1.67 1.67 11.48

0.9 3,27 1.67 3.3 9.83

1.0 9.83 1.67 3.3 11.48

Table 4.2 Compared results

Algorithm AI Gaussian Circles Joined-circles

ν-SDP 11.48 1.67 1.67 11.48

C-SDP 16.7 1.67 11.67 28.33

K-means 8.20 0 48.33 48.33

DBSCAN 21.3 23.3 0 9.8

DBSCAN [69]. Both ν-SDP and C-SDP use the same parameters, and C = 100 in
C-SDP which is same to [225]. The parameter k (number of objects in a neigh-
borhood of an object) in DBSCAN is 3. Results are listed in Table 4.2, in which
the number is the misclassification percent. And Fig. 4.1 illustrates some result of
ν-SDP.

Table 4.2 shows that even the worst result of ν-SDP is not worse than that of
C-SDP, then the best result is better than that of C-SDP, K-means and DBSCAN.

We also conduct ν-SDP on the real data sets including Face and Digits data sets
[225]. Table 4.3 listed the results of changing ν, and Table 4.4 listed the compared
results with other algorithms, in which the number is the misclassification percent.
Figures 4.2 and 4.3 illustrate some results derived by ν-SDP.

4.2.2 Numerical Experiments of Algorithm 4.3

Here we test Algorithm 4.3 only on the real data sets including Face and Digits data
sets. At first, we separate the data into two parts: labeled and unlabeled, then run
Algorithm 4.2 to reclassify the inputs in the unlabeled part, eventually measured the
misclassification error on the original dataset. The results are showed in Table 4.5
and Table 4.6, in which the number is the misclassification percent.
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Fig. 4.1 Results of ν-SDP on data set ‘AI’, ‘Gaussian’, ‘circles’ and ‘joined-circles’

Table 4.3 Results of changing ν

ν Face12 Face34 Face56 Digit09 Digit17 Digit23

0.1 20 10 10 10 20 10

0.2 10 20 10 10 20 10

0.3 10 15 10 10 10 10

0.4 10 10 10 15 10 10

0.5 10 15 10 10 15 10

0.6 10 10 10 10 10 10

0.7 10 10 10 10 10 15

0.8 10 10 10 10 10 10

0.9 10 20 10 10 20 10

1.0 20 10 10 20 10 10

Table 4.4 Compared results

Algorithm Face12 Face34 Face56 Digit09 Digit17 Digit23

ν-SDP 10 15 10 10 15 10

C-SDP 10 20 10 10 10 20

K-means 10 30 15 20 25 25

DBSCAN 50 50 50 50 50 50
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Fig. 4.2 Sampling of the
handwritten digits (‘2’ and
‘3’). Every row shows a
random sampling of images
from a class by ν-SDP

Fig. 4.3 Sampling of face.
Every row shows a random
sampling of images from a
class by ν-SDP

Table 4.5 Results of changing ν

ν Face12 Face34 Face56 Digit09 Digit17 Digit23

0.1 20 10 10 10 20 10

0.2 10 10 10 20 20 10

0.3 10 10 20 10 10 10

0.4 10 10 10 10 10 15

0.5 15 10 10 10 10 10

0.6 10 10 10 10 10 10

0.7 10 15 10 10 15 10

0.8 10 10 15 15 10 10

0.9 20 10 10 10 20 10

1.0 20 10 30 20 10 20

Table 4.6 Compared results

Algorithm Face12 Face34 Face56 Digit09 Digit17 Digit23

semi-ν-SDP 10 15 10 10 15 10

semi-C-SDP 25 10 45 25 25 25

4.3 Unsupervised and Semi-supervised Lagrange Support
Vector Machine

In this section we construct a new unsupervised and semi-supervised classification
algorithms which is based on Lagrangian Support Vector Machine (LSVMs) [142].

Considering the supervised two-class classification problem with training set
(4.6), Lagrangian Support Vector Machine construct the primal problem as

min
w,b,ξ

1

2
(‖w‖2 + b2) + C

2

n
∑

i=1

ξ2
i , (4.43)

s.t. yi((w · φ(xi)) − b) + ξi ≥ 1, i = 1, . . . , l. (4.44)
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Its dual problem is

max
α

−1

2

l
∑

i=1

n∑

j=1

yiyjαiαjK(xi, xj ) − 1

2

l
∑

i=1

n∑

j=1

yiyjαiαj − 1

2C

l
∑

i=1

α2
i +

n
∑

i=1

αi

s.t. αi ≥ 0, i = 1, . . . , l, (4.45)

where K(x,x′) = (φ(x) · φ(x′)) is the kernel function.
For unsupervised two-class classification problem with the training set (4.14), we

use the method in [20, 134] to get the optimization problem based on LSVMs

min
yi∈{−1,+1}n min

w,b,ξ

1

2
(‖w‖2 + b2) + C

2

n
∑

i=1

ξ 2
i , (4.46)

s.t. yi((w · φ(xi)) − b) + ξi ≥ 1, (4.47)

−ε ≤
n

∑

i=1

yi ≤ ε. (4.48)

Let y = (y1, . . . , yl)
T, M = yyT, A ◦ B denotes component-wise matrix multiplica-

tion, following the same procedure in [134], we construct the unsupervised classifi-
cation algorithm.

Algorithm 4.4 (L-SDP for unsupervised Classification problems)

(1) Given the training set T = {x1, . . . , xl}, where xi ∈ Rn, i = 1, . . . , l;
(2) Select an appropriate kernel K(x,x ′), and parameters ν, ε, construct and solve

the following problem

min
M,δ,u

1

2
δ, (4.49)

s.t.

(

K ◦ M + M + 1
C

I u + e

(u + e)T δ

)

� 0, (4.50)

−εe ≤ Me ≤ εe, (4.51)

M � 0, diag(M) = e, (4.52)

u ≥ 0, (4.53)

get the solution M∗, δ∗ and u∗;
(3) Construct label y∗ = sgn(t1), where t1 is eigenvector corresponding to the max-

imal eigenvalue of M∗.

Similar with Algorithm 4.3, it is easy to extend Algorithm 4.4 to semi-supervised
classification algorithm, and is omitted here.

In order to evaluate the performance of L-SDP, we will compared Algorithm 4.4
with Algorithm 4.2 and C-SDP [227]. Firstly we still consider four synthetic data
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Table 4.7 Compared results
on synthetic data sets Algorithm AI Gaussian Circles Joined-circles

L-SDP 9.84 0 0 8.19

C-SDP 9.84 1.67 11.67 28.33

ν-SDP 9.84 1.67 1.67 11.48

Table 4.8 Computation time
on synthetic data sets Algorithm AI Gaussian Circles Joined-circles

L-SDP 1425 1328 1087.6 1261.8

C-SDP 2408.9 1954.9 2080.2 2284.8

ν-SDP 2621.8 1891 1837.1 2017.2

Fig. 4.4 Results of L-SDP on data set ‘AI’, ‘Gaussian’, ‘circles’ and ‘joined-circles’

sets including data set AI, Gaussian, circles and joined-circles, which every data set
has sixty points. ε = 2, C = 100 and Gaussian kernel with appropriate parameter
σ = 1 are selected. Results are showed in Table 4.7, in which the number is the
misclassification percent. And Fig. 4.4 illustrates some results on the data sets.

From Table 4.7 we can find that the result of L-SDP is better than that of C-SDP
and ν-SDP, moreover the time consumed is showed in Table 4.8, in which the num-
bers are seconds of CPU. From Table 4.8 we can find that L-SDP cost almost half
of the time consumed of C-SDP or ν-SDP.
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Table 4.9 Compared results on Face and Digits data sets

Algorithm Digits32 Digits65 Digits71 Digits90 Face12 Face34 Face56 Face78

L-SDP 0 0 0 0 8.33 0 0 0

C-SDP 0 0 0 0 1.67 0 0 0

ν-SDP 0 0 0 0 1.67 0 0 0

Table 4.10 Computation time on Face and Digits data sets

Algorithm Digits32 Digits65 Digits71 Digits90 Face12 Face34 Face56 Face78

L-SDP 445.1 446.2 446.4 446.5 519.8 446.3 446.1 446

C-SDP 1951.8 1950.7 1951.6 1953.4 1954.5 1952.1 1950.3 1951

ν-SDP 1721.6 1721.5 1722.2 1722.8 1721.4 1722.1 1721 1719.7

Fig. 4.5 Every row shows a random sampling of images from a data set, the first ten images are
in one class, while the rest ten images are in another class by L-SDP

We also conduct L-SDP on the real data sets: Face and Digits, with thirty samples
of every class of each data set. The results and computation time consumed are
showed in Table 4.9 and Table 4.10 separately, the numbers in Table 4.9 are the
misclassification percents, and the numbers in Table 4.10 are seconds of CPU. From
Table 4.9 we can find that the result of L-SDP is almost same to C-SDP and ν-SDP
except data set ‘face12’, but Table 4.10 shows that L-SDP cost almost quarter of the
time consumed of C-SDP or ν-SDP. Figure 4.5 illustrates some results of L-SDP.

4.4 Unconstrained Transductive Support Vector Machine

Most of the learning models and systems in artificial intelligence apply inductive
inference where a model (a function) is derived from data and this model is further
applied on new data. The model is created without taking into account any informa-
tion about a particular new data. The new data would fit into the model to certain
degree so that an error is estimated. The model is in most cases a global model,
covering the whole problem space. Creating a global model (function) that would
be valid for the whole problem space is a difficult task and in most cases—it is not
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necessary. The inductive learning and inference approach is useful when a global
model of the problem is needed even in its very approximate form, when incre-
mental, on-line learning is applied to adjust this model on new data and trace its
evolution.

Generally speaking, inductive inference is concerned with the estimation of a
function (a model) based on data from the whole problem space and using this
model to predict output values for a new input, which can be any point in this space.

In contrast to the inductive inference, transductive inference methods estimate
the value of a potential model (function) only for a single point of the space (the
new data vector) utilizing additional information related to this point [206]. This ap-
proach seems to be more appropriate for clinical and medical applications of learn-
ing systems, where the focus is not on the model, but on the individual patient data.
And it is not so important what the global error of a global model over the whole
problem space is, but rather—the accuracy of prediction for any individual patient.
Each individual data may need an individual, local model rather than a global model
which new data tried to be matched into it without taking into account any specific
information on where this new data point is located in the space. Transductive in-
ference methods are efficient when the size of the available training set is relatively
small [206].

4.4.1 Transductive Support Vector Machine

In contrast to inductive SVM learning described in Chap. 1, the classification prob-
lem for transductive SVM to be solved not only includes the training set T (1.1),
but also an i.i.d test set S from the same distribution,

S = {x∗
1 , . . . , x∗

m}, (4.54)

where x∗
i ∈ Rn.

Transductive Support Vector Machine (TSVM) take into account this test set S

and try to minimize misclassification of just those particular examples. Therefore,
in a linearly separable data case, TSVM try to find a labeling y∗

1 , y∗
2 , . . . , y∗

m of the
test inputs, and the hyperplane (w · x) + b = 0 so that it can separate both training
and test input with maximum margin, which leads to the following problem:

min
w,b,y∗

1

2
‖w‖2 (4.55)

s.t. yi((w · xi ) + b) ≥ 1, i = 1, . . . , l, (4.56)

y∗
j ((w · x∗

j ) + b) ≥ 1, j = 1, . . . ,m, (4.57)

where y∗ = (y∗
1 , . . . , y∗

m).
Figure 4.6 illustrates this. In Fig. 4.6, positive and negative training points are

marked as “+” and “−”, test points as “•”. The dashed line is the solution of the
inductive SVM. The solid line shows the transductive classification.
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Fig. 4.6 Transductive
classification for linearly
separable problem

To be able to handle linearly non-separable case, similar to the way in above
inductive SVM, the learning process of transductive SVM is formulated as the fol-
lowing optimization problem,

min
w,b,y∗,ξ,ξ∗

1

2
‖w‖2 + C

l
∑

i=1

ξi + C∗
m

∑

j=1

ξ∗
j , (4.58)

s.t. yi((w · xi ) + b) ≥ 1 − ξi, i = 1, . . . , l, (4.59)

y∗
j ((w · x∗

j ) + b) ≥ 1 − ξ∗
j , j = 1, . . . ,m, (4.60)

ξi ≥ 0, i = 1, . . . , l, (4.61)

ξ∗
j ≥ 0, j = 1, . . . ,m, (4.62)

where C and C∗ are parameters set by the user. They allow trading of margin size
against misclassifying training examples or excluding test examples. Some algo-
rithms have been proposed to solve this problem [117].

4.4.2 Unconstrained Transductive Support Vector Machine

Training a transductive SVM means solving the (partly) combinatorial optimization
problem (4.58)–(4.62). For a small number of test examples, this problem can be
solved optimally simply by trying all possible assignments of y∗

1 , . . . , y∗
m to the

two classes. However, this approach become intractable for test sets with more than
10 examples. Previous approaches using branch-and-bound search push the limit to
some extent [212], and an efficient algorithm was designed to handle the large test
sets common in text classification with 10,000 test examples and more in [117]. It
finds an approximate solution to problem (4.58)–(4.62) using a form of local search.
Next we will propose a new algorithm to solve problem (4.58)–(4.62) by its special
construction [203].

Unconstrained Optimization Problem

First we will transform problem (4.58)–(4.62) to an unconstrained problem.
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Theorem 4.5 Considering the solution (w,b,y∗, ξ, ξ∗) of problem (4.58)–(4.62).
For any x∗

i of test set S, it must satisfy

y∗
j ((w · x∗

j ) + b) ≥ 0. (4.63)

Proof Suppose (w, b, ξ, ξ∗, y∗
1 , . . . , y∗

m) is the solution of problem (4.58)–(4.62).
First we will show that for any x∗

j ∈ S, if (w · x∗
j ) + b > 0, then there must be

y∗
j = 1.

In fact, if y∗
j = 1, then y∗

j ((w ·x∗
j )+b) > 0, and by the constraint (4.60), we have

ξ∗
j ≥ 1 − y∗

j ((w · x∗
j ) + b). Because the objective function (4.58) is minimized, so

there must be

0 ≤ ξ∗
j = min{0,1 − y∗

j ((w · x∗
j ) + b)} < 1. (4.64)

If y∗
j = −1, then y∗

j ((w · x∗
j ) + b) < 0, and by the constraint (4.60), we have

ξ∗
j ≥ 1 − y∗

j ((w · x∗
j ) + b) > 1, (4.65)

the value of objective function is larger than the case y∗
j = 1. So if (w · x∗

j ) + b ≥ 0,
there must be y∗

j = 1 and y∗
j ((w · x∗

j ) + b) > 0.
Following the above logic, for any x∗

j ∈ S, if (w · x∗
j )+ b < 0, then there must be

y∗
j = −1 and y∗

j ((w · x∗
j ) + b) > 0.

Obviously, if (w · x∗
j ) + b = 0, then y∗

j ((w · x∗
j ) + b) ≥ 0. Therefore, for any

x∗
i ∈ S, there must be y∗

j ((w · x∗
j ) + b) ≥ 0. �

Based on Theorem 4.5, we can rewrite the constraints (4.60) and (4.62) of prob-
lem (4.58)–(4.62) as

ξ∗
j = (1 − y∗

j (w · x∗
j ) + b))+ = (1 − |(w · x∗

j ) + b|)+, j = 1, . . . ,m. (4.66)

Furthermore, rewrite the constraints (4.59) and (4.61) as

ξi = (1 − yi((w · xi ) + b)+, i = 1,2, . . . , l, (4.67)

where function (·)+ is plus function:

(�)+ =
{

�, � ≥ 0;
0, � < 0.

(4.68)

Therefore problem (4.58)–(4.62) can be transformed as unconstrained optimization
problem

min
w,b

1

2
‖w‖2 + C

l
∑

i=1

(1 − yi((w · xi ) + b))+

+ C∗
m

∑

j=1

(1 − |(w · x∗
j ) + b|)+. (4.69)
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Smooth Unconstrained Optimization Problem

However, the objective function in problem (4.69) is not differentiable which pre-
cludes the usual optimization method, we thus apply the smoothing technique and
replace the plus function (·)+ by a very accurate smooth approximation to obtain a
smooth Transductive Support Vector Machine.

Therefore, we introduce the approximation function of (�)+

P(�,λ) = � + 1

λ
ln(1 + e−λ�), (4.70)

where λ > 0 is the smoothing parameter. Obviously function (4.70) is smooth, and
it can shown that function P(�,λ) converges to (�)+ with λ → ∞, so the second
part of objective function in problem (4.69) can be approximately formulated as

C

l
∑

i=1

P(1 − yi((w · xi) + b),λ). (4.71)

And the third part can be approximately formulated as

C∗
m∑

j=1

P(1 − |(w · x∗
j ) + b|, λ). (4.72)

However, there still exist a term |(w · x∗
j )+ b| which is not smooth. So we introduce

another approximation function to replace function |�′|,

P ′(�′,μ) = �′ + 1

μ
ln(1 + e−2μ�′

) (4.73)

It is easy to prove the following theorem.

Theorem 4.6 FunctionP ′(�′,μ) is smooth and satisfies:

(i) P ′(�′,μ) is continuously differentiable;
(ii) P ′(�′,μ) is strictly convex on R;

(iii) For any μ ∈ R, there is P ′(�′,μ) > |�′|;
(iv) limμ→∞ P ′(�′,μ) = |�′|,∀�′ ∈ R.

Figure 4.7 describes the function P ′(�′,μ) with μ = 5 approximating function
|�′|. So (4.72) can also be approximately formulated as

C∗
m

∑

j=1

P(1 − P ′((w · x∗
j ) + b,μ),λ). (4.74)
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Fig. 4.7 Smoothing function
for |�|

Now when λ,μ is large enough, problem (4.69) can be replaced by approxima-
tion smooth problem

min
w,b

1

2
‖w‖2 + C

l
∑

i=1

P(1 − yi((w · xi ) + b),λ)

+ C∗
m∑

j=1

P(1 − P ′((w · x∗
j ) + b,μ),λ). (4.75)

4.4.3 Unconstrained Transductive Support Vector Machine with
Kernels

Solving the smooth problem (4.75) will construct a linear separating surface
(w · x) + b = 0 for our classification problem. We now describe how to construct a
nonlinear separating surface which is implicitly defined by a kernel function K(·, ·).

For any fixed values of y∗
1 , . . . , y∗

m, the dual problem of problem (4.58)–(4.62) is
[206]

min
α,β

1

2

[
l

∑

i,r=1

αiαryiyrK(xi, xr ) +
m

∑

j,r=1

βjβry
∗
j y∗

r K(x∗
j , x∗

r )

− 2
l

∑

j=1

m∑

r=1

yjy
∗
r αjβrK(xj , x

∗
r )

]

−
l

∑

i=1

αi −
m

∑

j=1

βj (4.76)

s.t.
l

∑

i=1

yiαi +
m

∑

j=1

y∗
j βj = 0, (4.77)



78 4 Unsupervised and Semi-supervised Support Vector Machines

0 ≤ αi ≤ C, i = 1, . . . , l, (4.78)

0 ≤ βj ≤ C∗, j = 1, . . . ,m. (4.79)

Suppose α∗, β∗ is the solution of problem (4.76)–(4.79), then the solution with
respect to w of problem (4.58)–(4.62) is expressed as

w =
l

∑

i=1

yiα
∗
i xi +

m
∑

j=1

y∗
j β∗

j x∗
j

=
l

∑

i=1

(α̃i − ᾱi )xi +
m

∑

j=1

(β̃j − β̄j )xj , (4.80)

where yiα
∗
i is replace by α̃i − ᾱi , and y∗

j β∗
j by β̃j − β̄j .

If we imply 1-norm of ‖w‖1 in problem (4.58)–(4.62), and based on (4.80), ap-
proximately replace it by

l
∑

i=1

|α̃i − ᾱi | +
m

∑

j=1

|β̃j − β̄j | (4.81)

problem (4.58)–(4.62) is transformed as

min
α̃,ᾱ,β̃,β̄,b,ξ,ξ∗

l
∑

i=1

(α̃i + ᾱi ) +
m

∑

j=1

(β̃∗
j + β̄∗

j ) + C

l
∑

i=1

ξi + C∗
m

∑

j=1

ξ∗
j , (4.82)

s.t. yi

(
l

∑

k=1

(α̃k − ᾱk)K(xk, xi) +
m

∑

k=1

(β̃k − β̄k)K(x∗
k , xi) + b

)

≥ 1 − ξi,

i = 1, . . . , l, (4.83)

y∗
j

(
l

∑

k=1

(α̃k − ᾱk)K(xk, x
∗
j ) +

m
∑

k=1

(β̃k − β̄k)K(x∗
k , x∗

j ) + b

)

≥ 1 − ξ∗
j ,

j = 1, . . . ,m, (4.84)

ξi ≥ 0, α̃i , ᾱi ≥ 0, i = 1, . . . , l, (4.85)

ξ∗
j ≥ 0, β̃j , β̄j ≥ 0, j = 1, . . . ,m. (4.86)

Like the smooth method in the above section, by introducing smooth functions
P(�,λ) and P ′(�′,μ), we can transform problem (4.82)–(4.86) to a smooth prob-
lem with kernel
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min
α̃,ᾱ,β̃,β̄,b,ξ,ξ∗

l
∑

i=1

(α̃i + ᾱi) +
m

∑

j=1

(β̃j + β̄j )

+ C

l
∑

i=1

P

(

1 − yi

(
l

∑

k=1

(α̃k − ᾱk)K(xk, xi)

+
m

∑

k=1

(β̃k − β̄k)K(x∗
k , xi) + b

)

, λ

)

+ C∗
m

∑

j=1

P

(

1 − P ′
(

l
∑

k=1

(α̃k − ᾱk)K(xk, x
∗
j )

+
m

∑

k=1

(β̃k − β̄k)K(x∗
k , x∗

j ) + b,μ

)

, λ

)

.

(4.87)

If λ,μ is chosen large enough, we hope that the solution of problem (4.87)
will approximates the solution of problem (4.82)–(4.86). After getting the solution
(α̃, ᾱ, β̃, β̄, b, ξ, ξ∗) of problem (4.87), the decision function is constructed as

f (x) = sgn

(
l

∑

k=1

(α̃k − ᾱk)K(xk, x) +
m

∑

k=1

(β̃k − β̄k)K(x∗
k , x) + b

)

, (4.88)

so the test points in test set S are assigned to two classes by this function, i.e., the
values of y∗

1 , . . . , y∗
m are given. Now the new algorithm Unconstrained Transductive

Support Vector Machine (UTSVM) are described as follows:

Algorithm 4.7 (UTSVM)

(1) Given a training set T = {(x1, y1), . . . , (xl, yl)} ∈ (Rn ×{−1,1})l , and a test set
S = {x∗

1 , . . . , x∗
m};

(2) Select a kernel K(·, ·), and parameters C > 0, C∗ > 0, λ > 0, μ > 0;
(3) Solve problem (4.87) and get its solution (α̃, ᾱ, β̃, β̄, b, ξ, ξ ∗);
(4) Construct the decision function as (4.88) and get the values of y∗

1 , . . . , y∗
m.





Chapter 5
Robust Support Vector Machines

We have introduced ordinal regression problem, multi-class classification problem,
unsupervised and semi-supervised problems, which all can be solved efficiently fol-
low the scheme of SVMs, see, e.g. [8, 9, 42, 44, 50, 104, 129, 130, 215, 232]. But in
the above approaches, the training data are implicitly assumed to be known exactly.
However, in real world applications, the situation is not always the case because the
training data subject to measurement and statistical errors [89]. Since the solutions
to optimization problems are typically sensitive to training data perturbations, errors
in the input data tend to get amplified in the decision function, often resulting in far
from optimal solutions [15, 39, 250]. So it will be useful to explore formulations
that can yield robust discriminants to such estimation errors.

In this chapter, we first establish robust versions of SVORM, which are repre-
sented as a second order cone programming (SOCP) [2]. And as the theoretical
foundation, we study the relationship between the solutions of the SOCP and its
dual problem. Here the second order cone in Hilbert space is involved. Then, we
also establish a multi-class algorithm based on the above robust SVORM for general
multi-class classification problem with perturbations. Furthermore, we construct a
robust unsupervised and semi-supervised SVC for the problems with uncertainty
information.

5.1 Robust Support Vector Ordinal Regression Machine

Ordinal regression problem is presented here as in Sect. 2.3.1:
Suppose a training set is given by

T = {xj
i }j=1,...,k

i=1,...,lj
, (5.1)

where x
j
i ∈ Rn is the input the superscript, j = 1, . . . , k denotes the class number

and i = 1, . . . , lj is the index with each class. The task is to find a real value function

Y. Shi et al., Optimization Based Data Mining: Theory and Applications,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-0-85729-504-0_5, © Springer-Verlag London Limited 2011

81
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Fig. 5.1 (a) The fixed margin version; (b) the effect of measurement noises; (c) the result of
Robust version

g(x) and an orderly real sequence b1 ≤ · · · ≤ bk−1 and construct a decision

f (x) = min
s∈{1,...,k}{s : g(x) − bs < 0}, (5.2)

where bk = +∞.
Consider the linear SVORM in two dimensional space with k = 3 as illus-

trated in Fig. 5.1. The training data x
j
i , j = 1, . . . , k, i = 1, . . . , lj used are im-

plicitly assumed to be known exactly and two separation lines are obtained (see
Fig. 5.1(a)). However, in real world applications, the data are corrupted by mea-
surements and statistical errors [89]. Errors in the input space tend to get amplified
in the decision function, which often results in misclassification. So a robust ver-
sion of SVORM with sphere perturbations is considered in this paper. Each training
point in Fig. 5.1(a) is allowed to move in a circle. In this case, we should modify
the original separation lines since they cannot separate the training set in this case
(see Fig. 5.1(b)) properly. It seems reasonable to yield separation lines as show in
Fig. 5.1(c) which separate three classes of perturbed circles.

Now let us establish robust SVORM. Ordinal regression problem with sphere
perturbations is presented as follows:
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Suppose a training set is given by

T = {X j
i }j=1,...,k

i=1,...,lj
, (5.3)

where X j
i is the input set: a sphere with the x

j
i and radius r

j
i , namely,

X j
i = {xj

i + r
j
i u

j
i : ‖uj

i ‖ ≤ 1}, j = 1, . . . , k, i = 1, . . . , lj , (5.4)

where u
j
i ∈ Rn, r

j
i ≥ 0 is a constant. The output is the superscript j ∈ {1,2, . . . , k}

denoting the class number. i = 1, . . . , lj is the index within each class. We want
to find a decision function that minimizes the misclassification in the worst case,
i.e. one that minimizes the maximum misclassification when samples are allowed to
move within their corresponding confidence balls.

We consider both the linear separation and the nonlinear separation and, there-
fore, introduce the transformation

� : x → x = �(x), (5.5)

Rn → H. (5.6)

Denote the corresponding kernel as K(x,x ′) = (�(x) ·�(x ′)). We restrict the kernel
to be one of the following two cases:

(Case I) linear kernel: K(x,x′) = K1(x, x ′) = (x · x ′), (5.7)

(Case II) Gaussian kernel: K(x,x′) = K2(x, x ′) = exp

(−‖x − x ′‖2

2σ 2

)

. (5.8)

Denote the two corresponding transformations as �1(x) and �2(x) respectively.
For both cases, the training set (5.3) is transformed to

T = {Xj
i }j=1,...,k

i=1,...,lj
, (5.9)

where

Xj
i = {�(x̃

j
i ) | x̃j

i = x
j
i + r

j
i u

j
i , ‖uj

i ‖ ≤ 1}. (5.10)

Notice that for case II, when ‖x̃j
i − x

j
i ‖ ≤ r

j
i , there is

‖�(x̃
j
i ) − �(x

j
i )‖2 = ((�(x̃

j
i ) − �(x

j
i )) · (�(x̃

j
i ) − �(x

j
i ))

= K(x̃
j
i , x̃

j
i ) − 2K(x̃

j
i , x

j
i ) + K(x

j
i , x

j
i )

= 2 − exp(−‖x̃j
i − x

j
i ‖2/σ 2)

= 2 − 2 exp(−(r
j
i )2/σ 2). (5.11)
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Therefore, for both case I and case II, Xj
i defined by (5.10) is a sphere in Hilbert

space H and its spherical center is �(x
j
i ), its radius is rji , where

For case I: �(x
j
i ) = �1(x

j
i ) = x

j
i , rji = r

j
i ; (5.12)

For case II: �(x
j
i ) = �2(x

j
i ), rji = (2 − 2 exp(−(r

j
i )2/σ 2))

1
2 . (5.13)

Thus, as an extended of SVORM, for the training set (5.9) we can establish the
following primal optimization problem

min
w,b,ξ(∗)

1

2
‖w‖2 + C

k
∑

j=1

lj∑

i=1

(ξ
j
i + ξ

∗j
i ), (5.14)

s.t. (w · (�(x
j
i ) + rji ũ

j
i )) − bj ≤ −1 + ξ

j
i ,

∀ũ
j
i ∈ Ũ , j = 1, . . . , k, i = 1, . . . , lj , (5.15)

(w · (�(x
j
i ) + rji ũ

j
i )) − bj−1 ≥ 1 − ξ

∗j
i ,

∀ũ
j
i ∈ Ũ , j = 1, . . . , k, i = 1, . . . , lj , (5.16)

ξ
j
i ≥ 0, ξ

∗j
i ≥ 0, j = 1, . . . , k, i = 1, . . . , lj , (5.17)

where Ũ is a unit sphere in Hilbert space, �(x
j
i ) and rji are given by (5.12) and

(5.13), b = (b1, . . . , bk−1)
T, b0 = −∞, bk = +∞, ξ (∗) = (ξ1

1 , . . . , ξ1
l1
, . . . , ξ k

1 , . . . ,

ξ k
lk
, ξ∗1

1 , . . . , ξ∗1
l1

, . . . , ξ∗k
1 , . . . , ξ∗k

lk
).

The above problem is equivalent to

min
w,b,ξ (∗)

1

2
t2 + C

k
∑

j=1

lj
∑

i=1

(ξ
j
i + ξ

∗j
i ), (5.18)

s.t. − (w · �(x
j
i )) − rji t + bj + ξ

j
i ≥ 1, j = 1, . . . , k, i = 1, . . . , lj , (5.19)

(w · �(x
j
i )) − rji t − bj−1 + ξ

∗j
i ≥ 1, j = 1, . . . , k, i = 1, . . . , lj , (5.20)

ξ
j
i ≥ 0, ξ

∗j
i ≥ 0, j = 1, . . . , k, i = 1, . . . , lj , (5.21)

‖w‖ ≤ t. (5.22)

Next we rewrite the above problem as a second order cone programming (SOCP):
introduce the new scalar variables u and v, replace t2 in the objective by u − v and
require that u and v satisfy the linear and second order cone constraints u + v = 1
and

√
t2 + v2 ≤ u. Since the latter imply that t2 ≤ u− v, problem (5.18)–(5.22) can
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be reformulated as

min
w,b,ξ (∗),u,v,t

1

2
(u − v) + C

k
∑

j=1

lj
∑

i=1

(ξ
j
i + ξ

∗j
i ), (5.23)

s.t. − (w · �(x
j
i )) − rji t + bj + ξ

j
i ≥ 1, j = 1, . . . , k, i = 1, . . . , lj ,

(w · �(x
j
i )) − rji t − bj−1 + ξ

∗j
i ≥ 1, j = 1, . . . , k, i = 1, . . . , lj ,

ξ
j
i ≥ 0, ξ

∗j
i ≥ 0, j = 1, . . . , k, i = 1, . . . , lj , (5.24)

‖w‖ ≤ t, (5.25)

u + v = 1, (5.26)
√

t2 + v2 ≤ u, (5.27)

where �(x
j
i ) and rji are given by (5.12) and (5.13), b = (b1, . . . , bk−1)

T, b0 = −∞,
bk = +∞, ξ (∗) = (ξ1

1 , . . . , ξ1
l1
, . . . , ξ k

1 , . . . , ξk
lk
, ξ∗1

1 , . . . , ξ∗1
l1

, . . . , ξ∗k
1 , . . . , ξ∗k

lk
).

This problem is the robust counterpart of the primal problem of robust SVORM.
The solution of the above problem is obtained by solving its dual problem. The

dual problem is

max
α(∗),β,γ,zu,zv

k
∑

j=1

lj
∑

i=1

(α
j
i + α

∗j
i ) + β, (5.28)

s.t. γ ≤
∑

j,i

rji (α
j
i + α

∗j
i ) −

√
∑

j,i

∑

j ′,i′
(α

∗j
i − α

j
i )(α

∗j ′
i′ − α

j ′
i′ )K(x

j
i , x

j ′
i′ ),

(5.29)
√

γ 2 + z2
v ≤ zu, (5.30)

β + zv = −1

2
, β + zu = 1

2
, (5.31)

lj
∑

i=1

α
j
i =

lj+1
∑

i=1

α
∗j+1
i , j = 1,2, . . . , k − 1, (5.32)

0 ≤ α
j
i , α

∗j
i ≤ C, j = 1,2, . . . , k, i = 1,2, . . . , lj , (5.33)

where K(x,x′) and rji are given by (5.7)–(5.8) and (5.12)–(5.13), α(∗) = (α1
1, . . . ,

α1
l1
, . . . , αk

1, . . . , αk
lk
, α∗1

1 , . . . , α∗1
l1

, . . . , α∗k
1 , . . . , α∗k

lk
)T, α∗1

i = 0, i = 1,2, . . . , n1,

αk
i = 0, i = 1,2, . . . , nk .

Next we show the relation between the solutions of primal problem and dual
problem.
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Definition 5.1 ([71]) In Hilbert space H second order cone is defined as follows

Q = {z = (z0, z̄
T)T ∈ H : z0 ∈ R,‖z̄‖ ≤ z0}. (5.34)

Lemma 5.2 ([71]) In Definition 5.1 the second order cone is self dual, i.e., Q∗ = Q,
where Q∗ is the dual cone of the second order cone Q.

From Definition 5.1 and Lemma 5.2, Lemma 15 in [2] can be generalized to
Hilbert space as follows:

Lemma 5.3 (Complementary conditions) Suppose that z = (zT
1 , . . . , zT

m)T ∈ Q and
y = (yT

1 , . . . , yT
m)T ∈ Q, where Q = Q1 × Q2 × · · · × Qm is a direct product of m

second order cones in Hilbert space, (i.e., zi �Qi
0, yi �Qi

0, i = 1,2, . . . ,m). Then
zTy = 0 (i.e., zT

i yi = 0, i = 1, . . . ,m) is equivalent to

(i) zT
i yi = zi0yi0 + z̄T

i ȳi = 0, i = 1,2, . . . ,m, (5.35)

(ii) zi0ȳi + yi0z̄i = 0, i = 1,2, . . . ,m, (5.36)

where zi = (zi0, z̄
T
i )T, yi = (yi0, ȳ

T
i )T.

Proof The proof is similar to that of Lemma 15 in [2], and is omitted here. �

Now we give two theorems about the relation between the solutions of primal
problem (5.23)–(5.27) and dual problem (5.28)–(5.33) for robust nonlinear SVORM
in Hilbert space.

Theorem 5.4 Suppose that ((ᾱ(∗))T, β̄, γ̄ , z̄u, z̄v)
T is any optimal solution of the

dual problem (5.28)–(5.33), where ᾱ(∗) = (ᾱ1
1, . . . , ᾱ1

l1
, . . . , ᾱk

1, . . . , ᾱk
lk
, ᾱ∗1

1 , . . . ,

ᾱ∗1
l1

, . . . , ᾱ∗k
1 , . . . , ᾱ∗k

lk
)T. If for any j = 1, . . . , k − 1, there exists a subscript i such

that either the component ᾱ
j
i ∈ (0,C) or ᾱ

∗j+1
i ∈ (0,C), then for the primal prob-

lem (5.23)–(5.27), there is a solution (w̄, b̄, ξ̄ (∗), ū, v̄, t̄ ) such that

w̄ = γ̄

γ̄ − ∑k
j=1

∑lj

i=1 rji (ᾱ
j
i + ᾱ

∗j
i )

k
∑

j=1

lj
∑

i=1

(ᾱ
∗j
i − ᾱ

j
i )�(x

j
i ) (5.37)

and b̄ = (b̄1, . . . , b̄k−1)
T, where b̄j is defined by, if there exists ᾱ

j
i ∈ (0,C),

b̄j = 1 +
k

∑

j ′=1

lj
′

∑

i′=1

(ᾱ
∗j ′
i′ − ᾱ

j ′
i′ )K(x

j ′
i′ , x

j
i ) − γ̄ rji ; (5.38)
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if there exists ᾱ
∗j+1
i ∈ (0,C),

b̄j = −1 +
k

∑

j ′=1

lj
′

∑

i′=1

(ᾱ
∗j ′
i′ − ᾱ

j ′
i′ )K(x

j ′
i′ , x

j+1
i ) + γ̄ rj+1

i , (5.39)

where K(x,x′) and r
j
i are given by (5.7)–(5.8) and (5.12)–(5.13).

Proof Firstly, we prove that the problem (5.28)–(5.33) is strictly feasible. Be-
cause the problem (5.28)–(5.33) is a convex programming problem in finite dimen-
sional space, we can construct a strictly feasible solution by the following way.
Let β̂ = − 3

10 , γ̂ = 3
10 , ẑu = 4

5 , ẑv = − 1
5 , Easily verified that β̂, γ̂ , ẑu, ẑv satisfy the

constrains (5.30)–(5.31) and the strictly inequality of (5.30). For given the penalty
parameter C > 0, we must be able to find an α̂(∗) so that ((α̂(∗))T, β̂, γ̂ , ẑu, ẑv)

T

satisfies the constrains (5.29), (5.32) and (5.33) and the strictly inequality of (5.29)
and (5.33). So the problem is strictly feasible.

The Lagrange function of the dual problem (5.28)–(5.33) is

L(·) = −
k

∑

j=1

lj
∑

i=1

(α
∗j
i + α

j
i ) − β − t

k
∑

j=1

lj
∑

i=1

[rj
i (α

∗j
i + α

j
i ) − γ ]

− wT

(
k

∑

j=1

lj∑

i=1

(α
j
i − α

∗j
i )�(x

j
i )

)

− z1zu − z2zv − zγ γ

+
k

∑

j=1

lj∑

i=1

ξ
j
i (α

j
i − C)

+
k

∑

j=1

lj∑

i=1

ξ
∗j
i (α

∗j
i − C) −

k
∑

j=1

lj∑

i=1

η
j
i α

j
i −

k
∑

j=1

lj∑

i=1

η
∗j
i α

∗j
i

+
k−1
∑

j=1

bj

(
lj

∑

i=1

α
j
i −

lj+1
∑

i=1

α
∗j
i

)

+ u

(

β + zu − 1

2

)

+ v

(

β + zv + 1

2

)

, (5.40)

where t, z1, z2, zγ , u, v ∈ R, w ∈ H, b ∈ Rk−1, ξ (∗) and η(∗) ∈ R2l are the Lagrange

multiplies and satisfy ‖w‖ ≤ t ,
√

z2
2 + z2

γ ≤ z1, ξ (∗) ≥ 0 and η(∗) ≥ 0. For the so-

lution (ᾱ(∗))T, β̄, γ̄ , z̄u, z̄v)
T, according to the result in [22], there exist Lagrange

multiply vectors (t̄ , w̄)T, (ū, v̄, z̄γ )T, ξ̄ (∗), η̄(∗), which satisfy the following KKT-
conditions
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−1 − t̄ r
j
i − (w̄ · �(x

j
i )) + b̄j + ξ̄

j
i − η̄

j
i = 0, j = 1, . . . , k − 1, i = 1, . . . , lj ,

(5.41)

ξ̄
j
i ≥ 0, η̄

j
i ≥ 0, j = 1, . . . , k − 1, i = 1, . . . , lj , (5.42)

−1 − t̄ r
j
i + (w̄ · �(x

j
i )) − b̄j−1 + ξ̄

∗j
i − η̄

∗j
i = 0, j = 2, . . . , k, i = 1, . . . , lj ,

(5.43)

ξ̄
∗j
i ≥ 0, η̄

∗j
i ≥ 0, j = 1, . . . , k − 1, i = 1, . . . , lj , (5.44)

0 ≤ ᾱ
j
i , ᾱ

∗j
i ≤ C, j = 1, . . . , k − 1, i = 1, . . . , lj , (5.45)

lj
∑

i=1

ᾱ
j
i =

lj+1
∑

i=1

ᾱ
j+1
i , j = 1, . . . , k − 1, (5.46)

ξ̄
j
i (ᾱ

j
i − C) = 0, ξ̄

∗j
i (ᾱ

∗j
i − C) = 0, j = 1, . . . , k − 1, i = 1, . . . , lj , (5.47)

η̄
j
i ᾱ

j
i = 0, η̄

∗j
i ᾱ

∗j
i = 0, j = 1, . . . , k − 1, i = 1, . . . , lj , (5.48)

(

t̄

w̄

)T
(∑k

j=1
∑lj

i=1 r
j
i (ᾱ

j
i + ᾱ

∗j
i ) − γ̄

∑k
j=1

∑lj

i=1(ᾱ
j
i − ᾱ

∗j
i )�(x

j
i )

)

= 0,

(

t̄

w̄

)

∈ Q, t̄ ∈ R, w̄ ∈ H,

(5.49)
⎛

⎝

ū

v̄

z̄γ

⎞

⎠

T ⎛

⎝

z̄u

z̄v

γ̄

⎞

⎠ = 0,

⎛

⎝

ū

v̄

z̄γ

⎞

⎠ ∈ Q3, z̄γ = t̄ . (5.50)

However (5.41)–(5.42) imply

−1 − t̄ r
j
i − (w̄ · �(x

j
i )) + b̄j + ξ̄

j
i ≥ 0, j = 1, . . . , k − 1, i = 1, . . . , lj , (5.51)

ξ̄
j
i ≥ 0, j = 1, . . . , k, i = 1, . . . , lj . (5.52)

Similarly, (5.43)–(5.44) imply

−1 − t̄ r
j
i + (w̄ · �(x

j
i )) − b̄j−1 + ξ̄

∗j
i ≥ 0, j = 2, . . . , k, i = 1, . . . , lj , (5.53)

ξ̄
∗j
i ≥ 0, j = 1, . . . , k, i = 1, . . . , lj . (5.54)

Therefore, (w̄, b̄, ξ̄ (∗), ū, v̄, t̄ ) satisfies the constraint conditions of the primal prob-
lem (5.23)–(5.27), i.e., it is a feasible solution.

Since
(

t̄

w̄

) ∈ Q,

⎛

⎝

∑k
j=1

∑lj

i=1 r
j
i (ᾱ

j
i + ᾱ

∗j
i ) − γ̄

∑k
j=1

∑lj

i=1(ᾱ
j
i − ᾱ

∗j
i )�(x

j
i )

⎞

⎠ ∈ Q,
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where Q is second order cone in Hilbert space. According to Lemma 5.3, (5.49) is
equivalent to

t̄

(
k

∑

j=1

lj
∑

i=1

r
j
i (ᾱ

j
i + ᾱ

∗j
i ) − γ̄

)

+ w̄T

(
k

∑

j=1

lj
∑

i=1

(ᾱ
j
i − ᾱ

∗j
i )�(x

j
i )

)

= 0, (5.55)

t̄

(
k

∑

j=1

lj∑

i=1

(ᾱ
j
i − ᾱ

∗j
i )�(x

j
i )

)

+
(

k
∑

j=1

lj∑

i=1

r
j
i (ᾱ

j
i + ᾱ

∗j
i ) − γ̄

)

w̄ = 0. (5.56)

According to Lemma 15 in [2], (5.50) is equivalent to

ūz̄u + v̄z̄v + t̄ γ̄ = 0, (5.57)

ū

(

v̄

t̄

)

+ z̄u

(

z̄v

γ̄

)

= 0. (5.58)

So considering (5.55)–(5.56), (5.57)–(5.58) and z̄u − z̄v = 1, we get

w̄ = γ̄

(γ̄ − ∑k
j=1

∑lj

i=1 r
j
i (ᾱ

j
i + ᾱ

∗j
i ))

k
∑

j=1

lj
∑

i=1

(ᾱ
∗j
i − ᾱ

j
i )�(x

j
i ), (5.59)

ū = z̄u, v̄ = z̄v, t̄ = −γ̄ . (5.60)

Furthermore, from the equations (5.41)–(5.50), (5.59)–(5.60), and let α∗1
i = 0,

i = 1,2, . . . , n1, αk
i = 0, i = 1,2, . . . , nk , we have

−1

2
(ū − v̄) − C

k
∑

j=1

lj
∑

i=1

(ξ̄
j
i + ξ̄

∗j
i )

= −1

2
(z̄u + z̄v) − C

k
∑

j=1

lj
∑

i=1

(ξ̄
j
i + ξ̄

∗j
i )

+
k−1
∑

j=1

lj∑

i=1

ᾱ
j
i (−1 − t̄ r

j
i − (w̄ · �(x

j
i )) + b̄j + ξ̄

j
i − η̄

j
i )

+
k∑

j=2

lj∑

i=1

ᾱ
∗j
i (−1 − t̄ r

j
i + (w̄ · �(x

j
i )) − b̄j−1 + ξ̄

∗j
i − η̄

∗j
i )

= β̄ −
k

∑

j=1

lj
∑

i=1

ξ̄
j
i (C − ᾱ

j
i ) −

k
∑

j=1

lj
∑

i=1

ξ̄
∗j
i (C − α

∗j
i )
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+
k−1
∑

j=1

lj∑

i=1

ᾱ
j
i η̄

j
i +

k
∑

j=2

lj∑

i=1

ᾱ
∗j
i η̄

∗j
i +

k
∑

j=1

b̄j

(
lj

∑

i=1

ᾱ
j
i −

lj+1
∑

i=1

ᾱ
∗j+1
i

)

− t̄

k
∑

j=1

lj
∑

i=1

r
j
i (ᾱ

j
i + ᾱ

∗j
i ) −

k
∑

j=1

lj
∑

i=1

(ᾱ
j
i − ᾱ

∗j
i )(w̄ · �(x

j
i ))

−
k

∑

j=1

lj
∑

i=1

(ᾱ
j
i + ᾱ

∗j
i )

= −β̄ −
k

∑

j=1

lj
∑

i=1

(ᾱ
j
i + ᾱ

∗j
i ).

The equation above shows that the objective function value of the dual prob-
lem (5.28)–(5.33) at ((ᾱ(∗))T, β̄, γ̄ , z̄u, z̄v)

T is equal to that of the primal problem
(5.23)–(5.27) at (w̄, b̄, ξ̄ (∗), ū, v̄, t̄ ). According to Theorem 4 in [71], we conclude
that (w̄, b̄, ξ̄ (∗), ū, v̄, t̄ ) is a solution of the primal problem.

In order to get the expressions (5.38) and (5.39), we consider KKT-condition
(5.41)–(5.50) and reach that

ᾱ
j
i (−1 − t̄ r

j
i − (w̄ · �(x

j
i )) + b̄j + ξ̄

j
i ) = 0, j = 1, . . . , k − 1, i = 1, . . . , lj ,

(5.61)

ᾱ
∗j
i (−1 − t̄ r

j
i + (w̄ · �(x

j
i )) − b̄j−1 + ξ̄

∗j
i ) = 0, j = 2, . . . , k, i = 1, . . . , lj ,

(5.62)

ξ̄
j
i (ᾱ

j
i − C) = 0, ξ̄

∗j
i (ᾱ

∗j
i − C) = 0, j = 1, . . . , k − 1, i = 1, . . . , lj .

(5.63)

So the expressions (5.38) and (5.39) follow. �

Above the theorem shows that how to compute w and b under some conditions
on ᾱ(∗). The following theorem gives that how to compute w and b in general case.

Theorem 5.5 Suppose that ((ᾱ(∗))T, β̄, γ̄ , z̄u, z̄v)
T is any optimal solution of the

dual problem (5.28)–(5.33), where ᾱ(∗) = (ᾱ1
1, . . . , ᾱ1

l1
, . . . , ᾱk

1, . . . , ᾱk
lk
, ᾱ∗1

1 , . . . ,

ᾱ∗1
l1

, . . . , ᾱ∗k
1 , . . . , ᾱ∗k

lk
)T. Then the primal problem (5.23)–(5.27) has a solution

(w̄, b̄, ξ̄ (∗), ū, v̄, t̄ ) such that

{(w, b) = (w, b1, . . . , bk−1) | w = w̄, b̄j ∈ [bdn
j , b

up
j ]}, j = 1, . . . , k − 1, (5.64)

where

w̄ = γ̄

γ̄ − ∑k
j=1

∑lj

i=1 rji (ᾱ
j
i + ᾱ

∗j
i )

k
∑

j=1

lj
∑

i=1

(ᾱ
∗j
i − ᾱ

j
i )�(x)

j
i , (5.65)
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bdn
j = max

{

max
i∈I

j
1

((w̄ · �(x)
j
i ) − γ̄ rji + 1),max

i∈I
j
4

((w̄ · �(x)
j+1
i ) + γ̄ rj+1

i − 1)
}

,

(5.66)

b
up
j = min

{

min
i∈I

j
3

((w̄ · �(x)
j
i ) − γ̄ rji + 1),min

i∈I
j
2

((w̄ · �(x)
j+1
i ) + γ̄ rj+1

i − 1)
}

,

(5.67)

and

I
j

1 = {i ∈ {1, . . . , lj }|αj
i = 0}, I

j

2 = {i ∈ {1, . . . , lj+1}|α∗j+1
i = 0},

I
j

3 = {i ∈ {1, . . . , lj }|αj
i = C}, I

j

4 = {i ∈ {1, . . . , lj+1}|α∗j+1
i = C},

where �(x
j
i ) and rji are given by (5.12) and (5.13).

Proof Reminded that the proof of Theorem 5.4, we see that what we need to prove
is only the b̄’s expressions (5.64), (5.66) and (5.67). In fact, following (5.61)–(5.63),
we have

bj ≥ 1 + (w · �(x
j
i )) − γ̄ r

j
i , i ∈ I

j

1 = {i ∈ {1, . . . , lj } | αj
i = 0},

bj ≤ −1 + (w · �(x
j+1
i )) + γ̄ r

j+1
i , i ∈ I

j

2 = {i ∈ {1, . . . , lj+1} | α∗j+1
i = 0},

bj ≤ 1 + (w · �(x
j
i )) − γ̄ r

j
i , i ∈ I

j

3 = {i ∈ {1, . . . , lj } | αj
i = C},

bj ≥ −1 + (w · �(x
j+1
i )) + γ̄ r

j+1
i , i ∈ I

j

4 = {i ∈ {1, . . . , lj+1} | α∗j+1
i = C}.

Combining the above equations, we get b̄j ∈ [bdn
j , b

up
j ], where b

up
j and bdn

j are de-
fined by (5.66) and (5.67) respectively. �

This leads to the following algorithm

Algorithm 5.6 (Robust SVORM (R-SVORM))

(1) Given a training set (5.9);
(2) Select C > 0 and a kernel. There are two choices:

Case I: K(x,x ′) = K1(x, x ′) = (x · x ′);
Case II: K(x,x′) = K2(x, x ′) = exp(

−‖x−x′‖2

2σ 2 );

(3) Solve the dual problem (5.28)–(5.33) and get its solution ((α(∗))T, β, γ, zu, zv)
T;

(4) Compute

g(x) = γ

(γ − ∑k
j=1

∑lj

i=1 rji (α
j
i + α

∗j
i ))

k
∑

j=1

lj
∑

i=1

(α
∗j
i − α

j
i )K(x

j
i , x), (5.68)

where rji = r
j
i for case I, rji = (2 − 2 exp(−(r

j
i )2/2σ 2))

1
2 for case II;
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(5) For j = 1, . . . , k − 1, execute the following steps:
(5.1) Choose some component α

j
i ∈ (0,C) in α(∗). If we get such i, let

bj = 1 +
k

∑

j ′=1

lj
′

∑

i′=1

(α
∗j ′
i′ − α

j ′
i′ )K(x

j ′
i′ , x

j
i ) − γ rji , (5.69)

otherwise go to step (5.2);
(5.2) Choose some component α

∗j+1
i ∈ (0,C) in α(∗). If we get such i, let

bj =
k

∑

j ′=1

lj
′

∑

i′=1

(α
∗j ′
i′ − α

j ′
i′ )K(x

j ′
i′ , x

j+1
i ) + γ rj+1

i − 1, (5.70)

otherwise go to step (5.3);
(5.3) Let

bj = 1

2
(bdn

j + b
up
j ), (5.71)

where

bdn
j = max

{

max
i∈I

j
1

(g(x
j
i ) − γ rji + 1),max

i∈I
j
4

(g(x
j+1
i ) + γ rj+1

i − 1)
}

,

b
up
j = min

{

min
i∈I

j
3

(g(x
j
i ) + −γ rji + 1),min

i∈I
j
2

(g(x
j+1
i ) + γ rj+1

i − 1)
}

,

and

I
j

1 = {i ∈ {1, . . . , lj } | αj
i = 0},

I
j

2 = {i ∈ {1, . . . , lj+1} | α∗j+1
i = 0},

I
j

3 = {i ∈ {1, . . . , lj } | αj
i = C},

I
j

4 = {i ∈ {1, . . . , lj+1} | α∗j+1
i = C};

(6) If there exists j ∈ {1, . . . , k} such that bj ≤ bj−1, the algorithm stop or go to
step (2);

(7) Define bk = +∞ and construct the decision function

f (x) = min
s∈{1,...,k}{s : g(x) − bs < 0}. (5.72)

Obviously, the above algorithm is reduced to the original SVORM algorithm by
choosing r

j
i = 0, j = 1, . . . , k, i = 1, . . . , lj .
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5.2 Robust Multi-class Algorithm

Now we turn to our robust multi-class algorithm solving the multi-class classifica-
tion problem with perturbation. The multi-class classification problem with pertur-
bation is presented as follows:

Supposing that given a training set

T = {(X1, y1), . . . , (Xl, yl)}, (5.73)

where Xi is the input set: a sphere with xi and radius ri , namely,

Xi = {xi + riui : ‖ui‖ ≤ 1}, i = 1, . . . , l, (5.74)

the output is yi ∈ Y = {1,2, . . . , k}, l is the number of all training points. The task
is to find a decision function f (x) : Rn → Y .

For standard multi-class problem without perturbation, a series of algorithms
based on SVORM is proposed in [230]; Particularly a multi-class algorithm based
on 3-class SVORM is developed in detail [232]. Essentially speaking, our robust
multi-class algorithm is obtained from the latter one (Algorithm 2 in [232]) with
replacing the SVORM by the above robust SVORM. More exactly, the robust multi-
algorithm is described as follows:

Algorithm 5.7 (Robust Multi-class Algorithm)

(1) Given the training set (5.73). Construct a set P containing k(k −1)/2 class pair:

P = {(s11, s21), . . . , (s1,k(k−1)/2, s2,k(k−1)/2)}
= {(s1i , s2i ) | s1i < s2i , (s1i , s2i ) ∈ (Y × Y ), i = 1, . . . , k(k − 1)/2}, (5.75)

where Y = {1, . . . , k}. Set m = 1;
(2) Let (t1, t2) = (s1m, s2m) and transform the training set (5.73) into the following

form:

T̃ = {X̃ j
i }j=1,2,3

i=1,...,lj
, (5.76)

where

{X̃ 1
i , i = 1, . . . , l1} = {Xi | yi = t1},

{X̃ 2
i , i = 1, . . . , l2} = {Xi | yi ∈ Y \{t1, t2}},

{X̃ 3
i , i = 1, . . . , l3} = {Xi | yi = t2};

(3) For the training set (5.76), execute Algorithm 5.6, with Gaussian kernel and
k = 3 and get the decision function ft1,t2(x);

(4) Suppose that an input x̄ is given, where ‖u‖ ≤ 1. When ft1,t2(x̄) = 1, a positive
vote is added on class t1, and no votes are added on the other classes; when
ft1,t2(x̄) = 3, a positive vote is added on class t2, and no votes are added on the
other classes; when ft1,t2(x̄) = 2, a negative vote is added on both class t1 and
class t2, and no votes are added on the other classes;
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(5) If m 
= k(k − 1)/2, set m = m + 1, return to the step (3);
(6) Calculate the total votes of each class by adding the positive and negative votes

on this class. The input x̄ is assigned to the class that gets the most votes.

