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Preface

The theory of nonadditive set functions and relevant nonlinear integrals,
as a new mathematics branch, has been developed for more than thirty
years. Starting from the beginning of the nineties of the last century,
several monographs were published. The first author of this monograph
and Professor George J. Klir (The State University of New York
at Binghamton) have published two books, Fuzzy Measure Theory
(Plenum Press, New York, 1992) and Generalized Measure Theory
(Springer-verlag, New York, 2008) on this topic. These two books
cover most of their theoretical research results with colleagues at the
Chinese University of Hong Kong in the area of nonadditive set
functions and relevant nonlinear integrals. Since the 1980s, nonadditive
set functions and nonlinear integrals have been successfully applied in
information fusion and data mining. However, only a few applications
are involved in the above-mentioned books. As a supplement and in-
depth material, the current monograph, Nonlinear Integrals and Their
Applications in Data Mining, concentrates on the applications in data
analysis. Since the number of attributes in any database is always finite,
we focus on our fundamentally theoretical discussion of nonadditive set
function and nonlinear integrals, which are presented in the first several
chapters, on the finite universal set, and abandon all convergence and
limit theorems.

As for the terminology adopted in the current monograph, words like
monotone measure is used for a set function that is nonnegative,
monotonic, and vanishing at the empty set. It has no fuzziness in the
meaning of Zadeh’s fuzzy sets. Unfortunately, its original name is fuzzy
measure in literature. Word “fuzzy” here is not proper. For example,

vii



viii Preface

words “fuzzy-valued fuzzy measure defined on fuzzy sets” causes
confusion to some people. Such a revision is the same as made in book
Generalized Measure Theory. However, in this monograph, we prefer to
use efficiency measure to name a set function that is nonnegative and
vanishing at the empty set, rather than using general measure. This is
more convenient and intuitive, and leaves more space for further
generalizing the domain or the range of the set functions. Hence, similar
to the classical case in measure theory [Halmos 1950], the set functions
that vanish at the empty set and may assume both nonnegative and
negative real values are naturally named as signed efficiency measures.
The signed efficiency measures were also called non-monotonic fuzzy
measures by some scholars. Since, in general, the efficiency measures
are non-monotonic too, to distinguish the set functions satisfying only
the condition of vanishing at the empty set from the efficiency measures
and to emphasize that they can assume both positive and negative values
as well as zero, we prefer to use the current name, signed efficiency
measures, for this type of set functions with the weakest restriction.
Thus, in this monograph, we discuss and apply three layers of set
functions named monotone measures, efficiency measures, and signed
efficiency measures respectively.

The contents of this monograph have been used as the teaching
materials of two graduate level courses at the University of Nebraska at
Omaha since 2004. Also, some parts of this monograph have been
provided to a number of master degree and Ph.D. degree graduate
students in the University of Nebraska at Omaha, the University of
Nebraska at Lincoln, the Chinese University of Hong Kong, and the
Chinese Academy Sciences, for preparing their dissertations.

This monograph may benefit the relevant research workers. It is also
possible to be used as a textbook of some graduate level courses for both
mathematics and engineering major students. A number of exercises on
the basic theory of nonadditive set functions and relevant nonlinear
integrals are available in Chapters 2—-5 of the monograph.

Several former graduate students of the first author provided
some algorithms, examples, and figures. We appreciate their valuable
contributions to this monograph. We also thank the Department of
Computer Science and Engineering of the Chinese University of Hong
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Kong, the Department of System Science and Industrial Engineering
of the State University of New York at Binghamton and, especially,
the Department of Mathematics, as well as the Art and Science College
of the University of Nebraska at Omaha for their support and help.

Zhenyuan Wang
Rong Yang
Kwong-Sak Leung
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Chapter 1

Introduction

The traditional aggregation tool in information treatment is the weighted
average, or more general, the weighted sum. That is, if the numerical
information received from diverse information sources x;,x,,---, X,
are  f(x)), f(x,),--, f(x,) respectively, then the synthetic amount,
weighted sum y, of the information is calculated by

yEwfa) +wy f () +etw, f(x,) (L.

where wy, w,,---, w, are the weights of x,,x,,-:-, x,, respectively.
When 0<w, <1 for i=1,2,---,n and X! ,w, =1, the weighted sum
shown in (1.1) is called the weighted average. In databases, these
information sources x,x,,---,x, are regarded as attributes and
f(x), f(xy),--, f(x,) are their observations (or say, their records),
respectively. An observation can be considered as a function defined on
the finite set consisting of these involved information sources. Thus, the
weighted sum, essentially, is the Lebesgue integral defined on the set of
information sources and is a linear aggregation model. The linear models
have been widely applied in information fusion and data mining, such as
in multiregression, multi-objective decision making, classification,
clustering, Principal Components Analysis (PCA), and so on. However,
using linear methods need a basic assumption that there is no interaction
among the contributions from individual attributes towards a certain
target, such as the objective attribute in regression problems or the
classifying attribute in classification problems. This interaction is totally
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2 Nonlinear Integrals and Their Applications in Data Mining

different from the correlationship in statistics. The latter is used to
describe the relation between the appearing values of two considered
attributes and is not related to any target attribute.

To describe the interaction among contributions from attributes
towards a certain target, the concept of nonadditive set functions, such as
A-measures (called A-fuzzy measure during the seventies and eighties of
the last century), belief measures, possibility measures, monotone
measures, and efficiency measures have been introduced. The systematic
investigation on nonadditive set functions started thirty five years ago. At
that time, they were called fuzzy measures. Noticeably, the traditional
aggregation tool, the weighted sum, fails when the above-mentioned
interaction cannot be ignored and some new types of integrals, such as
the Choquet integral, the upper integral and the lower integral, should be
adopted. In general, these integrals are nonlinear and are generalizations
of the classical Lebesgue integral in the sense that they coincide with the
Lebesgue integral when the involved nonadditive measure is simply
additive. The fuzzy integral, which was introduced in 1974, is also a
special type of nonlinear integrals with respect to so-called fuzzy
measures. Since the fuzzy integral adopts the maximum and minimum
operators, but not the common addition and the common multiplication,
most people do not prefer to use the fuzzy integral in real problems.
Currently, the most common nonlinear integral in use is the Choquet
integral. It has been widely applied in information fusion and data
mining, such as the nonlinear multiregressions and the nonlinear
classifications, successfully. However, the corresponding algorithms are
relatively complex. Only the traditional algebraic methods are not
sufficient to solve most data mining problems based on nonlinear
integrals. Some newly introduced soft computing techniques, such as the
genetic algorithm and the pseudo gradient search, which are presented in
Chapter 7 of this monograph, must be adopted.

In most real problems, there are only finitely many variables. For
example, in any real database, there are only finitely many attributes. So,
the part of fundamental theory in this monograph is focused on the
discussion of the nonadditive set functions and the relevant nonlinear
integrals defined on a finite universal set. The readers who are interested
in the convergence theorems of the function sequences and integral
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sequences with respect to nonadditive set functions may refer to
monographs Fuzzy Measure Theory (Plenum press, New York, 1992)
and Generalized Measure Theory (Springer-verlag, New York, 2008).

The current monograph consists of eleven chapters, After the
Introduction, Chapters 2 to 5 devote to the fundamental theory on sets,
fuzzy sets, set functions, and integrals. Chapters 6 to 11 discuss the
applications of the nonlinear integrals in information fusion and data
mining, as well as the relevant soft computing techniques. The relation
among these chapters is illustrated in Figure 1.1.

Chapter 1

|

Chapter 2

|

Chapter 4

'

Chapter 5

Chapter 3 <

|

|

Chapter 6

Chapter 7

!

|

Chapter 8

|

Chapter 9

|

Chapter 10

|

Chapter 11

Fig. 1.1 The relation among chapters.




Chapter 2

Basic Knowledge on Classical Sets

2.1 Classical Sets and Set Inclusion

A set is a collection of objects that are considered in a particular
circumstance. Each object in the set is called a point (or an element) of
the set. Usually, sets are denoted by capital English letters such as 4, B,
E, F, U, X; while points are denoted by lower case English letters such as
a, b, x, y. As some special sets, the set of all real numbers is denoted by R,
and the set of all nonnegative integers is denoted by V. For any given set
and any given point, the point either belongs to the set or does not belong
to the set. “Point x helongs to set A” is denoted as x € 4. In this case, we
also say “A contains x” or “x is in A”. “Point x does not belong to set A”
is denoted as x ¢ A4 . For this, we may also say “A does not contain x” or
“x is notin A”.

The set consisting of all points considered in a given problem is
called the universal set (or the universe of discourse) and is denoted by X
usually. The set consisting of no point is called the empty set and denoted
by . Any set is called a nonempty set if it is not empty, i.e., it contains
at least one point. A set consisting of exactly one point is called a
singleton. Any set of sets is called a c/ass. The class consisting of no set
is the empty class. It is, in fact, the same as the empty set.

A set can be presented by listing all points (without any duplicates)
belonging to this set or by indicating the condition satisfied exactly by
the points in this set. For example, the set consisting of all nonnegative
integers not larger than 5 can be expressed as {0,1,2,3,4} or
{x|0<x<5,xeN}.
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It should be emphasized that any set should not contain some
duplication of a point. For instance, {2,1,2,3} is not a proper notation
of a set since integer 2 appears in the pair of braces twice. After deleting
the duplication (but keeping only one of them), {2,1,3} is a legal
notation of the set consisting of integers 1, 2, and 3. The appearing order
of points in the notation of sets is not important. For instance, {2, 1,3}
and {1,2,3} denote the same set that consists of integers 1, 2, and 3.

Sets can be used to describe crisp concepts. Also, they represent
events in probability theory.

Definition 2.1 Set 4 is included by set B, denotedby A< B or B2 A4
iff xe A implies x e B. In this case, we also say “B includes A” or “A
is a subset of B”.

Example 2.1 In an experiment of randomly selecting a card from a
complete deck consisting of 52 cards, there are 52 outcomes. Let the
universal set X be the set of these 52 outcomes. Equivalently, X can be
regarded as the set of these 52 cards directly. Event “the selected card is
a heart”, denoted by H, is a subset of X. We can write H = {hearts} ¢ X
simply if there is no confusion. Here, set H describes crisp concept of
suit “heart”.

Obviously, in a given problem, any set A4 is included by X, i.e.,
A c X, while the empty set is included by any set 4, i.e., D 4.

Definition 2.2 Set 4 is equal to set B, denoted by A=B, iff AcB
and Bc A.If A isnotequal to B, we write A# B.

Definition 2.3 If set 4 is a subset of set B and 4# B (i.e., IxeB
such that x¢ A), then A is called a proper subset of B and we write
AcCB.

Definition 2.4 Given set 4, function y,: X — {0,1} defined by
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1, ifxed

xX)= Vxe X
Zal) {0, ifxed

is called the characteristic function of A.

It is easy to know that A4=B iff y,=yxz (e,
74(x0)=yp(x),VxeX ) and AcCB iff y <y (i.e.,
24 yp(x) or yu(x)=1=yp(x)=1,Vxe X ). Similarly, 4c B
iff y, < yp and there exists at least one point x in X such that xe B
but xe¢d (e, yyx)<yp(x) and IxeX such that

xp(X)=1, x,4(x)=0).

Example 2.2 Let X be the set of all real numbers, i.e., X = R. Interval
[1,2] is asubset of interval [1, 5). We have

I, ifl<x<2

0, otherwise ’

2

A1, 2](x) Z{

) I, if1<x<5
x)= ,
1.s) 0, otherwise

and 21121 < X1.5)-

Example 2.3 Let X ={a,b,c}, A={a}, and B={b}. Then, neither
Ac B nor Bc A.Infact, we have

1, if x=a

X4(x) :{

0, if x#a’

1, if x=b

ZB(X):{O, it x#b
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and neither y, < yp nor yp<y,.

2.2 Set Operations

Let X be the universal set, and let 4 and B be subsets of X.

Definition 2.5 The union of A and B, denoted by AU B, is the set
consisting of all points that belong to either 4 or B (may be both). That is,
AUB={x|xeAorxeB}.

Definition 2.6 The intersection of A and B, denoted by 4N B, is the set
consisting of all points that belong to both 4 and B. That is,
ANB={x|xeAandxe B} .

Definition 2.7 The complement of 4, denoted by A , is the set consisting
of all points that do not belong to 4. Thatis, A ={x|x¢g 4}.

Corresponding to the characteristic functions, we have

XauB=X4N XB>

AanB = X4 NXB>
and
X1= 1- X4
where symbols “v 7 and “A ™ are used to denote the maximum and the

minimum operators for real numbers respectively, that is,
avb=max(a,b) and aAb=min(a,b) for any real numbers a and b.

Definition 2.8 Two sets 4 and B are disjoint iff ANB=0.

Example 2.4 Rolling a regular die once, the outcome may be any one
among 1, 2,3, 4, 5,and 6. Let X ={1,2,3,4,5,6}. Event “obtaining an
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even number”, denoted by A, is a subset of X,
A={2,4,6}c{l,2,3,4,5,6}. Event “obtaining a number less than 4”,
denoted by B, is also a subset of X, i.e., B={1,2,3} c{1,2,3,4,5,6}.
Then, we have AUB={1,2,3,4,6}, AnB={2},and 4=1{1,3,5}.

The subsets of X with set operations union, intersection, and
complement have the properties listed in the following Theorem. The
proof of the theorem is directly from the definitions 2.5-2.7 and is

omitted.

Theorem 2.1 The operations of union, intersection, and complement of

sets satisfy the following laws.

Involution law:
Commutative laws:
Associative laws:
Distributive laws:
Idempotent laws:
Absorption laws:
Domination laws:
Identity laws:

De Morgan’s laws:

Law of excluded middle:
Law of contradiction:

The subsets of X with operators union, intersection, and complement

A=A

AuB=BuUA4
Au(BuUC)=(AuB)UC
AN(BNC)=(ANnB)NC
AN(BUC)=(ANnB)u(4AnC)
AUBNC)=(AUB)N(AUC)
AuA=A4

AnA=A4

Au(AnB)=4
AN(AuB)=A4

AuvX =X

AND =

Avd=A4

ANnX =4

AUB=A4NB

ANB=AUB

Aud=X

ANA=D

form a class so-called Boolean algebra.
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Beyond the union, the intersection, and the complement, there are
more set operations that can be defined. Among them, one useful set
operation is the difference defined as follows.

Definition 2.9 The difference of A and B, denoted by A— B, is the set
consisting of all points that belong to A4 but not to B. That is,
A-B={x|xeAandx ¢ B}.

The difference is not symmetric with respect to sets 4 and B generally,
that is, A—B#B—A, except 4=B. Thus, we may define another
kind of difference for two given sets as follows.

Definition 2.10 The symmetric difference of A and B, denoted by A4AB,
is the set consisting of all points that belong to exactly one of 4 and B.
Thatis, AAB={x|xe A—BorxeB—-A4}.

For the symmetric difference, we have AAB = BAA for any sets 4
and B.

Example 2.5 Using X, 4, and B in Example 2.4, we have A4-B ={4, 6},
AAB={1,3,4,6},

By using De Morgan’s law AUB=ANB , we can express the
union in terms of the intersection and the complement as follows:

AUB=ANB.

Similarly, by using De Morgan’s law AnB=A4 UB , we can express
the intersection in terms of the union and the complement as well:

ANB=AUB.

The difference can be expressed in terms of the intersection and the
complement, that is, 4—B=A4nN B . The symmetric difference of 4 and
B can be expressed by the other operations:
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AAB=(A-B)U(B—A)=(ANB)U(BNA)
=(AUB)-(ANB)=(AUB)N (4 UB)

So, we have only two basic set operators: either the intersection and
the complement, or the union and the complement.

2.3 Set Sequences and Set Classes

A mapping from the set of positive integers (or the set of first n positive
integers) to the power set of the universal set X is called a set sequence
(or a finite set sequence, respectively) and denoted by {4;} simply,
where 4; is the i-th term of the set sequence. It should be emphasized
that {4;} cannot be regarded as a set of sets since 4;’s are allowed to
be repeated but a set is not allowed to have any duplicate of elements.

The union and the intersection can be extended for more than two sets.
The union of sets 4,, 4,,--,and 4,, is denoted by 4 U4, U---U4,,
simply, U., 4 . Similarly, their intersection 1is denoted by
4 N4, N---NnA4, or N, 4; . Furthermore, considering infinitely many
subsets of X: 4, A4,, A4;,---, denoted by {4,}, their union and
intersection are defined as follows.

Definition 2.11 The union of {4}, denoted by U4, (or U; 4
simply if there is no confusion), is the set consisting of all points that
belong to A4; foratleastone i=1,2,---. Thatis,

[J4, ={x|xe 4, foratleastonei=1,2,-}.

i=1

Definition 2.12 Theintersection of {4;},denoted by N2, 4; (or (;4;
simply if there is no confusion), is the set consisting of all points that
belongtoall 4; for i=1,2,---. Thatis,
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(4 ={x|xe 4 foralli=1,2,--}.

i=1
As for their corresponding characteristic functions, we have

Ay, =SUP Xy,
i i

and

a4, :ir}f X4,

where sup and inf represent the supremum and infimum respectively (see
Section 2.6).

Definition 2.13 Set sequence {4} is disjoint iff A4, and A4, are
disjoint forany i#j, i,j=1,2,---.

When {4;} is disjoint,

Au4, = ZZA,. .

If we only consider finitely many (but more than one) sets 4,, 4,,
.-+, 4, , the above discussion on the characteristic functions is still valid.
We just need to let 4,,,=4,,=---=< in set sequence {A4}. Of

course, the above “sup” and “inf” become “max” and “min” respectively.

Definition 2.14 Set sequence {4;} is nondecreasing iff 4 c A, <---;
it is nonmincreasing iff A4 D4, o---. Both of them are said to be
monotonic.

If set sequence {4;} is monotonic, the above-mentioned “sup” and
“inf” for the characteristic functions become “lim”.



12 Nonlinear Integrals and Their Applications in Data Mining

Example 2.6 Let X be the set of all real numbers, i.e., X =R = (-0, ).
Taking A4; =[i,©), i=1,2,---, we know that {4;} is a nonincreasing
set sequence. Furthermore, (U2, 4, =[l,0)=4, and N2, 4, =T . We
also have lim; ,, ¥ 4, (x)=0 forevery real number x.

Furthermore, these discussions can be generalized again. Let
{4,}={4,|teT} be a family of sets where T is a nonempty index set.
We may define the union and the intersection of {4,} as well.

Definition 2.15 The union of {4, |teT}, denotedby U, s 4,, is the set
consisting of all points that belong to A4, for at least onez € T'. That is,
Uer 4, ={x|xe 4, foratleastone teT}.

Definition 2.16 The intersection of {4, |t€T}, denoted by .y 4,, is
the set consisting of all points that belong to all 4, for ze7 . That is,
N,er 4 ={x|xe A, forall teT}.

Generally, given class € we use U% and N% to denote sets
{x|xe Aforsome A€ @} and {x|xe A4forevery Ae €}, respectively.

When index set 7 is well ordered, such as 7 =[0,1], we can also use
the concepts of monotonicity.

Similar to the set sequences, for the corresponding characteristic
functions, we have

Xua, =SUP Xy,

teT teT

and
=inf .
N4, p X4,

tel

Thus, some laws discussed in Section 2.2 (Theorem 2.1) can be
generalized as follows.

Associative laws: UU4)= U 4

teT seS, s€ler S,
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N(N4)= [ 4

teT seS§, s€lU;er S;
Distributive laws: Bn(J4)=UJBn4,)
teT teT
Bu((4)=(\(BuUA4,)
teT teT
De Morgan’s laws: U4, =N4
teT teT
ﬂAt = UZt
teT teT

where S, and T are index sets and we take the convention that
U®:® and HQZX

For given nonempty class &, we say that @ is disjoint if 4 and B are
disjoint whenever 4, Be ¢ and A#B.

Similar to the set sequence, it is convenient to allow duplicate sets in
a class of sets sometimes.

2.4  Set Classes Closed Under Set Operations

Let X be the universal set. The class of all subsets of X, denoted by #(X),
is called the power set of X.

Definition 2.17 A nonempty class is called a ring, denoted by & iff
EFEOFe® and E—-Fe®R VE Fe %

In other words, a ring is a nonempty class closed under the formation
of unions and differences. Any ring is also closed under the formation of
intersection, i.e., ENF e ® VE, F € % In fact, the intersection can be
expressed in terms of difference: ENF=E—(E-F).

Example 2.7 The class of all finite subsets of X is a ring.
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Example 2.8 The class of all finite unions of bounded left closed right
open intervals is a ring.

Definition 2.18 A nonempty class is called a semiring, denoted by %, iff

() VE,Fe%, ENnFe%;

(2) VE,Fe & satisfying EcF , there exists a finite class
{Cy, Cy, -+, C,} of sets in %, such that E=CycCic---cC,=F
and D;=C,-C,1 %, Vi=12,---,n.

Example 2.9 The class consisting of all singletons and the empty set is a
semiring.

Example 2.10 The class of all bounded left closed right open intervals is
a semiring. Similarly, the class of all bounded left open right closed
intervals is also a semiring.

Definition 2.19 An algebra, denoted by .+, is a ring containing X.

Any algebra is closed under the formation of complements since the
complement of a set can be expressed by its difference from X.

Example 2.11 The class consists of all sets in a ring and their
complements is an algebra. Therefore, by Example 2.7, the class of all
finite subsets of X and their complements is an algebra.

Definition 2.20 A nonempty class is called a o-ring, denoted by %, iff

(1) VE.FeR,, E-FeR,;
(2) UE, eR;, when E e R, for j=1,2, ...

i=1

In other words, a o-ring is a nonempty class closed under the
formation of countable unions and differences. Also, we can say that a
o-ring is a ring closed under the formation of countable unions. Any
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o-ring is also closed under the formation of countable intersections. In
fact, any countable intersection can be expressed in terms of countable
unions and differences as follows:

1-

i=

Cs
s
s

Ai_ (

1J

| A,-4)).

l

1

Example 2.12 The class of all countable subsets of X is a o-ring.

Definition 2.21 A o-algebra (o-field), denoted by %, is a o-ring
containing X.

Any o-algebra is closed under the formation of any countable
(including finite) set operations that we have defined.

Example 2.13 The class of all countable subsets of X and their
complements is a o-algebra.

The power set of X is a o-algebra; any o-algebra is a o-ring as well as
an algebra; any o-ring or algebra is a ring; and any ring is a semi-ring.
These relations are illustrated in Figure 2.1.

o-Algebra

Fig. 2.1 Relations among classes of sets.
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For any given semiring .# there exists at least one set £ such that
Ee % Since E c E, for any finite class {C,,C,,---,C,} of sets in &
satisfying £=C,cC,c---cC, =E, we must have ¢, =C=---=C,=E,
such that D,=C;, —C,_, =& . This means that the empty set belongs to
any semiring. Hence, any ring, any algebra, any o-ring, and any
o-algebra must contain the empty set.

Theorem 2.2 Let @ be a nonempty class. There exists a unique ring,
denoted by (%), suchthat @ c #(€¢)and € Cc R = R(€) C R
for any ring 4. That is, (@) is the smallest ring including €.

Proof. Powerset #(X) isaringincluding ¢ .Let C be the set
of all rings that include € and let # (¢ ) = NC. It is not difficult to
verify that & (@ ) is still closed under the formations of unions and
differences, that is, 22 (@) is a ring. Since every ring in C includes €, so
does their intersection & (). The uniqueness and being the smallest are
guaranteed by the intersection in its definition. O

Z (@) in Theorem 2.2 is called the ring generated by €.

Similar conclusions for semiring, algebra, o-ring, and o-algebra can
also be obtained. We will use symbols # (&), & (€), %(€), and F(€)
to denote the semiring, the algebra, the o-ring and the o-algebra
generated by @ , respectively. For any given class € , we have
CC I (€)= R(C) < %o(€) = F(€)and R(€) A (C) = F(€).

The ring generated by a semiring can be obtained by collecting all
finite disjoint unions of sets in the semiring. The algebra generated by a
ring can be obtained by adding the complements of sets in the ring.
These can be verified by Examples 2.7-2.11. However, to obtain the
o-ring generated by a ring, the procedure sometimes is very complex.

Example 2.14 The o-ring generated by either of the semirings shown in
Example 2.10 is called the Borel field and denoted by #. In fact, it is a
o-algebra. It cannot be obtained by simply taking all countable unions of
sets in the semiring and their complements.
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2.5 Relations, Posets, and Lattices

Let £ and F be nonempty sets.

Definition 2.22 Set {(x,,x,)|x, € E, x, € F'} is called the product set of
Eand F, denoted by ExF .

Example 2.15 Let X,=X,=R=(-o,), the one dimensional
Euclidean space (the set of all real numbers, i.e., the real line). Then
X xY is the two dimensional Euclidean space (the real plane), denoted
by R*,in which each point is an ordered pair of real numbers, (x;,x,).

Definition 2.23 A relation R from E to F is a subset of the product set of
E and F, i.e., Rc ExF . According to R, if point a in E is related to
point b in F, then we write (a,b)€R or aRb. A relation from E to E is
simply called a relation on E.

Example 2.16 Let Z be the set of all integers. We may define a relation
R; on Z as follows: aRsb iff a = b (mod 3), i.e., a and b have the same
remainder when they are divided by 3.

Example 2.17 Consider Z given in Example 2.16. Symbol < with the
common meaning “less than or equal to” is a relation on Z, denoted by
R.. For instance, (1,2)eR., but (2,1)&R..

Example 2.18 Let X be a nonempty set. The inclusion of sets, < , is a
relation on 2(X), i.e., {(E,F)|EcF} isasubsetof 2(X) x 2(X).

Definition 2.24 A relation R on E is:

(1) reflexive iff aRa forany a e E;

(2) symmetric iff aRb implies bRa for any a,beFE;

(3) transitive iff aRb and bRc imply aRc for any a,b,ce€ E ;

(4) antisymmetric iff aRb and bRa imply a=»b forany a,beE.



18 Nonlinear Integrals and Their Applications in Data Mining

Relation R;in Example 2.16 is reflexive, symmetric, and transitive.
Relations R and < in Examples 2.17 and 2.18 are reflexive, transitive,
and antisymmetric.

Definition 2.25 A relation R on £ is called an equivalence relation iff R
is reflexive, symmetric, and transitive.

Relation R5 in Example 2.16 is an equivalence relation.

Example 2.19 On R? = (—o0, 0)x (-0, 0) , for any two points
x=(x,x,) and y=(y,y,), define x=y iff x +x;3=1+y;.
Then relation =~ 1is an equivalent relation on R?.

Definition 2.26 Given an equivalence relation R on £ and any point
ae E | set {x| xRa} is called the equivalence class (with respect to R) of
a and denoted by [«].

Theorem 2.3 Let R be an equivalence relation on £ and «,b € E . Then,
[a] = [b] if and only if aRb.

Proof. Necessity: Since R is an equivalence relation on £, it is reflexive.
So, aRa and, therefore, a €[a]. Thus, [a]=[b] means ae[b].

Sufficiency: Suppose that aRb. For any xe€[a], from xRa and the
transitivity of R, we have xRb. This means xe[b]. So, [a]<[b]. By
the symmetry of R, the reason for [b]<[a] is totally similar. Thus, [a]
=[b]. O

Definition 2.27 Let £ be a nonempty set. A class of sets {E, [teT} is
called a partition of E iff

(1) E,#J forevery teT;
(2) class {E,|teT} isdisjoint,ie., E,NE;= forany t,seT
with t#s;

3) UE =E.

tel
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Example 2.20 Interval class {[0, 1), [1, 2), [2, 3), [3, 4), [4, 5]} is a
partition of interval [0, 5].

Theorem 2.4 Let R be an equivalence relation on E£. Then, after deleting
the duplicates, class {[a]|a € E} is a partition of E.

Proof. (1) For every a € E, since R is reflexive, we have ae€[a], i.e.,

[al= D .

(2) If there exists a point xe[a]n[b] for two different equivalence
class [a] and [b], then from xRa, xRb, the symmetry and the
transitivity of R, we have aRb. By Theorem 2.3, [a] = [b]. Hence,
after deleting the duplicates, class {[a]|a € E} is disjoint.

(3) For any ae€E, there exists [a]e{[a]|ac E} such that ae[a].
So U{[allac E}=FE. O

Definition 2.28 Let R be an equivalence relation on E. Class
{la]l|lae E} is called the quotient set (or, quotient space) of E with
respect to R.

Example 2.21 In Example 2.16, relation R; is an equivalence relation on
Z, the set of all integers. Equivalence classes [i]=[i+3] for any
integer i. Thus, class {[0], [1], [2]} forms a partition of Z, where
[0]=¢--,-6,-3,0,3,6,--y , [1]={--,-5-2,1,47,--} , and
[2]=¢--,-4,-1,2,5,8,---} . Class {[0], [1], [2]} is the quotient set of Z
with respect to R;.

Definition 2.29 Relation R on E is called a partial ordering if it is
reflexive, antisymmetric, and transitive. In this case, (£, R) is called a
partial ordered set (or, poset).

In Examples 2.17 and 2.18, (Z, <) and (#(X), <) are posets.
Example 2.22 On R", for any two points x=(x,x,, -+, x,) and

y=01Y2,¥,), define x<y iff x,<y, for all i=1,2,---,n.
Then (R",<) is a poset.
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Definition 2.30 A poset (£, R) is called a well (or, totally) ordered set or
a chain iff either x<y or y<x forany x,yekE.

In Examples 2.17, (Z, <) is a well ordered set.
In case there is no confusion, we use (P, <) to denote a poset.

Definition 2.31 Let (P, <) be a poset and Ec P. A point @ in P is
called an upper bound of E iff x<a for all xe€ E. An upper bound a
of E is called the least upper bound of E (or, supremum of E), denoted by
sup Eor v E,iff a<b for any upper bound b of E. A point a in P is
called a lower bound of E iff a<x forall xe E. A lower bound a of
E is called the greatest lower bound of E (or, infimum of E), denoted by
infEor AE,iff b<a foranylower bound b of E.

When E consists of only two points, say x and y, we may write xV y
instead of v {x, y} and x Ay instead of A{x, y}.

If the least upper bound or the greatest lower bound of a set £ < P
exists, then it is unique.

Definition 2.32 A poset (P, <) is called an upper semilattice iff xv y
exists for any x, ye P; A poset (P, <) is called a lower semilattice iff
x Ay exists for any x, ye P; A poset (P, <) is called a lattice iff it is
both an upper semilattice and a lower semilattice.

Example 2.23 Let X be a nonempty set. Poset (#(X), <) is a lattice. For
any sets E,FcX , sup{E,F}=EUF and inf{E,F}=EnF .
However, it is not a well ordered set unless X is a singleton.

2.6  The Supremum and Infimum of Real Number Sets

In this section, we consider the set of all real numbers, called real line
sometimes and denoted as R or (—o0, ) directly. Relation < on R is a
full ordering such that (R, <) is a lattice and, therefore, concepts upper
bound, lower bound, supremum, and infimum are also available for any
nonempty sets of real numbers.
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Example 2.24 Let set £ be open interval (a,b). We have supE =b
and inf E=a.

Example 2.25 Let set £ be the set consisting of all real numbers in the
sequence {g;}, where a; =1-2" for i=1,2,---. Then supE =1 and
infE=1/2.

As a basic property of real numbers sets, the following Proposition is
important.

Proposition 2.1 For any nonempty set of real numbers, if it is upper
bounded, then its supremum exists; if it is lower bounded, then its
infimum exists.

This proposition can be regarded as an axiom and should be always
accepted.

Theorem 2.5 Let £ be a nonempty set of real numbers. Then for any
given & >0, there exists x € £ such that x>sup £ —¢ . Similarly, for
any given ¢ >0, there exists xe€ £ suchthat x<inf E+¢.

Proof. Use a proof by contradiction. Assume that there is no x € £ such
that x>supE—¢. Then supE—¢ 1is an upper bound of E. However,
supE —& <supE. This contradicts the fact that sup £is the smallest
upper bound of E. For the infimum, the proof is similar and is omitted. []

From the above theorem directly and the concept of limit, we have
the following corollary.

Corollary 2.1 Let £ be a nonempty set of real numbers. There exists a
sequence  {q;} with @, €E for i=1,2,---, such that
lim;_,, a; =sup E . Similarly, there exists a sequence {b;} with b, € E
for i=1,2,---,suchthat lim._,_ b =inf E .

11— 71
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Example 2.26 Set E is given in Example 2.25. Sequence {q;} itself has
alimit, i.e., lim; ,, a; =supE=1.Taking b, =1/2 forall i=1,2,---,
we have lim._, b =infE=1/2.

1—>00 71

Exercises

Exercise 2.1 Let X = (—o0, ). Explain the following sets and classes in natural language:
(1) {x]0 <x<1};

(2) Ax|x>0};

(3) {0};

@ {9}

(5) {{x}lx e X}

(6) {E|E <X}

Exercise 2.2 Let E£=[0,4] and F =[12].Find yp-r, xpyr-and xp .
Exercise 2.3 Let 4; =[1/(i+1), 1/i), i=1,2,---.Find U724, and N2 4 .
Exercise 2.4 Let A;,=[i,»), i=1,2,---.Find U7, 4, and N2, 4.
Exercise 2.5 Let 4; =(0,1/7], i=1,2,---.Find U2, 4, and N2 4, .

Exercise 2.6 Let the universal set X =[0,1]. Find U, y{x} and mxeX@ .

Exercise 2.7 Categorize class @ given in the following descriptions as of a semiring, a

ring, an algebra, a o-ring, a o-algebra, or none of them:

(1) X= (-0, ), @is the class of all bounded, left open, and right closed intervals;

2) X= {,2,--}, €= {A| A< X,| A|<3} where | A| denotes the number of points
in set 4 and called the cardinality of 4 ;

(3) Xis anonempty set with | X [>2, E is a nonempty proper subset of X, = {F|E
Fc Xl

(4) Xisanonempty set, E is a proper subset of X, @= {F|F c E};

(5) Xisanonempty set, £ is a nonempty subset of X, @= {E}.

(6) Xis product set (—o0, )% (-0, ), €={[a,b)x[c,d)|a<b,c<d}.

Exercise 2.8 Let X = {1,2,--} and ¢ ={{x}|xe X}. Find (@), #(€), A4 (€),
RA€),and F(€).
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Exercise 2.9 Let the universal set be the set of all real numbers, i.e., X =R, and .¥ be
the set consists of all singletons and the empty set in #(X). Find & (7)), R(.F), A (F),
and Z ().

Exercise 2.10 Let @ and % be nonempty classes satisfying @ < @. Prove that
A €) C A ). A similar result holds when o-algebra Z is replaced by semiring .% ring
R, algebra .« as well as o-ring &, respectively.

Exercise 2.11 Show that the o-ring generated by the second semiring shown in Example
2.10 is also the Borel field #.

Exercise 2.12 Let @be a nonempty class. Prove that #(2(€)) = F(€).

Exercise 2.13 Determine whether (yes or no) each of the following relations on set
A=1{1,2,3,4} is reflexive, symmetric, antisymmetric, and/or transitive.

1 {0,1D,(1,2),(2,1),(2,4),3,3), (4, 4)} .

@) {0D,(1,3),(1,4),(2,2),(3,1),3,3),(4,1), (4, 4)} .

(3) {(1,2),3,4)}.

@ {49}

Exercise 2.14 Let X = (—o0, ©) and = be the relation on X x X defined by

() =00, p2) i X Ty =x+ .
Prove that = is an equivalence relation.

Exercise 2.15 Let X ={a,b,c,d} and € ={J, 4,{a,c}, B, X} . Find all possible set
pairs 4 and B such that @ s a chain with respect to set inclusion c.

Exercise 2.16 Let £ be the set of all irrational numbers in [0, 1].
(1) Find sup £ and inf E.
(2) Find sequences {a;|a; €E,i=12,--} and {b;|b;€E,i=1,2,---} such that

lim; ,,a; =supE and lim;_,,b; =inf E .

Exercise 2.17 Let the universal set be the set of all real numbers, Find the sup and the inf
of the following sets.

(1) A = {all rational number in (0, 1)}.

2) B={1,2,3}.

3) C= {(-D)'A-1/G+1))|i=12,--}.



Chapter 3

Fuzzy Sets

3.1 The Membership Functions of Fuzzy Sets

Let X be the universal set. From Chapter 2, we know that any crisp
subset (or say, a classical subset) of X, simply called a set if there is no
confusion, may be used to describe a crisp concept and is identified by its
characteristic function. For a given set, any specified point is either in
this set or not in this set, impossible to be both. However, in many real
problems, some concepts, called fuzzy concepts, are not so clear. Hence,
it is necessary to introduce the concept of fuzzy subsets of X (or, simply,
fuzzy sets if there is no confusion) for describing fuzzy concepts. Similar
to the fact that a crisp set is identified by its characteristic function, a
fuzzy set is identified by its membership function, denoted by
m:X —[0,1]. Value m(x) is called the membership degree of the
fuzzy set at x, where xe X . The characteristic function of sets
discussed in Chapter 2 can be regarded as a special case of the
membership function of fuzzy sets. So, the concept of fuzzy sets is a
generalization of the concept of classical crisp sets.

To simplify the notation, we still used capital letter, such as 4, B,---,
to denote fuzzy sets if there is no confusion. When more than one fuzzy
sets are in discussion, we use subscripts to indicate the respective
membership function, such as my, mg,--- denoting the membership
function of fuzzy sets 4, B,--- respectively. Sometimes, to emphasize
that the fuzzy sets are discussed, we use a wave at the top of the symbols,
such as 4 , E, ---. When X is the set of real numbers, its fuzzy subsets
sometimes may also be denoted by lower case letters with a wave at the

24
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top, such as a, b ,---. The set of all fuzzy subsets of X is denoted by
Z(X) and called the fuzzy power set of X.

Example 3.1 On the age axis, we take X =[0,120] as the universal set.
Concepts “young” and “old” are fuzzy. We may use the following
membership functions m, and m, to indicate them respectively.

1 if x<25
my(x)=4(40—-x)/15 if 25<x<40 Vxe X,

0 if x>40

0 if x<50
my(x)=4(x—=50)/15 if 50 <x <65 VxeX-

1 if x> 65

Then, the membership degree of Y at 28 years age is 0.8 while that of O
at 45 years age is 0. The graph of membership functions m, and m,
are shown in Figures 3.1 and 3.2 respectively.

young

50 60 70 80 90 100 110 120 age

Fig. 3.1 The membership function of Y.
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old

Il 1 1 1 1 1 1 1 1 1 1 »
»

0 10 20 30 40 50 60 70 80 90 100 110 120 age

Fig. 3.2 The membership function of O.

Example 3.2 Let X ={0,1,2,---} . Fuzzy concept “around 10” can be
expressed as a fuzzy subset of X, denoted by D, with membership
function

0.3 ifx=10£2

0.8 ifx=10+£1

1 if x=10

0 otherwise

mp(x) =

Its graph is shown in Figure 3.8(a) on page 43. By using Zadeh’s
notation, it can also be denoted as

mpy=0.3/8+0.8/9+1/10+0.8/11+0.3/12,

where symbol “/”” does not mean “divided by” but means “at”. Alternatively,
we may intuitively write

{0.3 08 1 038 0.3}
mD: P R R ST T O

where symbol “— " means “at”.
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Definition 3.1 Let 4 be a fuzzy subset of X with membership function
m(x). The support set of A, denoted by supp A4, is the crisp set
described as follows:

supp 4 ={x|m (x)>0,xe X}.

The support sets of fuzzy sets ¥, O, and D in Examples 3.1 and 3.2
are [0, 40), (50, 120], and {8, 9, 10, 11, 12}, respectively.

3.2 Inclusion and Operations of Fuzzy Sets

Let 4 and B be fuzzy subsets of universal set X.

Definition 3.2 Fuzzy set 4 is included by fuzzy set B, denoted by
Ac B, iff m,(x)<my(x) VxeX. Fuzzy sets 4 and B are equal,
denotedby A=B,iff AcB and BcC 4.

The concepts of inclusion and equality for fuzzy sets are
generalizations of the concepts of inclusion and equality for crisp sets
given in Definitions 2.1 and 2.2 respectively.

Definition 3.3 The union of 4 and B, denoted by AU B, is the fuzzy set
possessing membership function

m ., p(X) =m(x) v my(x) = max[m,(x), mp(x)] VxeX.

Moreover, if {4, |teT} be a class of fuzzy sets, where 7 is an index
set, then the union of {4, |reT}, denoted by U,.;4, , has a
membership function

my, (x)=supm, (x) VxeX.
T

teT te
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Definition 3.4 The intersection of A and B, denoted by AN B, is the
fuzzy set possessing membership function

M 405(X) = () A m (x) = minfm, (x), my(x)] Ve X .

Similarly, if {4, |t €T} be a class of fuzzy sets, where 7 is an index
set, then the intersection of {4, |feT}, denoted by (,.;4,, has a
membership function

mp, (x)=infm, (x) VxeX.
! teT !

tel’

Definition 3.5 The complement of fuzzy set A, denoted by A, is the
fuzzy set possessing membership function

my(x)=1-my(x) VxelX.

The concepts of union, intersection, and complement for fuzzy sets
are also generalizations of the corresponding concepts for crisp sets
given in Definitions 2.5, 2.6, and 2.7 respectively. Similar to the laws for
operations for crisp sets shown in Section 2.2, the following theorem
gives the laws of operations for fuzzy sets. Its proof is omitted as well.

Theorem 3.1 The operations of union, intersection, and complement of
fuzzy sets satisfy the following laws.

Involution law: A=A
Commutative laws: AUB=BUA, AnB=BnNn A
Associative laws: UU4)= U 4

teT seS, s€Urer S

N(N4)=" 4,

teT seS, selUer S,
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Distributive laws: Bn(J4)=UJBn4,)

teT teT

BuU((4)=((BuU4,)

teT teT

Idempotent laws: AuA=A4
AnA=A4
Absorption laws: Au(ANnB)=4
AN(AUB)=4
Domination laws: AvuX =X
AN =
Identity laws: Aud=A4
ANnX =4
De Morgan’s laws: U4, =N4,

tel tel

N4 =U4,

tel tel

where S, and T are index sets.

Note that the following laws hold for crisp sets, but they are not in the
above list.

Law of excluded middle: Au E =X
Law of contradiction: ANA=O.

In fact, these two laws are not true for fuzzy sets generally. So, the
fuzzy sets in & (X) with operators union, intersection, and complement
form a De Morgan algebra (or say, soft algebra), but not a Boolean
algebra mentioned in Section 2.2.

Example 3.3 In Example 3.1, the complement of “young”, read as “not
young” and denoted by Y , has membership function
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0 if x <25
my (x) =1 (x—=25)/15 if 25 < x <40
1 if x> 40

The concept “not young and not old”, called “middle age” and denoted
by M, is a fuzzy set possessing membership function m,, that has the
form

0 if x<250rx>65
(x—25)/15 if25<x<40
My (X) = 1y 5 () = 1155, () = 1=y () = 1 if 40<x<50

(65—x)/15 1f50<x<65

The graphs of the membership functions my; and m,, are shown in
Figures. 3.3 and 3.4 respectively.

not young

1 1 1 1 1 1 1 1 1 1 1 1 »
»

50 60 70 80 90 100 110 120 age
Fig. 3.3 The membership function of Y .

not young and not old

0 10 20 30 40 50 60 70 & 90 100 110 120 ;ge
Fig. 3.4 The membership function of M.
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Definition 3.6 A nonempty class of fuzzy sets {4, |t €T} is called a
fuzzy partition of fuzzy set 4 iff

(FP1) supp4, =< VteT;
(FP2) xmy (x)=m,(x) VxelX,
tel

where 7 is a nonempty index set.

In Definition 3.6, index set 7 may be infinite, where we can conclude
that, for each x € X, there are at most countably many ¢ in 7" such that
m, (x)>0. The concept of fuzzy partition is a generalization of the
concept of partition for crisp sets shown in Section 2.5. However,
conditions (2) and (3) in Definition 2.27 may be violated by a fuzzy
partition.

Example 3.4 In Example 3.3, class {Y, M, O} is a fuzzy partition of X.
Wemayseethat YnM #8, MnO#Z,and YUM UO=X.

Example 3.5 The range of the evaluation to each criterion for submitted
research papers by an academic journal editor is the interval / = [0, 5].
However, the reviewers, usually, are only required to rate the criteria by

99 (13

the following words: “bad”, “weak”, “fair”, “good”, and “excellent”.
These are fuzzy concepts and can be described by fuzzy subsets of I:

a,, a,, da,, a,,and a,,
with membership functions
1 if t €[0,1]

my()=13-2t  ifte(l,1.5]

0 otherwise
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2-2  ifte[l,1.5)

1 if £ €[1.5,2]
m,,(t) = .
5-2t if 1 €(2, 2.5]
0 otherwise
2t—4 if t€[2,2.5)
1 if 1 €[2.5, 3]
m_/(t) = .
7 -2t if 1 €(3,3.5]
0 otherwise
2t—6 if £ €[3,3.5)
1 if t €[3.5, 4]
m, (1) = .
9-2t if t € (4,4.5]
0 otherwise
and
2t-8 if te[4,4.5)
m,(t) =11 if t €[4.5,5]
0 otherwise

respectively. Then, {a,,a,,a,,d,,a,} is a fuzzy partition of /. Figure
3.5 shows the membership functions of these five fuzzy sets.

A m(t)

weak fair good excellent

‘ XXXX%
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Generally, any fuzzy set and its complement form a fuzzy partition of
X if none of them is empty.

3.3 a-Cuts

In Section 3.5, we can see that any fuzzy set may be expressed by a class
of crisp sets, which are called a-cuts defined as follows.

Definition 3.7 Let 4 be a fuzzy subset of X. For any « [0, 1], crisp set
{x|m,x)>a,xe X} is called the a-cut set (or, simply, a-cut) of A4,
denoted by A,; while crisp set {x|m,(x)>a,xe X} is called the
strong a-cut set (or, simply, strong a-cut) of A, denoted by A4, .

Itis clearthat 4, =X, 4,, =suppA4,and A4,k =O.

Example 3.6 In Example 3.1, Y,5=[0,32.5] and Y, =[0,32.5).
They can be seen from Figure 3.6.

Example 3.7 In Example 3.2, D,s=D,s, =1{9,10,11} , but
DO,S = {95 105 11} and D0‘8+ = {1 0} arc different.

Following Theorems 3.2, 3.3, 3.4, and 3.5 show some properties of
a-cuts. The first two are direct results from the definitions and, therefore,
their proofs are omitted.

0 10 20 30 40 50 60 70 80 90 100 110 120 age
0 32.5

Fig. 3.6 The a-cut and strong a-cut of fuzzy set Y when o= 0.5.
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Theorem 3.2 For any fuzzy set 4,

If o,<a,,then 4, c4, and 4, , c 4

o+

Theorem 3.3 Let 4 and B be fuzzy sets.

If AcB,then A4, B, and 4,, <B,,.

Theorem 3.4 For any fuzzy set 4 and anya €[0,1], 4,, < 4,,

Aa+ = Uﬁ>a A/i’ ’ and Aa = ﬂﬂ<a A/i’+ .

Proof. The first inclusion is obtained from the implication
myx)>a=>my(x)za.
Equality A4,, =Up.,4,; holds since

xed,, omx)>a=If>astmy(x)2 < If>ast.xe d,

&S xe UA R
p>a

where symbol “<> ” means “is equivalent to”. As for the last equality
A, =Np<q g, » it can be obtained from

xed, omx)zaoVi<a,m(x)>poVE<a,xed;,
S xe ﬂA .-
P<a
O

Theorem 3.5 Let {4, |teT} be a class of fuzzy sets, where T is an
index set. Then, for every « €[0,1],
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M U, cU4).:

2) N =(4),
3) U(At)a+ :(UAt)a+ >
@ NA)as 240 -

Proof. We only prove (1). In fact,

xelJ4), =3t eTstxe(4), =3 eTstm, (x)>a=supm, (x)>a

tel tel
=>my,(x)2a=x e(UAT)a.
tel tel
The proofs of (2), (3), and (4) are similar to the proof of (1). O

It should be noted that the inverse inclusions of inclusions in (1) and
(4) of Theorem 3.5 do not hold in general. A counterexample is shown as
follows.

Example 3.8 Let X be a singleton {a}, 4, have membership function
my(a)=t,and T =[0,1). Then (4,), =& for every teT such that
Ueer(4,), =9 . However, U4  has membership function
my 4 (a) =sup,pt=1 suchthat U,r(4), =X . This shows that the
inclusion in (1) of Theorem 3.5 cannot be replaced by equality generally.

In a special case when 7 is a finite index set, we have better
conclusions.

Theorem 3.6 Let {4, [t €T} be a set of fuzzy sets, where 7 is a finite
index set. Then, for every « €[0,1],



36 Nonlinear Integrals and Their Applications in Data Mining

(1*) U(Az)a :(UAt)a 5

teT teT

(4%) ﬂ(At)a+ :(ﬂA[)a+ :

teT tel

Theorem 3.7 For any fuzzy set 4 and any « €[0,1], (Z)a =Aq_gys -

Proof. The conclusion comes from

(A), = x| 1-m () 2 a} = x| m, () < 1-a) = (x| m, () > -}

=4

(l—a)+ -

3.4 Convex Fuzzy Sets

In this section, we consider the fuzzy subsets of n-dimensional Euclidean
space (or its convex subset), i.e., X =R", n=1,2,---. An important
class of fuzzy sets is the class of convex fuzzy sets.

A crisp subset of R" is convex if, for any two points x; and x, in
this subset, point cx, +(1—c)x, is also in this subset, where ¢ may be
any real number in [0, 1]. In one-dimensional case, any convex set is an
interval (either closed, or open, or left closed right open, or left open
right closed) and vice versa.

Definition 3.8 A fuzzy set is convex iff its a-cut is convex for every
a €[0,1].

Theorem 3.8 Fuzzy set 4 is convex if and only if
m(cx; + (1= c)xy) 2 min[m, (x,), m ,(x,)]

for any c<[0,1].
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Proof. Necessity: For any xe€eX and x,eX , taking
o =min[m ,(x,), m,(x,)], we have x, €4, and x, € 4,. From the
convexity of 4,, we know that cx; +(1-c)x, € 4, for any c<[0,1].
This means that m (cx, +(1-c)x,) = a =min[m (x,), m,(x,)] for any
ce[0,1].

