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Preface

During the last 10 years there has been a dramatic shift in how music is
produced, distributed, and consumed. A combination of advances in digital
storage, audio compression, as well as significant increases in network band-
width have made digital music distribution a reality. Portable music players,
computers, and smart phones frequently contain personal collections of thou-
sands of music tracks. Digital stores in which users can purchase music contain
millions of tracks that can be easily downloaded.

The research area of music information retrieval gradually evolved during
this time period in order to address the challenge of effectively accessing and
interacting with these increasing large collections of music and associated data
such as styles, artists, lyrics, and music reviews. The algorithms and systems
developed, frequently employ sophisticated signal processing and machine-
learning techniques in their attempt to better capture the frequently elusive
relevant music information.

The purpose of this book is to present a variety of approaches to utilizing
data mining techniques in the context of music processing. Data mining is
the process of extracting useful information from large amounts of data. The
multifaceted nature of music information provides a wealth of opportunities for
mining useful information and utilizing it to create novel ways of interaction
with large music collections.

This book is mainly intended for researchers and graduate students in
acoustics, computer science, electrical engineering, and music who are inter-
ested in learning about the state of the art in music data mining. It can also
serve as a textbook in advanced courses. Learning about music data mining
is challenging as it is an interdisciplinary field that requires familiarity with
several research areas and the relevant literature is scattered in a variety of
publication venues. We hope that this book will make the field easier to ap-
proach by providing both a good starting point for readers not familiar with
the topic as well as a comprehensive reference for those working in the field.

Although the chapters of the book are mostly self-contained and can be
read in any order, they have been grouped and ordered in a way that can
provide a structured introduction to the topic. The first part of the book
deals with fundamental topics. Chapter 1 consists of a survey of music data
mining and the different tasks and algorithms that have been proposed in
the literature. It serves as a framework for understanding and placing the
subsequent chapters in context. One of the fundamental sources of information
that can be used for music data mining is the actual audio signal. Extracting

xix

 



xx Music Data Mining

relevant audio features requires sophisticated signal processing techniques.
Chapter 2 introduces audio signal processing and how it can be used to derive
audio features that characterize different facets of musical information such
as timbre, rhythm, and pitch content.

The second part of the book deals with classification of the important
tasks of music data mining. Chapter 3 describes how a computational ap-
proach inspired by human auditory perception can be used for classification
and retrieval tasks. There is much literature in instrument recognition, which
is explored in Chapter 4. Listening to music can have a profound effect on our
mood and emotions. A number of systems for mood and emotion classifica-
tion have been proposed and are reviewed in Chapter 5. Chapter 6 explores
connections between power laws and music aesthetics in the context of Ar-
monique, a music discovery engine based on power-law metrics. The engine is
evaluated through psychological experiments with human listeners connecting
recommendations to human emotional and psychological responses.

Social aspects play an important role in understanding music and are the
topic of the third part of the book. There is a large amount of information
about music that is available on the Web and peer-to-peer networks. Chapter
7 describes how this information can be extracted and used either directly for
music mining tasks or as a way of evaluating music mining algorithms. Tags
are words provided by users to categorize information. They are increasingly
utilized as a way of indexing images, music, and videos. Chapter 8 provides a
thorough overview of how tags can be used in music data mining. Many music
data mining algorithms require large amounts of human labeling to train su-
pervised machine-learning models. Human computation games are multiplayer
online games that help collect volunteer data in a truthful manner. By design-
ing a game that is entertaining, players are willing to spend a huge amount
of time playing the game, contributing massive amounts of data. Chapter 9
shows how human computation games have been used in music classification.
A key challenge in data mining is capturing the music information that is
important to human listeners.

The last part of the book deals with two more specialized topics of music
data mining. Predicting hit songs before they become hits is a music mining
task that easily captures the popular imagination. Claims that it has been
solved are made frequently in the press but they are very hard to verify.
Chapter 10 is a thoughtful and balanced exploration of hit song science from
a variety of perspectives. Most of the music mining systems described in this
book have as their target the average music listener. Musicology is the schol-
arly study of music. Chapter 11 (the last chapter of the book) shows how music
data mining can be used in the specialized context of symbolic musicology.

Editing a book takes a lot of effort. We would like to thank all the con-
tributors for their chapters (their contacts are found in a few pages after this
Preface) as well as their help in reviewing and proofreading. We would like
to thank the following people at Chapman & Hall/Taylor & Francis for their
help and encouragement: Randi Cohen, Shashi Kumar, Sunil Nair, Jessica
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Vakili, and Samantha White. Finally, we would like to express our gratitude
to our family, Jing, Emi, Ellen, Erica, Tiffany, Panos, and Nikos, for their kind
support.

MATLAB is a registered trademark of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.
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Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Tao Li, Mitsu Ogihara, and George Tzanetakis
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In the Internet age, a gigantic amount of music-related information is easily
accessible. For example, music and artist information can be obtained from
the artist and record company Web sites, song lyrics can be downloaded from
the lyrics databases, and music reviews are available from various discussion
forums, blogs, and online magazines.
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4 Music Data Mining

As the amount of available music-related information increases, the chal-
lenges of organizing and analyzing such information become paramount. Re-
cently, many data mining techniques have been used to perform various tasks
(e.g., genre classification, emotion and mood detection, playlist generation,
and music information retrieval) on music-related data sources. Data min-
ing is a process of automatic extraction of novel, useful, and understandable
patterns from a large collection of data. With the large amount of available
data from various sources, music has been a natural application area for data
mining techniques. In this chapter, we attempt to provide a review of mu-
sic data mining by surveying various data mining techniques used in music
analysis. The chapter also serves as a framework for understanding and plac-
ing the rest of the book chapters in context. The reader should be cautioned
that music data mining is such a large research area that truly comprehen-
sive surveys are almost impossible, and thus, our overview may be a little
eclectic. An interested reader is encouraged to consult with other articles for
further reading, in particular, Jensen [50, 90]. In addition, one can visit the
Web page: http://users.cis.fiu.edu/∼lli003/Music/music.html, where a com-
prehensive survey on music data mining is provided and is updated constantly.

1.1 Music Data Sources

Table 1.1 briefly summarizes various music-related data sources, describing
different aspects of music. We also list some popular Web sites, from which
music data sources can be obtained. These data sources provide abundant
information related to music from different perspectives. To better understand
the data characteristics for music data mining, we give a brief introduction to
various music data sources below.

Data Sources Examples (Web Sites)
Music Metadata All Music Guide, FreeDB, WikiMusicGuide

Acoustic Features Ballroom
Lyrics Lyrics, Smartlyrics, AZlyrics

Music Reviews Metacritic, Guypetersreviews, Rollingstone
Social Tags Last.fm

User Profiles and Playlists Musicmobs, Art of the Mix, Mixlister
MIDI Files MIDIDB, IFNIMIDI

Music Scores Music-scores

Table 1.1
Various Music Data Sources
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Music Metadata: Music metadata contains various information describ-
ing specific music recordings. Generally speaking, many music file formats
support a structure known as ID3, which is designed for storing actual audio
data music metadata, such as artist name, track title, music description, and
album title. Thus, metadata can be extracted with little effort from the ID3
data format. Also, music metadata can be obtained from an online music
metadatabase through application programming interfaces (APIs) running
on them. These databases and their APIs are used by the majority of music
listening software for the purpose of providing information about the tracks
to the user. Some well-known music metadatabase applications, for example,
All Music Guide and FreeDB, provide flexible platforms for music enthusiasts
to search, upload, and manage music metadata.

Acoustic Features: Music acoustic features include any acoustic
properties of an audio sound that may be recorded and analyzed. For
example, when a symphonic orchestra is playing Beethoven’s 9th Symphony,
each musical instrument, with the exception of some percussions, produces
different periodic vibrations. In other words, the sounds produced by musical
instruments are the result of the combination of different frequencies. Some
basic acoustic features [90] are listed in Table 1.2.

Lyrics: Lyrics are a set of words that make up a song in a textual
format. In general, the meaning of the content underlying the lyrics might be
explicit or implicit. Most lyrics have specific meanings, describing the artist’s
emotion, religious belief, or representing themes of times, beautiful natural
scenery, and so on. Some lyrics might contain a set of words, from which we
cannot easily deduce any specific meanings. The analysis of the correlation
between lyrics and other music information may help us understand the
intuition of the artists. On the Internet, there are a couple of Web sites of-
fering music lyrics searching services, for example, SmartLyrics and AZLyrics.

Music Reviews: Music reviews represent a rich resource for examining
the ways that music fans describe their music preferences and possible impact
of those preferences. With the popularity of the Internet, an ever-increasing
number of music fans join the music society and describe their attitudes
toward music pieces. Online reviews can be surprisingly detailed, covering
not only the reviewers’ personal opinions but also important background and
contextual information about the music and musicians under discussion [47].

Music Social Tags: Music social tags are a collection of textual infor-
mation that annotate different music items, such as albums, songs, artists,
and so on. Social tags are created by public tagging of music fans. Captured
in these tags is a great deal of information including music genre, emotion,
instrumentation, and quality, or a simple description for the purpose of
retrieval. Music social tags are typically used to facilitate searching for songs,
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Acoustic Features Description

Pitch
Related to the perception of the fundamental frequency
of a sound; range from low or deep to high or acute
sounds.

Intensity
Related to the amplitude, of the vibration; textual
labels for intensity range from soft to loud.

Timbre
Defined as the sound characteristics that allow
listeners to perceive as different two sounds with same
pitch and same intensity.

Tempo
The speed at which a musical work is played, or
expected to be played, by performers. The tempo is
usually measured in beats per minute.

Orchestration

Due to the composers and performers’ choices in
selecting which musical instruments are to be employed
to play the different voices, chords, and percussive
sounds of a musical work.

Acoustics

A specialization on some characteristics of timbre,
including the contribution of room acoustics,
background noise, audio postprocessing, filtering,
and equalization.

Rhythm

Related to the periodic repetition, with possible
small variants, of a temporal pattern of onsets alone.
Different rhythms can be perceived at the same time in
the case of polyrhythmic music.

Melody
A sequence of tones with a similar timbre that have
a recognizable pitch within a small frequency range.

Harmony
The organization, along the time axis, of simultaneous
sounds with a recognizable pitch.

Table 1.2
Different Acoustic Features

exploring for new songs, finding similar music recordings, and finding other
listeners with similar interests [62]. An illustrative example of well-known
online music social tagging systems is Last.fm, which provides plenty of music
tags through public tagging activities.

User Profiles and Playlists: User profile represents the user’s prefer-
ence to music information, for example, what kind of songs one is interested
in, which artist one likes. Playlist, or also called listening history, refers to
the list of music pieces that one prefers or has listened to. Traditionally, user
profiles and playlists are stored in music applications, which can only be
accessed by a single user. With the popularity of cyberspace, more and more
music listeners share their music preference online. Their user profiles and
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playlists are stored and managed in the online music databases, which are
open to all the Internet users. Some popular online music applications, for
example, playlist.com, provide services of creating user profiles and playlists,
and sharing them on social networks.

MIDI Files: MIDI, an abbreviation for musical instrument digital inter-
face, is a criterion adopted by the electronic music industry for controlling
devices, such as synthesizers and sound cards, that emit music. At minimum,
a MIDI representation of a sound includes values for the sound’s pitch, length,
and volume. It can also include additional characteristics, such as attack
and delay times. The MIDI standard is supported by most synthesizers, so
sounds created on one synthesizer can be played and manipulated on another
synthesizer. Some free MIDI file databases provide online MIDI searching
services, such as MIDIDB and IFNIMIDI.

Music Scores: Music score refers to a handwritten or printed form of
musical notation, which uses a five-line staff to represent a piece of music
work. The music scores are used in playing music pieces, for example, when
a pianist plays a famous piano music. In the field of music data mining,
some researchers focus on music score matching, score following and score
alignment, to estimate the correspondence between audio data and symbolic
score [25]. Some popular music score Web sites (e.g., music-scores.com),
provide music score downloading services.

These different types of data sources represent various characteristics of
music data. Music data mining aims to discover useful information and inher-
ent features of these data sources by taking advantage of various data mining
techniques. In the following, we first give a brief introduction to traditional
data mining tasks, and subsequently present music-related data mining tasks.

1.2 An Introduction to Data Mining

Data mining is the nontrivial extraction of implicit, previously unknown, and
potentially useful information from a large collection of data. The data min-
ing process usually consists of an iterative sequence of the following steps:
data management, data preprocessing, mining, and postprocessing [67]. The
four-component framework provides us with a simple systematic language for
understanding the data mining process.

Data management is closely related to the implementation of data mining
systems. Although many research papers do not explicitly elaborate on data
management, it should be noted that data management can be extremely
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important in practical implementations. Data preprocessing is an important
step to ensure the data format and quality as well as to improve the efficiency
and ease of the mining process. For music data mining, especially when deal-
ing with acoustic signals, feature extraction where the numeric features are
extracted from the signals plays a critical role in the mining process. In the
mining step, various data mining algorithms are applied to perform the data
mining tasks. There are many different data mining tasks such as data visu-
alization, association mining, classification, clustering, and similarity search.
Various algorithms have been proposed to carry out these tasks. Finally, the
postprocessing step is needed to refine and evaluate the knowledge derived
from the mining step. Since postprocessing mainly concerns the nontechni-
cal work such as documentation and evaluation, we then focus our attention
on the first three components and will briefly review data mining in these
components.

1.2.1 Data Management

Data management concerns the specific mechanism and structures of how
the data are accessed, stored, and managed. In music data mining, data
management focuses on music data quality management, involving data
cleansing, data integration, data indexing, and so forth.

Data Cleansing: Data cleansing refers to “cleaning” the data by filling
in missing values, smoothing noisy data, identifying or removing outliers, and
resolving inconsistencies [44]. For example, in music databases, the “artists”
value might be missing; we might need to set a default value for the missing
data for further analysis.

Data Integration: Data integration is the procedure of combining data
obtained from different data sources and providing users with an integrated
and unified view of such data [64]. This process plays a significant role in
music data, for example, when performing genre classification using both
acoustic features and lyrics data.

Data Indexing: Data indexing refers to the problem of storing and ar-
ranging a database of objects so that they can be efficiently searched for on
the basis of their content. Particularly for music data, data indexing aims at
facilitating efficient content music management [19]. Due to the very nature
of music data, indexing solutions are needed to efficiently support similarity
search, where the similarity of two objects is usually defined by some expert
of the domain and can vary depending on the specific application. Peculiar
features of music data indexing are the intrinsic high-dimensional nature of
the data to be organized, and the complexity of similarity criteria that are
used to compare objects.

 



Music Data Mining: An Introduction 9

1.2.2 Data Preprocessing

Data preprocessing describes any type of processing performed on raw data to
prepare it for another processing procedure. Commonly used as a preliminary
data mining practice, data preprocessing transforms the data into a format
that will be more easily and effectively processed. Data preprocessing includes
data sampling, dimensionality reduction, feature extraction, feature selection,
discretization, transformation, and so forth.

Data Sampling: Data sampling can be regarded as a data reduction
technique since it allows a large data set to be represented by a much smaller
random sample (or subset) of the data [44]. An advantage of sampling
for data reduction is that the cost of obtaining a sample is proportional
to the size of the sample. Hence, sampling complexity is potentially sub-
linear to the size of the data. For acoustic data, data sampling refers to
measuring the audio signals at a finite set of discrete times, since a digital
system such as a computer cannot directly represent a continuous audio signal.

Dimensionality Reduction: Dimensionality reduction is an important
step in data mining since many types of data analysis become significantly
harder as the dimensionality of the data increases, which is known as the
curse of dimensionality. Dimensionality reduction can eliminate irrelevant
features and reduce noise, which leads to a more understandable model
involving fewer attributes. In addition, dimensionality reduction may allow
the data to be more easily visualized. The reduction of dimensionality by
selecting attributes that are a subset of the old is know as feature selection,
which will be discussed below. Some of the most common approaches for
dimensionality reduction, particularly for continuous data, use techniques
from linear algebra to project the data from a high-dimensional space
into a lower-dimensional space, for example, Principal Component Analysis
(PCA) [113].

Feature Extraction: Feature extraction refers to simplifying the amount
of resources required to describe a large set of data accurately. For music
data, feature extraction involves low-level musical feature extraction (e.g.,
acoustic features) and high-level features of musical feature extraction (e.g.,
music keys). An overview of feature extraction problems and techniques is
given in Chapter 2.

Feature Selection: The purpose of feature selection is to reduce the
data set size by removing irrelevant or redundant attributes (or dimensions).
It is in some sense a direct form of dimensionality reduction. The goal of
feature selection is to find a minimum set of attributes such that the resulting
probability distribution of the data classes is as close as possible to the
original distribution obtained using all features [44]. Feature selection can
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significantly improve the comprehensibility of the resulting classifier models
and often build a model that generalizes better to unseen points. Further,
it is often the case that finding the correct subset of predictive features is
an important issue in its own right. In music data mining, feature selection
is integrated with feature extraction in terms of selecting the appropriate
feature for further analysis.

Discretization: Discretization is used to reduce the number of values
for a given continuous attribute by dividing the range of the attribute
into intervals. As with feature selection, discretization is performed in a
way that satisfies a criterion that is thought to have a relationship to
good performance for the data mining task being considered. Typically,
discretization is applied to attributes that are used in classification or
association analysis [113]. In music data mining, discretization refers to
breaking the music pieces down into relatively simpler and smaller parts, and
the way these parts fit together and interact with each other is then examined.

Transformation: Variable transformation refers to a transformation that
is applied to all the values of a variable. In other words, for each object, the
transformation is applied to the value of the variable for that object. For
example, if only the magnitude of a variable is important, then the values
of the variable can be transformed by taking the absolute value [113]. For
acoustic data, a transformation consists of any operations or processes that
might be applied to a musical variable (usually a set or tone row in 12-tone
music, or a melody or chord progression in tonal music) in composition, per-
formance, or analysis. For example, we can utilize fast Fourier transform or
wavelet transform to transform continuous acoustic data to discrete frequency
representation.

1.2.3 Data Mining Tasks and Algorithms

The cycle of data and knowledge mining comprises various analysis steps, each
step focusing on a different aspect or task. Traditionally, data mining tasks
involve data visualization, association mining, sequence mining, classification,
clustering, similarity search, and so forth. In the following, we will briefly
describe these tasks along with the techniques used to tackle these tasks.

1.2.3.1 Data Visualization

Data visualization is a fundamental and effective approach for displaying infor-
mation in a graphic, tabular, or other visual format [113]. The goal of visualiza-
tion is to provide visual interpretations for the information being considered,
and therefore, the analysts can easily capture the relationship between data or
the tendency of the data evolution. Successful visualization requires that the
data (information) be converted into a visual format so that the characteris-
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tics of the data and the relationships among data items or attributes can be
analyzed or reported. For music data visual techniques, for example, graphs,
tables, and wave patterns, are often the preferred format used to explain the
music social networks, music metadata, and acoustic properties.

1.2.3.2 Association Mining

Association mining, the task of detecting correlations among different items in
a data set, has received considerable attention in the last few decades, partic-
ularly since the publication of the AIS and a priori algorithms [2, 3]. Initially,
researchers on association mining were largely motivated by the analysis of
market basket data, the results of which allowed companies and merchants to
more fully understand customer purchasing behavior and as a result, better
rescale the market quotient. For instance, an insurance company, by finding a
strong correlation between two policies, A and B, of the form A⇒ B, indicat-
ing that customers that held policy A were also likely to hold policy B, could
more efficiently target the marketing of policy B through marketing to those
clients that held policy A but not B. In effect, the rule represents knowledge
about purchasing behavior [17]. Another example is to find music song pat-
terns. Many music fans have their own playlists, in which music songs they are
interested in are organized by personalized patterns. Music recommendation
can be achieved by mining association patterns based on song co-occurrence.

1.2.3.3 Sequence Mining

Sequence mining is the task to find patterns that are presented in a certain
number of data instances. The instances consist of sequences of elements. The
detected patterns are expressed in terms of subsequences of the data sequences
and impose an order, that is, the order of the elements of the pattern should
be respected in all instances where it appears. The pattern is considered to be
frequent if it appears in a number of instances above a given threshold value,
usually defined by the user [102].

These patterns may represent valuable information, for example, about
the customers behavior when analyzing supermarket transactions, or how a
Web site should be prepared when analyzing the Web site log files, or when
analyzing genomic or proteomic data in order to find frequent patterns which
can provide some biological insights [33]. For symbolic data, a typical exam-
ple of sequence mining is to recognize a complex chord from MIDI guitar
sequences [107].

1.2.3.4 Classification

Classification, which is the task of assigning objects to one of several prede-
fined categories, is a pervasive problem that encompasses many diverse ap-
plications. Examples include detecting spam e-mail messages based upon the
message header and content, classifying songs into different music genres based
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on acoustic features or some other music information, and categorizing galax-
ies based on their shapes [113]. For music data, typical classification tasks
include music genre classification, artist/singer classification, mood detection,
instrument recognition, and so forth.

A classification technique (also called a classifier) is a systematic approach
to building classification models from an input data set. Common techniques
include decision tree classifiers, rule-based classifiers, neural networks, support
vector machines, and näıve Bayes classifiers [57]. Each of these techniques
employs a specific learning algorithm to identify a classification model that
best fits the relationship between the attribute set and class label of the input
data. The model generated by a learning algorithm should both fit the input
data well and correctly predict the class labels of records it has never seen
before. Therefore, a key objective of the learning algorithm is to build models
with good generalization capability, that is, models that accurately predict
the class labels of previously unknown records [113].

1.2.3.5 Clustering

The problem of clustering data arises in many disciplines and has a wide
range of applications. Intuitively, clustering is the problem of partitioning a
finite set of points in a multidimensional space into classes (called clusters)
so that (i) the points belonging to the same class are similar and (ii) the
points belonging to different classes are dissimilar. The clustering problem
has been studied extensively in machine learning, databases, and statistics
from various perspectives and with various approaches and focuses [66]. In
music data mining, clustering involves building clusters of music tracks in a
collection of popular music, identifying groups of users with different music
interests, constructing music tag hierarchy, and so forth.

1.2.3.6 Similarity Search

Similarity search is an important technique in a broad range of applications.
To capture the similarity of complex domain-specific objects, the feature ex-
traction is typically applied. The feature extraction aims at transforming char-
acteristic object properties into feature values. Examples of such properties
are the position and velocity of a spatial object, relationships between points
on the face of a person such as the eyes, nose, mouth, and so forth. The ex-
tracted values of features can be interpreted as a vector in a multidimensional
vector space. This vector space is usually denoted as feature space [97]. The
most important characteristic of a feature space is that whenever two of the
complex, application-specific objects are similar, the associated feature vec-
tors have a small distance according to an appropriate distance function (e.g.,
the Euclidean distance). In other words, two similar, domain-specific objects
should be transformed to two feature vectors that are close to each other with
respect to the appropriate distance function. In contrast to similar objects,
the feature vectors of dissimilar objects should be far away from each other.
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Thus, the similarity search is naturally translated into a neighborhood query
in the feature space [97].

Similarity search is a typical task in music information retrieval. Searching
for a musical work given an approximate description of one or more of other
music works is the prototype task for a music search system, and in fact it
is simply addressed as a similarity search. Later, we will briefly introduce the
task of similarity search in music information retrieval.

1.3 Music Data Mining

Music plays an important role in the everyday life for many people, and with
digitalization, large music data collections are formed and tend to be accu-
mulated further by music enthusiasts. This has led to music collections—not
only on the shelf in form of audio or video records and CDs—but also on the
hard drive and on the Internet, to grow beyond what previously was physically
possible. It has become impossible for humans to keep track of music and the
relations between different songs, and this fact naturally calls for data mining
and machine-learning techniques to assist in the navigation within the music
world [50]. Here, we review various music data mining tasks and approaches.
A brief overview of these tasks and representative publications is described in
Table 1.3.

1.3.1 Overview

Data mining strategies are often built on two major issues: what kind of data
and what kind of tasks. The same applies to music data mining.

? What Kind of Data?
A music data collection consists of various data types, as shown in

Table 1.1. For example, it consists of music audio files, metadata such as
title and artist, and sometimes even play statistics. Different analysis and
experiments are conducted on such data representations based on various
music data mining tasks.

? What Kind of Tasks?
Music data mining involves methods for various tasks, for example, genre

classification, artist/singer identification, mood/emotion detection, instru-
ment recognition, music similarity search, music summarization and visual-
ization, and so forth. Different music data mining tasks focus on different
data sources, and try to explore different aspects of data sources. For exam-
ple, music genre classification aims at automatically classifying music signals
into a single unique class by taking advantage of computational analysis of
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music feature representations [70]; mood/emotion detection tries to identify
the mood/emotion represented in a music piece by virtue of acoustic features
or other aspects of music data (see Chapter 5).

1.3.2 Music Data Management

It is customary for music listeners to store part of, if not all of, their music in
their own computers, partly because music stored in computers is quite often
easier to access than music stored in “shoe boxes.” Transferring music data
from their originally recorded format to computer accessible formats, such as
MP3, a process that involves gathering and storing metadata. Transfer soft-
ware usually uses external databases to conduct this process. Unfortunately,
the data obtained from such databases often contains errors and offers multiple
entries for the same album. The idea of creating a unified digital multimedia
database has been proposed [26]. A digital library supports effective interac-
tion among knowledge producers, librarians, and information and knowledge
seekers. The subsequent problem of a digital library is how to efficiently store
and arrange music data records so that music fans can quickly find the music
resources of their interest.

Music Indexing: A challenge in music data management is how to uti-
lize data indexing techniques based on different aspects of the data itself. For
music data, content and various acoustic features can be applied to facilitate
efficient music management. For example, Shen et al. present a novel approach
for generating small but comprehensive music descriptors to provide services
of efficient content music data accessing and retrieval [110]. Unlike approaches
that rely on low-level spectral features adapted from speech analysis technol-
ogy, their approach integrates human music perception to enhance the accu-
racy of the retrieval and classification process via PCA and neural networks.
There are other techniques focusing on indexing music data. For instance,
Crampes et al. present an innovative integrated visual approach for index-
ing music and for automatically composing personalized playlists for radios
or chain stores [24]. Specifically, they index music titles with artistic criteria
based on visual cues, and propose an integrated visual dynamic environment
to assist the user when indexing music titles and editing the resulting playlists.
Rauber et al. have proposed a system that automatically organizes a music
collection according to the perceived sound similarity resembling genres or
styles of music [99]. In their approach, audio signals are processed according
to psychoacoustic models to obtain a time-invariant representation of its char-
acteristics. Subsequent clustering provides an intuitive interface where similar
pieces of music are grouped together on a map display. In this book, Chapter
8 provides a thorough investigation on music indexing with tags.
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Data Mining Tasks Music Applications References
Data Management Music Database Indexing [24] [99] [110]
Association Mining Music Association Mining [55] [61] [74] [125]

Sequence Mining Music Sequence Mining
[8] [21] [41]
[43] [93] [107]

Classification

Audio Classification [35] [124] [132]

Genre/Type Classification

[4] [27] [42]
[63] [72] [65]
[70] [82] [84]
[85] [86] [89]
[101] [122] [123]

Artist Classification [10] [54]

Singer Identification
[39] [53] [75]
[109] [118] [131]

Mood Detection
[46] [60] [68]
[76] [119] [129]

Instrument Recognition
[7] [16] [31]
[32] [45]
[58] [105]

Clustering Clustering
[14] [20] [49]
[52] [73] [78]
[95] [96] [117]

Similarity Search Similarity Search

[5] [11] [22]
[28] [38] [71]
[80] [87] [91]
[100] [106] [111]

Summarization Music Summarization
[22] [23] [59]
[79] [94] [108]
[126] [127]

Data Visualization
Single-Music Visualization

[1] [18] [36]
[37] [48] [104]

Multimusic Visualization
[13] [81] [92]
[116] [121]

Table 1.3
Music Data Mining Tasks
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1.3.3 Music Visualization

Visualization of music can be divided into two categories: (i) the ones that
focus on visualizing the metadata content or acoustic content of single music
documents; and (ii) the ones that aim at representing complete music collec-
tions for showing the correlations among different music pieces, or grouping
music pieces into different clusters based on their pair-wise similarities. The
former type is motivated by the requirement of a casual user, when the user
skims through a music CD recording before listening to it carefully in order to
roughly capture the main idea or the music style of the music documents. The
latter is based on an idea that a spatial organization of the music collection
will help the users find particular songs that they are interested in, because
they can remember the position in the visual representation and they can be
aided by the presence of similar songs near the searched one.

Individual Music Visualization: There are various approaches to single
music visualization, most of which take advantage of music acoustic features
for representing music recording. For example, Adli, Imieliński, and Swami
state that symbolic analysis of music in MIDI can provide more accurate in-
formation about the musical aspects like tonality, melody line, and rhythm
with less computational requirements if compared to the analysis in audio
files. Also, visualizations based on MIDI files can create visual patterns closely
related to musical context as the musical information can be explicitly or im-
plicitly obtained [1]. Chen et al. [18] propose an emotion-based music player
which synchronizes visualization (photos) with music based on the emotions
evoked by auditory stimulus of music and visual content of visualization. An-
other example of music visualization for single music records is the piano roll
view [104], which proposes a new signal processing technique that provides
a piano roll-like display of a given polyphonic music signal with a simple
transform in spectral domain. There are some other approaches, such as the
self-similarity [36], the plot of the waveform [37], and the spectrogram [48].
Any representation has positive aspects and drawbacks, depending on the di-
mensions carried by the music form it is related to, and on the ability to
capture relevant features. Representations can be oriented toward a global
representation or local characteristics.

Music Collection Visualization: Visualization of a collection of musical
records is usually based on the concept of similarity. Actually, the problem of
a graphical representation, normally based on bidimensional plots, is typical
of many areas of data analysis. Techniques such as Multidimensional Scaling
and Principal Component Analysis are well known for representing a com-
plex and multidimensional set of data when a distance measure—such as the
musical similarity—can be computed between the elements or when the ele-
ments are mapped to points in a high-dimensional space. The application of
bidimensional visualization techniques to music collections has to be carried
out considering that the visualization will be given to nonexpert users, rather
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than to data analysts, who need a simple and appealing representation of the
data.

One example of system for graphical representation of audio collection is
Marsyas3D [121], which includes a variety of alternative 2D and 3D repre-
sentations of elements in the collection. In particular, Principal Component
Analysis is used to reduce the parameter space that describes the timbre in
order to obtain either a bidimensional or tridimensional representation. An-
other example is the Sonic Browser, which is an application for browsing audio
collections [13] that provides the user with multiple views, including a bidi-
mensional scatterplot of audio objects, where the coordinates of each point
depend on attributes of the data set, and a graphical tree representation, where
the tree is depicted with the root at the center and the leaves over a circle.
Sonic Radar, presented by Lübbers [81], is based on the idea that only a few
objects, called prototype songs, can be presented to the user. Each prototype
song is obtained through clustering the collection with a k-means algorithm
and extracting the song that is closer to the cluster center. Prototype songs
are plotted on a circle around a standpoint. In addition, Torrens et al. propose
different graphical visualization views and their associated features to allow
users to better organize their personal music libraries and also to ease selec-
tion later [116]. Pampalk et al. [92] present a system with islands of music
that facilitates exploration of music libraries without requiring manual genre
classification. Given pieces of music in raw audio format, they estimate their
perceived sound similarities based on psychoacoustic models. Subsequently,
the pieces are organized on a two-dimensional map so that similar pieces are
located close to each other.

1.3.4 Music Information Retrieval

Music Information Retrieval (MIR) is an emerging research area devoted to
fulfill users’ music information needs. As it will be seen, despite the emphasis
on retrieval of its name, MIR encompasses a number of different approaches
aiming at music management, easy access, and enjoyment. Most of the re-
search work on MIR, of the proposed techniques, and of the developed systems
are content based [90]. The main idea underlying content-based approaches
is that a document can be described by a set of features that are directly
computed from its content. In general, content-based access to multimedia
data requires specific methodologies that have to be tailored to each partic-
ular medium. Yet, the core information retrieval (IR) techniques, which are
based on statistics and probability theories, may be more generally employed
outside the textual case, because the underlying models are likely to describe
fundamental characteristics being shared by different media, languages, and
application domains [51].

A great variety of different methods for content-based searching in mu-
sic scores and audio data have been proposed and implemented in research
prototypes and commercial systems. Besides the limited and well-defined task
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of identifying recordings, for which audio fingerprinting techniques work well,
it is hard to tell which methods should be further pursued. This underlines
the importance of a TREC-like series of comparisons for algorithms (such as
EvalFest/MIREX at ISMIR) for searching audio recordings and symbolic mu-
sic notation. Audio and symbolic methods are useful for different tasks. For
example, identification of instances of recordings must be based on audio data,
while works are best identified based on a symbolic representation. For deter-
mining the genre of a given piece of music, approaches based on audio look
promising, but symbolic methods might work as well. The interested reader
can get a brief overview of different content-based music information retrieval
systems from the article by Typke, Wiering, and Veltkamp [120].

Music Similarity Search: In the field of music data mining, similarity
search refers to searching for music sound files similar to a given music sound
file. In principle, searching can be carried out on any dimension. For instance,
the user could provide an example of the timbre—or of the sound—that the
user is looking for, or describe the particular structure of a song, and then the
music search system will search for similar music works based the information
given by the user.

The similarity search processes can be divided into feature extraction and
query processing [71]. For feature extraction, the detailed procedure or in-
struction is introduced in Chapter 2. After feature extraction, music pieces
can be represented based on the extracted features. In the step of query pro-
cessing, the main task is to employ a proper similarity measure to calculate
the similarity between the given music work and the candidate music works.
A variety of existing similarity measures and distance functions have previ-
ously been examined in this context, spanning from simple Euclidean and
Mahalanobis distances in feature space to information theoretic measures like
the Earth Mover’s Distance and Kullback-Leibler [11]. Regardless of the final
measure, a major trend in the music retrieval community has been to use a
density model of the features (often timbral space defined by Mel-frequency
cepstral coefficients [MFCC]) [98]. The main task of comparing two models
has then been handled in different ways and is obviously an interesting and
challenging task.

The objective of similarity search is to find music sound files similar to a
music sound file given as input. Music classification based on genre and style
is naturally the form of a hierarchy. Similarity can be used to group sounds
together at any node in the hierarchies. The use of sound signals for similarity
is justified by an observation that audio signals (digital or analog) of music
belonging to the same genre share certain characteristics, because they are
composed of similar types of instruments, having similar rhythmic patterns,
and similar pitch distributions [30].

The problem with finding sound files similar to a given sound file has been
extensively studied during the last decade. Logan and Salomon propose the use
of MFCC to define similarity [80]. Nam and Berger propose the use of timbral
features (spectral centroids, short-term energy function, and zero-crossing)
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for similarity testing [87]. Cooper and Foote study the use of self-similarity
to summary music signals [22]. Subsequently, they use this summarization for
retrieving music files [38]. Rauber, Pampalk, and Merkl study a hierarchical
approach in retrieving similar music sounds [100]. Schnitzer et al. rescale the
divergence and use a modified FastMap implementation to accelerate nearest-
neighbor queries [106]. Slaney, Weinberger, and White learn embeddings so
that the pair-wise Euclidean distance between two songs reflects semantic dis-
similarity [111]. Deliège, Chua, and Pedersen perform feature extraction in a
two-step process that allows distributed computations while respecting copy-
right laws [28]. Li and Ogihara investigate the use of acoustic-based features
for music information retrieval [71]. For similarity search, the distance between
two sound files is defined to be the Euclidean distance of their normalized rep-
resentations. Pampalk, Flexer, and Widmer present an approach to improve
audio-based music similarity and genre classification [91]. Berenzweig et al.
examine both acoustic and subjective approaches for calculating similarity
between artists, comparing their performance on a common database of 400
popular artists [11]. Aucouturier and Pachet introduce a timbral similarity
measure for comparing music titles based on a Gaussian model of cepstral
coefficients [5].

1.3.5 Association Mining

As discussed in Section 1.2.3.2, association mining refers to detecting correla-
tions among different items in a data set. Specifically in music data mining,
association mining can be divided into three different categories: (i) detecting
associations among different acoustic features. For example, Xiao et al. use
statistic models to investigate the association between timbre and tempo and
then use timbral information to improve the performance of tempo estima-
tion [125]; and (ii) detecting associations among music and other document
formats. For instance, Knopke [55] measures the similarity between the public
text visible on a Web page and the linked sound files, the name of which is
normally unseen by the user. Liao, Wang, and Zhang use a dual-wing har-
monium model to learn and represent the underlying association patterns
between music and video clips in professional MTV [74]; (iii) detecting associ-
ations among music features and other music aspects, for example, emotions.
An illustrative example of research related to this category is the work by Kuo
et al. [61], which investigates the music feature extraction and modifies the
affinity graph for association discovery between emotions and music features.
Such an affinity graph can provide insight for music recommendations.

1.3.6 Sequence Mining

For music data, sequence mining mainly aims to detect patterns in sequences,
such as chord sequences. There are relatively few publications related to mu-
sic sequence mining tasks. The main contribution of sequence mining is in the
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area of music transcription. When transcribing audio pieces, different types
of errors might be introduced in the transcription version, such as segmenta-
tion errors, substitution errors, time alignment errors, and so on. To better
control the error rate of transcription, researchers try to explore the feasibil-
ity of applying sequence mining into transcribing procedures. For example,
Gillet and Richard discuss two postprocessing methods for drum transcrip-
tion systems, which aim to model typical properties of drum sequences [41].
Both methods operate on a symbolic representation of the sequence, which
is obtained by quantizing the onsets of drum strokes on an optimal tatum
grid, and by fusing the posterior probabilities produced by the drum tran-
scription system. Clarisse et al. propose a new system for automatic tran-
scription of vocal sequences into a sequence of pitch and duration pairs [21].
Guo and Siegelmann use an algorithm for Time-Warped Longest Common
Subsequence (T-WLCS) to deal with singing errors involving rhythmic dis-
tortions [43]. Other applications of sequence mining for music data include
chord sequence detection [8, 107] and exploring music structure [93].

1.3.7 Classification

Classification is an important issue within music data mining tasks. Vari-
ous classification problems have emerged during the recent decades. Some
researchers focus on classifying music from audio pieces, whereas others are
engaged in categorizing music works into different groups. The most gen-
eral classification focuses on music genre/style classification. In addition,
there are some other classification tasks, such as artist/singer classification,
mood/emotion classification, instrument classification, and so on. In the fol-
lowing, we will provide a brief overview on different classification tasks. Ta-
ble 1.4 briefly summarizes different classification tasks.

Audio Classification: The term audio classification has been tradition-
ally used to describe a particular task in the fields of speech and video process-
ing, where the main goal is to identify and label the audio in three different
classes: speech, music, and environmental sound. This coarse classification can
be used for aiding video segmentation and deciding where to apply automatic
speech recognition. The refinement of the classification with a second step,
where music signals are labeled with a number of predefined classes, has been
presented by Wang et al. [132]. This is one of the first articles that uses hid-
den Markov models as a tool for MIR. An early work on audio classification
by Wold et al. [124] was aimed at retrieving simple music signals via a set
of semantic labels, in particular, musical instruments. The approach is based
on the combination of segmentation techniques with automatic separation of
different sources and the parameter extraction. The classification based on
the particular orchestration is still an open problem with complex polyphonic
performances.

An important issue in audio classification is the amount of audio data
required for achieving good classification rates [35]. This problem has many
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Tasks Techniques References

Audio Classification
Tree-Based Quantization [35]
Covariance Matrix [124]
Hidden Markov Model [132]

Genre Classification

Bayesian Model [27]
Decision Tree [4]
Hidden Markov Model [101]
Statistical Pattern Recognition [122]

Wavelet Transformation
[42]
[72]

SVM
[65]
[86]

Taxonomy [70]

Multilabeling Classification
[82]
[123]

Neural Networks
[63]
[84]
[85]

Artist Classification Singer Voice [10]
Text Categorization [54]

Singer Identification Gaussian Mixture Model

[39]
[53]
[109]
[118]
[131]

KNN [75]

Mood Detection

SVM on Text Features [46]

Multilabel Classification
[68]
[119]

Fuzzy Classifier [129]
Gaussian Mixture Model [76]

Instrument Recognition

Statistical Model
[31]
[32]

Neural Networks [58]
Prior Knowledge [105]
Taxonomy [45]

Table 1.4
Music Classification
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aspects. First, the amount of data needed is strictly related to the computa-
tional complexity of the algorithms, which usually are at least linear with the
number of audio samples. Second, perceptual studies have shown that even
untrained listeners are quite good at classifying audio data with very short
excerpts (less than 1 sec). Finally, in a query-by-example paradigm, where the
examples have to be digitally recorded by users, it is likely that users will not
be able to record a large part of audio.

Genre Classification: A particular aspect of music record classification
is genre classification. The problem is to correctly label an unknown recording
of a song with a music genre. Labels can be hierarchically organized in the
collection of genres and subgenres. Labeling can be used to enrich the musical
document with high-level metadata or to organize a music collection. Genre
classification is still biased by Western music, and thus genres are the ones
typically found in Western music stores. Some attempts have been made to
extend the approach to other cultures (for example, Norowi, Doraisamy, and
Wirza [89]), genre classification has been carried for traditional Indian musical
forms together with Western genres.

Tzanetakis and Cook were among the first to introduce the problem of
music classification [122]. The data set used in this work covered just a few
classes and had some bias toward classical music and jazz. The lack of agree-
ment in genre selection is a typical problem of music classification, because
the relevance of the different categories is extremely subjective, as well as the
categories themselves. These problems are faced also by human classifiers that
try to accomplish the same task, and in fact it has been reported that college
students achieved no more than about 70% of classification accuracy when
listening to three seconds of audio (listening to a longer excerpt did not im-
prove the performances) [122]. The automatic classification is based on three
different feature sets, related to rhythmic, pitch, and timbre features. As also
highlighted in subsequent works, rhythm seems to play an important role for
the classification.

The features used as content descriptors are normally the ones related to
timbre. This choice depends on the fact that approaches try to classify short
excerpts of an audio recording, where middle-term features such as melody and
harmony are not captured. Common music processing approaches compute the
Mel-frequency cepstral coefficients (MFCCs), while the use of wavelet trans-
form is exploited by Grimaldi, Cunningham, and Kokaram [42] and Ogihara
and Li [72]. Systems on genre classification are normally trained with a set of
labeled audio excerpts, and classification is carried out using different tech-
niques and models from the classification literature. Various feature extraction
methods have been used [4, 63, 72, 84, 85, 101, 122]. For classification, the
Gaussian Mixture Model (GMM) [86] has been classically used but Support
Vector Machines (SVMs) [65, 123] and Bayesian methods [27] are becoming
more popular. Some other aspects of music, such as taxonomies [70], can be
applied to tackling the genre classification problem. Advanced data mining
techniques, such as multilabel classification [82, 123] and ensemble methods,
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can also be used to provide effective approaches for this problem. The ba-
sic idea of ensemble methods for genre classification is as follows: individual
classification is performed using smaller segments of the input music signals
followed by aggregation of individual classification results using combination
rules (e.g., majority voting).

Mood and Emotion Detection/Classification: Music mood/emotion
describe the inherent emotional meaning of a music clip. Mood/emotion-based
annotation is helpful in music understanding, music search, and some music-
related applications. One common opinion objecting to mood/emotion detec-
tion is that the emotional meaning of music is subjective and it depends on
many factors including culture. Music psychologists now agree that culture is
of great importance in people’s mood response to music, as well as other fac-
tors including education and previous experiences. Krumhansl [60] points out
that musical sounds might inherently have emotional meaning. For example,
some music patterns represent contentment or relaxation, while others make
an individual feel anxious or frantic.

There is some recent research on music mood/emotion detection and clas-
sification. Liu, Hu, and Zhang present a hierarchical framework to automate
the task of mood detection from acoustic music data, by following some music
psychological theories in Western cultures [76]. Yang, Liu, and Chen consider
a different approach to music emotion classification [129]. For each music seg-
ment, the approach determines how likely it is that the song segment belongs
to an emotion class. Two fuzzy classifiers are adopted to provide the mea-
surement of the emotion strength. Hu, Downie, and Ehmann investigate the
usefulness of text features in music mood classification on 18 mood categories
derived from user tags [46].

In addition, some advanced data mining techniques are applied to music
mood/emotion detection and classification, for example, multilabel classifica-
tion. Li and Ogihara cast the emotion detection problem as a multilabel clas-
sification problem, where the music sounds are classified into multiple classes
simultaneously [68]. The automated detection of emotion in music has been
modeled as a multilabel classification task, where a piece of music may belong
to more than one class [119]. Chapter 5 presents a detailed study on various
aspects of mood and emotion classification.

Instrument Recognition and Classification: The need for automatic
classification of sounds arises in different contexts. For example, in biology it
aims at identifying species’ given animal calls, in medicine it aims at detect-
ing abnormal conditions of vital organs, in mechanical engineering it aims at
recognizing machine-failure conditions, in defense it aims at detecting sounds
of engine approaching, and in multimedia it aims at classifying video scenes.
In this section, we focus on describing sound effects in the case of music,
which means description calls for deriving indexes in order to locate melodic
patterns, harmonic or rhythmic structures, and so forth [45].

Music instrument recognition (see Chapter 4) and classification are very
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difficult tasks that are far from being solved. The practical utility for musical
instrument classification is twofold:

1. To provide labels for monophonic recordings, for “sound samples” inside
sample libraries, or for new patches to be created with a given synthe-
sizer.

2. To provide indexes for locating the main instruments that are included
in a musical mixture (for example, one might want to locate a saxophone
“solo” in the middle of a song).

The first problem is easier to solve than the second one, and it seems clearly
solvable given the current state of the art. The second is tougher, and it is
not clear if research done on solving the first one may help. Common sense
dictates that a reasonable approach to the second problem would be the initial
separation of the sounds corresponding to the different sound sources, followed
by the segmentation and classification on those separated tracks. Techniques
for source separation cannot yet provide satisfactory solutions although some
promising approaches have been developed [7, 16]. As a consequence, research
on music instrument classification has concentrated on working with isolated
sounds under the assumption that separation and segmentation have been pre-
viously performed. This implies the use of a sound sample collection (usually
isolated notes) consisting of different instrument families and classes.

Most publications on music instrument recognition and classification fo-
cus on analyzing acoustic features of sounds in the music pieces. For example,
Eronen and Klapuri present a system for musical instrument recognition that
takes advantage of a wide set of features to model the temporal and spec-
tral characteristics of sounds [31]. Instrument classification process has been
shown as a three-layer process consisting of pitch extraction, parameteriza-
tion, and pattern recognition [58]. Sandvold, Gouyon, and Herrera present a
feature-based sound modeling approach that combines general, prior knowl-
edge about the sound characteristics of percussion instrument families (gen-
eral models) with on-the-fly acquired knowledge of recording-specific sounds
(localized models) [105]. Essid, Richard, and David utilize statistical pattern
recognition techniques to tackle the problem in the context of solo musical
phrases [32].

Artist Classification: The term artist classification refers to classifying
musicians as the predefined artist label given a music document. Traditionally,
artist classification is performed based on acoustic features or singer voice. For
instance, Berenzweig, Ellis, and Lawrence present that automatically-located
singing segments form a more reliable basis for classification than using the
entire track, suggesting that the singer’s voice is more stable across different
performances, compositions, and transformations due to audio engineering
techniques rather than the instrumental background [10]. An alternative ap-
proach to artist classification is to utilize text categorization techniques to
classify artists. Knees, Pampalk, and Widmer retrieve and analyze Web pages
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ranked by search engines to describe artists in terms of word occurrences on
related pages [54].

Singer Identification: Automated singer identification is important in
organizing, browsing, and retrieving data in large music collections due to
numerous potential applications including music indexing and retrieval, copy-
right management, and music recommendation systems. The development
of singer identification enables the effective management of music databases
based on “singer similarity.” With this technology, songs performed by a par-
ticular singer can be automatically clustered for easy management or explo-
ration, as described by Shen et al. [109].

Several approaches have been proposed to take advantage of statisti-
cal models or machine-learning techniques for automatic singer classifica-
tion/identification [53, 75, 118, 131]. In general, these methods consist of two
main steps: singer characteristic modeling based on solo voice and class label
identification. In the singer characteristic modeling step, acoustic signal infor-
mation is extracted to represent the music. Then specific mechanisms (e.g., a
statistical model and machine-learning algorithms are constructed to assign
songs to one of the predefined singer categories based on their extracted acous-
tic features. In addition, Shen et al. use multiple low-level features extracted
from both vocal and nonvocal music segments to enhance the identification
process with a hybrid architecture and build profiles of individual singer char-
acteristics based on statistical mixture models [109]. Fujihara et al. describe
a method for automatic singer identification from polyphonic musical audio
signals including sounds of various instruments [39].

1.3.8 Clustering

Clustering, as introduced in Section 1.2.3.5, is the task of separating a collec-
tion of data into different groups based on some criteria. Specifically in music
data mining, clustering aims at dividing a collection of music data into groups
of similar objects based on their pair-wise similarities without predefined class
labels.

There are several notable publications on music data clustering. An inter-
recording distance metric that characterizes diversity of pitch distribution
together with harmonic center of music pieces has been introduced to mea-
sure dissimilarities among musical features, based on chroma-based features
extracted from acoustic signals [78]. Camacho tracks the pitch strength trace
of the signal, determining clusters of pitch and unpitched sound based on the
criterion of the local maximization of the distance between the centroids [14].
Tsai, Rodgers, and Wang examine the feasibility of unsupervised clustering
of acoustic data of songs based on the singer’s voice characteristics, which
are extracted via vocal segment detection followed by solo vocal signal mod-
eling [117]. Li, Ogihara, and Zhu propose a clustering algorithm that inte-
grates features from both lyrics and acoustic data sources to perform bimodal
learning [73]. In order to reduce the dimensionality of music features, Jehan
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proposes a perceptually grounded model for describing music as a sequence
of labeled sound segments, for reducing data complexity as well as for com-
pressing audio [49]. In addition, some simple data representation formats are
introduced when performing clustering music collections. An illustrative ex-
ample is introduced by Pienimäki and Lemström, who propose a novel auto-
matic analysis method based on paradigmatic and surface level similarity of
music represented in symbolic form [96]. Kameoka, Nishimoto, and Sagayama
decompose the energy patterns diffused in time frequency space, that is, a
time series of power spectrum, into distinct clusters such that each of them is
originated from a single sound stream [52]. Peng et al. propose an approach
based on the generalized constraint of a clustering algorithm by incorporating
the constraints for grouping music by “similar” artists [95]. Cilibrasi, Vitányi,
and Wolf apply compression-based method to the clustering of pieces of music
[20].

1.3.9 Music Summarization

Creation of a concise and informative extraction that best summarizes an
original digital content is another challenge in music data mining and is ex-
tremely important in large-scale information organization and understand-
ing [108]. Recently, most of the music summarization for commercial use has
been manually generated from the original music recordings. However, since
a large volume of digital content has been made publicly available in vari-
ous media, in particular, the Internet, efficient approaches to automatic music
summarization are increasingly in demand.

Like text summarization, music summarization aims to determine the most
general and salient themes of a given music piece that may be used as a
representative of the music and readily recognized by a listener. Automatic
music summarization can be applied to music indexing, content-based mu-
sic retrieval, and Web-based music delivery [127]. Several research methods
are proposed in automatic music summarization. A music summarization sys-
tem [59] was developed on MIDI format, which utilized the repetition nature
of MIDI compositions to automatically recognize the main melody theme seg-
ment of a given piece of music and generate a music summary. Unfortunately,
MIDI is a symbolic score used by synthesizers and is totally different from sam-
pled audio format such as Waveform audio file format (WAV), which is highly
unstructured, and thus, MIDI summarization methods cannot be applied to
real music summarization. A music acoustic data summarization system de-
veloped by Logan and Chu [79] uses MFCCs to parameterize each piece of
music. Based on the MFCC features, either a cross-entropy measure or Hidden
Markov Model (HMM) is used to discover the song structure. Then heuristics
are applied to extract key phrases in terms of this structure. This summariza-
tion method is suitable for certain genres of music such as rock or folk music,
but it is less applicable to classical music. MFCCs were also used as features
in the work by Cooper and Foote [22, 23]. They use a two-dimensional (2-D)
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similarity matrix to represent music structure and generate a music summary.
A limitation to this approach is that it does not always produce an intuitive
summarization. Peeters, La Burthe, and Rodet [94] propose a multipass ap-
proach to generate music summaries. Xu, Maddage, and Shao [126] propose
effective algorithms to automatically classify and summarize music content.
Support vector machines are applied to classify music into pure music and
vocal music by learning from training data. Both for pure vocal music, a num-
ber of features are extracted to characterize the music content, respectively.
Based on calculated features, a clustering algorithm is applied to structure
the music content. Finally, a music summary is created based on clustering
and domain knowledge related to pure vocal music.