5.3 Numerical Experiments

The numerical experiments are implemented on a PC (256 RAM, CPU 2.66 GHz)
using SeDuMi1.0 [191] as a solver is developed by J.Sturm for optimization prob-
lems over symmetric cones including SOCP. Our experiments are concerned with
two algorithms proposed above.

5.3.1 Numerical Experiments of Algorithm 5.6

Algorithm 5.6 with both linear kernel and Gaussian kernel are implemented. Our
numerical experiments follow the approach in [250]. In fact, following [42, 74],
the ordinal regression problems are obtained from the regression problems in [74]
by discretizing their output values. Due to the time consuming, only 4 regression
problems are selected among the 29 ones in [74]. These 4 problems are the smallest
ones according to the number of the training points.

In order to test our algorithms, the measurement errors in the inputs of the train-
ing points are considered. Assume that x

j
i given by the dataset is the measurement

value and the real value x̄
j
i is given by

x̄
j
i = x

j
i + r

j
i u

j
i , (5.77)

where ‖uj
i ‖ = 1. For simplicity, r

j
i is assumed to be a constant independent of i

and j , i.e. r
j
i = r . On the other hand, for the test point, there is also a perturbation

around its attribute x
j
i generated by the same way. More precisely, the input x̄

j
i

of the test point is obtained by x̄
j
i = x

j
i + r

j
i u

j
i with the same constant r and the

noise u
j
i is generated randomly from the normal distribution and scaled on the unit

sphere.
The parameters in Algorithm 5.6 with both linear kernel and Gaussian kernel are

chosen by ten-fold cross validation: in Algorithm 5.6 with linear kernel, for data
sets “Diabetes” and “Triazines” C = 1000, for data sets “Pyrimidines” C = 10, for
data sets “Wisconsin” C = 10000; in Algorithm 1 with Gaussian kernel, for four
data sets, the penalty parameters are the same C = 1000; the kernel parameters,
for data sets “Diabetes” and “Triazines” σ = 1, for data sets “ Pyrimidines” σ = 4,
for data sets “Wisconsin” σ = 0.25. The numerical results for Algorithm 5.6 with
linear kernel (R-LSVORM) and Algorithm 5.6 with Gaussian kernel (R-SVORM)
are given in Table 5.1 and Table 5.2 respectively. What we are concerned here is
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Table 5.1 For Algorithm 5.6 with linear kernel the percentage of tenfold testing error for datasets
with noise

Dataset Instances Dimension Class Algorithm r

0.1 0.2 0.3 0.4 0.5

Diabetes 43 2 5 R-LSVORM 0.4884 0.4651 0.4651 0.4651 0.4651

LSVORM 0.4884 0.4884 0.4884 0.4884 0.4884

Pyrimidines 74 27 5 R-LSVORM 0.5811 0.5811 0.5811 0.5811 0.5811

LSVORM 0.5946 0.5811 0.6081 0.6351 0.7027

Triazines 186 60 5 R-LSVORM 0.5215 0.5215 0.5215 0.5215 0.5215

LSVORM 0.5376 0.6183 0.7366 0.6882 0.7258

Wisconsin 194 32 5 R-LSVORM 0.7320 0.7113 0.6495 0.6804 0.6959

LSVORM 0.7320 0.7165 0.7423 0.7629 0.7216

Table 5.2 For Algorithm 5.6 with Gaussian kernel the percentage of tenfold testing error for
datasets with noise

Dataset Algorithm r

0.1 0.2 0.3 0.4 0.5

Diabetes R-SVORM 0.4651 0.4651 0.4651 0.4651 0.4651

SVORM 0.5349 0.5349 0.5581 0.4884 0.5116

Pyrimidines R-SVORM 0.4865 0.5811 0.5811 0.5811 0.5946

SVORM 0.4865 0.5811 0.6351 0.6892 0.6081

Triazines R-SVORM 0.5215 0.5215 0.5215 0.5215 0.5215

SVORM 0.5323 0.6613 0.7581 0.8280 0.8333

Wisconsin R-SVORM 0.7216 0.7474 0.7216 0.7216 0.7216

SVORM 0.7990 0.7784 0.7784 0.7784 0.7784

the percentage of tenfold testing error, which are shown with different noise level r .
In addition, for comparison, the results corresponding to the SVORM without per-
turbations are also listed in these tables. It can be seen that the performance of our
Robust SVORM is better. Since all of these problems are 5-class classification, the
results on the percentages of tenfold testing error meaningful, e.g. they are compa-
rable to that in [74].

5.3.2 Numerical Experiments of Algorithm 5.7

Algorithm 5.7 is also implemented in our numerical experiments. The datasets are
taken from the UCI machine learning repository [21]. They are Iris, Wine and Glass.



96 5 Robust Support Vector Machines

Table 5.3 For Algorithm 5.7 the percentage of tenfold testing error for datasets with noise

Dataset Instances Dimension Class Algorithm r

0.1 0.2 0.3 0.4

Iris 150 4 3 I 0.0467 0.0467 0.0533 0.0667

II 0.0733 0.0800 0.0733 0.0867

Wine 178 13 3 I 0.0674 0.0449 0.0506 0.0618

II 0.0730 0.0506 0.0674 0.1236

Glass 214 9 6 I 0.3692 0.5374 0.5514 0.5514

II 0.5561 0.6355 0.5981 0.5935

I: Algorithm 5.7 (Robust Multi-class Algorithm). II: Algorithm 5.7 in [232] (multi-class algorithm
based on 3-class SVORM)

The characteristics of three datasets are also shown in Table 5.3. The perturbations is
imposed on these datasets by the way similar to that in the above subsection. In our
numerical experiment, the parameters are selected as follows: the penalty C = 105

for three datasets, the kernel parameters σ = 2 for Iris and Glass, σ = 10 for Wine.
The result of experiment is listed in Table 5.3.

Table 5.3 shows that the percentage of tenfold testing correctness Algorithm 5.7
on three datasets with various noise levels r . In addition, for comparison, we also
list the corresponding results obtained by the algorithm without considering the per-
turbations, i.e. Algorithm 5.7 in our paper [232]. It can be observed that the perfor-
mance of the robust model is consistently better than of the original model.

In this section, we have established the robust SVORM with both linear kernel
and Gaussian kernel for ordinal regression problem with noise. And based on the
latter one, we have also established a multi-class algorithm for multi-class classifi-
cation problem with noise. Preliminary numerical experiments show that the perfor-
mance of our robust models are better than that of the corresponding original models
without perturbation.

It should be noted that the robust multi-class algorithm proposed here is able to
be extended to a class of algorithms. In fact, for a k-class classification problem, an
algorithm based on p-class robust SVORM with Gaussian kernel can be established.
The efficiency of this class of algorithms is an interesting topic to be studied further.

5.4 Robust Unsupervised and Semi-supervised Bounded
C-Support Vector Machine

In this section, we will propose robust model for unsupervised and semi-supervised
C-Support Vector Machine.
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5.4.1 Robust Linear Optimization

The general optimization problem under parameter uncertainty is as follows:

max f0(x, D̃0), (5.78)

s.t. fi(x, D̃i) ≥ 0, i ∈ I, (5.79)

x ∈ X, (5.80)

where fi(x, D̃i), i ∈ {0} ∪ I are given functions, X is a given set and D̃i , i ∈ {0} ∪
I is the vector of uncertain coefficients. When the uncertain coefficients D̃i take
values equal to their expected values D̃0

i , it is the normal formulation of problem
(5.78)–(5.80).

In order to address parameter uncertainty problem (5.78)–(5.80), Ben-Tal and
Nemirovski [15, 16] and independently EI-Ghaoui et al. [65, 66] proposed to solve
the following robust optimization problem

max min
D0∈U0

f0(x,D0), (5.81)

s.t. min
Di∈Ui

fi(x,Di) ≥ 0, i ∈ I, (5.82)

x ∈ X, (5.83)

where Ui , i ∈ {0} ∪ I are given uncertainty sets. In the robust optimization frame-
work (5.81)–(5.83), Melvyn Sim [186] consider the uncertainty set U as follows

U =
{

D | ∃u ∈ �|N | : D = D0 +
∑

j∈N

	Djuj , ‖u‖ ≤ 


}

,

where D0 is the nominal value of the data, 	Dj (j ∈ N) is a direction of data
perturbation, and 
 is a parameter controlling the trade-off between robustness and
optimality (robustness increases as 
 increases). We restrict the vector norm ‖ · ‖ as
‖u‖ = ‖u+‖, such as l1 and l2. When we select the norm as l1, then the correspond-
ing perturbation region is a polyhedron and the robust counterpart is also an Linear
Programming. When the norm is l2, then the corresponding uncertainty set U is an
ellipsoid and the robust counterpart becomes an Second Order Cone Programming
(SOCP), detailed robust counterpart can be seen in [186].

5.4.2 Robust Algorithms with Polyhedron

In practice, the training data have perturbations since they are usually corrupted by
measurement noise. When considering the measurement noise, we assume training
data xi ∈ Rn, i = 1, . . . , l, which has perturbed as x̃i , concretely, x̃ij = xij +	xij zij ,
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i = 1, . . . , l, j = 1, . . . , n, ‖zi‖p ≤ 
. zi is a random variable, when select its
norm as l1 norm, that, is ‖zi‖1 ≤ 
, while it is equivalent with

∑n
j=1 |zij | ≤ 
,

i = 1, . . . , l. Considering x̃ij = xij + 	xij zij ,

n
∑

j=1

∣
∣
∣
∣

x̃ij − xij

	xij

∣
∣
∣
∣
≤ 
, i = 1, . . . , l, (5.84)

so the perturbation region of xi is a polyhedron.
Considering Bounded C-Support Vector Machine [225] for the training data hav-

ing perturbations as mentioned above, we get the optimization problem

min
w,b,ξ

1

2
(‖w‖2 + b2) + C

l
∑

i=1

ξi, (5.85)

s.t. iyi((w · x̃i ) + b) ≥ 1 − ξi, i = 1, . . . , l, (5.86)

ξi ≥ 0, i = 1, . . . , l. (5.87)

Because constraint (5.86) is infinite and problem (5.85)–(5.87) is semi-infinite opti-
mization problem, there seems no good method to resolve it directly. Due to robust
linear optimization, we tend to find its robust counterpart. In Sim’s proposed robust
framework [186], constraint yi((w · x̃i ) + b) ≥ 1 − ξi is equivalent to

yi((w · xi) + b) − 1 + ξi ≥ 
ti, ti ≥ 0, (5.88)

|	xij |wjyi ≤ ti , j = 1, . . . , n, (5.89)

−|	xij |wjyi ≤ ti , j = 1, . . . , n. (5.90)

Then problem (5.85)–(5.87) turns to be

min
w,b,ξ,t

1

2
(‖w‖2 + b2) + C

l
∑

i=1

ξi, (5.91)

s.t. yi((w · xi) + b) − 1 + ξi ≥ 
ti, i = 1, . . . , l, (5.92)

ti ≥ 0, i = 1, . . . , l, (5.93)

|	xij |wjyi ≤ ti , j = 1, . . . , n, i = 1, . . . , l, (5.94)

− |	xij |wjyi ≤ ti , j = 1, . . . , n, i = 1, . . . , l, (5.95)

ξi ≥ 0, i = 1, . . . , l. (5.96)

Therefore we get the programming based on (5.85)–(5.87) for unsupervised classi-
fication problem

min
yi∈{−1,1}l

min
w,b,ξ,t

1

2
(‖w‖2 + b2) + C

l
∑

i=1

ξi, (5.97)

s.t. yi((w · xi) + b) − 1 + ξi ≥ 
ti, i = 1, . . . , l, (5.98)
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|	xij |wjyi ≤ ti , j = 1, . . . , n, i = 1, . . . , l, (5.99)

− |	xij |wjyi ≤ ti , j = 1, . . . , n, i = 1, . . . , l, (5.100)

ti ≥ 0, i = 1, . . . , l, (5.101)

ξi ≥ 0, i = 1, . . . , l, (5.102)

− ε ≤
l

∑

i=1

yi ≤ ε. (5.103)

Next, we will relax problem (5.97)–(5.103) to SDP to get its approximate solutions.
Follows the idea described in Chap. 4, we get the optimization problem [244]

min
M̃,θ,hi ,hi ,κi ,ϕi ,ϕi ,i=1,...,l

1

2
θ, (5.104)

s.t.

(

G ◦ M̃ ςT

ς θ − 2CeTh

)

� 0,

(5.105)

κ ≥ 0, ϕi ≥ 0, ϕi ≥ 0, i = 1, . . . , l, (5.106)

− (2n + 1)εe ≤ M̃e ≤ (2n + 1)εe, (5.107)

h ≥ 0, h ≥ 0, (5.108)

M̃ � 0, diag(M̃) = e, (5.109)

where ς = (1 + h1 − h1 + 
κ1, . . . ,1 + hl − hl + 
κl,−κ1e
T + ϕT

1 , . . . ,−κle
T +

ϕT
l ,−κ1e

T + ϕT
1 , . . . ,−κle

T + ϕT
l )T, and

M̃(2nl+l)×(2nl+l) = Ỹ Ỹ T, (5.110)

Ỹ = (y1, . . . , yl, y1, . . . , y1, . . . , yl, . . . , yl, y1, . . . , y1, . . . , yl, . . . , yl)
T, (5.111)

G(2nl+l)×(2nl+l) =
⎛

⎝

G1 G2T −G2T

G2 G3 −G3
−G2 −G3 G3

⎞

⎠ , (5.112)

G1 =
⎛

⎜
⎝

xT
1 x1 + 1 . . . xT

1 xl + 1
...

...
...

xT
l x1 + 1 . . . xT

l xl + 1

⎞

⎟
⎠ , (5.113)

G3ln×ln =

⎛

⎜
⎜
⎜
⎝

G311 G312 . . . G31l

G321 G322 . . . G32l

...
...

. . .
...

G3l1 G3l2 . . . G3ll

⎞

⎟
⎟
⎟
⎠

, (5.114)
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in which

G311 = diag(	x2
11, . . . ,	x2

1n),

G312 = diag(|	x11	x21|, . . . ,	|x1n	x2n|),
G31l = diag(|	x11	xl1|, . . . , |	x1n	xln|),
G321 = diag(|	x11	x21|, . . . , |	x1n	x2n|),
G322 = diag(	x2

21, . . . ,	x2
2n),

G32l = diag(|	xl1	x21|, . . . , |	xln	x2n|),
G3l1 = diag(|	x11	xl1|, . . . , |	x1n	xln|),
G3l2 = diag(|	xl1	x21|, . . . , |	xln	x2n|),
G3ll = diag(	x2

l1, . . . ,	x2
ln), (5.115)

G2ln×l =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x11|	x11| x21|	x11| . . . xl1|	x11|
x12|	x12| x22|	x12| . . . xl2|	x12|

...
...

. . .
...

x1n|	x1n| x2n|	x1n| . . . xln|	x1n|
x11|	x21| x21|	x21| . . . xl1|	x21|
x12|	x22| x22|	x22| . . . xl2|	x22|

...
...

. . .
...

x1n|	x2n| x2n|	x2n| . . . xln|	x2n|
...

...
...

...

x11|	xl1| x21|	xl1| . . . xl1|	xl1|
x12|	xl2| x22|	xl2| . . . xl2|	xl2|

...
...

. . .
...

x1n|	xln| x2n|	xln| . . . xln|	xln|

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.116)

Because M̃ has complicated structure and there is not an efficient rounding
method for it. In order to use of rounding method that eigenvector corresponding to
maximal eigenvalue of optimal solution M∗, which M = (y1, . . . , yl)

T(y1, . . . , yl),
we will find the relationship of M̃ and M . Set

Ĩ = (

Il; I1T
n×l; I2T

n×l; . . . ; I lT
n×l; I1T

n×l; I2T
n×l; . . . ; I lT

n×l

)T
, (5.117)

where Il is identity matrix with l × l, and I in×l (i = 1, . . . , l) is the matrix which
the elements of ith column are all ones and the rest elements are zeros. So that

M̃ = ĨMĨT. (5.118)

Clearly, diag(M̃) = e if and only if diag(M) = e; −(2n + 1)εe ≤ M̃e ≤ (2n + 1)εe

if and only if −εe ≤ Me ≤ εe; M̃ � 0 if and only if M � 0. Finally the semi-definite
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programming is

min
M,θ,hi ,hi ,κi ,ϕi ,ϕi ,i=1,...,l

1

2
θ, (5.119)

s.t. κ ≥ 0, ϕi ≥ 0, ϕi ≥ 0, i = 1, . . . , l, M � 0, (5.120)

− εe ≤ Me ≤ εe, h ≥ 0, h ≥ 0, diag(M) = e, (5.121)
(

G ◦ (ĨMĨT) ς

ςT θ − 2CeTh

)

� 0. (5.122)

Algorithm 5.8 (PRC-SDP)

(1) Given training set training data

T = {̃x1, . . . , x̃l}, (5.123)

where x̃ij = xij + 	xij zij , i = 1, . . . , l, j = 1, . . . , n, ‖zi‖1 ≤ 
, where 
 > 0
is chosen prior;

(2) Select appropriate kernel K(x,x′) and parameter C > 0, ε > 0;
(3) Solve problem (5.119)–(5.122), get the solution M∗, set y∗ = sgn(t1), where t1

is eigenvector corresponding to the maximal eigenvalue of M∗.

It is easy to extend the unsupervised classification algorithm to semi-supervised
classification algorithm follow the above method, and it omitted here.

5.4.3 Robust Algorithm with Ellipsoid

Considering the measurement noise, we also assume training data xi ∈ Rn, i =
1, . . . , l, which has perturbed as x̃i , x̃ij = xij + 	xij zij , i = 1, . . . , l, j = 1, . . . , n,
‖zi‖p ≤ 
. zi is a random variable, when its norm equals to l2 norm, that is
‖zi‖2 ≤ 
, which is equivalent with

∑n
j=1 z2

ij ≤ 
2, i = 1, . . . , l. Considering
x̃ij = xij + 	xij zij , then

n
∑

j=1

(
x̃ij − xij

	xij

)2 ≤ 
2, i = 1, . . . , l, (5.124)

so the perturbation region of xi is an ellipsoid.
In the Sim’s proposed robust framework [186], constraint yi((w · x̃i )+b) ≥ 1−ξi

is equivalent to

yi((w · xi) + b) − 1 + ξi ≥ 
ti, (5.125)

(ti , yi	xi1w1, . . . , yi	xinwn)
T ∈ Ln+1

i . (5.126)
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Same with the above section, we can get the semi-definite programming

min
M,θ,κi ,κi ,hi ,i=1,...,l

1

2
θ, (5.127)

s.t. yi((w · xi) + b) − 1 + ξi ≥ 
ti, (5.128)

(ti , yi	xi1w1, . . . , yi	xinwn)
T ∈ Ln+1

i , (5.129)

− εe ≤ Me ≤ εe, diag(M) = e, (5.130)

M � 0, κi ≥ 0, i = 1, . . . , l, (5.131)
(

G ◦ (ĨMĨT) η
ηT θ − 2
CeTκ

)

� 0, (5.132)

where

η =
(

κ1 − κ1 + 1



, . . . , κl − κl + 1



,h1, . . . , hl

)T

, (5.133)

Ĩ = (Il; I1T
n×l; I2T

n×l; · · · ; I lT
n×l)

T, (5.134)

G(nl+l)×(nl+l) =
(

G1 G2T

G2 G3

)

, (5.135)

G1 =

⎛

⎜
⎜
⎝

1

2 xT

1 x1 + 1 . . . 1

2 xT

1 xl + 1
...

...
...

1

2 xT

l x1 + 1 . . . 1

2 xT

l xl + 1

⎞

⎟
⎟
⎠

, (5.136)

G3ln×ln =

⎛

⎜
⎜
⎜
⎝

G311 G312 . . . G31l

G321 G322 . . . G32l

...
...

. . .
...

G3l1 G3l2 . . . G3ll

⎞

⎟
⎟
⎟
⎠

, (5.137)

G311 = diag(	x2
11, . . . ,	x2

1n),

G312 = diag(	x11	x21, . . . ,	x1n	x2n),

G31l = diag(	x11	xl1, . . . ,	x1n	xln),

G321 = diag(	x11	x21, . . . ,	x1n	x2n),

G322 = diag(	x2
21, . . . ,	x2

2n), (5.138)

G32l = diag(	xl1	x21, . . . ,	xln	x2n),

G3l1 = diag(	x11	xl1, . . . ,	x1n	xln),

G3l2 = diag(	xl1	x21, . . . ,	xln	x2n),

G3ll = diag(	x2
l1, . . . ,	x2

ln),
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G2ln×l =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1



x11	x11
1



x21	x11 . . . 1



xl1	x11
1



x12	x12
1



x22	x12 . . . 1



xl2	x12

...
...

. . .
...

1



x1n	x1n
1



x2n	x1n . . . 1



xln	x1n

1



x11	x21
1



x21	x21 . . . 1



xl1	x21
1



x12	x22
1



x22	x22 . . . 1



xl2	x22

...
...

. . .
...

1



x1n	x2n
1



x2n	x2n . . . 1



xln	x2n

...
...

...
...

1



x11	xl1
1



x21	xl1 . . . 1



xl1	xl1
1



x12	xl2
1



x22	xl2 . . . 1



xl2	xl2

...
...

. . .
...

1



x1n	xln
1



x2n	xln . . . 1



xln	xln

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.139)

Algorithm 5.9 (ERC-SDP)

(1) Given training set training data

T = {̃x1, . . . , x̃l}, (5.140)

where x̃ij = xij + 	xij zij , i = 1, . . . , l, j = 1, . . . , n, ‖zi‖2 ≤ 
 > 0, where 


is chosen prior;
(2) Select appropriate kernel K(x,x′) and parameter C > 0, ε > 0;
(3) Solve problem (5.127)–(5.132), get the solution M∗, set y∗ = sgn(t1), where t1

is eigenvector corresponding to the maximal eigenvalue of M∗.

It is also easy to extend the unsupervised classification algorithm to semi-
supervised classification algorithm.

5.4.4 Numerical Results

In this section, through numerical experiments, we will test two algorithm (PRC-
SDP and ERC-SDP) on various data sets using SeDuMi library. In order to evalu-
ate the influence of the robust trade-off parameter 
, we will set value of 
 from
0.25 to 1.25 with increment 0.25 on synthetic data set ‘AI’, which have 19 data
points in R2. Let parameters ε = 1, C = 100 and directions of data perturbations
are produced randomly. Results are showed in Table 5.4 (in which the number is the
misclassification percent) and illustrated in Fig. 5.2.

We also conduct two algorithms on Digits data sets which can be obtained from
http://www.cs.toronto.edu/~roweis/data.html. Selecting number ‘3’ and ‘2’, number
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Table 5.4 Results of
changing 
 
 0.25 0.5 0.75 1 1.25

PRC-SDP 6/19 4/19 2/19 2/19 2/19

ERC-SDP 4/19 4/19 4/19 4/19 4/19

Table 5.5 Results of changing 
 on data set ‘3-2’


 0.25 0.5 0.75 1

PRC-SDP 1/20 1/20 1/20 1/20

ERC-SDP 1/20 2/20 0 3/20


 1.5 2 2.5 3 3.5 4

PRC-SDP 1/20 1/20 1/20 1/20 1/20 1/20

ERC-SDP 2/20 2/20 4/20 3/20 5/20 3/20

Table 5.6 Results of changing 
 on data set ‘7-1’


 0.25 0.5 0.75 1

PRC-SDP 2/20 2/20 2/20 2/20

ERC-SDP 3/20 1/20 5/20 3/20


 1.5 2 2.5 3 3.5 4

PRC-SDP 2/20 2/20 2/20 2/20 2/20 2/20

ERC-SDP 5/20 4/20 4/20 4/20 3/20 2/20

‘7’ and ‘1’ as training sets respectively. Every number has ten samples of 256 dimen-
sions. Because the problems in PRC-SDP and ERC-SDP have 2ln+ l2 +3l +1 and
ln + l2 + 2l + 1 variables respectively (l is the number and n dimension of training
data respectively), it seems difficult for software SeDuMi to solve, therefore we use
principal component analysis to reduce the dimension n from 256 to 19. Here we
also set value of 
 from 0.25 to 1 with increment 0.25 and from 1.5 to 4 with incre-
ment 0.5, and directions of data perturbations are produced randomly. To evaluate
the robust classification performance, a labeled data set was taken and the labels are
removed, then run robust unsupervised classification algorithms, and labeled each
of the resulting class with the majority class according to the original training labels,
then measured the number of misclassification. The results are showed in Table 5.5
and Table 5.6, in which the number is the misclassification percent.





Chapter 6
Feature Selection via lp-Norm Support Vector
Machines

Though support vector machine has been a promising tool in machine learning, but
it does not directly obtain the feature importance. Identifying a subset of features
which contribute most to classification is also an important task in classification.
The benefit of feature selection is twofold. It leads to parsimonious models that
are often preferred in many scientific problems, and it is also crucial for achieving
good classification accuracy in the presence of redundant features [77, 252]. We can
combine SVM with various feature selection strategies, Some of them are “filters”:
general feature selection methods independent of SVM. That is, these methods se-
lect important features first and then SVM is applied for classification. On the other
hand, some are wrapper-type methods: modifications of SVM which choose impor-
tant features as well as conduct training/testing. In the machine learning literature,
there are several proposals for feature selection to accomplish the goal of automatic
feature selection in the SVM [26, 99, 216, 252, 254], in some of which they applied
the l0-norm, l1-norm or l∞-norm SVM and got competitive performance. The inter-
esting one is l1-norm SVM, where the 2-norm vector w of the objective function is
replaced by 1-norm in the standard SVM model. Naturally, we observe that it leads
to more sparse solution when p norm is reduced from 2-norm to 1-norm and the
more spare solutions when p (0 < p < 1) is decreased further.

We will propose two models in this chapter, lp-norm C-support vector classifi-
cation (lp-SVC) and lp-norm proximal support vector machine (lp-PSVM), which
separately combines C-SVC and PSVM [79] with feature selection strategy by in-
troducing the lp-norm (0 < p < 1).

6.1 lp-Norm Support Vector Classification

For a two-class classification problem, the training set is given by

T = {(x1, y1), . . . , (xl, yl)} ∈ (Rn × {−1,1})l, (6.1)

where xi = ([xi]1, . . . , [xi]n)T ∈ Rn and yi ∈ {−1,1}, i = 1, . . . , l. Standard
C-support vector machine aims to build a decision function by solving the following
primal problem:

Y. Shi et al., Optimization Based Data Mining: Theory and Applications,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-0-85729-504-0_6, © Springer-Verlag London Limited 2011
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min
w,b,ξ

1

2
‖w‖2 + C

l
∑

i=1

ξi, (6.2)

s.t. yi((w · xi) + b) ≥ 1 − ξi, i = 1, . . . , l, (6.3)

ξi ≥ 0, i = 1, . . . , l, (6.4)

where ‖w‖2 is the l2-norm of w.

6.1.1 lp-SVC

Naturally, we expect that using the lp (0 < p < 1)-norm to substitute the l2-norm
or l1-norm to find more sparse solution, which means w has more zero components
thus less features could be chosen, where

‖w‖p =
(

n
∑

i=1

|wi |p
) 1

p

, (6.5)

in the sense

‖w‖0 = lim
p→0

‖w‖p
p = lim

p→0

(
n

∑

i=1

|wi |p
)

= �{i | wi �= 0}, (6.6)

and

‖w‖1 = lim
p→1

‖w‖p
p = lim

p→1

(
n

∑

i=1

|wi |p
)

. (6.7)

Therefore we introduce lp-norm (0 < 1 < p) in problem (6.2)–(6.4) and it turns to
be

min
w,b,ξ

‖w‖p
p + C

l
∑

i=1

ξi, (6.8)

s.t. yi((w · xi) + b) ≥ 1 − ξi, i = 1, . . . , l, (6.9)

ξi ≥ 0, i = 1, . . . , l. (6.10)

Problem (6.8)–(6.10) is then called lp-SVC problem. The first part in the objec-
tive function is nonconvex and non-Lipschitz continuous in Rn.

Now we can construct algorithm lp-SVC as follows:

Algorithm 6.1 (lp-SVC)

(1) Given a training set T = {(x1, y1), . . . , (xl, yl)} ∈ (Rn × {−1,1})l ;
(2) Select appropriate parameters C and p;
(3) Solve problem (6.8)–(6.10) and get the solution (w∗, b∗);
(4) Construct the decision function as

f (x) = sgn((w∗ · x) + b∗). (6.11)
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6.1.2 Lower Bound for Nonzero Entries in Solutions of lp-SVC

Solving the nonconvex, non-Lipschitz continuous minimization problem (6.8)–
(6.10) is very difficult. Most optimization algorithms are only efficient for smooth
and convex problems. Of course we can apply some approximation methods to solve
(6.8)–(6.10), but numerical solutions generated by the approximation methods have
many entries with small values. Can we consider these entries to be zero entries in
the solution of the original minimization problem (6.8)–(6.10)? Moreover, how to
verify the accuracy of numerical solutions? In this section we will establish a lower
bound for the absolute value of nonzero entries in every local optimal solution of
the model, which can be used to eliminate zero entries precisely in any numerical
solution. Furthermore, this lower bound clearly shows the relationship between the
sparsity of the solution and the choice of the regularization parameter and norm, so
that our lower bound theory can be used for selecting desired model parameters and
norms.

Follow the idea of paper [35], we give out the lower bound for the absolute value
of nonzero entries in every local optimal solution of problem (6.8)–(6.10).

Let Z ∗
p denote the set of local solutions of problem (6.8)–(6.10), then for any

z∗ = (w∗, b∗, ξ∗) ∈ Z ∗
p , we have:

Theorem 6.2 (Lower bound) Let

Li =
(

p
/

(

C

l
∑

i=1

|xi |j
)) 1

1−p

, i = 1, . . . , n, (6.12)

then for any z∗ = (w∗, b∗, ξ∗) ∈ Z ∗
p , we have

w∗
i ∈ (−Li,Li) ⇒ w∗

i = 0, i = 1, . . . , n. (6.13)

Proof Suppose z∗ = (w∗, b∗, ξ∗) ∈ Z ∗
p , with ‖w∗‖0 = k, which means the number

of nonzero variables in w∗ is k, without loss of generality, we assume

w∗ = (w∗
1, . . . ,w∗

k ,0, . . . ,0)T. (6.14)

Let w̃∗ = (w∗
1, . . . ,w∗

k )
T, x̃i = ([xi]1, . . . , [xi]k)T ∈ Rk , i = 1, . . . , l, and construct

a new problem

min
w̃,b̃,ξ̃

‖w̃‖p
p + C

l
∑

i=1

ξ̃i , (6.15)

s.t. yi((w̃ · x̃i ) + b̃) ≥ 1 − ξ̃i , i = 1, . . . , l, (6.16)

ξi ≥ 0, i = 1, . . . , l. (6.17)

We denote the feasible set of problem (6.15)–(6.17) as

D̃ = {(w̃, b̃, ξ̃ )|yi((w̃ · x̃i) + b̃) ≥ 1 − ξ̃i , i = 1, . . . , l; ξ̃i ≥ 0, i = 1, . . . , l}.
(6.18)
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Because |w̃∗| > 0, then ‖w̃‖p
p is continuously differentiable at w̃∗, moreover

‖w̃∗‖p
p + C

l
∑

i=1

ξi

= ‖w∗‖p
p + C

l
∑

i=1

ξi

≤ min

{

‖w‖p
p + C

l
∑

i=1

ξi

∣
∣
∣(w,b, ξ) ∈ D; [x]j = 0, j = k + 1, . . . , n

}

= min

{

‖w̃‖p
p + C

l
∑

i=1

ξ̃i

∣
∣
∣(w̃, b̃, ξ̃ ) ∈ D̃

}

(6.19)

in a neighborhood of (w∗, b∗, ξ∗). We find that (w̃∗, b∗, ξ∗) must be a local min-
imizer of problem (6.15)–(6.17). Hence the first order necessary condition for
(6.15)–(6.17) holds at (w̃∗, b∗, ξ∗), i.e. KKT conditions:

yi((w̃ · x̃i) + b∗) ≥ 1 − ξ∗
i , i = 1, . . . , l; (6.20)

ξ∗
i ≥ 0, i = 1, . . . , l; (6.21)

α∗
i (yi((w̃ · x̃i ) + b∗) − 1 + ξ∗

i ) = 0, i = 1, . . . , l; (6.22)

α∗
i ≥ 0, i = 1, . . . , l; (6.23)

∇w̃∗,b∗,ξ∗L(α∗,w,b, ξ) = 0, (6.24)

where

L(α∗,w,b, ξ) = ‖w̃‖p
p + C

l
∑

i=1

ξ̃i −
l

∑

i=1

α∗
i (yi((w̃ · x̃i ) + b∗) − 1 + ξ∗

i )

is the Lagrange function of problem (6.15)–(6.17), and α∗
i , i = 1, . . . , l are Lagrange

multipliers.
From above conditions, we can deduce that p(|w̃∗|p−1 ·sign(w̃∗)) = ∑l

i=1 α∗
i yi x̃i

and 0 ≤ α∗
i ≤ C, i = 1, . . . , l. Therefore we obtain

p|w̃∗|p−1 =
∣
∣
∣
∣
∣

l
∑

i=1

α∗
i yi x̃i

∣
∣
∣
∣
∣
≤

l
∑

i=1

αi |x̃i | ≤ C

l
∑

i=1

|xi |. (6.25)

Note that 0 < p < 1, we find

|w̃∗
j | ≥ Li =

(

p
/

(

C

l
∑

i=1

|xi |j
)) 1

1−p

. (6.26)

�

Remark 6.3 Result in Theorem 6.2 clearly shows the relationship between the spar-
sity of the solution and the choice of parameter C and norm ‖ · ‖p . For sufficiently
small C, the number of nonzero entries of w∗ in any local minimizer of problem
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(6.8)–(6.10) reduces to 0 for 0 < p < 1. Hence our lower bound theory can be used
for selecting model parameters C and p.

6.1.3 Iteratively Reweighted lq -SVC for lp-SVC

Following the idea of iteratively reweighted lq (q = 1,2) minimization proposed
in [30], we construct an iteratively reweighted l1-SVC to approximately solve lp-
SVC problem, which alternates between estimating wp and redefining the weights.
The algorithm is as follows:

Algorithm 6.4 (Iteratively Reweighted lq -SVC for lp-SVC)

(1) Set the iteration count K to zero and β
(0)
i = 1, i = 1, . . . , n; set q ≥ 1;

(2) Solve the weighted lq -SVM problem

min
w,b,ξ

n
∑

i=1

β
(K)
i |wi |q + C

l
∑

i=1

ξi, (6.27)

s.t. yi((w · xi) + b) ≥ 1 − ξi, i = 1, . . . , l, (6.28)

ξi ≥ 0, i = 1, . . . , l, (6.29)

and get the solution w(K) w.r.t. w;
(3) Update the weights: for each i = 1, . . . , n,

β
(K+1)
i = p

q
(|w(K)

i | + ε|)p−1|wi |1−q, (6.30)

here ε is a positive parameter to ensure that the algorithm is well-defined;
(4) Terminate on convergence or where K attains a specified maximum number of

iteration Kmax. Otherwise, increment K and go to step 2.

The typical choices of q are q = 1 or q = 2. That is, we relax lp regularization
to l1 or l2 regularization. If we choose q = 2, problem solved in step 2 will be a
standard C-SVC except for an iteratively weighted w, which assures that we can
apply standard C-SVC to solve large-scale problems with available softwares.

6.2 lp-Norm Proximal Support Vector Machine

Based on the results of lp-SVC, we apply lp norm to the proximal support vector
machine (PSVM). For a classification problem as formulation (6.1), PSVM aims to
build a decision function by solving the following primal problem:

min
w,b,η

1

2
(‖w‖2 + b2) + C

2

l
∑

i=1

η2
i , (6.31)

s.t. yi((w · xi) + b) = 1 − ηi, i = 1, . . . , l, (6.32)
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Fig. 6.1 Geometric
explanation of PSVM

in which ‖w‖2 is the l2-norm of w. Figure 6.1 describes its geometric explanation
in R2, the planes (w · x)+ b = ±1 around which points of the points “◦” and points
“+” cluster and which are pushed apart by the optimization problem (6.31)–(6.32).
PSVM leads to an extremely fast and simple algorithm for generating a linear or
nonlinear classifier that merely requires the solution of a single system of linear
equations, and has been efficiently applied to many fields.

In order to get more sparse solutions, we substitute the l2-norm of w and b by
lp-norm (0 < 1 < p) in problem (6.31)–(6.32) and it turns to be

min
w,b,η

λ(‖w‖p
p + |b|p) +

l
∑

i=1

η2
i , (6.33)

s.t. yi((w · xi) + b) = 1 − ηi, i = 1, . . . , l. (6.34)

Obviously, problem (6.33)–(6.34) is equivalent to the following unconstrained min-
imization problem

min
z∈Rn+1

‖Az − e‖2
2 + λ‖z‖p

p, (6.35)

where

z = (wT, b)T ∈ Rn+1, (6.36)

A =
⎛

⎜
⎝

y1x
T
1 , y1
. . .

ylx
T
l , yl

⎞

⎟
⎠ ∈ Rl×(n+1), (6.37)

e = (1, . . . ,1)T ∈ Rl. (6.38)

We call problem (6.35) lp-norm PSVM problem. Paper [35] established two lower
bounds for the absolute value of nonzero entries in every local optimal solution of
the general model (6.35), which can be used to eliminate zero entries precisely in
any numerical solution. Therefor, we apply them to describe the performance for
feature selection of lp-norm PSVM for classification.
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6.2.1 Lower Bounds for Nonzero Entries in Solutions of lp-PSVM

Like the proving procedure of the lp-SVC, let Q∗
p denote the set of local solutions

of problem, then for any q∗ ∈ Q∗
p , we have the corresponding theorems in [35] for

model (6.35):

Theorem 6.5 (First bound) Let Lp = (
λp
2β

)
1

1−p , where β = ‖A‖‖e‖, then for any
q∗ ∈ Q∗

p , we have

q∗
i ∈ (−Lp,Lp) ⇒ q∗

i = 0, i = 1, . . . , n + 1. (6.39)

Theorem 6.6 (Second bound) Let Lpi = (
λp(1−p)

2‖ai‖2 )
1

2−p , i = 1, . . . , n + 1, where ai

is the ith column of the matrix A (6.37), then for any q∗ ∈ Q∗
p , we have

q∗
i ∈ (−Lqi,Lqi) ⇒ q∗

i = 0, i = 1, . . . , n + 1. (6.40)

Just as pointed out by [35], the above two theorems clearly shows the relationship
between the sparsity of the solution and the choice of the regularization parameter
λ and norm ‖ · ‖p . The lower bounds is not only useful for identification of zero
entries in all local optimal solutions from approximation ones, but also for selection
of the regularization parameter λ and norm p.

6.2.2 Smoothing lp-PSVM Problem

Obviously, problem (6.35) is a nonconvex, non-Lipschitz continuous minimization
problem, [35] proposed an efficient method to solve it. They first smooth it by choos-
ing appropriate smoothing function and then apply the smoothing conjugate gradient
method (SCG) [36] to solve it, which guarantees that any accumulation point of a
sequence generated by this method is a Clarke stationary point of problem (6.35).
Here we first introduce the smoothing function and then smooth problem (6.35). Let
sμ(·) be a smoothing function of |t |, which takes the formulations as

sμ(t) =
{ |t |, if |t | > μ

2 ,

t2

μ
+ μ

4 , if |t | ≤ μ
2 ,

(6.41)

so the smoothed version of problem (6.35) is

min
z∈Rn+1

‖Az − e‖2
2 + λ

n+1
∑

i=1

(sμ(zi))
p. (6.42)

Therefore, based on solving (6.42), and determining the nonzero elements of solu-
tions by two bounds, we can establish the lp-norm PSVM algorithm for both feature
selection and classification problem:
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Table 6.1 Experiments on Heart disease dataset (l = 270, n = 13)

λ p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20 (0,0) (0,0) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

21 (0,0) (0,1) (0,0) (0,0) (0,1) (0,1) (0,0) (0,0) (0,0)

22 (0,0) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,0) (0,0)

23 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)

24 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)

25 (0,2) (0,3) (0,3) (0,3) (0,3) (0,3) (0,3) (0,2) (0,1)

26 (0,7) (0,7) (0,8) (0,8) (0,8) (0,6) (0,4) (0,4) (0,3)

27 (0,9) (0,10) (0,11) (0,11) (0,11) (0,11) (0,8) (0,7) (0,5)

Algorithm 6.7 (lp-PSVM)

(1) Given a training set T = {(x1, y1), . . . , (xl, yl)} ∈ (Rn × {−1,1})l ;
(2) Select appropriate parameters λ and p;
(3) Solve problem (6.42) using SCG method and get the solution z∗ = (w∗T, b∗)T;
(4) Set the variables w∗

i to zero if it satisfies either of the two bounds, get the sparse
solution w∗;

(5) Select the features corresponding to nonzero elements of w∗;
(5) Construct the decision function as

f (x) = sgn((w∗ · x) + b∗). (6.43)

6.2.3 Numerical Experiments

In this section, based on several UCI datasets we apply Algorithm 6.7 to investigate
the performance of feature selection by the choice of λ and norm ‖ · ‖p model. The
computational results are conducted on a Dell PC (1.80 GHz, 1.80 GHz, 512 MB of
RAM) with using Matlab 7.4.

For every dataset, we scale it with each feature to [0, 1], and then choose param-
eters λ ∈ {20,21, . . . ,27}, p ∈ [0.1,0.9] with step 0.1. Tables 6.1, 6.2, 6.3 and 6.4
describe the sparsity of solutions of problem (6.42) under corresponding (λ,p),
(�1, �2) in each table means the number of zero variables in solutions w∗ deter-
mined by bound (6.39) and bound (6.40) separately. Each Bold number denotes the
maximum number for a given λ and varying p.

From all the four tables we can see that: bound (6.40) gives out more sparsity
than bound (6.39); for bound (6.40), the sparsity value takes its maximum mainly at
p ∈ (0.2,0.6) for any given λ, which also can be roughly estimated by

p∗(λ) = arg max
0<p<1

(λp(1 − p))1/(2−p) (6.44)
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Table 6.2 Experiments on German credit dataset (l = 1000, n = 24)

λ p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20 (0,1) (0,2) (0,1) (0,1) (0,2) (0,1) (0,1) (0,1) (0,1)

21 (0,2) (0,2) (0,2) (0,1) (0,1) (0,1) (0,1) (0,0) (0,0)

22 (0,2) (0,3) (0,2) (0,2) (0,1) (0,2) (0,1) (0,1) (0,1)

23 (0,3) (0,5) (0,4) (0,2) (0,2) (0,2) (0,1) (0,1) (0,0)

24 (0,5) (0,5) (0,5) (0,5) (0,4) (0,3) (0,2) (0,1) (0,1)

25 (0,7) (0,7) (0,6) (0,7) (0,7) (0,6) (0,4) (0,1) (0,1)

26 (1,7) (0,10) (0,10) (0,9) (0,9) (0,7) (0,7) (0,3) (0,1)

27 (1,12) (1,13) (0,13) (0,13) (0,12) (0,10) (0,9) (0,6) (0,2)

Table 6.3 Experiments on Australian credit dataset (l = 690, n = 14)

λ p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,0) (0,1) (0,0)

21 (0,1) (0,1) (0,1) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0)

22 (0,1) (0,1) (0,2) (0,1) (0,1) (0,1) (0,1) (0,1) (0,0)

23 (0,1) (0,1) (0,2) (0,1) (0,2) (0,1) (0,1) (0,1) (0,0)

24 (0,3) (0,4) (0,5)) (0,4) (0,2) (0,1) (0,1) (0,1) (0,1)

25 (1,5) (0,6) (1,6) (0,6) (0,6) (0,5) (0,2) (0,2) (0,1)

26 (0,6) (0,6) (0,6) (0,6) (0,6) (0,6) (0,6) (0,3) (0,2)

27 (0,7) (1,9) (1,9) (0,10) (0,10) (0,8) (0,7) (0,6) (0,3)

Table 6.4 Experiments on Sonar dataset (l = 208, n = 60)

λ p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20 (0,1) (0,5) (0,2) (0,1) (0,3) (0,1) (0,0) (0,0) (0,0)

21 (0,2) (0,4) (0,3) (0,2) (0,2) (0,2) (0,0) (0,4) (0,0)

22 (0,11) (0,9) (0,7) (0,7) (0,7) (0,3) (0,3) (0,0) (0,1)

23 (0,12) (0,17) (0,13) (0,13) (0,11) (0,8) (0,4) (0,2) (0,1)

24 (0,19) (0,23) (0,26) (0,23) (0,22) (0,19) (0,14) (0,8) (0,1)

25 (0,29) (0,42) (0,44) (1,44) (0,44) (0,40) (0,32) (0,16) (0,5)

26 (1,46) (1,58) (0,60) (1,60) (0,60) (0,59) (0,55) (0,44) (0,22)

27 (1,60) (2,60) (1,60) (1,60) (0,60) (0,60) (1,60) (0,60) (0,52)
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Table 6.5 Numerical results

Dataset Algorithm

lp-PSVM l1-PSVM

Heart 79.63% (λ̄ = 26, p̄ = 0.3, �̄ = 8) 79.63% (λ̃ = 1, �̃ = 3)

Australian 85.8% (λ̄ = 25, p̄ = 0.3, �̄ = 6) 85.94% (λ̃ = 128, �̃ = 2)

Sonar 77.51% (λ̄ = 26, p̄ = 0.2, �̄ = 58) 75.62% (λ̃ = 16, �̃ = 36)

German 75.7% (λ̄ = 27, p̄ = 0.3, �̄ = 13) 76.1% (λ̃ = 4, �̃ = 13)

for λ ∈ (0,27) if we scale ai such that ‖ai‖ = 1; the number of nonzero entries in
any local minimizer of (6.42) reduces when λ becomes larger.

Comparison with l1-PSVM

We compare lp-PSVM with algorithm l1-PSVM in this part, and if p = 1 the prob-
lem (6.42) turns to be a convex problem

min
z∈Rn+1

‖Az − e‖2
2 + λ‖z‖1. (6.45)

For every dataset, we use 5-fold cross-validation to choose the appropriate parame-
ters (λ̄, p̄) for lp-PSVM and λ̃ for algorithm l1-PSVM, the Table 6.5 gives out the
numerical results, where �̄ mean the number of zero variables in w̄ of algorithm
lp-PSVM determined by bound (6.40), �̃ means the number of zero variables in w̃

of algorithm l1-PSVM.
From Table 6.5 we find that lp-PSVM successes in finding more sparse solution

with higher accuracy than or almost the same with l1-PSVM.
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Chapter 7
Multiple Criteria Linear Programming

7.1 Comparison of Support Vector Machine and Multiple
Criteria Programming

Given a set of n variables about the records XT = (x1, . . . , xl), let xi =
(xi1, . . . , xin)

T be the development sample of data for the variables, where i =
1, . . . , l and l is the sample size. Suppose this is a linearly separable case, and we
want to determine the coefficients or weights for an appropriate subset of the vari-
ables (or attributes), denoted by w = (w1, . . . ,wn)

T, and a threshold b to separate
two classes: say G (Good) and B (Bad); that is

(w · xi) � b, for xi ∈ G (7.1)

and

(w · xi) � b, for xi ∈ B, (7.2)

where xi are vector values of the subset of the variables and (w · xi) is the inner
product.

In the formulation of Support Vector Machine (SVM), membership of each xi

in class +1 (Bad) or −1 (Good) specified by an l × l diagonal matrix Y = {yii}
with +1 and −1 entries. Given two bounding planes (w · xi) = b ± 1, the above
separation problem becomes

(w · xi) � b − 1, yii = −1, (7.3)

(w · xi) � b + 1, yii = +1. (7.4)

It is shown as

Y(Xw − eb) � e, (7.5)

where e is a vector of ones.
A standard Support Vector Machine formulation, which can be tackled using

quadratic programming, is as follows:

Y. Shi et al., Optimization Based Data Mining: Theory and Applications,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-0-85729-504-0_7, © Springer-Verlag London Limited 2011
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Let ξi be defined as a slack variable, then ξ = (ξ1, . . . , ξl)
T is a slack vector.

A SVM is stated as

min
1

2
‖w‖2

2 + C‖ξ‖2
2, (7.6)

s.t. Y (Xw − eb) � e − ξ, (7.7)

ξ � 0, (7.8)

where e is a vector of ones and C > 0.
In the formulation of multiple criteria programming, the variable ξi is viewed as

the overlapping with respect of the training sample xi . Let βi be the distance from
the training sample xi to the discriminator (w · x) = b (separating hyperplane). The
two-group constraints can be written as

(w · xi) � b + ξi − βi, yii = −1 (Good), (7.9)

and

(w · xi) � b − ξi + βi, yii = +1 (Bad). (7.10)

This can be written as Y(Xw − eb) � β − ξ , where e is a vector of ones. Therefore,
a quadratic form of multiple criteria programming can be formulated as

min ‖ξ‖2
2 − ‖β‖2

2, (7.11)

s.t. Y (Xw − eb) � β − ξ, (7.12)

ξ,β � 0. (7.13)

Comparing the above two formulations, we can see that the multiple criteria pro-
gramming model is similar to the Support Vector Machine model in terms of the
formation by considering minimization of overlapping of the data. However, the
former tries to measure all possible distances β from the training samples xi to sep-
arating hyperplane, while the latter fixes the distance as 1 (through bounding planes
(w · x) = b ± 1) from the support vectors. Although the interpretation can vary, the
multiple criteria programming model addresses more control parameters than the
Support Vector Machine, which may provide more flexibility for better separation
of data under the framework of the mathematical programming.

7.2 Multiple Criteria Linear Programming

Now we turn our attention to discussion on the formulation of multiple criteria pro-
gramming. In linear discriminate analysis, data separation can be achieved by two
opposite objectives. The first objective separates the observations by minimizing
the sum of the deviations (MSD) among the observations. The second maximizes
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Fig. 7.1 Geometric meaning
of MCLP

the minimum distances (MMD) of observations from the critical value [76]. As we
see from the above section, the overlapping of data ξ should be minimized while
the distance β has to be maximized. However, it is difficult for traditional linear
programming to optimize MMD and MSD simultaneously. According to the con-
cept of Pareto optimality, we can seek the best trade-off of the two measurements
[182, 183]. The first Multiple Criteria Linear Programming (MCLP) model can be
described as follows:

min
l

∑

i=1

ξi, (7.14)

max
l

∑

i=1

βi, (7.15)

s.t. (w · xi) = b + yi(ξi − βi), i = 1, . . . , l, (7.16)

ξ,β � 0. (7.17)

Here, ξi is the overlapping and βi the distance from the training sample xi to the
discriminator (w · xi) = b (classification separating hyperplane). If yi ∈ {1,−1} de-
notes the label of xi and l is the number of samples, a training set can be interpreted
as pair {xi, yi}, where xi are the vector values of the variables and yi ∈ {1,−1}
(note, we use yii in the matrix form of Sect. 7.1) is the label in the classification
case. The weights vector w and the bias b are the unknown variables to the opti-
mized for the two objectives. Note that alternatively, the constraint (7.16) can also
be written as yi((w · xi) − b) = ξi − βi . The geometric meaning of the model is
shown in Fig. 7.1.

The objectives in problem (7.14)–(7.17), the original form of MCLP, are difficult
to optimize. In order to facilitate the computation, the compromise solution [184] is
employed for reforming the above model so that we can systematically identify the
best trade-off between −∑

ξi and
∑

βi for an optimal solution. Note that because
we have to consider the objective space of this two criteria problem, instead of
minimizing

∑
ξi , we use maximizing −∑

ξi . The “ideal value” of −∑
ξi and

∑
βi
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Fig. 7.2 Geometric meaning
of compromise solution of
MCLP

are assumed to be constant ξ∗ > 0 and β∗ > 0, respectively. Then, if −∑
ξi > ξ∗,

we define the regret measure as −d+
ξ = ∑

ξi +ξ∗; otherwise, it is 0. If −∑
ξi < ξ∗,

the regret measure is defined as d−
ξ = ξ∗ + ∑

ξi ; otherwise, it is 0. Thus, we have

(i) ξ∗+∑
ξi = d−

ξ −d+
ξ , (ii) |ξ∗+∑

ξi | = d−
ξ +d+

ξ , and (iii) d−
ξ , d+

ξ � 0. Similarly,

we derive (i) β∗ −∑
βi = d−

β −d+
β , (ii) |β∗ −∑

βi | = d−
β +d+

β , and (iii) d−
β , d+

β �
0. The two-class MCLP model has evolved to the following model:

min d+
ξ + d−

ξ + d+
β + d−

β , (7.18)

s.t. ξ∗ +
l

∑

i=1

ξi = d−
ξ − d+

ξ , (7.19)

β∗ −
l

∑

i=1

βi = d−
β − d+

β , (7.20)

(w · xi) = b + yi(ξi − βi), i = 1, . . . , l, (7.21)

ξ,β � 0, d+
ξ , d−

ξ , d+
β , d−

β � 0. (7.22)

Here ξ∗ and β∗ are given, w and b are unrestricted. The geometric meaning of
model (7.18)–(7.22) is shown as in Fig. 7.2.

Note that in problem (7.18)–(7.22), to avoid a trivial solution, one can use w > 1.
The value of b will also affect the solution. Although b is a variable in problem
(7.18)–(7.22), for some applications, the user can choose a fixed value of b to get
a solution as the classifier. [162] studied the mechanism of choosing b to improve
the accuracy of the performance in classification of credit card holder’s behaviors. In
order to analyze a large size dataset, the Linux-based MCLP classification algorithm
was developed to implement the above model (7.18)–(7.22) [128].
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7.3 Multiple Criteria Linear Programming for Multiple Classes

A multiple-class problem of data classification by using multiple criteria linear pro-
gramming can be described as:

Given a set of n variables or attributes, let xi = (xi1, . . . , xin)
T ∈ Rn be the sam-

ple observations of data for the variables, where i = 1, . . . , l and l is the sample
size. If a given problem can be predefined as s different classes, G1, . . . ,Gs , then
the boundary between the j th and (j + 1)th classes can be bj , j = 1, . . . , s − 1. We
want to determine the coefficients for an appropriate subset of the variables, denoted
by w = (w1, . . . ,wn)

T and scalars bj such that the separation of these classes can
be described as follows:

(w · xi) � b1, ∀xi ∈ G1, (7.23)

bk−1 � (w · xi) � bk, ∀xi ∈ Gk, k = 2, . . . , s − 1, (7.24)

(w · xi) � bs−1, ∀xi ∈ Gs, (7.25)

where ∀xj ∈ Gk , k = 1, . . . , s, means that the data case xj belongs to the class Gk .
In the data separation, (w · xi) is called the score of data case i, which is a linear

combination of the weighted values of attribute variables w. For example, in the case
of credit card portfolio analysis, (w · xi) may represent the aggregated value of the
ith card holder’s score for his or her attributes of age, salary, eduction, and residency
under consideration. Even though the boundary bj is defined as a scalar in the
above data separation, generally, bj may be treated as “variable” in the formulation.
However, if there is no feasible solution about “variable” bj in the real data analysis,
it should be predetermined as a control parameter according to the experience of the
analyst.

