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Preface 

The theory of nonadditive set functions and relevant nonlinear integrals, 

as a new mathematics branch, has been developed for more than thirty 

years. Starting from the beginning of the nineties of the last century, 

several monographs were published. The first author of this monograph 

and Professor George J. Klir (The State University of New York                     

at Binghamton) have published two books, Fuzzy Measure Theory 

(Plenum Press, New York, 1992) and Generalized Measure Theory 

(Springer-verlag, New York, 2008) on this topic. These two books            

cover most of their theoretical research results with colleagues at the 

Chinese University of Hong Kong in the area of nonadditive set 

functions and relevant nonlinear integrals. Since the 1980s, nonadditive 

set functions and nonlinear integrals have been successfully applied in 

information fusion and data mining. However, only a few applications 

are involved in the above-mentioned books. As a supplement and in-

depth material, the current monograph, Nonlinear Integrals and Their 

Applications in Data Mining, concentrates on the applications in data 

analysis. Since the number of attributes in any database is always finite, 

we focus on our fundamentally theoretical discussion of nonadditive set 

function and nonlinear integrals, which are presented in the first several 

chapters, on the finite universal set, and abandon all convergence and 

limit theorems. 

As for the terminology adopted in the current monograph, words like  

monotone measure is used for a set function that is nonnegative, 

monotonic, and vanishing at the empty set. It has no fuzziness in the 

meaning of Zadeh’s fuzzy sets. Unfortunately, its original name is fuzzy 

measure in literature. Word “fuzzy” here is not proper. For example, 
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words “fuzzy-valued fuzzy measure defined on fuzzy sets” causes 

confusion to some people. Such a revision is the same as made in book 

Generalized Measure Theory. However, in this monograph, we prefer to 

use efficiency measure to name a set function that is nonnegative and 

vanishing at the empty set, rather than using general measure. This is 

more convenient and intuitive, and leaves more space for further 

generalizing the domain or the range of the set functions. Hence, similar 

to the classical case in measure theory [Halmos 1950], the set functions 

that vanish at the empty set and may assume both nonnegative and 

negative real values are naturally named as signed efficiency measures. 

The signed efficiency measures were also called non-monotonic fuzzy 

measures by some scholars. Since, in general, the efficiency measures 

are non-monotonic too, to distinguish the set functions satisfying only 

the condition of vanishing at the empty set from the efficiency measures 

and to emphasize that they can assume both positive and negative values 

as well as zero, we prefer to use the current name, signed efficiency 

measures, for this type of set functions with the weakest restriction. 

Thus, in this monograph, we discuss and apply three layers of set 

functions named monotone measures, efficiency measures, and signed 

efficiency measures respectively. 

The contents of this monograph have been used as the teaching 

materials of two graduate level courses at the University of Nebraska at 

Omaha since 2004. Also, some parts of this monograph have been 

provided to a number of master degree and Ph.D. degree graduate 

students in the University of Nebraska at Omaha, the University of 

Nebraska at Lincoln, the Chinese University of Hong Kong, and the 

Chinese Academy Sciences, for preparing their dissertations. 

This monograph may benefit the relevant research workers. It is also 

possible to be used as a textbook of some graduate level courses for both 

mathematics and engineering major students. A number of exercises on 

the basic theory of nonadditive set functions and relevant nonlinear 

integrals are available in Chapters 2–5 of the monograph. 

Several former graduate students of the first author provided                   

some algorithms, examples, and figures. We appreciate their valuable 

contributions to this monograph. We also thank the Department of 

Computer Science and Engineering of the Chinese University of Hong 



 Preface ix 

 

Kong, the Department of System Science and Industrial Engineering              

of the State University of New York at Binghamton and, especially,           

the Department of Mathematics, as well as the Art and Science College 

of the University of Nebraska at Omaha for their support and help. 

 

 

Zhenyuan Wang 

       Rong Yang 

      Kwong-Sak Leung  
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Chapter 1 

Introduction 

The traditional aggregation tool in information treatment is the weighted 
average, or more general, the weighted sum. That is, if the numerical 
information received from diverse information sources ,,, 21 Lxx nx  
are  ,),(),( 21 Lxfxf )( nxf  respectively, then the synthetic amount, 
weighted sum y, of the information is calculated by  

 

)()()( 2211 nn xfwxfwxfwy +++= L ,         (1.1) 

 
where ,,, 21 Lww nw  are the weights of ,,, 21 Lxx nx , respectively. 
When 10 ≤≤ iw  for ni ,,2,1 L=  and 11 =∑ =

n
i iw , the weighted sum 

shown in (1.1) is called the weighted average. In databases, these 
information sources nxxx  ,,, 21 L are regarded as attributes and 

)( ,),(),( 21 nxfxfxf L  are their observations (or say, their records), 
respectively. An observation can be considered as a function defined on 
the finite set consisting of these involved information sources. Thus, the 
weighted sum, essentially, is the Lebesgue integral defined on the set of 
information sources and is a linear aggregation model. The linear models 
have been widely applied in information fusion and data mining, such as 
in multiregression, multi-objective decision making, classification, 
clustering, Principal Components Analysis (PCA), and so on. However, 
using linear methods need a basic assumption that there is no interaction 
among the contributions from individual attributes towards a certain 
target, such as the objective attribute in regression problems or the 
classifying attribute in classification problems. This interaction is totally 
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different from the correlationship in statistics. The latter is used to 
describe the relation between the appearing values of two considered 
attributes and is not related to any target attribute. 

To describe the interaction among contributions from attributes 
towards a certain target, the concept of nonadditive set functions, such as 
λ-measures (called λ-fuzzy measure during the seventies and eighties of 
the last century), belief measures, possibility measures, monotone 
measures, and efficiency measures have been introduced. The systematic 
investigation on nonadditive set functions started thirty five years ago. At 
that time, they were called fuzzy measures. Noticeably, the traditional 
aggregation tool, the weighted sum, fails when the above-mentioned 
interaction cannot be ignored and some new types of integrals, such as 
the Choquet integral, the upper integral and the lower integral, should be 
adopted. In general, these integrals are nonlinear and are generalizations 
of the classical Lebesgue integral in the sense that they coincide with the 
Lebesgue integral when the involved nonadditive measure is simply 
additive. The fuzzy integral, which was introduced in 1974, is also a 
special type of nonlinear integrals with respect to so-called fuzzy 
measures. Since the fuzzy integral adopts the maximum and minimum 
operators, but not the common addition and the common multiplication, 
most people do not prefer to use the fuzzy integral in real problems. 
Currently, the most common nonlinear integral in use is the Choquet 
integral. It has been widely applied in information fusion and data 
mining, such as the nonlinear multiregressions and the nonlinear 
classifications, successfully. However, the corresponding algorithms are 
relatively complex. Only the traditional algebraic methods are not 
sufficient to solve most data mining problems based on nonlinear 
integrals. Some newly introduced soft computing techniques, such as the 
genetic algorithm and the pseudo gradient search, which are presented in 
Chapter 7 of this monograph, must be adopted. 

In most real problems, there are only finitely many variables. For 
example, in any real database, there are only finitely many attributes. So, 
the part of fundamental theory in this monograph is focused on the 
discussion of the nonadditive set functions and the relevant nonlinear 
integrals defined on a finite universal set. The readers who are interested 
in the convergence theorems of the function sequences and integral 
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sequences with respect to nonadditive set functions may refer to 
monographs Fuzzy Measure Theory (Plenum press, New York, 1992) 
and Generalized Measure Theory (Springer-verlag, New York, 2008).   

The current monograph consists of eleven chapters, After the 
Introduction, Chapters 2 to 5 devote to the fundamental theory on sets, 
fuzzy sets, set functions, and integrals. Chapters 6 to 11 discuss the 
applications of the nonlinear integrals in information fusion and data 
mining, as well as the relevant soft computing techniques. The relation 
among these chapters is illustrated in Figure 1.1. 
 

 
Fig. 1.1 The relation among chapters. 
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Chapter 2 

Basic Knowledge on Classical Sets 

2.1   Classical Sets and Set Inclusion 

A set is a collection of objects that are considered in a particular 
circumstance. Each object in the set is called a point (or an element) of 
the set. Usually, sets are denoted by capital English letters such as A, B, 
E, F, U, X; while points are denoted by lower case English letters such as 
a, b, x, y. As some special sets, the set of all real numbers is denoted by R, 
and the set of all nonnegative integers is denoted by N. For any given set 
and any given point, the point either belongs to the set or does not belong 
to the set. “Point x belongs to set A” is denoted as Ax∈ . In this case, we 
also say “A contains x” or “x is in A”. “Point x does not belong to set A” 
is denoted as Ax∉ . For this, we may also say “A does not contain x” or 
“x is not in A”. 

The set consisting of all points considered in a given problem is 
called the universal set (or the universe of discourse) and is denoted by X 
usually. The set consisting of no point is called the empty set and denoted 
by ∅. Any set is called a nonempty set if it is not empty, i.e., it contains 
at least one point. A set consisting of exactly one point is called a 
singleton. Any set of sets is called a class. The class consisting of no set 
is the empty class. It is, in fact, the same as the empty set. 

A set can be presented by listing all points (without any duplicates) 
belonging to this set or by indicating the condition satisfied exactly by 
the points in this set. For example, the set consisting of all nonnegative 
integers not larger than 5 can be expressed as }4,3,2,1,0{  or 

},50|{ Nxxx ∈<≤ . 
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It should be emphasized that any set should not contain some 
duplication of a point. For instance, }3,2,1,{2  is not a proper notation 
of a set since integer 2 appears in the pair of braces twice. After deleting 
the duplication (but keeping only one of them), }3,1,2{  is a legal 
notation of the set consisting of integers 1, 2, and 3. The appearing order 
of points in the notation of sets is not important. For instance, }3,1,2{  
and }3,2,{1  denote the same set that consists of integers 1, 2, and 3. 

Sets can be used to describe crisp concepts. Also, they represent 
events in probability theory. 
 
Definition 2.1 Set A is included by set B, denoted by BA ⊆  or AB ⊇  
iff Ax∈  implies Bx∈ . In this case, we also say “B includes A” or “A 
is a subset of B”. 
 
Example 2.1 In an experiment of randomly selecting a card from a 
complete deck consisting of 52 cards, there are 52 outcomes. Let the 
universal set X be the set of these 52 outcomes. Equivalently, X can be 
regarded as the set of these 52 cards directly. Event “the selected card is 
a heart”, denoted by H, is a subset of X. We can write H = {hearts} X⊆  
simply if there is no confusion. Here, set H describes crisp concept of 
suit “heart”. 
 

Obviously, in a given problem, any set A is included by X, i.e., 
XA ⊆ , while the empty set is included by any set A, i.e., ∅ A⊆ . 

 
Definition 2.2 Set A is equal to set B, denoted by BA = , iff BA ⊆  
and AB ⊆ . If A is not equal to B, we write BA ≠ . 
 
Definition 2.3 If set A is a subset of set B and BA ≠  (i.e., Bx∈∃  
such that Ax∉ ), then A is called a proper subset of B and we write 

BA⊂ . 
 
Definition 2.4 Given set A, function Aχ }1,0{: →X  defined by  
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



∉
∈

=
Ax
Ax

xA  if,0
 if,1

)(χ      Xx∈∀  

 
is called the characteristic function of A. 
 

It is easy to know that BA =  iff BA χχ =  (i.e., 
Xxxx BA ∈∀= ),()( χχ ) and BA ⊆  iff BA χχ ≤  (i.e., 

)()( xx BA χχ ≤  or Xxxx BA ∈∀=⇒= ,1)(1)( χχ ). Similarly, BA⊂  
iff BA χχ ≤  and there exists at least one point x in X such that Bx∈  
but Ax∉ (i.e., )()( xx BA χχ ≤  and Xx∈∃  such that 

0)(,1)( == xx AB χχ ). 
 
Example 2.2 Let X be the set of all real numbers, i.e., X = R. Interval 

]2,[1  is a subset of interval [1, 5). We have  
 



 ≤≤

=
otherwise,0

21 if,1
)(]2,1[

x
xχ , 



 <≤

=
otherwise,0

51 if,1
)()5,1[

x
xχ , 

 
and ]5,1[]2,1[ χχ ≤ . 

 
Example 2.3 Let },,{ cbaX = , }{aA = , and }{bB = . Then, neither 

BA⊆  nor AB ⊆ . In fact, we have  
 





≠
=

=
ax
ax

xA if,0
if,1

)(χ , 





≠
=

=
bx
bx

xB if,0
if,1

)(χ , 
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and neither BA χχ ≤  nor AB χχ ≤ . 

2.2   Set Operations 

Let X be the universal set, and let A and B be subsets of X. 
 
Definition 2.5 The union of A and B, denoted by BA∪ , is the set 
consisting of all points that belong to either A or B (may be both). That is, 

}or |{ BxAxxBA ∈∈=∪ . 
 
Definition 2.6 The intersection of A and B, denoted by BA∩ , is the set 
consisting of all points that belong to both A and B. That is, 

} and|{ BxAxxBA ∈∈=∩ . 
 
Definition 2.7 The complement of A, denoted by A , is the set consisting 
of all points that do not belong to A. That is, }|{ AxxA ∉= . 
 

Corresponding to the characteristic functions, we have  
 

BABA χχχ ∨=∪ , 

BABA χχχ ∧=∩ , 

and 

AA χχ −=1 , 

 
where symbols “∨ ” and “∧ ” are used to denote the maximum and the 
minimum operators for real numbers respectively, that is, 

),max( baba =∨  and ),min( baba =∧  for any real numbers a and b. 
 
Definition 2.8 Two sets A and B are disjoint iff ∅=∩ BA . 
 
Example 2.4 Rolling a regular die once, the outcome may be any one 
among 1, 2, 3, 4, 5, and 6. Let }6,5,4,3,2,1{=X . Event “obtaining an 
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even number”, denoted by A, is a subset of X, i.e., 
}6,5,4,3,2,1{}6,4,2{ ⊂=A . Event “obtaining a number less than 4”, 

denoted by B, is also a subset of X, i.e., }6,5,4,3,2,1{}3,2,1{ ⊂=B . 
Then, we have }6,4,3,2,1{=∪ BA , }2{=∩ BA , and }5,3,1{=A . 
 

The subsets of X with set operations union, intersection, and 
complement have the properties listed in the following Theorem. The 
proof of the theorem is directly from the definitions 2.5-2.7 and is 
omitted. 
 
Theorem 2.1 The operations of union, intersection, and complement of 
sets satisfy the following laws. 

 
Involution law:   AA =  
Commutative laws:  ABBA ∪=∪  
Associative laws:   CBACBA ∪∪=∪∪ )()(   
      CBACBA ∩∩=∩∩ )()(  
Distributive laws:   )()()( CABACBA ∩∪∩=∪∩   
      )()()( CABACBA ∪∩∪=∩∪  
Idempotent laws:   AAA =∪  
      AAA =∩  
Absorption laws:   ABAA =∩∪ )(  
      ABAA =∪∩ )(  
Domination laws:   XXA =∪  
      ∅=∅∩A  
Identity laws:    AA =∅∪  
      AXA =∩  
De Morgan’s laws:  BABA ∩=∪  
      BABA ∪=∩   
Law of excluded middle: XAA =∪  
Law of contradiction:  ∅=∩ AA  
 

The subsets of X with operators union, intersection, and complement 
form a class so-called Boolean algebra. 
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Beyond the union, the intersection, and the complement, there are 
more set operations that can be defined. Among them, one useful set 
operation is the difference defined as follows. 
 
Definition 2.9 The difference of A and B, denoted by BA− , is the set 
consisting of all points that belong to A but not to B. That is, 

} and|{ BxAxxBA ∉∈=− . 
 

The difference is not symmetric with respect to sets A and B generally, 
that is, ABBA −≠− , except BA = . Thus, we may define another 
kind of difference for two given sets as follows.  
 
Definition 2.10 The symmetric difference of A and B, denoted by BA∆ , 
is the set consisting of all points that belong to exactly one of A and B. 
That is, }or |{ ABxBAxxBA −∈−∈=∆ . 

 
For the symmetric difference, we have ABBA ∆=∆  for any sets A 

and B. 
 
Example 2.5 Using X, A, and B in Example 2.4, we have }6,4{=− BA , 

}6,4,3,1{=∆BA , 
 

By using De Morgan’s law BABA ∩=∪ , we can express the 
union in terms of the intersection and the complement as follows: 

 
BABA ∩=∪ . 

 
Similarly, by using De Morgan’s law BABA ∪=∩ , we can express 
the intersection in terms of the union and the complement as well: 
 

BABA ∪=∩ . 
 
The difference can be expressed in terms of the intersection and the 

complement, that is, BABA ∩=− . The symmetric difference of A and 
B can be expressed by the other operations: 
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)()()()(
)()()()(

BABABABA
ABBAABBABA

∪∩∪=∩−∪=

∩∪∩=−∪−=∆
    

 
So, we have only two basic set operators: either the intersection and 

the complement, or the union and the complement. 

2.3   Set Sequences and Set Classes 

A mapping from the set of positive integers (or the set of first n positive 
integers) to the power set of the universal set X is called a set sequence 
(or a finite set sequence, respectively) and denoted by }{ iA  simply, 
where iA  is the i-th term of the set sequence. It should be emphasized 
that }{ iA  cannot be regarded as a set of sets since iA ’s are allowed to 
be repeated but a set is not allowed to have any duplicate of elements.  

The union and the intersection can be extended for more than two sets. 
The union of sets ,,, 21 LAA and nA , is denoted  by nAAA ∪∪∪ L21 , 
simply, Un

i iA1= . Similarly, their intersection is denoted by 
nAAA ∩∩∩ L21  or In

i iA1= . Furthermore, considering infinitely many 
subsets of X: 1A , 2A , L,3A , denoted by }{ iA , their union and 
intersection are defined as follows. 
 
Definition 2.11 The union of }{ iA , denoted by  U∞

=1i iA  (or Ui iA  
simply if there is no confusion), is the set consisting of all points that 
belong to iA  for at least one L,2,1=i . That is,  

 

},2,1 oneleast at for |{
1

LU =∈=
∞

=
iAxxA i

i
i . 

 
Definition 2.12 The  intersection   of    }{ iA ,   denoted by I∞

=1i iA   (or Ii iA  
simply if there is no confusion), is the set consisting of all points that 
belong to all iA  for L,2,1=i . That is,  
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},2,1 allfor |{
1

LI =∈=
∞

=
iAxxA i

i
i . 

 
As for their corresponding characteristic functions, we have 
 

i
i

i A
i

A χχ sup=U  

and 

i
i

i AiA χχ inf=I  

 
where sup and inf represent the supremum and infimum respectively (see 
Section 2.6). 
 
Definition 2.13 Set sequence }{ iA  is disjoint iff iA  and jA  are 
disjoint for any ji ≠ , L,2,1, =ji . 
 

When }{ iA  is disjoint,  
 

∑=
i

AA i
i

i
χχU . 

 
If we only consider finitely many (but more than one) sets 1A , 2A , 

,L nA , the above discussion on the characteristic functions is still valid. 
We just need to let ∅=== ++ L21 nn AA  in set sequence }{ iA . Of 
course, the above “sup” and “inf” become “max” and “min” respectively. 
 
Definition 2.14 Set sequence }{ iA  is nondecreasing iff L⊆⊆ 21 AA ; 
it is nonincreasing iff L⊇⊇ 21 AA . Both of them are said to be 
monotonic. 
 

If set sequence }{ iA  is monotonic, the above-mentioned “sup” and 
“inf” for the characteristic functions become “lim”.  
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Example 2.6 Let X be the set of all real numbers, i.e., ),( ∞−∞== RX . 
Taking ),[ ∞= iAi , L,2,1=i , we know that }{ iA  is a nonincreasing 
set sequence. Furthermore, 11 ),1[ AAi i =∞=∞

=U  and ∅=∞
=I 1i iA . We 

also have 0)(lim =∞→ x
iAi χ  for every real number x. 

 
Furthermore, these discussions can be generalized again. Let 

}|{}{ TtAA tt ∈=  be a family of sets where T is a nonempty index set. 
We may define the union and the intersection of }{ tA  as well. 
 
Definition 2.15 The union of }|{ TtAt ∈ , denoted by tTt A∈U , is the set 
consisting of all points that belong to tA  for at least one Tt∈ . That is, 

ttTt AxxA ∈=∈ |{U  for at least one } Tt∈ . 
 
Definition 2.16 The intersection of }|{ TtAt ∈ , denoted by tTt A∈I , is 
the set consisting of all points that belong to all tA  for Tt∈ . That is, 

} allfor |{ TtAxxA ttTt ∈∈=∈I . 
 

Generally, given class C, we use ∪C  and ∩C to denote sets 
∈∈ AAxx  somefor |{ C } and ∈∈ AAxx every for |{ C }, respectively. 

When index set T is well ordered, such as ]1,0[=T , we can also use 
the concepts of monotonicity. 

Similar to the set sequences, for the corresponding characteristic 
functions, we have  

 

t
Tt

t A
Tt

A χχ
∈

=
∈

supU  

and 

t
Tt

t ATtA χχ
∈

=
∈

infI . 

 
Thus, some laws discussed in Section 2.2 (Theorem 2.1) can be 

generalized as follows.  
 

Associative laws:  U UU
UTt Ss

s
Ss

s
Tt tt

AA
∈ ∈∈ ∈

=)(   
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     I II
UTt Ss

s
Ss

s
Tt tt

AA
∈ ∈∈ ∈

=)(  

Distributive laws:  UU
Tt

t
Tt

t ABAB
∈∈

∩=∩ )()(   

     II
Tt

t
Tt

t ABAB
∈∈

∪=∪ )()(  

De Morgan’s laws: IU
Tt

t
Tt

t AA
∈∈

=  

     UI
Tt

t
Tt

t AA
∈∈

=   

 
where tS  and T are index sets and we take the convention that 

∅=⋅∅U  and X=⋅∅I . 
 
For given nonempty class C, we say that C is disjoint if A and B are 

disjoint whenever A, B∈C  and BA ≠ . 
Similar to the set sequence, it is convenient to allow duplicate sets in 

a class of sets sometimes. 

2.4   Set Classes Closed Under Set Operations 

Let X be the universal set. The class of all subsets of X, denoted by P (X), 
is called the power set of X.  
 
Definition 2.17 A nonempty class is called a ring, denoted by R, iff  

∈∪ FE R  and ∈− FE R ∈∀ FE, R. 
 

In other words, a ring is a nonempty class closed under the formation 
of unions and differences. Any ring is also closed under the formation of 
intersection, i.e., ∈∩ FE R ∈∀ FE, R. In fact, the intersection can be 
expressed in terms of difference: )( FEEFE −−=∩ . 
 
Example 2.7 The class of all finite subsets of X is a ring. 
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Example 2.8 The class of all finite unions of bounded left closed right 
open intervals is a ring. 
 
Definition 2.18 A nonempty class is called a semiring, denoted by S , iff  

 
(1) ∈∀ FE, S , ∈∩ FE S ; 
(2) ∈∀ FE, S  satisfying FE ⊆ , there exists a finite class 

},,,{ 10 nCCC L  of sets in S , such that FCCCE n =⊆⊆⊆= L10  
and ∈−= −1iii CCD S , ni ,,2,1 L=∀ . 

 
Example 2.9 The class consisting of all singletons and the empty set is a 
semiring. 
 
Example 2.10 The class of all bounded left closed right open intervals is 
a semiring. Similarly, the class of all bounded left open right closed 
intervals is also a semiring.  
 
Definition 2.19 An algebra, denoted by A , is a ring containing X. 
 

Any algebra is closed under the formation of complements since the 
complement of a set can be expressed by its difference from X. 
 
Example 2.11 The class consists of all sets in a ring and their 
complements is an algebra. Therefore, by Example 2.7, the class of all 
finite subsets of X and their complements is an algebra. 
 
Definition 2.20 A nonempty class is called a σ-ring, denoted by Rσ, iff  

 
(1) ∈∀ FE, Rσ , ∈− FE Rσ ;  

(2) ∈
∞

=
U

1i
iE Rσ , when ∈iE Rσ  for L,2,1=i . 

 
In other words, a σ-ring is a nonempty class closed under the 

formation of countable unions and differences. Also, we can say that a 
σ-ring is a ring closed under the formation of countable unions. Any 
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σ-ring is also closed under the formation of countable intersections. In 
fact, any countable intersection can be expressed in terms of countable 
unions and differences as follows: 

 

)(
1 1 1 1

i
i i i j

jii AAAAI U U U
∞

=

∞

=

∞

=

∞

=
−−= . 

 
Example 2.12 The class of all countable subsets of X is a σ-ring. 
 
Definition 2.21 A σ-algebra (σ-field), denoted by F, is a σ-ring 
containing X. 
 

Any σ-algebra is closed under the formation of any countable 
(including finite) set operations that we have defined. 
 
Example 2.13 The class of all countable subsets of X and their 
complements is a σ-algebra. 
 

The power set of X is a σ-algebra; any σ-algebra is a σ-ring as well as 
an algebra; any σ-ring or algebra is a ring; and any ring is a semi-ring. 
These relations are illustrated in Figure 2.1. 

 
 

 
  
 

 
 
 
 
 
 
 

 

Power set 

σ-Algebra 

Algebra σ-Ring 

Ring 

Semiring 

Fig. 2.1 Relations among classes of sets.
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For any given semiring S, there exists at least one set E such that 
∈E S. Since EE ⊆ , for any finite class },,,{ 10 nCCC L  of sets in S 

satisfying ECCCE n =⊆⊆⊆= L10 , we must have ECCC n ==== L10 , 
such that ∅=−= −1iii CCD . This means that the empty set belongs to 
any semiring. Hence, any ring, any algebra, any σ-ring, and any 
σ-algebra must contain the empty set. 
 
Theorem 2.2 Let C be a nonempty class. There exists a unique ring, 
denoted by R (C ), such that C ⊆ R (C ) and C ⊆ R ⇒  R (C ) ⊆ R 
for any ring R. That is, R (C ) is the smallest ring including C.  

 
Proof.  Power set  P (X)  is a ring including C  . Let  C  be the set 
of all rings that include C  and let R (C ) = ∩C. It is not difficult to 
verify that R (C ) is still closed under the formations of unions and 
differences, that is, R (C ) is a ring. Since every ring in C includes C , so 
does their intersection R (C     ). The uniqueness and being the smallest are 
guaranteed by the intersection in its definition.                               □ 

 
R (C ) in Theorem 2.2 is called the ring generated by C. 
Similar conclusions for semiring, algebra, σ-ring, and σ-algebra can 

also be obtained. We will use symbols S (C ), A (C ), Rσ(C ), and F (C ) 
to denote the semiring, the algebra, the σ-ring and the σ-algebra 
generated by C , respectively. For any given class C , we have        
C ⊆ S (C ) ⊆ R (C ) ⊆ Rσ(C ) ⊆ F (C ) and R (C ) ⊆ A (C ) ⊆ F (C ). 

The ring generated by a semiring can be obtained by collecting all 
finite disjoint unions of sets in the semiring. The algebra generated by a 
ring can be obtained by adding the complements of sets in the ring. 
These can be verified by Examples 2.7-2.11. However, to obtain the 
σ-ring generated by a ring, the procedure sometimes is very complex.  
 
Example 2.14 The σ-ring generated by either of the semirings shown in 
Example 2.10 is called the Borel field and denoted by B. In fact, it is a 
σ-algebra. It cannot be obtained by simply taking all countable unions of 
sets in the semiring and their complements. 
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2.5   Relations, Posets, and Lattices 

Let E and F be nonempty sets.  
 
Definition 2.22 Set },|),{( 2121 FxExxx ∈∈  is called the product set of 
E and F, denoted by FE× . 
 
Example 2.15  Let ),(21 ∞−∞=== RXX ,  the   one  dimensional 
Euclidean space (the set of all real numbers, i.e., the real line). Then 

YX ×  is the two dimensional Euclidean space (the real plane), denoted 
by 2R , in which each point is an ordered pair of real numbers, ),( 21 xx . 
 
Definition 2.23 A relation R from E to F is a subset of the product set of 
E and F, i.e., R FE ×⊆ . According to R, if point a in E is related to 
point b in F, then we write ∈),( ba R or aRb. A relation from E to E is 
simply called a relation on E. 
 
Example 2.16 Let Z be the set of all integers. We may define a relation 
R3 on Z as follows: aR3b iff a = b (mod 3), i.e., a and b have the same 
remainder when they are divided by 3. 
 
Example 2.17 Consider Z given in Example 2.16. Symbol ≤ with the 
common meaning “less than or equal to” is a relation on Z, denoted by 
R≤. For instance, ∈)2,1( R≤, but ∉)1,2( R≤. 
 
Example 2.18 Let X be a nonempty set. The inclusion of sets, ⊆ , is a 
relation on P (X), i.e., }|),{( FEFE ⊆  is a subset of P (X) × P (X). 
 
Definition 2.24 A relation R on E is: 

 
(1) reflexive iff aRa for any Ea∈ ; 
(2) symmetric iff aRb implies bRa for any Eba ∈, ; 
(3) transitive iff aRb and bRc imply aRc for any Ecba ∈,, ; 
(4) antisymmetric iff aRb and bRa imply ba =  for any Eba ∈, . 
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Relation R3 in Example 2.16 is reflexive, symmetric, and transitive. 
Relations R≤ and ⊆ in Examples 2.17 and 2.18 are reflexive, transitive, 
and antisymmetric. 
 
Definition 2.25 A relation R on E is called an equivalence relation iff R 
is reflexive, symmetric, and transitive. 
  

Relation R3 in Example 2.16 is an equivalence relation. 
 
Example 2.19 On ),(),(2 ∞−∞×∞−∞=R , for any two points 

),( 21 xxx =  and ),( 21 yyy = , define yx ≈  iff 2
2

2
1

2
2

2
1 yyxx +=+ . 

Then relation ≈  is an equivalent relation on 2R . 
 
Definition 2.26 Given an equivalence relation R on E and any point 

Ea∈ , set {x| xRa} is called the equivalence class (with respect to R) of 
a and denoted by ][a . 
 
Theorem 2.3 Let R be an equivalence relation on E and Eba ∈, . Then, 
[a] = [b] if and only if aRb. 

 
Proof. Necessity: Since R is an equivalence relation on E, it is reflexive. 
So, aRa and, therefore, ][aa∈ . Thus,  [a] = [b] means ][ba∈ . 
Sufficiency: Suppose that aRb. For any ][ax∈ , from xRa and the 
transitivity of R, we have xRb. This means ][bx∈ . So, ][][ ba ⊆ . By 
the symmetry of R, the reason for ][][ ab ⊆  is totally similar. Thus, [a] 
= [b].                                                          □ 
 
Definition 2.27 Let E be a nonempty set. A class of sets }|{ TtEt ∈  is 
called a partition of E iff  

 
(1) ∅≠tE  for every Tt∈ ; 
(2) class }|{ TtEt ∈  is disjoint, i.e., ∅=∩ st EE  for any Tst ∈,  

with st ≠ ; 

(3) U
Tt

t EE
∈

= . 
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Example 2.20 Interval class {[0, 1), [1, 2), [2, 3), [3, 4), [4, 5]} is a 
partition of interval [0, 5]. 

 
Theorem 2.4 Let R be an equivalence relation on E. Then, after deleting 
the duplicates, class }|]{[ Eaa ∈  is a partition of E. 

 
Proof. (1) For every Ea∈ , since R is reflexive, we have ][aa∈ , i.e., 

∅≠][a . 
(2) If there exists a point ][][ bax ∩∈  for two different equivalence 

class [a] and [b], then from xRa, xRb, the symmetry and the 
transitivity of R, we have aRb. By Theorem 2.3, [a] = [b]. Hence, 
after deleting the duplicates, class }|]{[ Eaa ∈  is disjoint. 

(3) For any Ea∈ , there exists }|]{[][ Eaaa ∈∈  such that ][aa∈ . 
So U EEaa =∈ }|]{[ .                                       □ 

 
Definition 2.28 Let R be an equivalence relation on E. Class 

}|]{[ Eaa ∈  is called the quotient set (or, quotient space) of E with 
respect to R. 
 
Example 2.21 In Example 2.16, relation R3 is an equivalence relation on 
Z, the set of all integers. Equivalence classes ]3[][ += ii   for any 
integer i. Thus, class {[0], [1], [2]} forms a partition of Z, where 

},6,3,0,3,6,{]0[ LL −−= , },7,4,1,2,5,{]1[ LL −−= , and 
},8,5,2,1,4,{]2[ LL −−= . Class {[0], [1], [2]} is the quotient set of Z 

with respect to R3. 
 
Definition 2.29 Relation R on E is called a partial ordering if it is 
reflexive, antisymmetric, and transitive. In this case, (E, R) is called a 
partial ordered set (or, poset). 

 
In Examples 2.17 and 2.18, (Z, ≤) and (P (X), ⊆) are posets. 

 
Example 2.22 On nR , for any two points ),,,( 21 nxxxx L= and 

),,,( 21 nyyyy L= , define yx ≤  iff ii yx ≤  for all ni ,,2,1 L= . 
Then ),( ≤nR  is a poset. 
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Definition 2.30 A poset (E, R) is called a well (or, totally) ordered set or 
a chain iff either yx ≤  or xy ≤  for any Eyx ∈, . 

 
In Examples 2.17, (Z, ≤) is a well ordered set. 
In case there is no confusion, we use (P, ≤) to denote a poset. 

 
Definition 2.31 Let (P, ≤) be a poset and PE ⊆ . A point a in P is 
called an upper bound of E iff ax ≤  for all Ex∈ . An upper bound a 
of E is called the least upper bound of E (or, supremum of E), denoted by 
sup E or E∨ , iff ba ≤  for any upper bound b of E. A point a in P is 
called a lower bound of E iff xa ≤  for all Ex∈ . A lower bound a of 
E is called the greatest lower bound of E (or, infimum of E), denoted by 
inf E or E∧ , iff ab ≤  for any lower bound b of E. 
 

When E consists of only two points, say x and y, we may write yx ∨  
instead of },{ yx∨  and yx ∧  instead of },{ yx∧ . 

If the least upper bound or the greatest lower bound of a set PE ⊆  
exists, then it is unique. 
 
Definition 2.32 A poset (P, ≤) is called an upper semilattice iff yx ∨  
exists for any Pyx ∈, ; A poset (P, ≤) is called a lower semilattice iff 

yx ∧  exists for any Pyx ∈, ; A poset (P, ≤) is called a lattice iff it is 
both an upper semilattice and a lower semilattice. 

 
Example 2.23 Let X be a nonempty set. Poset (P (X), ⊆) is a lattice. For 
any sets XFE ⊆, , FEFE ∪=},sup{  and FEFE ∩=},inf{ . 
However, it is not a well ordered set unless X is a singleton. 

2.6   The Supremum and Infimum of Real Number Sets 

In this section, we consider the set of all real numbers, called real line 
sometimes and denoted as R or ),( ∞−∞  directly. Relation ≤  on R is a 
full ordering such that ),( ≤R  is a lattice and, therefore, concepts upper 
bound, lower bound, supremum, and infimum are also available for any 
nonempty sets of real numbers. 
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Example 2.24 Let set E be open interval ),( ba . We have bE =sup  
and aE =inf . 
 
Example 2.25 Let set E be the set consisting of all real numbers in the 
sequence }{ ia , where i

ia −−= 21  for L,2,1=i . Then 1sup =E  and 
2/1inf =E . 

 
As a basic property of real numbers sets, the following Proposition is 

important. 
 
Proposition 2.1 For any nonempty set of real numbers, if it is upper 
bounded, then its supremum exists; if it is lower bounded, then its 
infimum exists. 
 

This proposition can be regarded as an axiom and should be always 
accepted. 
 
Theorem 2.5 Let E be a nonempty set of real numbers. Then for any 
given 0>ε , there exists Ex∈  such that ε−≥ Ex sup . Similarly, for 
any given 0>ε , there exists Ex∈  such that ε+≤ Ex inf . 

 
Proof. Use a proof by contradiction. Assume that there is no Ex∈ such 
that ε−≥ Ex sup . Then ε−Esup  is an upper bound of E. However, 

EE supsup <−ε . This contradicts the fact that Esup is the smallest 
upper bound of E. For the infimum, the proof is similar and is omitted.     □   

 
From the above theorem directly and the concept of limit, we have 

the following corollary.   
 

Corollary 2.1 Let E be a nonempty set of real numbers. There exists a 
sequence }{ ia  with Eai ∈  for ,,2,1 L=i such that 

Eaii suplim =∞→ . Similarly, there exists a sequence }{ ib  with Ebi ∈  
for L,2,1=i , such that Ebii inflim =∞→ . 
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Example 2.26 Set E is given in Example 2.25. Sequence }{ ia  itself has 
a limit, i.e.,  1suplim ==∞→ Eaii . Taking 2/1=ib  for all L,2,1=i , 
we have 2/1inflim ==∞→ Ebii .  

Exercises 

Exercise 2.1 Let X = (–∞, ∞). Explain the following sets and classes in natural language: 
(1) {x | 0  < x ≤ 1}; 
(2) {x |x  > 0}; 
(3) {0}; 
(4) {∅}; 
(5) {{x} |x  ∈ X}; 
(6) {E |E  ⊂ X}. 
 

Exercise 2.2 Let ]4,0[=E  and ]2,1[=F . Find FE∩χ , FEUχ , and FE−χ . 
 

Exercise 2.3 Let )/1),1/(1[ iiAi += , L,2,1=i . Find U∞
=1i iA  and I∞

=1i iA . 
 

Exercise 2.4 Let ),[ ∞= iAi , L,2,1=i . Find U∞
=1i iA  and I∞

=1i iA . 
 

Exercise 2.5 Let ]/1,0( iAi = , L,2,1=i . Find U∞
=1i iA  and I∞

=1i iA . 
 

Exercise 2.6 Let the universal set ]1,0[=X . Find U Xx x∈ }{  and I Xx x∈ }{ . 
 

Exercise 2.7 Categorize class C given in the following descriptions as of a semiring, a 
ring, an algebra, a σ-ring, a σ-algebra, or none of them: 
(1) X = (–∞, ∞), C is the class of all bounded, left open, and right closed intervals; 
(2) X = },2,1{ L , C = }3||,|{ ≤⊆ AXAA  where || A  denotes the number of points 

in set A and called the cardinality of A ; 
(3) X is a nonempty set with 2|| ≥X , E is a nonempty proper subset of X, C = {F |E  ⊂ 

F ⊂ X}; 
(4) X is a nonempty set, E is a proper subset of X, C = {F |F  ⊆ E}; 
(5) X is a nonempty set, E is a nonempty subset of X, C = {E}. 
(6) X is product set ),(),( ∞−∞×∞−∞ , C = },|),[),{[ dcbadcba ≤≤× . 

 
Exercise 2.8 Let X = },2,1{ L  and C = }|}{{ Xxx ∈ . Find S (C ), R (C ), A (C ), 
Rσ(C ), and F (C ). 
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Exercise 2.9 Let the universal set be the set of all real numbers, i.e., RX = , and S  be 
the set consists of all singletons and the empty set in P (X). Find R (S ), Rσ(S ), A (S ), 
and F (S ).  
 
Exercise 2.10 Let C1 and C2 be nonempty classes satisfying C1 ⊆ C2. Prove that 
F(C1)⊆ F(C2). A similar result holds when σ-algebra F is replaced by semiring S, ring 
R, algebra A, as well as σ-ring Rσ respectively.  

 
Exercise 2.11 Show that the σ-ring generated by the second semiring shown in Example 
2.10 is also the Borel field B. 

 
Exercise 2.12 Let C be a nonempty class. Prove that F (R (C )) = F (C ).  
 
Exercise 2.13 Determine whether (yes or no) each of the following relations on set 

}4,3,2,1{=A  is reflexive, symmetric, antisymmetric, and/or transitive. 
(1) )}4,4(),3,3(),4,2(),1,2(),2,1(),1,1{( . 
(2) )}4,4(),1,4(),3,3(),1,3(),2,2(),4,1(),3,1(),1,1{( . 
(3) )}4,3(),2,1{( . 
(4) )}4,4{( . 

 
Exercise 2.14 Let X = (–∞, ∞) and ≅ be the relation on X × X defined by 

 
(x1, y1) ≅ (x2, y2)  iff  x1 + y1 = x2 + y2 . 

 
Prove that ≅ is an equivalence relation. 

 
Exercise 2.15 Let },,,{ dcbaX =  and C = },},,{,,{ XBcaA∅ . Find all possible set 
pairs A and B such that C is a chain with respect to set inclusion ⊆. 

  
Exercise 2.16 Let E be the set of all irrational numbers in [0, 1].  
(1) Find sup E and inf E. 
(2) Find sequences },2,1,|{ L=∈ iEaa ii  and },2,1,|{ L=∈ iEbb ii  such that 

Eaii suplim =∞→  and Ebii inflim =∞→ . 
 
Exercise 2.17 Let the universal set be the set of all real numbers, Find the sup and the inf 
of the following sets. 
(1) A = {all rational number in (0, 1)}. 
(2) B = {1, 2, 3}. 
(3) C = },2,1|))1/(11()1{( L=+−− iii . 
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Chapter 3 

Fuzzy Sets 

3.1   The Membership Functions of Fuzzy Sets 

Let X be the universal set. From Chapter 2, we know that any crisp 
subset (or say, a classical subset) of X, simply called a set if there is no 
confusion, may be used to describe a crisp concept and is identified by its 
characteristic function. For a given set, any specified point is either in 
this set or not in this set, impossible to be both. However, in many real 
problems, some concepts, called fuzzy concepts, are not so clear. Hence, 
it is necessary to introduce the concept of fuzzy subsets of X (or, simply, 
fuzzy sets if there is no confusion) for describing fuzzy concepts. Similar 
to the fact that a crisp set is identified by its characteristic function, a 
fuzzy set is identified by its membership function, denoted by 

]1,0[: →Xm . Value )(xm  is called the membership degree of the 
fuzzy set at x, where Xx∈ . The characteristic function of sets 
discussed in Chapter 2 can be regarded as a special case of the 
membership function of fuzzy sets. So, the concept of fuzzy sets is a 
generalization of the concept of classical crisp sets.  

To simplify the notation, we still used capital letter, such as A, L,B , 
to denote fuzzy sets if there is no confusion. When more than one fuzzy 
sets are in discussion, we use subscripts to indicate the respective 
membership function, such as mA, mB L,  denoting the membership 
function of fuzzy sets A, L,B  respectively. Sometimes, to emphasize 
that the fuzzy sets are discussed, we use a wave at the top of the symbols, 
such as A~ , L,~B . When X is the set of real numbers, its fuzzy subsets 
sometimes may also be denoted by lower case letters with a wave at the 



Fuzzy Sets                              25 

top, such as a~ , L,~b . The set of all fuzzy subsets of X is denoted by  
F (X) and called the fuzzy power set of X. 

 

Example 3.1 On the age axis, we take ]120,0[=X  as the universal set. 
Concepts  “young” and  “old” are fuzzy.  We may use the following 
membership functions Ym  and Om  to indicate them respectively. 

 









≥
∈∀<<−

≤
=

40 if0
4025 if15/)40(

25 if1
)(

x
Xxxx

x
xmY ; 









≥
∈∀<<−

≤
=

65 if1
6550 if15/)50(

50 if0
)(

x
Xxxx

x
xmO

. 

 
Then, the membership degree of Y at 28 years age is 0.8 while that of O 
at 45 years age is 0. The graph of membership functions Ym  and Om  
are shown in Figures 3.1 and 3.2 respectively. 

 
 

 
  

 
 
 
 

1 
young

0                 10    20    30   40      50     60   70    80   90   100  110  120  age  

Fig. 3.1 The membership function of Y.  
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Fig. 3.2 The membership function of O . 

 
 

Example 3.2 Let },2,1,0{ L=X . Fuzzy concept “around 10” can be 
expressed as a fuzzy subset of X, denoted by D, with membership 
function 











=
±=
±=

=

.otherwise0
10 if1

110 if8.0
210 if3.0

)(
x
x
x

xmD  

 
Its graph is shown in Figure 3.8(a) on page 43. By using Zadeh’s 
notation, it can also be denoted as 

 
12/3.011/8.010/19/8.08/3.0 ++++=Dm , 

 
where symbol “/” does not mean “divided by” but means “at”. Alternatively, 
we may intuitively write 







=

12
3.0,

11
8.0,

10
1,

9
8.0,

8
3.0

Dm , 

 
where symbol “ ” means “at”. 

1 
old 

0                 10    20    30   40      50     60   70    80   90   100  110  120  age   
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Definition 3.1 Let A be a fuzzy subset of X with membership function 
)(xmA . The support set of A, denoted by supp A, is the crisp set 

described as follows: 
 

},0)(|{ supp XxxmxA A ∈>= . 

 
The support sets of fuzzy sets Y, O, and D in Examples 3.1 and 3.2 

are [0, 40), (50, 120], and {8, 9, 10, 11, 12}, respectively. 

3.2   Inclusion and Operations of Fuzzy Sets 

Let A and B be fuzzy subsets of universal set X.  
 

Definition 3.2 Fuzzy set A is included by fuzzy set B, denoted by 
BA⊆ , iff Xxxmxm BA ∈∀≤ )()( . Fuzzy sets A and B are equal, 

denoted by BA = , iff BA ⊆  and AB ⊆ . 
 

The concepts of inclusion and equality for fuzzy sets are 
generalizations of the concepts of inclusion and equality for crisp sets 
given in Definitions 2.1 and 2.2 respectively. 
 
Definition 3.3 The union of A and B, denoted by BA∪ , is the fuzzy set 
possessing membership function 

 

Xxxmxmxmxmxm BABABA ∈∀=∨=∪ )](),(max[)()()( . 

 
Moreover, if }|{ TtAt ∈       be a class of fuzzy sets, where T is an index 

set, then the union of  }|{ TtAt ∈ , denoted by U Tt tA∈ , has a 
membership function 

 
Xxxmxm

t
Tt

t A
Tt

A ∈∀=
∈∈

)(sup)(U . 
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Definition 3.4 The intersection of A and B, denoted by BA∩ , is the 
fuzzy set possessing membership function 

 

Xxxmxmxmxmxm BABABA ∈∀=∧=∩ )](),(min[)()()( . 

 
Similarly, if }|{ TtAt ∈           be a class of fuzzy sets, where T is an index 

set, then the intersection of  }|{ TtAt ∈ , denoted by I Tt tA∈ , has a 
membership function 

 
Xxxmxm

t
Tt

t ATtA ∈∀=
∈∈

)(inf)(I . 

  
Definition 3.5 The complement of fuzzy set A, denoted by A , is the 
fuzzy set possessing membership function 

 

Xxxmxm AA ∈∀−= )(1)( . 
 

The concepts of union, intersection, and complement for fuzzy sets 
are also generalizations of the corresponding concepts for crisp sets 
given in Definitions 2.5, 2.6, and 2.7 respectively. Similar to the laws for 
operations for crisp sets shown in Section 2.2, the following theorem 
gives the laws of operations for fuzzy sets. Its proof is omitted as well. 
 
Theorem 3.1 The operations of union, intersection, and complement of 
fuzzy sets satisfy the following laws. 

 
Involution law:   AA =  
Commutative laws: ABBA ∪=∪ , ABBA ∩=∩  
Associative laws:  U UU

UTt Ss
s

Ss
s

Tt tt

AA
∈ ∈∈ ∈

=)(   

     I II
UTt Ss

s
Ss

s
Tt tt

AA
∈ ∈∈ ∈

=)(  
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Distributive laws:  UU
Tt

t
Tt

t ABAB
∈∈

∩=∩ )()(   

     II
Tt

t
Tt

t ABAB
∈∈

∪=∪ )()(  

Idempotent laws:  AAA =∪  
     AAA =∩  
Absorption laws:  ABAA =∩∪ )(  
     ABAA =∪∩ )(  
Domination laws:  XXA =∪  
     ∅=∅∩A  
Identity laws:   AA =∅∪  
     AXA =∩  

De Morgan’s laws: IU
Tt

t
Tt

t AA
∈∈

=  

     UI
Tt

t
Tt

t AA
∈∈

=  

 
where tS  and T are index sets. 
 

Note that the following laws hold for crisp sets, but they are not in the 
above list. 

 
Law of excluded middle:  XAA =∪  
Law of contradiction:  ∅=∩ AA . 
 
In fact, these two laws are not true for fuzzy sets generally. So, the 

fuzzy sets in F (X) with operators union, intersection, and complement 
form a De Morgan algebra (or say, soft algebra), but not a Boolean 
algebra mentioned in Section 2.2. 

 
Example 3.3 In Example 3.1, the complement of “young”, read as “not 
young” and denoted by Y , has membership function  
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
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The concept “not young and not old”, called “middle age” and denoted 
by M, is a fuzzy set possessing membership function Mm  that has the 
form 
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The graphs of the membership functions Ym  and Mm  are shown in 
Figures. 3.3 and 3.4 respectively. 
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Fig. 3.3 The membership function of Y . 

 

Fig. 3.4 The membership function of M. 
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Definition 3.6 A nonempty class of fuzzy sets }|{ TtAt ∈  is called a 
fuzzy partition of fuzzy set A iff  

 
(FP1)  TtAt ∈∀∅≠ supp ;   

(FP2) ∑ ∈∀=
∈Tt

AA Xxxmxm
t

)()( , 

 
where T is a nonempty index set.  
 

In Definition 3.6, index set T may be infinite, where we can conclude 
that, for each Xx∈ , there are at most countably many t in T such that 

0)( >xm
tA . The concept of fuzzy partition is a generalization of the 

concept of partition for crisp sets shown in Section 2.5. However, 
conditions (2) and (3) in Definition 2.27 may be violated by a fuzzy 
partition. 
 
Example 3.4 In Example 3.3, class },,{ OMY  is a fuzzy partition of X. 
We may see that ∅≠∩MY , ∅≠∩OM , and XOMY ≠∪∪ . 
 
Example 3.5 The range of the evaluation to each criterion for submitted 
research papers by an academic journal editor is the interval I = [0, 5]. 
However, the reviewers, usually, are only required to rate the criteria by 
the following words: “bad”, “weak”, “fair”, “good”, and “excellent”. 
These are fuzzy concepts and can be described by fuzzy subsets of I: 

 
ba~ , wa~ , fa~ , ga~ , and ea~ , 

 
with membership functions  
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 bad weak fair good excellent 
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respectively. Then, }~,~,~,~,~{ egfwb aaaaa  is a fuzzy partition of I. Figure 
3.5 shows the membership functions of these five fuzzy sets. 

 
 
 

 
 
 
 

 
 

m(t) 

1 

0         1         2        3        4         5   t 

    Fig. 3.5 Membership functions of egfwb aaaaa ~,~,~,~,~ . 
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Generally, any fuzzy set and its complement form a fuzzy partition of 
X if none of them is empty. 

3.3   α-Cuts  

In Section 3.5, we can see that any fuzzy set may be expressed by a class 
of crisp sets, which are called α-cuts defined as follows. 
 
Definition 3.7 Let A be a fuzzy subset of X. For any ]1,0[∈α , crisp set 

},)(|{ Xxxmx A ∈≥α  is called the α-cut set (or, simply, α-cut) of A, 
denoted by αA ; while crisp set },)(|{ Xxxmx A ∈>α  is called the 
strong α-cut set (or, simply, strong α-cut) of A, denoted by +αA .  
 

It is clear that XA =0 , AA  supp0 =+ , and ∅=+1A .   
 
Example 3.6 In Example 3.1, ]5.32,0[5.0 =Y  and )5.32,0[5.0 =+Y . 
They can be seen from Figure 3.6. 

 
Example 3.7 In Example 3.2, }11,10,9{5.05.0 == +DD , but 

}11,10,9{8.0 =D  and }10{8.0 =+D  are different. 
 

Following Theorems 3.2, 3.3, 3.4, and 3.5 show some properties of 
α-cuts. The first two are direct results from the definitions and, therefore, 
their proofs are omitted. 

 

 
Fig. 3.6  The α-cut and strong α-cut of fuzzy set Y when α = 0.5. 
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Theorem 3.2 For any fuzzy set A,  
 

If 21 αα ≤ , then 
12 αα AA ⊆  and ++ ⊆ 12 αα AA . 

 
 
Theorem 3.3 Let A and B be fuzzy sets.  

 
If BA ⊆ , then αα BA ⊆  and ++ ⊆ αα BA . 

 
 

Theorem 3.4 For any fuzzy set A and any ]1,0[∈α , αα AA ⊆+ ,  
 

U αβ βα >+ = AA , and I αβ βα < += AA . 
 
 

Proof. The first inclusion is obtained from the implication  
 

αα ≥⇒> )()( xmxm AA . 
 
Equality U αβ βα >+ = AA  holds since  

 

,

 s.t. )( s.t. )( 

U
αβ

β

βα αββαβα

>

+

∈⇔

∈>∃⇔≥>∃⇔>⇔∈

Ax

AxxmxmAx AA
 

 
where symbol “⇔ ” means “is equivalent to”. As for the last equality 

I αβ βα < += AA , it can be obtained from  
 

.

 ,)( ,)( 

I
αβ

β

βα αββαβα

<
+

+

∈⇔

∈<∀⇔><∀⇔≥⇔∈

Ax

AxxmxmAx AA
 

   □ 
 
Theorem 3.5 Let }|{ TtAt ∈  be a class of fuzzy sets, where T is an 
index set. Then, for every ]1,0[∈α , 
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(1) U U
Tt Tt

tt AA
∈ ∈

⊆ αα )()( ; 

(2) I I
Tt Tt

tt AA
∈ ∈

= αα )()( ; 

(3) U U
Tt Tt

tt AA
∈ ∈

++ = αα )()( ; 

(4) I I
Tt Tt

tt AA
∈ ∈

++ ⊇ αα )()( . 

 
Proof. We only prove (1). In fact, 
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The proofs of (2), (3), and (4) are similar to the proof of (1).                  □    
 

It should be noted that the inverse inclusions of inclusions in (1) and 
(4) of Theorem 3.5 do not hold in general. A counterexample is shown as 
follows. 
 
Example 3.8 Let X be a singleton }{a , tA  have membership function 

tam
tA =)( , and )1,0[=T . Then ∅=1)( tA  for every Tt∈  such that 

∅=∈U Tt tA 1)( . However, U Tt tA∈  has membership function   
)(am

Tt tAU ∈
 1sup == ∈ tTt  such that XATt t =∈U 1)( . This shows that the 

inclusion in (1) of Theorem 3.5 cannot be replaced by equality generally. 
 

In a special case when T is a finite index set, we have better 
conclusions. 
 
Theorem 3.6 Let }|{ TtAt ∈  be a set of fuzzy sets, where T is a finite 
index set. Then, for every ]1,0[∈α , 
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(1*) U U
Tt Tt

tt AA
∈ ∈

= αα )()( ; 

(4*) I I
Tt Tt

tt AA
∈ ∈

++ = αα )()( . 

 
Theorem 3.7 For any fuzzy set A and any ]1,0[∈α , +−= )1()( αα AA . 

 
Proof. The conclusion comes from 

 

.

}1)(|{}1)(|{})(1|{)(

)1( +−=

−>=−≤=≥−=

α

α ααα

A

xmxxmxxmxA AAA  

          □ 

3.4   Convex Fuzzy Sets 

In this section, we consider the fuzzy subsets of n-dimensional Euclidean 
space (or its convex subset), i.e., nRX = , L,2,1=n . An important 
class of fuzzy sets is the class of convex fuzzy sets. 

A crisp subset of nR  is convex if, for any two points 1x  and 2x  in 
this subset, point 21 )1( xccx −+  is also in this subset, where c may be 
any real number in [0, 1]. In one-dimensional case, any convex set is an 
interval (either closed, or open, or left closed right open, or left open 
right closed) and vice versa. 
 
Definition 3.8 A fuzzy set is convex iff its α-cut is convex for every 

]1,0[∈α . 
 
Theorem 3.8 Fuzzy set A is convex if and only if  

 
)](),(min[))1(( 2121 xmxmxccxm AAA ≥−+  

 
for any ]1,0[∈c . 
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Proof. Necessity: For any Xx ∈1  and Xx ∈2 , taking 
)](),(min[ 21 xmxm AA=α , we have αAx ∈1  and αAx ∈2 . From the 

convexity of αA , we know that αAxccx ∈−+ 21 )1(  for any ]1,0[∈c . 
This means that )](),(min[))1(( 2121 xmxmxccxm AAA =≥−+ α  for any 

]1,0[∈c . 
Sufficiency: We want to show that for any ]1,0[∈α , αA  is convex if 

)](),(min[))1(( 2121 xmxmxccxm AAA ≥−+  for any ]1,0[∈c . In fact, for 
any given ]1,0[∈α , if αAx ∈1  and αAx ∈2 , that is, α≥)( 1xmA  and 

α≥)( 2xmA , then for any ]1,0[∈c , 
 

α≥≥−+ )](),(min[))1(( 2121 xmxmxccxm AAA . 
 