1.3.10 Advanced Music Data Mining Tasks

In the wake of the increasing popularity of music and the avalanche of various
music applications and softwares, the research directions of music data mining
tend to be diverse. Specifically, advanced data mining techniques based on
different learning metrics have emerged in the music data mining community.
A couple of learning tasks, involving multitask learning, multiinstance
learning, multilabel classification and so on, are introduced in this section.

Multitask: Multitask learning (MTL) [15] has attracted significant in-
terests in the data mining and machine-learning community during the last
decade [6, 12, 115, 128]. Many of the research publications on multitask learn-
ing have explored ideas in Bayesian hierarchical modeling [40], and such ap-
proaches have been successfully applied to information retrieval [12] and com-
puter vision [115]. For music data, multitask learning has comprehensive ap-
plications. For example, Ni et al. [88] employ a nonparametric Bayesian ap-
proach [114] for multitask learning in which the number of states is not fixed
a priori; the model is termed an infinite HMM (iHMM). To learn multiple iH-
MMs simultaneously, one for each sequential data set, the base distributions
of the iHMMs may be drawn from a nested Dirichlet Process (nDP) [103],
thus allowing intertask clustering.

Multiple-Instance: Multiple-instance learning (MIL) [29] trains classi-
fiers from lightly supervised data, for example, labeled collections of items,
known as bags, rather than labeled items. Particularly, in music data min-
ing, there are many high quality sources of metadata about musical infor-
mation such as Last.fm, the All Music Guide, Pandora.com, and so forth.
However, each source provides metadata only at certain granularities, that
is, it describes the music only at certain scales. For music data, clip (part of
tracks)-level classifiers can be used to refine descriptions from one granularity
to finer granularities, for example using audio classifiers trained on descrip-
tions of artists to infer descriptions of albums, tracks, or clips. This metadata
refinement problem is an MIL problem. Some publications are related to this
research area, for instance, Mandel and Ellis [83] formulated a number of
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music information related multiple-instance learning tasks and evaluated the
mixed-integer SVM (mi-SVM) and Multiple-Instance Learning via Embedded
Instance Selection (MILES) algorithms on them.

Multilabel: In machine learning, multilabel classification is the special
case within classification of assigning one of several class labels to an input
object. Unlike the better understood problem of binary classification, which
requires discerning between the two given classes, the multilabel one is a more
complex and less researched problem. Recently, multilabel classification has
been increasingly applied to the music categorization problem. For example,
Wang et al. [123] propose a multilabel music style classification approach,
called Hypergraph-integrated Support Vector Machine (HiSVM), which can in-
tegrate both music content and music tags for automatic music style classifica-
tion. Li and Ogihara [68] cast the emotion detection problem as a multilabel
classification problem, where the music sounds are classified into multiple
classes simultaneously.

Semisupervised Learning: Semisupervised learning is a type of
machine-learning technique that makes use of both labeled and unlabeled data
for training—typically a small amount of labeled data with a large amount of
unlabeled data. Semisupervised learning falls between unsupervised learning
(without any labeled training data) and supervised learning (with completely
labeled training data). Many machine-learning researchers have found that un-
labeled data, when used in conjunction with a small amount of labeled data,
can produce considerable improvement in learning accuracy. The acquisition
of labeled data for a learning problem often requires a skilled human agent to
manually classify training examples. The cost associated with the labeling pro-
cess thus may render a fully labeled training set infeasible, whereas acquisition
of unlabeled data is relatively inexpensive. In such situations, semisupervised
learning can be of great practical value. In music data mining, semisupervised
learning can be applied to the task of classifying music metadata. For in-
stance, Li and Ogihara [69] study the problem of identifying “similar” artists
using both lyrics and acoustic data. The approach uses a small set of labeled
samples for the seed labeling to build classifiers that improve themselves using
unlabeled data. You and Dannenberg [130] explore the use of machine learning
to improve onset detection functions. To solve the problem of training data,
they use a semisupervised learning technique combined with score alignment.
The result of alignment, is an estimate of the onset time of every note in the
MIDI file, and these estimates are improved by iteratively applying our onset
detector and then retraining on the new data.

Tensor-Based Learning: A tensor is a multidimensional array. More
formally, an N-way or Nth-order tensor is an element of the tensor product
of N vector spaces, each of which has its own coordinate system. Decomposi-
tions of higher-order tensors (e.g., N-way arrays with N ≥ 3) have applications
in psychometrics, chemometrics, signal processing, numerical linear algebra,
computer vision, numerical analysis, data mining, neuroscience, graph analy-
sis, and elsewhere [56]. Particularly, in data mining, tensor decomposition and
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factorization have comprehensive applications. For example, Liu et al. [77]
propose a text representation model, the Tensor Space Model (TSM), which
models the text by multilinear algebraic high-order tensor instead of the tra-
ditional vector. Sun, Tao, and Faloutsos [112] introduce the dynamic tensor
analysis (DTA) method to summarize high-order or high-dimensional data
and reveal the hidden correlations among data. In music data mining, tensor
analysis has its own applications in different aspects. Benetos and Kotropou-
los [9] propose an automatic music genre classification system using tensor
representations, where each recording is represented by a feature matrix over
time. An algorithm which performs shifted nonnegative tensor factorization
is presented to separate harmonic instruments from multichannel recordings,
extending shifted nonnegative matrix factorization to the multichannel case
(see FitzGerald, Cranitch, and Coyle [34]).

1.4 Conclusion

The term music data mining encompasses a number of different research and
development activities that have the common denominator of being related to
music data access and analysis [90]. In this chapter, we have introduced the
state of the art of music data mining, navigating from the basic data mining
tasks to specific music data mining applications. Some popular music data
mining tasks, such as music genre classification, singer identification, emotion
detection, instrument recognition, and so on, provide substantial benefits for
the real-world music management applications and softwares. In addition to
the research discussed above, there are many other research issues in music
data mining.

Data issues: These include mining various music data characteristics and
information from heterogeneous music databases, and the use of culture knowl-
edge.

• Mining different kinds of features in music: Music, to some extent, rep-
resents an information combination involving cultures, artists’ interests,
and so on. The very nature of music data may provide various unex-
plored features for research purposes, which denote diverse audio aspects
in terms of music itself. For example, when an artist is playing a melody,
the keynote (or mood) may change accompanied by the progress of the
melody. By extracting related features that can detect the emotion of
the artists, we can easily identify the emotion variation in this melody,
which helps us to understand the artist’s sentiment on the objects of
reference when he/she is composing.
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• Mining information from heterogeneous music data sources: Various
types of data describing different aspects related to music emerge in
the wake of the explosion of music information, such as music reviews,
music tags, and so on. The procedure of music data mining tasks may
be facilitated by taking into account such information. For instance, by
virtue of music tags, we can somehow improve music genre classifica-
tion; by incorporating music reviews, music emotion detection could be
easier and more reasonable. Moreover, we can explore the inner rela-
tionship among different music data sources, for example, users, songs,
artists, tags, reviews, and so on, and then deduce a high-level music
social network.

• Incorporation of culture knowledge: A particular characteristic of music
data is the culture difference. Music is an art form that can be shared by
people from different cultures because it crosses the barriers of national
languages and cultural backgrounds. For example, Western classical mu-
sic has passionate followers in China, and many persons in Europe are
keen on classical Indian music: all of them can enjoy music without the
need of a translation, which is normally required for accessing foreign
textual works [90]. Therefore, how to eliminate cultural differences in a
reasonable and understandable way is a special research direction.

Methodology issues:

• Interactive mining of music information: Interactive mining allows users
to focus on the search for patterns, providing and refining data mining
requests based on returned results [44]. It is an important aspect of music
information retrieval systems, since effective interactive mining can help
users to better describe their music information needs. For example, we
can utilize dynamic query form to facilitate interactions between users
and MIR systems.

Performance issues: These include efficiency and scalability of music
data mining algorithms, and the visualization of music data mining results.

• Efficiency and scalability of music data mining algorithms: Music
databases consist of a huge amount of data, for example, music meta-
data, acoustic features, and so on. A natural question is how to effec-
tively extract information from such databases. This requires music data
mining algorithms to be efficient and scalable [44]. In other words, the
running time of a music data mining algorithm must be predictable
and acceptable in large databases. The efficiency and scalability of al-
gorithms are then becoming key issues in the implementation of music
data mining systems.

• Visualization of music data mining results: Music data mining results
are usually represented as tables or simple plots, which cannot be vividly
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analyzed. In addition, some patterns hidden in the results cannot be eas-
ily identified by reviewing these simple representations. This is especially
crucial if the music data mining system is to be interactive.

The above issues are regarded as major challenges for the further evolution
of music data mining technology.
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[96] A. Pienimäki and K. Lemström. Clustering symbolic music using
paradigmatic and surface level analyses. In Proceedings of the Inter-
national Conference on Music Information Retrieval, pages 262–265,
2004.

[97] A. Pryakhin. Similarity Search and Data Mining Techniques for Ad-
vanced Database Systems. PhD thesis, Ludwig-Maximilians-Universität
München, 2006.

[98] L. Rabiner and B.H. Juang. Fundamentals of Speech Recognition. Pren-
tice Hall, Upper Saddle River, NJ, 1993.

[99] A. Rauber, E. Pampalk, and D. Merkl. Content-based music index-
ing and organization. In Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 409–410, ACM Press, New York, 2002.

[100] A. Rauber, E. Pampalk, and D. Merkl. Using psycho-acoustic models
and self-organizing maps to create a hierarchical structuring of music
by sound similarity. In Proceedings of the International Conference on
Music Information Retrieval, pages 71–80, 2002.

[101] J. Reed and C.H. Lee. A study on music genre classification based on
universal acoustic models. In Proceedings of the International Confer-
ence on Music Information Retrieval, pages 89–94, 2006.

[102] J.F. Roddick and M. Spiliopoulou. A survey of temporal knowledge
discovery paradigms and methods. IEEE Transactions on Knowledge
and Data Engineering, 14:750–767, 2002.

[103] A. Rodriguez, DB Dunson, and AE Gelfand. The nested Dirichlet pro-
cess (with discussion). Journal of American Statistical Association,
103:1131–1144, 2008.

[104] S. Sagayama, K. Takahashi, H. Kameoka, and T. Nishimoto. Specmurt
analysis: A piano-roll visualization of polyphonic music signal by de-
convolution of log-frequency spectrum. In ISCA Tutorial and Research
Workshop (ITRW) on Statistical and Perceptual Audio Processing, 2004.

[105] V. Sandvold, F. Gouyon, and P. Herrera. Percussion classification in
polyphonic audio recordings using localized sound models. In Proceed-
ings of the International Conference on Music Information Retrieval,
pages 537–540, 2004.

[106] D. Schnitzer, A. Flexer, G. Widmer, and A. Linz. A filter-and-refine
indexing method for fast similarity search in millions of music tracks.
In Proceedings of the International Conference on Music Information
Retrieval, pages 537–542, 2009.

 



40 Music Data Mining

[107] R. Scholz and G. Ramalho. Cochonut: Recognizing complex chords from
MIDI guitar sequences. In Proceedings of the International Conference
on Music Information Retrieval, pages 27–32, 2008.

[108] X. Shao, C. Xu, Y. Wang, and M.S. Kankanhalli. Automatic music
summarization in compressed domain. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, pages
261–264, 2004.

[109] J. Shen, B. Cui, J. Shepherd, and K.L. Tan. Toward efficient automated
singer identification in large music databases. In Proceedings of the
29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 59–66. ACM, 2006.

[110] J. Shen, J. Shepherd, and A. Ngu. InMAF: Indexing music databases via
multiple acoustic features. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, pages 778–780, ACM
Press, New York, 2006.

[111] M. Slaney, K. Weinberger, and W. White. Learning a metric for music
similarity. In Proceedings of the International Conference on Music
Information Retrieval, pages 313–381, 2008.

[112] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: dynamic
tensor analysis. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 374–383,
ACM Press, New York, 2006.

[113] P.N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Pearson Addison Wesley, Boston, 2006.

[114] Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. Hierarchical dirichlet
processes. Journal of American Statistical Association, 101(476):1566–
1581, 2006.

[115] S. Thrun and J. O’Sullivan. Discovering structure in multiple learning
tasks: The TC algorithm. In Proceedings of the International Conference
on Machine Learning, pages 489–497, 1996.

[116] M. Torrens, P. Hertzog, and J.L. Arcos. Visualizing and exploring per-
sonal music libraries. In Proceedings of the International Conference on
Music Information Retrieval, pages 421–424, 2004.

[117] W.H. Tsai, D. Rodgers, and H.M. Wang. Blind clustering of popular
music recordings based on singer voice characteristics. Computer Music
Journal, 28(3):68–79, 2004.

[118] W.H. Tsai, H.M. Wang, and D. Rodgers. Automatic singer identifica-
tion of popular music recordings via estimation and modeling of solo

 



Music Data Mining: An Introduction 41

vocal signal. In Proceedings of the 18th European Conference on Speech
Communication and Technology, pages 2993–2996, 2003.

[119] K.T.G. Tsoumakas, G. Kalliris, and I. Vlahavas. Multi-label classifica-
tion of music into emotions. In Proceedings of the International Confer-
ence on Music Information Retrieval, pages 325–330, 2008.

[120] R. Typke, F. Wiering, and R.C. Veltkamp. A survey of music informa-
tion retrieval systems. In Proceedings of the International Conference
on Music Information Retrieval, pages 153–160, 2005.

[121] G. Tzanetakis and P. Cook. Marsyas3D: A prototype audio browser-
editor using a large scale immersive visual and audio display. In Pro-
ceedings of the International Conference on Auditory Display (ICAD),
pages 250–254, 2001.

[122] G. Tzanetakis and P. Cook. Musical genre classification of audio sig-
nals. IEEE Transactions on Speech and Audio Processing, 10(5):293–
302, 2002.

[123] F. Wang, X. Wang, B. Shao, T. Li, and M. Ogihara. Tag integrated
multi-label music style classification with hypergraph. In Proceedings
of the International Conference on Music Information Retrieval, pages
363–368, 2009.

[124] E. Wold, T. Blum, D. Keislar, and J. Wheaten. Content-based classi-
fication, search, and retrieval of audio. IEEE Multimedia, 3(3):27–36,
1996.

[125] L. Xiao, A. Tian, W. Li, and J. Zhou. Using a statistic model to capture
the association between timbre and perceived tempo. In Proceedings
of the International Conference on Music Information Retrieval, pages
659–662, 2008.

[126] C. Xu, N.C. Maddage, and X. Shao. Automatic music classification and
summarization. IEEE Transactions on Speech and Audio Processing,
13(3):441–450, 2005.

[127] C. Xu, X. Shao, N.C. Maddage, M.S. Kankanhalli, and Q. Tian. Au-
tomatically summarize musical audio using adaptive clustering. In
2004 IEEE International Conference on Multimedia and Expo, 2004.
ICME’04, pages 2063–2066, 2004.

[128] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for
classification with Dirichlet process priors. Journal of Machine-Learning
Research, 8:35–63, 2007.

[129] Y.H. Yang, C.C. Liu, and H.H. Chen. Music emotion classification: A
fuzzy approach. In Proceedings of the 14th Annual ACM International
Conference on Multimedia, pages 81–84, ACM Press, New York, 2006.

 



42 Music Data Mining

[130] W. You and R. Dannenberg. Polyphonic music note onset detection us-
ing semi-supervised learning. In Proceedings of the International Con-
ference on Music Information Retrieval, pages 279–282, 2007.

[131] T. Zhang. Automatic singer identification. In Proceedings of the Inter-
national Conference on Multimedia and Expo, pages 33–36, 2003.

[132] T. Zhang and C.C.J. Kuo. Hierarchical system for content-based audio
classification and retrieval. In Conference on Multimedia Storage and
Archiving Systems III, SPIE, volume 3527, pages 398–409, 1998.

 



2

Audio Feature Extraction

George Tzanetakis

University of Victoria

CONTENTS

2.1 Audio Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.1 The Short-Time Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.1.2 Filterbanks, Wavelets, and Other Time-Frequency

Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2 Timbral Texture Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Spectral Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.2 Mel-Frequency Cepstral Coefficients . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.3 Other Timbral Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.4 Temporal Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.5 Song-Level Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Rhythm Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.1 Onset Strength Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.2 Tempo Induction and Beat Tracking . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.3 Rhythm Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4 Pitch/Harmony Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5 Other Audio Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6 Musical Genre Classification of Audio Signals . . . . . . . . . . . . . . . . . . . . . . . 66
2.7 Software Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

The automatic analysis of music stored as a digital audio signal requires a so-
phisticated process of distilling information. For example, a three-minute song
stored as uncompressed digital audio is represented digitally by a sequence al-
most 16 million numbers (3 [minutes] * 60 [seconds] * 2 [stereo channels] *
44100 [sampling rate]). In the case of tempo induction, these 16 million num-
bers need to somehow be converted to a single numerical estimate of the tempo
of the piece.

Audio feature extraction forms the foundation for any type of music data
mining. It is the process of distilling the huge amounts of raw audio data
into much more compact representations that capture higher level informa-
tion about the underlying musical content. As such, it is much more specific to
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music than the data mining processes that typically follow it. The most basic
digital audio representation is a sequence of quantized pulses in time corre-
sponding to the discretized displacement of air pressure that occurred when
the music was recorded. Humans (and many other organisms) make sense of
their auditory environment by identifying periodic sounds with specific fre-
quencies. At a very fundamental level music consists of sounds (some of which
are periodic) that start and stop at different moments in time. Therefore, rep-
resentations of sound that have a separate notion of time and frequency are
commonly used as the first step in audio feature extraction and are the topic
of the first section of this chapter. First, the short-time Fourier transform,
which is the most common audio representation used for feature extraction,
is reviewed followed by short descriptions of other audio representations such
as wavelets and filterbanks.

A common way of grouping audio features (or descriptors as they are
sometimes called) is based on the type of information they are attempting to
capture [56]. On an abstract level, one can identify different high-level aspects
of a music recording. The hierarchical organization in time is referred to as
rhythm and the hierarchical organization in frequency or pitch is referred to
as harmony. Timbre is the quality that distinguishes sounds of the same pitch
and loudness generated by different methods of sound production. We will
use the term timbral texture to refer to the more general quality of the mix-
ture of sounds present in music that is independent of rhythm and harmony.
For example the same piece of notated music played at the same tempo by a
string quartet and a saxophone quartet would have different timbral texture
characteristics in each configuration. In this chapter various audio feature ex-
traction methods that attempt to capture these three basic aspects of musical
information are reviewed. Some additional audio features that cover other as-
pects of musical information are also briefly described. The chapter ends with
a short description of audio genre classification as a canonical case study of
how audio feature extraction can be used as well as some references to freely
available software that can be used for audio feature extraction. Audio feature
extraction is a big topic and it would be impossible to cover it fully in this
chapter. Although our coverage is not complete we believe we describe most
of the common audio feature extraction approaches and the bibliography is
representative of the “state of the art” in this area in 2010.

2.1 Audio Representations

To analyze music stored as a recorded audio signal we need to devise rep-
resentations that roughly correspond to how we perceive sound through the
auditory system. At a fundamental level, such audio representations will help
determine when things happen in time and how fast they repeat (frequency).
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Therefore, the foundation of any audio analysis algorithm is a representa-
tion that is structured around time and frequency. In audio signal processing
an important property of time and frequency transform is invertibility which
means that the original audio signal or a very close approximation can be
reconstructed from the values of the transform. As the goal of audio feature
extraction is analysis, typically a lot of information needs to be discarded and
therefore perfect reconstruction is not as important.

Before discussing time and frequency representations, we briefly dis-
cuss how audio signals are represented digitally. Sound is created when air
molecules are set into motion by some kind of vibration. The resulting changes
in air pressure can be represented as a continuous signal over time. In order
to represent the continuous process in a finite amount of memory the contin-
uous signal is sampled at regular periodic intervals. The resulting sequence
of samples which still has continuous values is then converted to a sequence
of discretized samples through the process of quantization. For example CD
quality audio has a sampling rate of 44,100 Hz and a dynamic range of 16
bit. This means each second of sound is represented as 44,100 samples equally
spaced in time and each one of those samples is represented by 16 bits. One
fundamental result in signal processing is the Nyquist-Shannon sampling the-
orem [59] which states that if a function x(t) contains no frequencies higher
than B Hertz, it can be completely reconstructed from a series of points spaced
1

2B seconds apart. What this means is that if the highest frequency we are
interested in is B Hertz then we need to sample the signal at 2B Hertz or
higher. As the data rates of audio signals are very high this has important
implications. For example telephone quality speech typically has a sampling
rate of 16,000 Hz whereas CD audio has 44,100 Hz.

The short-time Fourier transform (STFT) is arguably the most common
time-frequency representation and has been widely used in many domains in
addition to music processing. In addition, other audio feature representations
such as the Mel-frequency cepstral coefficients (MFCCs) and chroma are based
on the STFT. An important factor in the wide use of the STFT is the high
speed with which it can be computed in certain cases when using the fast
Fourier transform algorithm.

2.1.1 The Short-Time Fourier Transform

The fundamental idea behind the short-time Fourier transform (STFT) as well
as many other time-frequency representations is to express a signal as a linear
combination of basic elementary signals that can be more easily understood
and manipulated. The resulting representation contains information about
how the energy of the signal is distributed in both time and frequency. The
STFT is essentially a discrete Fourier transform (DFT) adapted to provide
localization in time. The DFT has its origins in the Fourier series in which
any complicated continuous periodic function can be written as an infinite
discrete sum of sine and cosine signals. Similarly, the DFT can be viewed as a
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(a) Basis function (b) Time-domain waveform

(c) Windowed waveform (d) Windowed sinusoid

Figure 2.1
Example of discrete Fourier transform. Using the DFT, a short sequence of
time-domain samples such as the one shown in (b) is expressed as a linear
combination of simple sinusoidal signals such as the one shown in (a). Win-
dowing applies a bell-shaped curve to reduce artifacts due to discontinuities
when the waveform is periodically repeated (c) and (d).
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similar process of representing any finite, discrete signal (properties required
for processing by a computer) by a finite, discrete sum of discretized sine and
cosine signals. Figure 2.1(a) shows such a simple sinusoidal signal.

It is possible to calculate the DFT of an entire audio clip and show how the
energy of the signal is distributed among different frequencies. However, such
an analysis would provide no information about when these frequencies start
and stop in time. The idea behind the STFT is to process small segments of
the audio clip at a time and the DFT of each segment. The output of the DFT
is called a spectrum. The resulting sequence of spectrums (or spectra) contains
information about time as well as frequency. The process of obtaining a small
segment from a long audio signal can be viewed as a multiplication of the
original audio signal with signal that has the value 1 during the time period
of interest and the value 0 outside it. Such a signal is called a rectangular
window.

Any type of Fourier analysis assumes infinite periodic signals so processing
finite signals is done by effectively repeating them to form a periodic signal.
If the finite signal analyzed has been obtained by rectangular windowing then
there will be a large discontinuity at the point where the end of the signal is
connected to the start of the signal in the process of periodic repetition. This
discontinuity will introduce significant energy in all frequencies distorting the
analysis. Another way to view this is that the sharp slope of the rectangular
window causes additional frequencies in the entire spectrum. This distortion
of the spectrum is called spectral leakage. To reduce the effects of spectral
leakage, instead of using a rectangular window, a nonnegative smooth “bell-
shaped” curve is used. There are several variants named after the person
who proposed them with slightly different characteristics. Examples include:
Hann, Hamming, and Blackman. Figures 2.1(c) and 2.1(d) show the effect
of windowing on a time-domain waveform and a single sinusoid respectively.
Figure 2.2 shows the spectra of a mixture of two sinusoids with frequencies
of 1500 Hz and 3000 Hz sampled at 22050 Hz and weighted with rectangular,
Hamming, and Hann windows. As can be seen, windowing makes the spectrum
less spread and closer to the ideal theoretical result (which should be two single
peaks at the corresponding frequencies).

Formally, the DFT is defined as:

X[k] =
N−1∑
t=0

x[t]e−jkt
2π
N k = 0...N − 1 (2.1)

where X[k] is the complex number corresponding to frequency bin k or equiv-
alently a frequency of kFsN where Fs is the sampling frequency and N is the
number of frequency bins as well as the number of the time-domain samples
x[n].

The notation above is based on Euler’s relation:

ejθ = cosθ + jsinθ (2.2)
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Figure 2.2
Effect of windowing to the magnitude spectrum of the mixture of two sinu-
soids.

Therefore, one can think of the representation x[t] as a weighted sum (with
weights X[k]) of sinusoidal signals of a particular frequency kFsN with magni-
tudes:

|X[k]| =
√
Re(X[k])2 + Im(X[k])2 (2.3)

and phases:

φ[k] = −arctan
(

Im(X[k])
Re(X[k])

)
(2.4)

The obvious implementation of the DFT requires N multiplications for
each frequency bin resulting in a computational complexity of O(N2). It turns
out that it is possible to calculate the DFT much faster with complexity
O(N logN) if the size N is a power of 2. For example, for 512 points (a very
common choice in audio signal processing) the FFT is approximately 56.8
times faster than the direct FFT (5122/512 log2 512).

The identity of a sound is mostly affected by the magnitude spectrum
although the phase plays an important role especially near transient parts of
the signal such as percussion hits. Therefore, in the majority of audio feature
extraction for analyzing music only the magnitude spectrum is considered.

The human ear has a remarkably large dynamic range in audio perception.
The ratio of sound intensity of the quietest sound that the ear can hear to
the loudest sound that can cause permanent damage exceeds a trillion (1012).
Psychophysic experiments have determined that humans perceive intensities
approximately on a logarithmic scale in order to cope with this large dynamic
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Figure 2.3
Two magnitude spectra in dB corresponding to 20-msec excerpts from music
clips.

range. The decibel is commonly used in acoustics to quantify sound levels
relative to a 0 dB reference (defined as the sound pressure level of the softest
sound a person with average hearing can detect). The difference in decibels
between two sounds playing with power P1 and and P2 is:

10 log10

P2

P1
(2.5)

For example if the second sound has twice the power the difference is:

10 log10

(
P2

P1

)
= 10 log10 2 = 3dB (2.6)

The base-10 logarithm of 1 trillion is 12 resulting in an audio level of 120 dB.
Digital samples measure levels of sound pressure. The power in a sound wave
is the square of pressure. Therefore, the difference between two sounds with
pressure p1 and p2 is:

10 log10

P2

P1
= 10 log10

p2
2

p1
1

= 20 log10

p2

p1
(2.7)

The spectrum in dB can then be defined as:

|X[k]|dB = 20 log10(|X[k] + ε) (2.8)
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where ε is a very small number to avoid taking the logarithm of 0. Figure 2.3
shows two magnitude spectra in dB corresponding to 20-millisecond (msec)
frames from two different pieces of music.

2.1.2 Filterbanks, Wavelets, and Other Time-Frequency
Representations

In signal processing, a filterbank refers to any system that separates the in-
put signal into several subbands using an array (bank) of filters. Typically,
each subband corresponds to a subset of frequencies. There is no requirement
that the subband-frequency ranges are not overlapping or that the transfor-
mation is invertible. The STFT, wavelets, and many other types of signal
decompositions can all be viewed as filterbanks with specific constraints and
characteristics.

A common use of filterbanks in audio processing is as approximations to
how the human auditory system processes sound. For example from exper-
iments in psychophysics it is known that the sensitivity of the human ear
to different frequencies is not uniformly spaced along the frequency axis. For
example, a common approximation is the Mel filterbank in which filters are
uniformly spaced before 1 kHz and logarithmically spaced after 1 kHz. In
contrast the DFT can be thought of as a filterbank with very narrow-band fil-
ters that are linearly spaced between 0 Hz and Fs/2 where Fs is the sampling
frequency.

Music and audio signals in general change over time therefore we are inter-
ested in their frequency content locally in time. The STFT addresses this by
windowing a section of the signal and then taking its DFT. The time and fre-
quency resolution of the STFT is fixed based on the size of the window and the
sampling rate. Increasing the size of the window can make the estimation of
frequencies more precise (high-frequency resolution) but makes the detection
of when they take place (time resolution) less accurate. This time-frequency
trade-off is fundamental to any type of time-frequency analysis.

Wavelet analysis is performed by using variable time-frequency resolution
so that low frequencies are more precisely detected (high-frequency resolution)
but are not very accurately placed in time (low-time resolution) and high
frequencies are less precisely detected (low-frequency resolution) but are more
accurately placed in time (high-time resolution). The most common dyadic
type of the discrete wavelet transform can be viewed as a filterbank in which
each filter has half the frequency range of the filter with the closest center
frequency that is higher. Essentially, this means that each filter spans an octave
in frequency and has half/twice the bandwidth of the corresponding adjacent
filters. As an example, the filters in a dyadic discrete wavelet transform for a
sampling rate of 10,000 Hz would have the following bandwidths 2500–5000
Hz, 1250–2500, 725–1250, and so on. Each successive band (from high-center
frequency to low) can be represented by half the number of samples of the
previous one according to the Nyquist-Shannon sampling theorem. That way,
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the discrete wavelet transform is a transform that has the same number of
coefficients (similar to the DFT) as the original discrete signal.

Both the DFT and the DWT are mathematical and signal-processing tools
that do not take into account the characteristics of the human auditory sys-
tem. There are also alternative representations that take this information into
account typically termed auditory models. They are informed by experiments
in psychoacoustics and our increasing knowledge of the biomechanics of the
human ear and differ in the amount of detail and accuracy of their modeling
[61]. The more efficient versions are constructed on top of the DFT but the
more elaborate models do direct filtering followed by stages simulating the
inner hair cell mechanism of the ear. In general, they tend to be heavier com-
putationally and for some tasks such as automatic music genre classification
so far they do not show any advantages compared to more direct approaches.
However, they exhibit many of the perception characteristics of the human
ear so it is likely that they will be used especially in tasks that require rich,
structured representations of audio signals [50].

2.2 Timbral Texture Features

Features representing timbral information have been the most widely used
audio features and ones that have so far provided the best results when used
in isolation. Another factor in their popularity is their long history in the area
of speech recognition. There are many variations in timbral feature extraction
but most proposed systems follow a common general process. First, some
form of time-frequency analysis such as the STFT is performed followed by
summarization steps that result in a feature vector of significantly smaller
dimensionality. A similar approach can be used with other time-frequency
representations.

2.2.1 Spectral Features

Spectral features are directly computed on the magnitude spectrum and at-
tempt to summarize information about the general characteristics of the dis-
tribution of energy across frequencies. They have been motivated by research
in timbre perception of isolated notes of instruments [21]. The spectral cen-
troid is defined as the center of gravity of the spectrum and is correlated with
the perceived “brightness” of the sound. It is defined as:

Cn =
∑N−1
k=0 |X[k]|nk∑N−1

k=0 k
(2.9)

where n is the frame number to be analyzed, k is the frequency bin number,
and |X(k)|n is the corresponding magnitude spectrum.
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The spectral rolloff is defined as the frequency Rn below which 85% of the
energy distribution of the magnitude spectrum is concentrated:

Rn−1∑
n=0

= 0.85 ∗
N−1∑
n=0

|X[k]|n (2.10)

2.2.2 Mel-Frequency Cepstral Coefficients

The Mel-frequency cepstral coefficients (MFCCs) [10] are the most com-
mon representation used in automatic speech recognition systems and have
been frequently used for music modeling. Their computation consists of three
stages: (1) Mel-scale filterbank, (2) Log energy computation, and (3) discrete
cosine transform.

A computationally inexpensive method of computing a filterbank is to
perform the filtering by grouping STFT bins using triangular windows with
specific center frequencies and bandwidths. The result is a single energy value
per STFT frame corresponding to the output of each subband. The most
common implementation of MFCC is calculated using 13 linearly spaced filters
separated by 133.33 Hz between their center frequencies, followed by 27 log-
spaced filters (separated by a factor of 1.0711703 in frequency) resulting in 40
filterbank values for each STFT frame.

The next step consists of computing the logarithm of the magnitude of
each of the filterbank outputs. This can be viewed as a simple step of dy-
namic compression, making feature extraction less sensitive to variations in
dynamics.

The final step consists of reducing the dimensionality of the 40 filterbank
outputs by performing a discrete cosine transform (DCT) which is similar to
the discrete Fourier transform but uses only real numbers. It expresses a finite
set of values in terms of a sum of cosine functions oscillating at different fre-
quencies. The DCT is used frequently in compression applications because for
typical signals of interest it tends to concentrate most of the signal information
in few of the lower-frequency components and therefore higher-frequency com-
ponents can be discarded for compression purposes. In the “classic” MFCC
implementation the lower 13 coefficients are retained after transforming the
40 logarithmically compressed Mel filterbank outputs.

2.2.3 Other Timbral Features

There have been many other features proposed to describe short-term timbral
information. In this subsection we briefly mention them and provide citations
to where the details of their calculation can be found. Time-domain zero-
crossings can be used to measure how noisy is the signal and also somewhat
correlate to high-frequency content [56, 5]. Spectral bandwidth [5, 38, 34]
and octave-based spectral contrast [27, 34] are other features that attempt
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to summarize the magnitude spectrum. The spectral flatness measure and
spectral crest factor [1] are low-level descriptors proposed in the context of
the MPEG-7 standard [7].

Daubechies Wavelet Coefficient Histogram (DWCH) is a technique for au-
dio feature extraction based on the Discrete Wavelet Transform (DWT) [32].
It is applied in 3 seconds of audio using the db8 Daubechies wavelet filter [9]
with seven levels of decomposition. After the decomposition, the histograms
of the coefficients in each band are calculated. Finally, each histogram is char-
acterized by its mean, variance, and skewness as well as the subband energy
defined as the mean of the absolute coefficient values. The result is 7 (sub-
bands) * 4 (quantities per subband) = 28 features.

One of the major innovations that enabled the explosive growth of music
represented digitally is perceptual audio compression [40]. Audio compression
is frequently used to reduce the high data requirements of audio and music.
Audio data does not compress well using generic data compression algorithms
so specialized algorithms have been developed. The majority of audio coding
algorithms are lossy meaning that the original data can not be reconstructed
exactly from the compressed signal. They are frequently based on some form
of time-frequency representation and they achieve compression by allocating
different number of bits to different parts of the signal. One of the key inno-
vations in audio coding is the use of psychoacoustics (i.e., the scientific study
of sound perception by humans) to guide this process so that any artifacts
introduced by the compression are not perceptible.

There has been some interest in computing audio features directly in the
compressed domain as part of the decompression process. Essentially, this
takes advantage of the fact that a type of time-frequency analysis has already
been performed for encoding purposes and it is not necessary to repeat it after
decompression. The type of features used are very similar to the ones we have
described except for the fact that they are computed directly on the com-
pressed data. Early works mainly focused on the MPEG audio compression
standard and the extraction of timbral texture features [55, 45]. More recently,
the use of newer sparse overcomplete representations as the basis for audio
feature extraction has been explored [47] covering timbral texture, rhythmic
content, and pitch content.

2.2.4 Temporal Summarization

The features that have been described so far characterize the content of a very
short segment of music audio (typically around 20–40 milliseconds) and can be
viewed as different ways of summarizing frequency information. Frequently,
a second step of temporal summarization is performed to characterize the
evolution of the feature vectors over a longer time frame of around 0.5 to 1
seconds. We can define a “texture” window TM [n] of size M corresponding
to analysis frame n as the sequence of the previous M − 1 computed feature
vectors including the feature vector corresponding to n:
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TM [n] = F [n−M + 1]...F [n] (2.11)

Temporal integration is performed by summarizing the information con-
tained in the texture window to a single feature vector. In other words, the
sequence of M past feature vectors is “collapsed” to a single feature vector. At
the one extreme, the texture window can be advanced by one analysis frame at
a time in which case the resulting sequence of temporally summarized feature
vectors has the same sampling rate as the original sequence of feature vectors
[56]. At the other extreme, temporal integration can be performed across the
entire length of the audio clip of interest resulting in a single feature vector
representing the clip (sometimes such features are termed song level [35] or
aggregate features [5]). Figure 2.4 shows schematically a typical feature ex-
traction process starting with a time-frequency representation based on the
STFT, followed by the calculation of MFCC (frequency) summarization and
ending with summarization of the resulting feature vector sequence over the
texture window.

There is no consistent terminology describing temporal summarization.
Terms that have been used include: dynamic features [44, 36], aggregate fea-
tures [5], temporal statistics [38], temporal feature integration [37], fluctuation
patterns [46], and modulation features [30].

Statistical moments such as the mean, standard deviation, and the covari-
ance matrix can be used to summarize the sequence of feature vectors over
the texture window into a single vector. For example a common approach is
to compute the means and variances (or standard deviations) of each feature
over the texture window [56]. Figure 2.5 shows the original trajectory of spec-
tral centroids over a texture window as well as the trajectory of the running
mean and standard deviation of the spectral centroid for two pieces of music.

Another alternative is to use the upper triangular part of the covariance
matrix as the feature vector characterizing the texture window [35]. Such
statistics capture the variation of feature vectors within a texture window but
do not directly represent temporal information.

Another possibility is to utilize techniques from multivariate time-series
modeling to characterize the feature vector sequence that better preserve tem-
poral information. For example, multivariate autoregressive models have been
used to model temporal feature evolution [37]. The temporal evolution of the
feature vectors can also be characterized by performing frequency analysis
on their trajectories over time and analyzing their periodicity characteris-
tics. Such modulation features show how the feature vectors change over time
and are typically calculated at rates that correspond to rhythmic events. Any
method of time-frequency analysis can be used to calculate modulation fea-
tures but a common choice is the short-time Fourier transform.

As a representative example of calculating modulation frequencies we
briefly describe the approach proposed by McKinney and Breebaart [36]. A
standard MFCC computation is performed resulting in a sequence of 64 fea-
ture vectors each with 13 dimensions characterizing a texture window of 743
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Figure 2.4
Feature extraction showing how frequency and time summarization with a
texture window can be used to extract a feature vector characterizing timbral
texture.
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(a) Centroid (b) Mean Centroid
over Texture Window

(c) Standard Devia-
tion of Centroid over
Texture Window

Figure 2.5
The time evolution of audio features is important in characterizing musical
content. The time evolution of the spectral centroid for two different 30-second
excerpts of music is shown in (a). The result of applying a moving mean
and standard deviation calculation over a texture window of approximately 1
second is shown in (b) and (c).

milliseconds of audio. A power spectrum of size 64 using a DFT is calculated
for each of the 13 coefficients/dimensions resulting in 13 power spectra which
are then summarized in four frequency bands (0 Hz, 1 − 2 Hz, 3 − 15 Hz,
20 − 43 Hz) that roughly correspond to musical beat rates, speech syllabic
rates, and modulations contributing to perceptual roughness. So, the final
representations for the 13× 64 matrix of feature values of the texture window
is 4× 13 = 52 dimensions.

A final consideration is the size of the texture windows and the amount of
overlap between them. Although the most common approach is to use fixed
window and hop sizes there are alternatives. Aligning texture windows to
note events can provide more consistent timbral information [60]. In many
music analysis applications such as cover song detection it is desired to obtain
an audio feature representation that is to some extent tempo invariant. One
way to achieve this is using so-called beat-synchronous features which as their
name implies are calculated using estimated beat locations as boundaries [14].
Although more commonly used with features that describe pitch content they
can also be used for timbral texture modeling.

2.2.5 Song-Level Modeling

Frequently, in music data mining the primary unit of consideration is an entire
track or excerpt of a piece of music. The simplest and most direct type of repre-
sentation is a single feature vector that represents the entire piece of music un-
der consideration. This is typically accomplished by temporal summarization
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techniques such as the ones described in the previous section applied to the
entire sequence of feature vectors. In some cases, two stages of summarization
are performed: one at the texture window level and one across the song [56].
The effectiveness of different parameter choices and temporal summarization
methods has also been explored [5].

In other music data mining problems the entire sequence of feature vectors
is retained. These problems typically deal with the internal structure within a
music piece rather than the relations among a collection of pieces. For example
in audio segmentation [16, 54] algorithms the locations in time where the
musical content changes significantly (such the transition from a singing part
to an electric guitar solo) are detected. Audio structure analysis goes a step
further and detects repeating sections of a song and their form such as the
well-known AABA form [8]. Sequence representations are also used in cover
song detection [14].

A representation that is frequently utilized in structure analysis is the
self-similarity matrix. This matrix is calculated by calculating pair-wise simi-
larities between feature vectors vi and vj derived from audio analysis frames
i and j.

s(i, j) = sim(vi,vj) (2.12)

where sim is a function that returns a scalar value corresponding to some
notion of similarity (or symmetrical distance) between the two feature vectors.
Note that music is generally self-similar with regular structure and repetitions,
which can be revealed through the self-similarity matrix.

Figure 2.6 shows an example of a self-similarity matrix calculated for a
piece of HipHop/Jazz fusion using simply energy contours (shown to the left
and bottom of the matrix). The regular structure at the beat and measure
level as well as some sectioning can be observed.

The final variation in song-level representations of audio features is to
model each music piece as a distribution of feature vectors. In this case, a
parametric distribution form (such as a Gaussian Mixture Model [2]) is as-
sumed and its parameters are estimated from the sequence of feature vectors.
Music data mining tasks such as classification are performed by considering
distance functions between distributions typically modeled as mixture models
such as the KL-divergence or Earth Mover’s Distance [35, 26].

2.3 Rhythm Features

Automatically extracting information related to rhythm is also an important
component of audio MIR systems and has been an active area of research for
over 20 years. A number of different subproblems within this area have been
identified and explored. The most basic approach is finding the average tempo
of the entire recording which can be defined as the frequency with which a
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Figure 2.6
Self-similarity matrix using RMS contours.

human would tap their foot while listening to the same piece of music. The
more difficult task of beat tracking consists of estimating time-varying tempo
(frequency) as well as the locations in time of each beat (phase). Rhythmic
information is hierarchical in nature and tempo is only one level of the hi-
erarchy. Other levels frequently used and estimated by audio MIR systems
are tatum (defined as the shortest commonly occurring time interval), beat
or tactus (the preferred human tapping tempo), and bar or measure. For
some MIR applications such as automatic classification it is possible to use a
a representation that provides a salience value for every possible tempo, for
example, the beat histograms described in [56]. Rhythm analysis approaches
can be characterized in different ways. The first and most important distinc-
tion is by the type of input: most of the earlier beat tracking algorithms used
a symbolic representation while audio signals have been used more recently.
Symbolic algorithms can still be utilized with audio signals provided an in-
termediate transcription step is performed, typically audio onset detection.
Another major distinction between the algorithms is the broad approach used
which includes rule-based, autocorrelative, oscillating filters, histogramming,
multiple agent, and probabilistic. A good overview of these approaches can be
found in Chapter 4 of Klapuri and Davy [23].
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Figure 2.7
Time-domain representation and onset detection function. The top panel de-
picts the time-domain representation of a fragment of a polyphonic jazz record-
ing, below which is displayed its corresponding spectrogram. The bottom panel
plots both the onset detection function SF (n) (gray line), as well as its fil-
tered version (black line). The automatically identified onsets are represented
as vertical dotted lines.

2.3.1 Onset Strength Signal

Frequently, the first step in rhythm feature extraction is the calculation of the
onset strength signal. The goal is to calculate a signal that has high values at
the onsets of musical events. By analyzing the onset strength signal to detect
common recurring periodicities it is possible to perform tempo induction, beat
tracking as well as other more sophisticated forms of rhythm analysis. Other
names used in the literature include onset strength function and novelty curve.

The onset detection algorithm described is based on a recent tutorial article
by Dixon [12], where a number of onset detection algorithms were reviewed
and compared on two data sets. Dixon concluded that the use of a spectral
flux detection function for onset detection resulted in the best performance
versus complexity ratio.

The spectral flux as an onset detection function is defined as:

SF (n) =
N/2∑
k=0

H(|X(n, k)| − |X(n− 1, k)|) (2.13)

where H(x) = x+|x|
2 is the half-wave rectifier function, X(n, k) represents the

k-th frequency bin of the n-th frame of the power magnitude (in dB) of the
short-time Fourier transform, and N is the corresponding Hamming window
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size. The bottom panel of Figure 2.7 plots the values over time of the onset
detection function SF (n) for an jazz excerpt example.

The onsets are subsequently detected from the spectral flux values by a
causal peak picking algorithm, that attempts to find local maxima as follows.
A peak at time t = nH

fs is selected as an onset if it satisfies the following
conditions:

SF (n) ≥ SF (k) ∀k : n− w ≤ k ≤ n+ w (2.14)

SF (n) >
∑k=n+w
k=n−w SF (k)
mw + w + 1

× thres + δ (2.15)

where w = 6 is the size of the window used to find a local maximum, m = 4
is a multiplier so that the mean is calculated over a larger range before the
peak, thres = 2.0 is a threshold relative to the local mean that a peak must
reach in order to be sufficiently prominent to be selected as an onset, and
δ = 10−20 is a residual value to avoid false detections on silent regions of the
signal. All these parameter values were derived from preliminary experiments
using a collection of music signals with varying onset characteristics.

As a way to reduce the false detection rate, the onset detection function
SF (n) is smoothed (see bottom panel of Figure 2.7), using a Butterworth filter
defined as:

H(z) =
0.1173 + 0.2347z−1 + 0.1174z−2

1− 0.8252z−1 + 0.2946z−2
(2.16)

In order to avoid phase distortion (which would shift the detected onset
time away from the SF(n) peak) the input data is filtered in both the for-
ward and reverse directions. The result has precisely zero-phase distortion,
the magnitude is the square of the filter’s magnitude response, and the filter
order is double the order of the filter specified in the equation above.

2.3.2 Tempo Induction and Beat Tracking

Many pieces of music are structured in time on top of an underlying semi-
regular sequence of pulses frequently accentuated by percussion instruments
especially in modern popular music. The basic tempo of a piece of music
is the rate of musical beats/pulses in time, sometimes also called the foot-
tapping rate for obvious reasons. Tempo induction refers to the process of
estimating the tempo of an audio recording. Beat tracking is the additional
related problem of locating the positions in time of the associated beats.

In this section we describe a typical method for tempo induction as a
representative example and provide pointers to additional literature in the
topic. The first step is the calculation of the onset strength signal as described
above. Figure 2.8 shows an example of an onset strength signal for a piece of
HipHop/Jazz fusion showing periodicities at the beat and measure level. The
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Figure 2.8
Onset strength signal.

autocorrelation of the onset strength signal will exhibit peaks at the lags cor-
responding to the periodicities of the signal. The autocorrelation values can
be warped to form a beat histogram which is indexed by tempos in beats-
per-minute (BPM) and has values proportional to the sum of autocorrelation
values that map to the same tempo bin. Typically, either the highest or the
second highest peak of the beat histogram corresponds to the tempo and can
be selected with peak picking heuristics. Figure 2.9 shows two example beat
histograms from 30-second clips of HipHop Jazz (left) and Bossa Nova (right).
As can be seen in both histograms the prominent periodicities or candidate
tempos are clearly visible. Once the tempo of the piece is identified the beat
locations can be calculated by locally fitting tempo hypothesis with regularly
spaced peaks of the onset strength signal. There has been a systematic eval-
uation of different tempo induction methods [20] in the context of the Music
Information Retrieval Evaluation Exchange (MIREX) [13].

Frequently, a subband decomposition is performed so that periodicities at
different frequency ranges can be identified. For example, the bass drum sound
will mostly affect low frequency whereas a snare hit will affect all frequen-
cies. Figure 2.10 shows a schematic diagram of the beat histogram calculation
method described originally by Tzanetakis and Cook [56]. A discrete wavelet
transform filterbank is used as the front-end, followed by multiple channel
envelope extraction and periodicity detection.
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Figure 2.9
Beat histograms of HipHop/Jazz and Bossa Nova.

2.3.3 Rhythm Representations

The beat histogram described in the previous section can be viewed as a
song-level representation of rhythm. In addition to the tempo and related pe-
riodicities, the total energy and/or height of peaks represent the amount of
self-similarity that the music has. This quantity has been termed beat strength
and has been shown to be a perceptually salient characteristic of rhythm. For
example, a piece of rap music with a tempo of 80 BPM will have more beat
strength than a piece of country music at the same tempo. The spread of
energy around each peak indicates the amount of tempo variations and the
ratios between the tempos of the prominent peaks give hints about the time
signature of the piece. A typical approach is to further reduce the dimension-
ality of the beat histogram by extracting characteristic features such as the
location of the highest peak and its corresponding height [56]. A thorough
investigation of various features for characterizing rhythm has been presented
by Gouyon et al. [19].

An alternative method of computing a very similar representation to the
beat histogram is based on the self-similarity matrix and termed the beat spec-
trum [17]. Another approach models the rhythm characteristics of patterns as
a sequence of audio features over time [42]. A dynamic time warping algo-
rithm can be used to align the time axis of the two sequences and allow their
comparison. Another more recent approach is to identify rhythmic patterns
that are characteristic of a particular genre automatically [52] and then use
their occurrence histogram as a feature vector.

One interesting question is whether rhythm representations should be
tempo invariant or variant. To some extent, the answer depends on the task.
For example if one is trying to automatically classify speed metal (a genre of
rock music) pieces then absolute tempo is a pretty good feature to include.
On the other hand, classifying something as a waltz has more to do with
the ratios of periodicities rather than absolute tempo. Representations that
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Figure 2.10
Beat histogram calculation.

are to some degree tempo invariant have also been explored. Dynamic peri-
odicity wrapping is a dynamic programming technique used to align average
periodicity spectra obtained from the onset strength signal [24]. Tempo in-
variance is achieved through the alignment process. The fast Melin transform
(FMT) is a transform that is invariant to scale. It has been used to provide
a theoretically tempo invariant (under the assumption that tempo is scaled
uniformly throughout the piece) representation by taking the FMT of the au-
tocorrelation of the onset strength function [25]. An exponential grouping of
the lags of the autocorrelation function of the onset strength signal can also
be used for a tempo-invariant representation [62]. Beat histograms can also be
used as the basis for a tempo invariant representation by using a logarithmi-
cally spaced lag-axis [22]. The algorithm requires the estimation of a reference
point. Experiments comparing four periodicity representations in the spec-
tral or temporal domains using the autocorrelation and the discrete Fourier
transform of the onset strength signal have also been conducted [43].
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2.4 Pitch/Harmony Features

In other cases, for example in cover song identification or automatic chord
detection, it is desired to have a representation that is related to the pitch
content of the music rather than the specifics of the instruments and voices
that are playing. Conceivably, a fully automatically transcribed music score
could be used for this purpose. Unfortunately, current automatic transcription
technology is not robust enough to be used reliably.

Instead, the most common pitch content representation is the Pitch and
Pitch Class Profile (PCP) (other alternative names used in literature are pitch
histograms and chroma vectors). The pitch profile measures the occurrence
of specific discrete musical pitches in a music segment and the pitch class
profile considers all octaves equivalent essentially folding the pitch profile into
12 pitch classes. The pitch profile and pitch class profile are strongly related
to the underlying harmony of the music piece. For example, a music segment
in C major is expected to have many occurrences of the discrete pitch classes
C, E, and G that form the C major chord. These representations are used
for a variety of tasks including automatic key identification [49, 31], chord
detection [49, 31], cover song detection [14, 48, 33], and polyphonic audio-
score alignment [39].

There are two major approaches to the computation of the PCP. The first
approach directly calculates the PCP by appropriately mapping and folding
all the magnitude bins of a fast Fourier transform. The terms chroma and
chromagram are used to describe this process [4]. Each FFT bin is mapped to
its closest note, according to:

f(p) = 440 ∗ 2p−69/12 (2.17)

where p is the note number. This is equivalent to segmenting the magnitude
spectrum into note regions. The average magnitude within each region is cal-
culated resulting in a pitch histogram representation. The pitch histogram is
then folded so that all octaves map to the same pitch class resulting into a
vector of size 12. The FFT-based calculation of chroma has the advantage
that it is efficient to compute and has consistent behavior throughout the
song. However, it is affected by nonpitched sound sources such as drums and
the harmonics of pitch sound sources are mapped to pitches which reduces
the potential precision of the representation.

An alternative is to utilize multiple pitch detection to calculate the pitch
and pitch class profiles. If the multiple pitch detection was perfect then this
approach would eliminate the problems of chroma calculation; however, in
practice pitch detection especially in polyphonic audio is not particularly ro-
bust. The errors tend to average out but there is no consensus about whether
the pitch-based or FFT-based approach is better. Multiple-pitch detection
typically operates in an incremental fashion. Initially, the dominant pitch is
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detected and the frequencies corresponding to the fundamental and the asso-
ciated harmonics are removed for example by using comb filtering. Then the
process is repeated to detect the second most dominant pitch.