The quality of classification is measured by minimizing the total overlapping of
data and maximizing the distances of every data to its classes boundary simultane-
ously. Let ξ

j
i be the overlapping degree with respect of data case xi within Gj and

Gj+1, and β
j
i be the distance from xi within Gj and Gj+1 to its adjusted bound-

aries.
By incorporating both ξ

j
i and β

j
i into the separation inequalities, a multiple cri-

teria linear programming (MCLP) classification model can be defined as:

min
∑

i

∑

j

ξ
j
i and max

∑

i

∑

j

β
j
i , (7.26)

s.t. (w · xi) = b1 + ξ 1
i − β1

i , ∀xi ∈ G1, (7.27)

bk−1 − ξk−1
i + βk−1

i = (w · xi) = bk + ξk
i − βk

i ,

∀xi ∈ Gk, k = 2, . . . , s − 1, (7.28)

(w · xi) = bs−1 − ξ s−1
i + βs−1

i , ∀xi ∈ Gs, (7.29)

bk−1 + ξk−1
i � bk − ξk

i , k = 2, . . . , s − 1, i = 1, . . . , l, (7.30)

ξ
j
i , β

j
i � 0, j = 1, . . . , s − 1, i = 1, . . . , l, (7.31)
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where xi are given, w and bj are unrestricted. Note that the constraints (7.30) ensure
the existence of the boundaries.

If minimizing the total overlapping of data, maximizing the distances of every
data to its class boundary, or a given combination of both criteria is considered
separately, model (7.26)–(7.31) is reduced to linear programming (LP) classification
(known as linear discriminant analysis), which is initiated by Freed and Glover.
However, the single criterion LP could not determine the “best tradeoff” of two
misclassification measurements. Therefore, the above model is potentially better
than LP classification in identifying the best trade-off of the misclassifications for
data separation.

Although model (7.26)–(7.31) can be theoretically solved by the MC-simplex
method for all possible trade-offs of both criteria functions, the available soft-
ware still cannot handle the real-life database or data warehouse with a terabyte
of data. To facilitate the computation on the real-life data, a compromise solution
approach is employed to reform model (7.26)–(7.31) for the “best tradeoff” between
∑

i

∑

j ξ
j
i and

∑

i

∑

j β
j
i . Let us assume the “ideal values” for s − 1 classes over-

lapping (−∑

i ξ
1
i , . . . ,−∑

i ξ
s−1
i ) be (ξ 1∗ , . . . , ξ s−1∗ ) > 0, and the “ideal values” of

(
∑

i β
1
i , . . . ,

∑

i β
s−1
i ) be (β1∗ , . . . , βs−1∗ ) > 0. Selection of the ideal values depends

on the nature and data format of the problem.
When −∑

i ξ
j
i > ξ

j∗ , we define the regret measure as −d+
ξj = ξ

j∗ + ∑

i ξ
j
i ; oth-

erwise, it is 0, where j = 1, . . . , s − 1. When −∑

i ξ
j
i < ξ

j∗ , we define the regret

measure as d−
ξj = ξ

j∗ + ∑

i ξ
j
i ; otherwise, it is 0, where j = 1, . . . , s − 1. Thus, we

have:

Theorem 7.1

(i) ξ
j∗ +

∑

i

ξ
j
i = d−

ξj − d+
ξj ; (7.32)

(ii)

∣
∣
∣
∣
ξ

j∗ +
∑

i

ξ
j
i

∣
∣
∣
∣
= d−

ξj + d+
ξj ; (7.33)

(iii) d−
ξj , d

+
ξj � 0, j = 1, . . . , s − 1. (7.34)

Similarly, we can derive:

Corollary 7.2

(i) β
j∗ −

∑

i

β
j
i = d−

βj − d+
βj ; (7.35)

(ii)

∣
∣
∣
∣
β

j∗ +
∑

i

β
j
i

∣
∣
∣
∣
= d−

βj + d+
βj ; (7.36)

(iii) d−
βj , d

+
βj � 0, j = 1, . . . , s − 1. (7.37)
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Applying the above results into model (7.26)–(7.31), it is reformulated as:

min
s−1
∑

j=1

(d−
ξj + d+

ξj + d−
βj + d+

βj ) (7.38)

s.t. ξ
j∗ +

∑

i

ξ
j
i = d−

ξj − d+
ξj , j = 1, . . . , s − 1, (7.39)

β
j∗ −

∑

i

β
j
i = d−

βj − d+
βj , j = 1, . . . , s − 1, (7.40)

(w · xi) = b1 + ξ 1
i − β1

i , ∀xi ∈ G1, (7.41)

bk−1 − ξk−1
i + βk−1

i = (w · xi) = bk + ξk
i − βk

i ,

∀xi ∈ Gk, k = 2, . . . , s − 1, (7.42)

(w · xi) = bs−1 − ξ s−1
i + βs−1

i , ∀xi ∈ Gs, (7.43)

bk−1 + ξk−1
i � bk − ξk

i , k = 2, . . . , s − 1, i = 1, . . . , l, (7.44)

ξ
j
i , β

j
i � 0, j = 1, . . . , s − 1, i = 1, . . . , l, (7.45)

d−
ξj , d

+
ξj , d

−
βj , d

+
βj � 0, j = 1, . . . , s − 1, (7.46)

where xi , ξ
j∗ and β

j∗ are given, w and bj are unrestricted.
Once the adjusted boundaries bk−1 + ξk−1

i � bk − ξk
i , k = 2, . . . , s − 1, i =

1, . . . , l, are properly chosen, model (7.38)–(7.46) relaxes the conditions of data
separation so that it can consider as many overlapping data as possible in the clas-
sification process. We can call model (7.38)–(7.46) is a “weak separation formula”,
With this motivation, we can build a “medium separation formula” on the absolute
class boundaries in the following model (7.47)–(7.55) and a “strong separation for-
mula” which contains as few overlapping data as possible in the following model
(7.56)–(7.64).

min
s−1
∑

j=1

(d−
ξj + d+

ξj + d−
βj + d+

βj ) (7.47)

s.t. ξ
j∗ +

∑

i

ξ
j
i = d−

ξj − d+
ξj , j = 1, . . . , s − 1, (7.48)

β
j∗ −

∑

i

β
j
i = d−

βj − d+
βj , j = 1, . . . , s − 1, (7.49)

(w · xi) = b1 − β1
i , ∀xi ∈ G1, (7.50)

bk−1 + βk−1
i = (w · xi) = bk − βk

i , ∀xi ∈ Gk, k = 2, . . . , s − 1, (7.51)

(w · xi) = bs−1 + βs−1
i , ∀xi ∈ Gs, (7.52)
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bk−1 + ε � bk − ξk
i , k = 2, . . . , s − 1, i = 1, . . . , l, (7.53)

ξ
j
i , β

j
i � 0, j = 1, . . . , s − 1, i = 1, . . . , l, (7.54)

d−
ξj , d

+
ξj , d

−
βj , d

+
βj � 0, j = 1, . . . , s − 1, (7.55)

where xi , ε, ξ
j∗ and β

j∗ are given, w and bj are unrestricted.

min
s−1
∑

j=1

(d−
ξj + d+

ξj + d−
βj + d+

βj ) (7.56)

s.t. ξ
j∗ +

∑

i

ξ
j
i = d−

ξj − d+
ξj , j = 1, . . . , s − 1, (7.57)

β
j∗ −

∑

i

β
j
i = d−

βj − d+
βj , j = 1, . . . , s − 1, (7.58)

(w · xi) = b1 − ξ 1
i − β1

i , ∀xi ∈ G1, (7.59)

bk−1 + ξk−1
i + βk−1

i = (w · xi) = bk − ξk
i − βk

i ,

∀xi ∈ Gk, k = 2, . . . , s − 1, (7.60)

(w · xi) = bs−1 + ξ s−1
i + βs−1

i , ∀xi ∈ Gs, (7.61)

bk−1 + ξk−1
i � bk − ξk

i , k = 2, . . . , s − 1, i = 1, . . . , l, (7.62)

ξ
j
i , β

j
i � 0, j = 1, . . . , s − 1, i = 1, . . . , l, (7.63)

d−
ξj , d

+
ξj , d

−
βj , d

+
βj � 0, j = 1, . . . , s − 1, (7.64)

where xi , ξ
j∗ and β

j∗ are given, w and bj are unrestricted.
A loosing relationship of above three models is given as:

Theorem 7.3

(i) If a data case xi is classified in a given Gj by model (7.56)–(7.64), then it may
be in Gj by using models (7.47)–(7.55) and (7.38)–(7.46);

(ii) If a data case xi is classified in a given Gj by model (7.47)–(7.55), then it may
be in Gj by using model (7.38)–(7.46).

Proof It follows the facts that for a certain value of ε > 0, the feasible solutions of
model (7.56)–(7.64) is the feasible solutions of models (7.47)–(7.55) and (7.38)–
(7.46), and the feasible solutions of model (7.47)–(7.55) is these of model (7.38)–
(7.46). �

Remark 7.4 Conceptually, the usefulness of these formulas should depend on the
nature of a given database. If the database contains a few overlapping data, model
(7.56)–(7.64) may be used. Otherwise, model (7.47)–(7.55) or (7.38)–(7.46) should
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Table 7.1 A two-class data set of customer status

Case Age Income Student Credit_rating Class: buys_computer Training results

x1 31..40 High No Fair Yes Success

x2 >40 Medium No Fair Yes Success

x3 >40 Low Yes Fair Yes Success

x4 31..40 Low Yes Excellent Yes Success

x5 �30 Low Yes Fair Yes Success

x6 >40 Medium Yes Fair Yes Success

x7 �30 Medium Yes Excellent Yes Success

x8 31..40 Medium No Excellent Yes Failure

x9 31..40 High Yes Fair Yes Success

x10 �30 High No Fair No Success

x11 �30 High No Excellent No Success

x12 >40 Low Yes Excellent No Failure

x13 �30 Medium No Fair No Success

x14 >40 Medium No Excellent No Success

be applied. In many real data analysis, we can always find a feasible solution for
model (7.38)–(7.46) if proper values of boundaries bj are chosen as control pa-
rameters. Comparing with conditions of data separation, it is not easier to find the
feasible solutions for model (7.47)–(7.55) and/or model (7.38)–(7.46). However, the
precise theoretical relationship between three models deserves a further ad careful
study.

Example 7.5 As an illustration, we use a small training data set in Table 7.1 to show
how two-class model works.

Suppose whether or not a customer buys computer relates to the attribute set
{Age, Income, Student, Credit_rating}, we first define the variables Age, Income,
Student and Credit_rating by numeric numbers as follows:

For Age: “� 30” assigned to be “3”, “31. . . 40” to be “2”, and “� 40” to be
“1”. For Income: “high” assigned to be “3”, “medium” to be “2”, and “low” to be
“1”. For Student: “yes” assigned to be “2”, and “no” to be “1”. For Credit_rating:
“excellent” assigned to be “2” and “fair” to be “1”. G1 = {yes to buys_computer}
and G2 = {no to buys_computer}.

Then, let j = 1,2 and i = 1, . . . ,14, model (7.38)–(7.46) for this problem to
classify the customer’s status for {buy_computers} is formulated by

min d−
ξ + d+

ξ + d−
β + d+

β (7.65)

s.t. ξ∗ +
∑

i

ξi = d−
ξ − d+

ξ , (7.66)
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β∗ −
∑

i

βi = d−
β − d+

β , (7.67)

2w1 + 3w2 + w3 + w4 = b + ξ1 − β1, (7.68)

w1 + 2w2 + w3 + w4 = b + ξ2 − β2, (7.69)

w1 + w2 + 2w3 + w4 = b + ξ3 − β3, (7.70)

2w1 + w2 + 2w3 + 2w4 = b + ξ4 − β4, (7.71)

3w1 + w2 + 2w3 + w4 = b + ξ5 − β5, (7.72)

w1 + 2w2 + 2w3 + w4 = b + ξ6 − β6, (7.73)

3w1 + 2w2 + 2w3 + 2w4 = b + ξ7 − β7, (7.74)

2w1 + 2w2 + w3 + 2w4 = b + ξ8 − β8, (7.75)

2w1 + 3w2 + 2w3 + w4 = b + ξ9 − β9, (7.76)

3w1 + 3w2 + w3 + w4 = b + ξ10 − β10, (7.77)

3w1 + 3w2 + w3 + 2w4 = b + ξ11 − β11, (7.78)

w1 + w2 + 2w3 + 2w4 = b + ξ12 − β12, (7.79)

3w1 + 2w2 + w3 + w4 = b + ξ13 − β13, (7.80)

w1 + 2w2 + w3 + 2w4 = b + ξ14 − β14, (7.81)

ξi, βi � 0, i = 1, . . . ,14, (7.82)

d−
ξ , d+

ξ , d−
β , d+

β � 0, (7.83)

where ξ∗, β∗ are given, wi , i = 1, . . . ,4, and b are unrestricted.
Before solving the above problem for data separation, we have to choose the val-

ues for the control parameters ξ∗, β∗ and b. Suppose we use ξ∗ = 0.1, β∗ = 30000
and b = 1. Then, the optimal solution of this linear programming for the classifier is
obtained as column 7 of Table 7.1, where only case x8 and x12 are misclassified. In
other words, cases {x1, x2, x3, x4, x5, x6, x7, x9} are correctly classified in G1, while
cases {x10, x11, x13, x14} are found in G2.

Similarly, when we apply model (7.56)–(7.64) and model (7.47)–(7.55) with
ε = 0, one of learning processes provides the same results where cases {x1, x2, x3,

x5, x8} are correctly classified in G1, while cases {x10, x11, x12, x14} are correctly
found in G2. Then, we see that cases {x1, x2, x3, x5} classified in G1 by model
(7.56)–(7.64) are also in G1 by models (7.47)–(7.55) and (7.38)–(7.46), and cases
{x10, x11, x14} classified in G2 by model (7.56)–(7.64) are in G2 by model (7.47)–
(7.55) and (7.38)–(7.46). This is consistent to Theorem 7.3.
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7.4 Penalized Multiple Criteria Linear Programming

For many real-life data mining applications, the sample sizes of different classes
vary; namely, the training set is unbalanced. Normally, given a dataset of binary
cases (Good vs. Bad), there are many more Good records than Bad records. In
the training process, the better classifier would be difficult to find if we use model
(7.18)–(7.22). To overcome the difficulty with MCLP approach, we proposed the
following penalized MCLP method (7.84)–(7.88) in dealing with the real-life credit
scoring problem.

min d−
ξ + d+

ξ + d−
β + d+

β , (7.84)

s.t. ξ∗ + p
n2

n1

∑

i∈B

ξi +
∑

i∈G

ξi = d−
ξ − d+

ξ , (7.85)

β∗ − p
n2

n1

∑

i∈B

βi −
∑

i∈G

βi = d−
β − d+

β , (7.86)

(w · xi) = b + yi(ξi − βi), i = 1, . . . , l, (7.87)

ξ∗, β∗ � 0, d−
ξ , d+

ξ , d−
β , d+

β � 0, (7.88)

where n1 and n2 are the numbers of samples corresponding to the two classes, and
p � 1 is the penalized parameter.

The distance is balanced on the two sides of b with the parameters n1/n2, even
when there are less “Bad” (+1) class records to the right of the credit score sep-
arating hyperplane b. The value of p enhances the effect of “Bad” distance and
penalized much more if we wish more “Bad” to the right of the separating hyper-
plane.

If n1 = n2, p = 1, the model above degenerates to the original MCLP model
(7.14)–(7.17). If n1 < n2, then p � 1 is used to make the “Bad” catching rate of
PMCLP higher than that of MCLP with the same n1, n2.

7.5 Regularized Multiple Criteria Linear Programs for
Classification

Given an matrix X ∈ Rl×n and vectors d, c ∈ Rl+, the multiple criteria linear pro-
gramming (MCLP) has the following version

min
u,v

dTu − cTv,

s.t. (w · xi) + ui − vi = b, i = 1,2, . . . , l1,

(w · xi) − ui + vi = b, i = l1 + 1, l1 + 2, . . . , l, (7.89)

u,v � 0,

where xi is the ith row of X which contains all given data.
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However, we cannot ensure this model always has a solution. Obviously the fea-
sible set of MCLP is nonempty, as the zero vector is a feasible point. For c � 0,
the objective function may not have a lower bound on the feasible set. To ensure
the existence of solution, we add regularization terms in the objective function, and
consider the following regularized MCLP

min
z

1

2
wTHw + 1

2
uTQu + dTu − cTv, (7.90)

s.t. (w · xi) + ui − vi = b, i = 1,2, . . . , l1, (7.91)

(w · xi) − ui + vi = b, i = l1 + 1, l1 + 2, . . . , l, (7.92)

u,v � 0, (7.93)

where z = (w,u, v, b) ∈ Rn+m+m+1, H ∈ Rn×n and Q ∈ Rl×l are symmetric pos-
itive definite matrices. The regularized MCLP is a convex quadratic program. Al-
though the objective function

f (z) := 1

2
wTHw + 1

2
uTQu + dTu − cTv

is not a strictly convex function, we can show that (7.90)–(7.93) always has a solu-
tion. Moreover, the solution set of (7.90)–(7.93) is bounded if H,Q,d, c are chosen
appropriately.

Let I1 ∈ Rl1×l1 , I2 ∈ R(l−l1)×(l−l1) be identity matrices,

X1 =
⎛

⎜
⎝

x1
...

xl1

⎞

⎟
⎠ , X2 =

⎛

⎜
⎝

xl1+1
...

xl

⎞

⎟
⎠ , (7.94)

X =
(

X1
X2

)

, E =
(

I1 0
0 −I2

)

, (7.95)

and e ∈ Rm be the vector whose all elements are 1. Let

B = (X E −E −e ). (7.96)

The feasible set of (7.90)–(7.93) is given by

F = {z | Bz = 0, u � 0, v � 0}. (7.97)

Since (7.90)–(7.93) is a convex program with linear constraints, the KKT con-
dition is a necessary and sufficient condition for optimality. To show that f (z) is
bounded on F , we will consider the KKT system of (7.90)–(7.93).

Without loss of generality, we assume that l1 > 0 and l − l1 > 0.

Theorem 7.6 The RMCLP (7.90)–(7.93) is solvable.
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Proof We show that under the assumption that l1 > 0, l − l1 > 0, the objective
function has a lower bound. Note that the first terms in the objective function are
nonnegative. If there is sequence zk in F such that f (zk) → −∞, then there is i

such that vk
i → ∞, which, together with the constraints of (7.90)–(7.93), implies

that there must be j such that |wk
j | → ∞ or uk

j → ∞. However, the objective func-
tion has quadratic terms in x and u which are larger than the linear terms when
k → ∞. This contradicts f (zk) → −∞. Therefore, by Frank-Wolfe Theorem, the
regularized MCLP (7.90)–(7.93) always has a solution. We complete the proof. �

Now we show that the solution set of problem (7.90)–(7.93) is bounded if param-
eters H , Q, d , c are chosen appropriately.

Theorem 7.7 Suppose that XH−1XT is nonsingular. Let G = (XH−1XT)−1,
μ = 1/eTGe and

M =
(

Q + EGE − μEGeeTGE −EGE + μEGeeTGE

−EGE + μEGeeTGE EGE − μEGeeTGE

)

, (7.98)

q =
(

d

−c

)

, y =
(

u

v

)

. (7.99)

Then problem (7.90)–(7.93) is equivalent to the linear complementarity problem

My + q ≥ 0, y ≥ 0, yT(My + q) = 0. (7.100)

If we choose Q and H such that M is a positive semidefinite matrix and c, d satisfy

d + 2Qe > (μEGeeTGE − EGE)e > c, (7.101)

then problem (7.90)–(7.93) has a nonempty and bounded solution set.

Proof Let us consider the KKT condition of (7.90)–(7.93)

Hw + XTλ = 0, (7.102)

−c − Eλ − β = 0, (7.103)

Qu + Eλ + d − α = 0, (7.104)

Bz = 0, (7.105)

eTλ = 0, (7.106)

u ≥ 0, α ≥ 0, αTu = 0, (7.107)

v ≥ 0, β ≥ 0, βTv = 0. (7.108)

From the first three equalities in the KKT condition, we have

w = −H−1XTλ, (7.109)
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β = −c − Eλ, (7.110)

α = Qu + Eλ + d. (7.111)

Substituting w in the 4th equality in the KKT condition gives

λ = G(Eu − Ev − eb). (7.112)

Furthermore, from the 5th equality in the KKT condition, we obtain

b = μeTGE(u − v). (7.113)

Therefore, β and α can be defined by u,v as

β = −c − EG(Eu − Ev − b) = −c − EG(Eu − Ev − μeeTGE(u − v)) (7.114)

and

α = Qu+EG(Eu−Ev−eb) = Qu+EG(Eu−Ev−μeeTGE(u−v)). (7.115)

This implies that the KKT condition can be written as the linear complementarity
problem (7.100). Since problem (7.90)–(7.93) is a convex problem, it is equivalent
to the linear complementarity problem (7.100).

Let u = 2e, v = e and y0 = (2e, e). Then from (7.101), we have

My0 + q =
(

2Qe + EGEe − μEGeeTGHe + d

μEGeeTGEe − EGEe − c

)

> 0, (7.116)

which implies that y0 is a strictly feasible point of (7.100). Therefore, when M is a
positive semidefinite matrix, the solution set of (7.100) is nonempty and bounded.

Let y∗ = (u∗, v∗) be a solution of (7.100), then z∗ = (x∗, u∗, v∗, b∗) with

b∗ = μeTGE(u∗ − v∗) and

w∗ = −HXTG(Eu∗ − Ev∗ − μeeTGE(u∗ − v∗))

is a solution of (7.90)–(7.93). Moreover, from the KKT condition, it is easy to verify
that the boundedness of the solution set of (7.100) implies the boundedness of the
solution set of (7.90)–(7.93). �



Chapter 8
MCLP Extensions

8.1 Fuzzy MCLP

As described in Chap. 7, research of linear programming (LP) approaches to clas-
sification problems was initiated by Freed and Glover [75]. A simple version seeks
MSD can be written as:

min
∑

i

ξi (8.1)

s.t. (w · xi) ≤ b + ξi, xi ∈ B, (8.2)

(w · xi) ≥ b − ξi, xi ∈ G, (8.3)

where xi are given, w and b are unrestricted, and ξi ≥ 0.
The alternative of the above model is to find MMD:

min
∑

i

βi (8.4)

s.t. (w · xi) ≥ b − βi, xi ∈ B, (8.5)

(w · xi) ≤ b + βi, xi ∈ G, (8.6)

where xi are given, w and b are unrestricted, and ξi ≥ 0.
A graphical representation of these models in terms of ξ is shown as Fig. 8.1.

We note that the key of the two-class linear classification models is to use a linear
combination of the minimization of the sum of ξi or/and maximization of the sum
of βi to reduce the two criteria problem into a single criterion. The advantage of this
conversion is to easily utilize all techniques of LP for separation, while the disad-
vantage is that it may miss the scenario of trade-offs between these two separation
criteria.

Shi et al. [183] applied the compromise solution of multiple criteria linear pro-
gramming (MCLP) to minimize the sum of ξi and maximize the sum of βi simulta-

Y. Shi et al., Optimization Based Data Mining: Theory and Applications,
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Fig. 8.1 Overlapping case in
two-class separation

neously. A two-criteria linear programming model is stated as

min
∑

i

ξi and min
∑

i

βi (8.7)

s.t. (w · xi) = b + ξi − βi, xi ∈ G, (8.8)

(w · xi) = b − ξi + βi, xi ∈ B, (8.9)

where xi are given, w and b are unrestricted, ξi and βi ≥ 0.
Suppose a threshold τ is set up as priori, the FLP approach on classifications is

to first train (e.g., solve repeatedly) model (8.1)–(8.3) for MSD and model (8.4)–
(8.6) for MMD, respectively. If the accuracy rate of either (8.1)–(8.3) or/and (8.4)–
(8.6) exceeds threshold τ , the approach terminates. This is the result of known LP
classification methods [75, 76]. Generally, if both (8.1)–(8.3) and (8.4)–(8.6) cannot
offer the results to meet threshold τ , then the following fuzzy approach is applied.

According to Zimmermann [253], in formulating a FLP problem, the objectives
(min

∑

i ξi and max
∑

i βi) and constraints ((w ·xi) = b+ξi −βi , xi ∈ G; (w ·xi) =
b − ξi + βi , xi ∈ B) of model (8.7)–(8.9) are redefined as fuzzy sets F and W with
corresponding membership functions μF (w) and μW (w) respectively. In this case
the fuzzy decision set D is defined as D = F ∩ W , and the membership function is
defined as μD(w) = {μF (w),μW (w)}. In a maximization problem, w1 is a “better”
decision than w2 if μD(w1) ≥ μD(w2). Thus, it can be considered appropriately to
select w∗ such that

max
w

μD(w) = max
w

min{μF (w),μW(w)} = min{μF (w∗),μW(w∗)} (8.10)

is the maximized solution.
Let y1L be MSD and y2U be MMD, then one can assume that the value of

min
∑

i ξi to be y1U and max
∑

i βi to be y2L. Note that normally, the “upper
bound” y1U related to (8.1)–(8.3) and the “lower bound” y2L related to (8.1)–
(8.3) do not exist for the formulations. Let F1 = {w : y1L ≤ ∑

i ξi ≤ y1U } and
F2 = {w : y2L ≤ ∑

i βi ≤ y2U } and their membership functions can be expressed
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respectively by:

μF1(w) =

⎧

⎪⎪⎨

⎪⎪⎩

1, if
∑

i ξi ≥ y1U ,
∑

i ξi−y1L

y1U −y1L
, if y1L <

∑

i ξi < y1U ,

0, if
∑

i ξi ≤ y1L,

(8.11)

μF2(w) =

⎧

⎪⎪⎨

⎪⎪⎩

1, if
∑

i βi ≥ y2U ,
∑

i βi−y2L

y2U−y2L
, if y2L <

∑

i βi < y2U ,

0, if
∑

i βi ≤ y2L.

(8.12)

Then the fuzzy set of the objective functions is F = F1 ∩ F2 and its member-
ship function is μF (w) = min{μF1(w),μF2(w)}. Using the crisp constraint set
W = {w : (w · xi) = b + ξi − βi, xi ∈ G; (w · xi) = b − ξi + βi, xi ∈ B}, the fuzzy
set of the decision problem is F = F1 ∩ F2 ∩ W , and its membership function is
μD(w) = μF1∩F2∩W(w). Zimmermann [253] has shown that the “optimal solution”
of maxw μD(w) = maxw min{μF1(w),μF2(w),μW(w)} is an efficient solution of
model (8.7)–(8.9), and this problem is equivalent to the following linear program
(see Fig. 7.2):

max η (8.13)

s.t. η ≤
∑

i ξi − y1L

y1U − y1L

, (8.14)

η ≤
∑

i βi − y2L

y2U − y2L

, (8.15)

(w · xi) = b + ξi − βi, xi ∈ G, (8.16)

(w · xi) = b − ξi + βi, xi ∈ B, (8.17)

where xi , y1L, y1U , y2L and y2U are known, w and b are unrestricted, and ξi , βi ,
η ≥ 0.

Note that model (8.13)–(8.17) will produce a value of η with 1 > η ≥ 0. To avoid
the trivial solution, one can set up η > ε ≥ 0, for a given ε. Therefore, seeking
Maximum η in the FLP approach becomes the standard of determining the classi-
fications between Good and Bad records in the database. Any point of hyperplane
0 < η < 1 over the shadow area represents the possible determination of classifica-
tions by the FLP method. Whenever model (8.13)–(8.17) has been trained to meet
the given threshold τ , it is said that the better classifier has been identified.

A procedure of using the FLP method for data classifications can be captured
by the flowchart of Fig. 8.2. Note that although the boundary of two classes b is
the unrestricted variable in model (8.13)–(8.17), it can be presumed by the analyst
according to the structure of a particular database. First, choosing a proper value
of b can speed up solving (8.13)–(8.17). Second, given a threshold τ , the best data
separation can be selected from a number of results determined by different b values.
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Fig. 8.2 A flowchart of
fuzzy linear programming
classification method

Therefore, the parameter b plays a key role in this paper to achieve and guarantee
the desired accuracy rate τ . For this reason, the FLP classification method uses b as
an important control parameter as shown in Fig. 8.2.

8.2 FMCLP with Soft Constraints

Optimization models in operations research assume that the data are precisely
known, that constrains delimit a crisp set of feasible decisions, and that criteria are
well defined and easy to be formalized [63].
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For such a problem, we employ the concept of the following model [63]:

mãx f = cw, (8.18)

s.t. (w · xi)
≤∼ b, (8.19)

w ≥ 0. (8.20)

Here the symbol ≤∼ denotes a relaxed version of ≤ and assumes the existence of

a vector μ of membership function μDi
, i = 1, . . . ,m. m is the number of the con-

dition function. The symbol mãx denotes a relaxed version of max and assumes
the existence of a vector μ of membership function μF . Then, the problem of
model (8.18)–(8.20) can be transferred to the fuzzy linear programming problem
with membership function.

B(w∗) = max
w∈W

(D(W) ∧ F(W)) = max{λ | D(w) ≥ λ, F (w) ≥ λ, λ ≥ 0}
= max{λ | D1(w) ≥ λ, . . . ,Dm(w) ≥ λ, F (w) ≥ λ, λ ≥ 0}, (8.21)

where fuzzy sets D(w), F(w) are transferred from the constraints and criteria of
general programming problem with the membership function μDi

and μF respec-
tively. w∗ is the satisfying solution of model (8.18)–(8.20).

For the decision maker, since the optimal solution is not necessary at most time,
satisfying solution may be enough to solve real-life problems. In the model MSD
(8.1)–(8.3) and MMD (8.4)–(8.6), the crisp “distance measurements” (ξi and βi) of
observations in criteria and constraints are used to evaluate the classification model
in application. To consider the flexibility of the choices for these measurements in
obtaining a satisfying solution, we relax the crisp criteria and constraints to soft
criteria and constraints. This means that we can allow the flexible boundary b for
classification scalar to derive the result what we expect in reality. Based on this idea,
we can build a FLP method with both soft criteria and constraints by the following
steps. First, we define the membership functions for the MSD problem with soft
criterion and constraints as follows:

μF1(w) =

⎧

⎪⎪⎨

⎪⎪⎩

1, if
∑

i ξi ≤ y1L,
∑

i ξi−y1U

y1L−y1U
, if y1L <

∑

i ξi < y1U ,

0, if
∑

i ξi ≥ y1U ,

(8.22)

μD1(w) =

⎧

⎪⎨

⎪⎩

1, if (w · xi) ≤ b + ξi,

1 − 1
d1

[(w · xi) − (b + ξi)] if b + ξi < (w · xi) < b + ξi + d1,

0, if (w · xi) ≥ b + ξi + d1,

(8.23)

μD2(w) =

⎧

⎪⎨

⎪⎩

1, if (w · xi) ≥ b − ξi,

1 + 1
d2

[(w · xi) − b + ξi] if b − ξi − d2 < (w · xi) < b − ξi,

0, if (w · xi) ≤ b − ξi − d2.

(8.24)
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Then, the fuzzy MSD problem with soft criterion and constraints for (8.1)–(8.3)
is constructed as follows:

max λ (8.25)

s.t.

∑

i ξi − y1U

y1L − y1U

≥ ξ, (8.26)

1 − (w · xi) − (b + ξi)

d1
≥ λ, xi ∈ B, (8.27)

1 + (w · xi) − (b − ξi)

d2
≥ λ, xi ∈ G, (8.28)

1 ≥ λ > 0, (8.29)

where xi are given, w and b unrestricted, ξi, d1, d2 > 0 respectively.
y1L = min

∑

i ξi . This can be obtained from model (8.25)–(8.29) directly. Note
that y1U can be a fixed value between min

∑

i ξi and max
∑

i ξi subject to con-
straints of model (8.25)–(8.29).

For model (8.4)–(8.6), we similarly define the membership function as follows:

μF2(w) =

⎧

⎪⎪⎨

⎪⎪⎩

1, if
∑

i βi ≥ y2U ,
∑

i βi−y2L

y2U −y2L
, if y2L <

∑

i βi < y2U ,

0, if
∑

i βi ≤ y2L,

(8.30)

μD3(w) =

⎧

⎪⎨

⎪⎩

1, if (w · xi) ≥ b − βi,

1 − 1
d3

[(w · xi) − b + βi)], if b − βi − d3 < (w · xi) < b − βi,

0, if (w · xi) ≤ b − ξi − d3,

(8.31)

μD4(w) =

⎧

⎪⎨

⎪⎩

1, if (w · xi) ≤ b + βi,

1 − 1
d4

[(w · xi) − b − βi)], if b + βi < (w · xi) < b + βi + d4,

0, if (w · xi) ≥ b + βi + d4.

(8.32)

Then, a fuzzy-linear programming for model (8.4)–(8.6) is built as below:

max λ (8.33)

s.t.

∑

i βi − y2L

y2U − y2L

≥ λ, (8.34)

1 + (w · xi) − b + βi

d3
≥ λ, xi ∈ B, (8.35)

1 − (w · xi) − b − βi

d4
≥ λ, xi ∈ G, (8.36)

1 ≥ λ > 0, (8.37)
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where xi are given, w and b unrestricted, βi , d3, d4 > 0 respectively.
Note that y2U = max

∑

i βi , while y2L is set a value between max
∑

i βi and
min

∑

i βi subject to constraints of model (8.33)–(8.37).
To identifying a fuzzy model for model (8.7)–(8.9), we first relax it as follows:

min
∑

i

ξi and min
∑

i

βi (8.38)

s.t. (w · xi) ≥ b + ξi − βi, Ai ∈ B, (8.39)

(w · xi) ≤ b + ξi − βi, Ai ∈ B, (8.40)

(w · xi) ≥ b − ξi + βi, Ai ∈ G, (8.41)

(w · xi) ≤ b − ξi + βi, Ai ∈ G, (8.42)

where x1 are given, w and b are unrestricted, ξi and βi > 0 respectively.
Then, we can combine (8.25)–(8.29) and (8.33)–(8.37) for fuzzy model of

(8.38)–(8.42). Suppose that we set up d1 = d2 = d∗
1 , d3 = d4 = d∗

2 , and a fuzzy
model will be:

min λ (8.43)

s.t.

∑

i ξi − y1U

y1L − y1U

≥ λ, (8.44)

∑

i βi − y2L

y2U − y2L

≥ λ, (8.45)

1 + (w · xi) − (b + ξi − βi)

d∗
1

≥ λ, xi ∈ B, (8.46)

1 − (w · xi) − (b + ξi − βi)

d∗
1

≥ λ, xi ∈ B, (8.47)

1 + (w · xi) − (b − ξi + βi)

d∗
2

≥ λ, xi ∈ G, (8.48)

1 − (w · xi) − (b − ξi + βi)

d∗
2

≥ λ, xi ∈ G, (8.49)

1 ≥ λ > 0, (8.50)

where xi are given, w and b unrestricted, ξi , βi > 0 respectively. d∗
i > 0, i = 1,2

are fixed in the computation. y1L = min
∑

i ξi is obtained from model (8.1)–(8.3) di-
rectly, while y1U is a fixed value between min

∑

i ξi and max
∑

i ξi with constraints
of model (8.1)–(8.3). y2U = max

∑

i βi , is obtained from the model (8.4)–(8.6) di-
rectly while y2L is a fixed value between max

∑

i βi and min
∑

i βi with constraints
of model (8.4)–(8.6).

There are differences between model (8.43)–(8.50) and model (8.7)–(8.9) or
(8.38)–(8.42). First, instead of not the optimal solution, we obtain a satisfying solu-
tion based on the membership function from the fuzzy linear programming. Second,
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with the soft constraints to Model (8.7)–(8.9) or (8.38)–(8.42), the boundary b can
be flexibly moved by the upper bound and the lower bound with the separated dis-
tance di , i = 1,2,3,4 according the characteristics of the data.

8.3 FMCLP by Tolerances

In this section, we construct a right semi-trapezoidal fuzzy membership function
for the fuzzy set y1L, and let ξ∗ (ξ∗ > 0) be the initial values of y1L which may
be regarded as a decision maker’s input parameter and its value should be smaller
as possible as 0.01 or the similar one. Thus it is argued that if

∑

i ξi < ξ∗ then
the objective of the ith observation or alternative is absolutely satisfied. At the same
time, when we introduce the maximum tolerance factor p1 (p1 > 0) of the departing
from, the object of the ith observation is also satisfied fuzzily if

∑

i ξi ∈ (ξ∗, ξ∗ +
p1) (i = 1,2, . . . , l). So, the monotonic and decreasing membership function may
be expressed as:

μ1

(
∑

i

ξi

)

=

⎧

⎪⎪⎨

⎪⎪⎩

1,
∑

i ξi < ξ∗,

1 −
∑

i ξi−ξ∗
p1

, ξ∗ ≤ ∑

i ξi ≤ ξ∗ + p1,

0,
∑

i ξi > ξ∗ + p1.

(8.51)

Similarly, we build a left semi-trapezoidal fuzzy membership function for the
fuzzy set y2U , and let β∗ (β∗ > 0) be the initial values of y2U which also is regarded
as an input parameter and its value should be greater as possible as 300000 or the
similar one. After we introduce another maximum tolerance factor p2 (p2 > 0) of
the

∑

i βi departing from β∗, the monotonic and non-decreasing membership func-
tion may be given by:

μ1

(
∑

i

βi

)

=

⎧

⎪⎪⎨

⎪⎪⎩

1,
∑

i βi > β∗,

1 −
∑

i βi−β∗
p2

, β∗ − p2 ≤ ∑

i ξi ≤ β∗,

0,
∑

i ξi < ξ∗ − p2.

(8.52)

Now we use the above membership functions μ1 and μ2, for all λ ∈ [0,1],
the fuzzy decision set D of the FMCLP by tolerance may be defined as Dλ =
{μ1(

∑

i ξi) ≥ λ, μ1(
∑

i βi) ≥ λ, (w · xi) = b + ξi − βi , for xi ∈ G, (w · xi) =
b − ξi + βi , for xi ∈ B , i = 1,2, . . . , l}. Then the problem is equivalent to the fol-
lowing model given by:

max λ (8.53)

s.t. w ∈ Dλ. (8.54)

Furthermore the (8.51)–(8.54) may be solved by the following fuzzy optimization
problem:
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max λ (8.55)

s.t.
∑

i

ξi ≤ ξ∗ + (1 − λ)p1, (8.56)

∑

i

βi ≤ β∗ − (1 − λ)p2, (8.57)

(w · xi) = b + ξi − βi, for xi ∈ G, (8.58)

(w · xi) = b − ξi + βi, for xi ∈ B, (8.59)

λ ∈ [0,1], i = 1,2, . . . , l, (8.60)

where xi are given, w and b are unrestricted, ξi and βi ≥ 0. Here it is noted that we
have an optimal solution or a satisfied solution for each λ ∈ [0,1], thus in fact the
solution with λ degree of membership is fuzzy.

8.4 Kernel-Based MCLP

Based on MCLP classifier, kernel-based multiple criteria linear programming (KM-
CLP) is developed to solve nonlinear separable problem. As is commonly known,
kernel function is a powerful tool to deal with nonlinear separable data set. By pro-
jecting the data into a high dimensional feature space, the data set will become more
likely linear separable. Kernel-based MCLP method introduces kernel function into
the original multiple criteria linear programming model to make it possible to solve
nonlinear separable problem [241]. The idea to introduce kernel function into MCLP
is originated from support vector machine (SVM).

In order to show how the kernel method works, we use the below problem as an
example [54].

Suppose we are solving the classification problem in Fig. 8.3(a). The classifi-
cation data set is C = {(xi, yi), i = 1, . . . , n}, where xi is taken from the space
([x]1, [x]2), and we have xi = ([xi]1, [xi]2)

T, yi ∈ {−1,1}. It is obvious that the
best classification line is an ellipse in the space ([x]1, [x]2), shown in Fig. 8.3(b):

[w]1[x]2
1 + [w]2[x]2

2 + b = 0, (8.61)

where [w]1 and [w]2 are coefficients in terms of the input data.
Now, the problem is how to get the two coefficients given the specific data set.

On this matter, we notice the fact that if we replace the variable xi = ([xi]1, [xi]2)
T

with xi = ([xi]1, [xi]2)
T from a new feature space, where [x]1 = [x]2

1, [x]2 = [x]2
2

then the separation line will be:

[w]1[x]1 + [w]2[x]2 + b = 0. (8.62)

With some linear classification methods, we can get [w]1 and [w]2.
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Fig. 8.3 A simple nonlinear classification example

The projection in this problem is:

�: [x]1 = [x]2
1,

[x]2 = [x]2
2,

(8.63)

where � : [x] → [x] is a nonlinear map from the input space to some feature space,
usually with multi-dimensions. [x] ∈ R2 is the independent variable with 2 at-
tributes. [x] ∈ R2 is the new independent variable in the high-dimensional space
with 2 attributes.

Similar to the above example, the basic way to build a nonlinear classification
machine includes two steps: first a projection function transforms the data into a
feature space, and then a linear classification method to classify them in the feature
space. To implement the mapping process, a mapping function is necessary. But as
is commonly known, the mapping function is always implicit. Thus, if the input data
have many attributes, it is hard to perform such mapping operations.

If data have non-linear patterns, MCLP can be extended by imposing Kernel
functions to estimate the non-linearity of the data structure [241]. A Kernel Based
Multiple Criteria Linear Program (KBMCLP) was proposed as follows.

Suppose that the solution of (8.7)–(8.9) can be described in the form of w =
∑n

i=1 λiyixi , which shows that w is a linear combination of xi ∈ X. Assume that xk

is linearly dependent on the other vectors in feature space:

xk =
l

∑

i=1,i 
=k

θixi, (8.64)
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where the θi are scalar constants. So w can be written as

w =
l

∑

i=1,i 
=k

λiyixi + λkyk

l
∑

i=1,i 
=k

θixi. (8.65)

Now define λkykθi = λiyiθi so that the above form can be written in the follow-
ing form:

w =
l

∑

i=1,i 
=k

λi(1 + θi)yixi =
l

∑

i=1,i 
=k

γiyixi, (8.66)

where γi = λi(1 + θi). Let Xm be a maximum linear independent subset from set X.
In general,the dimension of the observation is much less than the number of the
observations, i.e., m ≤ r ≤ l. The w is simplified as:

w =
m

∑

i=1

λiyixi . (8.67)

A kernel function can be used on the maximum linear independent subset Xm for
all observations. A KBMCLP, therefore, is formed as the following Model:

min C

l
∑

i=1

ξi −
l

∑

i=1

βi (8.68)

s.t.
m

∑

l=1

γlyl(xl · xi) = b + yi(ξi − βi), i = 1, . . . , l, (8.69)

ξi ≥ 0, βi ≥ 0, 0 < γi < C. (8.70)

Note that in (8.68)–(8.70), the separating function has lost the meaning of a hy-
perplane since the MCLP formulation is used to handle non-linear data separation.
Some variations of (8.68)–(8.70) can be further developed by using the MCQP struc-
ture with kernel functions.

8.5 Knowledge-Based MCLP

8.5.1 Linear Knowledge-Based MCLP

The classification principles of empirical methods, such as support vector machine,
neural networks and decision tree etc., are learning directly from training samples
which can draw out the classification rules or learn solely based on the training set.
But when there are few training samples due to the obtaining difficulty or cost, these
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methods might be inapplicable. Actually, different from these empirical classifica-
tion methods, another commonly used method in some area to classify the data is
to use prior knowledge as the classification principle. Two well-known traditional
methods are rule-based reasoning and expert system. In these methods, prior knowl-
edge can take the form of logical rule which is well recognized by computer. How-
ever, these methods also suffer from the fact that pre-existing knowledge can not
contain imperfections. Knowledge-incorporated multiple criteria linear program-
ming classifier combines the above two classification principles to overcome the
defaults of each approach [238]. Prior knowledge can be used to aid the training
set to improve the classification ability; also training example can be used to refine
prior knowledge.

Prior knowledge in some classifiers usually consists of a set of rules, such as, if
A then x ∈ G (or x ∈ B), where condition A is relevant to the attributes of the input
data. One example of such form of knowledge can be seen in the breast cancer re-
currence or nonrecurrence prediction. Usually, doctors can judge if the cancer recur
or not in terms of some measured attributes of the patients. The prior knowledge
used by doctors in the breast cancer dataset includes two rules which depend on two
features of the total 32 attributes: tumor size (T ) and lymph node status (L). The
rules are:

• If L ≥ 5 and T ≥ 4 Then RECUR and
• If L = 0 and T ≤ 1.9 Then NONRECUR

The conditions in the above rules can be written into such inequality as Cx ≤ c,
where C is a matrix driven from the condition, x represents each individual
sample, c is a vector. For example, if each sample x is expressed by a vector
[x1, . . . , xL, . . . , xT , . . . , xn]T, for the rule: if L ≥ 5 and T ≥ 4 then RECUR, it
also means: if xL ≥ 5 and xT ≥ 4, then x ∈ RECUR, where xL and xT are the
corresponding values of attributes L and T , n is the number of attributes.

Then its corresponding inequality Cx ≤ c can be written as:

[

0 . . . −1 . . . 0 . . . 0
0 . . . 0 . . . −1 . . . 0

]

x ≤
[−5
−4

]

, (8.71)

where x is the vector with 32 attributes including two features relevant with prior
knowledge.

Similarly, the condition L = 0 and T ≤ 1.9 can also be reformulated to be in-
equalities. With regard to the condition L = 0, in order to express it into the formu-
lation of Cx ≤ c, we must replace it with the condition L ≥ 0 and L ≤ 0. Then the
condition L = 0 and T ≤ 1.9 can be represented by two inequalities: C1x ≤ c1 and
C2x ≤ c2, as follows:

[

0 . . . −1 . . . 0 . . . 0
0 . . . 0 . . . 1 . . . 0

]

x ≤
[

0
1.9

]

, (8.72)

[

0 . . . 1 . . . 0 . . . 0
0 . . . 0 . . . 1 . . . 0

]

x ≤
[

0
1.9

]

. (8.73)
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Fig. 8.4 A classification
example by prior knowledge

We notice the fact that the set {x | Cx ≤ c} can be viewed as polyhedral convex
set. In Fig. 8.4, the triangle and rectangle are such sets.

The result RECUR or NONRECUR is equal to the expression x ∈ B or x ∈ G.
So according to the above rules, we have:

Cx ≤ c ⇒ x ∈ G (or x ∈ B). (8.74)

In MCLP classifier, if the classes are linearly separable, then x ∈ G is equal to
(x ·w) ≥ b, similarly, x ∈ B is equal to (x ·w) ≤ b. That is, the following implication
must hold:

Cx ≤ c ⇒ (x · w) ≥ b (or (x · w) ≤ b). (8.75)

For a given (w,b), the implication Cx ≤ c ⇒ xTw ≥ b holds, this also means
that Cx ≤ c, (x · w) < b has no solution x. According to nonhomogeneous Farkas
theorem, we can conclude that CTu + w = 0, (c · u) + b ≤ 0, u ≥ 0, has a solution
(u,w) [80].

The above statement is able to be added to constraints of MCLP. In this way,
the prior knowledge in the form of some equalities and inequalities in constraints
is embedded to the linear programming problem. Now, we are to explain how to
embed such kind of knowledge into the original MCLP model.

Suppose there are a series of knowledge sets as follows:

• If Cix ≤ ci , i = 1, . . . , k then x ∈ G,
• If Djx ≤ dj , j = 1, . . . , l then x ∈ B .

The logical relationships between the above conditions Cix ≤ ci , i = 1, . . . , k are
“and”. If there are “or” relationships between conditions, it will be a bit different.
We will describe this kind of problem in the later part.
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According to the above derivation, these knowledge can be converted to the fol-
lowing constraints: There exist ui , i = 1, . . . , k, vj , j = 1, . . . , l, such that:

CiTui + w = 0, (ci · ui) + b ≤ 0, ui ≥ 0, i = 1, . . . , k, (8.76)

DjTvi − w = 0, (dj · vj ) − b ≤ 0, vj ≥ 0, j = 1, . . . , l. (8.77)

However, there is no guarantee that such bounding planes precisely separate all
the points. Therefore, some error variables need to be added to the above formulas.
The constraints are further revised to be:

There exist ui, ri , ρi , i = 1, . . . , k and vj , sj , σ j , j = 1, . . . , l, such that:

−ri ≤ CiTui + w ≤ ri , (ci · ui) + b ≤ ρi, ui ≥ 0, i = 1, . . . , k, (8.78)

−sj ≤ DjTvi − w ≤ sj , (dj · vj ) − b ≤ σj , vj ≥ 0, j = 1, . . . , l. (8.79)

After that, we embed these constraints to the MCLP classifier, then obtain the
linear knowledge-incorporated multiple criteria linear programming classifier:

min
∑

αi and max
∑

βi and min
∑

(ri + ρi) +
∑

(sj + σj ) (8.80)

s.t. (x11 · w1) + · · · + (x1r · wr) = b + α1 − β1, for A1 ∈ B, (8.81)

...

(xn1 · w1) + · · · + (xnr · wr) = b + αn − βn, for An ∈ G, (8.82)

−ri ≤ CiTui + w ≤ ri , i = 1, . . . , k, (8.83)

(ci · ui) + b ≤ ρi, (8.84)

−sj ≤ DiTvj − w ≤ sj , j = 1, . . . , l, (8.85)

(dj · vi) − b ≤ ρj , (8.86)

α1, . . . , αn ≥ 0, β1, . . . , βn ≥ 0, (ui, vi, ri , ρi, sj , σ j ) ≥ 0. (8.87)

In this model, all the inequality constraints are derived from the prior knowledge.
The last objective min

∑
(ri + ρi) + ∑

(sj + σ j ) is about the slack error variables
added to the original knowledge equality constraints, because there is no guarantee
that the bounding plane of the convex sets will precisely separate the data. The
last objective attempts to drive the error variables to zero. We want to get the best
bounding plane (w,b) by solving this model to separate the two classes.

As we mentioned before, the logical relationships between the conditions Cix ≤
ci , i = 1, . . . , k are “and”. If there are “or” relationships between conditions, it will
be a different case. If there are “or” relationships, each condition in the “or” rela-
tionships should be dealt with and added as a constraint to the linear programming
model individually. As a result of it, there will be several linear programming prob-
lems need to be solved individually. And the best solution will be generated from
several optimal solutions of all the problems.
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8.5.2 Nonlinear Knowledge and Kernel-Based MCLP

Consider model (7.18)–(7.22) and replace (Xi · Xj) by K(Xi,Xj ), then kernel-
based multiple criteria linear programming (KMCLP) nonlinear classifier is formu-
lated:

min d+
ξ + d−

ξ + d+
β + d−

β (8.88)

s.t. ξ∗ +
n

∑

i=1

ξ = d−
ξ − d+

ξ , (8.89)

β∗ −
n

∑

i=1

βi = d−
β − d+

β , (8.90)

λ1y1K(X1,X1) + · · · + λnynK(Xn,X1) = b + ξ1 − β1, for X1 ∈ B,

(8.91)

...

λ1y1K(X1,Xn) + · · · + λnynK(Xn,Xn) = b + ξn − βn, for Xn ∈ G,

(8.92)

ξ1, . . . , ξn ≥ 0, β1, . . . , βn ≥ 0,

λ1, . . . , λn ≥ 0, d+
ξ , d−

ξ , d+
β , d−

β ≥ 0. (8.93)

The above model can be used as a nonlinear classifier, where K(Xi , Xj) can
be any nonlinear kernel, for example RBF kernel The above model can be used as
a nonlinear classifier, where K(Xi , Xj) can be any nonlinear kernel, for example
RBF kernel k(x, x′) = exp(−q‖x − x′‖2). ξ∗ and β∗ in the model need to be given
in advance. With the optimal value of this model (λ,b, ξ,β), we can obtain the
discrimination function to separate the two classes:

λ1y1K(X1, z) + · · · + λnynK(Xn, z) ≤ b, then z ∈ B, (8.94)

λ1y1K(X1, z) + · · · + λnynK(Xn, z) ≥ b, then z ∈ G, (8.95)

where z is the input data which is the evaluated target with r attributes.
Prior knowledge in some classifiers usually consist of a set of rules, such as, if

A then x ∈ G (or x ∈ B), where condition A is relevant to the attributes of the input
data. For example,

• If L ≥ 5 and T ≥ 4 Then RECUR and
• If L = 0 and T ≤ 1.9 Then NONRECUR,

where L and T are two of the total attributes of the training samples.
The conditions in the above rules can be written into such inequality as Cx ≤ c,

where C is a matrix driven from the condition, x represents each individual sample,
c is a vector. In some works [80, 81, 241], such kind of knowledge was imposed to
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constraints of an optimization problem, thus forming the classification model with
training samples and prior knowledge as well.

We notice the fact that the set {x | Cx ≤ c} can be viewed as polyhedral convex
set, which is a linear geometry in input space. But, if the shape of the region which
consists of knowledge is nonlinear, for example, {x | ‖x‖2 ≤ c}, how to deal with
such kind of knowledge?

Suppose the region is nonlinear convex set, we describe the region by g(x) ≤ 0.
If the data is in this region, it must belong to class B . Then, such kind of nonlinear
knowledge may take the form of:

g(x) ≤ 0 ⇒ x ∈ B, (8.96)

h(x) ≤ 0 ⇒ x ∈ G. (8.97)

Here g(x) : Rr → Rp (x ∈ �) and h(x) : Rr → Rq (x ∈ �) are functions defined
on a subset � and � of Rr which determine the regions in the input space. All the
data satisfied g(x) ≤ 0 must belong to the class B and h(x) ≤ 0 must belong to the
class G.

With KMCLP classifier, this knowledge equals to:

g(x) ≤ 0 ⇒ λ1y1K(X1, x) + · · · + λnynK(Xn,x) ≤ b (x ∈ �), (8.98)

h(x) ≤ 0 ⇒ λ1y1K(X1, x) + · · · + λnynK(Xn,x) ≥ b (x ∈ �). (8.99)

This implication can be written in the following equivalent logical form:

g(x) ≤ 0, λ1y1K(X1, x) + · · · + λnynK(Xn,x) − b > 0 has no solution x ∈ �,

(8.100)

h(x) ≤ 0, λ1y1K(X1, x) + · · · + λnynK(Xn,x) − b < 0 has no solution x ∈ �.

(8.101)

The above expressions hold, then there exist v ∈ Rp , r ∈ Rq , v, r ≥ 0 such that:

−λ1y1K(X1, x) − · · · − λnynK(Xn,x) + b + vTg(x) ≥ 0 (x ∈ �), (8.102)

λ1y1K(X1, x) + · · · + λnynK(Xn,x) − b + rTh(x) ≥ 0 (x ∈ �). (8.103)

Add some slack variables on the above two inequalities, then they are converted
to:

−λ1y1K(X1, x) − · · · − λnynK(Xn,x) + b + vTg(x) + s ≥ 0 (x ∈ �), (8.104)

λ1y1K(X1, x) + · · · + λnynK(Xn,x) − b + rTh(x) + t ≥ 0 (x ∈ �). (8.105)

The above statement is able to be added to constraints of an optimization prob-
lem.

Suppose there are a series of knowledge sets as follows:
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If g(x) ≤ 0, Then x ∈ B (gi(x) : Rr → R
p
i ) (x ∈ �i, i = 1, . . . , k), (8.106)

If h(x) ≤ 0, Then x ∈ G (hj (x) : Rr → R
p
i ) (x ∈ �j , j = 1, . . . , k). (8.107)

We converted the knowledge to the following constraints:
There exist vi ∈ R

p
i , i = 1, . . . , k, rj ∈ R

q
j , j = 1, . . . , l, vi , rj ≥ 0 such that:

−λ1y1K(X1, x) − · · · − λnynK(Xn,x) + b + vT
i gi(x) + si ≥ 0 (x ∈ �),

(8.108)

λ1y1K(X1, x) + · · · + λnynK(Xn,x) − b + rT
j hj (x) + tj ≥ 0 (x ∈ �).