This means that αAxccx ∈−+ 21 )1( . So, αA  is convex.              □ 
 
Example 3.9 In Examples 3.1 and 3.3, Fuzzy sets Y, O, M, and Y  are 
convex fuzzy sets. 
 

The membership function of a convex fuzzy set is not necessarily 
convex (also called concave down, in some books) in the meaning 
discussed in calculus.  
 
Example 3.10 Let X be the real line R. the fuzzy set with membership 
function  

2
)( xexm −=  

 
is convex since all α-cuts are intervals (see Figure 3.7). However, 
function 

2xe−  is not convex (concave down) on R in calculus.  

3.5   Decomposition Theorems 

In this section, we discuss how to express a fuzzy set by its α-cuts. Let A 
be a fuzzy subset of universal set X. For any crisp set E and any real 
number ]1,0[∈α , we use αE to denote the fuzzy set having 
membership function  
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Fig. 3.7 An α-cut of convex fuzzy set with membership function 2

)( xexm −= . 
 

 





∉
∈

=
Ex
Ex

xm E  if0
 if

)(
α

α  Xx∈∀ . 

 
Theorem 3.9 (Decomposition Theorem I)  

 

UU
]1,0(]1,0[ ∈∈

==
α

α
α

α αα AAA . 

 
Proof. On one hand, )()()( xmxxm AAA αα ααχ =≥  for every Xx∈  and 
every ]1,0[∈α . So, )(sup)( ]1,0[ xmxm AA ααα∈≥  for every Xx∈ , i.e., 

U ]1,0[∈⊇ α ααAA . On the other hand, for any given Xx∈ , denoting 
)(xmA  by )(xα , we have 

 
)()(sup)()()()(

]1,0[
)(

]1,0[
xmxxxxxm AAAA x U

∈

=≤==
∈ α

ααα α
α

αχχαα  

 
since )(xAx α∈ . This means U ]1,0[∈⊆ α ααAA . Consequently, 

U ]1,0[∈= α ααAA . The second equality UU ]1,0(]1,0[ ∈∈ = α αα α αα AA  is 
evident.                                                         □ 

 
Similarly, the decomposition can also be made by using strong α-cuts 

as shown in the next theorem. 

-2          -1          0        1        2         x 

m

α

1
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Theorem 3.10 (Decomposition Theorem II)  
 

UU
]1,0(]1,0[ ∈

+
∈

+ ==
α

α
α

α αα AAA . 

 
Proof. The second equality is also evident. As for the first equality, 
based on the result obtained in Theorem 3.9, we only need to show 

U ]1,0[∈ +⊆ α ααAA  since UU ]1,0[]1,0[ ∈∈ + ⊆ α αα α αα AA . For any given 
Xx∈  and 0>ε  that is small enough, we have 

 

.)(

)(sup)(sup )(sup

)(][sup)(][sup)(sup)(

]1,0(

]1,0[]1,[]1,[

]1,[]1,[]1,0[

ε

εαχεαχεαχ

χεαχεααχ

α
α

ααεα

εαεαα

α

αεαεα

εαεεαα

+=

+=+≤+≤

+=+==

∈
+

+++

++

∈−∈−∈

−∈−−∈∈

xm

xxx

xxxxm

A

AAA

AAAA

U

 

 
Since ε  can be arbitrarily close to 0, we obtain that  

 
                      )()(

]1,0(

xmxm AA U
∈

+
≤

α
αα .                      □ 

 
We can establish the third decomposition theorem after introducing 

the concept of level-value set. 
 
Definition 3.9 Set } somefor  )(|{ XxxmA ∈=αα  is called the 
level-value set of fuzzy set A and denoted by AL . 
 
Example 3.11 In Example 3.1, ]1,0[== OY LL ; while in Example 3.2, 

}1,8.0,3.0,0{=DL . 
 

Based on the concept of level-valued set, we may delete some (may 
be most) values of α for taking the union in the expression shown in 
Theorem 3.9 to obtain the expression in the next theorem. 
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Theorem 3.11 (Decomposition Theorem III)  
 

U
AL

AA
∈

=
α

αα . 

 
Proof. Due to the Decomposition Theorem I, we have  

 

UU
AL

AAA
∈∈

⊇=
α

α
α

α αα
]1,0[

. 

 
Hence, only inclusion U

AL AA ∈⊆ α αα  needs to be shown. In fact, for 
any given Xx∈ , let α=)(xmA . It means that AL∈α  and αAx∈ . 
This yields that 

 
)(sup)()( xxxm A

L
AA

A
αα

αχαχ
α∈

≤= .                          □ 

 
There are some examples to show that the α-cuts in the express of 

Decomposition Theorem III cannot be replaced by strong α-cuts. 

3.6   The Extension Principle 

The following extension principle is a useful tool for fuzzifying classical 
mathematical concepts such as functions and common binary operators 
for real numbers. 

 
Extension Principle:  Let 1X , 2X , ,L nX , and Y be nonempty crisp 
sets, nXXXU ×××= L21  be the product set of 1X , 2X , ,L  and 

nX , and let YUf →:  be a mapping from U to Y. Then, f can be 
extended to be :f  F (X1) × F (X2) × ×L F (Xn)→F (Y) as follows: for 
any given n fuzzy sets ∈iA F (Xi), ni ,,2,1 L= , fuzzy set 

∈= ),,,( 21 nAAAfB L F (Y) has membership function 
 

)](,),(),(min[sup)( 21
),,,(|,,,

21
2121

nAAA
xxxfyxxx

B xmxmxmym
n

nn

L
LK =

=  
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with a convention 
 

0]}1,0[|{sup =∈
∅

xx . 

 
As a special case, if ∗  is a binary operator on universal set X, that is, 

XXX →×∗ : , then, by the extension principle, we can obtain a binary 
operator on F (X): for any ∈BA, F (X), 

 
Xzymxmzm BA

zyxyx
BA ∈∀∧=

=∗
∗ )]()([sup)(

|,
. 

 
Example 3.12 Let X be the set of all nonnegative integers. The 
traditional addition for integers can be extended to be a binary operator 
for fuzzy subsets of X. For instance, assume that fuzzy sets “around 10”, 
denoted by D, and “around 5”, denoted by F, have membership functions  

 











=
±=
±=

=

otherwise0
10 if1

110 if8.0
210 if3.0

)(
x
x
x

xmD  

 and 

 











=
±=
±=

=

otherwise0
5 if1

15 if7.0
25 if2.0

)(
x
x
x

xmF  

 
Xx∈∀ , respectively. Then the sum of D and F, denoted by D + F, has 

its membership function  
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














=
±=
±=
±=
±=

=∧=
=+

+

otherwise           0
15 if1

115 if8.0
215 if7.0
315 if3.0
415 if2.0

)]()([sup)(
|,

z
z
z
z
z

ymxmzm FD
zyxyx

FD , Xz∈∀ . 

 
The membership functions of D, F, and D + F are shown in Figure 3.8, 
where we use the height of a solid small circle to indicate the value of a 
function at each point.  

 
Fuzzy sets D, F, and D+F are called fuzzy integers that are defined in 

Section 3.10. Example 3.12 shows the addition of two fuzzy integers 
obtained by the extension principle. 

3.7   Interval Numbers 

Let R be the set of all real numbers, i.e., ),( ∞−∞=R . 
 
Definition 3.10 Any closed interval ],[ rl  is called an interval number, 
where rl ≤ . 
 

Any crisp real number, a , can be regarded as an interval number 
],[ aa . The set of all interval numbers is denoted by NI .  

 
Definition 3.11 (Classical extension) Let ∗ be a binary operator for real 
numbers. Operator ∗ can be extended to be a binary operator for interval 
numbers as follows. Let ],[ ba  and ],[ dc  be two interval numbers. 
Then  

},|{],[],[ dycbxayxdcba ≤≤≤≤∗=∗  
 

if yx ∗  is well defined for all ],[ bax∈  and ],[ dcy∈ . 
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(a) The membership function of D 

 
(b) The membership function of F 

 
(c) The membership function of D+F 

 
 
Now, for real numbers, we consider six binary operators: addition +, 

subtraction −, multiplication ×, division /, maximum ∨, and minimum ∧. 
According to Definition 3.11, we have 

 
addition:   ],[],[],[ dbcadcba ++=+ ; 
subtraction:   ],[],[],[ cbdadcba −−=− ; 

 

0   2     4     6     8    10    12    14    16    18   20    x 

)( xm

1 
0.8 

 

0.3 

1 
 

0.7 
 
 

0.2 

)(xm

0   2     4     6     8    10    12    14    16    18   20    x 

1 
 

0.8 
0.7 

 
 

0.3 
0.2 

)(xm

0   2          4          6     8    10    12    14    16    18   20    x 
 

 

Fig. 3.8 The membership function of D+F obtained by the extension principle. 
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multiplication:     
 )],,,max(),,,,[min(],[],[ bdbcadacbdbcadacdcba =× ; 

 
division:  
 )]/,/,/,/max(),/,/,/,/[min(],/[],[ dbcbdacadbcbdacadcba =   

if ],[0 dc∉ ; 
 

maximum:   ],[],[],[ dbcadcba ∨∨=∨ ; 
 

minimum:   ],[],[],[ dbcadcba ∧∧=∧ . 
 

 
Example 3.13 ]8,1[]3,2[]5,1[ −=−+ , while ]10,4[]3,2[]8,1[ −=−−− . 
So, the subtraction is not the inverse operation of the addition. 
 
Example 3.14 )]15,10,3,2max(),15,10,3,2[min(]3,2[]5,1[ −−−−−=−×  

]15,10[−= , while 
)]10,15,2,3max(),10,15,2,3[min(]2,3[]5,1[ −−−−−−−−=−−×  

.]2,15[ −−=  
 

Example 3.15  
)]4.0,2,3,15max(),4.0,2,3,15[min(]5,1/[]2,15[ −−−−−−−−=−−  

.]4.0,15[ −−=  
So, the division is not the inverse operation of the multiplication. 

 
From Definition 3.11, we have the following property for binary 

operations of interval numbers. 
 
Property. If ],[],[ 2211 baba ⊆ , then ],[],[],[],[ 2211 dcbadcba ∗⊆∗  
and ],[],[],[],[ 2211 badcbadc ∗⊆∗  for any interval numbers ],[ 11 ba , 

],[ 22 ba , and ],[ dc , provided the involved operations are well defined. 
 

A partial ordering on NI  can be defined as follows. 
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Definition 3.12 We say that interval number ∈],[ ba NI is not larger than 
(or say, less than or equal to) interval number ∈],[ dc NI , denoted by 

],[],[ dcba ≤ , iff ca ≤  and db ≤ . 
 
Thus, (NI, ≤) is a poset. Unlike the set of all real numbers that is well 

ordered with respect to the common ≤, poset (NI, ≤)  is not well ordered. 
For instance, we cannot compare ]3,0[  and ]2,1[  according to ≤ 
defined above for interval numbers. For any given two interval numbers 

],[ ba  and ],[ dc , their supremum and infimum exist. In fact, they are 
interval numbers ],[ dbca ∨∨  and ],[ dbca ∧∧  respectively. Hence, 
poset (NI, ≤) with binary operators ∨ and ∧ forms a lattice. 

3.8   Fuzzy Numbers and Linguistic Attribute 

To quantify fuzzy concepts, we may use some types of fuzzy subsets of 
),( ∞−∞=R . Fuzzy numbers are most common type of fuzzy subsets of 

R for this purpose.  
 
Definition 3.13 A fuzzy number, denoted by a capital letter with a wave 
such as A~ , is a fuzzy subset of R  with membership function 

]1,0[ : →Rm  satisfying the following conditions: 
 

(FN1) αA~ , the α-cut of A~ , is a closed interval for any ]1,0(∈α ; 
(FN2) +0

~A  is bounded . 
 

Condition (FN1) implies the convexity of A~ , i.e., any fuzzy number 
is a convex fuzzy subset of R. For any ]1,0(∈α , the α-cut of a fuzzy 
number is an interval number. The set of all fuzzy numbers is denoted by 
NF. 
 
Theorem 3.12 Condition (FN1) is equivalent to the following 
conditions: 

 
(FN 1.1) there exists at least one real number 0a  such that 1)( 0 =am ; 
(FN 1.2) )(tm  is nondecreasing on ],( 0a−∞  and nonincreasing on 

),[ 0 ∞a ; 



46          

(FN 1.3) )(tm  is upper semi-continuous, or say, )(tm  is right- 
continuous on ),( 0a−∞ , i.e., )()(lim 00

tmtmtt =+→  when 
00 at < , and is left-continuous on ),( 0 ∞a , i.e., 

)()(lim 00
tmtmtt =−→ ) when 00 at > . 

 
Proof. Let A~  be a fuzzy subset of R with membership function )(tm . 
(FN1) ⇒ (FN1.1): Since 1

~
=αA  is a closed interval, it is nonempty. 

Taking 10
~

=∈ αAa , we have 1)( 0 =am . 
(FN1)⇒ (FN1.2): A proof by contradiction is used here. Assume that 

)(tm  is not nondecreasing on ],( 0a−∞ , that is, there are 
],(, 0ayx −∞∈  with yx <  such that )()( ymxm > . Taking 

0)( >= xmα , we have αAx ~
∈  and αAa ~

0 ∈ , but αAy ~
∉ . This 

contradicts the fact that αA~  is an interval. Similarly, we can show that 
)(tm  is not nonincreasing on ),[ 0 ∞a  if αA~  is an interval for any 

]1,0(∈α . 
(FN1)⇒ (FN1.3): We just need to show that )(tm  is right-continuous 
on ],( 0a−∞  and left-continuous on ),[ 0 ∞a . A proof by contradiction 
is still used. Assume that )(tm  is not right-continuous on ],( 0a−∞ , that 
is, there exists a point 0ax <  such that )()(lim xmtmxt ≠+→  (the limit 
exists due to the monotonicity of )(tm  on ],( 0a−∞ ). Since )(tm  is 
nondecreasing on ],( 0a−∞ , we have )()(lim xmtmxt >+→ . Thus, taking 

)(lim tmxt +→=α , we have αAt ~
∈  for all ],( 0axt∈  but αAx ~

∉ . This 
contradicts the fact that αA~  is a closed interval. 
(FN1.1), (FN1.2), and (FN1.3) ⇒ (FN1): For any ]1,0(∈α , from 
(FN1.1) we know that αA~  is nonempty; from (FN1.2) we know that 

αA~  is an interval; from (FN1.3) we know that αA~  is closed. 
The proof of the theorem is now complete.                    □ 

 
The boundedness of the support set +0

~A  implies condition 
∫ ∞<∞
∞− dttm )( . In this book, the latter is also used to weaken the 

requirement for fuzzy numbers sometimes.  
For any fuzzy number with membership function )(tm , there exists a 

closed interval ],[ cb aa  such that  
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







∞∈
−∞∈

∈
=

,),(if)(
),(if)(

],[if1
)(

c

b

cb

attr
attl

aat
tm  

 
where 1)(0 <≤ tl  is nondecreasing and 1)(0 <≤ tr  is nonincreasing. 
Functions )(tl  and )(tr  are called the left branch and the right branch 
of )(tm , respectively.  

Now, we turn to discuss several special types of fuzzy numbers that 
are commonly used.  
 
Definition 3.14 A rectangular fuzzy number is a fuzzy number with 
membership function having a form as 

 



 ∈

=
,otherwise               0

],[ if               1
)( rl aat

tm  

 
where la , Rar ∈  with rl aa ≤  (see Figure 3.9). 
 

A fuzzy number is rectangular if and only if the left branch and right 
branch of its membership function are zero. It is identified with the 
corresponding vector ]  [ rl aa  and is an interval number essentially. Any 
crisp real number a  can be regarded as a special rectangular fuzzy 
number with aaa rl == . 

 

Fig. 3.9 The membership function of a rectangular fuzzy number. 

1 

la ra t0 

)(tm



48          Nonlinear Integrals and Their Applications in Data Mining 

Definition 3.15 A triangular fuzzy number is a fuzzy number with 
membership function having a form as  

 















∈
−
−

=

∈
−
−

=

,otherwise               0

],( if     

 if               1

),[ if     

)(

0
0

0

0
0

r
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r

l
l

l

aat
aa

at
at

aat
aa

at

tm  

 
where la , 0a , Rar ∈  with rl aaa ≤≤ 0  (see Figure 3.10). 
 

A triangular fuzzy number is identified with the corresponding vector 
] [ 0 rl  aaa . Any crisp real number a  can be regarded as a special 

triangular fuzzy number with aaaa rl === 0 .  
  
Definition 3.16 A trapezoidal fuzzy number is a fuzzy number with 
membership function having a form as 

 















∈
−
−

=

∈
−
−

=

      ,otherwise               0

],( if     

],[ if               1

),[ if     

)(

rc
rc

r

cb

bl
lb

l

aat
aa

at
aat

aat
aa

at

tm  

 
where la , ba , ca , Rar ∈  with rcbl aaaa ≤≤≤  (see Figure 3.11). 

 
A trapezoidal fuzzy number is identified with the corresponding 

vector ]  [ rcbl aaaa . Any rectangular fuzzy number ]  [ rl aa can be 
regarded as a special trapezoidal fuzzy number with bl aa =          
and rc aa = .  Similarly, any triangular fuzzy number ]  [ 0 rl aaa  can be 
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Fig. 3.10 The membership function of a triangular fuzzy number. 

 

 

Fig. 3.11 The membership function of a trapezoidal fuzzy number. 
 

regarded as a special trapezoidal fuzzy number with 0aaa cb == . Of 
course, any crisp real number a  can be regarded as a special 
trapezoidal fuzzy number with aaaaa rcbl ==== . Thus, our 
discussion and models can be applied to databases involving even both 
crisp and fuzzy data. 
 
Example 3.16 Fuzzy sets Y, M, O, and Y  discussed in Examples 3.1 
and 3.3 are trapezoidal fuzzy numbers.  
 

Both the left branch and the right branch of the membership function 
of a trapezoidal fuzzy number are piecewise linear. Hence, it is 
convenient to calculate the sum and difference of trapezoidal fuzzy 
numbers. This can be seen in the next section. 

1 

)(tm

0ala ra t0 

)(tm

bala ra tca

1 

0 
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Definition 3.17 A fuzzy number is called a cosine fuzzy number if its 
membership function has a form as 

 





 +≤≤−

−
+

=
,otherwise                                      0

22
 if          ])(2cos1[

2
1

)(
θθ

θ
π ataat

tm  

 
where real number a is the center and positive number θ is the length of 
its support set (see Figure 3.12). 

 
According to Definition 3.13, the fuzzy subset of ),( ∞−∞=R  with 

membership function 
2

)( xexm −= (see Figure 3.7) discussed in Example 
3.10 is not a fuzzy number since it violates the requirement of 
boundedness for its support set. However, if we weaken this requirement 
by ∫ ∞<∞

∞− dxxm )( , such a fuzzy set can also be regarded as a fuzzy 
number and is called a normal fuzzy number. In general, a normal fuzzy 
number has the membership function with a form 

22 2/)()( σaxexm −−= , 
),( ∞−∞∈∀x , where a is a real number indicating the center of the fuzzy 

number and σ  is a positive real number indicating its “width”. It is 
easy to know (from either calculus or the probability theory) that 

1)( =am  and ∫ ∞<=∞
∞− σπ2)( dxxm . 

 
 

 

Fig. 3.12 The membership function of a cosine fuzzy number. 
 

ta2θ/a − 2θ/a +

)(tm

1 

0 
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Beyond numerical attributes, some categorical, even linguistic 
attributes, may exist in databases. A linguistic attribute is a variable 
whose range is a finite set of descriptive words. One way to quantify a 
linguistic attribute is assigning a fuzzy number to each word. These 
fuzzy numbers should form a fuzzy partition of an appropriate interval.  
 
Example 3.17 In Example 3.5, each criterion for submitted papers is a 
linguistic attribute whose range is the finite set {bad, weak, fair, good, 
excellent}. We assign trapezoidal fuzzy numbers ba~ , wa~ , fa~ , ga~ , and 

ea~  to these five descriptive words respectively. These five fuzzy 
numbers form a fuzzy partition of interval ]5,0[=I  as shown in Figure 
3.5. 

3.9   Binary Operations for Fuzzy Numbers 

In this section, we discuss the fuzzy arithmetic. By using the extension 
principle, we may extend the six common binary operators for real 
numbers to be corresponding binary operators for fuzzy numbers. Let A~  
and B~  be two fuzzy numbers with membership functions Am  and Bm  
respectively and let ∗ be one of six common binary operators (+, −, ×, ⁄, ∨, 
and ∧) for real numbers. The extensions then are shown as follows. 
 
Definition 3.18 BA ~~

∗  is a fuzzy subset of R with membership function 
 

)]()([sup)(
|,

ymxmzm BA
zyxyx

BA ∧=
=∗

∗      Rz∈∀ . 

 
To develop the methods for calculating the membership function of 
BA ~~

∗ , we need an important property of its α-cuts shown in the next 
theorem. 
 
Theorem 3.13 ααα BABA ~~)~~( ∗=∗  for any ]1,0(∈α , and 

+++ ∗=∗ ααα BABA ~~)~~(  for any )1,0[∈α , provided all involved 
operations are well defined. 
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Proof. For any given ]1,0(∈α , on one hand, if ∈z α)
~~( BA ∗ , then 

α≥∗ )(zm BA . From Definition 3.18 and by the property of the supremum 
shown in Theorem 2.5, we know that, for any integer α/2>n , there 
exist Ryx nn ∈,  such that zyx nn =∗  and both nxm nA /1)( −≥α  

2/α≥  and 2//1)( αα ≥−≥ nym nB , that is, 2/
~
αAxn ∈  and 2/

~
αByn ∈ . 

Since 2/
~
αA  is a bounded interval, there exists a convergent subsequence 

}{
inx  of sequence }{ nx . Let 0lim xx

ini =∞→ . We have 
nxmA /1)( 0 −≥α  due to the closure property of nA /1

~
−α  and the fact 

that nxm mA /1)( −≥α  for all nm ≥  when n is large enough. Thus, 
α≥)( 0xmA . This means αAx ~

0 ∈ . Similarly, from sequence }{
iny  we 

may choose a convergent subsequence }{
jiny  with limit 0y  such that 

αBy ~
0 ∈ . From zyx nn =∗  for all integers n  that are large enough, we 

know that zyx =∗ 00  due to the continuity of binary operator ∗. Thus, 
αα BAz ~~

∗∈ . On the other hand, if αα BAz ~~
∗∈ , then there exist αAx ~

0 ∈  
and αBy ~

0∈  such that 00 yxz ∗= . From α≥)( 0xmA  and α≥)( 0ymB , we 
know that α≥∧=∗ )]()([sup ymxm BAzyx . This means that α)

~~( BAz ∗∈ . 
The first equality is now proved. 

As for the second equality, we may obtain it through the following 
equivalences where )1,0[∈α . 

 

++

++

=∗

∗+

∗∈⇔

=∗∈∈∃⇔

>>=∗∃⇔

>∧⇔
>⇔∗∈

αα

αα

α

αα

α
α

BAz

zyxByAx

ymxmzyxyx

ymxm
zmBAz

BA

BA
zyx

BA

~~                      

such that  ~ and ~                      

)( and ,)(,such that ,                      

)]()([sup                      
)()~~(

0000

000000  

 
The proof of the theorem is now complete.                               □ 
 
Theorem 3.14 If A~  and B~  are fuzzy numbers, then so is BA ~~

∗  
unless +∈ 0

~0 B  when operator ∗  is the division. 
 

Proof. From the first equality in Theorem 3.13 and the closure properties 
of these operations for interval numbers, we know that BA ~~

∗  satisfies 
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condition (FN1). Furthermore, from the second equality in Theorem 3.13, 
we have +++ ∗=∗ 000

~~)~~( BABA  and, therefore, +∗ 0)~~( BA  is bounded 
since both +0

~A  and +0
~B  are bounded and +∉ 0

~0 B  when operator ∗  
is the division.                                               □ 

 
From Theorem 3.13 and Theorem 3.9 (Decomposition Theorem I), 

we have the following representation theorem directly. 
 

Theorem 3.15  U
]1,0(

)(~~
∈

∗=∗
α

ααα BABA . 

 
Theorem 3.16 If A~  and B~  are rectangular fuzzy numbers, then so is 

BA ~~
∗  unless +∈ 0

~0 B  when operator ∗  is the division. 
 

Proof. Since any rectangular fuzzy number is just an interval number, the 
conclusion of the theorem can be obtained from the discussion of section 
3.7.                                                      □ 
 
Theorem 3.17 If A~  and B~  are triangular (or trapezoidal) fuzzy 
numbers, then so are BA ~~

+  and BA ~~
− . 

 
Proof. A fuzzy number with membership function )(tm is triangular if 
and only if there is a unique point 0a  such that 1)( 0 =am  and both 

)(tl  and )(tr  are linear in their nonzero part. From Theorem 3.15 and 
then the fact that the addition and the subtraction preserve the linearity of 

)(tl  and )(tr  as well as the uniqueness of 0a , we know that BA ~~
+  

and BA ~~
−  are triangular fuzzy numbers provided A~  and B~  are 

triangular fuzzy numbers. Ignoring the uniqueness of 0a , a similar 
conclusion for trapezoidal fuzzy numbers can be obtained.             □ 

 
Example 3.18 Let fuzzy numbers A~  and B~  have membership 
functions  








∈−

−∈+
=

else                 0
]1,0( if1

]0,2[ if2/)2(
)( tt

tt
tmA  
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and 

 







∈−
∈−

=
,else                 0

]4,3( if4
]3,2[ if2

)( tt
tt

tmB  

 
respectively. Setting α=)(tmA  and expressing t in terms of α, we can 
obtain the α-cuts of A: ]1,22[ ααα −+−=A  for ]1,0(∈α . In a similar 
way, we have ]4,2[ ααα −+=B  for ]1,0(∈α . By using Theorem 
3.13, we obtain  

 

]25,3[)( ααααα −=+=+ BABA , 

]21,36[)( ααααα −−+−=−=− BABA , 

]45,8102[)( 22 +−−+−=⋅=⋅ ααααααα BABA , 

)]2/()1(),2/()22[(/)/( ααααααα +−++−== BABA . 

 
Thus, composing the α-cuts (in an inverse way of calculating the α-cuts), 
we get 








∈−
∈

=+

,else                0
]5,3( if    2/)5(
]3,0[ if3/

)( tt
tt

tm BA  








−−∈−−
−−∈+

=−

,else                    0
]1,3( if      2/)1(
]3,6[ if3/)6(

)( tt
tt

tm BA  
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








∈+−

−∈−−

=⋅

,else                                   0
]4,0( if            2/)495(

]0,8[ if2/)295(

)( tt

tt

tm BA  

 








∈+−
−∈−+

=
.else                          0
]5.0,0( if      )1/()21(

]0,1[ if)2/()22(
)(/ ttt

ttt
tm BA  

 
They are shown in Figure 3.13. 

 
From Example 3.18 and Figure 3.13, we can see that the product and 

the quotient of two triangular fuzzy numbers may not be triangular. A 
similar situation may occur for trapezoidal fuzzy numbers. 
 
Example 3.19 Let fuzzy numbers A~  and B~  have membership 
functions  








∈−
∈

=
else        0

]6,5( if6
]5,0[ if5/

)( tt
tt

tmA  

and 








∈−
∈−

=
,else        0

]4,3( if4
]3,2[ if2

)( tt
tt

tmB  

 
respectively. Then ]6,5[ ααα −=A  and ]4,2[ ααα −+=B  for 

]1,0(∈α . By using Theorem 3.13, we have  
 





∈−
∈−+

=∨=∨
]1,5.0( if]6,5[
]5.0,0( if]6,2[

)(
ααα
ααα

ααα BABA , 
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(a) Membership function )(tmA                (b) Membership function )(tmB  

 

 

(c) Membership function )(tm BA+             (d) Membership function )(tm BA−  
 

 

(e) membership function )(tm BA⋅              (f) membership function )(/ tm BA  
 

Fig. 3.13 Membership functions in Example 3.18. 
 
 
and 





∈−+
∈−

=∧=∧
]1,5.0( if]4,2[

]5.0,0( if]4,5[
)(

ααα
ααα

ααα BABA . 

1 
)(tm

-2      0    2            t

1 

0    2   4         6          t

)(tm

-6   -4   -2   0       t 

)(tm
1 

1 
)(tm

-8     -6   -4   -2   0    2  4   t

)(tm

1

-8     -6   -4   -2   0    2   4   t 

-2     0   2            t 

1

)(tm
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Thus,  
 











∈−
∈
∈−

=∨

else 0
]6,5( if6

]5,5.2( if5/
]5.2,2( if2

)(
tt
tt
tt

tm BA ,   











∈−
∈−
∈

=∧

else 0
]4,3( if4

]3,5.2( if2
]5.2,0( if5/

)(
tt
tt
tt

tm BA . 

 
They are shown in Figure 3.14. 

 
 

 

(a) Membership function )(tmA             (b) Membership function )(tmB  
 

 
  (c) Membership function )(tm BA∨          (d) Membership function )(tm BA∧  

 
Fig. 3.14 Membership functions in Example 3.19. 

 

1 

)(tm

0     2     4     6      t 

)(tm

1

0     2     4     6      t 

)(tm )(tm

1 

0     2     4     6      t 

1

0     2     4     6      t 



58          Nonlinear Integrals and Their Applications in Data Mining 

Here, we also see that the maximum and the minimum of two 
triangular fuzzy numbers may not be triangular. A similar situation may 
occur for trapezoidal fuzzy numbers as well. 

We should note that, generally, BAm ∨  is different from BAm ∪ , and 
BAm ∧  is different from BAm ∩ . Moreover, for fuzzy numbers, the 

subtraction is not the inverse operation of the addition; and the division is 
not the inverse operation of the multiplication. 

We may also define a partial ordering on NF. 
 

Definition 3.19 Let A~  and B~  be two fuzzy numbers. We say BA ~~
≤  

iff αα BA ~~
≤  for every ]1,0(∈α . 

 
Relation ≤ is a partial ordering on NF and, therefore, (NF, ≤) is a poset. 

Furthermore, for any two given fuzzy numbers A~  and B~ , we have 
 

U
]1,0(

)~~(~~}~,~sup{
∈

∨=∨=
α

ααα BABABA  

and 

BABA ~~}~,~inf{ ∧= U
]1,0(

)~~(
∈

∧=
α

ααα BA . 

 
Thus, (NF, ≤) is a lattice. 

3.10   Fuzzy Integers 

Let Z be the set of all integers. 
 
Definition 3.20 A fuzzy integer is a fuzzy subset of Z with membership 
function )(im , Zi∈ , satisfying the following conditions: 

 
(FI1) there exists at least one integer 0i  such that 1)( 0 =im ; 
(FI2)  )](),(min[)( 312 imimim ≥  whenever Ziii ∈321 ,,  and 321 iii ≤≤ ; 
(FI3)  }0)(|{ >imi  is a finite subset of Z. 
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Example 3.20 Fuzzy sets “around 10” and “around 5”, denoted by D and 
F respectively, as well as FD +  in Example 3.12 are fuzzy integers. 

 
The set of all fuzzy integers is denoted by IF. The same as for fuzzy 

numbers, by the extension principle, we may extend the six common 
binary operators for integers to be corresponding binary operators for 
fuzzy integers. The extension for the addition is shown in Example 3.12. 
It should be emphasized that, unlike the common binary operators for 
crisp integers, the difference for fuzzy integers is not an inverse operator 
of the addition and the division for fuzzy integers is not the inverse 
operator of the multiplication.  

Similar to Definition 3.19, we may also define a partial ordering ≤ on 
IF such that (IF, ≤) is a poset. Poset (IF, ≤) with binary operators ∨ and 
∧ forms a lattice. 

Exercises 

Exercise 3.1 Let }|{ TtAt ∈  be a class of fuzzy sets, where T is an index set. Prove that 
II Tt tTt t AA ∈ +∈ + ⊇ αα )()(  for every ]1,0[∈α . Cite a counterexample to show that 

the inverse inclusion may not hold. 
 
Exercise 3.2 Fuzzy set M is given in Example 3.3. Find the membership function of M . 
Is it convex? What is 8.0M ? 
 
Exercise 3.3 Prove that a fuzzy subset of nR  is convex if and only if its strong α-cut is 
convex for every ]1,0[∈α . 
 
Exercise 3.4 May we establish the fourth decomposition theorem as 

 

U
AL AA ∈ += α αα ? 

Why? 
 
Exercise 3.5 Let the universal set X be the set of all real numbers, i.e., ),( ∞−∞=X , and 
A, B, and C be fuzzy subsets of X. For each of these fuzzy sets with respective 
membership function given below, show its α-cuts as a function of α on (0, 1]. 
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(1) Xt
t

tmA ∈


 =

= for  ,  
otherwise                      0

0 if                       1
)( . 

 

(2) 











∈−−
∈
∈

=

otherwise                      0
)6,3( if     3/)3(1
]3,1[ if                       1
)1,0( if                       

)(
tt
t
tt

tmB  , for Xt∈ . 

 
(3) 

2

)( t
C etm −=  for Xt∈ . 

 
Exercise 3.6 Let the universal set X be the set of all real numbers, i.e., ),( ∞−∞=X , and 
A, B, and C be fuzzy subsets of X. Knowing their α-cuts given below, find their 
membership function respectively.  
 

(1) 




∈∅
∈

=
 ]1,2/1( if         
]2/1,0( if     ]1,0[

α
α

αA . 

 
(2) ]1,0( if     ]2,[ ∈−= ααααB . 

 
(3) ]1,0( if     ]36,2[ ∈−= ααααC . 

 
Exercise 3.7 Find the membership function of FD − , where fuzzy sets D and F are 
given in Example 3.12 
 
Exercise 3.8 Let fuzzy numbers A

~
 and B~  have membership functions 

 








∈−

−∈+
=

else                 0
]3,1( if2/)3(

]1,1( if2/)1(
)( tt

tt
tmA  

and 








∈−
∈−

=
else                 0

]5,3( if2/)5(
]3,1( if2/)1(

)( tt
tt

tmB  

 
respectively. Find BA ~~

+ , BA ~~
− , BA ~~

⋅ , and BA ~/
~

. 
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Exercise 3.9 Let fuzzy numbers A
~

 and B~  have membership functions 
 








∈−

−∈+
=

else                 0
]4,1( if3/)4(

]1,2( if3/)2(
)( tt

tt
tmA  

and 








∈−
∈−

=
else                 0

]3,2( if3
]2,1( if1

)( tt
tt

tmB  

 
respectively. Find BA ~~

∨  and BA ~~
∧ . 

 
Exercise 3.10 Prove that any fuzzy number with membership function )(tm  is a crisp 
number if and only if ∫ =∞

∞− 0)( dttm . 
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Chapter 4 

From now on, we use the following conventions: 
 

0]},0[|{sup =∈∅∈ axxx  for any ],0[ ∞∈a , 
 

aaxxx =∈∅∈ ]},0[|{inf  for any ],0[ ∞∈a , 
 

000 =×∞=∞× , 
 

0/ =∞a  for any ),( ∞−∞∈a , 
 

0=∑ ∅∈i ia  and 1=∏ ∅∈ ii a  for any real number sequence }{ ia . 
 

In this chapter, starting from the classical additive measures and 
regarding them as special examples of nonadditive set functions, which 
are not necessarily additive, we introduce the concept of monotone 
measures in general case where the universal set may be infinite. Such 
kind of set functions abandons the additivity of the classical measures 
but keep the monotonicity, sometimes also the continuity (or 
semi-continuity) if necessary. From Sections 4.4 to 4.9, we discuss 
several special but common types of monotone measures. In Section 4.10, 
we abandon the monotonicity to introduce more general nonadditive set 
functions. The set functions possessing the nonadditivity can be adopted 
to describe the interaction among contribution rates from a number of 
attributes towards a certain target and are very useful and powerful in 
information fusion and data mining.  

Set Functions 
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4.1   Weights and Classical Measures 

Consider n attributes nxxx ,,, 21 L  in a database. They may be the 
information sources in information fusion (see Chapter 6) or some 
variables in a real problem. These attributes form the universal set, 
denoted by X, that is, },,,{ 21 nxxxX L= . The weights of these 
attributes, nwww ,,, 21 L  , can be regarded as a mapping from the class 
of all singletons, },,2,1|}{{ nixi L= , to interval [0, 1] satisfying 

11 =∑ =
n
i iw . The concept of weights can be generalized to a countable 

(infinite) university set },,{ 21 LxxX = . Corresponding to these 
infinitely many but countable attributes L,, 21 xx , nonnegative weights 

L,, 21 ww  should satisfy 11 =∑∞
=i iw . 

Generally, let X be the universal set and Rσ be a σ-ring of subsets of 
X. Then (X, Rσ) is called a measurable space. In most case, using a 
σ-algebra F  as Rσ is convenient for defining measures.  
 
Example 4.1 (R, B) is a measurable space where ),( ∞−∞=R , the real 
line, and B is the Borel field. 
 

As a special case, (X, P (X)) is a measurable space since P (X) is a 
σ-ring. With set operations union and complement, it satisfies the laws 
shown in Theorem 2.1 and forms a Boolean algebra.  

Let C be a nonempty class of subsets of X, ∅∈C , and µ  be a 
mapping from C to the extended real line ],( ∞−∞ . µ  is called an 
extended real-valued set function, or set function simply if there is no 
confusion, and denoted as :µ C ],( ∞−∞→ . 
 
Definition 4.1 Set function µ  is additive on C iff 

)()()( FEFE µµµ +=∪  whenever ∈E C, ∈F C, ∈∪ FE C, and 
=∩ FE ∅. µ  is finitely additive on C  iff 

 

U
n

i

n

i
ii     EE

1 1
)()(

= =
∑= µµ  
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for any finite disjoint class },,,{ 21 nEEE L  of sets in C satisfying 
∈=Un

i iE1 C. 
 
Definition 4.2 Set function µ  is σ-additive (or countably additive) on 
C  iff ∑= ∞

=
∞
= 11 )()( i ii i AA µµ U  whenever }{ iA  is a disjoint sequence of 

sets in C and U∞
=1i iA  is also in C. 

 
It is evident that, when µ (∅) < ∞, the σ-additivity implies the finite 

additivity, and the latter implies the additivity and µ (∅) = 0 for set 
function µ  defined on C. Furthermore, if C is finite, then the additivity 
of µ  is equivalent to its σ-additivity. 
 
Definition 4.3 Nonnegative set function :µ C ],0[ ∞→  is called a 
measure on C iff µ  is σ-additive on C and there exists ∈E C  such 
that ∞<)(Eµ . 
 
Theorem 4.1 If µ  is a measure on C, then µ (∅) = 0.  

 
Proof. Let set ∈E C  such that ∞<)(Eµ . Take a set sequence }{ iA  
with EA =1  and ∅=iA  for all L,3,2=i . Set sequence }{ iA  is 
disjoint and EAi i =

∞
=U 1 . By the σ-additivity of µ , we have  

 

∑
∞

=1
)(

i
iAµ )()()(

2
EE

i
µµµ =∅+= ∑

∞

=
. 

 
This means that 0)(2 =∑ ∅∞

=i µ . Since µ  is nonnegative, we conclude 
that µ (∅) = 0.                                                 □ 
 

If the universal set X is finite, C must be also finite and, therefore, any 
additive set function on C is σ-additive. 
 
Definition 4.4 Set function µ  is said to be finite iff it never takes 
infinite value; µ  is said to be σ-finite iff for any ∈E C, there exists 

∈iE C with ∞<)( iEµ , L,2,1=i , such that EEi i ⊇
∞
=U 1 . 
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Definition 4.5 Let (X, Rσ) be a measurable space and µ  be a measure 
on Rσ (we also say that µ  is a measure on (X, Rσ)). Then triple     
(X, Rσ, µ ) is called a measure space.  
 
Definition 4.6 Let (X, F, µ ) be a measure space. If 1)( =Xµ , then both 
µ  and (X, F, µ ) are said to be normalized. A normalized measure is 
also called a probability measure (or, simply, probability). A probability 
measure is discrete iff there exists a countable set of singletons 

⊆}},{},{{ 21 Lxx F  such that 1})({1 =∑∞
=i ixµ . 

 
The definition of discrete probability measure given above can be 

generalized by replacing set }},{},{{ 21 Lxx  with disjoint class 
⊆},,{ 21 LAA F  satisfying 1)(1 =∑∞

=i iAµ  and )( iBµ  equals either 
)( iAµ  or zero for any ii AB ⊆  with ∈iB F , .,2,1 L=i  However, we 

do not adopt such a generalization in this book. 
 
Example 4.2 Let },,,{ dcbaX = , C=P (X), and ||)( EE =µ  for every 
∈E C , where || E  is the cardinality of set E, i.e., the number of points 

in E. Then µ  is a finite measure on C . If we take 4/)()( EEP µ=  for 
every ∈E C, then P is a discrete probability measure on C . 
 
Example 4.3 Let },,{ 21 LxxX =  and ||)( EE =µ  for ∈E P     (X). Then 
µ  is a σ-finite measure on P    (X).  
 
Example 4.4 Let },,,{ 21 nxxxX L= , and let ),0[})({ ∞∈= ii wxµ , 

ni ,,2,1 L= , and µ (∅) = 0.  Then µ  is a finite measure on class  
C = }{},,2,1|}{{ ∅∪= nixi L . 
 
Example 4.5 Let },,{ 21 LxxX =  and ∑= ∈

−
Ex

i
i

E 2)(µ  for every 
∈E P    (X). Then µ  is a discrete probability measure on P (X). Positive 

real number i−2  can be regarded as the weight of attribute ix  for each 
L,2,1=i . 

 
Example 4.6 Let X = R and ||)( EE =µ  for ∈E P     (X). Then µ  is a 
measure on P (X) but it is not σ-finite. 
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Example 4.7 Let X = R and S  be the class of all bounded left closed 
right open intervals discussed in Example 2.10. Then S  is a semiring. 
For each interval ),[ ba  in S, define abba −=)),([µ . Then µ  is a 
finite measure on S. 
 
Theorem 4.2 Let (X, Rσ, µ ) be a measure space. Then Measure µ  
has the following properties. 

 
(M1) Monotonicity: )()( FE µµ ≤  whenever ∈E Rσ   , ∈F Rσ, 

and FE ⊆ . 
(M2) Continuity from below: )()(lim 1 iiii EE ∞

=∞→ = Uµµ , whenever 
 ∈iE Rσ, L,2,1=i , and }{ iE  is nondecreasing. 

(M3) Continuity from above: )()(lim 1I∞
=∞→ = i iii EE µµ , whenever 

 ∈iE Rσ, L,2,1=i , }{ iE  is nonincreasing , and there exists 
 0i  such that ∞<)(

0iEµ . 
 

Proof. Only (M1) and (M2) are proved here. The third is left to readers 
as an exercise.  

For (M1). Given ∈E Rσ, ∈F Rσ, and FE ⊆ , let EFG −= . 
Then  ∈G Rσ, ∅=∩ EG ,  and 0)( ≥Gµ . Thus, from 

)()( EG µµ +  )(Fµ= , we have )()( FE µµ ≤ . 
For (M2). For any given nondecreasing set sequence ∈iE  Rσ, 

L,2,1=i , let 11 EF =  and 1−−= iii EEF  for L,3,2=i . Since 
iiii FE ∞

=
∞
= = 11 UU , iin FE ∞

== 1U  for L,2,1=n , and }{ iF  is disjoint, we 
have  

∑∑
= ∞→

∞

= ∞→

∞

=

∞

=
====

n

i
nni

i ni
i

i
i

i EFFFE
1111

)(lim)(lim)()()( µµµµµ UU . 

□ 

4.2   Extension of Measures 

Let X be the universal set, C be a nonempty class of subsets of X with 
∅∈C and :µ C ],0[ ∞→  be a measure. 
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Definition 4.7 If D ⊇  C and there exists a measure µ′  on D such that 
)()( EE µµ =′  for every ∈E C , then µ′  is an extension of µ from C 

to D.  
 

Among the structured classes we have discussed, the semiring has the 
simplest structure. Now let us consider how to extend a measure from a 
semiring to the ring (or even σ-ring) generated by this semiring.  

Let µ  be a measure on a semiring S. It is easy to extend µ  to 
R(S ). In fact, for any ∈E R(S ), we have Un

i iEE 1==  for some integer 
n, where }{ iE  is a disjoint finite class of sets in S. Thus, we just let 

∑=′ =
n
i iEE 1 )()( µµ . µ′  is then an extension of µ  from S  to R(S ). 

 
Example 4.8 In Example 4.4, },,,{ 21 nxxxX L= .Class             
S = }{},,2,1|}{{ ∅∪= nixi L  is a semiring. Measure µ  on S  can be 
uniquely extended onto the ring generated by S, that is, onto        
R(S ) = }finite is|{ EE . In fact, R(S ) is a finite class. Taking for any 
∈E R   (S ) ∑=′ ∈Exi ii

wE :)(µ , where })({ ii xw µ= , ni ,,2,1 L= , it is 
not difficult to verify the additivity of µ′  on R(S ). 
 
Example 4.9 Similar to Example 4.8, let },,{ 21 LxxX =  and S  
consist of all singletons and the empty set ∅. Then R    (S ) consists of all 
finite sets. For any singleton }{ ix , take i

ix −= 2})({µ . With µ (∅) = 0, 
µ  is a measure on S. For any set ∈E R    (S ), it can be expressed as a 
finite disjoint union of singletons, that is, Uk

j i j
xE 1 }{==  for some 

nonnegative integer k. Thus, defining  
 

∑∑
=

−

=
==′

k

j

ik

j
i

j

j
EE

11
2)()( µµ , 

 
we get an extension of µ  from S  onto R    (S ). 
 
Example 4.10 In Example 4.7, consider the ring generated by S , R    (S ). 
It consists of all finite unions of left closed right open intervals. Each set 
E in R    (S ) can be expressed as a finite disjoint union of sets in S, say 

),[ iii baE = , ki ,,2,1 L= . We just need to define ∑=′ =
k
i iEE 1 )()( µµ  
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∑ −= =
k
i ii ab1 )( . Thus, µ′  is a finite measure on R    (S )  and is the 

extension of µ  on S . 
 

In general, since each set E in R    (S ) is a finite disjoint union of sets 
in S , i.e., Uk

i iEE 1== , where ⊆}{ iE S , to extend a measure µ from S  
onto R(S ), we just need to define µ′  on R(S ) by ∑=′ =

k
i iEE 1 )()( µµ . 

Without any confusion, we may omit the prime on µ  after 
extending. As for the extension of a measure from a ring to the σ-ring 
generated by this ring, the situation is rather complex. First, let us 
continue the example above. 

 
Example 4.11 In Example 4.8, Rσ    (R    (S )) = R    (S ) = P (X) and µ  has 
already been extended onto Rσ (R (S )) there. In Example 4.9, Rσ    (R  (S )) 
=P (X). Each set in P (X) is a countable set and can be expressed as a 
countable disjoint union of singletons, that is,  

 

∈∀E P     (X), U
∞

=
=

1
}{

j
i j

xE , 

 
where all 

jix  are different. Let Uk
j ik j

xE 1 }{== . Then ∈kE R   (S ), 
L,2,1=k , and }{ kE  is nondecreasing. Thus, let   

 

)(lim)( kk EE µµ =′ ∑∑ ∞
=

−
=

− == 11 22lim j
ik

j
i

k
jj . 

 
This completes the extension of µ  from R(S ) to Rσ(R   (S )). 
 

However, not all examples have so simple extension. The complexity 
of the extension for µ  from a ring onto the σ-ring generated by this 
ring depends on the structure of the ring. The extension procedure of µ  
given in Example 4.10 from R(S ) to Rσ(R(S )) is very complex. We 
omit the discussion here. Interested readers may refer to [Halmos 1950]. 
In general, we have the following theorem. Its proof is omitted too. 
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Theorem 4.3 If µ  is a finite measure on a semiring S , then µ  can be 
uniquely extended to be a σ-finite measure on Rσ(S ). 
 

By using Theorem 4.3, measure µ  in Example 4.10 can be uniquely 
extended to be a σ-finite measure on the Borel field B. Furthermore, let 
L ∈∪= EFE |{ B, ∈⊆ DF B with }0)( =Dµ  and let 

)()( EFE µµ =∪  for ∈∪ FE L. Then µ is the completion of µ  and 
is called the Lebesgue measure on the real line. It is a generalization of 
the concept of the length of intervals. Class L is called the Lebesgue field. 
We should be sure that the Lebesgue field is far smaller than the power 
set of R. 

4.3   Monotone Measures 

Let (X, F ) be a measurable space and :µ F ],0[ ∞→  be an extended 
real-valued set function, where F is a σ-algebra of subsets of X. When X 
is finite, usually, we take the power set P (X) as F . 
 
Definition 4.8 Set function µ: F → [0, ∞] is called a monotone measure 
on (X, F ) iff it satisfies the following requirements: 

 
(MM1) µ(∅) = 0 (vanishing at the empty set); 
(MM2) µ(E) ≤ µ(F) whenever E ∈ F , F ∈ F, and E ⊆  F 

(monotonicity). 
 

In this case, (X, F, µ) is called a monotone measure space. 
 
Definition 4.9 Monotone measure :µ F ],0[ ∞→  is lower-semi- 
continuous (or continuous from below) iff it satisfies property (M2) given 
in Theorem 4.2, that is,  

 

U
∞

=
=

1
)()(lim

i
iii

EE µµ    
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whenever {En} ⊆ F , E1 ⊆ E2 L⊆ ; µ is upper-semi-continuous (or 
continuous from above) iff it satisfies property (M3) given in Theorem 
4.2, that is,  

I
∞

=
=

1
)()(lim

i
iii

EE µµ  

 
whenever {En}⊆ F, E1⊆ E2 L⊆  and there exists positive integer 0i  
such that ∞<)(

0iEµ ; µ is continuous iff it is both lower-semi-continuous 
and upper-semi-continuous. 
 

From the properties shown in Theorem 4.2, we know that any 
measure is a continuous monotone measure. So, the concept of monotone 
measures is a generalization of the concept of measures. However, the 
requirement of the additivity has been abandoned for the monotone 
measure, that is, monotone measures are nonadditive generally. 

Similar to measures, we may also define the normalization for 
monotone measures as follows. 
 
Definition 4.10 A monotone measure µ on (X, F ) is normalized iff 

1)( =Xµ . 
 

When F is finite, or more specially, when X is finite, any monotone 
measure is continuous. In databases, the number of attributes is always 
finite. So, we just need to consider monotone measures defined on the 
power set of a finite universal set for describing the individual and joint 
contribution rates from some attributes towards a certain target. 
 
Definition 4.11 A monotone measure µ is subadditive iff 

)()()( FEFE µµµ +≤∪  for any ∈E F  and ∈F F . 
 
Definition 4.12 A monotone measure µ is superadditive iff 

)()()( FEFE µµµ +≥∪  for any ∈E F  and ∈F F   with =∩ FE ∅. 
 

It is easy to see that a monotone measure µ is additive if and only if it 
is both subadditive and superadditive. 
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Example 4.12 Three workers, 1x , 2x , and 3x , are hired for 
manufacturing a certain kind of wooden toys. Denote },,{ 321 xxxX = . 
Working separately, they produce 5, 6, and 7 toys per hour respectively. 
This can be considered as their individual efficiencies, i.e., the 
contribution rates towards the target “total amount of manufactured toys”. 
When the three workers (or two of them) work together sometimes, we 
must consider their joint efficiencies to calculate the total number of the 
manufactured toys in a given period of time. We may use }),({ 21 xxµ  
to denote the joint efficiency of 1x  and 2x . Similarly, }),({ 31 xxµ , 

}),({ 32 xxµ , and )(Xµ  are joint efficiencies of 1x  and 3x , 2x  and 
3x , and all of them respectively. Assume that ,14}),({ 21 =xxµ  

13}),({ 31 =xxµ , 9}),({ 32 =xxµ , and 17)( =Xµ .Then, with µ (∅)=0, 
:µ P   (X) ),0[ ∞→  is a monotone measure. It is nonadditive. For instance, 

})({})({}),({ 2121 xxxx µµµ +> . This inequality means that workers 1x  
and 2x  cooperate well. The nonadditivity of µ  describes the 
interaction among the contribution rates from these three workers 
towards the total amount of their manufactured toys.  
 
Example 4.13 In diagnosis of common cold, a doctor usually uses three 
symptoms, namely, running nose, soar throat and coughing represented 
by 1x , 2x , and 3x  respectively. Denote },,{ 321 xxxX = . If each 
symptom occurs separately, we can diagnose cold respectively with 
certainties 0.6, 0.5, and 0.4. We may consider them as single-symptom 
diagnosis certainties, i.e., the contribution rates towards the target 
“overall certainty of the diagnosis”. When the three symptoms (or two of 
them) occur together sometimes, we must consider their joint certainties 
to calculate the overall certainty for given periods of occurrence of the 
symptoms. Similar to Example 4.12, }),({ 21 xxµ  , }),({ 31 xxµ , 

}),({ 32 xxµ , and )(Xµ  are used to denote the joint certainty of 1x  
and 2x , of 1x  and 3x , of 2x  and 3x , and for all of them respectively. 
Assume that ,8.0}),({ 21 =xxµ  76.0}),({ 31 =xxµ , 7.0}),({ 32 =xxµ , 

88.0)( =Xµ , and µ (∅) = 0. Then, :µ P     (X) ),0[ ∞→  is a monotone 
measure. It is subadditive. For instance, })({})({}),({ 2121 xxxx µµµ +< . 
These joint certainties reflect the evidence combination (see Chapter 6) 
of symptoms in medical diagnoses. 
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Example 4.14 To evaluate used TV sets, we roughly adopt two quality 
factors: “picture” and “sound”. These are denoted by x1 and x2, respectively, 
and the corresponding weights may be taken as w1 = 0.7 and w2 = 0.3. Let 

},{ 21 xxX = . In this case, if we take 112 =w  as the weight of X and 00 =w  
as the weight of ∅, an additive measure :w  P (X) ]1,0[→  is obtained. 
However, such a measure is not reasonable for evaluating the global 
quality of a TV set. We prefer to assign an importance 0.3 to “picture” 
and importance 0.1 to “sound”. With assigning 1 to X and 0 to ∅, a 
superadditive monotone measure :v P (X) ]1,0[→  is formed as  

 











=
=
=
∅=

=

.    if         1
}{ if     1.0
}{ if     3.0

 if        0

)(
2

1

XE
xE
xE

E

Eν  

 
The details for using this monotone measure in synthetic evaluation can 
be found in Chapter 6.  
 

In the following, we show more mathematical examples for 
monotone measures. 
 
Example 4.15 Let X = {1, 2 L, , n}. Given a positive real number k, if 
we define set function :µ P (X) ]1,0[→  by 

 
k

n
EE 






=

||)(µ  for ∈E P (X), 

 
where |E| is the cardinality of E, then µ is a normalized monotone 
measure. It is superadditive when 1>k , subadditive when 1<k , and 
additive when 1=k . 
 
Example 4.16 Let X be the real line R, F be the Lebesgue field L , and 
µ  be the Lebesgue measure on L. For any set ∈E P (X), define  
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∈⊇= FEFFE ,|)(inf{)( µµ L } 

and 

∈⊆= FEFFE ,|)(sup{)( µµ L }. 

 
Then µ  is a subadditive monotone measure and µ  is a superadditive 
monotone measure on P     (X). In real analysis, µ  and µ  are called 
outer measure and inner measure generated by the Lebesgue measure, 
respectively. 
 
Example 4.17 Let X0 = {1, 2 L, }, X = X0 × X0, and F =P (X). For any 
∈E F , define | Proj|)( EE x=µ , where }),(|{ Proj EyxxEx ∈= . Then 

µ  is a lower-semi-continuous monotone measure on F . It is not 
upper-semi-continuous. In fact, if },1,{}1{ L+×= nnEn , then 

L⊇⊇ 21 EE , and 1)( =nEµ  for every L,2,1=n , but =∞
=I 1i nE ∅ 

such that 0)( 1 =∞
=Ii nEµ . This violates the upper-semi-continuity.  