Pitch detection has been a topic of active research for a long time mainly
due to its importance in speech processing. In this chapter we briefly out-
line two common approaches. The first approach is to utilize time-domain
autocorrelation of the signal [6]:

R(τ) =
1
N

N−1−m∑
n=0

x[n]x[n+m] 0 ≤ m < M (2.18)

An alternative used in the YIN pitch extraction method [11] is based on
the difference function:

dt =
N−1∑
n=0

(x[n]− x[n+ τ ])2 (2.19)

The dips in the difference function correspond to periodicities. In order to
reduce the occurrence of subharmonic errors, YIN employs a cumulative mean
function which de-emphasizes higher period dips in the difference function.

Independently of their method of calculation, PCPs can be calculated using
a fixed size analysis window. This occasionally will result in inaccuracies when
a window contains information from two chords. The use of beat synchronous
features [14] can help improve the results as by considering windows that are
aligned with beat locations it is more likely the the pitch content information
remains stable within an analysis window.

2.5 Other Audio Features

In addition to timbral texture, rhythm, and pitch content there are other
facets of musical content that have been used as the basis for audio feature
extraction. Another important source of information is the instrumentation
of audio recordings i.e., what instruments are playing at any particular time
of an audio recording. For example it is more likely that a saxophone will be
part of a jazz recording than a recording of country music although of course
there are exceptions. The classification of musical instrument in a polyphonic
context has been explored [15] but so far has not been evaluated in the context
of other music data mining tasks such as classification.

Until now, all the features described characterize the mixture of sound
sources that comprise the musical signal. Another possibility is to character-
ize individually each sound source. Feature extraction techniques for certain
types of sound sources have been proposed but they are not widely used
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partly due to the difficulty of separating and/or characterizing individual
sound source in a complex mixture of sounds such as music. An example
is automatic singer identification. The most basic approach is to use features
developed for voice/speech identification directly on the mixed audio signal
[63]. More sophisticated approaches first attempt to identify the parts of the
signal containing vocals and in some cases even attempt to separately charac-
terize the singing voice and reduce the effect of accompaniment [18]. Another
type of sound source that has been explored for audio feature extraction is
the bass line [28, 53].

In many modern pop and rock recordings each instrument is recorded sep-
arately and the final mix is created by a recording producer/engineer(s) who
among other transformations add effects such as reverb or filtering and spa-
tialize individual tracks using stereo panning cues. For example the amount of
stereo panning and placement of sources remains constant in older recordings
that tried to reproduce live performances compared to more recent recordings
that would be almost impossible to realize in a live setting. Stereo panning
features have recently been used for audio classification [57, 58].

2.6 Musical Genre Classification of Audio Signals

In the last 10 years musical genre classification of audio signals has been
widely studied and can be viewed as a canonical problem in which audio
feature extraction has been used. Frequently, new approaches to audio feature
extraction are evaluated in the context of musical genre classification. They
include sparse overcomplete representations [47] as well as bio-inspired joint
acoustic and modulation-frequency representations [41].

Audio classification has a long history in the area of Speech Recognition
but has only recently been applied to music. Even though there was some
earlier work [29, 51] a good starting point for audio-based musical genre clas-
sification is the system that was proposed in 2002 by Tzanetakis [56].

Once the audio features are extracted they need to be used to “train” a
classifier using supervised learning techniques. This is accomplished using all
the labeled audio feature representations for a training collection track. If the
audio feature representation has been summarized over the entire track to a
single high-dimensional feature vector then this corresponds to the “classic”
formulation of classification and any machine-learning classifier can be used
directly. Examples of classifiers that have been used in the context of audio-
based music classification include: Gaussian Mixture Models [3, 56], support
vector machines [35], and AdaBoost [5]. Another alternative is to perform
classification in smaller segments and then aggregate the results using ma-
jority voting. A more complicated approach (frequently called bag-of-frames)
consists of modeling each track using distribution estimation methods, for
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example, a Gaussian Mixture Model trained using the EM-algorithm. In this
case, each track is represented as a probability distribution rather than a sin-
gle high-dimensional point (feature vector). The distance between the prob-
ability distributions can be estimated for example using KL-divergence or
approximations of it for example using the Monte-Carlo method depending
on the particular parametric form used for density estimation. By establish-
ing a distance metric between tracks it is possible to perform retrieval and
classification by simple techniques such as k-nearest neighbors [3].

Evaluation of classification is relatively straightforward and in most ways
identical to any classification task. The standard approach is to compare the
predicted labels with ground truth labels. Common metrics include classi-
fication accuracy as well as retrieval metrics such as precision, recall, and
f-measure. When retrieval metrics are used it is assumed that for a particular
query relevant documents are the tracks with the same genre label. Cross-
validation is a technique frequently used in evaluating classification where the
labeled data is split into training and testing sets in different ways to en-
sure that the metrics are not influenced by the particular choice of training
and testing data. One detail that needs to be taken into account is the so-
called album effect in which classification accuracy improves when tracks from
the same album are included in both training and testing data. The cause is
recording production effects that are common between tracks in the same al-
bum. The typical approach is to ensure that when performing cross-validation
tracks from the same album or artist only go to either the training or testing
data set.

Classification accuracy on the same data set and using the same cross-
validation approach can be used for comparing the relative performance of
different algorithms and design choices. Interpreting the classification accu-
racy in absolute terms is trickier because of the subjective nature of genre
labeling as has already been discussed in the section on ground truth label-
ing. In the early years of research in audio-based musical genre classification
each research group utilized different data sets, cross-validation approaches,
and metrics making it hard to draw any conclusions about the merits of dif-
ferent approaches. Sharing data sets is harder due to copyright restrictions.
The Music Information Retrieval Evaluation Exchange [13] is an annual event
where different MIR algorithms are evaluated using a variety of metrics on dif-
ferent tasks including several audio-based classification tasks. The participants
submit their algorithms and do not have access to the data which addresses
both the copyright problem and the issue of overfitting to a particular data
set. Table 2.1 shows representative results of of the best performing system in
different audio classification tasks from MIREX 2009. With the exception of
audio tag classification all the results are percentages of classification accuracy.
For audio tag classification, the average f-measure is used instead.
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Genre Classification 66.41
Genre Classification (Latin) 65.17
Audio Mood Classification 58.2
Artist Identification 47.65
Classical Composer Identification 53.25
Audio Tag Classification 0.28

Table 2.1
Audio-Based Classification Tasks for Music Signals (MIREX 2009)

Name URL
Programming

Language
Auditory Toolbox tinyurl.com/3yomxwl MATLAB
CLAM clam-project.org/ C++
D. Ellis Code tinyurl.com/6cvtdz MATLAB
HTK htk.eng.cam.ac.uk/ C++
jAudio tinyurl.com/3ah8ox9 Java
Marsyas marsyas.info C++/Python
MA Toolbox pampalk.at/ma/ MATLAB
MIR Toolbox tinyurl.com/365oojm MATLAB
Sphinx cmusphinx.sourceforge.net/ C++
VAMP Plugins www.vamp-plugins.org/ C++

Table 2.2
Software for Audio Feature Extraction

2.7 Software Resources

Although frequently researchers implement their own audio feature extraction
algorithms there are several software collections that are freely available that
contain many of the methods described in this chapter. They have enabled
researchers more interested in the data mining and machine-learning aspects
of music analysis to build systems more easily. They differ in the program-
ming language/environment they are written, the computational efficiency of
the extraction process, their ability to deal with batch processing of large
collections, their facilities for visualizing feature data, and their expressive-
ness/flexibility in describing complex algorithms.

Table 2.2 summarizes information about some of the most commonly used
software resources as of 2010. The list is by no means exhaustive but does
provide reasonable coverage of what is available. Several of the figures in this
chapter were created using Marsyas and some using custom MATLABTM

code.

 

http://cobweb.ecn.purdue.edu/~malcolm/interval/1998-010/
http://clam-project.org/
http://www.ee.columbia.edu/~dpwe/resources/matlab/
http://htk.eng.cam.ac.uk/
http://sourceforge.net/projects/jmir/files/jAudio/
http://marsyas.info/
http://pampalk.at/ma/
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
http://cmusphinx.sourceforge.net/
http://www.vamp-plugins.org/


Audio Feature Extraction 69

2.8 Conclusion

Musical signals in the audio domain contain an enormous amount of informa-
tion that needs to be distilled in order to apply music mining techniques. The
most common facets of music that are modeled are timbral texture, rhythmic
structure, and pitch content. Most audio features are built on top of time-
frequency representations and a large variety of different feature sets have
been proposed in the literature to model different aspects of music. It is rela-
tively straightforward using freely available software to extract audio features
and perform fundamental music mining tasks such as automatic musical genre
classification.
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The concept of sparsity has attracted considerable interest in the field of ma-
chine learning in the past few years. Sparse feature vectors contain mostly
values of zero and one or a few nonzero values. Although these feature vectors
can be classified by traditional machine learning algorithms, such as Support
Vector Machines (SVMs), there are various recently developed algorithms that
explicitly take advantage of the sparse nature of the data, leading to massive
speedups in time, as well as improved performance. Some fields that have
benefited from the use of sparse algorithms are finance, bioinformatics, text
mining [1], and image classification [4]. Because of their speed, these algo-
rithms perform well on very large collections of data [2]; large collections are
becoming increasingly relevant given the huge amounts of data collected and
warehoused by Internet businesses.
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In this chapter, we discuss the application of sparse feature vectors in the
field of audio analysis, and specifically their use in conjunction with prepro-
cessing systems that model the human auditory system. We present early re-
sults that demonstrate the applicability of the combination of auditory-based
processing and sparse coding to content-based audio analysis tasks.

We present results from two different experiments: a search task in which
ranked lists of sound effects are retrieved from text queries, and a music in-
formation retrieval (MIR) task dealing with the classification of music into
genres.

3.1 Introduction

Traditional approaches to audio analysis problems typically employ a short-
window fast Fourier transform (FFT) as the first stage of the processing
pipeline. In such systems a short, perhaps 25 ms, segment of audio is taken
from the input signal and windowed in some way, then the FFT of that seg-
ment is taken. The window is then shifted a little, by perhaps 10 ms, and the
process is repeated. This technique yields a two-dimensional spectrogram of
the original audio, with the frequency axis of the FFT as one dimension, and
time (quantized by the step-size of the window) as the other dimension.

While the spectrogram is easy to compute, and a standard engineering tool,
it bears little resemblance to the early stages of the processing pipeline in the
human auditory system. The mammalian cochlea can be viewed as a bank of
tuned filters the output of which is a set of band-pass filtered versions of the
input signal that are continuous in time. Because of this property, fine-timing
information is preserved in the output of cochlea, whereas in the spectrogram
described above, there is no fine-timing information available below the 10 ms
hop-size of the windowing function.

This fine-timing information from the cochlea can be made use of in later
stages of processing to yield a three-dimensional representation of audio, the
stabilized auditory image (SAI) [11], which is a movie-like representation of
sound which has a dimension of “time-interval” in addition to the standard
dimensions of time and frequency in the spectrogram. The periodicity of the
waveform gives rise to a vertical banding structure in this time interval dimen-
sion, which provides information about the sound which is complementary to
that available in the frequency dimension. A single example frame of a stabi-
lized auditory image is shown in Figure 3.1.

While we believe that such a representation should be useful for audio
analysis tasks, it does come at a cost. The data rate of the SAI is many times
that of the original input audio, and as such some form of dimensionality
reduction is required in order to create features at a suitable data rate for
use in a recognition system. One approach to this problem is to move from

 



Auditory Sparse Coding 79

–25 250 Time Interval (ms)

Figure 3.1
An example of a single SAI of a sound file of a spoken vowel sound. The
vertical axis is frequency with lower frequencies at the bottom of the figure
and higher frequencies on the top. The horizontal axis is the autocorrelation
lag. From the positions of the vertical features, one can determine the pitch
of the sound.

a dense representation of the SAI to a sparse representation, in which the
overall dimensionality of the features is high, but only a limit number of the
dimensions are nonzero at any time.

In recent years, machine-learning algorithms that utilize the properties
of sparsity have begun to attract more attention and have been shown to
outperform approaches that use dense feature vectors. One such algorithm is
the passive-aggressive model for image retrieval (PAMIR) [4, 6], a machine-
learning algorithm that learns a ranking function from the input data, that is,
it takes an input set of documents and orders them based on their relevance
to a query. PAMIR was originally developed as a machine vision method and
has demonstrated excellent results in this field.

There is also growing evidence that in the human nervous system sensory
inputs are coded in a sparse manner; that is, only small numbers of neurons
are active at a given time [10]. Therefore, when modeling the human auditory
system, it may be advantageous to investigate this property of sparseness in
relation to the mappings that are being developed. The nervous systems of
animals have evolved over millions of years to be highly efficient in terms of
energy consumption and computation. Looking into the way sound signals are
handled by the auditory system could give us insights into how to make our
algorithms more efficient and better model the human auditory system.

One advantage of using sparse vectors is that such coding allows very
fast computation of similarity, with a trainable similarity measure [4]. The
efficiency results from storing, accessing, and doing arithmetic operations on
only the nonzero elements of the vectors. In one study that examined the per-
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formance of sparse representations in the field of natural language processing,
a 20- to 80-fold speedup over LIBSVM was found [7]. They comment that
kernel-based methods, like SVM, scale quadratically with the number of train-
ing examples and discuss how sparsity can allow algorithms to scale linearly
based on the number of training examples.

In this chapter, we use the stabilized auditory image (SAI) as the basis of
a sparse feature representation which is then tested in a sound ranking task
and a music information retrieval task. In the sound ranking task, we generate
a two-dimensional SAI for each time slice, and then sparse-code those images
as input to PAMIR. We use the ability of PAMIR to learn representations of
sparse data in order to learn a model which maps text terms to audio features.
This PAMIR model can then be used to rank a list of unlabeled sound effects
according to their relevance to some text query. We present results that show
that in certain tasks our methods can outperform highly tuned FFT-based
approaches. We also use similar sparse-coded SAI features as input to a music
genre classification system. This system uses an SVM classifier on the sparse
features, and learns text terms associated with music. The system was entered
into the annual Music Information Retrieval Evaluation Exchange (MIREX
2010) evaluation.

Results from the sound-effects ranking task show that sparse auditory
model-based features outperform standard MFCC features, reaching preci-
sion about 73% for the top-ranked sound, compared to about 60% for stan-
dard MFCC and 67% for the best MFCC variant. These experiments involved
ranking sounds in response to text queries through a scalable online machine
learning approach to ranking.

3.1.1 The Stabilized Auditory Image

In our system, we have taken inspiration from the human auditory system in
order to come up with a rich set of audio features that are intended to more
closely model the audio features that we use to listen and process music.

Such fine-timing relations are discarded by traditional spectral techniques.
A motivation for using auditory models is that the auditory system is very ef-
fective at identifying many sounds. This capability may be partially attributed
to acoustic features that are extracted at the early stages of auditory process-
ing. We feel that there is a need to develop a representation of sounds that
captures the full range of auditory features that humans use to discriminate
and identify different sounds, so that machines have a chance to do so as well.

This SAI representation generates a 2-D image from each section of wave-
form from an audio file. We then reduce each image in several steps: first
cutting the image into overlapping boxes converted to fixed resolution per
box; second, finding row and column sums of these boxes and concatenat-
ing those into a vector; and finally vector quantizing the resulting medium-
dimensionality vector, using a separate codebook for each box position. The
Vector Quantization (VQ) codeword index is a representation of a 1-of-N
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sparse code for each box, and the concatenation of all of those sparse vectors,
for all the box positions, makes the sparse code for the SAI image. The re-
sulting sparse code is accumulated across the audio file, and this histogram
(count of number of occurrences of each codeword) is then used as input
to an SVM [5] classifier[3]. This approach is similar to that of the “bag of
words” concept, originally from natural language processing, but used heavily
in computer vision applications as “bag of visual words”; here we have a “bag
of auditory words,” each “word” being an abstract feature corresponding to
a VQ codeword. The bag representation is a list of occurrence counts, usually
sparse.

3.2 Algorithm

In our experiments, we generate a stream of SAIs using a series of modules that
process an incoming audio stream through the various stages of the auditory
model. The first module filters the audio using the pole–zero filter cascade
(PZFC) [9], then subsequent modules find strobe points in this audio, and
generate a stream of SAIs at a rate of 50 per second. The SAIs are then cut
into boxes and are transformed into a high-dimensional dense feature vector
[12] which is vector quantized to give a high-dimensional sparse feature vec-
tor. This sparse vector is then used as input to a machine learning system
which performs either ranking or classification. This whole process is shown
in diagrammatic form in Figure 3.2.

3.2.1 Pole–Zero Filter Cascade

We first process the audio with the pole–zero filter cascade (PZFC) [9], a
model inspired by the dynamics of the human cochlea as shown in Figure 3.3.
The PZFC is a cascade of a large number of simple filters with an output tap
after each stage. The effect of this filter cascade is to transform an incoming
audio signal into a set of band-pass filtered versions of the signal. In our case
we used a cascade with 95 stages, leading to 95 output channels. Each output
channel is half-wave rectified to simulate the output of the inner hair cells along
the length of the cochlea. The PZFC also includes an automatic gain control
(AGC) system that mimics the effect of the dynamic compression mechanisms
seen in the cochlea. A smoothing network, fed from the output of each channel,
dynamically modifies the characteristics of the individual filter stages. The
AGC can respond to changes in the output on the timescale of milliseconds,
leading to very fast-acting compression. One way of viewing this filter cascade
is that its outputs are an approximation of the instantaneous neuronal firing
rate as a function of cochlear place, modeling both the frequency filtering and
the automatic gain control characteristics of the human cochlea [8]. The PZFC
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Figure 3.2
A flowchart describing the flow of data in our system. First, either the PZFC
or gamma tone filterbank filters the input audio signal. Filtered signals then
pass through a half-wave rectification module (HCL), and trigger points in the
signal are then calculated by the local-max module. The output of this stage
is the SAI, the image in which each signal is shifted to align the trigger time
to the zero lag point in the image. The SAI is then cut into boxes with the
box-cutting module, and the resulting boxes are then turned into a codebook
with the vector-quantization module.

Figure 3.3
The cochlear model, a filter cascade with half-wave rectifiers at the output
taps, and an automatic gain control (AGC) filter network that controls the
tuning and gain parameters in response to the sound.
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parameters used for the sound-effects ranking task are described by Lyon et al.
[9]. We did not do any further tuning of this system to the problems of genre,
mood, or song classification; this would be a fruitful area for further research.

3.2.2 Image Stabilization

The output of the PZFC filterbank is then subjected to a process of strobe
finding where large peaks in the PZFC signal are found. The temporal loca-
tions of these peaks are then used to initiate a process of temporal integra-
tion whereby the stabilized auditory image is generated. These strobe points
“stabilize” the signal in a manner analogous to the trigger mechanism in an
oscilloscope. When these strobe points are found, a modified form of auto-
correlation, known as strobed temporal integration is performed. The strobed
temporal integration is like a sparse version of autocorrelations where only the
strobe points are correlated against the signal. Strobed temporal integration
has the advantage of being considerably less computationally expensive than
full autocorrelation.

3.2.3 Box Cutting

We then divide each image into a number of overlapping boxes using the same
process described by Lyon et al. [9]. We start with rectangles of size 16 lags by
32 frequency channels, and cover the SAI with these rectangles, with overlap.
Each of these rectangles is added to the set of rectangles to be used for vector
quantization. We then successively double the height of the rectangle up to
the largest size that fits in an SAI frame, but always reducing the contents of
each box back to 16 by 32 values. Each of these doublings is added to the set
of rectangles. We then double the width of each rectangle up to the width of
the SAI frame and add these rectangles to the SAI frame. The output of this
step is a set of 44 overlapping rectangles. The process of box cutting is shown
in Figure 3.4.

To reduce the dimensionality of these rectangles, we then take their row
and column marginals and join them together into a single vector.

3.2.4 Vector Quantization

The resulting dense vectors from all the boxes of a frame are then converted
to a sparse representation by vector quantization.

We first preprocessed a collection of 1,000 music files from 10 genres us-
ing a PZFC filterbank followed by strobed temporal integration to yield a
set of SAI frames for each file. We then take this set of SAI and apply the
box-cutting technique described above followed by the calculation of row and
column marginals. These vectors are then used to train dictionaries of 200
entries, representing abstract “auditory words,” for each box position, using
a k-means algorithm.
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Figure 3.4
Stabilized auditory images. The boxes, or multiscale regions, used to analyze
the stabilized auditory images are generated in a variety of heights, widths,
and positions.

This process requires the processing of large amounts of data, just to train
the VQ codebooks on a training corpus.

The resulting dictionaries for all boxes are then used in the MIREX ex-
periment to convert the dense features from the box-cutting step on the test
corpus songs into a set of sparse features where each box was represented by
a vector of 200 elements with only one element being nonzero. The sparse
vectors for each box were then concatenated, and these long spare vectors are
histogrammed over the entire audio file to produce a sparse feature vector
for each song or sound effect. This operation of constructing a sparse bag of
auditory words was done for both the training and testing corpora.

3.2.5 Machine Learning

For this system, we used the support vector machine-learning system from
LIBSVM which is included in the Marsyas [13] framework. Standard Marsyas
SVM parameters were used in order to classify the sparse bag of auditory
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words representation of each song. It should be noted that SVM is not the
ideal algorithm for doing classification on such a sparse representation, and
if time permitted, we would have instead used the PAMIR machine learning
algorithm as described by Lyon et al. [9]. This algorithm has been shown
to outperform SVM on ranking tasks, both in terms of execution speed and
quality of results.

3.3 Experiments

3.3.1 Sound Ranking

We performed an experiment in which we examined a quantitative ranking
task over a diverse set of audio files using tags associated with the audio files.

For this experiment, we collected a data set of 8,638 sound effects, which
came from multiple places. Of the sound files, 3,855 were from commercially
available sound effect libraries, of these 1,455 were from the BBC sound effects
library. The other 4,783 audio files were collected from a variety of sources on
the Internet, including findsounds.com, partnersinrhyme.com, acoustica.com,
ilovewaves.com, simplythebest.net, wav-sounds.com, wav-source.com, and
wavlist.com.

We then manually annotated this data set of sound effects with a small
number of tags for each file. Some of the files were already assigned tags and
for these, we combined our tags with this previously existing tag information.
In addition, we added higher level tags to each file, for example, files with
the tags “cat,” “dog,” and “monkey” were also given the tags “mammal” and
“animal.” We found that the addition of these higher level tags assist retrieval
by inducing structure over the label space. All the terms in our database were
stemmed, and we used the Porter stemmer for English, which left a total of
3,268 unique tags for an average of 3.2 tags per sound file.

To estimate the performance of the learned ranker, we used a standard
three-fold cross-validation experimental setup. In this scheme, two thirds of
the data is used for training and one third is used for testing; this process
is then repeated for all three splits of the data and results of the three are
averaged. We removed any queries that had fewer than five documents in
either the training set or the test set, and if the corresponding documents had
no other tags, these documents were removed as well.

To determine the values of the hyperparameters for PAMIR we performed
a second level of cross-validation where we iterated over values for the aggres-
siveness parameter C and the number of training iterations. We found that in
general system performance was good for moderate values of C and that lower
values of C required a longer training time. For the agressiveness parameter,
we selected a value of C = 0.1, a value which was also found to be optimal

 

http://www.findsounds.com/help1.html
http://www.partnersinrhyme.com/
http://acoustica.com/
ilovewaves.com
http://simplythebest.net/
http://wav-sounds.com/
http://www.wavsource.com/
http://wavlist.com/


86 Music Data Mining

in other research [6]. For the number of iterations, we chose 10 M, and found
that in our experience, the system was not very sensitive to the exact value
of these parameters.

We evaluated our learned model by looking at the precision within the top
k audio files from the test set as ranked by each query. Precision at top k is
a commonly used measure in retrieval tasks such as these and measures the
fraction of positive results within the top k results from a query.

The stabilized auditory image generation process has a number of param-
eters which can be adjusted including the parameters of the PZFC filter and
the size of rectangles that the SAI is cut into for subsequent vector quantiza-
tion. We created a default set of parameters and then varied these parameters
in our experiments. The default SAI box cutting was performed with 16 lags
and 32 channels, which gave a total of 49 rectangles. These rectangles were
then reduced to their marginal values which gives a 48 dimension vector, and a
codebook of size 256 was used for each box, giving a total of 49×256 = 12,544
feature dimensions. Starting from these, we then made systematic variations
to a number of different parameters and measured their effect on precision of
retrieval. For the box-cutting step, we adjusted various parameters including
the smallest sized rectangle, and the maximum number of rectangles used for
segmentation. We also varied the codebook sizes that we used in the sparse
coding step.

In order to evaluate our method, we compared it with results obtained
using a very common feature extraction method for audio analysis, MFCCs
(Mel-frequency cepstral coefficients). In order to compare this type of feature
extraction with our own, we turned these MFCC coefficients into a sparse
code. These MFCC coefficients were calculated with a Hamming window with
initial parameters based on a setting optimized for speech. We then changed
various parameters of the MFCC algorithm, including the number of cepstral
coefficients (13 for speech), the length of each frame (25 ms for speech), and the
number of codebooks that were used to sparsify the dense MFCC features for
each frame. We obtained the best performance with 40 cepstral coefficients, a
window size of 40 ms and codebooks of size 5000. The performance comparison
is shown in Table 3.1.

We investigated the effect of various parameters of the SAI feature extrac-
tion process on test-set precision, these results are displayed graphically in
Figure 3.5 where the precision of the top ranked sound file is plotted against
the number of features used. As one can see from this graph, performance
saturates when the number of features approaches ≈ 105 which results from
the use of 4,000 codewords per codebook, with a total of 49 codebooks. This
particular set of parameters led to a performance of 73%, significantly bet-
ter than the best MFCC result which achieved a performance of 67%, which
represents a smaller error of 18% (from 33% to 27% error). It is also notable
that SAI can achieve better precision-at-top-k consistently for all values of k,
albeit with a smaller improvement in relative precision.

Table 3.2 shows results of three queries along with the top five sound files
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Top-k SAI MFCC Percent Error Reduction
1 27 33 18%
2 39 44 12%
5 60 62 4%
10 72 74 3%
20 81 84 4%

Table 3.1
A Comparison of the Best SAI and MFCC Configurations (This table shows
the percent error at top-k, where error is defined as 1− precision.)

Figure 3.5
Ranking at top-1 retrieved result for all the experimental runs described in
this section. A few selected experiment names are plotted next to each point,
and different experiments are shown by different icons. The convex hull that
connects the best-performing experiments is plotted as a solid line.

that were returned by the best SAI-based and MFCC-based systems. From this
table, one can see that the two systems perform in different ways; this can be
expected when one considers the basic audio features that these two systems
extract. For example, for the query “gulp,” the SAI system returns “pouring”
and “water-dripping,” all three of these share the similarity of involving the
movement of water or liquids.

When we calculated performance, it was based on textual tags, which are
often noisy and incomplete. Due to the nature of human language and percep-
tion, people often use different words to describe sounds that are very similar,
for example, a Chopin Mazurka could be described with the words “piano,”
“soft,” “classical,” “Romantic,” and “mazurka.” To compound this difficulty,
a song that had a female vocalist singing could be labelled as “woman,”
“women,” “female,” “female vocal,” or “vocal.” This type of multilabel
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Figure 3.6
A comparison of the average precision of the SAI- and MFCC-based systems.
Each point represents a single query, with the horizontal position being the
MFCC average precision and the vertical position being the SAI average pre-
cision. More of the points appear above the y = x line, which indicates that
the SAI based system achieved a higher mean average precision.

problem is common in the field of content-based retrieval. It can be allevi-
ated by a number of techniques, including the stemming of words, but due to
the varying nature of human language and perception, will continue to remain
an issue.

In Figure 3.6, the performance of the SAI- and MFCC-based systems are
compared to each other with respect to their average precision. A few select
full tag names are placed on this diagram; for the rest, only a plus is shown.
This is required because otherwise the text would overlap to such a great
degree that it would be impossible to read.

In this diagram we plot the average precision of the SAI-based system
against that of the MFCC-based system, with the SAI precision shown along
the vertical axis and the MFCC precision shown along the horizontal axis. If
the performance of the two systems was identical, all points would lie on the
line y = x. Because more points lie above the line than below the line, the
performance of the SAI-based system is better than that of the MFCC-based
system.
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Query SAI File (labels) MFCC File (labels)
tarzan Tarzan-2 (tarzan, yell) TARZAN

(tarzan, yell) (tarzan, yell)
tarzan2 175 orgs
(tarzan, yell) (steam, whistle)
203 mosquito-2
(tarzan) 2 (mosquito)
wolf evil-witch-laugh
(mammal, wolves, wolf, ...) (witch, evil, laugh)
morse Man-Screams
(morse, code) (horror, scream, man)

applause 27-Applause-from-audience 26-Applause-from-audience
audience 30-Applause-from-audience phase1

(trek, phaser, star)
golf50 fanfare2
(golf) (fanfare, trumpet)
firecracker 45-Crowd-Applause

(crowd, applause)
53-ApplauseLargeAudienceSFX golf50

gulp tite-flamn GULPS
(hit, drum, roll) (gulp, drink)
water-dripping drink
(water, drip) (gulp, drink)
Monster-growling california-myotis-search
(horror, monster, growl) (blip)
Pouring jaguar-1
(pour,soda) (bigcat, jaguar, mammal, ...)

Table 3.2
The Top Documents That Were Obtained for Queries Which Performed Sig-
nificantly Differently between the SAI and MFCC Feature-Based Systems.

3.3.2 MIREX 2010

All of these algorithms were then ported to the Marsyas music information
retrieval framework from AIM-C, and extensive tests were written as described
above. These algorithms were submitted to the MIREX 2010 competition as
C++ code, which was then run by the organizers on blind data. As of this
date, only results for two of the four train/test tasks have been released. One
of these is for the task of classifying classical composers and the other is for
classifying the mood of a piece of music. There were 40 groups participating in
this evaluation, the most ever for MIREX, which gives some indication about
how this classification task is increasingly important in the real world. Below
we present the results for the best entry, the average of all entries, our entry,
and the other entry for the Marsyas system. It is instructive to compare our
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Algorithm Classification Accuracy
SAI/VQ 0.4987
Marsyas MFCC 0.4430
Best 0.6526
Average 0.455

Table 3.3
Classical Composer Train/Test Classification Task

Algorithm Classification Accuracy
SAI/VQ 0.4861
Marsyas MFCC 0.5750
Best 0.6417
Average 0.49

Table 3.4
Music Mood Train/Test Classification Task

results to that of the standard Marsyas system because in large part we would
like to compare the SAI audio feature to the standard MFCC features, and
since both of these systems use the SVM classifier, we partially negate the
influence of the machine learning part of the problem.

For the classical composer task, the results are shown in Table 3.3 and for
the mood classification task, results are shown in Table 3.4.

From these results we can see that in the classical composer task we outper-
formed the traditional Marsyas system which has been tuned over the course
of a number of years to perform well. This gives us the indication that the
use of these SAI features has promise. However, we underperform the best
algorithm, which means that there is work to be done in terms of testing dif-
ferent machine learning algorithms that would be better suited to this type
of data. However, in a more detailed analysis of the results, which is shown in
Figure 3.7, it is evident that each of the algorithms has a wide range of perfor-
mance on different classes. This graph shows that the most well predicted in
our SAI/VQ classifier overlap significantly with those from the highest scoring
classification engines.

In the mood task, we underperform both Marsyas and the leading algo-
rithm. This is interesting and might speak to the fact that we did not tune the
parameters of this algorithm for the task of music classification, but instead
used the parameters that worked best for the classification of sound effects.
Music mood might be a feature that has spectral aspects that evolve over
longer time periods than other features. For this reason, it would be impor-
tant to search for other parameters in the SAI algorithm that would perform
well for other tasks in music information retrieval.

For these results, due to time constraints, we only used the SVM clas-
sifier on the SAI histograms. This has been shown by Lyon et al. [9] to be
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Figure 3.7
Per class results for classical composer.

an inferior classifier for this type of sparse, high-dimensional data than the
PAMIR algorithm. In the future, we would like to add the PAMIR algorithm
to Marsyas and to try these experiments using this new classifier. It was ob-
served that the MIR community is increasingly becoming focused on advanced
machine learning techniques, and it is clear that it will be critical to both try
different machine learning algorithms on these audio features as well as to
perform wider sweeps of parameters for these classifiers. Both of these will be
important in increasing the performance of these novel audio features.

3.4 Conclusion

The use of physiologically plausible acoustic models combined with a sparsi-
fication approach has shown promising results in both the sound effects rank-
ing and MIREX 2010 experiments. These features are novel and hold great
promise in the field of MIR for the classification of music as well as other tasks.
Some of the results obtained were better than that of a highly tuned MIR sys-
tem on blind data. In this task we were able to expose the MIR community
to these new audio features. These new audio features have been shown to
outperform MFCC features in a sound-effects ranking task, and by evaluating
these features with machine learning algorithms more suited for these high di-
mensional, sparse features, we have great hope that we will obtain even better
results in future MIREX evaluations.
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The task of identifying instruments is performed with relative ease by hu-
man listeners with some training. Even untrained listeners can succeed in
discriminating different classes of instruments. The emulation of those human
abilities has been one of the main fields of research in digital audio, and many
techniques have been proposed in the last decade. This chapter presents an
overview of this important area of research, focusing on the main problems
posed by the subject and describing some of the solutions proposed in the
literature.
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4.1 Introduction

For many years, the research on music information retrieval and data min-
ing was limited by the lack of computational resources to process the great
amount of information present in a musical signal. In the last decade, with
the available computational power finally matching the demand, this area of
research has seen the number of publications increase greatly. Among the new
technologies emerging from this new reality is the automatic recognition of
musical instruments.

One interesting aspect of the music processing area is the interdependence
of different subareas of research. In this context, advances on instrument recog-
nition can, for instance, benefit the research on sound source separation, as the
knowledge about the instruments may allow the introduction of instrument-
specific strategies that can potentially improve the quality of the separation.
Conversely, a good algorithm of sound source separation can split a poly-
phonic signal into several individual instrument streams, whose monophonic
nature makes it much easier to identify the instrument. In another example,
the identification of the instruments can greatly benefit the area of music
genre classification—as each genre usually has a well-defined set of possible
instruments, knowing which instruments are present can narrow down the set
of genres to be searched. Conversely, knowing the genre of a given song may
narrow down the set of probable instruments. Other areas that have such a
symbiotic relation with instrument recognition are the multiple fundamen-
tal frequency estimation, the automatic music transcription, and the music
clustering, among others.

As can be seen, the area of music processing as a whole can benefit from
advances in instrument recognition. As a response, several new techniques have
been proposed in the last years. However, the challenges posed by real musical
signals are such that the techniques proposed so far are either limited to a
tightly defined set of signals, or have low accuracy, or both. The main objective
of this article is to present the main challenges involved in the endeavor of
designing an algorithm for instrument recognition, to present some of the
most successful solutions proposed so far, and to discuss some future research
directions and emerging trends.

The chapter is organized as follows. Section 4.2 shows how the scope of an
instrument recognition algorithm is determined. Section 4.3 presents the main
stages involved in the development of an instrument recognition algorithm.
Section 4.4 presents some of the most successful methods proposed in the
literature, focusing on their basic ideas, strengths and limitations. Finally,
Section 4.5 presents some possible directions for future research and potential
solutions for the problems still lingering.
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4.2 Scope Delimitation

Ideally, an instrument recognition algorithm should be able to identify any
kind of instrument and should work properly for any kind of musical signal.
However, this is not a mature technology, hence proposals with limited scope
are still ubiquitous. This section describes some of the most important factors
that delineate the scope of instrument recognition algorithms.

4.2.1 Pitched and Unpitched Instruments

Musical instruments can be divided into categories according to many crite-
ria. One of the most basic forms of categorization is dividing the instruments
as pitched and non-pitched. Pitched instruments are those that have a well-
defined pitch or fundamental frequency—in this case, normally the pitch (a
subjective frequency measure) matches the fundamental frequency (an objec-
tive frequency measure). For that reason, it is common that both terms be
used interchangeably. Most pitched instruments are also harmonic, meaning
that their partials (spectral peaks associated to F0) are close to being har-
monics, that is, the frequencies of the partials are almost exact multiples of
the F0. However, some percussion instruments have a defined pitch, but their
partials tend to be nonharmonic. Nonpitched instruments, on the other hand,
do not have a discernible pitch, and their spectral content as a whole is usu-
ally noise-like. Most nonpitched instruments are percussive. Figure 4.1 shows
typical spectra associated to each kind of instrument.

Virtually all instrument recognition algorithms are able to identify pitched
harmonic instruments, and most of them can also deal with pitched non-
harmonic instruments. On the other hand, the noise-like characteristics of non-
pitched instruments make their identification very challenging. Some methods
specifically designed to identify this kind of instrument have been proposed,
as discussed in Section 4.4.

4.2.2 Signal Complexity

The signal complexity is arguably the most important factor that defines the
scope of an instrument recognition algorithm. Musical signals can roughly be
divided into four groups according to their complexity [32]:

(1) Isolated sounds: Those are the simplest signals, composed by only an
isolated sound generated by an instrument playing a single note only once. In
this case, there is no interference from sources other than eventual background
noise, the characteristics of the signal are relatively homogeneous throughout
its entire duration, and there are no note transitions to be taken into account.
Those characteristics made this kind of signal the ideal target for most early
instrument recognition algorithms, as will be seen in Section 4.4. However, it is
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Figure 4.1
Examples of typical magnitude spectra for a pitched harmonic instrument
(top), a pitched nonharmonic instrument (middle), and a nonpitched instru-
ment (bottom). The magnitude spectrum for the pitched harmonic instrument
(alto saxophone) has the partial peaks well-defined and equally spaced. The
spectrum for the pitched nonharmonic instrument (vibraphone) has a rela-
tively small—yet clearly defined—fundamental frequency at 220 Hz, and some
peaks loosely related to the F0 that are spread throughout the spectrum. Fi-
nally, the spectrum for the nonpitched instrument (finger cymbal) has several
unrelated high-frequency peaks along the entire spectrum. The unpredictable
behavior of nonpitched instruments makes their identification difficult.
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important to point out that even when the simplest signals are considered, the
task of identifying instruments is not trivial. As described in Section 4.3.2, the
characteristics of a type of instrument may vary greatly depending on factors
like musician, manufacturer, temperature, and so forth. This makes it hard to
find strong commonalities between different samples of a same instrument, no
matter how well behaved is the signal.

(2) Solo phrases: The nature of this kind of signal is still monophonic, as
there is at most one tone being played at any time. Therefore, the character-
istics for this kind of signal are the same as those presented for isolated tones,
except that here there are note transitions. As will be seen in Sections 4.3.1
and 4.3.2, the signal under analysis is characterized through variables called
features. The features should be extracted from homogeneous excerpts of the
signal, meaning that the position of note transitions should be correctly iden-
tified, and the signal should be segmented accordingly. However, that identifi-
cation is not an easy task even in signals with only one instrument, especially
if such an instrument has smooth note transitions, like violin. On the other
hand, since there are several notes available, there is also more information
to be explored and more cues to be collected, increasing the probability of a
correct identification.

(3) Duets: Identifying instruments in signals of this group is a much more
challenging task. The signals no longer have a monophonic nature, as the in-
struments in the duet can play simultaneously—they overlap in time. More
than that, instruments in a duet are usually played in a consonant way, mean-
ing that their fundamental frequencies will have some kind of harmonic rela-
tionship, causing them to significantly overlap in the frequency domain. Iden-
tifying instruments with that kind of interference is challenging, and currently
there are three main strategies to solve this problem. The first one is applying
some kind of source separation so the polyphonic signal is split into mono-
phonic instrument streams. This would be the ideal solution if the problem
of sound source separation was solved, but unfortunately such a technology is
still quite crude. Nevertheless, even a defective separation can preserve some
of the characteristics of individual instruments, improving the algorithm’s
recognition ability. The second possible strategy is to design the features in
such a way the impact of inter-instrument interference is reduced. Finally,
the third strategy consists in identifying regions on the time-frequency plane
where a single instrument strongly dominates. In the time domain, this means
searching for excerpts in which only one instrument is playing (monophonic
excerpt); in the frequency domain, this means identifying partials that either
do not collide with any partial from the other instrument, or is much stronger
than the interfering partial.

(4) Higher polyphonies: All observations made for duets are also valid in
the case of higher polyphonies (more than two instruments). The only differ-
ence is that in this case the signal can have any number of instruments. As
a result, the interference in time is more severe, the spectrum becomes popu-
lated with a large number of partial peaks that often collide with each other,
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and a new difficult problem arises as the number of instruments is usually
unknown, and its estimation is a very difficult task by itself [3]. Despite the
difficulties involved in identifying instruments under such difficult conditions,
most real signals have several instruments. Because of that, the number of
proposals able to deal with this kind of signal has increased in the last years.
Most of those proposals still have some kind of limitation—the number of
simultaneous instruments may be limited, the set of instruments that can be
classified may be limited, the possible combinations of instruments may be set
a priori, and so forth. This last limitation is particularly important, because
it may be seen as a trick that artificially transforms a polyphonic problem
into a monophonic one, as the mixture is treated as a single entity, just like
an individual instrument—a polytimbral one, but still a single instrument. As
an example, an algorithm could be trained to identify the combinations flute,
piano+violin, and oboe+saxophone+viola. The developers may claim that the
algorithm can recognize six instruments in polyphonic signals, but if a com-
bination like piano+flute is to be dealt with, the algorithm will probably fail,
since this entity was not present in the training. Thus, it makes a big differ-
ence if the single entities treated by an algorithm are individual instruments
or combinations of instruments. This does not mean that proposals using the
combination-as-an-entity approach are worthless, but the scope restrictions
caused by such an approach must be taken into consideration. It is important
to remark, however, that those restrictions can be greatly reduced if all, or at
least the most common, possible combinations of instruments are included in
the training, which may be impractical if many instruments are considered.
More details about the effects of the constraints faced by algorithms that deal
with higher polyphonies can be found in Section 4.4.

In short, the factor that most influences the difficulty involved in identify-
ing the instruments is the number of simultaneous sounds in an excerpt and
the interference they cause on each other. Figure 4.2 illustrates the time and
frequency differences between monophonic isolated sounds (first two rows)
and a polyphonic signal resulting from mixing the two isolated sounds (third
row). The example of Figure 4.3 shows a strong time overlap and a relatively
mild frequency overlap. In practice, it is common that instruments be played
in unison (same note), and the presence of more than two simultaneous in-
struments is also a common occurrence. Further complications can arise from
the presence of nonharmonic instruments, particularly percussive ones, whose
spectral contents can be distributed throughout the entire spectrum.

4.2.3 Number of Instruments

A factor that may also have a strong influence over the scope of an instrument
recognition algorithm is the number and type of instruments used for training
it. There is a large number of different instruments in the world, and training
an algorithm to be able to identify all of them is close to impossible, as most
available databases only include the most common instruments in Western
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Figure 4.2
Example of the differences among monophonic and polyphonic signals. The
first two rows of the figure show the time and frequency representations of
two monophonic signals, each consisting of an instrument (violin and clarinet)
playing a single note. The third row shows the result of mixing both signals.
As can be seen, they overlap almost entirely in the time domain (not entirely
because the clarinet note is slightly longer), and since the notes D4 and A4
form a perfect fifth interval (3:2), every second harmonic of the violin and every
third harmonic of the clarinet will coincide in the frequency domain – this can
be seen clearly in plot (F), where the partials at 880 Hz of both instruments
completely merge. Therefore, there is a significant cross-interference both in
time and frequency.
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music—the Real-World Computing (RWC) database [28] is an exception, as
it also includes Eastern instruments and other so-called exotic instruments,
but it still does not encompass all instruments. Yet, some algorithms are
trained with really narrow sets of instruments, and those instruments normally
belong to different families. For example, a method may reach a high accuracy
in identifying instruments in polyphonic signals, but if the set of possible
instruments includes only violin, clarinet, piano, and guitar, the scope of the
algorithm is clearly strongly limited. Moreover, the algorithm’s generalization
abilities cannot be properly inferred with such a small set of instruments. This
does not mean that such a proposal would be worthless, as the ideas brought
to light might be interesting and useful. However, any algorithm intended to
be used in practice should be able to identify a large number of instruments—
there is no hard lower limit for such a number, but any amount above 20
instruments seems to be reasonable. If the algorithm is intended to deal only
with a specific musical genre (e.g., jazz), the number of possible instruments
is limited and, in that case, a narrower set of instruments is acceptable.

4.3 Problem Basics

4.3.1 Signal Segmentation

A digital audio signal is a sequence of numbers generated from the sampling of
the original analog signal. A major step in the recognition of an instrument is
the extraction of features from such a sequence of numbers in order to charac-
terize the signal under analysis (see Section 4.3.2). Although the features can
be extracted for the signal as a whole, this is rarely done in practice, because
a musical signal normally has several instruments playing several notes at dif-
ferent instants. In this context, a feature will not be able to effectively fulfill its
purpose of characterizing the signal, because there are too many variations to
take into account. To avoid this problem, the features are normally extracted
from smaller segments and then integrated over the whole signal. Those seg-
ments must be as homogeneous as possible, in such a way the information
provided by the features is consistent.

The most straightforward way to segment the signal is simply dividing it
into frames of fixed length (normally between 20 ms and 100 ms); consecutive
frames usually overlap by 50%, and a window function (usually Hamming)
is applied to each frame in order to avoid spectral distortions caused by an
abrupt end at the edges of the frame. The main problem with this kind of
segmentation is that events—which consist of a new note or instrument—
may occur in the middle of a frame, causing the features calculated for that
frame to be inconsistent. Also, the signal may be segmented more times than
it would be necessary, and considering that the frames usually overlap, the
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computational effort is significantly increased. A better solution is segmenting
the signal according to the events, in which case the boundaries of a frame
are located exactly where the events occur. In this case, the frames may have
different lengths. Although clearly more efficient in a computational effort
point of view, this strategy depends on the accurate estimation of the events
locations. This is a difficult problem by itself, and the few strategies proposed
so far (for example, see Klapuri [48], Rodet and Jaillet [73], Bello et al. [6]) still
have limitations. Because of that, almost all instrument recognition algorithms
use fixed frame lengths.

4.3.2 Feature Extraction

There is a large number of features proposed in the literature (see Chapter 2),
and choosing the most appropriate set is a crucial step in the development of
the algorithm [13]. The highly varying nature of sound production by means
of musical instruments makes this task far from trivial. Factors like musician,
manufacturer, temperature, room acoustics, among others, can greatly affect
the characteristics of the sound produced by a given instrument. Even if most
variables that influence the sound production are repeated as exactly as pos-
sible, the resulting sound will certainly be different each time it is produced
due to the natural variations of a human execution. Figure 4.3 shows how
different the characteristics of an instrument can be.

Ideally, a feature should assume a small range of values for each instrument,
and the resulting ranges should never overlap, in which case the problem of
instrument recognition would be easily solved. However, as a result of those
behavior variations, a feature usually can assume wide value ranges for the
instruments, increasing the probability of overlap between them. When several
features are considered together—which is usually the case—they generate
a feature space with as many dimensions as the number of features. The
samples of an instrument will populate a part of that space and delineate the
neighborhood associated to that instrument. The features should be chosen
so the overlap between the neighborhoods is minimized. Also, the number of
features must be limited in order to avoid excessive redundancy and to avoid
the well-known curse of dimensionality [5], which is the problem caused by the
exponential increase of the training set associated with adding new dimensions
to the feature space. In many cases, the adopted solution is to extract a large
set of features, and then some method to reduce dimensionality, like linear
discriminant analysis (LDA) and Principal Component Analysis (PCA), is
applied. Some strategies to properly select features have been performed by
Deng et al. [13], Guyon and Elisseeff [31], and Yu and Liu [85].
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Figure 4.3
Example of variations between different samples of an instrument. The plots
in the first and second rows were generated by two violins from different man-
ufacturers and played by different musicians, but playing the same note (A4).
As can be seen comparing plots (A) and (C), the vibrato characteristics are
quite different. The magnitude spectra have also significant differences—for
instance, the third harmonic is almost absent in plot (D), but it is the fourth
most prominent harmonic in plot (B). This example shows the kind of differ-
ences that occur in most cases—extreme cases in which different samples are
almost identical or completely different are less common, but occur relatively
often.
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4.3.3 Classification Procedure

4.3.3.1 Classification Systems

Once the features have been extracted, they are usually used to feed some
kind of classification system. Those classification systems have the role of
suitably combining all the information contained in the features so the correct
instrument is returned as output. They are all very effective if the instruments
are highly disjoint in the feature space. Since this is not the case, the most
appropriate classifier is the one able to mitigate the problems caused by the
lack of disjointness between the instruments. Since the steps and strategies
used prior to the classifier vary greatly from proposal to proposal, the chosen
classifiers tend to be diverse, as will be seen in Section 4.4. Five of the main
classification systems are briefly described in the following.

(a) k-Nearest Neighbors (k-NN): The first step in the implementation of
this kind of classifier is the construction of a dictionary composed by vectors
of feature values. Those vectors are labeled according to the instrument they
best represent. Thus, each instrument has a number of vectors associated.
The classification is obtained by comparing the vector of features extracted
from the signal to be classified with the vectors in the dictionary. In that
comparison, some distance measure (usually Euclidean) is used to select the k
vectors in the dictionary that are closer to the extracted vector. Finally, the
classification is given by the instrument that appears the greatest number of
times among the k selected vectors. This is a largely used classifier due to its
easy implementation. On the other hand, it demands that large amounts of
data be stored and a large number of computations be performed.

(b) Gaussian Mixture Models (GMM): This technique takes the feature
vectors associated to a given instrument and uses them to infer a probabil-
ity density function (PDF) that models that instrument. Such a PDF results
from a weighted combination of a number of Gaussian PDFs, hence the name
Gaussian Mixture Model. The parameters of a GMM are usually adjusted by
means of an iterative process called Expectation Maximization (EM). Once
trained, each GMM is used to estimate the probability that a feature vector
was generated by the instrument associated to that GMM. The final clas-
sification is given by the instrument with greatest probability. This kind of
classifier has been used with success in many audio classification problems.

(c) Support Vector Machines (SVM): The objective of this kind of classifier
is to find the hyperplane that best separates observations (feature values)
pertaining to two different classes in a multidimensional space. The theory
does not guarantee that the best hyperplane can always be found but, in
practice, a heuristic solution can always be obtained. Since the instrument
classification is a multiclass problem, and the SVM is a binary classifier, some
kind of adjustment must be made. The most common approach is to reduce the
single multiclass problem into multiple binary problems. The implementation
of this classifier is not simple, but it has several desirable characteristics, like
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the ability to control the complexity of the learning process, no matter the
dimension of the problem.

(d) Artificial Neural Networks (ANN): An ANN is a processing structure
(network) composed by a number of interconnected units (artificial neurons).
Each unit presents a specific input/output behavior (local computation), de-
termined by its transference, by the interconnections with other units, and
possibly by external outputs. The neurons are divided into layers—one input
layer, a number of hidden layers, and an output layer. Each neuron has three
parts: the synapses, characterized by the associated weights; the summing
node, which combines the weighted input signals; the activation function,
which limits the neuron output and introduces nonlinearities to the model.
In its training, the neural network is fed with a number of feature vectors
representing each instrument, and the synaptic weights are adjusted so the
neuron corresponding to the correct instrument is activated at its output.
Once trained, the ANN is fed with the feature vector extracted from the sig-
nal to be classified, and the label of the neuron that is activated at its output
reveals the estimated instrument. There are several types of ANNs, but in
music processing the most used is the Multilayer Perceptron (MLP). An ANN
is a good choice when the function to be learned is nonlinear. On the other
hand, the training can be time-consuming, and the risk of data overfitting
may incur in loss of generalization capability.

(e) Linear Discriminant Analysis (LDA): This classification strategy takes
the feature data and projects it in such a way inter-feature correlations are
reduced (thus reducing redundancy) and the variance of each variable is stan-
dardized. After that, Euclidean distances are calculated in this modified space
to define the most likely class. As in the case of SVM, the LDA is inherently
binary. In the case of a multiclass classification, a commonly used solution
is successively partitioning the classes in such a way a single class is always
put in one group, and all the other classes are put in the other one, and then
using LDA to perform the classification. This results in as many classifiers
as classes. Another common solution is the pair-wise classification, in which
each pair of classes is considered separately, resulting in N(N − 1)/2 classi-
fiers, where N is the number of classes. In both solutions, the results obtained
for all classifiers are combined to determine the final classification. In cases
for which a linear boundary between the pairs of classes is not adequate, the
quadratic discriminant analysis (QDA) can be applied instead.

There are many other classification strategies that are eventually used in
the context of audio classification, like Decision Tree, Quadratic Gaussian
Classifier, Fuzzy Classifier, Simple Binary Discriminator, among others.