Sufficiency: We want to show that for any « €[0,1], A4, is convex if
m (cx; + (1-c)x,) 2 min[m ,(x,), m,(x,)] for any c<[0,1]. In fact, for
any given a €[0,1],if x, €4, and x, € A4,, thatis, m (x;)=>a and
m ,(x,) 2« , then for any c<[0,1],

m  (cx; +(1—c¢)x,) 2 min[m ,(x,), m,(x,)] > & .
This means that cx, +(1-c)x, € 4,. So, A4, isconvex. O

Example 3.9 In Examples 3.1 and 3.3, Fuzzy sets ¥, O, M, and Y are
convex fuzzy sets.

The membership function of a convex fuzzy set is not necessarily
convex (also called concave down, in some books) in the meaning
discussed in calculus.

Example 3.10 Let X be the real line R. the fuzzy set with membership
function

xZ

m(x)=e"

is convex since all a-cuts are intervals (see Figure 3.7). However,
. — 2 . .
function e is not convex (concave down) on R in calculus.

3.5 Decomposition Theorems

In this section, we discuss how to express a fuzzy set by its o-cuts. Let 4
be a fuzzy subset of universal set X. For any crisp set £ and any real
number « €[0,1], we use «F to denote the fuzzy set having
membership function
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a ifxekE
My (x) = . VxeX.
0 X ¢

Theorem 3.9 (Decomposition Theorem I)

= J ad,= | «4,.

a€l0,1] ae(0,1]

Proof. On one hand, m,(x)=ay, (x)=m, (x) forevery xeX and
every a €[0,1]. So, m,(x)2sup, M, (x) for every xeX

AU aA, . On the other hand, for any given xe X, denoting
m,(x) by a(x),we have

ael0,1]

m,(x) = a(x) = a(x)ZA s )(x)< Sup ay,, (xX)=m | ad,, (%)

ae[0,1] a€l0,1]
since  x€ A4, . This means AcU,qoned, - Consequently,
A=U,q01194, - The second equality U, 304, =Uscon0d, s
evident. 0

Similarly, the decomposition can also be made by using strong a-cuts
as shown in the next theorem.
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Theorem 3.10 (Decomposition Theorem II)

A= A, = | ,..

a€0,1] ae(0,1]

Proof. The second equality is also evident. As for the first equality,
based on the result obtained in Theorem 3.9, we only need to show
AcUgeqonod,,  since Uyeon@y S Uqepo @4, - For any given
xe X and &>0 thatis small enough, we have

m,(x)= sup ay, (x)= sup [a+ely, ()= sup [a+ely, (x)

ael0,1] ael-¢,1-¢] ael-¢,1]
< sup ay, (x)+e< sup ay, (x)+e&=sup ay, (x)+¢&
ael-¢,1] o ael-¢,1] “ a€[0,1] “

=m g (X)+E.

ae(0,1]
Since ¢ can be arbitrarily close to 0, we obtain that

my(x)sm o (%) . O

a<(0,1]

We can establish the third decomposition theorem after introducing
the concept of level-value set.

Definition 3.9 Set {o|m,(x)=aforsomexe X} is called the
level-value set of fuzzy set A and denoted by L, .

Example 3.11 In Example 3.1, L, =L, =[0,1]; while in Example 3.2,
L,=1{0,0.3,0.8,1}.

Based on the concept of level-valued set, we may delete some (may
be most) values of « for taking the union in the expression shown in
Theorem 3.9 to obtain the expression in the next theorem.
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Theorem 3.11 (Decomposition Theorem III)

A= o4, .

ael,
Proof. Due to the Decomposition Theorem I, we have

A= |J ad, o | 4, .

a€l0,1] ael

Hence, only inclusion 4c,. L, oA, needs to be shown. In fact, for
any given xe X, let m (x)=a . It means that aeL, and xe 4,.

This yields that

m(x) = ay, (x) < supay, (x). 0

ael,

There are some examples to show that the a-~cuts in the express of
Decomposition Theorem III cannot be replaced by strong a-cuts.

3.6  The Extension Principle

The following extension principle is a useful tool for fuzzifying classical
mathematical concepts such as functions and common binary operators
for real numbers.

Extension Principle: Let X,, X,, ---, X, and Y be nonempty crisp
sets, U=X,xX,x---xX, be the product set of X,, X,, ---, and
X,, and let f:U —7Y be a mapping from U to Y. Then, f can be
extendedtobe f: F(X) x F(X)x ---xF(X,) > F(Y) as follows: for
any given n fuzzy sets 4e€ J(X), i=1,2,---,n , fuzzy set
B=f(4,A4,,, 4,) € Z(Y) has membership function

mg(y)= sup min[m , (x;), m (x,),--,m, (x,)]

Xps Xy e X, [y=f (X1, X5, 05, X))



Fuzzy Sets 41

with a convention

sup{x|xe[0,1]}=0.
@

As a special case, if * is a binary operator on universal set X, that is,
#*: X x X — X, then, by the extension principle, we can obtain a binary
operator on Z(X): for any 4, B € 7 (X),

sup [m (x) Amg(y)] VzeX.

x,ylxky=z

my,p(2) =

Example 3.12 Let X be the set of all nonnegative integers. The
traditional addition for integers can be extended to be a binary operator
for fuzzy subsets of X. For instance, assume that fuzzy sets “around 10”,
denoted by D, and “around 57, denoted by F, have membership functions

0.3 if x=10£2
()= 0.8 if x=10x1
Mot | if x=10
0 otherwise
and
0.2 if x=5£2
) 0.7 ifx=5+1
m X)=
r 1 if x=5
0 otherwise

Vx e X , respectively. Then the sum of D and F, denoted by D + F, has

its membership function
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0.2 ifz=15+4
0.3 if z=15+3
0.7 ifz=15+2

m z)= sup [m,(x)Am = , VzeX.
prr(2) x’y‘x}i:z[ p(X) (V)] 0.8 Fro15+1
1 ifz=15
0 otherwise

The membership functions of D, F, and D + F are shown in Figure 3.8,
where we use the height of a solid small circle to indicate the value of a
function at each point.

Fuzzy sets D, F, and D+F are called fuzzy integers that are defined in
Section 3.10. Example 3.12 shows the addition of two fuzzy integers
obtained by the extension principle.

3.7 Interval Numbers

Let R be the set of all real numbers, i.e., R = (—o0, ©).

Definition 3.10 Any closed interval [/, r] is called an interval number,
where [ <r.

Any crisp real number, a, can be regarded as an interval number
[a, a]. The set of all interval numbers is denoted by .4; .

Definition 3.11 (Classical extension) Let * be a binary operator for real
numbers. Operator * can be extended to be a binary operator for interval
numbers as follows. Let [a,b] and [c,d] be two interval numbers.
Then

[a,b]*[c,d]={x*y|a<x<b,c<y<d}

if x*y is well defined forall xe[a,b] and ye][c, d].
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0 2 4 6 8 10 12 14 16 18 20 X

(a) The membership function of D

0 2 4 6 8 10 12 14 16 18 20 X
(b) The membership function of F

0 2 4 6 8 10 12 14 16 18 20 X

(c) The membership function of D+F
Fig. 3.8 The membership function of D+F obtained by the extension principle.

Now, for real numbers, we consider six binary operators: addition +,
subtraction —, multiplication x, division /, maximum Vv, and minimum A.
According to Definition 3.11, we have

addition: [a,b]+[c,d]=[a+c,b+d];
subtraction: [a,b]—[c,d]=]a-d,b—c];
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multiplication:
[a, b]x[c, d] =[min(ac, ad, bc, bd), max(ac, ad, bc, bd)];

division:
[a,b]/[c,d]=[min(a/c,al/d,b/c,b/d), max(a/c,al/d,b/c,b/d)]
if 0¢lc,d];

maximum: [a,b]v]c,d]=[avec,bvd];

minimum: [a,b]A[c, d]=[anc,brd].

Example 3.13 [1,5]+[-2,3]=[-1,8], while [-1,8]-[-2,3]=[-4,10].
So, the subtraction is not the inverse operation of the addition.

Example 3.14 [L, 5]x[-2,3]=[min(-2, 3, —10,15), max(-2, 3,-10,—15)]
=[-10,15], while

[1,5]%[-3, - 2] =[min(-3, -2, —15,—-10), max(-3, -2, —15,—10)]
=[-15,-2].

Example 3.15

[-15,-2]/[1, 5] =[min(-15, -3, — 2, — 0.4), max(—15,-3, — 2, — 0.4)]
=[-15,-0.4].

So, the division is not the inverse operation of the multiplication.

From Definition 3.11, we have the following property for binary
operations of interval numbers.

Property. If [a,,b]1c]a,,b,], then [a,b]*[c,d]<][a,,b,]*[c,d]
and [c,d]*[a,,b]c][c,d]*[a,,b,] for any interval numbers [a,,b],

[a,,b,], and [c, d], provided the involved operations are well defined.

A partial ordering on./4; can be defined as follows.
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Definition 3.12 We say that interval number [a, b] €./4; is not larger than
(or say, less than or equal to) interval number [c,d]e.4; , denoted by
a,b]<[c,d],iff a<c and b<d.

Thus, (4}, <) is a poset. Unlike the set of all real numbers that is well
ordered with respect to the common <, poset (A7, <) is not well ordered.
For instance, we cannot compare [0,3] and [l,2] according to <
defined above for interval numbers. For any given two interval numbers
[a,b] and [c, d], their supremum and infimum exist. In fact, they are
interval numbers [av e, bvd] and [aAc, bAd] respectively. Hence,
poset (4, <) with binary operators v and A forms a lattice.

3.8  Fuzzy Numbers and Linguistic Attribute

To quantify fuzzy concepts, we may use some types of fuzzy subsets of
R = (-0, ). Fuzzy numbers are most common type of fuzzy subsets of
R for this purpose.

Definition 3.13 A fuzzy number, denoted by a capital letter with a wave
such as A, is a fuzzy subset of R with membership function
m:R —[0,1] satisfying the following conditions:

(FN1) %a, the a-cut of A , 1s a closed interval for any « €(0,1];
(FN2) 4,, isbounded .

Condition (FN1) implies the convexity of A , 1..e., any fuzzy number
is a convex fuzzy subset of R. For any « <(0,1], the o~cut of a fuzzy
number is an interval number. The set of all fuzzy numbers is denoted by
N

Theorem 3.12 Condition (FN1) is equivalent to the following
conditions:

(FN 1.1) there exists at least one real number g, such that m(a,)=1;
(FN 1.2) m(¢) is nondecreasing on (—,q,] and nonincreasing on

[aoaoo);
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(FN 1.3) m(¢) is upper semi-continuous, or say, m(¢) is right-

continuous on (-%,q,) , Le., lim,,, ,m(t)=m(t,) when
ty<a, , and is left-continuous on (g, ) , 1ie,
lim,_,, _m(t) =m(t,)) when ,>a,.

Proof. Let 4 bea fuzzy subset of R with membership function m(z).
(FN1) = (FNI1.1): Since Za:l is a closed interval, it is nonempty.
Taking a, € Za:] , we have m(a,)=1.

(FN1)=(FN1.2): A proof by contradiction is used here. Assume that
m(t) 1is not nondecreasing on (—w,q,] , that is, there are
x,ye(-o,a,] with x<y such that m(x)>m(y) . Taking
a=m(x)>0, we have era and aera , but yezza . This
contradicts the fact that Za is an interval. Similarly, we can show that
m(t) is not nonincreasing on [a,, ) if Za is an interval for any
ae(0,1].

(FN1)= (FN1.3): We just need to show that m(¢) is right-continuous
on (—o,q,] and left-continuous on [a,, ). A proof by contradiction
is still used. Assume that m(¢) is not right-continuous on (—,q,], that
is, there exists a point x <q, such that lim, ,  m(t) #m(x) (the limit
exists due to the monotonicity of m(f) on (—,a,]). Since m(t) is
nondecreasing on (—,a,], we have lim, , , m(t) >m(x). Thus, taking
a=lim, ,  m(t), we have te Za for all te(x,a,] but x¢ Za. This
contradicts the fact that Za is a closed interval.

(FN1.1), (FN1.2), and (FNI1.3) = (FN1): For any a<(0,1], from
(FN1.1) we know that Za is nonempty; from (FN1.2) we know that
A, is an interval; from (FN1.3) we know that A, is closed.

a a

The proof of the theorem is now complete. O

The boundedness of the support set Zo . implies condition
[ m(t)dt <o . In this book, the latter is also used to weaken the
requirement for fuzzy numbers sometimes.

For any fuzzy number with membership function m(z), there exists a
closed interval [a,,a_.] such that
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1 if telay,a,]
m(t) =<1(t) if te(—x,a,)
r(t) if te(a, o) |,

where 0</(f) <1 is nondecreasing and 0<r(¢f)<1 is nonincreasing.
Functions [(¢) and r(¢) are called the left branch and the right branch
of m(t), respectively.

Now, we turn to discuss several special types of fuzzy numbers that
are commonly used.

Definition 3.14 A rectangular fuzzy number is a fuzzy number with
membership function having a form as

1 if t €[a,,a,]
m(t) = .
0 otherwise ,

where a,, a, € R with g, <a, (see Figure 3.9).

A fuzzy number is rectangular if and only if the left branch and right
branch of its membership function are zero. It is identified with the
corresponding vector [a, a,] and is an interval number essentially. Any
crisp real number a can be regarded as a special rectangular fuzzy
number with @, =a, =a.

A m(?)

~V

Fig. 3.9 The membership function of a rectangular fuzzy number.
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Definition 3.15 A triangular fuzzy number is a fuzzy number with
membership function having a form as

t—a .

L iftela,ay)
ay —4a,
1 ift=aq,

m(t) =
t—a, .
if t€(ay,a,]

aO _ar
0 otherwise ,

where «,, a,, a,€R with a,<a,<a, (seeFigure3.10).

A triangular fuzzy number is identified with the corresponding vector
[a, aya,]. Any crisp real number @ can be regarded as a special
triangular fuzzy number with @, =a,=a, =a.

Definition 3.16 A trapezoidal fuzzy number is a fuzzy number with
membership function having a form as

t—a .
L ifrela,a,)
a, —aq;
ift=[a,,a.]
m(t): b>"e
t—a .
— ifte(a,a,]
a,—a,
0 otherwise

where a,, a,, a,, a,€R with a,<a,<a,<a, (seeFigure3.11).

A trapezoidal fuzzy number is identified with the corresponding
vector [a, a, a.a,]. Any rectangular fuzzy number [a, a,] can be
regarded as a special trapezoidal fuzzy number with q,=a,
and a.=a,. Similarly, any triangular fuzzy number [a, a, a,] can be
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>
t

0 a ag a,

Fig. 3.10 The membership function of a triangular fuzzy number.

>
t

0 ap ap a. a,
Fig. 3.11 The membership function of a trapezoidal fuzzy number.

regarded as a special trapezoidal fuzzy number with a, =a. =q,. Of
course, any crisp real number «a can be regarded as a special
trapezoidal fuzzy number with @, =a,=a,=a.=a . Thus, our
discussion and models can be applied to databases involving even both
crisp and fuzzy data.

Example 3.16 Fuzzy sets Y, M, O, and Y discussed in Examples 3.1
and 3.3 are trapezoidal fuzzy numbers.

Both the left branch and the right branch of the membership function
of a trapezoidal fuzzy number are piecewise linear. Hence, it is
convenient to calculate the sum and difference of trapezoidal fuzzy
numbers. This can be seen in the next section.
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Definition 3.17 A fuzzy number is called a cosine fuzzy number if its
membership function has a form as

l[1+COSM] ifa—QStSCHg
m(t)=42 2 2
0 otherwise ,

where real number « is the center and positive number @ is the length of
its support set (see Figure 3.12).

According to Definition 3.13, the fuzzy subset of R =(—o0, ) with
membership function m(x)= e (see Figure 3.7) discussed in Example
3.10 is not a fuzzy number since it violates the requirement of
boundedness for its support set. However, if we weaken this requirement
by |7 m(x)dx <o, such a fuzzy set can also be regarded as a fuzzy
number and is called a normal fuzzy number. In general, a normal fuzzy
number has the membership function with a form m(x)= e /20 ,
Vx € (-0, ), where a is a real number indicating the center of the fuzzy
number and o is a positive real number indicating its “width”. It is
easy to know (from either calculus or the probability theory) that
m(a)=1 and [* m(x)dx= V2ro<w.

Am(?)

~Y

0 a-0/2 a a+0/2

Fig. 3.12 The membership function of a cosine fuzzy number.
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Beyond numerical attributes, some categorical, even linguistic
attributes, may exist in databases. A linguistic attribute is a variable
whose range is a finite set of descriptive words. One way to quantify a
linguistic attribute is assigning a fuzzy number to each word. These
fuzzy numbers should form a fuzzy partition of an appropriate interval.

Example 3.17 In Example 3.5, each criterion for submitted papers is a
linguistic attribute whose range is the finite set {bad, weak, fair, good,
excellent}. We assign trapezoidal fuzzy numbers a,, 4,, a,, a,,and
a, to these five descriptive words respectively. These five fuzzy

numbers form a fuzzy partition of interval [ =[0, 5] as shown in Figure
3.5.

3.9 Binary Operations for Fuzzy Numbers

In this section, we discuss the fuzzy arithmetic. By using the extension
principle, we may extend the six common binary operators for real
numbers to be corresponding binary operators for fuzzy numbers. Let A
and B be two fuzzy numbers with membership functions m, and m,
respectively and let * be one of six common binary operators (+, —, X,/ \,
and A) for real numbers. The extensions then are shown as follows.

Definition 3.18 A+ 5B isa fuzzy subset of R with membership function

myp(z)= sup [m,(x) Amy(y)] VzeR.

x, y|x*y=z

To develop the methods for calculating the membership function of
A#* B, we need an important property of its o~cuts shown in the next
theorem.

Theorem 3.13 (Z * E)a = Za * §a for any «ae(0,1] , and
(A4*B),, =A, *B,, for any a<[0,1), provided all involved
operations are well defined.
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Proof. For any given a <(0,1], on one hand, if ze (Z*E)a, then
m 4. 5(2) 2 & . From Definition 3.18 and by the property of the supremum
shown in Theorem 2.5, we know that, for any integer n>2/«, there
exist x,,y,€R such that x,*y, =z and both m,(x,)>a—-1/n
2a/2 and my(y,)2a-1/nza/2, that is, x, eZm and y, e}?a/z.
Since A,,, is a bounded interval, there exists a convergent subsequence
{x,} of sequence {x,} . Let lim,_, x, =x, . We have
m (xy)=2a—1/n due to the closure property of Za_] ,» and the fact
that m,(x,)=2a—1/n for all m>=n when n is large enough. Thus,
m,(x,) 2 a . This means x, € Z Similarly, from sequence {y, } we
may choose a convergent subsequence {yn + with limit y, such that
Yo eB .From x,*y, =z for all integers n that are large enough, we
know that x,*y, =z due to the continuity of binary operator *. Thus
ze A * B . On the other hand, if z e A * B , then there exist x; € A
and Y, eB such that z =x,*y,. From mA(x0)>a and my(y,)2a, we
know that sup, _[m,(x)Amy(y)]2 . This means that ze (A * B)
The first equality is now proved.

As for the second equality, we may obtain it through the following
equivalences where «a €[0,1).

ze(Z*E)M S myp(z)>a

< sup[m (x) Amg(y)]>a

xX*y=z

< 3x,, y, such that x, * y, =z, m (x,) > a,and my(y,) > o
< 3dx, € Zm and y, € §a . such thatx, *y, =z

< zed,, *B,,

The proof of the theorem is now complete. O

Theorem 3.14 If 4 and B are fuzzy numbers, then so is A*B
unless 0 B,, when operator * is the division.

Proof. From the first equality in Theorem 3.13 and the closure properties
of these operations for interval numbers, we know that A * B satisfies
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condition (FN1). Furthermore, from the second equality in Theorem 3.13,
we have (4 *B)0+ A0+ *Bo+ and, therefore, (A *B)o+ is bounded
since both AO+ and Bo+ are bounded and OezEB0 when operator *
is the division. 0

From Theorem 3.13 and Theorem 3.9 (Decomposition Theorem I),
we have the following representation theorem directly.

Theorem 3.15 A*B= |J a(4, *B,).

ae(0,1]

Theorem 3.16 If 4 and B are rectangular fuzzy numbers, then so is
A#*B unless 0eB,, when operator * is the division.

Proof. Since any rectangular fuzzy number is just an interval number, the
conclusion of the theorem can be obtained from the discussion of section
3.7. O

Theorem 3.17 If 4 and B are trlangular (or trapezoidal) fuzzy
numbers, thensoare A+B and A—B .

Proof. A fuzzy number with membership function m(¢)is triangular if
and only if there is a unique point a, such that m(q,)=1 and both
[(t) and r(¢) are linear in their nonzero part. From Theorem 3.15 and
then the fact that the addition and the subtraction preserve the linearity of
[(t) and r(t) as well as the uniqueness of a,, we know that A+B
and A-B are triangular fuzzy numbers provided A and B are
triangular fuzzy numbers. Ignoring the uniqueness of a,, a similar
conclusion for trapezoidal fuzzy numbers can be obtained. O
Example 3.18 Let fuzzy numbers A and B have membership
functions

(t+2)/2 ifte[-2,0]
m(t)=11—1 if £ €(0,1]

0 else
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and

t—2 iftel2,3]
my(t)=<4—-t ifte(3,4]
0 else ,

respectively. Setting m,(t) = and expressing ¢ in terms of a, we can
obtain the a~cuts of 4: 4, =[-2+2a,1-a] for a<(0,1]. In a similar
way, we have B, =[2+a,4—«a] for a<(0,1]. By using Theorem
3.13, we obtain

(A+B), = A4, +B, =[3a,5-2a],
(A-B), =4, -B, =[-6+3a,-1-2a],
(4-B), = A4, B, =[-2a" +10a -8, a” —5a + 4],

(A/B), =A,/B, =[(-2+2a)/2+a), 1-a) /(2 +a)].

Thus, composing the a-cuts (in an inverse way of calculating the a-cuts),
we get

t/3 if £ €0, 3]
my, ,(t)=1(5-1)/2 ifte(3,5]
0 else ,

(t+6)/3  ifte[-6,-3]
m, y()={(-1-1)/2 ifte(-3,-1]

0 else ,
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(5-+9-2t)/2 if  e[-8, 0]
m, 5 () =1(5-/9+4t)/2 if £ (0, 4]

0 else ,

2t+2)/(2—1) ifte[-1,0]
my ()=1(1-2t)/(1+t) ifte(0,0.5]
0 else

They are shown in Figure 3.13.

From Example 3.18 and Figure 3.13, we can see that the product and
the quotient of two triangular fuzzy numbers may not be triangular. A
similar situation may occur for trapezoidal fuzzy numbers.

Example 3.19 Let fuzzy numbers A and B have membership
functions
t/5 ift€[0,5]
m,(t)y=16—1t ifte(5,6]
0 else

and
t—2 ifrel2,3]
my(t)y=14—-1t ifte(3,4]
0 else ,

respectively. Then A, =[5«,6-a] and B,=[2+a,4—-a] for
a €(0,1]. By using Theorem 3.13, we have

2+a,6-a] ifaec(0,0.5]

(A4vB),=4,vB, = ) ,
[S5a, 6 —a] if @ €(0.5,1]
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m(t) y
1 1

2 0 2 t 2 0 2 f
(a) Membership function m 4() (b) Membership function m,(¢)
Am(r) Am(t)
|| : 1
0 2 4 6 1 6 4 2 0
(c) Membership function m,, ,(¢) (d) Membership function m,_,(¢)
A m(0) m(z)
1 1
8 6 4 2 0 2 4 ¢ 8 6 4 2 0 2 4
(e) membership function m () (f) membership function m,, ,(¢)

Fig. 3.13 Membership functions in Example 3.18.

and

[Sa,4—a] if @ €(0,0.5]

(AAB),=4,AB, = ) .
[2+a,4—a] if ae(0.51]
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Thus,
t=2 if te(2,2.5] t/5 if 1e(0,2.5]
t/5 if te(25,5] t—2 if te(25,3]
my,p ()= . s myp(0)= . .
6-t if te(5,6] 4t if te3,4]
0 else 0 else
They are shown in Figure 3.14.
Am() A ()
|| R 1
o0 2 4 6 ¥ | -
(a) Membership function m () (b) Membership function m,(¢)
A M) A ()
] E—
| — 0 2 4 6 T

(c) Membership function m ., ()

(d) Membership function m,,,(?)

Fig. 3.14 Membership functions in Example 3.19.
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Here, we also see that the maximum and the minimum of two
triangular fuzzy numbers may not be triangular. A similar situation may
occur for trapezoidal fuzzy numbers as well.

We should note that, generally, m,, , is different from m, ,, and
m,, , 1s different from m,.,. Moreover, for fuzzy numbers, the
subtraction is not the inverse operation of the addition; and the division is
not the inverse operation of the multiplication.

We may also define a partial ordering on Aj.

Definition 3.19 Let 4 and B be two fuzzy numbers. We say A<B
iff 4,<B, forevery ae(0,1].

Relation < is a partial ordering on .4z and, therefore, (4, <) is a poset.
Furthermore, for any two given fuzzy numbers 4 and B, we have

supid, Bl=AvB= | a(4,VvB,)

ae(0,1]

and

inf{d,B}=AAB = a(4, AB)).

U
ae(0,1]

Thus, (Af, <) is a lattice.

3.10  Fuzzy Integers

Let Z be the set of all integers.

Definition 3.20 A fuzzy integer is a fuzzy subset of Z with membership
function m(i), i< Z, satisfying the following conditions:

(FI1) there exists at least one integer i, such that m(i)) =1;
(FI2) m(iy) > min[m(i,), m(i;)] whenever i,i,,i;€Z and i <i, <i;;
(FI3) {i|m() >0} is a finite subset of Z.
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Example 3.20 Fuzzy sets “around 10” and “around 5, denoted by D and
F respectively, as well as D+ F in Example 3.12 are fuzzy integers.

The set of all fuzzy integers is denoted by #. The same as for fuzzy
numbers, by the extension principle, we may extend the six common
binary operators for integers to be corresponding binary operators for
fuzzy integers. The extension for the addition is shown in Example 3.12.
It should be emphasized that, unlike the common binary operators for
crisp integers, the difference for fuzzy integers is not an inverse operator
of the addition and the division for fuzzy integers is not the inverse
operator of the multiplication.

Similar to Definition 3.19, we may also define a partial ordering < on
% such that (%, <) is a poset. Poset (%, <) with binary operators v and
A forms a lattice.

Exercises
Exercise 3.1 Let {4, |t €T} be a class of fuzzy sets, where 7 is an index set. Prove that
Nier(A) gy 2(Njer A1), for every a €[0,1]. Cite a counterexample to show that

the inverse inclusion may not hold.

Exercise 3.2 Fuzzy set M is given in Example 3.3. Find the membership function of M.
Is it convex? What is M, 08’

Exercise 3.3 Prove that a fuzzy subset of R" is convex if and only if its strong a-cut is
convex for every o €[0,1].

Exercise 3.4 May we establish the fourth decomposition theorem as

A= UaeLA ady,?
Why?
Exercise 3.5 Let the universal set X be the set of all real numbers, i.e., X =(—c0, »), and

A, B, and C be fuzzy subsets of X. For each of these fuzzy sets with respective
membership function given below, show its a~cuts as a function of ¢ on (0, 1].
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) m, =1 =0 rrex
= 0 otherwise ~ orred
t if £e(0,1)
1 if £ €1, 3]
2) my(t)= . ,for teX.
1-(-3)/3 ifte(3,6)
0 otherwise

(3) m.()=e" for teX.

Exercise 3.6 Let the universal set X be the set of all real numbers, i.e., X =(—o0, ®), and
A, B, and C be fuzzy subsets of X. Knowing their a-cuts given below, find their
membership function respectively.

{[0, 1] ifae(0,1/2]
1 4,= .
%) ifae(1/2,1]

2) B, =[a,2-a] ifae(0,1].
3) C,=[2a,6-3c] ifae(0,1].

Exercise 3.7 Find the membership function of D—F , where fuzzy sets D and F are
given in Example 3.12

Exercise 3.8 Let fuzzy numbers 4 and B have membership functions

(t+1)/2 ifte=11]
m()=1G-1/2 ifre(,3]
0 else
and
t-1/2 ifte(l,3]
my(t)=9(5-0/2 ifte(3,95]
0 else

respectively. Find Z+l~3, A-B, ZE,and A/B .
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Exercise 3.9 Let fuzzy numbers A4 and B have membership functions

(t+2)/3 ifte(-2,1]
m,(t)=14-1/3 ifte(l,4]
0 else
and
t—1 ifre(,2]
my(t)=13-1t ifte(2,3]

0 else

respectively. Find AvB and AAB.

Exercise 3.10 Prove that any fuzzy number with membership function m(¢) is a crisp
number if and only if [* m(r)dr=0.



Chapter 4

Set Functions

From now on, we use the following conventions:
sup,.z{x|x€[0,a]} =0 forany ae[0,x],
inf _{x|x€[0,a]}=a forany ae[0,o0],

Oxo=0x0=0,

a/w=0 forany ae(—w0,»),

Yicza; =0 and [I,_.;a;,=1 for any real number sequence {q;} .

In this chapter, starting from the classical additive measures and
regarding them as special examples of nonadditive set functions, which
are not necessarily additive, we introduce the concept of monotone
measures in general case where the universal set may be infinite. Such
kind of set functions abandons the additivity of the classical measures
but keep the monotonicity, sometimes also the continuity (or
semi-continuity) if necessary. From Sections 4.4 to 4.9, we discuss
several special but common types of monotone measures. In Section 4.10,
we abandon the monotonicity to introduce more general nonadditive set
functions. The set functions possessing the nonadditivity can be adopted
to describe the interaction among contribution rates from a number of
attributes towards a certain target and are very useful and powerful in
information fusion and data mining.

62
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4.1 Weights and Classical Measures

Consider n attributes x;,x,,---,x, in a database. They may be the
information sources in information fusion (see Chapter 6) or some
variables in a real problem. These attributes form the universal set,
denoted by X, that is, X ={x,x,,---,x,} . The weights of these
attributes, w;, w,,---,w, , can be regarded as a mapping from the class
of all singletons, {{x;}|i=L12,---,n}, to interval [0, 1] satisfying

,w, =1. The concept of weights can be generalized to a countable
(infinite) university set X ={x;,x,,--:} . Corresponding to these
infinitely many but countable attributes x,, x,,---, nonnegative weights
Wy, Wy, -+ should satisfy > 7, w, =1.

Generally, let X be the universal set and %, be a o-ring of subsets of
X. Then (X, %) is called a measurable space. In most case, using a
o-algebra F as % is convenient for defining measures.

Example 4.1 (R, %) is a measurable space where R =(—o0, ), the real
line, and % is the Borel field.

As a special case, (X, # (X)) is a measurable space since & (X) is a
o-ring. With set operations union and complement, it satisfies the laws
shown in Theorem 2.1 and forms a Boolean algebra.

Let @ be a nonempty class of subsets of X, Je@ , and u be a
mapping from @ to the extended real line (—o,o0]. x is called an
extended real-valued set function, or set function simply if there is no
confusion, and denoted as y: % — (-0, x0].

Definition 4.1 Set function x4 is additive on € iff

MEVUF)Y=u(E)+ u(F) whenever Ee€ € Fe ¥ EUF e @ and
ENF=. u isfinitely additive on € iff

wJE)=3 u(E)
i=1 i=1



64 Nonlinear Integrals and Their Applications in Data Mining

for any finite disjoint class {E,, E,,---,E,} of sets in € satisfying
Ui E: € €.

Definition 4.2 Set function u is o-additive (or countably additive) on
€ iff p(U7, 4)=27u(4) whenever {4} isa disjoint sequence of
sets in €and |J;2, 4, isalsoin €.

It is evident that, when u () < oo, the o-additivity implies the finite
additivity, and the latter implies the additivity and (<) = 0 for set
function u defined on €. Furthermore, if € is finite, then the additivity
of u isequivalent to its o-additivity.

Definition 4.3 Nonnegative set function u:% —[0,] is called a
measure on € iff u is o-additive on € and there exists £ € @ such
that p(E)<oo.

Theorem 4.1 If 4 is a measure on €, then u()=0.
Proof. Let set E € @ such that u(E)<oo. Take a set sequence {4}

with 4 =F and 4= for all i=2,3,---. Set sequence {4} is
disjointand U2, 4, = E . By the c-additivity of 1, we have

2 H(4) = p(E) + 3 j(D) = w(E) .
i=l i=2
This means that > 7, x(&J)=0. Since u is nonnegative, we conclude

that u (D) = 0. O

If the universal set X is finite, € must be also finite and, therefore, any
additive set function on #is o-additive.

Definition 4.4 Set function 4 is said to be finite iff it never takes
infinite value; u is said to be o-finite iff for any E € @, there exists
E,e@with pu(E)<ow, i=12,---,suchthat U2, E,DE.
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Definition 4.5 Let (X, %) be a measurable space and x be a measure
on %, (we also say that g is a measure on (X, %;)). Then triple
(X, K5, ) 1is called a measure space.

Definition 4.6 Let (X, 4, u) be a measure space. If p(X)=1, then both
u and (X, & p) are said to be normalized. A normalized measure is
also called a probability measure (or, simply, probability). A probability
measure is discrete iff there exists a countable set of singletons

{H{x ). {x,}, -y < F suchthat 372, u({x;})=1.

The definition of discrete probability measure given above can be
generalized by replacing set {{x},{x,},:--} with disjoint class
{4, 4,,--y< F satistying Y7, u(4)=1 and u(B;) equals either
U(A;) orzero forany B, < A, with B,e #, i=12,---. However, we
do not adopt such a generalization in this book.

Example 4.2 Let X ={a,b,c,d}, @=2(X), and u(E)=E| for every
E e €, where |E| is the cardinality of set £, i.e., the number of points
in £. Then u is a finite measure on €. If we take P(E)= u(E)/4 for
every E € €, then P is a discrete probability measure on €.

Example 4.3 Let X ={x,,x,,---} and wu(E)=E| for E e 2(X). Then
M 1s a o-finite measure on 2(X).

Example 4.4 Let X ={x,x,,---,x,}, and let u({x;})=w, €[0,0),
i=1,2,---,n,and u(J)=10. Then u is a finite measure on class
¢={{x;}|i=12,---,n} U{D}.

Example 4.5 Let X ={x,x,,--} and w(E)=%, 27" for every
E e 2(X). Then u is a discrete probability measure on & (X). Positive
real number 27 can be regarded as the weight of attribute x, for each
i=1,2,--.

Example 4.6 Let X = R and u(E)=|E| for Ee P(X). Then i is a
measure on Z(X) but it is not o-finite.
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Example 4.7 Let X = R and .# be the class of all bounded left closed
right open intervals discussed in Example 2.10. Then # is a semiring.
For each interval [a,b) in .% define u([a,b))=b—a. Then u is a
finite measure on %

Theorem 4.2 Let (X, %5, 1) be a measure space. Then Measure u
has the following properties.

(M1)  Monotonicity: u(E)< u(F) whenever Ee€ % , Fe R,

and EcF.

(M2)  Continuity from below: lim, ,, u(E,)= (U7 E,) , whenever
E e, i=12,---,and {E,} isnondecreasing.

(M3) Continuity from above: lim, ,  u(E,)=u(N,E;) , whenever
E e, i=12,---, {E,} is nonincreasing , and there exists

iy suchthat u(E;)<oo.

Proof. Only (M1) and (M2) are proved here. The third is left to readers
as an exercise.

For (M1). Given Ee€ %y, Fe Hs, and ECF, let G=F—-FE.
Then Ge R, GNE=T , and w(G)=0 . Thus, from
MG+ u(E) = u(F), wehave u(E)<pu(F).

For (M2). For any given nondecreasing set sequence E, € %,
i=1,2,---, let Ff=E and F,=E—-E_, for i=2,3,---. Since

LE=ULF,, E,=U_F, for n=1,2,---,and {F,} is disjoint, we
have

wJE) = F) =3 u(Fy) = lim" p(F;) = lim u(E,)
i=1 i=1 i=1 i=1

4.2 Extension of Measures

Let X be the universal set, @ be a nonempty class of subsets of X with
de@and p:€—[0,0] beameasure.
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Definition 4.7 If ¥ o @and there exists a measure ' on % such that
U'(E)=u(E) for every Ee @, then u' is an extension of u from @
to Z.

Among the structured classes we have discussed, the semiring has the
simplest structure. Now let us consider how to extend a measure from a
semiring to the ring (or even o-ring) generated by this semiring.

Let ¢ be a measure on a semiring % It is easy to extend u to
R(SF). In fact, for any E € AR(¥), we have E=J_, E, for some integer
n, where {E;} is a disjoint finite class of sets in % Thus, we just let
MW(E)=Y" u(E,). ' isthen an extension of x from.# to Z¥).

Example 4.8 In Example 44, X={x,x,,---,x,} .Class
S={{x;}|i=1,2,---,n} U{J} is asemiring. Measure x on.# can be
uniquely extended onto the ring generated by .% that is, onto
R(L) = {E|Eisfinite} . In fact, 9(¥) is a finite class. Taking for any
Ee R(F) W(E)=%,,cpw;, where w, =u(ix;}), i=1,2,---,n, it is
not difficult to verify the additivity of 4" on Z(.%).

Example 4.9 Similar to Example 4.8, let X ={x,x,,---} and %
consist of all singletons and the empty set J. Then £2(.#) consists of all
finite sets. For any singleton {x,}, take x({x,})=2". With u«(J)=0,
M 1s a measure on % For any set E € #(¥), it can be expressed as a
finite disjoint union of singletons, that is, £ = U];:I {x; } for some
nonnegative integer k. Thus, defining ' /

k k .
H(E)=X uE )=32",

j=1 j=l

we get an extension of x from # onto Z#(%).

Example 4.10 In Example 4.7, consider the ring generated by .7, Z#(.%).
It consists of all finite unions of left closed right open intervals. Each set
E in #(.7) can be expressed as a finite disjoint union of sets in .% say
E, =[a;,b), i=1,2,---,k. We just need to define u'(E)=3",u(E,)

i=l1
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=Y% (b, —a,). Thus, 4 is a finite measure on (%) and is the
extension of x on .%.

In general, since each set £ in Z2(.%) is a finite disjoint union of sets
in.#,ie, E=U"E, , where {E}C.%, to extend a measure y from &
onto J/B(y) we just need to define 4’ on R(F) by ' (E)=3%, u(E).

Without any confusion, we may omit the prime on g after
extending. As for the extension of a measure from a ring to the o-ring
generated by this ring, the situation is rather complex. First, let us
continue the example above.

Example 4.11 In Example 4.8, Z,(#(¥)) = #(¥) = #(X) and u has
already been extended onto Z,(#(#)) there. In Example 4.9, 2, (Z(¥))
=2 (X). Each set in #(X) is a countable set and can be expressed as a
countable disjoint union of singletons, that is,

Eer(0), E={Jix, ),

j1

where all x, are different. Let E, ={J* iz 1{x }. Then E, € R(¥),
k=12, and {E,} is nondecreasing. Thus, let

(' (E)=1lim, u(E,) =lim, Z’;:l 2V =30

This completes the extension of u from A(F) to RAR(F)).

However, not all examples have so simple extension. The complexity
of the extension for x from a ring onto the o-ring generated by this
ring depends on the structure of the ring. The extension procedure of u
given in Example 4.10 from (%) to RAAR(¥)) is very complex. We
omit the discussion here. Interested readers may refer to [Halmos 1950].
In general, we have the following theorem. Its proof is omitted too.
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Theorem 4.3 If 4 is a finite measure on a semiring %, then u can be
uniquely extended to be a o-finite measure on Z,(¥).

By using Theorem 4.3, measure x in Example 4.10 can be uniquely
extended to be a o-finite measure on the Borel field . Furthermore, let
¢ ={EVF|Ee #B, FcDe % with u(D)=0} and et
HEUF)=u(E) for EUF €% Then u is the completion of u and
is called the Lebesgue measure on the real line. It is a generalization of
the concept of the length of intervals. Class Zis called the Lebesgue field.
We should be sure that the Lebesgue field is far smaller than the power
set of R.

4.3 Monotone Measures

Let (X, # ) be a measurable space and x:%—[0,0] be an extended
real-valued set function, where Zis a o-algebra of subsets of X. When X
is finite, usually, we take the power set 2(X) as 7.

Definition 4.8 Set function 1z & — [0, =] is called a monotone measure
on (X, ) iff it satisfies the following requirements:

(MM1) (D)= 0 (vanishing at the empty set);
(MM2) w(E) < w(F) whenever E € F , F € 4 and E < F
(monotonicity).

In this case, (X, &, u) is called a monotone measure space.
Definition 4.9 Monotone measure u: F —[0,0] is lower-semi-

continuous (or continuous from below) iff it satisfies property (M2) given
in Theorem 4.2, that is,

tim (£, = i E,)

i=1
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whenever {E,} < & , E\C E;C -+, u is upper-semi-continuous (Or
continuous from above) iff it satisfies property (M3) given in Theorem
4.2, that is,

lim 4(£,) = ([ E)

i=1

whenever {E,} < 4 E,c E,c--- and there exists positive integer i,
such that /(E, ) <oo; pis continuous iff it is both lower-semi-continuous
and upper-semi-continuous.

From the properties shown in Theorem 4.2, we know that any
measure is a continuous monotone measure. So, the concept of monotone
measures is a generalization of the concept of measures. However, the
requirement of the additivity has been abandoned for the monotone
measure, that is, monotone measures are nonadditive generally.

Similar to measures, we may also define the normalization for
monotone measures as follows.

Definition 4.10 A monotone measure & on (X, & ) is normalized iff
uX)=1.

When Z is finite, or more specially, when X is finite, any monotone
measure is continuous. In databases, the number of attributes is always
finite. So, we just need to consider monotone measures defined on the
power set of a finite universal set for describing the individual and joint
contribution rates from some attributes towards a certain target.

Definition 4.11 A monotone measure u is subadditive iff
HMEOUF)S u(E)+u(F) forany E€ & and Fe .

Definition 4.12 A monotone measure u is superadditive iff
HEOF)2 u(E)+p(F) forany Ee ¥ and FeZ with ENnF =0.

It is easy to see that a monotone measure x is additive if and only if it
is both subadditive and superadditive.
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Example 4.12 Three workers, x, , x,, and x;, are hired for
manufacturing a certain kind of wooden toys. Denote X = {x,, x,, x;}.
Working separately, they produce 5, 6, and 7 toys per hour respectively.
This can be considered as their individual efficiencies, i.e., the
contribution rates towards the target “total amount of manufactured toys”.
When the three workers (or two of them) work together sometimes, we
must consider their joint efficiencies to calculate the total number of the
manufactured toys in a given period of time. We may use u({x;, x,})

to denote the joint efficiency of x; and x,. Similarly, u({x,,x;}),
H({x,,x;}), and u(X) are joint efficiencies of x;, and x;, x, and
x,, and all of them respectively. Assume that u({x,,x,})=14,

H({x, x33) =13, pu({x,,x;})=9,and u(X)=17.Then, with u()=0,
1 P(X)—>[0,0) is a monotone measure. It is nonadditive. For instance,
H({xy, x, 1) > pu({x,}) + p({x,}) . This inequality means that workers x,

and x, cooperate well. The nonadditivity of x describes the
interaction among the contribution rates from these three workers
towards the total amount of their manufactured toys.

Example 4.13 In diagnosis of common cold, a doctor usually uses three
symptoms, namely, running nose, soar throat and coughing represented
by x, , x,, and x; respectively. Denote X ={x,,x,,x;} . If each
symptom occurs separately, we can diagnose cold respectively with
certainties 0.6, 0.5, and 0.4. We may consider them as single-symptom
diagnosis certainties, i.e., the contribution rates towards the target
“overall certainty of the diagnosis”. When the three symptoms (or two of
them) occur together sometimes, we must consider their joint certainties
to calculate the overall certainty for given periods of occurrence of the
symptoms. Similar to Example 4.12, u({x;,x,}) , u({x,x5}) ,
H({x,,x;}), and p(X) are used to denote the joint certainty of x,
and x,,of x, and x;,of x, and x;, and for all of them respectively.
Assume that u({x;,x,})=0.8, u({x,x;})=0.76, u({x,,x;})=0.7,
#(X)=0.88, and u (D) = 0. Then, w:#(X)—[0,0) is a monotone
measure. It is subadditive. For instance, z({x;, x,}) < p({x;})+ p({x,}).
These joint certainties reflect the evidence combination (see Chapter 6)
of symptoms in medical diagnoses.
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Example 4.14 To evaluate used TV sets, we roughly adopt two quality
factors: “picture” and “sound”. These are denoted by x; and x;, respectively,
and the corresponding weights may be taken as w; = 0.7 and w, = 0.3. Let
X ={x;, x,} . Inthis case, if we take w,, =1 as the weight of Xand w, =0
as the weight of J, an additive measure w: #(X)—[0,1] is obtained.
However, such a measure is not reasonable for evaluating the global
quality of a TV set. We prefer to assign an importance 0.3 to “picture”
and importance 0.1 to “sound”. With assigning 1 to X and 0 to &, a
superadditive monotone measure v: 2(X)—[0,1] is formed as

0 ifE=0
03 ifE=
V(E) = 1 1
0.1 if E={x,}
1 ifE=X .

The details for using this monotone measure in synthetic evaluation can
be found in Chapter 6.

In the following, we show more mathematical examples for
monotone measures.

Example 4.15 Let X = {1, 2,---, n}. Given a positive real number £, if
we define set function u:2(X)—[0,1] by

k
H(E)= [@j for E e 2(X),

n

where |E| is the cardinality of E, then ux is a normalized monotone
measure. It is superadditive when k& >1, subadditive when k<1, and
additive when k=1.

Example 4.16 Let X be the real line R, 7 be the Lebesgue field #, and
4 be the Lebesgue measure on % For any set E € #(X), define
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H(E)=inf{u(F)|F 2 E,F e %}
and

ME)=sup{u(F)|F CEFe?}.

Then x is a subadditive monotone measure and g is a superadditive
monotone measure on Z(X). In real analysis, 77 and x are called
outer measure and inner measure generated by the Lebesgue measure,
respectively.

Example 4.17 Let X = {1, 2,---}, X = X, x X,, and F =2 (X). For any
Ee 7, define w(E)=|Proj, E|, where Proj, E={x|(x,y)eE}. Then
4 1s a lower-semi-continuous monotone measure on & . It is not
upper-semi-continuous. In fact, if E,={l}x{n,n+1,---} , then
E oE, o+, and u(E,)=1 for every n=12,---, but N, E,=J
such that (N2, E,) =0. This violates the upper-semi-continuity.

Example 4.18 Let f{(x) be a nonnegative, real-valued function defined on
X =(—0, 0) . If we define

H(E)=sup f(x) forevery set E of real numbers,

xek

then u is a lower-semi-continuous monotone measure on measurable
space (X, 2(X)). It is not upper-semi-continuous in general. For example,
taking f(x)=1, Vxe X, E =[i,©), i=1,2,---,and E=2,E, =,
we have w(E)=0 but wu(E)=sup,, f(x)=1<w for every
i=1,2,---. This violates the continuity from above.

Example 4.19 The measurable space is the same as used in Example
4.18. Taking a function f: X —[0,1] that satisfies inf _, f(x)=0, set
function x defined for every E € #(X) by

H(E)=inf £(x)
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is a normalized upper-semi-continuous monotone measure on (X, #(X)).
It is not lower-semi-continuous in general. For example, take
f(x)=1/(1+x") for every real number x and E,=(-o,i] for
i=1,2,--- . Set sequence {E,} is nondecreasing and U E;
=(-o0,00)=X . But we have wu(X)=inf_, f(x)=inf , f(x)=1,
according to the conventions given at the beginning of this chapter, and

y(Ei)zing'f(x)z i?_f)f(x)zo for i=1,2,---.
x¢kE; xe(i,o

This violates the lower-semi-continuity.

Definition 4.13 Let x: % —[0,0) is a monotone measure on
measurable space (X, ). Denote u(X)=c. Set function v defined on
(X, 7) by

V(E)=c—u(E) forevery Ec€ F
is called the dual of u.

If v is the dual of g, then g is the dual of v. It is also easy to
know that g is normalized if and only if its dual v is normalized. If
M 1s upper-semi-continuous, then its dual v is lower-semi-continuous
and vice versa.

4.4  A-Measures

The most common type of monotone measures in literature is the
A-measure (also called Sugeno’s A-fuzzy measure). In comparison with
the classical measures, they have only one more parameter, A, that
indicates the magnitude of the interaction mentioned in the last section in
a special and simple way. In the following, we discuss A-measures in a
more general aspect than the Sugeno’s original model of the A-fuzzy
measure.
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Let (X, &) be a measurable space, # be a nonnegative extended
real-valued set function on % and Ae(-1/supu,©)U{0} be a
constant, where sup g =sup{u(E)|E € Z}. When g is monotone and
normalized, it is obviously that sup z=1.

Definition 4.14 Nonnegative set function g is said to satisfy the A-rule
iff

H(EVF) = p(E)+ p(F) + Au(E)u(F) (4.1)
whenever Fe %, FeZ,and ENF=0.

Theorem 4.4 If nonnegative set function x satisfies the A-rule, then

] l(li[[lJf/"i'#(E,«)]—l) as A #0
wUE)=1, "~ (4.2)
. Zﬂ(Ei) asA=0,

for any finite disjoint class {E|, E,,---, E,} of sets in Z.

Proof. When A =0, the conclusion is just that the additivity implies the
finite additivity. When A # 0, equation (4.1) can be rewritten as

1
U(E VE,) = z([l +A-w(EDII+A- w(E)]-1).
For any given positive integer n>2, assuming that

n—1 n—1
ﬂ(UEi)=%(H[1+/1-#(E,»)]—1) :
i=l i=1

we have
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u(QE) -u(UE)UE)

=%([Hl-%(ﬁ[Hi-ﬂ(E,«)]—l) 10+ A4-u(E,)]=1)

1 n-1
=Z(1j[][1+i-ﬂ(Ei)][1+i-ﬂ(En)]—l)
1 n
=Z(1j[1[1+/1-ﬂ(Ei)]—1)
The proof of the theorem is now completed by using the mathematical
induction. O
Definition 4.15 Nonnegative set function g is said to satisfy the

o-A-rule iff

QoA mEn-n asazo
,U(UEI') =1 . = (4.3)
- > u(E;) asA=0
i=l

for any disjoint sequence {E;} ofsetsin

Similar to measures, the o-A-rule of nonnegative set functions that
vanishes at the empty set is equivalent to the A-rule when & is finite,
especially, when X is finite.