(8.109)

These constraints can be easily imposed to KMCLP model (8.88)–(8.93) as the
constraints acquired from prior knowledge. Nonlinear knowledge in KMCLP clas-
sifier:

min (d+
ξ + d−

ξ + d+
β + d−

β ) + C

(
k

∑

i=1

si +
l

∑

j=1

tj

)

(8.110)

s.t. λ1y1K(X1,X1) + · · · + λnynK(Xn,X1) = b + ξ1 − β1, for X1 ∈ B,

(8.111)

...

λ1y1K(X1,Xn) + · · · + λnynK(Xn,Xn) = b − ξn + βn,

for Xn ∈ G, (8.112)

ξ∗ +
n

∑

i=1

ξ = d−
ξ − d+

ξ , (8.113)

β∗ −
n

∑

i=1

βi = d−
β − d+

β , (8.114)

−λ1y1K(X1, x) − · · · − λnynK(Xn,x) + b + vT
i gi(x) + si ≥ 0,

i = 1, . . . , k, (8.115)

si ≥ 0, i = 1, . . . , k, (8.116)

λ1y1K(X1, x) + · · · + λnynK(Xn,x) − b + rT
j hj (x) + ti ≥ 0,

j = 1, . . . , l, (8.117)

tj ≥ 0, j = 1, . . . , l, (8.118)

ξ1, . . . , ξn ≥ 0, β1, . . . , βn ≥ 0, λ1, . . . , λn ≥ 0, (8.119)

(vi, rj ) ≥ 0, (8.120)

d+
ξ , d−

ξ , d+
β , d−

β ≥ 0. (8.121)
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In this model, all the inequality constraints are derived from the prior knowledge.
The last objective C(

∑k
i=1 si + ∑l

j=1 tj ) is about the slack error, which attempts
to drive the error variables to zero. We notice the fact that if we set the value of
parameter C to be zero, this means to take no account of knowledge. Then this
model will be equal to the original KMCLP model. Theoretically, the larger the
value of C, the greater impact on the classification result of the knowledge sets.
Several parameters need to be set before optimization process. Apart from C we
talked about above, the others are parameter of kernel function q (if we choose
RBF kernel) and the ideal compromise solution ξ∗ and β∗. We want to get the best
bounding plane (λ, b) by solving this model to separate the two classes. And the
discrimination function of the two classes is:

λ1y1K(X1, z) + · · · + λnynK(Xn, z) ≤ b, then z ∈ B, (8.122)

λ1y1K(X1, z) + · · · + λnynK(Xn, z) ≥ b, then z ∈ G, (8.123)

where z is the input data which is the evaluated target with r attributes. Xi represents
each training sample. yi is the class label of ith sample.

8.6 Rough Set-Based MCLP

8.6.1 Rough Set-Based Feature Selection Method

On account of the limitation which the MCLP model failed to make sure and remove
the redundancy in variables or attributes set. That is to say the model is not good
at giving judgment on attributes which are useful and important or unnecessary
and unimportant relatively. However, rough set methods have an advantage in this
aspect.

It is well known that rough set theory, which was developed by Z. Pawlak in
1980s, is a new mathematical analysis method used for dealing with fuzzy and un-
certain information and discovering knowledge and rules hided in data or informa-
tion [18, 161]. Besides, knowledge or attribute reduction is one of the kernel parts of
rough set, and it can efficiently reduce the redundancy in knowledge base or attribute
set [236].

For supervised learning a decision system or decision table may often be the form
� = (U,C ∪ D), where U is a nonempty finite set of objects called the universe,
A is a nonempty finite set of attributes, D is the decision attribute. The elements
of C are called conditional attributes or simple conditions.

And a binary relation which is reflexive (i.e. an object is in relation with itself
xRx), symmetric (i.e. if xRy then yRx) and transitive (if xRy and yRz then xRz) is
called an equivalence relation. The equivalence class of an element x ∈ X consists
of all objects y ∈ X such that xRy.

Let � = (U,C ∪ D) be an information system or decision table, then with any
set B ⊆ � there is associated an equivalent relation IND(B):

IND(B) = {(x, x ′) ∈ B, ∀ω ∈ B, ω(x) = ω(x′)}. (8.124)
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Fig. 8.5 The flow of rough
set for attribute reduction

Here the value IND(B) is called as B-indiscernibility relation. If the two-tuple
(x, x ′) ∈ IND(B), then the objects x and x ′ are indiscernible from each other by
attributes from B . Then the equivalence classes of the B-indiscernibility relation
are denoted [x]B .

An equivalence relation induces a partitioning of the universe. These partitions
can be used to build new subsets of the universe. These subsets that are most often
of interest have the same value of the outcome attribute.

In addition, it is evident that the attribute ω (ω ∈ �) is reducible, for ∀ω ∈ � , if
the equation (8.125) is tenable:

IND(�) = IND(A − {ω}). (8.125)

Contrarily, the attribute ω is irreducible. Similarly, the attribute set � is indepen-
dent, otherwise, correlative and reducible. Further, if an attribute subset B(B ⊆ �)

is independent and IND(B) = IND(�), the set B is a reduction of the set � . What
is more, the set B is the minimal reduction if it includes the least elements in all the
reduction attribute subsets.

As far as classification is concerned, the positive region of the conditional
attribute set C in the decision attribute set D may be defined as PosC(D) =
⋃

[x]D P−(X), where P−(X) is expressed as the upper approximation of the ob-
ject. Therefore, the conditional attribute c (c ∈ C) in set is reducible about set if the
equation (8.126) is tenable.

PosC(D) = PosC−{c}(D). (8.126)

Generally speaking, for a decision table � = (U,C ∪ D), the reduction of con-
ditional attributes set C may be implemented by two steps 1 and 2 just like Fig. 8.5.

That is to say, given any object xi ∈ U (i = 1,2, . . . , n) in the universe U and the
conditional attribute set C = {c1, c2, . . . , cm} which is composed of them different
attributes, so we have the processing flow for attribute reduction or feature selection
as follows:

• Step 1: Attribute set reduction.
For any attribute cr ∈ C (r = 1,2, . . . ,m), if the reduction condition is un-

tenable about the below expression (8.127), we will remove cr as a redundant
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attribute:
{ {C − cr }i ∩ {C − cr }j = {C − cr}i and

di 
= dj (i, j = 1,2, . . . , n),
(8.127)

where {C − cr}i and {C − cr}j are denoted as the ith and j th objects respectively,
after removing the r th conditional attribute cr from the whole of set C. At the
same time, and di and dj belong to the decision attribute set D.

• Step 2: Object set reduction.
After the first step is finished, decision table may have l (l ≤ m) different

attributes, thus we need still check whether the expression (8.127) is tenable or
not again, if it is tenable, we will keep the attribute cr similar to step 1, otherwise
drop the redundant attribute and corresponding objects or data rows.

In a word, rough set is a powerful tool of data analysis with many merits as
follows:

(a) No using the prior knowledge, traditional analysis methods (i.e. fuzzy set, prob-
ability and statistics method) are also used to process uncertain information,
but it is necessary for them to provide additive information or prior knowledge.
However, rough set only make use of information in data set.

(b) Expressing and processing uncertain information effectively, on the basis of
equivalent relation and indiscernibility relation it can reduce redundant infor-
mation and gain the minimal reduction of knowledge or attribute and discover
simplifying knowledge and rules.

(c) Missing value, rough set can be avoided of the effects because of missing value
in data set.

(d) High performance, it can rapidly and efficiently process the large number of
data with many variables or attributes.

8.6.2 A Rough Set-Based MCLP Approach for Classification

Although rough set has many advantages just like the above mentioned, it is short
of the fault tolerance and generalization in new data case. Besides, it only deals
with discrete data. However, the MCLP model good at those aspects. In general, the
MCLP model can gain the better compromise solution on condition that it got the
better control of the trade-off of between minimizing the overlapping degree and
maximizing the distance departed from boundary. That is to say it do not attempt to
get optimal solution but to gain the better generalization by means of using regret
measurement and to seek for non inferior solution. Nevertheless, the MCLP model
only can deal with continuous and discrete data with numeric type. In addition, it is
not immune to missing values, and the reduced conditional attribute subset can not
be obtained through it. Especially, when the solved problem has a large number of
features, the MCLP approach will occupy a lot of the system resources in time and
space, even give the unsuccessful solutions. Therefore, it is required that we may
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construct a new method combining rough set and the MCLP model effectively for
classification in data mining.

Although rough set has many advantages just like the above mentioned, it is short
of the fault tolerance and generalization in new data case. Besides, it only deals with
discrete data. However, the MCLP model good at those aspects.

In general, the MCLP model can gain the better compromise solution on condi-
tion that it got the better control of the trade-off of between minimizing the over-
lapping degree and maximizing the distance departed from boundary. That is to say
it do not attempt to get optimal solution but to gain the better generalization by
means of using regret measurement and to seek for non inferior solution. Neverthe-
less, the MCLP model only can deal with continuous and discrete data with numeric
type. In addition, it is not immune to missing values, and the reduced conditional
attribute subset can not be obtained through it. Especially, when the solved problem
has a large number of features, the MCLP approach will occupy a lot of the system
resources in time and space, even give the unsuccessful solutions.

Therefore, it is required that we may construct a new method combining rough
set and the MCLP model effectively for classification in data mining.

According to the above analysis, we can find the difference and the existing mu-
tual complementarities between them and need to combine rough set approach and
the MCLP model in data mining so as to obtain even more satisfying methods to
solve problems.

Generally, the MCLP model can not reduce the dimensions of input information
space. Moreover, it result in too long training or learning time when the dimensions
of input information space is too large, and to some extent the model will not get
solutions of primal problems. However, rough set method can discover the hidden
relation among data, remove redundant information and gain a better dimensionality
reduction.

In practical applications, because rough set is sensible to the noise of data, the
performance of model will become bad when we apply the results learned from
data set without noise to data set containing noise. That is to say, rough set has the
poor generalization. Nevertheless, the MCLP model provides with the good noise
suppression and generalization.

Therefore, according to their characteristics of the mutual complementarities, the
integration of rough set method and MCLP model will produce a new hybrid model
or system. At the same time, rough set is used as a prefixion part which is responsible
for data preprocessing and feature selection and the MCLP model will be regarded
as the classification and prediction system where it uses the reduction information
by rough set in the model or system. Consequently, the system structure of the inte-
grated rough set method and MCLP model for classification and prediction may be
presented as follows in Fig. 8.6.

Firstly, we derive the attributes or variables from the collected source data ac-
cording to the classification requirements and quantify these attributes. Then a data
set which is composed of quantified attributes or variables can be represented as a
table, where each row represents a case, an event, an observation, or simply an ob-
ject. Every column represents an attribute or a variable that can be measured for each
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Fig. 8.6 The rough set-based
MCLP model for
classification

object, therefore this table is called a decision table (or a decision system, informa-
tion system). In addition, attributes may be defined and categorized into conditional
attributes and decision attributes.

After some preliminary exploratory data analysis, we may clean and correct the
initial data set. And then data set is partitioned into two parts: training data set and
testing data set. Here, for training data set, if it is necessary, we need to discretize
all the continuous variables and merge all the unreasonable intervals of discrete
variables by using discretization methods so that the optimal values of conditional
attributes can be obtained. Then decision table is reorganized in accordance with the
discretized variables.

Then, we may use rough set approach to find the minimal attribute reduction
subset. Meanwhile, reduction in decision table includes both conditional attributes
reduction and removing repetitious data rows. In succession, we need to create a
new training set based on the minimal conditional attribute reduction subset and the
corresponding data rows again, where the data set remains the important attributes
which have great effects on performance of classification.

Finally, we use the training data set to learn and to train the MCLP model and
obtain a classifier. Similarly we need to construct a new testing set based on the
minimal conditional attribute subset and the corresponding data rows. And then,
we use the data set to test the classifier learned from the above data set and get
the results of prediction and give evaluations and explanations for these results.
Alternatively, we may begin to train the MCLP model on the different training data
sets respectively by using 10-fold cross-validation method. And the MCLP model
is built in SAS system environment. Then the system rapidly gives the solutions
of the models. Among these models, we may choose a stable one and apply it to
testing data set and obtain the classification results and the corresponding evaluation
indexes by computing. Of course, we may choose some good models to predict and
get the average classification results on testing sets by using the ensemble method.
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Fig. 8.7 (a) The primal
regression problem. (b) The
D+ and D− data sets

8.7 Regression by MCLP

Prediction of continuous value is another important branch of data mining. It refers
to using some variables in the data set to predict unknown or future values of other
variables of interest. These values to be predicted are real values which are not lim-
ited to categorical values. Of all methods, regression is the most widely used method
to solve such kind of problem. The key idea of regression is to discover the relation-
ship between the dependent variable and one or more independent variables. In other
words, the purpose of the regression problem is to determine a function f (x) on the
given data set with two kinds of attributes x (independent variables) and y (depen-
dent variable), so that when given a new input x, we can infer the corresponding
y with the regression function, where y is a real number. Figure 8.7(a) is a simple
example to illustrate the regression problem.

To date, a lot of methods have been developed and widely used to solve the
regression problem. For example, a commonly known statistical method least square
regression has been successfully applied in many fields. It is first developed to fit
the straight line by determining the coefficients of each independent variable, which
can minimize the sum of squared error over all observations. In multiple regression
and some nonlinear regression problems, least square can also work well. Different
from traditional regression method, a new technique, support vector regression, is
developed by Vapnik to solve multi-dimensional regression problem. Later, Bi and
Bennett [19] initiated the idea that a regression problem can be transferred to a
classification problem. According to this, ε-SVR model can be easily inferred [54].
Enlightened by this theory, the main idea of this research is to solve linear regression
problem by multiple criteria linear programming classifier. And the key point of it
is how to transform a regression problem into a classification problem.

Suppose the given sample set can be approximated by a certain regression func-
tion within precision ε, in order to transform a regression problem into a classifica-
tion problem, we observe the fact that if we move the regression data upward and
downward with width ε, the data moved upward, which form the D+ data set, are
naturally separated with the data moved downward, which form the D− data set
(see Fig. 8.7(b)). Hence, the linear classification problem of the D+ and D− data
sets is constructed [1, 19, 147]. Using some classification method, we can find the
discrimination hyperplane of the two classes. It is natural thought that a better hy-
perplane for separating D+ and D− is also a better ε-tube hyperplane of the original
regression training set, so regarding it as the regression function is reasonable [54].

D+ = {((xT
i , yi + ε)T,+1), i = 1, . . . , n}, (8.128)
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D− = {((xT
i , yi − ε)T,−1), i = 1, . . . , n}. (8.129)

We observe that the minimum of least squares in regression is based on the con-
cept of optimization. Similarly, in addition to classification, MCLP can also be ex-
tended to solve regression problems.

Consider a data set of a regression problem:

T = {(xT
1 , z1), (xT

2 , z2), . . . , (xT
n, zn)}, (8.130)

where xi ∈ Rr are the input variables, and zi ∈ R is the output variable, which can
be any real number. Define the G and B as “Good” (−1) and “Bad” (+1) (a binary
case), respectively. Then the corresponding S−

MCLP and S+
MCLP data sets for MCLP

regression model are constructed. With these datasets, the MCLP regression model
is formalized as follows [237]:

min
n

∑

i=1

(αi − α′
i ) − max

n
∑

i=1

(βi − β ′
i ) (8.131)

s.t. (xi1 · w1) + · · · + (xir · wr) + (z1 + ε)wr+1 = b − ξ1 + β1, (8.132)

...

(xk1 · w1) + · · · + (xkr · wr) + ((zk + ε) · wr+1) = b − ξk + βk,

for all ∈ B, (8.133)

(xk+1,1 · w1) + · · · + (xk+1,r · wr) + ((zk+1 − ε) · wr+1)

= b + ξ ′
k+1 − β ′

k+1, (8.134)

...

xn1w1 + · · · + xnrwr + (zn − ε)wr+1 = b + ξ ′
n − β ′

n, for all ∈ G, (8.135)

ξ, ξ ′, β,β ′ ≥ 0. (8.136)

Aggregation of Bad samples:

S+
MCLP = {((xT

i , zi + ε)T,+1), i = 1, . . . , n}. (8.137)

Aggregation of Good samples:

S−
MCLP = {((xT

i , zi − ε)T,−1), i = 1, . . . , n}. (8.138)

Experimental study of this MCLP regression model compared with other regression
methods has shown its potential applicability.



Chapter 9
Multiple Criteria Quadratic Programming

9.1 A General Multiple Mathematical Programming

Consider a mathematical function f (ξ) to be used to describe the relation of all over-
lapping ξi , while another mathematical function g(β) represents the aggregation of
all distances βi . The classification accuracies depend on simultaneously minimize
f (ξ) and maximize g(β). Thus, a general bi-criteria programming method for clas-
sification can be formulated as:

min f (ξ) (9.1a)

max g(β) (9.1b)

s.t. (xi · w) − b − ξi + βi = 0, ∀yi = −1; (9.1c)

(xi · w) − b + ξi − βi = 0, ∀yi = 1; (9.1d)

ξ,β ≥ 0, (9.1e)

where xi is given feature vector of the ith sample and yi is the corresponding label,
i = 1, . . . , l. ξ,β ∈ Rl , w ∈ Rn and b ∈ R are variables.

We note that different forms of f (ξ) and g(β) will affect the classification cri-
teria. f (ξ) and g(β) can be component-wise and non-decreasing functions. For
example, in order to utilize the computational power of some existing nonlinear
optimization software packages, a sub-model can be set up by using the lp norm to
represent f (ξ) and lq norm to represent g(β) respectively. This means f (ξ) = ‖ξ‖p

p

and g(β) = ‖β‖q
q . Furthermore, to transform the bi-criteria problem of the general

model into a single- criterion problem, we use weights σξ > 0 and σβ > 0 for ‖ξ‖p
p

and ‖β‖q
q , respectively. The values of σξ and σβ can be pre-defined in the process

of identifying the optimal solution. Thus, the general model can be converted into a
single criterion mathematical programming model as:

min σξ‖ξ‖p
p − σβ‖β‖q

q (9.2a)

s.t. (xi · w) − b + ξi + βi = 0, ∀yi = −1; (9.2b)
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(xi · w) − b − ξi − βi = 0, ∀yi = 1; (9.2c)

ξ,β ≥ 0. (9.2d)

Based on (9.2a)–(9.2d), mathematical programming models with any norm can be
theoretically defined. This study is interested in formulating a linear or a quadratic
programming model.

• Case 1: p = q = 1 (MCLP)

In this case, ‖ξ‖1 = ∑l
i=1 ξi and ‖β‖1 = ∑l

i=1 βi . Objective function in (9.2a)–
(9.2d) can now be a linear objective function

min σξ

l
∑

i=1

ξi − σβ

l
∑

i=1

βi. (9.3)

(9.2a)–(9.2d) turns to be a linear programming

min σξ

l
∑

i=1

ξi − σβ

l
∑

i=1

βi (9.4a)

s.t. (xi · w) − b − ξi + βi = 0, ∀yi = −1; (9.4b)

(xi · w) − b + ξi − βi = 0, ∀yi = 1; (9.4c)

ξ,β ≥ 0. (9.4d)

This model has been obtained by Shi et al. [183] and Freed and Glover [75]. There
are many softwares which can solve linear programming problem very efficiently
at present. We can use some of these softwares to solve the linear programming
(9.4a)–(9.4d).

• Case 2: p = 2, q = 1 (MCVQP)

In this case, ‖ξ‖2
2 = ∑l

i=1 ξ2
i and ‖β‖1 = ∑l

i=1 βi . Objective function in (9.2a)–
(9.2d) can now be a convex quadratic objective

min σξ

l
∑

i=1

ξ2
i − σβ

l
∑

i=1

βi. (9.5)

(9.2a)–(9.2d) turns to be a convex quadratic programming

min σξ

l
∑

i=1

ξ 2
i − σβ

l
∑

i=1

βi (9.6a)

s.t. (xi · w) − b − ξi + βi = 0, ∀yi = −1; (9.6b)

(xi · w) − b + ξi − βi = 0, ∀yi = 1; (9.6c)

ξ,β ≥ 0. (9.6d)
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It is well known that convex quadratic programming can be solved easily. We use
the method developed by [166] to solve problem (9.6a)–(9.6d).

• Case 3: p = 1, q = 2 (MCCQP)

In this case, ‖ξ‖1 = ∑l
i=1 ξi and ‖β‖2

2 = ∑l
i=1 β2

i . Objective function in (9.2a)–
(9.2d) can now be a concave quadratic objective

min σξ

l
∑

i=1

ξi − σβ

l
∑

i=1

β2
i . (9.7)

(9.2a)–(9.2d) turns to be a concave quadratic programming

min σξ

l
∑

i=1

ξi − σβ

l
∑

i=1

β2
i (9.8a)

s.t. (xi · w) − b − ξi + βi = 0, ∀yi = −1; (9.8b)

(xi · w) − b + ξi − βi = 0, ∀yi = 1; (9.8c)

ξ,β ≥ 0. (9.8d)

Concave quadratic programming is an NP-hard problem. It is very difficult to
find the global minimizer, especially for large problem. In order to solve (9.8a)–
(9.8d) efficiently, we propose an algorithm, which converges to a local minimizer of
(9.8a)–(9.8d).

In order to describe the algorithm in detail, we introduce some notation.
Let ω = (w, ξ,β, b), f (ω) = σξ

∑l
i=1 ξi − σβ

∑l
i=1 β2

i , and

� =

⎧

⎪⎨

⎪⎩

(w, ξ,β, b) : (xi · w) − b − ξi + βi = 0, ∀yi = −1,

(xi · w) − b + ξi − βi = 0, ∀yi = 1,

ξi ≥ 0, βi ≥ 0, i = 1, . . . , n

(9.9)

be the feasible region of (9.2a)–(9.2d).
Let χ�(ω) be the index function of set �, i.e., χ�(ω) is defined as follows

χ�(ω) =
{

0, ω ∈ �,

+∞, ω /∈ �.
(9.10)

Then (9.8a)–(9.8d) is equivalent to the following problem

min f (ω) + χ�(ω). (9.11)

Rewrite f (ω) + χ�(ω) as the following form

f (ω) + χ�(ω) = g(ω) − h(ω) (9.12)

where g(ω) = 1
2ρ‖ω‖2 + σξ

∑l
i=1 ξi + χ�(ω), h(ω) = 1

2ρ‖ω‖2 + σβ

∑l
i=1 β2

i and
ρ > 0 is a small positive number. Then g(ω) and h(ω) are convex functions. By
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applying the simplified DC algorithm in [5] to problem (9.11), we get the following
algorithm

Algorithm 9.1 Given an initial point ω0 ∈ R3l+1 and a parameter ε > 0, at each
iteration k ≥ 1, compute ωk+1 by solving the convex quadratic programming

min
ω∈�

1

2
ρ‖ω‖2 + σξ

l
∑

i=1

ξi − (h′(ωk) · ω). (9.13)

The stopping criterion is ‖ωk+1 − ωk‖ ≤ ε.

By standard arguments, we can prove the following theorem.

Theorem 9.2 After finite number of iterations, Algorithm 9.1 terminates at a local
minimizer of (9.8a)–(9.8d).

• Case 4: p = q = 2 (MCQP)

In this case, ‖ξ‖ = ∑l
i=1 ξ2

i and ‖β‖ = ∑l
i=1 β2

i the objective function in (9.2a)–
(9.2d) can now be an indefinite quadratic function

min σξ

l
∑

i=1

ξ 2
i − σβ

l
∑

i=1

β2
i . (9.14)

(9.2a)–(9.2d) turns to be an indefinite quadratic programming

min σξ

l
∑

i=1

ξ 2
i − σβ

l
∑

i=1

β2
i (9.15a)

s.t. (xi · w) − b − ξi + βi = 0, ∀yi = −1; (9.15b)

(xi · w) − b + ξi − βi = 0, ∀yi = 1; (9.15c)

ξ,β ≥ 0. (9.15d)

This is an indefinite quadratic programming, which is an NP-hard problem. So it is
very difficult to find the global minimizer, especially for large problem. However,
we note that this problem is a DC programming. Here we propose an algorithm
for this model based on DC programming, which converges to a local minimizer
of (9.15a)–(9.15d). Let f1(ω) = σξ

∑l
i=1 ξ2

i −σβ

∑l
i=1 β2

i . Then (9.15a)–(9.15d) is
equivalent to the following problem

min f1(ω) + χ�(ω). (9.16)

Rewrite f1(ω) + χ�(ω) as the following form

f1(ω) + χ�(ω) = g1(ω) − h1(ω), (9.17)
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where g(ω) = 1
2ρ‖ω‖2 + σξ

∑l
i=1 ξ 2

i + χ�(ω), h(ω) = 1
2ρ‖ω‖2 + σβ

∑l
i=1 β2

i and
ρ > 0 is a small positive number. Then g1(ω) and h1(ω) are convex functions. By
apply the simplified DC algorithm in [5] to problem (9.16), we get the following
algorithm

Theorem 9.3 Given an initial point ω0 ∈ R3n+1 and a parameter ε > 0, at each
iteration k ≥ 1, compute ωk+1 by solving the convex quadratic programming

min
ω∈�

1

2
ρ‖ω‖2 + σξ

n
∑

i=1

ξ 2
i − (h′

1(ω
k) · ω). (9.18)

The stopping criterion is ‖ωk+1 − ωk‖ ≤ ε.

From (Le Thi Hoai An and Pham Dinh Tao, 1997), we have the following theo-
rem.

Theorem 9.4 The sequence {ωk} generated by Algorithm 9.1 converges to a local
minimizer of (9.15a)–(9.15d).

Remark 9.5 The purpose of this section is to propose a general optimization-based
framework which unifies some existed optimization-based classification methods
and to obtain some new models based on this general framework and to test the
efficiency of these models by using some real problems. So we adopt some existed
algorithms to solve these models. To propose some new and efficient methods for
these models based on the structure of these models need to be studied further.

Remark 9.6 There are many deterministic and heuristic algorithms for global op-
timization, e.g., branch and bound, plane cutting, genetic algorithm, simulated an-
nealing etc. Please see [160] and [112]. Here we adopt the simplified DC algo-
rithm proposed by [5] to solve (9.8a)–(9.8d) and (9.15a)–(9.15d). The reasons are
as follows: (i) The objective functions in (9.8a)–(9.8d) and (9.15a)–(9.15d) are DC
functions. This algorithm exploits such structure; (ii) the algorithm is simple and
implemented easily; (iii) as the authors indicated, the algorithm always converges
to a global optimizer in numerical experiments.

9.2 Multi-criteria Convex Quadratic Programming Model

This section introduces a new MCQP model. Suppose we want to classify data in
r-dimensional real space Rr into two distinct groups via a hyperplane defined by
a kernel function and multiple criteria. Thus, we can establish the following linear
inequalities for a linear separable dataset:

(xi · w) < b, ∀yi = −1; (9.19)
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(xi · w) ≥ b, ∀yi = 1. (9.20)

To formulate the criteria and constraints for data separation, some variables need
to be introduced. In the classification problem, (xi · w) is the score for the ith data
record. If all records are linear separable and an element xi is correctly classified,
then let βi‖w‖ be the distance from xi to the hyperplane (x · w) = b, and consider the
linear system, (xi ·w) = b −βi , ∀yi = −1 and (xi ·w) = b +βi , ∀yi = 1. However,
if we consider the case where the two groups are not linear separable because of
mislabeled records, a “Soft Margin” and slack distance variable ξi need to be intro-
duced. Previous equations now transforms to (xi · w) = b + ξi − βi , ∀yi = −1 and
(xi ·w) = b−ξi +βi , ∀yi = 1. To complete the definitions of βi and ξi , let βi = 0 for
all misclassified elements and ξi equals to zero for all correctly classified elements.
Incorporating the definitions of βi and ξi , (9.19) and (9.20) can be reformulated as
three different models (Medium, Strong and Weak).

• Medium model: (xi · w) = b + ξi − βi , ∀yi = −1 and (xi · w) = b − ξi + βi ,
∀yi = 1.

• Strong model: (xi ·w) = b−δ+ξi −βi , ∀yi = −1 and (xi ·w) = b+δ−ξi +βi ,
yi = 1, δ > 0 is a given scalar. b − δ and b + δ are two adjusted hyperplanes for
strong model.

• Weak model: (xi · w) = b + δ + ξi − βi , ∀yi = 1 and (xi · w) = b − δ − ξi + βi ,
yi = 1, δ > 0 is a given scalar. b + δ and b − δ are two adjusted hyperplanes for
weak model.

Denote the class which corresponding label yi = −1 as G1 and the class which
corresponding label yi = −1 as G2. A loosing relationship of above models is given
as:

Theorem 9.7

(i) A feasible solution of Strong model is the feasible solution of Medium model
and Weak model.

(ii) A feasible solution of Medium model is the feasible solution of Weak model.
(iii) If a data case xi is classified in a given class Gj by Strong model, then it may

be in Gj by using Medium model and Weak model.
(iv) If a data case xi is classified in a given class Gj by model Medium model, then

it may be in Gj by using Weak model.

Proof Let Feas1 = feasible area of Strong model, Feas2 = feasible area of Medium
model, and Feas3 = feasible area of Weak model. ∀w∗

s ∈ Feas1, w∗
s ∈ Feas2 and

w∗
s ∈ Feas3. ∀w∗

m ∈ Feas2, w∗
m ∈ Feas3. Obviously, we will have Feas1 ⊆ Feas2 ⊆

Feas3, so (i) and (ii) is true.
(iii) and (iv) are automatically true from the conclusion of (i) and (ii) for a certain

value of δ > 0. �
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Redefine w as w/δ, b as b/δ, ξi as ξi/δ, βi as β/δ, and introduce

δ′ =

⎧

⎪⎨

⎪⎩

1, Strong model,

0, Medium model,

−1, Weak model.

(9.21)

Define an n × n diagonal matrix Y which only contains “+1” or “−1” indicates
the class membership. A “−1” in row i of matrix Y indicates the corresponding
record xi ∈ G1 and a “+1” in row i of matrix Y indicates the corresponding record
xi ∈ G2. The above three models can be rewritten as a single constraint:

Y(XTw − eb) = δ′ + ξ − β, (9.22)

where e = (1,1, . . . ,1)T, ξ = (ξ1, . . . , ξl)
T and β = (β1, . . . , βl)

T.
The proposed multi-criteria optimization problem contains three objective func-

tions. The first mathematical function f (ξ) = ‖ξ‖p
p = ∑l

i=1 |ξi |p (1 ≤ p ≤ ∞)

describes the summation of total overlapping distance of misclassified records
to the hyperplane (x · w) = b. The second function g(β) = ‖β‖q

q = ∑l
i=1 |βi |q

(1 ≤ q ≤ ∞) represents the aggregation of total distance of correctly separated
records to the hyperplane (x ·w) = b. The distance between the two adjusted bound-
ing hyperplanes is defined as 2

‖w‖s
s

in geometric view. In order to maximize this

distance, a third function h(w) = ‖w‖s
s

2 should be minimized. The final accuracy
of this classification problem depends on simultaneously minimize f (ξ), minimize
h(w) and maximize g(β). Thus, an extended Multi-criteria programming model for
classification can be formulated as:

minf (ξ), minh(w) and maxg(β) (9.23a)

s.t. Y (XTw − eb) = δ′ + ξ − β, (9.23b)

ξ,β ≥ 0. (9.23c)

where Y is a given l × l diagonal matrix, e = (1,1, . . . ,1)T, ξ = (ξ1, . . . , ξl)
T, β =

(β1, . . . , βl)
T, w and b are unrestricted.

Figure 9.1 shows the geometric view of our model. Squares indicate group
“+” and dots represent group “−”. In order to separate groups via the hyperplane
(x · w) = b, we set up two Max and one Min objectives. Max objective maximizes
the sum of distance from the points to their boundary and the distance between the
two adjusted boundaries. Min objective minimizes the total overlapping.

Furthermore, to transform the Multi-criteria classification model into a single-
criterion problem, a weight vector (σξ , σβ), weights σξ + σβ = 1, σξ > 0 and
σβ > 0, is introduced for f (ξ) and g(β), respectively. The values of σξ and σβ can
be arbitrary pre-defined in the process of identifying the optimal solution to indi-
cate the relative importance of the three objectives. We assume σβ < σξ considering
minimizing misclassification rates has higher priority than maximizing distance of
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Fig. 9.1 A two-class
extended model

correctly separated records to the boundary in classification problems. The gener-
alized model can be converted into a single-criterion mathematical programming
model:

min
1

2
‖w‖s

s + σξ‖ξ‖p
p − σβ‖β‖q

q (9.24a)

s.t. Y (XTw − eb) = δ′e − ξ + β, (9.24b)

ξ,β ≥ 0, (9.24c)

where Y is a given l × l diagonal matrix, e = (1,1, . . . ,1)T, ξ = (ξ1, . . . , ξl)
T, β =

(β1, . . . , βl)
T, w and b are unrestricted.

Please note that the introduction of βi is one of the major differences between
the proposed model and other existing Support Vectors approaches [206].

Without losing generality, let s = 2, q = 1 and p = 2 and make (9.24a)–(9.24c)
a convex quadratic programming form, since it is much easier to find optimal so-
lutions for convex quadratic programming form than any other forms of nonlinear
programming. The constraints remain the same and the objective function becomes:

min
1

2
‖w‖2

2 + σξ

l
∑

i=1

ξ2
i − σβ

l
∑

i=1

βi (9.25a)

s.t. Y (XTw − eb) = δ′e − ξ + β, (9.25b)

ξ,β ≥ 0. (9.25c)

Let ηi = ξi −βi . According to our definition, ηi = ξi for all misclassified records
and ηi = −βi for all correctly separated records.

Add σb

2 b2 to the objective function of problem (9.25a)–(9.25c) and the weight
σb is an arbitrary positive number and let σb � σβ . Previous computation results
shows that this change won’t affect the optimal solution and adds strong convexity
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to the objection function. (9.25a)–(9.25c) becomes:

min
1

2
‖w‖2

2 + σξ

2

l
∑

i=1

η2
i + σβ

l
∑

i=1

ηi + σb

2
b2 (9.26a)

s.t. Y (XTw − eb) = δ′e − η, (9.26b)

where Y is a given n × n diagonal matrix, e = (1,1, . . . ,1)T, η = (η1, . . . , ηl)
T, η,

w and b are unrestricted, 1 ≤ i ≤ l.
The Lagrange function corresponding to (9.26a)–(9.26b) is

L(w,b,η, θ) = 1

2
‖w‖2

2 + σξ

2

l
∑

i=1

η2
i + σβ

l
∑

i=1

ηi + σb

2
b2

− θT(Y (XTw − eb) − eδ′ + η), (9.27)

where θ = (θ1, . . . , θn)
T, η = (η1, . . . , ηn)

T, θi, ηi ∈ �.
According to Wolfe Dual Theorem,

∇wL(w,b,η, θ) = w − XTYθ = 0, (9.28a)

∇bL(w,b,η, θ) = σbb + eTYθ = 0, (9.28b)

∇ηL(w,b,η, θ) = σξη + σβe − θ = 0. (9.28c)

Introduce the above three equations to the constraints of (9.26a)–(9.26b), we can
get:

Y

(

XXTYθ + 1

σb

e(eTYθ)

)

+ 1

σξ

(θ − σβe) = δ′e (9.29)

⇒ θ =
(δ′ + σβ

σξ
)e

I
σξ

+ Y(XXT + 1
σb

eeT)Y
. (9.30)

Proposition 9.8 For some σξ ,

θ =
(δ′ + σβ

σξ
)e

I
σξ

+ Y(XXT + 1
σb

eeT)Y

exists.

Proof Let H = Y [X − ( 1
σb

)
1
2 e], we thus see that:

θ =
(δ′ + σβ

σξ
)e

I
σξ

+ HHT
(9.31)
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∀H , ∃σξ ≥ ε > 0, and ∀i, j ∈ [1, size of(HHT)], we may have ( I
σξ

)i,i > |(HH T)i,i |
and the inversion of ( I

σξ
+ HHT) exists. So

θ =
(δ′ + σβ

σξ
)e

I
σξ

+ Y(XXT + 1
σb

eeT)Y

exists. �

The computation of optimal solution θ∗ in (9.30) involves an inversion of a pos-
sibly massive matrix of order (l + 1) × (l + 1). When the size of dataset is mod-
erate (e.g. l ≤ 100000), the proposed solution, (9.30), is not difficult to compute.
When both n (n > 100000) and l (l > 100000) are large, it is hard to get a so-
lution. When the size of dataset is large (e.g. l > 100000) and the dimension is
not high (n ≤ 100000), we may use Sherman-Morrison formula ((A + UV T)−1 =
A−1 − A−1UV TA−1

I+V TA−1U
) for matrix inversion and get:

θ =
(δ′ + σβ

σξ
)e

I
σξ

+ HHT
= σξ

(

δ′ + σβ

σξ

)(

I − H
σξ

I + σξHTH
H T

)

e. (9.32)

The expression in (9.32) only needs the inversion of an (n + 1) × (n + 1) matrix
instead of an (l + 1) × (l + 1) matrix in (9.31), which is beneficial since normally
n � l in large-scale problem (for example, a typical problem may have n = O(102)

and l = O(106)).

Algorithm 9.9
Input: An l × n matrix X as the training dataset, an l × l diagonal matrix Y labels
the class of each record.
Output: Classification accuracies for each group in the training dataset, score for
every record, decision function

((xi · w∗) − b∗)
{

> 0 ⇒ xi ∈ G1,

≤ 0 ⇒ xi ∈ G2.
(9.33)

Step 1 Compute θ∗ = (θ1, . . . , θl)
T by (9.32). σβ , σξ , σb are chosen by cross vali-

dation.
Step 2 Compute W ∗ = XTYθ∗, b∗ = − 1

σb
eTYθ∗.

Step 3 Classify a incoming xi by using decision function

((xi · w∗) − b∗)
{

> 0 ⇒ xi ∈ G1,

≤ 0 ⇒ xi ∈ G2.
(9.34)

END
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We may simplify (9.26a)–(9.26b) by setting b = b1.

min
1

2
‖w‖2

2 + σξ

2

l
∑

i=1

η2
i + σβ

l
∑

i=1

ηi (9.35a)

s.t. Y (XTw − eb1) = δ′e − η, (9.35b)

where Y is a given l × l diagonal matrix, e = (1,1, . . . ,1)T, η = (η1, . . . , ηl)
T, η, w

are unrestricted, b1 is a given scalar, 1 ≤ i ≤ l. The Lagrange function corresponding
to (9.35a)–(9.35b) is

L(w,η, θ) = 1

2
‖w‖2

2 + σξ

2

l
∑

i=1

η2
i + σβ

l
∑

i=1

ηi − θT(Y (XTw − eb1) − eδ′ + η),

(9.36)
where θ = (θ1, . . . , θl)

T, η = (η1, . . . , ηl)
T, θi, ηi ∈ R.

According to Wolfe Dual Theorem,

∇wL(w,b, θ) = w − XTYθ = 0, (9.37)

∇ηL(w,b,η, θ) = σξη + σβe − θ = 0. (9.38)

Introduce the above two equations to the constraints of (9.35a)–(9.35b), we can get:

Y((X · XT)Y θ − eb1) + 1

σξ

(θ − σβ) = δ′e (9.39)

⇒ θ =
(Yb1 + δ′ + σβ

σξ
)e

I
σξ

+ Y(X · XT)Y
. (9.40)

Use Sherman-Morrison formula again for matrix inversion. Let J = YW , we get:

θ = (Yb1 + δ′ + σβ

σα
)e

I
σξ

+ J · J T
= σξ

(

Yb1 + δ′ + σβ

σα

)(

I − J
σξ

I + σβJ TJ
J T

)

e. (9.41)

9.3 Kernel Based MCQP

In order to find way to create non-linear classifiers, we may transform the original
input space to high dimension feature space by a non-linear transformation. Thus,
a non-linear hyperplane in original space may be linear in the high-dimensional
feature space. For example, every inner product (xi, xj ) in (9.26a)–(9.26b) can
be replaced by a non-linear kernel function K(xi, xj ), which will extend the ap-
plicability of the proposed model to linear inseparable datasets. However, there
are some difficulties to directly introduce kernel function to (9.26a)–(9.26b). Let
K(X,XT) = �(X)�(XT) be a kernel function. If we only replace XXT with
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K(X,XT), w∗ = �(wT)Y θ∗ need to be computed in order to get the decision func-
tion. However, the computation of �(X) or �(XT) is almost impossible. In order to
get ride of this problem, we replace w by XTYθ and XXT with K(X,XT) in model
(9.26a)–(9.26b). Thus, the objective function in (9.42a)–(9.42b) is changed without
influence of the optimal solution since σβ , σξ , σb are changeable.

min
1

2
‖θ‖2

2 + σξ

2

l
∑

i=1

η2
i + σβ

l
∑

i=1

ηi + σb

2
b2 (9.42a)

s.t. Y (K(X,XT)Y θ − eb) = δ′e − η. (9.42b)

The Lagrange function corresponding to (9.42a)–(9.42b) is

L(θ, b, η,ρ) = 1

2
‖θ‖2

2 + σξ

2

l
∑

i=1

η2
i + σβ

l
∑

i=1

ηi + σb

2
b2

− ρT(Y (K(X,XT)Y θ − eb) − eδ′ + η), (9.43)

where θ = (θ1, . . . , θl)
T, η = (η1, . . . , ηl)

T, ρ = (ρ1, . . . , ρl)
T, θi, ηi, ρi ∈ R.

∇θL(θ, b, η,ρ) = θ − YK(X,XT)TYρ = 0, (9.44a)

∇bL(θ, b, η,ρ) = σb + eTYρ = 0, (9.44b)

∇ηL(θ, b, η,ρ) = σξη + σβe − ρ = 0. (9.44c)

Introduce the above three equations to the constraints of (9.42a)–(9.42b), we can
get:

Y(K(X,XT)YYK(X,XT)TYρ + 1

σb

e(eTYρ)) = δ′e − 1

σξ

(ρ − σβe) (9.45)

⇒ ρ =
(δ′ + σβ

σξ
)e

I
σξ

+ Y(K(X,XT)K(X,XT)T + 1
σb

eeT)Y
. (9.46)

Algorithm 9.10
Input: An l × n matrix X as the training dataset, an l × l diagonal matrix Y labels
the class of each record, a kernel function K(xi, xj ).
Output: Classification accuracies for each group in the training dataset, score for
every record, decision function.
Step 1 Compute ρ∗ = (ρ1, . . . , ρl)

T by (9.46). σβ , σξ , σb are chosen by cross vali-
dation.
Step 2 Classify a incoming xi by using decision function

(

K(Xi,X
T)K(X,XT)T + 1

σb

eT
)

Yρ∗
{

> 0 ⇒ xi ∈ G1,

≤ 0 ⇒ xi ∈ G2.
(9.47)

END
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However, the above model only gives classification results without any further
explanation. Recently, lots of researchers focus on how to learn kernel functions
from the data. Based on [134], we can prove the best kernel function always can be
presented as the convex combination of several finite element basis kernel functions.
In fact, references [12, 188] already provided some optimal kernel functions which
are the convex combination of basis kernels. In practice, one the simple and effective
choice is multiple kernel, which is a linear combination of several kernels. In detail,

K(xi, xj ) =
r

∑

d=1

γdK(xi,d , xj,d), γd ≥ 0, (9.48)

where K(·, ·) is the pre-given basis kernel, xi,d represents the d th dimension of
output vector xi and γd is the feature coefficient of the d th dimension, 1 ≤ d ≤ r .
Using this expression, we can convert the feature selection problem into a parame-
ter optimization problem. Kernel parameter γd �= 0 means the corresponding feature
classifier is chosen. Kernel parameter γd = 0 means the corresponding feature clas-
sifier does not contribute to the final classifier.

Similar to the analysis of (9.46), we use (9.48) to get the following multiple
kernel solution:

θ =
[δ′ + σβ

σξ
]e

I
σξ

+ Y [eeT
∑r

d=1 γdK(xi,d , xj,d ) + 1
σb

eeT]Y . (9.49)

To make the model more explainable and provide more solid grounds for the de-
cision makers to understand the classification results easier and make more reason-
able decision, we need to choose feature for the model. We know L1 norm possess
the best sparsity. So the optimization problem for feature selection is constructed
based on the idea of minimizing the L1 norm of total error, which is used when de-
rive the classic SVMs [193]. Therefore, feature selection is converted to a problem
finding the best value of coefficient γ . After optimization, those features whose co-
efficients do not equal to zero are selected. In all, two stages are needed for training
the final classifier. Firstly, feature coefficient γ is fixed, we solve problem (9.46) to
get Lagrangian parameter θi . Then the Lagrangian parameter is fixed in the follow-
ing LP to solve coefficient γd :

min J (γ, η) =
l

∑

i=1

η2
i + λ‖γ ‖1 (9.50)

s.t. Y

(

e
∑

j,d

γj,dθj yjK(wi,d ,wj,d ) + eb

)

≥ e − η, (9.51)

where λ > 0 in (9.50) is a regularized parameter, whose role is to control the sparsity
of feature subsets. Coefficient γ provides us lots of opportunity to find a satisfiable
feature subsets in the whole feature space. More importantly, we can find the optimal
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feature subsets automatically by solving the above model and give an explainable
results at the same time.

Use formula (9.42a)–(9.42b) to eliminate η in (9.50), we can get the following
quadratic programming:

min J (γ, η) =
l

∑

i=1

(

1 + yib − yi

r
∑

d=1

βdKi,d ◦ θ

)2

+ λ

r
∑

d=1

γd

=
m

∑

d=1

m
∑

d̃=1

γdγ
d̃

(
l

∑

i=1

y2
i (Ki,d ◦ θ)(K

i,d̃
◦ θ)

)2

+
r

∑

d=1

γd

(

λ − 2
n

∑

i=1

(1 + yib)yiKi,d ◦ θ

)

+
n

∑

i=1

(1 + yib)2, (9.52)

where Ki,d = [y1K(wi,d ,w1,d ), . . . , yjK(wi,d ,wj,d), . . . , ynK(wi,d ,wn,d)].
We call the process of introducing multiple kernel to convert the feature selection

problem into a kernel parameter learning problem as multiple kernel multi-objective
classification. There are two coefficient need to be optimized: Lagrangian multiplier
and feature parameter. This is the main difference between this method and MCCQP.
From another point of view, the multiple kernel method for feature selection also can
be viewed as a filter method. The classification results become more explainable by
feature selection,which makes us find the important features exactly. At the same
time, the complexity of the problem is reduced and the computational time is saved.
We give the details of the algorithm in the following:

Algorithm 9.11
Step 1. Initialization. Give the initial values for model parameters σξ , σβ , σb ,
regularized parameter λ and kernel parameter σ 2. Set feature coefficient βd as
{β(0)

d = 1 | d = 1, . . . , r} and t = 1.
Step 2. Compute Lagrangian coefficient θ(t). Set the value of γ in (9.49) to γ (t−1),
computer Lagrangian coefficient θ(t).
Step 3. Compute feature coefficient γ (t). Used θ

(t)
j as the value of θ in model (9.50)–

(9.51), solve the quadratic programming to get the feature coefficient γ (t).
Step 4. Termination test. Use θ

(t)
j and γ (t) computing the pre-given indicator. If the

result does not converge, set t := t + 1 and go back to Step 2 redo the two stage
optimization. If the result is not satisfied enough, set t := t + 1 and go back to the
Step 1 to adjust the value of regularized parameter.
Step 5. Output the classification result. Compute b∗. For an input sample x, we
get the classification results by the computation results of the following decision
function:

sign

(
l

∑

i=1

r
∑

d=1

γ
(t)
d θ

(t)
i K(xi,d , xd) − b∗

){

> 0, x ∈ G1,

< 0, x ∈ G2.
(9.53)



Chapter 10
Non-additive MCLP

10.1 Non-additive Measures and Integrals

In order to model the interactions among attributes for classification, the non-
additive measures are studied in this chapter. The non-additive measures provide
very important information regarding the interactions among attributes and poten-
tially useful for data mining [209, 210]. The concept of non-additive measures (also
referred to as fuzzy measure theory) was initiated in the 1950s and have been well
developed since 1970s [40, 55, 208]. Non-additive measures have been successfully
used as a data aggregation tool for many applications such as information fusion,
multiple regressions and classifications [92, 139, 208, 210]. The nonlinear integrals
are the aggregation tools for the non-additive measures. The Choquet integral [40],
a nonlinear integral, is utilized to aggregate the feature attributes with respect to the
non-additive measure. Let finite set X = {x1, . . . , xn} denote the attributes in a mul-
tidimensional dataset. Several important non-additive measures are defined as the
following definitions [93, 209]:

Definition 10.1 A generalized non-additive measure μ defined on X is a set func-
tion μ : P (X) → [0,∞) satisfying

μ(∅) = 0. (10.1)

μ is a monotone non-additive measure if it satisfies (10.1) and

μ(E) ≤ μ(F) if E ⊆ F (monotonicity) (10.2)

where P (X) denotes the power set of X and E, F are the elements in P (X).

Definition 10.2 A generalized non-additive measure is said to be regular if
μ(X) = 1.

Definition 10.3 A signed non-additive measure μ defined on X is a set function
μ : P (X) → (−∞,∞) satisfying (10.1).

Y. Shi et al., Optimization Based Data Mining: Theory and Applications,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-0-85729-504-0_10, © Springer-Verlag London Limited 2011
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Nonlinear integrals are the aggregation tool for the non-additive measures μi in
the set function μ. The studies of nonlinear integrals could be found in the literature
[55, 209] from the integral of linearly weighted sum of the attributes (refers to as
Lebesgue-like integral [209]) to nonlinear integrals. Considering the nonlinear rela-
tionships (particularly the interactions among attributes), the nonlinear integrals can
be used as data aggregation tools. In the nonlinear integrals, the Choquet integral
is more appropriate to be chosen for data mining applications because it provides
very important information in the interaction among attributes in the database [210].
Thus, in this study, the Choquet integral with respect to the non-additive measure is
chosen as the data aggregation tool.

Now let the values of f = {f (x1), f (x2) . . . , f (xn)} denote the values of each
attribute in the dataset; let μ be the non-additive measure. The general definition
of the Choquet integral, with function f : X → (−∞,∞), based on signed non-
additive measure μ, is defined as

(c)

∫

f dμ =
∫ 0

−∞
[

μ(Fα) − μ(X)
]

dα +
∫ ∞

0
μ(Fα)dα, (10.3)

where Fα = {x | f (x) ≥ α} is called α-cut set of f , for α ∈ (−∞,∞), and n is the
number of attributes in the dataset.

10.2 Non-additive Classification Models

The MSD classification model could be extended with the Choquet integral with
respect to the signed non-additive measure as [229]:

min
m

∑

j=1

αj (10.4)

s.t. yj

(

(c)

∫

f dμ − b

)

≤ αj , (10.5)

αj ≥ 0. (10.6)

The general algorithm used to calculate the Choquet integral is shown below.

Algorithm: Calculate the Choquet integral
Input: Dataset, non-additive measure μ.
Output: Choquet integral of each record in the dataset.

Step 1: Let f = {f (x1), f (x2), . . . , f (xn)} denote the values of each attribute
for a given record. Then, rearrange f into a non-decreasing order as: f ∗ =
{f (x∗

1 ), f (x∗
2 ), . . . , f (x∗

n)}, where f (x∗
1 ) ≤ f (x∗

2 ) ≤ · · · ≤ f (x∗
n). Thus, the se-

quence of (x∗
1 , x∗

2 , . . . , x∗
n) is one of the possibilities from the permutation of

(x1, x2, . . . , xn) according to the ordering of the attribute values.
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Step 2: Create the non-additive measure μ in terms of variables μi . Let μ =
{μ1,μ2, . . . ,μ2n}, where μ1 = μ(∅) = 0.
Step 3: The value of the Choquet integral for the current data record is calculated
by

(c)

∫

f dμ =
n

∑

i=1

[

f (x∗
i ) − f (x∗

i−1)
] × μ

({x∗
i , x∗

i+1, . . . , x
∗
n}), (10.7)

where f (x∗
0 ) = 0.

The above 3-step algorithm is easy to understand but hard to implement with
a computer program because the non-additive measure μ is not properly indexed
corresponding to the index of the attributes. To deal with this problem, the method
proposed in [208] is used to calculate the Choquet integral. The method is presented
as:

(c)

∫

f dμ =
2n−1
∑

j=1

zjμj (10.8)

where

zj =

⎧

⎪⎨

⎪⎩

min
i:frc( j

2i
)∈[0.5,1)

(f (xi)) − max
i:frc( j

2i
)∈[0,0.5)

(f (xi)),

if the above expression > 0 or j = 2n − 1,

0, otherwise.

(10.9)

frc( j

2i ) is the fractional part of j

2i and the maximum operation on the empty set is
zero. Let jnjn−1 . . . j1 represent the binary form of j , the i in (10.9) is determined
as follows:

{

i | frc( j

2i ) ∈ [0.5,1)
} = {

i | ji = 1
}

and
{

i | frc( j

2i ) ∈ [0,0.5)
} = {

i | ji = 0
}

.

According to the definition in (10.3), the algorithm of calculating the Choquet
integral requires pre-ordering of the attributes. However, the different scales of
attributes affect the ordering because large scale attributes always appear to have
larger values than the others. The data normalization techniques are used to reduce
the scale difference among attributes such that they could compare to each other.
The majority of the data normalization techniques treat the attributes equally, such
as the typical min-max normalization and z-score normalization [101]. That is, the
normalization process conducts the same strategy on each attribute. Here, in the
Choquet integral, the weights and bias are introduced to the attributes to make them
comparable in different scales of values. With this idea, the extended definition of
the Choquet integral is given as:

(c)

∫

(a + bf )dμ (10.10)
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where a = {a1, a2, . . . , an}, b = {b1, b2, . . . , bn} denote the corresponding bias and
weights on the attributes.

This model could be solved by standard linear programming techniques such as
simplex method. The optimization procedure of linear programming is to identify
the non-additive measure μ. The values of a and b need to be determined before the
calculation of the Choquet integral. In this research, the genetic algorithm is used
for searching a and b according to the performance, such as classification accuracy.
With the extended definition of the Choquet integral, Model (10.4)–(10.6) can be
reformulated as the follows:

min
m

∑

j=1

αj (10.11)

s.t. yj

(

(c)

∫

(a + bf )dμ − b

)

≤ αj , (10.12)

αj ≥ 0. (10.13)

A small artificial dataset is used to present the proposed classification
model (10.11)–(10.13) and the geometric meaning of the extended Choquet integral
as defined in (10.10) with respect to the signed non-additive measure in classifica-
tion. Model (10.11)–(10.13) is applied on classifying the two dimensional artificial
dataset which contains 200 linearly inseparable two-group data points (106 in G1
vs. 94 in G2). The results are also compared with linear MSD model and popular
SVM (Support Vector Machine) classification models. MSD model separates the
two different groups in the two dimensional space.

The MSD linear classification parameters obtained by linear programming are
a1 = 0.985, a2 = 0.937 with setting of b = 1. This linear model cannot perfectly
separate the data because the optimal value did not reach to zero, which is 2.60 in
this case. The equation of line 1 in Fig. 10.1 is 0.985f (x1) + 0.937f (x2) = 1. The
classification results, in terms of sensitivity (G1 accuracy), specificity (G2 accuracy)
and accuracy (as defined in [101]), are 83.0%,76.6%,80.0% respectively.