4.3.3.2 Hierarchical and Flat Classifications

As in most classification systems, musical instruments can be organized in
a taxonomic structure with a number of classification levels. In this kind of
structure, the upper levels normally have a low number of classes, and they
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Figure 4.4
Example of musical instruments taxonomy. This example partially follows
both the Hornbostel-Sachs system [80] and objective characteristics presented
by the instruments. The actual instruments are always at the bottom of the
taxonomy, but the number of intermediate classes may vary from none to
several, depending on the criteria used to build the taxonomy—in the example,
vibraphone and voice have no parent classes, while most instruments have two
levels of parent classes.

usually are very distinct among them. On the other hand, the lower levels
normally include a large number of classes that are more tightly defined, and
the differences among them are often weak. The hierarchical structure of an
instrument taxonomy may vary according to the selected criteria. A widely
accepted taxonomy is the Hornbostel-Sachs system [80]. This system is very
popular among musicologists and organologists, but may not be the most
appropriate in the context of automatic music recognition. Essid et al. [24]
performed a study in which they compared a natural taxonomy inspired by
instrument families with a taxonomy inferred automatically by means of hier-
archical clustering. They came to the conclusion that both have limitations,
and that the taxonomies should be especially designed to deal properly with
instruments that are often confused. An example of taxonomy is shown in
Figure 4.4. Other taxonomies can be found by Agostini et al. [2] and Eggink
and Klapuri [17].

The main advantage of using a hierarchical classification scheme is the
possibility of placing decision nodes at each point where the taxonomy ram-
ifies. The first decisions to be made are expected to be more accurate due
to the more marked differences between classes at the top of the taxonomic
structure, and each time a decision is made, the set of possible instruments
is reduced. As a result, when the algorithm reaches the point where the most
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difficult decisions are to be made, there is a good chance that previous deci-
sions were correct, and the number of possible instruments is greatly reduced.
Another advantage of using a hierarchical approach is that each node can have
a decision scheme especially tuned according to the characteristics of that par-
ticular node, increasing the chance of a correct decision. Since those decisions
are nothing more than intermediate classifications, classical classification al-
gorithms like SVM, k-NN, and GMM are often employed, and there is even
the possibility of using different classifiers for different nodes. A last advantage
of using this kind of approach is the modularity—if new instruments are to
be included in the recognition system, it is enough to include a new branch
in the taxonomic tree, and a localized new training is performed to tune the
classification procedure to be used in the new node.

The flat classification can be seen as a particular case of the hierarchical
classification in which there is only one decision node and no parent classes.
If properly designed, the flat approach can be as effective as the hierarchical
one, and it also has advantages. First, the algorithm design has fewer steps—
there is no taxonomic structure to be developed, and since there is only one
decision node, only one classification system is designed. Also, the training
phase tends to be faster and simpler, as there is only one classifier to adjust.

As a matter of fact, the hierarchical and direct approaches have more
similarities than differences—both use a number of features that feed some
kind of classification scheme. The only real difference is that, in the hierarchical
approach, the whole problem is split into smaller ones. The use of one or
another is linked more to the personal preferences of the developers than to
their effectiveness. As will be seen in the next section, both approaches are
present in the group of the most effective methods proposed so far.

4.3.4 Analysis and Presentation of Results

The results obtained by a given instrument recognition system are usually
presented in the form of a confusion matrix, which is a compact and practical
way of showing how the system performs for each instrument and, more im-
portantly, it clearly shows the error trends, which can potentially guide future
improvements. Figure 4.5 shows an example of confusion matrix, extracted
from the work by Barbedo and Tzanetakis [4].

One factor that may have a strong impact on the quality of the results
obtained is the database used to calibrate and test the method. Normally, the
available instrument samples are divided into two sets, one for training (used
to calibrate the algorithm), and one for test (used to assess the performance
of the algorithm). Under any condition a given sample can be part of both
the training and test sets, because this would cause the results to be biased
and unreliable. However, all the samples in both sets can come from the same
database. It is important to note, however, that using the same database
to train and test the algorithm may, in some cases, lead to deceptively good
results [57]. Because of that, it is desirable that samples from other database be
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Figure 4.5
Example of a confusion matrix [4]. The instruments in the first column of the
matrix represent the actual classifications, and the instruments in the first
row represent the classification at the output of the algorithm. As a result,
the main diagonal represents the correct classifications. Taking the first row
as an example, the violin samples were correctly classified by the algorithm in
90% of the cases, and the violin samples were misidentified as cello and tuba in
8% and 2% of the cases, respectively. The shades of gray in the figure indicate
the degree of similarity between the instruments according to the example of
taxonomy shown in Figure 4.4—the darker is the shade, the more related are
the instruments (lower levels in the hierarchical tree). Errors that occur inside
darker areas are less severe, as at least some of the parent classes are correctly
classified. In the example of the first two rows, the cases in which the violin
was misidentified as cello are less severe than those in which tuba is the wrong
instrument.
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used in the tests to provide a cross-database validation—the results obtained
in this way are usually considered stronger and more meaningful.

There is a small number of instrument sample databases available—three
of the most used are the McGill University Master Samples [68], the University
of Iowa musical instrument samples database [1], and the RWC database [28]—
and none of them is adopted as the standard reference. Hence, the sets of
samples used to test each algorithm proposed in the literature are likely to be
distinct, making a direct comparison between the algorithms very difficult. As
a result, in general it is not possible to draw any definite conclusions about
how the algorithms compare to each other. A feasible solution to this problem
would be a comparison through competitions like those organized by the Music
Information Retrieval Evaluation eXchange (MIREX) community [14], which
provides a framework for the formal evaluation of Music Information Retrieval
(MIR) systems and algorithms. In those competitions, all proposals are tested
under the same conditions by using an independent database. Until 2010,
no competition of this kind has been carried out for instrument recognition
algorithms.

The use of different databases is not the only factor that complicates the
comparison between algorithms. As commented before, most algorithms pro-
posed so far have some constraints regarding type of instrument, number of si-
multaneous instruments, etc. The degree of difficulty of the problem tackled by
the algorithm is directly dependent on those constraints. If those constraints
are different—they usually are—a direct comparison between algorithms be-
comes impossible.

When consdiering the difficulties involved in comparing algorithms it is
important to take into acount the fact that instrument recognition research is
still at an early stage where coming up with new ideas may be more important
than figuring out which algorithm works best. As the technology matures, the
number of constraints and limitations will diminish, and a direct comparison
between algorithms will become more feasible.

Sometimes it is useful to compare the results achieved by an algorithm
with human performances. A number of studies on the human ability to rec-
ognize instruments have been carried out [18, 41, 61, 65, 76]. The results vary
greatly as the number of instruments and test conditions used in each study
is different. However, a baseline can be inferred from the study carried out by
Srinivasan et al. [76], since they used a large set of 27 instruments to assess the
ability of conservatory students in identifying isolated tones—the recognition
rate under such difficult conditions was 55.7%. Better recognition rates are
expected as fewer instruments are considered. Also, better recognition rates
would probably be achieved if, instead of isolated tones, complete sequences
of notes were used, as the transitions between notes can provide important
cues for the instrument identification. As can be seen, a rigorous comparison
between machine and human performances is hardly possible, but a relative
comparison taking into account the differences between the tests can provide
useful information.
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4.4 Proposed Solutions

This section presents a brief description of several instrument recognition al-
gorithms proposed in the literature. This survey was designed to be as com-
prehensive as possible, but in an area with such a large number of publica-
tions, inevitably some of them will not be included. There are some theses
and dissertations dedicated to this subject [19, 42, 61, 69], however, they were
not included here—the articles that summarize them are presented instead.
In the description of the algorithms presented in the following, the accura-
cies achieved by them are not presented because, due to the reasons stated
in Section 4.3.4, a direct comparison among the methods is very difficult.
Furthermore, the accuracies only make sense together with a complete un-
derstanding of the characteristics of each method, which cannot be achieved
without reading the original works.

Instrument recognition methods can be grouped according to different cri-
teria. Here, the only criterion used is if the method deals only with monophonic
signals, or if it is able to deal with polyphonic signals. Other characteristics
of the algorithms are presented in two tables presented later in this section.

4.4.1 Monophonic Case

This subsection provides a brief description of algorithms proposed to deal
with monophonic signals, which include both isolated tones and solo phrases.
Although the monophonic case tends to be simpler than the polyphonic one,
the problem is still far from being solved, and many articles on this subject are
still being published, as will be seen in the following. The algorithms presented
next are ordered chronologically.

The early work by Kaminskyj and Materka [37] tacked the problem of
identifying isolated tones of four instruments from very different families. The
features consist of 80 short-term root mean square energy. The number of
features is then reduced to three by means of Principal Component Analysis
(PCA). The authors tested two classification schemes, an Artificial Neural
Network (ANN) and a Nearest Neighbor Classifier (k-NN with k = 1). They
remark that the results were surprisingly good as they only used temporal
features.

Kaminskyj and Voumard [38] proposed a so-called multistage intelligent
hybrid classification system. The algorithm extracts seven temporal and spec-
tral features and use an ANN and a k-NN with k = 1 as classifiers. The article
only proposes the system, thus no results are presented.

Martin and Kim [62] proposed one of the first algorithms to use a hierar-
chical structure with multiple decision nodes. The authors justified this choice
by arguing that human listeners recognize objects and stimuli taxonomically.
In total, 31 features describing temporal and spectral characteristics of the
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signals were extracted, and then the Fisher multiple discriminant analysis
was used at each decision node to reduce the number of features, keeping
only the most relevant ones. The authors tested both a Maximum a Posteriori
(MAP) classifier and a k-NN classifier. The experiments were performed using
isolated notes sampled from 14 instruments.

The early work proposed by Brown [8] focused on the discrimination of two
very similar instruments (oboe and saxophone). The feature set is composed
by 18 cepstral coefficients. It employs a probabilistic classification scheme
based on k-means clustering and on Gaussian Mixture Models (GMM) used
to calculate the probability density functions that describe the data. An inter-
esting aspect of this work is that, instead of using samples from standardized
databases, the authors used instrument excerpts from real recordings.

Kashino and Murase [40] proposed an algorithm that does not rely on
the extraction of features to perform the instrument recognition. Instead, it
uses an adaptive method for template matching that can cope with variability
in musical sounds. The algorithm also includes a musical context integration
step, which improves the accuracy in more than 20%. The tests were per-
formed using real musical signals containing three instruments (violin, flute,
and piano), but each part of the signal contains only one instrument, thus the
algorithm works in a monophonic context.

Eggink and Klapuri [17] proposed a method based on the extraction of
several temporal and cepstral features. The algorithm employs a hierarchical
classification approach and, for each node, it uses either a Gaussian or a k-
NN classifier depending on the characteristics of the decision to be made. The
algorithm was tested using isolated tones from 30 instruments. The authors
obtained better results using a flat classification approach, but they remark
that the hierarchical approach can be advantageous in the classification of
larger data sets with more instruments.

The work by Brown et al. [9] is very similar to that published by Brown [8].
Here, four very similar wind instruments are considered, and the feature set
is composed by cepstral coefficients, bin-to-bin differences of the constant-
Q coefficients, autocorrelation coefficients, and moments of time wave. The
classification scheme is similar to that used by Brown [8] and briefly described
above. A very thorough study about the feature dependence of the results was
carried out. This work also used instrument excerpts from real recordings.

The main motivation of the algorithm proposed by Eronen [20] was the
assessment of the effectiveness of several features in the task of instrument
recognition. The classifier used in the tests is a k-NN, and a total of 29 instru-
ments extracted from several databases were taken into account. The author
concluded that features based on warped linear prediction (WLP) and on
cepstral coefficients are effective, and that the best results were achieved by
augmenting the cepstral coefficients with features describing additional char-
acteristics of the tones.

The method proposed by Kostek and Czyzewski [51] extracts 37 features—
14 based on Fourier analysis and 23 based on wavelet analysis—and feeds
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them to an artificial neural network, which performs the classification. Tests
were performed using a database specially built for this method. Although
21 instruments were considered in total, the tests were performed separately
considering only groups of four instruments.

Agostini et al. [2] used a total of 27 instruments to test the discrimi-
nation capabilities of a number of spectral features found in the literature,
and to test the effectiveness of four classifiers—Support Vector Machines
(SVM), quadratic discriminant analysis (QDA), canonical discriminant anal-
ysis (CDA), and k-NN. They concluded that the most informative features
are the mean of the inharmonicity, the mean and standard deviation of the
spectral centroid, and the mean of the energy contained in the first partial.
They also concluded that SVM and QDA are the best classifiers, but they
remark that the closeness of performances among all classifiers indicate that
a properly feature selection is more critical than the choice of a classification
system.

In the work of Costantini et al. [12], a number of features are extracted
from preprocessed versions of the signals. Preprocessing strategies based on
fast Fourier transform (FFT), Constant-Q Frequency Transform, and cepstral
coefficients are tested. The method uses Min-Max Neuro-Fuzzy Networks as
classification model, which is synthesized using adaptive resolution training
techniques. The algorithm was tested against samples from six different in-
struments.

Eronen [21] uses Mel-frequency cepstral coefficients and their derivatives
as features. Those features are transformed to a base with maximal statistical
independence using independent component analysis (ICA). Continuous Den-
sity Hidden Markov Models (HMMs) discriminatively trained were used as
classification system. The algorithm was tested using two groups of data, one
containing isolated tones from 27 harmonic instruments, and one containing
samples from five percussive instruments.

The algorithm proposed by Piccoli et al. [71] uses the first 18 MFCC as
features. Two different artificial neural networks, a MLP and a Time-Delay
Neural Network (TDNN), were tested, with a slight advantage for the second
one. The experiments were performed using isolated tones from nine instru-
ments.

Essid et al. [23] proposed an algorithm focused on the instrument recogni-
tion on real solo phrases. The authors chose to use only features known to be
robust, resulting in a feature set containing only Mel-frequency cepstral coef-
ficients (MFCCs), their derivatives, and some audio spectrum flatness (ASF)
features. Different features were chosen for each possible pair of instruments.
The algorithm uses a SVM as classifier, for which different kernels were tested.
The method was tested with solo phrases of 10 instruments, all extracted from
real recordings.

A study presented by the same authors [22] focuses on the use of sim-
ple features to perform the instrument recognition. The proposed algorithm
extracts 47 features, and SVM is used for classification. Experiments were
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carried out using solo phrases performed by amateur musicians and sound
samples from 10 instruments, all extracted from commercial recordings. The
authors conclude that the combination of cepstral coefficients with features
describing the audio signal spectral shape is very effective in the recognition
of instruments belonging to different classes.

The main objective of Kitahara et al. [46] was to develop a method capable
of identifying the category (family) of an instrument that was not present in
the training data (unregistered). First, the method tries to determine if a given
instrument is registered; if so, the name of the instrument is identified, if not
the category of the instrument is estimated. The method uses 18 features
selected from a larger set of 129 elements, and uses a musical instrument
hierarchy (MIH) for the category-level identification.

This proposal by Krishna and Sreenivas [53] aims to identify instruments
in isolated notes and solo phrases. The features the method uses are linear
predictive coefficients called line spectral frequencies (LSF) [11], which can
be seen as characteristic short-term spectral envelopes, but MFCC and linear
prediction cepstral coefficients (LPCCs) are also used for comparison. This
choice of LSF as features was motivated by one of the major objectives of the
authors, which is keeping the scalability of their method. The performances of
GMM and k-NN classifiers were tested, with a slight advantage for the GMM.
The experiments used isolated tones from 14 instruments, and also some short
segments of solo phrases.

Livshin and Rodet [58] proposed a method to identify seven instruments
in solo recordings. They initially extracted 62 features, and then applied the
Gradual Descriptor Elimination (GDE) algorithm to reduce such a set to 20.
Using the reduced feature set resulted in an accuracy 3% worse than using the
whole set, but the authors argue that such a reduction made it possible for the
algorithm to be used in real-time applications. The classification scheme con-
sists in a combination of LDA and a k-NN classifier. All tests were performed
using excerpts extracted from real recordings, and they also perform some
tests with duets to show that their method can be useful in the polyphonic
case.

An article by Tindale et al. [78] presents one of the few methods that
deal specifically with the recognition of drum sounds. A number of temporal
features and the energies of four subbands feed an artificial neural network
responsible for the final classification. Several experiments were performed
using drum samples generated by the authors.

Kaminskyj and Czaszejko [39] proposed an algorithm that uses 710 features
selected from a set of 2,804 elements by means of PCA. They tested three
types of classification architectures (hierarchical, hybrid, and flat), with k-
NN classifiers being used at the decision nodes. The tests were performed
using isolated tones from 19 instruments. It was concluded that, although the
hierarchical and hybrid structures perform better than the flat one, such a
gain is too small in comparison with the added computational effort to justify
their use.
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This algorithm proposed by Kitahara et al. [47] takes into consideration the
pitch dependency of timbre of musical instruments. The method extracts 129
features from an instrument sound and then reduces the dimensionality of the
feature space into 18 dimensions. After that, an F0-dependent mean function
and an F0-normalized covariance are calculated. The key idea underlying those
two parameters is to represent the features as a function of the fundamental
frequency of the instruments. The final classification is given by the Bayes
decision rule (BDR). The algorithm was tested using isolated tones of 19
musical instruments.

An article by Pruysers et al. [72] uses Morlet Wavelet Analysis and Wavelet
Packet Analysis to generate features that, combined with six other features
from a previous work, are submitted to a single stage classifier. In this clas-
sifier, each feature has its own k-NN classifier, and the individual results are
combined by a so-called k-NN result combiner. The experiments used samples
from 19 instruments. The authors came to the conclusion that both the pro-
posed wavelet-based features are useful and, additionally, they complement
each other in an effective way.

Benetos et al. [7] used a branch-and-bound search to select a subset of
relevant features from a full set, which is composed by 41 features. They
also present four classifiers based on the non-negative matrix factorization
(NMF), the best of which achieving a performance only slightly worse than
that achieved using GMM and HMM classifiers. The authors remark that
their experiments employed unsupervised classification, in contrast to the su-
pervised GMM and HMM classifiers. The experiments were carried out using
samples from six instruments.

Chetry and Sandler [11] proposed an instrument recognition method whose
features consist of line spectral frequencies. Two classification procedures,
k-Means and SVM, were investigated using solo phrases of six instruments
extracted from commercial recordings. The authors conclude that the SVM
performs slightly better, and that better results are achieved if the models
are trained using solo phrases that have been recorded in various acoustic
conditions.

As in earlier works by the same authors, the recognition in this algorithm
proposed by Essid et al. [26] is performed over solo phrases from real record-
ings. The algorithm employs two feature selection techniques, the inertia ratio
maximization with feature space projection and the genetic algorithms. A se-
lection of the most relevant features is performed separately for each possible
pair of instruments. Hence, the algorithm uses a one versus one classification
strategy: a winner instrument is taken for each possible pair by means of ei-
ther a SVM or a GMM, and the final classification is determined according to
a majority vote rule. The authors performed a thorough study about several
aspects of the algorithm using solo phrases extracted from real recordings.

In another algorithm proposed by Essid et al. [24], a large set of 540 fea-
tures was considered, and an automatic feature selection was used to fetch the
most useful ones. Since this algorithm uses a hierarchical approach, recognition
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decisions are performed throughout a number of nodes. The authors tested two
different hierarchical structures, one following standard instrument families,
and other generated automatically by means of an agglomerative hierarchical
clustering. They concluded that spreading related instruments over distant
nodes may actually improve the recognition accuracy.

Fragoulis et al. [27] tackle the very specific problem of discriminating be-
tween piano and guitar notes. Although very dissimilar in terms of construc-
tion and way of playing, the timbre generated by those instruments are actu-
ally quite similar, making this pair one of the most difficult to be discerned by
an instrument recognition algorithm. The authors created three discriminative
features and inferred three different empirical classification criteria to perform
the classification. They remark that a successful discrimination between piano
and guitar is strictly related to the non-tonal spectral content of each note.

Mazarakis et al. [64] proposed an algorithm that uses a Time-Encoded
Signal Processing (TESP) method to produce simple matrices from complex
sound waveforms. Those matrices are submitted to a so-called Fast Artificial
Neural Network (FANN), which performs the instrument recognition. The
experiments were carried out using signals generated by five different syn-
thesizers (19 instruments), and also extracted from the Iowa database (20
instruments).

As in other studies, Simmermacher et al. [74] first extract a large set of
features, which is reduced using feature selection techniques. Three classifi-
cation schemes were tested: k-NN, Multilayer Perceptron (MLP) ANN, and
SVM. The best results were achieved using the MLP. The experiments in-
cluded tests using isolated tones from 19 instruments, and tests with solo
phrases representing four instruments.

Tan and Sen [77] present a study on the use of the attack transient envelope
in the recognition of musical instruments. The classification is based on a
pattern matching algorithm called Dynamic Time Warping (DTW). Several
experiments were performed with samples from two instruments (cello and
violin) and, according to the authors, the results indicate that the attack
transient can indeed be useful in instrument recognition.

This method proposed by Ihara et al. [34] is based on the extraction of a
large number of features (1,102), on the reduction of that number by applying
two-dimension reduction techniques (PCA and LDA), and on SVM to perform
the classification. The most important claim made by the authors is that
the log-power spectrum suffices to represent characteristics that are essential
in instrument recognition. The method was tested using samples from eight
instruments collected from commercial recordings.

Deng et al. [13] focus on the feature selection instead of presenting a new
complete classifier. The authors use machine learning techniques to select and
evaluate features extracted using a number of different schemes. The tests used
individual note samples extracted from 20 instruments, and also solo phrases
of four instruments. The authors found out that the best features are the log
attack time (LAT), the harmonic deviation, and the standard deviation of the
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flux. They remarked that there is significant redundancy between and within
the features extraction schemes commonly used, and further studies will be
necessary in order to improve this crucial stage in instrument recognition.

The strategy proposed by Loughran et al. [60] extracts features based on
temporal and spectral envelopes, and also on the evolution of the centroid.
A MLP artificial neural network is then applied. Only isolated tones of three
instruments were considered in the experiments.

The purpose of an article by Joder et al. [36] was to show that midterm
temporal properties of the signal, which are usually ignored, can actually carry
relevant information that may be useful in several tasks of music information
retrieval and data mining. The proposed algorithm has the following steps:
a preprocessing stage; a feature extraction stage in which 30 features chosen
from the original 162-element set are calculated; an early temporal integra-
tion stage in which the information carried by the features are summed up
according to a higher time scale; a sonic unit segmentation aiming to obtain
semantically meaningful segments, which are used as time frame for the early
temporal integration; a normalization step; and a classification/late temporal
integration stage, in which the decisions made by the classifier are combined
(integrated) in some effective way. The article presents extensive tests using
solo phrases from eight instruments. The authors conclude that the best re-
sults are obtained combining early and late integration over sonic units, and
using a SVM with dynamic alignment kernels as classifier.

An article by Kramer and Hein [52] is one of the few studies that deal
exclusively with the identification of percussive instruments. The algorithm
extracts 100 conventional features, and an evolutionary model is applied in
order to derive optimal subsets of different sizes. The final instrument identi-
fication is performed by a SVM. The experiments were performed using real
percussion excerpts contaminated with noise.

Table 4.1 summarizes all methods described in this subsection. The first
column contains the first author and the year of the publication; the second
shows the classifier; the third shows the database from which the training
and test signals were extracted (self means that the authors used their own
database, and CR indicates commercial recordings); the fourth indicates if the
method is able to recognize nonharmonic instruments; the fifth indicates if a
hierarchical taxonomic structure was adopted; the sixth contains the number
of instruments for which the algorithm was tested; and the seventh reveals
the number of features—if there are two values, the first one indicates the
final number of features, and the second indicates the total number of fea-
tures extracted. N/A means that the information is either not available or not
applicable. The accuracies were not included because, as stated before, they
are not very useful without a deeper understanding about the method and
respective tests.
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Reference Class Database Non- Flat/ No. No. Feat.
System harm. Hier. Inst.

Agostini03 [2] Several McGill No Flat 27 18
Benetos06 [7] NMF Iowa No Flat 6 6 (41)
Brown99 [9] GMM CR No Flat 2 18
Brown01 [10] GMM CR No Flat 4 Variable
Chetry06 [12] SVM, CR No Flat 6 16

k-means
Costantini03 [13] ANN N/A No Flat 6 N/A
Deng08 [14] Several Iowa No Flat 20 44
Eggink04 [19] GMM McGill, CR, No Flat 5 90

Ircam, Iowa
Eronen00 [17] k-NN, McGill No Both 30 43

Gaussian
Eronen01 [22] k-NN McGill, Iowa, No Flat 29 23

Ircam, Self
Eronen03 [23] HMM McGill, Iowa Yes Flat 271 24

Ircam, Self
Essid04a [25] SVM CR No Flat 10 43
Essid04b [24] SVM CR,Self No Flat 10 47
Essid06a [28] GMM, SVM CR No Flat 10 160
Essid06b [26] SVM CR Yes Hier. 20 540
Fragoulis06 [29] Empirical Self No Flat 2 3
Ihara07 [37] SVM CR No Flat 8 10 (1102)
Joder09 [41] SVM, GMM, RWC, CR No Flat 8 30 (162)

HMM
Kaminskyj95 [43] ANN, k-NN2 Self No Flat 4 3 (80)
Kaminskyj96 [44] ANN, k-NN2 McGill No Flat 19 7
Kaminskyj05 [45] k-NN McGill, Iowa, No Both 19 710 (2804)

Ircam, Self
Kashino99 [46] TA CR No Flat 3 N/A
Kitahara04 [52] MIH RWC No Hier. 19 18 (129)
Kitahara05 [53] BDR RWC No Flat 19 18 (129)
Kostek01 [57] ANN Self No Flat 21 37
Kramer09 [58] SVM CR Yes Flat 7 100
Krishna04 [59] GMM, k-NN Iowa, RWC No Flat 14 N/A
Livshin04 [64] k-NN CR No Flat 7 20 (62)
Loughran08 [66] ANN RWC No Flat 3 N/A
Martin98 [71] MAP, k-NN McGill No Hier. 15 31
Mazarakis06 [73] ANN Iowa, Synth No Flat 20 N/A
Piccoli03 [80] ANN Iowa No Flat 9 128
Pruysers05 [81] k-NN N/A No Flat 19 8
Simmerm.06 [83] k-NN, ANN, Iowa, CR No Flat 20 19 (44)

SVM
Tan06 [86] DTW N/A No Flat 2 N/A
Tindale04 [87] ANN Self Yes Flat 5 8
1 The recognition was performed at an intermediate level with five classes.
2 k-NN with k = 1.

Table 4.1
Algorithms of the Monophonic Group
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4.4.2 Polyphonic Case

We briefly describe algorithms for dealing with polyphonic signals, including
duets and higher polyphonies. It is only recently that researchers have studied
these problems that there are fewer articles that have been published and so
covered in this section. As in the monophonic case, the articles are presented
chronologically.

An article by Eggink and Brown [15], which was one of the first to tackle the
polyphonic problem, incorporates the ideas from missing feature into a GMM
classifier in order to improve instrument recognition in polyphonic signals
(only duets were tested). The features that feed the GMM classifier were
computed by summing the energy within 60 Hz frequency bands, with overlap
of 10 Hz. They were extracted for bands between 50 Hz and 6 kHz. The duets
were generated both artificially by combining individual samples from five
instruments, and from a real duet for flute and clarinet.

An article by the same authors [16] describes an algorithm able to identify
solo instruments in the presence of an accompanying keyboard instrument or
orchestra. The features are based on the 15 first harmonics of the dominant F0,
generating a 90-element vector. Additional features include frame-to-frame dif-
ferences (deltas) and differences of differences (delta-deltas) of both frequency
and power within individual tones. A GMM is used to perform the classifica-
tion. The algorithm is evaluated using isolated tones from five instruments,
realistic monophonic phrases, and solo instruments with accompaniment. In
this last case, the background is polyphonic, which means that the signal as a
whole may be considered polyphonic. However, since in this case one instru-
ment is strongly dominant, the challenge may be closer to the monophonic
case. Therefore, depending on the criterion, the work of this article could be
classified both as monophonic and as polyphonic.

Jincahitra [35] proposed a method that was trained to identify five instru-
ments in signals containing one or two simultaneous instruments. The features
are derived from the independent subspace analysis (ISA), whose objective is
to decompose individual sources into statistically independent components.
The author remarks that this strategy requires that the concurrent instru-
ments be sufficiently non-overlapping, both in time and frequency domains,
to work properly. Two classification schemes, k-NN and GMM, were tested.
Mediocre performance led to the conclusion that a better learning and decom-
position algorithm may be necessary to overcome some of the weaknesses.

The algorithm proposed by Kostek [49] is divided into two parts, the
first dealing with the recognition of isolated tones, and the second dealing
with duets. The first part follows the conventional steps of most instrument
recognition algorithms—preprocessing, feature extraction (MPEG7-based and
wavelet-based), and classification, in this case performed by an ANN. The
second part begins with the decomposition of the signal into individual in-
struments, and then the harmonic detection step is applied to remove coin-
cident harmonics from both resulting streams. Then, the residual signals are
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submitted to a modified frequency envelope distribution (FED) algorithm,
which generates a new signal that tries to match the harmonic parts of each
residual. Those new signals, called envelope modulated oscillations (EMO),
are then used in the rest of the classification procedure, which also employs
an ANN. Tests were performed using isolated notes from 12 instruments and
duets encompassing four instruments.

Vincent and Rodet [79] investigated the use of independent subspace anal-
ysis (ISA) for instrument identification in musical recordings. The short-term
log-power spectra of the signals are represented as weighted nonlinear com-
binations of typical note spectra plus background noise. The models for the
instruments are learned using isolated tones. Those models are then used as
references in the identification of the instruments. Most experiments were
performed using solo phrases of five instruments, but the authors also present
some preliminary results using a single polyphonic excerpt extracted from a
commercial recording. Tests revealed that the method works well under noisy
conditions. This strategy is also able to perform polyphonic transcription.

Kitahara et al. [43] proposed a method for instrument identification in
polyphonic music. To solve this problem, the authors proposed the use of a
feature vector extracted directly from polyphonic sound mixtures, the use of a
pitch-dependent timbre model, and the use of musical context-based a priori
probabilities. The instrument that maximizes the a posteriori probability (PP)
of temporarily neighboring notes is taken as the final result for the note under
analysis. The tests were performed using mixtures of one, two, and three
instruments, generated from samples of four different instruments.

Essid et al. [25] proposed an algorithm able to recognize instruments in
polyphonic music, from solos to quartets, without the need of performing mul-
tipitch estimation or source separation. The study focuses on Jazz music and
respective instruments (10 in total). The possible ensembles of instruments are
determined a priori, in such a way the algorithm tries to identify the ensemble
present in the signal, and not individual instruments. Such a classification is
performed by means of a SVM, which is applied to the nodes of a taxonomic
structure that is obtained with hierarchical clustering. For every possible pair
of classes in each node, the algorithm employs a SVM fed with 50 features
selected from a larger set of 355 by means of a feature selection algorithm
(FSA). The best features were found to be those based on signal-to-mask ra-
tios (SMR). The algorithm was tested with Jazz musical excerpts extracted
from commercial recordings and from the RWC Jazz music database [29].

Kitahara et al. [44] present a technique for instrument identification in
polyphonic signals. The focus of the authors was to develop a system that
does not rely on side information, particularly the onset detection and F0
estimation. The algorithm calculates the temporal trajectory of instrument
existence probabilities for every possible F0, and the results are summarized
in a spectrogram-like graphical representation called Instrogram, which is
used as classifier. The probabilities are based on the information provided
by 28 features. The experiments used artificially generated mixtures of three
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instruments—nine combinations were used in the tests. The authors claim
that the Instrograms can be used not only in instrument recognition, but also
in a variety of other applications.

In this article by the same authors [45], the algorithm copes with the effects
of time and frequency overlap that occur in polyphonic signals by weighting
the features based on how much they are affected by the overlapping. The
recognition accuracy is improved by the inclusion of a musical context. Many
of the steps, including the classification scheme, are very similar to those de-
scribed by Kitahara et al. [43, 47]. Several experiments were carried out using
mixtures of two, three, and four instruments. The authors recognize that, de-
spite the good results, their evaluation has two limitations, namely the manual
F0 feeding and the use of artificially generated mixtures. They remark, how-
ever, that most algorithms are tested that way due to the difficulties involved
in automatically estimating multiple F0s, and the pervasive use of unrealistic
test signals is motivated by the need for correctly labeled references.

This method proposed by Martins et al. [63] recognizes instruments in
polyphonic musical signals by first performing a sound source separation that
is inspired by the ideas of Computational Auditory Scene Analysis (CASA)
and formulated as a graph partitioning problem. The first stage of the sep-
aration is a sinusoidal modeling of the signal, and the second part performs
a spectral clustering according to a similarity space. The final classification
is obtained by a comparison between those clusters and timbre models (TM)
from six instruments. The algorithm was tested using mixtures of up to four
simultaneous instruments.

Yoshii et al. [84] proposed an interesting original algorithm that tries to
recognize three drum sounds in polyphonic signals. The system is based on
a template-matching method that uses power spectrograms of drum sounds
as templates. The system begins inferring an initial template of each drum
sound. This template is then adapted to the actual drum-sound spectrograms.
The interference of harmonic sounds is reduced by suppressing harmonic com-
ponents in the song spectrogram before the adaptation and matching. The
experiments were performed using songs present in the RWC Popular Music
Database [29].

The vast majority of the work on instrument recognition deals with West-
ern instruments. This proposal by Gunasekaran and Revathy [30] is an excep-
tion as its objective is the identification of 11 Indian instruments present both
in solo recordings and in duets. Prior to the extraction of the 85 features, the
signal is segmented by means of a fractal dimension analysis. Two classifica-
tion schemes, k-NN and MLP, were tested, with the former one providing the
best results.

This proposal by Lampropoulou et al. [55] tries to identify the families
of the instruments that are present in artificially generated mixtures. Three
instrument families (string, brass, and wind) were considered. A wavelet-based
sound source separation is applied prior to the extraction of 30 features. A
GMM is used to perform the final classification.

 



122 Music Data Mining

The objective of Little and Pardo [56] was to create a system able to
learn how to recognize individual sound sources in a polyphonic context. The
authors performed the training of the algorithm using weakly labeled mixtures,
in which only the presence or absence of the target instrument is indicated.
Accordingly, the objective of the algorithm is to indicate if a given target
instrument is present or absent. The authors used 22 features to characterize
the signals, and tested three classifiers—Extra Trees (ET), k-NN, and SVM.
The mixtures were created by chaining a number of notes for each one of the
four instruments considered, and then summing the resulting signals. Tests
indicated that learning from weakly labeled mixtures works significantly better
than learning from isolated examples when the task is identification of an
instrument in novel mixtures.

This algorithm proposed by Somerville and Uitdenbogerd [75] follows the
conventional approach of extracting a number of features and using some
kind of classifier to recognize the instrument. The authors tested four classifi-
cation schemes: k-NN, Decision Trees (DT), NaiveBayes (NB), and BayesNet
(BN). The best results were obtained using the k-NN. The experiments were
performed using excerpts extracted from real recordings. It is important to
remark that this algorithm works for polyphonic signals, but it does not rec-
ognize individual instruments, but combinations of instruments. Therefore,
it is not able to properly identify instruments in combination that were not
present in the training, even if all the instruments in this new combination
were individually present in some of the training signals.

McKay et al. [66] describe an algorithm to identify five instruments in
polyphonic signals. The method first performs a sound source separation by
means of the ADRess (Azimuth Discrimination and Resynthesis) algorithm.
After that, 44 conventional features are extracted. Finally, a GMM is used for
classification. All audio mixtures used by the authors are stereo (in contrast
with monaural signals used in most studies) and were created using a MIDI
synthesizer. According to the authors, there is still much room for improve-
ment, as the recognition accuracy for some instruments is low.

Pei and Hsu [70] proposed a method for instrument recognition in poly-
phonic signals that starts by extracting 33 features (MFCC and MPEG7-
based). Those features are integrated using a beat-synchronous approach. Af-
ter that, a fuzzy c-means clustering (FCM) algorithm is applied to separate
the information that characterizes each instrument. The resulting clusters feed
a SVM, which is responsible to perform the final identification. The training
of the method was performed using solo excerpts, but the experiments were
carried out over samples extracted from real recordings.

Wieczorkowska and Kubera [81] focused on the identification of the dom-
inant instrument in signals containing simultaneous sounds with the same
pitch. The training was performed using two groups of signals, one composed
by isolated tones, and the other composed by the same isolated tones mixed
with artificial harmonic and noise sounds of lower amplitude. An SVM is used
to perform the classification based on the information gathered by 219 fea-
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tures. The test set was generated by taking each sample of each instrument,
and adding an interfering sound of same frequency generated by averaging
the respective samples of all the other instruments. Before the mixing, such
an interfering sound is attenuated to one of eight possible levels. The authors
performed thorough experiments and came to the conclusion that the results
are satisfactory given the difficulty involved in the task.

Wieczorkowska and Kubik-Komar [82] proposed an algorithm to recog-
nize musical instruments in sound mixes for various levels of accompanying
sounds. The algorithm extracts a large number of features, mostly based on
MPEG7 descriptors. The information contained in the features is explored
by means of Principal Component Analysis and discriminant analysis (DA),
which are responsible for the classification. The experiments were performed
using samples from 14 instruments contaminated by contents coming from
other instruments at different levels, in a procedure similar to that described
in Wieczorkowska and kubera [81]. As expected, the recognition rate became
worse the stronger the disturbing sounds were.

Burred et al. [10] proposed a new computational model of musical instru-
ments that tries to capture the dynamic behavior of the spectral envelope.
They use sinusoidal modeling, frequency interpolation, PCA, and nonstation-
ary Gaussian process modeling to generate a set of prototype curves that
characterize the notes of the instruments. The performance of those pro-
totype curves in the identification of instruments was assessed using both
monophonic and polyphonic signals, which were generated from samples of
five instruments.

Kubera and Ras [54] proposed a technique to identify instruments in mix-
tures of two instruments. They used 219 features of various types, mostly
derived from the MPEG7 standard, but they also proposed some new ones.
A SVM was used for classification. The test set consists of mixtures produced
by two instruments playing the same note at the same time. The possible
instrument combinations are set a priori, so the classification system does not
try to identify individual instruments, but one of the possible 15 pairs.

The strategy proposed by Barbedo and Tzanetakis [4] explores the spectral
disjointness among instruments by identifying isolated partials, from which a
number of features are extracted. The information contained in those features
is explored by means of a simple binary linear discriminator (BLD), which is
used to infer which instrument is more likely to have generated that partial.
Hence, the only condition for the method to work is that at least one isolated
partial exists for each instrument somewhere in the signal. If several isolated
partials are available, the results are summarized into a single, more accurate
classification. Experimental results using 25 instruments demonstrate the good
discrimination capabilities of the method.

Table 4.2 summarizes all methods described in this subsection. The
columns are the same as Table 4.1.
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Reference Class Database Non- Flat/ No. No.
System harm. Hier. Inst. Features

Barbedo10 [4] BLD RWC, No Flat 25 34
Iowa

Burred10 [11] Prototype RWC No Flat 5 N/A
Curves

Eggink03 [18] GMM CR, No Flat 5 120
McGill

Essid06 [27] SVM CR, Yes Hier. 10 50 (355)
RWC

Gunasek.08 [32] k-NN, ANN N/A Yes Flat 11 85
Jincahitra04 [40] k-NN, GMM Iowa, No Flat 5 N/A

McGill
Kubera10 [60] SVM McGill No Flat 8 219
Lamprop.08 [61] GMM Iowa No Flat1 19 30
Little08 [62] ET, SVM, Iowa No Flat 4 22

k-NN
Kitahara05 [49] PP RWC No Flat 4 3 (43)
Kitahara06 [50] Instrogram RWC No Flat 4 28
Kitahara07 [51] PP RWC No Flat 5 43
Kostek04 [55] ANN Self, No Flat 12 N/A

McGill
Martins07 [72] TM RWC No Flat 6 N/A
McKay09 [75] GMM MIDI No Flat 5 44
Pei09 [79] SVM CR No Flat 5 33
Somerville08 [84] k-NN, DT, CR No Flat 8 18

NB, BT
Vincent04 [88] ICA CR, No Flat 5 N/A

RWC
Wieczork.09a [90] SVM Iowa, No Flat 12 219

McGill
Wieczork.09b [91] DA McGill No Flat 14 217
Yoshii07 [94] TM RWC Yes Flat 3 N/A
1 There is a hierarchy, but only parent classes are identified.

Table 4.2
Algorithms of the Polyphonic Group
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4.4.3 Other Relevant Work

The work on instrument recognition is not limited to the proposal of new
algorithms. There are several publications that tackle problems that have
direct relation with the problem of instrument recognition. This subsection
lists some of them, briefly introducing their main contribution.

Although this is a relatively new area, there are already a number of good
reviews and surveys available, like the two led by Herrera-Boyer [33, 32] and
the one written by Kostek [50].

Livshin and Rodet investigated some interesting side aspects of the instru-
ment recognition. They studied the importance of cross-database evaluation
in sound classification, concluding that even if a given database has good vari-
ability of instruments and conditions, and even if the experiments are carefully
designed so no data used in the training is used in the tests, there are still
some biasing factors that may affect the results, thus making the use of a dif-
ferent database for validation highly advisable [57]. They tackled the problem
of compiling a suitable musical instrument database, suggesting some criteria
to remove bad samples from the final set [59].

Finally, there are some works that study specifically which features are
better to characterize the signals to be classified. This is the case of the article
written by Wieczorkowska et al. [83], which deals specifically with temporal
descriptors, and of the work by Nielsen et al. [67], which presents studies on
the relevance of spectral features.

4.5 Future Directions

The problem of instrument recognition is still open. Even the identification of
instruments in isolated tones is far from being a mature technology. Hence,
the research is still in a prospective phase, which means that there are many
directions to be taken and many solutions to be tested.

The task of feature extraction has been intensely studied for a long time
due to the importance it has in characterizing audio signals. Because of that,
there is not much room for improvement. However, especially in the case of
polyphonic signals, it may still be possible to create new features capable of
extracting some kind of information that no other feature can capture.

The classifiers used by most algorithms are also well established, making
significant advances even more difficult than in the case of the feature extrac-
tion. Moreover, many studies that compared a number of classifiers under the
same conditions reveal that the classifiers actually have similar performances,
which indicates that this may not be among the most important factors that
influence the accuracy of the methods.
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A better candidate for improvement may be the preprocessing of the signal.
This stage of the algorithm aims to modify the signal in such a way it becomes
more prone to the subsequent processing. Since musical signals are not well
behaved, in the sense that they do not follow clear instrument-related rules, a
novel preprocessing stage will have to incorporate some mechanism to make
the signals more predictable and, more importantly, to make the characteris-
tics of each instrument stand out. Clearly this is not an easy task, but given
the ability that human listeners have to perceive even the slightest particular
characteristics of a given instrument, such an objective is not infeasible.

It is important to notice that the feature/classifier combination is not the
only possible way to recognize instruments. An interesting approach that has
been already explored in some studies is the template matching. The main
goal of this kind of strategy is to find, for each possible instrument, one or
more representations (templates) that are consistently valid despite all the
variability between instrument samples. Those templates have also to deal
properly with the entire frequency range of each instrument. If the templates
are really representative, they will match well with any representation ex-
tracted from the signal to be classified. Again, this is not an easy task, but
studies performed so far [40, 84] indicate that this option has good potential.

In the specific case of polyphonic signals, the great difficulty lies in the
cross-interference caused by simultaneous instruments. In this case, there are
two main possible directions for future research. The first one consists in
breaking the polyphonic problem into a number of monophonic ones. The
problem with this option is that it depends on advances in sound source
separation, which is a very difficult problem by itself, especially if there are
more instruments than channels. To make things harder, to be useful in this
context the source separation needs to be close to perfect, because while the
instrument recognition is difficult with its temporal and spectral contents
intact, it is nearly impossible if the contents are too distorted. The second
option is to explore the temporal and spectral disjointness among instruments
that usually occur in any signal. The idea here is identify the regions in time
and/or frequency where a given signal is isolated, and then use only those clean
parts to perform the identification. In the time domain, this implies in finding
isolated notes, and in the frequency domain, the objective is identify partials
that do not collide with any other one, and filter the signal to eliminate the
remaining mixed partials. Some studies have already been carried out [4, 49],
with promising results.

As can be seen, there are many possible options to be investigated and
developed. Thare are many aspects of the problem that are still not well
known, including the maximum information that can be extracted from a
musical signal and what is the best way to explore such an information. Future
studies will have the responsibility to bring those important questions closer
to an answer.
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Researchers have studied emotional aspects of music for a long time. A major
aspect of the emotional studies of music is the following pair of questions
about felt or perceived emotions and moods:

• What types of emotions and moods can be identified in a piece of music?

• How emotions and moods are communicated? How do underlying
musical structures, articulation in performance, and preparation and
disposition of listener contribute to the communication process?

Another aspect of the studies is the same pair of questions with respect to
induced emotion:

• What types of emotions and moods can be induced by music listening?

• How emotions and moods are induced?

Recent advancements in techniques for extracting relevant information from
audio recordings, metadata, and texts have encouraged researchers to explore
such questions through computational analysis of music data. In particular,
the very first question of identifying emotions and moods represented in music,
is drawing much attention from music information retrieval researchers.

5.1 Using Emotions and Moods for Music Retrieval

The type of music a listener prefers to listen is not fixed. Rather, it is depen-
dent on a number of factors, including her/his music training, her/his entire
and recent music listening, and her/his present disposition to music listening
(see, e.g., the work of Juslin and Laukka [33]).

For example, consider a scenario in which a person that has been listening
to Avant Garde Jazz music by Albert Ayler for the past few days and has
been finding to be enjoyable suddenly feels like listening to “something tender,
happy, and loving,” and so picks “Close To You” sung by The Carpenters.

In such a situation, if the person is only sure about listening to “something
tender, happy, and loving,” how can a music retrieval system assist the listener
in finding a tune? To solve this problem, we think of endowing the retrieval
system with the ability to accept terms like “Tender,” “Happy,” and “Love,”
which we call emotion and mood labels to mean that they refer to emotions
and moods represented in a given piece of music. To make emotion and mood
label queries possible, we have to go through three steps:

1. Determining which labels will be used.

2. Assigning the labels to the pieces in the collection.
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3. Designing the query system so as to handle emotion and mood query
terms.

All three steps are nontrivial. For the first, the existence of various organiza-
tions of emotion makes it difficult to decide which labels should be used. For
the second, since emotion and mood labels are not part of metadata, those
labels have to be calculated from other available information. For the last, the
distance from a candidate piece of music to a given set of emotion and mood
query terms has to be quantified in a meaningful manner.

Although each of the three steps deserves serious investigation, this chap-
ter is concerned with the first two steps only. The next section, Section 5.2,
discusses the first step and provides an overview of the research in taxonomies
of emotion and mood and their relations to music. The subsequent two sec-
tions jointly cover the second step. Section 5.3 presents efforts in obtaining
ground-truth labels for emotion and mood. Section 5.4 presents efforts in de-
veloping computational methods for calculating emotion and mood labels of
music. Section 5.5 discusses future issues.

5.2 Emotion and Mood: Taxonomies, Communication,
and Induction

5.2.1 What Is Emotion, What Is Mood?

What lies beneath the mood and emotional classification of music is the desire
to

(i) understand music in terms of what listeners, beyond cognition of musical
structures, identify in music or feel about it, and then

(ii) use that understanding for improving retrieval of music.

An important initial step toward achieving these goals is to clarify what
emotions and moods are. The New Oxford American Dictionary [3] defines
emotion as “a natural instinctive state of mind deriving from one’s circum-
stances, mood, or relationships with others,” “any of the particular feelings
that characterize such a state of mind,” and “instinctive or intuitive feeling
as distinguished from reasoning or knowledge.”

While an emotion is a state of mind that is instinctive and peculiar, mood
is something more persistent and obscure. Again, the New Oxford American
Dictionary defines mood as “a temporary state of mind or feeling” and, in
particular, “the atmosphere or pervading tone of something.” Thayer [75]
defines moods to be “background feelings that last for a time and that often
have no particular cause” and often the moods are just “good or bad.”
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Type Duration Awareness Target
Emotion Instinctive Full Often present
Mood Persistent Partial, or even absent Absent

Table 5.1
Comparison between Emotion and Mood

These definitions enable us to draw some line between mood and emotion.
While emotions are instinctive and sometimes attached to particular objects,
mood may drift from one to another, people may not recognize their mood un-
til they pay attention to them, people may not be able to figure out why they
are in a specific mood, and while being in a certain mood people may experi-
ence various emotions. Table 5.1 summarizes the difference between emotion
and mood.

5.2.2 A Hierarchical Model of Emotions

The literature in developmental psychology states that humans learn basic
emotions in their early developmental stage, which is through simple stimuli,
and more complex emotions in later stages (see, for example, Bower [7]). This
developmental distinction between basic ones and more specific ones suggests
a two-level hierarchical organization of emotion. By adding to it the division
between positive and negative emotions, one obtains the hierarchical diagram
of Schaver et al. [64]. In this hierarchy, at the top level are super-ordinate
categories (positive and negative), at the middle level are the basic emotions,
which Schaver et al. think of as universally understood emotions, and at the
bottom level are the most specific 135 emotions, which may exhibit individual
variability in understanding. Figure 5.1 shows the hierarchy in a simplified
form with just a few bottom-level emotions present.

5.2.3 Labeling Emotion and Mood with Words and Its Issues

For description of emotion and mood we usually use words that represent emo-
tion (or affect), for example, those appearing in the emotion hierarchy. The use
of such words is very convenient and natural, but has peculiar characteristics
that we must keep in mind.

The first is their multiplexity; i.e., all at the same time people can be in
more than one mood and experience multiple emotions. As Michael Franks
sang, people may feel like: “I don’t know why I’m so happy and sad.”1

The second is individual variability in emotion assessment. This phe-
nomenon is more prominent when emotions are assessed at the subordinate

1Michael Franks, “I Don’t Know Why I’m So Happy and Sad,” from the album The Art
of Tea, Reprise Records, 1976.
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EMOTIONS

SUBORDINATE
CATEGORIES

SUPERORDINATE
CATEGORIES

BASIC
CATEGORIES

Positive Negative

Love Joy Anger Sadness Fear

Fondness
Infatuation

Bliss

Contentment

Pride

Annoyance

Hostility

Contempt

Jealousy

Horror

Worry

Agony

Guilt

Grief

Loneliness

Figure 5.1
The hierarchy of emotions according to Schaver et al. [64]. At the subordinate
level (the bottom level) only a small number of selected emotion categories
are shown.
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level than at the basic level or at the top level. On hearing a man telling the
story about a very unreasonable customer representative, a friend may think
that the man is angry but the man himself thinks that he is just frustrated.
This issue is prominent when humans provide emotion and mood labels to
music, in particular, instrumental music.

The last one, which has much to do with the second, is overlap among
emotions and among moods. Emotion and mood labels words, which are usu-
ally adjectives or nouns, have synonyms—“words having exactly or nearly the
same meaning as another word” according to the New Oxford English Dic-
tionary. If the size of overlap between an emotion word, A, and another, B,
is significant but not 100%, treating the two as different makes assessment of
emotion, both by human and by machine, very difficult with respect to these
two, since the distinction among “both A and B,” “A but not B,” and “B but
not A” is obscure. The Schaver hierarchy contains as many as 135 emotions,
and large numbers of emotion words have been identified, for example, in
ANEW (Affective Norms for English Words) [8]. Thus, an attempt to classify
music into presence/nonpresence with such a large number of labels appears
to be extremely difficult, if not utterly impossible.

5.2.4 Adjective Grouping and the Hevner Diagram

The aforementioned characteristics suggest that to study emotions and moods
in music we will perhaps have to use groups that combine various subordinate-
level emotions and will perhaps have to treat the classification problem as a
multilabel problem.

Hevner [25] is the first to experimentally found adjective groups through
subject experiments. In this study, 450 subjects were asked to listen to 26
pieces of classical music and for each piece select from a list of 66 adjectives
any number of words that seemed “appropriate to the music.” Through co-
occurrence analysis of the response Hevner divided the 66 adjectives into eight
groups and laid out the groups into a circle in such a way that the collection
of emotions represented by group members gradually changes as we go around
the circle (see Figure 5.2).

Hevner studied the scores of the pieces and attempted to correlate their
characteristics with the adjective groups chosen by the subjects. Correlations
were found in melody contour (ascending versus descending), harmony (simple
versus complex), mode (major versus minor), and rhythm (firm versus flow-
ing), with by far the clearest correlation between mode and “Happy” versus
“Graceful” as well as between mode and “Sad” versus “Dreamy.”