Definition 4.16 Nonnegative set function u:7 —[0,0] is called a
A-measure on & iff u satisfies the o-A-rule on & for some
Ae(=1/sup i, ©) {0} and there exists £ e & suchthat u(E)<o.

A A-measure is usually denoted as g, . A normalized A-measure is
called a Sugeno measure (or, Sugeno’s A-fuzzy measure). It is easy to see
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that any A-measure is superadditive if 4 >0 and is subadditive if
A < 0. Any A-measure is a classical measure if and only if 1= 0.

Example 4.20Let X ={x,x,} and F=2(X). If

0 when E=9

0.2  when E={x}
H(E) =

0.5 when E={x,}

1 when E=X

then 4 is a Sugeno measure with A = 3. For it, we just need to verify
that

p(X) = pCiox3) + p(ixy ) +3uCix ) - 1({x,}) -

In fact,

)+ () + 3000 ) () = 0.2+ 0.5+ 3x02x0.5=1= u(X).

Theorem 4.5 If g, is a A-measure on % then g, (J)=0 and g,
satisfies the A-rule.

Proof. We only need to prove the theorem when A4 =0 since a similar
result for measures has already been proved. From Definition 4.16, there
exists set Ee & with g,(E)<oo . Let E,=FE and E, =0 for
i=2,3,---. Then set sequence {E|, E,,---} is disjointand E, =7 E, .
By using the o-A-rule (4.3) of g, , we have

gﬂ(Eo=%{ﬁ[l+z-gﬂ(Ei)]-[l+z-gﬂ(E1)]—1},

i=2

that s,
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1+/1'81(E1)=]£[[1+/1'gl(E,-)]~[1+/”t'gﬂ(E1)]-

i=2

Since Ae(-1/supg,;,©)u{0} and g,(£)<ow , we know that
0<1+A-g,(E)<oo. Thus,

[T0+4-g,(E))=1
=2

and, therefore,

1+4-g,(@)=1.

Consequently, g,()=0 since 4#0.
By using g,(d)=0, the second result of the theorem is clear. The
theorem is now complete. O

When X ={x,x,,--} and ZF =2(X), knowing the values of
A-measure g, at every singleton and the value of A, equation (4.3) can
be used to calculate the value of g, at any set in Z Conversely,
restricting the universal set being finite and based on equation (4.2), we
can prove the following theorem, by which the value of 4 may be
uniquely determined if the values of A-measure g, at every singleton
and at X are known. The proof of the theorem is omitted here. The
interested readers may refer to [Wang and Klir, 1992 or Wang and Klir
2008].

Theorem 4.6 Let X ={x,x,,---,x,}, where n>2, and g, be a
A-measure on 2(X). Knowing g,({x;})=a, 20 (with at least two of
them being non-zero) and g,(X)=b>a;, i=1,2,---,n, the value of 1
can be uniquely determined by equation
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1+62=]](+aA):

i=1

(I) A>0 when >/ a,<b;
(2) A=0 when X! ,a,=b;
(3) -1/b<A<0 when X! a,>b.

Example 4.21 Let X ={x,,x,,x;} and g, be a A-measure on P(X).
Knowing g,(ix})=0.1, g,(in))=g,(ix;})=0.2, and g,(X)=1,
we want to find the value of parameter A and the values of g, at the
other sets in 2(X).

From Theorem 4.6, we know that 4 >0 and

I1+A=(01+0.11)1+0.24)(1+0.21),

that is,
0.0042 +0.084-0.5=0.

Solving this quadratic equation, we obtain

_ —0.08++/0.087 —4x0.004x (~0.5)
- 2x0.004
_—0.08+0.12

~0.008

=5o0r—-25

A

Since A =-25 violates A >0, we obtain the unique feasible solution
A=5.
Furthermore, using equation (4.1), we have

2,({x,x,})=0.1+0.2+5x0.1x0.2=04,

g, (4%, 1) =0.1402+5x0.1x02=0.4
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2,({x,,x3)=02+02+5%x0.2x0.2=0.6.

Theorem 4.7 Let X ={x,,x,,---,x,} and g, bea A-measure on Z#(X)
with g,(X)=c>0 and parameter Ae(-1/c,0) . For any sets
Ee2X)and F e 2(X),

o _&(E)-g(ENF)
(1) g (E-F)= 1+ 2. (EnF)

b

@ g, (Eur) =8B & E) g (ENF)+A-g,(E) g, (F)
’ 1+A-g,(ENF)

= _ c—g,(E)
6) e EB)=y 5

Proof. Set E can be expressed as a disjoint union (ENF)U(E—F). By
(4.1), we have

g(E)=g(EnF)+g,(E-F)+A-g,(ENnF)-g,(E-F)
=g, (EnF)+g,(E-F)[1+1-g,(ENnF)].

Since Ae(-1/c¢,©), we know that 1+4-g,(ENF)>0 and, therefore,
obtain (1). As for (2), using a similar strategy and (1), we get

UEVF)=g,(EV[F—(ENF)])
=g(E)+ g, (F=(ENF))[1+1-g;(E)]

g (F)-g,(FNENF) ]
&)+ 1+4-g,(FNENF) [+4-g,(E)]

=4,

- &i(F) =g (ENF) )
S B+ S SR 1 2 g, (B

_&E)+g,(F)-g(ENnF)+A-g,(E) g,(F)
1+4-g,(ENF) '
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Finally, conclusion (3) is obtained by substituting X for £ and £ for F in
(1). O

Theorem 4.8 Let X ={x,x,,---,x,} and g, be a normalized
A-measure on #(X) and parameter A=aec(—1,0). The dual of g,,
denoted by g, is a normalized A-measure on #(X) as well and its
parameteris A'=-a/(a+1).

Proof. From the definition of the dual, we have p(X)
=1-g,(X)=1-g,(@)=1-0=1. To show that z is also a A-measure
on & (X) with parameter A'=-a/(a+1), we just need to verify the
corresponding A-rule for x4 In fact, for any given Ee & (X) and
FezX)with ENnF =, from (3) of Theorem 4.7, we have

H(E)+ p(F) + A u(E) - u(F) =ﬂ(E)+ﬂ(F)—ﬁu(E)-u(F)

=l—gﬂ<E)+1—gﬁ)—ﬁ[l—gi(@]-[l—gl(ﬁn

_(+a)g,(B) (+a)g,(F) ~ (+a)g,(E)g,(F)
l+ag,(E)  1+ag,(F)  [l+ag,(E)][l+ag,(F)]
_(+a)lg,(E)+g,(F)+ag,(E)g,(F)]
[1+ag, (E)][1+ag,(F)]
_(+a)g,(EVF)
" [l+ag,(EUF)]
=1-g,(EUF)
=u(EVUF) .

The proof is now complete. O

The above theorem also shows that the dual of any superadditive
normalized A-measure must be subadditive and vice versa. This
conclusion is also true for any A-measure.
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4.5 Quasi-Measures

Given a A-measure u# on Z with A0, from (4.3), we have

1+/1'ﬂ(DE,«)=12[[1+/1-ﬂ(E,~)] (4.4)

i=1 i=1

for any disjoint sequence {E;} of sets in & Taking logarithm in both
sides of (4.4), we obtain

In(1+ A - /1(0 E)) = i In[1+ A+ u(E,)] . (4.5)

i=1 i-1

If we define a new set function von & by
V(E)=In[1+A-u(E)] forevery Ee 7,

Equation (4.5) becomes

vlJE) =3 ().

i=l i=1

This means that the new set function v possesses the o-additivity and,
therefore, with the fact that

v(@)=In(1+1- u(J)=In1=0,
is a classical measure. Such a result provides a new approach for

constructing A-measures and suggest us to introduce a wider type of
monotone measures that includes A-measures as special examples.



Set Functions 83

Definition 4.17 Let a € (0, «]. An extended real-valued function
0 :[0, a] - [0, ] is called a T-function iff it is continuous, strictly
increasing, and such that #7'(0)=0 and

%) when a < o

{oo}  whena=o0.

9_‘({00})={

In the above definition, expression “@~' ({0}) = @ or {oo}” means
that the image of any finite value by mapping @ must be finite.

Definition 4.18 Let x be a set function on 4. u is quasi-additive iff there
exists a 7-function €, whose domain contains the range of 4, such that
the set function fou defined by (fou WE) =60(u(E)) for every
E e is additive; u is quasi-o-additive iff there exists a 7T-function 6,
whose domain contains the range of z, such that the set function o u
defined by (fo p )(E) =0(u(E)) for every E €F is o-additive; u is
called a quasi-measure iff there exists a 7-function & such that Go y is
a classical measure on Z. In this case, 7-function & is called the proper
T-function of A normalized quasi-measure is called a
quasi-probability.

Obviously, for any given measure & on #and any 7-function & whose
range covers the range of , set function 6 ' o u is a quasi-measure on
Z . It should be noted that, for a given quasi-measure, its proper
T-functions are not unique. If y is a finite quasi-measure, a 7-function &
such that #o y is a normalized measure (i.e., a probability measure) is
called its standard T-function. Any classical measure is a special case of
quasi-measure with the identity function as one of its proper 7-functions.

Example 4.22 The monotone measure given in Example 4.15 is a
quasi-measure. Its standard T-function is 6(y)=y"*, y<[0,1].

The following theorem shows that any A-measure is a special
example of quasi-measure.
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Theorem 4.9 Any A-measure g; on & with parameter A =0 is a
quasi-measure having

In(1+ Ay)

0,(») )

H ye[O,supgl]

as its proper 7-function, where k£ may be any finite positive real number.

. . . o~ 1 .
Conversely, if x4 is a classical measure on & then 6, ou is a
A-measure, where

ekﬂx -1

0, (x) =

, x€[0, 0]

and k£ may be any finite positive real number.

Proof. Since ¢, is continuous and strictly increasing with

0,(0)=(nl)/(kA)=0, it is a 7-function. Set function g, as a
A-measure has at least one set £, & such that 0<g,(E)) <.
Hence, by the behavior of @, that it does not map any finite value to the
infinite, we know that

(0,0 8,)Ey) =0,(8,(E)) <o.
So, we only need to verify the o-additivity of 8, o g, . In fact, for any
disjoint set sequence {E,} in Z,
(0, ° gl)(UEi) = el(gl(UEi))
i=1 i=1

1 o0
=Hln(l+/1'gﬂ(UE,-))

i=1

1 o0
= Eln(l + (];1[[1 +A- g, (E))-1)



Set Functions 85

1 00
=ElnH[1+/1'g4(El—)]

i=1

1 &

=—)> In[l+1-g,(E;

k}{,; n[ + gl( 1)]

_xIn[l+4-g,(E)]
pax kA

(0,0 gﬂ,)(Ei)

M

i=l1

Conversely, if x is a classical measure on %, then it is o-additive and
1(D)=0. Thus,

(0 o)D) =6;" (D)) =6;'(0)=0

and
@, o () E) =0, (u JE)
i=l i=1
= 0,3 W(E,))
i=1

exp(kA Y p(E,) -1

i=1

A

HHHE) _q

— ([0 + 267 (u(EN-
i=1

:%qiﬂ+i($%ﬂXEﬂ—Da

that is, 6?;1 o i satisfies the o-A-rule. So, it is a A-measure. O
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Example 4.23 In Example 20, X ={x,,x,}, = 2(X) and

0 ifE=0
0.2 if E={x}
g,(E)= . :
0.4 if E={x,}
1 ifE=X

Set function g, isa A-measure with parameter A =35. If we take

In(l+Ay) _In(1+5y)

9 = s
)= de ) - e
then
0 ifE=0
0.386--- if E={x}
(0, 08,(E)=

0.613-++ if E ={x,}
1 ifE=X

Set function 6, o g, is a probability measure on & (X). The above 6,
is the standard 7-function of g, .

The following example shows how to construct a A-measure from an
existing probability measure with a given value of parameter 4.

Example 4.24 Let X ={x,x,}, = #(X) and

0 fE=Q
034 if E={x}
0.66 if E=1{x,}
1 ifE=X

u(E) =

For given A =-0.75, taking 7-function
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In(1-0.75y)
0,(y)=20=9-159)
A =005
we have
1-0.25°
07 (x) = —— 22
i (%) 0.75
Thus
0 fE=Q
(E)= (0" o w)(E) =6 (u(Ey = | 0 T E= il
S = SR = O 00790 i E = (x,)
1 fE=X

is a A-measure with parameter A=-0.75. As a quasi-measure, its
standard 7-function is €,(y) shown above.

4.6 Mobius and Zeta Transformations

We have seen that the nonadditivity of a monotone measure describes the
interaction among the contribution rates of considered attributes towards
a certain target. Now the question is what the amounts of the mentioned
interaction are. The following example shows the idea for introducing
the Mobius and zeta transformations.

Example 4.25 Let X ={x,,x,} and set function x:Z2(X)—>[0,0) be
a monotone measure. Set function g describes the individual as well as
the joint contribution rates from attributes towards a certain target. Let
v({x;, X, ) = p({x,, x5, 1) — (u({x,}) + 1({x,})) . Due to the nonadditivity
of u, v({x,x,}) may not be zero. The amount of v({x,, x,}) can be
understood as the “pure” interaction between the contribution rates from
attributes x; and x,.

When the number of attributes is larger than 2, the expression
describing the “pure” interaction among considered attributes is not so
simple. The following definition gives a general expression that can
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describe the “pure” interaction among the contribution rates from
attributes towards the target.

Definition 4.19 Let X ={x,,x,,---,x,} and u be a real-valued set
function on #(X). Define set function vby

v(E)= 3 (1) u(F) (4.6)

FcE

for every E e # (X). Set function v on & (X) is called the Mébius
representation of u . Equation(4.6) is also called the Mdbius
transformation.

Example 4.26 Let X ={x,,x,,x;} and u:Z (X)—>[0,0) be defined
as

0 ifE=0
0.1 if|E|=1
M2 035 if|E)=2
1 ifE=X

for E e #(X). Then its M&bius representation v has values

0 ifE=Q

0.1 if|E|=1
V(E)= ,

0.15 if |E|=2

025 fE=X

for E e 2(X). Besides the contribution rates from individual attributes,
set function v also describes the “pure” interaction amounts, that is, the
amount of “pure” interaction between any two attributes is 0.15, while
the amount of “pure” interaction among all three attributes is 0.25. Here,
we can see that the total sum of “pure” contribution rate (including the
interactions) from sets in #(X) is
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ZV(E)=O+O.1+O.1+O.1 +0.15+0.15+0.15+0.25=1.

EcX
Definition 4.20 For given set function von #(X), transformation

H(E)= D v(F) 4.7)

FcE

for every E € #(X) is called the zeta transformation.

We should note that, in Definitions 4.19 and 4.20, both set functions
4 and v are not necessarily nonnegative. However, if v is nonnegative,
then so is g

Lemma 4.1 For any given finite sets G and E satisfying G c E,

> )=

F|GcFcE

0 IfGcE
1 ifG=FE.

Proof. When G c E, denoting n= |E -G

, we have

S =Y -1y
i=0

F|GCFcE
=(1-1)"
=0

When G = E, itis obvious that

(=)= ==t

F|IGCFcE
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Taking G = J, we have the following Corollary.

Corollary 4.1 For any given nonempty finite sets £,

> nl=o0.

FcE

Theorem 4.10 The Mobius transformation and the zeta transformation
are the inverse to each other.

Proof. We verify (4.7) from (4.6). In fact, by using Lemma 4.1,

zwm=g¥gg4ﬁ”w«a=z > () uG)

FcE c GcE F|GCFcE
= 2 u(G) = u(E)
G=E

It is similar for verifying (4.6) from (4.7). 0

Example 4.27 We use set functions g and v shown in Example 4.26
to confirm the conclusion of Theorem 4.10. When |E|=2,

H(E)= Y v(F)

FcE
=0.1+0.1+0.15
=0.35;

while |E|=3,thatis, £E=X,

H(E)= D V(F)

FcE
=0.1+0.1+0.1+0.15+0.15+0.15+0.25
=1.



Set Functions 91

The case of |E|=0 or |E|=1 is trivial.

4.7  Belief Measures and Plausibility Measures

In this section, two common types of monotone measures and the
relation to the probability are discussed. We still use X to denote the
universal set.

Definition 4.21 Set function m: 2 (X) —[0,1] is called a basic
probability assignment if there exists a countable class of sets
{41i=12,--} c 2 (X)—{J} such that X7 m(4,)=1 and m(E)=0
forany Ee¢{d4 |i=12,--}.

From Definition 4.21, we know that m(<J)=0. Defining p(J)=0
and p({E})=m(E) forevery E e Z(X),p is a normalized measure on
the semiring consisting of the empty set and all singletons in # (2 (X)).
This normalized measure can be uniquely extended to be a discrete
probability measure on 2(2(X)).

Example 4.28 Let X ={x,, x,, x;} and m:2(X)—[0, ) be defined as

0.1 if E={x}
03 if E={x;}
0.6 if £={x,x,}

0 else .

m(E)=

Then m is a basic probability assignment on & (X). Denote E, =,
Ey =), Ey={x}, E=,x%, E={g}, E={x,x%],
Ei={x,,x;}, and E, ={x;,x,,x;}. Then &# (X) = {E;|i=0,1,---,7}
and, regarding & (X) as the universal set and each set E; as an element,
class #={D, {E,}, {E, } {E; } {EL L {ESY {E},{E,}} 1s a semiring. If we
define p({E;})=m(E,) for i=0,1,---,7, then p is a probability
measure on % It can be uniquely extended to a discrete probability
distribution on #(2(X)), the o-algebra generated by .% as follows:
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p(E)= Y m(E,) (4.8)

E‘»EE

for every Ee P(P(X)). For example,

P} 4x, X34 1) = p({E,, Es})
= p({E2}) + p({Es})
-0 ,

while
(s} {x, 03 ) = p({Ey, E5}) = p({EL ) + p({E51) = 0.9 .

Definition 4.22 Let set function m be a basic probability assignment on
Z(X). The set function u:2(X)—>[0,1], determined by

H(E)= 2 m(F)

FcE

for every Ee€ & (X) is called a belief measure on measurable space
(X,2(X)) and we say that g is induced from m. A belief measure is
usually indicated as Bel.

When the universal set X is finite, we may see that any belief measure
is just the zeta transformation of a basic probability assignment;
conversely, the Mobius representation of any belief measure is a basic
probability assignment.

Example 4.29 Based on the basic probability assignment shown in
Example 4.28, using (4.8) we obtain a belief measure Bel on #(X) as
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0 it E=Jor{x,}

0.1 if E={x}

0.3 if E={x;} or{x,,x;}
04 if E={x,x;}

0.7 if E={x,x,}

1 if E={x,x,,x} .

Bel(E) =

The following theorem shows that any belief measure is a
superadditive normalized monotone measure, which is continuous from
above. The theorem also shows an important inequality for belief
measures.

Theorem 4.11 If 4 is a belief measure on & (X), then it has the
following properties:

(BM1)
(BM2)

(BM3)
(BM4)
(BM5)

#(@)=0 and u(X)=1;

WU E)2 S g 1wo (D (e E)) for any finite
subclass {E,,---,E,} of 2(X);

A is superadditive;

/1S monotone;

M 1s upper-continuous (continuous from above).

Proof. Property (BMI1) is obtained from the definitions of basic
probability assignment m and relative belief measure . To property
(BM2), consider any given finite subclass {E,,---,E,} . Denoting
I(F)={i|l<i<n,F c E;} forany given set /" and using Corollary (4.1),

we have

S -)MunE)= Y =) S m)

Il n} I #D iel Il n} I#D FeMie E;

= Y m(F) Y1

FII(F)#@ I1cI(F)1#D
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= Y mFE)A- YD

F|I(F)=Q IcI(F)

= 2 mF)

FII(F)=®

= 2 m(F)

FcE,; forsomei

< Z m(F)

FEULE;

- u(JE)
i=1

As for property (BM3), considering any given sets E and F with
EnNF = and using (BM2), we have

HMEVE)2 t(E)+ p(F)— i(ENF)
= M(E)+ u(F)

Property (BM4) is a direct result of (BM3). In fact, let £ < F . Since
ENn(F-FE)=9 and u isnonnegative, we have

u(F)= (£ (F-E))
> p(E)+ u(F - E)
> u(E)

Finally, we show property (BM5). For any given belief measure z, let
m be the corresponding basic probability assignment. From Definition
421, we know that there exists a countable class of sets
{4,1i=12,--}c 2 (X)—{J} such that > m(4)=1 and m(E)=0
for any E {4 |i=1,2,---}. Hence, for any given ¢ >0, there exists
positive integer n,, such that 3, , m(4,)<e¢. Consider any given
nonincreasing set sequence {E;} with (., E, =FE. For each A4, with
n<ny,if A,—E#,then there exists i(n) suchthat 4, —E, ,#D.
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Write i, =max(i(l),---,i(n,)). If 4,—E#J, then 4, - E,

i 290 for
every n<n,.So, we have

H(E)= D m(F)

FcE

= > m(4,)

A,cE

> Z m(4,)

A,CE n<ng

> > m(4,)

A,CE, io JMSH

> > m(d,)- Y. m(4,)

4,cE; n>n

> > m(F)—¢

Fc E‘»0

= u(E,) -z

Thus, by the monotonicity of x, we know wu(E)=Ilim; u(E;). The
proof of the theorem is now complete. O

Properties (BM1) and (BM2) shown in Theorem 4.11 are essential to
belief measures. This can be seen in the next theorem.

Theorem 4.12 Let X be finite. If a set function u:2(X)—[0,1]
satisfies conditions (BM1) and (BM2), then its Mobius representation
m: P(X)—>[0,1] is a basic probability assignment and, furthermore, u
is the belief measure induced from m.

Proof. Since m is the Mdbius representation of x, using (4.6) we have

m@)= Y (-1 u(F)=(-1)" u(@)=0.

Fco

We know that the zeta transformation is the inverse of the Mdobius
transformation. So,
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Zm(E)z,u(X)zl.

EcX

Thus, we only need to show m(E)>0 for every subset £ of X. In fact,
since X is finite, any subset of X must also be finite. For any given subset
E, say, E={x,x,,---,x,} , denoting E=FE-{x;} , we have
E=U"E; and

m(E)=Y(~D)* " u(F)

FcE

—uwE)- Y )" uE)

Ic{l, - n} [0 iel
—uJE)- Y )" uE)
i=1 Il n} I#D iel

20 ,

due to (BM2). Finally, we know that x is the belief measure induced
from m since it is the zeta transformation of m. O

Corollary 4.2 Let X be finite. Set function x:2(X)—[0,1] is a belief
measure if and only if (BM1) and (BM2) hold.

Definition 4.23 Let set function m be a basic probability assignment on
Z2(X). The set function, u:2(X)—[0,1], determined by

u(E)= > m(F)

FNE+Q

for every E e 2(X) is called a plausibility measure on measurable space
(X, (X)) and we say that g is induced from m. A plausibility measure
is usually indicated as P!I.

Theorem 4.13 If Bel and P/ are the belief measure and plausibility
measure on & (X) induced from a basic probability assignment m, then



Set Functions 97

they are dual to each other, that is, P/(E)=1—Bel(E) for every
E e 2(X),and Bel < PI.

Proof. From Definitions 4.22 and 4.23, for any E € #(X), we have

PIE)="Y m(F)

FNE#J

= Z m(F)— z m(F)

FcX FNE=J
=1- z m(F)
FcE

=1-Bel(E)
Furthermore, since {F |F c E} c{F |FNE #J}, we have

Bel(E)= Y m(F)< ). m(F)=PI(E)

FcE FNF#J

for every E e 2(X). O

Theorem 4.14 If 4 is a plausibility measure on & (X), then it has the
following properties:

(PM1)  wu(D)=0 and u(X)=1;

(PM2) (V1 ED S Sy iao(=D iUy ) for any finite
subclass {E,,---,E,} of 2(X);

(PM3)  u issubadditive;

(PM4)  u is monotone;

(PM5)  u is lower-continuous (continuous from below).

Proof. Properties (PM1), (PM3), (PM4), and (PM5) are direct result of
Theorems 4.11 and 4.13. As for (PM2), we use P/ for the plausibility
measure and Bel for its dual. By using Corollary 4.1, property (BM2),
and De Morgan’s laws, we have
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Pl(ﬁE,.) :1—Bel(ﬁE,.)
=1—Bel(LnJE)
i-1

<i- Y )'TBeNOE)

Ic{l,,n}, 1+ iel
= Y )"y ' Be(NE)
I1c{l,-,n} Ic{l,,n},[#D iel
= Y )Pn-BeOE)
Ic{l,,n},[#D iel
= Y )Pn-BeJE)
Ic{l,,n}, [#D iel
- 0" P E,)
1g{1,~§},1¢® zeU1
The proof is now complete. O

The following three theorems establish the relation among belief
measures, plausibility measures, and discrete probability measures.

Theorem 4.15 Let p: #(X)—[0,1] be a discrete probability measure.
Then p is both a belief measure and a plausibility measure. The
corresponding basic probability assignment m focuses on the singletons

in 2(X).

Proof. Since p is a discrete probability measure, there exists countable
set {x,x,,---}< X suchthat > u({x;})=1.Let

p(E) if E = {x,} for some x,
0 otherwise

m(E)={

for every E € #(X). Then, m is a basic probability assignment focusing
on countably many singletons, and
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p(E)= Y p(x) =Y m(F)= 3 m(F),

x,€E FcE FNE#J

that is, p is both a belief measure and a plausibility measure. O

Theorem 4.16 If m is a basic probability assignment focusing only on
some singletons in #(X), then the induced belief measure and plausibility
measure coincide, resulting in a discrete probability.

Proof. Let m be a basic probability assignment focusing on singletons
{x,},{x,},---, and Bel and Pl be the induced belief measure and
plausibility measure respectively. Then, for any E € 2(X),

Bel(E)= Y m(F)=) p(x;)= Y. m(F)=PI(E).

FcFE x;eE FNE#J

Furthermore, considering any disjoint set sequence {E,} with
Ui E, =E, we have

Bel(E)= Y p(x;)= Z p(x;) Z 2. p(x;)= Z Bel(E}) .

x; €k \erE Jj=1 x;€E;

This means that the induced belief measure (plausibility measure) is
o-additive and, therefore, is a discrete probability measure. O

The above two theorems tell us that any discrete probability is a
special case of both belief measures and plausibility measures. The set
function shown in Example 4.5 is both a belief measure and a plausibility
measure.

Example 4.30 Continue from Example 4.5 where X ={x, x,,---} and
wE)=Y, ;27 for Ee #(X). Set function x is a discrete
probability measure on & (X). The corresponding basic probability
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assignment m focuses on only singletons {x,}, i=1,2,---, and is
expressed as m({x,})=2" forevery i=12,---.

Theorem 4.17 Let m be a basic probability assignment on (X, #(X)). If
the induced belief measure Be/ and plausibility measure P/ coincide, then
m focuses only on singletons.

Proof. A proof by contradiction is used. Assume that there exists a
nonempty set E € & (X), which is not a singleton, such that m(E)>0.
Then, forany xe F,

Bel({x})=m({x}) <m({x})+m(E)< 3, m(F)="PI({x}).

Fni{x}=d

This contradicts the fact that Be/ = PI. O

Finally, we show that, when X is countable (including finite), any
Sugeno measure is a special case of either belief measures or plausibility
measures according to the sign of parameter A.

Theorem 4.18 Let X ={x, x,,---} be a countable universal setand g,
with A #0 be a Sugono measure on (X, #(X)). Then g, is a belief
measure when A >0 and is a plausibility measure when A<0.

Proof. Since the dual of a plausibility measure is a belief measure and
the dual of a Sugeno measure with parameter A<0 is a Sugeno
measure with parameter A'=-1/(1+1)>0, we just need to show the
conclusion of the theorem in the case of 4 >0.

Let g, be a Sugeno measure with parameter A > 0. Define

AEH ) fE2O
m(E) _ xggﬂ({xl }) 1 = (49)

0 otherwise
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for every E € & (X). Set function m is nonnegative. From Definition
4.15, we have

gﬂﬂ=%ﬂ10+%gﬂmbrﬂ

x;eE

LS T (]
FcE F#0 x,eF

= Y A Te, (b
FcE ,F+J x;eF

= z m(F)

FcE ,F+J

= Y m(F)

for every E € 2(X). Moreover, since g,(X)=1, we have

> m(F)=g,(X)=1.

FcX

Thus, m is a basic probability assignment on (X, #(X)) and, therefore,
g, I1s the belief measure induced from m. O

Example 4.31 We use the Sugeno measure discussed in Example 4.20
where X ={x,,x,} and

0 when £ =J
0.2 whenE = {x;}
g,(E)=
0.5 when E ={x,}

1 when E=X

for E e F=2(X). The parameter of Sugeno measure g, is A= 3. From
expression (4.9), the corresponding basic probability assignment
m:#(X)—[0,1] can be obtained as follows.
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m({x})=3"g,({x})=1x02=0.2,
m({x,})=3"g,({x,})=1x0.5=0.5,

m(X)=3""g,({x,})-g,({x,}) =3x0.2x0.5=0.3.

Thus,

02 if E={x}
0.5 if £=
m(E) = 1 {x,}
03 ifE=X
0 otherwise

and the induced belief measure bel is just the above Sugeno measure g, .
From this basic probability assignment, the induced plausibility measure
is

0 when £ =

0.5 whenE = {x,}

0.8 when E ={x,}

1 when £ = X

PI(E) =

It is a Sugeno measure with parameter A'=-1/41+1=-0.75.

4.8  Necessity Measures and Possibility Measures

In this section, we discuss a special type of basic probability assignments
and the induced belief measures and plausibility measures.
Let X be a finite universal set and m be a basic probability assignment

on Z(X).

Definition 4.24 Basic probability assignment m is consonant iff it
focuses on a class of nonempty sets that are well ordered by set inclusion,
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that is, there exists a strictly increasing finite set sequence
€ =1{4,,4,,---,A,} such that X" m(4)=1 and m(A4)=0 for every
Ae €.

The above-mentioned strictly increasing set sequence is called a nest.

Example 4.32 Let X ={x,, x,, x;, x,} and basic probability assignment
m be given as

0.6 if 4={x;}
m(A) = 0.1 i'fAz{xl,x3}
03 ifd=X

0 otherwise .

Then m is consonant since {x;} < {x;,x;} X .

Definition 4.25 The belief measure induced from a consonant basic
probability assignment is called a necessity measure; the plausibility
measure induced from a consonant basic probability assignment is called
a possibility measure.

A necessity measure is usually denoted by v, while a possibility
measure is denoted by 7.

Example 4.33 The necessity measure v: #(X) —[0,1] and the
possibility measure 7:Z2(X)—[0,1] induced from basic probability
assignment m presented in Example 4.32 are

0.6 if E={x;}, {xy, x5}, {x3, x,},01 {x,, x5, X, }
0.7 if E={x, x5}, {x;, X, x5}, 01 {x;, X3, X, }
v(E)= )

1 ifE=X

0 otherwise

and
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03 if E={x,}, fx,} or by, x,)
04 i E={x ), g, X0, {0, ), or {0, X
n(E) = .
1 ifx;ekE

0 E=0

respectively.

The following two theorems show some interesting properties of
necessity measures and possibility measures. The second theorem can be
proved through a similar way as the first one, or by using the duality
based on the conclusion of the first one.

Theorem 4.19 Let v be a necessity measure. For any class of set
{Ela E25 ""El} >

1
V(N E;) =min[v(E,), v(E,), -+, V(E))].

J=1

Proof. Let m be the corresponding basic probability assignment focusing
on {4,A4,,---,A,} thatsatisfies 4 < A4, ---c A4,. Then,

!
v(INE)= 2 m(F)
j= FgélEf

= z m(4;)

/
i4,c ﬂEJ
]':

For each i=1,2,---,n and j=1,2,---,/, using i, to denote the

largest i such that 4, c £, , we know that 4 c ﬂ’j:lEj means
i<min,i;. Due to the strict increasingness of {4, 4,,--+, 4,},
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> m(4)=min[ Y m(4)]
i|A,.gélEj T il4cE;
=min[v(E,), V(E,), -, V(E,)]
So,

V(h E})=min[v(E)), v(E,), -, V(E})]. O

JA

Theorem 4.20 Let 7 be a possibility measure. For any class of set
{El,Eza"'aEl}7

1
r(UE)) = max(z(E)), 7(E,), -, m(E})].

J=1

Proof. Since the belief measure and the plausibility measure induced by
a basic probability assignment are dual to each other, as a special case, so

are the necessity measure and the possibility measure. Thus, by the result
obtained in Theorem 4.19,

1 !
;z(UEj) =1—v(UEj)

i

=1-v(NE))

j=1
=1-min[v(E)), V(E,), -, V(E))]
= max[l - v(E,), 1 -W(E,), -, 1-v(E,)]
=max[7(E,), 7(E,), -, 7(E))],

where De Morgan’s rule is used. O
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To generalize necessity measures and possibility measures to a
universal set that is not finite, we need the following concepts of
minitivity and maxitivity. Now let X be the universal set that may not be
finite.

Definition 4.26 A monotone measure x on (X, # (X)) is minitive (or
maxitive) iff

w(E)= infu(E,) (o u(|JE,) =sup u(E,) , respectively)

tel teT tel

for any class {E, |t €T}, where T is an arbitrary index set.

From definition 4.26, we may say that any necessity measure is
minitive, while any possibility measure is maxitive.

Definition 4.27 Let 1 be a monotone measure on (X, #(X)). uis called a
generalized necessity measure iff it is minitive; u is called a generalized
possibility measure iff it is maxitive.

Example 4.34 Let f: X —[0,a] be a nonnegative real valued function,
where a is a nonnegative real number. Define set function ¢ on #(X) by

H(E) =sup f(x)

xeE

for every E € & (X). Then y is a monotone measure on (X, Z2(X)).
Furthermore, u satisfies the maxitivity and, therefore, it is a generalized
possibility measure.

It should be note that a normalized generalized possibility measure
may not be a plausibility measure. We can see it from the next example.

Example 4.35 Let the universal set X ={r|r is rational} ©[0,1] and
f(x)=x for xe X .Xisnot finite, but countable. Define
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7(E) =sup f(x)

xeE

for every E € #(X). Then xis a generalized possibility measure and is
normalized. However, it is not a plausibility measure. In fact, since 7 has
infinitely many different values, it is impossible to find a class consists
of only finitely many subsets of X, on which a basic probability
assignment focuses, such that 7 is induced from this basic probability
assignment.

4.9  k-Interactive Measures

Let X ={x,x,,---,x,}. As we have seen from Section 1 of this chapter,
for identifying an additive measure on #(X), we need to determine the
value of the measure at each singleton. So, there are n unknown
parameters. As one of the extreme cases, to determine such an additive
measure from data, though the complexity is low, but it cannot capture
the interactions among the contribution rates from x,, x,,---, x, towards
the given target. In another extreme case, we use a monotone measure to
describe all possible interaction among the contribution rates from
X, Xy, -+, X, towards the given target. It is powerful. However, for
identifying a monotone measure, there are 2" —1 unknown parameters.
In data mining, when the number of attributes, n, increases, the number
of unknown parameters increases exponentially. The complexity of
computation is too high and, therefore, is not acceptable. Thus, we face a
contradiction of powerfulness and the complexity. A compromised way
with this contradiction is to consider only a relatively small number of
most common and interesting lower-order interactions but omit the
higher-order interactions to reduce the complexity. The following
concept of k-interactive measure is one of the proper compromised ways.

Definition 4.28 Let 1 be a monotone measure on (X, #(X)) and v be its
Mobius representation. u is called a k-interactive measure, where k is an
integer satisfying 2 <k <n,iff v(£E)=0 forall sets £with |E|>k.
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From Definition 4.28, we may see that any k-interactive measure is a
special case of k'-interactive measures, where £’ is an integer lager than
k.

As mentioned above, if | X |=n, an unknown monotone measure
may have up to 2" —1 unknown parameters, while a k-interactive
measure have at most ¥* C(n, k) unknown parameters. When 7 is
large, the computational complexity can be significantly reduced
provided the monotone measure is restricted to be a k-interactive
measure with a small integer £.

Example 4.36 When |X|=n=3 and k=2, the difference of the
numbers of parameters in above-mentioned two set function models is
(2"-1)-%* C(n,k)=7-6=1. However, when n=10 and k=2, a
monotone measure may have up to 2'° —1=1023 unknown parameters,
but a 2-interactive measure only have at most C(10,1)+ C(10, 2)
=10+45=55 unknown parameters.

4.10 Efficiency Measures and Signed Efficiency Measures

From Example 4.12, we have seen that monotone measure g is used to
represent the individual and joint efficiencies of workers. Set function y
satisfies requirement #(J) = 0, which means that there is nothing
produced if no worker. The nonadditivity of # means that there are some
interactions among the contribution rates from these workers towards the
total number of products. For example, u({x,,x,})> u({x})+ pu({x,})
means that workers x; and x, cooperate well such that their joint
efficiency is greater than the sum of their individual efficiency; while
workers x, and x; cooperate badly such that their joint efficiency is
less than the sum of their individual efficiency. However, set function u
still holds the monotonicity. In some extreme cases, for example, x,
and x; cooperate very badly and they quarrel all the time such that their
joint efficiency is very low, say, 4 toys per hour, even lower than their
individual efficiencies 6 toys per hour and 7 toys per hour. Thus, the
monotonicity of set function g is violated. Similar situation may occur in
many real problems. So, it is necessary to generalize the concept of
monotone measure as follows.
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Definition 4.29 Let (X, &) be a measurable space. Set function
M F—> [0, o] is called an efficiency measure iff y(J) = 0.

Example 4.37 Similar to Example 4.12, let X ={x,, x,, x;}, where x,,
x,,and x; are three workers hired for manufacturing a certain kind of
wooden toys. Their individual and joint efficiencies can be represented
by an efficiency measure . For example,

ifE=0
if £={x}
if £={x,}
14 it E={x,x,}
HE) =1, ifE:{xl3} T
13 if E={x,x;}
4 if £={x,,x;}
17 ifE=X

where ({5, x3}) < u(ixy}) and  p({x, x3}) < pu(ixy})  violate the
monotonicity.

Now, as an efficiency measure, it is required vanishing at the empty
set and to be nonnegative. The first requirement is very natural and is
proper in most real problems. However, the second requirement is not
satisfied in some real problems. For example, even in the classical linear
multiregression, the regression coefficient may be negative. In Chapter 9,
the model of multiregression is discussed and a set function serves as the
regression coefficients. From there, we can see that even the
nonnegativity of the set function should also be dismissed. The classical
linear multiregression can be generalized to a nonlinear multiregression
based on nonlinear integrals only when a signed set function is adopted.
Thus, we further generalize the concept of efficiency measure as follows.

Definition 4.30 Let (X, &) be a measurable space. Set function
U F—> (—o, o] is called an signed efficiency measure iff 1(J) = 0.
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Example 4.38 Let X ={x,x,,x;} and 4 = £ (X). Set function
1P (X) > (—o0, 0] is given as

0 ifE=0J

2 ifE={x}
-3 if E={x,}
-1 if E={x,,x,}

HE) =15 isz{x:} 2

4 if E={x,x;5}
-2 if E={x,,x;}
3 ifE=X

Then x is a signed efficiency measure on #(X).

Any signed efficiency measure can be decomposed as the difference
of two efficiency measures. In the next chapter, this decomposition is
used to define the integral with respect to a signed efficiency measure.

Definition 4.31 Let (X, ) be a measurable space and 1:.F — (-, ©]
be a signed efficiency measure. g =u" —u is called the reduced
decomposition of u if both x4 and u~ are efficiency measures on 7
and u"(E)-u (E)=0 forevery Ee %

The pair of 4" and x is also simply called the reduced
decomposition of x, where u" is called the positive part of u, while
u is called the negative part of p. For any given signed efficiency
measure, the reduced decomposition is unique. Equality
4 (E)- 1 (E)=0 means that at least one of " (E) and x (E) must
be zero. In fact,

u(E) it (E)20

0 otherwise

u*(E)={

and
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—u(E) if pu(E£)<0
0 otherwise .

ﬂ(E)={

Example 4.39 Consider signed efficiency measure shown in Example
4.38, the reduced decomposition of x is

0 fE=0
2 ifE={x}
0 if E={x,}
N 0 ifE={x,x,}
#(E)=1s ifE:{xl} 2
4  if E={x,,x;}
0 ifE={x,,x;}
3 fE=X
and
0 fE=Y
0 ifE={x}
3 ifE={x,}
_ 1 ifE={x,x,}
#E=1, ifE:{xl} 2
0 if E={x,x;}
2 i E={x,,x;}
0 ifE=X

With nonlinear integrals, the signed efficiency measures play a major
role in information fusion and data mining. In Chapters 6 and 8-11, we
may see the applications of signed efficiency measures.

The following definition gives a concept of boundedness for signed
efficiency measures. It is used for discussing the properties of nonlinear
integrals in Chapter 5.
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Definition 4.32 A signed efficiency measure x defined on measurable
space (X, 7 ) is bounded iff there exists a real number M such that
| u(A)|< M for every AeZ In this case, M is called the bound of
signed efficiency measure z.

When X is finite, any signed efficiency measure u :: 7 — (—o0, ) is
bounded.

Exercises

Exercise 4.1 Let X ={xj,x,,x3}. Knowing u({x})=0.1 and u({x,})=0.2, deter-
mine probability measure x on 2(X).

Exercise 4.2 Let (X, %, 1 ) be a measure space. Prove Property (M3) given in Theorem
4.2 by using Property (M2).

Exercise 4.3 Show that the Lebesgue measure of any singleton included in the real line is
zero. Furthermore, show that the Lebesgue measure of the set consisting of all rational
numbers is zero.

Exercise 4.4 Let X ={x|,x,,x3} and g; be a normalized A-measure on 2 (X).
Knowing g,;({x})=0.3, g,({x})=04, and g,({x3})=0.5, determine the value
of parameter A and then the values of g, at the other sets in Z(X).

Exercise 4.5 Let X ={x|,x,,x3} . Knowing g,({x;})=0.1, g,;({x;})=02, and
A =2, determine normalized A-measure g, on 2 (X).

Exercise 4.6 Let X ={x|,x5,---,x,} and wu(E)=|E|/(1+|E|) for every E e Z(X).
Is p a quasi-measure on #(X)? If yes, find its standard 7-function; if no, simply show
your reason.

Exercise 4.7 Let g, be a A-measure with parameter A on measurable space (X, .7#) and
c>0 be a constant. Is set function p=c-g,; also a A-measure? If yes, what is the
relation between its parameter A’ and the original parameter A? If no, construct a
counterexample.

Exercise 4.8 Let X = {x|, x,, x3} . Set function u :2(X) — [0, ) is given as
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tE=0

if £={x;}

if E={x,}

if £={x;,x,}
if £={x3}

if £={x,x3}
if £={x,,x3}
ifE=X

U(E)=

W o A = WO

Find its Mobius representation v .

Exercise 4.9 Let X = {x|, x,, x3, x4} . Set function x :2(X)— [0, o) is given as

0 if E=0
isz{xl}
if E = {xy)

12 if E={x,x,}

5 if £={x3}

9 if £={x,x3}

11 if E={x,,x3}
17 if E={x|,x,,x3}

E)=
HEY=1 3 i E oy
7 ifE:{X],X4}
if E'={xp, x4}

15 i E={x,xy,x4}

8 if £={x3,x4}

12 if E={x],x3,x4}

14 if E={x;,x3,X4}

20 if E={x,xp,Xx3,Xx4}.

Is it a k-interactive measure? If yes, show your reason and find the value of &. If no, show
your reason as well.

Exercise 4.10 Let X ={x, x,,x3} and m be a basic probability assignment on Z(X),
where
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0.7 ifE={x)

(E) 0.2 if £= {X],XZ}

m =
0.1 ifE:{xl,X3}

0 otherwise

Find the induced belief measure Be/ and the induced plausibility measure P/ by m.

Exercise 4.11 Let X ={x|, x,, x3} and monotone measure x be given as

0 if E=0
1 if E={x}
03 if E={x,}

1 if E={x;,x,}
HE)=105 Hquf
1 if £=1{x;,x3}
0.5 if E={xp,x3}
1 ifE=X

Is it a possibility measure? Why? If yes, find the corresponding basic probability
assignment.



Chapter 5

Integrations

In this chapter, the functions and integrals are discussed. A function is a
mapping from a measurable space, (X, &), to another measurable space,
(Y, 9). In most cases, the real line with the Borel field (R, #) is taken as
(Y, 9). Sometimes, both of them are (R, £ ) such that the continuity and
monotonicity of functions can be considered. Several different types of
integrals, including the Riemann integral, the Lebesgue-like integral, the
Choquet integral, and the upper and the lower integrals are investigated
in this chapter. The first two types of integrals are linear, while the others
are generally nonlinear. Any one of them can be chosen as an
aggregation tool in information fusion and data mining, which are
discussed in Chapters 6 and 8-11.

In this book, only the pair of common addition and common
multiplication of real numbers are used as binary operators to define
various integrals. Some types of nonlinear integrals involving the other
binary operators (the pair of maximum and minimum, or the pan addition
and the pan multiplication) of real numbers, such as the Sugeno integral
and the pan integrals, are not discussed. The readers interested in those
types of nonlinear integrals may refer to [Wang and Klir 1992 or Wang
and Klir 2008].

5.1 Measurable Functions

The concept of function has already been accepted and applied in
scientific and engineering areas by most readers. In this section, based on

115
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the concept of relation discussed in Section 2.5, a general description of
functions is given.

Definition 5.1 Let X and Y be two nonempty sets. A relation f from X to
Y, denoted as f: X — Y, is called a function (or a mapping) if each
point in X relates to only one point in Y. If xe X relatesto yeY, we
say that y is the value of f'at x (or the image of x under mapping f') and
denote it as y = f(x) . In this case, x is called the pre-image of y. Set X
is called the domain of function f, and Y is called the co-domain of f. Set
{y|y=f(x)forsomexe X} is called the range of f.

Example 5.1 In a database, there are n attributes, x,, x,, --+,x,, which

sV
form the universal set X, that is, X ={x,x,,---,x,} . The data set
consists of / real-valued observations (records) to all of these attributes.
Denoting the j-th observation of x;,x,,-,x, by x;, x;, =, X,
j=12,---,1, respectively, the data set has the following form:

‘xl x2 ‘xn

X1 X2 Xin
X1 Xy Xon
X Xt Xy

For each j=1,2,---,1, let fj(x,.):xﬂ., i=12,---,n. Then, each row
is a function from (X, & (X)) to (R, %), that is, f;:X — (-, 0),
j=12,---,1.So, the database can be regarded as a set of / functions on
X, where [ is called the size of the data.

Definition 5.2 Let f be a function from X to Y. For any A< X, set
{f(x)|xe A} is called the image of A under f, denoted by f(A4).
Conversely, for any BcY , set {x|f(x)eB} 1is called the
inverse-image of B, denoted by [ _I(B) .

In this book, only real-valued (or fuzzy-valued) functions, whose
co-domain is a set of real numbers (or fuzzy numbers, respectively), are
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considered. The characteristic functions discussed in Section 2.1 are of
the simplest type of functions, beyond the constant.

Definition 5.3 Any function f:X — (-0, ) having a form
f= z A X 4,
i=1

is called a simple function, where m is a positive integer, a,; is a real
constant, and 4, # for i=1,2,---,m.

In the above definition, without any loss of generality, we may
assume that sets 4, 4,,---, 4, are disjoint.

m

Definition 5.4 Any function f:X — (-0, ) having a form
f= z A X 4,
i=1

is called an elementary function, where a, is a real constant, 4, € F
for i=1,2,---,and {4;|i=1,2,---} isaclass of disjoint sets.

It is clear that any characteristic function is a simple function and any
simple function is an elementary function.

To discuss the real-valued function, more basic knowledge on sets of
real numbers is needed. The reader may refer to some textbook on real
analysis. One of the important conclusions in real analysis is shown in
the following proposition.

Proposition 5.1 Any open subset of the real line R =(—o0,®) can be
expressed as a countable union of disjoint open intervals.
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From now on, an open subset of the real line is simply called an open
set provided there is no confusion.

One of the most common types of real-valued functions defined on
the real line, that is, (X, ) = (Y, 9) = (R, %), is the continuous functions.
It plays an important role in calculus.

Definition 5.5 Let (a¢,b)={x|a<x<bwith—co<a<b<ow} be a
generalized open interval. Function f:(a,b) — (-, ®©) is continuous
on (a,b) iff the inverse-image of any open set is an open set.

The continuity of functions from (a,b) to (—oo, ) described in
Definition 5.5 coincides with its common description in calculus. In
calculus and real analysis, monotone functions and functions with
bounded variation also appear frequently.

Definition 5.6 Function f:(a,b)— (-0, ) is nondecreasing iff
X, X, €(a,b) and x, <x, imply f(x)=< f(x,);f1is nonincreasing iff
X, %, €(a,b) and x,<x, imply f(x;)= f(x,). Both nondecreasing
functions and nonincreasing functions are called monotone functions.

Definition 5.7 Function f:(a,b) — (-, ®) is bounded on (a,b) iff
there exists a positive number M such that | f (x)|SM for every
xe(a,b).

Definition 5.8 Function f:(a, b) — (-, ©) is said to have a bounded
variation iff it can be expressed as the difference of two bounded
nondecreasing functions on (a, b) .

In Definitions 5.5-5.8, there is no essential difficulty to generalize
these concepts on functions by allowing the interval to be closed at finite
values (or to be half open half closed at a finite value).

Example 5.2 Function f(x)=sinx is of bounded variation on [0, 47].
In fact, let



and

Both / and g are nondecreasing, and they satisfy f=g—#.

g(x)=

h(x) =

Integrations

sin x if xe [0,%)

| if xe[Z.25)
22

2 +sinx ifxe[?’—”,s—”)
2 2

3 if xe[2Z 17
2 2

4 +sinx ifxe[77”,47z]

T
0 if xe[0,—
[ 2)
I —sinx if ve[Z.2F)
272
2 if xe[2X 27 )
272

3-sinx if xe[25, 17
272

4 ifxe[%[,47r]

119

Definition 5.9 Function f:X — (—o0,®) is #-F measurable iff
f'(Bye # for any B e, where “%-F” may be omitted if there is

no confusion.