 
Example 4.18 Let f(x) be a nonnegative, real-valued function defined on 

),( ∞−∞=X . If we define  
 

)(sup)( xfE
Ex∈

=µ  for every set E of real numbers, 

 
then µ  is a lower-semi-continuous monotone measure on measurable 
space (X, P (X)). It is not upper-semi-continuous in general. For example, 
taking 1)( =xf , Xx∈∀ , ),[ ∞= iEi , L,2,1=i , and == ∞

=I 1i iEE ∅, 
we have 0)( =Eµ  but ∞<== ∈ 1)(sup)( xfE

iExiµ  for every 
L,2,1=i . This violates the continuity from above. 

 
Example 4.19 The measurable space is the same as used in Example 
4.18. Taking a function ]1,0[: →Xf  that satisfies 0)(inf =∈ xfXx , set 
function µ  defined for every ∈E P (X) by   

 

)(inf)( xfE
Ex∉

=µ  



74         Nonlinear Integrals and Their Applications in Data Mining 

is a normalized upper-semi-continuous monotone measure on (X, P (X)). 
It is not lower-semi-continuous in general. For example, take 

)1/(1)( 2xxf +=  for every real number x and ],( iEi −∞=  for 
L,2,1=i . Set sequence }{ iE  is nondecreasing and U∞

=1i iE  
X=∞−∞= ),( . But we have  1)(inf)(inf)( Ø === ∈∉ xfxfX xXxµ , 

according to the conventions given at the beginning of this chapter, and 
 

 0)(inf)(inf)(
),(

===
∞∈∉

xfxfE
ixExi

i

µ  for L,2,1=i .  

 
This violates the lower-semi-continuity. 
 
Definition 4.13 Let :µ F ),0[ ∞→  is a monotone measure on 
measurable space (X, F ). Denote cX =)(µ . Set function ν  defined on 
(X, F ) by  

 
)()( EcE µν −=  for every ∈E F 

 
is called the dual of µ . 
 

If ν  is the dual of µ , then µ  is the dual of ν . It is also easy to 
know that µ  is normalized if and only if its dual ν  is normalized. If 
µ  is upper-semi-continuous, then its dual ν  is lower-semi-continuous 
and vice versa.  

4.4   λ-Measures 

The most common type of monotone measures in literature is the 
λ-measure (also called Sugeno’s λ-fuzzy measure). In comparison with 
the classical measures, they have only one more parameter, λ, that 
indicates the magnitude of the interaction mentioned in the last section in 
a special and simple way. In the following, we discuss λ-measures in a 
more general aspect than the Sugeno’s original model of the λ-fuzzy 
measure. 
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Let (X, F) be a measurable space, µ be a nonnegative extended 
real-valued set function on F, and }0{),sup/1( ∪∞−∈ µλ  be a 
constant, where ∈= EE |)(sup{sup µµ F}. When µ  is monotone and 
normalized, it is obviously that 1sup =µ . 
 
Definition 4.14 Nonnegative set function µ  is said to satisfy the λ-rule 
iff  

 
)()()()()( FEFEFE µλµµµµ ++=∪           (4.1) 

 
whenever ∈E F, ∈F F, and =∩ FE ∅. 
 
Theorem 4.4 If nonnegative set function µ  satisfies the λ-rule, then  

 

U
n

i
n

i
i

n

i
i

i

E

E
E

1

1

1

,0 as                            )(

0 as     )1)](1[(1

)(
=

=

=










=

≠−⋅+
=

∑

∏

λµ

λµλ
λ

µ         (4.2) 

 
for any finite disjoint class },,,{ 21 nEEE L  of sets in F. 

 
Proof. When 0=λ , the conclusion is just that the additivity implies the 
finite additivity. When 0≠λ , equation (4.1) can be rewritten as  

 

)1)](1)][(1([1)( 2121 −⋅+⋅+=∪ EEEE µλµλ
λ

µ . 

 
For any given positive integer n>2, assuming that  

 

∏
−

=

−

=
−⋅+=

1

1

1

1
 )1)](1[(1)(

n

i
i

n

i
i EE µλ

λ
µ U , 

 
we have  
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∏ −⋅+=
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The proof of the theorem is now completed by using the mathematical 
induction.                                                 □ 
 
Definition 4.15 Nonnegative set function µ  is said to satisfy the 
σ-λ-rule iff  

 

U
∞

=
∞

=

∞

=










=

≠−⋅+
=

∑

∏

1

1

1

0 as                             )(

0 as     )1)](1[(1

)(
i

i
i

i
i

i

E

E
E

λµ

λµλ
λ

µ        (4.3) 

 
for any disjoint sequence }{ iE  of sets in F. 
 

Similar to measures, the σ-λ-rule of nonnegative set functions that 
vanishes at the empty set is equivalent to the λ-rule when F is finite, 
especially, when X is finite. 
 
Definition 4.16 Nonnegative set function :µ F ],0[ ∞→  is called a 
λ-measure on F iff µ  satisfies the σ-λ-rule on F for some 

}0{),sup/1( ∪∞−∈ µλ  and there exists ∈E F  such that ∞<)(Eµ . 
 

A λ-measure is usually denoted as λg . A normalized λ-measure is 
called a Sugeno measure (or, Sugeno’s λ-fuzzy measure). It is easy to see 
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that any λ-measure is superadditive if 0>λ  and is subadditive if 
0<λ . Any λ-measure is a classical measure if and only if λ = 0. 

 
Example 4.20 Let },{ 21 xxX =  and F =P (X). If 

 











=
=
=
∅=

=

,     when         1
}{     when 5.0
}{     when 2.0

en         wh0

)(
2

1

XE
xE
xE

E

Eµ  

 
then µ  is a Sugeno measure with λ = 3. For it, we just need to verify 
that  

 
})({})({3})({})({)( 2121 xxxxX µµµµµ ⋅++= . 

 
In fact,  

 
)(15.02.035.02.0})({})({3})({})({ 2121 Xxxxx µµµµµ ==××++=⋅++ . 

 
 
Theorem 4.5 If λg  is a λ-measure on F, then 0)( =∅λg  and λg  
satisfies the λ-rule. 

 
Proof. We only need to prove the theorem when 0≠λ  since a similar 
result for measures has already been proved. From Definition 4.16, there 
exists set ∈E F with ∞<)(Egλ . Let EE =1  and ∅=iE  for 

L,3,2=i . Then set sequence },,{ 21 LEE  is disjoint and U∞
== 11 i iEE . 

By using the σ-λ-rule (4.3) of λg , we have 
 

}1)](1[)](1[{1)( 1
2

1 −⋅+⋅⋅+= ∏
∞

=
EgEgEg

i
i λλλ λλ

λ
, 

 
that is, 
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)](1[)](1[)(1 1
2

1 EgEgEg
i

i λλλ λλλ ⋅+⋅⋅+=⋅+ ∏
∞

=
. 

 
Since }0{),sup/1( ∪∞−∈ λλ g  and ∞<)( 1Egλ , we know that 

∞<⋅+< )(10 1Egλλ . Thus, 
 

∏
∞

=
=⋅+

2
1)](1[

i
iEgλλ  

and, therefore, 

1)(1 =∅⋅+ λλ g . 

 
Consequently, 0)( =∅λg  since 0≠λ . 

By using 0)( =∅λg , the second result of the theorem is clear. The 
theorem is now complete.                                        □ 
 

When },,{ 21 LxxX =  and F =P (X), knowing the values of 
λ-measure λg  at every singleton and the value of λ, equation (4.3) can 
be used to calculate the value of λg  at any set in F. Conversely, 
restricting the universal set being finite and based on equation (4.2), we 
can prove the following theorem, by which the value of λ may be 
uniquely determined if the values of λ-measure λg  at every singleton 
and at X are known. The proof of the theorem is omitted here. The 
interested readers may refer to [Wang and Klir, 1992 or Wang and Klir 
2008]. 
 
Theorem 4.6 Let },,,{ 21 nxxxX L= , where 2≥n , and λg  be a 
λ-measure on P    (X). Knowing 0})({ ≥= ii axgλ  (with at least two of 
them being non-zero) and iabXg >=)(λ , ni ,,2,1 L= , the value of λ 
can be uniquely determined by equation 
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∏
=

+=+
n

i
iab

1
)1(1 λλ : 

 
(1) 0>λ  when ban

i i <∑ =1 ; 
(2) 0=λ  when ban

i i =∑ =1 ; 
(3) 0/1 <<− λb  when ban

i i >∑ =1 . 
 
Example 4.21 Let },,{ 321 xxxX =  and λg  be a λ-measure on P    (X). 
Knowing 1.0})({ 1 =xgλ , 2.0})({})({ 32 == xgxg λλ , and 1)( =Xgλ , 
we want to find the value of parameter λ and the values of λg  at the 
other sets in P (X).  

From Theorem 4.6, we know that 0>λ  and  
 

)2.01)(2.01)(1.01(1 λλλλ +++=+ , 
 

that is, 
05.008.0004.0 2 =−+ λλ . 

 
Solving this quadratic equation, we obtain 

 

  25or  5   
008.0

12.008.0   

004.02
)5.0(004.0408.008.0 2

−=

±−
=

×
−××−±−

=λ

 

 
Since 25−=λ  violates 0>λ , we obtain the unique feasible solution 

5=λ . 
Furthermore, using equation (4.1), we have  
 

4.02.01.052.01.0}),({ 21 =××++=xxgλ , 

4.02.01.052.01.0}),({ 31 =××++=xxgλ , 
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6.02.02.052.02.0}),({ 32 =××++=xxgλ . 

 
Theorem 4.7 Let },,,{ 21 nxxxX L=  and λg  be a λ-measure on P (X) 
with 0)( >= cXgλ  and parameter ),/1( ∞−∈ cλ . For any sets     
∈E P (X) and ∈F P (X), 

(1) 
)(1

)()()(
FEg

FEgEgFEg
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=−
λ

λλ
λ λ

, 
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)(1
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λλλλλ
λ λ

λ
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)(1

)()(
Eg

EgcEg
λ

λ
λ λ ⋅+

−
= . 

 
Proof. Set E can be expressed as a disjoint union )()( FEFE −∪∩ . By 
(4.1), we have 

 
)()()()()( FEgFEgFEgFEgEg −⋅∩⋅+−+∩= λλλλλ λ

.  )](1)[()( FEgFEgFEg ∩⋅+−+∩= λλλ λ  
 

Since ),/1( ∞−∈ cλ , we know that 0)(1 >∩⋅+ FEgλλ  and, therefore, 
obtain (1). As for (2), using a similar strategy and (1), we get 
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Finally, conclusion (3) is obtained by substituting X for E and E for F in 
(1).                                                        □ 
 
Theorem 4.8 Let },,,{ 21 nxxxX L=  and λg  be a normalized 
λ-measure on P    (X) and parameter ),1( ∞−∈= aλ . The dual of λg , 
denoted by µ, is a normalized λ-measure on P   (X) as well and its 
parameter is )1/( +−=′ aaλ . 

 
Proof. From the definition of the dual, we have )(Xµ  

101)(1)(1 =−=∅−=−= λλ gXg . To show that µ is also a λ-measure 
on P (X) with parameter )1/( +−=′ aaλ , we just need to verify the 
corresponding λ-rule for µ. In fact, for any given ∈E P    (X) and   
∈F P    (X) with =∩ FE ∅, from (3) of Theorem 4.7, we have 
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The proof is now complete.                                   □ 

 
The above theorem also shows that the dual of any superadditive 

normalized λ-measure must be subadditive and vice versa. This 
conclusion is also true for any λ-measure.  
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4.5   Quasi-Measures 

Given a λ-measure µ  on F   with 0≠λ , from (4.3), we have  
 

U
∞

=

∞

=
∏ ⋅+=⋅+

1 1
  )](1[)(1

i i
ii EE µλµλ             (4.4) 

 
for any disjoint sequence }{ iE  of sets in F. Taking logarithm in both 
sides of (4.4), we obtain 

 

     U
∞

=

∞

−
∑ ⋅+=⋅+

1 1
 )](1ln[))(1ln(

i i
ii EE µλµλ .         (4.5) 

 
If we define a new set function ν on F  by 

 
)](1ln[)( EE µλν ⋅+=  for every ∈E F , 

 
Equation (4.5) becomes 

U
∞

=

∞

=
∑=

1 1
)()(

i i
ii EE νν . 

 
This means that the new set function ν possesses the σ-additivity and, 
therefore, with the fact that 

 
01ln)(1ln()( ==∅⋅+=∅ µλν , 

 
is a classical measure. Such a result provides a new approach for 
constructing λ-measures and suggest us to introduce a wider type of 
monotone measures that includes λ-measures as special examples.   
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Definition 4.17 Let a ∈ (0, ∞]. An extended real-valued function   
θ :[0, a] → [0, ∞] is called a T-function iff it is continuous, strictly 
increasing, and such that )0(1−θ = 0 and  

 





∞=∞
∞<∅

=∞−

.     when }{
when        

})({1

a
a

θ  

 
In the above definition, expression “ 1−θ ({∞}) = ∅ or {∞}” means 

that the image of any finite value by mapping θ must be finite. 
 
Definition 4.18 Let µ be a set function on F. µ is quasi-additive iff there 
exists a T-function θ, whose domain contains the range of µ, such that 
the set function µθ o  defined by ( µθ o )(E) = ))(( Eµθ  for every                         
E ∈F is additive; µ is quasi-σ-additive iff there exists a T-function θ, 
whose domain contains the range of µ, such that the set function µθ o  
defined by ( µθ o )(E) = ))(( Eµθ for every E ∈F is σ-additive; µ is 
called a quasi-measure iff there exists a T-function θ such that µθ o  is 
a classical measure on F. In this case, T-function θ is called the proper 
T-function of µ. A normalized quasi-measure is called a 
quasi-probability. 

 
Obviously, for any given measure µ on F and any T-function θ whose 

range covers the range of µ, set function µθ o1−  is a quasi-measure on 
F . It should be noted that, for a given quasi-measure, its proper 
T-functions are not unique. If µ is a finite quasi-measure, a T-function θ 
such that µθ o  is a normalized measure (i.e., a probability measure) is 
called its standard T-function. Any classical measure is a special case of 
quasi-measure with the identity function as one of its proper T-functions.  
 
Example 4.22 The monotone measure given in Example 4.15 is a 
quasi-measure. Its standard T-function is kyy /1)( =θ , ]1,0[∈y . 
 

The following theorem shows that any λ-measure is a special 
example of quasi-measure. 
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Theorem 4.9 Any λ-measure gλ on F  with parameter 0≠λ  is a 
quasi-measure having 

 

λ
λθλ k

yy )1ln()( +
= , ]sup,0[ λgy∈  

 
as its proper T-function, where k may be any finite positive real number. 
Conversely, if µ is a classical measure on F, then µθλ o1−  is a 
λ-measure, where 

 

λ
θ

λ

λ
1)(1 −

=−
xkex , ],0[ ∞∈x  

 
and k may be any finite positive real number. 

 
Proof. Since λθ  is continuous and strictly increasing with 

0)/()1(ln)0( == λθλ k , it is a T-function. Set function λg  as a 
λ-measure has at least one set ∈0E F  such that ∞<≤ )(0 0Egλ . 
Hence, by the behavior of λθ  that it does not map any finite value to the 
infinite, we know that 

 

∞<= ))(())(( 00 EgEg λλλλ θθ o . 
 

So, we only need to verify the σ-additivity of λλθ go . In fact, for any 
disjoint set sequence }{ iE  in F, 

 

)1)])(1[(1ln(1                         

))(1ln(1                         

))(())((

1

1

11

−⋅++=

⋅+=

=

∏
∞

=

∞

=

∞

=

∞

=

i
i

i
i

i
i

i
i

Eg
k

Eg
k

EgEg

λ

λ

λλλλ

λ
λ

λ
λ

θθ

U

UUo

 



Set Functions                            85 

( ) .)(                         

)](1ln[                         

)](1[ln1                         

)](1[ln1                         

1

1

1

1

i
i

i

i

i
i

i
i

Eg

k
Eg

Eg
k

Eg
k

∑

∑

∑

∏

∞

=

∞

=

∞

=

∞

=

=

⋅+
=

⋅+=

⋅+=

λλ

λ

λ

λ

θ

λ
λ

λ
λ

λ
λ

o

 

 
Conversely, if µ is a classical measure on F, then it is σ-additive and 

0)( =∅µ . Thus,  
 

0)0())(())(( 111 ==∅=∅ −−−
λλλ θµθµθ o   
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that is, µθλ o1−  satisfies the σ-λ-rule. So, it is a λ-measure.          □ 
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Example 4.23 In Example 20, },{ 21 xxX = , F = P (X) and  
 











=
=
=
∅=

=

. if        1
}{ if    4.0
}{ if    2.0

 if       0

)(
2

1

XE
xE
xE

E

Egλ  

 
Set function λg  is a λ-measure with parameter 5=λ . If we take  

 

6ln
)51ln(

)1ln(
)1ln()( yyy +
=

+
+

=
λ
λθλ , 

then 











=
=
=
∅=

=

. if                1
}{ if    613.0
}{ if    386.0

 if               0

))((
2

1

XE
xE
xE

E

Eg
L

L
o λλθ  

 
Set function λλθ go  is a probability measure on P (X). The above λθ  
is the standard T-function of λg .   
 

The following example shows how to construct a λ-measure from an 
existing probability measure with a given value of parameter λ . 
 
Example 4.24 Let },{ 21 xxX = , F = P (X) and  

 











=
=
=
∅=

=

. if           1
}{ if    66.0
}{ if    34.0

 if           0

)(
2

1

XE
xE
xE

E

Eµ  

 
For given 75.0−=λ , taking T-function 
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25.0ln
)75.01ln()( yy −

=λθ , 

we have 

75.0
25.01)(1

x

x −
=−

λθ . 

Thus 











=
=
=
∅=

=== −−

XE
xE
xE

E

EEEg

 if              1
}{ if    79.0
}{ if    50.0

 if             0

))(())(()(
2

111

L

L
o µθµθ λλλ  

 
is a λ-measure with parameter 75.0−=λ . As a quasi-measure, its 
standard T-function is )(yλθ  shown above. 

4.6   Möbius and Zeta Transformations 

We have seen that the nonadditivity of a monotone measure describes the 
interaction among the contribution rates of considered attributes towards 
a certain target. Now the question is what the amounts of the mentioned 
interaction are. The following example shows the idea for introducing 
the Möbius and zeta transformations. 
 
Example 4.25 Let },{ 21 xxX =  and set function :µ P (X) ),0[ ∞→  be 
a monotone measure. Set function µ  describes the individual as well as 
the joint contribution rates from attributes towards a certain target. Let 

}))({})({(}),({}),({ 212121 xxxxxx µµµν +−= . Due to the nonadditivity 
of µ , }),({ 21 xxν  may not be zero. The amount of }),({ 21 xxν  can be 
understood as the “pure” interaction between the contribution rates from 
attributes 1x  and 2x . 
 

When the number of attributes is larger than 2, the expression 
describing the “pure” interaction among considered attributes is not so 
simple. The following definition gives a general expression that can 
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describe the “pure” interaction among the contribution rates from 
attributes towards the target. 
 
Definition 4.19 Let },,,{ 21 nxxxX L=  and µ  be a real-valued set 
function on P     (X). Define set function ν by  

 

∑
⊆

−−=
EF

FE FE )()1()( µν                (4.6) 

 
for every ∈E P (X). Set function ν on P (X) is called the Möbius 
representation of µ . Equation(4.6) is also called the Möbius 
transformation. 
 
Example 4.26 Let },,{ 321 xxxX =  and :µ P (X) ),0[ ∞→  be defined 
as  










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=

=

=

∅=

=

XE
E

E
E

E

 if        1
2 if   35.0

1 if     1.0
 if        0

)(µ  

 
for ∈E P (X). Then its Möbius representation ν has values 

 













=

=

=

∅=

=

XE
E

E
E

E

 if     25.0
2 if     15.0

1 if       1.0
 if          0

)(ν  

 
for ∈E P (X). Besides the contribution rates from individual attributes, 
set function ν also describes the “pure” interaction amounts, that is, the 
amount of “pure” interaction between any two attributes is 0.15, while 
the amount of “pure” interaction among all three attributes is 0.25. Here, 
we can see that the total sum of “pure” contribution rate (including the 
interactions) from sets in P    (X) is 



Set Functions                            89 

 1.01.01.00)( +++=∑
⊆XE

Eν 125.015.015.015.0 =++++ . 

 
Definition 4.20 For given set function ν on P (X), transformation  

 
      ∑

⊆
=

EF
FE )()( νµ                    (4.7) 

 
for every ∈E P (X) is called the zeta transformation.  
 

We should note that, in Definitions 4.19 and 4.20, both set functions 
µ and ν are not necessarily nonnegative. However, if ν is nonnegative, 
then so is µ. 

 
Lemma 4.1 For any given finite sets G and E satisfying EG ⊆ , 

 





=
⊂

=−∑
⊆⊆

−

. if      1
 if     0

)1(
| EG

EG

EFGF

GF  

 
Proof. When EG ⊂ , denoting GEn −= , we have 

 

.0
)11(

)1)(,()1(
0|

=
−=

−=− ∑∑
=⊆⊆

−

n

n

i

i

EFGF

GF inC

 

 
When EG = , it is obvious that 

 

1)1()1( 0

|
=−=−∑

⊆⊆

−

EFGF

GF . 

□ 
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Taking =G ∅ , we have the following Corollary. 
 
Corollary 4.1 For any given nonempty finite sets E,  

 

0)1( =−∑
⊆EF

F . 

 
 

Theorem 4.10 The Möbius transformation and the zeta transformation 
are the inverse to each other. 

 
Proof. We verify (4.7) from (4.6). In fact, by using Lemma 4.1,  

 

.)(  )(              

)()1()()1()(
|
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GGF

EG

EG EFGF

GF

EF FG
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µµ

µµν

=∑=

∑ ∑ −=∑ ∑ −=∑

=
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−

⊆ ⊆

−

⊆  

 
It is similar for verifying (4.6) from (4.7).                             □ 

 
Example 4.27 We use set functions µ  and ν  shown in Example 4.26 
to confirm the conclusion of Theorem 4.10. When 2|| =E ,  

 

;35.0
15.01.01.0

)()(

=
++=

= ∑
⊆EF

FE νµ

 

 
while 3|| =E , that is, XE = , 

 

.1
25.015.015.015.01.01.01.0

)()(

=
++++++=

= ∑
⊆EF

FE νµ
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The case of 0|| =E  or 1|| =E  is trivial.   

4.7   Belief Measures and Plausibility Measures 

In this section, two common types of monotone measures and the 
relation to the probability are discussed. We still use X to denote the 
universal set. 
 
Definition 4.21 Set function :m P (X) ]1,0[→  is called a basic 
probability assignment if there exists a countable class of sets 

⊆= },2,1|{ LiAi P (X) }{∅−  such that 1)(1 =∑∞
=i iAm  and 0)( =Em  

for any },2,1|{ L=∉ iAE i . 
 

From Definition 4.21, we know that 0)( =∅m . Defining 0)( =∅p  
and )(})({ EmEp =  for every ∈E P (X), p is a normalized measure on 
the semiring consisting of the empty set and all singletons in P (P (X)). 
This normalized measure can be uniquely extended to be a discrete 
probability measure on P (P (X)). 

 
Example 4.28 Let },,{ 321 xxxX =  and m:P (X) ),0[ ∞→  be defined as  

 











=
=
=

=

.  else           0
},{ if        6.0

}{ if        3.0
}{ if        1.0

)(
21

3

1

xxE
xE
xE

Em  

 
Then m is a basic probability assignment on P (X). Denote ∅=0E , 

}{ 11 xE = , }{ 22 xE = , },{ 213 xxE = , }{ 34 xE = , },{ 315 xxE = , 
},{ 326 xxE = , and },,{ 3217 xxxE = . Then P (X) = }7,,1,0|{ L=iEi  

and, regarding P (X) as the universal set and each set iE  as an element, 
class S = }}{},{},{},{},{},{},{,{ 7654321 EEEEEEE∅  is a semiring. If we 
define )(})({ ii EmEp =  for 7,,1,0 L=i , then p is a probability 
measure on S. It can be uniquely extended to a discrete probability 
distribution on P (P (X)), the σ-algebra generated by S, as follows: 
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           ∑
∈

=
EE

i
i

EmEp
ˆ

)()ˆ(                   (4.8) 

 
for every ∈Ê  P (P (X)). For example, 

 

,   0                           
})({})({                           

}),({}}),{},({{

52

52312

=
+=

=
EpEp

EEpxxxp
 

while  
 

.   9.0})({})({ }),({}}),{},({{ 3434213 =+== EpEpEEpxxxp  

 
Definition 4.22 Let set function m be a basic probability assignment on 
P     (X). The set function :µ P (X) ]1,0[→ , determined by  

 

∑=
⊆EF

FmE )( )(µ  

 
for every ∈E P (X) is called a belief measure on measurable space  
(X,P     (X)) and we say that µ  is induced from m. A belief measure is 
usually indicated as Bel. 

 
When the universal set X is finite, we may see that any belief measure 

is just the zeta transformation of a basic probability assignment; 
conversely, the Möbius representation of any belief measure is a basic 
probability assignment.  
 
Example 4.29 Based on the basic probability assignment shown in 
Example 4.28, using (4.8) we obtain a belief measure Bel on P    (X) as 
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Bel(E) 
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The following theorem shows that any belief measure is a 

superadditive normalized monotone measure, which is continuous from 
above. The theorem also shows an important inequality for belief 
measures. 
 
Theorem 4.11 If µ  is a belief measure on P (X), then it has the 
following properties: 

 
(BM1) 0)( =∅µ  and 1)( =Xµ ; 
(BM2) ∑ −≥ ∅≠⊆ ∈

−
= InI Ii i

In
i i EE },,,1{

1
1 )()1()( L IU µµ  for any finite  

subclass },,{ 1 nEE L  of P    (X); 
(BM3) µ  is superadditive; 
(BM4) µ  is monotone; 
(BM5)  µ  is upper-continuous (continuous from above). 

 
Proof. Property (BM1) is obtained from the definitions of basic 
probability assignment m and relative belief measure µ . To property 
(BM2), consider any given finite subclass },,{ 1 nEE L . Denoting 

},1|{)( iEFniiFI ⊆≤≤=  for any given set F and using Corollary (4.1), 
we have 
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As for property (BM3), considering any given sets E and F with 

∅=∩ FE  and using (BM2), we have  
 

.)()(                
)()()()(

FE
FEFEFE

µµ
µµµµ

+=
∩−+≥∪

 

 
Property (BM4) is a direct result of (BM3). In fact, let FE ⊆ . Since 

∅=−∩ )( EFE  and µ  is nonnegative, we have  
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))(()(

E
EFE

EFEF

µ
µµ

µµ

≥
−+≥

−∪=
 

 
Finally, we show property (BM5). For any given belief measure µ , let 
m be the corresponding basic probability assignment. From Definition 
4.21, we know that there exists a countable class of sets 

⊆= },2,1|{ LiAi P      (X) }{∅−  such that 1)(1 =∑∞
=i iAm  and 0)( =Em  

for any },2,1|{ L=∉ iAE i . Hence, for any given 0>ε , there exists 
positive integer 0n , such that ε<∑ > 0

)(nn iAm . Consider any given 
nonincreasing set sequence }{ iE  with EEi i =

∞
=I 1 . For each nA  with 

0nn ≤ , if ∅≠− EAn , then there exists )(ni  such that ∅≠− )(nin EA . 
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Write ))(,),1(max( 00 niii L= . If ∅≠− EAn , then ∅≠− )(nin EA  for 
every 0nn ≤ . So, we have 
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Thus, by the monotonicity of µ , we know )(lim)( ii EE µµ = . The 
proof of the theorem is now complete.                            □ 
 

Properties (BM1) and (BM2) shown in Theorem 4.11 are essential to 
belief measures. This can be seen in the next theorem. 
 
Theorem 4.12 Let X be finite. If a set function :µ P  (X) ]1,0[→  
satisfies conditions (BM1) and (BM2), then its Möbius representation 

:m P     (X) ],[ 10→  is a basic probability assignment and, furthermore, µ  
is the belief measure induced from m. 

 
Proof. Since m is the Möbius representation of µ , using (4.6) we have  

 

0 )()1()()1()( 0 =∅−=−=∅ ∑
∅⊆

−∅ µµ
F

F Fm . 

 
We know that the zeta transformation is the inverse of the Möbius 
transformation. So, 
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∑
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==
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Thus, we only need to show 0)( ≥Em  for every subset E of X. In fact, 
since X is finite, any subset of X must also be finite. For any given subset 
E, say, },,,{ 21 nxxxE L= , denoting }{ ii xEE −=  , we have 
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,0         

)()1()(         

)()1()(         

)()1()(

1 },,,1{

1

},,,1{

1

≥

−−=

−−=

−=

= ≠∅⊆ ∈

−

≠∅⊆ ∈

−

⊆

−

∑

∑

∑

U I

I

L

L

n

i InI Ii
i

I
i

InI Ii
i

I

EF

FE

EE

EE

FEm

µµ

µµ

µ

 

 
due to (BM2). Finally, we know that µ  is the belief measure induced 
from m since it is the zeta transformation of m.                          □ 
 
Corollary 4.2 Let X be finite. Set function :µ P (X) ]1,0[→  is a belief 
measure if and only if (BM1) and (BM2) hold. 
 
Definition 4.23 Let set function m be a basic probability assignment on 
P    (X). The set function, :µ P (X) ]1,0[→ , determined by 

 

∑
∅≠∩

=
EF

FmE )( )(µ  

 
for every ∈E P (X) is called a plausibility measure on measurable space 
(X, P (X)) and we say that µ  is induced from m. A plausibility measure 
is usually indicated as Pl. 
 
Theorem 4.13 If Bel and Pl are the belief measure and plausibility 
measure on P (X) induced from a basic probability assignment m, then 
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they are dual to each other, that is, )(1)( EBelEPl −=  for every  
∈E P (X), and .PlBel ≤  
 

Proof. From Definitions 4.22 and 4.23, for any ∈E P (X), we have 
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Furthermore, since }|{}|{ ∅≠∩⊆⊆ EFFEFF , we have 
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=≤=
FFEF

EPlFmFmEBel )()()()(  

 
for every ∈E P (X).                                           □ 
 
Theorem 4.14 If µ  is a plausibility measure on P (X), then it has the 
following properties: 

 
(PM1) 0)( =∅µ  and 1)( =Xµ ; 
(PM2) ∑ −≤ ∅≠⊆ ∈

−
= InI Ii i

In
i i EE },,,1{

1
1 )()1()( L UI µµ  for any finite  

subclass },,{ 1 nEE L  of P     (X); 
(PM3)  µ  is subadditive; 
(PM4)  µ  is monotone; 
(PM5)  µ  is lower-continuous (continuous from below). 

 
Proof. Properties (PM1), (PM3), (PM4), and (PM5) are direct result of 
Theorems 4.11 and 4.13. As for (PM2), we use Pl for the plausibility 
measure and Bel for its dual. By using Corollary 4.1, property (BM2), 
and De Morgan’s laws, we have  
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The proof is now complete.                                            □ 
 

The following three theorems establish the relation among belief 
measures, plausibility measures, and discrete probability measures. 
 
Theorem 4.15 Let p: P (X) ]1,0[→  be a discrete probability measure. 
Then p is both a belief measure and a plausibility measure. The 
corresponding basic probability assignment m focuses on the singletons 
in P (X). 

 
Proof. Since p is a discrete probability measure, there exists countable 
set Xxx ⊆},,{ 21 L  such that 1})({1 =∑∞

=i ixµ . Let  
 



 =

=
  otherwise           0

 somefor  }{ if     )(
)( ii xxEEp

Em  

 
for every ∈E P (X). Then, m is a basic probability assignment focusing 
on countably many singletons, and 
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that is, p is both a belief measure and a plausibility measure.                □ 
 
Theorem 4.16 If m is a basic probability assignment focusing only on 
some singletons in P   (X), then the induced belief measure and plausibility 
measure coincide, resulting in a discrete probability. 

 
Proof. Let m be a basic probability assignment focusing on singletons 

L},{},{ 21 xx , and Bel and Pl be the induced belief measure and 
plausibility measure respectively. Then, for any ∈E P    (X), 
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Furthermore, considering any disjoint set sequence }{ jE  with 

EEj j =
∞
=U 1 , we have 
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This means that the induced belief measure (plausibility measure) is 
σ-additive and, therefore, is a discrete probability measure.                 □ 

 
The above two theorems tell us that any discrete probability is a 

special case of both belief measures and plausibility measures. The set 
function shown in Example 4.5 is both a belief measure and a plausibility 
measure.   
 
Example 4.30 Continue from Example 4.5 where },,{ 21 LxxX =  and 

∑= ∈
−

Ex
i

i
E 2)(µ  for ∈E P (X). Set function µ  is a discrete 

probability measure on P   (X). The corresponding basic probability 
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assignment m focuses on only singletons }{ ix , L,2,1=i , and is 
expressed as i

ixm −= 2})({  for every L,2,1=i . 
 
Theorem 4.17 Let m be a basic probability assignment on (X, P     (X)). If 
the induced belief measure Bel and plausibility measure Pl coincide, then 
m focuses only on singletons. 

 
Proof. A proof by contradiction is used. Assume that there exists a 
nonempty set ∈E P (X), which is not a singleton, such that 0)( >Em . 
Then, for any Ex∈ ,   

 

∑
∅≠∩

=≤+<=
}{

})({)()(})({})({})({
xF

xPlFmEmxmxmxBel . 

 
This contradicts the fact that Bel = Pl.                                 □ 
 

Finally, we show that, when X is countable (including finite), any 
Sugeno measure is a special case of either belief measures or plausibility 
measures according to the sign of parameter λ. 
 
Theorem 4.18 Let },,{ 21 LxxX =  be a countable universal set and λg  
with 0≠λ  be a Sugono measure on (X, P     (X)). Then λg  is a belief 
measure when 0>λ  and is a plausibility measure when 0<λ . 

 
Proof. Since the dual of a plausibility measure is a belief measure and 
the dual of a Sugeno measure with parameter 0<λ  is a Sugeno 
measure with parameter 0)1/( >+−=′ λλλ , we just need to show the 
conclusion of the theorem in the case of 0>λ . 

Let λg  be a Sugeno measure with parameter 0>λ . Define  
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Em Ex
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for every ∈E P (X). Set function m is nonnegative. From Definition 
4.15, we have 
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for every ∈E P (X). Moreover, since 1)( =Xgλ , we have 
  

∑
⊆

==
XF

XgFm 1)()( λ . 

 
Thus, m is a basic probability assignment on (X, P     (X)) and, therefore, 

λg  is the belief measure induced from m.                        □ 
 
Example 4.31 We use the Sugeno measure discussed in Example 4.20 
where },{ 21 xxX =  and  
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}{     when 5.0
}{     when 2.0
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xE
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for ∈E F =P (X). The parameter of Sugeno measure λg  is λ = 3. From 
expression (4.9), the corresponding basic probability assignment       
m:P (X) ]1,0[→  can be obtained as follows. 
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2.02.01})({3})({ 1
11

1 =×== − xgxm λ , 

5.05.01})({3})({ 2
11

2 =×== − xgxm λ , 

3.05.02.03})({})({3)( 21
12 =××=⋅= − xgxgXm λλ . 

Thus,  
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otherwise          0
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and the induced belief measure bel is just the above Sugeno measure λg . 
From this basic probability assignment, the induced plausibility measure 
is 


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.    when         1
}{     when 8.0
}{     when 5.0
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XE
xE
xE
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EPl  

 
It is a Sugeno measure with parameter 75.01/ −=+−=′ λλλ . 

4.8   Necessity Measures and Possibility Measures 

In this section, we discuss a special type of basic probability assignments 
and the induced belief measures and plausibility measures. 

Let X be a finite universal set and m be a basic probability assignment 
on P (X). 

 
Definition 4.24 Basic probability assignment m is consonant iff it 
focuses on a class of nonempty sets that are well ordered by set inclusion, 
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that is, there exists a strictly increasing finite set sequence                         
C = },,,{ 21 nAAA L  such that 1)(1 =∑ =

n
i iAm  and 0)( =Am  for every 

∉A C . 
 

The above-mentioned strictly increasing set sequence is called a nest. 
 
Example 4.32 Let },,,{ 4321 xxxxX =  and basic probability assignment 
m be given as  


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 .  otherwise        0
 if     3.0

},{ if     1.0
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)( 31

3

XA
xxA

xA

Am  

 
Then m is consonant since Xxxx ⊂⊂ },{}{ 313 . 
 
Definition 4.25 The belief measure induced from a consonant basic 
probability assignment is called a necessity measure; the plausibility 
measure induced from a consonant basic probability assignment is called 
a possibility measure. 
 

A necessity measure is usually denoted by ν, while a possibility 
measure is denoted by π. 
 
Example 4.33 The necessity measure :ν P (X) ]1,0[→  and the 
possibility measure :π P   (X) ]1,0[→  induced from basic probability 
assignment m presented in Example 4.32 are 
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and 
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respectively. 
 

The following two theorems show some interesting properties of 
necessity measures and possibility measures. The second theorem can be 
proved through a similar way as the first one, or by using the duality 
based on the conclusion of the first one. 
 
Theorem 4.19 Let ν be a necessity measure. For any class of set 

},,,{ 21 lEEE L ,  
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Proof. Let m be the corresponding basic probability assignment focusing 
on },,,{ 21 nAAA L  that satisfies nAAA ⊂⊂⊂ L21 . Then,  
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For each ni ,,2,1 L=  and lj ,,2,1 L= , using ji  to denote the 
largest i such that ji EA ⊆ , we know that Il

j ji EA 1=⊆  means 
jj ii min≤ . Due to the strict increasingness of },,,{ 21 nAAA L ,  

 



Set Functions                            105 

.)](,),(),(min[                     

])([min)(

21

||
1

l

EAi
ij

EAi

i

EEE

AmAm
ji

l

j
ji

ννν L

I

=

= ∑∑
⊆⊆

=  

So,  
 

)](,),(),([min)( 21
1

l

l

j
j EEEE νννν LI

=
= .          □ 

 
Theorem 4.20 Let π be a possibility measure. For any class of set 
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Proof. Since the belief measure and the plausibility measure induced by 
a basic probability assignment are dual to each other, as a special case, so 
are the necessity measure and the possibility measure. Thus, by the result 
obtained in Theorem 4.19, 
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where De Morgan’s rule is used.                                       □ 
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To generalize necessity measures and possibility measures to a 
universal set that is not finite, we need the following concepts of 
minitivity and maxitivity. Now let X be the universal set that may not be 
finite. 
 
Definition 4.26 A monotone measure µ on (X, P (X)) is minitive (or 
maxitive) iff  

 
)(inf)( t

Tt Ttt EE µµ I
∈ ∈

=   (or )(sup)(U
Tt

t
Tt

t EE
∈ ∈

= µµ , respectively) 

 
for any class }|{ TtEt ∈ , where T is an arbitrary index set. 
 

From definition 4.26, we may say that any necessity measure is 
minitive, while any possibility measure is maxitive. 
 
Definition 4.27 Let µ be a monotone measure on (X, P     (X)). µ is called a 
generalized necessity measure iff it is minitive; µ is called a generalized 
possibility measure iff it is maxitive. 
 
Example 4.34 Let ],0[: aXf →  be a nonnegative real valued function, 
where a is a nonnegative real number. Define set function µ on P (X) by 

 
)(sup)( xfE

Ex∈
=µ  

 
for every ∈E P (X). Then µ is a monotone measure on (X, P     (X)). 
Furthermore, µ satisfies the maxitivity and, therefore, it is a generalized 
possibility measure. 
 

It should be note that a normalized generalized possibility measure 
may not be a plausibility measure. We can see it from the next example. 

  
Example 4.35 Let the universal set ]10[}rational is |{ ,rrX ∩=  and 

xxf =)(  for Xx∈ . X is not finite, but countable. Define  
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)(sup)( xfE
Ex∈

=π  

 
for every ∈E P (X). Then π is a generalized possibility measure and is 
normalized. However, it is not a plausibility measure. In fact, since π has 
infinitely many different values, it is impossible to find a class consists 
of only finitely many subsets of X, on which a basic probability 
assignment focuses, such that π is induced from this basic probability 
assignment. 

4.9   k-Interactive Measures 

Let },,,{ 21 nxxxX L= . As we have seen from Section 1 of this chapter, 
for identifying an additive measure on P    (X), we need to determine the 
value of the measure at each singleton. So, there are n unknown 
parameters. As one of the extreme cases, to determine such an additive 
measure from data, though the complexity is low, but it cannot capture 
the interactions among the contribution rates from nxxx ,,, 21 L  towards 
the given target. In another extreme case, we use a monotone measure to 
describe all possible interaction among the contribution rates from 

nxxx ,,, 21 L  towards the given target. It is powerful. However, for 
identifying a monotone measure, there are 12 −n  unknown parameters. 
In data mining, when the number of attributes, n, increases, the number 
of unknown parameters increases exponentially. The complexity of 
computation is too high and, therefore, is not acceptable. Thus, we face a 
contradiction of powerfulness and the complexity. A compromised way 
with this contradiction is to consider only a relatively small number of 
most common and interesting lower-order interactions but omit the 
higher-order interactions to reduce the complexity. The following 
concept of k-interactive measure is one of the proper compromised ways. 
 
Definition 4.28 Let µ be a monotone measure on (X, P     (X)) and ν be its 
Möbius representation. µ is called a k-interactive measure, where k is an 
integer satisfying nk ≤≤2 , iff 0)( =Eν  for all sets E with kE >|| . 
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From Definition 4.28, we may see that any k-interactive measure is a 
special       case of k′-interactive measures, where k′ is an integer lager than 
k. 

As mentioned above, if nX =|| , an unknown monotone measure 
may have up to 12 −n  unknown parameters, while a k-interactive 
measure have at most ∑ =

k
i knC1 ),(  unknown parameters. When n is 

large, the computational complexity can be significantly reduced 
provided the monotone measure is restricted to be a k-interactive 
measure with a small integer k. 
 
Example 4.36 When 3|| == nX  and 2=k , the difference of the 
numbers of parameters in above-mentioned two set function models is 

167),()12( 1 =−=∑−− =
k
i

n knC . However, when 10=n  and 2=k , a 
monotone measure may have up to 10231210 =−  unknown parameters, 
but a 2-interactive measure only have at most )2,10()1,10( CC +  

554510 =+=  unknown parameters.  

4.10   Efficiency Measures and Signed Efficiency Measures 

From Example 4.12, we have seen that monotone measure µ is used to 
represent the individual and joint efficiencies of workers. Set function µ 
satisfies requirement µ(∅) = 0, which means that there is nothing 
produced if no worker. The nonadditivity of µ means that there are some 
interactions among the contribution rates from these workers towards the 
total number of products. For example, })({})({}),({ 2121 xxxx µµµ +>  
means that workers 1x  and 2x  cooperate well such that their joint 
efficiency is greater than the sum of their individual efficiency; while 
workers 2x  and 3x  cooperate badly such that their joint efficiency is 
less than the sum of their individual efficiency. However, set function µ 
still holds the monotonicity. In some extreme cases, for example, 2x  
and 3x  cooperate very badly and they quarrel all the time such that their 
joint efficiency is very low, say, 4 toys per hour, even lower than their 
individual efficiencies 6 toys per hour and 7 toys per hour. Thus, the 
monotonicity of set function µ is violated. Similar situation may occur in 
many real problems. So, it is necessary to generalize the concept of 
monotone measure as follows. 
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Definition 4.29 Let (X, F ) be a measurable space. Set function     
µ :F → [0, ∞] is called an efficiency measure iff µ(∅) = 0. 
 
Example 4.37 Similar to Example 4.12, let },,{ 321 xxxX = , where 1x , 

2x , and 3x  are three workers hired for manufacturing a certain kind of 
wooden toys. Their individual and joint efficiencies can be represented 
by an efficiency measure µ. For example, 
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where })({}),({ 232 xxx µµ <  and })({}),({ 332 xxx µµ <  violate the 
monotonicity. 
 

Now, as an efficiency measure, it is required vanishing at the empty 
set and to be nonnegative. The first requirement is very natural and is 
proper in most real problems. However, the second requirement is not 
satisfied in some real problems. For example, even in the classical linear 
multiregression, the regression coefficient may be negative. In Chapter 9, 
the model of multiregression is discussed and a set function serves as the 
regression coefficients. From there, we can see that even the 
nonnegativity of the set function should also be dismissed. The classical 
linear multiregression can be generalized to a nonlinear multiregression 
based on nonlinear integrals only when a signed set function is adopted. 
Thus, we further generalize the concept of efficiency measure as follows. 
 
Definition 4.30 Let (X, F ) be a measurable space. Set function     
µ :F → ( ∞− , ∞] is called an signed efficiency measure iff µ(∅) = 0. 
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Example 4.38 Let },,{ 321 xxxX =  and F = P (X). Set function     
µ:P (X) → ( ∞− , ∞] is given as  
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Then µ is a signed efficiency measure on P (X). 
 

Any signed efficiency measure can be decomposed as the difference 
of two efficiency measures. In the next chapter, this decomposition is 
used to define the integral with respect to a signed efficiency measure. 
 
Definition 4.31 Let (X, F ) be a measurable space and µ:F → ( ∞− , ∞] 
be a signed efficiency measure. −+ −= µµµ  is called the reduced 
decomposition of µ if both +µ  and −µ  are efficiency measures on F 
and 0)()( =⋅ −+ EE µµ  for every ∈E F. 
 

The pair of +µ  and −µ  is also simply called the reduced 
decomposition of µ, where +µ  is called the positive part of µ, while 

−µ  is called the negative part of µ. For any given signed efficiency 
measure, the reduced decomposition is unique. Equality 

0)()( =⋅ −+ EE µµ  means that at least one of )(E+µ  and )(E−µ  must 
be zero. In fact,  
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Example 4.39 Consider signed efficiency measure shown in Example 
4.38, the reduced decomposition of µ is 
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With nonlinear integrals, the signed efficiency measures play a major 

role in information fusion and data mining. In Chapters 6 and 8-11, we 
may see the applications of signed efficiency measures.  

The following definition gives a concept of boundedness for signed 
efficiency measures. It is used for discussing the properties of nonlinear 
integrals in Chapter 5. 
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Definition 4.32 A signed efficiency measure µ defined on measurable 
space (X, F ) is bounded iff there exists a real number M such that 

MA ≤|)(| µ  for every ∈A F. In this case, M is called the bound of 
signed efficiency measure µ. 

 
When X is finite, any signed efficiency measure µ :F → ( ∞− , ∞) is 

bounded. 

Exercises   

Exercise 4.1 Let },,{ 321 xxxX = . Knowing 1.0})({ 1 =xµ  and 2.0})({ 2 =xµ , deter- 
mine probability measure µ on P    (X). 
 
Exercise 4.2 Let (X, Rσ, µ ) be a measure space. Prove Property (M3) given in Theorem 
4.2 by using Property (M2). 
 
Exercise 4.3 Show that the Lebesgue measure of any singleton included in the real line is 
zero. Furthermore, show that the Lebesgue measure of the set consisting of all rational 
numbers is zero. 
 
Exercise 4.4 Let },,{ 321 xxxX =  and λg  be a normalized λ-measure on P   (X). 
Knowing 3.0})({ 1 =xgλ , 4.0})({ 2 =xgλ , and 5.0})({ 3 =xgλ , determine the value 
of parameter λ and then the values of λg  at the other sets in P     (X). 
. 
Exercise 4.5 Let },,{ 321 xxxX = . Knowing 1.0})({ 1 =xgλ , 2.0})({ 2 =xgλ , and 

2=λ , determine normalized λ-measure λg  on P     (X). 
 
Exercise 4.6 Let },,,{ 21 nxxxX L=  and |)|1/(||)( EEE +=µ  for every ∈E P    (X). 
Is µ a quasi-measure on P     (X)? If yes, find its standard T-function; if no, simply show 
your reason. 
 
Exercise 4.7 Let λg  be a λ-measure with parameter λ on measurable space (X, F ) and 

0>c  be a constant. Is set function λµ gc ⋅=  also a λ-measure? If yes, what is the 
relation between its parameter λ′  and the original parameter λ? If no, construct a 
counterexample. 
 
Exercise 4.8 Let },,{ 321 xxxX = . Set function µ :P     (X) → [0, ∞) is given as 
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. if        3
} ,{ if       2
} ,{ if       4

}{ if       5
} ,{ if       1

}{ if       3
}{ if       2

 if       0

)(

32

31

3

21

2

1



















=
=
=

=
=
=
=
∅=

=

XE
xxE
xxE

xE
xxE

xE
xE

E

Eµ  

Find its Möbius representation ν . 
 
Exercise 4.9 Let },,,{ 4321 xxxxX = . Set function µ :P    (X) → [0, ∞) is given as 
 

     

}. , , ,{ if       20
} , ,{ if       14
} , ,{ if       12

} ,{ if         8
} , ,{ if       15

} ,{ if         9
} ,{ if         7

}{ if         3
} , ,{ if       17

} ,{ if       11
} ,{ if         9

}{ if         5
} ,{ if       12

}{ if         6
}{ if         4

 if         0

)(

4321

432

431

43

421

42

41

4

321
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31

3

21

2

1
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





























=
=

=
=
=
=
=
=
=
=

=
=
=
=
=
∅=

=

xxxxE
xxxE
xxxE

xxE
xxxE

xxE
xxE

xE
xxxE

xxE
xxE

xE
xxE

xE
xE

E

Eµ  

 
Is it a k-interactive measure? If yes, show your reason and find the value of k. If no, show 
your reason as well. 
 
Exercise 4.10 Let },,{ 321 xxxX =  and m be a basic probability assignment on P    (X), 
where  
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.otherwise        0
} ,{ if       1.0
} ,{ if       20

}{ if       7.0

)(
31

21

1











=
=
=

=
xxE
xxE.

xE

Em  

 
Find the induced belief measure Bel and the induced plausibility measure Pl by m. 
 
Exercise 4.11 Let },,{ 321 xxxX =  and monotone measure µ  be given as 
 

     

. if           1
} ,{ if       5.0

} ,{ if          1
}{ if       5.0

} ,{ if          1
}{ if       30
}{ if          1

 if          0

)(

32

31

3

21

2

1



















=
=

=
=
=
=
=
∅=

=

XE
xxE

xxE
xE

xxE
xE.
xE

E

Eµ  

 
Is it a possibility measure? Why? If yes, find the corresponding basic probability 
assignment.  
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Chapter 5 

Integrations 

In this chapter, the functions and integrals are discussed. A function is a 
mapping from a measurable space, (X, F ), to another measurable space, 
(Y, G ). In most cases, the real line with the Borel field (R, B ) is taken as 
(Y, G ). Sometimes, both of them are (R, B ) such that the continuity and 
monotonicity of functions can be considered. Several different types of 
integrals, including the Riemann integral, the Lebesgue-like integral, the 
Choquet integral, and the upper and the lower integrals are investigated 
in this chapter. The first two types of integrals are linear, while the others 
are generally nonlinear. Any one of them can be chosen as an 
aggregation tool in information fusion and data mining, which are 
discussed in Chapters 6 and 8-11.  

In this book, only the pair of common addition and common 
multiplication of real numbers are used as binary operators to define 
various integrals. Some types of nonlinear integrals involving the other 
binary operators (the pair of maximum and minimum, or the pan addition 
and the pan multiplication) of real numbers, such as the Sugeno integral 
and the pan integrals, are not discussed. The readers interested in those 
types of nonlinear integrals may refer to [Wang and Klir 1992 or Wang 
and Klir 2008].  

5.1   Measurable Functions 

The concept of function has already been accepted and applied in 
scientific and engineering areas by most readers. In this section, based on 
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the concept of relation discussed in Section 2.5, a general description of 
functions is given. 
 
Definition 5.1 Let X and Y be two nonempty sets. A relation f from X to 
Y, denoted as YXf →: , is called a function (or a mapping) if each 
point in X relates to only one point in Y. If Xx∈  relates to Yy∈ , we 
say that y is the value of f at x (or the image of x under mapping f ) and 
denote it as )(xfy = . In this case, x is called the pre-image of y. Set X 
is called the domain of function f, and Y is called the co-domain of f. Set 

} somefor  )(|{ Xxxfyy ∈=  is called the range of  f. 
  
Example 5.1 In a database, there are n attributes, nxxx ,,, 21 L , which 
form the universal set X, that is, },,,{ 21 nxxxX L= . The data set 
consists of l real-valued observations (records) to all of these attributes. 
Denoting the j-th observation of nxxx ,,, 21 L  by 1jx , 2jx , L , jnx , 

lj ,,2,1 L= , respectively, the data set has the following form: 
 

1x  2x  L nx  

11x 12x L nx1

21x 22x L nx2

M  M   M  

1lx  2lx L nlx
 
For each lj ,,2,1 L= , let jiij xxf =)( , ni ,,2,1 L= . Then, each row 
is a function from (X, P (X)) to (R, B), that is, jf ),(: ∞−∞→X , 

lj ,,2,1 L= . So, the database can be regarded as a set of l functions on 
X, where l is called the size of the data. 
 
Definition 5.2 Let f be a function from X to Y. For any XA⊆ , set 

}|)({ Axxf ∈  is called the image of A under f, denoted by )(Af . 
Conversely, for any YB ⊆ , set })(|{ Bxfx ∈  is called the 
inverse-image of B, denoted by )(1 Bf − . 
 

In this book, only real-valued (or fuzzy-valued) functions, whose 
co-domain is a set of real numbers (or fuzzy numbers, respectively), are 
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considered. The characteristic functions discussed in Section 2.1 are of 
the simplest type of functions, beyond the constant.  
 
Definition 5.3 Any function ),(: ∞−∞→Xf  having a form 

 

∑
=

=
m

i
Ai i

af
1

χ  

 
is called a simple function, where m is a positive integer, ia  is a real 
constant, and Ai∈F  for mi ,,2,1 L= . 
 

In the above definition, without any loss of generality, we may 
assume that sets mAAA ,,, 21 L  are disjoint. 
 
Definition 5.4 Any function ),(: ∞−∞→Xf  having a form  
 

∑
∞

=
=

1i
Ai i

af χ   

 
is called an elementary function, where ia  is a real constant, ∈iA F  
for L,2,1=i , and },2,1|{ L=iAi  is a class of disjoint sets. 
 

It is clear that any characteristic function is a simple function and any 
simple function is an elementary function. 

To discuss the real-valued function, more basic knowledge on sets of 
real numbers is needed. The reader may refer to some textbook on real 
analysis. One of the important conclusions in real analysis is shown in 
the following proposition. 
 
Proposition 5.1 Any open subset of the real line ),( ∞−∞=R  can be 
expressed as a countable union of disjoint open intervals. 
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From now on, an open subset of the real line is simply called an open 
set provided there is no confusion. 

One of the most common types of real-valued functions defined on 
the real line, that is, (X, F    ) = (Y, G   ) = (R, B  ), is the continuous functions. 
It plays an important role in calculus. 
 
Definition 5.5 Let }with|{),( ∞≤<≤∞−<<= babxaxba  be a 
generalized open interval. Function ),(),(: ∞−∞→baf  is continuous 
on ),( ba  iff the inverse-image of any open set is an open set. 
 

The continuity of functions from ),( ba  to ),( ∞−∞  described in 
Definition 5.5 coincides with its common description in calculus. In 
calculus and real analysis, monotone functions and functions with 
bounded variation also appear frequently.  
 
Definition 5.6 Function ),(),(: ∞−∞→baf  is nondecreasing iff 

),(, 21 baxx ∈  and 21 xx ≤  imply )()( 21 xfxf ≤ ; f is nonincreasing iff 
),(, 21 baxx ∈  and 21 xx ≤  imply )()( 21 xfxf ≥ . Both nondecreasing 

functions and nonincreasing functions are called monotone functions. 
 
Definition 5.7 Function ),(),(: ∞−∞→baf  is bounded on ),( ba  iff 
there exists a positive number M such that Mxf ≤)(  for every 

),( bax∈ . 
 
Definition 5.8 Function ),(),(: ∞−∞→baf  is said to have a bounded 
variation iff it can be expressed as the difference of two bounded 
nondecreasing functions on ),( ba . 
 