5.2.5 Multidimensional Organizations of Emotion

Psychologists have been using two-dimensional plots for organizing emotions.
In such a representation each axis corresponds to a pair of adjectives having
opposite meanings (for example, happy and sad). A point in the space thus
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1
"Digni�ed"

______________
spiritual

lofty
awe-inspiring

digni�ed
sacr ed
solemn
sober
serious

2
"Sad"

______________
pathetic
doleful

sad
mour nful

tragic
melancholy

frustrated
depr essing

gloomy
heavy
dark

3
"Dreamy"

______________
dreamy
yielding
tender

sentimental
longing

year ning
pleading
plaintive

4
"Serene"

______________
lyrical

leisurely
satisfying
serene
tranquil

quiet
soothing

5
"Graceful"

______________
humor ous

playful
whimsical

fanciful
sprightly
delicate

light
graceful

6
"Happy"

______________
merry
joyous

gay
happy

cheer ful
bright

7
"Exciting"

______________
exhilarated

soaring
triumphant
dramatic

passionate
sensational

agitated
impetuous

restless

8
"Vigorous"

______________
vigor ous
robust

emphatic
martial

ponder ous
majestic
exalting

Figure 5.2
The eight adjective groups discovered by Hevner.

Fear &
Suffering 

Anger &
Determination

Disgust

Contempt

Love,
Mirth, &
Happy

Surprise

Figure 5.3
The facial expression categories by Schlosberg.
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specifies in each axis, which of the two opposite feelings is more strongly felt.
The use of two independent factors in representing emotion was first suggested
by Wundt [89]. Psychological research in the late 20th century expanded the
idea of two-dimensional emotion plots and produced a number of plausible
representations, perhaps beginning in the seminal work of Schlosberg [67] to
classify facial expressions. These ideas were further extended in the work of
Russell [63], Thayer [75], and Watson and Tellegen [85].

The diagram of Schlosberg [67] is, like the one by Hevner, circular. In it
the whole area of facial expressions is a circle and the area is divided into six
sectors: “Fear and Suffering,” “Anger and Determination,” “Disgust,” “Con-
tempt,” “Love, Mirth, and Happy,” and “Surprise” (see Figure 5.3). This idea
of circular emotional changes is further investigated by Russell [63], in which
28 emotion words are organized in a circumplex. The two components that
span emotion are the Positiveness and the Arousal (i.e., excitement). The
Thayer model [75] is inspired by the Russell model. Like the Russell model,
the vertical axis represents the arousal level, but the horizontal axis represents
the level of tension felt. The two diagrams are shown in Figure 5.4. The emo-
tion model of Russell has been simplified in the Barrett-Russell model, which
is shown in Figure 5.5. Two-dimensional emotion models assume that a human
emotion can be identified with a location on the two-dimensional diagram. In
all the three models, Russell, Thayer, and Barrett-Russell, there is an axis
that represents positive and negative affects. Watson and Tellegen propose a
model using an axis representing Positiveness and another representing Neg-
ativeness (see Figure 5.6) and view the two diagonal axes as Engagement and
Pleasantness. For example, the combination of high positive and low negative
represents Arousal. From this model Watson, Clark, and Tellegen developed
a method called PANAS (Positive Affect–Negative Affect Schedule) for self-
appraisal of affect using 20 emotional terms (provide a five-point scale answer
with respect to each term) [84]. This has been further extended to PANAS-X,
a schedule involving 60 labels [83].

5.2.5.1 Three and Higher Dimensional Diagrams

Some research suggests that the space of perceived emotion has at least three
dimensions. Wedin [86] examined rank correlations of words in an adjective
checklist on 50+ pieces of music and identifies three pairs of adjective sets.
Wedin suggests that these three pairs correspond to:

• Intensity versus Softness

• Pleasantness versus Unpleasantness or Gaiety versus Gloom,

• Solemnity versus Triviality

Also, Leman et al. [44] study correlations among 15 adjective pairs by having
100 students label 60 pieces of music that cover many genres using the pairs.
Through principal component analysis of the covariance matrix of the pairs,
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they find that the first three components cover 56.5% of covariance and suggest
that those three together capture most of the perceived emotion in music. Each
of the three components is a linear combination of six fundamental dimensions
(that is, six pairs of adjectives with opposite meanings). Those dimensions
were identified as Valence, Activity, and Interest.

5.2.6 Communication and Induction of Emotion and Mood

Whether music can communicate any emotion and any mood is perhaps an
unsolved question. For any emotion, one can write a lyric that expresses it
and attach a melody to the lyric thereby producing a song that communi-
cates the emotion. This rather deceptive argument clearly does not apply to
instrumental music.

We can tell, however, from the aforementioned work of Hevner [25], that
a piece of instrumental music can communicate a certain set of emotions
and moods and that such emotions and moods may have to do with the
musical structures of the pieces listened to. Hampton [21] shows that there
is substantial consistency in emotions recognized by listeners. The emotional
expressiveness of music structures, as suggested by Hevner, has been further
investigated. Gabrielsson and Lindström [20] offer a summary of the state of
knowledge in this area.

In addition to the emotions and moods represented by structures of music,
researchers have been studying how the music is performed has a role in
emotion and mood communication. Researchers have found that performers
can communicate specific emotions and to do so they use a set of musical cues
[12, 19, 31, 56, 76]. Juslin [32] and Gabrielsson [18] are excellent surveys of this
area. It is known at least that the basic emotions of Thayer (see Figure 5.4)
can be well communicated using instrumental performances using cue. It is
unclear, however, whether subordinate emotions can be well communicated.

Another important topic related to emotion and mood in music is the
induction of emotion by music listening. This topic is first extensively inves-
tigated by Meyer [53]. As mentioned early the main questions are the types
of emotions induced by music and their relations with musical structures and
personality. Such studies have possible applications in music therapy and work
performance improvement [35, 45, 58]. The extensive literature in this area
[14, 23, 33, 38, 57, 65, 66, 71, 72] informs three important points we need
to be careful with when studying emotion and mood classification in mu-
sic. First and foremost, we should not get confused between perceived emo-
tions and induced emotions. Second, emotions perceived in music are not
necessarily induced in the listeners. Third, whether music listening success-
fully induces intended emotions depends on the personality and disposition of
the listener.
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5.3 Obtaining Emotion and Mood Labels

5.3.1 A Small Number of Human Labelers

An important step in music information retrieval research involving emotion
and mood is to build a data set in which the pieces have emotion or mood
labels. Given a data set without emotion and mood labels, one can use a
human for manual labeling. This straightforward approach is taken in the
work of Li and Ogihara [46]. In this work a single person labeled 500 pieces of
instrumental music in four genres (Ambient, Classical, Jazz, and Fusion). The
labels used are the 10 labels proposed by Farnsworth [15], a variation of the
eight class organization by Hevner that divided Group 5 into the “Fanciful”
and “Light” subgroup and the “Delicate” and “Graceful” subgroup and adds
a new group of “Frustrated.” The labeler answered for each piece and for each
of the 10 emotion categories whether the emotion is represented in the piece,
with no restriction on the number of labels to be assigned. This resulted in a
total of 5,000 yes/no binary labels provided by the labeler.

The task was carried over several days. The labeler sometimes returned to
the data to confirm labels to find that earlier labels were not accurate, though
they seemed correct in the first round. This resulted in revisions of the labels.

This episode illustrates an important issue in human-labeled emotion and
mood labels—inconsistency of human labels. The classification accuracy on
this data set was not very high. The overall precision was 0.3247 and the
overall recall was 0.5411. In terms of F-measure

2 · Precision · Recall
Precision + Recall

, (5.1)

the score was 0.4058. With respect to microaveraging (the unweighted average
of class-wise performance values), the precision was 0.3621 and the recall was
0.5893, which resulted in the F-measure of 0.4487. The low accuracy can be
partially attributed to the inconsistency of labels.

Another issue, one that is prevalent when dealing with music that contains
structural changes, is that represented emotions and moods may change during
performances. The aforementioned work by Li and Ogihara used a 30-second
excerpt from each piece of music and the labels were assigned purely based on
the music represented in the 30 seconds. To deal with emotions and moods of
an entire piece of music one may need to track emotion/mood appraisals over
entire duration of music time, as suggested by Korhonen [36] and Korhonen
et al. [37], and experimented with by Liu et al. [51].

Li and Ogihara [47] followed up on their preliminary work using all the
Jazz tracks from the previous experiment (235 tracks) and two labelers us-
ing a consolidated set of labels: “Cheerful” versus “Depressing,” “Relaxing”
versus “Exciting,” and “Comforting” versus “Disturbing.” The first two of
these correspond to the “Pleasant”–“Unpleasant” axis and the “Arousal”–
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“Nonarousal” axis of the Russell diagram discussed in Section 5.2. With this
modification, classification accuracy substantially improved from the previous
work. For each binary category and for each labeler, the accuracy was between
almost 70% to 83%. Li and Ogihara notice that the label assignments do not
agree much between the two labelers. This suggests that many labelers must
be used to obtain coherent labels.

Also, Yang and Lee [90] used labels given by a single person. In the first
experiment, the listener evaluated the total intensity of the two affects in the
Watson–Tellegen diagram, which can be viewed as

Positive Affect Value + Negative Affect Value,

that is, the sum of the x and y coordinate values. They extracted acoustic
features from 500 pieces of Rock music for 20 seconds of music beginning
at the end of the first third. The extracted features were: beat per minute
estimation (BPM), the low-level descriptors (LLD) of MPEG-7 (12 features),
and the high-level descriptors obtained by the use of Sony Extractor Discovery
System [59] (12 features). They found that the intensity had a very strong
linear correlation with BPM as well as with other features.

In the second experiment, from the previous pool of pieces, 145 songs
were chosen. The words appearing in the lyrics were looked up in the General
Inquirer (GI) database [73]. GI is a database that contains more than 8,000
words in which each word is annotated with 182 binary labels describing its
word sense. Emotion-related terms (such as pleasure and pain) are among
the labels, but there are many other labels that do not appear to be directly
related to emotion (such as academic and economy). The labeler gives labels
from PANAS-X and attempts were made to distinguish between songs that
were assigned labels with a High Negative Affect and those that were not
using the C4.5 decision tree algorithm [62]. The same attempt was made with
respect to High Positive Affect. In both cases the accuracy was around 80%
with or without using acoustic features.

5.3.2 A Large Number of Labelers

Eerola, Lartillot, and Toiviainen [13] used a clever two-stage labeling pro-
cess that involved human labelers. In the first stage, a dozen experts (music
students) chose 360 movie sound tracks that represent five basic emotions
(“Happy,” “Sad,” “Tender,” “Scary,” and “Angry”) of Schaver. On this stage,
the experts also categorized the emotions into a three-dimensional affect space
spanned by three dimensions of Activity, Valence, and Tension, where each
dimension is discretized in seven levels (the Likert scale). The experts rated
each track with respect to these scales as well. For each basic emotion they
chose five tracks that represent the emotion at the strongest level and five at
the moderate level. This constituted a data set of 50 tracks.

With respect to the three-dimensional representation, for each axis they
sampled tracks at the top 4 percentile (20 tracks). This resulted in a data set
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of 60 tracks. In the second stage, they provided these data sets to as many as
112 music students to label them with respect to the five emotions as well as
with respect to the three-dimensional map.

5.3.3 Mood Labels Obtained from Community Tags

The creation of music listening communities over the Internet, such as the
aforementioned Last.fm [2], has opened up the possibility of inferring emo-
tion and mood categories from the labels/tags assigned by members of the
communities.

Also, there have been recent efforts using “Games With a Purpose,” that
is, collaborative Internet games for collecting tags and labels from the broad
public [82]. While labeling tasks can be time consuming, tedious, and expen-
sive, carefully designed games can produce large quantities of high-quality
annotations. Several such games have been been developed for the collection
of music tags, such as MajorMiner [52], ListenGame [78], and TagATune [43]
(based on InputAgreement [42]), which have produced tag corpora that in-
clude many emotion- and mood-related terms. MoodSwings is a different style
of collaborative game for time-varying annotation of emotions based on the
Barrett-Russell parametric affect-arousal model, producing coordinate labels
at each second of music [34, 55]. Herd It combines multiple types of music
annotation games, including affect-arousal annotation of clips, descriptive la-
beling, and music trivia [5].

One thing we need to be careful of when using labels/tags from online
games is that they are noisy because the people proving labels/tags are anony-
mous, their levels of music education are unknown, and their sincerity is
unclear. The noisiness can be generally overcome by collecting inputs from
many (hundreds, thousands) community members and looking for consistency
within the community.

5.3.3.1 MIREX Mood Classification Data

Hu, Downie, and Ehmann [28] implemented a strategy for obtaining mood
label groups and selecting representative pieces of music for them. Resulting
from this effort is a mood classification benchmark data set called MIREX
Mood Classification Data, part of a popular benchmark MIREX (Music In-
formation Retrieval Exchange) data set collection at University of Illinois [29].

Their development of mood labels began by collecting from Last.fm [2] so-
cial tags assigned to candidate pieces. There were 8,000 candidate pieces. The
collected social tags were analyzed in terms of POS (part-of-speech) tags to
collect single-word adjectives. Next from the single-word adjectives nonemo-
tion words as well as those appearing in social tags for only a small number
of pieces were eliminated.

The remaining words were then clustered using K-Means in terms of their
co-occurrences. The resulting clusters of adjectives are shown in Table 5.2.
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1 2 3 4 5
Rowdy Amiable/ Literate Witty Volatile
Rousing Good-natured Wistful Humorous Fiery

Confident Sweet Bittersweet Whimsical Visceral
Boisterous Fun Autumnal Wry Aggressive
Passionate Rollicking Brooding Campy Tense/Anxious

Cheerful Poignant Quirky Intense
Silly

Table 5.2
MIREX Mood Adjective Clusters

Then, from the pool of candidate tracks, 250 exemplar pieces were chosen
for each cluster. These 250 pieces were evaluated by more than 20 people.
Based on the evaluation, 120 pieces were selected such that the human eval-
uation showed strong agreement. This created a data set of 600 tracks total.
A diagram of the construction steps is shown in Figure 5.7.

5.3.3.2 Latent Semantic Analysis on Mood Tags

The aforementioned work of Hu, Downie, and Ehmann demonstrates that the
emotion and mood words appearing in listening community tags can be used
to develop mood categories. How are these mood categories related to each
other?

Laurier et al. [41] studied this question by analyzing co-occurrences of
those emotion and mood labels in the Last.fm tags.

After elimination of infrequent words, they applied latent semantic analysis
(LSA) and then K-Means clustering. The top three words of each of the four
clusters are shown in Table 5.3. These clusters appear to correspond to the four
emotions in the Thayer map, respectively to Tension-Energy, Calm-Energy,
Calm-Tenderness, and Tension-Tenderness.

Clusters
1 2 3 4

Angry Sad Tender Happy
Aggressive Bittersweet Soothing Joyous

Visceral Sentimental Sleepy Bright

Table 5.3
The Top Three Words of the Four Clusters Obtained by Laurier et al. [41]
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Figure 5.7
The diagram for constructing the MIREX mood data.

5.3.3.3 Screening by Professional Musicians

To achieve high level of consistency or coherence in the labels is to use experts
(musicians, music students, and music teachers). The aforementioned work
of Eerola, Lartillot, and Toiviainen [13] and Hu, Downie, and Ehmann [28]
involved experts in labeling process.

Liu, Lu, and Zhang [50, 51] used the Thayer model and divided
labels into four separate classes: “Exuberance” (Calm-Energy), “Anx-
ious/Frantic” (Tension-Energy), “Contentment” (Calm-Tiredness), and “De-
pression” (Tension-Tiredness). They selected a number of styles and structures
in classical music that seemed to be associated with each of the four groups,
selected a number of such pieces, and then extracted four 20-second repre-
sentative segments from each selected piece. Then they had musicians listen
to the chosen segments so as to eliminate mislabeled tracks. The resulting
database consisted of approximately 800 tracks extracted from 250 pieces.

5.4 Examples of Music Mood and Emotion Classification

5.4.1 Mood Classfication Using Acoustic Data Analysis

Liu, Lu, and Zhang [50, 51] decomposed their four-class classification problem
(see Section 5.3.3.3) into a two-layer binary classification problem, in which
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the first level separated between “Tiredness” and “Energy” and the second
level separates, within each of the two classes generated by the first level
classifier between “Calm” and “Tenses.” The extracted features are subband-
divided spectral features, short-term Fourier transform features, and rhythmic
features. They applied a transform to make these signals orthogonal and then
fed the transformed feature vector into Gaussian Mixture Models consisting
of four Gaussian distributions. The accuracy was around 85%.

Li and Ogihara [47] used MFCC and short-term Fourier transform by way
of Marsyas [81, 80], as well as statistics (the first three moments plus the mean
of absolute value) calculated over subband coefficients obtained by applying
the Daubechies Db8 wavelet filter [11] on the monaural signals (see Li and
Ogihara [49]). On each axis, the accuracy of binary classification was in the
70% to 80% range for both labelers.

In 2007, MIREX first included a task on audio music mood classifica-
tion, using the five mood clusters mentioned previously, and performance has
increased each subsequent year [29]. In 2007, Tzanetakis achieved the high-
est correct classification (61.5%), using MFCC, spectral shape, centroid, and
rolloff features with an SVM classifier [79]. The highest performing system in
2008 by Peeters demonstrated some improvement (63.7%) by introducing a
much larger feature corpus including, MFCCs, Spectral Crest/Spectral Flat-
ness, as well as a variety of chroma based measurements [61]. The system uses
a Gaussian Mixture Model (GMM) approach to classification, but first em-
ploys Inertia Ratio Maximization with Feature Space Projection (IRMFSP) to
select the most informative 40 features for each task (in this case mood), and
performs linear discriminant analysis for dimensionality reduction. In 2009,
Cao and Li submitted a system that was a top performer in several cate-
gories, including mood classification (65.7%) [10]. Their system employs a
“super vector” of low-level acoustic features, and employs a Gaussian Super
Vector followed by Support Vector Machine (GSV-SVM).

5.4.2 Mood Classification Based on Lyrics

Hu, Chen, and Yang [30] designed a method for dividing sentences in a lyric
into emotion groups and then extracting emotion labels from each group,
using a large collection of emotion words (see Figure 5.8). The technique was
applied to popular music sung in Chinese but the method should be applicable
to other languages.

The first step of the method is to identify a large set of Chinese affect words
and then map each collected word to a point in the two-dimensional real space,
R2. For this purpose, they created a two-level database of approximately 3,000
emotion words. The first level was created by translating into the Chinese
ANEW database [8], a large (1,031 words) collection of emotion words as
follows: (a) First, 10 native speakers of Chinese independently translated these
words into Chinese. During this process, if a translator found that there was
no appropriate Chinese translation (mainly because of cultural difference),
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Figure 5.8
The process of producing a sentence group emotion map.

the word was removed from the collection. (b) For each remaining word, the
translation that had been suggested by the largest number of translators was
chosen as the translation. The second level was created by adding to this
collection approximately 2,000 synonyms by looking up a Chinese synonym
database. Following the word gathering, they annotated all the words in the
database in terms of their Chinese parts-of-speech (POS). This resulted in a
two-tier emotion word collection consisting of nearly 3,000 words.

In the second step, the words in the database were mapped into R2. In the
ANEW database every word is rated with respect to its Valence, Arousal, and
Dominance levels, each with nine levels. Hu, Chen, and Yang used the first
two, Valence and Arousal. That is, if a Chinese word w translated from an
English word u in ANEW or if w is a synonym of a Chinese word w′ translated
from an English word u in ANEW, then its map, µ(w), is:

µ(w) = (Valence(u),Arousal(u)).

The range of the map was then extended to the sentence level. Given a sen-
tence s, all the emotion words appearing in s were identified using the POS
information attached to them, and then depending on the tense in which
the words are used in s and on their modifiers appearing in s, the Valence
and Arousal values are scaled (the values may go out their original range of
[−1, 1] due to scaling). The map of the sentence s is computed by taking the
component-wise average of the maps of the emotion words in s.

Next, Hu, Chen, and Yang collected nearly 1,000 popular music lyrics sung
in Chinese along with the timing information of the sentences appearing in
the lyrics in their corresponding performance. They had seven people label
them into one of the four quadrants of the Thayer map. They kept only those
for which at least six labelers agreed. There remained 400 songs. Interestingly,
the Calm-Tiredness quadrant had only eight lyrics and the Tension-Energy
had as few as 54.

In the next step, using the Manhattan distance on the map they devised
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a similarity measure between two sentences. Given a lyric, its sentences can
be viewed as nodes with the distance between any pair of nodes set to the
similarity between the two nodes. By computing the maximum spanning tree
of the graph and then cutting the tree into components by eliminating all
the edges whose distance value is below a fixed threshold, a set of sentence
groups was obtained (a method suggested by Wu and Yang [88]). Each group
was then mapped to a point in R2 by computing the weighted average of the
maps where the weight of a sentence was calculated based on which level of
the two-level database their emotion words came from and how much time was
allocated to the sentences in the singing. Then they selected as the represented
group from each lyric the one with the highest total weight.

The above process produced a map of the lyrics to the quadrants of Thayer.
The authors compared this against the human based map using F-measure:

Precision · Recall
Precision + Recall

. (5.2)

Here for given an alignment the Calm-Energy had the F-measure of 0.70,
suggesting that there is strong agreement between the human perception of
this emotion in Chinese songs and representation of this emotion in Chinese
lyrics. As to the remaining three, Tension-Energy had F-measure of 0.44 and
the other two had much lower F-measure values.

5.4.3 Mixing Audio and Tag Features for Mood
Classification

Bischoff et al. [6] used All Music Guide (allmusic.com) [1] for collecting mood
labels. All Music Guide is a Web-based guide book that offers an extensive
discography, musicological information, various metadata, and sound samples.
It offers theme and mood labels assigned by experts. Bischoff et al. collected
from All Music Guide, 73 those expert-assigned theme labels and 178 mood
labels for nearly 6,000 songs. The 178 mood labels were organized in two ways:
using the two-dimensional diagram of Thayer and using the five-cluster groups
according to the aforementioned MIREX mood label clusters [29]. Then from
the nearly 6,000 songs, any piece that matched more than one Thayer class
was removed, which resulted in a reduction of size to 1,192 songs.

For these songs, audio features and tag features were obtained. As to the
audio features, audio files in the MPEG-3 format were used with the 192K
bps bit rate. The extracted features included MFCC, Tempo, Loudness, Pitch
Classes, chroma, and the Spectral moments. The total number of features was
240. As to the tags, they were collected from Last.fm [2].

Bischoff et al. built a support vector machine classifier based on audio fea-
tures and a Naive Bayes classifier based on tags. They actually tested various
regressions for audio features and concluded that support vector machines
performed the best. These classifiers were configured to output a real value
between 0 and 1 for each mood class. Then, using a mix ratio parameter β,
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0 < β < 1, the two classifiers were linearly combined into a single classifier.
Let c be a class and let fc and gc respectively be the classifier for c with re-
spect to audio and the classifier for c with respect to tags. Then the output
of mixed classifier, hc, with β is:

βfc(x) + (1− β)gc(x), (5.3)

where x is the input feature vector consisting of the audio and tag features.
Both in the case of single-feature set classifiers and in the case of linearly
mixed classifiers, the predicted class assignment is the class c for which the
output is the largest; that is,

argmaxcϕc(x), (5.4)

where ϕ is one of f , g, and h.
Both for the Thayer class prediction and for the MIREX mood class pre-

diction, with an appropriately chosen α, the linearly mixed classifier per-
formed better than the single-feature set classifiers. For the MIREX classes,
the best accuracy, in terms of F-measure, was 0.572 and that was achieved
when β = 0.3. This was better than the reported accuracies of 0.564 for tag-
only features and of 0.432 for audio-only features. As for the Thayer mood
classes, the best accuracy, again in terms of F-measure, was 0.569 and that
was achieved when α = 0.8. This was an improvement from the accuracy of
0.539 for tag-only features and 0.515 for audio-only features.

5.4.4 Mixing Audio and Lyrics for Mood Classification

Hu, Downie, and Ehmann [28] mixed audio signals and lyrics for mood clas-
sification of Pop and Rock songs. Ground-truth mood-class (multiple classes
for some) identification was done as follows.

To set up experiments, approximately 9,000 audio recordings were obtained
such that their corresponding lyrics were available at Lyricwiki.org and such
that their tags were available at Last.fm [2]. From those, the songs with lyric
length of less than 100 words were removed.

The collected tags were processed to create a vocabulary of emotion words
and their grouping as follows. First, from the collection words that were not re-
lated to emotion were eliminated. Subject to elimination were: (a) genre/style
names (such as “Dance”), (b) terms that were judgmental (such as “Bad”
and “Great”), and (c) terms for which the intention of their taggers was am-
biguous (such as “Love,” which could mean either the tagger loved it or the
tagger felt that the song was about love). Second, using WordNet-Affect [74]
as a guide words having identical origins (e.g., a name and its adjective form)
and their synonyms were grouped together. Finally, these groups were then
examined by human experts for further merger. This was the vocabulary of
emotion words and their groups.

After this preprocessing, for each emotional word group the songs whose
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Calm Sad Happy Romantic Upbeat
Comfort Unhappy Glad Gleeful

Depressed Anger Grief Dreamy Cheerful
Blue Fury Heartbreak Festive

Brooding Aggressive Confident Angst Desire
Contemplative Aggression Encouraging Anxiety Hope

Earnest Pessimism Excitement
Heartfelt Cynical Exciting

Table 5.4
The 18 Groups by Hu, Downie, and Ehmann

tags match a word in the group was collected from the song collection. How-
ever, if a tag of a song happened to be contained in its artist name (such as
“Blue” in Blue Öyster Cult), that particular occurrence of the tag was ignored.
Then, emotion word groups of song collection size less than 20 were removed.
This resulted in 18 emotion word groups that in large part correspond to the
emotions appearing in the Russell diagram over 135 tags and 2,829 songs.
A couple of tags from each group are presented in Table 5.4. Note that be-
cause these words came from free-form tags they are not necessarily emotion
adjectives.

About 43% of the songs were assigned to multiple mood classes, and so
the mood class prediction problem was naturally considered to be a multiclass
labeling problem. So, it was decomposed as a collection of individual mood
classification problems.

As to feature extraction, the lyrics were processed for the following:

• Part-of-Speech (POS): A grammatical classification of words into some
types (such as nouns, verbs, and pronouns)

• Function Words (FW): The words that very frequently occur in
documents and serve some functions but not so directly related to the
contents (such as “about,” “the,” and “and”)

• Content Words (Content): The words that are not function words, may
or may not be processed by stemming (removing ending of words to turn
them into their stems, for example, changing “removing” to “remov-”)

As to the audio features, MFCC and spectral features were extracted using
Marsyas [81, 80]. These extracted features were incorporated in support vector
machines with a linear kernel. The average prediction accuracy was around
60%. For some categories, the use of both text and audio improved prediction
accuracy, but there were categories in which the combined features performed
worse than one of the text-only based predictor and the audio-only-based
predictor.
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5.4.4.1 Further Exploratory Investigations with More Complex
Feature Sets

Hu and Downie [26, 27] look deeper into the issue of extracting features from
lyrics and combining them with audio features to improve the 18-category
binary classification problem. They considered the following five types:

1. They considered bigrams and trigrams of each of the four types of infor-
mation mentioned earlier, i.e., Part-of-Speech, Function Words, Content
Words without Stemming, and Content Words with Stemming, in addi-
tion to their unigrams, which had been used earlier.

2. They considered an extensive set of stylistic features of lyrics, such as the
number of lines, the number of words per minutes, and the interjection
words. There were 19 such features. Some of these features were shown
to be effective in artist style classification when used with Bag-of-Words
and audio features [48].

3. They used a set of 7,756 affect words constructed from the aforemen-
tioned ANEW [8] by adding synonyms using WordNet [16, 54] and by
adding words from WordNet-Affect [74]. These additional words were
identified with their original words in the ANEW [8] by way of synonym
relations. ANEW provides, in addition to the nine-level scores for Va-
lence, Arousal, and Dominance, the standard deviation of their scores.
So there are six values assigned to each word in ANEW and its syn-
onyms. By calculating the average and standard deviation of these six
values, Hu and Downie generated a 12-feature vector for each lyric.

4. They considered various Bag-of-Words models of the aforementioned
General Inquirer. Again, each word appearing in General Inquirer is
represented as an 183-dimensional binary vector. The vectors associ-
ated with all the words of a lyric that appear in General Inquirer can
be summarized in four different ways: frequency, TF-IDF, normalized
frequency, and boolean value.

5. For ANEW as well as for General Inquirer, each lyric can be viewed
as a collection of words appearing in the vocabulary. Then for each
word in the vocabulary, one can compute frequency, TF-IDF normalized
frequency, and boolean value.

All these possibilities were individually studied to find their best representa-
tion. The best individual performance was achieved by Content Words with-
out Stemming when unigrams, bigrams, and trigrams are combined using their
occurrences (accuracy: 0.617) and the second best was achieved by Content
Words with Stemming when unigrams, bigrams, and trigrams are combined
using TF-IDF (accuracy: 0.613). For Function Words, the best use is to com-
bine their unigrams, bigrams, and trigrams based on occurrences (accuracy:
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0.594). When the Context Words without Stemming is combined with Func-
tion Words and with either Stylistic Information or the TF-IDF of General
Inquirer, the accuracy is further improved to 0.632 or 0.631. Then they mixed
these best feature sets with audio features (Timbral and Spectral) to achieve
accuracy of more than 0.670.

5.4.5 Exploration of Acoustic Cues Related to Emotions

Eerola, Lartillot, and Toiviainen [13] used the two data sets described in Sec-
tion 5.3.2 for exploring features that are indicative of the emotions using their
feature extraction toolbox [40]. This is in some sense the acoustic-feature-
version of the music structure studies of emotion representation in music
mentioned in Section 5.2.6.

Eerola, Lartillot, and Toiviainen extracted a total of 29 features from half-
overlapping segments in duration of 0.046 seconds. The features extracted
pertained to dynamics, timbre, harmony, register, rhythm, and articulation in
part using feature extraction methods [17, 24, 39, 60, 77].

These features were then analyzed for their usefulness in prediction of
emotional labels through regression. Three regression models were examined:
Multiple Linear Regression (MLR) analysis, Principal Component Analysis
(PCA), and Partial Least Squares (PLS) regression analysis [87], where five
components were used for MLR and PCA and two for PLS. Also, the possi-
bility of using power transformation (i.e., raising to the power of some λ all
the components) was considered. The performance of these analysis methods
was compared using the R-squared statistics (R2):

1−
∑

(x− x′)2∑
(x− x)2

, (5.5)

where the sums are over all data points, x′ is the predicted value for x, and x
is the average of all values.

The best results were obtained with PLS with power transform both in
the case of three-dimensional emotional space (Valence: 0.72, Activity: 0.85,
and Tension: 0.71) and in the case of five emotional categories (Angry: 0.70,
Scary: 0.74, Happy: 0.68, Sad: 0.69, and Tender: 0.58).

Multiple linear regression analysis selects components from the original
audio feature representation that are the most collectively effective in pre-
dicting the values. For “Anger,” the five features selected were: Fluctuation
peaks, Key clarity, Roughness, Spectral centroid variance, and Tonal novelty;
for Tenderness, the five features selected were: Root mean square variance,
Key clarity, Majorness, Spectral centroid, and Tonal novelty.

5.4.6 Prediction of Emotion Model Parameters

Targeting the prediction of affect-arousal coordinates from audio, Yang et
al. introduced the use of regression for mapping high-dimensional acoustic

 



158 Music Data Mining

features to the Barrett-Russell two-dimensional space [91]. Support vector
regression (SVR) and a variety of ensemble boosting algorithms, including
AdaBoost.RT [70], were applied to the regression problem, using one ground-
truth coordinate label for each of 195 music clips. Features were extracted
using publicly available extraction tools such as PsySound [9] and Marsyas
[81], totaling 114 feature dimensions. To reduce the data to a tractable number
of dimensions, PCA was applied prior to regression. This system achieves an
R2 (coefficient of determination) score of 0.58 for arousal and 0.28 for valence.

Schmidt et al. and Han et al. each began their investigation with a quan-
tized representation of the Barrett-Russell affect-arousal space and employed
SVMs for classification [69, 22]. Citing unsatisfactory results (with Schmidt
obtaining 50.2% on a four-way classification of affect-arousal quadrants, based
upon data collected by the MoodSwings game, and Han obtaining 33% accu-
racy in an 11-class problem), both research teams moved to regression-based
approaches. Han reformulated the problem using regression, mapping the pro-
jected results into the original mood categories, employing SVR and GMM
regression methods. Using 11 quantized categories with GMM regression they
obtain a peak performance of 95% correct classification.

Schmidt et al. also approached the problem using both SVR and MLR.
Their highest performing system obtained 13.7% average error distance in
a unit-normalized Barrett-Russell space [69]. Schmidt et al. also introduced
the idea of modeling collected human responses in the affect-arousal space as
a parameterized stochastic distribution, noting that for most popular music
segments the collected points are well-represented by a single 2-D Gaussian.
They first perform parameter estimation in order to determine the ground-
truth parameters, N (µ,Σ) and then employ MLR, PLS, and SVR to develop
parameter prediction models. They have also performed experiments to eval-
uate the time-varying (per second) prediction of affect-arousal distributions,
achieving average mean errors of 15.4% in a unit-normalized affect-arousal
space [68].

5.5 Discussion

Table 5.5 summarizes the work on emotion and mood in music presented in
Sections 5.3 and 5.4. Some interesting questions to be addressed are:

• The work of Hu and Downie [26, 27] currently offers the most extensive
evaluation of text features extracted from lyrics and acoustic features ex-
tracted from audio. The accuracy is around 67%. Can this be improved?
Or, has the ceiling been reached [4]?
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Ref. Topic # of Features Methods AccuracyClasses
Li Audio
& Classifi- 10 (Spectra, SVM ≈ 0.44

Ogihara cation binary Timber, (F-measure)
[46] Wavelet)
Li Audio
& Classifi- 3 (Spectra, SVM 70–83%

Ogihara cation binary Timber, (accuracy)
[47] Wavelet)
Liu, Audio

Lu, & Classifi- 4 (Spectra, GMM 85%
Zhang cation Timber, (accuracy)

[50] Rhythm)
Yang Audio

& Classifi- 4 (LLD,EDS) C4.5 ≈80%
Lee cation + Lyrics (accuracy)
[90] (GI)
Hu, Lyrics 0.70

Chen, Classifi- 4 (POS, Fuzzy for 1 class
& Yang cation ANEW, CMeans (F-measure)

[30] Timing)
Tags+

Bischoff Classifi- Audio SVM, ≈0.530
et al. cation 4 (Timbral, NB (F-measure)

[6] chroma,
Pitch, etc.)

Hu, Lyrics (FW,
Downie, Content, POS) ≈0.60

& Classifi- 18 +Audio SVM (Average
Ehmann cation binary (Spectral, accuracy)

[28] Timbral)
Lyrics (FW,

Hu Content, POS, ≈0.67
& Classifi- 18 GI, ANEW) SVM (Average

Downie cation binary +Audio accuracy)
[28] (Spectra,

Timbral)
Audio

Eerola, Correla- 3 (Spectra, PLS,
Lartillot, tion binary Tempi, MLS, N/A

& Analysis + Timber, PCA
Toiviainen 5 Major/Minor,
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[13] numeric Rhythm, etc.)
Laurier Tags
et al. Cluster- 4 (LSA) KMeans N/A
[41] ing

Schmidt Audio
& Kim Regres- N/A (Spectral MLR N/A

[68] sion features)

Table 5.5: A Summary of Emotion and Mood Labeling Work
Covered in This Chapter (The acronyms are: ANEW = Affec-
tive Norms for English Words, Content = Content Words, EDS
= Extractor Discovery System, FW = Function Words, GMM =
Gaussian Mixture Models, LLD = Low-Level Descriptors, LSA =
Latent Semantic Indexing, MLR = Multiple Linear Regression, NB
= Naive Bayes, PCA = Principal Component Analysis, PLS = Par-
tial Least Squares, POS = Parts-of-Speech, SVM = Support Vector
Machines.)

• Are tags useful in calculating mood labels? This does not apply to data
sets like the 18-binary-class data set [26], where the labels were calcu-
lated from the tags.

• Of all these possible emotion and mood classes, Hevner, Farnsworth,
Watson-Tellegen, Thayer, Schaver, and Russell-Barrett, which one is
the easiest to predict?

• How much does emotion and mood vary in music over time, and how
difficult is it to predict emotion changes within a single piece of music?
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We present results from a decade-long project in the intersection of artifi-
cial intelligence, cognitive neuroscience, computer science, and psychology of
music. We have extended original research by George Kingsley Zipf to ex-
plore connections between power laws (e.g., Zipf’s law) and music aesthetics,
the latter in part defined by emotional responses of human listeners. Our re-
sults suggest a strong connection between music aesthetics (as perceived by
humans) and the complexity or entropy of music (as measured by metrics
based on Zipf’s law). We believe this reflects the fact that both music and
the human brain are self-similar, and that our measurements quantify shared
aspects of this fractal nature. We introduce Zipf’s law and related power laws.
We discuss earlier work connecting complexity of artifacts to aesthetics and
perceived pleasantness. We provide an algorithmic description of our metrics
and identify the various dimensions they measure. We present experimental
results, derived with artificial neural networks, which demonstrate the con-
nection between power laws (as captured by our metrics) and music aesthet-
ics (as captured by popularity statistics from a music Web site). We further
demonstrate this connection through Armonique, a music similarity engine
based on power laws. The aesthetic similarity of Armonique’s recommenda-
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tions is assessed through various psychological experiments involving human
listeners. These experiments compare Armonique’s music recommendations
against human emotional and physiological responses, further demonstrating
the connection between power-law metrics and aspects of human emotion and
aesthetics.

6.1 Introduction

There is significant available evidence on the relationship between human aes-
thetics and power laws (e.g., Zipf’s law) in the context of sound, images, video,
and text. Results connecting power laws with emotional and physiological re-
sponses of human listeners in the context of music are presented herein and
elsewhere [42, 59]. Similar results exist in the visual domain [52, 54, 55]. Ear-
lier research by George K. Zipf (in the 1940s) suggests a similar connection in
text [63]. The same approach may apply to film and video repositories [15]. Fi-
nally, power laws (and self-similarity) have been applied to data mining in the
context of graph topologies (Web and social networks) as well as astronomical
and other large data sets [19]. These results suggest that metrics based on
power laws represent a viable approach for data mining in digital archives.

The continued investigation of this relationship (between power laws and
human aesthetics) is an emerging research direction with broad and significant
implications for the development of automated tools for information retrieval,
knowledge discovery, and data mining. Assessment experiments, which docu-
ment the relationship between human response (both psychological and bio-
logical) and power-law patterns in sounds, images, video, and text, raise the
question: Do mind and body naturally “resonate” with certain sound (visual,
or textual) patterns? Below, we explore some of the ways in which they may
do so in music.1

6.1.1 Overview

This chapter discusses results from many years of research in the intersection
of artificial intelligence, cognitive neuroscience, computer science, and psychol-
ogy of music. We have developed hundreds of metrics which extract power-law
features from Musical Instrument Digital Interface (MIDI) and MP3 audio. Es-
sentially, these metrics capture statistical proportions of music-theoretic and
other attributes of music, such as pitch, duration, melodic intervals, harmonic
intervals, melodic bigrams, etc. These metrics have been assessed through var-

1This material is based upon work supported by the National Science Foundation under
grants IIS-0736480, IIS-0849499, and IIS-1049554. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.
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ious experiments, including experiments with human subjects. Results from
these experiments suggest that power-law metrics model essential aspects of
music aesthetics.2

Sections 6.2 and 6.3 discuss the history of and some issues related to quan-
tifying music aesthetics. Section 6.4.1 introduces Zipf’s law and related power
laws. Section 6.5 provides an overview of our power-law metrics for music.
Section 6.6 describes automated classification and unsupervised learning tasks
used to validate these metrics. Section 6.7 presents Armonique, a music simi-
larity engine utilizing power-law metrics. Section 6.8 presents results from psy-
chological experiments with human subjects assessing Armonique’s similarity
model with respect to human music aesthetics. Conclusion, acknowledgments,
and references follow.

6.2 Music Information Retrieval

There is significant research in quantifying and measuring properties of music.
This has been motivated by the interest to automatically classify music in ways
meaningful to human aesthetics. The majority of this research has focused on
genre and author classification using features extracted from audio signals
and/or symbolic (e.g., MIDI) representations [14].

6.2.1 Genre and Author Classification

6.2.1.1 Audio Features

One of the most cited works in music classification at the audio level is by
Tzanetakis and Cook [56]. In this study, they use timbre texture, rhythm,
and pitch content as classification features. These, in turn, are calculated
from statistical features of fast Fourier transform (FFT) and Mel-frequency
cepstral coefficients (MFCCs) frequency analyses, statistical features of pitch
histograms, and wavelet transforms, respectively. Using these features, Tzane-
takis and Cook achieve a classification accuracy of 62% on a corpus of 1,000
songs across 10 music genres: Blues, Classical, Country, Disco, HipHop, Jazz,
Metal, Pop, Reggae, and Rock. In a related study on the same corpus, Li et
al. [33], report a classification accuracy of 78.5% using amplitude variation
statistics based on Daubechies Wavelet Coefficient Histograms (DWCHs).

Other related audio-level classification studies include Dixon et al. [18],
who focus only on rhythm classification, and Lidy and Rauber [35]. Both use
similar rhythm features plus various psycho-acoustic transformations for the
tasks of rhythm and genre classification. Of these, Lidy and Rauber achieve

2Some results summarized herein have been published more extensively [38, 39, 40, 41,
42, 43, 44, 51].
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an accuracy of 74.9% on the Tzanetakis and Cook corpus (10 genres). They
also report an accuracy of 70.4% and 84.2% for genre classification on the
International Society for Music Information Retrieval (ISMIR) 2004 rhythm
and genre classification data sets.

Cano et al. [13] report the development of a content-based (i.e., no meta-
data) music discovery engine, called MusicSurfer, which is based entirely on
audio features related to timbre, tempo, and rhythm patterns. They report
an artist identification rate of 24% on a corpus of 273,751 songs from 11,257
artists. They also report an accuracy of 60% (twice as high as the next best
system) on the ISMIR 2004 author identification data set.

Aucouturier and Pachet [4] state that timbre features via spectral analysis
(MFCCs) are the most common approach to audio-based music similarity
studies. They investigate the limits of this approach, suggesting it to be at
about 65% R-precision.

6.2.1.2 MIDI Features

While audio-based features mainly capture the timbre and rhythm charac-
teristics of music pieces, working at a higher level (e.g., MIDI) allows the
calculation of various music-theoretic and other symbolic features. Given the
Aucouturier and Pachet accuracy upper limit (65% R-precision) mentioned
above, audio features alone are clearly not enough to achieve human-like clas-
sification performance. The development of music theory, in the last few hun-
dred years, indicates that humans recognize and process higher-level musical
features. Therefore, higher-level musical features may be useful to model hu-
man classification performance along various aesthetic dimensions.

In this domain, Basili et al. [7] calculate features based on melodic inter-
vals, instruments, instrument classes and drum kits, meter/time changes, and
pitch range. They report an accuracy of about 70% for genre classification
tasks on a corpus of approximately 300 MIDI files from six genres: Blues,
Classical, Disco, Jazz, Pop, and Rock.

McKay and Fujinaga [48] use 109 features based on texture, dynamics,
pitch statistics, melody and chords, as well as instrumentation and rhythm.
They classified 950 pieces from three broad genres (Classical, Jazz, Popular)
with an accuracy of 98%. However, according to Karydis et al. [31], “the
system requires training for the ‘fittest’ set of features, a cost that trades off
the generality of the approach with the overhead of feature selection.”

Karydis et al. [31] work at a MIDI-like level with features based on re-
peating patterns of pitches and selected properties of pitch and duration his-
tograms. They report an accuracy of approximately 90% on a corpus of 250
music pieces spanning five classical subgenres (i.e., ballads, chorales, fugues,
mazurkas, sonatas).

Lidy et al. [36] use features calculated from MIDI transcriptions of audio in-
cluding attributes of note pitches, durations, and nondiatonic notes combined
with typical timbre audio features for the same music pieces. They achieve
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genre classification accuracies of 76.8% and 90.4% on ISMIR 2004 audio data
sets.

Finally, Manaris et al. [40] calculate 156 power-law features to capture
the proportions of various melodic features such as pitch, duration, melodic
intervals, and chords. With these features they achieve an accuracy of 71.52%
on a corpus of close to 2,500 music pieces from nine genres. They also report
accuracies of 93.6% to 95% on a five-composer identification task [42].

6.2.2 Other Aesthetic Music Classification Tasks

A smaller but equally interesting body of work exists for various aesthetic
music classification tasks, other than genre or author classification. This work
is interesting because it requires quantitative measures for music capable of
capturing aesthetic dimensions that may vary greatly within genres or authors.

Feng et al. [20] present music classification experiments in terms of mood.
They separate musical pieces into four mood categories: happiness, anger,
sadness, and fear. They use relative tempo and an articulation feature, based
on statistics from the average silence ratio. They train an Artificial Neural
Network (ANN) to classify 23 music pieces, given a training set of 330 pieces.
They report accuracies of 75% to 86% for the first three mood categories,
whereas the accuracy for fear is 25%.

Li and Ogihara [32] present experiments on music similarity search and
emotion detection. They work at the audio level and extract features based
on FFT, DWCHs, and MFCCs (see Section 6.2.1.1) using 30 seconds of audio.
Using Euclidean distance of normalized histograms, they perform similarity
retrieval experiments on two corpora: a corpus of 250 vocal Jazz audio files,
and a corpus of 288 classical audio files. They report an accuracy of 86%.
This is determined based on whether or not pieces retrieved are from the
same album as the target. For emotion detection, they rate music using bipolar
adjective pairs: (Cheerful, Depressing), (Relaxing, Exciting), and (Comforting,
Disturbing). Binary classification experiments, on a corpus of 235 Jazz pieces,
achieve accuracies between 70% and 83%.

Manaris et al. [42] report on an experiment using emotional responses from
21 human subjects. These responses were measured as self-reported pleasant-
ness and activation ratings on a standard two-dimensional structure-of-affect
instrument (see Barrett and Russell [6]). Using 80 power-law features from
a corpus of 210 music excerpts, an ANN achieved an average success rate
of 97.22% in predicting (within one standard deviation) human emotional re-
sponses to those pieces. Manaris et al. [43] report a related experiment showing
high correlation between human emotional responses to music pieces and mea-
sured power-law features. Roos and Manaris [51] use a similar set of features
to classify between most and least popular classical pieces—as identified by a
music service’s download statistics—with an accuracy of 90.7%. Finally, Ma-
naris et al. [40] introduce Armonique, a music similarity engine, which uses an
extended set of power-law features calculated from both symbolic (i.e., MIDI)
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and timbre (i.e., FFT frequency analysis) data. They also present results from
human similarity-judgment experiments demonstrating the effectiveness of the
system to distinguish between similar and dissimilar music pieces. In Sections
6.6 and 6.8, we provide previously unpublished results related to these studies.

Other related work in modeling human emotional responses to music in-
cludes Yang et al. [60] and Oliveira and Cardoso [49]. Similar to Manaris
et al. [42], both projects measure human emotional response using the two-
dimensional space of pleasantness (valence) and activation (arousal). While
Yang et al. focus on common audio-based features and a regression approach,
Oliveira and Cardoso use common MIDI-based features with a Knowledge
Base of mappings between emotions and musical features. Both studies find
that pleasantness/valence prediction is harder than activation/arousal predic-
tion: 58.3% versus 28.1% R2 in Yang et al. and 81.6% versus 79.9% R2 in
Oliveira and Cardoso. These findings, compared to the high prediction accu-
racy for pleasantness reported in Manaris et al. [42], suggest that power laws
may be useful in computational modeling of music aesthetics. This possibility
is further explored in the next section.

6.3 Quantifying Aesthetics

Webster’s defines aesthetics as “the study or theory of beauty and of the psy-
chological responses to it; specif., the branch of philosophy dealing with art,
its creative sources, its forms, and its effects” [22]. Aesthetics originates from
the Greek, αίσθηση – αισθάνομαι, which means to perceive, feel, sense (all three
notions combined). These notions span the artifact (external), the emotional
response (internal), and the sensory organs (interface between external and
internal). Over the centuries, use of the term has become less philosophical
(i.e., the nature of beauty, art, and taste), and more functional (the analysis,
synthesis, and evaluation of artifacts), perhaps reflecting our society’s evolu-
tion. Schoenberg, among others, promoted this transition in his 1911 “Theory
of Harmony” [16, pp. 1–3].

What is the nature of beauty? Where can we find beauty in music? Is
it culturally independent (objective) or does it rely on cultural conditioning
(subjective)? These are old questions, which are unavoidably raised in the
context of this work.

Kahlil Gibran asks: “Where shall you seek beauty, and how shall you find
her unless she herself be your way and your guide? And how shall you speak of
her except she be the weaver of your speech?” [21, p. 74]. Gibran’s perspective
raises the intriguing possibility that any potential answers about quantifying
aspects of music aesthetics will inevitably also reflect related aspects of human
physiology/psychology.

To begin, let’s consider two musical pieces, Song1 and Song2, that is,
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Figure 6.1
Elias Gottlob Haußmann: Johann Sebastian Bach (1748).
(From Bach-Archiv Leipzig.)

http://tiny.cc/song1 and http://tiny.cc/song2. (It is recommended that you
listen to them before reading on. Also, see Figure 6.1 for a hint about their
origin.) Assuming you find the pieces at least aesthetically agreeable, then
what aspects of these pieces make you feel this way?

This, actually, is a very old exploration. It begins at least 2,500 years ago
with the Pythagoreans, who were the first to connect numbers with aesthetics.
Aristotle states that “the Pythagoreans were the first to take up mathematics,
and ... thought its principles were the principles of all things” [2, pp. 70–
71]. They observed that strings exhibit harmonic proportions, that is, they
resonate at integer ratios of their length (that is, 1/1, 1/2, 1/3/, 1/4, 1/5,
etc.). They also observed that these proportions are aesthetically pleasing to
the human ear. Accordingly, they developed musical modes based on these
ratios, which formed the basis of our modern-era musical scales.

Aristotle supported the Pythagorean view that “[the interplay] between
opposites is the beginning of all beings” [2, pp. 72–73]. Plato, Euclid, and
others provided a more precise description of this interplay in the form of
proportional analogies (e.g., “A is to B as C is to D”). The apex of this explo-
ration may have been the discovery of the golden mean, or 1.61803399... This
special proportion, which humans find aesthetically very pleasing, is found in
natural or human-made artifacts [8, 37, 47], [12, pp. 46–57], [26, pp. 91–132],
[50, pp. 203–205]. It is also found in the human body (for example, the bones
of our hands, the cochlea in our ears, etc.). The golden ratio reflects a place
of balance in the structural interplay of opposites.
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Considering again our Song1 and Song2, what makes a musical piece aes-
thetically appealing? Given the Aristotelian/Pythagorean view of opposites,
perhaps it is the interplay between silence (rests) and sound (notes). Also,
it is the interplay among different sound frequencies occurring concurrently
(harmony) and sequentially (melody). Of course, some forms of interplay are
more aesthetically pleasing than others. Music theory, which originated with
the Pythagorean modes, was developed precisely to codify the aesthetics of
this interplay (for example, scales and modes, chords and inversions, cadences,
counterpoint, etc.).

Arnheim [3] discusses another kind of interplay—between disorder (chaos,
randomness) and order (monotony). He argues that this interplay affects how
aesthetically pleasing artifacts may be. In other words, if the artifact is too
chaotic or unpredictable, it will be difficult to comprehend or appreciate (e.g.,
12-tone or aleatory music). At the other extreme, if the artifact is too ordered
(monotonous) or predictable, it will be uninteresting or boring (e.g., John
Cage’s 4’33”).

This theory was experimentally validated by Voss and Clarke [58, 59]. Mu-
sic was generated through a computer program, which used various random-
number generators to control the pitch and duration of successive notes. One
piece was created with chaotic (also known as white noise) statistical pro-
portions, a piece with somewhat monotonous (also known as brown noise)
statistical proportions, and a piece with statistical proportions between chaos
and monotony (also known as pink noise or 1/f proportions). As predicted by
Arnheim, they observed that the 1/f music was much more pleasing to most
listeners. The chaotic music was “too random,” whereas the brown-noise mu-
sic was “too correlated.” They concluded, “the sophistication of this 1/f music
(which was ‘just right’) extends far beyond what one might expect from such
a simple algorithm, suggesting that 1/f noise (perhaps that in nerve mem-
branes?) may have an essential role in the creative process” [1975, p. 318]. It
should be noted that the harmonic proportions observed by the Pythagoreans
on strings (that is, 1/1, 1/2, 1/3, 1/4, 1/5, etc.) are statistically equivalent to
1/f proportions.