In case = #(X), any function on X is measurable. When X is finite,
taking #(X) (it is finite too) as the o-algebra & in the measurable space
(X, &) is convenient.

Theorem 5.1 If f:X — (—0, ) is a real-valued function, then the
following statements are equivalent:
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(1) f is measurable;

2) {x|f(x)>ateF forany ae(—w,0);
3) {x|f(x)<ateF forany ae(—n,0);
4) {x|f(x)<ateF forany ae(—w,0);

(5) {x|f(x)zateeF forany «a e (—w,»).

Proof.

(1)=(2): For any a € (—, ), we have {x| f(x)>a}=f (o, 0)eF
since interval (o, ©) € .

(2)=@3): Forany «a € (-, 0),

Xl f)<ay={x|f(x)>a} =f"(a, ©)eZ
(3)=(4): Forany «a € (-, o),
x| f()<ay=U{x| f()<a-l/i}eF

(4)=(5): For any « € (-, ©),

X/ zaj={x|f(x)<ate s

(5)=(1): For any left closed right open interval [a,b),
(@, b)) = [ ([a,0) = [b,0)) = [T ([a, )~ [ ([b, @) e £ (5.1)

Let.«Z={B| f'(B) € #} . Given any E .4, it follows that E €. since
fYE)=f""(E)e % that is, .« is closed under the formation of
complements. Similarly, given any sequence {E,}<c.« it follows that
U2 E, e since f(ULE,)=U"f(E,)e % that is, .« is closed
under the formation of countable unions. Hence, .«# is a o-algebra.
Denoting the semiring consists of all left closed right open intervals by
% expression (5.1) means that .«# o .# Consequently, according to the
definition of # (%), we have ./ > F(#)=%.So, [ '(B)eZ forany
B € A, that is, f'is measurable.
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The proof is now complete. O

It is easy to see that any continuous function (even piecewise
continuous) or monotone function on an open interval is %-A
measurable and, therefore, any constant, regarded as a function on X, is
measurable. The concept of measurable function can also be used for
functions defined on a nonempty measurable set.

Theorem 5.2 For any measurable function f on X, there exists a
nondecreasing sequence of elementary functions {f,} on X such that
lim, , f, =f; similarly, there exists a nonincreasing sequence of
elementary functions {f,} suchthat lim,  f, = /.

Proof. Only the first conclusion is proved here. The second is similar to
the first. Let f,(x)=k/n when f(x)e[k/n,(k+1)/n) , where

k=--,-2,-1,0,1,2,---. Then, {f,} is a nondecreasing sequence of
elementary functions. Furthermore, O0<f—f, <1/n . Hence,
lim, . f,=1. U

Restricting a function f to be nonnegative, we may obtain a stronger
result as follows.

Theorem 5.3 For any nonnegative measurable function f on X, there
exists a nondecreasing sequence of nonnegative simple functions {f,}
on Xsuch that lim, , f, =1.

Proof. Let
n if f(x)=n
X)=<k— _
R L T L S
n n
for n=1,2,---. Then {f,} is a nondecreasing sequence of nonnegative

simple functions, and lim, ., f, = f. O
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Theorem 5.4 Let f and g be measurable functions on X and ¢ be a
constant.

(1) ¢-f is measurable;

(2) f£g ismeasurable;

3) | f | is measurable;

(4) f? is measurable;

(5) f-g is measurable;

(6) 1/f is measurableif f(x)#0 forall xe X ;
(7) fvg and f Ag aremeasurable.

Proof. Let a be an arbitrarily given constant.

(1) When ¢>0, we have {x|(c-f)(x)>a}={x|f(x)>al/c}e Z
while ¢<0, we have {x|(c- f)(x)>a}={x|f(x)<al/c}e Z
As for the case of ¢ = 0, O0x =0 is a constant function and,
therefore, is measurable.

(2) First, we show that f —g is measurable. Inequality f—-g>«
is equivalent to f>a+g . For each xe X , there exists a
rational number r, such that f(x)>r >a+ g(x). Since there
are only countably many rational numbers, we may write them as a
sequence {r,}. Thus,

I -9 > ay = Ul £ > i x| g <7, - il #

n=l

As for f+ g, regarding —1 as the constant ¢, the conclusion
comes from f+g=f—-(-1-g).

(3) We only need to consider the case of a>0. In this case,
] > ab = x| f(0) > e} Ulx| f(x) <—a} e

(4) Similar to (3), we only need to consider the case of o > 0. In this
case, {x| f2(x)>a}={x|f(x)>Ja}e 7

(5) This conclusion can be obtained from

fg=l(f+g)’-f-g’12
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and the above proved conclusions.

©) {x[(1/1)x)>a} =[x[(af)x) <L ix] f(x)> 0]
Vx| (e )(x) >1i N ix| f(x) <0t e Z

(7 &x(fve)x)>al={x] f(x)vegx)>a}

=ix[f(0)>ajvuix[gx)>aje s

D(f Ag)x)>ap={x] f(x) A g(x) >}

=x[f()>ainix[g)>aje s O

Regarding f —g as a function, the following conclusion is a direct
result of Theorems 5.1 and 5.4(2).

Corollary 5.1 Let f and g be measurable functions. Then
Xl /=g , {x[f(0)>gx)} , and {x]f(x)2g(x)} are

measurable sets.

Since the characteristic function of any measurable set is measurable,
from Theorem 5.1, we know that all elementary functions (including any
simple function) are measurable.

5.2 The Riemann Integral

In this section, we recall the definite integral of function
f:[a,b] > (-, ), where [a,b] is a given closed interval, with
respect to the Lebesgue measure.

Definition 5.10 A partition of [a,b] is a finite sequence
{t;1i=0,1,---,k}  satisfying a=t,<t<---<t,=b . Number
max, ;.. (4, —t,_,) is called the mesh size of the partition. A fagged
partition of [a,b] is a partition {t,|i=0,1,---,k} with a finite
sequence {s;|i=1,---,k} satisfying s, €[t,_,,t] for i=1--- k. A
refinement of partition {¢,|i=0,1,---, k} is a partition
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{1 j=0,1, -, k')

such that
{t:1i=0,1,---, k} c {t} |j=0,1,---,k'}.

Definition 5.11 Given function f on [a,b] and tagged partition
{t.1i=0,1,---,k} with {s,|i=L---,k} of [a,b],sum

k
Zf(si)(ti —1y)
i=1
is called a Riemann sum (corresponding to the given tagged partition) of

fon [a,b].

Definition 5.12 Let /' be a function on [a, b]. If there is a real number
I, , for any given ¢ >0, there exists J >0, such that

k
Zf(si)(ti —t)—Ig|<e
i-1

whenever the mesh size of the tagged partition {t,|i=0,1,---,k} with
{s;|i=1---,k} islessthan &, then we say that fis Riemann integrable
on [a,b] (or say, the Riemann integral of fon [a,b] exists), and I,
is the Riemann integral of fon [a,b].

The Riemann integral is also called a definite integral in calculus.
The definite integral of fon interval [a, b] is denoted as

Isz:f(t)dt.
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Af(@)

a b t

Fig. 5.1 The geometric meaning of a definite integral.

Its geometric meaning, when f >0, is the area of the region between
the graph of f'and the x-axis from a to b (see Figure 5.1).

Definition 5.13 Let f'be a function on [a,b] and P={t,|i=0,1,---, k}
be a partition of [a, b]. Denoting

M= sup f(1)

teft; . 4]
and
mi = lnf ]f(t):

telti gt

the upper Darboux sum of function f'with partition P is
— k
S(f,P)=2XM(t —t_)),
i=l1
and the lower Darboux sum of function f'with partition P is
k
S, P)=2Xm(t —1).
i=1

Then the upper Darporx integral of fon [a, b] is defined as
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I, =inf{S(f, P)| Pis a partition of [a, b]},
and the lower Darporx integral of fon [a,b] is defined as
1, =sup{S(f, P)| Pisapartition of [a, b]} .

If 1,,=I,,, denoted by I,, then we say that f'is Darboux integrable
on [a,b],and [, isthe Darboux integral of fon [a,b].

The Darboux integral, in fact, is equivalent to the Riemann integral
shown in Definitions 5.11 and 5.12, that is, [, =/, for very Riemann
integrable (or Darboux integrable) function f defined on any given
interval [a, b]. Thus, from now on, we omit the subscript and simply use
1 to denote the Riemann integral or Darboux integral.

From calculus, we know that any continuous (even piece-wise
continuous) function on given interval [a,b] is Riemann integrable.
Furthermore, any monotone function and, therefore, any function of
bounded variation on [a,b] is Riemann integrable. However, it is easy
to cite some examples of measurable functions that are not Riemann
integrable defined on a closed interval.

Example 5.3 Consider function f :[0,1] —[0,1] defined by

0 if xeQ,
1

otherwise

f(x)={

for xe<[0,1], where Q, is the set of all rational numbers in [O0,1].
Function f is discontinuous everywhere in [0, 1], but is measurable on
[0,1] . For any partition P={t|i=0,1,---,k} of [0,1] with
O=t,<t;<---<t, =1,

M, = sup f(r)=1

1
telt,t;]

and



Integrations 127

m= inf f()=0
teft; . 4]

for every i=1,---, k. Hence, the upper Darboux sum of function f with
partition P is

_ k
S(f, P):zl’(ti_ti—l):tk —f =1,
i=1
while its lower Darboux sum is
k
S(f,P)=>0-(t;—1,,)=0.
i=1

Thus, the upper Darporx integral of f on [0,1] is 1, but its lower
Darporx integral is 0. They are not equal to each other. This shows that
the function f'is not Riemann integrable.

The most important property of the Riemann integral is the /inearity,
that s,

[lef@+ego)di=c[ @ di+e,| g dr

for any real numbers ¢, and c, whenever f and g are Riemann
integrable on [a, b]. Using this linearity, it is not difficult to know that

[ rayde=["fayde+ [ £ () di

if all involved Riemann integrals exist.
Another interesting property of the Riemann integral is jfl dt=b-a
for any interval [a,b]. As a special case, [f(t)dt=0 forany function
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f. Thus, the Riemann integral If f(t)dt can also be understood as an
integral on open interval (a,b) or even on a half open half closed
interval.

5.3  The Lebesgue-Like Integral

Let us consider measure space ([0, 1], o, 1}, m), where By 1 is the class
of all Borel sets in [0,1] and m is the Lebesgue measure, and check the
function shown in Example 5.3. Since there are only countably many
rational numbers and the Lebesgue measure of each singleton is zero, by
using the countable additivity of the Lebesgue measure m, we know that
the Lebesgue measure of (), , the set consisting of all rational numbers
in [0,1], is zero. Therefore, by the additivity of m, the Lebesgue
measure of [0,1]—(Q,, the set consisting of all irrational numbers, is 1.
Thus the graph of function /' given in Example 5.3 almost coincides to the
horizontal line with height 1 on [0, 1]. Intuitively, the area of the region
between the graph of function f and the x-axis should be 1, the same as
the constant function 1 has. Unfortunately, Example 5.3 tells us that the
above-mentioned area is “unmeasurable”, or say, the information carried
by such a measurable function is not “aggregatable” by the Riemann
integral, though function f is measurable. This fact shows that the
Riemann integral is not powerful enough as an aggregation tool. Hence,
people need to look for another integration approach as a generalization
of the Riemann integral such that any measurable function is integrable.
The Lebesgue integral is just such an expected tool, which can be
established based on Theorem 5.3 step by step as follows.

Definition 5.14 Let X = (—o0,0), E is a Borel set, and g be a
nonnegative simple function with expression

g =2 a1, -
j=1
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Then Lebesgue integral of g on E with respect to the Lebesgue measure
mis

IEgdm =Zaj-m(Ej NE),
j=1

where a; >0 and E;e# for j=1,2,--,n. Furthermore, let /' be a
nonnegative measurable function and {g;} be a nondecreasing
sequence of nonnegative simple functions such that lim, , g, = fon E.

Then the Lebesgue integral of f on E with respect to the Lebesgue
measure m is

[,/ dm=1im|[ gdm.

The above definition of the Lebesgue integral is unambiguous due to
the o-additivity of m. That is, for any two sequences of nondecreasing
nonnegative simple functions, {g;} and {g/}, with lim,, g,
=lim, ,, g/ = f onE, we have

i, dm =lim ¢/ .

So, the Lebesgue integral is well defined for any nonnegative measurable
function on any given Borel set £. When E =(—w, ), j(fw,w) fdm
is simply written as | f dm .

In Definition 5.14, function f may be any nonnegative measurable
function, including nonnegative piecewise continuous functions,
monotone functions, and functions with bounded variation. When a
function is Riemann integrable, it is also Lebesgue integrable, and the
values of its Lebesgue integral and Riemann integral are the same. Hence,
the Lebesgue integral is a generalization of the Riemann integral. The
former is more powerful than the latter. This can be seen in the following
example.
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Example 5.4 We continue the discussion in Example 5.3, where
considered function f :[0,1]—[0,1] is defined as

0 if xeQ,
1

otherwise

f(x)={

for x€[0,1], in which Qy= {x|xisrational} "[0,1]. Function f is a
simple function with m(Qp)=0 and m([0,1]—Q)=1. Hence,

jmfdm=0-m(QO)+1-m([o,1]—Q0)=0x0+1x1=1.

That is, f'is Lebesgue integrable and the value of the integral coincides
with the intuition.

The Lebesgue integral can be immediately generalized to nonnegative
measurable functions defined on a general measure space (X, &, p).

Definition 5.15 Given a measure space (X, & u), let E€ Z, fbe a
nonnegative measurable function on E, and {g;} be a nondecreasing

sequence of nonnegative simple functions such that lim,; ,, g, = fon E,
where simple function g,, i=1,2,---, has a form

gi(x)= Za[jZE[j >
=

in which a;>0 and E;e Z for j=12,---,n,. The Lebesgue-like
integral of fon E with respect to measure u is

[,/ du= lli_)n;Zaij~/1(EU NE). (5.2)
Jj=1
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In the integral, function fis called the integrand.

Similar to the Lebesgue integral, this definition is unambiguous due
to the o-additivity of 4. When E =X, we may omit the subscript £
from the symbol of the integral as well. Since the Lebesgue integral
defined on the Euclidian space is just a special case of the Lebesgue-like
integral on general measure space, from now on, we simply call the latter
the Lebesgue integral provided there is no confusion. In case we want to
emphasize an integral being in Lebesgue’s meaning shown in Definition
5.15 to distinct from other types of integrals (they are discussed in
Sections 5.5-5.9), a symbol (Leb) [ / du is adopted.

As for measurable functions that are not necessarily nonnegative, the
following approach can be adopted to define their Lebesgue integral.

Definition 5.16 Given a measurable function fon set E € %, functions

.« Jf(x) ifxeEand f(x)=0
S )= {0 otherwise
and
f_(x)z{;f(x) ifer.andf(x)<0
otherwise

are called the positive part and the negative part of f, respectively.

Given measurable function f on measure space (X, % u), both f~
and f~ are nonnegative measurable functions on (X, &% ), and
f=/f"—7" holds. Thus, we may use them to define the Lebesgue
integral for any given measurable function / on measurable set £ with
respect to measure g as follows.

Definition 5.17 Given a measurable function f on measurable set E, the
Lebesgue integral of f on E with respect to measure w is defined as
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— + _ -
.[Ef du _J.Ef du jEf dau

provided the two terms on the right hand side are not both infinite.

Similar to the Riemann integral, the Lebesgue integral has the
following basic properties, where we assume that all involved functions
and sets are measurable:

(LIP1) [ fdu=0 if f>0;
(LIP2) [ 1du=[z, du=p(E);
(LIP3) [ fdu=[x;-fdu;

(LIP4) [ (e\f +e,@)du=c,[, [ du+e,| gdu.

Property (LIP4) is the linearity. From these basic properties, we may
obtain more properties. Some of them are left to the readers as exercises.

Example 5.5 Let X ={x,x,,---,x,} be a set of n attributes (or,
information sources) and wj, w,,---,w, are corresponding weights. If
f(x), f(x,),--+, f(x,) are an observation (or, received numerical
information amounts) of these attributes respectively, then the weighted
sum

S5 = ) f i) o w, £ (3,

can be regarded as the Lebesgue integral of function fon X with respect
to a certain measure ¢ on £(X). In fact, we may define a measure on
the semiring, .#, that consists of all singletons of X and the empty set by
u({x;})=w, for i=1,2,---,n and w ()= 0. It can be extended to a
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measure on #(X), the o-algebra generated by % by the additivity
uniquely. The observation f(x;), f(x,),---, f(x,) can be regarded as a
function f: X — (—oo, ). Since we now adopt the power set #(X) as
the o-algebra to form the measure space (X, #(X), u), function f is
measurable and, moreover, is a simple function. Thus, the Lebesgue
integral of f'with respect to measure g is

Jf du=3 £x0)-uix )= (x).

When weights w, w,,---,w, satisfy the conditions w; >0 for
i=12,---,n and X ,w =1, the weighted sum > w, f(x;) is called

a weighted average of f(x,), f(xy),--, f(x,).

Explaining as well as expressing the weighted sum as a Lebesgue
integral is used for the linear multiregression reviewed in Section 9.1. By
such point of view, we introduce the nonlinear multiregression in
Chapter 9 based on nonlinear integrals, which are discussed in the
following several sections.

5.4  The Choquet Integral

Based on the discussion on linear integrals with respect to additive
measures in Sections 5.2 and 5.3, beginning from this section, we
consider some types of nonlinear integrals with respect to monotone
measures.

Let (X, 4 p) be a monotone measure space and f be a measurable
function on (X, ). Generally, the universal set X is not necessarily finite
and o-algebra # may not be the power set of X.

To define an integral of f with respect to a monotone measure g, if
the approach shown in Definition 5.15 is still used, we will face a
difficulty that the value of the limit in expression (5.2) depends on the
choice of sequence {g;} as well as on the expression of each g, due
to the nonadditivity of «, that is, the unambiguousness of the definition
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will not be guaranteed. So, the definition of Lebesgue integral with
respect to a nonadditive monotone measure fails. Thus, we have to look
for another approach to define an integral for measurable function f with
respect to monotone measures. One of the successful ways is the
Choquet integral discussed in this section.

Definition 5.18 Let /' be a nonnegative measurable function on (X, &)
and E € & . The Choquet integral of f on E with respect to a monotone
measure 4, denoted by (C)[, f du, is defined as

O], du=[ u(F, nE)da, (5.3)

where F, ={x| f(x)2>a}, called the «-level set of £, for a [0, ).
When E=X, (C)f, f du issimply writtenas (C)[ f du .

Since function f in Definition 5.18 is measurable, we know that
F,={x|f(x)2a}e Ffor every a €[0,o) and, therefore, F, "E € Z.
So, wu(F,nE) is well defined for every « €[0,). Furthermore,
{F,|a €[0,)}is a class of sets that are nonincreasing with respect to «
and so are sets in{F,, " E|a €[0,0)} . Noting that monotone measure u
is nondecreasing, we know that u(F, N E) is a nonincreasing function
of o and, therefore, is Riemann integrable. Thus, the Choquet integral
of a nonnegative measurable function with respect to a monotone
measure on a measurable set is then well defined.

When set function p is o-additive, expression (5.3) in Definition
5.18 is just an equivalent definition of the Lebesgue integral of f with
respect to . In literature, this equivalence is called the transformation
theorem for the Lebesgue integral. That is to say, when monotone
measure g, as a special case, is a classical measure, the Choquet
integral of any given measurable function f'with respect to x coincides
with the corresponding Lebesgue integral. So, the Choquet integral is a
real generalization of the Lebesgue integral. Just by this reason,
sometimes people omit “(C)” from the symbol of the Choquet integral
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and then use the same symbol, [f du, as the Lebesgue integral uses if
there is no confusion.

Example 5.6 Let X =[0,1], f(x)=2x for xe[0,1], F = R, 1, the
class of all Borel sets in [0,1], and u(B)=[m(B)]* for B e Ry, 1,
where m is the Lebesgue measure on the real line. Thus, f is a
nonnegative measurable function on monotone measure space

(X, S, 1), w). According to Definition 5.18, the Choquet integral of 1
with respect to g is

©f f dp= [ uCix] f(6) 2 e} 0[0,1)) dex
=j§uax|zxza}rqalpda
= [ a5 1) da+ [} u(@) da
:jﬁmq%JDfda+o
2 a
=hﬂ—5fda

2
2 o
:J.O(l_a+T) da

1 1
2 212 3,2
=alj-——a’[j+—a
lo 5 lo B lo
2248

12

3

When the integrand of the above Riemann integral, u(F,), cannot
be expressed as an explicit elementary expression of «, or the expression
is too complex, the value of the Choquet integral has to be approximately
calculated by using some numerical method (e.g., the Simpson method).
However, if the universal set X is finite, such as the set of attributes in a
database, we have a simple calculation formula as follows.
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Let X ={x,x,, -+, x,}. In this case, usually, we take the power set
of X as the c-algebra. Thus, (X, #(X)) is a measurable space. Given a
monotone measure x and a nonnegative function f on (X,2(X)),
HU(F)) =u({x| f(x)=a}) isasimple function of ¢, that is,

)= Zﬂ({xi > Xt X ) Z i, (¥

for a €[0,o) and, therefore, the Choquet integral of f with respect to
4 can be calculated by

O f du= zf(x) S]], s 5,1 (54)
or, equivalently,
©) f du= zu({ XX X 1) = s 5 DS (), (5:4%)

where f(x,)=0 , {x,,-»x}=@ , and (x;,x,---,x,) is a
permutation of {x,,x,,---,x,} suchthat f(x)<f(x;)< --<f(x).

Example 5.7 Let X ={x,, x,, x;}, = #(X), and monotone measure
on #(X) be given as
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0 if E=¢

05 if E={x}
02 ifE={x,}
06 fE={x,x,}
04 if E={x;}
0.7 it E={x,x;5}
09 if E={x,,x;3}
1 ifE=X

U(E) =

Then (X, #(X), x ) is a monotone measure space. Let function
f:X —]0,0) be given as

8 ifx=yx
f(x)=410 ifx=ux,

5 ifx=x.

Thus, x =x;, x,=x, and x, =x,. By using formula (5.4), the
Choquet integral of f with respect to x (on X) can be calculated (see
Figure 5.2, the area of the shaded region in the right part is the value of
the Choquet integral) as

O] f dp=(f ()= 0)- 4y, 5,3+ (f () = £ () - ({63, x5 1)
+(f (o) = f(5))- ({3}

= [(5) - (X)) +(f(5) - £ 0e)) - 115y, %, 1)+ (f (0) = f () - pa(§,})

=5x1+(8—5)x0.6+(10-8)x0.2

=5x1+3x0.6+2x0.2

=72 .
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AS A
111 ) * 10
8 p------- ° 8 /
I %
0 X x5 X, > 0 06 /i >
U

Fig. 5.2 The calculation of the Choquet integral defined on a finite set {x,, x,, x;} .

Alternatively, we may use (5.4%) to calculate the same result as follows.

* * *

O f du=[p(4x),25,x5 1) = (x5 D] /()

+Lu(,0 ) = (e D] f () + (1) - f(x3)
=[p(X) = u({x, X, )] f () + [p({x;, x5 1) — ({5, D] (%)
+u({x,})- f(xy)
=(1-0.6)x5+(0.6—-0.2)x8+0.2x10
=04x5+04x8+0.2x10
=72 .

We should know that, once the integrand f'is given, the calculation of
its Choquet integral only involves the value of g at the sets in a chain
from the universal set to the empty set, but not all sets in the power set.
In Example 5.7, the chain in lattice (2(X), <) is

({x, X, x5}, {x, X%}, {x}, D) (see Figure 5.3).
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{xp, Xy, X3}
{xlsg<{xlax3} {x5, x5}
{x} {x,} {xs}

\QL/

Fig. 5.3 The chain used in the calculation of the Choquet integral in Example 5.7.

Formula (5.4) is effective when the number of attributes is not large
and the Choquet integral is calculated by hand. However, when an
inverse problem of information fusion is considered, it is not convenient
since the expression of the Choquet integral is not in an explicit linear
form of unknown parameters that are the values of x4 . In fact,
rearranging the order of attributes is not a linear operation. Thus, the
linear algebraic method cannot be used to estimate the values of u
based on the observed data set (see Chapters 9-11). Hence, it is necessary
to introduce an alternate calculation formula for the Choquet integral as
follows. For given nonnegative function f on a monotone measure space
(X, 2(X), u),where Xis a finite universal set, the Choquet integral of /'
with respect to g can be calculated by

2" -1

O] fdpu= 3z, (5.5)

where u; = p(U;_{x,}) if j is expressed in terms of binary digits
JnJpy gy forevery j=1,2,---,2" -1 and

min f(x)— max f(x;) ifitis>0o0r j=2" -1
7 = Jilfre(j/2))ell/2,1) irfre(j/2°)e[0,1/2)
J

0, otherwise

for j=1,2, -, 2" —1. (5.6)
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In expression (5.6), fre(j/2') denotes the fractional part of j/2',
and we need the convention that the maximum taken on the empty set is
zero. The expression can also be written in a simpler form via the
replacement

il fre(j/2) e[/2, D} = {i] j; =1}
and
{i|fre(j/2") €[0,1/2)} = {i| j, =0}.

The significance of this alternate formula is that the value of the Choquet
integral is now expressed as a linear function of the values of £ Hence,
when the data set of the values of the integrand f'and the corresponding
integration value are available, an algebraic method can be used to
estimate the optimal values of 4. So, in data mining, such as in nonlinear
multiregressions, this new calculation formula is more convenient than
formula (5.4).

As for the validation of this new formula, rewriting the old formula
(5.4) as

2" -1

(©f fdpe= L) = F DT el X = Sy -ulE).
i=1 j=1

where
Ej = U{xi}
Ji=1
and
VICARVICH if E;={x, x5, x,} for somei=1,2,--,n
£ 0 otherwise

min f(x)-max f(x) if E, ={x;,x,,, -, x,} for somei=1,2--n
erj szj

0 otherwise
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ggé?f(x)—rggxf(x) if £, = {x;, xlil, e x:} for somei=1,2,---,n
o min £ (x) — max f(x) <0
erj szj

for j=1,2,---,2" -1, and noticing that j;=1 if and only if x; €E;, we
can see that the new formula is equivalent to the old one. In the above
expression for a;;, we also need the convention that

max f(x) =max f(x)=0.

In addition, we should note that in the above expression the function is
defined in two parts. They overlap when x,  =x for some
i=1,2,---,n. Fortunately, they are both zero at the overlapped j and,
therefore, these two parts are consistent.

The Choquet integral of a nonnegative measurable function f with
respect to monotone measure u has the following basic properties, where

we assume that all involved functions and sets are measurable:

(CIP1) (C)jE fdu>0;
(CIP2)  (O)f 1du=(O)] xy du=p(E)
(CIP3) (O fdu=(©O)] xe-f du;

(CIP4) (C)J.E cf du=c- (C)J.E f du for any nonnegative constant c.

These properties, which are similar to those of the Lebesgue integral,
can be obtained from the definition of the Choquet integral directly.
However, the Choquet integral is not linear, though it has property

(CIP4). In fact, (O)[,(f+g)du#C)|,f du+(C),gdu generally.
This can be verified by the following Example.
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Example 5.8 Let X ={a, b}, = 2(X), and

0 IfE=CY

1 otherwise .

u(E)={

In this case, any function on X is measurable. Considering two functions,

0 ifx=a
ZAS Al PR
and
[0 ifx=b
g(x)—l ifx=a,
we have
©f f du=[ouix] f(0) 2 ah)da = [ p(b))da =1x1=1
and

0 1
©fgdu=[ nix|g(x)za})da = [ u(ia})da=1x1=1.
Since f + g =1, a constant function on X, we obtain

Of(f+&) du=(©O)[1du=1-pu(X)=1.
Thus,
Of(f+&)du#(©) f du+(O)[ g du.
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This shows that the Choquet integral is not linear with respect to its
integrand in general.

The nonlinearity of the Choquet integral comes from the
nonadditivity of the involved monotone measure. Though the Choquet
integral loses the linearity in general, it still has the monotonicity and the
translatability, which the Lebesgue integral also holds and are implied by
its linearity, shown in the next theorem.

Theorem 5.5 Let f'and g be nonnegative measurable functions on (X, ).
The Choquet integral with respect to monotone measure x4 holds the
monotonicity (CIP5) and the translatability (CIP6):

(CIPS)  (O)f, f du<(O)f gdu if f<g onE;
(CIP6)  (O)] (f+¢)du=(C)f, f du+c-pu(E) forany constant c

satisfying f+c¢>0.

Proof. There is no loss of generality in assuming £ =X . To (CIPS),
from f<g , we know that {x|f(x)>a}c{x|g(x)>a} and,
therefore, u({x|f(x)=a})< u({x|g(x)=a}).Hence,

Of f du =, pix| f(0)2a}) da < [ | p(ix| g(x) 2 a}) der=(O)f g du.

As for (CIP6), noticing that f(x)+c=>a forevery xe X when o
is between 0 and ¢, we have

O (f+e)du=[ u({x| () +c>a}) da
= [Tu(tx| f()+ezab) da+ [ u(ix| f(x)+c>al) da

= [ uix| f)za-c) d@-o)+ [ p(X) da
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= [ ulix] f(@) 2 a}) da+ [ u(X) de
= (O f dp+cu(X)

The proof is now complete. O

The above discussion on the Choquet integral is restricted to
nonnegative measurable functions. Now we consider a more general case,
where the integrand is not necessarily nonnegative. A natural idea is,
similar to the Lebesgue integral shown in Section 5.3, to decompose a
function to its positive part and negative part, that is, express measurable
function f:X — (-o0,00) as f=f"—f, where

o [f@ i )20
/@)= {0 otherwise
and
o - f(x) if f(x)<0
S = {0 otherwise .

Both f* and f~ are nonnegative measurable functions. Their
Choquet integrals are well defined. Hence, we may define the Choquet
integral of £, without any loss of generality, on X as follows.

Definition 5.19 Let f:X — (-, ) be a measurable function. The
symmetric Choquet integral of f with respect to monotone measure u
on X, denoted by (C,)[ f du , is defined as

(COJf du=©Off* du=(©Of f~ du.

provided not both terms on the right-hand side are infinite.
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From Definition 5.19, we may see that (—f)" =/ and
(=f) = f" forany given function f. So,

COf ) du=©O)[ (=) du~O[(-f) du
=(©] " du~C)] f* du
=—(C)[ f du.

This is just the reason why people use word “symmetric” to such type
of Choquet integrals. Unfortunately, the symmetric Choquet integral
loses the translatability in general. We can see it from the following
example.

Example 5.9 Let X ={a, b}, = 2(X), and

(E) = 1 fE=X
H 0 otherwise .
Considering function
) 0 ifx=a
x =
-1 ifx=b

with f"=0 and f =-f.Noting that

1 ifx=a

0£f(x)+1:{0 —

we have

(COJf du=©)] 1" du~(©Of f~ du=0-(C)[ f~ du=-p({b}) =0,
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(COf(f + 1) dp=u({a})=0.

So,
COJ(S+D du#(CH[ f du+1-pu(X),

that is, the symmetric Choquet is not translatable.

Anyway, the translatability is one of major requirements to an
aggregation tool in information fusion. Though the symmetric Choquet
integral still holds property (CIP4), some decisions based on information
fusion using such an integral will depends on the selection of the origin
and the unit that measures the received information. For instance, to
measure the temperature, there are two common systems: Celsius degree
and Fahrenheit degree. The different selection of the temperature system
may lead to a different decision if the symmetric Choquet integral is used
as an aggregation tool in information fusion. Hence, it is necessary to
find a way for defining the Choquet integral with signed integrand such
that the translatability can be reserved. The following definition is an
ideal approach, where we simply consider the integral taken on X. There
is no difficulty for generalizing it to be taken on any measurable subset £
of X.

Definition 5.20 Let f:X — (—o0,©) be a measurable function on
monotone measure space (X, %, w). The translatable Choquet integral of
f with respect to monotone measure x on X, denoted by (C,)[ f du, is
defined as

COff du=]" [u(F,)~ p(X)lda+ [ u(F,)da ,

where F, ={x| f(x)>a} for ae(—w, o), provided not both terms in
the right-hand side of the formula are infinite.



Integrations 147

The next theorem shows the reason why such type of integral is said
to be translatable.

Theorem 5.6 Let f:X —(—,) be a measurable function on
monotone measure space (X, %, x). Then

(COf (f+e)du=(C)[ [ du+c-u(X)

for any real number c.

Proof. By using some well known properties of the Riemann integral, we
have

(COf(f +e)du
= [" x| f0) +eza)) - u(X))da+ [ p(ix| f(x) +c 2 a}) da
=" x| f@) 2 a—cp) - (X)) da+ [ u(ix| f(0) 2 a~c}) de
= [" (x| f@) 2 a—e)) - (X)) d(a —0)
+ [ x| f() 2 a—c}) d(a—c)
= [ LuCix| £ 2 B = (X1 dp + [ pix| £(x) = BY) dp
= [" x| F )2 B - QOB+ [ (x| £ ()2 B)) dp
[ x| £ 2 B - uCO1dB+ [ uix| £ ()2 B)) dp
= [7 Qx| £ 2 B = mOVdB + [ (x| ()2 B dB+ [ (X) dp
=(C)[ f du+c-u(X),

where [ =a —c. The equality of translatability is now proved. O
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The translatable Choquet integral also keeps properties (CIP3),
(CIP4), and (CIPS). Since the symmetric Choquet integral is never used
in applications of nonlinear integrals discussed in this book, from now on,
we omit the subscript “t” from the symbol of the translatable Choquet
integral of f'with respect to x as well as omit word “translatable” from
its full name, that is, write (C)[ f du and still called it the Choquet
integral, if there is no confusion.

As for the calculation formula of the translatable Choquet integral
when the universal set X is finite, it is totally the same as (5.4).

Example 5.10 We still use the monotone measure space (X, #(X), u)
given in Example 5.7, where X ={x,, x,, x;}, = 2(X), and

0 itE=0

0.5 if E={x}
02 if E={x,}
06 if E={x,x,}
04 it E={x,}
0.7 i E={x,x;}
09 ifE={x,, x5}
1 ifE=X

U(E) =

Now let function g: X — (-0, ) be

1 if x =1x,
g(x)=+<3 if x=ux,

-2 ifx=x;.

For function g we still have x, = x,, x, =x,and x; =x,, but it is not
nonnegative. By using formula (5.4), the Choquet integral of g with
respectto u is
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(©)f g du=(g(x) = 0)- u({x), 3, 3,1 +(g(x3) = g ) - ({5,353 })
+(g(x3) — g(x%,))- u({x3})

=g(x) u(X) +(g(x;) — g(x3)) - u({xy, X, 3) +(g(xy) = g(x))) - u({x,})

=(-2)x1+3x0.6+2x0.2

=02 .

Since g = f -7, we may use the translatability of the Choquet integral
and the result in Example 5.7 to verify the result. By using (CIP6) , it
should hold that

O©fgdu=O)| fdu—7-u(X)=72-7x1=02.

This coincides with the obtained result.

When the universal set X is finite, the Choquet integral can be
generalized for efficiency measure and signed efficiency measure
without any essential difficulty. In fact, if f is a real-valued function
on (X, #(X), u) where u is an efficiency measure, then wu(F,) is a
function of bounded variation with respect to « . Hence, formula

©f f du=[" [u(F,) - p(X)da+ | u(F,) da

can still well define the Choquet integral provided not both terms in the
right-hand side of the formula are infinite. When u is a signed
efficiency measure, since u can be decomposed as a difference of two
efficiency measures 4 and u : p=pu" —u ,wehave

©f f du=©)] f du” <O f dp”.
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Hence, the Choquet integral of real-valued function f with respect to
signed efficiency measure u is well defined provided not both terms in
the right-hand side of the formula are infinite. The calculation formulas
(5.4)-(5.6) are still available and properties (CIP2), (CIP3), (CIP4), and
(CIP6) still hold in this case.

Example 5.11 Let X ={x, x,, x;} and = 2(X). We still use function
g given in Example 5.10, that is,

1 if x=x
g(x)=43 if x=1x,

-2 ifx=x.

But the monotone measure u is replaced by a signed efficiency
measure v given as

0 itE=¢
-0.5 ifE={x}
0.2 if £E={x,}
-0.6 if E={x,x,}
0.4 if £={x,}
-03  if E={x,x;}
0.9 if £={x,,x;}
0.3 itE=X

v(E)=

Thus,

O g dv=(g(x)=0)-v({xi, x5 1) +(g(x;) = () - v({xz, x3})

+(g(x3) — g(x;)) - v({x3})
= g(x3) V(X)) +(g(x) —g(x3)) - v(ix;, x5 1) +(g(x,) — g(x))) - v({x,})
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= (=2)x03+3x(=0.6)+2x 0.2
=2 .

The Choquet integral has more useful properties, which the Lebesgue
integral has, such as the continuity and the monotonicity with respect to
the integrand. They are shown in the next two theorems.

Theorem 5.7 (Continuity) Let f: X —(—o0,0) and f,: X —>(—g©) be
bounded measurable functions on measurable space (X,#) and
H: F —[0,0) be a monotone measure on Z Assume that Choquet
integrals (C)[ fidu and (C)[ f,du exist. Then, for any given £>0,
there exists 0 >0, such that |(C)[fdu—(C)f f,dul<e whenever
| h=filko.

Proof. Let M be the bound of f, and f,, that is, f,<M and
f, <M . Denote {x|fi(x)>a} and {x|f,(x)>a} by F!" and
F'? respectively. For any given ¢ >0, taking & =&/2u(X), we have
FPcF2  and, therefore, u(F,")<u(F%) if |fi—fil<d .
Similarly, w(F25)<u(F") if | f,—f,|< 5. Thus,

©) fidu—(©)] fodp

= [ [ED) - p(XO)da+ [ p(FPyda - [° [u(FP) - p(X))da
[, W(FPyda

=[° D)~ w1 e+ [ u(Fyde— [ [u(FP) ~ p(X))dar
[V w(FP)da

=7 LuED) — u(FPder+ [ [u(FP) — p(F)de

<[ Tu(EE) ~ w(FOYda+ [ TuES) - u(FEyda

N 0 M M+
= J‘foﬁﬂ(FoEZ))da_J‘,M lu(Fggz))da_i_J‘O ﬂ(F;Z))da_jg ,U(F;z))da
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-M o
<[t da+ [ u(FD)da
<268 u(X)

=¢&.

In the same way, we can show that

O] fodu—(©O)f fidu<e.
Consequently,

(O fidu—(Of frduls e .

The proof is now complete. O

The monotonicity of the Choquet integral of nonnegative measurable
functions shown in Theorem 5.5 can be generalized to the case where the
integrand functions may not be nonnegative.

Theorem 5.8 (Monotonicity) Let f:X—(—og) and f,: X —>(—qo)
be measurable functions on measurable space (X, ) and u: F— [0, «0)
be a monotone measure on % Assume that Choquet integrals (C)[ fidu

and (C)f fodu exist. Then (C)f fidu < (C)[ fodu if f,<f,.
Proof. From fi<f,, we know that F,”<F;” and, therefore,
w(FY< u(FP) for every ae(—o0,00)by the monotonicity of .
Thus,
0 o0
©f fidu=[_ [W(F") = u(Oda+ [ u(F")da
< (ED) = p(X)da + [ u(F) de

=(O) frdu.
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The proof is now complete. O

When X is finite, even if u is only a signed efficiency measure, the
Choquet integral (C)[f du exists for any real-valued function f defined
on X, and it is also continuous with respect to the integrand. However,
the monotonicity of g is essential to the monotonicity of the Choquet
integral with respect to the integrand.

5.5 Upper and Lower Integrals

We have seen that the Choquet integral is a generalization of the
Lebesgue integral. Its definition is just one of the equivalent definition of
the Lebesgue integral. That is to say, in case we consider using
nonadditive measures to replace classical additive measure in some
systems, though the original definition of the Lebesgue integral fails, we
still can use some of its equivalent definitions to define nonlinear
integrals as aggregation tools in systems. By such an idea, this chapter
presents other tow types of nonlinear integrals, the upper integral and the
lower integral.

Throughout this section, we assume that (X, & p) is an efficiency
measure space, that is, x 1is an efficiency measure on measurable space
X, %), f:X—>[0,0) and g:X —>[0,0) are nonnegative
measurable functions.

Definition 5.21 Given a nonnegative measurable function f; X — [0, )

and a set £ €%, the upper integral of f with respect to x on E, in
symbol (U), f'du , is defined as

(), fdu=limU,,

where

U, =sup{ ii] -,u(E/.)| fziij Xk, >f-&E e FNEA 20,7=12,- }
=l =l
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for £€>0, in which FNE={FNE|F e Z}. Similarly, the lower
integral of f with respectto x on E, (L)[, fdu,is defined as

(L), fdpu=lim L, ,

where
L= inf{ iij -,u(Ej)| fsilj ‘X, <f+eE, ef'}mE,ﬂ,j >0,j=12,- }
Jj=l =l ’

for £>0.

Similar to the Lebesgue integral and the Choquet integral, we omit
the subscript £ in the symbol of the integral when £ = X

If the universal set is finite, i.e., X ={x,x,, -+, x,}, the supremum
and the infimum in Definition 5.21 are accessible. Hence, the upper
integral of fwith respect to 1, (U)[ f du, can be reduced as

2" -1

O)ff du=sup{Y, 4, wEN| XAz =f1, (57
j=1 j=1

where 4,20 and E; =U,, {x;} ifj is expressed in binary digits as
Judny oo gy for every j=1,2,---,2"=1. The value of (U)[f du
then is just the solution of the following linear programming problem:

2" -1
maximize z= z/ll U
J=1

2" -1

subject to z/lj;(Ej_(xl.):f(xl_), i=1,2,.n
j=1
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420, j=1,2, 2" -1

where 4, 4,,---, 4,, | are unknown parameters, x;=u(E;) for
j=1,2,---,2" —1. The above n constraints can be also rewritten as

> A, =f(x) VxeX.

JlxeE;cX

By knowledge on the linear programming, the above maximum can
be accessed by at most n nonzero-valued A, that is, the solution can be
expressed as

Ellji'uji ?

where {j, j,,:*, j,} isasubsetof {1,2, ---,2" —1}.

Example 5.12 We use monotone measure x4 and nonnegative function
f given in Example 5.7. The upper integral of f with respect to u,
(U)[ f du , is the solution of the following linear programming problem:

maximize  z=0.54 +024,+0.64,+0.44, +0.74,+0.94 + 1,
subject to L+ A4+ A+4, =8

L+ +A+4, =10

A+ A+ A+ A4, =5

2,20, j=1,2,,7
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By using the simplex method, a solution of this linear programming
problem can be obtained as 4, =8, 4, =5,and A4, =5 with z=9.5.

Similar to the upper integral, the lower integral of /' with respect to x,
(L)[ f du, can be reduced as

2" -1

2"-1
(L) f du=inf(Y 2, w(E)| 3206, = 1} (5.8)
j=1 j=1

Its value is just the solution of the following linear programming
problem:

2" -1
minimize 2= A u;
j=1
2" -1
subject to Z’ljZE, (x)=f(x,), i=1,2--,n
j=1
2,20, j=1,2,,2" -1

where A, 4,,---, 4,, | are unkngn parameters, u; =u(E;) for
j=1,2, ---,2" —1. The above minimum can be accessed by at most n
nonzero-valued 4,, that is, the solution can be expressed as

n
Z}ﬂ,j; Hj s
P

where {j, j5,---, j,} isasubsetof {1,2, ---,2" —1}.

Example 5.13 We still use monotone measure x# and nonnegative
function f given in Example 5.7. The lower integral of f with respect to
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i, (L) fdu, is the solution of the following linear programming
problem:

minimize z=0.54+0.24, +0.64, + 0.44, + 0.74, + 0.94, + 4,
subject to LA+ A4+ A+, =8

L+4L+4+4,=10

A+ A+ +4, =5

2,20, j=12,,7

Similar to Example 5.12, by using the simplex method, a solution of this
linear programming problem can be obtained as 4, =7, A, =3, and
As=5 with z=6.7.

The upper and the lower integrals have some common properties that
the Lebesgue integral with a nonnegative integrand has:

(ULIPD) ()], f du=(U)[f xp du and (L), fdu=L)[ [ xp du:
(ULIP2) (U)[fdu=0 and (L)[ [ du>0;
(ULIP3) if f<g,then (U)[fdu<(U)|[gdu and, moreover,

(L)[ f du<(L)[ g du provided u isa monotone measure;

(ULIP4) (U)[c-fdu=c-(U)[ fdu and (L)fc-fdu=c-(L)|f du

for any constant ¢>0.

Moreover, we have



158 Nonlinear Integrals and Their Applications in Data Mining

(ULIP5) (U) j fdu>(L) j fdu.

However, neither the upper integral nor the lower integral is linear,
that is, we may have

W [(f+g)du= )| f du+(U)[ g du
and

L[ (f+g)du#L)| [ du+(L)| g du

for some monotone measure x and nonnegative measurable functions f
and g.

Example 5.14 Let X ={x,x,,x;} and =2 (X). Monotone measure
4 is defined as

0 fE=U
3 ifE={x}
WE)=13 ifE={x,}
1 if E={x}
5 otherwise
Considering functions
1 ifx=ux

f(x)=41 ifx=x,

0 ifx=ux

and



Integrations 159

0 ifx=ux
g(x)=40 ifx=x,

1 ifx=x,
we obtain
(U] fdu=1-p(x)+1- u(x,) =1x3+1x3 =6,

(U] gdp=1-u(x) =1x1=1,
and

(U] (f +@)du=1-u(x)+1- u({x,, x;}) =1x3+1x5=8.

That is, we have

O[(f+g) du> )| f du+U)| g du.

Similarly,
L) fdu=1-u({x,x,})=1x5=5,
(L)f gdu=1-u(x;)=1x1=1,
and
L] (f+@)du=1-u({x;, X, x;}) =1x5=5.
That is,

L[(f+g)du<@)| fdu+L)[ g du.

The results in Example 5.14 suggest the following general
inequalities as a property of the upper and the lower integrals.

(ULIP6) (U)[(f +g)du= (V)| f du+(U)[ g du:
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M (f+&)du< )] f du+L)[ g du.

Another important point is that the upper and the lower integrals do
not have a property like (LIP2) or (CIP2) the Lebesgue integral and the
Choquet integral hold.

Example 5.15 Let X ={x,,x,} and & =2 (X). Set function x is
defined as

0 IfE=O

1 otherwise.

u(E)={

Clearly, g is a monotone measure. Taking constant 1 as the integrand,
we have

(U)Ild,u=1-,u({x1})+1-,u({x2})=1><1+1><1=2;ty(X).
It is easy to cite a similar counterexample for the lower integral. This
is left to the reader as an exercise. Though the equalities do not hold, we

still have the inequalities expressed as one more property of the upper
and the lower integrals:

(ULIP7) (L)| 1du < u(X)<(U)[ 1du.

Finally, we show another inequality for the upper integral as one of
its properties in the following theorem.

Theorem 5.9 Let X ={x,x,,---,x,} and x be monotone measures on
Z2(X). Then,

(ULIP8) (U)[1du<n-u(X).
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Proof. Consider each 23211 A, u(E;) satisfying ¥7'A, Xg,(¥) =1
for every xe X . Since Z?:TI/%ZE/ (x)=1 means Z_/\,v[eAj 4; =1 for
every Xx,, i=1,2,---,n,we have

2"-1 2"-1
z/lj 'IU(E]') < z/lj ,U(X)
Jj=1 j=1
2"-1
= pu(X)- Zﬂ’j
Jj=1

<u(X)- 3 (3 4)

i=l xekE;
=u(X)- 1
i=1

=n-u(X)
Hence,

271 271
(U)[1du=supt Y, 2 w(E)| X220, =1 <n- p(X).
Jj=l1 Jj=l1
The proof is now complete. O

Unlike the Choquet integral, the upper integral is not translatable,
even

W[ (f +e)du#(U)[(f +e) du+ec-(U)[1du.

in general. This can be seen from the following example.

Example 5.16 Let X ={x,,x,,x;} and 4 =2 (X). Set function u is
defined as
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0 if|E| <lorE = {x;, x5}

1  otherwise

u(E)={

Obviously, u is a monotone measure on (X, ). Taking

1 ifx=x,

0 otherwise ,

f(x)={

we have
O (f +D) dp=1-u(x, 1,1 + Loy, x3}) = 1+1=2.
However, (U)[fdu=0 and (U)[1du=1.Consequently,
W[/ +D du> )] f dp+(U)[1dp.

A similar conclusion is also valid for the lower integral.

In the definitions of the upper and the lower integrals, the efficiency
measure can be replaced by a signed efficiency measure. In this case,
properties (ULIP2), (ULIP4), and (ULIP8) may not hold.

5.6  r-Integrals on Finite Spaces

In the previews sections, four different types of integrals defined on
signed efficiency measure spaces or on classical measure spaces have
been presented. They are the Lebesgue integral, the Choquet integral, the
upper integral, and the lower integral. In this section, we use a unified
point of view to inspect them when the universal set is finite and the
integrand is nonnegative.

Let X ={x,x,,---,x,},/ beanonnegative function on X, and x be
a signed efficiency measure on #(X).
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Definition 5.22 A set function 7:2 (X) —{J} —>[0,0) is called a
partition of fif

fx)= 2 =(E)

ElxeEcX

forevery xe X .

Taking the characteristic function of a crisp set or the membership
function of a fuzzy set as £, it is easy to see that the concept of partition in
Definition 5.22 is a generalization of the classical partition for crisp sets
and the fuzzy partition for fuzzy sets.

Definition 5.23 Each type of integrals with respect to u is characterized
by a rule r, by which, for any given nonnegative function f, a partition 7
of f'can be obtained. In this case, we say that rule  partitions function f.
Regarding both zand gzas (2" —1) -dimensional vectors, the value of the
integral of funder rule r, denoted by (r)[f du, is the inner product of
vectors 7 and g, that is, ()| f du =7 -, where (r) is used to indicate
the type of integral.

The above definition provides a flexible aggregation tool in
information fusion and data mining. It is generally called an r-integral,
and simply, an integral when the partitioning rule » has been uniquely
chosen and there is no confusion.