In Definitions 5.5-5.8, there is no essential difficulty to generalize 
these concepts on functions by allowing the interval to be closed at finite 
values (or to be half open half closed at a finite value). 
 
Example 5.2 Function xxf sin)( =  is of bounded variation on ]4,0[ π . 
In fact, let  
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[ if              1

)
2

,0[ if        sin

)(

ππ

ππ

ππ
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π
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xg  

and 





















∈

∈−

∈

∈−
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2

7[ if             4

)
2

7,
2

5[ if  sin3

)
2

5,
2

3[ if             2

)
2

3,
2

[ if  sin1

)
2

,0[ if             0

)(

ππ

ππ

ππ

ππ

π

x

xx

x
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x

xh  

 
Both h and g are nondecreasing, and they satisfy hgf −= .  
 
Definition 5.9 Function ),(: ∞−∞→Xf  is B-F measurable iff 

∈− )(1 Bf F  for any ∈B B, where “B-F ” may be omitted if there is 
no confusion. 
 

In case F = P     (X), any function on X is measurable. When X is finite, 
taking P     (X) (it is finite too) as the σ-algebra F  in the measurable space 
(X, F     ) is convenient.  
   
Theorem 5.1 If ),(: ∞−∞→Xf  is a real-valued function, then the 
following statements are equivalent: 
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(1) f  is measurable; 
(2) ∈> })(|{ αxfx F  for any ),( ∞−∞∈α ; 
(3) ∈≤ })(|{ αxfx F  for any ),( ∞−∞∈α ; 
(4) ∈< })(|{ αxfx F  for any ),( ∞−∞∈α ; 
(5) ∈≥ })(|{ αxfx ∈F  for any ),( ∞−∞∈α . 

 
Proof.  
(1)⇒(2): For any ),( ∞−∞∈α , we have ∈∞=> − ),(})(|{ 1 αα fxfx F   

since interval ),( ∞α ∈B. 
(2)⇒(3): For any ),( ∞−∞∈α ,  

 
})(|{ α≤xfx = })(|{ α>xfx  = ∈∞− )),((1 αf F. 

 
(3)⇒(4): For any ),( ∞−∞∈α ,  

 
∈−≤=< ∞

=U 1 }/1)(|{})(|{ i ixfxxfx αα F. 
 

(4)⇒(5): For any ),( ∞−∞∈α ,  
 

})(|{ α≥xfx = ∈< })(|{ αxfx F. 
 

(5)⇒(1): For any left closed right open interval ),[ ba ,  
 

)),([1 baf − ∈∞−∞=∞−∞= −−− )),([)),([)),[),([ 111 bfafbaf F.  (5.1) 
 

Let A = ∈− )(|{ 1 BfB F} . Given any ∈E A, it follows that ∈E A, since 
∈= −− )()( 11 EfEf F, that is, A is closed under the formation of 

complements. Similarly, given any sequence ∈}{ nE A, it follows that 
∈∞

=U 1i nE A since ∈= ∞
=

−∞
=

−
UU 1

1
1

1 )()( n ni n EfEf F, that is, A is closed 
under the formation of countable unions. Hence, A is a σ-algebra. 
Denoting the semiring consists of all left closed right open intervals by  
S, expression (5.1) means that A ⊇ S. Consequently, according to the 
definition of F (S ), we have A ⊇ F (S ) = B. So, ∈− )(1 Bf F  for any 
∈B B, that is, f is measurable.  
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The proof is now complete.                                   □ 

 
It is easy to see that any continuous function (even piecewise 

continuous) or monotone function on an open interval is B-B 
measurable and, therefore, any constant, regarded as a function on X, is 
measurable. The concept of measurable function can also be used for 
functions defined on a nonempty measurable set. 
 
Theorem 5.2 For any measurable function f on X, there exists a 
nondecreasing sequence of elementary functions }{ nf  on X such that 

ffnn =∞→lim ; similarly, there exists a nonincreasing sequence of 
elementary functions }{ nf  such that ffnn =∞→lim . 

 
Proof. Only the first conclusion is proved here. The second is similar to 
the first. Let nkxfn /)( =  when )/)1(,/[)( nknkxf +∈ , where 

,2, −=Lk L,2,1,0,1− . Then, }{ nf  is a nondecreasing sequence of 
elementary functions. Furthermore, nff n /10 ≤−≤ . Hence, 

ffnn =∞→lim .                                                                                                              □ 
 

Restricting a function f to be nonnegative, we may obtain a stronger 
result as follows. 
 
Theorem 5.3 For any nonnegative measurable function f on X, there 
exists a nondecreasing sequence of nonnegative simple functions }{ nf  
on X such that ffnn =∞→lim . 

 
Proof. Let  

 

    
,,2,1),,1[)( if    1

)( if     
)( 2







=
−

∈
−

≥
=

nk
n
k

n
kxf

n
k

nxfn
xfn

L
 

 
for L,2,1=n . Then }{ nf  is a nondecreasing sequence of nonnegative 
simple functions, and ffnn =∞→lim .                                                                                                                        □ 
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Theorem 5.4 Let f and g be measurable functions on X and c be a 
constant. 

 
(1) fc ⋅  is measurable; 
(2) gf ±  is measurable; 
(3) f  is measurable; 
(4) 2f  is measurable; 
(5) gf ⋅  is measurable; 
(6) f/1  is measurable if 0)( ≠xf  for all Xx∈ ; 
(7) gf ∨  and gf ∧  are measurable. 

 
Proof. Let α  be an arbitrarily given constant.  
(1) When 0>c , we have ∈>=>⋅ }/)(|{}))((|{ cxfxxfcx αα F. 

while 0<c , we have ∈<=>⋅ }/)(|{}))((|{ cxfxxfcx αα F. 
As for the case of c = 0, 00 =× f  is a constant function and, 
therefore, is measurable. 

(2) First, we show that gf −  is measurable. Inequality α>− gf  
is equivalent to gf +>α . For each Xx∈ , there exists a 
rational number xr  such that )()( xgrxf x +>> α . Since there 
are only countably many rational numbers, we may write them as a 
sequence }{ nr . Thus,  

 

     ∈−<∩>=>−
∞

=
]})(|{})(|[{}))((|{

1
U
n

nn rxgxrxfxxgfx αα F. 

 
As for gf + , regarding 1−  as the constant c, the conclusion 
comes from )1( gfgf ⋅−−=+ . 

(3) We only need to consider the case of 0>α . In this case, 
∈−<∪>=> })(|{})(|{})(|{ ααα xfxxfxxfx F. 

(4) Similar to (3), we only need to consider the case of 0>α . In this 
case, ∈>=> })(|{})(|{ 2 αα xfxxfx F.   

(5) This conclusion can be obtained from  
 

22)[( fgfgf −+=⋅ 2/]2g−  
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and the above proved conclusions. 
 
(6) }))(/1(|{ α>xfx }]0)(|{}1))((|[{ >∩<= xfxxfx α    

∈<∩>∪ }]0)(|{}1))((|[{ xfxxfx α F. 
 

(7) })()(|{}))((|{ αα >∨=>∨ xgxfxxgfx    
   ∈>∪>= })(|{})(|{ αα xgxxfx F. 

 
})()(|{}))((|{ αα >∧=>∧ xgxfxxgfx  

   ∈>∩>= })(|{})(|{ αα xgxxfx F.                    □ 

 
Regarding gf −  as a function, the following conclusion is a direct 

result of Theorems 5.1 and 5.4(2).  
 
Corollary 5.1 Let f and g be measurable functions. Then 

)}()(|{ xgxfx = , )}()(|{ xgxfx > , and )}()(|{ xgxfx ≥  are 
measurable sets. 
 

Since the characteristic function of any measurable set is measurable, 
from Theorem 5.1, we know that all elementary functions (including any 
simple function) are measurable. 

5.2   The Riemann Integral 

In this section, we recall the definite integral of function 
),(],[: ∞−∞→baf , where ],[ ba  is a given closed interval, with 

respect to the Lebesgue measure. 
 
Definition 5.10 A partition of ],[ ba  is a finite sequence 

},,1,0|{ kiti L=  satisfying bttta k =≤≤≤= L10 . Number 
)(max 11 −≤≤ − iiki tt  is called the mesh size of the partition. A tagged 

partition of ],[ ba  is a partition },,1,0|{ kiti L=  with a finite 
sequence  },,1|{ kisi L=  satisfying ],[ 1 iii tts −∈  for  ki ,,1 L= . A 
refinement of partition },,1,0|{ kiti L=  is a partition 
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jt′{ ,1,0| =j }, k′L  

such that  

},,1,0|{ kiti L= ⊆ jt′{ },,1,0| kj ′= L . 

 
Definition 5.11 Given function f on ],[ ba  and tagged partition 

},,1,0|{ kiti L=  with },,1|{ kisi L=  of ],[ ba , sum  
 

∑
=

−−
k

i
iii ttsf

1
1))((  

 
is called a Riemann sum (corresponding to the given tagged partition) of  
f on ],[ ba . 
 
Definition 5.12 Let f be a function on ],[ ba . If there is a real number 

RI , for any given 0>ε , there exists 0>δ , such that  
 

ε<−−∑
=

− R

k

i
iii Ittsf

1
1))((  

 
whenever the mesh size of the tagged partition },,1,0|{ kiti L=  with 

},,1|{ kisi L=  is less than δ , then we say that f is Riemann integrable 
on ],[ ba  (or say, the Riemann integral of f on ],[ ba  exists), and RI  
is the Riemann integral of f on ],[ ba .  

 
The Riemann integral is also called a definite integral in calculus. 

The definite integral of f on interval ],[ ba  is denoted as  
 

∫=
b

aR dttfI )( .  
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Fig. 5.1 The geometric meaning of a definite integral. 
 

 
Its geometric meaning, when 0≥f , is the area of the region between 
the graph of f and the x-axis from a  to b  (see Figure 5.1). 
 
Definition 5.13 Let f be a function on ],[ ba  and },,1,0|{ kitP i L==  
be a partition of ],[ ba . Denoting  

 
)(sup

],[ 1

tfM
ii ttt

i
−∈

=  

and  

)(inf
],[ 1

tfm
ii ttti

−∈
= ,  

 
the upper Darboux sum of function f with partition P is 

 

∑ −=
=

−

k

i
iii ttMPfS

1
1)(),( , 

 
and the lower Darboux sum of function f with partition P is 

 

∑ −=
=

−

k

i
iii ttmPfS

1
1)(),( . 

 
Then the upper Darporx integral of f on ],[ ba  is defined as  



126         Nonlinear Integrals and Their Applications in Data Mining 

]},[ ofpartition  a is |),(inf{ baPPfSIUD = , 
 

and the lower Darporx integral of f on ],[ ba  is defined as  
 

]},[ ofpartition  a is |),(sup{ baPPfSILD = . 
 

If LDUD II = , denoted by DI , then we say that f is Darboux integrable 
on ],[ ba , and DI  is the Darboux integral of f on ],[ ba .  
 

The Darboux integral, in fact, is equivalent to the Riemann integral 
shown in Definitions 5.11 and 5.12, that is, RD II =  for very Riemann 
integrable (or Darboux integrable) function f defined on any given 
interval ],[ ba . Thus, from now on, we omit the subscript and simply use 
I to denote the Riemann integral or Darboux integral. 

From calculus, we know that any continuous (even piece-wise 
continuous) function on given interval ],[ ba  is Riemann integrable. 
Furthermore, any monotone function and, therefore, any function of 
bounded variation on ],[ ba  is Riemann integrable. However, it is easy 
to cite some examples of measurable functions that are not Riemann 
integrable defined on a closed interval. 
 
Example 5.3 Consider function ]1,0[]1,0[: →f  defined by 

 



 ∈

=
otherwise1

 if0
)( 0Qx

xf  

 
for ]1,0[∈x , where 0Q  is the set of all rational numbers in ]1,0[ . 
Function f is discontinuous everywhere in ]1,0[ , but is measurable on 

]1,0[ . For any partition },,1,0|{ kitP i L==  of ]1,0[  with 
10 10 =<<<= kttt L ,  

 
1)(sup

],[ 1

==
−∈

tfM
ii ttt

i  

and  
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0)(inf
],[ 1

==
−∈

tfm
ii ttti  

 
for every ki ,,1 L= . Hence, the upper Darboux sum of function f with 
partition P is 

 

1)(1),( 0
1

1 =−=−⋅=∑
=

− ttttPfS k

k

i
ii , 

 
while its lower Darboux sum is 

 

0)(0),(
1

1 =−⋅= ∑
=

−

k

i
ii ttPfS . 

 
Thus, the upper Darporx integral of f on ]1,0[  is 1, but its lower 
Darporx integral is 0. They are not equal to each other. This shows that 
the function f is not Riemann integrable. 
 

The most important property of the Riemann integral is the linearity, 
that is,  

∫∫∫ +=+
b

a

b

a

b

a
dttgcdttfcdttgctfc )()()]()([ 2121  

 
for any real numbers 1c  and 2c  whenever f and g are Riemann 
integrable on ],[ ba . Using this linearity, it is not difficult to know that  

 

∫∫∫ +=
c

b

b

a

c

a
dttfdttfdttf )()()(  

 
if all involved Riemann integrals exist. 

Another interesting property of the Riemann integral is abdtb
a −=∫ 1  

for any interval ],[ ba . As a special case, ∫ =a
a dttf 0)(  for any function 
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f. Thus, the Riemann integral ∫ba dttf )(  can also be understood as an 
integral on open interval ),( ba  or even on a half open half closed 
interval. 

5.3   The Lebesgue-Like Integral 

Let us consider measure space ],1,0([ B[0, 1], m), where B[0, 1] is the class 
of all Borel sets in ]1,0[  and m is the Lebesgue measure, and check the 
function shown in Example 5.3. Since there are only countably many 
rational numbers and the Lebesgue measure of each singleton is zero, by 
using the countable additivity of the Lebesgue measure m, we know that 
the Lebesgue measure of 0Q , the set consisting of all rational numbers 
in ]1,0[ , is zero. Therefore, by the additivity of m, the Lebesgue 
measure of 0]1,0[ Q− , the set consisting of all irrational numbers, is 1. 
Thus the graph of function f given in Example 5.3 almost coincides to the 
horizontal line with height 1 on ]1,0[ . Intuitively, the area of the region 
between the graph of function f and the x-axis should be 1, the same as 
the constant function 1 has. Unfortunately, Example 5.3 tells us that the 
above-mentioned area is “unmeasurable”, or say, the information carried 
by such a measurable function is not “aggregatable” by the Riemann 
integral, though function f is measurable. This fact shows that the 
Riemann integral is not powerful enough as an aggregation tool. Hence, 
people need to look for another integration approach as a generalization 
of the Riemann integral such that any measurable function is integrable. 
The Lebesgue integral is just such an expected tool, which can be 
established based on Theorem 5.3 step by step as follows.  
 
Definition 5.14 Let X = ),( ∞−∞ , E is a Borel set, and g be a 
nonnegative simple function with expression  

 

∑
=

=
n

j
Ej j

axg
1

)( χ . 
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Then Lebesgue integral of g on E with respect to the Lebesgue measure 
m is  

∑∫
=

∩⋅=
n

j
jjE

EEmadmg
1

)( , 

 
where 0≥ja  and ∈jE B for nj ,,2,1 L= . Furthermore, let f be a 
nonnegative measurable function and }{ ig  be a nondecreasing 
sequence of nonnegative simple functions such that fgii =∞→lim on E. 
Then the Lebesgue integral of f on E with respect to the Lebesgue 
measure m is 

∫ ∫∞→
=

E E ii
dmgdmf lim . 

 
 
The above definition of the Lebesgue integral is unambiguous due to 

the σ-additivity of m. That is, for any two sequences of nondecreasing 
nonnegative simple functions, }{ ig  and }{ ig′ , with  ii g∞→lim  

fgii =′= ∞→lim  on E, we have  
 

∫∫ ′=
∞→∞→ E iiE ii

dmgdmg limlim . 

 
So, the Lebesgue integral is well defined for any nonnegative measurable 
function on any given Borel set E. When  ),( ∞−∞=E , ∫ ∞−∞ ),( dmf  
is simply written as ∫ dmf .  

In Definition 5.14, function f may be any nonnegative measurable 
function, including nonnegative piecewise continuous functions, 
monotone functions, and functions with bounded variation. When a 
function is Riemann integrable, it is also Lebesgue integrable, and the 
values of its Lebesgue integral and Riemann integral are the same. Hence, 
the Lebesgue integral is a generalization of the Riemann integral. The 
former is more powerful than the latter. This can be seen in the following 
example.  
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Example 5.4 We continue the discussion in Example 5.3, where 
considered function ]1,0[]1,0[: →f  is defined as 

 



 ∈

=
otherwise1

 if0
)( 0Qx

xf  

 
for ]1,0[∈x , in which Q0 1][0,}rational is |{ ∩= xx . Function f is a 
simple function with m(Q0) 0=  and m( −]1,0[ Q0) 1= . Hence,  

 

11100)]1,0[(1)(0 0]1,0[ 0 =×+×=−⋅+⋅=∫ QmQmdmf . 

 
That is, f is Lebesgue integrable and the value of the integral coincides 
with the intuition.  
 

The Lebesgue integral can be immediately generalized to nonnegative 
measurable functions defined on a general measure space (X, F, µ). 
 
Definition 5.15 Given a measure space (X, F, µ), let ∈E F, f be a 
nonnegative measurable function on E, and }{ ig  be a nondecreasing 
sequence of nonnegative simple functions such that fgii =∞→lim on E, 
where simple function ig , L,2,1=i , has a form 

 

∑
=

=
i

ij

n

j
Eiji axg

1
)( χ , 

 
in which aij 0≥  and Eij ∈F for inj ,,2,1 L= . The Lebesgue-like 
integral of f on E with respect to measure µ  is 

 

∫ ∑
=∞→

∩⋅=
E

n

j
ijiji

i

EEadf
1

)(lim µµ .             (5.2) 
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In the integral, function f is called the integrand. 
 

Similar to the Lebesgue integral, this definition is unambiguous due 
to the σ-additivity of µ . When XE = , we may omit the subscript E 
from the symbol of the integral as well. Since the Lebesgue integral 
defined on the Euclidian space is just a special case of the Lebesgue-like 
integral on general measure space, from now on, we simply call the latter 
the Lebesgue integral provided there is no confusion. In case we want to 
emphasize an integral being in Lebesgue’s meaning shown in Definition 
5.15 to distinct from other types of integrals (they are discussed in 
Sections 5.5-5.9), a symbol (Leb) ∫ µdf  is adopted. 

As for measurable functions that are not necessarily nonnegative, the 
following approach can be adopted to define their Lebesgue integral. 
 
Definition 5.16 Given a measurable function f on set ∈E F, functions 

 



 ≥∈

=+

otherwise           0
0)( and  if     )(

)(
xfExxf

xf  

and 



 <∈−

=−

otherwise              0
0)( and  if     )(

)(
xfExxf

xf  

 
are called the positive part and the negative part of f, respectively. 
 

Given measurable function f on measure space (X, F, µ), both +f  
and −f  are nonnegative measurable functions on (X, F, µ), and 

−+ −= fff  holds. Thus, we may use them to define the Lebesgue 
integral for any given measurable function f on measurable set E with 
respect to measure µ  as follows. 
 
Definition 5.17 Given a measurable function f on measurable set E, the 
Lebesgue integral of f  on E with respect to measure µ  is defined as  
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∫ ∫∫ −+ −=
E EE

dfdfdf µµµ  

 
provided the two terms on the right hand side are not both infinite. 
 

Similar to the Riemann integral, the Lebesgue integral has the 
following basic properties, where we assume that all involved functions 
and sets are measurable: 

 

(LIP1) ∫ ≥
E

df 0µ  if 0≥f ; 

(LIP2) ∫ ∫ ==
E E Edd )(1 µµχµ ; 

(LIP3) ∫ ∫ ⋅=
E E dfdf µχµ ; 

(LIP4) ∫∫∫ +=+
EEE

dgcdfcdgcfc µµµ 2121 )( . 

 
Property (LIP4) is the linearity. From these basic properties, we may 
obtain more properties. Some of them are left to the readers as exercises.  
 
Example 5.5 Let },,,{ 21 nxxxX L=  be a set of n attributes (or, 
information sources) and nwww ,,, 21 L  are corresponding weights. If 

)(,),(),( 21 nxfxfxf L  are an observation (or, received numerical 
information amounts) of these attributes respectively, then the weighted 
sum 

)()()()( 2211
1

nn

n

i
ii xfwxfwxfwxfw +++=∑

=
L  

 
can be regarded as the Lebesgue integral of function f on X with respect 
to a certain measure µ  on P      (X). In fact, we may define a measure on 
the semiring, S , that consists of all singletons of X and the empty set by 

ii wx =})({µ  for ni ,,2,1 L=  and µ (∅) = 0. It can be extended to a 



Integrations                            133 

measure on P   (X), the σ-algebra generated by S, by the additivity 
uniquely. The observation )(,),(),( 21 nxfxfxf L  can be regarded as a 
function ),(: ∞−∞→Xf . Since we now adopt the power set P    (X) as 
the σ-algebra to form the measure space (X, P   (X), µ ), function f is 
measurable and, moreover, is a simple function. Thus, the Lebesgue 
integral of f with respect to measure µ  is 

 

∫ ∑ ∑
= =

=⋅=
n

i

n

i
iiii xfwxxfdf

1 1
)(})({)( µµ . 

 
When weights nwww ,,, 21 L  satisfy the conditions 0≥iw  for 

ni ,,2,1 L=  and 11 =∑ =
n
i iw , the weighted sum ∑ =

n
i ii xfw1 )(  is called 

a weighted average of )(,),(),( 21 nxfxfxf L . 
 

Explaining as well as expressing the weighted sum as a Lebesgue 
integral is used for the linear multiregression reviewed in Section 9.1. By 
such point of view, we introduce the nonlinear multiregression in 
Chapter 9 based on nonlinear integrals, which are discussed in the 
following several sections. 

5.4   The Choquet Integral 

Based on the discussion on linear integrals with respect to additive 
measures in Sections 5.2 and 5.3, beginning from this section, we 
consider some types of nonlinear integrals with respect to monotone 
measures. 

Let (X, F, µ) be a monotone measure space and f be a measurable 
function on (X, F     ). Generally, the universal set X is not necessarily finite 
and σ-algebra F  may not be the power set of X.  

To define an integral of f with respect to a monotone measure µ , if 
the approach shown in Definition 5.15 is still used, we will face a 
difficulty that the value of the limit in expression (5.2) depends on the 
choice of sequence }{ ig  as well as on the expression of each ig  due 
to the nonadditivity of µ , that is, the unambiguousness of the definition 
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will not be guaranteed. So, the definition of Lebesgue integral with 
respect to a nonadditive monotone measure fails. Thus, we have to look 
for another approach to define an integral for measurable function f with 
respect to monotone measures. One of the successful ways is the 
Choquet integral discussed in this section. 
 
Definition 5.18 Let f be a nonnegative measurable function on (X, F ) 
and ∈E F . The Choquet integral of f on E with respect to a monotone 
measure µ , denoted by ∫E df µ)C( , is defined as 

 

∫∫
∞

∩=
0

)()C( αµµ α dEFdf
E

,             (5.3) 

 
where })(|{ αα ≥= xfxF , called the α -level set of f, for ),0[ ∞∈α . 
When XE = , ∫X df µ)C(  is simply written as ∫ µdf)C( . 
 

Since function f in Definition 5.18 is measurable, we know that 
∈≥= })(|{ αα xfxF F for every ),0[ ∞∈α  and, therefore, ∈∩ EFα F. 

So, )( EF ∩αµ  is well defined for every ),0[ ∞∈α . Furthermore, 
)},0[|{ ∞∈ααF is a class of sets that are nonincreasing with respect to α 

and so are sets in )},0[|{ ∞∈∩ αα EF . Noting that monotone measure µ 
is nondecreasing, we know that )( EF ∩αµ  is a nonincreasing function 
of α  and, therefore, is Riemann integrable. Thus, the Choquet integral 
of a nonnegative measurable function with respect to a monotone 
measure on a measurable set is then well defined.  

When set function µ  is σ-additive, expression (5.3) in Definition 
5.18 is just an equivalent definition of the Lebesgue integral of f with 
respect to µ . In literature, this equivalence is called the transformation 
theorem for the Lebesgue integral. That is to say, when monotone 
measure µ , as a special case, is a classical measure, the Choquet 
integral of any given measurable function f with respect to µ  coincides 
with the corresponding Lebesgue integral. So, the Choquet integral is a 
real generalization of the Lebesgue integral. Just by this reason, 
sometimes people omit “(C)” from the symbol of the Choquet integral 
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and then use the same symbol, ∫ µdf , as the Lebesgue integral uses if 
there is no confusion. 
 
Example 5.6 Let ]1,0[=X , xxf 2)( =  for ]1,0[∈x , F = B[0, 1], the 
class of all Borel sets in ]1,0[ , and 2)]([)( BmB =µ  for ∈B B[0, 1], 
where m is the Lebesgue measure on the real line. Thus, f is a 
nonnegative measurable function on monotone measure space        
(X, B[0, 1], µ ). According to Definition 5.18, the Choquet integral of f 
with respect to µ is 
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dd
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When the integrand of the above Riemann integral, )( αµ F , cannot 

be expressed as an explicit elementary expression of α, or the expression 
is too complex, the value of the Choquet integral has to be approximately 
calculated by using some numerical method (e.g., the Simpson method). 
However, if the universal set X is finite, such as the set of attributes in a 
database, we have a simple calculation formula as follows. 
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Let },,,{ 21 nxxxX L= . In this case, usually, we take the power set 
of X as the σ-algebra. Thus, (X, P      (X)) is a measurable space. Given a 
monotone measure µ  and a nonnegative function f on (X,P (X)), 

)( αµ F }))(|({ αµ ≥= xfx  is a simple function of α, that is,  
 

∑
=

+
−

⋅=
n

i
xfxfnii

ii
xxxF

1
)](),((

**
1

* )(}),,,({)( **
1

αχµµ α L , 

 
for ),0[ ∞∈α  and, therefore, the Choquet integral of f with respect to 
µ  can be calculated by 

 

∑∫
=

+− ⋅−=
n

i
niiii xxxxfxfdf

1

**
1

**
1

* }),,,({)]()([)C( Lµµ       (5.4) 

 
or, equivalently, 

 

)(})],,({}),,,({[)C( *

1

**
1

**
1

*
i

n

i
ninii xfxxxxxdf ∑∫

=
++ ⋅−= LL µµµ ,  (5.4*) 

 
where 0)( *

0 =xf , ∅=+ },,{ **
1 nn xx L , and ), ,,( **

2
*
1 nxxx L  is a 

permutation of }, ,,{ 21 nxxx L  such that )(  )()( **
2

*
1 nxfxfxf ≤≤≤ L . 

 
Example 5.7 Let },,{ 321 xxxX = , F = P (X), and monotone measure µ  
on P (X) be given as 
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}{ if       0.4
} ,{ if       60

}{ if      20
}{ if       5.0
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Then (X, P (X), µ ) is a monotone measure space. Let function 

),0[: ∞→Xf  be given as 
 

    
. if       5

 if     10
 if       8

)(

3

2

1


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=
=
=

=
xx
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Thus, 3

*
1 xx = , 1

*
2 xx = , and 2

*
3 xx = . By using formula (5.4), the 

Choquet integral of f with respect to µ  (on X) can be calculated (see 
Figure 5.2, the area of the shaded region in the right part is the value of 
the Choquet integral) as 
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Fig. 5.2 The calculation of the Choquet integral defined on a finite set },,{ 321 xxx . 
 
 

Alternatively, we may use (5.4*) to calculate the same result as follows. 
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⋅+⋅−+

⋅−=∫

 

 
We should know that, once the integrand f is given, the calculation of 

its Choquet integral only involves the value of µ  at the sets in a chain 
from the universal set to the empty set, but not all sets in the power set. 
In Example 5.7, the chain in lattice (P    (X),⊆ ) is  

 
( },,{ 321 xxx , },{ 21 xx , }{ 2x , ∅) (see Figure 5.3). 
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Fig. 5.3 The chain used in the calculation of the Choquet integral in Example 5.7. 

 
Formula (5.4) is effective when the number of attributes is not large 

and the Choquet integral is calculated by hand. However, when an 
inverse problem of information fusion is considered, it is not convenient 
since the expression of the Choquet integral is not in an explicit linear 
form of unknown parameters that are the values of µ . In fact, 
rearranging the order of attributes is not a linear operation. Thus, the 
linear algebraic method cannot be used to estimate the values of µ  
based on the observed data set (see Chapters 9-11). Hence, it is necessary 
to introduce an alternate calculation formula for the Choquet integral as 
follows. For given nonnegative function f on a monotone measure space          
(X, P     (X), µ ) , where X is a finite universal set, the Choquet integral of f 
with respect to µ  can be calculated by 

 

∫ ∑
−

=
=

12

1
)C(

n

j
jjzfd µµ ,                 (5.5) 

 
where jµ  = )}{( 1U =ij ixµ  if j is expressed in terms of binary digits 

11 jjj nn ⋅⋅⋅−  for every 12,,2,1 −= nj L  and 
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

 −=>−
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 otherwise                                                      ,0     
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jxfxf
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for .12, ,2,1 −= nj L                 (5.6) 
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In expression (5.6), )2/(frc ij  denotes the fractional part of ij 2/ , 
and we need the convention that the maximum taken on the empty set is 
zero. The expression can also be written in a simpler form via the 
replacement  

=∈ )}1,2/1[)2/(frc|{ iji }1|{ =iji  
and  

)2/(frc|{ iji )}2/1,0[∈ }0|{ == iji . 
 

The significance of this alternate formula is that the value of the Choquet 
integral is now expressed as a linear function of the values of µ. Hence, 
when the data set of the values of the integrand f and the corresponding 
integration value are available, an algebraic method can be used to 
estimate the optimal values of µ. So, in data mining, such as in nonlinear 
multiregressions, this new calculation formula is more convenient than 
formula (5.4).  

As for the validation of this new formula, rewriting the old formula 
(5.4) as 
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for 12,,2,1 −= nj L , and noticing that ji 1=  if and only if ∈ix Ej, we 
can see that the new formula is equivalent to the old one. In the above 
expression for aEj, we also need the convention that 

 

0)(max)(max ==
∅∉

xfxf
Xx

. 

 
In addition, we should note that in the above expression the function is 
defined in two parts. They overlap when **

1 ii xx =−  for some 
ni ,,2,1 L= . Fortunately, they are both zero at the overlapped j and, 

therefore, these two parts are consistent. 
The Choquet integral of a nonnegative measurable function f with 

respect to monotone measure µ has the following basic properties, where 
we assume that all involved functions and sets are measurable: 

 

(CIP1) ∫ ≥
E

df 0)C( µ ; 

(CIP2) ∫ ∫ ==
E E Edd )()C(1)C( µµχµ ; 

(CIP3) ∫ ∫ ⋅=
E E dfdf µχµ )C()C( ; 

(CIP4) ∫∫ ⋅=
EE

dfcdcf µµ )C()C(  for any nonnegative constant c. 

 
These properties, which are similar to those of the Lebesgue integral, 

can be obtained from the definition of the Choquet integral directly. 
However, the Choquet integral is not linear, though it has property 
(CIP4). In fact, ∫+∫∫ ≠+ EEE dgdfdgf µµµ )C()C()()C(  generally. 
This can be verified by the following Example. 



142         Nonlinear Integrals and Their Applications in Data Mining 

Example 5.8 Let },{ baX = , F = P (X), and  
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In this case, any function on X is measurable. Considering two functions,  
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we have  
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∞

=×==≥=
0

1

0
111})({}))(|({)C( αµααµµ dbdxfxdf  

 
and 
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∞

=×==≥=
0

1

0
111})({}))(|({)C( αµααµµ dadxgxdg . 

 
Since 1=+ gf , a constant function on X, we obtain 

 

∫ ∫ =⋅==+ 1)(11)C()()C( Xddgf µµµ . 

Thus,  

∫∫ ∫ +≠+ µµµ dgdfdgf )C()C()()C( . 
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This shows that the Choquet integral is not linear with respect to its 
integrand in general. 

 
The nonlinearity of the Choquet integral comes from the 

nonadditivity of the involved monotone measure. Though the Choquet 
integral loses the linearity in general, it still has the monotonicity and the 
translatability, which the Lebesgue integral also holds and are implied by 
its linearity, shown in the next theorem. 
 
Theorem 5.5 Let f and g be nonnegative measurable functions on (X, F ). 
The Choquet integral with respect to monotone measure µ  holds the 
monotonicity (CIP5) and the translatability (CIP6): 

 

(CIP5) ∫∫ ≤
EE

dgdf µµ )C()C(  if gf ≤  on E; 

(CIP6) ∫ ∫ ⋅+=+
E E

Ecdfdcf )(C)()(C)( µµµ  for any constant c  

satisfying 0≥+ cf .  
 

Proof. There is no loss of generality in assuming XE = . To (CIP5), 
from gf ≤ , we know that })(|{})(|{ αα ≥⊆≥ xgxxfx  and, 
therefore, }))(|({}))(|({ αµαµ ≥≤≥ xgxxfx . Hence, 
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∞ ∞
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As for (CIP6), noticing that α≥+ cxf )(  for every Xx∈  when α 

is between 0 and c, we have 
 

∫∫

∫∫

∫ ∫

+−−≥=

≥++≥+=

≥+=+

∞

∞

∞

c

c

c

c

dXcdcxfx

dcxfxdcxfx

dcxfxdcf

0

0

0

)()(}))(|({

}))(|({}))(|({

}))(|({)()C(

αµααµ

ααµααµ

ααµµ

 



144         Nonlinear Integrals and Their Applications in Data Mining 

.)()C(
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The proof is now complete.                                   □ 
 

The above discussion on the Choquet integral is restricted to 
nonnegative measurable functions. Now we consider a more general case, 
where the integrand is not necessarily nonnegative. A natural idea is, 
similar to the Lebesgue integral shown in Section 5.3, to decompose a 
function to its positive part and negative part, that is, express measurable 
function ),(: ∞−∞→Xf  as −+ −= fff , where  

 



 ≥

=+

otherwise           0
0)( if     )(

)(
xfxf

xf  

and 

  


 <−

=−

.   otherwise              0
0)( if     )(

)(
xfxf

xf  

 
Both +f  and −f  are nonnegative measurable functions. Their 
Choquet integrals are well defined. Hence, we may define the Choquet 
integral of f, without any loss of generality, on X as follows. 

 
Definition 5.19 Let ),(: ∞−∞→Xf  be a measurable function. The 
symmetric Choquet integral of f with respect to monotone measure µ  
on X, denoted by µdf∫)C( s , is defined as  

 

µµµ dfdfdf ∫∫∫ −+ −= )C()C()C( s , 

 
provided not both terms on the right-hand side are infinite. 
 



Integrations                            145 

From Definition 5.19, we may see that −+ =− ff )(  and      
−− )( f += f  for any given function f. So,  

 

.)C(

)C()C(

)()C()()C()()C(

s

s

∫
∫∫
∫∫∫

−=

−=

−−−=−
+−

−+

µ

µµ

µµµ

df

dfdf

dfdfdf

 

 
This is just the reason why people use word “symmetric” to such type 

of Choquet integrals. Unfortunately, the symmetric Choquet integral 
loses the translatability in general. We can see it from the following 
example. 
 
Example 5.9 Let },{ baX = , F = P (X), and  
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=
.  otherwise      0

 if     1
)(

XE
Eµ  

Considering function  





=−
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=
bx
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xf
 if     1
 if        0

)(  

 
with 0=+f  and ff −=− . Noting that 

 





=
=

=+≤
, if     0

 if      1
1)(0

bx
ax

xf  

we have 
 

0})({)C(0)C()C()C( s =−=−=−= ∫∫∫∫ −−+ bdfdfdfdf µµµµµ , 
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0})({)1()C( s ==+∫ adf µµ . 

 
So,  

)(1)C()1()C( ss Xdfdf µµµ ⋅+≠+ ∫∫ , 

 
that is, the symmetric Choquet is not translatable. 

 
Anyway, the translatability is one of major requirements to an 

aggregation tool in information fusion. Though the symmetric Choquet 
integral still holds property (CIP4), some decisions based on information 
fusion using such an integral will depends on the selection of the origin 
and the unit that measures the received information. For instance, to 
measure the temperature, there are two common systems: Celsius degree 
and Fahrenheit degree. The different selection of the temperature system 
may lead to a different decision if the symmetric Choquet integral is used 
as an aggregation tool in information fusion. Hence, it is necessary to 
find a way for defining the Choquet integral with signed integrand such 
that the translatability can be reserved. The following definition is an 
ideal approach, where we simply consider the integral taken on X. There 
is no difficulty for generalizing it to be taken on any measurable subset E 
of X.  
 
Definition 5.20 Let ),(: ∞−∞→Xf  be a measurable function on 
monotone measure space (X, F, µ). The translatable Choquet integral of 
f with respect to monotone measure µ  on X, denoted by µdf∫)C( t , is 
defined as  

 

∫∫ ∫
∞

∞−
+−=

0

0
t )()]()([)C( αµαµµµ αα dFdXFdf , 

 
where })(|{ αα ≥= xfxF  for ),( ∞−∞∈α , provided not both terms in 
the right-hand side of the formula are infinite. 
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The next theorem shows the reason why such type of integral is said 
to be translatable. 
 
Theorem 5.6 Let ),(: ∞−∞→Xf  be a measurable function on 
monotone measure space (X, F, µ). Then 

 

∫ ∫ ⋅+=+ )()C()()C( tt Xcdfdcf µµµ  

 
for any real number c. 

 
Proof. By using some well known properties of the Riemann integral, we 
have 
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where c−=αβ . The equality of translatability is now proved.               □ 
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The translatable Choquet integral also keeps properties (CIP3), 
(CIP4), and (CIP5). Since the symmetric Choquet integral is never used 
in applications of nonlinear integrals discussed in this book, from now on, 
we omit the subscript “t” from the symbol of the translatable Choquet 
integral of f with respect to µ  as well as omit word “translatable” from 
its full name, that is, write µdf∫)C(  and still called it the Choquet 
integral, if there is no confusion. 

As for the calculation formula of the translatable Choquet integral 
when the universal set X is finite, it is totally the same as (5.4). 
 
Example 5.10 We still use the monotone measure space (X, P (X), µ ) 
given in Example 5.7, where },,{ 321 xxxX = , F = P (X), and  
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Now let function ),(: ∞−∞→Xg  be  

 

    
. if       2

 if          3
 if           1

)(
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
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=
xx
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xx

xg  

 
For function g we still have 3

*
1 xx = , 12 xx =* , and 23 xx =* , but it is not 

nonnegative. By using formula (5.4), the Choquet integral of g with 
respect to µ  is 
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   . .
..

xxgxgxxxgxgXxg
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Since 7−= fg , we may use the translatability of the Choquet integral 
and the result in Example 5.7 to verify the result. By using (CIP6) , it 
should hold that 

 

2.0172.7)(7)C()C( =×−=⋅−= ∫∫ Xdfdg µµµ . 

 
This coincides with the obtained result.  
 

When the universal set X is finite, the Choquet integral can be 
generalized for efficiency measure and signed efficiency measure 
without any essential difficulty. In fact, if  f  is a real-valued function 
on (X, P    (X), µ ) where µ  is an efficiency measure, then )( αµ F  is a 
function of bounded variation with respect to α . Hence, formula  

 

∫∫ ∫
∞

∞−
+−=

0

0
)()]()([)C( αµαµµµ αα dFdXFdf  

 
can still well define the Choquet integral provided not both terms in the 
right-hand side of the formula are infinite. When µ  is a signed 
efficiency measure, since µ  can be decomposed as a difference of two 
efficiency measures +µ  and −µ : −+ −= µµµ , we have  

 

∫∫∫ −+ −= µµµ dfdfdf )C()C()C( . 
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Hence, the Choquet integral of real-valued function f with respect to 
signed efficiency measure µ  is well defined provided not both terms in 
the right-hand side of the formula are infinite. The calculation formulas 
(5.4)-(5.6) are still available and properties (CIP2), (CIP3), (CIP4), and 
(CIP6) still hold in this case. 
 
Example 5.11 Let },,{ 321 xxxX =  and F = P     (X). We still use function 
g given in Example 5.10, that is,  
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But the monotone measure µ  is replaced by a signed efficiency 
measure ν  given as  
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Thus,  
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  . 
...

2
202)60(330)2(

−=
×+−×+×−=  

 
The Choquet integral has more useful properties, which the Lebesgue 

integral has, such as the continuity and the monotonicity with respect to 
the integrand. They are shown in the next two theorems. 
 
Theorem 5.7 (Continuity) Let ),(:1 ∞−∞→Xf  and ),(:2 ∞−∞→Xf  be 
bounded  measurable  functions  on  measurable space (X,F ) and 

:µ  F ),0[ ∞→  be a monotone measure on F. Assume that Choquet 
integrals ∫ µdf1)C(  and ∫ µdf2)C( exist. Then, for any given 0>ε , 
there exists 0>δ , such that εµµ <∫ ∫− |)C()C(| 21 dfdf  whenever 

δ<− || 21 ff . 
 

Proof. Let M be the bound of 1f  and 2f , that is, Mf ≤1  and 
Mf ≤2 . Denote })(|{ 1 α≥xfx  and })(|{ 2 α≥xfx  by )1(

αF  and 
)2(

αF  respectively. For any given 0>ε , taking )(2/ Xµεδ = , we have 
)2()1(
δαα −⊆ FF  and, therefore, )()( )2()1(

δαα µµ −≤ FF  if δ<− 21 ff . 
Similarly, )()( )1()2(

αδα µµ FF ≤+  if δ<− || 21 ff . Thus, 
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.
)(2

)()(
0

)2()2(
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X

dFdF
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In the same way, we can show that  
 

εµµ ≤−∫ ∫ dfdf 12 )C()C( . 

Consequently, 

εµµ ≤∫ ∫− |)C()C(| 21 dfdf . 

 
The proof is now complete.                                                                                     □  

 
The monotonicity of the Choquet integral of nonnegative measurable 

functions shown in Theorem 5.5 can be generalized to the case where the 
integrand functions may not be nonnegative.  

 
Theorem 5.8 (Monotonicity) Let ),(:1 ∞−∞→Xf  and ),(:2 ∞−∞→Xf  
be measurable functions on measurable space (X,F ) and :µ F ),0[ ∞→  
be a monotone measure on F. Assume that Choquet integrals ∫ µdf1)C(  
and ∫ µdf2)C( exist. Then ∫ ∫≤ µµ dfdf 21 )C()C(  if 21 ff ≤ . 
 
Proof. From 21 ff ≤ , we know that )2()1(

αα FF ≤ and, therefore, 
)()( )2()1(

αα µµ FF ≤  for every ),( ∞−∞∈α by the monotonicity of µ . 
Thus,  
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The proof is now complete.                                   □ 

 
When X is finite, even if µ is only a signed efficiency measure, the 

Choquet integral ∫ µdf)C(  exists for any real-valued function f defined 
on X, and it is also continuous with respect to the integrand. However, 
the monotonicity of µ is essential to the monotonicity of the Choquet 
integral with respect to the integrand.  

5.5   Upper and Lower Integrals 

We have seen that the Choquet integral is a generalization of the 
Lebesgue integral. Its definition is just one of the equivalent definition of 
the Lebesgue integral. That is to say, in case we consider using 
nonadditive measures to replace classical additive measure in some 
systems, though the original definition of the Lebesgue integral fails, we 
still can use some of its equivalent definitions to define nonlinear 
integrals as aggregation tools in systems. By such an idea, this chapter 
presents other tow types of nonlinear integrals, the upper integral and the 
lower integral. 

Throughout this section, we assume that (X, F, µ) is an efficiency 
measure space, that is, µ  is an efficiency measure on measurable space 
(X,F), ),0[: ∞→Xf  and ),0[: ∞→Xg  are nonnegative 
measurable functions. 
 
Definition 5.21 Given a nonnegative measurable function f: X → ),0[ ∞  
and a set E ∈F, the upper integral of f with respect to µ  on E, in 
symbol ∫E df µ)U( , is defined as 

 

∫ +→
=

E
Udf εε

µ
0

lim)U( , 

where 
 

{ ∑ ∑
∞

=

∞

=
∈−≥⋅≥⋅=

1 1
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j j
jEjjj EffEU

j
εχλµλε F }L,2,1,0, =≥∩ jE jλ  
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for 0>ε , in which F ∈∩=∩ FEFE |{ F}. Similarly, the lower 
integral of f with respect to µ  on E, ∫E df µ)L( , is defined as 

 

∫ +→
=

E
Ldf εε

µ
0

lim)L( , 

where 
 

{ ∑ ∑
∞

=

∞

=
∈+≤⋅≤⋅=

1 1
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j j
jEjjjε ε,EfχλfEµλ L

j
F }L,2,1,0, =≥∩ jE jλ  

 
for 0>ε . 

 
Similar to the Lebesgue integral and the Choquet integral, we omit 

the subscript E in the symbol of the integral when E = X. 
If the universal set is finite, i.e., },,,{ 21 nxxxX L= , the supremum 

and the infimum in Definition 5.21 are accessible. Hence, the upper 
integral of f with respect to µ, ∫ µdf)U( , can be reduced as 
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where 0≥jλ  and U 1| }{==

iji ij xE  if j is expressed in binary digits as 
11 jjj nn ⋅⋅⋅−  for every 12, ,2,1 −= nj L . The value of ∫ µdf)U(  

then is just the solution of the following linear programming problem: 
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0≥jλ , 12, ,2,1 −= nj L  

 
where 1221 ,,,

−nλλλ L  are unknown parameters, )( jj Eµµ =  for 
12,,2,1 −= nj L . The above n constraints can be also rewritten as 

 
∑

⊆∈
∈∀=

XExj
j

j

Xxxf
|

)(λ . 

 
By knowledge on the linear programming, the above maximum can 

be accessed by at most n nonzero-valued jλ , that is, the solution can be 
expressed as  

∑
=

n

i
jj ii

1
µλ , 

 
where },,,{ 21 njjj L  is a subset of }12,,2,1{ −nL .  
 
Example 5.12 We use monotone measure µ  and nonnegative function 
f given in Example 5.7. The upper integral of f with respect to µ , 

∫ µdf)U( , is the solution of the following linear programming problem: 
 

maximize 7654321 9.07.04.06.02.05.0 λλλλλλλ ++++++=z  

subject to 87531 =+++ λλλλ  

107632 =+++ λλλλ  

57654 =+++ λλλλ    

7,,2,1,0 L=≥ jjλ  
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By using the simplex method, a solution of this linear programming 
problem can be obtained as 81 =λ , 52 =λ , and 56 =λ  with 5.9=z . 
 

Similar to the upper integral, the lower integral of f with respect to µ, 
∫ µdf)L( , can be reduced as  
 

∫ ∑ ∑
−

=

−

=
=⋅=

12

1

12

1
}|)(inf{)L(

n n

j
j j

Ejjj fEdf χλµλµ        (5.8) 

 
Its value is just the solution of the following linear programming 
problem: 

minimize  ∑
−

=
⋅=

12

1

n

j
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subject to ∑
−

=
=

12

1
)()(

n

j
j

iiEj xfxχλ , ni ,,2,1 L=  

     0≥jλ , 12,,2,1 −= nj L  

 
where 1221 ,,,

−nλλλ L  are unknown parameters, )( jj Eµµ =  for 
12, ,2,1 −= nj L . The above minimum can be accessed by at most n 

nonzero-valued jλ , that is, the solution can be expressed as  
  

∑
=

′′

n

i
jj ii

1
µλ , 

  
where },,,{ 21 njjj ′′′ L  is a subset of }12,,2,1{ −nL .  
 
Example 5.13 We still use monotone measure µ  and nonnegative 
function f given in Example 5.7. The lower integral of f with respect to 
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µ , ∫ µdf)L( , is the solution of the following linear programming 
problem: 

 

minimize  7654321 907040602050 λλλλλλλ ++++++= ......z  

subject to 87531 =+++ λλλλ  

107632 =+++ λλλλ  

57654 =+++ λλλλ    

7,,2,1,0 L=≥ jjλ  

 
Similar to Example 5.12, by using the simplex method, a solution of this 
linear programming problem can be obtained as 72 =λ , 33 =λ , and 

55 =λ  with 76.=z . 
 

The upper and the lower integrals have some common properties that 
the Lebesgue integral with a nonnegative integrand has: 

 

(ULIP1) ∫ ∫ ⋅=
E E dfdf µχµ )U()U(  and ∫ ∫ ⋅=

E E dfdf µχµ )L()L( ; 

(ULIP2) 0)U( ≥∫ µdf  and 0)L( ≥∫ µdf ; 

(ULIP3) if gf ≤ , then ∫∫ ≤ µµ dgdf )U()U(  and, moreover,  

∫∫ ≤ µµ dgdf )L()L(  provided µ  is a monotone measure; 

(ULIP4) ∫∫ ⋅=⋅ µµ dfcdfc )U()U(  and ∫∫ ⋅=⋅ µµ dfcdfc )L()L(   

for any constant 0≥c . 
 

Moreover, we have 
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(ULIP5) ∫∫ ≥ µµ dfdf )L()U( . 

 
However, neither the upper integral nor the lower integral is linear, 

that is, we may have  
 

∫∫ ∫ +≠+ µµµ dgdfdgf )U()U()()U(  

and 

∫∫ ∫ +≠+ µµµ dgdfdgf )L()L()()L(  

 
for some monotone measure µ  and nonnegative measurable functions f 
and g. 
 
Example 5.14 Let },,{ 321 xxxX =  and F =P (X). Monotone measure 
µ  is defined as  
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

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 if     0

)(

3

2

1

xx
xx
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we obtain  
 

63131)(1)(1)U( 21 =×+×=⋅+⋅=∫ xxdf µµµ , 

111)(1)U( 3 =×=⋅=∫ xdg µµ , 

and 

85131}),({1)(1)()U( 321 =×+×=⋅+⋅=+∫ xxxdgf µµµ . 

 
That is, we have 

∫∫ ∫ +>+ µµµ dgdfdgf )U()U()()U( . 

Similarly,  

551}),({1)L( 21 =×=⋅=∫ xxdf µµ , 

111)(1)L( 3 =×=⋅=∫ xdg µµ , 

and 

551}),,({1)()L( 321 =×=⋅=+∫ xxxdgf µµ . 

That is, 

∫∫ ∫ +<+ µµµ dgdfdgf )L()L()()L( . 

 
The results in Example 5.14 suggest the following general 

inequalities as a property of the upper and the lower integrals. 
 

(ULIP6) ∫∫ ∫ +≥+ µµµ dgdfdgf )U()U()()U( ;  
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∫∫ ∫ +≤+ µµµ dgdfdgf )L()L()()L( . 

 
Another important point is that the upper and the lower integrals do 

not have a property like (LIP2) or (CIP2) the Lebesgue integral and the 
Choquet integral hold. 
 
Example 5.15 Let },{ 21 xxX =  and F =P (X). Set function µ  is 
defined as 



 ∅=

=
.otherwise     1

 if     0
)(

E
Eµ  

 
Clearly, µ  is a monotone measure. Taking constant 1 as the integrand, 
we have  

)(21111})({1})({11)U( 21 Xxxd µµµµ ≠=×+×=⋅+⋅=∫ . 
 

It is easy to cite a similar counterexample for the lower integral. This 
is left to the reader as an exercise. Though the equalities do not hold, we 
still have the inequalities expressed as one more property of the upper 
and the lower integrals: 

 

(ULIP7) ∫ ∫≤≤ µµµ dXd 1)U()(1)L( . 

 
Finally, we show another inequality for the upper integral as one of 

its properties in the following theorem. 
 
Theorem 5.9 Let },,,{ 21 nxxxX L=  and µ be monotone measures on 
P     (X). Then,  

 

(ULIP8) )(1)U( Xnd µµ ⋅≤∫ . 
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Proof. Consider each ∑ ⋅−
=

12
1 )(

n

j jj Eµλ  satisfying 1)(12
1 =∑ −
=
n

jj Ej xχλ  
for every Xx∈ . Since 1)(12

1 =∑ −
=
n

jj Ej xχλ  means 1| =∑ ∈ ji Axj jλ  for 
every ix , ni ,,2,1 L= , we have 
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Hence,  

 

)(}1|)(sup{1)U(
12

1
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1
XnEd

n n

j
j j

Ejjj µχλµλµ ⋅≤=⋅=∫ ∑ ∑
−

=

−

=
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The proof is now complete.                                   □ 
 

Unlike the Choquet integral, the upper integral is not translatable, 
even 

∫∫∫ ⋅++≠+ µµµ dcdcfdcf 1)U()()U()()U( , 

 
in general. This can be seen from the following example. 
 
Example 5.16 Let },,{ 321 xxxX =  and F =P (X). Set function µ  is 
defined as 
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

 =≤

=
.   otherwise      1

},{or  1 if     0
)( 31 xxEE

Eµ  

 
Obviously, µ  is a monotone measure on (X, F ). Taking  

 



 =

=
,  otherwise     0

 if      1
)( 2xx

xf  

we have 
 

211}),({1}),({1)1()U( 3221 =+=⋅+⋅=+∫ xxxxdf µµµ . 

 
However, ∫ = 0)U( µdf  and ∫ =11)U( µd . Consequently,  

 

∫∫∫ +>+ µµµ ddfdf 1)U()U()1()U( . 

 
A similar conclusion is also valid for the lower integral. 
In the definitions of the upper and the lower integrals, the efficiency 

measure can be replaced by a signed efficiency measure. In this case, 
properties (ULIP2), (ULIP4), and (ULIP8) may not hold. 

5.6   r-Integrals on Finite Spaces 

In the previews sections, four different types of integrals defined on 
signed efficiency measure spaces or on classical measure spaces have 
been presented. They are the Lebesgue integral, the Choquet integral, the 
upper integral, and the lower integral. In this section, we use a unified 
point of view to inspect them when the universal set is finite and the 
integrand is nonnegative. 

Let },,,{ 21 nxxxX L= , f  be a nonnegative function on X, and µ be 
a signed efficiency measure on P (X). 
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Definition 5.22 A set function :π P (X) −{∅} ),0[ ∞→  is called a 
partition of f if 

 

∑
⊆∈

=
XExE

Exf
|

)()( π   

 
for every Xx∈ .  
 

Taking the characteristic function of a crisp set or the membership 
function of a fuzzy set as f, it is easy to see that the concept of partition in 
Definition 5.22 is a generalization of the classical partition for crisp sets 
and the fuzzy partition for fuzzy sets. 
 
Definition 5.23 Each type of integrals with respect to µ is characterized 
by a rule r, by which, for any given nonnegative function f, a partition π 
of f can be obtained. In this case, we say that rule r partitions function f. 
Regarding both π and µ as )12( −n -dimensional vectors, the value of the 
integral of f under rule r, denoted by ∫ µdfr)( , is the inner product of 
vectors π and µ, that is, ∫ µdfr)( µπ ⋅= , where (r) is used to indicate 
the type of integral.  
 

The above definition provides a flexible aggregation tool in 
information fusion and data mining. It is generally called an r-integral, 
and simply, an integral when the partitioning rule r has been uniquely 
chosen and there is no confusion. 

The Choquet integral is a special r-integral. The partitioning rule 
corresponding to the Choquet integral can be described as follows: for 
any given nonnegative function f : ),0[ ∞→X , partition          

:π P     (X)−{∅} ),0[ ∞→  is obtained by 
 



 ==−

= +−

otherwise                        0
,,2,1 somefor   },,,{  if  )()(

)(
**

1
**

1
* nixxxExfxf

E niiii LL
π  
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for every ∈E P (X) −{∅}, where ), ,,( **
2

*
1 nxxx L  is a permutation of  

},,,{ 21 nxxx L  such that )( )()( **
2

*
1 nxfxfxf ≤≤≤ L  and )( *

0xf = 0 as 
the convention made in Section 5.4. It is easy to verify that  

 
)()(

|
xfE

XExE
=∑

⊆∈
π Xx∈∀ . 

 
This partitioning rule takes the coordination of the attributes into account 
maximally, that is, the manner of the partition is to make the 
coordination among the attributes in X as much as possible. It is evident 
that there are only at most n sets E with 0)( >Eπ  in such a partition.  
 