In our case, both Song1 and Song2 exhibit near 1/f proportions in terms of
notes (pitches, durations), melodic intervals, and harmonic intervals, among
others. Song2 is J.S. Bach’s “Invention No. 13 in A Minor” (BWV784).
Song1 was “composed” by a computer program, called NEvMuse, which re-
combined Song2 notes, while aiming to preserve its 1/f proportions. One
goal of this experiment was to demonstrate the relationship between music
aesthetics and proportions [43]. For comparison, also consider Song3 (i.e.,
http://tiny.cc/song3), which was created to “counterbalance” the original’s
1/f proportions, by aiming toward chaotic (white-noise) proportions.

Schroeder [53] explains that the basilar membrane found in the cochlea of
the human ear is attuned to sounds with 1/f proportions. Since the cochlea is a
logarithmic spiral (see Figures 6.2 and 6.3), such sounds stimulate “a constant
density of the acoustic nerve endings that report sounds to the brain” [53, p.
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122]. Logarithmic spirals exhibit golden ratio proportions (see Figure 6.3).
This demonstrates a physiological connection between 1/f proportions and
the golden ratio, and both to music aesthetics.

6.4 Zipf’s Law and Power Laws

George Kingsley Zipf (1902–1950) was a linguistics professor at Harvard Uni-
versity. His seminal book, “Human Behavior and the Principle of Least Effort,”
contained results from various fields demonstrating the presence of 1/f (har-
monic) proportions in natural and human-made phenomena [63]. Zipf was the
first one (with the possible exception of Johannes Kepler and his 1619 “Har-
monices Mundi” work) to hypothesize that there is a universal principle at
play, and to propose a mathematical formula to describe it. This formula is
known as Zipf’s law.

Interestingly, aspects of Zipf’s universal principle have been observed by
others in specific domains. As a result, several related laws exist, such as
Pareto’s principle (80-20 rule in economics), Lotka’s law (in bibliometrics),
Bradford’s law (in library science), Benford’s law (in statistics), Archie’s law
(in petrophysics), Heaps’ law (in linguistics), Stevens’ power law (in psy-
chophysics), and inverse-square laws and other power laws (in physics) (e.g.,
see Li [34]). Finally, Zipf’s work influenced the development of Benoit Man-
delbrot’s concept of Fractal Geometry [45] and Per Bak’s concept of Self-
Organized-Criticality [5].

6.4.1 Zipf’s Law

Informally, Zipf’s law describes phenomena where certain types of events are
frequent, whereas other types of events are rare. For example, in English,
short words (e.g., “a,” “the”) are very frequent, whereas long words (e.g.,
“anthropomorphologically”) are quite rare. If we compare a word’s frequency
of occurrence with its statistical rank, we notice an inverse relationship: suc-
cessive word counts are roughly proportional to 1/1, 1/2, 1/3, 1/4, 1/5, and so
on [10]. In other words, books contain the same type of harmonic proportions
as those observed by the Pythagoreans on strings 2,500 years ago.

Zipf generalized this observation to other types of harmonic proportions
[10, pp. 130–131]. This is captured by the Generalized Harmonic Series equa-
tion:

F · Sn =
F

1p
+
F

2p
+
F

3p
+ ...+

F

np
(6.1)

where F is a constant, n is a positive integer, and p may range from 0 to ∞,
with 1 corresponding to Zipf’s law. This equation may be best understood by
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Figure 6.2
A logarithmic spiral (sides of consecutive boxes approximate the golden ratio).

Figure 6.3
Number of unique words (y-axis) ordered by word statistical rank (x-axis) on
log scale for Plato’s Phaedo (slope = −1.0308, R2 = 0.9551).
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plotting the data (see Figure 6.3). This produces a near straight line whose
slope corresponds to the exponent p above. The slope may range from 0 to
−∞, with −1.0 denoting Zipf’s ideal (also known as pink-noise, harmonic, or
1/f proportions). A slope near 0 indicates a random probability of occurrence
(i.e., chaotic or white-noise proportions). A slope of −2.0 denotes brown-noise
proportions. A slope tending toward −∞ indicates a very monotonous phe-
nomenon, for example, a musical piece consisting mostly of one note (also
known as black-noise proportions).

In physics, white-noise, pink-noise, brown-noise, and black-noise propor-
tions are known as power laws.

Zipf (pink-noise) proportions have been discovered in a wide range of hu-
man and naturally occurring phenomena, including music, city sizes, peo-
ples’ incomes, subroutine calls, earthquake magnitudes, thickness of sediment

Figure 6.4
Pitch-duration proportions of Chopin’s Nocturne, Op. 9, No. 1 (slope =
−0.9853, R2 = 0.9653).
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depositions, clouds, trees, extinctions of species, traffic jams, visits to Web
sites, and opening chess moves [9, 45, 53, 58, 59, 63].

In many cases, size may be used instead of statistical rank. According to
Salingaros and West, the most pleasing designs in human artifacts exhibit
power-law behavior. “The relative multiplicity p of a given design element,
that is, the relative number of times it repeats (frequency), is determined by
a characteristic scale size x as roughly pxm = C , where C is related to the
overall size of the structure, and the index m is specific to the structure [52,
p. 909]”.

A logarithmic plot of p versus x has a slope of m, where −1 ≤ m ≤ −2.
Exceptions to this rule correspond to “incoherent, alien structures” [52, p.
909].

As mentioned earlier, Voss and Clarke [58] showed that classical, rock, jazz,
and blues music exhibit a power law with slope approximately −1. Later, Voss
and Clarke [59] generated music artifacts exhibiting power-law distributions
with m ranging from 0 (white noise), to −1 (pink noise), to −2 (brown noise).
Pink-noise music was much more pleasing to most listeners, whereas white-
noise music sounded “too random,” and brown-noise music “too correlated.”

In earlier research [44], we have shown that 196 “socially sanctioned” (pop-
ular) music pieces exhibit power laws with m near −1 across various music
attributes, such as pitch, duration, and melodic intervals. In Section 6.6.1,
given a corpus of 14,695 pieces, we observe again that the 1,000 most-popular
(aesthetically pleasing?) classical pieces exhibit Zipfian proportions (m near
−1); whereas the 1,000 least-popular pieces exhibit more chaotic proportions.

6.4.2 Music and Zipf’s Law

Zipf reports results from four musical pieces: Mozart’s Bassoon Concerto in
Bb, Chopin’s Etude in F Minor, Op. 25, No. 2, Irving Berlin’s Doing What
Comes Naturally, and Jerome Kern’s Who [63, pp. 336–337]. Since Zipf and
his students did not have access to computers, they manually counted notes in
music scores. They focused on notes and distances between repeated notes. In
both cases, they demonstrated that the above songs exhibit 1/f proportions
similar to the ones observed in natural language.

With the use of a computer and the proper algorithms, this arduous effort
may be performed in a few seconds. As mentioned earlier, we have developed
hundreds of metrics based on Zipf’s law. These metrics capture proportions
of music-theoretical and other attributes, such as pitch, duration, melodic
intervals, chords, and various proportions of timbre within FFT power spectra.

For example, using a note (pitch) metric, J.S. Bach’s Air on the G String
exhibits a slope of −1.08 and an R2 of 0.81 (see Figure 6.4). Again, a slope
near −1 indicates a Zipf distribution. The R2 value indicates how well the data
points fit the trendline—it may range from 0 (no fit) to 1 (perfect fit). Any-
thing above 0.7 is considered a good fit. We have studied thousands of musical
pieces. Our results indicate that most socially sanctioned music, across styles,
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exhibits near Zipfian distributions across various attributes [42]. Moreover,
deviations from ideal Zipfian proportions tend to correlate with composer and
style, as we discuss in the next section.

6.5 Power-Law Metrics

As mentioned earlier, we employ metrics based on power laws to extract aes-
thetically relevant features from musical pieces. We have two categories of
metrics, symbolic (MIDI) metrics, and timbre (audio) metrics.

6.5.1 Symbolic (MIDI) Metrics

Each symbolic metric measures the entropy of particular music-theoretic or
other attribute of musical pieces. For example, in the case of pitch, we count
each occurrence of each pitch in the piece, for example, 168 C5 notes (i.e., a
C note, 5th octave), 86 G5 notes, 53 E5 notes, and so on. Then we calculate
the slope and R2 values of the logarithmic rank-frequency distribution (see
Figure 6.4).

In general, the slope may range from 0 to −∞. Again, the R2 value may
range from 0 to 1, with 1 denoting a straight line. This captures the propor-
tion of y-variability of data points with respect to the trendline. It indicates
how self-similar the measured attribute is, and, accordingly, how reliable the
calculated slope is.

We have three types of symbolic metrics, namely regular, high-order, and
local interval variability metrics.

6.5.1.1 Regular Metrics

Regular metrics capture the entropy of a regular attribute or event (an “event”
is anything countable, for example, a melodic interval). We currently employ
25 regular metrics related to pitch, duration, harmonic intervals, melodic in-
tervals, harmonic consonance, bigrams, chords, and rests. Table 6.1 provides
details for each metric.

6.5.1.2 Higher-Order Metrics

Higher-order metrics capture the entropy of the difference between two con-
secutive regular events. Similar to the notion of derivative in mathematics, for
each regular metric one may construct an arbitrary number of higher-order
metrics (e.g., the difference of two events, the difference of two differences,
and so forth).

It should be noted that these metrics implicitly capture significant aspects
of musical hierarchy. Similar to the Schenkerian analysis, music events (e.g.,
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Metric Measures Distribution Of
Pitch pitches of notes (retains octave)
Chromatic Tone pitches of notes (ignores octave)
Duration durations of notes
Quantized Duration quantized durations of notes
Pitch Duration combined pitch and duration of

notes
Pitch and Quantized Duration combined pitch and quantized

duration of notes
Pitch Distance distances between same pitches
Duration Distance distances between same dura-

tions
Quantized-Duration Distance distances between same quan-

tized durations
Duration Bigram bigrams of note durations
Quantized-Duration Bigram bigrams of quantized durations
Contour Melody Pitch pitches of melodic-line notes
Contour Bassline Pitch pitches of bassline notes
Contour Melody Duration durations of melodic-line notes
Contour Melody Quantized Duration same, for quantized durations
Contour Bassline Duration durations of bass-line notes
Contour Bassline Quantized Duration same, for quantized durations
Melodic Interval melodic intervals
Harmonic Interval harmonic intervals
Melodic Bigram melodic bigrams
Harmonic Bigram harmonic bigrams
Melodic Consonance melodic consonance
Harmonic Consonance harmonic consonance
Chord chord progressions
Rest rests between notes

Table 6.1
List and Description of Regular MIDI Power-Law Metrics (Each metric returns
a slope and R2 value, which capture the entropy and self-similarity of the
measured attribute.)
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pitch, duration, and so on) are recursively reduced to higher-order ones, cap-
turing long-range structure in pieces [29]. Consequently, pieces without hier-
archical structure have significantly different measurements than pieces with
structure.

Theoretically, we can calculate as many higher-order levels as the musical
data will allow. However, we have discovered that, for classification purposes
of normal musical pieces, a few levels (e.g., two to three) suffice, as higher-
order metrics tend to be correlated across levels. This has been tested across
thousands of musical pieces.

6.5.1.3 Local Variability Metrics

Local variability metrics capture the entropy of the difference of an event from
the local average. In other words, local variability, d[i], for the ith event is

d[i] = abs(tNN [i]− average(tNN, i))/average(tNN, i) (6.2)

where tNN is the sequence (array) of events, abs is the absolute value, and
average(tNN, i) returns the average of events within a narrow, say five-event
wide window [30]. We provide one local variability metric for each regular and
higher-order metric.

6.5.2 Timbre (Audio) Metrics

The extraction of audio features is most commonly based on analyzing the
frequency content of audio signals. Common techniques include fast Fourier
transform, Mel-frequency cepstral coefficients, and wavelets [62, 28].

Our approach is motivated by the work of Voss and Clarke [58, 59]. By
analyzing 12 hours worth of radio recordings from various stations (e.g., Clas-
sical, Jazz, Rock, News, and so forth), they discovered that certain properties
of the audio signal (e.g., loudness and pitch fluctuation) exhibit Zipfian (1/f)
distributions.

Based on this observation, we developed power-law metrics that measure
the proportions (entropy and self-similarity) of frequencies within audio sig-
nals [40].

6.5.2.1 Frequency Metric

Our timbre metrics all rely on a single algorithm. This base algorithm ex-
tracts frequency information using FFT on a per window basis. First, we split
the signal up into equal size windows. Then, we extract FFT information
from each window. We create a histogram of the frequency magnitudes across
windows (in the time domain). Finally, we calculate power-law proportions
of the summed frequency magnitudes. This generates a measurement of the
proportions of frequencies within the signal (i.e., a slope and R2 value).
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6.5.2.2 Signal Higher-Order Metrics

Signal higher-order metrics are based on the frequency metric described above.
Similar to the notion of derivatives in mathematics, we calculate the differences
between pairs of successive raw signal amplitudes. In other words, this gives
us the first higher-order amplitudes of the signal. Then, we split this higher-
order signal up into equal size windows. We extract FFT information from
each window, and so on.

This is repeated for additional higher levels. Accordingly, higher-order 0
is based on the original signal, higher-order 1 is based on the differences be-
tween raw signal amplitudes, higher-order 2 is based on the differences of the
differences, and so on. Each higher-order metric calculates the proportions
of frequencies within the (corresponding higher-order) signal (i.e., produces a
new pair of slope and R2 features).

6.5.2.3 Intrafrequency Higher-Order Metrics

These timbre metrics capture the entropy of energy change for each frequency
over time. These metrics operate on a variation of the above higher-order
principle. Instead of calculating differences of signal amplitudes, intrafrequency
higher-order metrics calculate differences of individual frequencies across pairs
of FFT windows. In other words, they calculate differences of magnitudes for
each frequency, across two consecutive FFT windows. This gives us the first
higher-order frequency magnitudes of the signal (i.e., two consecutive FFT
windows are merged into a higher-order one).

Similar to the base frequency metric (see Section 6.5.2.1), we create a
histogram of the frequency magnitudes across (higher-order) windows. Finally,
we calculate power-law proportions of the summed frequency magnitudes.
This generates new measurements of the proportions of frequencies within
the signal (i.e., pairs of slope and R2 values).

6.5.2.4 Interfrequency Higher-Order Metrics

Similar to the intrafrequency metrics above, interfrequency higher-order met-
rics operate on a variation of the higher-order principle. These metrics, how-
ever, calculate differences of consecutive frequency bins across a single FFT
window. In other words, they calculate differences of magnitudes for each
frequency, across pairs of consecutive FFT frequencies. This gives us the first
higher-order frequency magnitudes of the signal (i.e., an FFT window’s length
is reduced by 1).

Again, we create a histogram and calculate proportions of the higher-order
frequency magnitudes. This generates new power-law measurements (i.e., pairs
of slope and R2 values).
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Discussion

Each of the above metrics can be applied as many times as necessary to
improve classification accuracies. Evaluations of this technique using Weka’s
Principal Components Analysis (PCA) algorithm [23] indicate that, for nor-
mal music, there is much correlation (i.e., information overlap) between con-
secutive higher-order levels. However, the same evaluations also show that
additional accuracy is gained per application.

Finally, in addition to base frequency metric and the three approaches
to generate higher-order features described above, additional features can be
created by varying the FFT window size and the signal’s sampling rate. These
variations alter the granularity of the signal before applying the base and
higher-order metrics to produce even more timbre measurements. Overall, we
have experimented with up to a total of 234 audio features.

Since we are interested in power-law distributions within the human hear-
ing range, assuming CD-quality sampling rate (44.1 KHz), we use window sizes
up to one second. Interestingly, given our technique, the upper frequencies in
this range do not appear to be as important for calculating timbre similarity.
The most important frequencies appear to be from 1 kHz to 11 kHz.

6.6 Automated Classification Tasks

Our experiments demonstrate that extracting a large number of power-law
metrics serves as a statistical “signature” mechanism, which can help to iden-
tify musical pieces and even to automatically classify them in terms of com-
poser or style. As mentioned in Section 6.2, we have trained numerous Artifi-
cial Neural Networks (ANNs) on hundreds of values derived from applying our
metrics to many music corpora. These ANNs were trained to perform various
classification tasks in order to assess our metrics. These tasks included:

• Composer classification: (J.S. Bach, Beethoven, Chopin, Debussy, Pur-
cell, D. Scarlatti) with 93.6% to 95% accuracy [38].

• Style identification: (Medieval, Renaissance, Baroque, Classical, Roman-
tic, Modern, Jazz, Country, Rock) with 71.5% to 96.6% accuracy [40].

• Popularity (pleasantness?) prediction: We used a corpus of 14,695 clas-
sical pieces from the Classical Music Archives and a Web access log for
one month (1,034,355 downloads). Using this log, we extracted from the
corpus the 1,000 most-popular (most-downloaded) pieces and the 1,000
least-popular (least-downloaded) pieces. Trained on a subset of the data,
the ANN managed to classify pieces into the proper category (popular
versus nonpopular) with 90.7% accuracy. Preliminary results appeared
in the work of Roos and Manaris [51].
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Of these, the popularity experiment is the most intriguing. Below, we
present an expanded version of this experiment, conducted with newer met-
rics, and providing previously unpublished results.

6.6.1 Popularity Prediction Experiment

The problem with assessing aesthetics is that (similar to assessing intelligence)
there seems to be no objective way of doing so. One possibility is to use
a variant of the Turing Test, where human subjects may be asked to rate
the aesthetics of music pieces, and then check for correlations between those
ratings and features extracted using our power-law metrics. In this section,
we explore this approach. The experiment reported herein is a larger scale
version of the preliminary experiment reported Roos and Manaris [51].

Ideally, our corpus would consist of two types of music, pieces of high
aesthetic value and pieces of low aesthetic value. Also, these pieces should be
from the same genre to ensure that we are focusing on aesthetics as opposed to
genre preferences. However, it is difficult to find music of low aesthetic quality,
since such music would be unlikely to survive the test of time. For instance,
all surviving classical music is considered to be of reasonable-to-high aesthetic
value—each and every surviving classical piece has to have been enjoyed by
enough people to be played, written down, archived, and so forth.

Given the difficulty of finding enough pieces of low aesthetic quality, an-
other option is to have a large collection of known pieces ranked by human
listeners. We were fortunate enough to be given access to the Classical Music
Archive corpus, which at the time consisted of 14,695 classical pieces encoded
in MIDI (http://www.classicalarchives.com). We were also given access to a
download log of a total of 1,034,355 downloads for the month of November
2003. Through this log, we identified the 1,000 most popular (most down-
loaded) and 1,000 most unpopular (least downloaded) pieces. (Tables 6.2 and
6.3 show names and composers of pieces from each group.) We then performed
several binary classification tasks using these equally sized sets.

Given this configuration of our corpus, with over 10,000 music pieces sep-
arating the two classes by popularity, we believe the hypothesis of a general
correlation between popularity and aesthetics has merit. It should also be
noted that in the unpopular class all pieces were accessible and playable,
ruling out the possibility that pieces received few download requests due to
inaccessibility and MIDI errors.

6.6.1.1 ANN Classification

We conducted several ANN classification tasks, using the power-law metrics
described earlier, between the popular and unpopular classes.

All classification tasks involved feed-forward ANNs trained via backprop-
agation. Training ran for 500 epochs, with a value of 0.2 for momentum and
0.3 for learning rate. The ANNs contained a number of nodes in the input
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Composer Piece Count
BEETHOVEN, Ludwig van Bagatelle No. 25 in A Minor

“Für Elise”
9965

VIVALDI, Antonio No. 1. La Primavera (Spring)
in E, Op. 8, No. 1

6382

MOZART, Wolfgang Amadeus Divertimento for strings in D 6190
BACH, Johann Sebastian Toccata and Fugue in D, Toc-

cata
5576

CHOPIN, Frédéric François Etude in C–, Op. 10, No. 12 4723
TCHAIKOVSKY, Pyotr Ilich The Nutcracker, Op. 7 3948
CHOPIN, Frédéric François Polonaise in Ab, Op. 53 3564
DEBUSSY, Achille-Claude Arabesque No. 1 in E 3545
CHOPIN, Frédéric François Nocturne in Ab, Op. 32, No. 2 3166
BACH, Johann Sebastian Prelude and Fugue No. 1 in C 2914
CHOPIN, Frédéric François Fantaisie-impromptu in C#,

Op. 66
2913

MOZART, Wolfgang Amadeus Serenade in G for strings, 1.
Allegro

2827

BACH, Johann Sebastian Toccata and Fugue in D–,
Fugue

2691

BEETHOVEN, Ludwig van Symphony No. 5 in C–, Op. 67 2504
BEETHOVEN, Ludwig van Piano Sonata No. 14 in C#,

Op. 27, No. 2
2192

MOZART, Wolfgang Amadeus Divertimento for strings in D,
Andante

2132

BACH, Johann Sebastian Brandenburg Concerto No. 1
in F, 3. Allegro

2129

BRAHMS, Johannes Waltzes, Op. 39—No. 15 in Ab
(“Lullaby”)

2075

HANDEL, George Frideric Harpsichord Suite in E, 4. Air
and Variations

2039

PACHELBEL, Johann Canon in D 1965

Table 6.2
Top 20 (Most Popular) of the 14,695 Pieces of the Classical Music Archives
Corpus
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Composer Piece Count
HOLBORNE, Antony Alman: The Honeysuckle 10
MARINI, Biagio La Ponte 10
MORLEY, Thomas Sweet Nymph, Come to Thy

Lover
10

CATO, Diomedes Galliarde I 9
MILAN, Luys Six Pavanes for Guitar 9
CERTON, Pierre Chanson Parisienne “Frère

Thibault”
9

HOLBORNE, Antony The Widow’s Mite 9
LASSUS, Orlande de 12 Fantasies for 2 Parts—No.

2
8

BYRD, William Pavans and Galliards—Pavan:
2 Parts in One

8

GORZANIS, Giacomo Che Giova far Morir—
Napolitana a 3 v.p.

8

GUERRERO, Francisco Todo Quanto Pudo Dar 8
GASTOLDI, Giovanni Giácomo Balletti a Tre Voci, 1594—Il

Tedesco
7

MAIER, Michael Atalanta Fugiens—Atala-48 7
GOUDIMEL, Claude 150 Pseaumes de David—

Pseaume XXXIII
7

GROTTE, Nicolas de la Douce Maistresse Touche
(Poème de Ronsard)

7

BYRD, William Dances—Alman 6
MAIER, Michael Atalanta Fugiens Atala-44 6
MAIER, Michael Atalanta Fugiens Atala-12 6
MIKOLAJ, of Cracow Ach, Hilf Mich Leid 5
MIELCZEWSKI, Marcin Canzona Seconda a 2 4

Table 6.3
Bottom 20 (Most Unpopular) of the 14,695 Pieces of the Classical Music
Archives Corpus
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Classification Experiment Success (%)
228 features—symbolic and timbre combined 91.65%
157 features—symbolic only 90.90%
73 features—timbre only 85.25%
30 selected features (CfsSubsetEval-Bestfit) 88.40%
Randomly assigned classes (control) 47.70%

Table 6.4
Success Rates of Different ANN Popularity Classification Experiments (Ten-
fold cross validation.)

Value Average Std
Slope (30 selected features) 0.9569 0.3436
R2 (30 selected features) 0.7801 0.1991
Slope (228 features) 0.8644 0.4855
R2 (228 features) 0.7772 0.1956

Table 6.5
Popular Pieces: Average and Standard Deviation (Std) of Slope and R2 Values

layer equal to the features used for training, 2 nodes in the output layer and
(inputnodes + outputnodes)/2 nodes in the hidden layer. For evaluation, we
used 10-fold cross validation. The results for these experiments are listed in
Table 6.4. Details on the listed experiments are described below.

First, we conducted a classification task using 228 features per piece
to train an ANN. These features consisted of regular symbolic metrics,
two higher-orders for each, and a local variability metric for each regular
and higher-order metric. The remaining features are made up of timbre met-
rics, including five higher-orders and five sampling-rate reductions.

For control purposes, we conducted a classification task identical to the
first, but with classes assigned randomly for each piece. Finally, we conducted
a classification task identical to the first, but using only the 30 most rele-
vant features to train the ANN. These attributes were selected via Weka’s
CfsSubsetEval-Bestfit attribute selection algorithm on the combined metric
set [23].

Tables 6.5 and 6.6 list the average and standard deviation of slope and
R2 values for the popular and unpopular pieces, respectively. It is interest-
ing to note how the most meaningful slopes for popular pieces approximate
Zipf’s ideal (i.e., −0.9569). On the other hand, the most meaningful slopes for
unpopular pieces are more chaotic (i.e., −0.8399).
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Value Average Std
Slope (30 selected features) 0.8399 0.3800
R2 (30 selected features) 0.7665 0.2452
Slope (228 features) 0.7854 0.4716
R2 (228 features) 0.7620 0.2237

Table 6.6
Unpopular Pieces: Average and Standard Deviation (Std) of Slope and R2

Values

6.6.2 Style Classification Experiments

This section presents results from various style classification experiments using
symbolic (MIDI) and timbre (audio) power-law metrics on a corpus of 8,370
MP3 pieces from Magnatune (http://magnatune.com). The corpus includes
the following genres: Rock, Folk, Punk, Blues, Electronica, Classical, World,
New Age, Jazz, Metal, Pop, Ambient, and Children. We created two different
data sets:

• 10-genre set: This data set retains as many different genres as possible,
but removes and combines some genres for which the original data set
only had very few pieces. Specifically, the “Folk” and “Children” pieces
are removed and the few “Punk” pieces are combined with the “Rock”
pieces to form a “Rock/Punk” genre class. The resulting data set has
the following genre classes and class sizes: Classical (2849), Rock/Punk
(1239), Blues (102), Electronica (1047), World (1028), New Age (577),
Jazz (194), Metal (313), Pop (364), and Ambient (657).

• 6-genre set: This data set combines more of the genres in an attempt to
reduce stylistic overlap between the different genre classes. The result-
ing data set has the following genre classes and class sizes: Classical
(2849), Rock/Punk/Metal (1552), Blues/Jazz/Pop (660), Electronica
(1047), Ambient/NewAge (1244), World (1028).

For all our classification experiments, since many of our metrics are highly
correlated, we first applied Weka’s PCA tool to transform and reduce the met-
rics used. This aims to reduce the metrics into a set of uncorrelated metrics.

6.6.2.1 Multiclass Classification

For both data sets, PCA generated a total of 116 reduced features. A majority
class classifier would achieve a classification accuracy of 2849/8370 = 34.04%.
We conducted 10-fold stratified cross-validation experiments using Weka’s
Multilayer Perceptron ANN.

With the 10-genre set, the classification accuracy was 65.07%. Below is the
ANN confusion matrix:
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a b c d e f g h i j <-- classified as

2649 100 38 4 0 5 27 20 3 3 | a = Classical

158 514 61 16 15 93 79 60 26 6 | b = World

63 66 225 9 0 51 69 69 18 7 | c = New Age

16 11 18 79 3 11 32 10 8 6 | d = Jazz

4 12 1 1 183 27 71 4 9 1 | e = Metal

14 97 48 12 27 573 147 71 54 4 | f = Electronica

41 55 63 37 65 124 717 37 95 5 | g = Rock/Punk

42 56 72 10 3 81 33 350 8 2 | h = Ambient

11 23 8 11 14 69 137 6 82 3 | i = Pop

4 8 3 1 0 1 7 2 2 74 | j = Blues

With the 6-genre set, the classification accuracy was 68.39%. Below is the
ANN confusion matrix:

a b c d e f <-- classified as
2628 99 70 14 26 12 | a = Classical
142 514 128 47 100 97 | b = World
113 130 718 57 96 120 | c = Ambient/NewAge
37 45 46 259 185 88 | d = Blues/Jazz/Pop
37 80 106 161 1018 150 | e = Rock/Punk/Metal
16 107 125 68 144 587 | f = Electronica

6.6.2.2 Multiclass Classification (Equal Class Sizes)

In order to explore genre classification on a data set with equal class sizes,
we reduced the data sets to N randomly chosen pieces of each of the classes,
where N is the smallest class size of the original data set.

Reducing the 10-genre set to consist of equal classes resulted in 102 in-
stances in each class. PCA reduced the metrics down to 101 attributes. A ma-
jority class classifier would achieve a classification accuracy of 102/102 ∗ 10 =
10.00%. The Weka ANN (Multilayer Perceptron), achieves a classification ac-
curacy of 52.06% in a 10-fold stratified cross validation experiment. Below is
the ANN confusion matrix:

a b c d e f g h i j <-- classified as
36 9 0 3 25 9 3 8 2 7 | a = Rock/Punk
8 72 1 6 5 4 3 1 0 2 | b = Metal
1 4 88 1 3 1 1 1 1 1 | c = Blues
4 3 4 60 5 2 6 10 2 6 | d = Jazz

24 7 1 5 30 15 1 7 4 8 | e = Pop
8 6 1 7 12 49 10 4 0 5 | f = Electronica
3 1 4 4 3 3 57 13 6 8 | g = Ambient
6 2 4 11 9 8 15 35 5 7 | h = New Age
1 3 2 4 1 0 10 4 70 7 | i = Classical
2 4 7 7 9 8 10 10 11 34 | j = World
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Reducing the 6-genre set to consist of equal classes resulted in 660 instances
in each class. PCA reduced the metrics down to 114 attributes. A majority
class classifier would achieve a classification accuracy of 660/660∗6 = 16.67%.
The Weka ANN (Multilayer Perceptron), achieves a classification accuracy of
58.28% in a 10-fold stratified cross validation experiment. Below is the ANN
confusion matrix:

a b c d e f <-- classified as
340 127 75 55 16 47 | a = Rock/Punk/Metal
133 339 79 44 23 42 | b = Blues/Jazz/Pop
80 80 356 68 11 65 | c = Electronica
40 49 70 371 40 90 | d = Ambient/NewAge
8 15 3 36 543 55 | e = Classical
43 54 56 89 59 359 | f = World

6.6.2.3 Binary-Class Classification (Equal Class Sizes)

Using the reduced 6-genre set consisting of equal classes (660 pieces in each),
we performed a number of binary classification experiments. For each of these
experiments, we chose one genre class and combined all other genres into a
genre called “Other.” Here are the results:

• Rock/Punk/Metal versus Other: ANN accuracy 80.09%
(1552 instances per class)

• Classical versus Other: ANN accuracy 93.56%
(2849 instances per class)

• Electronica versus Other: ANN accuracy 80.42%
(1047 instances per class)

• Blues/Jazz/Pop versus Other: ANN accuracy 72.96%
(660 instances per class)

• Ambient/NewAge versus Other: ANN accuracy 76.82%
(1244 instances per class)

• World versus Other: ANN accuracy 73.64%
(1028 instances per class)

It is interesting to note the high accuracy of the Classical versus Other
classification task (93.56%). One interpretation is that our metrics are bet-
ter “tuned” to classical music. Another possibility is that this high accuracy
reflects a stronger stylistic distinction between classical music and the other
genres of the experiment. This possibility is supported by the fact that many
of the nonclassical pieces in the Magnatune corpus (e.g., Jazz, Rock, Electron-
ica, and so forth) have multiple genre labels (e.g., a Jazz-Rock piece, or an
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Figure 6.5
MIDI metrics ESOM U-Matrix visualization. (Ro = Rock/Punk, Bl = Blues,
El = Electronica, Cl = Classical, Wo = World, Ne =New Age, Ja = Jazz,
Me = Metal, Po = Pop, Am = Ambient)

Electronica-Ambient piece, and so forth). In other words, with the exception
of Classical, the other Magnatune genres have “fuzzier” boundaries, even for
human listeners.

6.6.3 Visualization Experiment

In order to better understand the high-dimensional space defined by our met-
rics, we generated various visualizations.

6.6.3.1 Self-Organizing Maps

Emergent self-organizing maps (ESOMs) are an unsupervised learning tech-
nique for visualizing the structure and organization of high-dimensional data
through a low-dimensional representation.

We created separate visualizations for MIDI versus audio metrics. This was
done to observe the differences in genre classification ability between the two
types of metrics (for example, see Figures 6.5 and 6.6). We also created visual-
izations for the combined metrics (for example, see Figure 6.7). These graphs
were generated using the Databionics ESOM Tools by training a toroid 50 x
82 ESOM with our power-law timbre and MIDI features [57]. We utilized a U-
Matrix display, which superimposes a coloring on the usually two-dimensional
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Figure 6.6
Audio metrics ESOM U-Matrix visualization. (Ro = Rock/Punk, Bl = Blues,
El = Electronica, Cl = Classical, Wo = World, Ne =New Age, Ja = Jazz,
Me = Metal, Po = Pop, Am = Ambient)

Figure 6.7
Combined (MIDI + audio) metrics ESOM U-Matrix visualization. (Ro =
Rock/Punk, Bl = Blues, El = Electronica, Cl = Classical, Wo = World, Ne
=New Age, Ja = Jazz, Me = Metal, Po = Pop, Am = Ambient)
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grid of the ESOM. The grid visualizes the projection of the higher-dimensional
space to a lower-dimensional map space (in this case a toroid). The U-Matrix
display uses color to visualize the original high-dimensional distances of the
input space. The colors represent U-matrix values of nodes and can be in-
terpreted as height. The U-matrix value of a particular node is the average
distance between the node and its closest neighbors. Light shades (mountains)
represent large distances in the original data space, dark shades (valleys) imply
similarity with respect to the extracted features.

In order to create practical visualizations, we reduced our data set to 40
pieces from each genre class, for a total of 400 pieces. While using these smaller
data sets decreased the amount of training samples available, we believe the
visualizations are representative of the complete data set. We trained ESOMs
as described above using the metrics derived through PCA reduction.

Discussion

The visualizations from our ESOM experiments provide useful information on
the genre classification ability of power-law metrics.

For instance, Figure 6.5 suggests that MIDI metrics alone can reasonably
identify several genres, including Ambient, Classical, and Metal. Figure 6.6
suggests that timbre metrics can identify Blues better than MIDI metrics
alone. Also, timbre metrics can identify the Metal genre as well as MIDI met-
rics. Finally, Figure 6.7 suggests that the combined timbre and MIDI metrics
(as was to be expected) perform better; various genres are clustered overall
more clearly than in Figures 6.5 and 6.6.

Again, it should be noted that the Magnatune corpus does not necessarily
follow a consistent, or highly accurate genre-labeling scheme. For instance,
Magnatune genres are assigned at the level of artist or album. Also many
artists/albums have multiple genre labels (e.g., Jeff Wahl is a New Age/Jazz
guitarist, whereas Kirsty Hawkshaw’s The Ice Castle album is Ambient/Elec-
tronica). We labeled pieces in our data sets using the first genre identified. We
believe this may have negatively affected cluster cohesion in the above visu-
alizations. This belief is supported by our results with Armonique, discussed
in the next two sections.

6.7 Armonique—A Music Similarity Engine

To further explore and assess the connection between power-law metrics
and music aesthetics, we developed a music similarity engine, called Ar-
monique [40, 39, 51]. This system started as a demo for power-law met-
rics. However, with National Science Foundation (NSF) funding, it has
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evolved into an effective, scalable system for music information retrieval (see
http://armonique.org).

The majority of existing music search engines (50+) focus on con-
text/metadata (e.g., text input, social networking, and/or users’ listening
habits). This includes systems such as iTunes Genius, Last.fm, and Pandora,
which involve either musicologists listening and carefully tagging every new
song across numerous dimensions (e.g., Pandora), or collaborative filtering
techniques based on user preferences and ratings (e.g., Genius).

Armonique utilizes approximately 250 power-law metrics. These metrics
extract features shown to correlate with aspects of human aesthetics (e.g.,
see Section 6.6). Since this extraction does not require interaction by humans
(musicologists or listeners), Armonique can handle large and/or rapidly in-
creasing music collections. Also, this allows users to discover songs of interest
that are rarely listened to and are hard to find otherwise.

Currently, Armonique incorporates 10,000+ MP3 songs from Magnatune.
These songs span Ambient, Classical (Baroque, Renaissance, Medieval, Con-
temporary, Minimalism), Electronica, Jazz and Blues, Metal and Punk Rock,
New Age, Rock and Pop, and World (Indian, Celtic, Arabic, Tango, Eastern-
European, Native-American) music.

As a search query, the user inputs a musical piece. This may be a piece
already in the system, or a piece uploaded in real time by the user (in MP3).
Armonique extracts timbre metrics from this piece (see Section 6.5.2). Then it
converts the piece to MIDI. To do so, it utilizes an efficient audio-to-MIDI tran-
scription algorithm, which handles polyphony and captures harmonic, vocal
and percussive instrumentation. This algorithm involves calculating Fourier
components of a signal at specific frequencies, and using variable window dura-
tions based on specific frequency bands (under publication). Then, Armonique
extracts symbolic (MIDI) metrics (see Section 6.5.1). Thus, a piece is mapped
to hundreds of slopes and R2 features. Armonique utilizes a mean-square error
(MSE) calculation to find the “closest” pieces. We have experimented with var-
ious techniques to make the search real time. Currently, we use a binary-search
approach that we present elsewhere (under publication). Finally, Armonique
outputs pieces that it “considers” most similar, according to its power-law
aesthetics model (see Figure 6.8).

The next section presents results assessing the aesthetic relevance of Ar-
monique’s recommendations.

6.8 Psychological Experiments

We have conducted various assessment and validation experiments which
compare the computational aesthetics model described above to emotional
and physiological responses of human subjects. These experiments further

 

http://www.armonique.org/WK/Armonique/


198 Music Data Mining

Figure 6.8
The Armonique user interface.

demonstrate the connection between power-law metrics and aspects of human
emotion and aesthetics.

6.8.1 Earlier Assessment and Validation

We have approached the validation of power-law metrics from several perspec-
tives. In this section we discuss experiments where we search for correlations
of power-law features with various aspects of human response to music.
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6.8.1.1 Artificial Neural Network Experiment

When it became clear that an Artificial Neural Network (ANN) could perform
well employing these metrics to classify music by composer and style [42],
we examined whether an ANN could also predict average ratings by human
listeners of their own emotional responses to music.

This experiment utilized 210 excerpts of 12 classical compositions. Half of
these received ratings, averaged across 21 human participants, of “pleasant,”
while the remaining were rated “unpleasant.” Using power-law metrics, the
ANN had a success rate of 98.41% in classifying the 210 excerpts into these two
human response categories. In addition, even the time course of the changes
in average pleasantness ratings during the music could be somewhat predicted
by the ANN [42, p. 66].

6.8.1.2 Evolutionary Computation Experiment

A second strategy was to use power-law metrics to create a software system for
analyzing and composing music and then obtain emotional-response ratings
of human listeners to the resulting computer-composed music.3

An experiment employing this strategy examined the continuously
recorded self-ratings of pleasantness and activation by 23 human participants
obtained during listening to J.S. Bach’s Invention No. 13 in A Minor (BWV
784), as well as to 17 computer-composed variations of this piece [43]. Fifteen
of these computer-composed variations were judged by the system’s music
critic (fitness function) to be pleasant, while the other two were judged as
unpleasant. The results showed that the time course of the both pleasant-
ness and activation ratings for these 18 music pieces could be predicted by a
combination of the MSE criterion of the music critic and elapsed time. The
time courses of the human ratings to the two unpleasant variations contrasted
sharply with those of the original Bach composition (lower pleasantness and
higher activation than for the original).

6.8.1.3 Music Information Retrieval Experiment

A third strategy is the one employed in our most recent experiments. These
experiments entailed measurement of human psychological and physiological
responses to music selected by Armonique (http://armonique.org). This music
discovery engine utilizes numerous power-law metrics as its search criteria.

Our first experiment employing this approach was designed to validate an
early version of the search engine [40]. That version worked only with MIDI
files and did not incorporate any measures of timbre. The search engine was
used to find three similar and three dissimilar MIDI pieces in relation to a piece
of classical music that each participant said they enjoyed. The music selected

3This evolutionary computing system, called NEvMuse, employs power-law metrics as
fitness functions [44, 41, 43]. Section 6.3 presented music generated by NEvMuse to illustrate
the connection between power laws and music aesthetics.
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came from the Classical Music Archives 14,695-piece corpus. The results indi-
cated that our 21 human participants rated the similar and dissimilar music
differently, with ratings of similar music being closer to those of the original
piece. However, these differences were generally quite small, and physiological
measures did not clearly differentiate between similar and dissimilar music,
perhaps because of inadequate sample size. Additional factors contributing to
the relatively small differences may include the lack of timbre measures in the
search engine and the fact that participants were listening to MIDI files rather
than more naturalistic music.

An interesting feature of the ratings data in the experiment just described
was that ratings of liking were significantly higher for the song chosen by
the participant than for either the similar or dissimilar songs. This finding
contrasts with the absence of a difference in liking between a particular song
and similar songs chosen by Armonique when the participant plays no role in
the choice of the original song (see Figure 6.9).

6.8.2 Armonique Evaluation Experiments

This section describes experiments on the latest version of Armonique, which
works with MP3 pieces.

6.8.2.1 Methodology

A more comprehensive study was undertaken to evaluate a second-generation
version of Armonique, which takes timbre into account. This version presents
the music as ordinary audio (MP3 or WAV) files, thereby creating a more
normal music listening experience for participants.

Since the corpus of music employed came from Magnatune
(http://magnatune.com), it did not include much widely known music.
Consequently, this study relied upon favorite genres of participants rather
than particular pieces that they identified as favorites.

Two sets of musical excerpts (one minute in length, all instrumental music)
were presented:

(a) One set of seven pieces (henceforth, Set A), which was presented to
all 40 participants. This common set consisted of an original piece, the
three pieces most similar to the original from the corpus, and the three
pieces most dissimilar (according to Armonique). This set represented
a search based upon a classical composition chosen by (liked by) the
experimenter.

(b) A second set of five excerpts (henceforth, Set B), which was unique for
each participant. Each of these 40 different sets consisted of an original
piece, two most similar, and two most dissimilar pieces (again, according
to Armonique). Each set came from a different search. This search was
initiated using a random piece from one of the participant’s three favorite
genres (based on Magnatune’s genre taxonomy).
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Therefore, each of the 40 participants was presented with 12 pieces. These
pieces were presented in a different random order every time. While listening,
participants had no knowledge of which piece was the starting point for any
of the searches. The original was revealed only at the end of the experiment,
when we asked participants to rate the similarity (to the original piece) of the
pieces recommended by Armonique.

Each participant listened to the music through speakers, in a separate ex-
perimental session of about one hour conducted in a small laboratory room.
The session began with attachment of electrodes and sensors for measuring
a variety of responses (ActiveTwo system, BioSemi B.V., Amsterdam, The
Netherlands)—heart rate, skin conductance (left fore and middle fingers),
skin temperature (left thumb), left forehead (corrugator supercilii) electromyo-
graphic (EMG) activity, and 32 channels of electroencephalographic (EEG)
activity.

Digitized, amplified physiological signals were passed through a fiber-optic
cable into an adjacent room where signals were recorded and saved into data
files. Music presentation was controlled by a second computer (LabVIEW
software, National Instruments, Austin, Texas), which also signaled the be-
ginning and end of each excerpt to the recording computer and prompted the
participant to make various ratings immediately after each excerpt.

An additional excerpt was presented at the beginning of the recording
session to allow participants to practice these ratings. Ratings were not made
during the music to avoid possible contamination of physiological responses
by the conscious process of rating the music.

Four types of ratings were made by participants using a mouse to move
sliders on the LabVIEW software—pleasantness response to the music, acti-
vation response to the music, liking of the music, and perceived familiarity of
the music. Pleasantness and activation sliders employed the Self-Assessment
Manikin of Bradley and Lang [11].

After the experimental session, participants rated the similarity of each
piece within Set A and Set B, in relation to the original piece for each respec-
tive search.

6.8.2.2 Results—Psychological Ratings

In contrast to the rather small differences demonstrated in our previous study
(see Section 6.8.1.3), robust differences were obtained on a variety of psy-
chological measures in the present study. Here we summarize results on the
comparison of music identified in the searches as similar to an original piece
with that identified as dissimilar. Repeated-measure analyses of variance were
followed by a contrast of the similar and dissimilar excerpts. The similarity
ratings conducted at the conclusion of the experimental sessions showed large
and statistically significant (p < 0.001) differences between similar and dissim-
ilar excerpts, for both Set A and Set B, though somewhat more consistently in
Set A (as would be expected since all participants were listening to the same
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Figure 6.9
Set A: Responses (self-ratings) from 40 participants to music recommended by
Armonique. (O = original piece; MS, MS2, MS3 = 1st, 2nd, 3rd most similar
piece; MD3, MD2, MD = 3rd, 2nd, 1st most dissimilar piece)

music in this set). Figure 6.9 shows the results for Set A, and Figure 6.10 for
Set B.

The affective response ratings may be more relevant to the question of
aesthetic response. These data also showed statistically significant though
somewhat less dramatic differences (Figures 6.9 and 6.10). Self-ratings of par-
ticipant pleasantness responses were significantly higher in similar excerpts
than in dissimilar ones in both Set A (p = 0.005) and Set B (p < 0.001).
Liking ratings displayed much the same pattern—significantly higher liking of
similar excerpts in both Set A (p = 0.034) and Set B (p < 0.001). Self-ratings
of participant activation were significantly lower in similar excerpts than in
dissimilar ones in Set A (p = 0.001), but no such differences were found in Set
B (p > 0.5).

Familiarity ratings may provide a partial explanation for the affective re-
sponse ratings. As shown in Figures 6.9 and 6.10, the pattern of differences
in these ratings is quite similar to those for pleasantness and liking; also
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Figure 6.10
Set B: Responses (self-ratings) from 40 participants to music recommended
by Armonique. (O = original piece; MS, MS2 = 1st, 2nd most similar piece;
MD3, MD2, MD = 2nd, 1st most dissimilar piece)

differences between similar and dissimilar excerpts are significant for both
sets of excerpts (p < 0.001).

An obvious exception to the above appears in Figure 6.9 (Set A) for the
second most dissimilar excerpt (MD2). This piece was predominantly percus-
sion music. Although participants judged it to be very dissimilar from the
original, they reported high pleasantness and activation responses to it. They
also reported liking it and being familiar with it. No such departure from the
main pattern of differences is observed in Set B. Perhaps this is because Set
B actually represents an average across 40 searches, whereas Set A represents
a single search.

6.8.2.3 Results—Physiological Measures

A variety of measures of physiological response were extracted. Data files were
read with EEGLAB software (Swartz Center for Computational Neuroscience,
University of California, San Diego). Separate data sets were created for each
song and the EEG channels; and for each song and the remaining psychophys-
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iological measures. EEG data were corrected for eye-movement artifacts. Then
they were subjected to Fourier analysis to extract power in the alpha frequency
band (8–13 Hz) as a measure of activation at each electrode site (high-alpha
power represents low-brain activation). Data from two participants had to be
dropped from the analysis because of excessive recording artifacts.

Data from symmetrically located pairs of electrodes were employed to cre-
ate measures of hemispheric activation asymmetry. This process entailed sub-
tracting alpha powers between homologous locations on the left and right
hemispheres. Differences on these asymmetry measures between musical pieces
were analyzed, using repeated-measures analysis, as described in Section
6.8.2.2. These asymmetry measures are of special interest because of evidence
that they correlate with affective responses [17, 1, 46]; but see also Harmon-
Jones et al. [25].

The following pairs of electrodes (10-20 system) produced significantly
higher asymmetry measures in similar than in dissimilar songs of Set A: F8−
F7 (p = 0.044), FC2 − FC1 (p = 0.008), FC6 − FC5 (p = 0.042), C4 − C3
(p = 0.028). Differences for one of these electrode pairs are shown in Figure
6.11.

Thus, as illustrated in Figure 6.11, similar songs activated the posterior
and lateral portion of the left frontal lobe more than the right. This difference
was not as pronounced for dissimilar songs. This observation might be asso-
ciated with the more positive affective response to the similar songs. Such a
relationship is consistent with previous findings of an association between left
hemisphere activation and positive affect [46]. However, these differences were
not significant for Set B.

Data for heart rate were analyzed by extracting the interbeat intervals us-
ing Open AnsLab software (Department of Psychology, University of Basel,
Switzerland). Average interbeat intervals were calculated for each partici-
pant and each excerpt in spreadsheet software. Excerpts were compared using
repeated-measure analyses as described in Section 6.8.2.2. Mean interbeat in-
tervals were significantly greater for dissimilar than for similar excerpts in
both Set A (p = 0.016, Figure 6.12) and Set B (p = 0.001, Figure 6.13).

The remaining psychophysiological measures did not display consistent
differences between musical pieces. However, it is interesting to return to the
psychological ratings of Set A for guidance in the physiological analyses. Recall
the high ratings for piece MD2. This finding is somewhat paralleled by the
skin conductance data for Set A (Figure 6.14). A repeated-measure analysis of
variance, followed by a contrast of MD2 with the two other dissimilar pieces,
indicated that skin conductance was significantly higher (p = 0.016) during
MD2 than during the other two pieces.

6.8.2.4 Discussion

These results indicate that similar music (i.e., pieces recommended by Ar-
monique as similar to a given piece) produces different responses than
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Figure 6.11
Set A: Hemispheric asymmetry (mean± standard error) of alpha EEG activity
at the FC2 (right hemisphere) and FC1 (left hemisphere) electrodes over the
frontal lobes of 38 participants for the seven excerpts of Set A (see code legend
in Figure 6.10).

dissimilar music. The most obvious differences are in the similarity judgments
that participants make, which are generally consistent with the search engine
ratings. Participants also differentiate the two categories of music in their re-
ported affective responses, though there is evidence of inconsistencies in the
ratings within the dissimilar category. It appears that there may be more than
one underlying dimension of similarity that determines affective response.

Reported familiarity with the music displays a pattern of differences much
like that of the pleasantness and liking aspects of affect. This finding agrees
with the frequent claim that people like a piece of music because they are
familiar with it.

To investigate this possibility, we employed hierarchical linear modeling to
examine the relationship among these variables. Both familiarity and pleasant-
ness were strong predictors of liking (p < 0.001), explaining different portions
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Figure 6.12
Set A: Intervals between heartbeats (mean± standard error) of 40 participants
for the seven excerpts of Set A (see code legend in Figure 6.10).

of the overall variance in liking ratings. This relationship was present in Set
A; it was also confirmed in separate analyses on Set B. However, since the
participants were aware of their affect ratings when they made their familiar-
ity ratings, these data cannot exclude the possibility that participants were
simply trying to make their ratings agree with each other.

Physiological responses also differentiated the two categories of music, sim-
ilar and dissimilar. Hemispheric asymmetry measures derived from spectral
analyses were greater for similar than for dissimilar pieces, as the affective
rating differences would lead us to expect. However, this occurred only in
Set A, in spite of the fact that strong affective response differences were also
found in Set B. That the hemispheric asymmetry differences only emerged in
response to the music heard by all participants suggests that these differences
may be more directly linked to the processing of the physical stimuli than
to higher-level conscious affective responses. On the other hand, differences
in heart interbeat interval were present for both sets of music, suggesting a
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Figure 6.13
Set B: Intervals between heartbeats (mean± standard error) of 40 participants
for the five excerpts of Set B (see code legend in Figure 6.10).

response that is more closely associated to the conscious affective response.
Other physiological responses are apparently not strongly determined by these
musical differences. A difference not predicted by the search engine, the high
activation ratings produced by MD2 in Set A, also had a physiological com-
ponent, relatively high skin conductance.

A peculiarity of the results is evident especially in Figures 6.11 and 6.12:
On some measures, for Set A, the dissimilar songs produced responses more
like those of the original than those of the similar songs. The explanation for
this outcome is not apparent. However, note that results for Set A are based
only on a single search by Armonique, whereas results for Set B are based on
a different search per participant. It may be that some unknown idiosyncrasy
of the original song in Set A produced this pattern. Such an outcome for Set
B was presumably prevented by the fact that the results were averaged over
40 searches.
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Figure 6.14
Set A: Skin conductance change from baseline (mean ± standard error) of 40
participants for the seven excerpts of Set A (see code legend in Figure 6.10).

6.8.2.5 Final Thoughts

The primary practical purpose of a music similarity engine is to find music
that listeners like. From that perspective, the ratings of liking may provide
especially important information about Armonique’s performance (and, re-
spectively, the promise of power-law metrics for music information retrieval).

The data from the evaluation experiments described above (see Figures 6.9
and 6.10) provide evidence for high ratings of liking in similar songs. This is
also evident in unpublished results of several other experiments. However, as
noted earlier, when the starting point for a search was a piece of music chosen
by the listener, liking was generally higher for this song than for similar songs
found by Armonique. This finding is consistent with those of many studies
in the literature demonstrating individual differences in preferences for music
[24].