The Choquet integral is a special r-integral. The partitioning rule
corresponding to the Choquet integral can be described as follows: for
any given nonnegative function f : X —[0,0) , partition
7 PX)—-{J} —[0, ) is obtained by

f) = f(x) if E={x,x,,x,} for some i=1,2,---,n

0 otherwise

E(E)Z{
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for every Ee 2 (X) —{J}, where (xl*,x;,---,x:) is a permutation of
{x,,%,,---,x,} such that f(x)< f(x,)<--< f(x,) and f(x;)= 0 as
the convention made in Section 5.4. It is easy to verify that

Z T(E)=f(x) VxelX.

ElxeEcX

This partitioning rule takes the coordination of the attributes into account
maximally, that is, the manner of the partition is to make the
coordination among the attributes in X as much as possible. It is evident
that there are only at most n sets £ with z(£) >0 in such a partition.

Example 5.17 The data in Example 5.7 are used here again. The
partition of f corresponding to the Choquet integral is illustrated in
Figure 5.4 where the black part, the dark grey part, and the white part
show #(X)=5, 7n({x;,x,})=3, and x({x,})=2 respectively. The
values of 7 at other sets are zeros. Geometrically, this partitioning rule
divides function f horizontally.

We have seen that the Choquet integral locates at the one extreme in
terms of the coordination among attributes. To show another extreme, we
need to generalize the classical Lebesgue integral such that it can be
taken with respect to any signed efficiency measure.

10

0 X1 % X3

Fig. 5.4 The partition of f'corresponding to the Choquet integral in Example 5.17.



Integrations 165

Definition 5.24 The Lebesgue integral of nonnegative function f with
respect to signed efficiency measure x on set E < X, denoted by
[z f du , is defined as

.S du=],1 du',

where 4’ is the additive measure on & (X) determined by
dEx D =u({x}), i=1,2,-,n.

Example 5.18 We use the data given in Example 5.7 again. By the
additivity, the corresponding additive measure g’ is obtained as

0 iftE=0

0.5 if E={x}
02 if E={x,}
0.7 if E={x,x,}
04 if E={x,}
0.9 if £={x,x;}
0.6 if £=1{x,,x;}
1.1 if E=X

H'(E)=

Thus, the Lebesgue integral of f'with respect to monotone measure u is

[ du=[fdu=F(n)u' () + f(x5)- 14 () + [(x5)- ' (x3)
=8x0.5+10%x0.2+5%x0.4=8.

Figure 5.5 illustrates the Lebesgue integral of function f with respect to
4, from which we can see that the corresponding partition of f'is made
vertically.
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0 ! . >

X X X3

Fig. 5.5 The partition of f corresponding to the Lebesgue integral in Example 5.18.

According to Definition 5.24, the Lebesgue integral of a function
with respect to signed efficiency measure x only depends on the values
of u atsingletons in #(X), ignoring the values at other sets. It is also a
special type of r-integral and is another extreme in terms of the
coordination among attributes. The Lebesgue integral takes no
coordination into account at all, that is, the manner of the partition is to
avoid any coordination. Based on such a point of view, we shall well
understand why the Choquet integral coincides with the Lebesgue
integral when there is no interaction among the contribution rates of
attributes, that is, if no interaction exists objectively, the integration
value should be always the same no matter how much coordination is
considered. This conclusion is formalized as the following theorem.

Theorem 5.10 If the signed efficiency measure is additive, then any
r-integral is the Lebesgue integral.

Proof. Let u be an additive signed efficiency measure (i.e., a signed
measure) on the power set of X ={x,x,,---,x,} . For any given
nonnegative function f defined on X, let 7 be the partition of f obtained
by the corresponding rule r. Then, according to Definition 5.23, we have
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2"-1

(O] f du=Zm(E)) u(E)

- 2 [2(E)- Y u(tx )]

j=1 x‘»eEj

[ﬂ({x D 2 m(E)]

Elx,eE

:i[u({xm-ﬂxin
i=1

=[fdu.

Il
i M:

So, the r-integral coincides with the Lebesgue integral when g is additive.
U]

The above theorem also shows that the concept of r-integral is a
generalization of the classical Lebesgue integral. From this theorem, we
can say that any partitioning rule, by which a special r-integral can be
obtained, corresponding to an equivalent definition of the classical
Lebesgue integral. Indeed, the upper integral and the lower integral
discussed in Section 5.5 are also two types of r-integral and, therefore,
are generalizations of the classical Lebesgue integral.

Recall expression (5.7) for the upper integral, the value of (U)[ f du
is just the optimal value of z in the linear programming problem

2
maximize z= Z/ij U

2" -1

subject to z/lj;(E/(x[):f(xl_), i=1,2,-,n
j=1

4,20, j=1,2,--,2"-1
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where A4, 4,,-, 12"—1
j=1,2,-,2" 1.
The above n constraints can be also rewritten as

are unknown parameters and u; = u(E;) for

Z A, =f(x) VxeX. (5.9)

.j‘XEE/QX

If we define set function 7:2(X)—>[0,0) by #(E;)=rn;=A4, for
j=12,---,2" =1, expression (5.9) shows that 7 is a partition of f and,
therefore, z=3Y3,"7, u, isan r-integral. Since the maximum in the
linear programming problem is accessible, the upper integral is also a
special type of r-integral. Its corresponding partitioning rule is “divide
the integrand in such a way so that the integration value is maximized”.

By a knowledge on the linear programming, the above maximum can
be accessed by at most n nonzero-valued A, that is, the value of the
upper integral (U)[ f du can be expressed as

Zl/lf,"uji ?

where {j,, j,,--, j,} isasubsetof {1,2, ---,2" —1}.

Example 5.19 Use the data in Examples 5.7 again. The value of the
upper integral of f with respect to monotone measure x, (U)[f du, is
z = 9.5 that is shown in the solution of the linear programming problem
in Example 5.12, where 4, =8, A, =5,and A, =5.These A’s form a
partition 7z of function f, illustrated in Figure 5.6.

Similarly, from expression (5.8), the value of the lower integral
(L) f du is just the optimal value of z in the linear programming
problem



Integrations 169

0 >

X X X3

Fig. 5.6 The partition of f corresponding to the upper integral in Example 5.19.

n

2" -1
minimize 2= A u;
j=1

2" -1
subject to Y e ()= f(x), i=12-n
]:1 J

2,20, j=12,,2"~1

The minimum can be accessed by at most » nonzero-valued A;. Hence,
the value of the lower integral (L)|f du can be expressed as

Z;iji’uji ?

where {j,, j,,:*, j,} isasubsetof {l,2, ---,2" —1}.Itis just a special
r-integral. The corresponding partitioning rule is “divide the integrand in
such a way so that the integration value is minimized”.

Example 5.20 Using the data given in Example 5.7, we know that the
value of the lower integral of f with respect to monotone measure 4,
(L)[fdu, is z = 6.7 that is shown in the solution of the linear
programming problem in Example 5.13, where 4,=7, A4,=3, and
As=5. These A’s form a partition 7 of function f, illustrated in
Figure 5.7.
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A
10 T

X X X3

Fig. 5.7 The partition of f corresponding to the lower integral in Example 5.20.

Generally, for any nonnegative function f, any signed efficiency
measure x on finite measurable space (X, # (X)), and any partitioning
rule r, we have

L] f du< O] f du<O)] f du.

As a summary of this section, let see the following example.

Example 5.21 Three workers, x,, x,, and x;, are hired for
manufacturing a certain kind of wooden toys. The universal set is taken
as X ={x,, x,, x;}. The individual and joint efficiencies (the number of
produced toys per hour) of these three workers are shown in Example
4.12 as a monotone measure u defined on the power set of X by

ifE=¢
if £={x,}
if £E={x,}

14 if £={x,x,}
7 if £={x,}

13 if £={x,x;}
9 if E={x,,x;}
17 if E=X

H(E)=
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Someday, they are hired to work for 6, 3, and 4 hours respectively. The
working hours can be regarded as a function f:X —[0, ). If these
three workers work separately, then the total number of toys they
produce during this day can be expressed as the Lebesgue integral (see
Figure 5.8(a))

[fdu=6x5+3x6+4x7=76.

If, working together, they start their work at the same time, say 9:00, and
x, leaves at 12:00 while x; leaves at 13:00, then the total number of
toys they produce during this day can be expressed as the Choquet
integral (see Figure 5.8(b))

(O f du=3x17+1x13+2x5="74.

The third case is that there is an excellent manager who knows the
individual and joint efficiencies of these three workers well. The
manager arranges their work in a certain coordination manner such that
the toys produced by them during this day are as many as possible. This
is just a linear programming problem:

maximize z=5a, +6a, +14a; +7a, +13a5 +9a, +17a,
subject to a,+ay+as+a, =6

a,+ay+ag+a, =3

a,+as+ag+a, =4

a. 20, j=1,2,---,7

J
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Using the simplex method, a solution of this linear programming
problem can be obtained as a; =3, a,=1, and a;=3 with z=88.
That is, the manager arranges x;, and x, to work together for 3 hours,
x, and x; to work together for 3 hours, and x; works alone for one
hour. Then, the total amount of the produced toys will be the maximal §8.
It is just the upper integral (see Figure 5.8(c))

(U)[ f du=3x14+3x13+1x7 =88.

This number represents the potential of the team of these three workers
during this day. Finally, let’s consider the most conservative estimation
for the total number of the toys that can be produced by these workers
during this day. This is another linear programming problem:

minimize z=>5a, +6a,+14a,+7a, +13as +9a, +17a,
subject to a+ay+as+a,=6
a,+ay,+ag+a, =3

a,+as+ag+a, =4

Its solution is a =6, a,=1, and a,=3 with z=64 . The
corresponding arrangement is that x, and x; work together for 3
hours, x, works alone for 6 hours, and x; works alone for one hour.
The total amount of produced toys will be the least as 64. It is just the
lower integral (see Figure 5.8(d))

(L)| f du=3%x9+6x5+1x7=64.
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A A
6 6
3 I H 3
0 Xy % X3 g 0 Xy % X3
(a) The Lebesgue integral (b) The Choquet integral
A A
6 6
0 X X% X3 0 X ) x
(c) The upper integral (d) The lower integral

Fig. 5.8 The partitions corresponding to various types of nonlinear

integrals in Example 5.21.

Up to now, we have seen that, among the integrals of a given
nonnegative function with respect to a monotone measure (even a signed
efficiency measure) on a finite set, the Lebesgue integral and the
Choquet integral form an extreme pair in terms of the coordination
among the attributes, while the upper integral and the lower integral form
another extreme pair that is in terms of the integration amount. Generally,
we have

L[ f dus[ f du<(U)] f du (5.10)

and
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L]f du<©) f du<U)[ f du (5.11)

for any function f and signed efficiency measure ¢ on (X, Z (X)).
Inequality (5.10) and (5.11) are also confirmed by Example 5.21.

Exercises

Exercise 5.1 Let fand g be measurable functions on measurable space (X, ). Show that
max(f, g) and min(f, g) are also measurable.

Exercise 5.2 Prove that any elementary function on measurable space (X, %) is
measurable.

Exercise 5.3 Is function f'on [0, 1] defined by

0 ifx=0
xX) =
/& lsinl if x e (0,1]
X x

Riemann integrable? Why?

Exercise 5.4 Let f'be a nonnegative measurable function on measure space (X, %, p).
Prove that, if the Lebaesgue integral [ f du=0, then there exists set E e . with
H#(E)=0 suchthat f(x)=0 forall xgFE .

Exercise 5.5 Let X ={x, x,, x;} , = 2(X), and monotone measure x on Z(X) be
given as

0 itE=0

05 ifE={x}
02 ifE={x,}
06 ifE={x,x,}
04  if E={x3}
0.7 it E={x,x3}
0.9 if E={x,,x3}
1 ifE=X

HE)=
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Given function f: X —[0,0) as

10 ifx=ux
f(x)=12 if x=ux,
5 ifx=ux,,

Calculate (C)f f du.

Exercise 5.6 Let f'and g be measurable function on monotone measure space (X, % p).
Prove that, if f<g, then (C)[f du<(C)[g du, where the Choquet integrals are
translatable.

Exercise 5.7 Let X ={x, x,}, 7= 2(X),

t, ifx=x
t

f(X)={

. >
, ifx=x,

and monotone measure 4, f,,and x;on 2 (X) be given as

0 if E=0

05 if E={x}
/ul(E): . s

03 if E={x,}

1 ifE=X

0 ifE=0

05 ifE={x}
IUZ(E): . )

05 ifE={x,}

1 ifE=X

and

0 ifE=0

0.5 if E={x}
m(E) = ,

08 if E={x,}
1 ifE=X

respectively. Regarding (C)[ f du, as a function of parameters # and 1, ,
k=1,2,3, find the contours (C)[fdw, =2, (O)ffdu,=2, and (O)f fdu,=2.
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Draw their figures.
Exercise 5.8 For monotone measure 4, j=1,2,3, and function f given in Exercise

5.7, find the track of the vertices of the contours when the value of the Choquet integral
(O)f f du varies in (—o0, ). If the integrand fis replaced by w- f, where

02 ifx=x
w(x) = .
0.8 ifx=x,,

what is the track?
Exercise 5.9 Construct an example showing (L)[1du # u(X).

Exercise 5.10 Prove property (ULIP6).



Chapter 6

Information Fusion

In decision making, when some high dimensional information (an
observation for a set of several attributes) is available, usually, according
to a specified decision target, people need to aggregate it into lower
dimensional space (even to be a one-dimensional datum, i.e., a number)
so that a reasonable decision can be easily made. Such a procedure is
called information fusion. For different decision targets, people may
choose different aggregation tools. The previous chapter provides
various integrals that can serve as the aggregation tool in information
fusion. This chapter presents some basic knowledge on information
fusion.

6.1 Information Sources and Observations

Let X ={x,x,,---,x,} be the set of all considered information sources.
Set X is taken as the universal set in our discussion. Each information
source, x;, is called an attribute. The numerical (may be categorical
sometimes) information received from all attributes once can be regarded
as a function f defined on X, that is, f: X — (-0, ) and is called an
observation or a record of the attributes. They are written as

f(x), f(xy), -+, f(x,). If we observe these attributes / times, then /
functions, f,, f,, -, f,, are obtained. They form a data set as
follows.

177
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X, X, X,
Silx)  fi(xy) o fillxy)
L) ) e fHx,)
) i) fil,)

In the data set, the j-th row is the j-th record of attributes x,, x,, ---,
and x,, j=1,2,---,/. Through out the book, we assume that any data
set we discussed is complete, that is, all f,(x,), i=L2,-,n;
j=1,2,.--,1 are available, where integer / is called the size of the data.

Example 6.1 A student takes three courses, Calculus, Linear Algebra,
and Elementary Physics, in his first semester after enrolling a university.
They are 5 credits, 3 credits, and 4 credits courses respectively. At the
end of the semester, the student obtain grade B, 4, and C correspondingly.
Here, the three courses can be regarded as three information sources
(attributes), denoted by x;, x,, and x; respectively. The grades B, 4,
and C are received categorical information from these three information
sources. The received categorical values B, 4, and C correspond to
numerical values 3, 4, and 2 respectively. Thus, categorical (B, 4, C) or
numerical (3, 4, 2) form an observation of attributes x,, x,,and x;.

Example 6.2 To investigate different types of iris, people collect its 150
flowers and measure their sepal length, sepal width, petal length, and
petal width. Thus, a data set consisting of 4 attributes and 150 records is
obtained (see columns 2-5 and 8-11 of Table 6.1). For instance,
fis(x,)=3.1, while f,,(x,)=1.8. It is a complete data set. As for the
integers in the sixth and twelfth column in Table 6.1, they indicate the
types of iris. This data set has been used to test the classifiers in a
number of works including [Xu et al 2003].
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Table 6.1 Iris data (from ftp://ftp.ics.uci.edu/pub/machine-learning-databases).
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Sepal Sepal Petal Petal

Sepal Sepal Petal Petal

Szmplelength width length width Class rslzmp]elength width length width Class
() () (x3)  (xs) ) () () (xs)
1 50 35 14 02 |1 76 66 30 44 14 2
2 49 30 14 02 1 77 68 28 48 14 2
30 47 32 13 02 1 78 67 30 50 17 2
4 46 31 15 02 1 79 60 29 45 15 2
5 5 36 14 02 1 80 57 26 35 10 2
6 54 39 17 04 1 81 55 24 38 11 2
7 46 34 14 03 1 8 55 24 37 10 2
8 50 34 15 02 1 8 58 27 39 12 2
9 44 29 14 02 1 8 60 27 51 16 2
10 49 31 15 01 1 85 54 30 45 15 2
11 54 37 15 02 1 8 60 34 45 16 2
12 48 34 16 02 1 87 67 31 47 15 2
13 48 30 14 01 1 88 63 23 44 13 2
14 43 30 11 01 1 89 56 30 41 13 2
15 58 40 12 02 1 9 55 25 40 13 2
16 57 44 15 04 1 91 55 26 44 12 2
17 54 39 13 04 1 92 61 30 46 14 2
18 51 35 14 03 1 93 58 26 40 12 2
19 57 38 17 03 1 94 50 23 33 10 2
20 51 38 15 03 1 95 56 27 42 13 2
20 54 34 17 02 1 9 57 30 42 12 2
2 51 37 15 04 1 97 57 29 42 13 2
23 46 36 10 02 1 98 62 29 43 13 2
24 51 33 17 05 1 99 51 25 30 11 2
25 48 34 19 02 1 100 57 28 41 13 2
26 50 30 16 02 1 101 63 33 60 25 3
27 50 34 16 04 1 102 58 27 51 19 3
2 52 35 15 02 1 103 71 30 59 21 3
29 52 34 14 02 1 104 63 29 56 18 3
30 47 32 16 02 1 105 65 30 58 22 3
31 48 31 16 02 1 106 7.6 30 66 21 3
32 54 34 15 04 1 107 49 25 45 17 3
33052 41 15 01 1 108 73 29 63 18 3
3455 42 14 02 1 109 67 25 58 18 3
35 49 31 15 01 1 110 72 36 61 25 3
36 50 32 12 02 1 111 65 32 51 20 3
37 55 35 13 02 1 112 64 27 53 19 3
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38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

4.9
4.4
5.1
5.0
4.5
4.4
5.0
5.1
4.8
5.1
4.6
53
5.0
7.0
6.4
6.9
5.5
6.5
5.7
6.3
4.9
6.6
52
5.0
5.9
6.0
6.1
5.6
6.7
5.6
5.8
6.2
5.6
5.9
6.1
6.3
6.1
6.4
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3.1
3.0
3.4
3.5
23
3.2
3.5
3.8
3.0
3.8
3.2
3.7
3.3
3.2
3.2
3.1
23
2.8
2.8
3.3
24
2.9
2.7
2.0
3.0
2.2
2.9
2.9
3.1
3.0
2.7
2.2
2.5
3.2
2.8
2.5
2.8
2.9

1.5
1.3
1.5
1.3
1.3
1.3
1.6
1.9
1.4
1.6
1.4
1.5
1.4
4.7
4.5
4.9
4.0
4.6
4.5
4.7
3.3
4.6
3.9
3.5
4.2
4.0
4.7
3.6
4.4
4.5
4.1
4.5
3.9
4.8
4.0
4.9
4.7
43

0.1
0.2
0.2
0.3
0.3
0.2
0.6
0.4
0.3
0.2
0.2
0.2
0.2
1.4
1.5
1.5
1.3
1.5
1.3
1.6
1.0
1.3
1.4
1.0
1.5
1.0
1.4
1.3
1.4
1.5
1.0
1.5
1.1
1.8
1.3
1.5
1.2
1.3

[N ST NS T S R S S B Sl SN "I ST Sl S i S i S R S e S S e S S T T e

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

6.8
5.7
5.8
6.4
6.5
7.7
7.7
6.0
6.9
5.6
7.7
6.3
6.7
7.2
6.2
6.1
6.4
7.2
7.4
7.9
6.4
6.3
6.1
7.7
6.3
6.4
6.0
6.9
6.7
6.9
5.8
6.8
6.7
6.7
6.3
6.5
6.2
5.9

3.0
2.5
2.8
32
3.0
3.8
2.6
2.2
32
2.8
2.8
2.7
3.3
32
2.8
3.0
2.8
3.0
2.8
3.8
2.8
2.8
2.6
3.0
3.4
3.1
3.0
3.1
3.1
3.1
2.7
32
3.3
3.0
2.5
3.0
3.4
3.0

5.5
5.0
5.1
53
5.5
6.7
6.9
5.0
5.7
4.9
6.7
4.9
5.7
6.0
4.8
4.9
5.6
5.8
6.1
6.4
5.6
5.1
5.6
6.1
5.6
5.5
4.8
5.4
5.6
5.1
5.1
59
5.7
52
5.0
52
5.4
5.1

2.1
2.0
2.4
23
1.8
22
23
1.5
23
2.0
2.0
1.8
2.1
1.8
1.8
1.8
2.1
1.6
1.9
2.0
22
1.5
1.4
23
2.4
1.8
1.8
2.1
2.4
23
1.9
23
2.5
23
1.9
2.0
23
1.8

W W W LW W W W W W W W W W W W W W LW W W W W LW WW WW W WWw WwWWw Wwwwwuw w
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6.2 Integrals Used as Aggregation Tools

The weighted average, or more general, the weighted sum is the most
common aggregation tool used in information fusion. From Example 5.5
we have seen that the weight sum is just the Lebesgue integral of the
received information with respect to the additive measure determined by
the weights.

Example 6.3 Recalling Example 6.1 and using its data that contains only
one record, the question is what the current GPA of the student is. Since
the total credits of the courses the student takes is 12, we have

3 5 3 4 35
GPA = X)W =3X—+4x—+2x—=—x2092,
;f( ) 12 12 12 12

where

3 ifx=x
f(x)=44 ifx=x

2 ifx=ux

is the grade record that the student obtained, and
w; =5, w, =3, w; =4 denote the credits of three courses. If u is the
classical additive measure determined by u({x;})=w;, i=1,2,3, or,
directly,

HE)= 3w,

i|x;eE

then the GPA is just the Lebesgue integral of function f with respect to
u,ie, GPA=|f du=35/12.

Generally, given n attributes x,, x,,---,x, and an observation f for
fusing, the aggregation value, as another attribute (the target attribute)



182 Nonlinear Integrals and Their Applications in Data Mining

denoted by y, is a functional of f. The relation between them can be
regarded as an input-output system, in which the values of # attributes

X, X,,+-+, and x, are the input and the value of the target attribute is
the output. Example 6.3 presents a linear system, where y depends on
X, Xy,+--, and x, linearly. In such a system, each attribute makes

contributions towards the target linearly and independently. Here the
independency means that there is no interaction among the contribution
rates from attributes towards the target. Due to such an independency,
the joint contribution from x;, x,,---, and x, towards the target is a
simple sum of their individual contributions and, as discussed in Section
5.3, can be expressed as the Lebesgue integral on a discrete set (the
universal set).

In real information fusion problems, many input-output systems do
not have such linearity due to the interaction among the contributions of
all given attributes towards the target. Such an interaction has been seen
in the discussion of monotone measures in Section 4.3. It is totally
different from the concept of correlationship in statistics. Let us recall
Example 4.12.

Example 6.4 In Example 4.12, the universal set X ={x,x,,x;}
consists of three workers x, x,, and x;, and monotone measure

ifE=Q
if E=1{x,}
if E={x,)

14 if £E={x,x,}
7 if £={x;}

13 if £={x,x;}
9 if £={x,,x;5}
17 itE=X

u(E)=

represents the individual and joint contribution rates from these workers
towards the target “total amount of produced toys”. As shown in
Example 4.12, the nonadditivity of u describes the interaction among
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Table 6.2 Data of working times in Example 6.4.

X1 X2 A3
8 0 4
4 4 4
0 8 4
2 6 4
6 2 4

the contribution rates from these three workers towards the total amount
of their produced toys. The working time (the number of hours for
working) of a worker in a specified day is a record of that worker. If 5
records have been made for these three workers during some week as
shown in Table 6.2, then, in statistics, the correlation coefficient of x;
and x, is 7, =-1, while the correlation coefficient of x; and x; is
r; =0. They describe the relation between the appearing record values
of two attributes involved. So, the interaction among the contribution
rates from all given attributes towards the target is totally different from
the concept of correlationship in statistics.

The following example of synthetic evaluation and decision making
shows that the method of classical weighted sum (or say, the Lebesgue
integral with respect to an additive measure), as an aggregation tool in
information fusion, fails when the above-mentioned interaction cannot be
ignored.

Example 6.5 There are three used TV sets on sale at the same price. We
want to evaluate the global quality of TV sets based on an estimation on
two factors “picture” and “sound”, denoted by x, and x,, separately to
each TV set, and then choose the best to buy. Now, factors “picture” and
“sound” are attributes, while the global quality is the target.

First, we assume that the weights of two factors are w; = 0.7 and w, =
0.3 respectively. Now, for each factor and each TV set, an adjudicator
gives the scores in Table 6.3.

Using the method of weighted average, we get synthetic evaluations
of the three TV sets:
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Table 6.3 The scores of TV sets in Example 6.5.

TV Set No. x1 (picture) X, (sound)
1 1 0

2 0 1

3 0.45 0.45

Ew1:W1X1+W2X0:O.7, EW :W1X0+W2X1:0.3,
Ew3:W1 X045+W2X045:045

According to these results, the first TV set is the best. Such a result is
hardly acceptable since it does not agree with our intuition: A TV set
without any sound is not practical at all, even though it has an excellent
picture. It is significant to realize that the cause of this counterintuitive
result is not an improper choice of the weights. For example, if we chose
w; = 0.4 and w, = 0.6, we would have obtained E,,; = 0.4, E,, = 0.6, and
E,; =0.45. Now, the second TV set is identified as the best one, which is
also counterintuitive: A TV set with good sound but no picture is not a
real TV set, but just a radio. We may conclude that, according to our
intuition, the third TV set should be identified as the best one: among the
three TV sets, only the third one is really practical, even though neither
picture nor sound are perfect. Unfortunately, when using the method of
weighted average, no choice of the weights would lead to this expected
result under the given scores.

The crux of this problem is that the method of weighted mean is
based on an implicit assumption that the factors x;, x,,---, and x, are
“independently contribute to the global quality”. That is, their effects are
viewed as additive. This, however, is not justifiable in some real
problems. In this example, the joint importance of picture and sound is
much higher then the sum of importance associated with picture and
sound alone. If we adopt a monotone measure to characterize the
importance of the two factors and, relevantly, use the Choquet integral as
a synthetic evaluator of the quality of the three TV sets, a satisfactory
result may be obtained. For instance, given the importance z({x,}) = 0.3,
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H({x2}) = 0.1, (X)) = 1, and (D) = 0 as a monotone measure, and using
the Choquet integral, we obtain the following synthetic evaluations:

E, =) f, du=0x1+1x0.3=0.3,
E,=(Of fo du=0x1+1x0.1=0.1,

E=(O) f, du=045x1+0x0.45=0.45,

where
e 1 ifx=x
X)=
: 0 ifx=x,,
£ = 0 ifx=ux
N ifx=ux, ,
and
) 045 ifx=x
X)=
’ 045 ifx=x, .

Hence, we get a reasonable conclusion: the third TV set is the best,
which agrees with our intuition. When some other type of nonlinear
integrals is chosen, a similar result can be obtained.

In fact, not only the Choquet integral with respect to a monotone
measure (even to a signed efficiency measure) can be used, but also the
other types, such as the upper integral and the lower integral, can be
adopted as aggregation tools in information fusion. Example 5.21 shows
that four different types of integrals can be used in information fusion,
where the input information is the working time (hours) of workers and
the output (the target) is the total amount of produced toys during the
working time. Example 5.21 also explains the intuitive meaning of these



186 Nonlinear Integrals and Their Applications in Data Mining

types of integrals and the relevant results. The most important points in

information fusion are:

(1) using a nonadditive set function to describe the interaction among
the contribution rates from attributes towards the target, and

(2) choosing a suitable nonlinear integral as an aggregation tool.

6.3  Uncertainty Associated with Set Functions

Let X ={x;,x,,---,x,}. In this section, we assume that set function x is
a nontrivial monotone measure on (X, #(X)). Here, the word “nontrivial”
means that there exists at least one set £ < X such that u(E)>0.
Since u is monotone, this requirement is simply equivalent to x(X)>0.
We have seen from Section 6.2 that, due to the nonadditivity of s, for a
given nonnegative function f, different types of integrals may result in
different aggregation values. This may be viewed as the uncertainty
associated with monotone measure g Since the upper integral and the
lower integral are two extremes in regard to the aggregation value, we
may numerically estimate the uncertainty associated with the monotone
measure by the difference of the upper integral and the lower integral.

Definition 6.1 Given a monotone measure x on (X, #(X)), the degree of
the relative uncertainty associated with g is defined by

_(U)Jtdu—L)[1du
8 H(X) '

It is evident that, when u is a classical measure, the upper integral
coincides with the lower integral and, therefore, y =0

Theorem 6.1 For any monotone measure x on (X, #(X)), 0<y,<n.

Proof. On the one hand, from
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(U)jldyz(L)jldy,

we obtain

_Otdu—)ftdu
‘ px)

On the other hand, from Theorem 5.9 and Definition 6.1, since
(L)[1du>0, we have

, (D[t du L1 d
! H(X)
_)ftdu
H(X)
cnpX)
H(X)
=n.

0

To present an estimate formula for the difference between the upper
integral and the lower integral of a given nonnegative function, we need
the following lemma.

Lemma 6.1 For any given monotone measure 4 and a bounded
nonnegative function f,

[ f du-L)] f du<(U)f e du~L)fcdu.,

where ¢ may be any upper bound of f.



188 Nonlinear Integrals and Their Applications in Data Mining

Proof. From the expressions of the upper integral and the lower integral
on a finite set given in Section 5.5, we know that there are 4, >0 and
v; 20, j=1,2,--,2" —1, satisfying

Zj\er/gX/lj :f(x) and z]'|xgE/g)(Vj :f(x)

for every x e X, such that

2" -1

(O[S dp= 32 1(E))
and

(L) f du= 3y, u(E,).

For nonnegative function c¢—f, we can find 4720 and V; 20,
j=12,---,2" —1, satisfying

> Ai=c—f(x) and Y Vi=c-f(x)

JlxeE;cX JlxeE;cX
for every x e X, such that

2" -1

(O)[(c=fydu= Y 4} u(E))
=

and
W) (c—f) d#=2§/} ().

Since

> o4+ Y A= Y (A+A)=c

JlxeE,cX JlxeE;cX JlxeE;cX
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and
Xovit 2 Vi= X (v =c,
JlxeE;cX . JlxeE;cX . JlxeE;cX . .
we have
2" -1 ,
zl(zj+/1j)-y(5j)s(U)jcdy
=
and
2" -1
YV uEN 2 (L) edu.
j=1
Thus, from
D[ (=) du<U)[(c-[)du,
we obtain

271

(U)[ f du—~L)[ f du = zz - u(E,;) - zv U(E))

2" -1 2" -1 2" -1

<Z/’t u(E )+ Z/l' u(E;) - Zv -u(E;) - Zv -(E))

2" -1 2"-1

= Z(/lj +/1J/')',U(Ej)_ Z(Vj +V})',U(Ej)
Jj=1 Jj=1
<(U)fcdu~(L)fcdu.

O

Theorem 6.2 Given a monotone measure # on (X, #(X)) and any
nonnegative function f'on X, we have

0<(U)[ f du~L)[ f du <y, - u(X)-max f(x).

Proof. Let c¢=max y f(x). From the definition of y,, Lemma 6.1,
and properties (ULIP3) and (ULIPS) given in Section 5.5, we have
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0<(U)[f du~L)[ f du <(U)fc du~L)c du

<c [(Ufldu~L)[1du] =7, u(X) max f (x).
O

Example 6.6 The data and some results in Examples 5.21 are used here.
It is easy to obtain  (U)[1du =21 and (L)[1du =14. Then we have

_21-14 7
R TERNTA
From (U)[fdu—(L)|fdu=88-64=22 , max _, f(x)=6 , and
H(X)=17, Theorem 6.2 is verified: 22 <(7/17)x6x17=42.

Theorem 6.2 can be used to estimate the uncertainty associated with
the monotone measure in an aggregation process if the coordination
manner is unknown.

6.4 The Inverse Problem of Information Fusion

From Section 6.2, we have seen that nonlinear integrals can be used as
aggregation tools in information fusion. Given the set of information
sources X ={x,,x,,---,x,} , any discussed nonlinear integral with
respect to a known signed efficiency measure u defined on #2(X) can
be regarded as a nonlinear n-input one-output system. Once the input, an
observation of attributes x,, x,,---,x, 1is available, denoted by f as a
function defined on X, an output can be obtained by calculating the value
of the integral of f with respect to . The output is the value of the
fusion target and is denoted by y, that is, y=(r)[ f du, where (r) is the
indicator of the adopted type of nonlinear integral. Signed efficiency
measure g consists of 2" values with individual corresponding set in
#(X), among them u(J)=0 is fixed. Thus, the input-output system
has 2" —1 parameters. The system is identified with the type of the
nonlinear integral and these 2" —1 structural parameters that are
represented by . So, the information fusion is a procedure of finding



Information Fusion 191

the value of the target y when the values of attributes x,, x,,---,x,, the
type of the nonlinear integral, and the values of 2" —1 parameters are
all known. Here, the nonlinear integral is used as an aggregation tool.

The most interesting one of the inverse problems to information
fusion is to find the values of signed efficiency measure x when the
type of the nonlinear integral is fixed and the values of observations from
attributes x,, x,,---,x, as well as the corresponding values of the target
are known. That is, knowing some pairs of the input and the output of the
above-mentioned system with a given type of aggregation tool, we want
to estimate the structural parameters of the system. Obviously, only
knowing one pair of the input and the output is not sufficient to obtain a
reasonable estimation of the parameters. A data set with large enough
size is necessary for the purpose of estimating the values of signed
efficiency measure u. Thus, the data set, generally, has a form as
follows.

xl xz s xn y
i) () - fi(x,) N1
L) L) 0 filxy) Y2
Si(x)  fi(xy) o fi(x,) Yi

Table 6.1 shows an example for such a form of data sets, which we use
in Chapter 10.

If an n-input one-output system is linear, the system can be expressed
as

y=a,+ax +ax,+--+a,x,,

where x;,x,,---,x, are the input and y is the output, while coefficients
a,,a,, -, a,, which identify the linear system, are parameters of the
system. Once the above-mentioned data set is available, the value of
a,,a,, -,a, can be estimated by the least square method: find the
values of a,,a,, -, a, such that

n
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/
é’ :%Z[yj —(ag+a f;(x)+ayfi(x)++a,f;(x ) (6.1)
j=1

is minimized. This optimization is just the inverse problem of the
information fusion when the aggregation tool is a linear weighted sum. A
linear algebraic method can be used for solving this quadratic
optimization problem (see Section 9.1).

However, when the aggregation tool in the information fusion is a
nonlinear integral (r)[f du, the input-output system can be expressed
as

y=|fdu,

where the values of x4 are unknown parameters. Now the most
interesting inverse problem of the information fusion is: once the
above-mentioned data set is available, how to estimate the values of .
Similar to the linear case, these unknown parameters should be
determined by minimizing

/
& =320y~ ([ £, dut (62)
Jj=1

Unfortunately, the linear algebraic method fails for solving such a
nonlinear optimization problem generally due to the nonlinearity of the
r-integral. In this case, we have to use some numerical methods to obtain
an approximately optional solution. These numerical computation
methods, called soft computing techniques, are discussed in the next
chapter.



Chapter 7

Optimization and Soft Computing

There are a number of traditional methods for solving optimization
problems. In this chapter, two new numerical methods, genetic algorithm
and pseudo gradient search, are discussed. Both of them are called soft
computing techniques. Through either of them, wusually, an
approximately optimal solution may be obtained. Unlike the most
traditional and common optimization methods, these methods avoid
requiring some rather strong conditions, such as the differentiability to
the objective function in the problem. A hybrid method of genetic
algorithm and pseudo gradient search is more effective for solving
optimization problems.

7.1  Basic Concepts of Optimization

Consider m numerical variables ¢,¢,,---,¢, and a target
z=2z(t,t,, -, t,) defined on a subset D of the m-dimensional Euclidian
space R". Given Fc D, we want to find a point (¢,25,,2,)
subject to the restriction (¢, 1, ¢, )€ F suchthat z(z/, t;“, )

the smallest value of z in F, that is, z(#,t,,,t,)<z(t,,t,,++,t,) for
any (t,t,,---,t,) € F . This is a minimization problem, where z is called
the objective function (or target), set F is called the feasible region, any
point (¢,t,,--,1,) € F is called a feasible point, point (,t,,-,t,)
is called the global minimizer (simply called minimizer if there is no
confusion), denoted by argminz(¢,t,,---,t,), of the minimization
problem, and value z(¢,1,--,¢,) is called the minimum of z in F. A
point (#,%,---,t,)€ F is called a local minimizer, if there exists an

’ﬂl
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open set o containing t, b5y, 1) such that
z(t), by, 1) S z(t . t,, -+, t,) for any point (¢,t,,---,1,)€ONF .
Similarly, we have concepts of maximization, global maximizer,
maximum, and local maximizer correspondingly. Both of minimization
and maximization are called optimization.

Formally, a minimization problem in m-dimensional Euclidian space
can, usually, be expressed as follows.

min z=2z(t,t,, " ,t,)
subject to gt t,)2a,, k=12,---,r (7.1)

where «;, k=1,2,---,r, are constants and the inequalities describe the
restriction, that is, the feasible region of the minimization problem is

F={(t,t, - t,)| gt t, - t,)2a,k=12,-r},

in which, » is a nonnegative integer. When » =0, the minimization
problem is said to be unconstrained. For any maximization problem,
max z =z(t,t,, -+, t,) can be rewritten as min z' =—-z(t,t,, -, t,),
that is, it can be converted into a form of (7.1). Furthermore, if there is
some inequality with “less than or equal to”, say, g(¢4,%,,---,¢,)<a in
the restriction, we can rewrite it as —g(t,t,, -, t,) > —c . Finally, if
some restriction condition is an equality, e.g., g(4,t,,---,¢,) =a, then
we can separate it into two inequalities g(t,t,,---,t,)>a and
-g(t,ty,--+,t,)2—a . Thus, we call the form shown in (7.1) the
standard form of an optimization problem. We should note that
inequalities “greater than” and “less than” are never used in restrictions
for optimization problem because they will lead to no solution usually.

In (7.1), if all functions z and g’s are linear, then the optimization
problem is called a linear programming problem; otherwise, i.e., if at
least one of functions z and g’s is nonlinear, it is called a nonlinear
programming problem.
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7.2 Genetic Algorithms

Genetic algorithm is one of the soft computing techniques used in
optimization. It is a global parallel random search method. Genetic
algorithm mimics the natural evolution process of a species in a given
environment to obtain an optimal (or approximate optimal) solution after
a large number of generations.

Suppose that a given optimization problem (say, a minimization
problem) involves m variables (unknown parameters) with feasible
region F. A genetic algorithm for solving the optimization problem may
contain the following components.

(1) Encoding genes. Using suitable transformations, the m unknown
parameters are respectively represented by m binary bit strings,
which are randomly and independently generated obeying the
uniform distribution, such that the feasible region F is well covered
with a reasonable distribution. Each binary bit string is called a
gene. The length of each binary bit string is determined according
to the required precision of the corresponding parameter in the
solution of the optimization problem. For example, if the required
precision of a parameter is 107, then 10 bits are needed in the
corresponding gene since 270 >107>27'" . Adopting a real
coding to replace the binary coding is also workable.

(2) Chromosomes. According to a fixed order, link the m genes to
form a chromosome. 1t is also a string of bits. Its length is the sum
of the lengths of all genes. A chromosome represents a candidate of
the set consisting of values of all unknown parameters in the
optimization problem. So, each chromosome should be in F.

(3) Population. The population is a set of chromosomes. The number
of chromosomes in the population is called the size, denoted by s,
of the population. The size is usually a large positive even integer,
such as 100 or 500. The population is initialized by generating
chromosomes randomly. Keeping the size, the population will be
renewed in the evolution process. Relative to the population, each
chromosome is called an individual.
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)

(6)
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Fitness function. According to the goal of the optimization,
choose a criterion and, by which, a suitable fitness function is
constructed to measure the goodness of each chromosome. Usually,
the fitness is a straight monotone function of the value of the
objective function. Decode each individual if it is necessary and
then calculate its fitness.

Genetic operators. Design several genetic operators for producing

new chromosomes using some existing chromosomes that are

selected as the parents. The following common operators are
suggested to be used, though the user may design new genetic
operators according to the need of the given optimization problem.

(a) Two-point crossover. The crossover is a binary operator. For
each two selected chromosomes, randomly choose two points
(each point here is a location between two successive bits) to
separate each of them into three pieces, and then interchange
their middle piece to form two new chromosomes (see Figure
7.1(a)).

(b) Three-point mutation. The three-point mutation is a unary
operator. For each selected chromosome, randomly select
three bits and toggle their 0 and 1 to obtain a new chromosome
(see Figure 7.1(b)).

(¢) Two-point realignment. The two-point realignment is also a
unary operator. For each selected chromosome, randomly
choose two points (the same as in (a), each point here is also a
location between two successive bits) to separate it into three
pieces, and then realign them in a randomly selected order and
direction (see Figure 7.1(c)). There are totally 48 different
ways to the realignment. They have the same chance to be
selected, i.e., each way has a chance of 1/48 to be selected.

Selecting parents. According to the individuals’ fitness, randomly

select individuals as parents. The higher the fitness is, the more

chance to be selected, which is known as fitness proportionate
selection.

Produce offspring. According to a selected probability

distribution, randomly choose a genetic operator to produce

individuals from the selected parents.
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(8) Renewing the population. After producing a certain number, ¢. g.,
the same as the initial population size s, of new individuals, add
them into the population. Then, according to the fitness, select the
best s individuals to form a new population, called a new
generation.

(9) Recurrence and stopping. Based on the new population, recycle
procedure (4)-(8) until the stopping condition is satisfied. The
stopping condition may be chosen from anyone of the following or
their combinations.

(a) The number of generations (or the number of produced
individuals) reaches a given positive integer.

(b) After producing a given number of generations (or
individuals), the fitness of the best individual in the population
has not been changed (or not been significantly improved).

(¢) The population is identical.

(d) The value of the objective function for the best individual in
the current population falls in a given small region, such as the
error being smaller than a given small positive number &.

(10) Outputting the result. Once stopping condition satisfied, output
the best individual (after decoding) in the current population.

A general flow chat of the genetic algorithm is shown in Figure 7.2.
Since the genetic algorithm is a global search method, we need not worry
about falling in a valley of local minimizer. This is the advantage of the
genetic algorithm. However, the search process of a genetic algorithm is
usually rather slow, and there even exists a phenomenon so-called
prematurity, that is, after several generation, the fitness of the best
individual has not been significantly improved, though it is still a little
far from the global minimizer. To speed up the search procedure and
reduce the prematurity, we may adopt two additional approaches as
follows. One is to keep the diversity of the population, that is, to select
some individuals not very good but with much different feature from the
good individuals in the new generation to avoid the population being
identical or similar too early. Another is to set up some adaptive
mechanisms in the search procedure, i.e., some involved probability
distributions are dynamically adjusted. For example, at the beginning of
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the search procedure, the probability of taking mutation may be smaller
than later, and the probability of choosing higher bits may be larger than
lower bits for mutation and vice versa towards the end.

— — [0 1 0 | =
By =

(10 ]
[ O ]
(a) Two-point crossover (b) Three-point mutation (c) Two-point realignment

Fig. 7.1 Illustration of genetic operators.

Initialize the population

.

Decode and calculate the

fitness of individuals

N
@ Choose parents
v -
Select the best individual Produce new individuals
Output Decode and calculate the
l fitness of individuals
Stop Renew the population ~ ——

Fig. 7.2 The flowchart of genetic algorithms.
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7.3  Pseudo Gradient Search

For solving optimization problems, the well known gradient search
method requires that the objective function is differentiable with respect
to the unknown parameters. However, many optimization problems do
not satisfy such a requirement. To get a more general search method, a
natural idea is to replace the differential with a difference, which can be
obtained through a learning procedure, to determine a prefer search
direction, called pseudo gradient. Then, along this direction, a much
better point can be found by another learning procedure. This point is
used as the starting point of the next iteration. Repeating this procedure
leads to obtaining an approximate local extremer (minimizer or
maximizer). In the procedures, the feasibility should be always kept.
Such a search method is called the pseudo gradient search. Like the
gradient search method, it is a local search method.

Let z=z(4,t,--,t,) be the objective function in the given
minimization problem with feasible region F. The search space is
m-dimensional. Starting from a given initial ~ point
10 =(tl(0),t§0), ---,tfno) )eFF, we want to search for a minimizer
t"=(t,t,,---,t, )€ F . The procedure of the pseudo gradient search can
be described by the following steps.

(1) Choose an initial point #” =, £, -,y e F.

(2) Initialize 6 =0,/ 2J/m and a =2, where 0, >0 1is the required
solution precision.

(3) Foreach j=1,2,---,m, calculate

A=zt 8t ) = 20, 80 0 4 5, 1))

if (tl(o) t(o) . -,t§°)+5,---,tfn°))eF ; otherwise, let A; =0 .
Similarly, calculate

A/ _Z(tl(o) t(O) . '9t§'O)a" (0)) Z(tl(O) t(O) . '9t§'O) , t(O))
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if (Z(O) t(o) . -,tﬁo) —5,---,t,(n°))eF ; otherwise, let A, =0.
(4) Let

max[A,,, A;_, 0] ifA;, >2A,

j+? j+ =
- max[A,,, A, _, 0] otherwise

If A, =0 forall j=1,2,---,m, then go to step (5); otherwise, go
to step (6).
(5) Calculate

0) (0 (0) (0) (0)
0 if (0,687, 1048, (0 +8, () g F
0 0 0 0 0
Ajk++: Z(tl() t() ’ "t(' )"“>t1£)"">t;51))
— 2O, 6, O+ 8, 0 +8,,1))  otherwise,
0 if (1, 4, -,t§°)—5,-- 10 +5,-, e F
Bgs =2 0 1, e 0, 1)
2t 80, 0 =8, 0 18, 10)  otherwise,
0) (0 0 0 0
0 lf (tl( ) t( ),“‘,t; ) +5,...’t£)_5’...’tﬁl))eF
A =120 © 4O ---,t“’),-- PRIETAL))
—z(t{ O, 80, O+ 8, 10 =5, 1)) otherwise,
0 if (tl(O) t(O) : '9t('0)_5 t(O) 59"'31‘1(7?))%}7
Ajk”: z(tl(o) t(O) . _’t(_O)’“ (0) . t(o))
2O, 10, 0 =5, 1 =5, 1) otherwise,
and Ajiz = max[Aij,Ajk7+,Ajk+7,Ajk”] for j,k=1,2,---,m

with j<k, where £F is one of ++, —+, +—, and ——such
that the maximum is reached. Find



(6)
(7

(8)

)
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max A
ok 2,y <k I

If it is not positive, then go to (10); otherwise, find

(Jo» ko) = argmax Ay

Jok=1,2, m; j<k

Fo
where argmax denotes the maximizer, and use

(tl(O) t(O) ' 9tjg)i5aatlgg)$5aatr(no>)

to replace

(0) _ (4(0) L(0) (0) (0) (0)
t _(tl 9t2 ""ﬂt_joﬂ""tko’"'vtm )’

where F+ and £ are either + or — that are recorded in the subscript
of A .s. Then go back to (2).

Form the pseudo gradient direction A=(A,A,,---,A,) and
calculate |A=[X",(A;)*]"7.

Replace 6 by «o.If the new 0<9,/ 2\/_ then go back to (2);
otherwise, from point #* and along direction A, take a step with
length § to reach point ¢, that is,

(L OB o Oy o By

t_ ’m
. AL Al IAI

If £ ¢F, then go to (9). Otherwise, calculate z(¢*) and check
whether z(¢*)<z(t)) or not. If yes, replace ' by ¢*, then go
back to (7); if no, go to (9).

Let o =1/2 and go back to (7).

(10) Stop. Output #” and some required information on the search

procedure.
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In the algorithm above, each iteration formed by steps (2)-(9) has a
search direction described by the pseudo gradient. Along with this
direction, the initial point (or the point obtained at the end of the previous
iteration) is updated by a much good point, though not being an
approximate best point in this direction. We may add some search steps
such that the updated point is an approximate best point in this direction.
However, it is not necessary since its benefit will be totally covered by
the next iteration in the current algorithm.

In comparison with genetic algorithms, the pseudo gradient search is
much faster. The quick search speed is the advantage of the pseudo
gradient search method. However, like other local search methods, it is
hard to avoid falling into a local extremer or obtaining a saddle. Even the
user does not know whether the found point is a global extremer
approximately or not. This is the weakness of the pseudo gradient search
method.

7.4 A Hybrid Search Method

As we have seen that the genetic algorithm is a global random search
method while the pseudo gradient search is a local search method. The
advantage of the former is no risk of falling in a local extremer, while its
weakness is the slow search speed and the risk of prematurity. Unlike the
former, the latter has a fast search speed but cannot avoid the risk of
falling in a local extremer or staying at a point close to a saddle of the
objective function.

A natural idea to improve these two search methods is to combine
them together. Once an optimization problem is given, we may first use a
genetic algorithm to find a relatively good point in the feasible region,
then, taking this point as the initial point, turn to a pseudo gradient search
to continue the search procedure. Usually, we may obtain a satisfactory
approximate optimal solution.

In such a hybrid search procedure, we may appropriately slacken the
stopping conditions in the part of the genetic algorithm to reduce the total
running time of the program. Some successful experiments using the
combination of a genetic algorithm and a special iterative search, which
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is a simplified version of the pseudo gradient search, are presented in
[Spilde and Wang 2005].



Chapter 8

Identification of Set Functions

Identification of set functions is a technique, based on given data, to
determine a set function satisfying some given requirements. There are
two different kinds of identification. One is to construct a specified type
of set function, such as a A-measure or a belief measure, based on a given
set function with a revision as slight as possible. Another is, regarding a
given type of nonlinear integral as an input-output system, to determine
the involved set function, such as a monotone measure or a signed
efficiency measure, based on some observations of the input and the
corresponding output of the system. The former can be called the
revising for set functions that are discussed in Sections 8.1-8.3, while the
latter is called the fitting and discussed in Sections 8.4-8.7.