Example 5.17 The data in Example 5.7 are used here again. The 
partition of f corresponding to the Choquet integral is illustrated in 
Figure 5.4 where the black part, the dark grey part, and the white part 
show 5)( =Xπ , 3}),({ 21 =xxπ , and 2})({ 2 =xπ  respectively. The 
values of π at other sets are zeros. Geometrically, this partitioning rule 
divides function f horizontally.    

          
We have seen that the Choquet integral locates at the one extreme in 

terms of the coordination among attributes. To show another extreme, we 
need to generalize the classical Lebesgue integral such that it can be 
taken with respect to any signed efficiency measure. 

 
 

 
Fig. 5.4 The partition of f corresponding to the Choquet integral in Example 5.17. 
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Definition 5.24 The Lebesgue integral of nonnegative function f with 
respect to signed efficiency measure µ  on set XE ⊆ , denoted by 
∫E df µ , is defined as 

 

∫∫ ′=
EE

dfdf µµ , 

 
where µ′  is the additive measure on P (X) determined by 

})({})({ ii xx µµ =′ , ni ,,2,1 L= . 
 
Example 5.18 We use the data given in Example 5.7 again. By the 
additivity, the corresponding additive measure µ′  is obtained as 
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Thus, the Lebesgue integral of f with respect to monotone measure µ  is 
  

.84.052.0105.08

)(')()(')()(')(' 332211

=×+×+×=

⋅+⋅+⋅==∫∫ xxfxxfxxfdfdf µµµµµ
 

 
Figure 5.5 illustrates the Lebesgue integral of function f with respect to 
µ , from which we can see that the corresponding partition of f is made 
vertically. 
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Fig. 5.5 The partition of f corresponding to the Lebesgue integral in Example 5.18. 
 

 
According to Definition 5.24, the Lebesgue integral of a function 

with respect to signed efficiency measure µ  only depends on the values 
of µ  at singletons in P (X), ignoring the values at other sets. It is also a 
special type of r-integral and is another extreme in terms of the 
coordination among attributes. The Lebesgue integral takes no 
coordination into account at all, that is, the manner of the partition is to 
avoid any coordination. Based on such a point of view, we shall well 
understand why the Choquet integral coincides with the Lebesgue 
integral when there is no interaction among the contribution rates of 
attributes, that is, if no interaction exists objectively, the integration 
value should be always the same no matter how much coordination is 
considered. This conclusion is formalized as the following theorem. 

 
Theorem 5.10 If the signed efficiency measure is additive, then any 
r-integral is the Lebesgue integral. 

 
Proof. Let µ be an additive signed efficiency measure (i.e., a signed 
measure) on the power set of },,,{ 21 nxxxX L= . For any given 
nonnegative function f defined on X, let π be the partition of f obtained 
by the corresponding rule r. Then, according to Definition 5.23, we have 
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So, the r-integral coincides with the Lebesgue integral when µ is additive. 

□ 

 
The above theorem also shows that the concept of r-integral is a 

generalization of the classical Lebesgue integral. From this theorem, we 
can say that any partitioning rule, by which a special r-integral can be 
obtained, corresponding to an equivalent definition of the classical 
Lebesgue integral. Indeed, the upper integral and the lower integral 
discussed in Section 5.5 are also two types of r-integral and, therefore, 
are generalizations of the classical Lebesgue integral. 

Recall expression (5.7) for the upper integral, the value of ∫ µdf)U(  
is just the optimal value of z in the linear programming problem  

 

maximize ∑
−

=
⋅=

12

1

n

j
jjz µλ  

subject to ∑
−

=
=

12

1
)()(

n

j
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iiEj xfxχλ , ni ,,2,1 L=  

0≥jλ , 12, ,2,1 −= nj L  
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where 1221 ,,,
−nλλλ L  are unknown parameters and )( jj Eµµ =  for 

12,,2,1 −= nj L .  
The above n constraints can be also rewritten as 
 

∑
⊆∈

∈∀=
XExj

j
j

Xxxf
|

)(λ .             (5.9) 

 
If we define set function :π P     (X) ),0[ ∞→  by (π Ej π=) j λ= j for 

12,,2,1 −= nj L , expression (5.9) shows that π is a partition of f and, 
therefore,  ∑ ⋅= −

=
12

1
n

j jjz µπ  is an r-integral. Since the maximum in the 
linear programming problem is accessible, the upper integral is also a 
special type of r-integral. Its corresponding partitioning rule is “divide 
the integrand in such a way so that the integration value is maximized”. 

By a knowledge on the linear programming, the above maximum can 
be accessed by at most n nonzero-valued λ j, that is, the value of the 
upper integral ∫ µdf)U(  can be expressed as  

 

∑
=

n

i
jj ii

1
µλ , 

 
where },,,{ 21 njjj L  is a subset of }12,,2,1{ −nL .  

 
Example 5.19 Use the data in Examples 5.7 again. The value of the 
upper integral of f with respect to monotone measure µ , ∫ µdf)U( , is 
z = 9.5 that is shown in the solution of the linear programming problem 
in Example 5.12, where 81 =λ , 52 =λ , and 56 =λ . These λ ’s form a 
partition π  of function f, illustrated in Figure 5.6.  

 
Similarly, from expression (5.8), the value of the lower integral 
∫ µdf)L(  is just the optimal value of z in the linear programming 

problem  
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Fig. 5.6 The partition of f corresponding to the upper integral in Example 5.19. 
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     0≥jλ , 12, ,2,1 −= nj L  
 

The minimum can be accessed by at most n nonzero-valued λ j. Hence, 
the value of the lower integral ∫ µdf)L(  can be expressed as  

 

∑
=

n

i
jj ii

1
µλ , 

 
where },,,{ 21 njjj L  is a subset of }12,,2,1{ −nL . It is just a special 
r-integral. The corresponding partitioning rule is “divide the integrand in 
such a way so that the integration value is minimized”. 

 
Example 5.20 Using the data given in Example 5.7, we know that the 
value of the lower integral of f with respect to monotone measure µ , 

∫ µdf)L( , is z = 6.7 that is shown in the solution of the linear 
programming problem in Example 5.13, where 72 =λ , 33 =λ , and 

55 =λ . These λ ’s form a partition π  of function f, illustrated in 
Figure 5.7. 
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Fig. 5.7 The partition of f corresponding to the lower integral in Example 5.20. 

 
Generally, for any nonnegative function f, any signed efficiency 

measure µ  on finite measurable space (X, P (X)), and any partitioning 
rule r, we have  

 

∫∫∫ ≤≤ µµµ dfdfrdf U)()(L)( . 

 
As a summary of this section, let see the following example. 

 
Example 5.21 Three workers, 1x , 2x , and 3x , are hired for 
manufacturing a certain kind of wooden toys. The universal set is taken 
as },,{ 321 xxxX = . The individual and joint efficiencies (the number of 
produced toys per hour) of these three workers are shown in Example 
4.12 as a monotone measure µ  defined on the power set of X by  
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Someday, they are hired to work for 6, 3, and 4 hours respectively. The 
working hours can be regarded as a function ),0[: ∞→Xf . If these 
three workers work separately, then the total number of toys they 
produce during this day can be expressed as the Lebesgue integral (see 
Figure 5.8(a)) 

 

∫ =×+×+×= 76746356µdf . 

 
If, working together, they start their work at the same time, say 9:00, and 

2x  leaves at 12:00 while 3x  leaves at 13:00, then the total number of  
toys they produce during this day can be expressed as the Choquet 
integral (see Figure 5.8(b)) 

 

∫ =×+×+×= 7452131173)C( µdf . 

 
The third case is that there is an excellent manager who knows the 
individual and joint efficiencies of these three workers well. The 
manager arranges their work in a certain coordination manner such that 
the toys produced by them during this day are as many as possible. This 
is just a linear programming problem: 

 

maximize 7654321 1791371465 aaaaaaaz ++++++=  

subject to 67531 =+++ aaaa  

37632 =+++ aaaa  

47654 =+++ aaaa    

7,,2,1,0 L=≥ ja j  
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Using the simplex method, a solution of this linear programming 
problem can be obtained as 33 =a , 14 =a , and 35 =a  with 88=z . 
That is, the manager arranges 1x  and 2x  to work together for 3 hours, 

1x  and 3x  to work together for 3 hours, and 3x  works alone for one 
hour. Then, the total amount of the produced toys will be the maximal 88. 
It is just the upper integral (see Figure 5.8(c)) 

 

∫ =×+×+×= 8871133143U)( µdf . 

 
This number represents the potential of the team of these three workers 
during this day. Finally, let’s consider the most conservative estimation 
for the total number of the toys that can be produced by these workers 
during this day. This is another linear programming problem: 

 

minimize  7654321 1791371465 aaaaaaaz ++++++=  

subject to 67531 =+++ aaaa  

37632 =+++ aaaa  

47654 =+++ aaaa    

7,,2,1,0 L=≥ ja j  

 
Its solution is 61 =a , 14 =a , and 36 =a  with 64=z . The 
corresponding arrangement is that 2x  and 3x  work together for 3 
hours, 1x  works alone for 6 hours, and 3x  works alone for one hour. 
The total amount of produced toys will be the least as 64. It is just the 
lower integral (see Figure 5.8(d)) 

 

64715693)L( =×+×+×=∫ µdf . 
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Fig. 5.8 The partitions corresponding to various types of nonlinear  
integrals in Example 5.21. 

 
 
Up to now, we have seen that, among the integrals of a given 

nonnegative function with respect to a monotone measure (even a signed 
efficiency measure) on a finite set, the Lebesgue integral and the 
Choquet integral form an extreme pair in terms of the coordination 
among the attributes, while the upper integral and the lower integral form 
another extreme pair that is in terms of the integration amount. Generally, 
we have 

∫∫∫ ≤≤ µµµ dfdfdf U)(L)(                (5.10) 
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       ∫∫∫ ≤≤ µµµ dfdfdf U)(C)(L)(              (5.11) 

 
for any function f and signed efficiency measure µ  on (X, P (X)). 
Inequality (5.10) and (5.11) are also confirmed by Example 5.21. 

Exercises  

Exercise 5.1 Let f and g be measurable functions on measurable space (X, F). Show that 
),max( gf  and ),min( gf  are also measurable. 

 
Exercise 5.2 Prove that any elementary function on measurable space (X, F) is 
measurable. 
 
Exercise 5.3 Is function f on [0, 1] defined by 
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Riemann integrable? Why? 
 
Exercise 5.4 Let f be a nonnegative measurable function on measure space (X, F, µ). 
Prove that, if the Lebaesgue integral ∫ = 0µdf , then there exists set ∈E F with 

0)( =Eµ  such that 0)( =xf  for all Ex∉ . 
 
Exercise 5.5 Let },,{ 321 xxxX = , F = P     (X), and monotone measure µ  on P     (X) be 
given as 
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Given function ),0[: ∞→Xf  as 
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Calculate ∫ µdf)C( . 
 
Exercise 5.6 Let f and g be measurable function on monotone measure space (X, F, µ). 
Prove that, if gf ≤ , then ∫≤∫ µµ dgdf )C()C( , where the Choquet integrals are 
translatable.  
 
Exercise 5.7 Let },{ 21 xxX = , F = P  (X),  
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and monotone measure 1µ , 2µ , and 3µ on P     (X) be given as 
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respectively. Regarding ∫ kdf µ)C(  as a function of parameters 1t  and 2t , 

321 ,,=k , find the contours 2)C( 1 =∫ µdf , 2)C( 2 =∫ µdf , and 2)C( 3 =∫ µdf . 
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Draw their figures.  
 
Exercise 5.8 For monotone measure jµ , 3,2,1=j , and function f given in Exercise 
5.7, find the track of the vertices of the contours when the value of the Choquet integral 

∫ µdf)C(  varies in ),( ∞−∞ . If the integrand f is replaced by fw ⋅ , where  
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what is the track? 
 
Exercise 5.9 Construct an example showing )(1)L( Xd µµ ≠∫ . 
 
Exercise 5.10 Prove property (ULIP6).  
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Chapter 6 

Information Fusion 

In decision making, when some high dimensional information (an 
observation for a set of several attributes) is available, usually, according 
to a specified decision target, people need to aggregate it into lower 
dimensional space (even to be a one-dimensional datum, i.e., a number) 
so that a reasonable decision can be easily made. Such a procedure is 
called information fusion. For different decision targets, people may 
choose different aggregation tools. The previous chapter provides 
various integrals that can serve as the aggregation tool in information 
fusion. This chapter presents some basic knowledge on information 
fusion. 

6.1   Information Sources and Observations  

Let },,,{ 21 nxxxX L=  be the set of all considered information sources. 
Set X is taken as the universal set in our discussion. Each information 
source, ix , is called an attribute. The numerical (may be categorical 
sometimes) information received from all attributes once can be regarded 
as a function f defined on X, that is, ),(: ∞−∞→Xf  and is called an 
observation or a record of the attributes. They are written as              

)( 1xf , )( 2xf , )(, nxfL . If we observe these attributes l times, then l 
functions, 1f , 2f , ,L  lf , are obtained. They form a data set as 
follows. 
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1x  2x  L nx  

)( 11 xf )( 21 xf L )(1 nxf
)( 12 xf )( 22 xf L )(2 nxf

M  M   M  
)( 1xfl )( 2xfl L )( nl xf

 
In the data set, the j-th row is the j-th record of attributes ,,, 21 Lxx  

and nx , lj ,,2,1 L= . Through out the book, we assume that any data 
set we discussed is complete, that is, all )( ij xf , ni ,,2,1 L= ; 

lj ,,2,1 L=  are available, where integer l is called the size of the data.  
 

Example 6.1 A student takes three courses, Calculus, Linear Algebra, 
and Elementary Physics, in his first semester after enrolling a university. 
They are 5 credits, 3 credits, and 4 credits courses respectively. At the 
end of the semester, the student obtain grade B, A, and C correspondingly. 
Here, the three courses can be regarded as three information sources 
(attributes), denoted by 1x , 2x , and 3x  respectively. The grades B, A, 
and C are received categorical information from these three information 
sources. The received categorical values B, A, and C correspond to 
numerical values 3, 4, and 2 respectively. Thus, categorical (B, A, C) or 
numerical (3, 4, 2) form an observation of attributes 1x , 2x , and 3x . 
 
Example 6.2 To investigate different types of iris, people collect its 150 
flowers and measure their sepal length, sepal width, petal length, and 
petal width. Thus, a data set consisting of 4 attributes and 150 records is 
obtained (see columns 2-5 and 8-11 of Table 6.1). For instance, 

1.3)( 235 =xf , while 8.1)( 4127 =xf . It is a complete data set. As for the 
integers in the sixth and twelfth column in Table 6.1, they indicate the 
types of iris. This data set has been used to test the classifiers in a 
number of works including [Xu et al 2003]. 

 
 
 
 



Information Fusion                         179 

Table 6.1 Iris data (from ftp://ftp.ics.uci.edu/pub/machine-learning-databases). 
 

Sample 
no 

Sepal 
length 
(x1) 

Sepal 
width 
(x2) 

Petal 
length 
(x3) 

Petal 
width 
(x4) 

Class
Sample
no 

Sepal 
length
(x1) 

Sepal 
width 
(x2) 

Petal 
length 
(x3) 

Petal 
width 
(x4) 

Class 

1 5.1 3.5 1.4 0.2 1 76 6.6 3.0 4.4 1.4 2 
2 4.9 3.0 1.4 0.2 1 77 6.8 2.8 4.8 1.4 2 
3 4.7 3.2 1.3 0.2 1 78 6.7 3.0 5.0 1.7 2 
4 4.6. 3.1 1.5 0.2 1 79 6.0 2.9 4.5 1.5 2 
5 5 3.6 1.4 0.2 1 80 5.7 2.6 3.5 1.0 2 
6 5.4 3.9 1.7 0.4 1 81 5.5 2.4 3.8 1.1 2 
7 4.6 3.4 1.4 0.3 1 82 5.5 2.4 3.7 1.0 2 
8 5.0 3.4 1.5 0.2 1 83 5.8 2.7 3.9 1.2 2 
9 4.4 2.9 1.4 0.2 1 84 6.0 2.7 5.1 1.6 2 
10 4.9 3.1 1.5 0.1 1 85 5.4 3.0 4.5 1.5 2 
11 5.4 3.7 1.5 0.2 1 86 6.0 3.4 4.5 1.6 2 
12 4.8 3.4 1.6 0.2 1 87 6.7 3.1 4.7 1.5 2 
13 4.8 3.0 1.4 0.1 1 88 6.3 2.3 4.4 1.3 2 
14 4.3 3.0 1.1 0.1 1 89 5.6 3.0 4.1 1.3 2 
15 5.8 4.0 1.2 0.2 1 90 5.5 2.5 4.0 1.3 2 
16 5.7 4.4 1.5 0.4 1 91 5.5 2.6 4.4 1.2 2 
17 5.4 3.9 1.3 0.4 1 92 6.1 3.0 4.6 1.4 2 
18 5.1 3.5 1.4 0.3 1 93 5.8 2.6 4.0 1.2 2 
19 5.7 3.8 1.7 0.3 1 94 5.0 2.3 3.3 1.0 2 
20 5.1 3.8 1.5 0.3 1 95 5.6 2.7 4.2 1.3 2 
21 5.4 3.4 1.7 0.2 1 96 5.7 3.0 4.2 1.2 2 
22 5.1 3.7 1.5 0.4 1 97 5.7 2.9 4.2 1.3 2 
23 4.6 3.6 1.0 0.2 1 98 6.2 2.9 4.3 1.3 2 
24 5.1 3.3 1.7 0.5 1 99 5.1 2.5 3.0 1.1 2 
25 4.8 3.4 1.9 0.2 1 100 5.7 2.8 4.1 1.3 2 
26 5.0 3.0 1.6 0.2 1 101 6.3 3.3 6.0 2.5 3 
27 5.0 3.4 1.6 0.4 1 102 5.8 2.7 5.1 1.9 3 
28 5.2 3.5 1.5 0.2 1 103 7.1 3.0 5.9 2.1 3 
29 5.2 3.4 1.4 0.2 1 104 6.3 2.9 5.6 1.8 3 
30 4.7 3.2 1.6 0.2 1 105 6.5 3.0 5.8 2.2 3 
31 4.8 3.1 1.6 0.2 1 106 7.6 3.0 6.6 2.1 3 
32 5.4 3.4 1.5 0.4 1 107 4.9 2.5 4.5 1.7 3 
33 5.2 4.1 1.5 0.1 1 108 7.3 2.9 6.3 1.8 3 
34 5.5 4.2 1.4 0.2 1 109 6.7 2.5 5.8 1.8 3 
35 4.9 3.1 1.5 0.1 1 110 7.2 3.6 6.1 2.5 3 
36 5.0 3.2 1.2 0.2 1 111 6.5 3.2 5.1 2.0 3 
37 5.5 3.5 1.3 0.2 1 112 6.4 2.7 5.3 1.9 3 
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38 4.9 3.1 1.5 0.1 1 113 6.8 3.0 5.5 2.1 3 
39 4.4 3.0 1.3 0.2 1 114 5.7 2.5 5.0 2.0 3 
40 5.1 3.4 1.5 0.2 1 115 5.8 2.8 5.1 2.4 3 
41 5.0 3.5 1.3 0.3 1 116 6.4 3.2 5.3 2.3 3 
42 4.5 2.3 1.3 0.3 1 117 6.5 3.0 5.5 1.8 3 
43 4.4 3.2 1.3 0.2 1 118 7.7 3.8 6.7 2.2 3 
44 5.0 3.5 1.6 0.6 1 119 7.7 2.6 6.9 2.3 3 
45 5.1 3.8 1.9 0.4 1 120 6.0 2.2 5.0 1.5 3 
46 4.8 3.0 1.4 0.3 1 121 6.9 3.2 5.7 2.3 3 
47 5.1 3.8 1.6 0.2 1 122 5.6 2.8 4.9 2.0 3 
48 4.6 3.2 1.4 0.2 1 123 7.7 2.8 6.7 2.0 3 
49 5.3 3.7 1.5 0.2 1 124 6.3 2.7 4.9 1.8 3 
50 5.0 3.3 1.4 0.2 1 125 6.7 3.3 5.7 2.1 3 
51 7.0 3.2 4.7 1.4 2 126 7.2 3.2 6.0 1.8 3 
52 6.4 3.2 4.5 1.5 2 127 6.2 2.8 4.8 1.8 3 
53 6.9 3.1 4.9 1.5 2 128 6.1 3.0 4.9 1.8 3 
54 5.5 2.3 4.0 1.3 2 129 6.4 2.8 5.6 2.1 3 
55 6.5 2.8 4.6 1.5 2 130 7.2 3.0 5.8 1.6 3 
56 5.7 2.8 4.5 1.3 2 131 7.4 2.8 6.1 1.9 3 
57 6.3 3.3 4.7 1.6 2 132 7.9 3.8 6.4 2.0 3 
58 4.9 2.4 3.3 1.0 2 133 6.4 2.8 5.6 2.2 3 
59 6.6 2.9 4.6 1.3 2 134 6.3 2.8 5.1 1.5 3 
60 5.2 2.7 3.9 1.4 2 135 6.1 2.6 5.6 1.4 3 
61 5.0 2.0 3.5 1.0 2 136 7.7 3.0 6.1 2.3 3 
62 5.9 3.0 4.2 1.5 2 137 6.3 3.4 5.6 2.4 3 
63 6.0 2.2 4.0 1.0 2 138 6.4 3.1 5.5 1.8 3 
64 6.1 2.9 4.7 1.4 2 139 6.0 3.0 4.8 1.8 3 
65 5.6 2.9 3.6 1.3 2 140 6.9 3.1 5.4 2.1 3 
66 6.7 3.1 4.4 1.4 2 141 6.7 3.1 5.6 2.4 3 
67 5.6 3.0 4.5 1.5 2 142 6.9 3.1 5.1 2.3 3 
68 5.8 2.7 4.1 1.0 2 143 5.8 2.7 5.1 1.9 3 
69 6.2 2.2 4.5 1.5 2 144 6.8 3.2 5.9 2.3 3 
70 5.6 2.5 3.9 1.1 2 145 6.7 3.3 5.7 2.5 3 
71 5.9 3.2 4.8 1.8 2 146 6.7 3.0 5.2 2.3 3 
72 6.1 2.8 4.0 1.3 2 147 6.3 2.5 5.0 1.9 3 
73 6.3 2.5 4.9 1.5 2 148 6.5 3.0 5.2 2.0 3 
74 6.1 2.8 4.7 1.2 2 149 6.2 3.4 5.4 2.3 3 
75 6.4 2.9 4.3 1.3 2 150 5.9 3.0 5.1 1.8 3 
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6.2   Integrals Used as Aggregation Tools 

The weighted average, or more general, the weighted sum is the most 
common aggregation tool used in information fusion. From Example 5.5 
we have seen that the weight sum is just the Lebesgue integral of the 
received information with respect to the additive measure determined by 
the weights. 
 
Example 6.3 Recalling Example 6.1 and using its data that contains only 
one record, the question is what the current GPA of the student is. Since 
the total credits of the courses the student takes is 12, we have 

 

GPA 29.2
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is the grade record that the student obtained, and 

4,3,5 321 === www denote the credits of three courses. If µ  is the 
classical additive measure determined by ii wx =})({µ , 3,2,1=i , or, 
directly, 

∑
∈

=
Exi

i
i

wE
|

)(µ , 

 
then the GPA is just the Lebesgue integral of function f with respect to 
µ , i.e., GPA 12/35=∫= µdf . 
 

Generally, given n attributes nxxx ,,, 21 L  and an observation f for 
fusing, the aggregation value, as another attribute (the target attribute) 
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denoted by y, is a functional of f. The relation between them can be 
regarded as an input-output system, in which the values of n attributes 

,,, 21 Lxx and nx  are the input and the value of the target attribute is 
the output. Example 6.3 presents a linear system, where y depends on 

,,, 21 Lxx and nx  linearly. In such a system, each attribute makes 
contributions towards the target linearly and independently. Here the 
independency means that there is no interaction among the contribution 
rates from attributes towards the target. Due to such an independency, 
the joint contribution from ,,, 21 Lxx and nx  towards the target is a 
simple sum of their individual contributions and, as discussed in Section 
5.3, can be expressed as the Lebesgue integral on a discrete set (the 
universal set).  

In real information fusion problems, many input-output systems do 
not have such linearity due to the interaction among the contributions of 
all given attributes towards the target. Such an interaction has been seen 
in the discussion of monotone measures in Section 4.3. It is totally 
different from the concept of correlationship in statistics. Let us recall 
Example 4.12. 
 
Example 6.4 In Example 4.12, the universal set },,{ 321 xxxX =  
consists of three workers ,, 21 xx  and 3x , and monotone measure  
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represents the individual and joint contribution rates from these workers 
towards the target “total amount of produced toys”. As shown in 
Example 4.12, the nonadditivity of µ  describes the interaction among  
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Table 6.2 Data of working times in Example 6.4. 
 

x1 x2 x3

8 0 4
4 4 4
0 8 4
2 6 4
6 2 4

 
the contribution rates from these three workers towards the total amount 
of their produced toys. The working time (the number of hours for 
working) of a worker in a specified day is a record of that worker. If 5 
records have been made for these three workers during some week as 
shown in Table 6.2, then, in statistics, the correlation coefficient of 1x  
and 2x  is 112 −=r , while the correlation coefficient of 1x  and 3x  is 

013 =r . They describe the relation between the appearing record values 
of two attributes involved. So, the interaction among the contribution 
rates from all given attributes towards the target is totally different from 
the concept of correlationship in statistics. 
 

The following example of synthetic evaluation and decision making 
shows that the method of classical weighted sum (or say, the Lebesgue 
integral with respect to an additive measure), as an aggregation tool in 
information fusion, fails when the above-mentioned interaction cannot be 
ignored. 
 
Example 6.5 There are three used TV sets on sale at the same price. We 
want to evaluate the global quality of TV sets based on an estimation on 
two factors “picture” and “sound”, denoted by 1x  and 2x , separately to 
each TV set, and then choose the best to buy. Now, factors “picture” and 
“sound” are attributes, while the global quality is the target.  

First, we assume that the weights of two factors are w1 = 0.7 and w2 = 
0.3 respectively. Now, for each factor and each TV set, an adjudicator 
gives the scores in Table 6.3. 

Using the method of weighted average, we get synthetic evaluations 
of the three TV sets: 
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Table 6.3  The scores of TV sets in Example 6.5. 
 

TV Set No. x1 (picture) x2 (sound)
1 1 0 
2 0 1 
3 0.45 0.45 

 
 

Ew1 = w1 × 1 + w2 × 0 = 0.7,  Ew2 = w1 × 0 + w2 × 1 = 0.3, 
Ew3 = w1 × 0.45 + w2 × 0.45 = 0.45.  

 
According to these results, the first TV set is the best. Such a result is 

hardly acceptable since it does not agree with our intuition: A TV set 
without any sound is not practical at all, even though it has an excellent 
picture. It is significant to realize that the cause of this counterintuitive 
result is not an improper choice of the weights. For example, if we chose 
w1 = 0.4 and w2 = 0.6, we would have obtained Ew1 = 0.4, Ew2 = 0.6, and 
Ew3 = 0.45. Now, the second TV set is identified as the best one, which is 
also counterintuitive: A TV set with good sound but no picture is not a 
real TV set, but just a radio. We may conclude that, according to our 
intuition, the third TV set should be identified as the best one: among the 
three TV sets, only the third one is really practical, even though neither 
picture nor sound are perfect. Unfortunately, when using the method of 
weighted average, no choice of the weights would lead to this expected 
result under the given scores. 

The crux of this problem is that the method of weighted mean is 
based on an implicit assumption that the factors ,,, 21 Lxx and nx  are 
“independently contribute to the global quality”. That is, their effects are 
viewed as additive. This, however, is not justifiable in some real 
problems. In this example, the joint importance of picture and sound is 
much higher then the sum of importance associated with picture and 
sound alone. If we adopt a monotone measure to characterize the 
importance of the two factors and, relevantly, use the Choquet integral as 
a synthetic evaluator of the quality of the three TV sets, a satisfactory 
result may be obtained. For instance, given the importance µ({x1}) = 0.3, 
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µ({x2}) = 0.1, µ(X) = 1, and µ(∅) = 0 as a monotone measure, and using 
the Choquet integral, we obtain the following synthetic evaluations: 

 

3.03.0110)C( 11 =×+×== ∫ µdfEc ,

1.01.0110)C( 22 =×+×== ∫ µdfEc ,
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Hence, we get a reasonable conclusion: the third TV set is the best, 
which agrees with our intuition. When some other type of nonlinear 
integrals is chosen, a similar result can be obtained. 
 

In fact, not only the Choquet integral with respect to a monotone 
measure (even to a signed efficiency measure) can be used, but also the 
other types, such as the upper integral and the lower integral, can be 
adopted as aggregation tools in information fusion. Example 5.21 shows 
that four different types of integrals can be used in information fusion, 
where the input information is the working time (hours) of workers and 
the output (the target) is the total amount of produced toys during the 
working time. Example 5.21 also explains the intuitive meaning of these 
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types of integrals and the relevant results. The most important points in 
information fusion are:  
(1) using a nonadditive set function to describe the interaction among 

the contribution rates from attributes towards the target, and  
(2) choosing a suitable nonlinear integral as an aggregation tool. 

6.3   Uncertainty Associated with Set Functions 

Let },,,{ 21 nxxxX L= . In this section, we assume that set function µ is 
a nontrivial monotone measure on (X, P     (X)). Here, the word “nontrivial” 
means that there exists at least one set XE ⊆  such that 0)( >Eµ . 
Since µ is monotone, this requirement is simply equivalent to 0)( >Xµ . 
We have seen from Section 6.2 that, due to the nonadditivity of µ, for a 
given nonnegative function f, different types of integrals may result in 
different aggregation values. This may be viewed as the uncertainty 
associated with monotone measure µ. Since the upper integral and the 
lower integral are two extremes in regard to the aggregation value, we 
may numerically estimate the uncertainty associated with the monotone 
measure by the difference of the upper integral and the lower integral. 
 
Definition 6.1 Given a monotone measure µ on (X, P     (X)), the degree of 
the relative uncertainty associated with µ is defined by 

 

)(
1)L(1)U(

X
dd

µ
µµ

γ µ
∫∫ −

= . 

 
It is evident that, when µ is a classical measure, the upper integral 

coincides with the lower integral and, therefore, 0=µγ . 
 
Theorem 6.1 For any monotone measure µ on (X, P     (X)), n≤≤ µγ0 . 

 
Proof. On the one hand, from  
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∫∫ ≥ µµ dd 1)L(1)U( , 

we obtain 
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On the other hand, from Theorem 5.9 and Definition 6.1, since 
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                             □ 
 
To present an estimate formula for the difference between the upper 

integral and the lower integral of a given nonnegative function, we need 
the following lemma. 
 
Lemma 6.1 For any given monotone measure µ  and a bounded 
nonnegative function f, 

 

∫∫∫∫ −≤− µµµµ dcdcdfdf )L()U()L()U( , 

 
where c may be any upper bound of f. 
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Proof. From the expressions of the upper integral and the lower integral 
on a finite set given in Section 5.5, we know that there are 0≥jλ  and 

0≥jv , 12,,2,1 −= nj L , satisfying  
 

)(| xfXExj jj
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For nonnegative function fc − , we can find 0≥′jλ   and 0≥′jv , 
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Theorem 6.2 Given a monotone measure µ on (X, P    (X)) and any 
nonnegative function f on X, we have 

 

)(max)()L()U(0 xfXdfdf
Xx∈

⋅⋅≤−≤ ∫∫ µγµµ µ . 

 
Proof.  Let )(max xfc Xx∈= . From the definition of µγ , Lemma 6.1, 
and properties (ULIP3) and (ULIP5) given in Section 5.5, we have 
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Example 6.6 The data and some results in Examples 5.21 are used here. 
It is easy to obtain  ∫ = 211)U( µd  and ∫ =141)L( µd . Then we have 
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=µγ . 

 
From 226488)L()U( =−=∫∫ − µµ dfdf , 6)(max =∈ xfXx , and 

17)( =Xµ , Theorem 6.2 is verified: 42176)17/7(22 =××≤ . 
 

Theorem 6.2 can be used to estimate the uncertainty associated with 
the monotone measure in an aggregation process if the coordination 
manner is unknown.

6.4   The Inverse Problem of Information Fusion 

From Section 6.2, we have seen that nonlinear integrals can be used as 
aggregation tools in information fusion. Given the set of information 
sources },,,{ 21 nxxxX L= , any discussed nonlinear integral with 
respect to a known signed efficiency measure µ  defined on P    (X) can 
be regarded as a nonlinear n-input one-output system. Once the input, an 
observation of attributes nxxx ,,, 21 L  is available, denoted by f as a 
function defined on X, an output can be obtained by calculating the value 
of the integral of f with respect to µ . The output is the value of the 
fusion target and is denoted by y, that is, ∫= µdfry )( , where (r) is the 
indicator of the adopted type of nonlinear integral. Signed efficiency 
measure µ  consists of n2  values with individual corresponding set in 
P     (X), among them 0)( =∅µ  is fixed. Thus, the input-output system 
has 12 −n  parameters. The system is identified with the type of the 
nonlinear integral and these 12 −n  structural parameters that are 
represented by µ . So, the information fusion is a procedure of finding 
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the value of the target y when the values of attributes nxxx ,,, 21 L , the 
type of the nonlinear integral, and the values of 12 −n  parameters are 
all known. Here, the nonlinear integral is used as an aggregation tool.  

The most interesting one of the inverse problems to information 
fusion is to find the values of signed efficiency measure µ  when the 
type of the nonlinear integral is fixed and the values of observations from 
attributes nxxx ,,, 21 L  as well as the corresponding values of the target 
are known. That is, knowing some pairs of the input and the output of the 
above-mentioned system with a given type of aggregation tool, we want 
to estimate the structural parameters of the system. Obviously, only 
knowing one pair of the input and the output is not sufficient to obtain a 
reasonable estimation of the parameters. A data set with large enough 
size is necessary for the purpose of estimating the values of signed 
efficiency measure µ . Thus, the data set, generally, has a form as 
follows. 

 

1x  2x  L nx  y  

)( 11 xf  )( 21 xf L )(1 nxf 1y  
)( 12 xf  )( 22 xf L )(2 nxf 2y  

M  M   M  M  
)( 1xfl  )( 2xfl L )( nl xf ly  

 
Table 6.1 shows an example for such a form of data sets, which we use 
in Chapter 10. 

If an n-input one-output system is linear, the system can be expressed 
as  

nnxaxaxaay ++++= L22110 , 
 

where nxxx ,,, 21 L  are the input and y is the output, while coefficients 
naaa ,,, 10 L , which identify the linear system, are parameters of the 

system. Once the above-mentioned data set is available, the value of 
naaa ,,, 10 L  can be estimated by the least square method: find the 

values of naaa ,,, 10 L  such that 
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is minimized. This optimization is just the inverse problem of the 
information fusion when the aggregation tool is a linear weighted sum. A 
linear algebraic method can be used for solving this quadratic 
optimization problem (see Section 9.1). 

However, when the aggregation tool in the information fusion is a 
nonlinear integral ∫ µdfr)( , the input-output system can be expressed 
as 

∫= µdfry )( , 

 
where the values of µ  are unknown parameters. Now the most 
interesting inverse problem of the information fusion is: once the 
above-mentioned data set is available, how to estimate the values of µ . 
Similar to the linear case, these unknown parameters should be 
determined by minimizing 

 

∑ ∫
=

−=
l

j
jj dfry

l 1

22 ])([1ˆ µσ .              (6.2) 

 
Unfortunately, the linear algebraic method fails for solving such a 

nonlinear optimization problem generally due to the nonlinearity of the 
r-integral. In this case, we have to use some numerical methods to obtain 
an approximately optional solution. These numerical computation 
methods, called soft computing techniques, are discussed in the next 
chapter. 
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Chapter 7 

Optimization and Soft Computing 

There are a number of traditional methods for solving optimization 
problems. In this chapter, two new numerical methods, genetic algorithm 
and pseudo gradient search, are discussed. Both of them are called soft 
computing techniques. Through either of them, usually, an 
approximately optimal solution may be obtained. Unlike the most 
traditional and common optimization methods, these methods avoid 
requiring some rather strong conditions, such as the differentiability to 
the objective function in the problem. A hybrid method of genetic 
algorithm and pseudo gradient search is more effective for solving 
optimization problems. 

7.1   Basic Concepts of Optimization 

Consider m numerical variables mttt ,,, 21 L  and a target 
),,,( 21 mtttzz L=  defined on a subset D of the m-dimensional Euclidian 

space mR . Given DF ⊆ , we want to find a point ),,,( 21
∗∗∗
mttt L  

subject to the restriction Fttt m ∈∗∗∗ ),,,( 21 L  such that ),,,( 21
∗∗∗
mtttz L  is 

the smallest value of z in F, that is, ),,,(),,,( 2121 mm tttztttz LL ≤∗∗∗  for 
any Fttt m ∈),,,( 21 L . This is a minimization problem, where z is called 
the objective function (or target), set F is called the feasible region, any 
point Fttt m ∈),,,( 21 L  is called a feasible point, point ),,,( 21

∗∗∗
mttt L  

is called the global minimizer (simply called minimizer if there is no 
confusion), denoted by ),,,(minarg 21 mtttz L , of the minimization 
problem, and value ),,,( 21

∗∗∗
mtttz L  is called the minimum of z in F. A 

point Fttt m ∈′′′ ),,,( 21 L  is called a local minimizer, if there exists an 
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open set O containing ),,,( 21 mttt ′′′ L  such that 
),,,(),,,( 2121 mm tttztttz LL ≤′′′  for any point FOttt m ∩∈),,,( 21 L . 

Similarly, we have concepts of maximization, global maximizer, 
maximum, and local maximizer correspondingly. Both of minimization 
and maximization are called optimization. 

Formally, a minimization problem in m-dimensional Euclidian space 
can, usually, be expressed as follows. 

 
min   ),,,( 21 mtttzz L=  
subject to kmk tttg α≥),,,( 21 L , rk ,,2,1 L=           (7.1) 

 
where kα , rk ,,2,1 L= , are constants and the inequalities describe the 
restriction, that is, the feasible region of the minimization problem is  

 
},,2,1,),,,( |),,,{( 2121 rktttgtttF kmkm LLL =≥= α , 

 
in which, r is a nonnegative integer. When 0=r , the minimization 
problem is said to be unconstrained. For any maximization problem, 

),,,(max 21 mtttzz L=  can be rewritten as ),,,(min 21 mtttzz L−=′ , 
that is, it can be converted into a form of (7.1). Furthermore, if there is 
some inequality with “less than or equal to”, say, α≤),,,( 21 mtttg L  in 
the restriction, we can rewrite it as α−≥− ),,,( 21 mtttg L . Finally, if 
some restriction condition is an equality, e.g., α=),,,( 21 mtttg L , then 
we can separate it into two inequalities α≥),,,( 21 mtttg L  and 

α−≥− ),,,( 21 mtttg L . Thus, we call the form shown in (7.1) the 
standard form of an optimization problem. We should note that 
inequalities “greater than” and “less than” are never used in restrictions 
for optimization problem because they will lead to no solution usually. 

In (7.1), if all functions z and g’s are linear, then the optimization 
problem is called a linear programming problem; otherwise, i.e., if at 
least one of functions z and g’s is nonlinear, it is called a nonlinear 
programming problem. 
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7.2   Genetic Algorithms 

Genetic algorithm is one of the soft computing techniques used in 
optimization. It is a global parallel random search method. Genetic 
algorithm mimics the natural evolution process of a species in a given 
environment to obtain an optimal (or approximate optimal) solution after 
a large number of generations. 

Suppose that a given optimization problem (say, a minimization 
problem) involves m variables (unknown parameters) with feasible 
region F. A genetic algorithm for solving the optimization problem may 
contain the following components. 
 
(1) Encoding genes. Using suitable transformations, the m unknown 

parameters are respectively represented by m binary bit strings, 
which are randomly and independently generated obeying the 
uniform distribution, such that the feasible region F is well covered 
with a reasonable distribution. Each binary bit string is called a 
gene. The length of each binary bit string is determined according 
to the required precision of the corresponding parameter in the 
solution of the optimization problem. For example, if the required 
precision of a parameter is 310− , then 10 bits are needed in the 
corresponding gene since 1039 2102 −−− >> . Adopting a real 
coding to replace the binary coding is also workable. 

(2) Chromosomes. According to a fixed order, link the m genes to 
form a chromosome. It is also a string of bits. Its length is the sum 
of the lengths of all genes. A chromosome represents a candidate of 
the set consisting of values of all unknown parameters in the 
optimization problem. So, each chromosome should be in F. 

(3) Population. The population is a set of chromosomes. The number 
of chromosomes in the population is called the size, denoted by s, 
of the population. The size is usually a large positive even integer, 
such as 100 or 500. The population is initialized by generating 
chromosomes randomly. Keeping the size, the population will be 
renewed in the evolution process. Relative to the population, each 
chromosome is called an individual. 
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(4) Fitness function. According to the goal of the optimization, 
choose a criterion and, by which, a suitable fitness function is 
constructed to measure the goodness of each chromosome. Usually, 
the fitness is a straight monotone function of the value of the 
objective function. Decode each individual if it is necessary and 
then calculate its fitness. 

(5) Genetic operators. Design several genetic operators for producing 
new chromosomes using some existing chromosomes that are 
selected as the parents. The following common operators are 
suggested to be used, though the user may design new genetic 
operators according to the need of the given optimization problem. 
(a) Two-point crossover. The crossover is a binary operator. For 

each two selected chromosomes, randomly choose two points 
(each point here is a location between two successive bits) to 
separate each of them into three pieces, and then interchange 
their middle piece to form two new chromosomes (see Figure 
7.1(a)).  

(b) Three-point mutation. The three-point mutation is a unary 
operator. For each selected chromosome, randomly select 
three bits and toggle their 0 and 1 to obtain a new chromosome 
(see Figure 7.1(b)). 

(c) Two-point realignment. The two-point realignment is also a 
unary operator. For each selected chromosome, randomly 
choose two points (the same as in (a), each point here is also a 
location between two successive bits) to separate it into three 
pieces, and then realign them in a randomly selected order and 
direction (see Figure 7.1(c)). There are totally 48 different 
ways to the realignment. They have the same chance to be 
selected, i.e., each way has a chance of 1/48 to be selected. 

(6) Selecting parents. According to the individuals’ fitness, randomly 
select individuals as parents. The higher the fitness is, the more 
chance to be selected, which is known as fitness proportionate 
selection. 

(7) Produce offspring. According to a selected probability 
distribution, randomly choose a genetic operator to produce 
individuals from the selected parents. 
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(8) Renewing the population. After producing a certain number, e. g., 
the same as the initial population size s, of new individuals, add 
them into the population. Then, according to the fitness, select the 
best s individuals to form a new population, called a new 
generation. 

(9) Recurrence and stopping. Based on the new population, recycle 
procedure (4)-(8) until the stopping condition is satisfied. The 
stopping condition may be chosen from anyone of the following or 
their combinations. 
(a) The number of generations (or the number of produced 

individuals) reaches a given positive integer. 
(b) After producing a given number of generations (or 

individuals), the fitness of the best individual in the population 
has not been changed (or not been significantly improved). 

(c) The population is identical. 
(d) The value of the objective function for the best individual in 

the current population falls in a given small region, such as the 
error being smaller than a given small positive number ε. 

(10) Outputting the result. Once stopping condition satisfied, output 
the best individual (after decoding) in the current population.  

 
A general flow chat of the genetic algorithm is shown in Figure 7.2. 

Since the genetic algorithm is a global search method, we need not worry 
about falling in a valley of local minimizer. This is the advantage of the 
genetic algorithm. However, the search process of a genetic algorithm is 
usually rather slow, and there even exists a phenomenon so-called 
prematurity, that is, after several generation, the fitness of the best 
individual has not been significantly improved, though it is still a little 
far from the global minimizer. To speed up the search procedure and 
reduce the prematurity, we may adopt two additional approaches as 
follows. One is to keep the diversity of the population, that is, to select 
some individuals not very good but with much different feature from the 
good individuals in the new generation to avoid the population being 
identical or similar too early. Another is to set up some adaptive 
mechanisms in the search procedure, i.e., some involved probability 
distributions are dynamically adjusted. For example, at the beginning of 
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the search procedure, the probability of taking mutation may be smaller 
than later, and the probability of choosing higher bits may be larger than 
lower bits for mutation and vice versa towards the end.  

 
 
 
 

 
 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7.2 The flowchart of genetic algorithms. 
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Fig. 7.1 Illustration of genetic operators. 
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7.3   Pseudo Gradient Search 

For solving optimization problems, the well known gradient search 
method requires that the objective function is differentiable with respect 
to the unknown parameters. However, many optimization problems do 
not satisfy such a requirement. To get a more general search method, a 
natural idea is to replace the differential with a difference, which can be 
obtained through a learning procedure, to determine a prefer search 
direction, called pseudo gradient. Then, along this direction, a much 
better point can be found by another learning procedure. This point is 
used as the starting point of the next iteration. Repeating this procedure 
leads to obtaining an approximate local extremer (minimizer or 
maximizer). In the procedures, the feasibility should be always kept. 
Such a search method is called the pseudo gradient search. Like the 
gradient search method, it is a local search method. 

Let ),,,( 21 mtttzz L=  be the objective function in the given 
minimization problem with feasible region F. The search space is 
m-dimensional. Starting from a given initial point 

Ftttt m ∈= ),,,( )0()0(
2

)0(
1

)0( L , we want to search for a minimizer 
Ftttt m ∈= ∗∗∗∗ ),,,( 21 L . The procedure of the pseudo gradient search can 

be described by the following steps. 
 
(1) Choose an initial point Ftttt m ∈= ),,,( )0()0(

2
)0(

1
)0( L . 

(2) Initialize m2/0δδ =  and 2=α , where 00 >δ  is the required 
solution precision.  

(3) For each mj ,,2,1 L= , calculate    
  

),,,,,(),,,,,( )0()0()0(
2

)0(
1

)0()0()0(
2

)0(
1 mjmjj ttttzttttz LLLL δ+−=∆ +  

 
if Ftttt mj ∈+ ),,,,,( )0()0()0(

2
)0(

1 LL δ ; otherwise, let 0=∆ +j . 
Similarly, calculate 

 

),,,,,(),,,,,( )0()0()0(
2

)0(
1

)0()0()0(
2

)0(
1 mjmjj ttttzttttz LLLL δ−−=∆ −  
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if Ftttt mj ∈− ),,,,,( )0()0()0(
2

)0(
1 LL δ ; otherwise, let 0=∆ −j . 

(4) Let  
 

  
otherwise          ]0,,max[

 if          ]0,,max[   







∆∆−

∆≥∆∆∆
=∆

−+

−+−+

jj

jjjj
j , mj ,,2,1 L= . 

 
If 0=∆ j  for all mj ,,2,1 L= , then go to step (5); otherwise, go 
to step (6). 

(5) Calculate  
 










++−

∉++

=∆ ++

,otherwise     ),,,,,,,(

),,,,,,,(

),,,,,,,(if                0

)0()0()0()0(
2

)0(
1

)0()0()0()0(
2

)0(
1

)0()0()0()0(
2

)0(
1

mkj

mkj

mkj

jk

tttttz

tttttz

Fttttt

LLL

LLL

LLL

δδ

δδ

 

 










+−−

∉+−

=∆ +−

,otherwise     ),,,,,,,(

),,,,,,,(

),,,,,,,(if                0

)0()0()0()0(
2

)0(
1

)0()0()0()0(
2

)0(
1

)0()0()0()0(
2

)0(
1

mkj

mkj

mkj

jk

tttttz

tttttz

Fttttt

LLL

LLL

LLL

δδ

δδ

 

 










−+−

∉−+

=∆ −+

,otherwise     ),,,,,,,(

),,,,,,,(

),,,,,,,(if                0

)0()0()0()0(
2

)0(
1

)0()0()0()0(
2

)0(
1

)0()0()0()0(
2

)0(
1

mkj

mkj

mkj

jk

tttttz

tttttz

Fttttt

LLL

LLL

LLL

δδ

δδ

 

 










−−−

∉−−

=∆ −−

,otherwise     ),,,,,,,(

),,,,,,,(

),,,,,,,(if                0

)0()0()0()0(
2

)0(
1

)0()0()0()0(
2

)0(
1

)0()0()0()0(
2

)0(
1

mkj

mkj

mkj

jk

tttttz

tttttz

Fttttt

LLL

LLL

LLL

δδ

δδ

 

 
and ],,,[max −−−++−++± ∆∆∆∆=∆ jkjkjkjkjk m  for mkj ,,2,1, L=  
with kj < , where m±  is one of ++ , +− , −+ , and −− such 
that the maximum is reached. Find  
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m
L

±
<=
∆ jkkjmkj  ;,,2,1,  

max . 

 
 If it is not positive, then go to (10); otherwise, find 

 

m
L

±
<=
∆= jk

kjmkj
kj

 ;,,2,1,  
00 maxarg),( , 

 
 where argmax denotes the maximizer, and use  

 

),,,,,,,( )0()0()0()0(
2

)0(
1 00 mkj ttttt LmLL δδ±  

 to replace  

),,,,,,,( )0()0()0()0(
2

)0(
1

)0(
00 mkj tttttt LLL= , 

 
where m  and ±  are either + or − that are recorded in the subscript 
of m±∆ jk . Then go back to (2). 

(6) Form the pseudo gradient direction ),,,( 21 m∆∆∆=∆ L  and 
calculate 2/1

1
2 ])([|| ∑ ∆=∆ =

m
j j . 

(7) Replace δ  by αδ . If the new m2/0δδ ≤ , then go back to (2); 
otherwise, from point )0(t  and along direction ∆ , take a step with 
length δ  to reach point ∗t , that is, 

 

)
||

,,
||

,
||

( )0(2)0(
2

1)0(
1 ∆

∆
+

∆
∆

+
∆
∆

+=∗ m
mtttt δδδ

L . 

 
(8) If Ft ∉∗ , then go to (9). Otherwise, calculate )( ∗tz  and check 

whether )()( )0(tztz ≤∗  or not. If yes, replace )(0t  by ∗t , then go 
back to (7); if no, go to (9). 

(9) Let 2/1=α  and go back to (7). 
(10) Stop. Output )0(t  and some required information on the search 

procedure. 
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In the algorithm above, each iteration formed by steps (2)-(9) has a 
search direction described by the pseudo gradient. Along with this 
direction, the initial point (or the point obtained at the end of the previous 
iteration) is updated by a much good point, though not being an 
approximate best point in this direction. We may add some search steps 
such that the updated point is an approximate best point in this direction. 
However, it is not necessary since its benefit will be totally covered by 
the next iteration in the current algorithm. 

In comparison with genetic algorithms, the pseudo gradient search is 
much faster. The quick search speed is the advantage of the pseudo 
gradient search method. However, like other local search methods, it is 
hard to avoid falling into a local extremer or obtaining a saddle. Even the 
user does not know whether the found point is a global extremer 
approximately or not. This is the weakness of the pseudo gradient search 
method. 

7.4   A Hybrid Search Method 

As we have seen that the genetic algorithm is a global random search 
method while the pseudo gradient search is a local search method. The 
advantage of the former is no risk of falling in a local extremer, while its 
weakness is the slow search speed and the risk of prematurity. Unlike the 
former, the latter has a fast search speed but cannot avoid the risk of 
falling in a local extremer or staying at a point close to a saddle of the 
objective function.  

A natural idea to improve these two search methods is to combine 
them together. Once an optimization problem is given, we may first use a 
genetic algorithm to find a relatively good point in the feasible region, 
then, taking this point as the initial point, turn to a pseudo gradient search 
to continue the search procedure. Usually, we may obtain a satisfactory 
approximate optimal solution. 

In such a hybrid search procedure, we may appropriately slacken the 
stopping conditions in the part of the genetic algorithm to reduce the total 
running time of the program. Some successful experiments using the 
combination of a genetic algorithm and a special iterative search, which 
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is a simplified version of the pseudo gradient search, are presented in 
[Spilde and Wang 2005].  
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Chapter 8 

Identification of Set Functions 

Identification of set functions is a technique, based on given data, to 
determine a set function satisfying some given requirements. There are 
two different kinds of identification. One is to construct a specified type 
of set function, such as a λ-measure or a belief measure, based on a given 
set function with a revision as slight as possible. Another is, regarding a 
given type of nonlinear integral as an input-output system, to determine 
the involved set function, such as a monotone measure or a signed 
efficiency measure, based on some observations of the input and the 
corresponding output of the system. The former can be called the 
revising for set functions that are discussed in Sections 8.1-8.3, while the 
latter is called the fitting and discussed in Sections 8.4-8.7.  

From this chapter through the book, the universal set X is always 
finite. Let },,,{ 21 nxxxX L= . 

8.1   Identification of λ-Measures 

Given set function :µ P      (X) ),0[ ∞→  with 0)( >Xµ , we want to find 
a λ-measure g: P (X) ),0[ ∞→ , such that )()( XXg µ=  and the 
difference between g and µ  is as small as possible. To be consistent 
with the other methods, we may choose the squared error as the 
difference, that is, determine λ-measure g such that 

 

∑
⊂

−
XE

EEg 2)]()([ µ  
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is minimized. Adopting the sum of absolute difference is also feasible 
since a genetic algorithm discussed in section 7.2 may be used to search 
the numerical optimal solution and, therefore, we need not worry about 
the differentiability of the objective function in the optimization problem. 
However, we still prefer to use the total squared error as the objective 
function in the optimization such that a comparison with traditional 
methods in some special cases can be easily made if any.  

A soft computing technique, for instance, a genetic algorithm, may be 
adopted to solve this identification problem. From Section 4.4, we have 
known that, when 0)( >Xg  is given, a λ-measure g is identified by its 
values at all singletons, })({ ixg , ni ,,2,1 L= . Noting that each binary 
bit string represents a real number in [0, 1) and any λ-measure is 
monotone, we may directly use a gene to represent )(/})({ Xgxg i  for 
each ni ,,2,1 L= . Let bXg =)(  and ii gXgxg =)(/})({ , 

ni ,,2,1 L= . The objective function may be taken as  
 

∑
⊂

−=
XE

n EEggggz 2
21 )]()([),,,( µL ,           (8.1) 

where  

        ∏
∈

−+=
Exi

i
i

bgEg
|

)1]1[(1)( λ
λ

,               (8.2) 

 
in which λ is the unique feasible solution of equation 

 

∏
=

+=+
n

i
ibgb

1
)1(1 λλ .                  (8.3) 

 
Once a chromosome ),,,( 21 nggg L  is available, we should check 
whether only one },,2,1{ ni L∈  such that 0≠ig . If yes, this 
chromosome should be abandoned. Otherwise, according to the genes 

ig , ni ,,2,1 L= , we can calculate the value of λ by solving equation 
(8.3) and, then, calculate )(Eg  for each set XE ⊂  through (8.2). 
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Finally, from (8.1), we may obtain the value of the objective function z. 
As for the fitness of the chromosome, we may choose, for example,  

 

1.0
1)(
+

=
z

zf . 

 
After obtaining the approximate optimal value of each ig , 

ni ,,2,1 L= , we need still use (8.2) and (8.3) to calculate the values of 
the λ-measure g and the corresponding value of λ. 

This identification problem can be generalized as follows. Assume 
that we have l observations, which are not accurate, for the values of a 
λ-measure g: P  (X) ),0[ ∞→ , where l is a positive integer. These 
observation are denoted as l set functions µj: P (X) ),0[ ∞→ , lj ,,2,1 L= . 
Now we want to optimally determine λ-measure g in the following 
meaning: the total squared error 

 

∑ ∑
= ⊂

−=
l

j XE
jn EEggggz

1

2
21 )]()([),,,( µL          (8.4) 

 
is minimized, where )(Eg  has the same meaning as in (8.2) with (8.3). 
The algorithm is totally the same as the original one except the objective 
function shown in (8.1) being replaced by (8.4). 