Model (10.11)–(10.13) is implemented in Java programming language environ-
ment by calling the optimization package for solving the non-additive measures
and JGAP (package for Genetic Algorithm implementation [115]) for optimiz-
ing a and b. The identified the non-additive measures μ are μ1 = μ({x2}) = 0,
μ2 = μ({x1}) = −5.13, and μ3 = μ({x1, x2}) = 12.82. The weights of a and b are
a1 = −0.41, a2 = 0.64, b1 = −0.35, and b2 = 0.73. The optimized boundary b is
−16.38. Even through the optimal value of the linear programming is non-zero,
says 70.8 in this case, the perfect separation is still achieved and the classifica-
tion accuracy in terms of sensitivity, specificity, accuracy are all 100% shown as
in Fig. 10.1. MSD linear classification model performs worst on this linearly in-
separable dataset and it is similar to linear SVM. Polynomial SVM and RBF SVM
are able to create more curved decision boundaries and perform better than linear
models. The classification accuracies of MSD, decision tree, linear SVM, polyno-
mial SVM and RBF SVM are 80%, 97.5%, 83%, 84.5% and 88% respectively. The
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Fig. 10.1 Classification on linearly inseparable dataset

proposed Model (10.11)–(10.13) outperforms on this cashew-like two-dimensional
dataset than other models. The geometrical meaning of using the Choquet integral
with respect to signed non-additive measure as an aggregation tool for data model-
ing is to create one Choquet contour by two lines (Line 2 and Line 3 in Fig. 10.1) to
separate the two different groups. Here, the intersection of Line 2 and Line 3 could
be essentially presented by an invisible guide line (Line 4 in Fig. 10.1(a)), which is
defined in following equation:

a1 + b1f (x1) = a2 + b2f (x2). (10.14)

Line 2 and Line 3 must intersect on this guide line. Moreover, ai and ai are respec-
tively used to determine the interception to Y axis and the slope of the guide line.
The non-additive measure μ is used to determine the way those two lines are inter-
cepted with the guide line where the slopes of those lines are controlled by μ. The
learning process exactly looks like a butterfly flaps its wings (Line 2 and Line 3)
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crossing the interaction guide line (Line 4) back and forth. It stops at where the
wings could separate the groups perfectly. It is also important to mention that the
interaction guide line defined (10.14) is not fixed but being adjusted by the genetic
algorithm during the learning process.

Geometrically, the use of Choquet integral is to construct a convex contour by
two joint lines to separate groups in two dimensional space. However, the Cho-
quet integral is not as simple as to create cashew-shaped two cutting lines for
classification but adaptive to the dimensionality of the data. For example, in the
three dimensional space, the Choquet integral creates exactly six joint umbrella-like
shaped planes to separate the data [210]. The geometric implication is to empha-
size the advantages of using non-additive measure as a data aggregation tool. The
profound mechanism of non-additive measure exists in the ability of describing the
interactions among feature attributes towards a data mining task, such as classifica-
tion.

Now, the relationship between non-additive and additive measures are discussed.
The following proof shows that additive measure is a special case of non-additive.
The definition of additive is given as

Definition 10.4 μ is additive if ∀E1,E2, E1 ∩ E2 = ∅, E1 ∪ E2 = E, μ(E1) +
μ(E2) = μ(E).

Then the following theorem is given to show additive classifier is a special case
of non-additive.

Theorem 10.5 Let μ be a non-additive measure. The Choquet integral with respect
to non-additive measure μ is equivalent to linear weighted sum if μ is additive.

Proof Let n be the number of attributes. When n = 1, it is obvious that the the-
orem is true. When n = 2, let the two attributes are x1 and x2, with f (x1) and
f (x1) denoting their values. Suppose f (x1) < f (x2), note f (x∗

1 ) < f (x∗
2 ), then

{x∗
1 , x∗

2 } = {x1, x2}. Since μ is additive, μ(x∗
1 , x∗

2 ) = μ(x∗
1 ) + μ(x∗

2 ). The Choquet
integral is

(c)

∫

f dμ =
n

∑

i=1

[f (x∗
i ) − f (x∗

i−1)]μ({x∗
i , x∗

i+1, . . . , x
∗
n})

= f (x∗
1 )μ(x∗

1 , x∗
2 ) + [f (x∗

2 ) − f (x∗
1 )]μ(x∗

2 )

= f (x∗
1 )[μ(x∗

1 ) + μ(x∗
2 )] + f (x∗

2 )μ(x∗
2 ) − f (x∗

1 )μ(x∗
2 )

= f (x∗
1 )μ(x∗

1 ) + f (x∗
2 )μ(x∗

2 ).

Therefore, the Choquet integral is equivalent to linear weighted sum.
Now assume the theorem is true when n = k − 1, which means (c)k−1

∫

f dμ is
linear weighted sum. Then, when n = k, then the following holds:
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Fig. 10.2 Artificial dataset
classification

(c)k

∫

f dμ =
k

∑

i=1

[f (x∗
i ) − f (x∗

i−1)]μ({x∗
i , x∗

i+1, . . . , x
∗
k })

= f (x∗
1 )μ(x∗

1 , . . . , x∗
k ) + [f (x∗

2 ) − f (x∗
1 )]μ(x∗

2 , . . . , x∗
k )

+ · · · + [f (x∗
k ) − f (x∗

k−1)]μ(x∗
k )

= f (x∗
1 )[μ(x∗

1 , . . . , x∗
k−1) + μ(x∗

k )]
+ [f (x∗

2 ) − f (x∗
1 )][μ(x∗

2 , . . . , x∗
k−1) + μ(x∗

k )]
+ · · · + [f (x∗

k ) − f (x∗
k−1)]μ(x∗

k )

= (c)k−1

∫

f dμ + f (x1
∗)μ(x∗

k ) + [f (x2
∗) − f (x1

∗)]μ(x∗
k )

+ [f (x3
∗) − f (x2

∗)]μ(x∗
k ) + · · · + f (xk

∗)μ(x∗
k )

= (c)k−1

∫

f dμ + f (xk
∗)μ(x∗

k ).

Since (c)k−1
∫

f dμ is linear weighted sum, therefore, (c)k
∫

f dμ is also equivalent
to linear weighted sum. �

Example When μ in Model (10.11)–(10.13) is set to be additive, the non-additive
classifier equals to linear classifier.

In the above two dimensional artificial dataset case, μ({x1, x2}) = μ({x1}) +
μ({x2}). Thus, classifying by additive Model (10.11)–(10.13) is similar to the MSD
linear classifier. Figure 10.2 shows linear additive classifier is a special case of non-
additive.

Since additive measure is a special case of non-additive, non-additive classifier
outperforms additive classifier (i.e. MSD linear classifier). When both reached a
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close optimal solution, the worst case of non-additive classifier equals to additive
classifier.

10.3 Non-additive MCP

In the fuzzy measure research community, Grabisch and Sugeno [91] used the Cho-
quet integral with respect to the non-additive measure as aggregation operator on
statistical pattern classification based on possibility theory. The model is very simi-
lar to the Bayesian classifier and is theoretically well developed. However, the clas-
sification did not show the benefits of introducing non-additive measure and it is
even difficult to obtain correct results on small iris dataset. Grabisch and Nicolas
[92] also proposed an optimization-based classification model with non-additive
measure. With nonlinear objectives, the model was solved by quadratic program-
ming. The classification even performs less than linear classifier on iris dataset and
competitive to fuzzy k-NN classifier on the other datasets. It pointed out that a better
non-additive identification algorithm is needed.

In order to search solutions to improve the non-additive classifiers, firstly, it is
important to address one issue in classic optimization-based models as described.
In Model (10.11)–(10.13), the boundary b is not optimized but arbitrarily chosen.
The practical solution is to either predetermine a constant value for b or implement
a learning mechanism in the iterations, such as updating b with the average of the
lowest and largest predicted scores [226, 229]. Xu et al. [226] also proposed the
classification method by the Choquet integral projections. The famous Platt’s Se-
quential Minimal Optimization (SMO) algorithm [165] for SVM classifier utilized
the similar idea by choosing the average of the lower and upper multipliers in the
dual problem corresponding to the boundary parameter b in the primal problem.
Keerthi et al. [124] proposed the modified SMO with two boundary parameters to
achieve a better and even faster solution.

The boundary b in MSD can be replaced with soft-margin b ± 1 similar to SVM
which constructs a separation belt in stead of a single cutting line. The soft margin
by using b±1 in optimization constrains coincidentally solved the degeneracy issue
in mathematical programming. The value of b could be optimized by a simple lin-
ear programming technique. The improved model is a linear programming solvable
problem with optimized b and signed non-additive measure. Now Model (10.11)–
(10.13) is extended to Model (10.15)–(10.17) (soft-margin classifier with signed
non-additive measure) as follows:

min
m

∑

j=1

αj (10.15)

s.t. yj

(

(c)

∫

(a + bf )dμ − b

)

≤ 1 + αj , (10.16)

αj ≥ 0. (10.17)
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Models (10.4)–(10.6), (10.11)–(10.13), (10.15)–(10.17) aim to minimize the em-
pirical risk. However, the simple linear programming cannot easily produce a globe
optimal solution than convex programming [126]. Thus, the model is extended to a
convex quadratic programming form, as described as below:

min
1

2
||μ||2 + C

m
∑

i=1

αi (10.18)

s.t. yj

(

(c)

∫

(a + bf )dμ − b

)

≤ 1 + αj , (10.19)

αj ≥ 0, (10.20)

where C is the constant positive number used to balance the two objectives.
MCQP model in Chap. 9 with nonlinear objectives could also be extended with

non-additive measures. The new model is described as (10.21)–(10.22):

min
1

2
||μ||2 + Wα

m
∑

j=1

η2
j − Wβ

m
∑

j=1

ηj + b (10.21)

s.t. yj

(

(c)

∫

f dμ − b

)

= 1 − ηj . (10.22)

10.4 Reducing the Time Complexity

As mentioned earlier, the using of non-additive measure increases the computa-
tional cost because of the high time complexity caused by the power set operation.
This might be another explanation on the difficulty of identifying non-additive mea-
sures in [91, 92]. In the literatures, there are two major solutions to reduce the num-
ber of non-additive measures. They are hierarchical Choquet integral [152] and the
k-additive measure [94].

10.4.1 Hierarchical Choquet Integral

The hierarchical Choquet integral is a potentially useful approach to compromise
the time complexity problem practically. Murofushi et al. [152] proposed the hier-
archical decomposition theorems to reduce the number of coefficients in the Cho-
quet integral with loss of some interactions. The essential idea is to properly group
the attributes and calculate the Choquet integral within each group. In practice, the
problem of searching the best grouping with limited loss of information has not
been solved. Sugeno et al. [192] designed a genetic algorithm based subset selec-
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Fig. 10.3 Hierarchical
Choquet integral with
grouping

tion method to search good grouping for time series modeling with non-additive
measure but the cost of genetic algorithm is high and the complexity of solving
the problem has dramatically increased again. See an example of decomposition in
Fig. 10.3, in which the Hierarchical Choquet integral is grouping as c = c1 ∪c2 ∪c3,
c1 = {x1, x3}, c2 = {x2, x4}, c3 = {x4, x5, x6}.

The best way to group those attributes probably is with the help of domain knowl-
edge. However, the knowledge prior to the data mining does not always exist. Thus,
when no human experts are available, it is reasonable to statistically group the at-
tributes into different groups according to their contributions towards the target at-
tributes under a certain significance level.

10.4.2 Choquet Integral with Respect to k-Additive Measure

Besides the hierarchical Choquet integral, the k-additive measure may be used to
model the inter-relationships among any k attributes. Although there are many vari-
ations on the non-additive measures, such as Möbius transformation, Shapley inter-
action and the Banzhaf interaction [149]. No matter which one is chosen, any ma-
chine learning algorithm used to identify the non-additive measure μ will encounter
a computation cost of O(2n) because the power-set operation of X is involved. The
k-interactive measure is the compromised non-additive which only considers up to
k attributes interactions. It is also named k-order additive measure or k additive
measure in the early studies [94]. But the k-interactive measure is actually non-
additive measure. Thus, it is renamed as k-interactive measure according to its real
meaning. For example, when k = 2, there only exists interactions among any two
attributes. In this way, the time complexity of determining coefficients among at-
tributes reduces from O(2n) to O(2k), where k 
 n. The study of using k-additive
measure in data mining may contribute to achieve even better classification in speed,
robustness, and scalability. For data mining applications, the signed k-interactive
measure is used because both positive and negative interactions are considered in
reality.
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Definition 10.6 A signed k-interactive measure μ defined on X is a set function
μ : P (X) →[0,∞) satisfying

1. μ(∅) = 0,
2. μ(E) = 0, if |E| > k,

where |E| is the size of E, and k is the designated number of attributes having
interactions.

Mikenina and Zimmermann [148] proposed the 2-additive classification with fea-
ture selections based on a pattern matching algorithm similar to [91]. The applica-
tion is still limited to the data with small number of attributes. In this research, we
apply k-additive measure to reduce the computation cost on the proposed classifica-
tion models with optimized boundary.





Chapter 11
MC2LP

11.1 MC2LP Classification

11.1.1 Multiple Criteria Linear Programming

The compromise solution [107] in multiple criteria linear programming locates the
best trade-offs between MMD and MSD for all possible choices.

min
∑

i

ξi (11.1)

max
∑

i

βi (11.2)

s.t. (xi · w) = b + ξi − βi, xi ∈ M, (11.3)

(xi · w) = b − ξi + βi, xi ∈ N, (11.4)

where xi are given, w is unrestricted, ξi ≥ 0, and βi ≥ 0, i = 1,2, . . . , n.
A boundary value b (cutoff) is often used to separate two groups, where b is

unrestricted. Efforts to promote the accuracy rate have been largely restricted to
the unrestricted characteristics of b (x given b is put into calculation to find coef-
ficients w) according to the user’s experience facing the real time data set. In such
procedure, the goal of finding the optimal solution for classification question is re-
placed by the task of testing boundary b. If b is given, we can find a classifier using
a optimal solution. The fixed cutoff value causes another problem that those cases
that can achieve the ideal cutoff score would be zero. Formally, this means that the
solutions obtained by linear programming are not invariant under linear transforma-
tions of the data. Alternative approach to solve this problem is to add a constant as
ζ to all the values, but it will affect weight results and performance of its classifica-
tion. Unfortunately, it cannot be implemented in [197]. Adding a gap between the
two regions may overcome the above problem. However, if the score is falling into
this gap, we must determine which class it should belong to [197].

Y. Shi et al., Optimization Based Data Mining: Theory and Applications,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-0-85729-504-0_11, © Springer-Verlag London Limited 2011
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To simplify the problem, we use linear combination of bλ to replace of b. Then
we can get the best classifier as w∗(λ). Suppose we now have the upper boundary bu

and lower boundary bl . Instead of finding the best boundary b randomly, we find the
best linear combination for the best classifier. That is, in addition to considering the
criteria space that contains the trade-offs of multiple criteria in (MSD), the structure
of MC2 linear programming has a constraint-level space that shows all possible
trade-offs of resource availability levels (i.e. the trade-off of upper boundary bu

and lower boundary bl). We can test the interval value for both bu and bl by using
the classic interpolation method such as Lagrange, Newton, Hermite, and Golden
Section in real number [−∞,+∞]. It is not necessary to set negative and positive
for bl and bu separately but it is better to set the initial value of bl as the minimal
value and the initial value of bu as the maximum value. And then narrow down the
interval [bl, bu].

With the adjusting boundary, MSD and MMD can be changed from standard
linear programming to linear programming with multiple constraints.

min
∑

i

ξi (11.5)

s.t. (xi · w) ≤ λ1 · bl + λ2 · bu + ξi, xi ∈ B, (11.6)

(xi · w) > λ1 · bl + λ2 · bu − ξi, xi ∈ G, (11.7)

λ1 + λ2 = 1, (11.8)

0 ≤ λ1, λ2 ≤ 1, (11.9)

where xi , bu, bl are given, w is unrestricted, ξi ≥ 0.

max
∑

i

βi (11.10)

s.t. (xi · w) ≥ λ1 · bl + λ2 · bu − βi, xi ∈ B, (11.11)

(xi · w) < λ1 · bl + λ2 · bu + βi, xi ∈ G, (11.12)

λ1 + λ2 = 1, (11.13)

0 ≤ λ1, λ2 ≤ 1, (11.14)

where xi , bu, bl are given, w is unrestricted, βi ≥ 0.
The above two programming is LP with multiple constraints. This formulation

of the problem always gives a nontrivial solution.
A hybrid model that combines models of (MSD) and (MMD) model with multi-

ple constraints level is given by:

min
∑

i

ξi (11.15)

max
∑

i

βi (11.16)



11.1 MC2LP Classification 185

Fig. 11.1 Overlapping case
in two-class separation

s.t. (xi · w) = λ1 · bl + λ2 · bu + ξi − βi, xi ∈ M, (11.17)

(xi · w) = λ1 · bl + λ2 · bu − ξi + βi, xi ∈ N, (11.18)

λ1 + λ2 = 1, (11.19)

0 ≤ λ1, λ2 ≤ 1, (11.20)

where xi , bu, bl are given, w are unrestricted, ξi ≥ 0 and βi ≥ 0, i = 1,2, . . . , n.
Separating the MSD and MMD, (11.15)–(11.20) is reduced to LP problem with mul-
tiple constraints. Replacing the combination of bl and bu with the fixed b, (11.15)–
(11.20) becomes MC problem.

A graphical representation of these models in terms of ξ is shown in Fig. 11.1.
For (11.15)–(11.20), theoretically, finding the ideal solution that simultaneously

represents the maximal and the minimal is almost impossible. However, the theory
of MC linear programming allows us to study the trade-offs of the criteria space. In
the case, the criteria space is a two dimensional plane consisting of MSD and MMD.
We use compromised solution of multiple criteria and multiple constraint linear
programming to minimize the sum of ξi and maximize the sum of βi simultaneously.
Then the model can be rewritten as:

max γ1

∑

i

ξi + γ2

∑

i

βi (11.21)

s.t. (xi · w) = λ1 · bl + λ2 · bu − ξi − βi, xi ∈ B, (11.22)

(xi · w) = λ1 · bl + λ2 · bu + ξi + βi, xi ∈ G, (11.23)

γ1 + γ2 = 1, (11.24)

λ1 + λ2 = 1, (11.25)

0 ≤ γ1, γ2 ≤ 1, (11.26)

0 ≤ λ1, λ2 ≤ 1. (11.27)

This formulation of the problem always gives a nontrivial solution and is invari-
ant under linear transformation of the data. Both γ1 and γ2 are the weight parameters
for MSD and MMD. λ1, λ2 are the weight parameters for bl and bu. They serve to
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Fig. 11.2 Three groups
classified by using MC2

normalize the constraint-level and the criteria-level parameters. We note that the key
point of the two-class linear classification models is to use a linear combination of
the minimization of the sum of ξi or/and maximization of the sum of βi to reduce
the two criteria problems into a single criterion. The advantage of this conversion is
to easily utilize all techniques of LP for separation, while the disadvantage is that it
may miss the scenario of trade-offs between these two separation criteria [107].

Then theoretically, (11.15)–(11.20), (11.21)–(11.27) can find the better classifier
than MSD or MMD. Using the software developed by Hao and Shi [103], we can
get the potential solution of MC2 for the massive data set. This algorithm has a
polynomial computational complexity of O(F(m;n;L)), where in (11.15)–(11.20)
A is an m × n matrix and m,n ≥ 2, L is the number of binary bits required to story
all the data of the LP problem. L is also called the input length of the LP problem
and is known as a function of logarithm of m, n, cj , aij , and bi .

11.1.2 Different Versions of MC2

(11.15)–(11.20) can be extended easily to solve the following multi-class problem
in Fig. 11.2.

min
∑

i

ξi (11.28)

max
∑

i

βi (11.29)

s.t. (xi · w) = λ1 · bl + λ2 · bu + ξi − βi, xi ∈ G1, (11.30)

λk−1
1 · bk−1

l + λk−1
2 · bk−1

u − ξk−1
i + βk−1

i = (xi · w),

xi ∈ Gk, k = 2, . . . , s − 1, (11.31)

(xi · w) = λk
1 · bk

l + λk
2 · bk

u − ξk
i + βk

i , xi ∈ Gk, k = 2, . . . , s − 1, (11.32)

λs−1
1 · bs−1

l + λs−1
2 · bs−1

u − ξs−1
i + βs−1

i = (xi · w), xi ∈ Gs, (11.33)

λk−1
1 · bk−1

l + λk−1
2 · bk−1

u + ξk−1
i ≤ λk

1 · bk
l + λk

2 · bk
u − ξk

i ,

k = 2, . . . , s − 1, i = 1, . . . , n, (11.34)
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λ1 + λ2 = 1, (11.35)

0 ≤ λ1, λ2 ≤ 1, (11.36)

where xi , bk
u, bk

l are given, w is unrestricted, ξ
j
i ≥ 0 and β

j
i ≥ 0.

Similar as the compromised solution approach using regret measurement, the
best trade-off between MSD and MMD is identified for an optimal solution [107].
An MC2 model for multiple-class separation is presented as:

In compromised solution approach [179], the best trade-off between −∑

i ξi and
∑

i βi is identified as an optimal solution. To explain this, assume the “deal value” of
−∑

i ξi be ξ∗ > 0 and the “idea value” of
∑

i βi be β∗ > 0. Then, if −∑

i ξi > ξ∗,
the regret measure is defined as −d+

a = ∑

i ξi > ξ∗; otherwise, it is 0. Thus, the
relationship of these measures are

(i)
∑

i ξi + ξ∗ = d−
a − d+

a ,
(ii) |∑i ξi + ξ∗| = d−

a + d+
a , and

(iii) d−
a , d+

a ≥ 0.

Similarly, we derive [107, 180]

β∗ −
∑

i

βi = d−
β − d+

β ,

∣
∣
∣
∣
β∗ +

∑

i

βi

∣
∣
∣
∣
= d−

β + d+
β and d−

β + d+
β ≥ 0.

(11.28)–(11.36) can be rewritten as:

min
s−1
∑

y=1

(d−
aj + d+

aj + d−
βj + d+

βj ) (11.37)

s.t.
∑

i

ξ
j
i + ξ

j∗ = d−
aj − d+

aj , j = 1, . . . , s − 1, (11.38)

β
j∗ +

∑

i

β
j
i = d−

βj − d+
βj , j = 1, . . . , s − 1, (11.39)

(xi · w) = λ1 · bl + λ2 · bu + ξi − βi, xi ∈ G1, (11.40)

λk−1
1 · bk−1

l + λk−1
2 · bk−1

u − ξk−1
i + βk−1

i = (xi · w),

xi ∈ Gk, k = 2, . . . , s − 1, (11.41)

(xi · w) = λk
1 · bk

l + λk
2 · bk

u − ξk
i + βk

i , xi ∈ Gk, k = 2, . . . , s − 1, (11.42)

λs−1
1 · bs−1

l + λs−1
2 · bs−1

u − ξs−1
i + βs−1

i = (xi · w), xi ∈ Gs, (11.43)

λk−1
1 · bk−1

l + λk−1
2 · bk−1

u + ξk−1
i ≤ λk

1 · bk
l + λk

2 · bk
u − ξk

i ,

k = 2, . . . , s − 1, i = 1, . . . , n, (11.44)

λ1 + λ2 = 1, (11.45)

0 ≤ λ1, λ2 ≤ 1, (11.46)
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where xi , bk
u, bk

l , ξ
j∗ , ξ

j
i are given, w is unrestricted, ξ

j
i and β

j
i , d−

aj , d
+
aj , d

−
βj , d

+
βj ≥

0.
In [179], a special MC2 problem is built as (11.47)–(11.49):

max Z =
∑

i

γiC
ix (11.47)

s.t. (xi · w) ≤
∑

i

λibk, (11.48)

∑

k

λk = 1. (11.49)

Let u0
i be the upper bound and l0

i be the lower bound for the ith criterion CiX of
(11.47)–(11.49) if x∗ can be obtained from solving the following problem:

max ξ (11.50)

s.t. ξ ≤ CiX − l0
i

u0
i − l0

i

, i = 1,2, q, (11.51)

(xi · w) ≤
p

∑

i=1

λibk, (11.52)

p
∑

k=1

λk = 1, k = 1,2, . . . , p, (11.53)

then x∗ ∈ X is a weak potential solution of (11.47)–(11.49) [100, 179]. According to
this, in formulating a FLP problem, the objectives (min

∑n
i=1 ξi,max

∑n
i=1 βi) and

constraints (xi · w) = b + ξi − βi , xi ∈ G; (xi · w) = b − ξi + βi , xi ∈ B of (11.47)–
(11.49) are redefined as fuzzy sets F and X with corresponding membership func-
tions μF (x) and μX(x), respectively. In this case the fuzzy decision set D is defined
as D = F ∩X, and the membership function is defined as μD(x1) = μF (x),μX(x).
In a maximization problem, x1 is a “better” decision than x2 if μD(x1) ≥ μD(x2).
Thus, it can be considered appropriate to select x∗ such as [107]:

maxμD(x) = max
x

min{μF (x),μX(x)} (11.54)

= min{μF (x∗),μX(x∗)}, (11.55)

where maxμD(x) is the maximized solution.
Let y1L be MSD and y2U be MMD, the value of max

∑n
i=1 ξi is y1U and the

value of max
∑n

i=1 ξi is y2L. Let �1 = w : y1L ≤ ∑n
i=1 ξi ≤ y1U and �2 = w :

y2L ≤ ∑n
i=1 βi ≤ y2U . Their membership functions can be expressed respectively
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by [107]:

μ�1(x) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1, if
∑n

i=1 ξi ≥ y1U,

∑n
i=1 ξi−y1L

y1U−y1L
, if y1L ≤ ∑n

i=1 ξi ≤ y1U,

0, if
∑n

i=1 ξi ≤ y1L.

(11.56)

Then the fuzzy set of the objective functions is � = �1 ∩ �2 and its mem-
bership function is μ�(x) = min{μ�1(x),μ�2(x)}. Using the crisp constraint set
w = {x : (xi · w) = b + ξi − βi, xi ∈ G; (xi · w) = b − ξi + βi, xi ∈ B}, the fuzzy
set of the decision problem is D = �1 ∩ �2 ∩ w, and its membership function is
μD(x) = μ�1∩�2∩w(x) has shown that the “optimal solution” of maxx μD(x) =
maxx min{μF1(x),μF1(x),μw)(x)} is an efficient solution of (11.15)–(11.20).

To explore this possibility, this paper proposes a heuristic classification to build
scorecard by using the fuzzy linear programming for discovering the good and bad
customers as follows:

max ξ (11.57)

s.t. ξ ≤
∑

αi − y1L

y1U − y1L

, (11.58)

ξ ≤
∑

βi − y2L

y2U − y2L

, (11.59)

(xi · w) = λ1 · bl + λ2 · bu + ξi − βi, xi ∈ M, (11.60)

(xi · w) = λ1 · bl + λ2 · bu − ξi + βi, xi ∈ N, (11.61)

where xi , y1L, y1U , y2L, y2U , bl , bu are known, w is unrestricted, and αi,βi, λ1,

λ2, ξ ≥ 0, i = 1,2, . . . , n.

11.1.3 Heuristic Classification Algorithm

To run the proposed algorithm below, we first create data warehouse for credit
card analysis. Then we generate a set of relevant attributes from the data ware-
house,transform the scales of the data warehouse into the same numerical measure-
ment, determine the two classes of good and bad customers, classification threshold
τ that is selected by user, training set and verifying set.

Algorithm: A credit scorecard by using MC2 in Fig. 11.3
Input: The training samples represented by discrete-valued attributes, the set of
candidate attributes.
Output: Best b∗ and parameters W ∗ for building a credit scorecard.
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Fig. 11.3 A flowchart of
MC2 classification method

Method:

(1) Give a class boundary value bu and bl and use models (11.6)–(11.9), (11.11)–
(11.14), and (11.47)–(11.49) to learn and compute the overall scores xiW

(i = 1,2, . . . , n) of the relevant attributes or dimensions over all observations
repeatedly.

(2) If (11.6)–(11.9) exceeds the threshold τ , go to (6), else go to (3).
(3) If (11.11)–(11.14) exceeds the threshold τ , go to (6), else go to (4).
(4) If (11.47)–(11.49) exceeds the threshold τ , go to (6), else go to (5).
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(5) If (11.57)–(11.61) exceeds the threshold τ , go to (6), else go to (1) to consider
to give another cut off pair.

(6) Apply the final learned scores W ∗ to predict the unknown data in the verifying
set.

(7) Find separation.

11.2 Minimal Error and Maximal Between-Class Variance
Model

In this section, we will first explain Fisher’s Linear Discriminant Analysis (LDA)
from the view of multiple criteria programming. Then we formulate the Minimal Er-
ror and Maximal Between-class Variance (MEMBV) model by using the objective
function of Fisher’s LDA (maximizing the between-class variance) and the MC2LP
model for relaxing the constraints.

To simplify the description, we introduce some notations first. Consider a two-
group classification problem, group Gl has Nl instances which denoted by W1 =
{w1i}N1

i=1, group G2 has N2 instances which denoted by W2 = {w2j }N2
j=1, classifica-

tion models try to find a optional decision boundary b (which is determined by the
projection direction 	 ), where W1 and W2 can be separated as far as possible.

Now we explain Fisher’s LDA from the view of multiple objective programming.
The mean vectors of G1 and G2 are m1 = 1

N1

∑N1
i=1 w1i and m2 = 1

N2

∑N2
j=1 w2j

respectively, and the Euclidean distance between m1 and m2 can be denoted as
SB = (m1 − m2)(m1 − m2)

T. Meanwhile, the variances can be denoted as S1 =
∑N1

i=1(x1i − m1)(x1i − m1)
T for G1 and S2 = ∑N2

j=1(x2j − m2)(x2j − m2)
T for

G2, and the whole variance of the training sample is the sum of S1 and S2,
which can be denoted as Sw = S1 + S2. When projected on the direction vec-
tor w, the variances of G1 and G2 can be denoted as Var1 = ∑N1

i=1(wx1i − wm1)
2

and Var2 = ∑N2
i=1(wx2i − wm2)

2 respectively. Moreover, Var1 = wTS1w and
Var2 = wTS2w. So the “within-class variance” is the sum of Var1 and Var2, that
is wTSww = wT(S1 + S2)w. And “between-class variance” can be denoted as
wTSBw = wT(m1 − m2)(m1 − m2)

Tw = wTSbw. Finally, LDA tries to maximize
the between-class variance wTSbw and minimizing within-class variance wTSww

as follows:

max wTSBw, (11.62)

min wTSWw. (11.63)

Combining (11.62) and (11.63), we get the formulation of the well-known Fisher’s
LDA model as follows:

max JF (w) = wTSBw

wTSWw
. (11.64)

Fisher’s LDA is easy to understand and implement, and it has been widely used
in classification and dimensionality reduction. However, since the objective function
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of LDA doesn’t contain the training error, when the Fisher’s criterion doesn’t hold
true, LDA can not achieve an optimal solution.

By using the objective function of Fisher’s LDA (maximizing the “between-class
variance”), we formulate the Minimal Error and Maximal Between-class Variance
(MEMBV) model as follows:

max wTSBw (11.65)

min
∑

ξi (11.66)

s.t. (w · xi) − ξi ≤ b, xi ∈ G1, (11.67)

(w · xi) + ξi ≥ b, xi ∈ G2, (11.68)

ξi ≥ 0, (11.69)

where w is the projection direction, b is the classification boundary. When combin-
ing (11.65) and (11.66) into one single objective function by weight factor c, we get
the MEMBV model as follows:

min
∑

ξi − c · wTSBw (11.70)

s.t. (w · xi) − ξi ≤ b, xi ∈ G1, (11.71)

(w · xi) + ξi ≥ b, xi ∈ G2, (11.72)

ξi ≥ 0. (11.73)

As we discussed above, due to the complexity of the real world applications, the
constraints in the MDMBV model may dynamically change, making the problem
even more complex. To cope with this difficulty, by using the multiple criteria mul-
tiple constrain-levels theory, we extend the MEMBV model into the MC2LP model.
More specifically, we extend the MEMBV model by relaxing the boundary b into a
linear combination of the left limitation bl and the right limitation br , which can be
denoted as γ1bl + γ2br , where γ1 + γ2 = 1.

min
∑

ξi − c · wTSBw (11.74)

s.t. (w · xi) − ξi ≤ γ1bl + γ2br, xi ∈ G1, (11.75)

(w · xi) + ξi ≥ γ1bl + γ2br, xi ∈ G2, (11.76)

ξi ≥ 0, (11.77)

where both the matrix SB and the vector ξ in the objective function are non-negative.
When comparing the MC2LP model with the MEMBV model, we can also observe
that, on one hand, MEMBV is a special case of MC2LP model, when γ1 and γ2
are stable, MC2LP model will degenerate into MEMBV model; on the other hand,
since −c · wTSBw is a negative item int the objective function, both MEMBV and
MC2LP are concave quadratic programming models, and we will discuss how to
solve the MC2LP model in the next chapter.
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Chapter 12
Firm Financial Analysis

12.1 Finance and Banking

Financial institutions and banks are among those industries that have relatively com-
plete and accurate data and have first employed advanced analytic techniques on
their data. Typical cases include stock investment, loan payment prediction, credit
approval, bankruptcy prediction, and fraud detection.

Classification is one of most extensively used data mining methods in finance and
banking. It can be considered as a two- or three-step process. In a two-step process,
the first step constructs classification model based on historic data and the second
step applies the classification model to unknown data to predict their class labels.
A three-step process adds a model adjustment step between model construction and
model usage to adapt the model better to data. Classification has wide applications,
such as marketing promotion, credit card portfolio management, credit approval,
network intrusion detection, and fraud detection.

Traditionally, discriminant analysis, linear and logistic regression, integer pro-
gramming, decision trees, expert systems, neural networks, and dynamic models
are commonly used techniques in finance and banking applications. Relatively few
mathematical programming tools have been explored and applied to finance and
banking analysis.

To test the applicability of preceding multiple-criteria mathematical models in fi-
nance and banking, we select one model, MCQP in Chap. 9 and apply it to three
financial datasets. These datasets come from three countries and represent con-
sumer credit card application data, credit approval data, and corporation bankruptcy
data. The first dataset is a German credit risk dataset from UCI Machine Learn-
ing databases, which collects personal information (e.g., credit history, employment
status, age, and housing). It contains 1000 records (700 Normal and 300 Bad) and
24 variables. The objective is to predict the credit risk of these records. The sec-
ond set is an Australian credit approval dataset from See5 [169]. It has 690 records
(383 Normal and 307 Bad) and 15 variables. This dataset concerns about credit card
applicants’ status: either good or bad. The third set is a Japanese firm bankruptcy
set [132, 133], which collects bankrupt (bad) sample Japanese firms (37) and non-
bankrupt (normal) sample Japanese firms (111) from 1989 to 1999 and each record
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196 12 Firm Financial Analysis

has 13 variables. Classification models build for this dataset can classify bankrupt
and non-bankrupt firms. These three datasets represent different problems in finance
and banking. For comparison purpose, the result of MCQP is compared with four
well-know classification methods: SPSS linear discriminant analysis (LDA), Deci-
sion Tree based See5 [169], SVM light [118], and LibSVM [33].

Data mining and knowledge discovery consists of data selection, data cleaning,
data transformation, data preprocessing, data mining or modeling, knowledge in-
terpretation and presentation. Data selection, cleaning, transformation and prepro-
cessing prepare data for modeling step. Knowledge interpretation and presentation
summarizes results and presents in appropriate formats to end users. All steps are
important; however, this chapter will focus on only data mining or modeling step.

The general classification process listed below summarizes the major steps in
our classification experiments. Though this process concerns only about two-class
problem, it can be extended to multiple class problems by changing the input and
the decision function (Step 2). All the applications discussed in this chapter follow
this general process.

12.2 General Classification Process

Input: The dataset A = {A1,A2,A3, . . . ,An}, an n × n diagonal matrix Y , where

Yi,j =
{

1, i ∈ {Bad},
−1, i ∈ {Normal}.

Output: Average classification accuracies of 10-fold cross-validation for Bad and
Normal; decision scores for all records; decision function.
Step 1 Apply five classification methods: LDA, Decision Tree, SVM, MCQP
(Chap. 9), to A using 10-fold cross-validation. The outputs are a set of decision
functions, one for each classification method.
Step 2 Compute the classification accuracies using the decision functions.
END

Tables 12.1, 12.2 and 12.3 report the averages of 10-fold cross-validation re-
sults of the five classification methods for German set, Australian set, and Japanese
set, respectively. Since different performance metrics measure different aspects of
classifiers, we use five criteria: accuracy, KS score, type I and II errors, and cor-
relation coefficient, to evaluate the model performance. Accuracy is one the most
widely used classification performance metrics. It is the ratio of correct predicted
records to the entire records or records in a particular class. Overall Accuracy =
(TN + TP)/(TP + FP + FN + TN), Normal Accuracy = TN/(FP + TN), Bad
Accuracy = TP/(T P +FN), TN, TP, FN and FP represent true negative, true pos-
itive, false negative and false positive, respectively.

Type I error is defined as the percentage of predicted Normal records that are
actually Bad records and Type II error is defined as the percentage of predicted Bad
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Table 12.1 10-fold cross-validation results of German set

Classification accuracy Error rate KS-score Corr-coef

Overall (%) Normal (%) Bad (%) Type I (%) Type II (%)

Linear Discriminant Analysis

Training 73.80 73.43 74.67 25.65 26.25 48.10 0.481

Test 72.20 72.57 71.33 28.32 27.77 43.90 0.439

See5

Training 89.10 95.57 74.00 21.39 5.65 69.57 0.712

Test 72.20 84.00 44.67 39.71 26.37 28.67 0.312

SVM light

Training 68.65 79.00 44.50 41.26 32.06 23.50 0.250

Test 66.50 77.00 42.00 42.96 35.38 19.00 0.203

LibSVM

Training 93.25 100.0 77.50 18.37 0.00 77.50 0.795

Test 94.00 100.0 80.00 16.67 0.00 80.00 0.816

MCQP

Training 73.86 74.91 71.42 27.62 26.00 46.33 0.464

Test 73.50 74.38 72.00 27.35 26.24 46.38 0.464

Table 12.2 10-fold cross-validation results of Australian set

Classification accuracy Error rate KS-score Corr-coef

Overall (%) Normal (%) Bad (%) Type I (%) Type II (%)

Linear Discriminant Analysis

Training 86.09 80.94 92.51 8.47 17.08 73.45 0.739

Test 85.80 80.68 92.18 8.83 17.33 72.86 0.733

See5

Training 90.29 91.64 88.60 11.06 8.62 80.24 0.803

Test 86.52 87.99 84.69 14.82 12.42 72.68 0.727

SVM light

Training 55.22 23.76 94.46 18.90 44.66 18.22 0.258

Test 44.83 18.03 90.65 34.14 47.48 8.69 0.126

LibSVM

Training 99.71 100.0 99.35 0.65 0.00 99.35 0.994

Test 44.83 86.89 27.10 45.62 32.61 13.99 0.174

MCQP

Training 87.25 88.50 86.38 13.34 11.75 74.88 0.749

Test 86.38 87.00 85.52 14.27 13.20 72.52 0.725
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Table 12.3 10-fold cross-validation results of Japanese set

Classification accuracy Error rate KS-score Corr-coef

Overall (%) Normal (%) Bad (%) Type I (%) Type II (%)

Linear Discriminant Analysis

Training 73.65 72.07 78.38 23.08 26.27 50.45 0.506

Test 68.92 68.47 70.27 30.28 30.97 38.74 0.387

See5

Training 93.24 96.40 83.78 14.40 4.12 80.18 0.808

Test 72.30 84.68 35.14 43.37 30.36 19.82 0.228

SVM light

Training 100.0 100.0 100.0 0.00 0.00 100.0 1.000

Test 48.15 47.25 52.94 49.90 49.91 0.19 0.002

LibSVM

Training 100.0 100.0 100.0 0.00 0.00 100.0 1.000

Test 50.46 49.45 55.88 47.15 47.49 5.33 0.053

MCQP

Training 73.65 72.38 77.98 23.33 26.16 50.36 0.504

Test 72.30 72.30 72.47 27.58 27.65 44.77 0.448

records that are actually Normal records. In all three applications (credit risk, credit
approval, and bankrupt prediction), Type I errors, which class a customer as good
when they are bad, have more serious impact than Type II errors, which class a
customer as bad when they are good.

Type I error = FN

FN + TN
, Type II error = FP

FP + TP
.

In addition, a popular measurement in credit risk analysis, KS score, is calculated.
The KS (Kolmogorov–Smirnov) value measures the largest separation of cumulative
distributions of Goods and Bads [46] and is defined as:

KS value = max |Cumulative distribution of Bad − Cumulative distribution of

Normal|.
Another measurement—Correlation coefficient, which falls into the range of

[−1,1], is used to avoid the negative impacts of imbalanced classes. The correlation
coefficient is −1 if the predictions are completely contrary to the real value, 1 if the
predictions are 100% correct, and 0 if the predictions are randomly produced. The
Correlation coefficient is calculated as follows:

Correlation coefficient = (TP × TN) − (FP × FN)√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

.
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Tables 12.1, 12.2 and 12.3 summarize the five metrics for training sets and test sets.
Training results indicate how well the classification model fits the training set while
test results reflect the real predicting power of the model. Therefore, test results
determine the quality of classifiers. Among the five methods, LibSVM achieves
the best performance on all five metrics for German set, but performs poorly on
Australian set (27.1% accuracy for Bad; 45.62% Type I error; 32.61% Type II error;
13.99 KS; 0.174 correlation coefficient). LDA yields the best accuracies, error rates,
KS scores, and correlation coefficient for Australian data and exhibits comparative
results on other two sets. See5 has the best accuracies for Overall and Normal for
Australian and Japanese sets. SVM light performs about average for German data,
but poorly for Japanese and Australian sets. MCQP has excellent performance on
five metrics for Japanese data and above average performance on other two sets.

The experimental study indicates that (1) MCQP can classify credit risk data
and achieves comparable results with well-known classification techniques; (2) the
performance of classification methods may vary when the datasets have different
characteristics.

12.3 Firm Bankruptcy Prediction

Firm bankruptcy prediction is an interesting topic because many stakeholders such
as bankers, investors, auditors, management, employees, and the general public are
interested in assessing bankruptcy risk. The MCLP model (Model 2) is used as a
data mining tool for bankruptcy prediction. Using the well-known 1990s Japanese
financial data (37 Bankrupt and 111 Non-Bankrupt), Kwak, Shi and Cheh [132, 133]
showed that MCLP can be used as a standard to judge the well-known prediction
methods. According to the empirical results in Table 12.4, Ohlson’s [157] predictor
variables (Panel B) perform better than Altman’s [4] predictor variables (Panel A),
based on the overall prediction rates of 77.70% and 72.97%, respectively. To de-
termine whether a combined set of variables provides better bankruptcy prediction
results, MCLP is applied by using Ohlson’s [157] and Altman’s [4] variables to-
gether. The results of Panel C in Table 12.4 are inferior to those using just Ohlson’s
[157] variables (overall (Type I) prediction rate of 74.32% (51.35%) in Panel C ver-
sus 77.70% (70.27%) in Panel B). These results support the superiority of using
Ohlson’s nine variables to predict bankruptcy using Japanese financial data.

Kwak et al. [132, 133] also tested the use of the MCLP model for bankruptcy
prediction using U.S. data from a sample period of 1992 to 1998 (133 Bankrupt
and 1021 Non-Bankrupt). The results showed that MCLP performed better than
either the multiple discriminant analysis (MDA) approach of Altman [4] or the Logit
regression of Ohlson [157] as in Table 12.5. If we consider that the costs of Type I
errors outweigh the costs of Type II errors in a bankruptcy situation, our focus of
prediction error rate should be on Type I errors. The prediction rate of Type I errors is
increasing and the prediction rate of Type II errors is decreasing in Altman’s model
compared with the model with more numbers of control firms. This is an interesting



200 12 Firm Financial Analysis

Table 12.4 Predictability of MCLP using various financial predictor variables on bankruptcy for
Japanese firms

Panel A: Altman’s [4] five predictor variables

All years N Number correct Percent correct Percent error

Type-I 37 6 16.22 83.78

Type-II 111 102 91.89 8.11

Overall prediction rate 72.97% 27.03%

Panel B: Ohlson’s [157] nine predictor variables

All years N Number correct Percent correct Percent error

Type-I 37 26 70.27 29.73

Type-II 111 89 80.18 19.82

Overall prediction rate 77.70% 22.30%

Panel C: Combination of Altman’s [4] and Ohlson’s [157] five predictor variables

All years N Number correct Percent correct Percent error

Type-I 37 19 51.35 48.65

Type-II 111 91 81.98 18.02

Overall prediction rate 74.32% 25.26%

Table 12.5 Predictability of MCLP on bankruptcy methods for USA firms

Year Altman predictor variables Ohlson predictor variables

N Number
correct

Percent
correct (%)

N Number
correct

Percent
correct (%)

1992 Type-I 21 15 71 21 11 52

Type-II 21 17 81 70 66 94

1993 Type-I 15 13 87 15 13 87

Type-II 15 13 87 74 72 97

1994 Type-I 12 8 67 12 9 75

Type-II 12 10 83 63 62 98

1995 Type-I 8 8 100 8 6 75

Type-II 8 8 100 58 57 98

1996 Type-I 15 14 93 15 8 53

Type-II 15 14 93 96 93 97

1997 Type-I 12 10 83 12 7 58

Type-II 12 11 92 70 69 99

1998 Type-I 9 7 78 9 4 44

Type-II 9 8 89 89 87 98

All data Type-I 126 109 87 91 81 89

Type-II 91 62 68 521 492 94
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result which suggests that Altman’s original model could be upward-biased, and that
he should use more control firms to represent the real-world situation of bankruptcy.

From the results of the overall predication rate in terms of Type-I errors, Ta-
ble 12.5 shows that MCLP on Ohlson’s variables is similar to Altman’s variables
(87% vs. 89%) using more control firms. The percentages are higher than these of
two studies (see [4, 157]). This sustains our findings in this study. From the above re-
sults, the MCLP approach performs better than both Altman’s method and Ohlson’s
method.





Chapter 13
Personal Credit Management

13.1 Credit Card Accounts Classification

The most commonly used methods in predicting credit card defaulters are credit
scoring models. Based on their applications in credit management, the scoring mod-
els can be classified into two categories. The first category concerns about applica-
tion scores which can help to decide whether or not to issue credit to a new credit
applicant. The second category concerns behavior scores which can help to fore-
cast future behavior of an existing account for risk analysis. Specifically, behavior
scores are used to determine “raising or lowering the credit limit; how the account
should be treated with regard to promotional or marketing decisions; and when ac-
tion should be taken on a delinquent account” [172]. Since they focus on different
aspects of credit card management, these two scores require different methods to
implement.

Behavior scoring models utilize various techniques to identify attributes that can
effectively separate credit cardholders’ behaviors. These techniques include linear
discriminant analysis (LDA), decision trees, expert systems, neural networks (NN),
and dynamic models [172]. Among them, linear discriminant analysis has been re-
garded as the most commonly used technique in credit card bankrupt prediction.

Since Fisher [73] developed a discriminant function, linear discriminant analysis
had been applied to various managerial applications. It can be used for two pur-
poses: to classify observations into groups or to describe major differences among
the groups. For the purpose of classification, LDA builds a discriminant function
of group membership based on observed attributes of data objects. The function is
generated from a training dataset for which group membership (or label) is known.
If there are more than two groups, a set of discriminant functions can be generated.
This generated function is then applied to a test dataset for which group membership
is unknown, but has the same attributes as the training dataset. The fundamental of
LDA can be found in [6, 122, 150].

Although LDA has well established theory and been widely accepted and used
in credit card accounts prediction, it has certain drawbacks. Eisenbeis [64] pointed
out eight problems in applying discriminant analysis for credit scoring. These prob-
lems range from group definition to LDA’s underlying assumptions. Kolesar and
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Showers [125] also suggested that LDA “produces solutions that are optimal for a
particular decision problem when the variables have a special multivariate normal
distribution”. Violations of these assumptions, such as equal covariance matrices
and multivariate normal distributions, happen frequently in real-life applications and
raise questions about the validity of using LDA in credit card accounts classifica-
tion. Therefore, alternative classification methods that are not restricted by statistical
assumptions behoove to be explored.

The real-life credit card dataset used in this chapter is provided by First Data Cor-
poration (FDC), the largest credit card service industry in the world. The raw data
came originally from a major US bank which is one of FDC’s clients. It contains
3,589 records and 102 variables (38 original variables and 64 derived variables)
describing cardholders’ behaviors. The data were collected from June 1995 to De-
cember 1995 (seven months) and the cardholders were from twenty-eight states in
USA. This dataset has been used as a classic working dataset in FDC for various
data analyses to support the bank’s business intelligence. Each record has a class la-
bel to indicate its credit status: either Good or Bad. Bad indicates a bankrupt credit
card account and Good indicates a good status account. The 38 original variables
can be divided into four categories: balance, purchase, payment, cash advance, in
addition to related variables. The category variables represent raw data of previ-
ous six or seven consecutive months. The related variables include interest charges,
date of last payment, times of cash advance, and account open date. The detailed
description of these variables is given in Table 13.1.

The 64 derived variables are created from the original 38 variables to reinforce
the comprehension of card-holder’s behaviors, such as times over-limit in the last
two years, calculated interest rate, cash as percentage of balance, purchase as per-
centage to balance, payment as percentage to balance, and purchase as percentage
to payment. Table 13.2 gives a brief description of these attributes (variables).

Table 13.3 illustrates a sample record from Good credit card accounts group with
64 derived attributes and their corresponding values.

Table 13.4 shows a sample record from Bad credit card accounts group with 64
derived attributes and their corresponding values.

For the purpose of credit card classification, the 64 derived variables were cho-
sen to compute the model since they provide more precise information about credit
card accounts’ behaviors. The dataset is randomly divided into one training dataset
(200 records) and one verifying dataset (3,389 records). The training dataset has
class label for each record and is used to calculate the optimal solution. The ver-
ifying dataset, on the other hand, has no class labels and is used to validate the
predicting accuracy of MCQP. The predicting accuracy of a classification method is
not judged by the accuracy of training dataset, but the accuracy of verifying dataset.
The goal of classification is to apply solutions obtained from the training phase to
predict future unknown data objects.

The objective of this research is to produce a “black list” of the credit cardholders.
This means we seek a classifier that can identify as many Bad records as possible.
This strategy is a basic one in credit card business intelligence. Theoretically speak-
ing, we shall first construct a number of classifiers and then choose one more Bad
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Table 13.1 Original attributes of credit card dataset

Variables Description Variables Description

1 Balance Jun 95 20 Cash advance Jul 95

2 Jul 95 21 Aug 95

3 Aug 95 22 Sep 95

4 Sep 95 23 Oct 95

5 Oct 95 24 Nov 95

6 Nov 95 25 Dec 95

7 Dec 95 26 Interest charge: Mechanize Dec 95

8 Purchase Jul 95 27 Interest charge: Cash Dec 95

9 Aug 95 28 Number of purchase Dec 95

10 Sep 95 29 Number of cash advance Dec 95

11 Oct 95 30 Cash balance Nov 95

12 Nov 95 31 Cash balance Dec 95

13 Dec 95 32 Number of over limit in last 2 years

14 Payment Jul 95 33 Credit line

15 Aug 95 34 Account open date

16 Sep 95 35 Highest balance in last 2 years

17 Oct 95 36 Date of last payment

18 Nov 95 37 Activity index Nov 95

19 Dec 95 38 Activity index Dec 95

records. The research procedure in this paper has four steps. The first step is data
cleaning.Within this step, missing data cells were excluded and extreme values that
were identified as outliers were removed from the dataset. The second step is data
transformation. The dataset was transformed according to the format requirements
of LINGO 8.0, which is a software tool for solving nonlinear models used by this
research [137]. The third step is model formulation and classification. A two-group
MCQP model is formulated, which will be elaborated in Sect. 13.3, and applied to
the training dataset to obtain optimal solutions. The solutions are then applied to
the verifying dataset within which class labels were removed to compute scores for
each record. Based on these scores, each record is predicted as either Bad or Good
account. By comparing the predicted labels with original labels of records, the clas-
sification accuracy of MCQP model can be determined. If the classification accuracy
is acceptable by data analysts, this solution will be used to predict future credit card
records. Otherwise, data analysts need to modify the boundary and attributes values
to get another set of optimal solutions. The fourth step is results presentation. The
acceptable classification results were summarized in tables and figures using Excel
and presented to end users.
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Table 13.2 Derived attributes of credit card dataset

Variables Description

1 Balance of Nov 95

2 Max balance of Jul 95 to Dec 95

3 Balance difference between Jul 95 to Sep 95 and Oct 95 to Dec 95

4 Balance of Dec 95 as percent of max balance of Jul 95 to Dec 95

5 Average payment of Oct 95 to Dec 95

6 Average payment of Jul 95 to Dec 95

7 Payment of Dec 95 (≤$20)

8 Payment of Dec 95 (>$20)

9 Payment of Nov 95 (≤$20)

10 Payment of Nov 95 (>$20)

11 Payment of Oct 95 to Dec 95 minus Payment of Jul 95 to Sep 95 (Min)

12 Payment of Oct 95 to Dec 95 minus Payment of Jul 95 to Sep 95 (Max)

13 Purchase of Dec 95

14 Purchase of Nov 95

15 Purchase of Dec 95 as percent of max purchase of Jul 95 to Dec 95

16 Revolve balance between Jul 95 to Sep 95 and Oct 95 to Dec 95

17 Max minus Min revolve balance between Jul 95 to Dec 95

18 Cash advance of Jul 95 to Dec 95

19 Cash as percent of balance of Jul 95 to Dec 95 (Max)

20 Cash as percent of balance of Jul 95 to Dec 95 (Min)

21 Cash as percent of balance of Jul 95 to Dec 95 (Indicator)

22 Cash advance of Dec 95

23 Cash as percent of balance of Jul 95 to Dec 95

24 Cash as percent of balance of Oct 95 to Dec 95

25 Cash as percent of payment of Jul 95 to Dec 95 (Min)

26 Cash as percent of payment of Jul 95 to Dec 95 (Log)

27 Revolve balance to payment ratio Dec 95

28 Revolve balance to payment ratio Nov 95

29 Revolve balance to payment ratio Oct 95 to Dec 95

30 Revolve balance to payment ratio Jul 95 to Dec 95

31 Revolve balance to payment ratio Jul 95 to Sep 95 minus Oct 95 to Dec 95 (Max)

32 Revolve balance to payment ratio Jul 95 to Sep 95 minus Oct 95 to Dec 95 (Min)

33 Revolve balance to payment ratio Jul 95 to Dec 95, Max minus Min (>35)

34 Revolve balance to payment ratio Jul 95 to Dec 95, Max minus Min (≤35)

35 Purchase as percent of balance Dec 95

36 Purchase as percent of balance Oct 95 to Dec 95

37 Purchase as percent of balance Jul 95 to Dec 95

38 Purchase as percent of balance Jul 95 to Sep 95 minus Oct 95 to Dec 95

39 Purchase as percent of balance, Max minus Min, Jul 95 to Dec 95
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Table 13.2 (Continued)

Variables Description

40 Purchase as percent of payment, Jul 95 to Dec 95

41 Purchase as percent of payment, Nov 95

42 Purchase as percent of payment, Jul 95 to Sep 95 minus Oct 95 to Dec 95 (Max)

43 Purchase as percent of payment, Jul 95 to Sep 95 minus Oct 95 to Dec 95 (Min)

44 Purchase as percent of payment, Dec 95 as percent of Jul 95 to Dec 95

45 Purchase as percent of payment, Max minus Min, Jul 95 to Dec 95

46 Interest charge Dec 95

47 Interest charge Dec 95 as percent of credit line

48 Calculated interest rate (≤5%)

49 Calculated interest rate (>5%)

50 Number of months since last payment

51 Number of months since last payment squared

52 Number of purchases, Dec 95

53 Number of cash advances, Dec 95

54 Credit line

55 Open to buy, Dec 95

56 Over limit indicator of Dec 95

57 Open to buy, Nov 95

58 Utilization, Dec 95

59 Number of times delinquency in last two years

60 Residence state category

61 Transactor indicator

62 Average payment of revolving accounts

63 Last balance to payment ratio

64 Average OBT revolving accounts

13.2 Two-Class Analysis

13.2.1 Six Different Methods

Using the real-life credit card dataset in the above section, we first conduct the
MCQP classification. Then, we compare the performance of MCQP with multiple
criteria linear programming (MCLP) (Chap. 7), linear discriminant analysis (LDA),
decision tree (DT), support vector machine (SVM), and neural network (NN) meth-
ods in terms of predictive accuracy.