From this chapter through the book, the universal set X is always
finite. Let X ={x, x,,---,x,}.

8.1 Identification of A~-Measures

Given set function g :2(X)—[0,0) with g(X)>0, we want to find
a A-measure g: #(X) —>[0,0), such that g(X)=u(X) and the
difference between g and u is as small as possible. To be consistent
with the other methods, we may choose the squared error as the
difference, that is, determine A-measure g such that

> [g(E)~ w(E)Y

EcX

204
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is minimized. Adopting the sum of absolute difference is also feasible
since a genetic algorithm discussed in section 7.2 may be used to search
the numerical optimal solution and, therefore, we need not worry about
the differentiability of the objective function in the optimization problem.
However, we still prefer to use the total squared error as the objective
function in the optimization such that a comparison with traditional
methods in some special cases can be easily made if any.

A soft computing technique, for instance, a genetic algorithm, may be
adopted to solve this identification problem. From Section 4.4, we have
known that, when g(X)>0 is given, a A-measure g is identified by its
values at all singletons, g({x;}), i=1,2,---, n. Noting that each binary
bit string represents a real number in [0, 1) and any A-measure is
monotone, we may directly use a gene to represent g({x;})/g(X) for
each i=L2,---,n . Let g(X)=b and g({x})/gX)=g ,
i=1,2,---,n. The objective function may be taken as

281 &0 80) = O, [8(E)— u(E)T, (8.1)
EcX
where
g(E)=l( H [1+4bg;]-1), (8.2)
i|lx;eE

in which A is the unique feasible solution of equation

1+b1 =f[(1+bg,./1). (8.3)

i=1

Once a chromosome (g,,g,,:'*,&,) is available, we should check
whether only one ie{l,2,---,n} such that g #0. If yes, this
chromosome should be abandoned. Otherwise, according to the genes
g, i=1,2,---,n, we can calculate the value of A by solving equation
(8.3) and, then, calculate g(£) for each set Ec X through (8.2).
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Finally, from (8.1), we may obtain the value of the objective function z.
As for the fitness of the chromosome, we may choose, for example,
1
z+0.1°

f(2)=

After obtaining the approximate optimal value of each g, ,
i=1,2,---,n, we need still use (8.2) and (8.3) to calculate the values of
the A-measure g and the corresponding value of A.

This identification problem can be generalized as follows. Assume
that we have [/ observations, which are not accurate, for the values of a
A-measure g: #(X) >[0,0), where [/ is a positive integer. These
observation are denoted as / set functions u;: #(X)—>[0,0), j=12,---,1.
Now we want to optimally determine A-measure g in the following
meaning: the total squared error

!
281 &5 €)= 2 2, [8(E) = w, (E) (8.4)

j=lEcX

is minimized, where g(E) has the same meaning as in (8.2) with (8.3).
The algorithm is totally the same as the original one except the objective
function shown in (8.1) being replaced by (8.4).

8.2 Identification of Belief Measures

Similar to the generalized model of the identification of A-measures
discussed in the previous section, given / set function u;: #(X)— [0, 1]
with u; (J)=0 and w (X)=1, j=1.2,---,], now we want to
determine a belief measure bel: #(X)— [0, 1], such that the difference
between bel and all y; is as small as possible, for example, such that

i
z=2, Y [bel(E)— u,(E)T
Jj=lEcX
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is minimized.

This minimization problem can also be implemented by the genetic
algorithm discussed in Section 7.2. From Section 4.7, we know that a
belief measure is uniquely determined from its corresponding basic
probability assignment m: 2(X) —[0,1] with m(ZJ)=0 and

> m(E)=1 (8.5)
by
bel(E)= Y m(F). (8.6)

So, we just need to arrange the values of m as the genes in chromosomes.
Considering the constraint (8.5) and each gene is a real number in [0, 1),
after decoding, we may let chromosome(g;, g,,-+,g,, ,) represent a
basic probability assignment m by m({x;})=g,/c, m({x,})=g,/c,
m({x, x,})=gs/c , m({x;})=gs/c , m({x,x})=gs/c, ---, and
m(X) =g, /c,where c¢= Ziif‘ g; - For each chromosome created in
the genetic algorithm, using (8.6), we may convert it to a belief measure.
Then the value of z can be calculated. The fitness of a chromosome can
be chosen in the same way as shown in Section 8.1.

8.3 Identification of Monotone Measures

Given set function g : 2 (X)—>[0,0) with max{u(E)|Ec X} >0,
we want to find a monotone measure v: #(X)— [0, «), such that the
total squared error

z= 3 [V(E)~ w(E)Y 8.7)

EcX

is minimized. Under this criterion, the optimal solution v cannot be
obtained by only reordering the values of x generally, even if
H(X)> u(E) for all E e 2(X). This can be seen from the following
counterexample.
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Example 8.1 Let X ={x,x,,x;} and

0 itE=0

0.7 it E={x}
02 if E={x,}
05 ifE={x,x,}
04 if E={x;}
0.8 if E={x,x;}
09 if E={x,, x5}
1 itE=X

U(E) =

Set function x is nonnegative. It is not monotone since u{x,, x,} < u{x,}.
If we construct set function v from x by exchanging the values of
uix;, x,} and p{x},ie., let

0 itE=¢

05 i E={x}

02 fE={x,}

07 if E={x,,x,}
04 if E={x;}
08 if E={x,x;}
09 if E={x,,x;5}
1 iftE=X ,

v(E) =

then v is a monotone revision of g However, it is not the optimal
monotone revision of x under the criterion of minimizing (8.7). In fact,
according (8.7), the total squared error of vis z(v)=0.2> +0.2% = 0.08.
If we take
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0 fE=0

06 if E={x}
02 if E={x,}
0.6 if E={x,x,}
04 if E={x}
0.8 if E={x,x;}
09 if E={x,,x;3}
1 ifE=X

v*(E) =

as a monotone revision of g, then its total squared error is
z(v¥)=0.1> +0.1> = 0.02 , which is much smaller than z(v).

In Example 8.1, v* is obtained only via taking the average of a pair
of two s values, which violates the required monotonicity, to replace
the pair. To obtain a monotone revision of a given nonnegative set
function vanishing at the empty set, in general case, is not so simple. It is
convenient to use a soft computing technique, such as a genetic
algorithm, with an embedded reordering algorithm to obtain an
approximate numerical optimal solution for this identification, especially,
when the generalized model that is similar to the ones discussed in
Sections 8.1 and 8.2 is considered. The genetic algorithm with an
embedded reordering algorithm can be also used for identification of
monotone measures based on an input-output nonlinear integral system
that is discussed in Section 8.6. One of the advantages of using soft
computing techniques is that the algorithm, except the formula of the
fitness function, does not depend on the choice of the optimization
criterion.

The generalized identification model for monotone measures is

expressed as follows.
Given [/ rough observations (records) for a monotone measure

v:Z#X)—>[0,0) with v(X)>0, denoted by y;, j=1,2,---,/, where
each u; is a nonnegative set function defined on 2(X) and / is a positive
integer, we want to find a monotone measure v on Z(X) such that
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i
2=3 Y W(E) - 1, (E)F (8.8)
j=lEcX

is minimized. Equation (8.7) can be regarded as a special case of (8.8)
with /=1.

We assume that not all observations are trivial, i.e., not all values of
every observed set function u; are zeros. A genetic algorithm now is used
to solve this identification problem. It consists of two parts: the main
algorithm and the embedded reordering algorithm.

8.3.1  Main algorithm

The genetic algorithm shown in Section 7.2 can be adopted with a few
adjustments as follows. Each chromosome now consists of 2" —1 genes,
denoted as g, g,,°*,&,. ,» representing the values of a set function at
all nonempty subsets of X respectively. Each gene consists A bits and is
decoded as a real number in [0,1]. The target of the optimization is the
total squared error z shown in (8.8). The decoding formulas are

(i) =—5—,

1—g1
ulie) =22,
- &
y({xl,xz})=1g3 5
— &3
p(fry}) = —54—,

l-g,
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p({x, x,}) =—25—
1-g;5
u(x) =52
1- 211

After decoding each chromosome, the following reordering algorithm
should be used to convert the nonnegative set function x to a monotone
measure v. Then, according (8.8), calculate the total squared error for v.

8.3.2  Reordering algorithm

Assume that set function u:2(X)—[0,0) with u(J)=0 is given.

(1) According to the lattice structure of the power set 2(X) (see Figure
8.1 when n=4), divide all 2" subsets of X into n+1 layers: the
empty set is at layer O (the bottom layer); all singletons are at layer 1;
all sets consisting of two points are at layer 2; ---; the universal set is
at layer n (the top layer). That is, any set consisting of & points is
arranged in layer k£, k=0,1,2,---,n. The class of all sets at layer k&
is denoted as .

Layer 4 X

/ \
Layer 3 ; X% {x, xﬁ >x3,x4} {25, X3, x4}
Layer 2 {0, x5} {xp, x5} {x, x4} o, x) {.x) {33, x4}
Layer 1 {x) {x,} {x3} {xy}

\\Q/

Fig. 8.1 The lattice structure for the power set of a universal set with 4 attributes.
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(2) Initialize k=1.

(3) For layer £, rearrange these C(n, k) sets according to their values of
4 in a nonincreasing order, denoted as { Ey|j=1,2,---,C(n, k)}.

(4) Starting from j=1, find the set E*kj =arg min{u(E)| E>D Ey }
from layer k+1, i.e., Ey is the set with the smallest value of u
among all sets that include Ej; in #.,. Exchange the values of u(£y)
and u(E"y) if u(Eyy> u(E'y); otherwise, they are unchanged. Then
do this for the next j and continue this procedure until
j=Cn, k)-1.

(5) Add 1 to k and check whether k£ =n. If yes, go to (6); if no, go to
(3).

(6) Check whether for at least one value of k the exchange in step (4) has
been done. If yes, go to (2); if no, go back to the main algorithm.

Once the embedded reordering algorithm finishes and diverts back to
the main algorithm, the actual set function x has been reordered to be a
monotone measure v on & (X). The complexity of the reordering
algorithm above can still be reduced a little. In an iteration beginning
from (2), if the first » +1 layers (form layer O to layer r) are not involved
for any exchange, then k can be initialized with 7 in the next iteration.

If all considered set functions, including the monotone measure v and
its observations u;, j=1,2,---,/, are regular, i.e.,

V(X)) = (X)) = (X)) == (X) =1,

then each chromosome only needs 2" —2 genes. In this case, the total
squared error (8.8) is reduced to be

/
2=Y Y V(E) - u,(E)F. (8.9)
j=lEcX
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8.4 Identification of Signed Efficiency Measures by a
Genetic Algorithm

Now, we want to obtain a set function x:#(X)— (-, ) with no
special requirement except vanishing at the empty set, i.e., u(J)=0.
This means that x is a signed efficiency measure. Of course, in this
case, since there is not enough restriction on 4 that can be used to form
optimization criterion, the identification model must be essentially
different from those discussed in Sections 8.1-8.3 that depend on the
characters (e.g., the A-rule) of the target set function. Thus, what type of
the data set we should have and what corresponding optimization
criterion we should adopt are new problems being faced.

In this case, an input-output system described by a nonlinear integral
can be adopted to determine a signed efficiency measure. We only need a
data set consisting of sufficiently many input-output records for the
system. This is just an inverse problem of the information fusion, where
a nonlinear integral aggregates the received information, discussed in
Section 6.4.

Suppose that an r-integral is taken as the aggregation tool, where r
indicates the type of nonlinear integrals shown in the previous chapters
and is known. The input-output system can be expressed as

y=[fdu,

where f: X —>[0,0) (or f:X-—(—o0,00) such that the nonlinear
integral (r)[ f du is well defined) is the input, y is the output and x is a
signed efficiency measure. The system is fully described by the type of
the nonlinear integral and the involved signed efficiency measure. Now,
only s is unknown. Based on a given data set

X X Xn Y
L) () - filx) N

LH(x) ) o H(x) 7 (8.10)

Silx)  fi(xy) e filx) W
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where fi(x ) is the j-th record (observation) of attribute x; and / is the
data size that should be larger than 2" -1, we may determine the
unknown values of y according to the criterion that

!
2=y~ f; dul’
Jj=1

is minimized. To solve this optimization problem, a genetic algorithm
can be adopted. In the genetic algorithm, each chromosome consists of
2" -1 binarily coded genes g, g,,-**,g,._, » and each gene represents a
real number in [0, 1). Except those chromosomes involving at least one
zero gene, the values of u corresponding to the chromosome are
calculated from

uix}) = (gh_ofi
(i) = (il_o 5))
u({x,, x,}) = %
u({xﬁ»:%,
u(ix,, v}y =803

gs(1—g5) ’
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(g,, .—0.5)
X)y=—_21 -
e &y (1-25 )

Any chromosome involving zero genes should be abandoned. The other
components of the genetic algorithm are similar to those in Sections
8.1-8.3. Running such a genetic algorithm, an approximate numerical
optimal solution of the signed efficiency measure can be obtained.

From this identification problem, we can see the advantage of using
genetic algorithms. To solve an inverse problem of information fusion,
no matter how complex the aggregation tool is, we can use genetic
algorithms to search the optimal solution whenever the aggregation is
computable. Thus, solving an inverse problem is converted to repeatedly
solving the original problems, the aggregations. As shown in this section,
to determine a signed efficiency measure, we just need to implement the
aggregation of the input and compare the output with the corresponding
given values repeatedly for various input-output pairs, by which, the set
function is then optimized.

8.5 Identification of Signed Efficiency Measures by the
Pseudo Gradient Search

The identification problem of signed efficiency measures shown in
Section 8.4 can also be solved by the pseudo gradient search method
discussed in Section 7.3.

Let the same data set adopted in Section 8.3 be available. To
determine a signed efficiency measure u: #(X) - (-, 0) with
u(D)=0, we need to find the values of 2" —1 unknown parameters
Hys My oy My - SO, the search space is (2" —1) -dimensional, that is,
the integer m used in Section 7.3 is 2" —1. The objective function is still
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!
z=X [y, ~(O] f, dul’
j=1

that should be minimized, where “7” at the front of the integral indicates
the chosen type of the nonlinear integral. Usually, the size of the data set
should not be less than the number of the unknown parameters, i.e.,
[>2" —1. Otherwise, we may face the case that there are infinitely many
optimal signed efficiency measures with z=0.

In this optimization problem, since the feasible region F is the whole
(2" —1) -dimensional Euclidean space R* 'and the shape of the
objective function is not very complex, using the pseudo gradient search
shown in Section 7.3 is convenient. The algorithm of the pseudo gradient
search can now be simplified as follows.

(1) Choose V' =(",£”,---,£5) ) as the initial point.

(2) Initialize 6=9,/242"-1 and a =2, where J,>0 is the
required solution precision.
(3) Foreach j=1,2,---,2" —1, calculate

— (1O 4O (0) (0) 0) 4(0) (0) (0)
A=z(t7 67t ) )= 2(f G 0, ) )

Similarly, calculate

— (0) (0) (0) (0) (0) (0 (0) (0)
Aj—_z(tl ’tz "”atj ’.”’tznfl)_z(tl 3t2 a”"tj _5a t 7)‘

(4) Let

max[A ., ,A._, 0] ifA,>2A.
AJ: Jjt+ J J+ J , j=1,2,"',2n_1.

—max[A; A, 0] otherwise
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If A;=0 forall j=1,2,---,2" —1, then go to step (9); otherwise,
go to step (5).
(5) Form the pseudo gradient direction A=(A,A,, -
caleulate | A |=[¥7(A,)*]"2,
(6) Replace 6 by ad.If the new o <0,/242" -1, then go back to
(2); otherwise, from point #” and along direction A, take a step
with length & to reach point ¢, that is,

) and

2” 1

% t(o) 5A t(o) é‘A2 71)

t—(t(O) .
Al 1Al [A]

(7) Calculate z(t") and check whether z(t*)<z(t”) or not. If yes,
replace 1 by ¢*, then go back to (6); if no, go to (8).

(8) Let a¢=1/2 and go back to (6).

(9) Stop. Output ' and some required information on the search
procedure.

Similar to the situation in Section 7.3, in the algorithm above, each
iteration formed by steps (2)-(8) has a search direction described by the
pseudo gradient. Along this direction, the initial point (or the point
obtained at the end of the previous iteration) is updated by a much better
point, though not being an approximate best point in this direction.
Adding some search steps such that the updated point is an approximate
best point in this direction is possible. However, it is not necessary since
its benefit will be totally covered by the next iteration in the current
relatively simple algorithm.

8.6  Identification of Signed Efficiency Measures Based on
the Choquet Integral by an Algebraic Method

When the Choquet integral is chosen as the aggregation tool in the
input-output system, the identification of signed efficiency measure
becomes easy to be solved. Due to the advantage of linear expression
(5.5) with (5.6), an algebraic method can be used to solve this
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identification problem with a precise solution. In fact, if data set (8.10) is
available, the identification of signed efficiency measure x can be
expressed as an optimization problem of determining set function
M P(X)—> (—0,0) with p(J)=0 such that

/
2=y, ~(©)f f; dul’
Jj=1

is minimized. By using (5.5) and (5.6), we can see that its optimal
solution is just the least square solution of linear system

2" -1

Szt = 3y k=12,
j=1
where
min  f,(x,)—- max  f,(x), ifitis>0o0rj=2"-1
z,, = 4 lfei12)el1/2.1) iifie(j/27)e[0,1/2)
Y
0, otherwise

for k=1,2,---,/; j=12,---,2" —1. Each z;; can be calculated from the
given data set (8.10) in advance. Hence, the precise solution of the
optimization problem is

H
Y7,

2| _ (ZTZ)—I 7'y,

Hy,

where m=2"-1,
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Loz, -z,
- 1 zy oz,
— 5
1oz -z,
1 1 1
z z z
T 11 21 il
Z - 5
Zlm ZZm Zlm

i.e., the transposed matrix of Z, and

N

y=| 2

Vi

The details on the least square solution of a linear system are shown
in Section 9.1.

8.7 Identification of Monotone Measures Based on
r-Integrals by a Genetic Algorithm

To determine a monotone measure based on an input-output system
consisting of a nonlinear integral, the difference from determining a
signed efficiency measure discussed in Sections 8.4-8.6 is the restriction
on the set function. Now, the determined set function should be
nonnegative and monotone. Based on an existing data set with the same
form as (8.10) shown in Section 8.4, to determine a monotone measure
defined on the power set of a given finite universal set optimally, the
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genetic algorithm discussed in Section 8.4 with the same objective
function

!
z=2 [y, (| f; du?
Jj=1

may still be used. However, the decode formulas should be taken as
those in Section 8.3 to keep the nonnegativity. The reordering algorithm,
where a max-min strategy is adopted to reduce the computation
complexity, shown in Section 8.3 should also be embedded to guarantee
the monotonicity for the obtained set functions represented by
chromosomes.

We should notice that, even the Choquet integral is chosen as the
nonlinear integral in this identification problem, the algebraic method
shown in Section 8.6 cannot be used here. The least square solution
obtained in Section 8.6 violates the nonnegativity and the monotonicity
generally. After adjusting the solution to be nonnegative and reordering
it to be monotone, the result will usually no longer have the least squared
error. So, we have to take a relatively complex soft computing technique
to obtain an approximately optimal solution for this identification
problem.



Chapter 9

Multiregression Based on Nonlinear

Integrals

Regression is one of the major techniques in statistics and data mining.
Based on a set of observations involving a number of variables
(attributes), regression provides an approach to determine the unknown
parameters in an input-output system and, therefore, find a linear or
nonlinear relation between one variable (output) and the other variables
(input). It can be regarded as a generalization of identification of signed
efficiency measure (or classical signed measure). Once the relation on
how one variable (target attribute) depends on other variables (predictive
attributes) is known, we can use it to predict the value of the target
variable if a new observation of predictive variables has been obtained in
some way.

9.1 Linear Multiregression

Suppose that there are n+1 attributes: x,x,, -+, x
database. We want to know how y depends on these x’s. Using the same
setup as before, let X ={x,x,,---,x,} . Regarding y as a random
variable, the simplest relation between y and x,, x,,---,x, is a linear

n

and y in a

n

regression expressed as

y=a,+ax, +ax, +--+a,x, + NO,c%), ©.D)

221
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where a,,a,,a,,---, and a, are unknown constants, called regression
coefficients, and N(0,c”) is a normally distributed random variable
with mean 0 and variance o°. The variance o is also unknown. Each
observation (record) of attributes x,, x,,---,x, is a function defined on
X. Using such a model needs a basic assumption that there is no
interaction among the contributions from x,, x,,---,x, towards target y.
Under this assumption, to estimate these regression coefficients as well
as o, we need a data set consisting of sufficiently many observations
of x,,x,,---,x, and corresponding values of y. It has the same form as
shown in (8.10):

X a) Xn Y
fi(xl) fi(XZ) fi(xn) bg
L) LOg) e filx) P
SiG) o i) e filxy) Vi

where the size of the data set, /, should be much larger than n (say,
[ >5n) to avoid possible over fitting. Once a proper data set is available,
we may use the least square method to determine regression coefficients
a,, a,, a,,---, and a,, that is, by minimizing the total squared error:

zZ =

M-

[y, —(ay+ax;; +a,x;, +-+a,x 7, 9.2)

n’jn
J

where x; = fix), j=1,2,---,1, i=1,2,---,n, we may obtain an
estimation of unknown parameters «,, q,, a,,---, and a,. Usually, we
denote

E(y;)=ay+ax; +ayx;, +--+a,x

n’ jn

and call it the expected value of y;.
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To solve the optimization problem with objective function expressed
by (9.2), some knowledge in calculus and linear algebra is needed.
Regarding z as a function of variables a,,q,,a,,---, and a,, it is
quadratic and concave up. So, its minimum exists uniquely. A necessary
(in fact, also sufficient) condition for «,, a,,a,,---, and a, being the
minimizer is

0z

—=0, i=0,1,2,---,n,
Oa;

that is,

!
—2Z[yj—(a0+a1xj1+a2xj2+ +a,x;, 1=0

!
—2Zxﬁ[yj—(a0+a1xj1+a2xj2+---+an jn)]z i=1,2,---.n.
=

Rearranging them, we obtain a system of linear equations

! ! !
ay+ ij1a1+ ijzaz"'"“" ijn a, Z)’j
Jj=1 Jj=1

j=1

i / i i
ij1a0+ ijlxﬂa1+ ijlxj2a2+---+2xﬂxjn a, ijlyj
J=1 J=1 J=1 J=1

I
Zx 2a0+2x12x 1a1+2xﬂx iy +- --+ij2xjn a, ijzyj 9.3)
j=1

j=1 Jj=1

i i i i
Z)cjnao +ijnx]1a] +ijnsza2 +---+ijnxjnan =2xjnyj ,
j= j=1 j=1 j=1 j=1
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where a,,a,,a,,---, and a, are unknown variables of the system of

linear equations. Denoting

L ox; - x, 3| a
1 x e x
21 2n Y2 a,
X=|. , Y=, A= ,
Loy o x, Yi a,
and
1 1 1
X X X
r | *n 21 n
X_ s
xln x2n x/n

we may rewrite the system of linear equations (9.3) in a matrix form
X'XA=X"Y.

Since XX is always nonsingular, its inverse matrix (X'X)™" exists. Thus,
the solution of system (9.3) is

ay

a
H=xX)" X"y.

a}’l

Values q,,4d,,a,,---, and a, are called the least square estimation of

a,, a,, a,, -, and a, respectively. In addition,

AA N N 2
= m [J’_,' —(a,+ ax; tax;, +--+ anxjn)]
V=

!
"2 1
o
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can be used as an estimation of the variance .

In the above discussion, symbol x; is used to denote an attribute as
well as a general observation of this attribute. However, when we want to
emphasize that it is an observation, symbol f(x;) is adopted, especially,
when we use an integral as the aggregation tool in information fusion,
the observation (received information) of attributes is the integrand and,
therefore, must be presented as a function defined on the set of all
predictive attributes. Thus, in the linear multiregression model (9.1),
a,x, + a,x, +---+a,x, should be rewritten as

af(n)+af(x)++ a,f(x,),

a weighted sum of the values of function fon X, where a,, a,,---, and
a, are weights. As we have seen in Example 5.5, this weighted sum is
just a Lebesgue integral of £, i.e.,

af () +ayf(x)++a,f(x)=][du,

where classical measure ¢ on #(X) is determined by u({x;})=a,,
i=1,2,---,n. Consequently, the linear multiregression model (9.1) can
be expressed as

y=ay+| [ du+N(0,0%) (9.4)

or, equivalently,

y=[/du+N(ay, ).

Ignoring the probabilistic background, we can also understand this
linear multiregression as a linear data fitting problem. That is, given the
above data set in n+1 dimensional space, we want to find an n
dimensional hyper plane

y=a,tax +a,x, +---+a,x,
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such that the total squared vertical (i.e., parallel to the y-axis) distance
from each data point to the hyper plane is minimized.

Expression (9.4) leads us to develop new multiregression models
based on nonlinear integrals.

9.2  Nonlinear Multiregression Based on the Choquet
Integral

We still consider n+1 attributes x,, x,,---,x, and y in a database shown
in the previous section. The linear multiregression model (9.1) works
well only when the interaction among the contributions from predictive
attributes towards the target can be ignored. However, in many real
systems, such an interaction is significant. We have seen from Chapter 4
that the interaction among the contributions from predictive attributes
X, X,,+,X, towards the target y can be described by a signed efficiency
measure /7 (X)— (—o,0) and, therefore, the aggregation tool should
be a nonlinear integral, such as the Choquet integral, with respect to .
Thus, a new nonlinear multiregression model now is expressed as

y=c+(O)f(a+bf)du+N(0,c%), (9.5)

where ¢ is a constant, both @ and b are real-valued functions defined
on X ={x,x,, ,x,},/f1s an observation of x,, x,,---,x,, ¢ s a signed
efficiency measure, and N(0,0%) is a normally distributed random
perturbation with expectation 0 and variance . Functions a and b can
be expressed as vectors or n-tupes, ie., a=(a,,a,, ~--,a,) and
b=(b,b,, -, b,). They should satisfy the following constraints:

minag; =0;

1<i<n

max|bl.| =1.

1<i<n
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Under these constraints, of course, we have @, >0 and —-1<p, <1 for
i=1,2,---,n. In the Choquet integral, integrand (a+bf) is called a
linear core of the integral, where shifting vector a is used to balance the
phases, i.e., the starting point of each predictive attribute to make
interaction with the other predictive attributes, while scaling vector b is
used to balance the measuring units of each predictive attribute. These
two vectors are necessary in the multiregression since the various
predictive attributes may have different measurement systems (such as
the Celsius degree and the Fahrenheit degree of the temperature) and
may have various dimensions (such as the length and the weight) in the
database. All elements in these two vectors are unknown and should be
optimally determined in a learning procedure with the other unknown
parameters based on the given data set.

Thus, in this multiregression model, the regression coefficients are
constant ¢, all elements of vectors a and b, and u(A4) for every
Ae P (X)-{D}. Totally, there are 14+2n—-2+2"-1=2"+2n-2
independent unknown parameters. So, the data size / should be much
larger than 2" +2n—2. Unlike the linear multiregression discussed in
Section 9.1, this regression model now is not linear with respect to the
regression coefficients since a (or b) and g have a form of product
and, therefore, these regression coefficients cannot be optimally
determined by using only an algebraic method. We have to ask for some
soft computing technique, such as the genetic algorithm, to obtain an
approximate numerical solution. Fortunately, we may still partially use
an algebraic method to reduce the complexity of the genetic algorithm,
that is, once the parameters a and b have been created in the genetic
algorithm, the other parameters ¢ and g may be optimally determined
by using the least square method based on the above-mentioned data. As
for o, similar to the linear regression, it may be estimated by the
regression residual

o L _ )
¢ _l+2—2"—2n;[yj_c (©f(a+bf;) du’ .

The relevant algorithm is presented as follows.
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A. Preparations

(1) For given n, express positive integer k in binary digits as bit string
kK forevery k=1,2,--,2" 1.

(2) Use g4 todenote (A) where A=Uy {x}, k=1,2,---,2"-1.

B. Partl1

Use the least square method to determine ¢, t, fy,-, 4, , When
the values of all elements of ¢ and b are specified in the genetic
algorithm given in Part 2.

(1) Constructthe /x (2" +1) augmented matrix Z = [z;] as follows.

zjo =1,
min(a; +b,f;) —max(a; +b,f;), ifitis>0o0rk=2"-1
=) k=l : k=0 :
Jk s
0, otherwise

for k=1,2,---,2"-1; j=1,2,---,1 and Zin =Y
(2) Find the least square solution of the system of linear equations
having above augmented matrix for unknown variables c,

Hys Hy s "huzn,l .
(3) Calculate the regression residual error 6> by

Az_;[ o )
O S g Ey e Ola b dud

1 2m_q

!
= >(y.—c— > z, 2.
[-2" —2I’l+2j:](yj k=1 k)
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C. Part 2 (main algorithm)

Use a genetic algorithm to optimize the values of vectors a and b.

(1
2)

3)

4)

Input integers 7, /, and the data.

Choose a large prime p as the seed for the random number
generator, which generates random numbers obeying the uniform
distribution on unit interval [0, 1) . Set the value for each parameter
listed in the following.

A

aand f:

gand o
w:

Calculate

where

The bit length of each gene, i.e., A bits are used for
expressing each gene. It depends on the required
precision of the results. e.g., /=10 means that the
precision is almost 107 . Its default is 10.

The population size. It should be a large positive even
integer. Its default is 200.

The probabilities used in a random switch to control the
choice of genetic operators for producing offspring
from selected parents. They should satisfy the condition
that ¢ >0, >0, and a+ f<1. Their defaults are
0.2 and 0.5 respectively.

Small positive numbers used in the stopping controller.
Their defaults are 10 and 107" respectively.

The limit number of generations that have not
significant progression successively. Its default is 10.

G, = i 1Z(y, ¥,

1
i g

Randomly create the initial population that consists of s
chromosomes. Each chromosome consists of 2n genes, denoted by
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)

(6)

(7

(®)
)

(10)
(11)
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815825 % Cus Custs nsns' > &y - The first n of them represent
vector a, while the next n represent vector b. Each gene consists of
A bits and represents a real number in [0, 1) . Initialize counter GC
by 0, counter WT by 0, and SE by &ﬁ.

Decode each chromosome to get vectors a and b by the
following formulae:

a4 = g —m(g)
"o(-g)d-m(g)’

2gn+i _1

" M(g)

for i=1,2,---,mn ,  where m(g)=min, ., g, and
M(g) =max ., |28, —1].

For each chromosome in the population, through algorithm Part 1,
use a and b obtained above and the data to determine the
corresponding optimal values of ¢ and u, and find the residual
G2,

The residual error of the g-th chromosome in the current population

is denoted by 6';. Let
AN s A2 _ A2 A2
m(6°)=min,., . 6, and Q={q|c; =m(c")}.

Erasing the record saved for the last generation if any, save
m(6*) and a, b, ¢, 1 of g-th chromosomes for all g€ in the
current population. Display GC, WT, and m(6?).

If m(6%)< go”'i , then go to (16); otherwise, take the next step.

If SE-m(6%)< 5&i ,then WT +1= WT and take the next step;
otherwise, 0= WT and goto (11).

If WT >w, then go to (16); otherwise, take the next step.

The relative goodness of the g-th chromosome in the current
population is defined by



(12)

(13)

(14)
(15)

(16)

(17)
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m(c”) . .
Gq: ~AD H q:1,2,“',s, lf m(02)>0
(o}
q
Let
pq: Yq b q:1,27”'5S'

According to the probability distribution {p, [g=1,2,--, s}
(using a random switch), select two different chromosomes in the
current population as the parents. Randomly select one operator
among the three-bit mutation (with probability « ), the two-point
crossover (with probability /), and one of the equally likely 48
two-point realignments (with probability 1—a — ) to produce
two new chromosomes as the offspring.

Repeat step (13) for s/2 times totally to get s new chromosomes.
GC+1=GC Save m(6*) inSE.

For each new chromosome, take steps (5) and (6) to find the
corresponding values of a, b, ¢, u and 6%. Add these new
chromosomes into the current population. According to the
magnitude of &° (the smaller the better), select s best
chromosomes among these 2s chromosomes to form the new
population. Then go to (7).

Check the sign of 4,  corresponding the g-th chromosome for
all geQ.Incase pu, <0, replace ¢ by c+p,, max.,.,a;,
then replace @, by max,..,a, —a; and switch the sign of vector
b and set function u such that U, > 0. Display p, s, A a pe o,
and w. After deleting any duplicates, display a, b, ¢, and u of g-th
chromosomes forall g€ Q.

Stop.
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9.3 A Nonlinear Multiregression Model Accommodating
Both Categorical and Numerical Predictive Attributes

Sometimes, we may find databases involving both numerical and
categorical predictive attributes. Let X ={x,, x,,---,x,} be the set of all
considered predictive attributes, in which x,, x,,---,x,, are numerical
and x,,.,,X,,,, "X, are categorical where 1<m <n—1. The set of all

possible states of categorical attribute x;is denoted by

m+1°

S; = {81585 "'asiN,.}

and is called the range of x;, where N, is the number of possible states
of attribute x; and is called the potential of x;, i=m+1,m+2,---,n.
Ineach S;, i=m+1,m+2,---,n, each state s,,, k=12,---, N;, may
be or may not be a real number. The same as before, f is a function
defined on X. It has a real value at each attributes x, for i=1,2,---,m,
but has a value in S, at attribute x;, for i=m+1,m+2,---,n. Each
fi» j=1,2,---,1, in the data set is an observation of such a function. In
order to use the nonlinear multiregression model discussed in Section 9.2,
we must numericalize attributes x,,,, -
strategy is, for each i=m+1,m+2,---,n, optimally assigning a real
value to each state s, , k=1,2,---, N;. The optimization is in the sense
that, after replacing these states with corresponding real-valued
assignments respectively, the regression

-+, X, . Our numericalization

y=c+(©Of(a+bf)du

fits the data as well as possible. This optimization procedure takes place
with optimizing regression coefficients together in a genetic algorithm
that is similar to the one mentioned in the previous section. Thus, for
each s, , we use a gene to represent it and align all of them in the
chromosome. The corresponding value of this gene is denoted by d,
that is the value we want to assign to s, . For a fixed i, different values
d, indicate the different influences of s, to the target attribute, and
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they should be regularized when being used as the value of function f
at attribute x, to calculate the integral of f to avoid the

indeterminacy of coefficients b, b,,---, b,. The regularization is made
as follows:

for i=m+1,m+2,---,n. In comparison with the model for pure
numerical attributes given in Section 9.2, now the number of unknown
parameters is increased. In the current model, each chromosome consists
of

2n+ iNi

i=m+1

genes (2n genes for a and b, and N, genes for each attribute x;,
i=m+1,m+2,---,n), and there are

1+Q2"-D+2(n—-D+ Y (N,-)=2"+n+m-2+ YN,

i=m+1 i=m+1

independent unknown parameters to be determined from data by
minimizing the error

~ 1
6=

/
= — > [y;—c=(O)[(a+bf;)dul.
[+2-2"—n-m—- ) N,/

i=m+1
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Of course, using this model require that the data size must be much
larger than the number of the independent unknown parameters.

An improved model can be also established by replacing a
one-dimensional value optimally assigned to each state s, with an
(NV; —1) -dimensional value. A successful example using this improved
model can be found in [Hui and Wang 2005].

9.4 Advanced Consideration on the Multiregression
Involving Nonlinear Integrals

Using some various types of nonlinear integrals with various types of
integrands as the aggregation tool, we may develop more multiregression
models to handle data set to obtain valuable information on the relation
between one attribute and the others. Some of them are briefly shown in
the following.

9.4.1 Nonlinear multiregressions based on the Choquet
integral with quadratic core

The multiregression model (9.5) is nonlinear with respect to the
regression parameters. It can capture only the linear interaction among
the contributions from predictive attributes towards the target. In some
real-world problems, the above-mentioned interaction may not be linear.
In this case, we may try to use quadratic core in the Choquet integral.
Thus, the multiregression model (9.5) is changed to be

y:c+(C)j(a+bf+df2)dy+N(O,oz), (9.6)

where vectors a, b, d, constant ¢, and signed efficiency measure, u, are
unknown regression coefficients satisfying min,_.,a,=0 and
max,.;., bi| =1. Similar to the way shown in Section 9.2, based on given
data set (8.10), the values of these parameters can be optimally
determined via a combination of algebraic method and genetic algorithm.
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The multiregression model (9.6), which has a quadratic core in the
Choquet integral, is a real generalization of model (9.5). The new model
has more unknown parameters. So the program needs longer running
time.

9.4.2  Nonlinear multiregressions based on the Choquet
integral involving unknown periodic variation

Assume that the data set (8.10) is recorded according to the time
uniformly. If there is a periodic affection by the time to the target, we
may add an artificial predictive attribute, x in the multiregression
model (9.5) to capture it.

Thus, a new column consists of

n+l»

- |
Frm = F1 ) = cos[zn(JT +d)], =121,

where ¢ is the period and d is the phase, is added into the data set
(8.10) as the (n+1)-th column. Both ¢+ and d are unknown and they
will be optimally determined from data with the other unknown
regression coefficients together.

Now, let X'=X Ul{x,,,}. The interaction among the contributions
from predictive attributes towards the objective attribute is described by
a signed efficiency measure defined on the power set of X'. The
multiregression model has still a form as (9.5), but now
a=(ay,a,,*+,a,,) and b=(b,b,, -, b,,,) are (n+l)-vectors. They
should satisfy the following constraints

min a, =0
1<i<n+1

and
max |bl.| =1
1<i<n+1

as well.
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After all regression coefficients have been optimally determined via a
combination of algebraic method and genetic algorithm, once a new
observation of n original predictive attributes is recorded as

(f(x), f(x), -+, f(x,)) at time ", we may add
-1
S )= c08[277(7 +d)]
to obtain a function fon X' and then calculate
y=c+(O)f(a+bf)du
as the predicted value of objective attribute Y.

9.43  Nonlinear multiregressions based on upper and lower
integrals

In multiregression model (9.5), the aggregation is performed by the
Choquet integral. From Chapter 5, we know that the Choquet integral is
just one of the nonlinear integrals and it has the maximal coordination
manner. Usually, people cannot know what coordination manner among
predictive attributes exactly exists in a given real regression problem.
That is to say, there is no sufficient reason to choose the Choquet integral
as the aggregation tool in the regression. Thus, a new idea is to use the
upper and the lower integrals, which are also discussed in Chapter 5, to
dominate any possible nonlinear integral if the coordination manner is
unknown. Then, regarding any real number as a special interval number,
an interval-valued multiregression model can be established as follows:

Y =c+[(L)[(a+bf) du, (U)[(a+bf) du]+ N(0,57),

where regression coefficients a, b, ¢, and x have the same meaning as in
model (9.5) but with a little different restriction min,_,,a, =0,
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. =1. Based on given data set (8.10) that
should now be restricted to be all nonnegative, these unknown
parameters can be optimally determined by minimizing the total squared
error

min,_,., b, 20, and max,_,,b

I
2 2 2
et =2 (e +e3)),
Jj=i
where

0 if y; —ce[(L)[(a+bf;) du, (U)f(a+bf;)du]
min(‘ v~ (L)[(a+bf)) d/z‘, \ v~ —(U)[(a+bf;) du]) otherwise

614:

and

e,; =(U)[(a+bf,) du—(L)[(a+bf;) du .

Error e;; describes the random error while error ey describes the
uncertainty carried by the signed efficiency measure x for the j-th
observation.

After determining all regression coefficients, once a new observation
f1is available, the prediction for the objective attribute Y is an interval
number

Y =[c+L)[(a+bf )du, c+(U)[(a+bf )du].



Chapter 10

Classifications Based on Nonlinear

Integrals

In Section 9.3, we allow the predictive attributes to be either numerical
or categorical, but required the objective attribute (the target) to be only
numerical. Instead, if we allow the objective attribute to be categorical,
then it becomes a classification problem discussed in the following
sections. In this case, the predictive attributes are called the feature
attributes, while the objective attribute is called the classifying attribute.
The number of possible states to the classifying attribute is just the
number of classes in the classification problem. Let the number of the
states of the classifying attribute be m. Then the corresponding
classification is called m-classification. It is easy to see that any
m-classification problem can be separated as (m—1) 2-classification
problems. So, in this chapter, we only discuss the 2-classification
problems, unless a special statement is given.

The classification is an essential component of pattern recognition
problem. It is, the same as the multiregression, one of the major
techniques used in data mining.

10.1  Classification by an Integral Projection

Now we consider a classical 2-classification problem and express it via
an abstract integral, the Lebesgue integral, which is discussed in Section
5.3.

Let a complete data set

238
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X, X, X, Y
S Ji2 Jin N
S S S Y2 (10.1)
ﬁl ﬁ2 ﬁn y[

be available, where x,,x,,---,x, are feature attributes, Y is the
classifying attribute, and / is the number of samples in the data set. The
set of all feature attributes, X ={x, x,,---,x,}, is considered as the
universal set. The range of feature attributes is called the feature space. It
is a subset of n-dimensional Euclidean space. Unlike the multiregression
problem, now Y is categorical and has only two possible states, denoted
by s, and s,. Set S ={s,,s,} is called the state set of attribute Y.
Each row fi1, f», -, fn(j=12,---,1)in the data set is a sample of the
feature attributes and is a real-valued function on X; while y; is the
corresponding state that indicates a specified class. A 2-classification
problem is, based on the given data set, to find a classification model that
divides the feature space into 2 disjoint pieces. Each of them corresponds
to a class. Then once a new sample of the feature attributes is available,
we may use the model to determine to which class the sample belongs.
The classification model is usually called a classifier.

The simplest classification model is linear, that is, the two pieces of
the feature space corresponding to two classes is divided by an
(n—1)-dimensional hyper-plane that can be expressed by a linear
equation of n variables xi, x,, -+, X,

ax,+ax, +---+a,x,=c (10.2)

in the n-dimensional Euclidean space. In expression (10.2), g,
i=1,2,---,n, and ¢ are unknown parameters that we want to determine
based on the given data. This (7 —1)-dimensional hyper-plane is called
the classifyving boundary. Essentially, a linear classification model is just
a linear projection y =ax, +a,x, +---+a,x, from the n-dimensional
feature space onto a one-dimensional real line, on which a point ¢ is



240 Nonlinear Integrals and Their Applications in Data Mining

selected as the critical value for optimally separating the projections of
the two-class samples in the data set. Point ¢ corresponds to the
classifying boundary. In fact, the projection of the whole
(n—1)-dimensional classifying boundary onto the one-dimensional real
line is just the critical point ¢. In most linear models, the criterion of the
optimization is to minimize the misclassification rate when a nonempty
subset of the data set is used as the training set. In this case, there are
infinitely many optimal classifying boundaries generally and, usually,
they are close to each other. Sometimes, the optimization criterion can
also be formed by a certain function of the distance from sample points
to the classifying boundary in the feature space. The values of the
parameters a;, i=1,2,---,n, and ¢ corresponding to one of the optimal
classifyingboundaries can be calculated via an algebraic and analytical
method precisely or be found via a numerical method approximately.
Based on the found classifying boundary, once a new sample, i.e., a new
observation of the feature attributes, (f(x,), f(x,), -+, f(x,)) is
available, we may conclude that this sample belongs to the first or the
second class according to whether inequality

af(n)+ay f()++a,f(x,)<c (10.3)

holds or not.
Inequality (10.3) can be rewritten in terms of the classical Lebesgue
integral as follows.

[fdusc,

where f is a real-valued function defined on X and 4 is an additive
measure on measurable space (X, (X)) satistying u({x;})=a; for
i=1,2,--,n.

Example 10.1 Let X ={x;, x,}. There are 14 samples shown in Table
10.1 for (x;,x,) with their corresponding classes. Based on this
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training data, one of the optimal classifying boundaries may be the
straight line x, +2x,=1.4 . It separates the data very well with
misclassification rate zero. If a new sample (0.3, 0.7) is obtained, we
may immediately conclude that this sample belongs to class 2 since
0.3+2x0.7=1.7>1.4. This is shown in Figure 10.1. In this example, in
fact, there are infinitely many classifying boundaries that can separate
the given data with zero misclassification rate. For instance, straight line
0.99x, +1.99x, =1.41 is also one of the optimal solutions of this linear
classification problem. This classifying boundary is very close to the first
one.

Table 10.1 Data for linear classification in Example 10.1.

X X5 class | x| X class | x; X5 class
0.9 0.2 1 0.8 0.2 1 0.3 0.6 2
0.5 04 1 0.7 0.3 1 0.9 0.3 2
0.2 0.5 1 0.1 0.6 1 0.1 0.7 2
0.1 0.2 1 0.6 0.6 2 0.5 0.8 2
0.6 0.3 1 0.5 0.5 2

2 A

Fig. 10.1 The training data and one optimal classifying boundaries x;+2x, =1.4
with a new sample (0.3, 0.7) in Example 10.1.
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Similar to the multiregression problems, using the above-mentioned
linear classification model needs a basic assumption that the interaction
among the contributions from feature attributes towards the classification
can be ignored. Unfortunately, in many real-world classification
problems, the samples in the data are not linearly separatable, that is, the
optimal classifying boundary is not approximately linear, since the
above-mentioned interaction cannot be ignored. In this case, similar to
the multiregression, we should adopt a nonlinear integral, such as the
Choquet integral with respect to a signed efficiency measure g, which
describes the above-mentioned interaction, to express the classifying
boundary. Such a nonlinear classification model is discussed in the
remaining part of this chapter.

10.2  Nonlinear Classification by Weighted Choquet
Integrals

If the interaction among the contributions from the feature attributes
towards the classification cannot be ignored, then a signed efficiency
measure should be used and, therefore, a relative nonlinear integral
should be involved in the classifier, where the nonadditivity of the signed
efficiency measure describes the interaction.

The following Example illustrates the interaction existing in
nonlinear classification.

Example 10.2 A mail box is assumed to be large enough, but its slot is
only 5 inches long. Thus, envelops are classified into two classes
according to their size as follows.

(1) small: Those can be inserted into the mail box;
(2) large: Those cannot be inserted into the mail box.

This means that, to a given envelop, if only its length or width is large,
it is not really “large”; only when both the length and the width are large,
it then is “large”. This shows a strong interaction between the
contributions from the two dimensions of envelops towards the “size”.
Due to the strong interaction, such a classification is not linear. In fact, a
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good classifying boundary should be a segment of a broken line, but not
a straight line as shown in Figure 10.2. In the discussion below, we can
see that such a broken line can be exactly expressed as a contour of the
function expressed by the Choquet integral.

In Chapters 5, 6, and 9, we have seen that the Choquet integral with a
signed efficiency measure is nonlinear with respect to its integrand and
can be used as an aggregation tool in multiregression. Now let us see
how the Choquet integral can be regarded as a projection from a
high-dimensional Euclidean space onto a one-dimensional Euclidean
space and can be used in nonlinear classification. To illustrate it easily,
we consider only two feature attributes.

Let x;, and x, be two feature attributes. Denote X ={x,x,}.
Furthermore, let x: % (X) —>[0,1] be an efficiency measure and
f:X > (—o,0) be a real valued function. The Choquet integral
(C)] f du is a function of f(x;) and f(x,), or say, a functional of
function f. For any specified constant ¢, the contour (C)[ fdu=c isa
broken line, but not a straight line if x is not additive. This can be seen
in Example 10.3.

length A
............................................ L
small :
large :
5 i Classifying
i boundary
0 >
5 width

Fig. 10.2 Interaction between length and width of envelops in Example 10.2.
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Fig. 10.3 The contours of the Choquet integral in Example 10.3.

Example 10.3 Let X ={x,, x,} and efficiency measure x have values
=02, p({x})=05, pu(X)=1, and wu(D)=0. Then the
contours of the Choquet integral (C)[f du on the plane are shown in
Figure 10.3.

From Example 10.3, we can see that the Choquet integral projects
every point (f(x,), f(x,)) on the plane onto line L with the projection
value ¢=(C)[ f du . Straight line L is formed by points satisfying
f(x;)= f(x,). It passes through the origin and has angle 45" with the
x-axis. The projection is not along with straight lines, but with broken
lines, that is, the projection directions on the two sides of line L are
different. However, the projection directions on the same side of line L
are parallel, as shown in Figure 10.4 if the same attributes and the
efficiency measure in Example 10.3 are used.

Thus, replacing the straight line used as the classifying boundary in
linear classification, now each contour of the Choquet integral,
(C)| f du = c, can be chosen as the classifying boundary of two classes.
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Such a classifier is nonlinear. Similar to the roll being a linear function of
the observations of feature attributes, the projection by the Choquet
integral converts a high-dimensional classification problem into a
one-dimensional classification problem. This means that, by using the
Choquet integral, we just need to select an appropriate signed efficiency
measure and an appropriate real value ¢ on line L, and then can classify a
new observation of feature attributes, £, to one class if (C)f f du<c
and to another class if (C)[ f du > c¢. This is also shown in Figure 10.4.

In such a way, the classifying boundary in Example 10.2 for the small
size and the large size of envelops can be expressed as
(C)] f du=5 ,where signed efficiency measure 4 has values
D) =pu({x,}) =pu(0)=0 and p(X)=1. Of course, to form a
classifier, the essential mission is to optimally determine the values of
the signed efficiency measure and constant ¢ based on given training data.
It is discussed later in this section.

f(x) A

| Classifying
. boundary

' 1 fr(xl)

Fig. 10.4 The projection by the Choquet integral in Example 10.3.
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From Figure 10.3, we can also see that the angle between two
branches of each broken line is obtuse. In fact, when the value of u ata
singleton of attribute is positive, then the angle between the
corresponding branch of the broken line and line L is greater than 45°. It
can be seen from Figure 10.2 that the angle between any branch of the
broken line and line L is equal to 45° if and only if the value of x4 at
the corresponding singleton of attribute is zero. Furthermore, if a signed
efficiency measure u is considered with a negative value at a singleton
of attribute, then the angle between the corresponding branch of the
broken line and line L is less than 45°. An example is given in Example
10.4 and illustrated in Figure 10.5.

Example 10.4 Let X ={x, x,} and signed efficiency measure x have
values  u({x})=-02 , wu({x})=-05 , wX)=1 , and
4(D)=0 .Then the contour of the Choquet integral (C)[f du with
value ¢=-0.6 on the plane is shown in Figure 10.5. The angle between
two branches of the broken line is acute.