8.2   Identification of Belief Measures 

Similar to the generalized model of the identification of λ-measures 
discussed in the previous section, given l set function µj: P     (X) ]1,0[→  
with µj 0)( =∅  and µj 1)( =X , lj ,,2,1 L= , now we want to 
determine a belief measure bel: P      (X) ]1,0[→ , such that the difference 
between bel and all µj is as small as possible, for example, such that 

 

∑ ∑
= ⊂

−=
l

j XE
j EEbelz

1

2)]()([ µ  
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is minimized. 
This minimization problem can also be implemented by the genetic 

algorithm discussed in Section 7.2. From Section 4.7, we know that a 
belief measure is uniquely determined from its corresponding basic 
probability assignment m: P     (X) ]1,0[→  with 0)( =∅m  and 

 
      1)( =∑

⊆ XE
Em                      (8.5) 

by 

∑
⊆

=
EF

FmEbel )( )( .                  (8.6) 

 
So, we just need to arrange the values of m as the genes in chromosomes. 
Considering the constraint (8.5) and each gene is a real number in [0, 1), 
after decoding, we may let chromosome ),,,( 1221 −nggg L  represent a 
basic probability assignment m by cgxm /})({ 11 = , cgxm /})({ 22 = , 

cgxxm /}),({ 321 = , cgxm /})({ 43 = , L,/}),({ 531 cgxxm = , and 
)(Xm  cg n /12 −

= , where ∑= −
=

12
1

n

j jgc . For each chromosome created in 
the genetic algorithm, using (8.6), we may convert it to a belief measure. 
Then the value of z can be calculated. The fitness of a chromosome can 
be chosen in the same way as shown in Section 8.1. 

8.3   Identification of Monotone Measures 

Given set function :µ P    (X) ),0[ ∞→  with 0}|)(max{ >⊆ XEEµ , 
we want to find a monotone measure ν: P     (X) ),0[ ∞→ , such that the 
total squared error 

 
     ∑

⊆
−=

XE
EEz 2)]()([ µν                  (8.7) 

 
is minimized. Under this criterion, the optimal solution ν cannot be 
obtained by only reordering the values of µ generally, even if 

)()( EX µµ ≥  for all ∈E P      (X). This can be seen from the following 
counterexample. 
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Example 8.1 Let },,{ 321 xxxX =  and 
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Set function µ is nonnegative. It is not monotone since }{},{ 121 xxx µµ < . 
If we construct set function ν from µ by exchanging the values of 

},{ 21 xxµ  and }{ 1xµ , i.e., let   
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then ν is a monotone revision of µ. However, it is not the optimal 
monotone revision of µ under the criterion of minimizing (8.7). In fact, 
according (8.7), the total squared error of ν is 08.02.02.0)( 22 =+=νz . 
If we take  
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as a monotone revision of µ, then its total squared error is 

02.01.01.0*)( 22 =+=νz , which is much smaller than )(νz .  
 

In Example 8.1, *ν  is obtained only via taking the average of a pair 
of two µ’s values, which violates the required monotonicity, to replace 
the pair. To obtain a monotone revision of a given nonnegative set 
function vanishing at the empty set, in general case, is not so simple. It is 
convenient to use a soft computing technique, such as a genetic 
algorithm, with an embedded reordering algorithm to obtain an 
approximate numerical optimal solution for this identification, especially, 
when the generalized model that is similar to the ones discussed in 
Sections 8.1 and 8.2 is considered. The genetic algorithm with an 
embedded reordering algorithm can be also used for identification of 
monotone measures based on an input-output nonlinear integral system 
that is discussed in Section 8.6. One of the advantages of using soft 
computing techniques is that the algorithm, except the formula of the 
fitness function, does not depend on the choice of the optimization 
criterion.   

The generalized identification model for monotone measures is 
expressed as follows. 

Given l rough observations (records) for a monotone measure   
:ν P     (X) ),0[ ∞→  with 0)( >Xν , denoted by µj, lj ,,2,1 L= , where 

each µj is a nonnegative set function defined on P    (X) and l is a positive 
integer, we want to find a monotone measure ν  on P      (X) such that 
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     ∑ ∑
= ⊆

−=
l

j XE
j EEz

1

2)]()([ µν               (8.8) 

 
is minimized. Equation (8.7) can be regarded as a special case of (8.8) 
with 1=l . 

We assume that not all observations are trivial, i.e., not all values of 
every observed set function µj are zeros. A genetic algorithm now is used 
to solve this identification problem. It consists of two parts: the main 
algorithm and the embedded reordering algorithm. 

8.3.1   Main algorithm 

The genetic algorithm shown in Section 7.2 can be adopted with a few 
adjustments as follows. Each chromosome now consists of 12 −n  genes, 
denoted as 1221 ,,,

−nggg L , representing the values of a set function at 
all nonempty subsets of X respectively. Each gene consists λ  bits and is 
decoded as a real number in [0,1]. The target of the optimization is the 
total squared error z shown in (8.8). The decoding formulas are 
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After decoding each chromosome, the following reordering algorithm 

should be used to convert the nonnegative set function µ to a monotone 
measure ν. Then, according (8.8), calculate the total squared error for ν. 

8.3.2   Reordering algorithm  

Assume that set function :µ P     (X) ),0[ ∞→  with 0)( =∅µ  is given. 
 

(1) According to the lattice structure of the power set P     (X) (see Figure 
8.1 when 4=n ), divide all n2  subsets of X into 1+n  layers: the 
empty set is at layer 0 (the bottom layer); all singletons are at layer 1; 
all sets consisting of two points are at layer 2; L ; the universal set is 
at layer n (the top layer). That is, any set consisting of k points is 
arranged in layer k, nk ,,2,1,0 L= . The class of all sets at layer k 
is denoted as L k. 

 
 
 
 
 

 
 
 
 
 

 
Fig. 8.1 The lattice structure for the power set of a universal set with 4 attributes. 

},,{ 321 xxx },,{ 421 xxx },,{ 431 xxx },,{ 432 xxx  

},{ 21 xx  },{ 31 xx },{ 41 xx },{ 32 xx },{ 42 xx },{ 43 xx  

}{ 1x }{ 2x }{ 3x }{ 4x

X

∅

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0
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(2) Initialize 1=k . 
(3) For layer k, rearrange these ),( knC  sets according to their values of 

µ  in a nonincreasing order, denoted as { Ekj )},(,,2,1| knCj L= . 
(4) Starting from 1=j , find the set E*

kj ⊃= EE |)(min{arg µ Ekj }  
from layer 1+k , i.e., E*

kj is the set with the smallest value of µ  
among all sets that include Ekj in L k+1. Exchange the values of µ(Ekj) 
and µ(E*

kj) if µ(Ekj)> µ(E*
kj); otherwise, they are unchanged. Then 

do this for the next j and continue this procedure until 
1),( −= knCj .  

(5) Add 1 to k and check whether nk = . If yes, go to (6); if no, go to 
(3). 

(6) Check whether for at least one value of k the exchange in step (4) has 
been done. If yes, go to (2); if no, go back to the main algorithm. 

 
Once the embedded reordering algorithm finishes and diverts back to 

the main algorithm, the actual set function µ has been reordered to be a 
monotone measure ν on P  (X). The complexity of the reordering 
algorithm above can still be reduced a little. In an iteration beginning 
from (2), if the first r +1 layers (form layer 0 to layer r) are not involved 
for any exchange, then k can be initialized with r in the next iteration. 

If all considered set functions, including the monotone measure ν and 
its observations µj, lj ,,2,1 L= , are regular, i.e.,  

 
)()( 1 XX µν = 1)()(2 ==== XX lµµ L , 

 
then each chromosome only needs 22 −n  genes. In this case, the total 
squared error (8.8) is reduced to be  

 

.)]()([
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= ⊂

−=
l

j XE
j EEz µν               (8.9) 
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8.4   Identification of Signed Efficiency Measures by a 
Genetic Algorithm 

Now, we want to obtain a set function :µ P     (X) ),( ∞−∞→  with no 
special requirement except vanishing at the empty set, i.e., 0)( =∅µ . 
This means that µ  is a signed efficiency measure. Of course, in this 
case, since there is not enough restriction on µ  that can be used to form 
optimization criterion, the identification model must be essentially 
different from those discussed in Sections 8.1-8.3 that depend on the 
characters (e.g., the λ-rule) of the target set function. Thus, what type of 
the data set we should have and what corresponding optimization 
criterion we should adopt are new problems being faced.  

In this case, an input-output system described by a nonlinear integral 
can be adopted to determine a signed efficiency measure. We only need a 
data set consisting of sufficiently many input-output records for the 
system. This is just an inverse problem of the information fusion, where 
a nonlinear integral aggregates the received information, discussed in 
Section 6.4.  

Suppose that an r-integral is taken as the aggregation tool, where r 
indicates the type of nonlinear integrals shown in the previous chapters 
and is known. The input-output system can be expressed as 

 

∫= µdfry )( , 

 
where :f X ),0[ ∞→  (or :f X ),( ∞−∞→  such that the nonlinear 
integral ∫ µdfr)(  is well defined) is the input, y is the output and µ is a 
signed efficiency measure. The system is fully described by the type of 
the nonlinear integral and the involved signed efficiency measure. Now, 
only µ is unknown. Based on a given data set 

 

1x  2x  L nx  y   
)( 11 xf  )( 21 xf L )(1 nxf 1y   
)( 12 xf  )( 22 xf L )(2 nxf 2y  (8.10) 

M  M   M  M   
)( 1xfl  )( 2xfl L )( nl xf ly   
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where fj(x i) is the j-th record (observation) of attribute ix  and l is the 
data size that should be larger than 12 −n , we may determine the 
unknown values of µ according to the criterion that  

 

2

1
])([∑ ∫

=
−=

l

j
jj dfryz µ  

 
is minimized. To solve this optimization problem, a genetic algorithm 
can be adopted. In the genetic algorithm, each chromosome consists of 

12 −n  binarily coded genes 1221 ,,,
−nggg L , and each gene represents a 

real number in [0, 1). Except those chromosomes involving at least one 
zero gene, the values of µ corresponding to the chromosome are 
calculated from  
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Any chromosome involving zero genes should be abandoned. The other 
components of the genetic algorithm are similar to those in Sections 
8.1-8.3. Running such a genetic algorithm, an approximate numerical 
optimal solution of the signed efficiency measure can be obtained.  

From this identification problem, we can see the advantage of using 
genetic algorithms. To solve an inverse problem of information fusion, 
no matter how complex the aggregation tool is, we can use genetic 
algorithms to search the optimal solution whenever the aggregation is 
computable. Thus, solving an inverse problem is converted to repeatedly 
solving the original problems, the aggregations. As shown in this section, 
to determine a signed efficiency measure, we just need to implement the 
aggregation of the input and compare the output with the corresponding 
given values repeatedly for various input-output pairs, by which, the set 
function is then optimized. 

8.5   Identification of Signed Efficiency Measures by the 
Pseudo Gradient Search 

The identification problem of signed efficiency measures shown in 
Section 8.4 can also be solved by the pseudo gradient search method 
discussed in Section 7.3.  

Let the same data set adopted in Section 8.3 be available. To 
determine a signed efficiency measure :µ P (X) ),( ∞−∞→  with 

0)( =∅µ , we need to find the values of 12 −n  unknown parameters 

1221 ,,,
−nµµµ L . So, the search space is )12( −n -dimensional, that is, 

the integer m used in Section 7.3 is 12 −n . The objective function is still  
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2

1
])([∑ ∫

=
−=

l

j
jj dfryz µ  

 
that should be minimized, where “r” at the front of the integral indicates 
the chosen type of the nonlinear integral. Usually, the size of the data set 
should not be less than the number of the unknown parameters, i.e., 

12 −≥ nl . Otherwise, we may face the case that there are infinitely many 
optimal signed efficiency measures with 0=z . 

In this optimization problem, since the feasible region F is the whole 
)12( −n -dimensional Euclidean space 12 −n

R and the shape of the 
objective function is not very complex, using the pseudo gradient search 
shown in Section 7.3 is convenient. The algorithm of the pseudo gradient 
search can now be simplified as follows. 

 
(1) Choose ),,,( )0(

12
)0(

2
)0(

1
)0(

−
= ntttt L  as the initial point.  

(2) Initialize 122/0 −= nδδ  and 2=α , where 00 >δ  is the 
required solution precision.  

(3) For each 12,,2,1 −= nj L , calculate     
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Similarly, calculate 
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(4) Let  
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If ∆ j 0=  for all 12,,2,1 −= nj L , then go to step (9); otherwise, 
go to step (5). 

(5) Form the pseudo gradient direction ),,,(
1221 −

∆∆∆=∆ nL  and 
calculate 2/112

1
2 ])([|| ∑ ∆=∆ −

=
n

j j . 
(6) Replace δ  by αδ . If the new 1220 −≤ n/δδ , then go back to 

(2); otherwise, from point )(0t  and along direction ∆ , take a step 
with length δ  to reach point ∗t , that is, 

 

)
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,,
||

,
||

( 12)0(2)0(
2
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1 ∆

∆
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∆
∆

+
∆
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+= −∗ n

mtttt
δδδ

L . 

 
(7) Calculate )( ∗tz  and check whether )()( )0(tztz ≤∗  or not. If yes, 

replace )(0t  by ∗t , then go back to (6); if no, go to (8). 
(8) Let 2/1=α  and go back to (6). 
(9) Stop. Output )(0t  and some required information on the search 

procedure. 
 

Similar to the situation in Section 7.3, in the algorithm above, each 
iteration formed by steps (2)-(8) has a search direction described by the 
pseudo gradient. Along this direction, the initial point (or the point 
obtained at the end of the previous iteration) is updated by a much better 
point, though not being an approximate best point in this direction. 
Adding some search steps such that the updated point is an approximate 
best point in this direction is possible. However, it is not necessary since 
its benefit will be totally covered by the next iteration in the current 
relatively simple algorithm.   

8.6   Identification of Signed Efficiency Measures Based on 
the Choquet Integral by an Algebraic Method  

When the Choquet integral is chosen as the aggregation tool in the 
input-output system, the identification of signed efficiency measure 
becomes easy to be solved. Due to the advantage of linear expression 
(5.5) with (5.6), an algebraic method can be used to solve this 
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identification problem with a precise solution. In fact, if data set (8.10) is 
available, the identification of signed efficiency measure µ can be 
expressed as an optimization problem of determining set function    

:µ P     (X) ),( ∞−∞→  with 0)( =∅µ  such that  
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1
])C([∑ ∫

=
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l

j
jj dfyz µ  

 
is minimized. By using (5.5) and (5.6), we can see that its optimal 
solution is just the least square solution of linear system 
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for lk ,,2,1 L= ; .12, ,2,1 −= nj L  Each zkj can be calculated from the 
given data set (8.10) in advance. Hence, the precise solution of the 
optimization problem is 
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i.e., the transposed matrix of Z, and 
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The details on the least square solution of a linear system are shown 

in Section 9.1. 

8.7   Identification of Monotone Measures Based on 
r-Integrals by a Genetic Algorithm  

To determine a monotone measure based on an input-output system 
consisting of a nonlinear integral, the difference from determining a 
signed efficiency measure discussed in Sections 8.4-8.6 is the restriction 
on the set function. Now, the determined set function should be 
nonnegative and monotone. Based on an existing data set with the same 
form as (8.10) shown in Section 8.4, to determine a monotone measure 
defined on the power set of a given finite universal set optimally, the 
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genetic algorithm discussed in Section 8.4 with the same objective 
function  

2

1
])([∑ ∫

=
−=

l

j
jj dfryz µ  

 
may still be used. However, the decode formulas should be taken as 
those in Section 8.3 to keep the nonnegativity. The reordering algorithm, 
where a max-min strategy is adopted to reduce the computation 
complexity, shown in Section 8.3 should also be embedded to guarantee 
the monotonicity for the obtained set functions represented by 
chromosomes.  

We should notice that, even the Choquet integral is chosen as the 
nonlinear integral in this identification problem, the algebraic method 
shown in Section 8.6 cannot be used here. The least square solution 
obtained in Section 8.6 violates the nonnegativity and the monotonicity 
generally. After adjusting the solution to be nonnegative and reordering 
it to be monotone, the result will usually no longer have the least squared 
error. So, we have to take a relatively complex soft computing technique 
to obtain an approximately optimal solution for this identification 
problem.  
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Chapter 9 

Multiregression Based on Nonlinear 

Integrals 

Regression is one of the major techniques in statistics and data mining. 
Based on a set of observations involving a number of variables 
(attributes), regression provides an approach to determine the unknown 
parameters in an input-output system and, therefore, find a linear or 
nonlinear relation between one variable (output) and the other variables 
(input). It can be regarded as a generalization of identification of signed 
efficiency measure (or classical signed measure). Once the relation on 
how one variable (target attribute) depends on other variables (predictive 
attributes) is known, we can use it to predict the value of the target 
variable if a new observation of predictive variables has been obtained in 
some way. 

9.1   Linear Multiregression 

Suppose that there are 1+n  attributes: nxxx ,,, 21 L  and y in a 
database. We want to know how y depends on these x’s. Using the same 
setup as before, let },,,{ 21 nxxxX L= . Regarding y as a random 
variable, the simplest relation between y and nxxx ,,, 21 L  is a linear 
regression expressed as 

 
  ),0( 2

22110 σNxaxaxaay nn +++++= L ,          (9.1) 
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where  ,,,, 210 Laaa  and na  are unknown constants, called regression 
coefficients, and ),0( 2σN  is a normally distributed random variable 
with mean 0 and variance 2σ . The variance 2σ  is also unknown. Each 
observation (record) of attributes nxxx ,,, 21 L  is a function defined on 
X. Using such a model needs a basic assumption that there is no 
interaction among the contributions from nxxx ,,, 21 L  towards target y. 
Under this assumption, to estimate these regression coefficients as well 
as 2σ , we need a data set consisting of sufficiently many observations  
of nxxx ,,, 21 L  and corresponding values of y. It has the same form as 
shown in (8.10): 

 

1x  2x  L nx  y  
)( 11 xf  )( 21 xf L )(1 nxf 1y  
)( 12 xf  )( 22 xf L )(2 nxf 2y  

M  M   M  M  
)( 1xfl  )( 2xfl L )( nl xf ly  

 
where the size of the data set, l, should be much larger than n (say, 

nl 5≥ ) to avoid possible over fitting. Once a proper data set is available, 
we may use the least square method to determine regression coefficients 

 ,,,, 210 Laaa  and na , that is, by minimizing the total squared error: 
 

2

1
22110 )]([∑

=
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l

j
jnnjjj xaxaxaayz L ,       (9.2) 

 
where xji = fj(xi), lj ,,2,1 L= , ni ,,2,1 L= , we may obtain an 
estimation of unknown parameters  ,,,, 210 Laaa  and na . Usually, we 
denote  

 

jnnjjj xaxaxaayE ++++= L22110)(  

 
and call it the expected value of yj. 
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To solve the optimization problem with objective function expressed 
by (9.2), some knowledge in calculus and linear algebra is needed. 
Regarding z as a function of variables  ,,,, 210 Laaa  and na , it is 
quadratic and concave up. So, its minimum exists uniquely. A necessary 
(in fact, also sufficient) condition for  ,,,, 210 Laaa  and na  being the 
minimizer is 

0=
∂
∂

ia
z , ni ,,2,1,0 L= , 

that is, 
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Rearranging them, we obtain a system of linear equations  
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where  ,,,, 210 Laaa  and na  are unknown variables of the system of 
linear equations. Denoting  
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we may rewrite the system of linear equations (9.3) in a matrix form 

 
XTXA= XTY. 

 
Since XTX is always nonsingular, its inverse matrix (XTX)−1 exists. Thus, 
the solution of system (9.3) is 
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










na

a
a

ˆ

ˆ
ˆ

1

0

M
(XTX)−1 XTY. 

 
Values  ,,ˆ,ˆ,ˆ 210 Laaa  and nâ  are called the least square estimation of 

 ,,,, 210 Laaa  and na  respectively. In addition,  
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can be used as an estimation of the variance 2σ .    
In the above discussion, symbol ix  is used to denote an attribute as 

well as a general observation of this attribute. However, when we want to 
emphasize that it is an observation, symbol )( ixf  is adopted, especially, 
when we use an integral as the aggregation tool in information fusion, 
the observation (received information) of attributes is the integrand and, 
therefore, must be presented as a function defined on the set of all 
predictive attributes. Thus, in the linear multiregression model (9.1), 

nnxaxaxa +++ L2211  should be rewritten as  
 

+++ L)()( 2211 xfaxfa  )( nn xfa , 
 
a weighted sum of the values of function f on X, where ,,, 21 Laa  and 

na  are weights. As we have seen in Example 5.5, this weighted sum is 
just a Lebesgue integral of f, i.e., 

 

∫=+++ µdfxfaxfaxfa nn )()()( 2211 L , 

 
where classical measure µ  on P   (X) is determined by ii ax =})({µ , 

ni ,,2,1 L= . Consequently, the linear multiregression model (9.1) can 
be expressed as 

 

),0( 2
0 σµ Ndfay ++= ∫                (9.4) 

or, equivalently, 

),( 2
0 σµ aNdfy += ∫ . 

 
Ignoring the probabilistic background, we can also understand this 

linear multiregression as a linear data fitting problem. That is, given the 
above data set in n+1 dimensional space, we want to find an n 
dimensional hyper plane 

 
nnxaxaxaay ++++= L22110  
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such that the total squared vertical (i.e., parallel to the y-axis) distance 
from each data point to the hyper plane is minimized. 

Expression (9.4) leads us to develop new multiregression models 
based on nonlinear integrals.  

9.2   Nonlinear Multiregression Based on the Choquet 
Integral 

We still consider n+1 attributes nxxx ,,, 21 L  and y in a database shown 
in the previous section. The linear multiregression model (9.1) works 
well only when the interaction among the contributions from predictive 
attributes towards the target can be ignored. However, in many real 
systems, such an interaction is significant. We have seen from Chapter 4 
that the interaction among the contributions from predictive attributes 

nxxx ,,, 21 L  towards the target y can be described by a signed efficiency 
measure µ:P (X)→ ),( ∞−∞  and, therefore, the aggregation tool should 
be a nonlinear integral, such as the Choquet integral, with respect to µ. 
Thus, a new nonlinear multiregression model now is expressed as  

 

∫ +++= ),0( )()C( 2σµ Ndbfacy ,           (9.5) 

 
where c is a constant, both a  and b  are real-valued functions defined 
on },,,{ 21 nxxxX L= , f is an observation of nxxx ,,, 21 L , µ is a signed 
efficiency measure, and ),0( 2σN  is a normally distributed random 
perturbation with expectation 0 and variance 2σ . Functions a and b can 
be expressed as vectors or n-tupes, i.e., ), ,,( 21 naaaa L=  and 

), ,,( 21 nbbbb L= . They should satisfy the following constraints:  
 

0min
1

=
≤≤ ini

a ; 

 

1max
1

=
≤≤

ini
b . 
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Under these constraints, of course, we have 0≥ia  and 11 ≤≤− ib  for 
ni ,,2,1 L= . In the Choquet integral, integrand )( bfa +  is called a 

linear core of the integral, where shifting vector a is used to balance the 
phases, i.e., the starting point of each predictive attribute to make 
interaction with the other predictive attributes, while scaling vector b is 
used to balance the measuring units of each predictive attribute. These 
two vectors are necessary in the multiregression since the various 
predictive attributes may have different measurement systems (such as 
the Celsius degree and the Fahrenheit degree of the temperature) and 
may have various dimensions (such as the length and the weight) in the 
database. All elements in these two vectors are unknown and should be 
optimally determined in a learning procedure with the other unknown 
parameters based on the given data set.  

Thus, in this multiregression model, the regression coefficients are 
constant c, all elements of vectors a  and b , and )(Aµ  for every       
∈A P    (X)−{∅}. Totally,  there  are  22212221 −+=−+−+ nn nn    

independent unknown parameters. So, the data size l should be much 
larger than 222 −+ nn . Unlike the linear multiregression discussed in 
Section 9.1, this regression model now is not linear with respect to the 
regression coefficients since a  (or b ) and µ  have a form of product 
and, therefore, these regression coefficients cannot be optimally 
determined by using only an algebraic method. We have to ask for some 
soft computing technique, such as the genetic algorithm, to obtain an 
approximate numerical solution. Fortunately, we may still partially use 
an algebraic method to reduce the complexity of the genetic algorithm, 
that is, once the parameters a  and b  have been created in the genetic 
algorithm, the other parameters c and µ  may be optimally determined 
by using the least square method based on the above-mentioned data. As 
for 2σ , similar to the linear regression, it may be estimated by the 
regression residual 
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j
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The relevant algorithm is presented as follows. 
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A. Preparations 

(1) For given n, express positive integer k in binary digits as bit string 
11 kkk nn ⋅⋅⋅−  for every 12, ,2,1 −= nk L . 

(2) Use kµ      to denote )(Aµ  where U 1| }{==
iki ixA , 12, ,2,1 −= nk L . 

B. Part 1 

Use the least square method to determine c, 1µ , L,2µ , 12 −nµ  when 
the values of all elements of a  and b  are specified in the genetic 
algorithm given in Part 2. 

 
(1) Construct the )12( +× nl  augmented matrix Z = [zjk] as follows. 
 

10 =jz , 

   




 −=>+−+

= ==

 otherwise                                                     ,0

12or  0  isit  if     ),(max)(min
01

n
jiiikjiiik

jk

kfbafba
z ii , 

 
for 12, ,2,1 −= nk L ; lj , ,2,1 L=  and jj yz n =2 . 

(2) Find the least square solution of the system of linear equations 
having above augmented matrix for unknown variables c, 

1221 ,,,
−nµµµ L . 

(3) Calculate the regression residual error 2σ̂  by 
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C. Part 2 (main algorithm) 

Use a genetic algorithm to optimize the values of vectors a  and b . 
 

(1) Input integers n, l, and the data. 
(2) Choose a large prime p as the seed for the random number 

generator, which generates random numbers obeying the uniform 
distribution on unit interval [0, 1) . Set the value for each parameter 
listed in the following. 

 
λ: The bit length of each gene, i.e., λ bits are used for 

expressing each gene. It depends on the required 
precision of the results. e.g., λ=10 means that the 
precision is almost 310− . Its default is 10. 

s: The population size. It should be a large positive even 
integer. Its default is 200. 

α and β: The probabilities used in a random switch to control the 
choice of genetic operators for producing offspring 
from selected parents. They should satisfy the condition 
that 0≥α , 0≥β , and 1≤+ βα . Their defaults are 
0.2 and 0.5 respectively. 

ε and δ: Small positive numbers used in the stopping controller. 
Their defaults are 610−  and 1010−  respectively. 

w: The limit number of generations that have not 
significant progression successively. Its default is 10. 

(3) Calculate  

∑
=

−
−

=
l

j
jy yy

l 1

22 )(
1

1σ̂ , 

where  

∑
=

=
l

j
jy

l
y

1

1 . 

 
(4) Randomly create the initial population that consists of s 

chromosomes. Each chromosome consists of 2n genes, denoted by 
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nnnn gggggg 22121 , ,,,, ,, LL ++ . The first n of them represent 
vector a, while the next n represent vector b. Each gene consists of 
λ bits and represents a real number in )1,0[ . Initialize counter GC 
by 0, counter WT by 0, and SE by 2ˆ yσ . 

(5) Decode each chromosome to get vectors a  and b  by the 
following formulae: 

))(1)(1(
)(

gmg
gmga

i

i
i −−

−
= , 

)(
12

gM
gb in

i
−

= + , 

 
for ni , ,2,1 L= , where knk ggm ≤≤= 1min)(  and 

|12|max)( 1 −= +≤≤ knnk ggM . 
(6) For each chromosome in the population, through algorithm Part 1, 

use a  and b  obtained above and the data to determine the 
corresponding optimal values of c  and µ , and find the residual 

2σ̂ . 
(7) The residual error of the q-th chromosome in the current population 

is denoted by 2ˆqσ . Let  
 

2
1

2 ˆmin)ˆ( qsqm σσ ≤≤=  and )}ˆ(ˆ|{ 22 σσ mqQ q == . 

 
Erasing the record saved for the last generation if any, save 

)ˆ( 2σm  and a, b, c, µ of q-th chromosomes for all Qq∈  in the 
current population. Display GC, WT, and )ˆ( 2σm . 

(8) If 22 ˆ)ˆ( ym σεσ < , then go to (16); otherwise, take the next step. 
(9) If 22 ˆ)ˆ( ymSE σδσ <− , then WTWT ⇒+1  and take the next step;  

otherwise, WT⇒0  and go to (11). 
(10) If wWT > , then go to (16); otherwise, take the next step.  
(11) The relative goodness of the q-th chromosome in the current 

population is defined by 
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2

2

ˆ
)ˆ(

q
q

mG
σ
σ

= , sq , ,2,1 L= ,  if 0)ˆ( 2 >σm . 

 
(12) Let  

∑
=

= s

q
q

q
q

G

G
p

1

, sq , ,2,1 L= . 

 
(13) According to the probability distribution }, ,2,1|{ sqpq L=  

(using a random switch), select two different chromosomes in the 
current population as the parents. Randomly select one operator 
among the three-bit mutation (with probability α ), the two-point 
crossover (with probability β ), and one of the equally likely 48 
two-point realignments (with probability βα −−1 ) to produce 
two new chromosomes as the offspring. 

(14) Repeat step (13) for s/2 times totally to get s new chromosomes. 
GCGC ⇒+1 . Save )ˆ( 2σm  in SE. 

(15) For each new chromosome, take steps (5) and (6) to find the 
corresponding values of a, b, c, µ, and 2σ̂ . Add these new 
chromosomes into the current population. According to the 
magnitude of 2σ̂ (the smaller the better), select s best 
chromosomes among these 2s chromosomes to form the new 
population. Then go to (7). 

(16) Check the sign of 12 −nµ  corresponding the q-th chromosome for 
all Qq∈ . In case  012 <

−nµ , replace c by ini ac n ≤≤−
+ 112 maxµ , 

then replace ia  by iini aa −≤≤1max  and switch the sign of vector 
b and set function µ such that 012 >

−nµ . Display p, s, λ, α, β, ε, δ, 
and w. After deleting any duplicates, display a, b, c, and µ of q-th 
chromosomes for all Qq∈ .  

(17) Stop. 
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9.3   A Nonlinear Multiregression Model Accommodating 
Both Categorical and Numerical Predictive Attributes 

Sometimes, we may find databases involving both numerical and 
categorical predictive attributes. Let },,,{ 21 nxxxX L=  be the set of all 
considered predictive attributes, in which mxxx ,,, 21 L  are numerical 
and nmm xxx ,,, 21 L++  are categorical where 11 −≤≤ nm . The set of all 
possible states of categorical attribute xi is denoted by 

  

},,,{ 21 iiNiii sssS L=  

 
and is called the range of ix , where iN  is the number of possible states 
of attribute ix  and is called the potential of ix , nmmi ,,2,1 L++= . 
In each iS , nmmi ,,2,1 L++= , each state iks , iNk ,,2,1 L= , may 
be or may not be a real number. The same as before, f  is a function 
defined on X. It has a real value at each attributes ix  for mi ,,2,1 L= , 
but has a value in iS  at attribute ix  for nmmi ,,2,1 L++= . Each  
fj , lj ,,2,1 L= , in the data set is an observation of such a function. In 
order to use the nonlinear multiregression model discussed in Section 9.2, 
we must numericalize attributes nm xx ,,1 L+ . Our numericalization 
strategy is, for each nmmi ,,2,1 L++= , optimally assigning a real 
value to each state iks , iNk ,,2,1 L= . The optimization is in the sense 
that, after replacing these states with corresponding real-valued 
assignments respectively, the regression  

 

∫ ++= µdbfacy  )()C(  

 
fits the data as well as possible. This optimization procedure takes place 
with optimizing regression coefficients together in a genetic algorithm 
that is similar to the one mentioned in the previous section. Thus, for 
each iks , we use a gene to represent it and align all of them in the 
chromosome. The corresponding value of this gene is denoted by ikd  
that is the value we want to assign to iks . For a fixed i , different values 

ikd  indicate the different influences of iks  to the target attribute, and 
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they should be regularized when being used as the value of function f  
at attribute ix  to calculate the integral of f  to avoid the 
indeterminacy of coefficients nbbb , ,, 21 L . The regularization is made 
as follows: 
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ik

ik
ik

d

dd
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*  

 
for nmmi ,,2,1 L++= . In comparison with the model for pure 
numerical attributes given in Section 9.2, now the number of unknown 
parameters is increased. In the current model, each chromosome consists 
of 
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genes ( n2  genes for a  and b , and iN  genes for each attribute ix , 

nmmi ,,2,1 L++= ), and there are 
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independent unknown parameters to be determined from data by 
minimizing the error 
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Of course, using this model require that the data size must be much 
larger than the number of the independent unknown parameters. 

An improved model can be also established by replacing a 
one-dimensional value optimally assigned to each state iks with an 

)1( −iN -dimensional value. A successful example using this improved 
model can be found in [Hui and Wang 2005]. 

9.4   Advanced Consideration on the Multiregression 
Involving Nonlinear Integrals 

Using some various types of nonlinear integrals with various types of 
integrands as the aggregation tool, we may develop more multiregression 
models to handle data set to obtain valuable information on the relation 
between one attribute and the others. Some of them are briefly shown in 
the following. 

9.4.1   Nonlinear multiregressions based on the Choquet 
integral with quadratic core 

The multiregression model (9.5) is nonlinear with respect to the 
regression parameters. It can capture only the linear interaction among 
the contributions from predictive attributes towards the target. In some 
real-world problems, the above-mentioned interaction may not be linear. 
In this case, we may try to use quadratic core in the Choquet integral. 
Thus, the multiregression model (9.5) is changed to be  

 

∫ ++++= ),0( )()C( 22 σµ Nddfbfacy ,         (9.6) 

 
where vectors a, b, d, constant c, and signed efficiency measure, µ , are 
unknown regression coefficients satisfying 0min1 =≤≤ ini a  and 

1max1 =≤≤ ini b . Similar to the way shown in Section 9.2, based on given 
data set (8.10), the values of these parameters can be optimally 
determined via a combination of algebraic method and genetic algorithm.  
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The multiregression model (9.6), which has a quadratic core in the 
Choquet integral, is a real generalization of model (9.5). The new model 
has more unknown parameters. So the program needs longer running 
time. 

9.4.2   Nonlinear multiregressions based on the Choquet 
integral involving unknown periodic variation 

Assume that the data set (8.10) is recorded according to the time 
uniformly. If there is a periodic affection by the time to the target, we 
may add an artificial predictive attribute, 1+nx , in the multiregression 
model (9.5) to capture it. 

Thus, a new column consists of  
 

)]1(2cos[)( 11, d
t

jxff njnj +
−

== ++ π , lj ,,2,1 L= , 

 
where t  is the period and d  is the phase, is added into the data set 
(8.10) as the )1( +n -th column. Both t  and d  are unknown and they 
will be optimally determined from data with the other unknown 
regression coefficients together.  

Now, let }{ 1+∪=′ nxXX . The interaction among the contributions 
from predictive attributes towards the objective attribute is described by 
a signed efficiency measure defined on the power set of X ′ . The 
multiregression model has still a form as (9.5), but now 

), ,,( 121 += naaaa L  and ), ,,( 121 += nbbbb L  are (n+1)-vectors. They 
should satisfy the following constraints  

 

0min
11

=
+≤≤ ini

a  

and  

1max
11

=
+≤≤

ini
b  

 
as well. 
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After all regression coefficients have been optimally determined via a 
combination of algebraic method and genetic algorithm, once a new 
observation of n original predictive attributes is recorded as 

))(,),(),(( 21 nxfxfxf L at time t′ , we may add  
 

)]1(2cos[)( 1 d
t

txf n +
−′

=+ π  

 
to obtain a function f on X ′  and then calculate 

 

∫ ++= µdbfacy  )()C(   

 
as the predicted value of objective attribute Y.  

9.4.3   Nonlinear multiregressions based on upper and lower 
integrals 

In multiregression model (9.5), the aggregation is performed by the 
Choquet integral. From Chapter 5, we know that the Choquet integral is 
just one of the nonlinear integrals and it has the maximal coordination 
manner. Usually, people cannot know what coordination manner among 
predictive attributes exactly exists in a given real regression problem. 
That is to say, there is no sufficient reason to choose the Choquet integral 
as the aggregation tool in the regression. Thus, a new idea is to use the 
upper and the lower integrals, which are also discussed in Chapter 5, to 
dominate any possible nonlinear integral if the coordination manner is 
unknown. Then, regarding any real number as a special interval number, 
an interval-valued multiregression model can be established as follows: 

 

),0(])()U(,)()L[( 2σµµ NdbfadbfacY ++++= ∫∫ , 

 
where regression coefficients a, b, c, and µ have the same meaning as in 
model (9.5) but with a little different restriction 0min1 =≤≤ ini a , 
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0min1 ≥≤≤ ini b , and 1max1 =≤≤ ini b . Based on given data set (8.10) that 
should now be restricted to be all nonnegative, these unknown 
parameters can be optimally determined by minimizing the total squared 
error 

∑
=

+=
l

ij
jj eee )( 2

2
2
1

2 , 

where  
 







+−−+−−

++∈−
=

∫∫
∫∫

otherwise   ))()U(,)()L(min(

])()U(,)()L[( if          0
1

µµ

µµ

dbfacydbfacy

dbfadbfacy
e

jjjj

jjj
j

 
and 

∫∫ +−+= µµ dbfadbfae jjj )()L()()U(2 . 

 
Error e1j describes the random error while error e2j describes the 
uncertainty carried by the signed efficiency measure µ for the j-th 
observation.  

After determining all regression coefficients, once a new observation 
f is available, the prediction for the objective attribute Y is an interval 
number 

∫∫ ++++= ])()U(,)()L([ˆ µµ dbfacdbfacY . 
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Chapter 10 

Classifications Based on Nonlinear 

Integrals 

In Section 9.3, we allow the predictive attributes to be either numerical 
or categorical, but required the objective attribute (the target) to be only 
numerical. Instead, if we allow the objective attribute to be categorical, 
then it becomes a classification problem discussed in the following 
sections. In this case, the predictive attributes are called the feature 
attributes, while the objective attribute is called the classifying attribute. 
The number of possible states to the classifying attribute is just the 
number of classes in the classification problem. Let the number of the 
states of the classifying attribute be m. Then the corresponding 
classification is called m-classification. It is easy to see that any 
m-classification problem can be separated as )1( −m  2-classification 
problems. So, in this chapter, we only discuss the 2-classification 
problems, unless a special statement is given.  

The classification is an essential component of pattern recognition 
problem. It is, the same as the multiregression, one of the major 
techniques used in data mining. 

10.1   Classification by an Integral Projection 

Now we consider a classical 2-classification problem and express it via 
an abstract integral, the Lebesgue integral, which is discussed in Section 
5.3.  

Let a complete data set  
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1x  2x  L nx  Y   

11f  12f  L nf1  1y
 

 

21f  22f  L nf2  2y  (10.1) 

M  M   M  M    

1lf  2lf  L nlf  ly   
 
be available, where nxxx ,,, 21 L  are feature attributes, Y is the 
classifying attribute, and l is the number of samples in the data set. The 
set of all feature attributes, },,,{ 21 nxxxX L= , is considered as the 
universal set. The range of feature attributes is called the feature space. It 
is a subset of n-dimensional Euclidean space. Unlike the multiregression 
problem, now Y is categorical and has only two possible states, denoted 
by 1s  and 2s . Set },{ 21 ssS =  is called the state set of attribute Y. 
Each row fj1,  fj2 , L , fjn ( lj ,,2,1 L= ) in the data set is a sample of the 
feature attributes and is a real-valued function on X; while yj is the 
corresponding state that indicates a specified class. A 2-classification 
problem is, based on the given data set, to find a classification model that 
divides the feature space into 2 disjoint pieces. Each of them corresponds 
to a class. Then once a new sample of the feature attributes is available, 
we may use the model to determine to which class the sample belongs. 
The classification model is usually called a classifier. 

The simplest classification model is linear, that is, the two pieces of 
the feature space corresponding to two classes is divided by an 
( 1−n )-dimensional       hyper-plane       that   can    be         expressed    by     a    linear 
equation of n variables x1, x2, L , xn: 

 

cxaxaxa nn =+++ L2211                (10.2) 

 
in the n-dimensional Euclidean space. In expression (10.2), ia , 

ni , ,2,1 L= , and c are unknown parameters that we want to determine 
based on the given data. This ( 1−n )-dimensional hyper-plane is called 
the classifying boundary. Essentially, a linear classification model is just 
a linear projection nnxaxaxay +++= L2211  from the n-dimensional 
feature space onto a one-dimensional real line, on which a point c is 
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selected as the critical value for optimally separating the projections of 
the two-class samples in the data set. Point c corresponds to the 
classifying boundary. In fact, the projection of the whole 
( 1−n )-dimensional classifying boundary onto the one-dimensional real 
line is just the critical point c. In most linear models, the criterion of the 
optimization is to minimize the misclassification rate when a nonempty 
subset of the data set is used as the training set. In this case, there are 
infinitely many optimal classifying boundaries generally and, usually, 
they are close to each other. Sometimes, the optimization criterion can 
also be formed by a certain function of the distance from sample points 
to the classifying boundary in the feature space. The values of the 
parameters ai, ni , ,2,1 L= , and c corresponding to one of the optimal 
classifyingboundaries can be calculated via an algebraic and analytical 
method precisely or be found via a numerical method approximately. 
Based on the found classifying boundary, once a new sample, i.e., a new 
observation of the feature attributes, ))(,),(),(( 21 nxfxfxf L  is 
available, we may conclude that this sample belongs to the first or the 
second class according to whether inequality 

 

cxfaxfaxfa nn ≤+++ )()()( 2211 L            (10.3) 

 
holds or not. 

Inequality (10.3) can be rewritten in terms of the classical Lebesgue 
integral as follows. 

 

∫ ≤ cdf µ , 

 
where f is a real-valued function defined on X and µ is an additive 
measure on measurable space (X, P (X)) satisfying ii ax =})({µ  for 

ni , ,2,1 L= . 
 
Example 10.1 Let },{ 21 xxX = . There are 14 samples shown in Table 
10.1 for ),( 21 xx  with their corresponding classes. Based on this 
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training data, one of the optimal classifying boundaries may be the 
straight line 4.12 21 =+ xx . It separates the data very well with 
misclassification rate zero. If a new sample (0.3, 0.7) is obtained, we 
may immediately conclude that this sample belongs to class 2 since 

4.17.17.023.0 >=×+ . This is shown in Figure 10.1. In this example, in 
fact, there are infinitely many classifying boundaries that can separate 
the given data with zero misclassification rate. For instance, straight line 

41.199.199.0 21 =+ xx  is also one of the optimal solutions of this linear 
classification problem. This classifying boundary is very close to the first 
one. 

 
Table 10.1 Data for linear classification in Example 10.1. 

 
x1 x2 class x1 x2 class x1 x2 class 
0.9 0.2 1 0.8 0.2 1 0.3 0.6 2 
0.5 0.4 1 0.7 0.3 1 0.9 0.3 2 
0.2 0.5 1 0.1 0.6 1 0.1 0.7 2 
0.1 0.2 1 0.6 0.6 2 0.5 0.8 2 
0.6 0.3 1 0.5 0.5 2    

 
 

 
Fig. 10.1  The training data and one optimal classifying boundaries x1+2x2 =1.4 

with a new sample (0.3, 0.7) in Example 10.1. 
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Similar to the multiregression problems, using the above-mentioned 
linear classification model needs a basic assumption that the interaction 
among the contributions from feature attributes towards the classification 
can be ignored. Unfortunately, in many real-world classification 
problems, the samples in the data are not linearly separatable, that is, the 
optimal classifying boundary is not approximately linear, since the 
above-mentioned interaction cannot be ignored. In this case, similar to 
the multiregression, we should adopt a nonlinear integral, such as the 
Choquet integral with respect to a signed efficiency measure µ , which 
describes the above-mentioned interaction, to express the classifying 
boundary. Such a nonlinear classification model is discussed in the 
remaining part of this chapter. 

10.2   Nonlinear Classification by Weighted Choquet 
Integrals 

If the interaction among the contributions from the feature attributes 
towards the classification cannot be ignored, then a signed efficiency 
measure should be used and, therefore, a relative nonlinear integral 
should be involved in the classifier, where the nonadditivity of the signed 
efficiency measure describes the interaction.  

The following Example illustrates the interaction existing in 
nonlinear classification. 
 
Example 10.2 A mail box is assumed to be large enough, but its slot is 
only 5 inches long. Thus, envelops are classified into two classes 
according to their size as follows.  

 
(1) small: Those can be inserted into the mail box;  
(2) large: Those cannot be inserted into the mail box. 

 
This means that, to a given envelop, if only its length or width is large, 

it is not really “large”; only when both the length and the width are large, 
it then is “large”. This shows a strong interaction between the 
contributions from the two dimensions of envelops towards the “size”. 
Due to the strong interaction, such a classification is not linear. In fact, a 
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good classifying boundary should be a segment of a broken line, but not 
a straight line as shown in Figure 10.2. In the discussion below, we can 
see that such a broken line can be exactly expressed as a contour of the 
function expressed by the Choquet integral. 

 
In Chapters 5, 6, and 9, we have seen that the Choquet integral with a 

signed efficiency measure is nonlinear with respect to its integrand and 
can be used as an aggregation tool in multiregression. Now let us see 
how the Choquet integral can be regarded as a projection from a 
high-dimensional Euclidean space onto a one-dimensional Euclidean 
space and can be used in nonlinear classification. To illustrate it easily, 
we consider only two feature attributes.  

Let 1x  and 2x  be two feature attributes. Denote },{ 21 xxX = . 
Furthermore, let :µ P     (X) ]1,0[→  be an efficiency measure and 

),(: ∞−∞→Xf  be a real valued function. The Choquet integral 
∫ µdf)C(  is a function of )( 1xf  and )( 2xf , or say, a functional of 

function f. For any specified constant c, the contour cdf =∫ µ)C(  is a 
broken line, but not a straight line if µ  is not additive. This can be seen 
in Example 10.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10.2 Interaction between length and width of envelops in Example 10.2. 
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Fig. 10.3 The contours of the Choquet integral in Example 10.3. 
 

 
Example 10.3 Let },{ 21 xxX =  and efficiency measure µ  have values 

2.0})({ 1 =xµ , 5.0})({ 2 =xµ , 1)( =Xµ , and 0)( =∅µ . Then the 
contours of the Choquet integral ∫ µdf)C(  on the plane are shown in 
Figure 10.3. 

 
From Example 10.3, we can see that the Choquet integral projects 

every point ))(),(( 21 xfxf  on the plane onto line L with the projection 
value ∫= µdfc )C( . Straight line L is formed by points satisfying 

)()( 21 xfxf = . It passes through the origin and has angle o45  with the 
x-axis. The projection is not along with straight lines, but with broken 
lines, that is, the projection directions on the two sides of line L are 
different. However, the projection directions on the same side of line L 
are parallel, as shown in Figure 10.4 if the same attributes and the 
efficiency measure in Example 10.3 are used.  

Thus, replacing the straight line used as the classifying boundary in 
linear classification, now each contour of the Choquet integral, 

cdf =∫ µ)C( , can be chosen as the classifying boundary of two classes. 

f (x2)

c = −0.5

c = −0.2

c = 0.2

c = 0.5 

0

1

1

L

c = 0 
f (x1) 
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Such a classifier is nonlinear. Similar to the roll being a linear function of 
the observations of feature attributes, the projection by the Choquet 
integral converts a high-dimensional classification problem into a 
one-dimensional classification problem. This means that, by using the 
Choquet integral, we just need to select an appropriate signed efficiency 
measure and an appropriate real value c on line L, and then can classify a 
new observation of feature attributes, f, to one class if cdf ≤∫ µ)C(  
and to another class if cdf >∫ µ)C( . This is also shown in Figure 10.4. 

In such a way, the classifying boundary in Example 10.2 for the small 
size and the large size of envelops can be expressed as 

5)C( =∫ µdf ,where signed efficiency measure µ  has values 
})({})({ 21 xx µµ =  0)( =∅= µ  and 1)( =Xµ . Of course, to form a 

classifier, the essential mission is to optimally determine the values of 
the signed efficiency measure and constant c based on given training data. 
It is discussed later in this section.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.4 The projection by the Choquet integral in Example 10.3. 
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From Figure 10.3, we can also see that the angle between two 
branches of each broken line is obtuse. In fact, when the value of µ  at a 
singleton of attribute is positive, then the angle between the 
corresponding branch of the broken line and line L is greater than o45 . It 
can be seen from Figure 10.2 that the angle between any branch of the 
broken line and line L is equal to o45  if and only if the value of µ  at 
the corresponding singleton of attribute is zero. Furthermore, if a signed 
efficiency measure µ  is considered with a negative value at a singleton 
of attribute, then the angle between the corresponding branch of the 
broken line and line L is less than o45 . An example is given in Example 
10.4 and illustrated in Figure 10.5. 
 
Example 10.4 Let },{ 21 xxX =  and signed efficiency measure µ  have 
values 2.0})({ 1 −=xµ , 5.0})({ 2 −=xµ , 1)( =Xµ , and 

0)( =∅µ .Then the contour of the Choquet integral ∫ µdf)C(  with 
value 6.0−=c  on the plane is shown in Figure 10.5. The angle between 
two branches of the broken line is acute. 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 10.5 A contour of the Choquet integral with respect to a signed efficiency measure in 

Example 10.4. 
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Fig. 10.6 Contours of the Choquet integral with respect to a subadditive efficiency 
measure in Example 10.5. 

 
 
In Figures 10.2 to 10.5, all broken lines are concave towards the right 

and up direction, i.e., the positive direction on axis L. This is due to the 
superadditivity of signed efficiency measure µ . If µ  is subadditive, 
then the contours of the Choquet integral are concave towards left and 
down direction, i.e., the negative direction on axis L. This is shown in 
Example 10.5 and illustrated in Figure 10.6. 
 
Example 10.5 Let },{ 21 xxX =  and signed efficiency measure µ  has 
values 8.0})({ 1 =xµ , 6.0})({ 2 =xµ , 1)( =Xµ , and 0)( =∅µ . µ  is 
subadditive. Then the contours of the Choquet integral ∫ µdf)C(  with 
value 2.0−=c  and 2.0=c  on the plane are shown in Figure 10.6. 
These broken lines are concave towards left and down direction. 

 
In the above examples, signed efficiency measure µ  is used to 

describe the interaction between the contributions from attributes 1x  
and 2x  towards the target, the classification. This interaction is 
considered based on “one unit of 1x  with one unit of 2x ”. However, to 

c = −0.2

f (x2)

c = 0.2

0
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a given real problem, people do not know what the actual units, based on 
which the interaction of 1x  and 2x  is expressed, are adopted. Hence, it 
is necessary to use weights at the front of the integrand of the Choquet 
integral to balance the units, unless the units are naturally concord in 
some special problem such as the workers’ products in Example 5.21. 
The weights, of course, are unknown generally and will be optimally 
determined in data mining problems.  

Thus, the weighted Choquet integral should have a form of 
∫ µdbf)C( , where ]1,1[: −→Xb  is the weights. It balances the scaling 

of various attributes. The geometric meaning of the weights is to adjust 
the direction of projection line L. Unlike the Choquet integral without the 
weights, now the projection line L is allowed to be any straight line 
passing through the origin. An example of the weighted Choquet integral 
with some contour is given in Example 10.6 and illustrated in Figure 
10.7. 

 
Example 10.6 Let },{ 21 xxX = , weights b have values 1)( 11 == xbb  
and 5.0)( 22 −== xbb , and signed efficiency measure µ  have values 

1.0})({ 1 =xµ , 6.0})({ 2 =xµ , 1)( =Xµ , and 0)( =∅µ . µ  is 
superadditive. The projection line L, at which the contours change their 
direction, can be determined as follows. Since the contours change their 
direction at points ))(),(( 21 xfxf  satisfying )()( 2211 xfbxfb = , we 
may obtain the equation of line L as  

 

)()( 1
2

1
2 xf

b
bxf =  

 
directly when b2 0≠ , or as f(x1) 0=  when b2 0= . Hence, in this example, 
the slop of line L is −2. The contours of the Choquet integral ∫ µdbf)C(  
with value 2.0−=c  and 2.0=c  respectively on the plane are shown 
in Figure 10.7. These broken lines are concave towards down direction. 

 
From the above discussion, we may see that, replacing the linear 

function of the feature attributes, the weighted Choquet integral can be 
used for classification. The classical linear classifier is just a special case  
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Fig. 10.7 Projection line and contours of the weighted Choquet integral in Example 10.6. 
 

 
of the classifier based on the weighted Choquet integral. This new model 
is nonlinear, in which the unknown parameters are the weights and the 
values of the signed efficiency measure. When a training data set is 
available, we may use a soft computing technique, such as a genetic 
algorithm, to search for the optimal values of the parameters and then 
establish a classifier. The optimization criterion may be chosen as 
minimizing the misclassification rate. After the values of the unknown 
parameters, containing vector b, set function µ, and constant c, are 
optimally determined based on the training data, once a new observation 
f is available, we just need to calculate the value of ∫ µdbf)C( , and 
then classify f into one class if cdbf ≤∫ µ)C( , into another class if 

cdbf >∫ µ)C( . 
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10.3   An Example of Nonlinear Classification in a 
Three-Dimensional Sample Space 

The following is an example of using the weighted Choquet integral for 
classification in a three-dimensional sample space. Though the involved 
set function is monotone, this restriction is not essential.  
 
Example 10.7 ([Xu et al 2003]) An artificial data set now is used to test 
the effectiveness, including the convergence and the running time, of the 
algorithm and the program. Regarding the values of monotone measure µ 
and weight function b as parameters, we preset them together with a 
value for the magnitude of the weighted Choquet integral as the 
classifying boundary, and then construct the training data possessing the 
form of )),(),(),(( 321 jjjj Yxfxfxf  with categorical 1CYj =  or 2C , 

lj ,,2,1 L= . Using these constructed training data, we run the program 
to check whether the preset values of the parameters and the classifying 
boundary can be recovered approximately with a low misclassification 
rate. The following is the detailed procedure for constructing the training 
data. 

There are three feature attributes, two classes, and 200 records in the 
data set, that is, },,{ 321 xxxX = , },{ 21 CCC = , and 200=l . 

 
(1) Preset the values of normalized monotone measure µ and weight 

function b by assigning 1.0})({ 1 =xµ , 2.0})({ 2 =xµ , 
6.0}),({ 21 =xxµ , 05.0})({ 3 =xµ , 8.0}),({ 31 =xxµ , 
9.0}),({ 32 =xxµ , 1.01 =b , 3.02 =b , and 6.03 =b . 

(2) Use a random number generator with the uniform distribution on 
)1,0[  to create a sequence of the values of feature attributes, 
)( ixf  for i = 1, 2, 3, independently. Each ))(),(),(( 321 xfxfxff =  

is the left part of a record. 
(3) For each ))(),(),(( 321 xfxfxff = , calculate the corresponding 

value of the weighted Choquet integral with respect to µ: 
 

∫= µdbfY )C(ˆ , 
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where µ and b are given in (1). 
(4) Create a random number, ξ, with the uniform distribution. Take 

0.08 as the preset classification boundary. In case 08.0ˆ ≤Y , if 
0018.0/)05.0ˆ( 2−−≤ Yeξ , then assign class C1 to the right part of the 

record; otherwise, abandon this record. While in case 08.0ˆ >Y , if 
0032.0/)12.0ˆ( 2−−≤ Yeξ , then, assign class C2 to the right part of the 

record; otherwise, abandon this record. 
(5) Collect the first 80 records with class C1 and the first 120 records 

with class C2 in the sequence of records to form the sample data.  
 
In Step (4), random number ξ is used to construct a random switch 

and the normal distributions )03.0 ,05.0( 2N  and )04.0 ,12.0( 2N  are 
used for controlling the distribution of the data in classes C1 and C2 
respectively. In fact, the probability density of )03.0 ,05.0( 2N  is 

 

2

2

03.02
)05.0(

1 03.02
1)( ×

−
−

×
=

t

etp
π

, 

 
and the probability density of )04.0 ,12.0( 2N  is  

 

2

2

04.02
)12.0(

2 04.02
1)( ×

−
−

×
=

t

etp
π

. 

 
Inequality 0018.0/)05.0ˆ( 2−−≤ Yeξ  means that )ˆ(203.0 1 Yp⋅≤ πξ . 
Similarly, Inequality 0032.0/)12.0ˆ( 2−−≤ Yeξ  means that )ˆ(204.0 2 Yp⋅≤ πξ . 
Thus, the remaining data in C1 have a right truncated unimodal 
distribution with mode 0.05, while those in C2 have a left truncated 
unimodal distribution with mode 0.12. For both of them, the truncating 
point is 0.08. The entire sample data are listed in Table 10.2. 
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Table 10.2 Artificial training data in Example 10.7. 
 