In closing, evidence from a variety of different psychological assessment
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approaches indicates that power-law metrics capture fundamental aspects of
music that determine human responses, including affective ones. However, the
evidence also indicates wide individual variation in self-ratings to music and
in physiological response. These variations may imply:

1. Deficiencies in measurement methods, such that error variance is large
and obscures fundamental patterns;

2. Individual differences in response produced by factors outside the music,
such as participants’ musical experience or social group [24]; or

3. Properties of the music that are not captured by the employed power-law
metrics.

The ratings methods employed in these experiments were based upon dimen-
sional and categorical models of emotions that are not specific to music. Meth-
ods that are more specifically tailored to music-elicited emotions [61] might
help reduce error variance and make differences even clearer.

The findings with physiological methods were helpful in demonstrating cor-
relations with power-law metrics, but the differences between similar and dis-
similar songs seemed relatively weak and poorly correlated with self-ratings.
While physiological methods have now been widely used in measuring re-
sponses to music, the evidence is mixed regarding how useful they are as
indicators of fundamental emotional response [27]. It may be that the emo-
tional effects elicited in these experiments are too subtle to produce robust
physiological differences. Thus, further research with more refined methods
may lead to stronger evidence of the predictive value of power-law metrics.

6.9 Conclusion

This chapter presented results from applying power laws to music information
retrieval and data mining tasks. These results suggest that power-law metrics
represent a promising new approach for automatic extraction of metadata
from musical archives. Essentially, these metrics capture statistical propor-
tions (e.g., entropy and self-similarity) of music-theoretic and other attributes.
These metrics were assessed in various ways, including through Armonique, a
music similarity engine (http://armonique.org). Evaluation experiments sug-
gest a connection between power laws and music aesthetics (e.g., emotional
and physiological responses of listeners).

Our adaptation of Zipf’s law in regular and higher-order metrics across
many dimensions, essentially, captures the structure of a musical piece eco-
nomically across different levels of resolution. Musical pieces are self-similar
to a certain extent; this means that the entropy (e.g., information content,
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grammatical structure, and so forth) is similar across different levels of hier-
archy. Therefore, it is not necessary to calculate all possible higher-order levels
(or local interval variability metrics), since, after a certain point, not much
new information is being extracted. Where that point of saturation occurs
is subject to experimentation, and probably varies across musical genres and
styles. But, once discovered, it can probably be applied safely across musical
artifacts of the same genre/style. In our work with thousands of pieces from
diverse musical genres and styles (e.g., Ambient, Baroque, Classical, Impres-
sionist, Renaissance, Medieval, Contemporary, Minimalist, Electronica, Jazz
and Blues, Metal and Punk Rock, New Age, Rock and Pop, Indian, Celtic,
Arabic, Tango, and Eastern European), we find that a few higher-order levels
(two to three) most often suffice.

Alternatively, this suggests that any type of metric, which captures the
entropy of an artifact, as long as it is applied at different levels of granularity,
may have similar information-extraction effectiveness and aesthetic relevance
as the power-law metrics described here.

In closing, we live in a self-similar (fractal) world. This self-similarity is
reflected across phenomena, events, objects, artifacts, and living entities, at
different levels of granularity, dimensions, and time scales [5]. This reflection,
of course, is not mirror-perfect—it comes with fluctuations. Our work suggests
that it is precisely these fluctuations that provide the identity and uniqueness
of different types of phenomena; and within one type of phenomenon, the
identity and uniqueness of individual events/objects/artifacts. (For instance,
one rainstorm is different from another, but statistically they are all rain-
storms, hence the word “rainstorm.” Accordingly, the recorded sound of one
rainstorm is different from that of another, but all are recognizable for what
they are.) The same applies to music, in terms of genres (e.g., Baroque versus
Jazz) or individual pieces (e.g., J.S. Bach’s Toccata and Fugue in D Minor
versus his Invention No. 13 in A Minor). Hopefully, we have provided enough
information and evidence to encourage further exploration of Zipf’s Law [63],
and related power laws for music data mining in specific, and computational
modeling of aesthetics in general.
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There exists a tremendous and ever growing amount of digital music files in
today’s music collections, both in private and commercial repositories. This
trend has been caused by various developments in the past two decades. Some
of them were new audio compression techniques, high-speed Internet access,
cheap storage devices, and novel channels for digital music distribution.

This remarkable increase in the size of music collections requests for in-
telligent methods to analyze, structure, and visualize them, as finding desired
music is obviously becoming more difficult with growing repository size. To
address this issue, a key task in the fields of music information extraction and
retrieval is elaborating methods to uncover music-related information from
various sources, as diverse as digital manifestations of audio signals (e.g., MP3
files), Web pages about music artists, or file sharing data in peer-to-peer net-
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works. The traditional approach to this problem relies on analyzing the audio
signal of a piece of music to derive various features that describe some of its
musical properties, such as loudness, rhythmic structure or timbral aspects.
Such techniques are commonly referred to as “signal-based,” “audio-based,” or
“music content-based” approaches. In cases where audio files are not available,
however, these content-based approaches have obviously restricted applicabil-
ity.

On the other hand, an incredible amount of information is available in
today’s largest data source, the World Wide Web. Focusing only on the music
domain, there exists a wealth of information provided in the form of classical
“Web 1.0” pages, which can be either static or dynamically created. Typical
examples are fan pages, artists’ or bands’ personal Web pages, but also music
information systems such as allmusic.com [4], formerly known as the All Music
Guide (AMG), that provide music-related information in abundance. More-
over, the emergence of platforms and services that are commonly referred to as
the “Web 2.0” contributed considerably to the amount of user-generated con-
tent available today. The term “Web 2.0” was coined in 1999 by DiNucci [24],
but became popular only later in 2004, when O’Reilly launched the first Web
2.0 conference [71]. Web 2.0 applications include blogging services, social net-
works, platforms to share user-generated content and attach tags to items such
as images, videos, or songs. In the music domain, we find services specialized
on providing structured information about music, music recommendations,
or personalized Web radio, such as Last.fm [51] or Pandora [74]. What makes
such services particularly appealing for information retrieval tasks, in addition
to the abundance of information provided, is the ease of information gather-
ing since they typically offer a developer’s application programming interface
(API) to retrieve desired pieces of information.

With all those new platforms and services it has become possible to obtain
information on almost all musical artists. However, the information’s quality
has not necessarily improved. In fact, quite the opposite observation can be
made as it has never been easier to make spurious information public using
Web 2.0 systems. One of the largest challenges of Web-based music informa-
tion extraction is therefore how to overcome the noise in the data [50].

In this chapter, we look into different methods to automatically deter-
mine music-related information using the Web as data source. Such techniques
are commonly referred to as “Web-based,” “community-based,” or “music
context-based” approaches. The chapter is split into two parts: the first one
describes approaches to gather specific types of music-related information,
the second one presents techniques that address one of the key challenges in
music information research, the development of similarity measures—in this
case, based on information mined from Web and community data sources.
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7.1 Approaches to Extract Information about Music

Metadata describing properties of a music entity, such as an artist, an album,
or a song, plays an important role in a variety of music-related applications.
Such applications include music information systems, recommender systems,
and user interfaces to explore music collections.

Music information systems are services that offer various kinds of music-
related information, typically for different music entities. For example, in-
formation commonly offered for an artist or a band includes biographies,
discographies, band members and instruments, tour and concert dates, and
photographs. For the entity album, images of album cover artwork are usu-
ally provided, as well as release date, album reviews, and links to online
stores. Song- or track-specific information commonly encompasses lyrics, simi-
lar tracks (determined by content-based analysis [17, 8, 90], or by collaborative
filtering, [18]), and sometimes preview snippets. Popular examples of music
information systems are Last.fm [51], allmusic.com [4], and Discogs [25]; but
also the lesser known systems, such as Ishkur’s Guide to Electronic Music [38],
Map of Metal [67], or the Automatically Generated Music Information System
(AGMIS) [79], are also interesting examples.

Given a set of seed artists or tracks, music recommender systems provide
recommendations to their users, which they hopefully like. These recommen-
dations may either be based on content-based (CB) feature extraction from
audio files and subsequent application of a similarity measure to find songs or
artists similar to the seeds, or they may rely on collaborative filtering (CF)
techniques that predict the taste of a user by comparing his or her preferences
with like-minded users. To this end, a CF-based system keeps track of all items
assigned to or liked by a user (e.g., products purchased, Web pages visited, or
songs played). Based on a new user’s seeds or her actual interaction with the
system, similar users can be determined, and recommendations of the form
“similar users also liked item X” can be made. A more detailed elaboration
of recommender systems and CF can be found [47, 18, 57, 78].

User interfaces for exploring music collections typically also make use of
metadata to support browsing. For example, the nepTune interface [44] to
explore music repositories in a virtual, three-dimensional landscape extracts
terms and images from artist-related Web pages and displays them in the re-
gions to which songs of the corresponding artists are mapped. This technique
facilitates recognizing areas that contain specific music styles, for example,
“blues” or “vocal” music. The songs themselves are grouped based on content-
based features which are clustered using a Self-Organizing Map [46]. Lübbers
and Jarke [60] present a similar user interface. In this case, images of album
covers serve as representations for individual songs. The user interface (UI)
further allows the user to adapt the landscape by creating or destroying hills
that separate groups of songs and accordingly adjust the underlying similarity
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measure. Another application that uses album cover images as identifiers for
music pieces is the MusicGalaxy interface [87] that organizes a music collection
by applying the similarity-preserving data projection technique multidimen-
sional scaling (MDS) [49, 22] to a similarity measure defined on content-based
features. The MusicSun interface [73] provides a means of discovering new
artists by letting the user first define a set of seed artists and then select
from a list of descriptive terms that are retrieved from the seed artists’ Web
pages, using different dictionaries of terms related to music, such as genres
and styles, instruments, moods, and countries. Subsequently, artists that are
similar to the seeds and/or important to the selected term are recommended
using different similarity definitions (content based and Web based).

Metadata about music can be coarsely divided into “editorial metadata”
and “cultural metadata,” depending on its source. The former typically orig-
inates from a music editor or another music expert, most often from a record
label, whereas the latter makes use of the wisdom of the crowd in that it re-
flects the knowledge and opinions of a large number of people. In the Web 2.0
era, mining such cultural metadata therefore involves analyzing Web pages,
blogs, music-related Web platforms, social networks, and similar services.

In the following, a selection of approaches to extract some types of music-
related metadata from Web sources are presented. Given the abundance of
available literature on Web-based extraction of various kinds of music-related
metadata, the following sections can only illustrate a small fraction. More
precisely, approaches to extract song lyrics, an artist’s country of origin, band
members and instrumentation, and images of album cover artwork are pre-
sented. These information categories have been selected since they focus on
different music entities: songs, artists, bands, and albums.

7.1.1 Song Lyrics

The lyrics of a song represent an important piece of music-related information
as they usually give indication of the semantics of a piece of music. They are
furthermore capable of revealing aspects such as the artist’s/songwriter’s cul-
tural background (e.g., use of a certain language or presence of slang words),
political orientation, or musical style. There exists a bunch of Web sites that
offer song lyrics, for example, Lyrics.com [62]. However, song coverage of these
sites is usually limited. To overcome this issue, applications such as Evil-
Lyrics [28] offer semiautomated retrieval of song lyrics by consulting different
Web sources. To this end, EvilLyrics queries search engines with artist and
track name and filters the results for known lyrics pages. The content of these
pages is then fetched, and the lyrics are extracted using predefined filters. The
user can eventually select between the different results.

Applications such as EvilLyrics suffer from several drawbacks. First, only
Web pages of known lyrics sites are considered, which limits the scope of
the retrieval process. For example, lesser known artists whose lyrics are only
present on their own Web page are not considered. Second, since predefined
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filters are used to parse lyrics pages, structural changes of a lyrics provider’s
page necessitate an update of the corresponding filter. Moreover, the choice
of the correct or best version of a song’s lyrics from the candidates must be
effected by the user as the application does not try to estimate the quality of
the results.

In general, lyrics extracted from dedicated lyrics pages are usually prone
to certain inconsistencies or ambiguities. Some examples are simple typos,
different spellings for the same word, different versions caused by misheard
lyrics, or structural differences (e.g., repetitions are sometimes indicated as
“repeat chorus,” sometimes as “chorus 2x,” sometimes the complete chorus
just occurs twice). Addressing these issues, some approaches to automatically
determine the correct version of a song’s lyrics have been proposed.

Knees et al. [45] first query Google using the scheme “artist name” “track
name” lyrics to obtain a set of Web pages likely containing the sought lyrics.
Subsequently, the retrieved pages are cleaned by removing all HTML tags
and converting the resulting plain text to lowercase (a process also known
as “casefolding”). A page selection step is then performed, which uses either
keywords in the title of the HTML documents or correlation between term
weight vectors to figure out similar pages that are hence likely to contain the
same lyrics. Hereafter, abbreviations for repetitions such as “repeat chorus”
or “chorus (x2)” are sought and expanded. In order to align the lyrics present
on the different Web pages and therefore determine the most correct version
of a song’s lyrics, a technique from bioinformatics, namely multiple sequence
alignment (MSA), is employed. It aims at finding optimally matching word
sequences over the different pages. To this end, the Needleman–Wunsch algo-
rithm [69] is applied to pairs of word sequences. This algorithm makes use of
dynamic programming to find a globally optimal alignment of two sequences
with respect to a given scoring scheme. Knees et al. propose to assign a score
of 10 to matching word pairs, a score of −1 to the insertion of a gap, and a
score of 0 to mismatching word pairs. Iterative alignment of the highest scoring
pairs of sequences and selecting for each position in the different alignments
the most frequently occurring word yields an output string comprising the
lyrics aligned from the various pages. Since the output of this procedure of-
ten contains additional words before and after the actual lyrics, such as the
artist or track name or copyright information, a smoothing and confidence
estimation step eventually aims at removing such parts [45].

Knees et al. evaluate their approach using 258 song lyrics taken from book-
lets of compact discs as reference. They report on having achieved a median
recall value of 98% for this collection, that is, for half of the songs in the
test collection, at least 98% of the words constituting the lyrics were correctly
determined. The authors, however, also report on some drawbacks of their
approach. First, it relies on the existence of at least two pages containing
lyrics for each song under consideration. Second, the output does not contain
any punctuation or line breaks. User acceptance may therefore be restricted.
Finally, in some cases the alignment process discards important words. This
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should be resolved since completeness of the results seems to be more impor-
tant than precision [45].

Korst and Geleijnse [48] present an alternative, more efficient approach to
automatically determine a song’s lyrics using Web retrieval techniques. First,
similar to Knees et al.’s approach [45], Korst and Geleijnse issue search re-
quests to Google. However, they use the query scheme allinanchor: “artist
name” “track name” lyrics, which returns only pages whose links from other
pages have artist name, track name, and the word “lyrics” in their anchor text.
If this search does not result in a predefined number of pages, the constraints
are successively weakened (e.g., by omitting the allinanchor -constraint, the
word “lyrics,” and the artist name). Unlike Knees et al. [45] who discard
all tags and retain only the plain text content of the retrieved pages, Korst
and Geleijnse [48] do make explicit use of the HTML documents’ structure.
Exploiting the fact that lyrics are usually organized in stanzas, the authors
analyze <pre>...</pre> and <br> tags to distill likely occurrences of lyrics
within the retrieved pages, by defining corresponding parsing rules. Since the
resulting text fragments contain a large amount of noise, that is, text that
does not represent lyrics, in a next step a “fingerprint” of the text segments of
each page is created, for subsequent clustering of the pages. To this end, the
five longest words in each parsed page are used as the page’s representatives,
since long words in general tend to be more discriminative than short ones.
The pages are then clustered based on the criterion that the fingerprints of all
pages within a certain cluster must share at least three words. Retaining only
the largest cluster effectively eliminates outliers. Alignment is then performed
using a dynamic programming approach that minimizes the edit distance on
the word level between the text fragments of each pair of pages. To maxi-
mize the number of matching words, insertions, deletions, and substitutions
of words are assigned a score of −1, while matches receive a positive score.
For computational reasons, Korst and Geleijnse do not align all pairs of text
fragments. Instead they select the fragment of maximum length as reference,
assuming that this sequence contains (at least) the complete lyrics of the song
under consideration, and align this reference with all other fragments. The
resulting alignments are then combined to a single multiple alignment.

Evaluation is performed on the same data set as used by Knees et al. [45].
Korst and Geleijnse report average recall values of 93% (percentage of words in
the reference, that is, lyrics from CD booklets, that were correctly found by the
approach) and average precision values of 86% (percentage of words correctly
output by the approach among all words output). Korst and Geleijnse [48]
note that these results are comparable to those achieved by Knees et al.,
pointing out that their approach is computationally more efficient.
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7.1.2 Country of Origin

As a second type of music-related metadata, we focus on the place of birth
of an artist or the place of foundation of a band. Determining this informa-
tion is not as straightforward as it might seem. Consider for example Farrokh
Bulsara, also known as Freddie Mercury. He was born in Zanzibar, United Re-
public of Tanzania. However, he relocated to the United Kingdom at the age
of 17, where he later became world famous as cofounder of the band Queen.
Mercury’s country of origin is nevertheless Tanzania, whereas Queen’s is the
United Kingdom, where the band was founded by Mercury, Brian May, and
Roger Taylor in April 1970, [cf., 56]. This illustrates the problem of determin-
ing the country of origin in cases where the main country of musical activity
differs from the place of birth.

Basically, Web-based approaches to find the country of origin can be cat-
egorized into two groups: methods that mine data from specific Web sources,
such as Wikipedia or Last.fm, and methods that try to distill the country of
origin from arbitrary Web pages. As representative for the first category, Go-
vaerts and Duval’s work [33] will be summarized in the following. Approaches
belonging to the latter category were proposed by Schedl et al. [84, 83] and
will be presented thereafter.

Govaerts and Duval use different data sources and heuristics to determine
an artist’s or band’s country of origin. More precisely, they look into artist
pages and biographies available on Last.fm, Freebase [30], and Wikipedia.
Freebase is a collaborative database, and therefore provides information in a
more structured manner than, for example, Wikipedia. On Last.fm the au-
thors search for occurrences of geographical locations to predict the country of
origin. On Freebase they either look into the “origin” property of the artist’s
database entry or gather all nationalities, birthplaces, and residences and sub-
sequently predict the most frequently occurring country. Biographies extracted
from Wikipedia are also sought for geographical locations, and three heuristics
are proposed to predict the country of origin using this data source. All heuris-
tics rely on the number of country occurrences. The first one simply predicts
the country that occurs most frequently in the artist’s biography. The other
two heuristics favor early occurrences of country names in the biography.

For evaluation Govaerts and Duval use a set of more than 11,000 artists
from Aristo Music [5], which has been manually annotated by music experts.
The set is rather unevenly distributed with respect to continents since more
than 95% of the artists originate from Europe or North America. The authors
report that they were able to determine the origin for 59% of the test set by
at least one of the analyzed methods. A comparison among the three data
sources showed that Wikipedia performed best in terms of coverage, with a
recall value of 56%. Coverage was 7% for Last.fm and 26% for Freebase. Accu-
racy values varied between 70% (Wikipedia) and 90% (Last.fm and Freebase).
Combining different methods by chaining them in decreasing order of accu-
racy, 77% accuracy at 59% coverage could be achieved.
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Schedl et al. [84, 83] propose three alternative approaches to predict an
artist’s country of origin, based on Web pages indexed by a search engine. The
first one relies solely on the search engine’s estimate of an artist’s number
of Web pages that contain specific country terms. To this end, the search
engine is queried for all pairs of artist names and country names. For each
artist, the country with the highest page count estimate is then predicted. The
second and third approach analyze artist-related Web pages that have been
determined using the search engine. After having fetched the corresponding
Web content, the second approach applies term weighting measures commonly
used in text-based information extraction and retrieval research [11, 76], to the
retrieved Web pages. The third approach employs heuristics based on the text
distance between country names and key terms in the retrieved Web pages.

As for the term weighting measures employed in the second approach,
Schedl et al. analyzed the following, where term t represents a term indicating
a country name.
Document frequency (DF): dft,a is the total number of Web pages re-
trieved for artist a on which term t occurs at least once.
Term frequency (TF): tft,a is the total number of occurrences of term t in
all pages retrieved for a.
Term frequency–inverse document frequency (TF-IDF): The basic
idea of the tf· idft,a measure is to increase the weight of t if t occurs frequently
in the set of Web pages retrieved for a, while at the same time decrease t’s
weight if t occurs in a large number of documents among the whole set of
pages (retrieved for all artists), and is thus not very discriminative for a. The
authors employ the logarithmic formulation of the TF-IDF weighting, as given
in Equation 7.1, where n equals the total number of Web pages retrieved, and
dft is the total number of Web pages containing term t.

tf · idft,a = ln (1 + tft,a) · ln
(

1 +
n

dft

)
(7.1)

Using the set of country names C as input, Schedl et al. [83, 84] calculate the
weight for all terms t ∈ C applying each term weighting function. Predict-
ing the country for an artist is then simply performed by selecting the most
important country term as determined by the term weighting measure.

The third approach applies text distance measures between country names
and origin-related key terms, such as “born,” “founded,” “origin,” or “coun-
try,” to the set of retrieved Web pages. Based on the distance between the
positions of the country terms and the origin-related key terms on artist a’s
pages, a model of a’s most likely country of origin is constructed. It comprises
two different functions: first, a distance measure on the intra-page-level to
determine the distances within a Web page of a; second, an aggregation func-
tion to combine the intra-page-level distances for all pages retrieved for a. The
authors experimented with the minimum and the arithmetic mean functions.

Evaluation is performed on a manually compiled collection of 578 artists,
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including 69 distinct countries of origin. The authors report precision values
of up to 71% at a recall level of 100%, employing the term weighting approach
with the TF-IDF measure. Another finding of Schedl et al. [83, 84] is that the
term weighting heuristic outperforms the other two approaches. In fact, their
first approach, using page count estimates, achieves only 23% precision (at
100% recall). The approach relying on text distances yields 37% precision
(at 100% recall).

7.1.3 Band Members and Instrumentation

On the level of musical bands, automated approaches to determine the mem-
bers of a band and the instruments they play is an interesting task as it enables
creating relations between individual artists and bands. Combined with tem-
poral information, that is, when a certain member joined or left a band, such
information may also serve to derive similarities between bands or influences
a particular artist had on a particular band.

Schedl and Widmer [85] propose a method to find members and their roles,
that is, instruments they play, for a given band based on natural language
processing (NLP) techniques applied to Web pages. Their NLP approach ba-
sically comprises three steps: named entity detection, rule-based pattern anal-
ysis, and data aggregation to predict band members. After having determined
(and fetched) band-related Web pages via a search engine, the authors use
a named entity detection technique [15], to find potential members. For this
purpose, 2, 3, and 4 grams, that is, consecutive sequences comprising of 2, 3,
and 4 words, are extracted. Then various filtering steps are performed. For
example, only n-grams whose tokens are all capitalized are retained, and n-
grams consisting of common speech words are discarded. In a next step, a set
of rules tailored to the specific task is applied to the extracted n-grams and
the surrounding text. Examples for such rules are “M plays the I,” “R M,” or
“M is the R,” where M represents the potential member, I represents the instru-
ment (the authors use a set of predefined instruments and synonyms), and R
is the corresponding role, e.g., “drummer” or “guitarist.” Schedl and Widmer
count the number of Web pages analyzed for the band under consideration
each rule can be applied to. Subsequently, these counts are summed up for
all pairs of members and instruments. Noisy and unlikely correct assignments
are filtered using a dynamic threshold for the minimum number of aggregated
rule applications. Finally, all remaining members and roles are predicted.

Schedl and Widmer [85] evaluate their approach on a collection of 51 rock
and metal bands, for which the current 240 members as well as the current and
past 499 members were determined manually by consulting various sources.
By varying the threshold used for noise reduction it is possible to adjust
precision and recall. For the set of current members, the authors report a
precision value of 44% (at 36% recall level), when optimizing both precision
and recall. Using all members (current and past ones), a precision of 61% is
achieved at 26% recall level. Although these numbers certainly leave room for
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improvement, the authors note that there exists an upper limit for the recall
since artist names that do not occur on the Web pages retrieved for the band
under consideration obviously cannot be detected by the approach. This upper
limit is reported to lie between 50% and 60%, depending on the scheme used
to query the search engine and on the collection (all members versus current
members).

7.1.4 Album Cover Artwork

Images of an album’s cover artwork play an essential role for identifying and
recognizing a musical work or an artist. Due to the steadily increasing impor-
tance of online music distribution and consumption, which is effected without
the physical presence of an album, techniques to automatically extract album
cover artwork are highly requested. Like for the task of lyrics retrieval, which
has already been discussed, there exists some applications for gathering album
cover artwork from the Web, for example, Album Cover Art Downloader [1].
However, again they offer only semiautomated retrieval, where the task of
selecting the correct cover from a set of candidates is left to the user.

In contrast, fully automated approaches are presented by Schedl et al. [81]
and Schedl [79]. Based on a set of artist-related Web pages determined via
a search engine, first, a full inverted index or word-level index [94] is con-
structed, that is, a list of occurrence and position information for each term
within all pages is stored in a database. This indexation also includes HTML
tags and their properties. Given the name of an artist and an album under
consideration, the index is then used to determine the text distance between
<img> tags referring to potential album covers and artist/album names. These
distances are calculated on the level of characters and on the level of tags. The
approach assumes that <img> tags of images containing actual album covers
have the corresponding artist and album names either in their src or alt
attribute, or at least at a nearby position. Therefore, by fetching a fixed num-
ber of images with minimal summed distances <img> tag – artist name and
<img> tag – album name, the authors construct a set of potential album cover
images. Thereafter, content-based filtering is performed to remove erroneous
images. Exploiting the fact that images of album covers almost always have
a quadratic shape, all images that do not fulfill this constraint are discarded.
Preliminary studies revealed that potential album cover images frequently
show scanned discs instead of the actual cover. Hence, the authors propose
to apply a simple circle detection technique to the set of possible album cov-
ers. To this end, rectangular areas along a circular path that may represent
the border of a scanned compact disc are examined. Since images of scanned
discs usually show a strong contrast between the inner region (illustrating
the disc) and the outer region (the image’s background), comparing the color
histograms [29] of either type of region it is possible to filter out images that
likely represent scanned discs. From the set of candidates that remain after
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the filtering step, the image with minimal distance between its <img> tag and
the textual identifiers is selected and predicted as the correct album cover.

Evaluation is performed using a commercial collection of 3,311 albums by
artists from all around the world. In general, calculating the text distance
at the tag level outperforms using the distance at character level. The best
results are achieved by computing tag-level distances and employing filtering of
nonquadratic images and scanned discs. In this case, 59% of the album covers
are correctly identified. Among the negative results found are images of other
albums by the correct artist (6%), images of other artist-related material, for
example, portraits (2%), and completely unrelated images (14%). Moreover,
for 20% of the albums, not a single cover image could be determined. This
large amount of missing data, however, could be caused by the challenging
test collection, as previous experiments on a private collection of 255 albums
resulted in 83% correctly found images and only 7% of cases for which no
prediction could be made [81].

7.2 Approaches to Similarity Measurement

Elaborating accurate musical similarity measures that are capable of capturing
aspects of music similarity that relate to real, perceived similarity is one of the
main challenges in music information research. Such similarity measures can
help to understand why two music pieces or artists are perceived (dis)similar
by the listener. Similarity measures are furthermore a key ingredient of various
music-related applications. Examples are systems to automatically generate
playlists [7, 75], music recommender systems [20, 93], semantic music search
engines [41], and intelligent user interfaces [73, 43].

This section reviews work that exploits context-based data, more precisely,
Web-based and community-based data sources, to define similarity between
artists and between tracks. The presented techniques to context-based simi-
larity estimation can be categorized into two main groups: text-based and co-
occurrence-based methods. The former group includes approaches that make
use of texts extracted from Web pages, of tags, and of lyrics. The co-occurrence
approaches exploit, for example, playlists, page counts, and peer-to-peer net-
works as data source.

7.2.1 Text-Based Approaches

This section presents work that exploits textual, music-related information
originating from Web pages, user tags, and song lyrics. The methods employed
are hence strongly related to traditional text-based information retrieval (IR)
and information extraction (IE) techniques. Most approaches to text-based
IR and IE rely on some principal assumptions and models, which are detailed
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in the following. The bag of words model, which can be traced back at least to
Luhn [61], represents a document as an unordered set of its words, ignoring
structure and grammar rules. Words can be generalized to terms, where a
term may be a single word or a sequence of n words (n-grams), or correspond
to some grammatical structure, like a noun phrase. Using such a bag of words
representation, each term t describing a particular document d is commonly
assigned a weight wt,d that estimates the frequency or importance of t in/for
d. Each document can then be described by a feature vector comprising the
single weights. When considering a whole corpus of documents, each document
can be thought of as a representation of its feature vector in a feature space or
vector space whose dimensions correspond to the particular term weights. This
so-called vector space model is a fundamental model in information retrieval
and was originally described by Salton et al. [77].

When it comes to deriving artist-related information from the Web, usually
all Web pages returned for a particular artist are regarded as one large, virtual
document describing the artist under consideration. This aggregation seems
reasonable since, in Web-based music information retrieval, the usual entity of
interest is the music artist, not a single Web page. Furthermore, it is easier to
cope with very small, or even empty, pages if they are part of a larger virtual
document.

7.2.1.1 Term Profiles from Web Pages

One of the most comprehensive sources of cultural data is the vast amount of
available Web pages. The majority of the presented approaches uses a Web
search engine to retrieve relevant documents and create artist term profiles
from unstructured text extracted from Web pages. To focus the search on
Web pages relevant to music, different query schemes are employed. Such
schemes may comprise the artist’s name augmented by the keywords “music
review” [92, 12] or “music genre style” [40]. Additional keywords are partic-
ularly important for artists whose names have another meaning outside the
music context, such as “Bush,” “Kiss,” and “Air.” A comparison of different
query schemes can be found in Knees et al. [42].

Whitman and Lawrence [92] extract different term sets (unigrams, bi-
grams, noun phrases, artist names, and adjectives) from up to 50 artist-related
Web pages obtained via a search engine. After downloading the pages, the au-
thors apply parsers and a part-of-speech (POS) tagger [14] to assign each
word to its suited test set(s). Individual term profiles are then created for
each artist by employing a version of the TF-IDF measure, which assigns a
weight to each term t in the context of each artist Ai. In general, the TF-IDF
weighting assigns higher weights to terms that occur often within a certain
document (here, the Web pages of an artist), but rarely in other documents
(other artists’ Web pages). Equation 7.2 shows the weighting used by Whitman
and Lawrence, where the term frequency tf(t, Ai) is defined as the percentage
of retrieved pages for artist Ai containing term t. The document frequency
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df(t) is the percentage of artists (in the whole collection) whose set of retrieved
Web pages contains term t at least once.

wsimple(t, Ai) =
tf(t, Ai)
df(t)

(7.2)

The authors further propose another variant in which also rarely occurring
terms, that is, terms with a low DF, are weighted down to emphasize terms
in the middle IDF range. Equation 7.3 shows this variant, where µ and σ
represent parameters manually set to 6 and 0.9, respectively.

wgauss(t, Ai) =
tf(t, Ai)e−(log(df(t))−µ)2

2σ2
(7.3)

Computing the TF-IDF weights for all terms in each term set yields individual
feature vectors or term profiles for each artist. The overlap between the term
profiles of two artists, that is, the sum of weights of all terms that occur
in both term profiles, is then used as an estimate for the artists’ similarity
(Equation 7.4).

simoverlap(Ai, Aj) =
∑

{∀k|ai,k>0,aj,k>0}

ai,k + aj,k (7.4)

For evaluation, the authors compare these similarities to two other sources
of artist similarity information, which serve as ground truth (similar-artist
relations from allmusic.com and user collections from the music sharing service
OpenNap, see Section 7.2.2.3). The test collection comprises about 400 artists.
Remarkable differences between the individual term sets could be found. The
unigram, bigram, and noun phrase sets perform considerably better than the
other two sets, regardless of the ground-truth definition. The authors further
note that the expert-based similarity judgments as provided by allmusic.com
tend to be strongly influenced by a subjective bias of the respective music
editors.

Extending the work presented by Whitman and Lawrence [92], Baumann
and Hummel [12] introduce filters to prune the set of retrieved Web pages.
First, they remove all Web pages with a size of more than 40 kilobytes (after
parsing). They also try to filter out advertisements by ignoring text in table
cells comprising more than 60 characters, but not forming a correct sentence.
Finally, Baumann and Hummel perform keyword spotting in the URL, the
title, and the first text part of each page. Each occurrence of the initial query
parts (artist name, “music,” and “review”) contributes to a page score. Pages
that score too low are filtered out. In contrast Whitman and Lawrence [92],
Baumann and Hummel use a logarithmic IDF weighting in their TF-IDF
formulation. With these modifications the authors are able to outperform the
approach presented by Whitman and Lawrence [92].

Knees et al. [40] present an approach similar to Whitman and Lawrence
[92]. Unlike Whitman and Lawrence who experiment with different term sets,
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Knees et al. use only one list of unigrams. For each artist, a weighted term
profile is created by applying a TF-IDF variant. Equation 7.5 illustrates the
TF-IDF formulation, where n is the total number of Web pages retrieved for
all artists in the collection, tf(t, Ai) is the number of occurrences of term t
in all Web pages retrieved for artist Ai, and df(t) is the number of pages in
which t occurs at least once. In case tf(t, Ai) equals zero, wltc(t, Ai) is defined
to be zero.

wltc(t, Ai) = (1 + log2 tf(t, Ai)) · log2

n

df(t)
(7.5)

Calculating the similarity between the term profiles of two artists Ai and Aj
is performed using the cosine similarity according to Equation 7.6. Here, T
denotes the set of all terms, and θ gives the angle between Ai’s and Aj ’s
feature vectors in the Euclidean space.

simcos(Ai, Aj) = cos θ =

∑
t∈T

w(t, Ai) · w(t, Aj)

vuut∑
t∈T

w(t, Ai)2·
vuut∑
t∈T

w(t, Aj)2
(7.6)

Knees et al. evaluate their approach in a genre classification setting using
k-Nearest Neighbor (k-NN) classifiers on a test collection of 224 artists (14
genres, 16 artists per genre). They achieve accuracy values of up to 77%. Em-
ploying a term selection technique and a Support Vector Machine (SVM) [91]
as classifier, accuracy increases to 87%.

Other approaches derive term profiles from more specific Web resources.
For example, Celma et al. [19] propose a music search engine that crawls
audio blogs via RSS feeds and calculates TF-IDF features. Hu et al. [37] ex-
tract TF-based features from music reviews gathered from Epinions.com [27].
Schedl [80] presents an approach that extracts user posts associated with mu-
sic artists from the microblogging service Twitter [89]. Subsequently, term
profiles are created, using term lists specific to the music domain. Various
term weighting measures are then applied (TF, DF, and TF-IDF), and the
pair-wise artist similarity between the resulting feature vectors is estimated
using cosine similarity. In a genre classification task on the 224-artist set from
Knees et al. [40], accuracy values of up to 72% are reported.

7.2.1.2 Collaborative Tags

In the era of the “Web 2.0,” platforms and services offer their users various
means to contribute user-generated data. One popular example is the assign-
ment of short descriptions to a specific item (often some kind of multimedia
object, such as an image, a video, or a music piece). This labeling process is
commonly referred to as tagging. The more people are labeling an item with a
tag, the more the tag is assumed to be relevant to the item. Although the con-
tent of a tag is usually not restricted, in the music domain most tags represent
specific properties of an artist, an album, or a music piece, for example, genre
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and style descriptions, nationalities, epochs, and instruments. One of the most
popular music-related platforms that offers tagging functionality is Last.fm.
Since Last.fm provides a comprehensive developer’s API [52], it represents a
valuable source for context-based information about music.

Geleijnse et al. [32] gather tags from Last.fm to generate a “tag ground
truth” on the artist level. The authors first filter redundant and noisy tags
using the set of tags associated with tracks by the artist under consideration.
Similarity between two artists is then estimated as the number of overlapping
tags. Evaluation against Last.fm’s similar artist function shows that the num-
ber of overlapping tags between similar artists is much larger than the average
overlap between arbitrary artists (about 10 versus 4 after filtering).

Levy and Sandler [55] retrieve tags from Last.fm and MusicStrands [68]
to construct a semantic space for music pieces. To this end, all tags found
for a specific piece are tokenized, and a document-term matrix based on TF-
IDF weighting is created. As a result, each track is represented by a term
vector. Three different extensions to TF weighting are explored: weighting by
the number of users that applied the tag, restriction to adjectives, and no
weighting at all. Optionally, the dimensionality of the vectors is reduced by
applying latent semantic analysis (LSA) [23]. The similarity between feature
vectors is calculated via the cosine measure, Equation 7.6.

As for evaluation, for each genre or artist term t, each track labeled with
t serves as query, and the mean average precision (MAP) over all queries is
computed. It was found that filtering for adjectives considerably worsens the
performance. Levy and Sandler [55] further indicate that weighting of term
frequency by the number of users may improve genre precision. Without LSA,
that is, using the full term vectors, genre precision reaches 80% and artist
precision 61%. Using LSA, genre precision is up to 82% and artist precision
63%.

Compared with the Web page-based approaches presented in the last sec-
tion, the tag-based approaches offer some advantages. First, the used vocabu-
lary, that is, tag set, is much smaller and more focused to the music domain,
which may reduce noise. Second, Last.fm not only provides tags on the artist
level, but also on the level of individual tracks, making it possible to calcu-
late similarities between tracks. On the other hand, tag-based approaches also
suffer from certain restrictions. For example, the tagging of comprehensive col-
lections requires a large and active user community. Another problem is that
coverage of artists or tracks from the lesser known “long tail” is usually very
low.

Alleviating some of these problems, the idea of gathering tags via “games
with a purpose” has recently become popular [88, 65, 54]. Such games aim at
solving problems that are hard to solve for computers, for example, captur-
ing emotions evoked when listening to a song. By encouraging users to play
such games, a large number of songs can be efficiently labeled with semantic
descriptors.
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7.2.1.3 Song Lyrics

In Section 7.1.1, it has been shown how song lyrics can be determined us-
ing Web mining techniques. Here, approaches that define similarities between
artists or songs based on lyrics are presented.

Logan et al. [59] use song lyrics for tracks by 399 artists to determine artist
similarity. First, the authors apply Probabilistic Latent Semantic Analysis
(PLSA) [35] to a collection of more than 40,000 song lyrics in order to build
N models of topics typically present in lyrics. Subsequently, all lyrics by an
artist are processed using each topic model to create N -dimensional vectors
of which each dimension gives the likelihood of the artist’s tracks to belong to
the corresponding topic. Artist vectors are then compared by calculating the
L1 distance (also known as Manhattan distance), as shown in Equation 7.7.

distL1(Ai, Aj) =
N∑
k=1

|ai,k − aj,k| (7.7)

This approach is evaluated against human similarity judgments, more pre-
cisely, the “survey” data for the uspop2002 set, [13]. It yields worse results
than similarities obtained via acoustic features, irrespective of the chosen N ,
the usage of stemming, or the filtering of lyrics-specific stop words. Since
lyrics-based and audio-based approaches make different errors, however, a
combination of both is suggested.

Mahedero et al. [64] demonstrate the usefulness of lyrics for four tasks:
language identification, song structure detection, thematic categorization, and
similarity measurement. For similarity estimation, TF-IDF term weighting is
performed, and cosine similarities are calculated. A song’s representation is
then obtained by aggregating the similarities to all songs in the collection
into a new vector. These representations are compared using an unspecified
algorithm. Exploratory experiments indicate some potential for cover version
identification and plagiarism detection.

Other approaches do not explicitly aim at determining similar songs with
respect to lyrical content, but rather at revealing conceptual clusters [39] or
at classifying songs into genres [66] or mood categories [53, 36]. Since the
extracted features can also be used for similarity estimation, these approaches
are nevertheless related to the subject of this section.

Laurier et al. [53] classify songs into four mood categories by means of
lyrics and audio content. From a song’s lyrics, TF-IDF features are derived,
and the cosine similarity measure is applied. A 10-fold cross validation with
a k-NN classifier yields accuracies slightly above 60%, using lyrics as data
source. Signal-based features perform better than the lyrics-based features.
However, a combination of both gave the best results.

Hu et al. [36] experiment with TF, TF-IDF, and Boolean vectors and inves-
tigate the impact of stemming, part-of-speech tagging, and function words for
soft categorization into 18 mood clusters. Best results are achieved with TF-
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IDF weights on stemmed terms. The authors further report that lyrics-based
features alone can outperform audio-based features.

7.2.2 Co-Occurrence–Based Approaches

The principal assumption underlying all approaches presented in this section
is that the occurrence of two music pieces or artists within the same context
indicates some kind of similarity. The context is given by the used data source.
In the following, approaches relying on Web pages (or page counts returned
by a search engine), playlists, and peer-to-peer (P2P) networks are presented.

7.2.2.1 Web-Based Co-Occurrences and Page Counts

The context of a music entity may be defined by related Web pages. Determin-
ing and using such music-related pages as data source for music information
retrieval tasks was probably first performed by Cohen and Fan [21]. Cohen and
Fan automatically extract lists of artist names from Web pages. To determine
pages relevant to the music domain, they query Altavista [2] and Northern
Light1 [70]. The resulting HTML pages are then parsed according to their
DOM tree, and all plain text content with minimum length of 250 characters
is further analyzed for occurrences of entity names. Pages with multiple occur-
rences of artists are then treated as “pseudo-users” that “rate” tracks by the
contained artists positively. Based on this data, a CF system is constructed,
which is used for artist recommendation.

Some co-occurrence-based approaches rely on page count estimates re-
turned to search engine requests. Querying a search engine for pages that
contain both of two artist names and retrieving the corresponding page count
estimate, it is possible to derive similarity information. For example, Zadel
and Fujinaga [93] investigate the usability of two Web services to extract co-
occurrence information and consecutively derive artist similarity. More pre-
cisely, the authors propose an approach that, given a seed artist as input,
retrieves a list of potentially related artists from the Amazon [3] Web service
Listmania!. Based on this list, artist co-occurrences are derived by query-
ing the Google Web API2 and storing the returned page counts of artist-
specific queries. Google was queried for "artist name i" and for "artist
name i"+"artist name j." Thereafter, the so-called “relatedness” of each
Listmania! artist to the seed artist is calculated as the ratio between the com-
bined page count, that is, the number of Web pages on which both artists
co-occur, and the minimum of the single page counts of both artists, Equa-
tion 7.8. The minimum is used to account for different popularities of the two

1Northern Light, formerly providing a meta search engine, in the meantime has special-
ized on search solutions tailored to enterprises.

2Google no longer offers this Web API. It has been replaced by several other APIs,
mostly devoted to Web 2.0 development.
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artists.

simpc min(Ai, Aj) =
pc(Ai, Aj)

min (pc(Ai), pc(Aj))
(7.8)

Recursively extracting artists from Listmania! and estimating their relatedness
to the seed artist via Google page counts allows to construct lists of similar
artists. Although the article shows that Web services can be efficiently used
to find artists similar to a seed artist, it lacks a thorough evaluation of the
results.

Analyzing Google page counts as a result of artist-related queries is also
performed by Schedl et al. [82]. Unlike the method presented by Zadel and
Fujinaga [93], Schedl et al. derive complete similarity matrices from artist co-
occurrences. This offers additional information since it can also be predicted
which artists are not similar.

Schedl et al. [82] define the similarity of two artists as the conditional prob-
ability that one artist is to be found on a Web page that is known to mention
the other artist. Since the retrieved page counts for queries like "artist name
i" or "artist name i"+"artist name j" indicate the relative frequencies of
this event, they are used to estimate the conditional probability. Equation 7.9
gives a formal representation of the symmetrized similarity function.

simpc cp(Ai, Aj) =
1
2
·
(
pc(Ai, Aj)
pc(Ai)

+
pc(Ai, Aj)
pc(Aj)

)
(7.9)

In order to restrict the search to Web pages relevant to music, different query
schemes are proposed by Schedl et al. [82] (see also Section 7.2.1.1). Otherwise,
queries for artist names that equal common speech words would unjustifiably
lead to higher page counts, hence, distort the similarity relations.

Schedl et al. perform two evaluation experiments on the same 224-artist-
data-set as used by Knees et al. [40]. They estimate the homogeneity of the
genres defined by the ground truth by applying the similarity function to
artists within the same genre and to artists from different genres. To this
end, the authors relate the average similarity between two arbitrary artists
from the same genre to the average similarity of two arbitrary artists from
different genres. The results show that the co-occurrence approach can be
used to clearly distinguish between most of the genres. The second evaluation
experiment is an artist-to-genre classification task using a k-NN classifier. In
this setting, the approach yields accuracy values of about 85%, averaged over
all genres.

A shortcoming of the approaches proposed by Zadel and Fujinaga [93]
and Schedl et al. [82] is that the number of involved search engine requests is
quadratic in the number of artists. If a complete similarity matrix is to be cre-
ated, these approaches therefore scale poorly to real-world music collections.

Quadratic computational complexity can be avoided with an alternative
strategy to co-occurrence analysis, as described by Schedl [79, Chapter 3]. This
method resembles Cohen and Fan’s [21], presented in the beginning of this
section. First, for each artist Ai, a certain amount of top-ranked Web pages
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returned by the search engine is retrieved. Subsequently, all pages fetched
for artist Ai are searched for occurrences of all other artist names Aj in the
collection. The number of page hits represents a co-occurrence count, which
equals the document frequency of the artist term “Aj” in the corpus given
by the Web pages for artist Ai. Relating this count to the total number of
pages successfully fetched for artist Ai, a similarity function is constructed.
Employing this method, the number of issued queries grows linearly with
the number of artists in the collection. The formula for the symmetric artist
similarity is given in Equation 7.10.

7.2.2.2 Playlists

An early approach to derive similarity information from the context of a music
entity can be found in the research by Pachet et al. [72]. Pachet et al. consider
radio station playlists from a French radio channel and compilation CDs from
CDDB3 to extract co-occurrences between tracks and between artists. The
authors count the number of co-occurrences of two artists (or pieces of music)
Ai and Aj in the radio station playlists and compilation CDs. They define the
co-occurrence of an entity Ai to itself as the number of Ai’s occurrences in the
considered data source. To account for different frequencies, that is, popular-
ities, of songs or artists, the co-occurrence counts are normalized. Assuming
that co-occurrence is a symmetric function, the complete similarity measure
used by the authors is given in Equation 7.10.

simpl cooc(Ai, Aj) =
1
2
·
[
cooc(Ai, Aj)
cooc(Ai, Ai)

+
cooc(Aj , Ai)
cooc(Aj , Aj)

]
(7.10)

This similarity formulation is incapable of capturing indirect links that an
entity may have with others. For example, given three artists A, B, and C
and assuming that A and B often co-occur and B and C often co-occur,
Equation 7.10 cannot express that A and C are probably also similar. In
order to capture such indirect links, the complete co-occurrence vectors of
two entities Ai and Aj (i.e., a vector comprising, for a specific entity, the co-
occurrence count with all other entities) are constructed and their statistical
correlation is computed, cf. Equation 7.11.

simpl corr(Ai, Aj) =
Cov(Ai, Aj)√

Cov(Ai, Ai) · Cov(Aj , Aj)
(7.11)

These co-occurrence and correlation functions are used as similarity measures
on the track level and on the artist level. Pachet et al. evaluate them on two
data sets, one comprising 12 tracks, the other one consisting of 100 artists. As
ground truth the authors use similarity judgments by music experts from Sony

3CDDB is a Web-based album identification service that returns, for a given unique disc
identifier, metadata like artist and album name, tracklist, or release year. This service is
offered in a commercial version operated by Gracenote [34] as well as in an open source
implementation named freeDB [31].
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Music. The main finding is that artists or tracks that appear consecutively in
radio station playlists or on CD samplers indeed show a high similarity. The
co-occurrence function generally outperforms the correlation function (70% to
76% versus 53% to 59% agreement with the ground truth).

Another approach that uses playlists for music similarity estimation is
presented by Cano and Koppenberger [16]. Cano and Koppenberger create a
similarity network by extracting playlist co-occurrences of more than 48,000
artists retrieved from Art of the Mix [6] in early 2003. Art of the Mix is a Web
service that allows users to upload and share their mixed tapes or playlists.
The authors analyze more than 29,000 playlists. They subsequently create a
similarity network, where a connection between two artists is made if they
co-occur in a playlist. The article reveals some interesting properties of the
constructed artist similarity network. First, each artist is only connected to
a small number of other artists. Thus, a similarity measure constructed from
such data is likely to capture only (strong) positive similarities between two
artists. In spite of this data sparsity, the network shows one large cluster of
nodes connecting more than 99% of the artists. Moreover, the average length
of shortest path between two artists is remarkably small (3.8). So is the clus-
tering coefficient that estimates the probability of indirect links, that is, the
probability that two neighboring artists of a given one are connected them-
selves. Thus, given that artist A is similar to B and to C, the probability for
B and C being similar is quite small (0.1). Analyzing the average degree of a
node shows that each artist is on average connected to 12.5 other artists.

In a more recent article that exploits playlists to derive artist similarity in-
formation, Baccigalupo et al. [10] analyze co-occurrences of artists in playlists
shared by members of a Web community. The authors look at more than 1
million playlists made publicly available by MusicStrands [68], a Web service
(no longer in operation) that allowed users to share playlists. The authors
extract the 4,000 most popular artists from the playlist set, measuring pop-
ularity as the number of playlists in which each artist occurs. They further
take into account that two artists that consecutively occur in a playlist are
probably more similar than two artists that occur farther away in a playlist.
To this end, the authors define a distance function dh(Ai, Aj) that counts how
often a song by artist Ai co-occurs with a song by Aj at a distance of h. Thus,
h is a parameter that defines the number of songs in between the occurrence
of a song by Ai and the occurrence of a song by Aj in the same playlist.
Baccigalupo et al. define the distance between two artists Ai and Aj as in
Equation 7.12, where the playlist counts at distances 0 (two consecutive songs
by artists Ai and Aj), 1, and 2 are weighted with β0, β1, and β2, respectively.
The authors empirically set the values to β0 = 1, β1 = 0.8, β2 = 0.64.

dpl d(Ai, Aj) =
2∑

h=0

βh · [dh(Ai, Aj) + dh(Aj , Ai)] (7.12)

To account for the popularity bias, that is, very popular artists co-occur with
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a lot of other artists in many playlists simply because of their popularity, the
authors perform normalization according to Equation 7.14, where d̂istpl d(Ai)
denotes the average distance between Ai and all other artists (Equation 7.13),
and X is the set of the n− 1 artists other than Ai. The authors do not report
any evaluation dedicated to artist similarity.

d̂pl d(Ai) =
1

n− 1
·
∑
j∈X

dpl d(Ai, Aj) (7.13)

dist|pl d|(Ai, Aj) =
dpl d(Ai, Aj)− d̂pl d(Ai)∣∣∣max(dpl d(Ai, Aj)− d̂pl d(Ai))∣∣∣ (7.14)

7.2.2.3 Peer-to-Peer Networks

Peer-to-peer (P2P) networks represent a rich source of music-related data since
their users are commonly willing to reveal metadata about the shared content.
In the case of music files, file names and ID3 tags are usually disclosed.

Early work makes use of data extracted from P2P networks [92, 26, 58,
13]. All these studies use, among other sources, data extracted from the P2P
network OpenNap to derive music similarity information.4 Logan et al. [58]
and Berenzweig et al. [13] report on having determined the 400 most popular
artists on OpenNap in mid-2002. The authors gathered metadata on shared
content, which yielded about 175,000 user-to-artist relations from about 3,200
shared music collections. Logan et al. [58] especially highlight the sparsity in
the OpenNap data, in comparison with data extracted from the audio signal.
Logan et al. compare similarities defined by artist co-occurrences in OpenNap
collections, by expert opinions from allmusic.com, by playlist co-occurrences
from Art of the Mix, by data gathered from a Web survey, and by audio
feature Mel-frequency cepstral coefficients (MFCCs) [9]. To this end, they
calculate a “ranking agreement score” by comparing the top N most similar
artists according to each data source and calculating the pair-wise overlap
between the sources. The main findings are that the co-occurrence data from
OpenNap and from Art of the Mix show a high degree of overlap, the experts
from allmusic.com and the participants of the Web survey agree moderately,
and the signal-based measure has a rather low agreement with all other sources
(except compared to the allmusic.com data).