Fig. 10.5 A contour of the Choquet integral with respect to a signed efficiency measure in
Example 10.4.
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Fig. 10.6 Contours of the Choquet integral with respect to a subadditive efficiency
measure in Example 10.5.

In Figures 10.2 to 10.5, all broken lines are concave towards the right
and up direction, i.e., the positive direction on axis L. This is due to the
superadditivity of signed efficiency measure u. If g is subadditive,
then the contours of the Choquet integral are concave towards left and
down direction, i.e., the negative direction on axis L. This is shown in
Example 10.5 and illustrated in Figure 10.6.

Example 10.5 Let X ={x,, x,} and signed efficiency measure x has
values u({x;})=0.8, u({x,})=0.6, w(X)=1, and pu(J)=0. u is
subadditive. Then the contours of the Choquet integral (C)[ f du with
value ¢=-0.2 and ¢=0.2 on the plane are shown in Figure 10.6.
These broken lines are concave towards left and down direction.

In the above examples, signed efficiency measure u is used to
describe the interaction between the contributions from attributes x,
and x, towards the target, the classification. This interaction is
considered based on “one unit of x, with one unit of x,”. However, to
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a given real problem, people do not know what the actual units, based on
which the interaction of x; and x, is expressed, are adopted. Hence, it
is necessary to use weights at the front of the integrand of the Choquet
integral to balance the units, unless the units are naturally concord in
some special problem such as the workers’ products in Example 5.21.
The weights, of course, are unknown generally and will be optimally
determined in data mining problems.

Thus, the weighted Choquet integral should have a form of
(CO)[bf du , where b: X —[-1,1] is the weights. It balances the scaling
of various attributes. The geometric meaning of the weights is to adjust
the direction of projection line L. Unlike the Choquet integral without the
weights, now the projection line L is allowed to be any straight line
passing through the origin. An example of the weighted Choquet integral
with some contour is given in Example 10.6 and illustrated in Figure
10.7.

Example 10.6 Let X ={x,, x,}, weights b have values b =b(x)) =1
and b, =b(x,)=-0.5, and signed efficiency measure x have values
w(a)=01, u((e)=06, u(X)=1, and w@)=0 . u is
superadditive. The projection line L, at which the contours change their
direction, can be determined as follows. Since the contours change their
direction at points (f(x,), f(x,)) satisfying b, f(x)=b,f(x,) , we
may obtain the equation of line L as

f@»=§f@0
2

directly when b,# 0, or as fix;)=0 when b,=0. Hence, in this example,
the slop of line L is —2. The contours of the Choquet integral (C)[bf du
with value ¢=-0.2 and c¢=0.2 respectively on the plane are shown
in Figure 10.7. These broken lines are concave towards down direction.

From the above discussion, we may see that, replacing the linear
function of the feature attributes, the weighted Choquet integral can be
used for classification. The classical linear classifier is just a special case
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Fig. 10.7 Projection line and contours of the weighted Choquet integral in Example 10.6.

of the classifier based on the weighted Choquet integral. This new model
is nonlinear, in which the unknown parameters are the weights and the
values of the signed efficiency measure. When a training data set is
available, we may use a soft computing technique, such as a genetic
algorithm, to search for the optimal values of the parameters and then
establish a classifier. The optimization criterion may be chosen as
minimizing the misclassification rate. After the values of the unknown
parameters, containing vector b, set function g, and constant c¢, are
optimally determined based on the training data, once a new observation
f is available, we just need to calculate the value of (C)[ bf du, and
then classify f into one class if (C)[ bf du<c, into another class if

O] bf du>c.



250 Nonlinear Integrals and Their Applications in Data Mining

10.3 An Example of Nonlinear Classification in a
Three-Dimensional Sample Space

The following is an example of using the weighted Choquet integral for
classification in a three-dimensional sample space. Though the involved
set function is monotone, this restriction is not essential.

Example 10.7 ([Xu et al 2003]) An artificial data set now is used to test
the effectiveness, including the convergence and the running time, of the
algorithm and the program. Regarding the values of monotone measure z
and weight function b as parameters, we preset them together with a
value for the magnitude of the weighted Choquet integral as the
classifying boundary, and then construct the training data possessing the
form of (f;(x)),f;(x)), f;(x;),Y;) with categorical Y, =C or GC,,
j=L12,---,1. Using these constructed training data, we run the program
to check whether the preset values of the parameters and the classifying
boundary can be recovered approximately with a low misclassification
rate. The following is the detailed procedure for constructing the training
data.

There are three feature attributes, two classes, and 200 records in the
data set, thatis, X ={x,,x,,x}, C={C,C,},and /=200.

(1) Preset the values of normalized monotone measure x and weight
function b by assigning u({x;})=0.1 , u({x,})=02 ,
w0 =06 . u(in})=005 .  u({x,x})=08
u({x,,x;4)=0.9, b =0.1, b,=03,and b;=0.6.

(2) Use a random number generator with the uniform distribution on
[0,1) to create a sequence of the values of feature attributes,
f(x;) fori=1,2,3,independently. Each f =(f(x)),f(x,), f(x3))
is the left part of a record.

(3) For each f=(f(x),f(x,),f(x;)), calculate the corresponding
value of the weighted Choquet integral with respect to

Y =(©)fbf du,
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where g and b are given in (1).

(4) Create a random number, & with the uniform distribution Take
0.08 as the _preset classification boundary. In case Y <0.08, if
E<e ~(7-005)*/0.0018 , then assign class C; to the right part of the
record; otherwise, abandon this record. While in case ¥ >0.08 , if
& Se—(Y—O.lZ)Z/O.OOS 2 then, assign class C, to the right part of the
record; otherwise, abandon this record.

(5) Collect the first 80 records with class C; and the first 120 records
with class C, in the sequence of records to form the sample data.

In Step (4), random number £ is used to construct a random switch
and the normal distributions N(0.05,0.03*) and N(0.12,0.04) are
used for controlling the distribution of the data in classes C; and C,
respectively. In fact, the probability density of N(0.05,0.03%) is

(1=0.05)°

- . 2x0.032 ,
p(0)= /—X 0.03

and the probability density of N(0.12,0.04%) is

(1-0.12)?
2
e 20047

|
f)=—————
(1) V27 %0.04

Inequality & < o (1-005)7 /00018 means that & <0. 0327 - pl(Y ) .
Similarly, Inequality £<e ~07-0.12)7/00032 peans that éj<004\/_ pz(Y)
Thus, the remaining data in C, have a right truncated unimodal
distribution with mode 0.05, while those in C, have a left truncated
unimodal distribution with mode 0.12. For both of them, the truncating
point is 0.08. The entire sample data are listed in Table 10.2.
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Table 10.2 Artificial training data in Example 10.7.

No. f fH £ Class
1 0.001648 0.061432 0.303497  C
2 0.647797 0.342316 0.060577  C;
3 0.581604 0.059906 0.809631 C
4 0.328979 0.151184 0.850067  C
5 0.517639 0.209778 0.404083  C
6 0.149719 0.112335 0.727692  C,
7 0.419647 0.104828 0.659882  C
8 0.461670 0.132233 0.529663  C
9 0.581879 0.339691 0.115265 C
10 0.122192 0.008789 0.257477  Cy
11 0.372955 0.061401 0.098785  C
12 0.382751 0.148621 0.882111 C
13 0.037994 0.623016 0.071930  C
14 0.211914 0.182770 0.075897  C
15 0.304382 0.105347 0.886597  C
16 0.473602 0.307281 0.124573  C
17 0.439056 0.024261 0.440338  C
18 0.378296 0.058411 0.727631 C
19 0.617828 0.136444 0.404449  C
20 0.126465 0.270142 0.034119  C
21 0.097778 0.592224 0.027618  C
22 0.449707 0.147278 0.723419  C
23 0.988495 0.292572 0.102325  C
24 0.184052 0.285339 0.086853  C
25 0.028931 0.155975 0.116486  C
26 0.117859 0.119293 0.569458  C
27 0.166626 0.404388 0.027344  C
28 0.523834 0.107117 0.574585  C

N
Nej

0.564758 0.217438 0.108917  C,



30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
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0.802551
0.668335
0.191589
0.116821
0.221222
0.392151
0.039001
0.102264
0.200653
0.044403
0.182373
0.193451
0.490753
0.464813
0.722382
0.419800
0.412628
0.409851
0.169891
0.266144
0.338989
0.841187
0.624512
0.726349
0.000305
0.963348
0.273499
0.815430
0.680023
0.119324
0.232697
0.099854

0.125397
0.107056
0.977539
0.036713
0.478790
0.021454
0.099060
0.169525
0.059357
0.135010
0.155670
0.497986
0.101624
0.198517
0.332397
0.047302
0.217896
0.061707
0.024048
0.057281
0.126190
0.217224
0.034515
0.190857
0.165833
0.098694
0.012939
0.061737
0.095703
0.034668
0.951843
0.254822

0.077576
0.251007
0.008331
0.201721
0.107666
0.819183
0.707642
0.826904
0.244843
0.757813
0.595337
0.107544
0.757355
0.011169
0.081055
0.729675
0.110535
0.613770
0.821594
0.363220
0.932922
0.070190
0.633820
0.328186
0.114258
0.088104
0.852173
0.105927
0.075867
0.122925
0.015808
0.090729

253
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62 0.128143 0.092590 0.194061 Cy
63 0.884338 0.474182 0.052155 C
64 0.157898 0.316803 0.008850  C;
65 0.752625 0.025055 0.085144  C,
66 0.558441 0.029999 0.181854  C,
67 0.726807 0.041962 0.665619  C,
68 0.246704 0.221497 0.296570  C,
69 0.913483 0.375244 0.062500  C,
70 0.155670 0.202271 0.121826  C
71 0.205597 0.631683 0.035675 C
72 0.135254 0.056976 0.718323 C
73 0.207214 0.400482 0.107391 C
74 0.093140 0.113251 0.580200  C,
75 0.934906 0.153015 0.085785 C
76 0.111206 0.181915 0.838623 C
77 0.462616 0.131317 0.362183 C
78 0.144043 0.181641 0.189270  C,
79 0.097687 0.415833 0.087921 C
80 0.330933 0.047821 0.374481 C
81 0.001862 0.531677 0.464325 G,
82 0.473663 0.198853 0.920166 G,
83 0.846161 0.620850 0.147034 G,
84 0.764221 0.543243 0.367493 G,
85 0.078735 0.280304 0.868378 G,
86 0.682800 0.402771 0.433380 G
87 0.431519 0.339752 0.715729 G,
88 0.989838 0.227264 0.998505 G,
89 0.090240 0.302216 0.281830 G
90 0.536987 0.378998 0.411957 G,
91 0.422363 0.727570 0.859802 G,
92 0.327423 0.299530 0425232 G,

93 0.607300 0.406372 0.269135 G,



94

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
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0.990082
0.098785
0.950226
0.915192
0.128204
0.050323
0.941650
0.891846
0.630951
0.296295
0.047760
0.460999
0.960876
0.891266
0.697449
0.727905
0.940948
0.249176
0.847290
0.822815
0.320435
0.289978
0.655975
0.974792
0.478058
0.963257
0.858795
0.011414
0.809235
0.652588
0.273987
0.907318

0.410522
0.461487
0.734314
0.183929
0.930908
0.995270
0.084015
0.050201
0.493530
0.367554
0.350159
0.449219
0.03418

0.483276
0.490234
0.497223
0.084869
0.491241
0.489594
0.697052
0.660126
0.431396
0.601501
0.313782
0.329315
0.599457
0.501892
0.770996
0.749512
0.705353
0.618317
0.205109

0.660370
0.317657
0.098022
0.201874
0.195618
0.279694
0.990997
0.771179
0.449402
0.359619
0.490356
0.909332
0.914154
0.641266
0.338043
0.547302
0.660492
0.733459
0.149536
0.150482
0.157043
0.868164
0.361847
0.213165
0.671051
0.503632
0.624878
0.297058
0.407593
0.115295
0.734528
0.359558

255
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126 0.699860 0.111511 0.948425 G,
127 0.291290 0.770294 0.457947 G,
128 0.931915 0.136658 0.843903 G,
129 0.647522 0.655518 0.385864 G,
130 0.493195 0.604858 0303436 G,

131 0.436737 0.262299 0.964539 G,
132 0.975586 0.380249 0.940430 G
133 0.002869 0.918579 0.160156 G,

134 0.866180 0.758240 0.166809 G,
135 0.936798 0.302490 0.863312 G,
136 0.305878 0.621948 0.847595 G,
137 0.630493 0.436707 0.885223 G,
138 0.446014 0.399323 0.178009 G,
139 0.743713 0.650726 0.152466 G,
140 0.145752 0.607574 0361450 G

141 0.031372 0.437317 0.357635 G,
142 0.502228 0.622620 0.135010 G
143 0.926453 0.066620 0936218 G,

144 0.263367 0.315155 0.770172 G,
145 0.768768 0.405579 0.212433 G,
146 0.029358 0.949219 0.140411 G
147 0.850098 0.269318 0.835114 G,
148 0.945038 0.141418 0.906036 G,
149 0.877502 0.026184 0.990540 G
150 0.484436 0.606445 0.673431 G,

151 0.190460 0.320526 0.853210 G
152 0.788513 0.460297 0.292267 G,
153 0.919617 0.449951 0.238831 G,
154 0.658691 0.292084 0.755005 G,
155 0.263184 0.73587 0.251648 G,

156 0.591827 0.543274 0.294861 G,
157 0.713135 0.170441 0.600342 G,



158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
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0.632996
0.043579
0.325195
0.188660
0.854584
0.715637
0.835144
0.931824
0.320648
0.332031
0.554504
0.916504
0.324127
0.758820
0.263794
0.992462
0.376190
0.445465
0.469543
0.096771
0.170715
0.225739
0.872681
0.837341
0.938477
0.910889
0.223846
0.656830
0.298309
0.756744
0.535095
0.133331

0.328278
0.444183
0.266998
0.263062
0.709229
0.809875
0.383942
0.386749
0.550262
0.666809
0.407043
0.429352
0.374847
0.184753
0.544067
0.444916
0.683777
0.632935
0.926727
0.918213
0.420593
0.399689
0.096710
0.936005
0.269531
0.466827
0.311432
0.562958
0.557129
0.717316
0.373199
0.419434

0.689148
0.768951
0.494843
0.940857
0.180634
0.016541
0.842346
0.115662
0.449554
0.245636
0.280457
0.173584
0.779175
0.980347
0.877136
0.666656
0.258362
0.240784
0.237762
0.319611
0.366394
0.131470
0.945313
0.225616
0.542755
0.980377
0.449524
0.791687
0.291565
0.171234
0.183929
0.770355

257
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190 0.507507 0.645264 0327209 G

191 0.819916 0.283051 0.665192 G,
192 0.410004 0.290100 0.759583 G,
193 0.414276 0.930817 0.105347 G,

194 0.519745 0.869232 0.035309 G
195 0.066223 0.818970 0.709808 G,
196 0.177429 0.393524 0935272 G,
197 0.388336 0.701660 0.278198 G,
198 0.052399 0.445374 0.505188 G,
199 0.323578 0.315887 0.788910 G,
200 0.567902 0.682190 0.120605 G,

Setting s = 200 as the population size and running the program with
the whole sample data (such a test is called reclassification), after a
number (thousands, depending on the seed chosen for generating random
numbers) of individuals were produced, a resulting weighted Choquet
integral projection and a classification with misclassification rate 0 are
obtained. The values of the monotone measure and the weights in the
weighted Choquet integral projection are rather close to their preset
values, that is to say, the algorithm retrieves the values of parameters
very well. To be convenient to compare them, all preset and retrieved
values of parameters are listed in Table 10.3, where 14, 1, t,, H;,
My, Hoy, and g,y represent s({xi}), p({x2}), p({xi, x2}), w({xs}),
H({x1, x3}), t({x2, x3}), and u(X) respectively. In the result, the centers
of classes C; and C, are numericalized as 0.059467 and 0.125833
respectively with a classifying boundary 0.08333, which is close to the
preset value 0.08.

From three different view directions, Figures 10.8(a)-(f) illustrate the
distribution of the data in a three-dimensional feature space, [0, 1)’. The
red balls are of class Cj, while the green balls are of class C,. Figures
10.8(a), 10.8(c), and 10.8(e) show the data set without the classifying
boundary, while Figures 10.8(b), 10.8(d), and 10.8(f) are added with the
resulting classifying boundary. The classifying boundary is a broken
plane with six pieces that divides the feature space into two parts—one
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Table 10.3 The preset and retrieved values of monotone measure x and weights b.

Parameters  Preset Recovered
1 0.1 0.015625
b 0.2 0.209961
Y7y 0.6 0.606445
A 0.05 0.057617
13 0.8 0.718750
L3 0.9 0.982422
Hi23 1.0 1.0

by 0.1 0.113074
b, 0.3 0.296820
b; 0.6 0.590106

contains all red balls and another contains all green balls. These pieces of
the broken plane have a common vertex (0.737024, 0.280771, 0.141226)
on axis L that passes through the origin and has equations
b f,=b,f, =bf; . The weighted Choquet integral Y= (O)fbf du
projects each point from the feature space onto axis L along one of the
six pieces of a broken plane that is parallel to the broken plane shown in
Figure 10.8.

The distribution of the resulting (final) projection Y on axis L is
presented by a histogram in Figure 10.9(c). Also, Figures 10.9(a) and
10.9(b) present a histogram of the distribution of Y under the weighted
Choquet integral projection with deferent parameters’ values at the
beginning and in the middle of the pursuit process performed by the
genetic algorithm respectively. In these figures, several small black
triangles indicate the numerical center of classes on axis L, while the
yellow bars illustrate the location of classifying boundaries on L. From
Figure 10.9, we can see how the weighted Choquet integral projection
works and how the classifying boundary divides the feature space to
classify the data.
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Fig. 10.8 View classification in Example 10.7 from three different directions.
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(c) Final: 0 misclassified point with g = 0.015625, 1, = 0.209961, w1, = 0.606445, 115 =
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Fig. 10.9 The distribution of the projection Y onaxis L based on the training data set in
Example 10.7.
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Fig. 10.10 The convergence of the genetic algorithm in Example 10.7 with different
population sizes.

The convergence of the genetic algorithm depends on the choice of
population size s used in the algorithm. A detailed investigate on the
effect of s is made based on a set of experiments of running the program
for three different choices of the population size (s = 100, 200, and 500)
with ten trails (ten different seeds) each. Figure 10.10 illustrates the
average convergence rate under these three different choices of the
population size. The horizontal axis indicates the number of individuals
created up to some moment during the running of the program. The
vertical axis indicates the average best misclassification rate of these ten
trails at that moment. Here the best misclassification rate is that of the
best-so-far individual with the minimum misclassification rate. From
Figure 10.10, we can see that all three curves for s = 100, 200, and 500
are decreasing. The curve for s = 100 decreases fastest at the beginning
of the optimization process. However, there is a serious premature
convergence (the population converging to identity before the
misclassification rate is minimized) in this case and the average
misclassification rate does not even converge to close to zero. In fact,
five out of ten trails converged prematurely. The curve for s = 500
decreases too slowly though no premature among ten trails is found.
Choosing s = 200 seems to be the best among these three choices. It
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decreases rather fast and there is only one premature convergence among
the ten trails. Generally, too small a population size will lead to serious
premature convergence in the optimization process, while too large a
population size slows down the convergence speed and prolongs the
running time of the program unnecessarily.

More examples of classification based on the weighted Choquet
integral for real-world data sets can also be found in [Xu et al 2003].

In general, when the weighted Choquet integral is adopted in the
classifier, the nonadditivity of signed efficiency measure x describes
the interaction among the contributions from feature attributes towards
the classification. Thus, the classifying boundary is not an
(n—1) -dimensional hyper-plane generally, but an (n —1)-dimensional
broken hyper-plane with n! pieces. The parameters, vector b and
constant ¢ as well as signed efficiency measure x, can be optimally
determined by the training samples in the given data set via a soft
computing technique such as the genetic algorithm approximately. Such
a nonlinear classification model is a real generalization of the classical
linear classification model. After determining the parameters, b, ¢, and
4 based on the training data, if a new individual f'is obtained, we only
need to calculate the value of y(f) = (C)[bf du . Then, we can classify f
into one of the two classes according to whether y(f)<c.

10.4 The Uniqueness Problem of the Classification by the
Choquet Integral with a Linear Core

A natural idea to generalize the classification model presented in Section
10.2 is to replace the weighted integrand of the Choquet integral with a
linear core similar to the nonlinear multiregression model discussed in
Section 9.2, that is, the classifying boundary is identified by equation

O (a+bf)du=c,

where a, b, ¢, f, and x have the same meaning shown before.
Unfortunately, it will violate the uniqueness of the Choquet integral
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expression of the classifying boundary. Though this does not affect the
effectiveness of the classification, explaining the importance of the
various attributes making contributions towards the classification
becomes difficult.

Example 10.8 ([Zhang et al 2009]) An artificial data set now is used to
show the problem on the uniqueness of the Choquet integral expression
with linear core in the classification model. There are two feature
attributes, two classes, and 26 records in the data set, that is,
X ={x,x,},S={I,1I} and /=26. The data are listed in Table 10.4
and shown in Figure 10.11 by white dots for class I and black dots for
class II respectively, where f; and f, are two coordinates on the
plane.

Geometrically, the classification by the Choquet integral with linear
core can be described as follows. There is a projection axis L located
by equation a, +b,f, =a, +b,f, . For each sample point (f,, f,), along
with the directions presented by the two branches of each contour of the
Choquet integral, is projected onto axis L as a point with
corresponding value (C)[(a+bf)du . Thus, the 2-dimensional
classification problem is converted to be a one-dimensional classification
problem on L and, therefore, can be solved by using only one critical
value, ¢, as the boundary of two classes on line L. The two classes in
the given data on the plane can be actually well separated (with
misclassification rate 0) by a contour of the Choquet integral with linear
core. The contour is a broken line indicated, for example, by

20 80
fzz—jfﬁr? when a, +bf <a,+b,f,

and

£ :—?f1 +20 when a,+b.f,>a,+b,f,.

The vertex of the broken line is (1, 20/3), which is on axis L;
possessing equation
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10 10
=—fi+—.
S 3f1 3

These are shown in Figure 10.11. The corresponding values of
parameters in the Choquet integral are a = (1, 0), b = (1, 3/10), u (<) =0,
p({xi}) =4/5, p({x2}) = 3/5, p(X)=1,and ¢ = 2.

However, for the same boundary, it is not difficult to find other
values of parameters in the expression of Choquet integral’s contour. For
example, a = (0, 0), b= (1, 3/20), (D) =0, u ({x1}) = 2/3, pt ({x2}) = 3/4,
1 (X) =1, and ¢ = 1. The corresponding contour of the Choquet integral
with these parameters’ values coincides with the previous one, though
the projection axis L, is different from L, and their projection directions
are different in some area. These are also illustrated in Figure 10.11.

-1 0 1 2 3 4 5 f
40
fo==hi +20

Fig. 10.11 Different projections share the same classifying boundary in Example 11.8.
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Table 10.4 Data and their projections in Example 10.8.
Given data Projected to line L, Projected to line L,
a+hf, a,+b,f, a+hf, a,+b,f,
S Sfin  class St f :if c=2 . ’ :if c=1
T /! 2077
/5 6 I 6/5 9/5 24/25 1/5 9/10 29/40
174 3 I 5/4 9/10 59/50 1/4 9/20 2/5
73 5 I 4/3 3/2 43/30 1/3 3/4 31/48
172 2 I 3/2 6/10 33/25 12 3/10 13/30
172 6 I 3/2 9/5 42/25 1/2 9/10 8/10
35 7 I 5/8 21/10 19/10 3/5 21/20 15/16
2/3 2 I 5/3 3/5 109/75  2/3 3/10 49/90
1 2 I 2/10 83/55 1 3/10 23/30
1 3 I 9/10 89/50 1 9/20 49/60
1 4 I 6/5 46/25 1 3/5 13/15
1 10 I 3 13/5 1 3/2 11/8
/5 9 I 6/5 27/10 21/10 1/5 27/20 17/16
4/5 8 I 9/5 12/5 54/25 4/5 6/5 11/10
21720 152 11 41/20 9/4 211/100 21/20 9/8 177/160
11/10 17/3 1o 21/10 17/10 101/50  11/10 17/20 61/10
6/5 21/5 1I /5 63/50 251/50  6/5 63/100 101/100
6/5 9 I 11/5 27/10 52 6/5 27/20 21/16
3/2 1 I 5/2 3/10 103/50 372 3/20 21/20
2 16 I 3 24/5 102725 2 12/5 23/10
2 20 I 3 6 24/5 2 3 11/4
3 9 I 4 27/10 187/50 3 9/20 43/20
3 10 I 4 3 19/5 3 3/2 5/2
3 11 I 4 33/10 193/50 3 33/20 51/20
4 4 I 5 6/5 10625 4 3/5 43/15
4 8 I 5 12/5 86/25 4 6/5 46/15
4 16 11 5 24/5 56/5 4 12/5 49/10

From Example 10.8, we may see that the classifying boundary can be
expressed by more than one (in fact, infinitely many) different Choquet
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integrals, which have different values of the signed efficiency measure,
different values of the parameters a and b, or different critical value
c.

10.5 Advanced Consideration on the Nonlinear
Classification Involving the Choquet Integral

Based on the basic classification model involving the Choquet integral
discussed in Section 10.2, there are several improvements or
generalizations. Some of them are briefly shown in the following.

10.5.1  Classification by the Choquet integral with the widest
gap between classes

We have seen the uniqueness problem on the expression of the Choquet
integral with a linear core in the classification. To avoid the trouble, an
additional optimization criterion should be added to the original model
discussed in the previous sections. One of the possible additional
optimization criteria may be chosen as follows.

For a given data set (10.1), by using the model of the weighted
Choquet integral, assume that the minimal misclassification rate is 7.
Each optimal solution (a classifier) with the minimal misclassification
rate 77 is denoted as (a,b,c, 1) . Let Q be the set of all optimal
solutions, 1.e.,

Q ={(a,b,c, u)|(a,b,c, u)has misclassification rate 7}

= (e = (@, ", ", ) |1 €T},

where T is a certain index set. For each e, find the interval (¢, c{")

such that (a“,0",c,u")e Q for every ce(c”,c’) . Let
t, =argmax,_, (¢! —c\"). Then take

(to) + Cl(fo )

&
e(’o) :(a(fo),b(lo)’ 2 5 ,/u(lo))
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as the final unique optimal solution. This solution can be understood as
the middle boundary of the widest gap between two classes.

10.5.2  Classification by cross-oriented projection pursuit

From Section 10.4, we may see that, even the optimal broken line as a
classifying boundary of two classes has been found, expressing it as a
contour of the Choquet integral with a linear core still has infinitely
many different ways with respective projection axis L. This suggests us
to restrict the location of the axis. Setting a by the zero vector, i.c.,
reducing the linear core to weighted integrand as we have done in
Section 10.2 is just one of the possible ways. In this way, the projection
axis is restricted to pass through the origin, of course, pass through the
vertex of the broken line as well. Thus, an alternative way for reducing
the number of optimal solutions is to fix the projection axis by two
vertices of broken lines that are expressed as the contours of two
different Choquet integrals, i.c., let the two Choquet integrals share one
common projection axis. This method is called the cross-oriented
projection pursuit based on the Choquet integral.

Let data set (10.1) be given. Based on the data set, now the classifier
is a mapping .4 : R" — R* with a boundary that separates R* to form
a partition {Sy, S»} of R”.

To reflect the complex interaction among the feature attributes
towards the classification, two signed efficiency measures, x# and v,
defined on the power set of X ={x,, x,,---,x,} are used for measuring
the strength of contributions from each individual feature attribute as
well as the strength of the joint contributions from each possible
combination of feature attributes in two different points of view.
Regarding each observation of the feature attributes as a function f
defined on X, the Choquet integrals of (af +5b) with respect to g or v,
in symbol [(af +b)du and [(af +b)dv , are used to project f from the
feature space to R respectively, where a=(q,a,,:--,a,) and
b=(b,b,,-,b,)are n-dimensional vectors satisfying min, q; =0, and
max, | b; |=1, for i=1,2,---, n. Thus, ordered pair
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([(af +b)du, [(af +b)dv)

forms mapping .# from R" to R?. Vector a and b are called
oriented coefficients of the projection axis. The partition of R* is
formed by S, =(c,©)x(-»,c,] and S, =R*-S,, where ¢, and c,
are boundary points on the projection axis L for the classification. That is,
the corresponding regions of the classes in the sample space are: one
class is indicated by

[(af +b)ydu>c, and [(af +b)dv<c,;
while another by
[(af +b)du<c, or [(af +b)dv>c,.

In this model, the values of signed efficiency measures 4 and v
(except u(X)=v(X)=1), vectors a and b, and numbers ¢; and ¢,
are unknown. All of them should be determined based on given data of
the feature attributes and the classifying attribute optimally, that is, such
that the misclassification rate for the given training data is minimized.

The learning procedure of the determination of these unknown
parameters is a cross-oriented projection pursuit. It may be performed via
a two-layer adaptive genetic algorithm. In the first layer of the algorithm,
each pair of ¢; and ¢, is a chromosome. This layer is devoted to
determine the boundary points ¢; and ¢, optimally when the values of
signed efficiency measures g, v, and vectors a, b are generated as
a chromosome in the second layer. While the second layer is used to
determine the values of signed efficiency measures gz, v and vectors
a, b optimally based on the optimized values of ¢; and ¢, to each
chromosome.
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Some typical distributions of two-class data set that can be well
classified by the cross-oriented projection pursuit based on the Choquet
integral are shown in Figures 10.12-13.

10.5.3  Classification by the Choquet integral with quadratic
core

When the linear core is replaced by a quadratic core, the classifier based
on the Choquet integral is more powerful. Such a classifier can capture
the quadratic interaction among the contributions from feature attributes
towards the classification. The classifying boundary has a form of
(O)[(a+bf +cf*)du=d, where a=(a,a,,"--,a,), b=(b,b,,---,b,),
c=(¢,c,y, +,c,) are n-vectors satisfying

min; a; =0, and max, |b, =1 for i=1,2,---,n,

M is a signed efficiency measure with u(X)=1, d is a constant. All of
them are unknown parameters, whose values should be optimally
determined via a learning procedure based on data set (10.1).

Some typical two-class data distributions that can be well classified
by a classifier based on the Choquet integral with quadratic core can be
found in [Liu and Wang 2005].
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Fig. 10.12 Two-class two-dimensional data set that can be well classified by
cross-oriented projection pursuit.

{-2.2,-2)

(-2, 2,2

Fig. 10.13 Two-class three-dimensional data set that can be well classified by
cross-oriented projection pursuit.
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Chapter 11

Data Mining with Fuzzy Data

The Choquet integral discussed in Chapter 5 only supports real-valued
integrand. It means that both the integrand and the integration result of
the Choquet integral are real-valued. Thus, the data mining based on
Choquet integral described in Chapters 8 and 9 can only handle the
problems concerning crisp real numbers. However, in many databases,
some attributes may not be numerical, but categorical, or may have
linguistic words (or fuzzy numbers directly) as their values. Thus, to
extend the advantages of Choquet integral to fuzzy domain such that it
can manage fuzzy information, the original Choquet integral needs to be
generalized (or say, fuzzified) such that it can be used to deal with fuzzy
or linguistic data.

There is more than one way to fuzzify the Choquet integral. For a
given signed efficiency measure whose values are crisp real numbers,
when the integrand is allowed to be fuzzy-valued, the integration result
of its Choquet integral may be defined as either a crisp real number or a
fuzzy number. The former is called the Defuzzified Choquet Integral with
Fuzzy-valued Integrand (DCIFI) which is named by its defuzzified
(real-valued) integration result, while the latter is called the Fuzzified
Choquet Integral with Fuzzy-valued Integrand (FCIFI) due to its
fuzzy-valued integration result.

Both fuzzifications of the Choquet integral are applicable to different
problems in the data mining area. The non-fuzzy integral result in the
DCIFI facilitates to solve the classification or clustering problems where
crisp boundaries are pursued. On the other hand, the FCIFI is more

272
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suitable to the regression problems where the objective attribute is also
fuzzy-valued.

11.1  Defuzzified Choquet Integral with Fuzzy-Valued
Integrand (DCIFI)

Definition 11.1 Let ]N” : X > be a fuzzy-valued function defined on a
finite universal set X ={x,,x,,---,x,} and u be a signed efficiency
measure defined on #(X), the power set of X, where .4} is the set of all
fuzzy numbers. The defuzzified Choquet integral with fuzzy-valued
integrand (DCIFI) of f is defined as

[T du=©]" [u(F,) - p(xX)lda +(©)f u(F,)de,

where ﬁa is the a~level set of the fuzzy-valued function ]7 .

Obviously, the way to compute the value of the Choquet integral
given in Section 5.4 cannot be directly applied for computing the DCIFI
since the range of the fuzzy-valued function is not full-ordered, and
therefore, the values of function ]7 at variant attributes cannot be
rearranged in a nondecreasing order. However, we still can derive a
calculation scheme of the DCIFI according to the fuzzy set theory and
relevant properties of the Choquet integral. Actually, from the definition
of the DCIFI, we can see that the calculation of the DCIFI can be
rendered down into two subproblems:

(1) How to get ﬁa for a fuzzy-valued function ]7 ?
(2) How to get the value of w(F,) ?

The following subsections aim to answer these questions respectively.
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11.1.1  The o-level set of a fuzzy-valued function

Let 7 (X) be the class of all fuzzy subsets of X', the fuzzy power set of
X . Any fuzzy subset of X, A4, can be expressed as

Jold 4 dy
xl’xz’ ’x b

where d; is the degree of the membership of A4 at X, i=1,2,--,n.

Let 7 be a fuzzy-valued function defined on X . Function /7 can
be expressed as (m,, m,,...,m,), where m; is the membership function
of f(x) at x,, i=1,2,--,n.

Definition 11.2 For any given « e(—w,©), the a-level set of a
fuzzy-valued function 17 = (my, m,,...,m,), denoted by Fa , 1s a fuzzy
subset of X , whose membership function mp has a degree of
membership

[ “my (o)t
my (x;)=—F—— (11.1)
‘ 7 mat

at attribute x, if fwmi(t)dt #0, i=1,2,---,n. When f(xl.) is a crisp
number, then [ m,(#)dt=0. In this case, the degNree of membership
at x;, denoted by mg (x;), is equal to 1 if f(x)=2a, or O if

Sf(x)<a.

Example 11.1 Let X = {x,, x,,x;} and let a fuzzy-valued function ]N’
assign each element of X a trapezoidal fuzzy number, denoted by four
parameters [a, a, a.a,] , that is, f(x])z[l.O 15 20 25] ,
F(x,)=[4.0 45 5.0 5.0], and f(x;)=[3.0 35 4.0 45]. Then, we
have
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fA
f(x,)
"""""""" C S(x3)
“““““““““““““““ |/ ~ (00 1.0 0.75
=35 Fs=y"——
I S k X Xy X3
f(x)
~ 025 1.0 1.0
a=2.0 J\ £y _{ — 7}
. X Xy X3
X, X, X3 X

Fig. 11.1 The a-level set of a fuzzy-valued function in Example 11.1.

a
XX X

F :{0'25, E, Q} when a=2.0,

while

as shown in Fig. 11.1.

11.1.2  The Choquet extension of u

We can derive the signed efficiency measure z defined on 7 (X) based
on the signed efficiency measure u defined on 2(X).

Definition 11.3 Let x be a signed efficiency measure defined on
Z2(X), the signed efficiency measure z is a set function mapping from
the fuzzy power set of X, 7 (X), to (—o0,0). For any fuzzy set
AdeF (X) with membership function m(x): X —[0,1], we have
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H(A) = [mydu, (11.2)

where the integral is the Choquet integral with real-valued function, i.e.,
the membership function m, of 4.

Here, for any crisp subset A € #(X), we have p(A) =y ,du= u(A),
where

1 ifxed

ZA(X):{O ifxe A

is the characteristic function of A. Thus, z coincides with z on
#(X), that is, z is an extension of x from #(X) onto Z(X) and
called the Choquet extension of u .

For simplification, we use u to replace x on Z(X) without any
confusion in the following context.

Example 11.2 Let X ={x,, x,, x;} and a signed efficiency measure u
be given as

Ho =1 (D)=0,

= pu({x}) =1,

Hy = pu({x,}) =1,
s = ({2, ;1) =3,
My = pu({x3}) =2,

s = p({x, x33) = —1,

te = p({xy, x31) =4,
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Hy = u({x;, X5, X31) =5.

For fuzzy set

X X X

~ o~ 25 1.0 1. = = 0 L .
AF{u 10, _0} and BF{@ 10 0_75}

in Example 11.1, we have

H(Fyg) = [my, du
- mZ(xl) "M "‘[mg(xz) - m;(x1)] *He
=0.25-5+(1.0-0.25)-4
=4.25

and

u(Fys)=[m: du
=m;(x3) fhe +[m5(x)) —m5(x3)]- 44
=0.75-4+(1.0-0.75)-(-1)
=2.75.

11.1.3  Calculation of DCIFI

Obviously, it is rather difficult to express ,u(l?a) in an explicit form
involving only fundamental functions of «, and by which, to compute
the precise value of the DCIFI. However, we can numerically calculate it
approximately. Before illustrating the algorithm, some concepts and
properties are reviewed.

The support set of a fuzzy number a , denoted by a,, , is defined by
ay, = {t|m(7 (t)>0}, which is a crisp subset of the domain of the
membership function of @ . We denote the left and the right terminals of
the support set of @ by a, and a,, respectively. For example, a
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trapezoidal fuzzy number a =[L0 L5 2.0 25] has @ =1.0 and
a, =2.5; anormal fuzzy number b has l:,=—oo and l;r =00,

A fuzzy-valued function ]7 assigns each element x;, in the
universal set a fuzzy number j?(xi) , represented by its membership
function mi(x,.)(t)’ i=12,---,n. Now,Nwe denots the left alld the
right terminals of the support set of f (x;) as f (x;); and f (x),
respectively.

Theorem 11.1 For a universal set X, let x4 be a signed efficiency
measure on Z(X) and f be a fuzzy-valued function on X . Then,

O fdu = (O (f - du+q- u(X),

where ¢ is a crisp value and ~(f—q) is also a fuzzy-valued function
with its values represented by f(x;,)—¢q, i=1,2,---,n.

Proof. Let g~~= f—q. Then_ g s also a fuzzy-valued function and its
o-level set, G,, satisfies G, =F, or, equivalently, G,  =F,, for

a> a+q a—q

any real number « . Thus, denoting ¢ —¢q by f, we have

(Of fdp =[°, [1(F,) - u(X)da + ] u(F,)de
=1° (G, ) - u(X)lda+]; u(G, )da
=1, [1(G, ) - n(X)ld(a-q)+]; (G, )d(a—q)
=[0Gy~ u(X))dp+] " u(G)dp
=[G ) = (X AB+[°, 1(G )P+ (G p)ap
=%, u(X)dp+]°, m(X)dp
= [ (G )= u(XAB+ [y (G ydp+[°, w(X)dp
=(C)]gdu+q- 1(X)
=OJ(f —du+q-u(X) .
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Using Theorem 11.1, we can write

O] fdu = 1(G,)da+q- u(X)

=[, (G, )da+q- u(X),

where G is the «alevel set of function g=f-¢qg ,

g=min,, f(x;), and r=max,., f(x,),.
Now, we can numerically calculate the approximate value of the
DCIFI through the following algorithm.

(1) Input attributes’ number n in X , subintervals’ number K
(with default value K=100) required in the approximate computing,
function's values f(x,.) for i=1,2,---,n, and the values of the
signed efficiency measure y;, j=1,2,---,2" —1.

(2) Find g=min_., f(x),, r=max., f(x), . If g=—o or
r =0, then take f(xl.), and f(x,.)r as the left and right terminal
of j?(xi) l,.e » i=12,---,n, respectively. Here, & is a very
small positive real value defined by user with default value 107°.
Then reset ¢ =min,,., f(x,.)l , r=max,;., f(x,.)r , and set
6=(r—-q)/K. N

(3) Replace f(x;) by f(x)—gq.

(4) Initialize =0 and S=p, /2.

5 a+o=a.

(6) Whether a>(r—q)? Ifyes,

AS
5'(5—7)+Q‘ﬂ2u,135a

output S as an approximate value of | fd,u, and stop; otherwise,
continue.

(7) Find ¢, = mg (x;) by Equation (11.1), i=1,2,---,n.

(8 Regarding h=(c,c,,--,c,) as a function on X , calculate
AS =[hdu by scheme of calculation of classical Choquet integral
with real-valued integrand.
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9) S+AS=S andgoto(5).

We can see now, given a signed efficiency measure, the value of the
DCIFI is a crisp real number. Though the information on the fuzziness is
compressed, applying such an aggregation tool in data mining is usually
more convenient than giving a fuzzy number.

Example 11.3 Suppose that the evaluation of submitted papers is based
on three criteria: originality, significance, and presentation. They are
denoted by x;, x,, and x; respectively. The importance of each
individual criterion and their joint importance are described by a signed
efficiency measure, x4, defined on & (X), where X ={x,,x,, x;}. Also
suppose that the values of x4 are =02, =03, =08,
M, =01, ps=04, pu,=04,and u, =1.

The range of the evaluation to each criterion for submitted papers by
a journal editor is in the interval [/ = [0, 5]. However, the reviewers,
usually, are only required to rate the criteria by the following words:
“bad”, “weak”, “fair”, “good”, and “excellent”. These are fuzzy concepts
and can be described by fuzzy subsets of /, @, a,, d,, a,,and a,,
with membership functions

1 if £ €[0,1]

m,(t)=43-2t ifte(1,1.5]
otherwise

1 if t€[l.5,2]

2t-2 if te[l,1.5)
m,, (1) = .

5-2t if te(2,2.5]

0 otherwise ,
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1 if t €[2.5,3]

2t—4 ift€[2,2.5)
mf(t) = .

72t if t€(3,3.5]

0 otherwise

1 if t€[3.5,4]

2t—6 if 1 €[3,3.5)
m, (1) = .

9-2¢ if t€(4,4.5]

0 otherwise

and

1 if te[4.5,5]
m,(t)=<2t-8 if t€[4,4.5)

0 otherwise

respectively, then {a,, a,, a,, a,, a,} is afuzzy partition of 1. Here,
a,, a,, d;, d,,and a, are trapezoidal fuzzy numbers (see Figure
3.5, and we can write a,=[00115] , a,6=[115225],
a,=[225335], a,=[33.5445], and a,=[4 455 5]. Now, a
paper is evaluated as “excellent” for originality, “fair” for significance,
and “weak” for presentation by a reviewer. This reviewer’s evaluation
can be represented as a fuzzy-valued function fz(?ze,c? /»d,) on
X ={x,,x,,x;}. Thus, a global evaluation for the quality of the paper is
given by the Choquet integral of f with respect to u, (C)jfdy.
Using the algorithm above, a rather precise approximate value of

(C)jfd/z can be obtained:

(Of fdu~2.92176  when K =100,
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(Of fdu~2.92222  when K =1000.

For another paper evaluated as “bad” for originality, “good” for
significance, and “excellent” for presentation, denoting g =(a,, d,,4d,),
we have

(C)| gdp~1.96618  when K =100,

(O)] gdu~1.96611  when K =1000.

It means that the paper represented by function f is more suitable than
the one represented by function g for publishing in the journal.

Since the procedure of calculating the value of the Choquet integral
with fuzzy integrand will be repeated for a large number in
multiregression or classification problems, we should reduce its running
time as much as possible. For most real problems in decision-making, the
precision of the relevant results reaching three or four decimal digits is
sufficient. So, this example also suggests us to use 100 as the default
value of K in the algorithm.

In Example 11.3, all attributes have the same dimension. This is a
rather special case in data analysis. Generally, the attributes may have
variant dimensions. Thus, for a given function ]N‘ on X, we should
usually use a+ bf as the integrand in the Choquet integral to balance
the scales of the variant dimensions, where both a =(q,, a,, -+, a,) and
b=(b,b,,---,b,) are functions defined on X and their values are
optimally determined from given data via genetic algorithms.

11.2  Classification Model Based on the DCIFI

In classification, an observation is denoted by an n-dimensional vector
(f(x), f(x,),-+-, f(x,)), whose components f(x;,) are measurements
of the feature attributes x;, i=1,2,---,n. We assume that there exist
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m groups or classes in the n-dimensional space, denoted by
G, G, -+, C,, and associated with each observation is a categorical
attribute Y that denotes the class or group membership. For example, if
Y = j, then the observation belongs to C;, je{l,2,---,m}. To design
the classifier, we are usually given a set of training data with

observations of known classes, represented as

'xl xz cee 'xn Y
Hx)  fAiGy) - filx) N
L) filxy) o fH(x,) B%)
Si(x)  fi(xy) e filxy) Vi

The training data set is used to set up internal parameters of the classifier.
Here, the positive integer / is the number of samples in the training
data set. Once a classifier has been devised, we may estimate the class
belongingness for any new observation.

11.2.1  Fuzzy data classification by the DCIFI

When the measurements of feature attributes of an observation are
heterogeneous fuzzy data, such as crisp data, fuzzy data, interval values,
or linguistic variables, they are denoted by an n-dimensional fuzzy data
vector (f(xl), f(x2 )y, f(xn )) . Such an n-dimensional fuzzy data
vector can be visualized as a fuzzy point, which is not a single point but a
special fuzzy subset in the n-dimensional space. Each coordinate value of
a fuzzy point is a fuzzy number. A typical 2-dimensional heterogeneous
fuzzy data (f(xl), ]N‘(xz)) is shown in Fig. 11.2. It is depicted as a
frustum of a prism with height as 1. It has two coordinates which are
represented by two different trapezoidal fuzzy numbers with their
membership functions shown on the m(z)-¢ and the m(t,)-t, planes
in Fig. 11.2, respectively.

Remember that the DCIFI takes a fuzzy-valued function as its
integrand and gives a crisp value as its integration result. It can be
regarded as a projection from the feature space onto the real axis. Under
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Fig. 11.2 A typical 2-dimensional heterogeneous fuzzy data.

such a scheme, any fuzzy point (]N‘(xl), ]N‘(xz),---,f(xn)) , denoted
simply by (/71, /72, ey ]7”) in the feature space, is regarded as a
fuzzy-valued function ]7 defined on X ={x,x,,---,x,} , and
furthermore, projected onto a virtual variable, denoted by Y, on the real
axis through a DCIFI defined by

Y =(O)f fdu. (11.3)

Figure 11.3 illustrates the DCIFI projection of some heterogeneous
fuzzy data in the 2-dimensional space. Here, all heterogeneous fuzzy data
are distributed into two classes. Each class has three observations. Each
observation is identified by its fuzzy-valued coordinates jN"(xl) and
f(xz) . By certain DCIFI projection, each observation has been
projected onto a virtual point (denoted by the black dots in Fig. 11.3) on
the real axis L. It is natural to assume that there exists a boundary in the
2-dimensional space, on which each point can be projected onto an
identical virtual point (denoted by the white dot in Fig. 11.3), called the
virtual boundary, on the real axis by the same DCIFI projection.
According to this assumption, a classification problem of n-dimensional
heterogeneous fuzzy data can be simplified to that of one-dimensional
real data.
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Fig. 11.3 The DCIFI projection for 2-dimensional heterogeneous fuzzy data.

Good performance of the DCIFI projection classifier is expected due
to the use of the signed efficiency measure and the relevant nonlinear
integral which can handle heterogeneous fuzzy data, since the
nonadditivity of the signed efficiency measure reflects the importance of
feature attributes, as well as their inherent interaction, toward the
discrimination of the fuzzy points. In fact, the global contribution of
several feature attributes to the decision of classification is not just the
simple sum of the contributions of each feature to the decision. A
combination of the feature attributes may have a mutually restraining or
a complementary synergy effect on their contributions toward the
classification decision. So, the signed efficiency measure defined on the
power set of all feature attributes is a proper representation of the
respective importance of the feature attributes and the interaction among
them, and a relevant DCIFI is a good fusion tool to aggregate
information in different forms coming from the feature attributes for the
classification.
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11.2.2  GA-based adaptive classifier-learning algorithm via
DCIFI projection pursuit

Now, based on the DCIFI, we want to find an appropriate aggregation
formula that projects the n-dimensional feature space onto the real axis,
L, such that each fuzzy point ]N‘ = (J71, J72, ey f”) becomes a value of
the virtual variable that is optimal with respect to classification. In such a
way, each classifying boundary is just a point on the real axis L.

The classification task by the DCIFI projection classifier can be
divided into two parts:

(1) The DCIFI projection classifier depends on the signed efficiency
measure £, so how to determine the values of u is the first
problem we are facing with.

(2) Once the values of u are retrieved, the DCIFI projection
classifier is established. To classify new data, boundaries on the
real axis L should be determined.

The following two parts focus on the above two problems
respectively.

A. Boundaries determination

A DCIFI projection classifier is described by a signed efficiency measure
4. Once the values of 4 are given, the n-dimensional classification
problem of heterogeneous fuzzy data is reduced to a one-dimensional
classification problem of crisp data on the axis L of the virtual variable.
The m classes of records in the original training data set are now
projected to be m classes on the projection axis L. We can still use
symbol C,, k=1,2,---,m, to denote these classes. The center, c¢,, of
each class C, on L is the medium of the values of the virtual
variables corresponding to the points in class C,. The center ¢,
expressed as a real number, is a numericalization of class C,. After
arranging {c, |k =1,2,---,m}, and therefore, {C, |k=1,2,---,m}, in
an increasing order as (ci>Chysoen 6y ) and (G, Gy, G ), where
(ky, ky, -+, k,) 1is a permutation of {l,2,---,m}, we carry out a
point-wise search for the best classifying boundary between each pair of
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successive classes one by one under the criterion of minimizing the
misclassification rate which is defined as the number of misclassified
records (points) in the training set divided by data size /. The following
algorithm is devoted to determining the boundaries of successive classes
which have been rearranged according to the ascending order of their
centers:

(1) Initialize i=1.