No. f1 f2 f3 Class

1 0.001648 0.061432 0.303497 C1 

2 0.647797 0.342316 0.060577 C1 

3 0.581604 0.059906 0.809631 C1 

4 0.328979 0.151184 0.850067 C1 

5 0.517639 0.209778 0.404083 C1 

6 0.149719 0.112335 0.727692 C1 

7 0.419647 0.104828 0.659882 C1 

8 0.461670 0.132233 0.529663 C1 

9 0.581879 0.339691 0.115265 C1 

10 0.122192 0.008789 0.257477 C1 

11 0.372955 0.061401 0.098785 C1 

12 0.382751 0.148621 0.882111 C1 

13 0.037994 0.623016 0.071930 C1 

14 0.211914 0.182770 0.075897 C1 

15 0.304382 0.105347 0.886597 C1 

16 0.473602 0.307281 0.124573 C1 

17 0.439056 0.024261 0.440338 C1 

18 0.378296 0.058411 0.727631 C1 

19 0.617828 0.136444 0.404449 C1 

20 0.126465 0.270142 0.034119 C1 

21 0.097778 0.592224 0.027618 C1 

22 0.449707 0.147278 0.723419 C1 

23 0.988495 0.292572 0.102325 C1 

24 0.184052 0.285339 0.086853 C1 

25 0.028931 0.155975 0.116486 C1 

26 0.117859 0.119293 0.569458 C1 

27 0.166626 0.404388 0.027344 C1 

28 0.523834 0.107117 0.574585 C1 

29 0.564758 0.217438 0.108917 C1 
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30 0.802551 0.125397 0.077576 C1 

31 0.668335 0.107056 0.251007 C1 

32 0.191589 0.977539 0.008331 C1 

33 0.116821 0.036713 0.201721 C1 

34 0.221222 0.478790 0.107666 C1 

35 0.392151 0.021454 0.819183 C1 

36 0.039001 0.099060 0.707642 C1 

37 0.102264 0.169525 0.826904 C1 

38 0.200653 0.059357 0.244843 C1 

39 0.044403 0.135010 0.757813 C1 

40 0.182373 0.155670 0.595337 C1 

41 0.193451 0.497986 0.107544 C1 

42 0.490753 0.101624 0.757355 C1 

43 0.464813 0.198517 0.011169 C1 

44 0.722382 0.332397 0.081055 C1 

45 0.419800 0.047302 0.729675 C1 

46 0.412628 0.217896 0.110535 C1 

47 0.409851 0.061707 0.613770 C1 

48 0.169891 0.024048 0.821594 C1 

49 0.266144 0.057281 0.363220 C1 

50 0.338989 0.126190 0.932922 C1 

51 0.841187 0.217224 0.070190 C1 

52 0.624512 0.034515 0.633820 C1 

53 0.726349 0.190857 0.328186 C1 

54 0.000305 0.165833 0.114258 C1 

55 0.963348 0.098694 0.088104 C1 

56 0.273499 0.012939 0.852173 C1 

57 0.815430 0.061737 0.105927 C1 

58 0.680023 0.095703 0.075867 C1 

59 0.119324 0.034668 0.122925 C1 

60 0.232697 0.951843 0.015808 C1 

61 0.099854 0.254822 0.090729 C1 
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62 0.128143 0.092590 0.194061 C1 

63 0.884338 0.474182 0.052155 C1 

64 0.157898 0.316803 0.008850 C1 

65 0.752625 0.025055 0.085144 C1 

66 0.558441 0.029999 0.181854 C1 

67 0.726807 0.041962 0.665619 C1 

68 0.246704 0.221497 0.296570 C1 

69 0.913483 0.375244 0.062500 C1 

70 0.155670 0.202271 0.121826 C1 

71 0.205597 0.631683 0.035675 C1 

72 0.135254 0.056976 0.718323 C1 

73 0.207214 0.400482 0.107391 C1 

74 0.093140 0.113251 0.580200 C1 

75 0.934906 0.153015 0.085785 C1 

76 0.111206 0.181915 0.838623 C1 

77 0.462616 0.131317 0.362183 C1 

78 0.144043 0.181641 0.189270 C1 

79 0.097687 0.415833 0.087921 C1 

80 0.330933 0.047821 0.374481 C1 

81 0.001862 0.531677 0.464325 C2 

82 0.473663 0.198853 0.920166 C2 

83 0.846161 0.620850 0.147034 C2 

84 0.764221 0.543243 0.367493 C2 

85 0.078735 0.280304 0.868378 C2 

86 0.682800 0.402771 0.433380 C2 

87 0.431519 0.339752 0.715729 C2 

88 0.989838 0.227264 0.998505 C2 

89 0.090240 0.302216 0.281830 C2 

90 0.536987 0.378998 0.411957 C2 

91 0.422363 0.727570 0.859802 C2 

92 0.327423 0.299530 0.425232 C2 

93 0.607300 0.406372 0.269135 C2 
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94 0.990082 0.410522 0.660370 C2 

95 0.098785 0.461487 0.317657 C2 

96 0.950226 0.734314 0.098022 C2 

97 0.915192 0.183929 0.201874 C2 

98 0.128204 0.930908 0.195618 C2 

99 0.050323 0.995270 0.279694 C2 

100 0.941650 0.084015 0.990997 C2 

101 0.891846 0.050201 0.771179 C2 

102 0.630951 0.493530 0.449402 C2 

103 0.296295 0.367554 0.359619 C2 

104 0.047760 0.350159 0.490356 C2 

105 0.460999 0.449219 0.909332 C2 

106 0.960876 0.03418 0.914154 C2 

107 0.891266 0.483276 0.641266 C2 

108 0.697449 0.490234 0.338043 C2 

109 0.727905 0.497223 0.547302 C2 

110 0.940948 0.084869 0.660492 C2 

111 0.249176 0.491241 0.733459 C2 

112 0.847290 0.489594 0.149536 C2 

113 0.822815 0.697052 0.150482 C2 

114 0.320435 0.660126 0.157043 C2 

115 0.289978 0.431396 0.868164 C2 

116 0.655975 0.601501 0.361847 C2 

117 0.974792 0.313782 0.213165 C2 

118 0.478058 0.329315 0.671051 C2 

119 0.963257 0.599457 0.503632 C2 

120 0.858795 0.501892 0.624878 C2 

121 0.011414 0.770996 0.297058 C2 

122 0.809235 0.749512 0.407593 C2 

123 0.652588 0.705353 0.115295 C2 

124 0.273987 0.618317 0.734528 C2 

125 0.907318 0.205109 0.359558 C2 



256         Nonlinear Integrals and Their Applications in Data Mining 

126 0.699860 0.111511 0.948425 C2 

127 0.291290 0.770294 0.457947 C2 

128 0.931915 0.136658 0.843903 C2 

129 0.647522 0.655518 0.385864 C2 

130 0.493195 0.604858 0.303436 C2 

131 0.436737 0.262299 0.964539 C2 

132 0.975586 0.380249 0.940430 C2 

133 0.002869 0.918579 0.160156 C2 

134 0.866180 0.758240 0.166809 C2 

135 0.936798 0.302490 0.863312 C2 

136 0.305878 0.621948 0.847595 C2 

137 0.630493 0.436707 0.885223 C2 

138 0.446014 0.399323 0.178009 C2 

139 0.743713 0.650726 0.152466 C2 

140 0.145752 0.607574 0.361450 C2 

141 0.031372 0.437317 0.357635 C2 

142 0.502228 0.622620 0.135010 C2 

143 0.926453 0.066620 0.936218 C2 

144 0.263367 0.315155 0.770172 C2 

145 0.768768 0.405579 0.212433 C2 

146 0.029358 0.949219 0.140411 C2 

147 0.850098 0.269318 0.835114 C2 

148 0.945038 0.141418 0.906036 C2 

149 0.877502 0.026184 0.990540 C2 

150 0.484436 0.606445 0.673431 C2 

151 0.190460 0.320526 0.853210 C2 

152 0.788513 0.460297 0.292267 C2 

153 0.919617 0.449951 0.238831 C2 

154 0.658691 0.292084 0.755005 C2 

155 0.263184 0.73587 0.251648 C2 

156 0.591827 0.543274 0.294861 C2 

157 0.713135 0.170441 0.600342 C2 
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158 0.632996 0.328278 0.689148 C2 

159 0.043579 0.444183 0.768951 C2 

160 0.325195 0.266998 0.494843 C2 

161 0.188660 0.263062 0.940857 C2 

162 0.854584 0.709229 0.180634 C2 

163 0.715637 0.809875 0.016541 C2 

164 0.835144 0.383942 0.842346 C2 

165 0.931824 0.386749 0.115662 C2 

166 0.320648 0.550262 0.449554 C2 

167 0.332031 0.666809 0.245636 C2 

168 0.554504 0.407043 0.280457 C2 

169 0.916504 0.429352 0.173584 C2 

170 0.324127 0.374847 0.779175 C2 

171 0.758820 0.184753 0.980347 C2 

172 0.263794 0.544067 0.877136 C2 

173 0.992462 0.444916 0.666656 C2 

174 0.376190 0.683777 0.258362 C2 

175 0.445465 0.632935 0.240784 C2 

176 0.469543 0.926727 0.237762 C2 

177 0.096771 0.918213 0.319611 C2 

178 0.170715 0.420593 0.366394 C2 

179 0.225739 0.399689 0.131470 C2 

180 0.872681 0.096710 0.945313 C2 

181 0.837341 0.936005 0.225616 C2 

182 0.938477 0.269531 0.542755 C2 

183 0.910889 0.466827 0.980377 C2 

184 0.223846 0.311432 0.449524 C2 

185 0.656830 0.562958 0.791687 C2 

186 0.298309 0.557129 0.291565 C2 

187 0.756744 0.717316 0.171234 C2 

188 0.535095 0.373199 0.183929 C2 

189 0.133331 0.419434 0.770355 C2 
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190 0.507507 0.645264 0.327209 C2 

191 0.819916 0.283051 0.665192 C2 

192 0.410004 0.290100 0.759583 C2 

193 0.414276 0.930817 0.105347 C2 

194 0.519745 0.869232 0.035309 C2 

195 0.066223 0.818970 0.709808 C2 

196 0.177429 0.393524 0.935272 C2 

197 0.388336 0.701660 0.278198 C2 

198 0.052399 0.445374 0.505188 C2 

199 0.323578 0.315887 0.788910 C2 

200 0.567902 0.682190 0.120605 C2 

 
Setting s = 200 as the population size and running the program with 

the whole sample data (such a test is called reclassification), after a 
number (thousands, depending on the seed chosen for generating random 
numbers) of individuals were produced, a resulting weighted Choquet 
integral projection and a classification with misclassification rate 0 are 
obtained. The values of the monotone measure and the weights in the 
weighted Choquet integral projection are rather close to their preset 
values, that is to say, the algorithm retrieves the values of parameters 
very well. To be convenient to compare them, all preset and retrieved 
values of parameters are listed in Table 10.3, where 1µ , 2µ , 12µ , 3µ , 

13µ , 23µ , and 123µ  represent µ({x1}), µ({x2}), µ({x1, x2}), µ({x3}), 
µ({x1, x3}), µ({x2, x3}), and )(Xµ  respectively. In the result, the centers 
of classes C1 and C2 are numericalized as 0.059467 and 0.125833 
respectively with a classifying boundary 0.08333, which is close to the 
preset value 0.08. 

From three different view directions, Figures 10.8(a)-(f) illustrate the 
distribution of the data in a three-dimensional feature space, [0, 1)3. The 
red balls are of class C1, while the green balls are of class C2. Figures 
10.8(a), 10.8(c), and 10.8(e) show the data set without the classifying 
boundary, while Figures 10.8(b), 10.8(d), and 10.8(f) are added with the 
resulting classifying boundary. The classifying boundary is a broken 
plane with six pieces that divides the feature space into two partsone  
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Table 10.3 The preset and retrieved values of monotone measure µ and weights b.     

 

Parameters Preset Recovered 

µ1 0.1 0.015625 

µ2 0.2 0.209961 

µ12 0.6 0.606445 

µ3 0.05 0.057617 

µ13 0.8 0.718750 

µ23 0.9 0.982422 

µ123 1.0 1.0 

b1 0.1 0.113074 

b2 0.3 0.296820 

b3 0.6 0.590106 

 

contains all red balls and another contains all green balls. These pieces of 
the broken plane have a common vertex (0.737024, 0.280771, 0.141226) 
on axis L that passes through the origin and has equations 

332211 fbfbfb == . The weighted Choquet integral ∫= µdbfY )C(ˆ  
projects each point from the feature space onto axis L along one of the 
six pieces of a broken plane that is parallel to the broken plane shown in 
Figure 10.8. 

The distribution of the resulting (final) projection Ŷ on axis L is 
presented by a histogram in Figure 10.9(c). Also, Figures 10.9(a) and 
10.9(b) present a histogram of the distribution of Ŷ  under the weighted 
Choquet integral projection with deferent parameters’ values at the 
beginning and in the middle of the pursuit process performed by the 
genetic algorithm respectively. In these figures, several small black 
triangles indicate the numerical center of classes on axis L, while the 
yellow bars illustrate the location of classifying boundaries on L. From 
Figure 10.9, we can see how the weighted Choquet integral projection 
works and how the classifying boundary divides the feature space to 
classify the data. 
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Fig. 10.8 View classification in Example 10.7 from three different directions. 
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(a) Beginning: 43 misclassified points with µ1 = 0.450484, µ2 = 0.740959, µ12 = 
0.872860, µ3 = 0.574908, µ13 = 0.672933, µ23 = 0.793390, b1 = 0.472160, b2 = 0.314903, 
and b3 = 0.212937. 

 
(b) Middle: 6 misclassified points with µ1 = 0.237305, µ2 = 0.284180, µ12 = 0.571289, µ3 
= 0.061523, µ13 = 0.909180, µ23 = 0.653320, b1 = 0.116135, b2 = 0.358156, and b3 = 
0.525709. 

 

 
(c) Final: 0 misclassified point with µ1 = 0.015625, µ2 = 0.209961, µ12 = 0.606445, µ3 = 
0.057617, µ13 = 0.718750, µ23 = 0.982422, b1 = 0.113074, b2 = 0.296820, and b3 = 
0.590106 

Fig. 10.9 The distribution of the projection Ŷ  on axis L based on the training data set in 
Example 10.7. 
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Fig. 10.10 The convergence of the genetic algorithm in Example 10.7 with different 
population sizes. 

 
The convergence of the genetic algorithm depends on the choice of 

population size s used in the algorithm. A detailed investigate on the 
effect of s is made based on a set of experiments of running the program 
for three different choices of the population size (s = 100, 200, and 500) 
with ten trails (ten different seeds) each. Figure 10.10 illustrates the 
average convergence rate under these three different choices of the 
population size. The horizontal axis indicates the number of individuals 
created up to some moment during the running of the program. The 
vertical axis indicates the average best misclassification rate of these ten 
trails at that moment. Here the best misclassification rate is that of the 
best-so-far individual with the minimum misclassification rate. From 
Figure 10.10, we can see that all three curves for s = 100, 200, and 500 
are decreasing. The curve for s = 100 decreases fastest at the beginning 
of the optimization process. However, there is a serious premature 
convergence (the population converging to identity before the 
misclassification rate is minimized) in this case and the average 
misclassification rate does not even converge to close to zero. In fact, 
five out of ten trails converged prematurely. The curve for s = 500 
decreases too slowly though no premature among ten trails is found. 
Choosing s = 200 seems to be the best among these three choices. It 
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decreases rather fast and there is only one premature convergence among 
the ten trails. Generally, too small a population size will lead to serious 
premature convergence in the optimization process, while too large a 
population size slows down the convergence speed and prolongs the 
running time of the program unnecessarily.  

More examples of classification based on the weighted Choquet 
integral for real-world data sets can also be found in [Xu et al 2003]. 

In general, when the weighted Choquet integral is adopted in the 
classifier, the nonadditivity of signed efficiency measure µ  describes 
the interaction among the contributions from feature attributes towards 
the classification. Thus, the classifying boundary is not an 

)1( −n -dimensional hyper-plane generally, but an )1( −n -dimensional 
broken hyper-plane with !n  pieces. The parameters, vector b and 
constant c as well as signed efficiency measure µ , can be optimally 
determined by the training samples in the given data set via a soft 
computing technique such as the genetic algorithm approximately. Such 
a nonlinear classification model is a real generalization of the classical 
linear classification model. After determining the parameters, b, c, and 
µ  based on the training data, if a new individual f is obtained, we only 
need to calculate the value of ∫= µdbffy  )C()( . Then, we can classify f 
into one of the two classes according to whether cfy ≤)( .   

10.4   The Uniqueness Problem of the Classification by the 
Choquet Integral with a Linear Core 

A natural idea to generalize the classification model presented in Section 
10.2 is to replace the weighted integrand of the Choquet integral with a 
linear core similar to the nonlinear multiregression model discussed in 
Section 9.2, that is, the classifying boundary is identified by equation 

 

∫ =+ cdbfa µ )()C( , 

 
where a, b, c, f, and µ have the same meaning shown before. 
Unfortunately, it will violate the uniqueness of the Choquet integral 
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expression of the classifying boundary. Though this does not affect the 
effectiveness of the classification, explaining the importance of the 
various attributes making contributions towards the classification 
becomes difficult.       
 
Example 10.8 ([Zhang et al 2009]) An artificial data set now is used to 
show the problem on the uniqueness of the Choquet integral expression 
with linear core in the classification model. There are two feature 
attributes, two classes, and 26 records in the data set, that is, 

},{ 21 xxX = , S = {I , II} and 26=l . The data are listed in Table 10.4 
and shown in Figure 10.11 by white dots for class I and black dots for 
class II respectively, where 1f  and 2f  are two coordinates on the 
plane.  

Geometrically, the classification by the Choquet integral with linear 
core can be described as follows. There is a projection axis L  located 
by equation 222111 fbafba +=+ . For each sample point ),( 21 ff , along 
with the directions presented by the two branches of each contour of the 
Choquet integral, is projected onto axis L  as a point with 
corresponding value ∫ + µdbfa  )()C( . Thus, the 2-dimensional 
classification problem is converted to be a one-dimensional classification 
problem on L  and, therefore, can be solved by using only one critical 
value, c , as the boundary of two classes on line L . The two classes in 
the given data on the plane can be actually well separated (with 
misclassification rate 0) by a contour of the Choquet integral with linear 
core. The contour is a broken line indicated, for example, by  

 

9
80

9
20

12 +−= ff  when  222111 fbafba +≤+   

and  

20
3

40
12 +−= ff  when 222111 fbafba +>+ .  

 
The vertex of the broken line is (1, 20/3), which is on axis L1 

possessing equation 
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3
10

3
10

12 += ff .  

 
These are shown in Figure 10.11. The corresponding values of 
parameters in the Choquet integral are a = (1, 0), b = (1, 3/10), µ (∅) = 0, 
µ ({x1}) = 4/5, µ ({x2}) = 3/5, µ (X) = 1, and c = 2.  

However, for the same boundary, it is not difficult to find other 
values of parameters in the expression of Choquet integral’s contour. For 
example, a = (0, 0), b = (1, 3/20), µ(∅) = 0, µ ({x1}) = 2/3, µ ({x2}) = 3/4, 
µ (X) = 1, and c = 1. The corresponding contour of the Choquet integral 
with these parameters’ values coincides with the previous one, though 
the projection axis L2 is different from L1 and their projection directions 
are different in some area. These are also illustrated in Figure 10.11. 

 
 
 

 
 

Fig. 10.11 Different projections share the same classifying boundary in Example 11.8. 
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Table 10.4 Data and their projections in Example 10.8. 
 

Given data Projected to line  L1 Projected to line  L2 

1jf  2jf  class 
1

111

1 j

j

f

fba

+=

+
 

2

222

10
3

j

j

f

fba

=

+
2=c  

1

111

j

j

f

fba

=

+  
2

222

20
3

j

j

f

fba

=

+
1=c  

1/5 6 I 6/5 9/5 24/25 1/5 9/10 29/40 
1/4 3 I 5/4 9/10 59/50 1/4 9/20 2/5 
1/3 5 I 4/3 3/2 43/30 1/3 3/4 31/48 
1/2 2 I 3/2 6/10 33/25 1/2 3/10 13/30 
1/2 6 I 3/2 9/5 42/25 1/2 9/10 8/10 
3/5 7 I 5/8 21/10 19/10 3/5 21/20 15/16 
2/3 2 I 5/3 3/5 109/75 2/3 3/10 49/90 
1 2 I 2 2/10 83/55 1 3/10 23/30 
1 3 I 2 9/10 89/50 1 9/20 49/60 
1 4 I 2 6/5 46/25 1 3/5 13/15 
1 10 II 2 3 13/5 1 3/2 11/8 
1/5 9 II 6/5 27/10 21/10 1/5 27/20 17/16 
4/5 8 II 9/5 12/5 54/25 4/5 6/5 11/10 
21/20 15/2 II 41/20 9/4 211/100 21/20 9/8 177/160 
11/10 17/3 II 21/10 17/10 101/50 11/10 17/20 61/10 
6/5 21/5 II 11/5 63/50 251/50 6/5 63/100 101/100 
6/5 9 II 11/5 27/10 5/2 6/5 27/20 21/16 
3/2 1 II 5/2 3/10 103/50 3/2 3/20 21/20 
2 16 II 3 24/5 102/25 2 12/5 23/10 
2 20 II 3 6 24/5 2 3 11/4 
3 9 II 4 27/10 187/50 3 9/20 43/20 
3 10 II 4 3 19/5 3 3/2 5/2 
3 11 II 4 33/10 193/50 3 33/20 51/20 
4 4 II 5 6/5 106/25 4 3/5 43/15 
4 8 II 5 12/5 86/25 4 6/5 46/15 
4 16 II 5 24/5 56/5 4 12/5 49/10 

 
From Example 10.8, we may see that the classifying boundary can be 

expressed by more than one (in fact, infinitely many) different Choquet 
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integrals, which have different values of the signed efficiency measure, 
different values of the parameters a  and b , or different critical value 
c. 

10.5   Advanced Consideration on the Nonlinear 
Classification Involving the Choquet Integral 

Based on the basic classification model involving the Choquet integral 
discussed in Section 10.2, there are several improvements or 
generalizations. Some of them are briefly shown in the following. 

10.5.1   Classification by the Choquet integral with the widest 
gap between classes 

We have seen the uniqueness problem on the expression of the Choquet 
integral with a linear core in the classification. To avoid the trouble, an 
additional optimization criterion should be added to the original model 
discussed in the previous sections. One of the possible additional 
optimization criteria may be chosen as follows. 

For a given data set (10.1), by using the model of the weighted 
Choquet integral, assume that the minimal misclassification rate is η. 
Each optimal solution (a classifier) with the minimal misclassification 
rate η is denoted as ),,,( µcba . Let Q be the set of all optimal 
solutions, i.e., 

 
Q } rate icationmisclassif has ),,,(|),,,{( ηµµ cbacba=  

}|),,,({ )()()()()( Ttcbae ttttt ∈== µ ,  

 
where T is a certain index set. For each )(te , find the interval ),( )(

2
)(

1
tt cc  

such that ∈),,,( )()()( ttt cba µ Q for every ),( )(
2

)(
1

tt ccc∈ . Let 
)(max arg )(

1
)(
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tt
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as the final unique optimal solution. This solution can be understood as 
the middle boundary of the widest gap between two classes. 
 

10.5.2   Classification by cross-oriented projection pursuit 

From Section 10.4, we may see that, even the optimal broken line as a 
classifying boundary of two classes has been found, expressing it as a 
contour of the Choquet integral with a linear core still has infinitely 
many different ways with respective projection axis L. This suggests us 
to restrict the location of the axis. Setting a  by the zero vector, i.e., 
reducing the linear core to weighted integrand as we have done in 
Section 10.2 is just one of the possible ways. In this way, the projection 
axis is restricted to pass through the origin, of course, pass through the 
vertex of the broken line as well. Thus, an alternative way for reducing 
the number of optimal solutions is to fix the projection axis by two 
vertices of broken lines that are expressed as the contours of two 
different Choquet integrals, i.e., let the two Choquet integrals share one 
common projection axis. This method is called the cross-oriented 
projection pursuit based on the Choquet integral.  

Let data set (10.1) be given. Based on the data set, now the classifier 
is a mapping M : 2RRn →  with a boundary that separates 2R  to form 
a partition {S1, S2} of 2R .  

To reflect the complex interaction among the feature attributes 
towards the classification, two signed efficiency measures, µ and ν, 
defined on the power set of },,,{ 21 nxxxX L=  are used for measuring 
the strength of contributions from each individual feature attribute as 
well as the strength of the joint contributions from each possible 
combination of feature attributes in two different points of view. 
Regarding each observation of the feature attributes as a function f 
defined on X, the Choquet integrals of )( baf +  with respect to µ or ν, 
in symbol ∫ + µdbaf )(  and ∫ + νdbaf )( , are used to project f from the 
feature space to R respectively, where ), ,,( 21 naaaa L=  and 

), ,,( 21 nbbbb L= are n-dimensional vectors satisfying 0min =ii a , and 
1||max =ii b , for ni , ,2,1 L= . Thus, ordered pair  
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( ∫ + µdbaf )( , ∫ + νdbaf )( ) 

 
forms mapping M from nR  to 2R . Vector a  and b  are called 
oriented coefficients of the projection axis. The partition of 2R  is 
formed by ],(),( 211 ccS −∞×∞=  and 1

2
2 SRS −= , where 1c  and 2c  

are boundary points on the projection axis L for the classification. That is, 
the corresponding regions of the classes in the sample space are: one 
class is indicated by  

 

1)( cdbaf >+∫ µ  and 2)( cdbaf ≤+∫ ν ;  

 
while another by  
 

1)( cdbaf ≤+∫ µ  or 2)( cdbaf >+∫ ν .  

 
In this model, the values of signed efficiency measures µ  and v  

(except 1)()( == XX νµ ), vectors a  and b , and numbers c1 and c2 
are unknown. All of them should be determined based on given data of 
the feature attributes and the classifying attribute optimally, that is, such 
that the misclassification rate for the given training data is minimized. 

The learning procedure of the determination of these unknown 
parameters is a cross-oriented projection pursuit. It may be performed via 
a two-layer adaptive genetic algorithm. In the first layer of the algorithm, 
each pair of c1 and c2 is a chromosome. This layer is devoted to 
determine the boundary points c1 and c2 optimally when the values of 
signed efficiency measures µ , v , and vectors a , b  are generated as 
a chromosome in the second layer. While the second layer is used to 
determine the values of signed efficiency measures µ , v  and vectors 
a , b  optimally based on the optimized values of c1 and c2 to each 
chromosome.  
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Some typical distributions of two-class data set that can be well 
classified by the cross-oriented projection pursuit based on the Choquet 
integral are shown in Figures 10.12-13. 

10.5.3   Classification by the Choquet integral with quadratic 
core 

When the linear core is replaced by a quadratic core, the classifier based 
on the Choquet integral is more powerful. Such a classifier can capture 
the quadratic interaction among the contributions from feature attributes 
towards the classification. The classifying boundary has a form of 

∫ =++ ddcfbfa µ)()C( 2 , where ), ,,( 21 naaaa L= , ), ,,( 21 nbbbb L= , 
), ,,( 21 ncccc L=  are n-vectors satisfying 

 
0min =ii a , and 1||max =ii b  for ni , ,2,1 L= , 

 
µ is a signed efficiency measure with 1)( =Xµ , d is a constant. All of 
them are unknown parameters, whose values should be optimally 
determined via a learning procedure based on data set (10.1).  

Some typical two-class data distributions that can be well classified 
by a classifier based on the Choquet integral with quadratic core can be 
found in [Liu and Wang 2005]. 
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Fig. 10.12  Two-class two-dimensional data set that can be well classified by 

cross-oriented projection pursuit. 
 

 
Fig. 10.13 Two-class three-dimensional data set that can be well classified by 

cross-oriented projection pursuit. 
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Chapter 11 

Data Mining with Fuzzy Data 

The Choquet integral discussed in Chapter 5 only supports real-valued 
integrand. It means that both the integrand and the integration result of 
the Choquet integral are real-valued. Thus, the data mining based on 
Choquet integral described in Chapters 8 and 9 can only handle the 
problems concerning crisp real numbers. However, in many databases, 
some attributes may not be numerical, but categorical, or may have 
linguistic words (or fuzzy numbers directly) as their values. Thus, to 
extend the advantages of Choquet integral to fuzzy domain such that it 
can manage fuzzy information, the original Choquet integral needs to be 
generalized (or say, fuzzified) such that it can be used to deal with fuzzy 
or linguistic data.  

There is more than one way to fuzzify the Choquet integral. For a 
given signed efficiency measure whose values are crisp real numbers, 
when the integrand is allowed to be fuzzy-valued, the integration result 
of its Choquet integral may be defined as either a crisp real number or a 
fuzzy number. The former is called the Defuzzified Choquet Integral with 
Fuzzy-valued Integrand (DCIFI) which is named by its defuzzified 
(real-valued) integration result, while the latter is called the Fuzzified 
Choquet Integral with Fuzzy-valued Integrand (FCIFI) due to its 
fuzzy-valued integration result. 

Both fuzzifications of the Choquet integral are applicable to different 
problems in the data mining area. The non-fuzzy integral result in the 
DCIFI facilitates to solve the classification or clustering problems where 
crisp boundaries are pursued. On the other hand, the FCIFI is more 
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suitable to the regression problems where the objective attribute is also 
fuzzy-valued.   

11.1   Defuzzified Choquet Integral with Fuzzy-Valued 
Integrand (DCIFI)  

Definition 11.1 Let →Xf :~
NF be a fuzzy-valued function defined on a 

finite universal set },,,{= 21 nxxxX L  and µ  be a signed efficiency 
measure defined on P (X), the power set of X , where NF is the set of all 
fuzzy numbers. The defuzzified Choquet integral with fuzzy-valued 
integrand (DCIFI) of f~  is defined as  

 

∫ ∫∫ ∞−

∞
+−=

0

0
)~()C()]()~([)C( ~
αµαµµµ αα dFdXFdf , 

 
where αF~  is the α-level set of the fuzzy-valued function f~ . 

 
Obviously, the way to compute the value of the Choquet integral 

given in Section 5.4 cannot be directly applied for computing the DCIFI 
since the range of the fuzzy-valued function is not full-ordered, and 
therefore, the values of function f~  at variant attributes cannot be 
rearranged in a nondecreasing order. However, we still can derive a 
calculation scheme of the DCIFI according to the fuzzy set theory and 
relevant properties of the Choquet integral. Actually, from the definition 
of the DCIFI, we can see that the calculation of the DCIFI can be 
rendered down into two subproblems: 

 
(1) How to get αF~  for a fuzzy-valued function f~  ? 
(2) How to get the value of )~( αµ F  ? 

 
The following subsections aim to answer these questions respectively. 
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11.1.1   The α-level set of a fuzzy-valued function 

Let F (X) be the class of all fuzzy subsets of X , the fuzzy power set of 
X . Any fuzzy subset of X , A~ , can be expressed as 

 

,,,,~

2

2

1

1









=
n

n

x
d

x
d

x
dA L  

 
where id  is the degree of the membership of A~  at ix , ni ,,2,1 L= .  

Let f~  be a fuzzy-valued function defined on X . Function f~  can 
be expressed as )...,,,( 21 nmmm , where im  is the membership function 
of )(~

ixf  at ix , ni ,,2,1 L= . 

 

Definition 11.2  For any given ),( ∞−∞∈α , the α-level set of a 
fuzzy-valued function =f~ )...,,,( 21 nmmm , denoted by αF~ , is a fuzzy 
subset of X , whose membership function 

αFm~  has a degree of 
membership  

∫
∫
∞

∞−

∞

=
dttm

dttm
xm

i

i
iF

)(

)(
)(~

α

α
              (11.1) 

 
at attribute ix  if ∫ ≠∞

∞− 0)( dttmi , ni ,,2,1 L= . When )(~
ixf  is a crisp 

number, then ∫ =∞
∞− 0)( dttmi . In this case, the degree of membership 

at ix , denoted by )(~ iF xm
α

, is equal to 1 if α≥)(~
ixf , or 0 if 

α<)(~
ixf . 

 
Example 11.1 Let },,{= 321 xxxX  and let a fuzzy-valued function f~  
assign each element of X  a trapezoidal fuzzy number, denoted by four 
parameters ]  [ rcbl aaaa , that is, ]52025101[)(~

1 .  .  .  .xf = , 

]0.50.5540.4[)(~
2     .  xf = , and ]540.4530.3[)(~

3 .    .  xf = . Then, we 
have 
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Fig. 11.1  The α-level set of a fuzzy-valued function in Example 11.1. 

 









=
321

0.1,0.1,25.0~
xxx

Fα    when 0.2=α , 

while   









=
321

75.0,0.1,0.0~
xxx

Fα    when 5.3=α , 

 
as shown in Fig. 11.1. 

11.1.2   The Choquet extension of µ  

We can derive the signed efficiency measure µ~  defined on F     (X) based 
on the signed efficiency measure µ  defined on P (X).  
 
Definition 11.3  Let µ  be a signed efficiency measure defined on   
P    (X), the signed efficiency measure µ~  is a set function mapping from 
the fuzzy power set of X , F (X), to ),( ∞−∞ . For any fuzzy set   
∈A~ F (X) with membership function ]1,0[:)(~ →XxmA , we have  

f~  

1x  2x 3x X

)(~
1xf  

)(~
2xf

)(~
3xf









=
321

5.3
75.0,0.1,0.0~

xxx
F









=
321

0.2
0.1,0.1,25.0~

xxx
F

5.3=α  

0.2=α  
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              ∫= µµ dmA A~)~(~ ,                 (11.2) 

 
where the integral is the Choquet integral with real-valued function, i.e., 
the membership function Am~  of A~ . 

 
Here, for any crisp subset ∈A P     (X), we have ∫ == )()(~ AdA A µµχµ , 

where 





∉
∈

=
Ax
Ax

xA  if    0
 if     1

)(χ  

 
is the characteristic function of A . Thus, µ~  coincides with µ  on   
P   (X), that is, µ~  is an extension of µ  from P     (X) onto F      (X) and 
called the Choquet extension of µ . 

For simplification, we use µ  to replace µ~  on F     (X) without any 
confusion in the following context. 
 
Example 11.2 Let },,{= 321 xxxX  and a signed efficiency measure µ  
be given as  

µµ =0 (∅) 0= ,  

1})({ 11 == xµµ ,  

1})({ 22 −== xµµ , 

3}),({ 213 == xxµµ ,  

2})({ 34 == xµµ ,  

1}),({ 315 −== xxµµ , 

4}),({ 326 == xxµµ ,  



   Data Mining with Fuzzy Data                    277 

5}),,({ 3217 == xxxµµ . 

For fuzzy set  
 









==
321

0.2
0.1,0.1,25.0~~

xxx
FA  and 









==
321

5.3
75.0,0.1,0.0~~
xxx

FB  

 
in Example 11.1, we have  
 

25.4
4)25.00.1(525.0

)]()([)(

)~(

61~2~71~

~0.2 0.2

=
⋅−+⋅=

⋅−+⋅=

= ∫
µµ

µµ

xmxmxm

dmF

AAA

F

 

and 
 

.75.2
)1()75.00.1(475.0

)]()([)(

)~(

23~2~63~

~5.3 5.3

=
−⋅−+⋅=

⋅−+⋅=

= ∫
µµ

µµ

xmxmxm

dmF

AAA

F

 

11.1.3   Calculation of DCIFI 

Obviously, it is rather difficult to express )~( αµ F  in an explicit form 
involving only fundamental functions of α , and by which, to compute 
the precise value of the DCIFI. However, we can numerically calculate it 
approximately. Before illustrating the algorithm, some concepts and 
properties are reviewed.  

The support set of a fuzzy number a~ , denoted by +0
~a , is defined by 

}0)({~ ~0 >=+ tmta a , which is a crisp subset of the domain of the 
membership function of a~ . We denote the left and the right terminals of 
the support set of a~  by la~  and ra~ , respectively. For example, a 
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trapezoidal fuzzy number ]52025101[~ .  .  .  .a =  has 0.1~ =la  and 
5.2~ =ra ; a normal fuzzy number b~  has −∞=lb~  and ∞=rb~ . 

A fuzzy-valued function f~  assigns each element ix  in the 
universal set a fuzzy number )(~

ixf , represented by its membership 
function )()(~ tm

ixf , ni ,,2,1 L= .  Now, we denote the left and the 
right terminals of the support set of f~ (xi) as f~ (xi)l and f~ (xi)r, 
respectively. 
 
Theorem 11.1 For a universal set X , let µ  be a signed efficiency 
measure on F     (X) and f~  be a fuzzy-valued function on X . Then,  

 

∫ ∫ ⋅+−= )()~(C)(~C)( Xqdqfdf µµµ , 

 
where q  is a crisp value and )~( qf −  is also a fuzzy-valued function 
with its values represented by qxf i −)(~ , ni ,,2,1 L= .  

 
Proof. Let qfg −=

~~ . Then g~  is also a fuzzy-valued function and its 
α-level set, αG~ , satisfies qFG += αα

~~  or, equivalently, αα FG q
~~

=− , for 
any real number α . Thus, denoting q−α  by β , we have 

 

.  )()~(C)(         

)(~C)(         
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Using Theorem 11.1, we can write 
 

,)()~(         

)()~(~C)(

0

0

∫

∫ ∫
−

∞

⋅+=

⋅+=

qr
XqdG

XqdGdf

µαµ

µαµµ

α

α
 

 
where αG~  is the α-level set of function qfg −=

~~ ,  
lini xfq )(~min1 ≤≤=  and rini xfr )(~max1 ≤≤= . 

Now, we can numerically calculate the approximate value of the 
DCIFI through the following algorithm. 

 
(1) Input attributes’ number n  in X , subintervals’ number K  

(with default value K=100) required in the approximate computing, 
function's values )(~

ixf  for ni ,,2,1 L= , and the values of the 
signed efficiency measure µj, 12,,2,1 −= nj L . 

(2) Find lini xfq )(~min1 ≤≤= , rini xfr )(~max1 ≤≤= . If −∞=q  or 
∞=r , then take lixf )(~  and rixf )(~  as the left and right terminal 

of εα =|)(~
ixf , ni ,,2,1 L= , respectively. Here, ε  is a very 

small positive real value defined by user with default value 310− . 
Then reset lini xfq )(~min1 ≤≤= ,  rini xfr )(~max1 ≤≤= , and set 

Kqr /)( −=δ . 
(3) Replace )(~

ixf  by qxf i −)(~ . 
(4) Initialize 0=α  and 2/12 −

= nS µ . 
(5) αδα ⇒+ . 
(6) Whether )( qr −>α ?  If yes,  

 

SqSS n ⇒⋅+
∆

−⋅
−12)

2
( µδ ,  

 
output S  as an approximate value of ∫ µdf~ , and stop; otherwise, 
continue. 

(7) Find )(~ iFi xmc
α

=  by Equation (11.1), ni ,,2,1 L= . 
(8) Regarding ),,,( 21 nccch L=  as a function on X , calculate 

∫=∆ µhdS  by scheme of calculation of classical Choquet integral 
with real-valued integrand. 
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(9) SSS ⇒∆+  and go to (5). 
 
We can see now, given a signed efficiency measure, the value of the 

DCIFI is a crisp real number. Though the information on the fuzziness is 
compressed, applying such an aggregation tool in data mining is usually 
more convenient than giving a fuzzy number.  
 
Example 11.3 Suppose that the evaluation of submitted papers is based 
on three criteria: originality, significance, and presentation. They are 
denoted by 1x , 2x , and 3x  respectively. The importance of each 
individual criterion and their joint importance are described by a signed 
efficiency measure, µ, defined on P (X), where },,{ 321 xxxX = . Also 
suppose that the values of µ are 2.01 =µ , 3.02 =µ , 8.03 =µ , 

1.04 =µ , 4.05 =µ , 4.06 =µ , and 17 =µ .  
The range of the evaluation to each criterion for submitted papers by 

a journal editor is in the interval I = [0, 5]. However, the reviewers, 
usually, are only required to rate the criteria by the following words: 
“bad”, “weak”, “fair”, “good”, and “excellent”. These are fuzzy concepts 
and can be described by fuzzy subsets of I, ba~ , wa~ , fa~ , ga~ , and ea~ , 
with membership functions  
 








∈−
∈

=
,otherwise                0

1.5](1, if         23
]1,0[ if                1

)( tt
t

tmb  

 











∈−
∈−
∈

=

,otherwise                 0
]5.2,2( if         25

)5.1,1[ if         22
]2,5.1[ if                 1

)(
tt
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t

tmw  
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









∈−
∈−
∈

=

,otherwise                 0
]5.3,3( if         27
)5.2,2[ if         42
]3,5.2[ if                 1

)(
tt
tt
t

tm f  

 











∈−
∈−
∈

=

,otherwise                 0
]5.4,4( if         29
)5.3,3[ if         62
]4,5.3[ if                 1

)(
tt
tt
t

tmg  

 
and 
 








∈−
∈

=
,otherwise                 0

)5.4,4[ if         82
]5,5.4[ if                 1

)( tt
t

tme  

 
respectively, then { ba~ , wa~ , fa~ , ga~ , ea~ } is a fuzzy partition of I. Here, 

ba~ , wa~ , fa~ , ga~ , and ea~  are trapezoidal fuzzy numbers  (see Figure 
3.5), and we can write ]1.5  1  0  0[~ =ba , ]5.2  2  1.5  1[~ =wa ,    

]3.5  3  5.2  2[~ =fa , ]4.5  4  5.3  3[~ =ga , and ]5  5  5.4  4[~ =ea . Now, a 
paper is evaluated as “excellent” for originality, “fair” for significance, 
and “weak” for presentation by a reviewer. This reviewer’s evaluation 
can be represented as a fuzzy-valued function  )~,~,~(~

wfe aaaf =  on 
},,{ 321 xxxX = . Thus, a global evaluation for the quality of the paper is 

given by the Choquet integral of f~  with respect to µ , ∫ µdf~C)( . 
Using the algorithm above, a rather precise approximate value of 

∫ µdf~C)(  can be obtained: 
 

76921.2~C)( ∫ ≈µdf    when 100=K , 
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22922.2~C)( ∫ ≈µdf    when 1000=K . 

 
For another paper evaluated as “bad” for originality, “good” for 
significance, and “excellent” for presentation, denoting )~,~,~(~

egb aaag = , 
we have 
 

96618.1~)C( ∫ ≈µdg    when 100=K , 

96611.1~)C( ∫ ≈µdg    when 1000=K .  

 
It means that the paper represented by function f~  is more suitable than 
the one represented by function g~  for publishing in the journal. 
 

Since the procedure of calculating the value of the Choquet integral 
with fuzzy integrand will be repeated for a large number in 
multiregression or classification problems, we should reduce its running 
time as much as possible. For most real problems in decision-making, the 
precision of the relevant results reaching three or four decimal digits is 
sufficient. So, this example also suggests us to use 100  as the default 
value of K  in the algorithm. 

In Example 11.3, all attributes have the same dimension. This is a 
rather special case in data analysis. Generally, the attributes may have 
variant dimensions. Thus, for a given function f~  on X , we should 
usually use fba ~

+  as the integrand in the Choquet integral to balance 
the scales of the variant dimensions, where both ),,,( 21 naaaa L=  and 

),,,( 21 nbbbb L=  are functions defined on X and their values are 
optimally determined from given data via genetic algorithms. 

11.2   Classification Model Based on the DCIFI 

In classification, an observation is denoted by an n-dimensional vector 
))(,),(),(( 21 nxfxfxf L , whose components )( ixf  are measurements 

of the feature attributes ix , ni ,,2,1 L= . We assume that there exist 
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m  groups or classes in the n-dimensional space, denoted by 
mCCC ,,, 21 L , and associated with each observation is a categorical 

attribute Y  that denotes the class or group membership. For example, if 
jY = , then the observation belongs to Cj , },,2,1{ mj L∈ . To design 

the classifier, we are usually given a set of training data with 
observations of known classes, represented as 

 

1x  2x  L nx  Y  
)( 11 xf  )( 21 xf L )(1 nxf 1y  

)( 12 xf  )( 22 xf L )(2 nxf 2y  

M  M   M  M  

)( 1xfl  )( 2xfl L )( nl xf ly  
 

The training data set is used to set up internal parameters of the classifier. 
Here, the positive integer l  is the number of samples in the training 
data set. Once a classifier has been devised, we may estimate the class 
belongingness for any new observation. 

11.2.1   Fuzzy data classification by the DCIFI  

When the measurements of feature attributes of an observation are 
heterogeneous fuzzy data, such as crisp data, fuzzy data, interval values, 
or linguistic variables, they are denoted by an n-dimensional fuzzy data 
vector ))(~,),(~),(~( 21 nxfxfxf L . Such an n-dimensional fuzzy data 
vector can be visualized as a fuzzy point, which is not a single point but a 
special fuzzy subset in the n-dimensional space. Each coordinate value of 
a fuzzy point is a fuzzy number. A typical 2-dimensional heterogeneous 
fuzzy data ))(~),(~( 21 xfxf  is shown in Fig. 11.2. It is depicted as a 
frustum of a prism with height as 1. It has two coordinates which are 
represented by two different trapezoidal fuzzy numbers with their 
membership functions shown on the )( 1tm - 1t  and the )( 2tm - 2t  planes 
in Fig. 11.2, respectively. 

Remember that the DCIFI takes a fuzzy-valued function as its 
integrand and gives a crisp value as its integration result. It can be 
regarded as a projection from the feature space onto the real axis. Under  
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Fig. 11.2 A typical 2-dimensional heterogeneous fuzzy data. 

 

such a scheme, any fuzzy point ))(~,),(~),(~( 21 nxfxfxf L , denoted 
simply by )~,,~,~( 21 nfff L  in the feature space, is regarded as a 
fuzzy-valued function f~  defined on },,,{ 21 nxxxX L= , and 
furthermore, projected onto a virtual variable, denoted by Ŷ , on the real 
axis through a DCIFI defined by  
 

             ∫= µdfY ~C)(ˆ .                   (11.3) 

 

Figure 11.3 illustrates the DCIFI projection of some heterogeneous 
fuzzy data in the 2-dimensional space. Here, all heterogeneous fuzzy data 
are distributed into two classes. Each class has three observations. Each 
observation is identified by its fuzzy-valued coordinates )(~

1xf  and 
)(~

2xf . By certain DCIFI projection, each observation has been 
projected onto a virtual point (denoted by the black dots in Fig. 11.3) on 
the real axis L . It is natural to assume that there exists a boundary in the 
2-dimensional space, on which each point can be projected onto an 
identical virtual point (denoted by the white dot in Fig. 11.3), called the 
virtual boundary, on the real axis by the same DCIFI projection. 
According to this assumption, a classification problem of n-dimensional 
heterogeneous fuzzy data can be simplified to that of one-dimensional 
real data. 

 

1t

2t)(tm

0 

1 
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Fig. 11.3 The DCIFI projection for 2-dimensional heterogeneous fuzzy data. 

 
 

Good performance of the DCIFI projection classifier is expected due 
to the use of the signed efficiency measure and the relevant nonlinear 
integral which can handle heterogeneous fuzzy data, since the 
nonadditivity of the signed efficiency measure reflects the importance of 
feature attributes, as well as their inherent interaction, toward the 
discrimination of the fuzzy points. In fact, the global contribution of 
several feature attributes to the decision of classification is not just the 
simple sum of the contributions of each feature to the decision. A 
combination of the feature attributes may have a mutually restraining or 
a complementary synergy effect on their contributions toward the 
classification decision. So, the signed efficiency measure defined on the 
power set of all feature attributes is a proper representation of the 
respective importance of the feature attributes and the interaction among 
them, and a relevant DCIFI is a good fusion tool to aggregate 
information in different forms coming from the feature attributes for the 
classification. 

DCIFI 
projection 

class1 class2 boundary

virtual
boundary

L

t1 

t2 

m(t) 
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11.2.2   GA-based adaptive classifier-learning algorithm via 
DCIFI projection pursuit  

Now, based on the DCIFI, we want to find an appropriate aggregation 
formula that projects the n-dimensional feature space onto the real axis, 
L , such that each fuzzy point )~,,~,~(~

21 nffff L=  becomes a value of 
the virtual variable that is optimal with respect to classification. In such a 
way, each classifying boundary is just a point on the real axis L . 

The classification task by the DCIFI projection classifier can be 
divided into two parts:  

 
(1) The DCIFI projection classifier depends on the signed efficiency 

measure µ , so how to determine the values of µ  is the first 
problem we are facing with. 

(2) Once the values of µ  are retrieved, the DCIFI projection 
classifier is established. To classify new data, boundaries on the 
real axis L  should be determined.  

 
The following two parts focus on the above two problems 

respectively. 

A.  Boundaries determination 
A DCIFI projection classifier is described by a signed efficiency measure 
µ . Once the values of µ  are given, the n-dimensional classification 
problem of heterogeneous fuzzy data is reduced to a one-dimensional 
classification problem of crisp data on the axis L  of the virtual variable. 
The m  classes of records in the original training data set are now 
projected to be m  classes on the projection axis L . We can still use 
symbol kC , mk ,,2,1 L= , to denote these classes. The center, kc , of 
each class kC  on L  is the medium of the values of the virtual 
variables corresponding to the points in class kC . The center kc , 
expressed as a real number, is a numericalization of class kC . After 
arranging },,2,1|{ mkck L= , and therefore, },,2,1|{ mkCk L= , in 
an increasing order as ),,,(

21 mkkk ccc L  and ),,,(
21 mkkk CCC L , where 

),,,( 21 mkkk L  is a permutation of },,2,1{ mL , we carry out a 
point-wise search for the best classifying boundary between each pair of 
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successive classes one by one under the criterion of minimizing the 
misclassification rate which is defined as the number of misclassified 
records (points) in the training set divided by data size l . The following 
algorithm is devoted to determining the boundaries of successive classes 
which have been rearranged according to the ascending order of their 
centers: 
 
(1) Initialize 1=i . 
(2) Find )(ˆ*

ikY , the farthest right (largest) point of 
ikC , and 

)(ˆ
1

*
+ikY , the farthest left (smallest) point of 

1+ikC . 
(3) If )(ˆ)(ˆ

1
**

+≤ ii kYkY  (as shown in Fig. 11.4(a)) 
 

  
2

))(ˆ)(ˆ( 1
**

++
= ii

i
kYkYb , 

 
where ib  is the boundary between class 

ikC  and 
1+ikC . 

(4) Else if )(ˆ)(ˆ
1

**
+> ii kYkY  (as shown in Fig. 11.4(b)) 

ib  is the average of the collection points which satisfy three 
conditions: 

 
(a) are members of class 

ikC  and 
1+ikC ; 

(b) are between )(ˆ*
ikY  and )(ˆ

1
*

+ikY ; and  
(c) have property “possessing the lowest number of misclassified 

points if being a classifying boundary”. 
 

(5) Check whether mi = , if not, ii ⇒+1 , and go to (2); if yes, go to 
(6). 

(6) End.  
 

Thus, 121 ,,, −mbbb L  are the best classification boundaries for the 
DCIFI projection classifier with respect to the given signed efficiency 
measure µ . The corresponding global misclassification rate is the sum 
of the numbers of misclassified points in these )1( −m  pairs of 
successive classes divided by l . 
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B.  GA-based adaptive classifier-learning algorithm 
In this part, we discuss the optimization of the signed efficiency measure 
µ  under the criterion of minimizing the corresponding global 
misclassification rate, and then obtain an optimal DCIFI projection 
classifier. The optimizing process is just a “pursuit” for searching an 
appropriate projection direction. It is performed by the GA-based 
adaptive classifier-learning algorithm (GACA). The optimization is also 
a data-driven process, where a training data set in the form of 

 

1x  2x L nx Y  
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~

lŶ  
 
is needed. Here, f~ ji denotes the fuzzy value of the i-th feature at the j-th 
observation and Ŷ j denotes the class tag of the j-th observation,  

,2,1=i  n,L ; lj ,,2,1 L= . 
In the GACA, each individual of chromosome represents a DCIFI 

projection which is identified by the values of a signed efficiency 
measure µ . Since real coding method is employed, each individual of 
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Fig. 11.4 Illustration of virtual projection axis L  when determining the boundary of a 

pair of successive classes 
ikC  and 

1+ikC : (a) when )(
ˆ

)(
ˆ

1*

*

+≤ ii kYkY ; (b) when 

* *

1

ˆ ˆ
( ) ( )i iY k Y k

+
> . 
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chromosome consists of )12( −n  genes. Each gene represents a real 
value between 0 and 1. The population in the GACA consists of s 
individuals of chromosome. The misclassification rate is adopted for 
estimating the fitness value of each individual of chromosome (i.e., the 
DCIFI projection). The probability of an individual of chromosome in 
the population being chosen as a parent to produce offspring depends on 
its fitness value. The optimization in the GACA is performed under the 
criterion of minimizing the misclassification rate. Fig. 11.5 shows the 
flow chart of the GACA. 

It starts off with an initialized population. Individuals of chromosome 
in the population are decoded into their corresponding signed efficiency 
measures to further determine their corresponding DCIFI projections. 
For a DCIFI projection, each observation in the training data set can be 
projected onto its virtual point on the real axis. According to the class 
tags provided by the training data, we can pursue the best virtual 
boundaries of the DCIFI projection being considered using the 
boundaries determination approach presented in Subsection 11.2.2-A. 
Then,  cooperated with the training set,    we can derive the misclassification 

 
 

 
Fig. 11.5 Flowchart of the GACA. 
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rate of the current DCIFI projection, which also represents the fitness 
value of the corresponding individual in the population. After that, a 
tournament selection is performed. Better individuals have more chance 
to produce offspring by some randomly chosen genetic operators. The 
newly created offspring update the population. This process repeats until 
we get zero misclassification rate or the generation number exceeds the 
preset maximum number of generations. 

To maintain the diversity of the searching space of our genetic 
algorithm, a special set of operations is used when the best fitness value 
remains unchanged for several consecutive generations (default value is 
20). At that time, original population is divided into three parts by 
ascending order on fitness values. The individuals of chromosome in the 
first part are kept, while those in the second part create new offspring by 
random mutation, and those in the third part are replaced by new 
randomly created individuals of chromosome. Then, the population is 
updated and the iteration is continued. 

After determining the signed efficiency measure µ  and the 
respective classification boundaries 121 ,,, −mbbb L  from the training 
data, any new observation of the feature attributes )~,,~,~(~

21 nffff L=  
can be classified by calculating its corresponding value of the virtual 
variable 

∫= µdfY ~C)(ˆ  

 
and checking its location relative to the classification boundaries in the 
order of 121 ,,, −mbbb L  one by one. If 1

ˆ bY ≤ , then f~  is classified into 
class 

1kC ; if ],(ˆ
1 jj bbY −∈ , then f~  is classified into class 

jkC , 
1,,3,2 −= mj L ; otherwise, f~  is classified into class 

mkC . 

11.2.3   Examples of the classification problems solved by the 
DCIFI projection classifier 

To evaluate the performance of the DCIFI projection classifier, a series 
of examples both on synthetic and real data sets have been conducted.  
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A.  Examples on synthetic data 

Two synthetic data sets, one containing 2-dimensional heterogeneous 
fuzzy data distributed in 3 classes, and the other containing 
3-dimensional heterogeneous fuzzy data distributed in 2 classes, are 
generated and used to verify the efficiency and the effectiveness of the 
DCIFI and the GACA. To evaluate the performance of the GACA on 
recovering the classifier parameters, the classifier parameters, including 
the values of the signed efficiency measure and the virtual boundaries, 
are preset. The preset DCIFI projection constructs normally distributed 
heterogeneous fuzzy data for each class which is separated by the preset 
virtual boundaries. Then, using the created training data sets, the GACA 
should recover the preset values of the parameters and obtain a low 
misclassification rate. The procedure to construct the synthetic training 
data sets is detailed as follows. 

Assume that the data set has n  feature attributes },,,{ 21 nxxx L , 
m  classes },,,{ 21 mCCC L , and l  records with lj records for class Cj, 

mj ,,2,1 L= . Here, ∑= =
m
j jll 1 . Each sample in the created data sets 

has the form of  
 

})),(~,),(~),(~{( 21 tagclassxfxfxf nL . 