The MCQP classification consists of training process and verifying process.
Given the training dataset, the classifier or optimal solution of MCQP depends on
the choice of weights σξ and σβ . The verifying dataset will be calculated according
to the resulting classifier. To identify the better classifier, we assume that σξ +σβ = 1
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Table 13.3 A sample record of Good group with 64 derived attributes

Attributes: 1 2 3 4 5 6 7 8

Value: 9.18091 0.53348 7.3 1 5.32301 5.32301 5.32301 0

Attributes: 9 10 11 12 13 14 15 16

Value: 5.32301 0 0 0 6.00859 5.08153 3.70601 7.051758

Attributes: 17 18 19 20 21 22 23 24

Value: 1 1 0 6.9277 0 1 0 1.7027

Attributes: 25 26 27 28 29 30 31 32

Value: 0.81301 4.14654 46.3659 45.9328 46.2161 45.8386 0 0.7548

Attributes: 33 34 35 36 37 38 39 40

Value: 0 3.1354 1.39887 0.65921 0.99082 −1.521 10.29 1.13407

Attributes: 41 42 43 44 45 46 47 48

Value: 1 −0.7253 0 1 5 7.19811 1.16252 1.37683

Attributes: 49 50 51 52 53 54 55 56

Value: 0 −1 1 3.68888 0 8 7.28235 0

Attributes: 57 58 59 60 61 62 63 64

Value: 7.48997 2.61352 0 1 0 1.77071 7.00021 4.1325

and 0 ≤ σξ , σβ ≤ 0. Let σξ = 1, 0.75, 0.625, 0.5, 0.375, 0.25, 0 and σβ = 0, 0.25,
0.375, 0.5, 0.625, 0.75, 1, then we obtained a number of classifiers as in Table 13.5.

In Table 13.5, we define “Type I error” to be the percentage of predicted Good
records which are actually Bad records and “Type II error” to be the percentage of
predicted Bad records which are actually Good records. Then, these two errors can
be used to measure the accuracy rates of different classifiers. For example, in Ta-
ble 13.5, the value 3.03% of Type I error for training dataset when σξ = 0.375 and
σβ = 0.625 indicates that 3.03% of predicted Good records are actually Bad records.
Similarly, the value 3.96% of Type II error for training dataset when σξ = 0.375 and
σβ = 0.625 indicates that 3.96% of predicted Bad records are actually Good records.
As we discussed in Sect. 13.2.3, misclassified Bad accounts contribute to huge lost
in credit card businesses and thus creditors are more concern about Type I error
than Type II error. Also, since the accuracy of verifying dataset is the real indica-
tor of prediction quality of classification techniques, classification techniques with
lower verifying Type I errors are judged as superior than those with higher verifying
Type I errors. Of course, we are by no means saying that Type II error is not impor-
tant. Actually, misclassification of Good customers as Bad ones (Type II error) may
cause increased customer dissatisfaction and appropriate corrective actions should
be considered.

In this dataset, we see that except the extreme cases σξ = 1,0 and σβ = 0,1,
all other values of σξ and σβ offer the same classification results. This shows that
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Table 13.4 A sample record of Bad group with 64 derived attributes

Attributes: 1 2 3 4 5 6 7 8

Value: 8.48182 1.36142 0 2.13355 4.9151 4.63149 4.61512 0

Attributes: 9 10 11 12 13 14 15 16

Value: 4.65396 0 0 67.333 0 0 0 6.803711

Attributes: 17 18 19 20 21 22 23 24

Value: 1 0 0 3.23942 0 1 0 0

Attributes: 25 26 27 28 29 30 31 32

Value: 0 0 46.7845 45.2997 34.8588 46.7744 −15.1412 0

Attributes: 33 34 35 36 37 38 39 40

Value: 0 26.4752 0 0 0 0 0 0

Attributes: 41 42 43 44 45 46 47 48

Value: 1 0 0 0 0 6.63935 1.27433 1.58426

Attributes: 49 50 51 52 53 54 55 56

Value: 0 0 0 0 0 6 7.08867 0

Attributes: 57 58 59 60 61 62 63 64

Value: 7.06798 3.04318 0 1 0 2.13219 6.83884 3.4208

the MCQP classification model is stable in predicting credit cardholders’ behaviors.
In the training process, 96 data records out of 100 were correctly classified for the
“Good” group and 97 data records out of 100 were correctly classified for the “Bad”
group. The classification rates are 96% for the “Good” group and 97% for the “Bad”
group. In the verifying process, 2,890 data records out of 3,090 were correctly clas-
sified for the “Good” group and 290 data records out of 299 were correctly classified
for the “Bad” group. The catch rates are 93.53% for the “Good” group and 96.99%
for the “Bad” group.

Now, we conducted an experiment by applying four classification techniques:
multiple criteria linear programming (MCLP), linear discriminant analysis (LDA),
decision tree (DT), support vector machine (SVM), and neural network (NN) meth-
ods to the same credit card dataset and contrasting the results with MCQP’s.

Although the multiple criteria linear programming (MCLP) is a linear version
of MCQP, the classifier is determined by a compromise solution, not an optimal
solution [127, 162, 182, 183]. The MCLP has been implemented by C++ [128]. In
linear discriminant analysis (LDA), the commercial statistical software SPSS 11.0.1
Windows Version was chosen. SPSS is one of the most popular and easy-to-use sta-
tistical software packages for data analysis. Decision Tree has been widely regarded
as an effective tool in classification [169]. We adopted the commercial decision tree
software C5.0 (the newly updated version of C4.5) to test the classification accuracy
of the two groups. The software of support vector machine (SVM) for this dataset
was Chinese Modeling Support Vector Machines produced by the Training Center
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Table 13.5 MCQP classification with different weights

Bad Good

Correctly
identified

Type II error Correctly
identified

Type I error

σξ = 1, σβ = 0

Training 67 4.29% 97 25.38%

Verifying 283 71.24% 2389 0.67%

σξ = 0.75, σβ = 0.25

Training 97 3.96% 96 3.03%

Verifying 290 40.82% 2890 0.31%

σξ = 0.625, σβ = 0.375

Training 97 3.96% 96 3.03%

Verifying 290 40.82% 2890 0.31%

σξ = 0.5, σβ = 0.5

Training 97 3.96% 96 3.03%

Verifying 290 40.82% 2890 0.31%

σξ = 0.375, σβ = 0.625

Training 97 3.96% 96 3.03%

Verifying 290 40.82% 2890 0.31%

σξ = 0.25, σβ = 0.75

Training 97 3.96% 96 3.03%

Verifying 290 40.82% 2890 0.31%

σξ = 1, σβ = 0

Training No optimal solution

Verifying

of China Meteorological Administration [37]. Finally, we conducted a comparison
of the MQLP method to neural networks (NN). In this comparison, we used codes
through a typical back-propagation algorithm for the two-group classification [228].
All of the comparisons are given in Table 13.6. In this table, the result of MCQP is
based on the stable case discussed in the previous subsection.

With the objective of producing a “black list” of the credit cardholders, we see
that for the verifying sets of Table 13.6, MCQP provides the highest number of cor-
rectly predicted Bad records (290 records out of 299) as well as the lowest Type I
error (0.31%) among all six techniques. Therefore, MCQP is the winner in this
experiment. In addition, from Table 13.6, we can summarize the following observa-
tions:
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Table 13.6 Comparisons of MCQP with others

Bad Good

Correctly
identified

Type II error Correctly
identified

Type I error

Multi-Criteria Quadratic Programming

Training 97 3.96% 96 3.03%

Verifying 290 40.82% 2890 0.31%

Multi-Criteria Linear Programming

Training 84 16.00% 84 16.00%

Verifying 219 74.80% 2440 3.17%

Linear Discriminant Analysis

Training 98 4.85% 95 2.06%

Verifying 288 45.35% 2851 0.38%

Decision Tree

Training 97 3.00% 97 3.00%

Verifying 274 53.08% 2780 0.89%

Support Vector Machine

Training 100 0.00% 100 0.00%

Verifying 184 61.51% 2796 3.95%

Neural Network

Training 75 6.25% 95 20.83%

Verifying 245 19.41% 3031 1.75%

(1) Besides MCQP, the order of better producing a black list is LDA, DT, NN,
MCLP and SVM.

(2) NN exhibits the best verifying Type II error (19.41%) among the six techniques
used in this experiment, followed by MCQP and LDA.

(3) All six techniques present a much lower Type I errors than Type II errors.
(4) Although SVM displays a perfect training Type I and II errors (0%), its verifying

Type I and II errors are much higher (3.95% and 61.51%).

13.2.2 Implication of Business Intelligence and Decision Making

From the aspect of business intelligence and decision making, data mining con-
sists of four stages: (1) Selecting, (2) Transforming, (3) Mining, and (4) Inter-
preting [182]. If Sects. 13.2.3–13.4 of this chapter are related to the first three
stages, then data interpretation is very critical for credit card portfolio management.
A poor interpretation analysis may lead to missing useful information, while a good
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Table 13.7 Cumulative
distributions: Bad vs. Good Range cum_Bad cum_Good KS 1 vs. KS 2

−0.80782 0.00% 0.00% 0.00

−0.60695 0.00% 0.06% 0.06

−0.40608 0.00% 0.32% 0.32

−0.20522 0.00% 0.97% 0.97

−0.00435 0.00% 2.33% 2.33

0.196523 0.00% 5.40% 5.40

0.397392 0.00% 9.58% 9.58

0.598262 0.00% 17.99% 17.99

0.799131 0.67% 33.88% 33.21

1 3.01% 59.32% 56.31

1.09346 22.41% 93.53 71.12

1.18692 45.82% 95.37% 49.55

1.280381 65.55% 96.96% 31.41

1.373841 82.94% 98.32% 15.37

1.467301 91.97% 99.06% 7.09

1.560761 97.32% 99.48% 2.16

1.654222 99.00% 99.64% 0.65

1.747682 99.67% 99.84% 0.17

1.841142 99.67% 99.87% 0.20

1.934602 100.00% 100.00% 0.00

analysis can provide a comprehensive picture for effective decision making. Even
though data mining results from MCQP can be flexibly interpreted and utilized for
credit cardholders’ retention and promotion, we now apply a popular method, called
Kolmogorov-Smirnov (KS) value in US credit card industry to interpret the MCQP
classification [46]. For the problem of the two-group classification in this paper, the
KS value is given as:

KS value = max |Cumulative distribution of Good

− Cumulative distribution of Bad|.
Based on the predicted Bad records and Good records using MCQP from the ver-

ifying dataset in Table 13.6, we construct their cumulative distributions respectively
as in Table 13.7. Note that the “range” is derived from the MCQP score calculated
from classifier (optimal solution) W in the training dataset. The graphical presenta-
tion of KS value is given in Fig. 13.1.

The KS measurement has empirically demonstrated the high correlation to pre-
dict Bad records in terms of Good records. Suppose that the verifying dataset of
3,389 records has unknown label and Table 13.7 or Fig. 13.1 are the predicted spend-
ing behaviors of these credit cardholders in the near future, then the knowledge pro-
vided in Table 13.7 or Fig. 13.1 can be used for various business decision making.
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Fig. 13.1 KS value of 71.12
on verifying records

As an example, when we identify all credit cardholders whose score under or equal
to 1.09346 (see Table 13.7), we will find that 67 of these people (22.41% × 299)
intend to be Bad customers and 2,898 of them (93.53% × 3,099) could be Good
customers. Since these 2,965 cardholders are 87.49% of the total 3,389 records,
we can certainly make necessary managerial decision based on this business intelli-
gence. For instance, we might implement the credit policy to reduce the credit limit
of 67 predicted Bad records and increase the credit limit to 2,965 predicted Good
records or send them promotion coupons.

13.2.3 FMCLP Analysis

In this subsection, the FDC dataset with 65 derived attributes and 1000 records is
first used to train the FMCLP (Sect. 8.1) classifier. Then, the training solution is em-
ployed to predict the spending behaviors of another 5000 customers from different
states. Finally, the classification results are compared with that of the MCLP method
[127, 128], neural network method [98, 228], and decision tree method [52, 169].

There are two kinds of accuracy rates involved in this section. The first one is
the absolute accuracy rate for Bad (or Good) which is the number of actual Bad (or
Good) identified divided by the total number of Bad (or Good). The second is called
catch rate, which is defined as the actual number of caught Bad and Good divided
by the total number of Bad and Good. Let rg be the absolute accuracy rate for Good
and rb be the absolute accuracy rate for Bad. Then the catch rate cr can be written
as:

cr = rg × the total number of Good + rb × the total number of Bad

the total number of Good & Bad
.

The difference of two rates is that the absolute accuracy rate measures the sepa-
ration power of the model for an individual class while the catch rate represents the
overall degree of correctness when the model is used. A threshold τ in this section is
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set up against absolute accuracy rate or/and catch rate depending on the requirement
of business decision making.

The past experience on classification test showed that the training results of a
data set with balanced records (number of Good equals number of Bad) may be
different from that of an unbalanced data set. Given the unbalanced 1000 accounts
with 860 as Good and 140 as Bad accounts for the training process, model (13.1),
(13.2) and (13.3) can be built as follows:

min ξ1 + ξ2 + · · · + ξ1000

s.t. (x1 · w) ≤ b + ξ1,

...

(x140 · w) ≤ b + ξ140,

(x141 · w) ≥ b − ξ141,

...

(x1000 · w) ≥ b − ξ1000,

αi ≥ 0,

w = (w1, . . . ,w65) is unrestricted,

xi = (xi1, . . . , xi65) is given.

Let min ξ1 + ξ2 + · · · + ξ1000 = y1L and

max ξ1 + ξ2 + · · · + ξ1000 = y1U = 1000.

(13.1)

min β1 + β2 + · · · + β1000

s.t. (x1 · w) ≥ b − β1,

...

(x140 · w) ≥ b − β140,

(x141 · w) ≤ b + β141,

...

(x1000 · w) ≤ b + β1000,

βi ≥ 0,

w = (w1, . . . ,w65) is unrestricted,

xi = (xi1, . . . , xi65) is given.

Let max β1 + β2 + · · · + β1000 = y2U and

min β1 + β2 + · · · + β1000 = y2L = 10.

(13.2)
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Then,

max η

s.t. η ≤ ξ1 + ξ2 + · · · + ξ1000 − 1000

y1U − 1000
,

η ≤ β1 + β2 + · · · + β1000 − 10

y2U − 10
,

(x1 · w) = b + ξ1 − β1,

...

(x140 · w) = b + ξ140 − β140,

(x141 · w) = b − ξ141 + β141,

...

(x1000 · w) = b − ξ1000 + β1000,

η, ξi, βi ≥ 0,

w = (w1, . . . ,w65) is unrestricted,

xi = (xi1, . . . , xi65) is given.

(13.3)

A well-known commercial software package, LINDO has been used to perform
the training and predicting processes [137]. Table 13.8 shows learning results of
the above FMCLP method for different values of the boundary b. If the threshold
τ of finding the absolute accuracy rate of bankruptcy accounts (Bad) is predeter-
mined as 0.85, then the situations when b = −3.00 and −4.50 are satisfied as better
classifiers according to FMCLP Algorithm. Both classifiers (solutions) are resulted
from model (13.3) (see Table 13.8). The catch rates of these two classifiers is not as
high as the classifier of model (13.3) when b = −1.10 or −0.50. If we use classifier
of model (13.3) when b = −3.00, then the prediction for the bankruptcy accounts
(Bad) among 5000 records by using the absolute accuracy rate is 88% (Table 13.9).

A balanced data set was formed by taking 140 Good accounts from 860 of the
1000 accounts used before and combining with the 140 accounts. The records of
280 were trained and some of results are summarized in Table 13.10, where we
see that the best catch rate .907 is at b = −1.1 of model (13.3). Although the best
absolute accuracy rate for Bad accounts is .907143 at b = −1.1 of model (13.3), the
predicting result on Bad accounts for 5000 records is 87% at b = −0.50 and 1.10
of model (13.3) in Table 13.11. If the threshold τ for all of the absolute accuracy
rate of Bad accounts, the absolute accuracy rate of Good accounts and catch rate is
set up as 0.9 above, then model (13.3) with b = −1.10 is the only one to produce
the satisfying classifier by FMCLP Algorithm. However, the predicting result of this
case is not the best one (see Table 13.11).

Generally, in both balanced and unbalanced data sets, model (13.1) is better than
models (13.2) and (13.3) in identifying Good accounts, while model (13.2) identifies
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Table 13.9 Predicting results of 5000 records via unbalanced training

Different b

value
Absolute accuracy
rate (13.1)

Absolute accuracy
rate (13.2)

Absolute accuracy
rate (13.3)

Good Bad Good Bad Good Bad

−0.50 83.1% 29% 95% 12% 98% 2.2%

−1.10 83.1% 29% 88% 19% 83% 29%

−2.00 83.1% 29% 83% 29% 51% 28%

−3.00 83.1% 29% 77% 56% 32% 88%

−4.50 83.1% 29% 62% 53% 69% 78%

more Bad accounts than both model (13.1) and (13.3). Model (13.3) has a higher
catch rate in balanced data set than unbalanced data set compared with models (13.1)
and (13.2). Therefore, if the data set is balanced, it is meaningful to implement
FMCLP Algorithm proposed for credit card bankruptcy analysis. This conclusion,
however, may not be true for all kinds of data sets because of the different data
structure and data feature.

Three known classification techniques, decision tree, neural network and multi-
ple criteria linear programming (MCLP) have been used to run the 280 balanced
data set and test (or predict) the 5000 credit card-holder records in a major US bank.
These results are compared with the FMCLP approach discussed above (see Ta-
ble 13.12 and Table 13.13). The software of decision tree is the commercial version
called C5.0 (the newly updated version of C4.5) [14] while software for both neural
network and MCLP were developed at the Data Mining Lab, University of Nebraska
at Omaha [128, 228]. Note that in both Table 13.12 and Table 13.13, the column Tg

and Tb respectively represent the number of Good and Bad accounts identified by
a method, while the rows of Good and Bad represent the actual numbers of the
accounts.

In Table 13.12, the final training result on decision tree was produced by C5.0.
The configuration used for training the neural network result includes a back pro-
rogation algorithm, one hidden layer with 16 hidden nodes, random initial weight,
sigmoid function, and 8000 training periods. The boundary value of b in both MCLP
and FMCLP methods were −1.10. As we see, the best training comparison on Good
(non-bankruptcy) accounts is the decision tree with 138 out of 140 (98.57%) while
the best for Bad (bankruptcy) accounts is the MCLP method with 133 out of 140
(95%). However, the FMCLP method has equally identified 127 out of 140 (90.71%)
for Good and Bad. The neural network method underperformed others in the case.

Table 13.13 shows the predicting (or testing) results on 5000 records by using
the classifiers based on the results of 280 balanced data sets. The MCLP method
outperforms others in terms of predicting Good accounts with 3160 out of 4185
(75.51%), but the FMCLP method proposed in this paper is the best for predicting
Bad accounts with 702 out of 815 (86.14%). If the business strategy of making black
list on Bad accounts is chosen, then the FMCLP method should be used to conduct
the data mining project. Therefore, the proposed FMCLP method demonstrated its



218 13 Personal Credit Management

Ta
bl

e
13

.1
0

L
ea

rn
in

g
re

su
lts

of
un

ba
la

nc
ed

10
00

re
co

rd
s

D
if

fe
re

nt
b

va
lu

e
A

bs
ol

ut
e

ac
cu

ra
cy

ra
te

(1
3.

1)
A

bs
ol

ut
e

ac
cu

ra
cy

ra
te

(1
3.

2)
A

bs
ol

ut
e

ac
cu

ra
cy

ra
te

(1
3.

3)
C

at
ch

ra
te

by
(1

3.
1)

C
at

ch
ra

te
by

(1
3.

2)
C

at
ch

ra
te

by
(1

3.
3)

G
oo

d
B

ad
G

oo
d

B
ad

G
oo

d
B

ad

−2
.0

0
.7

71
42

9
.5

71
42

9
.5

71
42

9
.8

21
42

9
.9

.9
.6

7
.4

25
.9

04

−1
.1

0
.9

92
85

7
.6

5
.6

5
.8

21
42

9
.9

07
14

3
.9

07
14

3
.8

2
.4

25
.9

07

−0
.5

0
.9

92
85

7
.6

57
14

3
.6

57
14

3
.8

21
42

9
.9

.9
.8

3
.4

25
.9

00

0.
50

1
.6

57
14

3
.6

57
14

3
.8

07
14

3
.8

92
85

7
.8

92
85

7
.8

3
.4

29
.8

96

1.
10

.9
92

85
7

.6
5

.6
5

.8
21

42
9

.9
.9

.8
2

.4
25

.9
04



13.3 Three-Class Analysis 219

Table 13.11 Predicting results of 5000 records via unbalanced training

Different b

value
Absolute accuracy
rate (13.1)

Absolute accuracy
rate (13.2)

Absolute accuracy
rate (13.3)

Good Bad Good Bad Good Bad

−2.00 75.34% 43.57% 6.81% 82.45% 59.50% 86.87%

−1.10 66.98% 66.14% 6.81% 82.45% 59.68% 86.13%

−0.50 65.89% 65.89% 6.81% 82.95% 59.74% 87%

0.50 71.54% 65.03% 6.81% 82.45% 59.43% 86.87%

1.10 67% 66.14% 6.81% 82.45% 59.43% 87%

Table 13.12 Learning
comparisons on balanced 280
records

Tg Tb Total

Decision tree

Good 138 2 140

Bad 13 127 140

Total 151 129 280

Neural network

Good 116 24 140

Bad 14 126 140

Total 130 150 280

MCLP

Good 134 6 140

Bad 7 133 140

Total 141 139 280

FMCLP

Good 127 13 140

Bad 13 127 140

Total 140 140 280

advantages over the MCLP method and has a certain significance to be an alternative
tool to the other well-known data mining techniques in classification.

13.3 Three-Class Analysis

13.3.1 Three-Class Formulation

The reason to separate credit card-holder behavior into multi-class is to meet the
needs of advanced credit card portfolio management. Comparing with two-class
separation, multi-class method enlarges the difference between “Good” and “Bad”
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Table 13.13 Learning
comparisons on balanced 280
records

Tg Tb Total

Decision tree

Good 2180 2005 4185

Bad 141 674 815

Total 2321 2679 5000

Neural network

Good 2814 1371 4185

Bad 176 639 815

Total 2990 2010 5000

MCLP

Good 3160 1025 4185

Bad 484 331 815

Total 3644 1356 5000

FMCLP

Good 2498 1687 4185

Bad 113 702 815

Total 2611 2389 5000

cardholders behavior. This enlargement increases not only the accuracy of sepa-
ration, but also efficiency of credit card portfolio management. For example, by
considering the number of months where the account has been over-limit during
the previous two years, we can define “Good” as the cardholders have less than
3 times over-limit; “Normal” as 4–12 times over-limit, and “Bad” as 13 or more
times over-limit. By using the prediction distribution for each behavior class and in-
ner relationship between these classes, credit card issuers can establish their credit
limit policies for various cardholders.

Based on the two-class MCLP model, a three-class MCLP model can be devel-
oped. Three-class separation can use two boundaries, b1 and b2, to separate class 1
(G1: Bad), class 2 (G2: Normal), and class 3 (G3: Good). Credit cardholders behav-
iors are represented as: 1 stands for class 1 (Bad), 2 stands for class 2 (normal), and
3 stands for class 3 (Good).

Given a set of r variables about the cardholders ξ = (ξ1, . . . , ξr ), let ξi =
(ξ1i , . . . , ξir ) be the sample of data for the variables, where i = 1, . . . , n and n is
the sample size. We want to find the coefficients for an appropriate subset of the
variables, denoted by w = (w1, . . . ,wr), and boundary b1 to separate G1 from G2
and G3, boundary b2 to separate G3 from G2 and G1. This can be done as following:

(xi · w) ≤ b1, xi ∈ G1;
b1 ≤ (xi · w) ≤ b2, xi ∈ G2; and

(xi · w) ≥ b2, xi ∈ G3.
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Similarly to two-class model, we apply two measurements for better separation
of Good, Normal, and Bad.

Let ξ1
i be the overlapping degree and ξ 1 be max ξ1

i with respect of xi within
G1 and G2, and ξ2

i be the overlapping degree and ξ2 be max ξ2
i with respect of xi

within G2 and G3. Let β1
i be the distance from xi within G1 and G2 to its adjusted

boundaries ((xi ·w) = b1 −ξ1, or (xi ·w) = b1 +ξ 1), and β2
i be the distance from xi

within G2 and G3 to its adjusted boundaries ((xi ·w) = b1 − ξ2, and (xi ·w) = b1 +
ξ2). Our goal is to reach the maximization of β1

i and β2
i , and the minimization of ξ1

i

and ξ2
i simultaneously. After putting ξ1

i , ξ2
i , β1

i and β2
i into the above constraints,

we have:

min
∑

i

(ξ 1
i + ξ2

i ) and max
∑

i

(β1
i + β2

i )

s.t. (xi · w) = b1 − ξ1
i + β1

i , xi ∈ G1,

(xi · w) = b1 + ξ1
i − β1

i + b2 − ξ 2
i + β2

i , xi ∈ G2,

(xi · w) = b2 − ξ2
i + β2

i , xi ∈ G3,

b1 + ξ1
i ≤ b2 − ξ 2

i ,

where xi are given, w, b1, and b2 are unrestricted, and ξ1
i , ξ2

i , β1
i , and β2

i ≥ 0.
Note that the constraint b1 + ξ1

i ≤ b2 − ξ2
i guarantees the existence of three

classes.
Refer to Chap. 7, a three-class MCLP model is reformulated as:

min d−
ξ1

+ d+
ξ1

+ d−
β1

+ d+
β1

+ d−
ξ2

+ d+
ξ2

+ d−
β2

+ d+
β2

s.t. ξ1∗ +
∑

i

ξ1
i = d−

ξ1
− d+

ξ1
,

β1∗ −
∑

i

β1
i = d−

β1
− d+

β1
,

ξ2∗ +
∑

i

ξ2
i = d−

ξ2
− d+

ξ2
,

β2∗ −
∑

i

β2
i = d−

β2
− d+

β2
,

b1 + ξ 1
i ≤ b2 − ξ 2

i ,

class 1 (Good): (xi · w) = b1 − ξ1
i + β1

i , xi ∈ G1,

class 2 (Normal): (xi · w) = b1 + ξ1
i − β1

i + b2 − ξ 2
i + β2

i , xi ∈ G2,

class 3 (Bad): (xi · w) = b2 − ξ2
i + β2

i , xi ∈ G3,

where xi are given, b1 ≤ b2, w, b1, and b2 are unrestricted, and ξ1
i , ξ2

i , β1
i , and

β2
i ≥ 0.
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Table 13.14 Previous
experience with 12 customers Applicants Credit

customer
Responses

Quest 1 Quest 2

Class 1 (Poor risk) 1 1 3

2 2 5

3 3 4

4 4 6

Class 2 (Fair risk) 5 5 7

6 6 9

7 7 8

8 7 7

9 9 9

Class 3 (Good risk) 10 6 2

11 6 4

12 8 3

13.3.2 Small Sample Testing

In order to test the feasibility of the proposed three-class model, we consider the task
of assigning credit applications to risk classifications adopted from the example of
Freed and Glover [75]. An applicant is to be classified as a poor, fair, or good credit
risk based on his/her responses to two questions appearing on a standard credit
application. Table 13.14 shows previous experience with 12 customers.

Because this example is rather small and simple, we applied well-known LINDO
(Linear, Interactive and Discrete Optimizer) computer software to conduct a series
of tests on our three-class model. In order to use LINDO program, the three-class
model is adjusted to satisfy its input style.

The first test is constructed as following:

min d−
ξ1

+ d+
ξ1

+ d−
β1

+ d+
β1

+ d−
ξ2

+ d+
ξ2

+ d−
β2

+ d+
β2

s.t. d−
ξ1

− d+
ξ1

− ξ 1
1 − ξ1

2 − ξ1
3 − ξ 1

4 − ξ1
5 − ξ1

6 − ξ1
7 − ξ1

8 − ξ1
9 − ξ1

10 − ξ1
11

− ξ1
12 = 0.1,

d−
β1

− d+
β1

+ β1
1 + β1

2 + β1
3 + β1

4 + β1
5 + β1

6 + β1
7 + β1

8 + β1
9 + β1

10 + β1
11

+ β1
12 = 10,

d−
ξ2

− d+
ξ2

− ξ 2
1 − ξ2

2 − ξ2
3 − ξ 2

4 − ξ2
5 − ξ2

6 − ξ2
7 − ξ2

8 − ξ2
9 − ξ2

10 − ξ2
11

− ξ2
12 = 0.2,

d−
β2

− d+
β2

+ β2
1 + β2

2 + β2
3 + β2

4 + β2
5 + β2

6 + β2
7 + β2

8 + β2
9 + β2

10 + β2
11

+ β2
12 = 9,
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ξ1
1 + ξ 2

1 < 1,

ξ1
2 + ξ 2

2 < 1,

ξ1
3 + ξ 2

3 < 1

ξ1
4 + ξ 2

4 < 1,

ξ1
5 + ξ 2

5 < 1,

ξ1
6 + ξ 2

6 < 1,

ξ1
7 + ξ 2

7 < 1,

ξ1
8 + ξ 2

8 < 1,

ξ1
9 + ξ 2

9 < 1,

ξ1
10 + ξ2

10 < 1,

ξ1
11 + ξ2

11 < 1,

ξ1
12 + ξ2

12 < 1,

w1 + 3w2 + ξ 1
1 − β1

1 = 1.5,

2w1 + 5w2 + ξ1
2 − β1

2 = 1.5,

3w1 + 4w2 + ξ1
3 − β1

3 = 1.5,

4w1 + 6w2 + ξ1
4 − β1

4 = 1.5,

5w1 + 7w2 − ξ1
5 + β1

5 + ξ 2
5 − β2

5 = 4,

6w1 + 9w2 − ξ1
6 + β1

6 + ξ 2
6 − β2

6 = 4,

7w1 + 8w2 − ξ1
7 + β1

7 + ξ 2
7 − β2

7 = 4,

7w1 + 7w2 − ξ1
8 + β1

8 + ξ 2
8 − β2

8 = 4,

9w1 + 9w2 − ξ1
9 + β1

9 + ξ 2
9 − β2

9 = 4,

6w1 + 2w2 + ξ2
10 − β2

10 = 2.5,

6w1 + 4w2 + ξ2
11 − β2

11 = 2.5,

8w1 + 3w2 + ξ2
12 − β2

12 = 2.5,

where the values of boundary b1 and b2, ξ1∗ , β1∗ , ξ2∗ , β2∗ are set to 1.5, 2.5, 0.1, 10,
0.2, and 9 respectively, and the other variables ≥ 0.

The results (optimal coefficients values of w)
(

w∗
1

w∗
2

)

are
( 0.28125

0.40625

)

.

Applying these coefficients into the model, we get the final separation of twelve
credit applicants. Class 2 (Fair risk) separates from other two classes very well,
while applicants of class 1 (Poor risk) and class 3 (Good risk) are nearly in the same
range.

Since this separation is not satisfactory, we decide to try another way in which
the values of boundary b1 and b2 are restricted as: b1 > 2.5, b2 > 5. The second
model becomes:
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min d−
ξ1

+ d+
ξ1

+ d−
β1

+ d+
β1

+ d−
ξ2

+ d+
ξ2

+ d−
β2

+ d+
β2

s.t. d−
ξ1

− d+
ξ1

− ξ 1
1 − ξ1

2 − ξ1
3 − ξ 1

4 − ξ1
5 − ξ1

6 − ξ1
7 − ξ1

8 − ξ1
9 − ξ1

10 − ξ1
11

− ξ1
12 = 0.1,

d−
β1

− d+
β1

+ β1
1 + β1

2 + β1
3 + β1

4 + β1
5 + β1

6 + β1
7 + β1

8 + β1
9 + β1

10 + β1
11

+ β1
12 = 10,

d−
ξ2

− d+
ξ2

− ξ 2
1 − ξ2

2 − ξ2
3 − ξ 2

4 − ξ2
5 − ξ2

6 − ξ2
7 − ξ2

8 − ξ2
9 − ξ2

10 − ξ2
11

− ξ2
12 = 0.2,

d−
β2

− d+
β2

+ β2
1 + β2

2 + β2
3 + β2

4 + β2
5 + β2

6 + β2
7 + β2

8 + β2
9 + β2

10 + β2
11

+ β2
12 = 9,

ξ1
1 + ξ 2

1 + b1 − b2 < 0,

ξ 1
2 + ξ 2

2 + b1 − b2 < 0,

ξ 1
3 + ξ 2

3 + b1 − b2 < 0,

ξ 1
4 + ξ 2

4 + b1 − b2 < 0,

ξ 1
5 + ξ 2

5 + b1 − b2 < 0,

ξ 1
6 + ξ 2

6 + b1 − b2 < 0,

ξ 1
7 + ξ 2

7 + b1 − b2 < 0,

ξ 1
8 + ξ 2

8 + b1 − b2 < 0

ξ 1
9 + ξ 2

9 + b1 − b2 < 0,

ξ 1
10 + ξ2

10 + b1 − b2 < 0,

ξ1
11 + ξ2

11 + b1 − b2 < 0,

ξ1
12 + ξ2

12 + b1 − b2 < 0,

w1 + 3w2 + ξ 1
1 − β1

1 − b1 = 0,

2w1 + 5w2 + ξ1
2 − β1

2 − b1 = 0,

3w1 + 4w2 + ξ1
3 − β1

3 − b1 = 0,

4w1 + 6w2 + ξ1
4 − β1

4 − b1 = 0,

5w1 + 7w2 − ξ1
5 + β1

5 + ξ 2
5 − β2

5 − b1 − b2 = 0,

6w1 + 9w2 − ξ1
6 + β1

6 + ξ 2
6 − β2

6 − b1 − b2 = 0,

7w1 + 8w2 − ξ1
7 + β1

7 + ξ 2
7 − β2

7 − b1 − b2 = 0,

7w1 + 7w2 − ξ1
8 + β1

8 + ξ 2
8 − β2

8 − b1 − b2 = 0,

9w1 + 9w2 − ξ1
9 + β1

9 + ξ 2
9 − β2

9 − b1 − b2 = 0,

6w1 + 2w2 + ξ2
10 − β2

10 − b2 = 0,

6w1 + 4w2 + ξ2
11 − β2

11 − b2 = 0,

8w1 + 3w2 + ξ2
12 − β2

12 − b2 = 0,
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b1 > 2.5, b2 > 5,

where the values of ξ 1∗ , β1∗ , ξ2∗ , β2∗ are set to 0.1, 10, 0.2, and 9 respectively, and the
other variables ≥ 0.

At this time, the coefficients values of w,
(

w∗
1

w∗
2

) = ( 1.095238
0.404762

)

.

We can see that this time class 1 (Poor risk) applicants separated fairly good from
other two classes, however, the overlapping degree between class 2 (Fair risk) and
class 3 (Good risk) increases. The following four tests are very similar to the sec-
ond one, except that restricted conditions of boundary one and two are changed. In
test three, restricted conditions are set as b1 < 7, b2 > 15; in test four, b1 < 5 and
b2 > 15; in test five, b1 < 5 and b2 > 20; in test six, b1 < 3 and b2 > 15. The results
of these tests show that overlapping between classes, especially class 2 and class 3,
cannot be decreased or eliminated if the values of boundaries are restricted as non-
negative. Since LINDO program doesn’t accept negative slacks, we cannot directly
set boundary one and two less than zero. Thus, from the seventh test, we introduced
b1 = u1 − u2 to represent boundary one, b2 = v1 − v2 to represent boundary two,
x1 − y1 to represent x1, and x2 − y2 to represent x2. Although u1, u2, v1, v2, x1,
y1, x2, and y2 are all nonnegative variables, by allowing their values to be flexible,
u1 − u2, v1 − v2, x1 − y1, and x2 − y2 can be either negative or positive. For exam-
ple, if we let u1 < 5 and u2 < 25, then u1 − u2 < −20. After testing another four
tests, we observed that when the difference between u1 and u2 increases, or when
the difference between v1 and v2 decreases, the instances of overlap decrease. The
test ten is analyzed here as a representative for these four tests. The model of test
ten is given as:

min d−
ξ1

+ d+
ξ1

+ d−
β1

+ d+
β1

+ d−
ξ2

+ d+
ξ2

+ d−
β2

+ d+
β2

,

s.t. d−
ξ1

− d+
ξ1

− ξ 1
1 − ξ1

2 − ξ1
3 − ξ 1

4 − ξ1
5 − ξ1

6 − ξ1
7 − ξ1

8 − ξ1
9 − ξ1

10 − ξ1
11

− ξ1
12 = 0.1,

d−
β1

− d+
β1

+ β1
1 + β1

2 + β1
3 + β1

4 + β1
5 + β1

6 + β1
7 + β1

8 + β1
9 + β1

10 + β1
11

+ β1
12 = 10,

d−
ξ2

− d+
ξ2

− ξ 2
1 − ξ2

2 − ξ2
3 − ξ 2

4 − ξ2
5 − ξ2

6 − ξ2
7 − ξ2

8 − ξ2
9 − ξ2

10 − ξ2
11

− ξ2
12 = 0.2,

d−
β2

− d+
β2

+ β2
1 + β2

2 + β2
3 + β2

4 + β2
5 + β2

6 + β2
7 + β2

8 + β2
9 + β2

10 + β2
11

+ β2
12 = 9,

ξ1
1 + ξ 2

1 + u1 − u2 − v1 + v2 < 0,

ξ1
2 + ξ 2

2 + u1 − u2 − v1 + v2 < 0,

ξ1
3 + ξ 2

3 + u1 − u2 − v1 + v2 < 0,

ξ1
4 + ξ 2

4 + u1 − u2 − v1 + v2 < 0,

ξ1
5 + ξ 2

5 + u1 − u2 − v1 + v2 < 0,

ξ1
6 + ξ 2

6 + u1 − u2 − v1 + v2 < 0,



226 13 Personal Credit Management

ξ1
7 + ξ 2

7 + u1 − u2 − v1 + v2 < 0,

ξ1
8 + ξ 2

8 + u1 − u2 − v1 + v2 < 0,

ξ1
9 + ξ 2

9 + u1 − u2 − v1 + v2 < 0,

ξ1
10 + ξ2

10 + u1 − u2 − v1 + v2 < 0,

ξ1
11 + ξ2

11 + u1 − u2 − v1 + v2 < 0,

ξ1
12 + ξ2

12 + u1 − u2 − v1 + v2 < 0,

w1 + 3w2 + ξ 1
1 − β1

1 − u1 − u2 = 0,

2w1 + 5w2 + ξ1
2 − β1

2 − u1 − u2 = 0,

3w1 + 4w2 + ξ1
3 − β1

3 − u1 − u2 = 0,

4w1 + 6w2 + ξ1
4 − β1

4 − u1 − u2 = 0,

5w1 + 7w2 − ξ1
5 + β1

5 + ξ 2
5 − β2

5 − u1 + u2 − v1 + v2 = 0,

6w1 + 9w2 − ξ1
6 + β1

6 + ξ 2
6 − β2

6 − u1 + u2 − v1 + v2 = 0,

7w1 + 8w2 − ξ1
7 + β1

7 + ξ 2
7 − β2

7 − u1 + u2 − v1 + v2 = 0,

7w1 + 7w2 − ξ1
8 + β1

8 + ξ 2
8 − β2

8 − u1 + u2 − v1 + v2 = 0,

9w1 + 9w2 − ξ1
9 + β1

9 + ξ 2
9 − β2

9 − u1 + u2 − v1 + v2 = 0,

6w1 + 2w2 + ξ2
10 − β2

10 − v1 − v2 = 0,

6w1 + 4w2 + ξ2
11 − β2

11 − v1 − v2 = 0,

8w1 + 3w2 + ξ2
12 − β2

12 − v1 − v2 = 0,

u1 < 5,

u2 < 25,

v1 > 20,

v2 > 30,

where the values of ξ 1∗ , β1∗ , ξ2∗ , β2∗ are set to 0.1, 10, 0.2, and 9 respectively, and the
other variables ≥ 0.

Through these tests, we observe that the extent of class 1 (Poor risk) is (−5–16),
the extent of class 2 (Fair risk) is (23–63), and the extent of class 3 (Good risk)
is (54–86). Therefore, class 1 has no overlap with both class 2 and class 3, while
class 2 has only one applicant overlapped with class 3 (applicant number 9). This is
basically consistent with the result of Freed and Glover. We further observe that:

(1) The proposed three-group model provides a feasible alternative for classifica-
tion problems;

(2) Misclassification can be decreased by adjusting the values of boundary one and
boundary two.

In addition to the experimental study of the small sample, the following real-
life data testing demonstrates the potential applicability of the proposed three-group
model.
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13.3.3 Real-Life Data Analysis

This subsection summarizes the empirical study of the three-class model that we
have conducted by using a large real-life data from the credit data of FDC. We
chose the SAS LP (linear programming) package to perform all of computations.
There is a training data set (a 1000-sample) and a verifying data set (5000-sample)
in total. Both were randomly selected from 25,000 credit card records. The proposed
three-class model with 64 credit variables, ξ1∗ = 0.1, β1∗ = 10, ξ2∗ = 0.2, β2∗ = 9 has
been tested on the training data set and then used in the statistical cross-validation
study on the verifying data set. The results are two Excel charts: one is for training
data set and another for the verifying data set. The Excel charts show cumulative
distribution of three classes of credit cardholders’ behaviors (class 1: Bad, class 2:
Normal, and class 3: Good). These two Excel charts and further elaboration of the
SAS programs are in the next few paragraphs.

Based on the three-class model and FDC’s Proprietary Score system, the SAS
programs are developed and consist of four steps. Each step has one or more SAS
programs to carry out the operations. The first step is to use ReadCHD.sas to con-
vert raw data into SAS data sets. Before raw data can be processed by the SAS
procedures, they have to be transformed into SAS data sets format. The outputs are
two kinds of SAS data sets: training and verifying data sets. The training data set is
used to test the model, while the verifying data set is used to check how stable the
model is. Each data set has 38 original variables and 64 derived variables (see Ta-
bles 13.1 and 13.2) to describe cardholders’ behaviors. The 38 original variables can
be divided into four categories and some other related variables. The four categories
are balance, purchase, payment, and cash advance. Other related variables include
credit line (represent as CHDCRLN in the program), account open date (represent
as CHDOPNDT in the program), date of last payment (represent as CHDTLZNT
in the program), highest balance (represent as CHHGBLLF in the program), times
over limit last 2 years (represent as CHDHLNZ in the program), etc.

After converting raw data into the training and verifying data sets, the program
classDef.sas in the second step is used to separate credit card accounts within the
training and verifying data sets into three classes: Bad, Normal or Good. The sep-
aration is based on the variable-CHDHLNZ, which records the number of months
the account has been over limit during the previous two years. Three classes are
defined as: class 1 (Bad, 13+ times over limit), class 2 (Normal, 4–12 times over
limit), and class 3 (Good, 0–3 times over limit). The result of this step is the class
variable, which represents the class status of each record within the training and
verifying data sets. For example, the class value of records equals to 1 if the credit
card-holder has more than 13 times over limit during the previous two years.

Then, the third step is the main stage that implements the three-class model.
G3Model.sas is the program performing this task. The program sets up the con-
straints matrix using the training data set established from the second step. The
constraints matrix is constructed according to the proposed three-class model. The
PROC LP (procedural linear programming) is then called to calculate this MCLP
model. The LP output file provides the coefficients solution for the three-class
model.
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The fourth step converts the solutions (coefficient data sets) into Excel charts for
comparison. The program Score.sas calls the program Compareclasses.sas to make
the charts. Coefficients in LP output file are pulled out and transpose into a single
record by using SAS procedure Transpose. Scores in both training and verifying
data sets are calculated from data and coefficients. The calculated scores for the
training and verifying data sets are sent to the Compareclasses.sas program to get a
final Excel chart to show the results of separation.

The cumulative distributions show that class 1 (Bad) has the least percentage in
the whole sample, while class 3 (Good) contains the majority of credit cardholders.
class 2 (Normal) is located between classes 1 and 3. The separation of three classes
is satisfactory.

13.4 Four-Class Analysis

13.4.1 Four-Class Formulation

In the four-class separation, we use term: “charge-off” to predict the cardholders’
behaviors. According to this idea, four classes are defined as: Bankrupt charge-
off accounts, Non-bankrupt charge-off accounts, Delinquent accounts, and Cur-
rent accounts. Bankrupt charge-off accounts are accounts that have been written
off by credit card issuers because of cardholders’ bankrupt claims. Non-bankrupt
charge-off accounts are accounts that have been written off by credit card is-
suers due to reasons other than bankrupt claims. The charge-off policy may vary
among authorized institutions. Normally, an account will be written off when the
receivable has been overdue for more than 180 days or when the ultimate re-
payment of the receivable is unlikely (e.g., the card-holder cannot be located)
(http://www.info.gov.hk/hkma/eng/press/2001/20010227e6.htm). Delinquent ac-
counts are accounts that have not paid the minimum balances for more than 90
days. Current accounts are accounts that have paid the minimum balances or have
no balances.

This separation is more precise than two-class and three-class models in credit
card portfolio management. For instance, bankrupt charge-off and non-bankrupt
charge-off accounts are probably both classified as “Bad” accounts in two or three-
group separations. This model, however, will call for different handling against these
accounts.

A four-class model has three boundaries, b1, b2, and b3, to separate four classes.
Each class is represented by a symbol as follows:

– G1 stands for (Bankrupt charge-off account),
– G2 stands for (Non-bankrupt charge-off account),
– G3 stands for (Delinquent account), and
– G4 stands for (Current account).

Given a set of r variables about the cardholders x = (x1, . . . , xi), let xi =
(xi1, . . . , xir ) be the development sample of data for the variables, where i =
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1, . . . , n and n is the sample size. We try to determine the coefficients of the vari-
ables, denoted by w = (w1, . . . ,wr), boundary b1 to separate G1 from G2, G3, and
G4, boundary b3 to separate G4 from G1, G2, and G3, boundary b2 to separate G2
and G3. This separation can be represented by:

(xi · w) ≤ b1, xi ∈ G1,

b1 ≤ (xi · w) ≤ b2, xi ∈ G2,

b2 ≤ (xi · w) ≤ b3, xi ∈ G3,

b3 ≤ (xi · w), xi ∈ G4.

Similar to two-class and three-class models, we apply two measurements for
better separations. Let ξ1

i be the overlapping degree with respect of xi within G1
and G2, ξ2

i be the overlapping degree with respect of xi within G2 and G3, ξ3
i be the

overlapping degree with respect of xi within G3 and G4. Let β1
i be the distance from

xi within G1 and G2 to its adjusted boundaries ((xi · w) = b1 − ξ1∗ , and (xi · w) =
b1 + ξ1∗ ), β2

i be the distance from xi within G1 and G2 to its adjusted boundaries
((xi ·w) = b2 −ξ 2∗ , and (xi ·w) = b2 +ξ2∗ ), β3

i be the distance from xi within G1 and
G2 to its adjusted boundaries ((xi · w) = b3 − ξ3∗ , and (xi · w) = b3 + ξ3∗ ). We want
to reach the maximization of β1

i , β2
i , and β3

i and the minimization of ξ 1
i , ξ2

i and ξ3
i

simultaneously. After putting ξ1
i , ξ2

i , ξ3
i , β1

i , β2
i , and β3

i into the above four-class
separation, we have:

min
∑

i

(ξ 1
i + ξ2

i + ξ3
i ) and max

∑

i

(β1
i + β2

i + β3
i )

s.t.

G1: (xi · w) = b1 + ξ1
i − β1

i , xi ∈ G1 (Bankrupt charge-off),

G2: (xi · w) = b1 + ξ1
i − β1

i , (xi · w) = b2 + ξ2
i − β2

i , xi ∈ G2

(Non-bankrupt charge-off),

G3: (xi · w) = b2 + ξ2
i − β2

i , (xi · w) = b3 + ξ3
i − β3

i , xi ∈ G3

(Delinquent),

G4: (xi · w) = b3 + ξ3
i − β3

i , xi ∈ G4 (Current),

b1 + ξ1
i ≤ b2 − ξ2

i ,

b2 + ξ2
i ≤ b3 − ξ3

i ,

where xi , are given, w, b1, b2, b3 are unrestricted, and ξ1
i , ξ2

i , ξ3
i , β1

i , β2
i , and

β3
i ≥ 0.

The constraints b1 + ξ1
i ≤ b2 − ξ2

i and b2 + ξ2
i ≤ b3 − ξ3

i guarantee the existence
of four groups by enforcing b1 lower than b2, and b2 lower than b3. Then we apply
the compromise solution approach [183, 184] to reform the model. We assume the
ideal value of −∑

i ξ
1
i be ξ1∗ > 0, −∑

i ξ
2
i be ξ2∗ > 0, −∑

i ξ
3
i be ξ3∗ > 0, and the

ideal value of
∑

i β
1
i be β1∗ > 0,

∑

i β
2
i be β2∗ > 0,

∑

i β
3
i be β3∗ > 0.
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Then, the above four-group model is transformed as:

min d−
ξ1

+ d+
ξ1

+ d−
β1

+ d+
β1

+ d−
ξ2

+ d+
ξ2

+ d−
β2

+ d+
β2

+ d−
ξ3

+ d+
ξ3

+ d−
β3

+ d+
β1

s.t. ξ1∗ +
∑

i

ξ1
i = d−

ξ1
− d+

ξ1
, β1∗ −

∑

i

β1
i = d−

β1
− d+

β1
,

ξ2∗ +
∑

i

ξ2
i = d−

ξ2
− d+

ξ2
, β2∗ −

∑

i

β2
i = d−

β2
− d+

β2
,

ξ3∗ +
∑

i

ξ3
i = d−

ξ3
− d+

ξ3
, β3∗ −

∑

i

β3
i = d−

β3
− d+

β3
,

b1 + ξ1
i ≤ b2 − ξ2

i , b2 + ξ 2
i ≤ b3 − ξ3

i ,

G1: (xi · w) = b1 + ξ1
i − β1

i , xi ∈ G1 (Bankrupt charge-off),

G2: (xi · w) = b1 + ξ1
i − β1

i , (xi · w) = b2 + ξ2
i − β2

i , xi ∈ G2

(Non-bankrupt charge-off),

G3: (xi · w) = b2 + ξ2
i − β2

i , (xi · w) = b3 + ξ3
i − β3

i , xi ∈ G3

(Delinquent),

G4: (xi · w) = b3 + ξ3
i − β3

i , xi ∈ G4 (Current),

where xi , are given, b1 ≤ b2 ≤ b3, w, b1, b2, b3 are unrestricted, and ξ1
i , ξ 2

i , ξ 3
i , β1

i ,
β2

i , and β3
i ≥ 0.

13.4.2 Empirical Study and Managerial Significance of
Four-Class Models

The FDC credit data is again used to perform the four-class model. A training set
of 160 card account samples from 25,000 credit card records is used to test the
control parameters of the model for the best class separation. A verifying data set
with 5,000 accounts is then applied. Four groups are defined as: Bankrupt charge-
off accounts (the number of over-limits ≥ 13), Non-bankrupt charge-off accounts
(7 ≤ the number of over-limits ≤12), Delinquent accounts (2 ≤ the number of over-
limits ≤ 6), and Current accounts (0 ≤ the number of over-limits ≤ 2).

After several learning trials for different sets of boundary values, we found the
values: b1 = 0.05, b2 = 0.8, b3 = 1.95 (without changing ξ1∗ , ξ2∗ , ξ3∗ , β1∗ , β2∗ , and
β3∗ ) brought the best separation, in which “cum Gl” refers to cumulative percentage
of G1 (Bankrupt charge-off accounts); “cum G2” refers to cumulative percentage of
G2 (Non-bankrupt charge-off accounts); “cum G3” refers to cumulative percentage
of G3 (Delinquent accounts); and “cum G4” refers to cumulative percentage of G4
(Current accounts).

This training set has total 160 samples. G1 has been correctly identified for 90%
(36/40), G2 90% (36/40), G3 85% (34/40) and G4 97.5% (39/40). In addition to
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these absolute classifications criteria, the KS Score is calculated by KS value =
max |Cum. distribution of Good – Cum. distribution of Bad|.

The KS values are 50 for G1 vs. G2, 62.5 for G2 vs. G3 and 77.5 for G3 vs. G4.
We observe some relationships between boundary values and separation:

(1) Optimal solution and better separation can be achieved by changing the value
of bj , ξ

j∗ and β
j∗ .

(2) Once a feasible area is found, the classification result will be similar for the
solution in that area.

(3) The definition of group and data attributes will influence the classification result.

When applying the resulting classifier to predict the verifying data set, we can pre-
dict the verifying set by the classifier as G1 for 43.4% (23/53), G2 for 51% (84/165),
G3 for 28% (156/557) and G4 for 68% (2872/4225). The predicted KS values are
36.3 for G1 vs. G2, 21.6 for G2 vs. G3 and 50.7 for G3 vs. G4. These results indicate
that the predicted separation between G3 and G4 is better than others.

In multi-group classification, a better result will be achieved in the separation be-
tween certain two groups. According to the definition of group and data attributes,
the best KS score usually appears in the separation between the first group and sec-
ond group or the separation between the last group and other groups. In the model,
the last group is defined as individuals with perfect credit performance and other
groups are defined as individuals who have some stains in their credit histories. As
a result, the separations indicated that the distance between the last group (Good)
and other groups is larger and a better KS score for that separation. It means that in
practice it is easier to catch good ones or bad ones, but it is much more difficult to
discriminant different levels of credit performance in between.





Chapter 14
Health Insurance Fraud Detection

14.1 Problem Identification

Health care frauds cost private health insurance companies and public health in-
surance programs at least $51 billion in calendar year 2003 [196]. Health insur-
ance fraud detection is an important and challenging task. Traditional heuristic-
rule based fraud detection techniques cannot identify complex fraud schemes. Such
a situation demands more sophisticated analytical methods and techniques that
are capable of detecting fraud activities from large databases. Traditionally, in-
surance companies use human inspections and heuristic rules to detect fraud. As
the number of electronic insurance claims increases each year, it is difficult to
detect insurance fraud in a timely manner by manual methods alone. In addi-
tion, new types of fraud emerge constantly and SQL operations based on heuris-
tic rules cannot identify those new emerging fraud schemes. Such a situation de-
mands more sophisticated analytical methods and techniques that are capable of
detecting fraud activities from large databases. This chapter describes the applica-
tion of three predictive models: MCLP, decision tree, and Naive Bayes classifier,
to identify suspicious claims to assist manual inspections. The predictive models
can label high-risk claims and help investigators to focus on suspicious records
and accelerate the claim-handling process. The software tools used in this study
are base SAS, SAS Enterprise Miner (EM) and C++. The tree node of SAS EM
was used to compute decision tree solution. A C++ program was developed to con-
struct and solve the MCLP model, Naive Bayes classifier was implemented in base
SAS.

14.2 A Real-Life Data Mining Study

The data are from a US insurance company and provide information about policy
types, claim/audit, policy producer, and client. The dataset has over 18,000 records
with 103 variables. The variables include a mixture of numeric, categorical, and date
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Table 14.1 Decision tree:
chi-square test Actual Predicted Total Accuracy

Normal Abnormal

Normal 18510 12 18522 99.94%

Abnormal 316 37 353 10.48%

Total 18826 49 18875

Table 14.2 Decision tree:
entropy reduction Actual Predicted Total Accuracy

Normal Abnormal

Normal 18458 64 18522 99.47%

Abnormal 102 251 353 71.1%

Total 18560 315 18875

Table 14.3 Decision tree:
Gini reduction Actual Predicted Total Accuracy

Normal Abnormal

Normal 18496 26 18522 99.86%

Abnormal 213 140 353 39.66%

Total 18709 166 18875

types. Each record has a target variable indicates the class label: either Normal or
Abnormal. Abnormal indicates potential fraud claims.