(2) Find Y "(k)) , the farthest right (largest) point of C, , and
Y (kH) the farthest left (smallest) point of C

3) If Y (k)<Y (k;,;) (as shown in Fig. 11. 4(a))

p o TR+ Y (k)
' 2

b

where b, is the boundary between class C; and C; .
(4) Elseif Y (k)>Y (k;,;) (as shown in Fig. 11.4(b))
b, is the average of the collection points which satisfy three

conditions:

(a) are members of class C; and C

(b) are between Y (k;) and Y (k; +1) and

(c) have property “possessing the lowest number of misclassified
points if being a classifying boundary”.

(5) Check whether i=m,ifnot, i+1=i, and go to (2); if yes, go to

(6).
(6) End.

Thus, b,b,,---,b,_, are the best classification boundaries for the
DCIFI projection classifier with respect to the given signed efficiency
measure . The corresponding global misclassification rate is the sum
of the numbers of misclassified points in these (m—1) pairs of
successive classes divided by /.



288 Nonlinear Integrals and Their Applications in Data Mining

e Pointsinclass C,
i

o Points in class Cr.,,
i+

AT R R ot
Yk)  Y(k) Yalk) ¥ (k) Yelky) Yelkiy) V() Yk

(a) (b)
Fig. 11.4 Nlustration of virtual projection axis L when determining the boundary of a
pair of successive classes €, and C, :(a) when Y (k;) < Ya(kiyy) 3 (b) when
Y (k) > Y (k) -

B. GA-based adaptive classifier-learning algorithm

In this part, we discuss the optimization of the signed efficiency measure
4 under the criterion of minimizing the corresponding global
misclassification rate, and then obtain an optimal DCIFI projection
classifier. The optimizing process is just a “pursuit” for searching an
appropriate projection direction. It is performed by the GA-based
adaptive classifier-learning algorithm (GACA). The optimization is also
a data-driven process, where a training data set in the form of

X X, X, Y
fll f]2 fln Y]
f21 fzz 2n 2
f}l f}Z ﬁn Yl

is needed. Here, 17 i denotes the fuzzy value of the i-th feature at the j-th

observation and Y ; denotes the class tag of the j-th observation,
i=12, --n; j=12,---,1.

In the GACA, each individual of chromosome represents a DCIFI
projection which is identified by the values of a signed efficiency
measure u. Since real coding method is employed, each individual of
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chromosome consists of (2" —1) genes. Each gene represents a real
value between 0 and 1. The population in the GACA consists of s
individuals of chromosome. The misclassification rate is adopted for
estimating the fitness value of each individual of chromosome (i.e., the
DCIFI projection). The probability of an individual of chromosome in
the population being chosen as a parent to produce offspring depends on
its fitness value. The optimization in the GACA is performed under the
criterion of minimizing the misclassification rate. Fig. 11.5 shows the
flow chart of the GACA.

It starts off with an initialized population. Individuals of chromosome
in the population are decoded into their corresponding signed efficiency
measures to further determine their corresponding DCIFI projections.
For a DCIFI projection, each observation in the training data set can be
projected onto its virtual point on the real axis. According to the class
tags provided by the training data, we can pursue the best virtual
boundaries of the DCIFI projection being considered using the
boundaries determination approach presented in Subsection 11.2.2-A.
Then, cooperated with the training set, we can derive the misclassification

Fitness values
(Misclassification rates)

A
Tournament
.

Virtual
boundary

Training data

DCIFI
Projection

i

T __Crossover
Pool Randomly
—————— genetic
operators Realignment
Initialization ———
— v
)
Breed new offspring
————

T Update

Fig. 11.5 Flowchart of the GACA.
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rate of the current DCIFI projection, which also represents the fitness
value of the corresponding individual in the population. After that, a
tournament selection is performed. Better individuals have more chance
to produce offspring by some randomly chosen genetic operators. The
newly created offspring update the population. This process repeats until
we get zero misclassification rate or the generation number exceeds the
preset maximum number of generations.

To maintain the diversity of the searching space of our genetic
algorithm, a special set of operations is used when the best fitness value
remains unchanged for several consecutive generations (default value is
20). At that time, original population is divided into three parts by
ascending order on fitness values. The individuals of chromosome in the
first part are kept, while those in the second part create new offspring by
random mutation, and those in the third part are replaced by new
randomly created individuals of chromosome. Then, the population is
updated and the iteration is continued.

After determining the signed efficiency measure g and the
respective classification boundaries b, b,,---,b, ; from the training
data, any new observation of the feature attributes / = (E, J?z, TN fn)
can be classified by calculating its corresponding value of the virtual
variable

Y =(O)] fdu

and checking its location relative to the classification boundaries in the
order of b, b,,---, b, , onebyone.If Y <bh, then f is classified into

class G, s if Ye(b,_,b;] ,Nthen f is classified into class Ck/ ,
j=2,3,---,m—1; otherwise, f is classified into class Ckm .

11.2.3  Examples of the classification problems solved by the
DCIFI projection classifier

To evaluate the performance of the DCIFI projection classifier, a series
of examples both on synthetic and real data sets have been conducted.
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A. Examples on synthetic data

Two synthetic data sets, one containing 2-dimensional heterogeneous
fuzzy data distributed in 3 classes, and the other containing
3-dimensional heterogeneous fuzzy data distributed in 2 classes, are
generated and used to verify the efficiency and the effectiveness of the
DCIFI and the GACA. To evaluate the performance of the GACA on
recovering the classifier parameters, the classifier parameters, including
the values of the signed efficiency measure and the virtual boundaries,
are preset. The preset DCIFI projection constructs normally distributed
heterogeneous fuzzy data for each class which is separated by the preset
virtual boundaries. Then, using the created training data sets, the GACA
should recover the preset values of the parameters and obtain a low
misclassification rate. The procedure to construct the synthetic training
data sets is detailed as follows.

Assume that the data set has n feature attributes {x;,x,,---,x,},
m classes {C,C,,---,C,},and [ records with /; records for class C,,
j=12,---,m. Here, [ =2 - Each sample in the created data sets
has the form of

(), f(x), o, f(x,)), class tag} .

The following algorithm creates the heterogeneous fuzzy data (with
trapezoidal fuzzy number in each dimension) which are distributed in a
unit hypercube in the n-dimensional space and classified into m classes.

(1) Preset the values of the signed efficiency measure u by assigning
s fys 5 o, and the virtual boundaries by, by, -+, b, .

(2) Create the center of a fuzzy point in the n-dimensional space,
represented as a vector (¢,c,,'--,c,). Each coordinate c; ,
i=1,2,---,n, of the center is a real number generated by a random
number generator with the uniform distribution in [0, 1). Create a
fuzzy point (f(x),f(x,). f(x,) . where f(x) is a
randomly generated trapezoidal fuzzy number with its support set
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[c;—r,c;+r], i=1,2,---,n.Here, r, isarandom value between
0.0 and 0.05.

(3) For each observation (f(xl), jN"(x2 )y, f(xn )) , calculate the
corresponding value of the DCIFI, denoted by Y , with respect to
the preset .

(4) Create a random number, & [0, 1), with the uniform distribution.
In case Y <b, if E<e 77297 then assign class C, to the
right part of record, otherwise, abandon this record. In case
Ye (b;_1,b;],if &< e 92 then assign class C; to the right
part of record, j=1,2,---,m—1; otherwise, abandon this record.

In case ¥ >b, , if §Se_(y_”"’)2/2arz” , then assign class C,, to
the right part of record; otherwise, abandon this record. Here, the
normal distribution N(a j,af) are used to control the distribution
ofdatainclass C;, j=1,2,---,m.

(5) Repeat step (2) to step (4) until /; records of class C;
j=1,2,---,m, have been created.

Example 11.4 Consider a classification problem of 2 feature attributes
and 3 classes, that is, X ={x,x,}, C={C,C,,C;}. Totally 100
records are provided in the training data set, where 20 records for C;, 50
records for C,, and 30 records for C;. The preset parameters to
generate the training data are as follows: u({x,})=-0.1, u({x,})=0.2,
Hu({x;,x,})=1.0, b =02, and b, =0.6. Each record in the training
data set presents a fuzzy point in the 2-dimensional space. Here, the
fuzzy point is described by a 2-tuple vector whose elements are
trapezoidal fuzzy number represented by their membership functions. Fig.
11.6 shows the sample data, where each frustum of a prism denotes a
2-dimensional fuzzy point (with dashed contours for data of Cj, solid
contours for data of C,, and dash dotted contours for data of C;). Setting
s =20 as the population size and running the GACA with the whole
sample data, after 3 generations, zero misclassification rate is achieved,
and we obtain a trained DCIFI projection classifier with the classifying
boundaries (thick broken lines in Fig. 11.6). Here, the straight line
starting from the origin shows the virtual real axis to which the
2-dimensional heterogeneous fuzzy data are projected by the DCIFI. The
values of the signed efficiency measure and boundaries in the retrieved
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DCIFI projection classifier are rather close to the preset ones. That is to
say, the GACA can retrieve the values of parameters well and perform
the classification task successfully. The comparison of the preset and the
retrieved values of parameters is listed in Table 11.1.

Example 11.5 Consider a classification problem of 3 feature attributes
and 2 classes, that is, X ={x,x,,x}, C={C,C,}. 200 records are
generated by the preset DCIFI parameters as: u({x})=0.1,

w(tn =02, u(fx, x)=03, u(ix})=0.05, u({x,x})=0.25,

) S
AL NG
L1 B L4 i

Fig. 11.6  The training data and the trained classifying boundaries in Example 11.4.

Table 11.1 Preset and retrieved values of the signed efficiency measure and boundaries

in Example 11.4.

Parameters Preset Retrieved
H1({x}) -0.1 -0.105981
H1({x,}) 0.2 0.189793
u({x,, x,}) 1.0 1.000000
b, 0.2 0201631

b, 0.6 0.598042
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H({xy, x31)=0.9 ,  u({x,x,,x})=1.0 and b =0.23 , where 80
records are for C; and 120 records are for C,. Setting s=30 as the
population size and running the GACA with the whole sample data, after
50 generations, we obtain the trained DCIFI projection classifier with
misclassification rate 0. The values of the signed efficiency measure in
the retrieved DCIFI projection are rather close to their corresponding
preset values. This experiment also confirms that our GACA can retrieve
the values of the classifier parameters accurately. The comparison of the
preset and the retrieved values of parameters are listed in Table 11.2. Fig.
11.7 illustrates the distribution of the training data and the classifying
boundary in 3-dimensional feature space from two different viewing
directions. The 3-dimensional fuzzy data are represented by cubes in the
graph. The lengths on three dimensions of a cube denote the ranges of
support sets of the membership functions of three feature attributes in
each observation. The blue cubes are of class C; , while the yellow cubes
are of class C, . The classifying boundary is a broken plane with six
pieces that divide the feature space into two parts. These pieces of
broken planes have a common vertex (0.239537,0.239537,0.239537)
on the virtual axis L (denoted by the black line in graph) that passes
through the origin and point (1,1,1). Fig. 11.7 also reveals the ability of
the DCIFI projection classifier on classifying data which are separated by
boundaries with irregular shape.

Table 11.2  Preset and retrieved values of the signed efficiency measure and boundaries
in Example 11.5.

Parameters Preset Retrieved
H1({x}) 0.10 0.105585
u({x,}) 0.20 0.181064
H({x;, x,}) 0.30 0.318546
u({xy}) 0.05 0.053967
w(x,, ;1) 0.25 0.246499
w14y, x31) 0.90 0.907981
H({x), Xy, X3}) 1.00 1.000000

b, 0.23 0.239537
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Fig. 11.7 Artificial data and the classifying boundaries in Example 11.5 — from two view
directions.
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B. Application on emitters identification

It is a high-priority problem in military operation to identify and track
unique mobile transmitters for targeting. A powerful emitter
identification function is necessary to warn of immediate threat with
enough information to take evasive action. In military operation, such
identification is accessed by Radio Frequency (RF), Pulse Width (PW),
and Pulse Repetition Interval (PRI), of the collected pulse descriptor
words. They form the feature attributes of an observation recognition
problem, denoted by x,, x,,and x;, respectively. The values of these
features vary in interval ranges in accordance with a specific radar
emitter. Shieh et al proposed a fuzzy-neuro network to identify the
emitters in [Shieh et al 2002], where an interval activation function is
applied so that the network can process interval data. Two back
propagation learning algorithms, NVTBP and CVTBP algorithms, were
derived to tune the weights of neural network, and furthermore, to
classify the observations. In our experiments, the DCIFI projection
classifier is also implemented to identify different types of emitters, and
its performance is compared to that of the fuzzy-neuro network.

We use both the two-emitters and the three-emitter identification
problems to test and compare the performance of the DCIFI projection
classifier and those of the neural network approaches [Shieh et al 2002].
The training and testing data sets are the same as those in [Shieh et al
2002], where the data in training set are interval values while the data in
testing set are crisp values. To evaluate the robustness of the proposed
methods, a measurement distortion is also used as in [Shieh et al 2002] to
simulate the adding of noise to the testing data. To perform the testing at
different levels of adding noise, an Error Deviation Level (EDL) is
defined in [Shieh et al 2002] by

EDL.(%) = Sit 100%,

Jt

for i=1,2,3, and j;=1,2,---,/ , where [ is the number of
observations. Here, x; denotes the values of attribute x; of j-th
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observation in the testing data set, and ¢; is a small alteration added to
the values of x;;. The noisy testing data are obtained by adding random
noise ¢; to each original testing observation, denoted by

(xj 28, x, %80, X358 3)

with different EDL’s (from 0% to 15%).

First, we consider the two-emitter identification problem with the
input data corrupted by adding noise. For the DCIFI projection classifier,
it is a 3 attributes and 2 classes problem. We set the population size s
as 30, and the maximum number of generations as 1000. 10 training
samples are used to train the DCIFI projection classifier and the neural
network approaches respectively. The estimated values of the signed
efficiency measure and the virtual boundary are listed in Table 11.3.

9 sets of 80 testing samples with different EDLs (from 0% to 15%)
are generated and used to test the performance of the considered
identification approaches. The experimental results on average accuracy
are compared in Table 11.4.

Table 11.3 The estimated values of the signed efficiency measure and the virtual
boundary in two-emitter identification problem.

Parameters Estimated Values
u(ix}) 0.504087
#(1%,}) 0.476912
1({x,, x,}) 0.568434
H(x35) 0.394032
w(x,, x;}) 0.487458
1({xy, x33) 0.503144
H({x), xy, x51) 1.000000

boundary 6.885570
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Table 11.4 Testing results on two-emitter identification problem with/without noise.

0
Error Deviation Total Average Accuracy (%)

NN by NVTBP NN by CVTBP L
Level (%) Algor}i/thm Algor}i,thm DCIFI Projection
15 99.71 91.04 100
13 99.90 93.75 100
11 99.91 94.85 100
9 99.91 95.49 100
7 99.91 95.83 100
5 99.91 96.03 100
3 99.91 96.15 100
1 99.91 96.23 100
0 99.91 96.26 100

Secondly, we consider the three-emitter identification problem with
the input data corrupted by adding noise. For the DCIFI projection
classifier, it is a 3 attribute and 3 classes problem. We set the population
size s as 30, and the maximum number of generations as 1000. 15
training samples are used to train the DCIFI projection classifier and the
neural network approaches respectively. The estimated values of the
signed efficiency measure and the virtual boundary are listed in Table
11.5.

120 testing samples with different EDLs (from 0% to 15%) are used
to train and test the performance of DCIFI projection classifier and the
neural network approaches, respectively. The comparison results on
average accuracy are shown in Table 11.6.

The comparison results shown in Tables 11.5 and 11.6 indicate that
the proposed DCIFI projection not only has higher identification
capability, but also relatively more robust to noise than the neural
network approaches.



Table 11.5 The estimated values of the signed efficiency measure and the virtual
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boundary in three-emitter identification problem.

Parameters Estimated Values
u({x ) 0.488003
H(x2}) 0.434324

H({x, x,}) 0.479056
#({x33) 0.490667

1(4x,, X3}) 0.454789

w({xy, x3}) 0.507754

H({x, x5, x5}) 1.000000
Boundary 0 6.481580
Boundary 1 10.237300

299

Table 11.6  Testing results on three-emitter identification problem with/without noise.

Error Deviation

Total Average Accuracy (%)

Level (%) NN by NVTBP NNby CVIBP 1y ET projection
Algorithm Algorithm

15 75.75 72.21 80.83
13 79.16 73.10 85.83
11 80.49 73.76 85.00
9 84.09 76.17 91.67
7 89.44 80.25 94.17
5 96.04 85.96 99.17
3 99.44 89.19 100

1 99.80 90.63 100

0 99.84 91.08 100
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11.3  Fuzzified Choquet Integral with Fuzzy-Valued
Integrand (FCIFI)

Let ]7 :X > A be a fuzzy-valued function and u be a signed
efficiency measure on #(X). The defuzzified Choquet integral of f
with respect to x has been defined and discussed in Section 11.1. As
an aggregation tool, the DCIFI ignores the fuzziness in the integration
result, that is, the result of the integration is a crisp number. Though it is
convenient in many real data mining problems, missing the knowledge
on the fuzziness will bring some error in optimization problems, such as
the network optimizations. In this section, keeping the fuzzy knowledge
in the integration result, we concentrate on another approach for
fuzzifying the Choquet integral with fuzzy-valued integrand, called the
Fuzzified Choquet Integral with Fuzzy-valued Integrand (FCIFI), which
is named due to its fuzzy integrand and fuzzy integration result as well.

11.3.1  Definition of the FCIFI

First, we use the extension principle to define the Choquet integral with a
measurable interval-valued integrand, that is, an integrand being a
function whose range is a subset of .4; with the measurability in the
following sense. Here, .4; denotes the set of all rectangular fuzzy
numbers, which are identical to interval numbers.

Definition 11.4 An interval-valued function j_” : X — ;18 measurable
if both f,(x)=[f(x)],, the left end point of interval f(x), and
fr(x)z[ f (x)],, the right end point of interval f (x), are measurable
functions of x.

Definition 11.5 Let f :X —> A be a measurable interval-valued
function on X and g be a signed efficiency measure on #(X). The
Choquet Integral of f with respectto u is defined by

(C)dey = {Ig dy‘ g(x)e f(x) VxeX,g:X — R ismeasurable }

(11.4)
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According to the representation theorem and the extension principle
in fuzzy set theory, we can define the measurability of the fuzzy-valued
function and the FCIFI as follows.

Definition 11.6 A fuzzy-valued function /7 : X >y is measurable if
its a-cut function,

L@ =m0 =t |m; ()= a},

is a measurable interval-valued function for every « €[0,1], where
Mm% is the membership function of the value of ]7 at x.

Definition 11.7 (FCIFI) Let f:X — JF be a measurable
fuzzy-valued function on X and u be a signed efficiency measure on
Z(X). The fuzzified Choquet integral of jN" with respect to u 1is
defined by

©f fdu= U a-(©)f f,du (11.5)

where f_a (x) is given in Definition 11.6.

Note that, the integration value of the FCIFI is also a fuzzy subset of
R (a fuzzy number). Fig. 11.8 is helpful for understanding the
relationship between /7 and fa in Definition 11.7. For further
illustration, let us refer to an example.

J?(xz)

:
> > > — p

- - t —— ¢
7l 7 ) Ty | Aads

Fig. 11.8 Relationship between ]N” and f .
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Example 11.6 Let ]N” be a fuzzy-valued function defined on universal
set X ={x,,x,,x;}. Each element of X is mapped to a fuzzy number
by function ]7, ie., f(xl)z[l.O 2.0 3.0 4.0], a trapezoidal fuzzy
number; j?(xz)z[S.O 6.0] , an interval number; and
7(x3) =[7.0 8.0 9.0], a triangular fuzzy number. Their membership
functions are depicted in Fig.11.9. Take a =0.5, the a-cut function of
fuzzy-valued function jN" is an interval-valued function, fa , which
maps each element of X to an interval number, i.c.,
f,(x)=[1.5 351, f,(x)=[50 6.0] and f, (x;)=[7.5 8.5], as
shown in Fig. 11.9.

According to Definition 11.7, the calculation of the FCIFI is
established on that of the Choquet Integral with Interval-valued
Integrand (CIII). Due to the continuity of the Choquet integral, the
integration value of the CIII is also an interval number. Now the problem
we are facing with is how to determine the left and the right terminals of
the interval-valued integration result. In the following subsections, we
discuss two aspects of this problem, which are the CIII with respect to
efficiency measures and signed efficiency measures, respectively.

M@ 4

f(x,) F(xy)
1.0 ;

Lo L I >
0 10t20 30t40 5060 70 tsotoo !
15 35 50 60 75 85

f.()=[15 35]  f,(x,)=[50 60]  J,(x,)=[75 85]

Fig. 11.9 The membership functions and a-cut function of 7 in Example 11.6.



Data Mining with Fuzzy Data 303
11.3.2  The FCIFI with respect to monotone measures

Using the continuity and the monotonicity of the Choquet integral with
respect to monotone measures, we may prove the following theorem.

Theorem 11.2 Let f : X — ; be a measurable interval-valued
function on X and u be a monotone measure on #(X). Then the
Choquet integral of f with respectto u is

O] f du=[(C)] f, du, (O] £, du] (11.6)

where f, and f are two real-valued functions with f, x)=[f )], ,
the left end point of interval f (x), and f (x)=[ f (x)], , the right end
point of interval f (x), VxeX.

As shown in Theorem 11.2, when the CIII is with respect to a
monotone measure, terminals of the integration result can be directly
calculated from the Choquet integrals of terminals of the integrand.
Therefore, the FCIFI with respect to the monotone measure can be
derived by (11.6) easily. Two examples are given as follows.

Example 11.7 Let X ={x,x,}. Set function g is a monotone
measure with z({x;})=0.1, u({x,})=0.2, and u(X)=1. f is a
triangular  fuzzy-valued  function  with f (x)=[011] and
f (x,)=[0.5 0.5 1.5]. The membership function of f (x;) and f (x,)
are

t iftef0,1]

0 otherwise

and

1.5—¢ if 1 €[0.5,1.5]
0 otherwise
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respectively. They are shown in Fig. 11.10. The a-cut function of [ is
represented by intervals

Fo) =M =tt|m; ()2 a}=[a.1]
and

fue) =M =t |m;  (0)>a}=[0515-a].

When 0<a<05, we have [f,(x)],<[f,(x,)], and [f,(x)],<[f,(x,)],.
Therefore,
[ fudu, =a-1+(0.5-@)-02=0.1+0.8
and
[ fudp], =1-1+(0.5-a)-02=1.1-02a .
That is,
[ f,du=10.1+0.8a 1.1-0.2a].

Similarly, when o« € (0.5,1], we have

j £, du=[0.45+0.1a 1.45-0.9¢].

The membership function of (C)Ifd,u, m(t), is also shown in Fig.
11.10. We can see that (C)[ f du is not a triangular fuzzy numbers.

As for the Choquet integral with a normal fuzzy-valued integrand, its
value may not be a normal fuzzy number either.
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—— i)
e m2(t)
— mt)

Fig. 11.10 The membership functions of the Choquet integral with triangular
fuzzy-valued integrand in Example 11.7.

Example 11.8 Use the same X and x given in Example 11.7. Let
]7 be a normal fuzzy-valued function having value 7(10,1*) at x
and 7(15,10%) at x,. Fig. 11.11 shows the membership functions of
7(10,1) and 7n(15,10), m(t) and m,(t), respectively, as well as the
membership function of (C)[fd,u, denoted by m(z). We can see that
(C)I?dy is not a normal fuzzy number. Its membership function m(¢)
has a nondifferentiable point, also shown in Fig. 11.11.

We may also construct some examples to show similar conclusion for
the Choquet integral with a trapezoidal fuzzy-valued or a cosine
fuzzy-valued integrand. We can image that the membership function of
the value of an FCIFI may have a large number of nondifferentiable
points when 7 is not small.
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- r:n‘l(t)
== m2()
— m(t)

0.8

0.6

0.4

0.2

Sim,

Fig. 11.11 The membership functions of the Choquet integral with normal fuzzy-valued
integrand in Example 11.8.

11.3.3  The FCIFI with respect to signed efficiency measures

We should note that “ z be a monotone measure” cannot be replaced by
“u be a signed efficiency measure” in Theorem 11.2. The condition
guaranteeing the nonnegativity of x is essential. This can be verified
by the following counterexample.

Example 11.9 Suppose that X ={x,x,} , g =u({x})=1,
o =u({x,})=-2, puy=pu(X)=2. Then, u is a signed efficiency
measure, but not a monotone measure. Taking interval-valued function
/ that has value [l10 12] at x, and [8 14] at x, , we have
(O)f fdu=[18 24] . However, f,(x)=10, f.(x)=12, f(x,)=8,
f.(x,) =14, therefore, (C)[ f,du=18 and (C)[f.du =20 24.

Furthermore, the decomposability described by
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©f f du=O] f di” ~O)] f dp”

in Section 5.4 is also violated by the CIII with respect to a signed
efficiency measure. This can be shown in the following example.

Example 11.10 We still use the universal set X , the interval-valued
function f, and the signed efficiency measure u given in Example
119. So x4 =1, 1, =0, @5 =2, p =0, 1, =2, and x; =0.
Thus, (C)[f d,u [18 24] and (C)[fdu =[0 8] . Hence,
(C)j]_" du’ —(C)jf dyu~ =[18 24]-[0 8]=[10 24]. However, we have
O] / du=[18 24]. This violates the decomposability, that is,

©f f du# (O] f du* ~Of f du” .

As shown above, with respect to a monotone measure g, the left and
the right terminals of (C)f f du can be directly calculated from the
Choquet integrals of the integrand's left and right terminals, respectively.
However, when the FCIFI is respect to a signed efficiency measure,
Theorem 11.2 may not hold. In this case, terminals of (C)f f du may
overstep the range which is restricted by (C)f f,du and (C)|f.du .
Hence, the exact membership function of the Choquet integral with
respect to a signed efficiency measure for a fuzzy-valued integrand is
rather difficult to be found.

In general case, we may give estimation on the integration result of
the CIII with respect to signed efficiency measure through the following
theorem.

Theorem 11.3 Let f : X —> A; be a measurable interval-valued
function on X and u be a signed efficiency measure on #(X). Then
the Choquet integral of f with respect to s, O] fdu, is still a
rectangular fuzzy number (an interval number) and
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©f fduc (©f fdu* ~(©f f du”
~[[©O] 7 du*1,~LO)| F du ., (O] F ™, ~[©Of F 1]

Fig. 11.12 is helpful for understanding the above theorem.
In a simpler but common case where X is finite, we may obtain the

valued of (C) f du by solving two optimization problems with linear
constraints and nonlinear objective functions

2
min ) z;u; (11.7)
J=
and
27—
max ZZ_I.,uj (11.8)

j=1
subjectto f,(x,) < f(x,)< f.(x,), i=1,2,--,n, where

min  f(x)— max  f(x), ifitis>0or j=2" -1

7 = Jific(j/2)e[1/2,1) " ifre(j/2))e0,1/2)
J
0, otherwise

Possible location Possible location

of left terminal of right terminal

A A

s Y s I

| | | [
[ [ [ ] g

U Fde] 1 F i, f f [ Fdu1, =1 F e,
[y du [, du

Fig. 11.12 Description of terminal ranges when  is a signed efficiency measure.
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We propose a numerical optimization method involving a genetic
algorithm to approximately estimate the membership function of the CIII
when u is a signed efficiency measure in the following subsection.

11.3.4  GA-based optimization algorithm for the FCIFI with
respect to signed efficiency measures

The core of the proposed numerical optimization is a genetic algorithm
which is used to calculate the integration value of the CIII with respect to
a signed efficiency measure. For clarification, we reintroduce the
problem here. Let X be a finite set, i.e., X ={x,x,,---,x,}. A signed
efficiency measure x:#(X)— (-, ) is given. For an interval-valued
function f : X — A3, where A; denotes the set of all interval numbers,
we are going to calculate the integration result of (C)f f du . Since
O] fdu is also an interval number, only the left and the right terminals
are required to be determined. These two terminals are calculated by the
same GA approach, respectively.

A. Coding

In the GA-based optimization algorithm, real coding method is applied
here. Each chromosome consists of »n genes, denoted by g,,2,,:*, g,,
where n is the cardinality of the universal set X . Each gene takes a
real number between zero and one. We introduce a real-valued function
v:X — (—o,0), where v(x;) is a number in j_"(xl.), i=1L2,--,m.
For each i, g; and v(x;) are one-to-one correspondence, and they
can be coded and decoded by the following formula:

v(x;) :J;}(xi)-’_(f;(xi)_j}(xi))'gi >

where f_](x,.) and fr(x,.) are the left and the right terminals of f (x;)
respectively. The correspondence among genes, function v and f are
illustrated in Fig. 11.13.

We denote V' as the set of all real-valued function v. Now, the
problem can be summarized as follows:
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(1

2)
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| & | &> | """ | & |
v(x,) v(x,) v(x,)
| \ !
e — o—— o
— —
S(x) S(xy) f(x,)

Fig. 11.13 Correspondence in coding method.

Finding a real-valued function v;:X —(-o0,0) , where
vi(x)e f(x;), i=12,---,n,so that

(©)[v,du = min(C) [vdu, (11.9)

in which the value of (C)[v,du is the left terminal of (C)f fdu.
Finding a real-valued function v,:X —(—c0,0) , where
v.(x;)e f(x;), i=1,2,---,n,so that

(C)jvrdy:nvlg/x(C)Ivdy, (11.10)

in which the value of (C)[v,du is the right terminal of (C)f f du .

B. Evaluation criteria

To evaluate an individual of chromosome in the population, two
reference values, (C)f f,dy and (C)f frdy, are pre-calculated. After
decoding, each individual corresponds to a real-valued function v.
When the left terminal of (C)f fdu is calculated, we define the distance
between (C)[vdu and (C)f fidu as A, =(C)[ f,du—(C)[vdu . On
the other hand, when the right terminal of (C)f f du s calculated, we
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A, >0 A, <0 A, <0 A, >0
— —
° | ® Y | - »
“ [vdu (7 du [vdu [vdu (7. du Jvdu ®

Fig. 11.14 Distance definition on calculation of the left and
the right terminals of (C)I fdu .

define the distance between (C)[vdu and (C)f fdu as
A, =(C)[vdu —(C)[ f, du . Fig. 11.14 shows such a relationship.

Then, two fitness functions are defined to evaluate the performance of
an individual in two situations respectively.

(1) When the left terminal of (C)f fdu is calculated, the fitness
valued of the individual in the population is derived by

A, = (O fidu—(©)[vdu. (11.11)

(2) When the right terminal of (C)[ fdu is calculated, the fitness
valued of the individual in the population is derived by

A, =(Ofvdu—(O) f,du. (11.12)

The positively larger the fitness value is, the better performance the
individual has, and more chance it has to be selected to create new
offspring.

C. GA-based optimization algorithm

The optimization algorithm used here is a GA-based algorithm. We take
a-cuts of f(xi) from the bottom to the top in turn, i.e., a =g —>1. If
the a~cut of f(xl.) is a closed interval when =0, then ¢=0;
otherwise, & takes a small positive number to make the a-cut of 7(xl.)
be a closed interval when « =¢. For each « stage, calculate the left
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and the right terminals of (C) fad,u respectively by a genetic algorithm.
Then, using the decomposition theorem, Eq. (11.5) is applied to
reconstruct the final result of (C)j]?d,u .

The main program is as follows.

(1) Input the following initial parameters:

n:

Hys Mooy Hon e

o), f(x), e, f(x,)

K:

step :

2) i=0.
(3) a=step-i.

(4) For j=1-—>n, calculate

Cardinality of the wuniversal set
X ={x,,%5,+, X, }.

(2" —1) real numbers representing the
signed efficiency measure.

n fuzzy numbers representing the
integrand function 17

Number of o-cuts with default value
100.

step =(1.0—¢&)/ K , the alteration of «
value between two successive «
stages.

fep=ttim;, (0= a}.

(5) If i=0, Go to Phase 1 to calculate (C)f f, du ; otherwise, go to
Phase 2 to calculate (C)J f; du .

(6) i+l=i.lf i=K, goto(7); otherwise go to (3).

(7) Output the integration result (C)| fdu.

Phase 1:

This part focuses on the calculation of (C)f fidy when i=0. Here,
filizo is the a-cut function of f when a=¢. In this phase, for lack
of any information on integration result, a global search is required. The
following genetic parameters have to be set before the iteration starts off:



GC

flag :

The p

(1)

2)
3)

4)
)
(6)

(7)

(8)

max *
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The population size represented as a positive integer with
default as 50.

A small positive number with default as 107 .

The maximum number of the Improvement Counter (IC),
which records the number of successive generations whose
individuals are unimproved. It also acts as a marker to indicate
that the optimal has been found. Its default is 20.

The maximum number of the Generation Counter (GC) with
default as 100.

A flag to determine which terminal (the left or the right) of
(O] f du is currently calculated, flag=0 for the left
terminal, while flag =1 for the right terminal.

rogram is summarized as follows:

Randomly create an initial population that consists of s individuals
of chromosome. Initialize both GC and IC as 0. Initialize m, =0.0,
where m, stores the fitness value of the best individual of the
closest previous generation.

Calculate (C)[(f;),du and (C)[(f,), du.

Decode and evaluate each individual in current population. The
fitness value of the k-th individual is denoted by ¢, .

Set my=min,_, . @, .

If IC>1IC,,, or GC>GC,,, ,thengo to (12).

Do tournament selection (tournament size as 2). Randomly select
one operator among the random mutation (with probability 0.4),
the BLX-0.5 crossover (with probability 0.4), and the flat crossover
(with probability 0.2) to produce new individuals of chromosome
as offspring.

Repeat (6) until totally getting s new offspring. Decode and
evaluate each of the newly created individuals. Choose the best s
individuals from the group of these s new created ones and the
original s individuals in current generation to form the population
for the next generation.

Set m=min_,_, ¢, . If |my—m|<o,then IC+1—IC;
otherwise, 0 — IC.
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(9) Set my=m.

(10) GC+1— GC . Then go to (5).

(11) Output (C)[vdu, where v(x;) is encoded from the genes of the
best individual of current generation.

(12) Stop.

Phase 2:

In this phase, (C)ffl. du, i=1,2,---,K are calculated. As (C)Ij;i_1 du
has been obtained by the previous genetic process, according to the
continuity and the monotonicity of the Choquet integral, we can find the
left and the right terminals of (C)[ f;du nearby those of (C)f f; ,du.
Thus, a relative local optimization is enough.

The genetic parameters are set as those in Phase 1. The program
process follows the flowchart of Phase 1 except that some modifications
are applied in steps (1), (6) and (7):

(1) Unlike Phase 1, here, the population is initialized the same as that
of the last generation during the calculation on (C)[ f,_, du.

(6) Do tournament selection (tournament size as 2). Produce new
individual only by the random walk.

(7) Repeat (6) until totally getting s new offspring. To increase
diversity of the searching space, randomly generate another s
individuals of chromosome. Decode and evaluate these 2s
individuals and select the best s ones to form the population for the
next generation.

D. Examples

In this subsection, several examples of the FCIFI are shown, whose
integration results are retrieved by the optimization algorithm presented
above. It is shown that the proposed GA-based optimization algorithm is
an effective algorithm to solve the calculation of the FCIFI.

Example 11.11 Suppose that X ={x,x,}, ¢ is a signed efficiency
measure valued by 4 =p({x})=1, m=u({x,})=-2 , and
My =u(X)=2 . Taking fuzzy-valued function [ that assigns a
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triangular fuzzy number [0 1 1] at x, and [0.5 0.5 1] at x,. Fig.
11.15 shows the membership function of 7(x1) and ]N’(xz). Set
K =100, the membership function of (C)Ifd,u is retrieved by the
proposed genetic approaches and plotted in Fig.11.16.

0.8 [
0.7 I
0.6 [
m(?) 05 [
04
03 |

0.2 +

0.5 1.0 1.5
t

Fig. 11.15 Membership functions of f(xl) and f(xz) in Example 11.11.

0.6

m(t) 0.5

0.4

0.3

-4 -3 -2 -1 0 1 2 3

Fig. 11.16 The membership functions of (C)[ fdu in Example 11.11.
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Example 11.12 Let the universal set X and the signed efficiency
measure x4 be the same as those in Example 11.11. However, the
fuzzy-valued function jN" assumes normal fuzzy numbers at x; and
x, . Their membership functions are

1-10.0_, =150,

—( )
= 1.0 I 10.0
My =€ and M) =€ ,

respectively, where ¢ e (—w,0), as shown in Fig. 11.17. Then, the
membership function of (C)f fd,u is derived by the proposed
GA-based optimization algorithm and its membership function is shown
in Fig. 11.18.

0.8 / 1
0.7} / \ 1
0.6 / \ 1
m(f) 0.5} / \ .
0.4 / \ |

0.3 / \ b
02F / \ 1

Fig. 11.17 Membership functions of f(x;) and f(x,) in Example 11.12.
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09
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02 |

0.1 |

30

Fig. 11.18 The membership function of (C)[ fdu in Example 11.12.

Example 11.13 We consider a more complex case. Here, the universal
set X consists of 4 elements, x;,x,,x;, and x,. A signed efficiency
measure is defined in Table 11.7. Take a fuzzy-valued function ]7 that
assigns normal fuzzy numbers, which are the same as f(xl) and
7(x2) in Example 11.12, to x;, and x, respectively, and assigns
triangular fuzzy numbers, which are the same as ]N‘(xl) and ]N’(xz) in
Example 11.11, to x; and x, respectively. The membership function
of the value of (C)Ifdy is derived by the proposed GA-based
optimization algorithm and is shown in Fig. 11.19.
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Table 11.7 Values of the signed efficiency measure # in Example 11.13.

M value H value
(D) 0.0 u({xq}) 2.0
u({x}) 1.0 u({xy,x4}) 7.0
u({xa}) 2.0 H({xy,x4}) 9.0
u({xy,x2}) 2.0 u({x;,x0,x43) 1.0
u({x3}) 3.0 u({x3,x4}) 2.0
u({xy, x3) 11.0 u({x,x3,x4}) 2.0
u({xp,x3}) -1.0 u({xp,x3,x4}) 2.0
u({xy,x3,x34) 4.0 wu(X) 2.0

1
09
0.8
0.7
0.6
m(t) 05 |
04
03
02 F

0.1 [

0
-120

-100

-80

40

Fig. 11.19 Membership function of (C)J'fd# in Example 11.13.
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11.4  Regression Model Based on the CIII

Both the FCIFI and the CIII can be applied as regression tools. The
former is a generalized model to the latter, since the FCIFI handles
heterogeneous fuzzy data while the CIII manages interval data, and as we
know, interval data are included in heterogeneous fuzzy data.

In this section, we focus our attention on the regression problems by
the CIII because there are many practical cases where more complete
information can be surely achieved by describing a set of variables in
terms of interval data. For example, intervals may occur as transaction
time and valid time ranges in temporal databases, as line segments on a
space-filling curve in spatial applications, as inaccurate measurements
with tolerances in engineering databases, as daily temperatures registered
as the minimum and the maximum values, or for the minimum and the
maximum transaction prices daily recorded for a set of stocks.

11.4.1  CIII regression model

From Chapter 9, we can see that the Choquet integral with a real-valued
integrand is a very powerful regression tool because the nonadditivity of
the signed efficiency measure can well capture the nonlinear relationship
between the predictive attributes and the objective attribute. Similarly,
the CIII can also be used as an aggregation tool in multiregression, which
can represent the relationship among attributes with not only crisp data,
but also interval data.

In the CIII regression model, let x,x,,---,x, be the predictive
attributes and » be the objective attribute. Denote X = {x;,x,,---,x,}
as before. The provided training data set consists of / observations of
X;,X,,++,Xx, and y,and has a form as

X X Xn Yy
an Jflz [m A2

f21 fzz fzn J._/z

ﬁl ﬁZ ﬁ)z .)_/l
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where each row

is the j-th observation of attributes x,x,,---x,, and y, j=L2,---/.
Note that, the values of observations in the training data set are all
interval numbers, indicated by adding a top bar. Positive integer / is the
size of the data set and should be much larger than 2". Usually, [ is
not less than 5 times of 2". Each observation of x;, x,,---, x, can be
regarded as an interval-valued function f : X —> A Thus, the j-th
observation of x;, x,,---, x, is denoted by f J» and we write f Ji= f (%),
i=1,2,---,n, for j=1,2,---,1. Similarly, the j-th observation of y
isdenotedby y,, j=1,2,---,1.

Hence, the CIII regression model (without showing the random
perturbation) is expressed as

y=c+©O(a+bf)du,

where
y: value of the objective attribute y ;
/: an interval-valued function on X with f (x;) as its value at
X, i=L2,-,n;
L asigned efficiency measure;
a: areal-valued function defined on X which can be expressed as

a shifting parameter vector a =(a,,a,,--,a,);

b: areal-valued function defined on X which can be expressed as
a scaling parameter vector b=(b,,b,,---,b,);

¢ : aninterval-valued constant, ¢ =[¢; c,].

The introduction of parameters a,a,,---,a,, and b, b,, -, b,
attempts to balance the scales of the predictive attributes in case that they
have different dimensions. They should satisfy constraints
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mina, =0 and max|b, |=1.

1<i<n 1<i<n

Under these constraints, of course, we have a, >0 and —1<b, <1
for i=1,2,---,n.

In this multiregression model, the regression coefficients are constant
¢ , all elements of wvectors a and b, and w(A) for every
Ae P(X) - {D}. Totally there are

24n+n+2"-1=2n+2" +1

unknown parameters. All unknown parameters should be optimally
determined before the regression model is put into operation. The
scheme now is to learn all these coefficients through a genetic algorithm
by describing them as genes in the chromosome. As shown in Section
11.3.4, when CIII is with respect to a signed efficiency measure, its
integration result is also calculated by a genetic approach. Obviously,
during the process of learning coefficients for the CIII regression model,
two genetic algorithms are involved.

11.4.2  Double-GA optimization algorithm

We propose a double-GA optimization algorithm to learn the unknown
parameters in the CIII regression model. There are 2n+2"+1
parameters to be determined. All of them are represented by genes in a
chromosome. Fig. 11.20 shows the structure of each individual
chromosome represented in the double-GA optimization algorithm.

To evaluate the fitness value of an individual in the double-GA, we
define the distance between two interval numbers s and 7 as

57| =6, 7 F+(5. -7, F ,

where 5, 5,, t,,and 7, are the left and the right terminals of 5 and

r

t , respectively.
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Fig. 11.20 Structure of an individual chromosome in the double-GA
optimization algorithm.

Then the fitness value of an individual being considered in the
population is

o 1&H .
5 =135,-7). aL13)
j=1

where )7:. is the calculated integration result of the CIII regression
model, which is identified by the parameters represented by the current
individual, with respect to the j-th record of the predictive attributes,
and y;is the j-th record of the objective attribute in the training data
set.

Now, the procedure of the double-GA is shown below.

(1) Choose a large prime p as the seed for the random number
generator. Set the value for each genetic parameter as follows.

s The population size. It should be a large positive even
integer. Its default is 100.
a,p: The probabilities used in a random switch to control

the choice of genetic operators for producing offspring
from the selected parents. They should satisfy the
condition that ¢ >0, >0, and a+ f<1. Their
defaults are 0.4 and 0.4, respectively.

£,0: Small positive numbers used in the stopping controller.
Their defaults are 10° and 107'°, respectively.



)

)

4)

)
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max/C: The limit number of generations that have not
significant improvement successively. Its default is 10.
maxGC: The limit number of generations. Its default is 10000.

Read the number of the predictive attributes 7, the number of
training samples /, and the training samples.
Calculate

L 14 1LY
G5 =22 | V=7 20¥i |
RIGAND=

Randomly create an initial population that consists of s individuals
of chromosome. Initialize the Generation Counter (GC) and
Improvement Counter (/C) by 0. Initialize 6';2, — my(67), where
my(6%) stores the minimum fitness value of individuals in the
closest previous generation.

Decode each individual in the population to get its corresponding
shifting  parameters  a;,a,,---,a, , scaling coefficients
b,b,,---,b,, interval-valued constant c¢,,c,, and values of signed
efficiency measure g4, £y, ++, fy ;-

For each individual in current population, using the decoded
regression coefficients, cooperated with each record in the training
data set, to derive the calculated integration result of the CIII
regression model represented by the current individual by

yi=e+Of(a+bfydu,  j=12,1.

If a monotone measure is considered, Theorem 11.2 is applied to
derive the value of (C)f (a+b]_”j)du; otherwise, the GA-based
optimization algorithm presented in Section 11.3.4 is performed.
Then the fitness value of current individual is evaluated by
Equation (11.13).
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Fitness value of the r-th chromosome is denoted by &.. Set
m(6*)=min,.,_, &7, where m(6”) stores the minimum fitness
value of individuals in current generation.

If m(6*)< g&; or GC>GC,, , then go to (13); otherwise, take
the next step.

If my(6*)—m(6°) < 5&; , then IC+1— IC and take the next
step; otherwise, 0 — IC and go to (10).

If IC>IC,,, , divide the individuals in current population into
three parts by ascending order on their fitness values. The
individuals in the first part are kept, while those in the second part
create new offspring by random mutation, and those in the third
part are replaced by new randomly created individuals of
chromosome. Evaluate the new created individuals, and update the
population, go to (12); otherwise, take the next step.
Do tournament selection (by tournament size as 2). Randomly
select one operator among the non-uniform mutation (with
probability « ), the BLX crossover (with probability £ ), and the
random mutation (with probability 1-a — ) to produce new
individuals of chromosome as the offspring.

Repeat (10) until totally getting s new individuals. Evaluate this s
new created individuals. Choose the best s individuals from the
group of these s new created individuals and the original s
individuals in current generation to form the population for the next
generation.

GC+1— GC.Save m(6*) as my(6°). Then go to (6).

Get the optimized regression coefficients from the best individual
of the current generation.

Stop.

11.4.3  Explanatory examples

In this part, two examples are implemented to verify the effectiveness
and efficiency of the CIII regression model. These examples are
conducted on synthetic data. Examples 11.14 and 11.15 are implemented
on a CIII regression model with monotone measure and signed efficiency
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Fig. 11.21 Benchmark model in Examples 11.14 and 11.15.

measure, respectively. They all refer to a regression benchmark model
with 3 predictive attributes and 1 objective attribute. Fig. 11.21 shows
this benchmark model.

By presetting the shifting coefficients a,, a,, a; scaling coefficients
b, by, b;, constant ¢, c,, and the values of monotone measure or signed
efficiency measure g, 1,, -+, t;, 10 training data sets, each of which
consists of 200 observations, have been randomly generated for both
experimental series, respectively.

Example 11.14 In this example, a CIII regression model with respect to
a monotone measure is considered. The calculation of the CIII can be
managed simply by Theorem 11.2. In this case, one genetic approach
which is dedicated to the optimization of unknown parameters is
involved.

10 randomly generated data sets, each of which consists of 200
observations, are applied to test the adaptability of our algorithm. The
optimization results are recorded in Table 11.8. Here, among 10
randomly generated training data sets, five trials can converge to the
global optimal before the maximum iteration time exceeds. For the
remaining seven trials, they also reach the nearby space of the optimized
solution. This shows that the proposed algorithm has satisfactory ability.

The comparisons of the preset and the estimated unknown parameters
of the best one of 10 trials (the trial on Data set 2) are listed in Table 11.9.
Here, all regression coefficients have been recovered well.
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Table 11.8 Results of 10 trials in Example 11.14.

Data Set Minimum fitness value

Set 1 2.15e-05 converge at generation 2003
Set 2 1.35e-04

Set 3 2.46e—05 converge at generation 2235
Set 4 2.17e—05 converge at generation 1701
Set 5 1.77e-03

Set 6 2.05e—05 converge at generation 1324
Set 7 7.49e—04

Set 8 1.18e—04

Set 9 2.48e—05 converge at generation 2321
Set 10 1.23e-04

Table 11.9 Comparisons of the preset and the estimated unknown parameters
of the best trial in Example 11.14.

Coefficients Preset  Estimated Coefficients Preset Estimated
value  value value value
a; 0.10 0.10012 1 (D) 0.00  0.00000
a, 020  0.20072 u({x}) 0.10  0.10141
a 0.30 0.30103 u({xy}) 0.10  0.10268
b 0.20 0.19231 u({x,x}) 030  0.29987
by 0.50 0.50139 u({x3}) 020 0.19921
by 0.90 0.91103 p({x;,x31) 040  0.41001
1 0.10 0.10002 Hu({xy,x31)  0.60  0.59623
c, 0.50 0.49811 H1(X) 1.00 1.00000

Example 11.15 In this example, a CIII regression model with respect to
a signed efficiency measure is considered. Since Theorem 11.2 does not
work for this case, the genetic approach presented in Section 11.4.2 is
applied. Each of the 10 randomly generated data sets consists of 200
observations. The testing results on the ability of our algorithm are
recorded in Table 11.10. Here, among 10 randomly generated training
data sets, the trial on data set 3 gives the best optimization result. The
optimization process stops at generation 4325 and converges to the



optimal solution. For the remaining trials on other data sets, the proposed
double-GA can also reach into the nearby space of the optimized point.
This shows that the algorithm still has satisfactory performance on the
efficiency and effectiveness even double genetic approaches are involved.
The comparisons of the preset and the estimated unknown parameters of
the best trial are listed in Table 11.11. We can see the regression
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coefficients have been recovered well.

Table 11.10 Results of 10 trials in Example 11.15.

Data Set Minimum fitness value

Set 1 1.45e-03

Set 2 2.56e-03

Set 3 2.43e—05 converge at generation 4325
Set 4 4.89¢-04

Set 5 2.47e—05 converge at generation 5541
Set 6 2.86e—04

Set 7 1.67e-03

Set 8 2.89¢-04

Set 9 4.98¢-04

Set 10 1.62e—03

Table 11.11 Comparisons of the preset and the estimated unknown parameters
of the best trial in Example 11.15.
Coefficients Preset Estimated Coefficients Preset  Estimated
value  value value value

a, 0.10 0.10012 1 (D) 0.00 0.00000
a, 0.20 0.20072 H(ix}) 0.10 0.99218
a3 030  0.30103 u({x2}) -0.10  -0.10071
b, 0.20 0.19231 H({x,x0}) 0.30 0.29987
by 0.50 0.50139 4({x3}) 0.70 0.71011
by 0.90 0.91103 a({xy,x3}) 0.40 0.39901
c 0.10 0.10002 H({xy,%3}) 0.60 0.60023
c, 0.50 0.49811 H(X) 1.00 1.00000
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