 
The following algorithm creates the heterogeneous fuzzy data (with 
trapezoidal fuzzy number in each dimension) which are distributed in a 
unit hypercube in the n-dimensional space and classified into m classes. 

 
(1) Preset the values of the signed efficiency measure µ  by assigning 

1221 ,,,
−nµµµ L  and the virtual boundaries 121 ,,, −mbbb L . 

(2) Create the center of a fuzzy point in the n-dimensional space, 
represented as a vector ),,,( 21 nccc L . Each coordinate ic , 

ni ,,2,1 L= , of the center is a real number generated by a random 
number generator with the uniform distribution in )1,0[ . Create a 
fuzzy point ))(~,),(~),(~( 21 nxfxfxf L , where )(~

ixf  is a 
randomly generated trapezoidal fuzzy number with its support set 
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],[ iiii rcrc +− , ni ,,2,1 L= . Here, ir  is a random value between 
0.0 and 0.05. 

(3) For each observation ))(~,),(~),(~( 21 nxfxfxf L , calculate the 
corresponding value of the DCIFI, denoted by Ŷ , with respect to 
the preset µ . 

(4) Create a random number, )1,0[∈ξ , with the uniform distribution. 
In case 1

ˆ bY ≤ , if 
2
1

2
1 2/)ˆ( σξ aYe −−≤ , then assign class 1C  to the 

right part of record, otherwise, abandon this record. In case 
],(ˆ

1 jj bbY −∈ , if 
22 2/)ˆ( jjaYe σξ −−≤ , then assign class Cj to the right 

part of record, 1,,2,1 −= mj L ; otherwise, abandon this record. 
In case 1

ˆ
−> mbY , if 

22 2/)ˆ( mmaYe σξ −−≤ , then assign class mC  to 
the right part of record; otherwise, abandon this record. Here, the 
normal distribution ),( 2

jjaN σ  are used to control the distribution 
of data in class Cj , mj ,,2,1 L= . 

(5) Repeat step (2) to step (4) until lj records of class Cj, 
mj ,,2,1 L= , have been created. 

 
Example 11.4 Consider a classification problem of 2 feature attributes 
and 3 classes, that is, },{ 21 xxX = , },,{ 321 CCCC = . Totally 100 
records are provided in the training data set, where 20 records for 1C , 50 
records for 2C , and 30 records for 3C . The preset parameters to 
generate the training data are as follows: 1.0})({ 1 −=xµ , 2.0})({ 2 =xµ , 

0.1}),({ 21 =xxµ , 2.01 =b , and 6.02 =b . Each record in the training 
data set presents a fuzzy point in the 2-dimensional space. Here, the 
fuzzy point is described by a 2-tuple vector whose elements are 
trapezoidal fuzzy number represented by their membership functions. Fig. 
11.6 shows the sample data, where each frustum of a prism denotes a 
2-dimensional fuzzy point (with dashed contours for data of C1, solid 
contours for data of C2, and dash dotted contours for data of C3). Setting 

20=s  as the population size and running the GACA with the whole 
sample data, after 3 generations, zero misclassification rate is achieved, 
and we obtain a trained DCIFI projection classifier with the classifying 
boundaries (thick broken lines in Fig. 11.6). Here, the straight line 
starting from the origin shows the virtual real axis to which the 
2-dimensional heterogeneous fuzzy data are projected by the DCIFI. The 
values of the signed efficiency measure and boundaries in the retrieved 
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DCIFI projection classifier are rather close to the preset ones. That is to 
say, the GACA can retrieve the values of parameters well and perform 
the classification task successfully. The comparison of the preset and the 
retrieved values of parameters is listed in Table 11.1. 

 
Example 11.5 Consider a classification problem of 3 feature attributes 
and 2 classes, that is, },,{ 321 xxxX = , },{ 21 CCC = . 200 records are 
generated by the preset DCIFI parameters as: 1.0})({ 1 =xµ , 

2.0})({ 2 =xµ , 3.0}),({ 21 =xxµ , 05.0})({ 3 =xµ , 25.0}),({ 31 =xxµ , 
 

 
Fig. 11.6  The training data and the trained classifying boundaries in Example 11.4. 

 
Table 11.1  Preset and retrieved values of the signed efficiency measure and boundaries 

in Example 11.4. 
 

Parameters Preset Retrieved 

})({ 1xµ  -0.1 -0.105981 

})({ 2xµ  0.2 0.189793 

}),({ 21 xxµ  1.0 1.000000 

1b  0.2 0.201631 

2b  0.6 0.598042 



294         Nonlinear Integrals and Their Applications in Data Mining 

9.0}),({ 32 =xxµ , 0.1}),,({ 321 =xxxµ  and 23.01 =b , where 80 
records are for 1C  and 120 records are for 2C . Setting 30=s  as the 
population size and running the GACA with the whole sample data, after 
50 generations, we obtain the trained DCIFI projection classifier with 
misclassification rate 0. The values of the signed efficiency measure in 
the retrieved DCIFI projection are rather close to their corresponding 
preset values. This experiment also confirms that our GACA can retrieve 
the values of the classifier parameters accurately. The comparison of the 
preset and the retrieved values of parameters are listed in Table 11.2. Fig. 
11.7 illustrates the distribution of the training data and the classifying 
boundary in 3-dimensional feature space from two different viewing 
directions. The 3-dimensional fuzzy data are represented by cubes in the 
graph. The lengths on three dimensions of a cube denote the ranges of 
support sets of the membership functions of three feature attributes in 
each observation. The blue cubes are of class C1 , while the yellow cubes 
are of class C2 . The classifying boundary is a broken plane with six 
pieces that divide the feature space into two parts. These pieces of 
broken planes have a common vertex )239537.0,239537.0,239537.0(  
on the virtual axis L  (denoted by the black line in graph) that passes 
through the origin and point )1,1,1( . Fig. 11.7 also reveals the ability of 
the DCIFI projection classifier on classifying data which are separated by 
boundaries with irregular shape. 

 
Table 11.2  Preset and retrieved values of the signed efficiency measure and boundaries 

in Example 11.5. 
 

Parameters Preset Retrieved 

})({ 1xµ  0.10 0.105585 

})({ 2xµ  0.20 0.181064 

}),({ 21 xxµ  0.30 0.318546 

})({ 3xµ  0.05 0.053967 

}),({ 31 xxµ  0.25 0.246499 

}),({ 32 xxµ  0.90 0.907981 

}),,({ 321 xxxµ 1.00 1.000000 

1b  0.23 0.239537 
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Fig. 11.7 Artificial data and the classifying boundaries in Example 11.5  from two view 
directions. 
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B.  Application on emitters identification 

It is a high-priority problem in military operation to identify and track 
unique mobile transmitters for targeting. A powerful emitter 
identification function is necessary to warn of immediate threat with 
enough information to take evasive action. In military operation, such 
identification is accessed by Radio Frequency (RF), Pulse Width (PW), 
and Pulse Repetition Interval (PRI), of the collected pulse descriptor 
words. They form the feature attributes of an observation recognition 
problem, denoted by 1x , 2x , and 3x , respectively. The values of these 
features vary in interval ranges in accordance with a specific radar 
emitter. Shieh et al proposed a fuzzy-neuro network to identify the 
emitters in [Shieh et al 2002], where an interval activation function is 
applied so that the network can process interval data. Two back 
propagation learning algorithms, NVTBP and CVTBP algorithms, were 
derived to tune the weights of neural network, and furthermore, to 
classify the observations. In our experiments, the DCIFI projection 
classifier is also implemented to identify different types of emitters, and 
its performance is compared to that of the fuzzy-neuro network. 

We use both the two-emitters and the three-emitter identification 
problems to test and compare the performance of the DCIFI projection 
classifier and those of the neural network approaches [Shieh et al 2002]. 
The training and testing data sets are the same as those in [Shieh et al 
2002], where the data in training set are interval values while the data in 
testing set are crisp values. To evaluate the robustness of the proposed 
methods, a measurement distortion is also used as in [Shieh et al 2002] to 
simulate the adding of noise to the testing data. To perform the testing at 
different levels of adding noise, an Error Deviation Level (EDL) is 
defined in [Shieh et al 2002] by 
 

%100(%) ×=
ji

ji
i x

EDL
ξ

, 

 
for 3,2,1=i , and lj ,,2,1 L= , where l  is the number of 
observations. Here, xji denotes the values of attribute xi of j-th 
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observation in the testing data set, and ξji is a small alteration added to 
the values of xji . The noisy testing data are obtained by adding random 
noise ξji to each original testing observation, denoted by 

 

),,( 332211 jjjjjj xxx ξξξ ±±±   

 
with different EDL’s (from 0% to 15%). 

First, we consider the two-emitter identification problem with the 
input data corrupted by adding noise. For the DCIFI projection classifier, 
it is a 3 attributes and 2 classes problem. We set the population size s  
as 30, and the maximum number of generations as 1000. 10 training 
samples are used to train the DCIFI projection classifier and the neural 
network approaches respectively. The estimated values of the signed 
efficiency measure and the virtual boundary are listed in Table 11.3. 

9 sets of 80 testing samples with different EDLs (from 0% to 15%) 
are generated and used to test the performance of the considered 
identification approaches. The experimental results on average accuracy 
are compared in Table 11.4. 

 
 
Table 11.3  The estimated values of the signed efficiency measure and the virtual 

boundary in two-emitter identification problem. 
 

Parameters Estimated Values 

})({ 1xµ  0.504087 

})({ 2xµ  0.476912 

}),({ 21 xxµ  0.568434 

})({ 3xµ  0.394032 

}),({ 31 xxµ  0.487458 

}),({ 32 xxµ  0.503144 

}),,({ 321 xxxµ  1.000000 

boundary 6.885570 
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Table 11.4  Testing results on two-emitter identification problem with/without noise. 

 
Total Average Accuracy (%) Error Deviation 

Level (%) NN by NVTBP 
Algorithm 

NN by CVTBP 
Algorithm 

DCIFI Projection 

15 99.71 91.04 100 
13 99.90 93.75 100 
11 99.91 94.85 100 
9 99.91 95.49 100 
7 99.91 95.83 100 
5 99.91 96.03 100 
3 99.91 96.15 100 
1 99.91 96.23 100 
0 99.91 96.26 100 

 

Secondly, we consider the three-emitter identification problem with 
the input data corrupted by adding noise. For the DCIFI projection 
classifier, it is a 3 attribute and 3 classes problem. We set the population 
size s as 30, and the maximum number of generations as 1000. 15 
training samples are used to train the DCIFI projection classifier and the 
neural network approaches respectively. The estimated values of the 
signed efficiency measure and the virtual boundary are listed in Table 
11.5.  

120 testing samples with different EDLs (from 0% to 15%) are used 
to train and test the performance of DCIFI projection classifier and the 
neural network approaches, respectively. The comparison results on 
average accuracy are shown in Table 11.6. 

The comparison results shown in Tables 11.5 and 11.6 indicate that 
the proposed DCIFI projection not only has higher identification 
capability, but also relatively more robust to noise than the neural 
network approaches. 
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Table 11.5  The estimated values of the signed efficiency measure and the virtual 
boundary in three-emitter identification problem. 

 
Parameters Estimated Values

})({ 1xµ  0.488003 

})({ 2xµ  0.434324 

}),({ 21 xxµ  0.479056 

})({ 3xµ  0.490667 

}),({ 31 xxµ  0.454789 

}),({ 32 xxµ  0.507754 

}),,({ 321 xxxµ  1.000000 

Boundary 0 6.481580 
Boundary 1 10.237300 

 

 

Table 11.6  Testing results on three-emitter identification problem with/without noise. 

 
Total Average Accuracy (%) Error Deviation 

Level (%) NN by NVTBP 
Algorithm 

NN by CVTBP 
Algorithm 

DCIFI Projection 

15 75.75 72.21 80.83 
13 79.16 73.10 85.83 
11 80.49 73.76 85.00 
9 84.09 76.17 91.67 
7 89.44 80.25 94.17 
5 96.04 85.96 99.17 
3 99.44 89.19 100 
1 99.80 90.63 100 
0 99.84 91.08 100 
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11.3   Fuzzified Choquet Integral with Fuzzy-Valued 
Integrand (FCIFI) 

Let →Xf :~
NF be a fuzzy-valued function and µ  be a signed 

efficiency measure on P     (X). The defuzzified Choquet integral of f~  
with respect to µ  has been defined and discussed in Section 11.1. As 
an aggregation tool, the DCIFI ignores the fuzziness in the integration 
result, that is, the result of the integration is a crisp number. Though it is 
convenient in many real data mining problems, missing the knowledge 
on the fuzziness will bring some error in optimization problems, such as 
the network optimizations. In this section, keeping the fuzzy knowledge 
in the integration result, we concentrate on another approach for 
fuzzifying the Choquet integral with fuzzy-valued integrand, called the 
Fuzzified Choquet Integral with Fuzzy-valued Integrand (FCIFI), which 
is named due to its fuzzy integrand and fuzzy integration result as well. 

11.3.1   Definition of the FCIFI 

First, we use the extension principle to define the Choquet integral with a 
measurable interval-valued integrand, that is, an integrand being a 
function whose range is a subset of NI with the measurability in the 
following sense. Here, NI  denotes the set of all rectangular fuzzy 
numbers, which are identical to interval numbers. 

 
Definition 11.4  An interval-valued function →Xf : NI is measurable 
if both ll xfxf )]([)( = , the left end point of interval )(xf , and 

rr xfxf )]([)( = , the right end point of interval )(xf , are measurable 
functions of x . 
 
Definition 11.5  Let →Xf : NI  be a measurable interval-valued 
function on X  and µ  be a signed efficiency measure on P    (X). The 
Choquet Integral of f  with respect to µ  is defined by 

 

{ }∫∫ →∈∀∈= measurable is:,)()(C)( RXgXxxfxgdgdf µµ . 

(11.4) 
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According to the representation theorem and the extension principle 
in fuzzy set theory, we can define the measurability of the fuzzy-valued 
function and the FCIFI as follows. 
 
Definition 11.6  A fuzzy-valued function →Xf :~

NF is measurable if 
its α-cut function,  

 

})(|{)( )(~
)(~

ααα ≥== tmtMxf xf
xf ,  

 
is a measurable interval-valued function for every ]1,0[∈α , where 

)(~ xfm  is the membership function of the value of f~  at x . 
 
Definition 11.7 (FCIFI)  Let →Xf :~

NF be a measurable 
fuzzy-valued function on X  and µ  be a signed efficiency measure on 
P  (X). The fuzzified Choquet integral of f~  with respect to µ  is 
defined by 

∫ ∫⋅=
≤≤

µαµ α
α

dfdf C)(~C)(
10

U             (11.5) 

 
where )(xfα  is given in Definition 11.6. 

 
Note that, the integration value of the FCIFI is also a fuzzy subset of 

R (a fuzzy number). Fig. 11.8 is helpful for understanding the 
relationship between f~  and αf  in Definition 11.7. For further 
illustration, let us refer to an example. 

 
Fig. 11.8 Relationship between f~  and αf . 

)(~
1xf)(tm

t t t
)( 11

xfα )( 21
xfα )(

1 nxfα
∫ µα df dµfα α

α
∫

≤≤
U

10

mα
L MM

)(~
2xf )(~

nxf

2α
1α

t
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Example 11.6 Let f~  be a fuzzy-valued function defined on universal 
set },,{ 321 xxxX = . Each element of X  is mapped to a fuzzy number 
by function f~ , i.e., ]0.40.30.20.1[)(~

1 =xf , a trapezoidal fuzzy 
number; ]0.60.5[)(~

2 =xf , an interval number; and 
]0.90.80.7[)(~

3 =xf , a triangular fuzzy number. Their membership 
functions are depicted in Fig.11.9. Take 5.0=α , the α-cut function of 
fuzzy-valued function f~  is an interval-valued function, αf , which 
maps each element of X  to an interval number, i.e., 

]5.35.1[)( 1 =xfα , ]0.60.5[)( 2 =xfα  and ]5.85.7[)( 3 =xfα , as 
shown in Fig. 11.9. 

 
According to Definition 11.7, the calculation of the FCIFI is 

established on that of the Choquet Integral with Interval-valued 
Integrand (CIII). Due to the continuity of the Choquet integral, the 
integration value of the CIII is also an interval number. Now the problem 
we are facing with is how to determine the left and the right terminals of 
the interval-valued integration result. In the following subsections, we 
discuss two aspects of this problem, which are the CIII with respect to 
efficiency measures and signed efficiency measures, respectively. 
 
 

 

Fig. 11.9 The membership functions and α-cut function of f~  in Example 11.6. 

 

]5351[)( 1 ..xf =α

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

)(
~

1xf )(
~

2xf )(~
3xf

)()(~ tm
ixf

0.1

t

]0605[)( 2 ..xf =α ]5857[)( 3 ..xf =α

50.α =

1.5 3.5 5.0 6.0 8.5 7.5 
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11.3.2   The FCIFI with respect to monotone measures 

Using the continuity and the monotonicity of the Choquet integral with 
respect to monotone measures, we may prove the following theorem.  
 
Theorem 11.2  Let  →Xf : NI be a measurable interval-valued 
function on X  and µ  be a monotone measure on P     (X). Then the 
Choquet integral of f  with respect to µ  is  

 

∫ ∫ ∫= ]C)(,C)[(C)( dµfdµfdµf rl            (11.6) 

 
where lf  and rf  are two real-valued functions with ll xfxf )]([)( = , 
the left end point of interval )(xf , and rr xfxf )]([)( = , the right end 
point of interval )(xf , Xx∈∀ . 
 

As shown in Theorem 11.2, when the CIII is with respect to a 
monotone measure, terminals of the integration result can be directly 
calculated from the Choquet integrals of terminals of the integrand. 
Therefore, the FCIFI with respect to the monotone measure can be 
derived by (11.6) easily. Two examples are given as follows. 

 
Example 11.7  Let },{ 21 xxX = . Set function µ  is a monotone 
measure with 1.0})({ 1 =xµ , 2.0})({ 2 =xµ , and 1)( =Xµ . f~  is a 
triangular fuzzy-valued function with ]110[)(~

1 =xf  and 
]5.15.05.0[)(~

2 =xf . The membership function of )(~
1xf  and )(~

2xf  
are  



 ∈

==
otherwise0

]1,0[if
)()( )(~1 1

tt
tmtm xf  

and  



 ∈−

==
otherwise0

]5.1,5.0[if5.1
)()( )(~2 2

tt
tmtm xf  
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respectively. They are shown in Fig. 11.10. The α-cut function of f~  is 
represented by intervals  

 

]1,[})(|{)( )(~
)(~

1 1

1 αααα =≥== tmtMxf xf
xf  

and  

]5.1,5.0[})(|{)( )(~
)(~

2 2

2 αααα −=≥== tmtMxf xf
xf . 

 
When 5.00 ≤≤α , we have ll xfxf )]([)]([ 21 αα ≤  and rr xfxf )]([)]([ 21 αα ≤ . 
Therefore, 

 

αααµα 8.01.02.0)5.0(1][ +=⋅−+⋅=∫ ldf  

and  

ααµα 2.01.12.0)5.0(11][ −=⋅−+⋅=∫ rdf . 

That is,  

]2.01.18.01.0[ ααµα −+=∫ df . 

 
Similarly, when ]1,5.0(∈α , we have 

 

]9.045.11.045.0[ ααµα −+=∫ df . 

 
The membership function of ∫ µdf~C)( , )(tm , is also shown in Fig. 
11.10. We can see that ∫ µdf~C)(  is not a triangular fuzzy numbers. 

 
As for the Choquet integral with a normal fuzzy-valued integrand, its 

value may not be a normal fuzzy number either. 
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Fig. 11.10  The membership functions of the Choquet integral with triangular  

fuzzy-valued integrand in Example 11.7. 
 
 
 

Example 11.8  Use the same X  and µ  given in Example 11.7. Let  
f~  be a normal fuzzy-valued function having value )1,10(~ 2n  at 1x  

and )10,15(~ 2n  at 2x . Fig. 11.11 shows the membership functions of 
)1,10(~n  and )10,15(~n , )(1 tm  and )(2 tm , respectively, as well as the 

membership function of ∫ µdf~C)( , denoted by )(tm . We can see that 
∫ µdf~C)(  is not a normal fuzzy number. Its membership function )(tm  

has a nondifferentiable point, also shown in Fig. 11.11. 
 
We may also construct some examples to show similar conclusion for 

the Choquet integral with a trapezoidal fuzzy-valued or a cosine 
fuzzy-valued integrand. We can image that the membership function of 
the value of an FCIFI may have a large number of nondifferentiable 
points when n is not small. 

 
 

t
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Fig. 11.11 The membership functions of the Choquet integral with normal fuzzy-valued 

integrand in Example 11.8. 
 

11.3.3   The FCIFI with respect to signed efficiency measures 

We should note that “ µ  be a monotone measure” cannot be replaced by 
“ µ  be a signed efficiency measure” in Theorem 11.2. The condition 
guaranteeing the nonnegativity of µ  is essential. This can be verified 
by the following counterexample. 

 
Example 11.9 Suppose that },{ 21 xxX = , 1})({ 11 == xµµ , 

2})({ 22 −== xµµ , 2)(3 == Xµµ . Then, µ  is a signed efficiency 
measure, but not a monotone measure. Taking interval-valued function 
f  that has value ]1210[  at 1x  and ]148[  at 2x , we have 

]2418[C)( =∫ µdf . However, 10)( 1 =xfl , 12)( 1 =xfr , 8)( 2 =xfl , 
14)( 2 =xfr , therefore, 18C)( =∫ µdfl  and 2420C)( ≠=∫ µdfr .  

 
Furthermore, the decomposability described by  
 

t
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∫∫∫ −+ −= µµµ dfdfdf )C()C()C(  

 
in Section 5.4 is also violated by the CIII with respect to a signed 
efficiency measure. This can be shown in the following example. 
 
Example 11.10  We still use the universal set X  , the interval-valued 
function f , and the signed efficiency measure µ  given in Example 
11.9. So 11 =+µ , 02 =+µ , 23 =+µ , 01 =−µ , 22 =−µ , and 03 =−µ . 
Thus, ]2418[C)( =∫ +µdf  and ]80[C)( =∫ −µdf . Hence, 

]2410[]80[]2418[C)(C)( =−=∫∫ − −+ µµ dfdf . However, we have 
]2418[C)( =∫ µdf . This violates the decomposability, that is, 

 

∫∫∫ −+ −≠ µµµ dfdfdf C)(C)(C)( . 

 
As shown above, with respect to a monotone measure µ , the left and 

the right terminals of ∫ µdfC)(  can be directly calculated from the 
Choquet integrals of the integrand's left and right terminals, respectively. 
However, when the FCIFI is respect to a signed efficiency measure, 
Theorem 11.2 may not hold. In this case, terminals of ∫ µdfC)(  may 
overstep the range which is restricted by ∫ µdflC)(  and ∫ µdfrC)( . 
Hence, the exact membership function of the Choquet integral with 
respect to a signed efficiency measure for a fuzzy-valued integrand is 
rather difficult to be found.  

In general case, we may give estimation on the integration result of 
the CIII with respect to signed efficiency measure through the following 
theorem. 

 
Theorem 11.3  Let  →Xf : NI be a measurable interval-valued 
function on X  and µ  be a signed efficiency measure on P    (X). Then 
the Choquet integral of f  with respect to µ , ∫ dµfC)( , is still a 
rectangular fuzzy number (an interval number) and 
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[ ].]C)[(]C)[(,]C)[(]C)[(

C)(C)(C)(

lrrl dµfdµfdµfdµf

dµfdµfdµf

∫∫∫∫
∫∫∫

−+−+

−+

−−=

−⊆

 
 
Fig. 11.12 is helpful for understanding the above theorem. 
In a simpler but common case where X  is finite, we may obtain the 

valued of ∫ dµfC)(  by solving two optimization problems with linear 
constraints and nonlinear objective functions 

 

∑
−

=

12

1
min

n

j
jjz µ                    (11.7) 

and  

∑
−

=

12

1
max

n

j
jjz µ                    (11.8) 

 
subject to )()()( iriil xfxfxf ≤≤ , ni ,,2,1 L= , where 
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Fig. 11.12 Description of terminal ranges when µ is a signed efficiency measure. 
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We propose a numerical optimization method involving a genetic 
algorithm to approximately estimate the membership function of the CIII 
when µ  is a signed efficiency measure in the following subsection. 

11.3.4   GA-based optimization algorithm for the FCIFI with 
respect to signed efficiency measures 

The core of the proposed numerical optimization is a genetic algorithm 
which is used to calculate the integration value of the CIII with respect to 
a signed efficiency measure. For clarification, we reintroduce the 
problem here. Let X  be a finite set, i.e., },,,{ 21 nxxxX L= . A signed 
efficiency measure :µ P    (X) ),( ∞−∞→  is given. For an interval-valued 
function →Xf : NI, where NI denotes the set of all interval numbers, 
we are going to calculate the integration result of ∫ dµfC)( . Since 

∫ dµfC)(  is also an interval number, only the left and the right terminals 
are required to be determined. These two terminals are calculated by the 
same GA approach, respectively. 

A.  Coding 
In the GA-based optimization algorithm, real coding method is applied 
here. Each chromosome consists of n  genes, denoted by nggg ,,, 21 L , 
where n  is the cardinality of the universal set X . Each gene takes a 
real number between zero and one. We introduce a real-valued function 

),(: ∞−∞→Xv , where )( ixv  is a number in )( ixf , ni ,,2,1 L= . 
For each i , ig  and )( ixv  are one-to-one correspondence, and they 
can be coded and decoded by the following formula: 

 

iilirili gxfxfxfxv ⋅−+= ))()(()()( , 

 
where )( il xf  and )( ir xf  are the left and the right terminals of )( ixf  
respectively. The correspondence among genes, function v  and f  are 
illustrated in Fig. 11.13. 

We denote V  as the set of all real-valued function v . Now, the 
problem can be summarized as follows: 
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Fig. 11.13 Correspondence in coding method. 

 
(1) Finding a real-valued function ),(: ∞−∞→Xvl , where 

)()( iil xfxv ∈ , ni ,,2,1 L= , so that  
 

µµ dvdv
Vvl ∫∫ ∈

= C)(minC)( ,              (11.9) 

 
in which the value of µdvl∫C)(  is the left terminal of ∫ dµfC)( . 

(2) Finding a real-valued function ),(: ∞−∞→Xvr , where 
)()( iir xfxv ∈ , ni ,,2,1 L= , so that  

 

µµ dvdv
Vvr ∫∫ ∈

= C)(maxC)( ,             (11.10) 

 
 in which the value of µdvr∫C)(  is the right terminal of ∫ dµfC)( . 

 

B. Evaluation criteria 

To evaluate an individual of chromosome in the population, two 
reference values, µdfl∫C)(  and µdfr∫C)( , are pre-calculated. After 
decoding, each individual corresponds to a real-valued function v . 
When the left terminal of µdf∫C)(  is calculated, we define the distance 
between µdv∫C)(  and µdfl∫C)(  as µµ dvdfll ∫−∫=∆ C)(C)( . On 
the other hand, when the right terminal of µdf∫C)(  is calculated, we  
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)( 1xf

2g LL

)( 1xv
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)( nxf)( 2xf
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define the distance between µdv∫C)(  and µdfr∫C)(  as 

µµ dfdv rr ∫−∫=∆ C)(C)( . Fig. 11.14 shows such a relationship. 
Then, two fitness functions are defined to evaluate the performance of 

an individual in two situations respectively. 
  

(1) When the left terminal of µdf∫C)(  is calculated, the fitness 
valued of the individual in the population is derived by  

 

 µµ dvdfll ∫∫ −=∆ C)(C)( .             (11.11) 

 
(2) When the right terminal of µdf∫C)(  is calculated, the fitness 

valued of the individual in the population is derived by  
 

µµ dfdv rr ∫∫ −=∆ C)(C)( .             (11.12) 

 
The positively larger the fitness value is, the better performance the 

individual has, and more chance it has to be selected to create new 
offspring. 

C. GA-based optimization algorithm 

The optimization algorithm used here is a GA-based algorithm. We take 
α-cuts of )(~

ixf  from the bottom to the top in turn, i.e., 1→= εα . If 
the α-cut of )(~

ixf  is a closed interval when 0=α , then 0=ε ; 
otherwise, ε  takes a small positive number to make the α-cut of )(~

ixf  
be a closed interval when εα = . For each α  stage, calculate the left 

0∆ >l

∫ dµfr
∫ dµv ∫ dµv ∫ dµv∫ dµfl

0∆ <l

∞− ∞

0∆ <r 0∆ >r

∫ dµv
 

Fig. 11.14  Distance definition on calculation of the left and  

the right terminals of µdf∫C)( . 
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and the right terminals of µαdf∫C)(  respectively by a genetic algorithm. 
Then, using the decomposition theorem, Eq. (11.5) is applied to 
reconstruct the final result of µdf∫

~C)( . 
The main program is as follows. 
 

(1) Input the following initial parameters: 
n : Cardinality of the universal set 

},,,{ 21 nxxxX L= . 

1221 ,,,
−nµµµ L : )12( −n  real numbers representing the 

signed efficiency measure. 
)(~,),(~),(~

21 nxfxfxf L : n  fuzzy numbers representing the 
integrand function f~ . 

K: Number of α-cuts with default value 
100. 

step : Kstep /)0.1( ε−= , the alteration of α  
value between two successive α  
stages. 

(2) 0=i . 
(3) istep ⋅=α . 
(4) For nj →=1 ,  calculate 

 

  })(|{)( )(~ α≥= tmtxf
jxfji . 

 
(5) If 0=i , Go to Phase 1 to calculate µdfi∫C)( ; otherwise, go to 

Phase 2 to calculate µdfi∫C)( . 
(6) ii ⇒+1 . If Ki = , go to (7); otherwise go to (3). 
(7) Output the integration result µdf∫

~C)( . 

 

Phase 1: 

This part focuses on the calculation of µdfi∫C)(  when 0=i . Here, 
0| =iif  is the α-cut function of f~  when εα = . In this phase, for lack 

of any information on integration result, a global search is required. The 
following genetic parameters have to be set before the iteration starts off: 
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s : The population size represented as a positive integer with 
default as 50. 

δ : A small positive number with default as 1010− . 
maxIC : The maximum number of the Improvement Counter (IC), 

which records the number of successive generations whose 
individuals are unimproved. It also acts as a marker to indicate 
that the optimal has been found. Its default is 20. 

maxGC : The maximum number of the Generation Counter (GC) with 
default as 100. 

flag : A flag to determine which terminal (the left or the right) of 
µdf∫C)(  is currently calculated, 0=flag  for the left 

terminal, while 1=flag  for the right terminal. 
 

The program is summarized as follows: 
 

(1) Randomly create an initial population that consists of s individuals 
of chromosome. Initialize both GC and IC as 0. Initialize 0.00 =m , 
where 0m  stores the fitness value of the best individual of the 
closest previous generation. 

(2) Calculate µdf li∫ )(C)(  and µdf ri∫ )(C)( . 
(3) Decode and evaluate each individual in current population.  The 

fitness value of the k-th individual is denoted by kϕ . 
(4) Set kskm ϕ≤≤= 10 min . 
(5) If maxICIC >  or maxGCGC > , then go to (12). 
(6) Do tournament selection (tournament size as 2). Randomly select 

one operator among the random mutation (with probability 0.4), 
the BLX-0.5 crossover (with probability 0.4), and the flat crossover 
(with probability 0.2) to produce new individuals of chromosome 
as offspring.  

(7) Repeat (6) until totally getting s new offspring. Decode and 
evaluate each of the newly created individuals. Choose the best s 
individuals from the group of these s new created ones and the 
original s individuals in current generation to form the population 
for the next generation. 

(8) Set kskm ϕ≤≤= 1min . If δ<− || 0 mm , then ICIC →+1 ;  
otherwise, IC→0 .  
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(9) Set mm =0 . 
(10) GCGC →+1 . Then go to (5). 
(11) Output µdv∫C)( , where )( ixv  is encoded from the genes of the 

best individual of current generation. 
(12) Stop. 

 

Phase 2: 

In this phase, µdfi∫C)( , Ki ,,2,1 L=  are calculated. As µdfi∫ −1C)(  
has been obtained by the previous genetic process, according to the 
continuity and the monotonicity of the Choquet integral, we can find the 
left and the right terminals of µdfi∫C)(  nearby those of µdfi∫ −1C)( . 
Thus, a relative local optimization is enough. 

The genetic parameters are set as those in Phase 1. The program 
process follows the flowchart of Phase 1 except that some modifications 
are applied in steps (1), (6) and (7): 

 
(1) Unlike Phase 1, here, the population is initialized the same as that 

of the last generation during the calculation on µdfi∫ −1C)( . 
(6) Do tournament selection (tournament size as 2). Produce new 

individual only by the random walk. 
(7) Repeat (6) until totally getting s new offspring. To increase 

diversity of the searching space, randomly generate another s 
individuals of chromosome. Decode and evaluate these 2s  
individuals and select the best s ones to form the population for the 
next generation. 

D.  Examples 

In this subsection, several examples of the FCIFI are shown, whose 
integration results are retrieved by the optimization algorithm presented 
above. It is shown that the proposed GA-based optimization algorithm is 
an effective algorithm to solve the calculation of the FCIFI. 

 
Example 11.11 Suppose that },{ 21 xxX = , µ  is a signed efficiency 
measure valued by 1})({ 11 == xµµ , 2})({ 22 −== xµµ , and 

2)(3 == Xµµ . Taking fuzzy-valued function f~  that assigns a 
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triangular fuzzy number ]110[  at 1x  and ]15.05.0[  at 2x . Fig. 
11.15 shows the membership function of )(~

1xf  and )(~
2xf . Set 

100=K , the membership function of ∫ µdf~C)(  is retrieved by the 
proposed genetic approaches and plotted in Fig.11.16.  

    

Fig. 11.15 Membership functions of )(
~

1xf  and )(
~

2xf  in Example 11.11. 
 

 

Fig. 11.16  The membership functions of ∫ µdf
~

C)(  in Example 11.11. 
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Example 11.12 Let the universal set X  and the signed efficiency 
measure µ  be the same as those in Example 11.11. However, the 
fuzzy-valued function f~  assumes normal fuzzy numbers at 1x  and 

2x . Their membership functions are 
 

2

1

)
0.1

0.10(

)(~

−
−

=
t

xf em  and 
2

2

)
0.10

0.15(

)(~

−
−

=
t

xf em , 

 
respectively, where ),( ∞−∞∈t , as shown in Fig. 11.17. Then, the 
membership function of ∫ µdf~C)(  is derived by the proposed 
GA-based optimization algorithm and its membership function is shown 
in Fig. 11.18. 

 
 

 
Fig. 11.17 Membership functions of )(

~
1xf  and )(

~
2xf  in Example 11.12. 
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Fig. 11.18  The membership function of ∫ µdf

~
C)(  in Example 11.12. 

 
 

Example 11.13 We consider a more complex case. Here, the universal 
set X  consists of 4 elements, ,,, 321 xxx and 4x . A signed efficiency 
measure is defined in Table 11.7. Take a fuzzy-valued function f~  that 
assigns normal fuzzy numbers, which are the same as )(~

1xf  and 
)(~

2xf  in Example 11.12, to 1x  and 2x  respectively, and assigns 
triangular fuzzy numbers, which are the same as )(~

1xf  and )(~
2xf  in 

Example 11.11, to 3x  and 4x  respectively. The membership function 
of the value of ∫ µdf~C)(  is derived by the proposed GA-based 
optimization algorithm and is shown in Fig. 11.19. 
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µ  value µ  value 

)(∅µ  0.0 })({ 4xµ  2.0 
})({ 1xµ  1.0 }),({ 41 xxµ  7.0 
})({ 2xµ  -2.0 }),({ 42 xxµ  -9.0 

}),({ 21 xxµ  2.0 }),,({ 421 xxxµ 1.0 
})({ 3xµ  3.0 }),({ 43 xxµ  2.0 

}),({ 31 xxµ  11.0 }),,({ 431 xxxµ -2.0 
}),({ 32 xxµ  -1.0 }),,({ 432 xxxµ 2.0 

}),,({ 321 xxxµ  4.0 )(Xµ  2.0 

 

 

 

Fig. 11.19  Membership function of ∫ µdf
~

C)(  in Example 11.13. 
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Table 11.7  Values of the signed efficiency measure µ  in Example 11.13. 
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11.4   Regression Model Based on the CIII 

Both the FCIFI and the CIII can be applied as regression tools. The 
former is a generalized model to the latter, since the FCIFI handles 
heterogeneous fuzzy data while the CIII manages interval data, and as we 
know, interval data are included in heterogeneous fuzzy data.  

In this section, we focus our attention on the regression problems by 
the CIII because there are many practical cases where more complete 
information can be surely achieved by describing a set of variables in 
terms of interval data. For example, intervals may occur as transaction 
time and valid time ranges in temporal databases, as line segments on a 
space-filling curve in spatial applications, as inaccurate measurements 
with tolerances in engineering databases, as daily temperatures registered 
as the minimum and the maximum values, or for the minimum and the 
maximum transaction prices daily recorded for a set of stocks. 

11.4.1   CIII regression model 

From Chapter 9, we can see that the Choquet integral with a real-valued 
integrand is a very powerful regression tool because the nonadditivity of 
the signed efficiency measure can well capture the nonlinear relationship 
between the predictive attributes and the objective attribute. Similarly, 
the CIII can also be used as an aggregation tool in multiregression, which 
can represent the relationship among attributes with not only crisp data, 
but also interval data. 

In the CIII regression model, let nxxx ,,, 21 L  be the predictive 
attributes and y  be the objective attribute. Denote },,,{ 21 nxxxX L=  
as before. The provided training data set consists of l  observations of 

nxxx ,,, 21 L  and y , and has a form as 
 

1x  2x  L nx  y  

11f  12f L nf1  1y
21f  22f L nf2  2y
M M  M M 

1lf  2lf L nlf  ly
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where each row 

1jf  2jf L  njf jy  
 
is the j -th observation of attributes nxxx ,,, 21 L , and y , lj ,,2,1 L= . 
Note that, the values of observations in the training data set are all 
interval numbers, indicated by adding a top bar. Positive integer l  is the 
size of the data set and should be much larger than n2 . Usually, l  is 
not less than 5 times of n2 . Each observation of nxxx ,,, 21 L  can be 
regarded as an interval-valued function →Xf : NI. Thus, the j -th 
observation of nxxx ,,, 21 L  is denoted by f j, and we write    f ji f= j )( ix , 

ni ,,2,1 L= , for lj ,,2,1 L= . Similarly, the j -th observation of y  
is denoted by y j, lj ,,2,1 L= . 

Hence, the CIII regression model (without showing the random 
perturbation) is expressed as  

 

µdfbacy ∫ ++= )(C)( , 

where 
 
y : value of the objective attribute y ; 
f : an interval-valued function on X  with )( ixf as its value at 

ix , ni ,,2,1 L= ; 
µ : a signed efficiency measure; 
a : a real-valued function defined on X  which can be expressed as 

a shifting parameter vector ),,,( 21 naaaa L= ; 
b : a real-valued function defined on X  which can be expressed as 

a scaling parameter vector ),,,( 21 nbbbb L= ; 
c : an interval-valued constant, ][ rl ccc = . 
 
The introduction of parameters naaa ,,, 21 L , and nbbb ,,, 21 L  

attempts to balance the scales of the predictive attributes in case that they 
have different dimensions. They should satisfy constraints 
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 .1||max  and  0min
11

==
≤≤≤≤ iniini

ba  

 
Under these constraints, of course, we have 0≥ia  and 11 ≤≤− ib  

for ni ,,2,1 L= .  
In this multiregression model, the regression coefficients are constant 

c , all elements of vectors a  and b , and )(Aµ  for every       
∈A P    (X) − {∅}. Totally there are  
 

122122 ++=−+++ nn nnn  
 
unknown parameters. All unknown parameters should be optimally 
determined before the regression model is put into operation. The 
scheme now is to learn all these coefficients through a genetic algorithm 
by describing them as genes in the chromosome. As shown in Section 
11.3.4, when CIII is with respect to a signed efficiency measure, its 
integration result is also calculated by a genetic approach. Obviously, 
during the process of learning coefficients for the CIII regression model, 
two genetic algorithms are involved. 

11.4.2   Double-GA optimization algorithm 

We propose a double-GA optimization algorithm to learn the unknown 
parameters in the CIII regression model. There are 122 ++ nn  
parameters to be determined. All of them are represented by genes in a 
chromosome. Fig. 11.20 shows the structure of each individual 
chromosome represented in the double-GA optimization algorithm. 

To evaluate the fitness value of an individual in the double-GA, we 
define the distance between two interval numbers s  and t  as 

 

( ) ( )22
rrll tststs −+−=− , 

 
where ls , rs , lt , and rt  are the left and the right terminals of s  and 
t , respectively. 
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Fig. 11.20 Structure of an individual chromosome in the double-GA  

optimization algorithm. 
 

 
Then the fitness value of an individual being considered in the 

population is 

∑
=

−=
l

j
jj yy

l 1

2*2 )(1σ̂ ,               (11.13) 

 
where *

jy  is the calculated integration result of the CIII regression 
model, which is identified by the parameters represented by the current 
individual, with respect to the j -th record of the predictive attributes, 
and y j is the j -th record of the objective attribute in the training data 
set. 

Now, the procedure of the double-GA is shown below. 
 
(1) Choose a large prime p  as the seed for the random number 

generator. Set the value for each genetic parameter as follows. 
 

s : The population size. It should be a large positive even 
integer. Its default is 100. 

βα , : The probabilities used in a random switch to control 
the choice of genetic operators for producing offspring 
from the selected parents. They should satisfy the 
condition that 0≥α , 0≥β , and 1≤+ βα . Their 
defaults are 0.4 and 0.4, respectively. 

δε , : Small positive numbers used in the stopping controller. 
Their defaults are 610−  and 1010− , respectively. 

1g 2g ng

1a
µ

L L

42 +ng 122 ++ nng

2a na

1+ng 2+ng ng2
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12 +ng 22 +ng
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ICmax : The limit number of generations that have not 
significant improvement successively. Its default is 10. 

GCmax : The limit number of generations. Its default is 10000. 
 
(2) Read the number of the predictive attributes n , the number of 

training samples l , and the training samples. 
Calculate  

∑ ∑
= =









−=

l

i

l

j
jiy y

l
y

l 1

2

1

2 11σ̂ . 

 
(3) Randomly create an initial population that consists of s individuals 

of chromosome. Initialize the Generation Counter (GC) and 
Improvement Counter (IC) by 0. Initialize )ˆ(ˆ 2

0
2 σσ my → , where 

)ˆ( 2
0 σm  stores the minimum fitness value of individuals in the 

closest previous generation. 
(4) Decode each individual in the population to get its corresponding 

shifting parameters naaa ,,, 21 L , scaling coefficients 
nbbb ,,, 21 L ,   interval-valued constant   rl cc , , and values of signed 

efficiency measure 1221 ,,,
−nµµµ L . 

(5) For each individual in current population, using the decoded 
regression coefficients, cooperated with each record in the training 
data set, to derive the calculated integration result of the CIII 
regression model represented by the current individual by  

 

µdfbacy jj ∫ ++= )()C(* ,   lj ,,2,1 L= . 

 
If a monotone measure is considered, Theorem 11.2 is applied to 
derive the value of ∫ + µdfba j )()C( ; otherwise, the GA-based 
optimization algorithm presented in Section 11.3.4 is performed. 
Then the fitness value of current individual is evaluated by 
Equation (11.13). 
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(6) Fitness value of the r-th chromosome is denoted by 2ˆ rσ . Set 
2

1
2 ˆmin)ˆ( rsrm σσ ≤≤= , where )ˆ( 2σm  stores the minimum fitness 

value of individuals in current generation. 
(7) If 22 ˆ)ˆ( ym σεσ <  or maxGCGC > , then go to (13); otherwise, take 

the next step. 
(8) If 222

0 ˆ)ˆ()ˆ( ymm σδσσ <− , then ICIC →+1  and take the next 
step; otherwise, IC→0  and go to (10). 

(9) If maxICIC > , divide the individuals in current population into 
three parts by ascending order on their fitness values. The 
individuals in the first part are kept, while those in the second part 
create new offspring by random mutation, and those in the third 
part are replaced by new randomly created individuals of 
chromosome. Evaluate the new created individuals, and update the 
population, go to (12); otherwise, take the next step. 

(10) Do tournament selection (by tournament size as 2). Randomly 
select one operator among the non-uniform mutation (with 
probability α ), the BLX crossover (with probability β ), and the 
random mutation (with probability βα −−1 ) to produce new 
individuals of chromosome as the offspring. 

(11) Repeat (10) until totally getting s new individuals. Evaluate this s  
new created individuals. Choose the best s individuals from the 
group of these s new created individuals and the original s 
individuals in current generation to form the population for the next 
generation. 

(12) GCGC →+1 . Save )ˆ( 2σm  as )ˆ( 2
0 σm . Then go to (6). 

(13) Get the optimized regression coefficients from the best individual 
of the current generation. 

(14) Stop. 

11.4.3   Explanatory examples 

In this part, two examples are implemented to verify the effectiveness 
and efficiency of the CIII regression model. These examples are 
conducted on synthetic data. Examples 11.14 and 11.15 are implemented 
on a CIII regression model with monotone measure and signed efficiency  
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Fig. 11.21  Benchmark model in Examples 11.14 and 11.15. 

 
measure, respectively. They all refer to a regression benchmark model 
with 3 predictive attributes and 1 objective attribute. Fig. 11.21 shows 
this benchmark model. 

By presetting the shifting coefficients 321 ,, aaa  scaling coefficients 
321 ,, bbb , constant rl cc , , and the values of monotone measure or signed 

efficiency measure 721 ,,, µµµ L , 10 training data sets, each of which 
consists of 200 observations, have been randomly generated for both 
experimental series, respectively. 
 
Example 11.14 In this example, a CIII regression model with respect to 
a monotone measure is considered. The calculation of the CIII can be 
managed simply by Theorem 11.2. In this case, one genetic approach 
which is dedicated to the optimization of unknown parameters is 
involved.  

10 randomly generated data sets, each of which consists of 200 
observations, are applied to test the adaptability of our algorithm. The 
optimization results are recorded in Table 11.8. Here, among 10 
randomly generated training data sets, five trials can converge to the 
global optimal before the maximum iteration time exceeds. For the 
remaining seven trials, they also reach the nearby space of the optimized 
solution. This shows that the proposed algorithm has satisfactory ability. 

The comparisons of the preset and the estimated unknown parameters 
of the best one of 10 trials (the trial on Data set 2) are listed in Table 11.9. 
Here, all regression coefficients have been recovered well. 
 
 
 
 

x1 x2 x3

y 
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Table 11.8  Results of 10 trials in Example 11.14. 
 

Data Set Minimum fitness value 
Set 1 2.15e−05 converge at generation 2003 
Set 2 1.35e−04 
Set 3 2.46e−05 converge at generation 2235 
Set 4 2.17e−05 converge at generation 1701 
Set 5 1.77e−03 
Set 6 2.05e−05 converge at generation 1324 
Set 7 7.49e−04 
Set 8 1.18e−04 
Set 9  2.48e−05 converge at generation 2321 
Set 10 1.23e−04 

 
 

Table 11.9  Comparisons of the preset and the estimated unknown parameters 
of the best trial in Example 11.14. 

 

Coefficients 
Preset 
value 

Estimated 
value 

Coefficients 
Preset 
value 

Estimated 
value 

1a  0.10 0.10012 µ (∅) 0.00 0.00000 

2a  0.20 0.20072 })({ 1xµ  0.10 0.10141 

3a  0.30 0.30103 })({ 2xµ  0.10 0.10268 

1b  0.20 0.19231 }),({ 21 xxµ  0.30 0.29987 

2b  0.50 0.50139 })({ 3xµ  0.20 0.19921 

3b  0.90 0.91103 }),({ 31 xxµ  0.40 0.41001 

lc  0.10 0.10002 }),({ 32 xxµ  0.60 0.59623 

rc  0.50 0.49811 )(Xµ  1.00 1.00000 
 

 

Example 11.15 In this example, a CIII regression model with respect to 
a signed efficiency measure is considered. Since Theorem 11.2 does not 
work for this case, the genetic approach presented in Section 11.4.2 is 
applied. Each of the 10 randomly generated data sets consists of 200 
observations. The testing results on the ability of our algorithm are 
recorded in Table 11.10. Here, among 10 randomly generated training 
data sets, the trial on data set 3 gives the best optimization result. The 
optimization process stops at generation 4325 and converges to the 
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optimal solution. For the remaining trials on other data sets, the proposed 
double-GA can also reach into the nearby space of the optimized point. 
This shows that the algorithm still has satisfactory performance on the 
efficiency and effectiveness even double genetic approaches are involved. 
The comparisons of the preset and the estimated unknown parameters of 
the best trial are listed in Table 11.11. We can see the regression 
coefficients have been recovered well. 

 

Table 11.10  Results of 10 trials in Example 11.15. 

 
Data Set Minimum fitness value 
Set 1 1.45e−03 
Set 2 2.56e−03 
Set 3 2.43e−05 converge at generation 4325
Set 4 4.89e−04 
Set 5 2.47e−05 converge at generation 5541
Set 6 2.86e−04 
Set 7 1.67e−03 
Set 8 2.89e−04 
Set 9  4.98e−04 
Set 10 1.62e−03 

 
 

Table 11.11  Comparisons of the preset and the estimated unknown parameters 
of the best trial in Example 11.15. 

 

Coefficients 
Preset 
value 

Estimated 
value 

Coefficients 
Preset 
value 

Estimated 
value 

1a  0.10 0.10012 µ (∅) 0.00 0.00000 

2a  0.20 0.20072 })({ 1xµ  0.10 0.99218 

3a  0.30 0.30103 })({ 2xµ  -0.10 -0.10071 

1b  0.20 0.19231 }),({ 21 xxµ  0.30 0.29987 

2b  0.50 0.50139 })({ 3xµ  0.70 0.71011 

3b  0.90 0.91103 }),({ 31 xxµ  0.40 0.39901 

lc  0.10 0.10002 }),({ 32 xxµ  0.60 0.60023 

rc  0.50 0.49811 )(Xµ  1.00 1.00000 
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Integrand, 302 

chromosome, 195 
CIII, 302 
class, 4 

classical extension, 42 
classifier, 239 
classifying attribute, 238 
classifying boundary, 239 
co-domain, 116 
complement, 7, 28 
completion of µ, 69 
continuity from above, 66 
continuity from below, 66 
cross-oriented projection pursuit, 268 
crossover, 196 
Darboux integral, 126 
DCIFI, 272, 273 
De Morgan algebra, 29 
defuzzified Choquet integral with 

fuzzy-valued integrand, 272, 273 
degree of the relative uncertainty, 186 
difference, 9 
domain, 116 
dual of µ , 74 
efficiency measure, 109 
element, 4 
elementary function, 117 
empty set, 4 
equivalence class, 18 
expected value, 222 
extended real-valued set function, 63 
extension of µ, 67 
extension principle, 40 
FCIFI, 272, 300, 301 
feasible point, 193 
feasible region, 193 
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feature attributes, 238 
feature space, 239 
finite set sequence, 10 
fitness function, 196 
fitting, 204 
function, 116 

B-F measurable, 119 
bounded, 118 
bounded variation, 118 
continuous, 118 
Darboux integrable, 126 
monotone, 118 
nondecreasing, 118 
nonincreasing, 118 
Riemann integrable, 124 

fuzzified Choquet integral with fuzzy-
valued integrand, 272,300 

fuzzy integer, 58 
fuzzy measure, vii, 2 
fuzzy number, 45 

cosine fuzzy number, 50 
rectangular fuzzy number, 47 
trapezoidal fuzzy number, 48 
triangular fuzzy number, 48 

fuzzy partition, 31 
fuzzy power set, 25 
fuzzy set, 24 

convex, 36 
equal, 27 
included, 27 

fuzzy subset, 24 
fuzzy-valued function, 301 

measurable, 301 
gene, 195 
general measure, viii 
generalized necessity measure, 106 
generalized possibility measure, 106 
genetic operators, 196 
global maximizer, 194 
global minimizer, 193 
image, 116 
individual, 195 

infimum, 20 
information fusion, 177 
integrand, 131 
intersection, 7, 28 
interval number, 42 

less than or equal to, 45 
not larger than, 45 

interval-valued function, 300 
measurable, 300 

inverse-image, 116 
k-interactive measure, 107 
lattice, 20, 58 
least square estimation, 224 
Lebesgue field, 69 
Lebesgue integral, 129 
Lebesgue measure, 69 
Lebesgue-like -integral, 130 
level-value set, 39 
linear data fitting, 225 
linear programming, 194 
linear regression, 221 
linearity, 127 
local maximizer, 194 
local minimizer, 193 
lower Darboux sum, 125 
lower Darporx integral, 126 
lower integral, 154 
mapping, 116 
maximization, 194 
maximum, 194 
m-classification, 238 
measurable space, 63 
measure, 64 
measure space, 65 
membership degree, 24 
membership function, 24 

left branch, 47 
right branch, 47 

minimization, 193 
unconstrained, 194 

minimizer, 193 
minimum, 193 
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Möbius representation, 88 
Möbius transformation, 88 
monotone measure, vii, 69, 207 

continuous, 70 
continuous from above, 70 
continuous from below, 69 
lower-semi-continuous, 69 
maxitive, 106 
minitive, 106 
normalized, 70 
subadditive, 70 
superadditive, 70 
upper-semi-continuous, 70 

monotone measure space, 69 
monotonicity, 66 
mutation, 196 
necessity measure, 103 
negative part, 131 
nest, 103 
nonempty set, 4 
nonlinear programming, 194 
non-monotonic fuzzy measure, viii 
normalized measure, 65 
objective function, 193 
observation, 177 
optimization, 194 

standard form, 194 
oriented coefficients, 269 
parents, 196 
partial ordered set, 19 
partial ordering, 19 
partition, 18, 123, 163 

mesh size, 123 
tagged partition, 123 

Pl, 96 
plausibility measure, 96 
point, 4 

belongs, 4 
does not belong, 4 
not in, 4 

population, 195 
size, 195 

poset, 19, 45, 59 
greatest lower bound, 20 
least upper bound, 20 
lower bound, 20 
lower semilattice, 20 
upper bound, 20 
upper semilattice, 20 
well/totally ordered set, 20 

positive part, 131 
possibility measure, 103 
potential, 232 
power set, 13 
predictive attributes, 221 
pre-image, 116 
prematurity, 197 
probability, 65 
probability measure, 65 

discrete, 65 
product set, 17 
pseudo gradient search, 199, 215 

initial point, 199 
quasi-probability, 83 
quotient set, 19 
quotient space, 19 
range, 232 
realignment, 196 
reduced decomposition 

negative part, 110 
positive part, 110 

reduced decomposition, 110 
regression coefficients, 222 
relation, 17 

antisymmetric, 17 
equivalence, 18 
reflexive, 17 
symmetric, 17 
transitive, 17 

revising, 204 
Riemann integral, 124 
Riemann sum, 124 
ring, 13 

generated by, 16 
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r-integral, 163, 213 
semiring, 14 
set, 4 

contains, 4 
disjoint, 7 
does not contain, 4 
equal, 5 
include, 5 
includes, 5 

set function, 63 
σ-additive, 64 
σ-finite, 64 
additive, 63 
countably additive, 64 
finite, 64 
finitely additive, 63 
quasi-σ-additive, 83 
quasi-additive, 83 
quasi-measure, 83 

set sequence, 10 
disjoint, 11 
intersection, 10 
monotonic, 11 
nondecreasing, 11 
nonincreasing, 11 
union, 10 

signed efficiency measure, viii, 109, 
213, 243 

simple function, 117 
singleton, 4 
soft algebra, 29 
state set, 239 
stopping condition, 197 
subset, 5 

proper subset, 5 
Sugeno measure, 76 
support set, 27, 277 
supremum, 20 
symmetric difference, 9 
target, 193 
target attribute, 181, 221 
T-function, 83 

proper T-function, 83 
standard T-function, 83 

union, 7, 27 
universal set, 4 
universe of discourse, 4 
upper Darboux sum, 125 
upper Darporx integral, 125 
upper integral, 153 
value, 116 
weighted sum, 132 
zeta transformation, 89 
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