Unlike the finance and credit cardholders’ behavior datasets, this dataset is not
cleaned and preprocessed. Thus this application conducted data preparation, data
transformation, and variable selection before the General Classification Process (see
Sect. 12.1). Data preparation removes irrelevant variables and missing values; cor-
relation analysis is used to select attributes that have strong relationship with the
target attribute; and transformation prepares attributes in appropriate forms for the
predictive models. SAS EM tree node accommodates both numeric and character
data types. MCLP requires all input variables to be numeric. Categorical variables
were represented by N binary derived variables; N is the number of values of the
original variable. For Naive Bayes classifier, all numeric data were transformed to
character by equal-depth binning.

The Tree node in SAS EM provides three criteria for tree splitting: chi-square
test, entropy reduction, and Gini reduction. Each criterion uses different techniques
to split tree and establish a different decision tree model. Since each technique has
its own bias, it may potentially get stronger solution if the results from three mod-
els are integrated. The method of integrating results from multiple models is called
ensemble. The ensemble node creates a new model by averaging the posterior prob-
abilities from chi-square, entropy, and Gini models. Tables 14.1, 14.2, 14.3, and 14.4
summarize the output of test dataset for four decision tree models: chi-square test,



14.2 A Real-Life Data Mining Study 235

Table 14.4 Ensemble:
chi-square, entropy reduction,
and Gini reduction

Actual Predicted Total Accuracy

Normal Abnormal

Normal 18519 3 18522 99.98%

Abnormal 227 126 353 35.69%

Total 18746 129 18875

Table 14.5 MCLP
classification result Actual Predicted Total Accuracy

Normal Abnormal

Normal 7786 10736 18522 57.96%

Abnormal 204 149 353 42.21%

Total 7990 10885 18875

Table 14.6 Naive Bayes
classification result Actual Predicted Total Accuracy

Normal Abnormal

Normal 17949 573 18522 96.91%

Abnormal 2 351 353 99.43%

Total 17951 924 18875

entropy reduction, Gini reduction, and ensemble. For each model, the confusion ma-
trix is reported. Tables 14.5 and 14.6 summarize classification results of MCLP and
Naive Bayes classifier.

The results of NB, decision tree and MCLP indicate that probability-based meth-
ods, such as NB, outperform decision tree and MCLP for this dataset. The major
reason is that many variables that are strongly associated with the target variable in
this dataset are categorical. In order to improve the classification results of decision
tree and MCLP, advanced transformation schemes should be used.





Chapter 15
Network Intrusion Detection

15.1 Problem and Two Datasets

Network intrusion refers to inappropriate, incorrect, or anomalous activities aimed
at compromise computer networks. The early and reliable detection of network at-
tacks is a pressing issue of today’s network security. Classification methods are
one the major tools in network intrusion detection. A successful network intrusion
detection system needs to have high classification accuracies and low false alarm
rates. Figure 15.1 describes a simplified network intrusion detection system with
data mining nodes. In this system, network audit data are collected by sensors and
stored in databases. Some data preprocessing steps, such as variable selection, trans-
formation, data cleaning, and aggregation, can be implemented as in-database pro-
cedures. The preprocessed data are then sent to data mining modules for analysis.
Two frequently used data mining modules in network intrusion detection: cluster-
ing and classification are included in Fig. 15.1 for illustration purpose. Clustering
module can be used to identify outliers and group similar network data into clus-
ters. The classification module, using labeled data which may be created by human
analysts or other data mining functions, assigns class labels to incoming data and
sends alarms to network administrators when intrusions are predicted. The outputs
of data mining modules are analyzed and summarized by human analysts and stored
in knowledge base. The knowledge base should be updated periodically to include
new types of attacks.

Data mining modules can be implemented by various methods. For example,
clustering module can be implemented by k-means, SOM, EM, BIRCH, or other
clustering algorithms. Several factors need to be considered when select data min-
ing methods. These factors include the available technical expertise, the available
resources (e.g., software and hardware), and the performance of data mining meth-
ods. A satisfactory data mining method should generate high accuracy, low false
alarm rates, and can be easily understood by network administrators.

In this application, we apply the kernel-based MCMP model to the network intru-
sion detection. The performance of this model is tested using two network datasets.
The first dataset, NeWT, is collected by the STEAL lab at University of Nebraska
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Fig. 15.1 Data mining for network intrusion detection system

at Omaha. A free version of Tenable NeWT Security Scanner is installed in a local
area network node as the attacker and Ethereal version 0.10.1 is used as the data cap-
turer in the victim machines. Tenable NeWT Security Scanner simulates the major
network intrusions by generating attacks from one network node to the others and
runs the same vulnerability checks using Nessus vulnerability scanner for the Mi-
crosoft Windows platform. The attack types are simulated by the sub-catalogs from
Tenable NeWT Security Scanner and the normal data records consist of regular op-
erations through networks, such as Internet browsing, ftp, and data files transferring.
Each file collected from the network intrusion simulation contains the connection
records traced from the raw binary data by Ethereal. Each connection record encap-
sulates the basic TCP/IP characteristics of all the IP traffic during the lifetime of
a connection. Each record has 29 fields that are delimited by coma. Four types of
network attacks are collected: denial-of-service (DOS); unauthorized access from
a remote machine (R2L); unauthorized access to local root privileges (U2R); and
probe. The definition and categorization of DOS, U2R, R2L, and Probe is the same
as the KDDCUP-99 data. Because DOS, U2R, and R2L each have a small num-
ber of data records, we group them together into one class, named “other attack”.
Thus, NeWT data has three classes: probe, other attack, and normal records. The
total number of data records is 34929, which include 4038 Probe, 1013 other attack
and 29878 Normal. In order to apply the data mining technology such as MCMP in
the original data set, non-numeric attributes are either dropped or transformed into
numerical type. For example, we dropped the attributes contains IP address and time
sequence information, such as “Source IP”, “Destination IP”, “First packet time”,
“Last packet time” and “Elapsed time” and transformed the “Connection status”
from string to numeric. Each record ends up with 23 attributes. The attributes are
separated by comma and the target attribute is the last column.

The second dataset is the KDDCUP-99 data set which was provided by DARPA
in 1998 for the evaluation of intrusion detection approaches. A version of this
dataset was used in 1999 KDD-CUP intrusion detection contest. After the contest,
KDDCUP-99 has become a de facto standard dataset for intrusion detection exper-
iments. KDDCUP-99 collects nine weeks of raw TCP dump data for a LAN simu-
lating a typical U.S. Air Force LAN. Multiple attacks were added to the LAN op-
eration. The raw training data was about four gigabytes of compressed binary TCP
dump data from seven weeks of network traffic. A connection is a sequence of TCP
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Table 15.1 NeWT data
classification results
(confusion matrix)

Classified as

Probe Other attacks Normal

See5

Probe 4033 5 0

Other attacks 14 994 5

Normal 663 492 28723

Running time 30 minutes

MCMP

Probe 4036 1 1

Other attacks 5 995 13

Normal 1181 413 28284

Running time 10–20 minutes

MCMP with kernel

Probe 4037 1 0

Other attacks 13 998 2

Normal 40 403 29435

Running time 10–25 minutes

packets occurred during a specified time period and each connection is labeled as
either normal or attack. There are four main categories of attacks: denial-of-service
(DOS); unauthorized access from a remote machine (R2L); unauthorized access to
local root privileges (U2R); surveillance and other probing. Because U2R has only
52 distinct records, we test KDDCUP-99 as a four-group classification problem.
The four groups are DOS (247267 distinct records), R2L (999 distinct records), and
Probe (13851 distinct records), and normal activity (812813 distinct records).

15.2 Classification of NeWT Lab Data by MCMP, MCMP with
Kernel and See5

For the comparison purpose, See5 release 1.19 for Windows [169], a decision tree
tool, was applied to both NeWT data and KDDCUP-99 data and the results of See5
were compared with the results of MCMP and Kernel-based MCMP. See5 is chosen
because it is the winning tool of KDD 99 cup [164].

The 10-fold cross validation results of MCMP, See5, and MCMP with kernel on
NeWT data are summarized in Table 15.1. Table 15.1 shows that all three meth-
ods achieve almost perfect results for Probe and excellent classifications for other
attack. The difference of their performance is on Normal class. The classification ac-
curacies of See5, MCMP, and MCMP with kernel for Normal are 96.13%, 94.66%,
and 98.52%, respectively. A classifier with low classification accuracy for Normal
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Table 15.2 Accuracy rates of nine classifiers for KDD99 data

Overall (rank) Probe (rank) DOS (rank) R2L (rank) Normal (rank)

K-MCQP .98997 (4) .99235 (1) .99374 (4) .91291 (3) .98888 (5)

SVM .99218 (2) .87192 (8) .99666 (2) .88088 (5) .99300 (3)

BN .98651 (6) .91806 (6) .96915 (8) .91692 (2) .99304 (2)

C4.5 .99560 (1) .92080 (5) .99659 (3) .78078 (9) .99683 (1)

Log. .99202 (3) .88181 (7) .99684 (1) .87487 (6) .99258 (4)

CART .98768 (5) .94975 (4) .99209 (5) .83283 (8) .98717 (6)

MC2QP .97508 (7) .97220 (3) .99070 (6) .89590 (4) .97048 (7)

See5 .92280 (8) .98339 (2) .97766 (7) .85686 (7) .90516 (8)

NB .88615 (9) .81149 (9) .96359 (9) .93894 (1) .86380 (9)

class will generate a lot of false alarms. The overall error rates of See5, MCMP, and
MCMP with kernel are 3.38%, 4.62%, and 1.31%, respectively. MCMP with kernel
achieves the lowest false alarm rate and highest overall classification accuracy.

15.3 Classification of KDDCUP-99 Data by Nine
Different Methods

The KDD99 dataset was trained using nine classification algorithms: Bayesian
Network, Naive Bayes, Support Vector Machine (SVM), Linear Logistic, C4.5,
See5, Classification and Regression Tree (CART), MCMCQP (called MC2QP in
short) (Model 10) and a version of MC2QP (Model 10) with kernel function, say
K-MCQP. Some of these well-known algorithms have been recognized as the top al-
gorithms in data mining [223]. Note that while the Naive Bayes classifier estimates
the class-conditional probability based on Bayes theorem and can only represent
simple distributions, Bayesian Network is a probabilistic graphic model and can
represent conditional independences between variables. The nine classifiers were
applied to KDD99 data using 10-fold cross-validation. The classification results
shows that C4.5, Naive Bayes, Logistic and K-MCQP produce the best classifi-
cation accuracies for Normal (0.996834), R2L (0.938939), DOS (0.996837) and
Probe (0.992347), respectively. In terms of execution time, MC2QP (110 min) and
K-MCQP (300 min) ranked third and fourth among the nine classifiers for KDD99
and outperformed the average of the other seven classifiers (498 min). Table 15.2
displays the accuracy rate of the nine classifiers for KDD99.

A successful network intrusion classification method needs to have both high
classification accuracies and low false alarm rates. The false alarm rate is the per-
centage of classified events (Probe, DOS, R2L, other attacks and Normal) that are
actually non-events. Although the accuracies and false alarm rates obtained by the
nine classifiers may appear differently, the difference may not be statistically sig-
nificant [102]. Therefore we further conducted paired statistical significance (0.05)
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Table 15.3 False alarm rates and ranking scores of nine classifiers for KDD99 data

Probe (rank) DOS (rank) R2L (rank) Normal (rank) Ranking score

K-MCQP .045796 (7) .00104 (1) .011772 (6) .050487 (1) 32

SVM .014582 (1) .008288 (5) .002304 (1) .190887 (8) 35

BN .037866 (6) .007216 (2) .006851 (3) .133756 (3) 38

C4.5 .032457 (5) .014717 (6) .003294 (2) .202187 (9) 41

Log. .021326 (3) .02121 (8) .010336 (4) .170443 (6) 42

CART .014859 (2) .007672 (3) .010414 (5) .173647 (7) 45

MC2QP .025514 (4) .019469 (7) .026839 (8) .094168 (2) 48

See5 .054182 (8) .007728 (4) .069311 (9) .141478 (4) 57

NB .091323 (9) .147005 (9) .017724 (7) .154311 (5) 67

tests to produce a performance score for each classifier. Note that a classifier with
the lowest “ranking score” from statistical study achieves the best performance. Ta-
ble 15.3 displays both the false alarm rate and ranking scores of the nine classifiers
for KDD99. From Table 15.3, we observe that for the KDD99 data, K-BMCQLP,
SVM and Bayesian Network are the top classifiers.





Chapter 16
Internet Service Analysis

16.1 VIP Mail Dataset

According to the statistic, as Chinese network advanced in the past few years, the
total market size of Chinese VIP E-mail service has reached 6.4 hundred million
RMB by 2005. This huge market dramatically enforced market competition among
all E-mail service companies. The analysis for the pattern of lost customer accounts
in hereby a significant research topic. This research can help decision-making in
reducing the customer loss rate.

A dataset with 230 attributes, 5498 current records and 5498 lost records has
been collected from a well-known Wall Street IPO Chinese Internet Co.

Original customer database is mainly composed of automated machine recorded
customer activity journal and large amount of manually recorded tables, these data
are distributed among servers located in different departments of our partnering
companies, coving more than 30 kinds of transaction data charts and journal docu-
ment, with over 600 attributes. If we were to directly analysis these data, it would
lead to “course of dimensionality”, that is to say, the drastic raise of computational
complexity and classification error with data having big amount of dimensions [14].
Hence, the dimensionality of the feature space must be reduced before classification
is undertaken.

With the accumulated experience functions, we eventually selected 230 attributes
from the original 600 ones. Figure 16.1 displays the process which we used to
perform feature selection of VIP E-mail dataset. We selected a part of the data
charts and journal documents from the VIP E-mail System. Figure 16.1 displays
the three logging journal documents and two email transaction journal documents,
when the user log into pop3 server, the machine will record the user’s log in into the
pop3login; similarly when the user log in to the smtp server, the machine will record
it into smtplogin; when the user log in E-mail system through http protocol, the ma-
chine will record it into weblogin; when the user send E-mail successfully by smtp
protocol, the system will record it into smtpprcptlog journal; when receiving a letter,
it will be recorded into mx_rcptlog journal. We extracted 37 attribute from five jour-
nal document each, totaling 184 attribute to describe user logins and transactions.
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Fig. 16.1 An illustration of VIP E-mail dataset

From the database, shown in the left lower of Fig. 16.1, we extracted 6 features about
customer complaint, 24 features about customer payment and 16 features about cus-
tomer background information to form the operational table. Thus, 185 features
from log files and 65 features from database eventually formed the Large Table.
And the 230 attributes have depicted the feature of customer in detail. For the accu-
mulated experience functions used in the feature extraction are confidential, further
discussion of them exceeds the range of this chapter.

Considering the integrality of the records of customers, we eventually extracted
two groups of them from a huge number of data, the current and the lost: 11996
SSN, 5998 respectively were chosen from the database. Combining the 11996 SSN
with the 230 features, we eventually acquired the Large Table with 5998 current
records and 5998 lost records, which will be the dataset for data mining.

16.2 Empirical Study of Cross-Validation

Cross-validation is frequently used for estimating generalization error, model se-
lection, experimental design evaluation, training exemplars selection, or pruning
outliers. By definition, cross-validation is the practice of partitioning a sample of
data into subsamples such that analysis is initially performed on a single subsample,
while further subsamples are retained “blind” in order for subsequent use in con-
firming and validating the initial analysis [175]. The basic idea is to set aside some
of the data randomly for training a model, then the data remained will be used to
test the performance of the model.

There are three kinds of cross-validation: holdout cross-validation, k-fold cross-
validation, and leave-one-out cross-validation. The holdout method simply sepa-
rated data into training set and testing set, taking no longer to compute but having



16.2 Empirical Study of Cross-Validation 245

a high variance in evaluation. k-Fold cross-validation is one way to improve over
the holdout method. The data set is divided into k subsets and holdout method is re-
peated k times. Each time one of the k subsets is used for testing and the other k − 1
subsets are used for training. The advantage is that all the examples in the dataset are
eventually used for both training and testing. The error estimate is reduced as k in-
creasing. The disadvantage of this method is that it required high computation cost.
Leave-one-out cross-validation takes k-fold cross-validation to its logical extreme,
with k equal to N , the number of data points in the set.

In this section, a variance of k-fold cross-validation is used on VIP E-mail
dataset, each time training with one of the subsets and testing with other k − 1
subsets. When we set k equals to 10, as it used to be, the process to select training
and testing set is described as follows: first, the lost dataset (4998 records) is divided
into 10 intervals (each interval has approximately 500 records). Within each inter-
val, 50 records are randomly selected. Thus the total of 500 lost customer records
is obtained after repeating 10 times. Then, as the same manner, we get 500 current
customer records from the current dataset. Finally, the total of 500 lost records and
500 current records are combined to form a single training dataset, with the remain-
ing 4498 lost records and 4498 current records merge into another testing dataset.
The following algorithm is designed to carry out cross-validation:

Algorithm 16.1
REPEAT
Step 1. Generate the Training set (500 lost records + 500 current records) and Test-
ing set (4498 lost records + 4498 current records).
Step 2. Apply the multiple-criteria programming classification models to compute
W ∗ = (w∗

1,w∗
2, . . . ,w∗

230) as the best weights of all 230 variables with given values
of control parameters (b, σξ , σβ).
Step 3. The classification Score[i] = (xi · w∗) against of each observation has been
calculated against the boundary b to check the performance measures of the classi-
fication.
END

Using Algorithm 16.1 to the VIP E-mail dataset, classification results were ob-
tained and summarized. Due to the space limitation, only a part (10 out of the total
500 cross-validation results) of the results was summarized in Tables 16.1, 16.2,
16.3, and 16.4. The columns “lost” and “current” refer to the number of records that
were correctly classified as “lost” and “current”, respectively. The column “Accu-
racy” was calculated using correctly classified records divided by the total records
in that class.

From Table 16.1 we can see that the average accuracy of 10 groups MCLP train-
ing sets is 80.94% on the lost user and 87.82% on the Current user, with the average
accuracy of 10 groups testing sets 73.26% on the lost user and 83.81% on the current
user. From Table 16.2 we can see that the average accuracy of 10 groups MCVQP
training sets is 88.16% on the lost user and 92.26% on the Current user, with the
average accuracy of 10 groups testing sets 79.80% on the lose user and 86.65% on
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Table 16.1 Results of MCLP classification on VIP E-mail dataset

Cross-
validation

Training set
(500 lost dataset + 500 current dataset)

Testing set
(4998 lost dataset + 4998 current dataset)

Lost Accuracy Current Accuracy Lost Accuracy Current Accuracy

DataSet 1 408 81.6% 442 88.4% 3780 75.63% 4092 81.87%

DataSet 2 402 80.4% 439 87.8% 3634 72.71% 4183 83.69%

DataSet 3 403 80.6% 428 85.6% 3573 71.49% 4097 81.97%

DataSet 4 391 78.2% 454 90.8% 3525 70.53% 4394 87.92%

DataSet 5 409 81.8% 431 86.2% 3599 72.01% 4203 84.09%

DataSet 6 413 82.6% 443 88.6% 3783 75.69% 4181 83.65%

DataSet 7 399 79.8% 431 86.2% 3515 70.33% 4153 83.09%

DataSet 8 402 80.4% 433 86.6% 3747 74.97% 4099 82.01%

DataSet 9 404 80.8% 446 89.2% 3650 73.03% 4269 85.41%

DataSet 10 416 83.2% 444 88.8% 3808 76.19% 4218 84.39%

Table 16.2 Results of MCVQP classification on VIP E-mail dataset

Cross-
validation

Training set
(500 lost dataset + 500 current dataset)

Testing set
(4998 lost dataset + 4998 current dataset)

Lost Accuracy Current Accuracy Lost Accuracy Current Accuracy

DataSet 1 440 88.0% 460 92.0% 4009 80.21% 4294 85.91%

DataSet 2 436 87.2% 471 94.2% 3961 79.25% 4424 88.52%

DataSet 3 441 88.2% 457 91.0% 4007 80.17% 4208 84.19%

DataSet 4 454 90.8% 455 91.0% 4072 81.47% 4297 86.01%

DataSet 5 444 85.8% 562 92.4% 4073 81.49% 4367 87.37%

DataSet 6 449 89.8% 458 91.6% 4041 80.85% 4265 85.33%

DataSet 7 437 87.4% 465 93.0% 3899 78.01% 4397 87.98%

DataSet 8 440 88.0% 468 93.6% 3940 78.83% 4339 86.81%

DataSet 9 452 90.4% 453 90.6% 3999 80.01% 4316 86.35%

DataSet 10 430 86.0% 466 93.2% 3886 77.75% 4399 88.02%

the current user. From Table 16.3 we can see that the average accuracy of 10 groups
MCCQP training sets is 86.04% on the lost user and 89.70% on the Current user
with the average accuracy of 10 groups testing sets is 79.81% on the lose user and
86.22% on the current user. From Table 16.4 we can see that the average accuracy of
10 groups MCICP training sets is 84.94% on the lost user and 90.36% on the Cur-
rent user, with average accuracy of 10 groups testing sets is 79.60% on the lose user
and 86.14% on the current user. These results indicate that a good separation of the
lost class and Current class is observed with these multiple-criteria programming
classification models.
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Table 16.3 Results of MCCQP classification on VIP E-mail dataset

Cross-
validation

Training set
(500 lost dataset + 500 current dataset)

Testing set
(4998 lost dataset + 4998 current dataset)

Lost Accuracy Current Accuracy Lost Accuracy Current Accuracy

DataSet 1 423 84.6% 446 89.2% 3978 79.59% 4270 85.43%

DataSet 2 438 87.6% 461 92.2% 3909 78.21% 4351 87.05%

DataSet 3 444 88.8% 454 91.8% 4146 82.95% 4310 86.23%

DataSet 4 428 85.6% 445 89.0% 4086 81.75% 4323 86.49%

DataSet 5 434 86.8% 453 90.6% 3984 79.71% 4232 84.67%

DataSet 6 424 84.8% 445 89.0% 3945 78.93% 4360 87.23%

DataSet 7 430 86.0% 447 89.4% 4022 80.47% 4252 85.07%

DataSet 8 433 86.6% 435 87.0% 3988 79.79% 4287 85.77%

DataSet 9 430 86.0% 452 90.4% 3950 79.03% 4323 86.49%

DataSet 10 418 83.6% 447 89.4% 3884 77.71% 4385 87.74%

Table 16.4 Results of MCIQP classification on VIP E-mail dataset

Cross-
validation

Training set
(500 lost dataset + 500 current dataset)

Testing set
(4998 lost dataset + 4998 current dataset)

Lost Accuracy Current Accuracy Lost Accuracy Current Accuracy

DataSet 1 420 84.0% 445 89.0% 3983 79.69% 4274 85.51%

DataSet 2 436 87.2% 461 92.2% 3920 78.43% 4348 86.99%

DataSet 3 445 89.0% 448 89.6% 4150 83.03% 4308 86.19%

DataSet 4 427 85.4% 441 88.2% 4078 81.59% 4318 86.39%

DataSet 5 426 85.2% 456 91.2% 3962 79.27% 4388 87.80%

DataSet 6 408 81.6% 448 89.6% 3780 75.63% 4290 85.83%

DataSet 7 425 85.0% 440 88.0% 3946 78.95% 4240 84.83%

DataSet 8 429 85.8% 451 90.2% 4102 82.07% 4190 83.83%

DataSet 9 416 83.2% 468 93.6% 3881 77.65% 4366 87.35%

DataSet 10 415 83.0% 460 92.0% 3983 79.69% 4332 86.67%

16.3 Comparison of Multiple-Criteria Programming Models and
SVM

Because both the multiple-criteria programming classification model and SVM seek
the solution by solve an optimization problem, so comparison between them seems
to be much more convincible and convenient.

Following experiment compares the difference between MCLP, MCVQP, MC-
CQP, MCIQP and SVM in free software LIBSVM 2.82, which can be downloaded
from http://www.csie.ntu.edu.tw/~cjlin/libsvm/. The dataset described in Sect. 16.1
is used to these comparisons and five groups of results are summarized in Table 16.5.
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Table 16.5 Comparison of the multiple-criteria programming
models and SVM

Classification
algorithms

Testing result (9996 records)

Records Accuracy

MCLP 7850 78.53%

MCVQP 8319 83.23%

MCCQP 8298 83.02%

MCIQP 8284 82.87%

SVM 8626 86.29%

The first column lists all of the algorithms to be compared, including all of the
multiple-criteria programming based algorithms and SVM. The second column is
the number of the right classified records in the total testing dataset, and the third
column is the percentage of the testing accuracy. From the results of Table 16.5 we
can see that of the four multiple-criteria programming classification models, MCLP
achieves the least testing accuracy, nearly 78.53%; MCVQP performs best, as high
as 83.23%; MCCQP and MCIQP rank between MCLP and MCVQP, with the ac-
curacy 83.02% and 82.87% respectively. And the accuracy of SVM on testing set
is 86.29%. That is to say, SVM performs better that the multiple-criteria program-
ming classification models on the VIP E-mail dataset. The reason maybe due to the
fact that SVM considers the maximum classification between special points, which
called support vectors; but the multiple-criteria programming classification models
insist that all of the training samples should minimize overlapping layers of the clas-
sification and maximizing the distance between the classes simultaneously. This dif-
ference makes the multiple-criteria programming classification models much more
sensitive on the outliers than SVM. Additionally, the kernel functions incorporated
in SVM can classify the training sets in non-linear separation while the multiple-
criteria programming classification models draw linear hyperplane between two
classes. Fortunately, because of the VIP E-mail dataset is a linear separable one on
the whole, this difference doesn’t impact the accuracy of classification significantly.



Chapter 17
HIV-1 Informatics

17.1 HIV-1 Mediated Neuronal Dendritic and Synaptic Damage

The ability to identify neuronal damage in the dendritic arbor during HIV-1-
associated dementia (HAD) is crucial for designing specific therapies for the treat-
ment of HAD. To study this process, we utilized a computer based image analysis
method to quantitatively assess HIV-1 viral protein gp120 and glutamate mediated
individual neuronal damage in cultured cortical neurons. Changes in the number
of neurites, arbors, branch nodes, cell body area, and average arbor lengths were
determined and a database was formed (http://dm.ist.unomaha.edu/database.htm).
We further proposed a two class model of multiple criteria linear programming
(MCLP) to classify such HIV-1 mediated neuronal dendritic and synaptic damages.
Given certain classes, including treatments with brain-derived neurotrophic factor
(BDNF), glutamate, gp120 or non-treatment controls from our in vitro experimental
systems, we used the two-class MCLP model to determine the data patterns between
classes in order to gain insight about neuronal dendritic damages. This knowledge
can be applied in principle to the design and study of specific therapies for the pre-
vention or reversal of neuronal damage associated with HAD. Finally, the MCLP
method was compared with a well-known artificial neural network algorithm to test
for the relative potential of different data mining applications in HAD research.

HIV infection of the central nervous system (CNS) results in a spectrum of clin-
ical and pathological abnormalities. Symptoms experienced can range from mild
cognitive and motor defects to severe neurological impairment. This disease is
known as HIV-1 associated dementia (HAD), and has affected approximately 20%
of infected adults and 50% of infected children, before the era of highly active anti-
retroviral therapy [68, 84, 145, 154, 155]. The histopathological correlate of HAD
is HIV-1 encephalitis (HIVE). HIVE is observed upon autopsy of many, but not all,
patients suffering from HAD [87]. Damage to the dendritic arbor and a reduction
in synaptic density are important neuropathological signatures of HIVE [83, 143,
144]. This type of damage to the neuronal network is thought to be an early event in
the pathway leading to neuronal dropout via apoptosis. Notably, the best predictor
of neurological impairment is not the level of viral expression; rather, it is the level
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of immune activated mononuclear phagocytes (macrophages and microglia) in the
brain [88]. HIV-1 infected and activated brain mononuclear phagocytes (MP) are
believed to be the main mediators of neuronal injury in HAD. The mechanism by
which this damage occurs remains unresolved, however, it is most likely induced by
secretory factors from HIV-1 infected macrophages [82, 85, 86, 116, 138, 153].

Under steady-state conditions, MP act as scavengers and sentinel cells, non-
specifically eliminating foreign material, and secreting trophic factors critical for
maintenance of homeostasis within the CNS microenvironment [67, 108, 135, 171,
233, 247]. Depending on the infection and/or activation state of these cells, MP also
produces neurotoxic factors. It is believed that viral replication and/or immune ac-
tivation ultimately results in MP production of neurotoxins such as glutamate and
viral neurotoxic proteins, HIV-1 gp120 [27, 82, 85, 86, 116, 138, 151, 153, 173].
All of these factors could directly induce damage or may trigger secondary damage-
inducing mechanisms [82, 123]. However, a direct link between HIV-1 infection
of brain macrophages and alterations in the dendritic arbor and synaptic density
is unclear. Furthermore, while there is tremendous information regarding neuronal
death/injury induced by HIV-1 or its related neurotoxins [27, 82, 85, 86, 116, 138,
151, 153, 173], there is no quantifiable data showing damage in the neuronal net-
work, especially at the microscopic level, and its linkage to HIV-1 viral protein or
each of the HIV-1 associated neurotoxins.

During the last two decades, assessments of neuronal dendritic arbor and neu-
ronal network have been well-documented in the neuroscience and neuroinformatic
research fields [11, 32, 43, 47, 48, 96, 131, 176, 190, 205]. These determinations
characterize multiple features of neuronal morphology including the soma area,
the area of influence, the length and diameter of the dendrites (internal or termi-
nal), branching angles, axonal segments, the coverage factor, the complexity of
tortuousity (represented by 3D bending energy), and the number of branch nodes,
branches, bifurcations, and terminations. The measurements of neuronal morphol-
ogy usually revolve around three major processes: laboratory experimentation (in
vitro or in vivo), automatic or manual image analysis, and quantitative modeling
and simulations through data sets [11, 43, 96, 131]. Thus, it is certainly feasible
that the specific and quantifiable changes induced by HIV-1 viral protein or spe-
cific HIV-1 associated neurotoxins on the neuronal network and dendritic arbors be
measured following this routine. Furthermore, new advances in applications of data
mining technology motivate us to apply it to test the effect of pathogens and drug
treatment on neuronal morphology.

To these ends, we have utilized a computerbased method to assess specific neu-
ronal damage by uncovering the quantitative changes that occur in the neuronal net-
work of cultured neurons. As a pilot study, we specifically considered four classes
of treatments, in vitro, to describe the evolution from neurotrophins to neurotox-
ins. These classes include: (i) brain derived neurotrophic factor (BDNF) treatment
(neurotrophin); (ii) non-treatment (control); (iii) glutamate treatment (neurotoxin);
and (iv) HIV-1 envelope protein gp120 (neurotoxin). We measured several mor-
phometric parameters that we stored in a database. We then applied a data mining
technique, known as the two-class model of multiple criteria linear programming
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(MCLP) [182, 183], to acquire knowledge related to neuronal damage found in den-
drites and processes caused by the different treatments. Using the two-class models
of MCLP, we classify individual neuron morphologies after neurons are treated with
neurotrophic and/or neurotoxic factors. This could aid in successfully predicting
which class or condition a neuron has been treated with according to its morphol-
ogy. From this, we hope to understand early neuronal damage and how it relates to
the transition between neurotrophic and neurotoxic activities that may occur dur-
ing HAD. Furthermore, the analysis of these quantitative changes and utilization of
MCLP may aid in the discovery of therapeutic options for HAD. We have also com-
pared the MCLP method with a back-propagation algorithm of neural network to
test the possibilities of extensive computer-based approaches investigating changes
in neuronal morphologies related to HAD.

17.2 Materials and Methods

17.2.1 Neuronal Culture and Treatments

Major experimental steps include isolation of rat cortical neurons (RCN) and im-
munocytochemical detection of neural cells. RCN were cultured as previously de-
scribed [248]. Briefly, the cortex was dissected from embryonic 17–18 day Sprague-
Dawley rat pups. Individual cells were mechanically dissociated by titration in a
Ca2+/Mg2+-free Hank’s balanced salt solution (HBSS), 0.035% sodium bicarbon-
ate, and 1 mM pyruvate (pH 7.4) after 30 minutes of 0.1% trypsin digestion. Trypsin
was neutralized with 10% fetal bovine serum (FBS) and the cell suspension was
washed three times in HBSS. Cells were re-suspended in neurobasal medium (Life
Technologies, Grand Island, NY) containing 0.5 mM glutamine, 50 g/mL peni-
cillin and streptomycin supplemented with B27, which is a neuronal cell culture
maintenance supplement from Gibco, with glutamine and penicillin- streptomycin,
and then plated in chamber-Tec slides at 2.5–5.0 × 104 cells/well. Cells were al-
lowed to grow on the chamber-Tec slides for 3–9 days and 4–5 days old RCN
were usually used for experiments. Earlier studies suggested that HIV macrophage
conditioned media-treated neurons were characterized by a significant reduction in
neuritic branching compared to control macrophage conditioned media-treated neu-
rons [247].

Since HIV-1 macrophage-conditioned media (MCM) contain many factors, in-
cluding HIV-1 proteins and other soluble neurotoxins, we furthered our study by
focusing on the influence by BDNF (a representative of MP neurotrophic factors
[185]), gp120 (neurotoxic HIV-1 viral protein [27], and glutamate (MP soluble neu-
rotoxin [116, 242]. RCN were treated with BDNF at concentrations of 0.5 ng/mL,
5 ng/mL, and 50 ng/mL for 2–6 days; RCN were also treated for 2–6 days with
HIV-1 viral protein gp120IIIB (0.1, 1, and 5 nM) (Advanced Biotechnologies In-
corporated, Columbia, MD) or glutamate (10, 100, and 1000 µM). These differ-
ent concentration levels were first tried to observe dose-dependent effects, which
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were assessed using the one-way analysis of variance (ANOVA). To build our data
mining models, we then focused on data from high concentration treatments (for
BDNF ≥ 5 ng/mL, for glutamate ≥ 100 uM, and for gp120 ≥ 1 nM).

17.2.2 Image Analysis

In order to analyze neuronal outgrowth, neurons labeled with antibodies for MAP-2
were analyzed by acquiring random TIFF images from the immunostained slides.
These images were then imported into Image-Pro Plus, v. 4.0 (Media Cybernet-
ics, Silver Spring, MD). Contrast and brightness were enhanced to provide the best
possible images for data collection. Individual neurons were arbitrarily selected to
measure the seven neuronal attributes and treatment conditions were blinded to the
operator. While time-consuming, manual tracings were performed so that the pro-
cess of measurement was under skilled human control, allowing for more reliable
results. Analysis began with a manual trace of the outline of each neuron (cell bodies
and tree processes). From this trace, a digital measurement of the length of the pre-
cise path of each neurite was gathered, as well as the area of the cell body. All data
were taken from images of the same magnification (10×/25 eyepieces, 20×/0.50n
objectives). Length and surface were measured in pixels instead of metric units (with
fixed pixel side of 13.3 µm). Each digital image covered the same amount of area
on the slide.

We have measured seven parameters of a rat cortical neuron including: (i) the
number of neurites, (ii) the number of arbors, (iii) the number of branch nodes,
(iv) the average length of arbors, (v) the ratio between the number of neurites and
the number of arbors, (vi) the area of cell bodies, and (vii) the maximum length
of the arbors. Neurites, or branches, are the portions of the trees (excluding the
single axon) between two consecutive bifurcations, between a bifurcations and a
termination, or between the soma and a bifurcation or termination. Arbors are the
groups of neurites extending from a single point on the cell body. Branch nodes
are the points at which neurite segments branch into separate neurites. Note that,
in binary trees, the number of neurites is always equal to the number of nodes plus
the number of arbors. These three measures are thus obviously correlated. The area
of a cell body represents the size of the soma. The maximum length of the arbors
is the total length of the largest arbor in a neuron. Average arbor lengths and ratios
between the number of neurites and the number of arbors were also calculated.

17.2.3 Preliminary Analysis of Neuronal Damage Induced by HIV
MCM Treated Neurons

To first test the biological significance of neuronal damage in dendrites, RCN were
treated with 20% crude MCM (secretory products) from control and HIV-1 in-
fected macrophages. The results of these measurements (Fig. 17.1B) show that neu-
rons treated with 20% MCM from HIV-1 infected monocyte-derived macrophages
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Fig. 17.1 Neuronal damage induced by secretory products from HIV-1 infected macrophages.
(A) Image example (a: neurite; b: node; c: arbor). (B) Data (HIV) are compared to the group of
neuronal cells treated with MCM from uninfected MDM (Con) and expressed as means ± SEM.
∗ denotes P < 0.01. Experiments are representative of 3 replicate assays with MDM from 3 dif-
ferent donors

(MDM) (n = 12) significantly decreased both average neurite number (P = 0.0087,
Student test, two-tailed p-value) and the amount of branching (P = 0.0077, Student
t -test, two-tailed p-value) when compared to neurons treated with control MCM
(n = 12). The change in the number of arbors was not quite significant (P = 0.0831,
Student t -test, two-tailed p-value), however, when considering the ratios between
the number of neurites and the number of arbors, there is a decrease. Furthermore,
data shows that the mean area of the cell bodies did not change significantly be-
tween control (800.00 pixels) and infected cells (752.36 pixels) (P = 0.2405 Stu-
dent t -test, two-tailed p-value), suggesting that damage occurred mainly in the
processes. These observations suggest that HIV-1 infected MP secretory products
cause neuronal damage by altering the complexity of the neuronal network. A neu-
ronal antigen ELISA assay for the determination of changes in neuronal network by
HIV-1 infected macrophage provided similar results [247].

As mentioned in “Neuronal Culture and Treatments”, we furthered our study by
focusing on the influence by four factors contained in HIV-1 MCM: BDNF, gp120,
glutamate, and no treatment-steady state.

17.2.4 Database

The data produced by laboratory experimentation and image analysis was organized
into a database comprised of four classes (G1–G4), each with nine attributes. The
four classes are defined as the following:
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G1: treatment with the neurotrophin BDNF (brain derived neurotrophic factor),
which promotes neuronal cell survival and has been shown to enrich neuronal
cell cultures [185].

G2: non-treatment, where neuronal cells are kept in the normal media used for cul-
turing (Neurobasal media with B27).

G3: treatment with glutamate. At low concentrations, glutamate acts as a neuro-
transmitter in the brain. However, at high concentrations, it becomes neuro-
toxic by overstimulating NMDA receptors. This factor has been shown to be
upregulated in HIV-1 infected macrophages [116, 242] and thereby linked to
neuronal damage by HIV-1 infected macrophages.

G4: treatment with gp120, an HIV-1 envelope protein. This protein could interact
with receptors on neurons and interfere with cell signaling, leading to neuronal
damage or it could also indirectly induce neuronal injury through the produc-
tion of other neurotoxins [111, 123, 246].

The nine attributes are defined as:

w1 = the number of neurites,
w2 = the number of arbors,
w3 = the number of branch nodes,
w4 = the average length of arbors,
w5 = the ratio of the number of neurites to the number of arbors,
w6 = the area of cell bodies,
w7 = the maximum length of the arbors,
w8 = the culture time (during this time, the neuron grows normally and BDNF,

glutamate, or gp120 have not been added to affect growth), and
w9 = the treatment time (during this time, the neuron was growing under the

effects of BDNF, glutamate, or gp120).

The culture type and treatment time may affect neuron growth and its ge-
ometry; therefore, we recorded the two attributes relative to time, as well as
the seven attributes on neuron geometry. The database contained data from
2112 neurons. Among them, 101 are from G1, 1001 from G2, 229 from G3,
and 781 from G4. Figure 17.1 is a sample extracted from the HAD database
(http://dm.ist.unomaha.edu/database.htm).

17.3 Designs of Classifications

By using the two-class model for the classifications on {G1, G2, G3, and G4}, there
are six possible pairings: G1 vs. G2; G1 vs. G3; G1 vs. G4; G2 vs. G3; G2 vs.
G4; and G3 vs. G4. The combinations G1 vs. G3 and G1 vs. G4 are treated as
redundancies; therefore they are not considered in the pairing groups. G1 through
G3 or G4 is a continuum. G1 represents an enrichment of neuronal cultures, G2 is
basal or maintenance of neuronal culture and G3/G4 are both damage of neuronal
cultures. There would never be a jump between G1 and G3/G4 without traveling
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through G2. So, we used the following four two-class pairs: G1 vs. G2; G2 vs. G3;
G2 vs. G4; and G3 vs. G4. The hypotheses for these two-class comparisons are:

G1 vs. G2: BDNF should enrich the neuronal cell cultures and increase neuronal
network complexity, i.e., more dendrites and arbors, more length to dendrites, etc.

G2 vs. G3: Glutamate should damage neurons and lead to a decrease in dendrite
and arbor number including dendrite length.

G2 vs. G4: gp120 should cause neuronal damage leading to a decrease in dendrite
and arbor number and dendrite length.

G3 vs. G4: This pair should provide information on the possible difference be-
tween glutamate toxicity and gp120-induced neurotoxicity.

As a pilot study, we concentrated on these four pairs of classes by a cross-
validation process over 2112 observations. Since data sets from different batches
of neuronal cultures contained varying numbers of observations, comparison be-
tween classes was based on the number of observations seen in the smaller class.
This allowed for a balanced number of paired classes and avoided a training model
over-fit from the larger class. Therefore, a varied cross-validation method was ap-
plied. To perform comparisons between class pairs, each smaller class G1 of {G1
vs. G2}, G3 of {G2 vs. G3}, G4 of {G2 vs. G4} and G3 of {G3 vs. G4} were par-
titioned into five mutually exclusive subsets S1, S2, S3, S4, and S5, each containing
20% of the data. In the iteration j , where the subset Sj (j = 1, . . . ,5), served as
test data, the four remaining subsets, containing 80% of the data, were used as the
training data. To form the final training set, equal amounts of data from the larger
class were then randomly selected to match the training data from the smaller class.
The remaining data from the larger class and the test data (Sj ) from the smaller class
were then teamed up as the final test set. In this way, five sets training and test data
for each class pair were formed, each training set containing the same amount of
data from each class in the pair. Given a threshold of training process that can be
any performance measure, we have carried out the following steps:

Step 1: For each class pair, we used the Linux code of the two-class model to com-
pute the compromise solution W ∗ = (w∗

1, . . . ,w∗
9) as the best weights of all

nine neuronal variables with given values of control parameters (b, ξ∗, β∗).
Step 2: The classification score MCLPi = (xi · W ∗) against each observation was

calculated against the boundary b to check the performance measures of
the classification.

Step 3: If the classification result of Step 2 was not acceptable (i.e., the given per-
formance measure was smaller than the given threshold), different values
of control parameters (b, ξ∗, β∗) were chosen and the process (Steps 1–3)
repeated.

Step 4: Otherwise, for each class pair, W ∗ = (w∗
1, . . . ,w∗

9) was used to calculate
the MCLP scores for all A in the test set and conduct the performance
analysis.

According to the nature of this research, we define the following terms, which
have been widely used in performance analysis:

TP (True Positive) = the number of records in the first class that has been classi-
fied correctly;
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FP (False Positive) = the number of records in the second class that has been
classified into the first class;

TN (True Negative) = the number of records in the second class that has been
classified correctly; and

FN (False Negative) = the number of records in the first class that has been clas-
sified into the second class.

Then we have four different performance measures:

Sensitivity = TP

TP + FN
; Positive predictivity = TP

TP + FP
;

False Positive Rate = FP

TN + FP
; and Negative Predictivity = TN

FN + TN
.

The “positive”, in this article, represents the first class label while the “negative”
represents the second class label in the same class pair. For example, in the class pair
{G1 vs. G2}, the record of G1 is “positive” while that of G2 is “negative”. Among
the above four measures, more attention is paid to sensitivity or false positive rates
because both measure the correctness of classification on class-pair data analysis.
Note that in a given class pair, the sensitivity represents the corrected rate of the first
class and one minus the false positive rate is the corrected rate of the second class
by the above measure definitions.

We set the across-the-board threshold of 55% for sensitivity [or 55% of (1-false
positive rate)] to select the experimental results from training and test processes.
There are three reasons for setting 55% as the threshold:

1. No standard threshold values have been well established;
2. The threshold of 55% means the majority has been classified correctly;
3. This is a pilot study because of the limited data set.

17.4 Analytic Results

17.4.1 Empirical Classification

Since the value ranges of the nine variables are significantly different, a linear scal-
ing transformation needs to be performed for each variable. The transformation ex-
pression is

xn = xi − min(x1 . . . xn)

max(x1 . . . xn) − min(x1 . . . xn)
,

where xn is the normalized value and xi is the instance value [167].
All twenty of the training and test sets, over the four class pairs, have been com-

puted using the above procedure. The results against the threshold are summarized
in Tables 17.1, 17.2, 17.3, and 17.4. The sensitivities for the comparison of all four
pairs are higher than 55%, indicating that acceptable separation among individual
pairs is observed with this criterion. The results are then analyzed in terms of both
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Table 17.1 Classification results with G1 vs. G2

Training N1 N2 Sensitivity Positive
predictivity

False positive
rate

Negative
predictivity

G1 55 (TP) 34 (FN) 61.80% 61.80% 38.20% 61.80%

G2 34 (FP) 55 (TN)

Training N1 N2 Sensitivity Positive
predictivity

False positive
rate

Negative
predictivity

G1 11 (TP) 9 (FN) 55.00% 3.78% 30.70% 98.60%

G2 280 (FP) 632 (TN)

Table 17.2 Classification results with G2 vs. G3

Training N2 N3 Sensitivity Positive
predictivity

False positive
rate

Negative
predictivity

G2 126 (TP) 57 (FN) 68.85% 68.48% 31.69% 68.68%

G3 58 (FP) 125 (TN)

Training N2 N3 Sensitivity Positive
predictivity

False positive
rate

Negative
predictivity

G2 594 (TP) 224 (FN) 72.62% 99.32% 8.70% 15.79%

G3 4 (FP) 42 (TN)

Table 17.3 Classification results with G2 vs. G4

Training N2 N4 Sensitivity Positive
predictivity

False positive
rate

Negative
predictivity

G2 419 (TP) 206 (FN) 67.04% 65.88% 34.72% 66.45%

G4 217 (FP) 408 (TN)

Training N2 N4 Sensitivity Positive
predictivity

False positive
rate

Negative
predictivity

G2 216 (TP) 160 (FN) 57.45% 80.90% 32.90% 39.39%

G4 51 (FP) 104 (TN)

positive predictivity and negative predictivity for the prediction power of the MCLP
method on neuron injuries. In Table 17.1, G1 is the number of observations pre-
defined as BDNF treatment; G2 is the number of observations predefined as non-
treatment; N1 means the number of observations classified as BDNF treatment and
N2 is the number of observations classified as non-treatment. The meanings of other
pairs in Tables 17.1, 17.2, 17.3, and 17.4 can be similarly explained.
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Table 17.4 Classification results with G3 vs. G4

Training N3 N4 Sensitivity Positive
predictivity

False positive
rate

Negative
predictivity

G3 120 (TP) 40 (FN) 57.45% 80.90% 24.38% 75.16%

G4 39 (FP) 121 (TN)

Training N3 N4 Sensitivity Positive
predictivity

False positive
rate

Negative
predictivity

G3 50 (TP) 19 (FN) 72.46% 16.78% 40.00% 95.14%

G4 248 (FP) 372 (TN)

In Table 17.1 positive and negative predictivity are the same (61.80%) in the
training set. However, the negative predictivity of the test set (98.60%) is much
higher than that of the positive predictivity (3.78%). The prediction of G1 in the
training set is better than that of the test set while the prediction of G2 in test outper-
forms that of training. This is due to the small size of G1. In Table 17.2 for {G2 vs.
G3}, the positive predictivity (68.48%) is almost equal to the negative predictivity
(68.68%) of the training set. The positive predictivity (99.32%) is much higher than
the negative predictivity (15.79%) of the test set. As a result, the prediction of G2 in
the test set is better than in the training set, but the prediction of G3 in the training
set is better than in the test set.

The case of Table 17.3 for {G2 vs. G4} is similar to that of Table 17.2 for {G2
vs. G3}. The separation of G2 in test (80.90%) is better than in training (65.88%),
while the separation of G4 in training (66.45%) is better than in test (39.39%). In the
case of Table 17.4 for {G3 vs. G4}, the positive predictivity (80.90%) is higher than
the negative predictivity (75.16%) of the training set. Then, the positive predictivity
(16.78%) is much lower than the negative predictivity (95.14%) of the test set. The
prediction of G3 in training (80.90%) is better than that of test (16.78%), and the
prediction of G4 in test (95.14%) is better than that of training (75.16%).

In summary, we observed that the predictions of G2 in test for {G1 vs. G2}, {G2
vs. G3} and {G2 vs. G4} is always better than those in training. The prediction of
G3 in training for {G2 vs. G3} and {G3 vs. G4} is better than those of test. Finally,
the prediction of G4 for {G2 vs. G4} in training reverses that of {G3 vs. G4} in
test. If we emphasize the test results, these results are favorable to G2. This may be
due to the size of G2 (non-treatment), which is larger than all of other classes. The
classification results can change if the sizes of G1, G3, and G4 increase significantly.
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Anti-gen and Anti-body Informatics

18.1 Problem Background

Antibodies bind their antigen using residues, which are part of the hypervariable
loops. The properties of the antibody-antigen interaction site are primarily governed
by the three-dimensional structure of the CDR-loops (complementarity determining
region). The mode of antibody binding corresponding antigen is conservation. An-
tibody structure is rearranged to recognize and bind antigen with at least moderate
affinity. Different types of antibody combining sites have been studied such as: cav-
ity or pocket (hapten), groove (peptide, DNA, carbohydrate) and planar (protein)
[214]. Much effort has focused on characters of antibody structure, antibody-antigen
binding sit and mutation on the affinity and specificity of the antibody [13, 41, 45,
113, 189, 214, 224].

According to [62], in functional studies on antibody-antigen complexes, a few
residues are tight bound among a number of contact residues in antibody-antigen
interface. The distance between antibody’s interface residue and antigen surface is
the one of antigen-antibody binding characters. In this chapter, we set three type
of interaction distance range between antibody residue and antigen surface. The
residue belong to these distance range in antibody structure is predicted by Multiple
Criteria Quadratic Programming (MCQP), LDA, Decision Tree and SVM to study
correlation between characters of antibody surface residue and antigen-antibody in-
teraction.

A kind of complex structure is designated as the basic complex structure and se-
lected from the PDB file library, which is the start point of our research. Antibody’s
heavy chain, light chain and corresponding antigen from the complex are collec-
tively defined as this basic complex structure. After testing the selected basic struc-
ture, some missing residues in the heavy chain and light chain of these structures
are detected. We fill these missing residues using (HyperChem 5.1 for Windows
(Hypercube, FL, USA)). If the heavy chains and the light chains of antibody in two
complex structures are exactly the same, one of the structures is defined redundant.
After examination of all the basic structures, 37 non-redundant complex structures
are extracted.

Y. Shi et al., Optimization Based Data Mining: Theory and Applications,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-0-85729-504-0_18, © Springer-Verlag London Limited 2011
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In the 37 complex structures obtained, 3 of the antigens are nucleic acid, 4 of the
antigens are heterocomplex, and the rest are proteins.

The residues in the antibody structure can be divided into residues embedded in
the structure and residues in the surface of the structure. The Accessible Surface
Area (ASA) method is utilized in the recognition of surface residues. The ASA
is calculated using the DSSP program. If the ASA in the chain structure is 25%
larger than the value calculated by the residue alone, this residue can be regarded to
surface residue of the antibody structure. After computation, 5253 surface residues
are recognized from the 37 non-redundant complex structures.

Antibody function is accomplished by combination antibody-antigen interac-
tion surface. There are many methods to identify interaction surface residues from
protein-protein complex. Fariselli [70] indicated that two surface residues are re-
garded as interface residues, if distance between Cα atom of one surface residue in
one protein and Cα atom of one surface residue in another protein is less then 12 Å.
In this chapter, the coordinate of α atom in residue is taken as the coordinate of this
residue. Distances between one surface residue in the antibody structure and every
atom in antigen in this complex structure are calculated. If the distance is less than
12 Å the surface residue is considered to interaction with the antigen. According to
[62], in functional studies on antibody-antigen complexes, a few residues are tight
bound among a number of contact residues in antibody-antigen interface. They play
an important role in antigen-antibody interaction. For the research of the interaction
distance between antibody residue and antigen, different ranges are used here. If the
calculated distance is less than the threshold value, it is defined that the distance
between interface residue and antigen belong to this range. The distance 8 Å, 10 Å
and 12 Å are selected as the threshold values to cope with range. There are 329, 508,
668 residues belong to distance ranges 8 Å, 10 Å, 12 Å respectively.

There are many studies on composing sequence feature of the target residue [120,
121]. In this chapter, sequence patch is used for composing sequence feature. If
the sequence patch size is set to be 5, it means the join sequence feature is com-
posed by the target residue and 5 front neighbors and 5 back neighbors (the total
of 11 residues) in sequence. Sequence patch is about the neighbor relationship in
sequence. Sequence feature is coded as follows: each residue is represented by a
20-dimensional basic vector, i.e. each kind of residue corresponds to one of twenty
dimensions in the basic vector. The element of the vector having value one means
that it belongs to that kind of residue. Only one position has value one and others
has zero. This sequence feature will be coded as a 220-dimensional vector if the
sequence patch size is set to 5.

18.2 MCQP, LDA and DT Analyses

A ten-fold cross validation is applied on the Evaluation measure of classification ac-
curacy. The details of a ten-fold cross validation is discusses as follows. The dataset
is split into ten parts. One of ten acts as the testing set and the other nine as the
training set to construct the mathematical model. The process rotates for ten times
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with each part as a testing set in a single round. In the generalization test, the mean
value of the accuracy in the ten-fold cross validation test is used as the accuracy
measure of the experiment. If the utilized method is correct, then the extracted fea-
tures can well explain the correlation between antibody-antigen interaction residue
and antibody-antigen interaction surface. In this situation, the mean accuracy of the
ten-fold cross validation should also be comparatively high. The classification ac-
curacy is composed with two parts: the accuracy of correct prediction residue in
the distance range and the accuracy of correct prediction residue out of the distance
range.

Other indictors, such as prediction Type I error, Type II error and correlation
coefficient, can be obtained from the cross validation test for analyzing the effec-
tiveness of the method.

Type I error is defined as the percentage of predicting the residues in the distance
range that are actually out of the distance range and Type II error is defined as the
percentage of residues out of the distance range that are actually in the distance
range.

Correlation coefficient falls into the range of [−1,1]. The introduction of corre-
lation coefficient is to avoid the negative impacts of the imbalance between different
classes of data. For example, if two types of data take up a 4 : 1 position in a single
dataset, then the prediction of the type with a large size of data will be 80% accu-
rate. If the same dataset is used in the testing, then it is meaningless in the case of
prediction. When using the model constructed on prediction of the data, the corre-
lation coefficient will be −1 if the prediction is completely contrary to the exact
value, 1 if the prediction is correct, and 0 if the prediction is randomly produced.
The Correlation coefficient is calculated as follows:

Correlation coefficient = (TP × TN) − (FP × FN)√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

, where:

TP (True Positive): the number of residues in the distance range that has been clas-
sified correctly;
FP (False Positive): the number of residues out of the distance that has been classi-
fied into the class of in the distance range;
TN (True Negative): the number of residues out of the distance range that has been
classified correctly;
FN (False Negative): the number of records in the distance range that has been
classified into out of the distance range.

We are concerned about the accuracy of correct prediction residue in the distance
range, Type II error and Correlation coefficient in five indictors, because the accu-
racy of correct prediction residue in the distance range is accuracy of identification
residue belong to distance range, Type II error is percentage of residues out of the
distance range that are actually in the distance range and Correlation coefficient is a
measure of predictions correlate with actual data.

We conducted numerical experiments to evaluate the proposed MCQP model.
The result of MCQP is compared with the results of 2 widely accepted classifica-
tion tools: LDA and See5. The following tables (Tables 18.1–18.12) summarize the
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Table 18.1 The results of the ten-fold cross validation tests for the distance ranges 8 Å with
MCQP

MCQP (distance
range 8 Å)

Classification accuracy Error rate Correlation
coefficientResidue in the

range
Residue out of
the range

Type I Type II

Sequence patch size 1 62.27% 79.42% 24.84% 32.21% 42.32%

Sequence patch size 2 73.29% 81.09% 20.51% 24.78% 54.55%

Sequence patch size 3 79.73% 84.21% 16.53% 19.40% 64.00%

Sequence patch size 4 80.19% 85.92% 14.94% 18.74% 66.22%

Sequence patch size 5 80.18% 89.16% 11.91% 18.19% 69.62%

Table 18.2 The results of the ten-fold cross validation tests for the distance ranges 8 Å with See5

See5 (distance range
8 Å)

Classification accuracy Error rate Correlation
coefficientResidue in the

range
Residue out of
the range

Type I Type II

Sequence patch size 1 1.82% 99.72% 13.50% 49.61% 7.55%

Sequence patch size 2 16.41% 99.15% 4.94% 45.74% 27.71%

Sequence patch size 3 27.36% 98.58% 4.94% 42.43% 36.95%

Sequence patch size 4 29.48% 98.62% 4.48% 41.69% 38.89%

Sequence patch size 5 29.79% 98.88% 3.62% 41.52% 39.66%

averages of 10-fold cross-validation test-sets results of LDA, See5, and MCQP for
each dataset.

When the distance range is 8 Å, the prediction results of MCQP method are listed
in Table 18.1. With the increase of sequence path size from 1 to 5, the accuracy
of prediction residue in the distance range increases from 62.27% to 80.18%, the
accuracy of prediction residue out of the distance range increases from 79.42% to
89.16% and correlation coefficient increases from 42.32% to 69.62%. This result
indicates that the increase in the sequence path size will help reform the prediction
result.

The results of the ten-fold cross validation tests for See5 and LDA can be sim-
ilarly explained as shown in Tables 18.2 and 18.3. There exists an extraordinary
situation in Table 18.3. Although the overall performance is improved, the Type I
error rate of LDA increased due to the decreases in classification accuracy in residue
out the range when the sequence patch size increases. In the comparison of the three
methods, MCQP method has shown strong advantages in the accuracy of correct
prediction residue in the distance range, Type II error and correlation coefficient
with the same Sequence path size.

When the distance range is 10 Å, the prediction results of MCQP method are
listed in Table 18.4. With the increase of sequence path size from 1 to 5, the accuracy
of correct prediction residue in the distance range increases from 63.11% to 80.34%,
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Table 18.3 The results of the ten-fold cross validation tests for the distance ranges 8 Å with LDA

LDA (distance
range 8 Å)

Classification accuracy Error rate Correlation
coefficientResidue in the

range
Residue out of
the range

Type I Type II

Sequence patch size 1 29.79% 98.88% 3.62% 41.52% 39.66%

Sequence patch size 2 29.79% 98.88% 3.62% 41.52% 39.66%

Sequence patch size 3 29.79% 98.88% 3.62% 41.52% 39.66%

Sequence patch size 4 74.77% 91.73% 9.96% 21.57% 67.48%

Sequence patch size 5 75.68% 92.85% 8.64% 20.75% 69.56%

Table 18.4 The results of the ten-fold cross validation tests for the distance ranges 10 Å with
MCQP

MCQP (distance
range 10 Å)

Classification accuracy Error rate Correlation
coefficientResidue in the

range
Residue out of
the range

Type I Type II

Sequence patch size 1 63.11% 80.07% 24.00% 31.54% 43.81%

Sequence patch size 2 71.78% 82.96% 19.18% 25.38% 55.09%

Sequence patch size 3 76.58% 84.69% 16.66% 21.66% 61.47%

Sequence patch size 4 79.27% 86.85% 14.23% 19.27% 66.31%

Sequence patch size 5 80.34% 89.53% 11.53% 18.01% 70.17%

Table 18.5 The results of the ten-fold cross validation tests for the distance ranges 10 Å with See5

See5 (distance range
10 Å)

Classification accuracy Error rate Correlation
coefficientResidue in the

range
Residue out of
the range

Type I Type II

Sequence patch size 2 36.61% 97.62% 6.11% 39.37% 43.20%

Sequence patch size 3 50.39% 97.09% 5.46% 33.82% 53.69%

Sequence patch size 4 51.57% 97.34% 4.90% 33.22% 55.01%

Sequence patch size 5 52.76% 97.24% 4.98% 32.70% 55.83%

the accuracy of correct prediction residue out of the distance range increases from
80.07% to 89.53%, Type I error decreases from 24.00% to 11.53%, Type II error
decreases from 31.54% to 18.01% and correlation coefficient increases from 43.81%
to 70.17%. Similar to the results of distance range 8 Å, the prediction results are also
improved when the sequence path size is increased.

The results of See5 and LDA are summarized in Tables 18.5 and 18.6. MCQP
shows strong advantages against See5 and LDA in the accuracy of correct prediction
residue in the distance range and Type II error rate. The correlation coefficients of
MCQP and LDA are close.
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Table 18.6 The results of the ten-fold cross validation tests for the distance ranges 10 Å with LDA

LDA (distance range
10 Å)

Classification accuracy Error rate Correlation
coefficientResidue in the

range
Residue out of
the range

Type I Type II

Sequence patch size 1 64.76% 76.76% 26.41% 31.46% 41.82%

Sequence patch size 2 69.49% 82.98% 19.68% 26.89% 52.95%

Sequence patch size 3 72.05% 89.73% 12.48% 23.75% 62.77%

Sequence patch size 4 74.21% 92.03% 9.70% 21.89% 67.32%

Sequence patch size 5 75.79% 93.74% 7.63% 20.53% 70.68%

Table 18.7 The results of the ten-fold cross validation tests for the distance ranges 12 Å with
MCQP

MCQP (distance
range 12 Å)

Classification accuracy Error rate Correlation
coefficientResidue in the

range
Residue out of
the range

Type I Type II

Sequence patch size 1 56.26% 76.19% 29.74% 36.47% 33.11%

Sequence patch size 2 60.05% 79.23% 25.70% 33.52% 40.02%

Sequence patch size 3 63.96% 80.07% 23.76% 31.04% 44.61%

Sequence patch size 4 64.39% 82.48% 21.39% 30.15% 47.66%

Sequence patch size 5 66.03% 84.36% 19.15% 28.71% 51.26%

When the distance range is 12 Å, the prediction results of MCQP method are
listed in Table 18.7. With the increase of sequence path size from 1 to 5, the accuracy
of correct prediction residue in the distance range increases from 56.26% to 66.03%,
the accuracy of correct prediction residue out of the distance range increases from
76.19% to 84.36%, Type I error decreases from 29.74% to 19.15%, Type II error
decreases from 36.47% to 28.71% and correlation coefficient increases from 33.11%
to 51.26%.

The results of distance range 12 Å for See5 and LDA are shown in Tables 18.8
and 18.9. The results of LDA are better than the results of MCQP and See5 while
MCQP outperforms to See5.

Following the prediction of distance, another experiment is designed to predict
the class of antigen because different types antibody-antigen interface have differ-
ent surface characters [214]. These are cavity or pocket (hapten), groove (peptide,
DNA, carbohydrate) and planar (protein). In our research, antigens are divided into
two classes (protein, non protein) for study. Feature for inference of antigen class
is constructed by interface residues belong to different range. It is a 21-dimensional
vector, which denotes 20 kinds of residue composition in the interface residues plus
the number of interface residue belong to distance ranges 8 Å, 10 Å, 12 Å respec-
tively. The following tables (Tables 18.10, 18.11, and 18.12) summarize the predi-
cation results of antigen class by MCQP, See5 and LDA for each dataset.
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Table 18.8 The results of the ten-fold cross validation tests for the distance ranges 12 Å with See5

See5 (distance range
12 Å)

Classification accuracy Error rate Correlation
coefficientResidue in the

range
Residue out of
the range

Type I Type II

Sequence patch size 1 40.72% 97.40% 5.99% 37.83% 46.27%

Sequence patch size 2 47.31% 97.62% 4.78% 35.06% 51.99%

Sequence patch size 3 55.24% 97.75% 3.91% 31.41% 58.54%

Sequence patch size 4 58.38% 97.49% 4.12% 29.92% 60.71%

Sequence patch size 5 60.48% 97.84% 3.45% 28.77% 62.87%

Table 18.9 The results of the ten-fold cross validation tests for the distance ranges 12 Å with LDA

LDA (distance range
12 Å)

Classification accuracy Error rate Correlation
coefficientResidue in the

range
Residue out of
the range

Type I Type II

Sequence patch size 1 63.32% 73.94% 29.16% 33.16% 37.47%

Sequence patch size 2 65.42% 86.65% 16.95% 28.52% 53.28%

Sequence patch size 3 69.31% 90.88% 11.62% 25.24% 61.64%

Sequence patch size 4 73.05% 93.63% 8.02% 22.35% 68.14%

Sequence patch size 5 76.40% 94.33% 6.88% 19.74% 72.25%

Table 18.10 The results of predication antigen class for the distance ranges 8 Å with MCQP, See5
and LDA

Distance 8 Å Classification accuracy Error rate Correlation
coefficientOverall Interface Surface Type I Type II

MCQP 88.93% 89.81% 90.00% 10.02% 10.17% 79.81%

See5 83.78% 93.33% 42.86% 37.97% 13.46% 41.92%

LDA 86.49% 90.00% 71.43% 24.10% 12.28% 62.52%

We compared results of three methods in different distance range. The result of
distance 8 Å is the best and the result of MCQP is better than the results of See5 and
LDA.

The vast quantities of existing immunological data and advanced information
technology have boosted the research work on computational immunology. The
distance between antibody’s interface residue and antigen surface is the one of
antigen-antibody binding characters to observe the circumstantialities of antibody-
antigen interaction surface. It will help us to understand position of each interface
residue relative to antigen in three-dimensional, which connect affinity of antibody-
antigen interaction. Experimental data analysis by using machine learning methods



266 18 Anti-gen and Anti-body Informatics

Table 18.11 The results of predication antigen class for the distance ranges 10 Å with MCQP,
See5 and LDA

Distance 10 Å Classification accuracy Error rate Correlation
coefficientOverall Interface Surface Type I Type II

MCQP 75.36% 77.62% 73.33% 25.57% 23.38% 51.00%

See5 70.27% 76.67% 42.86% 42.70% 35.25% 20.75%

LDA 59.46% 63.33% 57.14% 40.36% 39.09% 20.52%

Table 18.12 The results of predication antigen class for the distance ranges 12 Å with MCQP,
See5 and LDA

Distance 12 Å Classification accuracy Error rate Correlation
coefficientOverall Interface Surface Type I Type II

MCQP 76.07% 82.38% 70.00% 26.70% 20.11% 52.79%

See5 72.97% 80.00% 42.86% 41.67% 31.82% 24.62%

LDA 75.68% 76.67% 71.43% 27.15% 24.62% 48.16%

may help explain and provide significant insight into the complex phenomenon of
antibody-antigen interaction.

In this research, we set three type of interaction distance range between antibody
residue and antigen surface. Three data sets contain 329, 508, 668 antibody residues
corresponding to different distance ranges (8 Å, 10 Å, 12 Å). Based on distance
range and sequence patch size, 15 samples have been created in the research of
prediction these residues from 5253 antibody residues with MCQP. We noticed that
all performance measures improved when the sequence path size is increased in
the same distance range. This results show that the distance between antibody’s
interface residue and antigen can be inferred from the antibody structures data. The
result of MCQP is compared with the results of Decision Tree based See5 and Linear
Discriminant Analysis. MCQP achieved comparable or better results than See5 and
LDA.

18.3 Kernel-Based MCQP and SVM Analyses

In this subsection, we use the same data sets in Sect. 18.2 to perform kernel-based
MCQP (see Chap. 9) and kernel-based SVM (see Chap. 2).

The results obtained with the MCQP method are presented in Table 18.13. As
the distance range increases from 8 to 12 Å, the accuracy of class I decreases from
80.18% to 66.03%, the accuracy of class II decreases from 89.16% to 84.36%,
the Type I error increases from 11.91% to 19.15%, the Type II error increases
from 18.19% to 28.71%, and the correlation coefficient decreases from 69.62% to
51.26%. The prediction results are worse for larger distance ranges.
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Table 18.13 Results of the 10-fold cross validation tests with MCQP

Distance (Å) Classification accuracy (%) Error rate (%) Correlation
coefficient (%)Class I Class II Type I Type II

8 80.18 89.16 11.91 18.19 69.62

10 80.34 89.53 11.53 18.01 70.17

12 66.03 84.36 19.15 28.71 51.26

Table 18.14 Results of the 10-fold cross validation tests with SVM

Distance (Å) Classification accuracy (%) Error rate (%) Correlation
coefficient (%)Class I Class II Type I Type II

8 34.40 99.30 1.99 39.78 44.30

10 43.30 99.20 1.81 36.37 51.26

12 47.40 99.50 1.04 34.58 54.95

The results obtained with the SVM are presented in Table 18.14. As the distance
range increases from 8 to 12 Å, the accuracy of class I increases from 34.40% to
47.40%, the accuracy of class II decreases from 99.30% to 99.50%, the Type I error
decreases from 1.99% to 1.04%, the Type II error decreases from 39.78% to 34.58%,
and the correlation coefficient increases from 44.30% to 54.95%. The prediction
results are better for larger distance ranges.

The results of the statistical analyses (Tables 18.13 and 18.14) show that there
is a significant difference between the kernel-based MCQP and the kernel-based
SVM. The results obtained with the MCQP become worse when the distance range
is increased, and the results obtained with the SVM improve when the distance range
is increased. Comparison of the two methods shows that the MCQP is superior in the
accuracy of class I, Type II error, and correlation coefficient for the same distance
range.





Chapter 19
Geochemical Analyses

19.1 Problem Description

World natural diamond production for 2004 is estimated at 156 million carats and
it translated into 61.5 billion US dollars in worldwide jewelery sales [58]. Even
though, the current level of demand for diamonds with high color and quality is
still not being met by the world’s producing diamond mines. Numerous companies
are carrying out various phases of diamond exploration in Botswana, which is the
world’s leading producer of gem quality diamonds. Due to the extensive Kalahari
sand cover (and Karoo basalts underneath), sophisticated and innovative sampling
and geophysical techniques are required to locate undiscovered kimberlites [221].

The goal of this chapter is to build an analytical model for kimberlites identifi-
cation. Two classification methods are applied to a dataset containing information
about rock samples drilled in Botswana.

The dataset contains rock samples data from one region of Botswana. Origi-
nal dataset has 5921 row of observations and 89 variables, and each observation
describes detailed information of one rock sample about its position, physical and
chemical attributes. These variables include numeric and character types. After con-
sulting the experts, we deleted some rows missing important variables and exclude
some variables, which are irrelevant, redundant, or correlated such as sample-id and
horizon. Then some types of variables are transformed from character to binary to
satisfy the requirements of models, such as color and shape.

After data transformation, the dataset includes 4659 observations and 101 vari-
ables.

Data classification is a two-step process [102]. In the first step, a model is built
describing a predetermined set of data classed or concepts. This model is con-
structed by analyzing database tuples described by attributes. Each tuple is assumed
to belong to a predefined class, as determined by one of the attributes, called the
class label attributes. The data used to build the model is called training set. And
this step can be called supervised learning. In the second step, the model is used to
classification. And the predictive accuracy of the model is estimated. The data set
used to classification in this step is called testing set. When the constructed model is
proved to be stable and robust, then this model can be used to predict the new data.

Y. Shi et al., Optimization Based Data Mining: Theory and Applications,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-0-85729-504-0_19, © Springer-Verlag London Limited 2011
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Table 19.1 Two-class LDA analysis with cross-validation

Count 0 3301 387 3688

1 195 769 964

% 0 89.5 10.5 100

1 20.2 79.8 100

Cross-validation is done only for those cases in the analysis. In cross-validation, each case is clas-
sified by the functions derived from all cases other than that case.

87.5% of cross-validated grouped cases correctly classified.

89.5% of kimberlites are grouped correctly, and 79.8% of other rocks are grouped correctly.

Table 19.2 Two-class DT
analysis Observed Predicted Percent correct

0 1

0 3493 202 95%

1 157 807 84%

Overall percentage 0.78 0.22 92%

The kimberlites identification for this dataset can be regarded as a four-group
classification problem based on the fact that there are four important kinds of rock
in this dataset. We will apply two standard classification methods, known as Lin-
ear Discriminant Analysis (LDA), Decision tree and C-SVM (see Chap. 2) for this
work.

19.2 Multiple-Class Analyses

19.2.1 Two-Class Classification

We use 1 for kimberlites and 0 for other rocks. LDA has the following steps:

(1) change chemical attributes into numeric,
(2) stepwise used for attributes selection,
(3) prior probabilities: all classes equal,
(4) display: Leave-one-out classification.

The results are given in Table 19.1. The Decision Tree results are shown in Ta-
ble 19.2.

Ten-fold cross-validation method is select here to estimate the accuracy of deci-
sion tree here. The Support Vector Machine (SVM) results are given in Table 19.3.
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Table 19.3 Two-class SVM analysis

Subset Accuracy of kimberlites (%) Accuracy of others (%) Error Type I Error Type II

1 76.0 87.3 0.24 0.13

2 69.3 90.7 0.31 0.09

3 33.1 99.0 0.67 0.01

4 81.0 86.2 0.19 0.14

Hold-out method is used to test the accuracy of this model.

For each subset we get the accuracy of prediction, take subset 1 as an example, 76.0% of kimber-
lites are grouped correctly, and 87.3% other rocks are grouped correctly.

Table 19.4 Three-class LDA analysis with cross-validation

Count 0 812 108 264 1184

1 161 2261 89 2511

2 22 203 739 964

% 0 68.6 9.1 22.3 100

1 6.4 90.0 3.5 100

2 2.3 21.1 73.7 100

Cross-validation is done only for those cases in the analysis. In cross-validation, each case is clas-
sified by the functions derived from all cases other than that case.

81.8% of cross-validated grouped cases correctly classified.

76.7% of kimberlites are grouped correctly, 90.0% of Stormberg basalts are grouped correctly, and
68.6% other rocks are grouped correctly.

19.2.2 Three-Class Classification

We consider three classes, namely as kimberlites (2), Stormberg basalts (1) and
other rocks (0). The LDA has two steps which are similar the above. The results are
listed in Table 19.4.

These results are also displayed in Fig. 19.1. The Decision tree results are pre-
sented in Table 19.5. The SVM results are shown in Table 19.6.

19.2.3 Four-Class Classification

We use kimberlites (2), Stormberg basalts (1), Ecca and Karoo seds (3) and others
(0). The LDA results are listed in Table 19.7. The four-class LDA is pictured as
Fig. 19.2. The Decision tree results are shown in Table 19.8. The SVM results are
given in Table 19.9.
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Fig. 19.1 Three-class LDA

Table 19.5 Three-class DT analysis

Observed Predicted Percent correct

0 1 2 3

0 522 74 41 23 79%

1 34 2422 55 0 97%

2 7 107 850 0 88%

3 0 0 125 399 76%

Overall percentage 0.12 0.56 0.23 0.09 90%

19.3 More Advanced Analyses

To gain more knowledge of the comparison for these methods, we conducted more
advanced analyses. For this dataset are linearly inseparable, we used C-SVM with
RBF kernel function [140] to classify the rock samples. (This model is called
C-SVM1.) There are two parameters (C for the objective function and GAMMA
for the kernel function) selected for this model. The most common and reliable ap-
proach is to decide on parameter ranges, and to do an exhaustive grid search over
the parameter space to find the best setting [33]. Figure 19.3 shows its process. It
contains contour plots for training datasets. The different colors of the projected
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Table 19.6 Three-class SVM analysis

Subset Accuracy

Kimberlites Stormberg basalts Others

1 87.4% 54.1% 76.3%

2 87.3% 60.6% 53.2%

3 74.5% 74.3% 39.6%

4 57.5% 62.8% 63.2%

Hold-out method is used to test the accuracy of this model.

For each subset we get the accuracy of prediction.

Table 19.7 Three-class SVM analysis with cross-validation

Count 0 423 75 126 29 653

1 78 2226 90 117 2511

2 59 192 709 4 964

3 11 18 122 373 524

% 0 64.8 11.5 19.3 4.4 100

1 3.1 88.6 3.6 4.7 100

2 6.1 19.9 73.5 0.4 100

3 2.1 3.4 23.3 71.2 100

Cross-validation is done only for those cases in the analysis. In cross-validation, each case is clas-
sified by the functions derived from all cases other than that case.

80.2% of cross-validated grouped cases correctly classified.

73.5% of kimberlites are grouped correctly, 88.6% of Stormberg basalts are grouped correctly,
71.2% of Ecca and Karoo seds and 64.8% other rocks are grouped correctly.

Table 19.8 Four-class DT analysis

Observed Predicted Percent correct

0 1 2 3

0 589 43 5 23 89.2%

1 20 2368 123 0 94.3%

2 77 90 797 0 82.7%

3 2 0 123 399 76.1%

Overall percentage 14.8% 53.7% 22.5% 9.1% 89.1%

contour plots show the progression of the grid method’s best parameter estimate.
The final optimal parameter settings are C = 128 and GAMMA = 0.0078125.

Decision tree is assembled to SPSS 12 (SPSS Inc.), and it is easy to use the
GUI to import the data and export the tree model. The depth of the tree is 3, and 36
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Fig. 19.2 Four-class LDA

Table 19.9 Four-class SVM analysis

Subset Accuracy

Kimberlites Stormberg basalts Ecca and Karoo seds Others

1 0.0% 99.1% 11.6% 77.3%

2 59.5% 0.2% 70.4% 71.4%

3 71.1% 77.4% 44.5% 43.6%

4 71.1% 59.2% 57.4% 28.9%

Table 19.10 The ten folds cross-validation accuracy for those methods

Methods C-SVM1 Decision tree Linear discriminant C-SVM2

Cross-validation 95.66% 89.1% 80.1% 95.04%

nodes are created for this model. There are 12 rules to classify the rock samples. The
accuracy is also estimated by 10-fold cross-validation method. Table 19.10 shows
the accuracy result of both these methods compared with LDA.

The two main approaches take the comparable computation time with 2 minutes
around, while the SVM has excellent accuracy compared with decision tree and lin-
ear discriminant. Still we find that the parameter selection for SVM takes a couple of
hours. For reducing the computation time and computational complexity, a feature
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Fig. 19.3 Parameter selected by grid.py

Table 19.11 The accuracy
after feature selection Feature selected 101 88 44

Cross-validation 95.66% 95.15% 95.04%

selection is needed. And this work can also help the geophysical experts to make
right decision based on less rock sample attributes. In this article, we used F-score
[38] as a feature selection criterion base on the simple rule that the large score is,
the more likely this feature is more discriminative.

Based on the F-score rank, we selected 44 features and then apply C-SVM with
RBF for training and prediction. Its accuracy is still above 95 percents (refer to
Table 19.11). This model (C-SVM2) takes less time on parameter selection and
the best settings are C = 64, GAMMA = 0.00195. Through the ten-fold cross-
validation, this compromise model is proved to be accurate and stable, so it can
be applied to a new geochemical dataset.

A sophisticated and innovative method for Diamond-bearing kimberlites identifi-
cation is needed for the diamond mining, especially in the area covered by extensive
Kalahari sand. When a model is proved to be robust and effective for this work, it
will be greatly helpful to the experts on kimberlites discovery. This article applies
two methods to this new domain of application. Our results demonstrate that, both
of these two methods have much higher prediction accuracy than 80 percents (the
experts suggested). Which LDA is an effective method, the decision tree model is
faster than SVM while SVM provides a higher accuracy.





Chapter 20
Intelligent Knowledge Management

20.1 Purposes of the Study

Since 1970s, researchers began systematically exploring various problems in knowl-
edge management. However, people have been interested in how to collect, expand
and disseminate knowledge for a long time. For example, thousands of years ago,
Western philosophers studied the awareness and understanding of the motivation of
knowledge [219]. The ancient Greek simply believed that personal experience forms
all the knowledge. Researchers at present time pay more attention to management of
tacit knowledge and emphasize on management of people as focusing on people’s
skills, behaviors and thinking patterns [211, 239].

Thanks to the rapid development of information technology, many western com-
panies began to widely apply technology-based tools to organize the internal knowl-
edge innovation activities. Thus it drove a group of researchers belonging to tech-
nical schools to explore how to derive knowledge from data or information. For
instance, Beckman (1997) believes that knowledge is a kind of humans’ logical rea-
soning on data and information, which can enhance their working, decision-making,
problem-solving and learning performance. Knowledge and information are differ-
ent since knowledge can be formed after processing, interpretation, selection and
transformation of information [72].

In deriving knowledge by technical means, data mining becomes popular for
the process of extracting knowledge, which is previously unknown to humans,
but potentially useful from a large amount of incomplete, noisy, fuzzy and ran-
dom data [102]. Knowledge discovered from algorithms of data mining from large-
scale databases has great novelty, which is often beyond the experience of experts.
Its unique irreplaceability and complementarity has brought new opportunities for
decision-making. Access to knowledge through data mining has been of great con-
cern for business applications, such as business intelligence [158].

However, from the perspective of knowledge management, knowledge discovery
by data mining from large-scale databases face the following challenging problems.

First, the main purpose of data mining is to find hidden patterns as decision-
making support. Most scholars in the field focus on how to obtain accurate models

Y. Shi et al., Optimization Based Data Mining: Theory and Applications,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-0-85729-504-0_20, © Springer-Verlag London Limited 2011
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and pay much emphasis on the accuracy of data mining algorithms. They halt im-
mediately after obtaining rules through data mining from data and rarely go further
to evaluate or formalize the result of mining to support business decisions [146].
Specially speaking, a large quantity of patterns or rules may be resulted from data
mining. For a given user, these results may not be of interest and lack of novelty
of knowledge. For example, a data mining project that classifies users as “current
users, freezing users and lost users” through the use of decision tree classification
algorithm produced 245 rules. Except for their big surprise, business personnel can-
not get right knowledge from these rules [181]. The expression of knowledge should
be not limited to numbers or symbols, but also in a more understandable manner,
such as graphics, natural languages and visualization techniques. Knowledge ex-
pressions and qualities from different data mining algorithms differ greatly, and
there are inconsistencies, even conflicts, between the knowledge so that the expres-
sion can be difficult. The current data mining research in expressing knowledge
is not advanced. Hidden patterns obtained from data mining normally are just for
a certain moment. The real databases, nevertheless, are constantly changing over
time. It is hard to distinguish immediately to what extent the original knowledge
needs to be updated. Furthermore due to the diversification of data storages in any
organizations, a perfect data warehouse may not exist. It is difficult for data mining
results based on databases or data warehouses to reflect the integration of all aspects
of data sources. These issues lead to the situation that the data mining results may
not be genuinely interesting to users and can not be used in the real world. There-
fore, a “second-order” digging based on data mining results is needed to meet actual
decision-making needs.

Second, many data mining techniques ignore domain knowledge, expertise,
users’ intentions and situational factors [163]. Note that there are several differences
between knowledge and information. Knowledge is closely related to belief and
commitment and it reflects a specific position, perspective or intention. Knowledge
is a concept about operations and it always exists for “certain purposes”. Although
both knowledge and information are related to meaning, knowledge is in accordance
with the specific situation and acquires associated attributes [156, 235]. From the
culture backgrounds of knowledge, Westerners tend to emphasize on formal knowl-
edge, while Easterners prefer obscure knowledge. It is also believed that these dif-
ferent kinds of knowledge are not totally separated but complementary to each other.
In particular, they are closely linked in terms of how human and computer are in-
teracted in obtaining knowledge. Because of the complexity of knowledge structure
and the incrementality of cognitive process, a realistic knowledge discovery needs
to explore interactively different abstraction levels through human-computer inter-
action and then repeat many times. Keeping the necessary intermediate results in
data mining process, guiding role of human-computer interaction, dynamic adjust-
ing mining target, and users’ background knowledge, domain knowledge can speed
up the process of knowledge excavation and ensure the effectiveness of acquired
knowledge. Current data mining tools are unable to allow users to participate in
excavation processes actually, especially for second-order excavation. In addition,
both information and knowledge depend on specific scenarios, and they are relevant
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with the dynamic creation in humans’ social interaction. Berger and Luckmann [17]
argued that interacting people in certain historical and social scenario share infor-
mation derived from social knowledge. Patterns or rules generated from data mining
must be combined with specific business context in order to use in the enterprise.
The context here includes relevant physics, business and other externally environ-
mental and contextual factors, which also covers cognition, experience, psychology
and other internal factors of the subject. It is the key element to a complete under-
standing of knowledge, affecting people’s evaluation about knowledge. A rule may
be useful to enterprises in a certain context, for a decision maker, at a certain time,
but in another context it might be of no value. Therefore, context is critical for data
mining and the process of the data mining results. In the literature, the importance of
context to knowledge and knowledge management has been recognized by a num-
ber of researchers [28, 31, 56, 60, 90]. Though people rely on precise mathematical
expressions for scientific findings, many scientific issues cannot be interpreted by
mathematical forms. In fact in the real world, the results of data mining needs to
effectively combine with the company reality and some non-quantitative factors, in
particular, to consider the bound of specific context, expertise (tacit knowledge),
users’ specific intentions, domain knowledge and business scenarios, in order to
truly become actionable knowledge and support business decisions [240].

Third, data mining process stops at the beginning of knowledge acquisition. The
organizations’ knowledge creation process derived from data should use different
strategies to accelerate the transformation of knowledge in different stages of the
knowledge creation, under the guidance of organizational objectives. Then a spiral
of knowledge creation is formed, which creates conditions for the use of organiza-
tional knowledge and the accumulation of knowledge assets. At present, data mining
process only covers knowledge creation part in this spiral, but does not involve how
to conduct a second-order treatment to apply the knowledge to practical business,
so as to create value and make it as a new starting point for a new knowledge cre-
ation spiral. Therefore, it cannot really explain the complete knowledge creation
process derived from data. There is currently very little work in this area. In the on-
tology of data mining process, the discovered patterns are viewed as the end of the
work. Little or no work involving the explanation of knowledge creation process at
organizational level is studied in terms of implementation, authentication, internal
process of knowledge, organizational knowledge assets and knowledge recreation.
From the epistemological dimension, it lacks a deep study about the process of data–
information–knowledge–wisdom and the cycle of knowledge accumulation and cre-
ation is not revealed. A combination of organizational guides and strategies needs to
decide how to proceed with the knowledge guide at the organizational level so that
a knowledge creation process derived from data (beyond data mining process) and
organizational strategies and demands can be closely integrated.

Based on the above analysis, the knowledge or hidden patterns discovered from
data mining can be called “rough knowledge”. Such knowledge has to be examined
at a “second-order” in order to derive the knowledge accepted by users or organiza-
tions. In this paper, the new knowledge will be called “intelligent knowledge” and
the management process of intelligent knowledge is called intelligent knowledge
management. Therefore, the focus of the study has the following dimensions:
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• The object of concern is “rough knowledge”.
• The stage of concern is the process from generation to decision support of rough

knowledge as well as the “second-order” analysis of organizational knowledge
assets or deep-level mining process so as to get better decision support.

• Not only technical factors but also non-technical factors such as expertise, user
preferences and domain knowledge are considered. Both qualitative and quanti-
tative integration have to be considered.

• Systematic discussion and application structure are derived for the perspective of
knowledge creation.

The purposes of proposing intelligent knowledge management are:

• Re-define rough knowledge generated from data mining for the field of knowl-
edge management explicitly as a special kind of knowledge. This will enrich
the connotation of knowledge management research, promote integration of data
mining and knowledge management disciplines, and further improve the system
of knowledge management theory in the information age.

• The introduction of expertise, domain knowledge, user intentions and situational
factors and the others into “second-order” treatment of rough knowledge may
help deal with the drawbacks of data mining that usually pays too much emphasis
on technical factors while ignoring non-technical factors. This will develop new
methods and ideas of knowledge discovery derived from massive data.

• From the organizational aspect, systematic discussion and application framework
derived from knowledge creation based on massive data in this paper will further
strengthen and complement organizational knowledge creation theory.

20.2 Definitions and Theoretical Framework of Intelligent
Knowledge

20.2.1 Key Concepts and Definitions

In order to better understand intelligent knowledge intelligent knowledge manage-
ment, basic concepts and definitions are introduced in this subsection.

The research of intelligent knowledge management relates to many basic con-
cepts such as original data, information, knowledge, intelligent knowledge and in-
telligent knowledge management. It also associated with several relevant concepts
such as congenital knowledge, experience, common sense, situational knowledge
etc. In order to make the proposed research fairly standard and rigorous from the
beginning, it is necessary to give the definition of these basic concepts. Moreover,
the interpretation of these concepts may provide a better understanding of intrinsic
meanings of data, information, knowledge, and intelligent knowledge.

Definition 20.1 Data is a certain form of the representation of facts.
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The above definition that is used in this paper has a general meaning of “data”.
There are numerous definitions of data from different disciplines. For example, in
computing, data is referred to distinct pieces of information which can be translated
into a different form to move or process; in computer component or network en-
vironment, data can be digital bits and bytes stored in electronic memory; and in
telecommunications, data is digital-encoded information [217, 218]. In information
theory, data is abstractly defined as an object (thing) that has the self-knowledge
representation of its state and the state’s changing mode over time [251]. When it is
a discrete, data can be expressed mathematically a vector of n-dimensional possible
attributes with random occurrences. Without any physical or analytic processing to
be done, given data will be treated as “original” in this paper. Therefore, original
data is the source of processing other forms (such as information, rough knowledge,
intelligent knowledge and others). From the perspective of forms, the data here in-
cludes: text, multimedia, network, space, time-series data etc. From the perspective
of structure, the data includes: structured, unstructured and semi-structured data, as
well as more structured data which current data mining or knowledge discovery can
deal with. From the perspective of quantity, the data includes: huge amounts of data,
general data and small amounts of data etc. Data, judging from its nature, is only
the direct or indirect statements of facts. It is raw materials for people to understand
the world. Therefore, the characteristics of the original data here include: rough-
ness (original, roughness, specific, localized, isolated, superficial, scattered, or even
chaotic), extensive (covering a wide range), authenticity and manipulability (pro-
cess through data technology). After access to original data, appropriate processing
is needed to convert it into abstract and universal applicable information. Thus, the
definition of information is given as:

Definition 20.2 Information is any data that has been pre-processed to all aspects
of human interests.

Traditionally, information is the data that has been interpreted by human using
certain means. Both scientific notation and common sense share the similar con-
cepts of information. If the information has a numerical form, it may be measured
through the uncertainty of an experimental outcome [195], while if it cannot be rep-
resented by numerical form, it is assigned for an interpretation through human [59].
Information can be studied in terms of information overload. Shi [178] classified in-
formation overload by exploring the relationships between relevant, important and
useful information. However, Definition 20.2 used in this paper is directly for de-
scribing how to get knowledge from data where information is an intermediate step
between these two. It is assumed that the pre-processed data by either quantitative
or qualitative means can be regarded as information. Based on the concepts of data
and information, the definition of rough knowledge is presented as follows:

Definition 20.3 Rough knowledge is the hidden pattern or “knowledge” discovered
from information that has been analyzed by the known data mining algorithms or
tools.
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This definition is specifically made for the results of data mining. The data min-
ing algorithms in the definition means any analytic process of using artificial intel-
ligence, statistics, optimization and other mathematics algorithms to carry out more
advanced data analysis than data pre-processing. The data mining tools are any
commercial or non-commercial software packages performing data mining meth-
ods. Note that data pre-processing normally cannot bring a qualitative change of the
nature of data and results in information by Definition 20.2, while data mining is
advanced data analysis that discovers the qualitative changes of data and turns in-
formation into knowledge that has been hidden from human due to the massive data.
The representation of rough knowledge changes with a data mining method. For ex-
ample, rough knowledge from association method is rules, while it is a confusion
matrix for the accuracy rates by using a classification method. The purpose of defin-
ing data, information and rough knowledge is to view a general expression of data
mining process. This paper will call the process and other processes of knowledge
evolution as “transformations”. The transformation from data (or original data) to
rough knowledge via information is called the first transformation, denoted as T1.
Let KR stand for the rough knowledge and D denote as date.Then the first type of
transformation can be expressed as:

T1 : D → KR or KR = T1(D).

As it stands, T1 contains any data mining process that consists of both data pre-
processing (from data to information) and data mining analysis (from information to
rough knowledge). Here the main tasks of T1 can include: characterization, distinc-
tion, relevance, classification, clustering, outlier analysis (abnormal data), evolution
analysis, deviation analysis, similarity, timing pattern and so on. Technologies of T1
include extensively: statistical analysis, optimization, machine learning, visualiza-
tion theory, data warehousing, etc. Types of rough knowledge are potential rules,
potential classification tags, outlier labels, clustering tags and so on.

Characteristics of rough knowledge can be viewed as:

(i) Determined source: from results of data mining analysis.
(ii) Part usability: the possibility of direct support for business may exist, but most

can not be used directly.
(iii) Rough: without further refinement, rough knowledge contains much redundant,

one-sided or even wrong knowledge. For example, the knowledge generated
from over-training has high prediction accuracy rate about the test set, but the
effect is very poor.

(iv) Diversity: knowledge needs to be shown by a certain model for decision-
making reference. There are many forms of rough knowledge, for instance,
summary description, association rules, classification rules (including decision
trees, network weights, discriminant equations, probability map, etc.), cluster-
ing, formulas and cases and so on. Some representations are easy to understand,
such as decision trees, while some manifestations have poor interpretability,
such as neural networks.

(v) Timeliness: compared with humans’ experience, rough knowledge derives
from data mining process in a certain time period, resulting in short cycle. It



20.2 Definitions and Theoretical Framework of Intelligent Knowledge 283

may degrade in the short term with environmental changes. In addition, there
are conflicts sometimes between the knowledge generated from different peri-
ods. As a result, as the environment changes the dynamic adaptability can be
poor.

While rough knowledge is a specific knowledge derived from the analytic data
mining process, the human knowledge has extensively been studied in the field of
knowledge management. The item knowledge has been defined in many different
ways. It is generally regarded as individual’s expertise or skills acquired through
learning or experience [220]. In the following, knowledge is divided as five cate-
gories in terms of the contents. Then, these terms can be incorporated into rough
knowledge from data mining results for our further discussion on intelligent knowl-
edge.

Definition 20.4 Knowledge is called specific knowledge, denoted by KS if the
knowledge representations by human through the certain state and rules of an object.

Specific knowledge is a cognitive understanding of certain objects and can be
presented by its form, content and value [251]. Specific knowledge has a strict
boundary in defining its meanings. Within the boundary, it is knowledge; otherwise,
it is not [234].

Definition 20.5 Knowledge is called empirical knowledge, denoted by KE if it di-
rectly comes from human experience gained empirical testing.

Note that the empirical testing in Definition 20.5 is referred to specifically non-
technical, but practical learning process from which human can gain experience. If
it is derived from statistical learning or mathematical learning, knowledge is already
defined as rough knowledge of Definition 20.2. Empirical testing here can be also
referred as intermediate learning, such as reading from facts, reports or learning
from other’s experiences. When these experiences are confirmed through a scientific
learning, they will become “knowledge”. Otherwise, they are still “experiences”
[251].

Definition 20.6 Knowledge is called common sense knowledge, denoted as KC if it
is well known and does not need to be proved.

Common sense is the facts and rules widely accepted by most of humans. Some
knowledge, such as specific knowledge or empirical knowledge can become com-
mon sense as they are gradually popularized. Therefore, it is also called “post-
knowledge” [251].

Definition 20.7 Knowledge is called instinct knowledge, denoted by KH if it is
innate as given functions of humans.
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Instinct knowledge is heritage of humans through the biological evolution and
genetic process. It does not need to be studied and proved. If instinct knowledge is
viewed as a “root” of the knowledge mentioned above, then a “knowledge ecosys-
tem” can be formed. In the system, instinct knowledge first can be changed into
empirical knowledge after training and studying. Then, if empirical knowledge is
scientifically tested and confirmed, it becomes specific knowledge. As the popular-
ity of specific knowledge develops, it is common sense knowledge. However, the
system is ideal and premature since the creation of human knowledge is quite com-
plex and could not be interpreted as one system [251].

Definition 20.8 Knowledge is called situational knowledge, denoted as KU if it is
context.

The term context in this paper, associated with knowledge and knowledge ac-
tivities, is relevant to conditions, background and environment. It includes not only
physical, social, business factors, but also the humans’ cognitive knowledge, expe-
rience, psychological factors.

Situational knowledge or context has the following characteristics:

(i) It is an objective phenomenon which exists widely, but not certain whether it
is fully aware of or not.

(ii) It is independent of knowledge and knowledge process, but keeps a close inter-
acts with knowledge and knowledge process.

(iii) It describes situational characteristics of knowledge and knowledge activities.
Its function is to recognize and distinguish different knowledge and knowledge
activities. To humans, their contexts depict personal characteristics of one en-
gaging in intellectual activities [159].

Based on the above definitions of different categories of knowledge, a key defi-
nition of this chapter is given as:

Definition 20.9 Knowledge is called intelligent knowledge, denoted as KI if it is
generated from rough knowledge and/or specific, empirical, common sense and sit-
uational knowledge, by using a “second-order” analytic process.

If the data mining is said as the “first-order” analytic process, then the “second-
order” analytic process here means quantitative or qualitative studies are applied
to the collection of knowledge for the pre-determined objectives. It can create
knowledge, now intelligent knowledge, as decision support for problem-solving.
The “second-order” analytic process is a deep study beyond the usual data min-
ing process. While data mining process is mainly driven by a series of procedures
and algorithms, the “second-order” analytic process emphasizes the combinations
of technical methods, human and machine interaction and knowledge management.

Some researchers in the field of data mining have realized its importance of
handling the massive rules or hidden patterns from data mining [170, 213, 222].
However, they did not connect the necessary concepts from the filed of knowledge
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management in order to solve such a problem for practical usage. Conversely, re-
searchers in knowledge management often ignore rough knowledge created outside
humans as a valuable knowledge base. Therefore, as to bridge the gap of data min-
ing and knowledge management, the proposed study on intelligent knowledge in the
paper is new.

As discussed above, the transformation form information to rough knowledge T1
is essentially trying to find some existing phenomenological associations among
specific data. T1 is some distance away from the knowledge which can support
decision-making in practice. The “second-order” analytic process to create intel-
ligent knowledge from available knowledge, including rough knowledge, can be
realized in general by transformation, defined as follows:

T2 : KR ∪ K → K1 or K1 = T2(KR ∪ K),

where K = ρ(KS,KE,KC,KH ,KU) is a power set.
The above transformation is an abstract form. If the results of the transformation

are written in terms of the components of intelligent knowledge, then the following
mathematical notations can be used:

(i) Replacement transformation: KI = KR ;
(ii) Scalability transformation: KI = αKR , where −∞ < α < +∞;

(iii) Addition transformation: KI = KR + KI ;
(iv) Deletion transformation: KI = KR − KI ;
(v) Decomposition transformation:

KI = α1KR1 + α2KR2 + α3KR3 + · · · , where − ∞ < α < +∞.

In the above, replacement transformation is a special case of scalability transfor-
mation, and they, together with addition and deletion transformations are parts of
decomposition transformation.

The coefficients of {α1, α2, α3, . . .} in the decomposition represent the compo-
nents of K = ρ(KS,KE,KC,KH ,KU) distributed in the knowledge creation pro-
cess.

The intelligent knowledge has the following characteristics:

(i) The process of intelligent knowledge creation fully integrates specific context,
expertise, domain knowledge, user preferences and other specification knowl-
edge, and makes use of relevant quantitative algorithms, embodying human-
machine integration principle.

(ii) Since intelligent knowledge is generated from the “second-order” analytic pro-
cess, it is more valuable than rough knowledge.

(iii) It provides knowledge to people who need them at the right time, under appro-
priate conditions.

(iv) The objective of intelligent knowledge is to provide significant inputs for
problem-solving and support strategic action more accurately.

To explore more advanced issues in the meaning of knowledge management,
intelligent knowledge can be further employed to construct a strategy of problem-
solving by considering goal setting, specific problem and problem environment.
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Restricted by the given problem and its environmental constraints, aiming at the
specific objectives, a strategy of solving the problem can be formed based on related
intelligent knowledge. To distinguish the strategy that has be used in different fields,
the strategy associated with intelligent knowledge is called intelligent strategy.

If P is defined as the specific problems, E is for problem solving environment
and G is goal setting, then the information about issues and environment can be
expressed as I (P,E). Given intelligent knowledge KI , an intelligent strategy S is
another transformation, denoted as:

T3 : KI × I (P,E) × G → S or S = T3(KI × I (P,E) × G).

Transformation T3 differs from T2 and T1 since it relates to forming an intelligent
strategy for intelligent action, rather than finding knowledge. Achieving the trans-
formation from intelligent knowledge to a strategy is the mapping from a product
space of KI × I (P,E) × G to strategy space S.

Action usually refers to the action and action series of humans. Intelligent action
(a high level transformation) is to convert an intelligent strategy into actionable
knowledge, denoted as T4:

T4 : S → KA, or KA = T4(S).

Term KA is denoted as actionable knowledge. Some KA can ultimately become
intangible assets, which is regarded as “wisdom” [235]. For example, much action-
able knowledge produced by great military strategists in history gradually formed as
wisdom of war. A smart strategist should be good at using not only his/her action-
able knowledge, but also the wisdom from history [156]. When processing qualita-
tive analysis in traditional knowledge management, people often pay more attention
to how intelligent strategy and actionable knowledge generated from tacit knowl-
edge and ignore their source of quantitative analysis, where intelligent knowledge
can be generated from combinations of data mining and human knowledge. Intelli-
gent strategy is its inherent performance, while actionable knowledge is its external
performance. Transformation T4 is a key step to produce actionable knowledge that
is directly useful for decision support. Figure 20.1 is the process of transformations
from data to rough knowledge, to intelligent knowledge and to actionable knowl-
edge.

The management problems of how to prepare and process all of four transforma-
tions leads to the concept of intelligent knowledge management:

Definition 20.10 Intelligent knowledge management is the management of how
rough knowledge, human knowledge can be combined and upgraded into intelli-
gent knowledge as well as management issues regarding extraction, storage, shar-
ing, transformation and use of rough knowledge so as to generate effective decision
support.

Intelligent knowledge management proposed in this paper is the interdisciplinary
research field of data mining and knowledge management. One of frameworks can
be shown as Fig. 20.2.
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Fig. 20.1 Data→ Rough
knowledge → Intelligent
knowledge → Actionable
knowledge

Fig. 20.2 A framework of Intelligent Knowledge Management (IKM)
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The features of intelligent knowledge management are as follows:

(i) The main source of intelligent knowledge management is rough knowledge
generated from data mining. The purpose of doing this is to find deep-seated
knowledge and specifically to further discover relationships on the basis of
existing relationships.

(ii) Intelligent knowledge management realizes decision support better, so as to
promote the practicality of knowledge generated from data mining, reduce in-
formation overload and enhance the knowledge management level.

(iii) Intelligent knowledge management can be used to build organization-based
and data-derived knowledge discovery projects, realizing the accumulation and
sublimation of organizational knowledge assets.

(iv) It is a complex multi-method and multi-channel process. The technical and
non-technical factors, as well as specification knowledge (expertise, domain
knowledge, user preferences, context and other factors) are combined in the
process of intelligent knowledge management. As a result, the knowledge
found should be effective, useful, actionable, understandable to users and in-
telligent.

(v) Essentially, intelligent knowledge management is the process of combining
machine learning (or data mining) and traditional knowledge management, of
which the key purpose is to acquire rightful knowledge. The study source is
knowledge base and the study means is combinations of inductive and deduc-
tive approaches. Ultimately not only the fact knowledge but also the relation-
ship knowledge can be discovered. It is closely related to the organization of
knowledge base and ultimate knowledge types that users seek. Adopted rea-
soning means may involve many different logical fields.

20.2.2 4T Process and Major Steps of Intelligent Knowledge
Management

As the leading representative of knowledge creation process derived from experi-
ence, the Japanese scholar Nonaka proposed SECI model of knowledge creation,
the value of the model is given in Fig. 20.3 [156].

This model reveals that through externalization, combination and internalization,
highly personal tacit knowledge ultimately becomes organizational knowledge as-
sets and turns into tacit knowledge of all the organizational members. It accurately
shows the cycle of knowledge accumulation and creation. The concept of “Ba”
means that using different strategies in various stages of knowledge transformation
can accelerate the knowledge creation process. It can greatly enhance the efficiency
and operating performance of enterprises’ knowledge innovation. It also provides
an organizational knowledge guide so that the process of knowledge creation and
organizational strategies and demands can be integrated closely.

The SECI model can be adopted for explaining the process of intelligent knowl-
edge management, especially the 4T process of transformation including data–rough
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Fig. 20.3 Knowledge creation as the self-transcending process, source: [156]

knowledge–intelligent knowledge–actionable knowledge. From the organizational
aspect, knowledge creation derived from data should be the process of knowledge
accumulation like a spiral, which is shown in Fig. 20.4.

The transformation process includes:

• T1 (from data to rough knowledge): after the necessary process of processing and
analyzing original data, the preliminary result (hidden Pattern, rules, weights,
etc.) is rough knowledge, as a result from a kind of primary transformation.

• T2 (from rough knowledge to intelligent knowledge): on the basis of rough knowl-
edge, given user preferences, scenarios, domain knowledge and others, the pro-
cess carries out a “second-order” mining for knowledge used to support intelligent
decision-making and intelligent action. The process carries out deep processing
of the original knowledge, which is the core step in intelligent knowledge man-
agement.

• T3 (from intelligent knowledge to intelligent strategy): in order to apply intel-
ligent knowledge in practice, one must first convert intelligent knowledge into
intelligent strategy through consideration of problem statement and solving envi-
ronment. It is the process of knowledge application.

• T4 (from intelligent strategy to actionable knowledge): once actionable knowl-
edge is obtained, it can be recoded as “new data”, which are either intangible
assets or wisdom can be used as data source for decision support. The new pro-
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Fig. 20.4 Transformation
process of Data–Rough
knowledge–Intelligent
knowledge–Actionable
knowledge

cess of rough knowledge–intelligent knowledge–actionable knowledge begins.
However, the new round of knowledge discovery is a higher level of knowledge
discovery on the basis of existing knowledge.

Therefore, it is a cycle, spiraling process for the organizational knowledge cre-
ation, and from the research review, the current data mining and KDD would often
be halted when it is up to stage T3 or T4, leading to the fracture of spiral, which is
not conducive to the accumulation of knowledge.

It also needs to be noted that in this process, different stages require different
disciplines and technologies to support. Stage T1 generally focuses on technical
factors such as computer and algorithms, while stage T2 needs expertise, domain
knowledge, user preferences, scenarios, artificial intelligence for constrain and sup-
port. Stage T3 needs a higher level of expertise to make it into actionable knowledge
or even the intelligence. Stage T4 generates new data primarily by computers, net-
works, sensors, records, etc. However, technical factors and non-technical factors
are not totally separate, but the focus should be different at different stages.

20.3 Some Research Directions

Intelligent knowledge management can potentially be a promising research area that
involves interdisciplinary fields of data technology, knowledge management, system
science, behavioral science and computer science. The feature of intelligent knowl-
edge management research is shown in Fig. 20.5. There are a number of research
directions remaining to be explored. Some of them can be described as below.



20.3 Some Research Directions 291

Fig. 20.5 Interdisciplinary feature of intelligent knowledge management

20.3.1 The Systematic Theoretical Framework of Data Technology
and Intelligent Knowledge Management

Related to the above issues discussed in this paper, a general term, data technology,
is used to capture a set of concepts, principles and theories of quantitative method-
ologies to analyze and transform data to information and knowledge. In accordance
with the principles of system science, the following issues need to be raised and
studied in the future:

(a) How to classify, describe and organize known data technologies, including data
mining, artificial intelligence, statistics and others based on the treatment ca-
pacity and characteristics. How to effectively use the results of data mining as
rough knowledge to discuss the logical relationship between intelligent knowl-
edge and traditional knowledge structure? How to establish the mathematical
model about intrinsic links between data technology and intelligent knowledge?
These can be used to explain the characteristics of intelligent knowledge gener-
ated from the results of data analysis.

(b) From the perspective of knowledge creation derived from data, how to study
the process of knowledge creation, establish knowledge creation theory de-
rived from data and build a systematic framework of data mining and intelligent
knowledge management.

As a class of “special” knowledge, the process management theory including ex-
traction, transformation, application, innovation of intelligent knowledge in specific
circumstances should be studied. In the study, not only knowledge itself, but also
the tacit knowledge of decision-makers and users and other non-technical factors,
such as domain knowledge, user preferences, scenarios, etc. should be considered.
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In addition, artificial intelligence, psychology, complex systems, integrated integra-
tion as well as some empirical research methods should be employed to understand
the systematic framework.

20.3.2 Measurements of Intelligent Knowledge

Finding appropriate “relationship measurement” to measure the interdependence
between data, information and intelligent knowledge is a challenging task. This re-
search on appropriate classification and expression of intelligent knowledge may
contribute to the establishment of the general theory of data mining, which has been
long-term unresolved problem.

The classification and evaluation of intelligent knowledge include analyzing fea-
tures of intelligent knowledge generated from data mining, classifying intelligent
knowledge, selecting appropriate indicators for different types of intelligent knowl-
edge to do the effectiveness evaluation, and building a classification and evaluation
system of intelligent knowledge.

In measure of intelligent knowledge, the theory and methods of subjective and
objective measure of intelligent knowledge should be studied. From the point of
view of distinction capacity, the mathematical method of the measurement for in-
telligent knowledge value should be more carefully studied. Measure is a “relation-
ship”. The establishment of intelligent knowledge measures can be very challeng-
ing.

Given applied goals and information sources, what data mining system must do
is to evaluate the validity of intelligent knowledge structure. Results of the evalua-
tion should not only quantify the usefulness of the existing intelligent knowledge,
but also decide whether there is a need for other intelligent knowledge. The ex-
ploring of this area needs three aspects to conduct an in-depth study: (1) analysis
of intelligent knowledge complexity; (2) analysis of the correlation between intel-
ligent knowledge complexity and model effectiveness; (3) analysis of across het-
erogeneous intelligent knowledge effectiveness. In short, how to identify the results
from data mining, and how to accurately measure the valuable intelligent knowledge
and evaluate the quality of intelligent knowledge management are key issues of the
application of knowledge management. The research of this area (Benchmark of
Data Mining and Intelligent Knowledge) still remains unexplored, in need of deep
exploration.

Furthermore, intelligent knowledge is viewed as a class of “special” knowledge,
and the meaning and structure in mathematics and management of its preservation,
transformation and application can be further studied.

The link between intelligent knowledge and intelligent action, intelligent
decision-making and action, and how to apply intelligent knowledge to improve
decision-making intelligence and decision-making efficiency can be interested re-
search issues.
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20.3.3 Intelligent Knowledge Management System Research

Based on the framework of the relevance and features of the intelligent knowledge
management system, management information system and knowledge management
system in this paper, both data mining and intelligent knowledge management are
used to support enterprise management decision-making. For different industries,
such as finance, energy policy, health care, communications, auditing with large-
scale data infrastructures, an intelligent knowledge management system can be es-
tablished, through the integration of data mining and intelligent knowledge manage-
ment, to improve their knowledge management capability and overall competitive-
ness.
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