In research conducted by Whitman and Lawrence [92], a software agent is
used to retrieve from OpenNap a total of 1.6 million user-song relations over a
period of three weeks in August 2001. To alleviate the popularity bias, Whit-
man and Lawrence use a similarity measure as shown in Equation 7.15, where
C(Ai) denotes the number of users that share songs by artist Ai, C(Ai, Aj)

4It is not clear whether the four mentioned publications make use of exactly the same
data set. In any case, the authors emphasize that they only extract metadata from OpenNap,
but do not download any files.
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is the number of users that have both artists Ai and Aj in their shared col-
lection, and Ak is the most popular artist of the whole data set. The second
factor (in the right-hand part of the equation) down weights the similarity
between two artists if one of them is very popular and the other is not.

simp2p wl(Ai, Aj) =
C(Ai, Aj)
C(Aj)

·
(

1− |C(Ai)− C(Aj)|
C(Ak)

)
(7.15)

Ellis et al. [26] use the same artist set that Whitman and Lawrence [92]
used. The aim is to build a ground truth for artist similarity estimation. The
authors report on having extracted from OpenNap about 400,000 user-to-song
relations, covering about 3,000 unique artists. Again, the co-occurrence data
is compared with artist similarity data gathered by a Web survey and with
allmusic.com data. In contrast to Whitman and Lawrence [92], Ellis et al.
[26] take indirect links in allmusic.com’s similarity judgments into account.
To this end, Ellis et al. propose a transitive similarity function on similar
artists from the allmusic.com data, called “Erdös distance.” More precisely, the
distance d(A1, A2) between two artists A1 and A2 is measured as the minimum
number of intermediate artists needed to form a path from A1 to A2. As this
procedure also allows to derive information on dissimilar artists (those with a
high minimum path length), it can be employed to obtain a complete distance
matrix. Furthermore, the authors propose an adapted distance measure, the
so-called “Resistive Erdös measure,” which takes into account that there may
exist more than one shortest path of length l between A1 and A2. Assuming
that two artists are more similar if they are connected via many different
paths of length l, the Resistive Erdös similarity measure equals the electrical
resistance in a network, see Equation 7.16, where each path from Ai to Aj is
modeled as a resistor whose resistance equals the path length |p|. However, this
adjustment does not improve the agreement of the similarity measure with the
data from the Web-based survey, as it fails to overcome the popularity bias,
that is, many different paths between popular artists unjustifiably lower the
total resistance.

distp2p res(Ai, Aj) =

 ∑
p∈Paths(Ai,Aj)

1
|p|

−1

(7.16)

A recent approach that derives similarity information on the artist and
on the song level from the Gnutella P2P file sharing network is presented
by Shavitt and Weinsberg [86]. Shavitt and Weinsberg collected metadata of
shared files from more than 1.2 million Gnutella users in November 2007. They
restricted their search to music files (MP3 and WAV). The crawl yielded a data
set of 530,000 songs. Information on both users and songs are represented via a
two-mode graph showing users and songs. A link between a song and a user is
created when the user shares the song. One finding of analyzing the resulting
network is that most users in the P2P network share similar files.
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The authors use the gathered data for artist recommendation. To this end,
they construct a user-to-artist matrix V , where V (i, j) gives the number of
songs by artist Aj that user Ui shares. Shavitt and Weinsberg then perform
direct clustering on V using the k-means algorithm [63] with the Euclidean
distance metric. Artist recommendation is then performed using either data
from the centroid of the cluster to which the seed user Ui belongs or by using
the nearest neighbors of Ui within the cluster to which Ui belongs.

In addition, Shavitt and Weinsberg [86] address the problem of song clus-
tering. Accounting for the popularity bias, the authors define a distance func-
tion that is normalized according to song popularity, as shown in Equation
7.17, where uc(Si, Sj) denotes the total number of users that share songs Si
and Sj . Ci and Cj denote, respectively, the popularity of songs Si and Sj ,
measured as their total occurrence in the data set.

distp2p pop(Si, Sj) = − log2

(
uc(Si, Sj)√
Ci · Cj

)
(7.17)

Evaluation experiments are carried out for song clustering. The authors
report an average precision of 12.1% and an average recall of 12.7%, which
they judge as quite good considering the vast amount of songs shared by the
users and the inconsistency in the metadata (ID3 tags).

7.3 Conclusion

This chapter gave an overview of Web- and community-based music informa-
tion extraction techniques and of approaches to similarity measurement based
on music context data. In comparison with signal-based or content-based ap-
proaches, techniques that make use of the vast amount of information available
on the Web offer certain advantages. First, they do not require having access to
the actual music files. They are potentially capable of determining high-level
semantic descriptors, for example, via tags. Furthermore, community-based
data sources can reflect people’s opinions, feelings, and other subjective as-
pects of how music is perceived—information which cannot be derived from
the pure audio signal alone.

Although context-based approaches show the great potential of Web-
and community-based data sources, they suffer from particular shortcomings.
First, data sparsity is obviously a problem, in particular for artists in the
“long tail.” Even if data is available, there is usually an imbalance between
the amount of existent information for popular artists and for lesser known
ones, a fact usually referred to as popularity bias. Moreover, approaches that
rely on user data often include only participants of specific communities. For
example, the average Last.fm user does not necessarily correspond to the
whole population’s average music listener. It is indeed known that users of
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certain communities tend to have similar music tastes. This phenomenon is
referred to as community bias or population bias. Finally, filtering spurious
and erroneous information poses a challenge for all approaches.
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8.1 Introduction

In this chapter, we introduce the concept of a semantic music discovery en-
gine. We refer to such a system as discovery engine (as opposed to a search
engine) because it is designed to help people discover novel music, as well as
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uncover new connections between familiar songs and artists. The term seman-
tic refers to the fact that our system is built around a query-by-text description
paradigm where a person can make use of a large, diverse set of musically rel-
evant tags to specify the type of music that he or she wishes to hear. For
example, a semantic music discovery engine lets one find music by asking for
“mellow classic rock featuring slide guitar.” From this query phrase, the sys-
tem first identifies tags like “mellow,” “classic rock,” and “slide guitar” and
then retrieves songs that are semantically associated with these tags. Finally,
the engine presents the most relevant music as a streamable playlist of songs.

The core data structure of a semantic music discovery engine is a music
index . The music index is represented as a large tag-song matrix where each
element of the matrix reflects the strength of semantic association between a
tag and a song. We will begin this chapter by further developing the notion
of a music index using concepts from the field of (text-based) Information
Retrieval (Section 8.2). We will then describe a number of sources of music
information that are useful for constructing a music index (Sections 8.3 and
8.4). These data sources are often complementary and can be combined to
improve the music discovery engine both in terms of accuracy and scalability
(Section 8.5). We will end the chapter with a few examples of both commercial
and academic semantic music discovery engines (Section 8.6).

8.2 Music Indexing

Like traditional Internet search engines (e.g., Google, Yahoo!), the core data
structure of a semantic music discovery engine is an index. As such, we will
briefly describe some of the fundamental concepts from text-based information
retrieval (IR) and then further develop these ideas for music discovery. The
reader may wish to refer to a recommended textbook on IR for additional
background information [30, 3].

8.2.1 Indexing Text

An index is often represented as a large term-document matrix where each
row represents a short text-token and each column represents a document.
In the context of Internet search, a term may be any word. A document is a
Web page found on the Internet. To index a Web page, we count the number
of times each word appears in that Web page. For example, in Figure 8.2,
the term “apple” appears three times in the first document, zero times in the
second document, two times in the third document, and so on.

Once we have indexed all of our documents, a user enters a query and the
search engine quickly finds relevant Web pages using the index. For the ex-
ample query “apple crisp,” the most relevant document is the third document
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Figure 8.1
Architecture for an Internet search engine.

since it contains both of the terms “apple” and “crisp.” The first document is
the second-most relevant Web page since one of the terms (“apple”) appears
frequently in the document (Figure 8.1).

In practice, we modify the raw counts in the term-document matrix to
improve our IR system. For example, we will up-weight terms that appear
frequently in a document (term frequency) and down-weight terms that appear
in many different documents (inverse document frequency). This weighting
scheme is referred to as term frequency–inverse document frequency (TF-
IDF). We may also normalize each document vector by length so that longer
documents are fairly compared with shorter documents when considering a
query.

More formally, we construct a term-document matrix X where each column
vector vd = [X]·,d corresponds to a document d. When a user enters a string of
words as a query, we think of the query string as a (very short) document and
represent it as a document vector vq. We then calculate the similarity between
vq and each of the document vectors in our index. The most commonly used
similarity function is cosine similarity :

sim(vq,vd) =
vq · vd
|vq||vd|

(8.1)

where the numerator is the dot product between the two vectors and the
denominator is the product of the Euclidean lengths for the two vectors. We
note that many other functions of similarity are also used (e.g., Kullback-
Leibler [KL]-divergence, L1-norm) as alternatives to cosine similarity. The
search engine will rank order documents based on the similarity function and
return documents that are most similar to the query vector.

 



254 Music Data Mining

Query

Corpus of 
Songs

Playlist

Music Index

acoustic rock GO
s1
s3
...

.5

.7

s3

0

.8

0

.9

s2

.1

.1

.9

.1

0

.8

s1

...

bluegrass

calm

drum kit

acoustic

Vocab

Figure 8.2
Architecture for a semantic music discovery engine.

Once we have an index and a similarity function, we can also compute
the pair-wise similarity between each pair of documents in our corpus. This
allows us to recommend similar Web pages for a given seed Web page (query-
by-similarity) and cluster similar Web pages (topic discovery1).

8.2.2 Indexing Music

In the context of music, we will refer to terms as tags to be consistent with the
Music-IR literature. A tag is a short phrase like “happy,” “hand drums,” or
“New Orleans jazz.” Our vocabulary will consist of thousands of tags that are
related to instruments, genres, emotions, moods, usages, geographic origins,
musicological terms, and other music-related concepts. Likewise, for a music
index, a document can be a song, an album, an artist, a record label, etc. To
simplify our discussion, we will consider songs to be our musical documents
throughout this chapter.

To create a music index, we need to construct a tag-song matrix X where
each element xt,s = [X]t,s represents the strength of association between each
tag t and each song s. Unfortunately, this is somewhat less straightforward
than building an index for Web pages because our documents are now audio
files. That is, previously we simply needed to count (text-based) terms in (text-
based) documents. For music, we need to find a way to relate (text-based) tags
to (audio-based) songs.

In the next section, we will describe how we can create a tag-song music

1A good example of topic discovery is News Aggregator (e.g., Google News) which auto-
matically clusters news article from many different news outlets into a small set of “stories.”
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index from various sources of data. However, once constructed, we can use
the music index much like we use an index for text documents. That is, we
create a query vector vq from the user’s query string and calculate the (co-
sine) similarity between it and each of the column vectors (e.g., vs = [X]·,s
for song s) in our tag-song matrix. We can then rank-order the songs based
on this similarity in order to generate a semantically meaningful playlist of
songs (Figure 8.2). In addition, we can use our music index to calculate music
similarity between pairs of songs or to cluster our music into automatically
created genres.

8.3 Sources of Tag-Based Music Information

In this section, we describe five data sources that can provide us with seman-
tic information about music. Three data sources (surveys, social tags, games)
rely on human participation, and as such, are expensive in terms of financial
cost and human labor. Two sources (text mining, autotagging) rely on auto-
matic methods that are computationally intense but require less direct human
involvement.

There are a number of key concepts to consider when comparing these
approaches. The cold-start problem refers to the fact songs that are not anno-
tated cannot be retrieved. This problem is related to popularity bias in that
popular songs (in the short head) tend to be annotated more thoroughly than
unpopular songs (in the long tail) [1, 22]. This often leads to a situation in
which a short-head song is ranked above a long-tail song despite the fact that
the long-tail song may be more semantically relevant. We prefer an approach
that avoids the cold-start problem (e.g., autotagging). If this is not possible,
we prefer approaches in which we can explicitly control which songs are anno-
tated (e.g., survey, games), rather than an approach in which only the more
popular songs are annotated (e.g., social tags, Web documents).

A strong labeling [8] is when a song has been explicitly labeled or not
labeled with a tag depending on whether or not the tag is relevant. This is
opposed to a weak labeling in which the absence of a tag from a song does
not necessarily indicate that the tag is not relevant. For example, a song may
feature drums but is not explicitly labeled with the tag “drum.” Weak labeling
is a problem if we want to design a music IR system with high recall (e.g., find
every song which features drums), or if our goal is to collect a training data
set for a supervised autotagging system that uses discriminative classifiers
[29, 14, 47].

It is also important to consider the size, structure, and extensibility of the
tag vocabulary. In the context of text-based music retrieval, the ideal vocabu-
lary is a large and diverse set of semantic tags, where each tag describes some
meaningful attribute or characterization of music. In this chapter, we limit
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our focus to tags that can be used consistently by a large number of individu-
als when annotating novel songs based primarily on the listening experience.
In general, this does not include tags that are personal (e.g., “seen live”) or
judgmental (e.g., “horrible”) in nature [47].

A tag vocabulary can be fixed or extensible, as well as structured or un-
structured . For example, the tag vocabulary associated with a survey can be
considered fixed and structured since the set of tags and the grouping of tags
into coherent semantic categories (e.g., genres, instruments, emotions, usages)
is predetermined by experts using domain knowledge [41, 43]. By contrast,
social tagging communities produce a vocabulary that is extensible since any
user can suggest any free-text token to describe music. This vocabulary is also
unstructured since tags are not organized in any way. In general, we prefer an
extensible vocabulary because a fixed vocabulary limits text-based retrieval
to a small set of predetermined tags. In addition, a structured vocabulary is
advantageous since the ontological relationships (e.g., genre hierarchies, fam-
ilies of instruments) between tags encode valuable semantic information that
is useful for retrieval.

Finally, the accuracy with which tags are applied to songs is perhaps the
most important point of comparison. Since there is no ideal ground truth and
listeners do not always agree whether (or to what degree) a tag should be
applied to a song (i.e., “the subjectivity problem” [31]), evaluating accuracy
can be tricky. Intuitively, it is preferable to have trained musicologists, rather
than untrained nonexperts, annotate a music corpus. It is also advantageous
to have multiple individuals, rather than a single person, annotate each song.
Last, individuals who are given incentives to provide good annotations (e.g.,
a high score in a game) may provide better annotations than unmotivated
individuals.

8.3.1 Conducting a Survey

Perhaps the most well-known example of the music annotation survey is Pan-
dora’s2 “Music Genome Project” [11, 46]. Pandora uses a team of approxi-
mately 50 expert music reviewers (each with a degree in music and 200 hours
of training) to annotate songs using structured vocabularies of between 150 to
500 “musically objective” tags depending on the genre of the music [17]. Tags,
such as “Afro-Latin Roots,” “Electric Piano Riffs,” and “Political Lyrics,”
can be considered objective since, according to Pandora, there is a high level
of inter-reviewer agreement when annotating the same song. Between 2000
and 2010, Pandora annotated about 750,000 songs3 [46]. Currently, each song
takes between 20 to 30 minutes to annotate and approximately 15,000 new
songs are annotated each month. While this labor-intensive approach results
in high-quality annotations, Pandora must be very selective of which songs

2http://www.pandora.com.
3Statistic retrieved from http://blog.pandora.com/faq/contents/29.html on July 15,

2010.
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they choose to annotate given that other companies like Apple iTunes and
Gracenote maintain growing databases with tens of millions of songs.4

Pandora, as well as companies like Moodlogic5 and Allmusic6, have devoted
considerable amounts of money, time, and human resources to annotate their
music databases with high-quality tags. As such, they are unlikely to share this
data with the Music IR research community. To remedy this problem, we have
collected the CAL500 data set of annotated music [41]. This data set contains
one song from 500 unique artists, each of which have been manually annotated
by a minimum of three nonexpert reviewers using a structured vocabulary of
174 tags. While this is a small data set, it is strongly labeled, relies on multiple
reviewers per song, is publicly available, and as such, has become a standard
data set for training and evaluating tag-based music retrieval systems.

8.3.2 Harvesting Social Tags

Last.fm7 is a music discovery Web site that allows users to contribute social
tags through a text box in their audio player interface. This crowd sourc-
ing approach has the potential to generate an enormous amount of semantic
music information and benefits by involving millions of individuals in the an-
notation process (i.e., “wisdom of the crowds”). By the beginning of 2007,
Last.fm’s large base of 40 million monthly users had built up an unstructured
vocabulary of 960,000 free-text tags and used it to annotate millions of songs
[32]. Unlike Pandora and AMG Allmusic, Last.fm makes much of this data
available through their public API8. While this data is a useful resource for
the Music-IR community, Lamere [21, 22] points out a number of problems
with social tags. First, there is often a sparsity of tags for new and obscure
artists (cold-start problem / popularity bias). Second, most tags are used to
annotate artists rather than individual songs. This is problematic since we are
interested in retrieving semantically relevant songs from eclectic artists. Third,
individuals use ad-hoc techniques when annotating music. This is reflected by
use of polysemous tags (e.g., “progressive”), tags that are misspelled or have
multiple spellings (e.g., “hip hop,” “hip-hop”), tags used for self-organization
(e.g., “seen live”), and tags that are nonsensical. Finally, the public interface
allows for malicious behavior. For example, individuals have been known to
target artists (e.g., Paris Hilton) with misleading tags (e.g., “brutal death
metal”).

4Apple reports the iTunes store contains over 13 million songs for purchase and
Gracenote claims they they have music fingerprints for 28 million unique songs.
http://www.apple.com/itunes/features/#purchasingmusic, http://www.gracenote.com/
business solutions/music id/(accessed: July 15, 2010).

5http://en.wikipedia.org/wiki/MoodLogic.
6http://www.allmusic.com.
7www.last.fm.
8http://www.last.fm/api.
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8.3.3 Playing Annotation Games

Another crowd sourcing approach involves using games to collect music tags.
At the 2007 ISMIR conference, music annotation games were presented for
the first time: ListenGame [43], Tag-a-Tune [24], and MajorMiner [28]. Lis-
tenGame and its successor Herd It [4] are real-time games where a large group
of users is presented with a song and a list of tags. The players choose the
best and worst tags for describing the song. When a large group of players
agree on a tag, the song has a strong (positive or negative) association with
the tag. This game, like a music survey, has the benefit of using a structured
vocabulary of tags. It can be considered a strong labeling approach since it
also collects information that reflects negative semantic associations between
tags and songs. Like the ESPGame for image tagging [45], Tag-a-Tune is a
two-player game where the players listen to a song and are asked to enter
“free text” tags until they both enter the same tag. MajorMiner is similar
in nature, except the tags entered by the player are compared against the
database of previously collected tags in an offline manner. Like social tagging,
the tags collected using both games result in a unstructured but extensible
vocabulary.

A major problem with this game-based approach is that players will in-
evitably attempt to game the system. For example, the player may only con-
tribute generic tags (e.g., “rock,” “guitar”) even if less common tags provide a
better semantic description (e.g., “grunge,” “distorted electric guitar”). Also,
despite the recent academic interest in music annotation games, no game has
achieved large-scale success. This reflects the fact that it is difficult to design
a viral game for this inherently laborious task.

8.3.4 Mining Web Documents

Artist biographies, album reviews, and song reviews are another rich source
of semantic information about music. There are a number of research-based
music IR systems that collect such documents from the Internet by querying
search engines [19], monitoring MP3 blogs [9], or crawling a music site [47].
In all cases, Levy and Sandler point out that such Web mined corpora can be
noisy since some of the retrieved Web pages will be irrelevant and, in addition,
much of the text content on relevant Web pages will be useless [25].

Most of the proposed Web mining systems use a set of one or more docu-
ments associated with a song and convert them into a single document vector
(see Section 8.2.1) [20, 48]. This vector space representation is then useful
for a number of music IR tasks such as calculating music similarity [48] and
indexing content for a text-based music retrieval system [20]. More recently,
Knees et al. [19] have proposed a promising new Web mining technique called
relevance scoring as an alternative to the vector space approaches. Both rele-
vance scoring and vector space approaches are subject to popularity bias since
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short-head songs are generally represented by more documents than long-tail
songs.

8.3.5 Autotagging Audio Content

All previously described approaches require that a song be annotated by hu-
mans, and as such, are subject to the cold-start problem. Content-based audio
analysis is an alternative approach that avoids this problem. Early work on this
topic focused (and continues to focus) on music classification by genre, emo-
tion, and instrumentation [44, 26, 15]. These classification systems effectively
“tag” music with class labels (e.g., “blues,” “sad,” “guitar”). More recently,
autotagging systems have been developed to annotate music with a larger,
more diverse vocabulary of (nonmutually exclusive) tags [41, 29, 14, 36]. In
Turnbull et al. [41], we describe a generative approach that learns a Gaussian
mixture model (GMM) distribution over an audio feature space for each tag in
the vocabulary. Bertin-Mahieux et al. use a discriminative approach by learn-
ing a boosted decision stump classifier for each tag [14]. Similarly, Mandel et
al. [29] follow a discriminative approach but use a Support Vector Machine
(SVM) classifier to improve performance. Finally, Sordo et al. present a non-
parametric approach that uses a content-based measure of music similarity
to propagate tags from annotated songs to similar songs that have not been
annotated [36]. For a more complete introduction to this emerging area of
research, please refer to the recent book chapter by Bertin-Mahieux, Eck, and
Mandel [6].

8.3.6 Additional Remarks

In Table 8.1, we list some of the relative strengths and weaknesses for each
of the five approaches that we have covered in this section. In an ideal world,
having multiple human experts annotate each song with a large, extensible
vocabulary of tags would likely lead to the most accurate music index. How-
ever, this is an extremely expensive and unrealistic idea. To illustrate this
point, consider that Pandora has been annotating music for over a decade
and yet has only annotated only about 5% of the music that is available for
sale on the Apple iTunes store. Social tagging offers an improvement in terms
of scalability by crowd-sourcing the task of music annotation; however, it suf-
fers from strong popularity bias and inconsistent annotation behavior. Music
annotation games also rely on crowd-sourcing but have the potential to pro-
vide more consistent annotations for a controlled set of songs. However, to
date, none of the games have been successful at attracting and sustaining a
large group of users. This suggests that designing a compelling game for an
inherently laborious task is a challenging undertaking.

Using text mining to extract semantic information from Web documents
has potential since it does not involve direct human annotation. However, the
text mining process is error prone and, in general, Web documents only exist
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Approach Strengths Weaknesses

Custom-tailored vocabulary Small, predetermined vocabulary

Survey
High-quality annotations High cost for human labor
Strong labeling Scalability issues
Pick which songs to annotate Commercial data is not public

Collective wisdom of crowds Ad-hoc annotation behavior
Social Tags Unlimited vocabulary Strong popularity bias

Provides social context Weak labeling
Collective wisdom of crowds Problems with “gaming” the system

Game
Entertaining incentives produce Difficult to create viral game

high-quality annotations Often based on short audio clips
Pick which songs to annotate No large-scale success to date

Web
Documents

Large, publicly available corpus Noisy annotations from text-mining
of relevant documents Sparse/missing in long-tail

No direct human involvement Weak labeling
Provides social context

Not affected by cold-start problem Computationally intensive
Autotags No direct human involvement Limited by training data

Strong labeling Based solely on audio content

Table 8.1
Strengths and Weaknesses of Music Information Data Sources

for more popular artists and songs. Content-based autotagging does not suffer
from popularity bias but needs to be improved in terms of accuracy, especially
for more nuanced and detail-oriented tags. The qualitative comparison of the
five data sources is Shown in Table 8.2.

We should also mention that, in addition to the five data sources we have
explored in this section, there are other sources of semantic music informa-
tion. In Kim et al. [18], we show that we can use preference information (i.e.,
collaborative filtering) to first calculate artist similarity and then propagate
tags from known artists to unknown artists. Despite the fact that preference
information does explicitly represent semantic information, we showed that
it was more useful for music indexing than tag propagation when calculating
artist similarity based on audio content, Web documents, or social tags.

Images and (music) videos represent yet another source of music informa-
tion. In early work [27], we showed that we can successfully index artists with
music genre tags based on promotional photographs and album cover artwork.
Other researchers have been exploring how to annotate consumer videos with
tags based on the multimodal analysis of both the video and audio tracks [10].

 



Indexing Music with Tags 261

Survey Social Tags Game Web Docs Autotags
(CAL500) (Last.fm) (ListenGame) (WRS) (SML)

Scalability and Cost

Expensive Minimal Moderate Minimal Minimal
Financial ∼ $3 per public design, deploy, fully fully

song API promote game automated automated

Human Expensive Moderate Moderate Minimal Minimal
Labor 18 min per crowd- crowd- none training

song sourced sourced data

Computation Minimal Minimal Moderate Moderate Expensive
Database Database Game Server, Webcrawler, Computer

Database Text Mining Auditon
Quality

Popularity Decent Poor Decent Poor Great
Bias can pick strong can pick strong only requires

songs bias songs bias audio track

Labeling Strong Weak Strong Weak Strong
Setup

Vocabulary Structured, Unstructured, Structured, N/A N/A
Fixed Extensible Extensible

Accuracy Great Good Good Decent Decent
Focused Ad-hoc Competitive Noisy content-based
Experts Community Community Text mining limitations

Table 8.2
Qualitative Comparison of Data Sources (Bold font indicates a positive at-
tribute of the data source.)

8.4 Comparing Sources of Music Information

In this section, we describe one music indexing system for each data source.
Each is based on systems that have been recently developed within the music-
IR research community [41, 19, 43]. Each produces a |T | × |S| tag-song music
index matrix X where |T | is the size of our tag vocabulary and |S| is the
number of songs in our corpus. Each element xt,s = [X]t,s in the matrix
represents the strength of semantic association between tag t and song s.

We set xt,s = 0 if the relationship between tag t and song s is missing
(i.e., unknown). If the matrix X has many such values, then we refer to the
matrix as sparse, otherwise we refer to it as dense. Missing data results from
both weak labeling and the cold-start problem. Sparsity is reflected by the tag
density of a matrix, which is defined as the percentage of nonzero values in
the matrix.

Our goal is to find a tagging system that is able to accurately retrieve
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(i.e., rank-order) songs for a diverse vocabulary of tags (e.g., emotions, genres,
instruments, usages). We quantitatively evaluate music retrieval performance
of system a by comparing the matrix Xa against the CAL500 matrix XCAL500

(see Section 8.3.1). The XCAL500 matrix is a binary matrix where xt,s = 1 if
80% or more of the individuals annotate song s with tag t, and 0 otherwise (see
Section V.a of Turnbull et al. [41] for details). For the experiments reported in
this section, we use a subset of 109 of the original 174 tags.9 We assume that
the subset of 87 songs from the Magnatunes [12] collection that are included in
the CAL500 data set are representative of long-tail music. As such, we can use
this subset to gauge how the various music indexing approaches are affected
by popularity bias.

Each system is compared to the CAL500 data set using a number of stan-
dard information retrieval (IR) evaluation metrics [30]: area under the receiver
operating characteristic curve (AUC), mean average precision (MAP), and
Top-10 precision (10-Prec). A receiver operating characteristic curve (ROC)
is a plot of the true positive rate as a function of the false positive rate as we
move down this ranked list of songs. The area under the ROC curve (AUC) is
found by integrating the ROC curve and is upper-bounded by 1.0. A random
ranking of songs will produce an expected AUC score of 0.5. Average precision
(AP) is found by moving down our ranked list of test songs and averaging the
precisions at every point where we correctly identify a relevant song. Top-10
precision is the precision after we have retrieved the top 10 songs for a given
tag. This metric is designed to reflect the 10 items that would be displayed
on the first results page of a standard Internet search engine.

Each value reported in Table 8.3 is the mean of a metric after averaging
over all 109 tags in our vocabulary. That is, for each tag, we rank-order our
500 song data set and calculate the value of the metric using CAL500 data as
our ground truth. We then compute the average of the metric using the 109
values from the 109 rankings.

8.4.1 Social Tags: Last.fm

For each of our 500 songs, we attempt to collect two lists of social tags from
the Last.fm Audioscrobbler Web site. One list is related specifically to the
song and the other list is related to the artist. For the song list, each tag has
a score (xLast.fm Song

t,s ) that ranges from 0 (low) to 100 (high) and is a secret
function (i.e., trade secret of Last.fm) of both the number and diversity of
users who have annotated song s with tag t. For the artist list, the tag score
(xLast.fm Artist
t,s ) is again a secret function that ranges between 0 and 100, and

reflects both tags that have been used to annotate the artist or songs by the
artist. We found one or more tags for 393 and 472 of our songs and artists,
respectively. This included at least one occurrence of 71 and 78 of the 109

9We have merged genre-best tags with genre tags, removed instrument-solo tags, removed
some redundant emotion tags, and pruned other tags that are used to annotate less than
2% of the songs. For a complete list of tags, see: http://cosmal.ucsd.edu/cal.
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Approach Songs Density AUC AP 10-Prec

Survey (CAL500) All Songs 1.00 1.00 1.00 0.97
Ground Truth Long Tail 1.00 1.00 1.00 0.57

Baseline All Songs 1.00 0.50 0.15 0.13
Random Long Tail 1.00 0.50 0.18 0.12

Social Tags All Songs 0.23 0.62 0.28 0.37
Last.fm Long Tail 0.03 0.54 0.24 0.19

Game
All Songs 0.37 0.65 0.28 0.32

ListenGame†

Web Documents All Songs 0.67 0.66 0.29 0.37
SS-WRS Long Tail 0.25 0.56 0.25 0.18

Autotags All Songs 1.00 0.69 0.29 0.33
SML Long Tail 1.00 0.70 0.34 0.27

Rank-based All Songs 1.00 0.74 0.32 0.38
Interleaving (RBI) Long Tail 1.00 0.71 0.33 0.28

Table 8.3
Quantitative Comparison of Data Sources (Each approach is compared using
all CAL500 songs and a subset of 87 more obscure long-tail songs from the
Magnatune data set. Tag Density represents the proportion of song-tag pairs
that have a nonempty value. The three evaluation metrics [AUC, AP, 10
Precision] are found by averaging over 109 tag queries. †Note that ListenGame
is evaluated using half of the CAL500 songs and that the results do not reflect
the realistic effect of the popularity bias [see Section 8.4.2].)

tags in our vocabulary, respectively. While this suggests decent coverage, tag
densities of 4.6% and 11.8%, respectively, indicate that the tag-song matrices,
XLast.fm Song and XLast.fm Artist, are sparse even when we consider mostly
short-head songs. When evaluated for music retrieval, these sparse tag-song
matrices produce AUC of 0.57 and 0.58, respectively.

To remedy this problem, we create a single Last.fm tag-song matrix by
leveraging the Last.fm data in three ways. First, we match tags to their
synonyms.10 For example, a song is considered to be annotated with “down
tempo” if it has instead been annotated with “slow beat.” Second, we allow
wildcard matches for each tag. That is, if a tag appears as a substring in an-
other tag, we consider it to be a wildcard match. For example, “blues” matches
with “delta electric blues,” “blues blues blues,” “rhythm & blues.” Although
synonyms and wildcard matches add noise, they increase the respective den-
sities to 8.6% and 18.9% and AUC performance to 0.59 and 0.59. Third, we
combine the song and artist tag-song matrices in one tag-song matrix:

XLast.fm = XLast.fm Song + XLast.fm Artist

This results in a single tag-song matrix that has a density of 23% and AUC of

10Synonyms are determined by the author using a thesaurus and by manually exploring
Last.fm’s vocabulary of tag.
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0.62. Of the 109 tags 95 are represented at least once in this matrix. However,
the density for the Magnatune (e.g., long-tail) songs is only 3% and so the
Magnatune matrix produces retrieval results that are not much better than
random.

8.4.2 Games: ListenGame

In Turnbull et al. [43], we describe a music annotation game called ListenGame
in which a community of players listens to a song and is presented with a set
of tags. Each player is asked to vote for the single best tag and single worst tag
to describe the music. From the game, we obtain the tag-song matrix XGame

by:
[XGame]t,s = #(best votes)−#(worst votes)

when song s and tag t are presented to the players.
During a two-week pilot study, 16,500 annotations (best and worst votes)

were collected for a random subset of 250 CAL500 songs. Each of the 27,250
song-tag pairs were presented to users an average of 1.8 times. Although this
represents a very small sample size, the mean AUC for the subset of 250 songs
averaged over the 109-tag vocabulary is 0.65. Long-tail and short-head results
do not accurately reflect the real-world effect of popularity bias since all songs
were selected for annotation with equal probability. As such, the “long tail”
results have been omitted from Table 8.3.

8.4.3 Web Documents: Weight-Based Relevance Scoring

In order to extract tags from a corpus of Web documents, we adapt the rel-
evance scoring (RS) algorithm that has recently been proposed by Knees et
al. [19]. They have shown this method to be superior to algorithms based on
vector space representations. To generate tags for a set of songs, the RS works
as follows:

1. Collect Document Corpus: For each song, repeatedly query a search
engine with each song title, artist name, or album title. Collect web doc-
uments in search results. Retain the (many-to-many) mapping between
songs and documents.

2. Tag Songs: For each tag:

(a) Use the tag as a query string to find the relevant documents, each
with an associated relevance weight (defined below) from the cor-
pus.

(b) For each song, sum the relevance scores for all the documents that
are related to the song.

We modify this algorithm in two ways. First, the relevance score in Knees et
al. [19] is inversely proportional to the rank of the relevant document. We use
a weight-based approach to relevance scoring (WRS). The relevance weight
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of a document given a tag can be a function of the number of times the
tag appears in the document (tag-frequency), the number of documents with
the tag (document frequency), the number of total words in the document,
the number of words or documents in the corpus, etc. For our system, the
relevance weights are determined by the MySQL match function.11

We calculate an entry of the tag-song matrix XWRS as,

XWRS
t,s =

∑
d∈Dt

wd,tId,s

where Dt is the set of relevant documents for tag t, wd,t is the relevance
weight for document d and tag t, and Id,s is an indicator variable that is 1 if
document d was found when querying the search engine with song s (in Step
1) and 0 otherwise. We find that weight-based RS (WRS) produces a small
increase in performance over rank-based RS (RRS) (AUC of 0.66 versus 0.65).
In addition, we believe that WRS will scale better since the relevance weights
are independent of the number of documents in our corpus.

The second modification is that we use site-specific queries when creating
our corpus of Web documents (Step 1). That is, Knees et al. [19] collect the
top 100 documents returned by Google when given queries of the form:
• “<artist name>” music
• “<artist name>” “<album name>” music review
• “<artist name> ” “<song name>” music review

for each song in the data set. Based on an informal study of the top 100 Web
pages returned by nonsite-specific queries, we find that many pages contain
information that is only slightly relevant (e.g., music commerce site, ticket re-
sellers, noisy discussion boards, generic biographical information). By search-
ing music-specific sites, we are more likely to find detailed music reviews and
in-depth artist biographies. In addition, the Web pages at sites like Pandora
and Allmusic specifically contain useful tags in addition to natural language
content [39, 34].

We use site-specific queries by appending the substring ‘site:<music site
url>’ to the three query templates, where <music site url> is the url for a
music Web site that is known to have high quality information about songs, al-
bums or artists. These sites include allmusic.com, amazon.com, bbc.co.uk, bill-
board.com, epinions.com, musicomh.com, pandora.com, pitchforkmedia.com,
rollingstone.com, wikipedia.org. For these 10 music sites and one nonsite-
specific query, we collect and store the top 10 pages returned by the Google
search engine. This results in a maximum of 33 queries and a maximum of
330 pages per song. On average, we are only able to collect 150 Web pages
per song since some of the long-tail songs are not well represented by these
music sites.

Our site-specific weight-based relevance scoring (SS-WRS) approach pro-
duces a relatively dense tag-song matrix (46%) compared with the approach

11http://dev.mysql.com/doc/refman/5.0/en/fulltext-natural-language.html.
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involving Last.fm tags. However, like the Last.fm approach, the density of
the tag-song matrix is greatly reduced (25%) when we consider only long-tail
songs.

8.4.4 Autotagging: Supervised Multiclass Labeling

In Turnbull et al. [41], we use a supervised multiclass labeling (SML) model
to automatically annotate songs with a diverse set of tags based on audio
content analysis. The SML model is parameterized by one Gaussian mixture
model (GMM) distribution over an audio feature space for each tag in the
vocabulary. The parameters for the set of GMMs are trained using annotated
training data. Given a novel audio track, audio features are extracted and
their likelihood is evaluated using each of the GMMs. The result is a vector of
probabilities that, when normalized, can be interpreted as the parameters of a
multinomial distribution over the tag vocabulary. This semantic multinomial
distribution represents a compact and interpretable index for a song where
the large parameter values correspond to the most likely tags.

Using 10-fold cross validation, we can estimate a semantic multinomial for
each of the CAL500 songs. By stacking the 50 test set multinomials from each
of the 10 folds, we can construct a strongly labeled tag-song matrix XSML

that is based purely on the audio content. As such, this tag-song matrix is
dense and not affected by the cold-start problem.

8.4.5 Summary

Comparing systems using a two-tailed, paired t-test (N = 109, α = 0.05) on
the AUC metric, we find that all pairs of the four systems are significantly
different, with the exception of game and Web documents.12 If we compare the
systems using the other two metrics (average precision and top 10 precision),
we no longer find statistically significant differences. It is interesting that
social tags and Web documents (0.37) have slightly better top 10 precision
than autotags (0.33). This reflects the fact that for some of the more common
individual tags, we find that social tags and Web documents have exceptional
precision at low recall levels. For both Web documents and social tags, we
find significant improvement in retrieval performance of short-head songs over
long-tail songs. However, as expected, there is no difference for autotags. This
confirms the intuition that systems based on Web documents and social tags
are influenced by popularity bias, whereas content-based autotagging systems
are not.

12Note that when we compare each system with the Game system, we compare both
systems using the reduced set of 250 songs.

 



Indexing Music with Tags 267

Survey
s3s2

9

1

0

7

s1

...

bluegrass

calm

drum kit

acoustic

Vocab

Social Tags

20

4

s3s2

87

52

s1

...

bluegrass

calm

drum kit

acoustic

Vocab

Autotags

.7

.6

s3

.5

.6

.3

.8

s2

.1

.3

.7

.5

.3

.6

s1

...

bluegrass

calm

drum kit

acoustic

Vocab

Combo Index

.5

.7

s3

0

.8

0

.9

s2

.1

.1

.9

.1

0

.8

s1

...

bluegrass

calm

drum kit

acoustic

Vocab

Figure 8.3
Creating a combined music index from multiple data sources.

8.5 Combining Sources of Music Information

Given the various strengths and weaknesses of each data source, it seems
intuitive that we can benefit if we combine information from multiple data
sources. To motivate this section, we will begin with the illustrative example
shown in Figure 8.3.

Let’s suppose that we are considering three data sources (Survey, Social
Tags, Autotags), three songs (s1, s2, s3), and four tags (“acoustic,” “blue-
grass,” “calm,” and “drum kit.”) The first song is a favorite song by a well-
known bluegrass band, the second song is a hard rock song by the local house
band in your neighborhood pub, and the third is the first single from an up-
and-coming folk-rock singer/songwriter. If we look at the tag-song matrix of
the survey, we see that the song from the established bluegrass band has been
annotated, but the other two songs have not yet been annotated and it is
unlikely that the local band’s song will ever be annotated.

It is a similar story for social tags information in that we can observe
aspects of popularity bias and the cold-start problem. In addition, certain
tags like “calm” and “drum kit” are rarely provided by the users in a social
tagging context despite the fact that these tags might be useful for music
retrieval. Autotags, on the other hand, provide us with a fully dense tag-song
matrix. However, while auto tagging systems have been shown to produce
decent annotations of music, their performance is not as accurate (or decisive)
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as human annotators especially for specific tags (“horns,” “voice,” “trumpet”
[29]) that are poorly modeled using current state-of-the-art techniques.

In addition to data sparsity and accuracy problems, we also must consider
how to rescale the values from each data source. For example, survey data
often takes the form of rating data on an N -point scale (e.g., 10-point Lik-
ert scale), social tag data may be a raw count of the number of users who
have applied a tag to a song, and an autotagger often outputs a probabilis-
tic estimate for the predicted strength of semantic association. Two common
rescaling techniques are 0-1 normalization and z-score standardization. To 0-1
normalize the tag-song matrix X for a data source, we will find the minimum
xmint and maximum xmint separately for each tag t. We then replace the value
for xt,s with x′t,s:

x′t,s =
xt,s − xmint

xmaxt − xmint

(8.2)

so that each new value lies in the range [0, 1]. Z-score normalization is calcu-
lated by first finding the mean x̄t and standard deviation st for each tag and
then calculating the z-score:

x′t,s =
xt,s − x̄t

st
. (8.3)

By definition, a z-score is the number of standard deviations a value is away
from the mean. Technically, they range between [−∞,∞] but in practice are
almost always between [−3, 3]. While we have described rescaling approaches
that require separate calculations for each tag, it may be reasonable to rescale
the entire tag-song matrix without individually considering each tag.

Even after rescaling, combining scores from multiple data sources can be
particularly challenging since our confidence in each score often depends not
only on the data source, but also on the specific tag and song for each data
source. For example, our autotagging algorithm may be particularly bad at
predicting accurate scores for the tag “drum kit,” or the social tags for the
third song in Figure 8.3 may be inaccurate because only a small number of
users have contributed tags to this song. This will require us to focus on the
problems caused by sparse or inaccurate information.

In this section, we describe some of the algorithms that have be can used
to combine multiple data sources. We roughly categorize these algorithms into
ad-hoc approaches that are generally simple to implement, quick to compute,
and tend to perform surprisingly well. The second kind of algorithm automat-
ically learns how to combine data sources based on training data. These algo-
rithms generally involve more computation but produce better performance
results.

8.5.1 Ad-Hoc Combination Approaches

In this section, we describe two types of algorithms, Fixed Combination Rules
and Rank-based Interleaving, that can be used to quickly combine multiple
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tag-song matrices. However, both require that we make various heuristic de-
cisions that can have a significant impact on retrieval performance [38].

Fixed Combination Rules: A fixed combination rule produces an output
score x′t,s as a simple function of the input scores xDSs,t ’s where DS represents
one of our data sources [38]:

xFCRs,t = f(xSocialTag
t,s , xGame

t,s , xWebDocs
t,s , xAutotag

t,s ). (8.4)

The most common functions are max, min, median, sum, and product. As
discussed above, it is important to rescale raw tag-song matrices before ap-
plying a fixed combination function.

Rank-Based Interleaving (RBI): RBI is an algorithmic approach where,
for each tag, we interleave the top-ranked songs according to each of the data
sources [40]. The values in the combined tag-song matrix are the ranks of this
combined rank ordering.

More formally, for a given tag, each data source produces a row in the
tag-song matrix that defines a rank-ordering over our set of songs.13 The RBI
algorithm re-ranks songs by their best rank under any of the tag-song matrices.
That is, for a single tag t and each data source DS, consider rank orderings,
each denoted by rDSt and ordered by the values in row t of tag-song matrix
XDS , such that

rDSt,s =


|S| − 1 if s is the top ranked song
|S| − 2 if s is the 2nd ranked song
...
0 if s is the lowest ranked song

or xDSt,s = 0

where xDSt,s = 0 implies that there is either no semantic association between
tag t and song s or that the data is missing due to weak labeling. We then
represent each song by its best rank according to each of the data sources:

xRBI
t,s = max(rSocialTag

t,s , rGame
t,s , rWebDocs

t,s , rAutotag
t,s ) (8.5)

for all songs s and all tags t. We note that, since RBI only uses the rank-
orderings induced by song-tag matrices and not the actual values of these
matrices, we need not rescale the song-tag matrices when using RBI. We also
note that, as with fixed combination rules, we can imagine using other func-
tions (e.g., average, median) when combining the ranks for our data sources.

The results of RBI on the experiment performed in Section 8.4.5 are re-
ported in the last row of Table 8.3. We observe a significant increase in perfor-
mance (AUC 0.74) over the best single approach (autotags with AUC = 0.69).
This suggests that even a simple approach like RBI can be used to improve
tag-based music retrieval.

13We will assume that we will randomly break ties if two song have the same score for a
tag.
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8.5.2 Learned Combination Approaches

A disadvantage of the ad-hoc approaches is that each data source is effectively
given equal weight. That is, these approaches do not take advantage of the
fact that one data source may be more or less reliable than the others. If we
have annotated training data, we can learn which data sources to put more
weight on and which data sources to put less weight on.

Regression: One approach is to formulate the data source combination prob-
lem as a regression problem. Like a fixed combination rule in Equation 8.4, we
will combine the data sources using function of the input scores, but the pa-
rameters of the function will be determined using training data. We will briefly
describe some common regression models but refer the reader to a basic text-
book on statistics or machine learning for details on parameter estimation
[7].

Linear regression involves learning scalar weights (w′s) for a linear combi-
nation of the data source scores:

xLinRt,s = w0
t +

∑
DS∈{Sources}

wDSt xDSt,s (8.6)

where w0
t is an (optional) offset value and DS represents one of our data sources

(e.g., social tags, Web documents, autotags). This model is useful when we
are trying to predict real-valued relevance scores.

If we would like to predict values in the range [0, 1], a logistic regression
model may be more appropriate. This is the case if, for example, xt,s is meant
to represent the probability that tag t applies to song s. The functional form
for logistic regression is:

xLogRt,s =
1

1 + exp(−(w0
t +

∑
DS∈{Sources} w

DS
t xDSt,s ))

(8.7)

where exp is the exponential function.
One potential drawback of the linear and logistic regression models de-

scribed above is that we independently learn one function for each tag. One
could imagine that there is useful information that can be shared across tags.
For example, if Social Tags are good at predicting a large number of genre
tags, we would expect wSocialTag

t,s to be large for many of these tags. In [38],
we explore more complex Bayesian hierarchical regression models that simul-
taneously learn all regression models for all tags. However, our results show
that the simple independent linear model performs as well as these more com-
plicated models for the task of tag-based music indexing.

Calibrated Score Averaging (CSA): Using training data, we can learn
a piecewise-constant function g(·) that calibrates scores such that g(xt,s) ≈
P (t|xt,s). This allows us to compare data sources in terms of calibrated pos-
terior probabilities rather than incomparable scores.
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We use isotonic regression [35] to estimate a function g for each data
source. More specifically, we use the pair-adjacent violators (PAV) algorithm
[2, 13] to learn the isotonic (i.e., nondecreasing) function that produces the
best fit in terms of minimum mean-squared error. To learn this function
g for tag t, we start with a (low to high score) rank-ordered training set
s(1), s(2), ..., s(i), ..., s(|S|) of |S| songs where xt,(i−1) < xt,(i). We initialize g to
be equal to the sequence of binary training labels; i.e., g(xt,s) = 1 if training
song s is positively associated with tag t, and 0 otherwise. If the training data
is perfectly ordered, then g is isotonic and we are done. Otherwise, there exists
an i where there is a pair-adjacent violation such that g(xt,(i−1)) > g(xt,(i)).
To remedy this violation, we update g(xt,(i−1)) and g(xt,(i)) so that they both
become [g(xt,(i−1)) + g(xt,(i))]/2. We repeat this process until we have elimi-
nated every pair-adjacent violation. At this point, g is isotonic and we combine
it with the corresponding scores xt,s to produce a stepwise function that maps
scores to approximate probabilities.

For example, if we have seven training songs with relevance scores equal
to (1, 2, 4, 5, 6, 7, 9) and ground truth labels equal to (0, 1, 0, 1, 1, 0, 1), then
g(x) = 0 for x < 2, g(x) = 1/2 for 2 ≤ r < 6, g(x) = 2/3 for 6 ≤ r <
9, and g(x) = 1 for 9 ≤ r. We can use Dümbgen’s [13] linear-time O(|S|)
implementation of the PAV algorithm to compute g. For missing data from a
weakly labeled data source, we use the training data to estimate a calibrated
score when xt,s = 0:

P (t|xt,s = 0) =
#(relevant songs with xt,s = 0)

#(songs with xt,s = 0)
. (8.8)

Once we have learned a calibration function for each data source, we con-
vert raw scores for a novel song to approximate posterior probabilities. We
can combine these posterior probabilities by using a fixed combination rule
described in section 8.5.1. Of all these combination rules, we find that the
arithmetic average produces the best empirical tag-based retrieval results.

RankBoost: RankBoost is a boosting algorithm that is designed to combine
multiple rank-orderings of data [16]. The algorithm produces a strong ranking
function H that is a weighted combination of weak ranking functions ht. Each
weak ranking function is defined by a data source, a threshold, and a default
value for missing data. For a given song, the weak ranking function is an
indicator function that outputs 1 if the score for the associated data source is
greater than the threshold or if the score is missing and the default value is set
to 1. Otherwise, it outputs 0. During training, RankBoost iteratively builds an
ensemble of weak ranking functions and associated weights. At each iteration,
the algorithm selects the weak learner (and associated weight) that maximally
reduces the rank loss of a training data set given the current ensemble. For
implementation details, please refer to Freund et al. [16].

Kernel Combination SVM: A support vector machine (SVM) is a popular
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binary classifier that learns the parameters of a separating hyperplane (i.e.,
a decision boundary) between, in our case, a set for relevant training songs
and set of irrelevant training songs for a given tag. That is, a SVM learns a
linear decision function that defines the distance of a new song, s, from the
hyperplane boundary between the relevant and irrelevant training example
songs:

xSVMt,s =
|S|∑
i=1

αiK(s, i) + b, (8.9)

where b is the offset of the decision boundary and ai is a learned weight for
each training example. In practice, ai is nonzero for only a small number
of training songs (i.e., the support vectors). The function K(·, ·) is a kernel
function that measures the similarity between pairs of songs.

For our training data, we can compute an |S| × |S|-dimensional kernel
matrix KDS matrix for each data source. For example, for social-tag data
source, we might compute a radial basis function (RBF) kernel with entries:

[KSocialTag]i,j = KSocialTag(i, j) = exp(−‖xi − xj‖2

2σ2
), (8.10)

where K(i, j) represents the similarity between xi and xj , the column vectors
of tag-song matrix XSocialTag corresponding to songs i and j. The hyper-
parameter σ is estimated using cross validation.

To combine data sources, we can compute a single kernel matrix K that
is a linear combination of the kernel matrices for each of the individual data
sources:

K =
∑

DS∈{sources}

µDSKDS , where µDS > 0 (8.11)

where the µDS ’s are learned weights. Both the αi’s in Equation 8.9 and the
µDS ’s in Equation 8.11 can be efficiently learned together using convex opti-
mization (see Barrington et al. [5] and Lanckriet et al. [23] for details).

Approach AUC MAP

Social Tags 0.623 0.431
Web Documents 0.625 0.413
Autotags 0.731 0.473
Kernel Combo (KC) 0.756 0.529
RankBoost (RB) 0.760 0.531
Calib. Score Avg. (CSA) 0.763 0.538

Table 8.4
Evaluation of Combination Approaches (The performance differences between
single source and multiple source algorithms are significant [one-tailed, paired
t-test over the vocabulary with α = 0.05].)
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8.5.3 Comparison

In this section, we compare three individual data sources with three learned
combination approaches for the task of tag-based music retrieval. As in Section
8.4, we experiment on the CAL500 data set but use a smaller subset of 72 tags
by requiring that each tag be associated with at least 20 songs and removing
some tags that we deemed to be redundant or overly subjective. We evaluate
the rankings using two metrics, mean AUC and mean average precision (AP),
which are computed using 10-fold cross validation.

As shown in Table 8.4, we observe that all three of our combination ap-
proaches produce significantly improved tag-based music retrieval results. We
also produce qualitative search results in Table 8.5 to provide context for our

Synthesized Song Texture Acoustic Song Texture
0.80 / 0.71 0.73 / 0.76

Tricky—Christiansands (m) Robert Johnson—Sweet Home Chicago
Propellerheads—Take California Neil Young—Western Hero
Aphex Twin—Come to Daddy Cat Power—He War (m)
New Order—Blue Monday John Lennon—Imagine
Massive Attack—Risingson Ani DiFranco—Crime for Crime

Female Vocals Male Vocals
0.95 / 0.90 0.71 / 0.82

Billie Holiday—God Bless the Child The Who—Bargain
Andrews Sisters—Boogie Woogie Bugle Boy Bush—Comedown
Alanis Morissette—Thank U AC/DC—Dirty Deeds Done Dirt Cheap
Shakira—The One Bobby Brown—My Prerogative
Alicia Keys—Fallin’ Nine Inch Nails—Head Like a Hole

Jazz Blues
0.96 / 0.82 0.84 / 0.45

Billie Holiday—God Bless the Child B.B. King—Sweet Little Angel
Thelonious Monk—Epistrophy Canned Heat—On the Road Again (m)
Lambert, Hendricks & Ross—Gimme That Wine Cream—Tales of Brave Ulysses (m)
Stan Getz—Corcovado Muddy Waters—Mannish Boy
Norah Jones—Don’t Know Why Chuck Berry—Roll Over Beethoven (m)

Calming Aggressive
0.81 / 0.66 0.84 / 0.51

Crosby, Stills & Nash—Guinnevere Pizzle—What’s Wrong with My Foot?
Carpenters—Rainy Days and Mondays Rage Against the Machine—Maggie’s Farm
Cowboy Junkies—Postcard Blues Aphex Twin—Come to Daddy
Tim Hardin—Don’t Make Promises Black Flag—Six Pack
Norah Jones—Don’t Know Why Nine Inch Nails—Head Like a Hole

Table 8.5
Tag-Based Music Retrieval Examples for Calibrated Score Averaging (CSA)
(The top ranked songs for each of the first five folds [during 10-fold cross
validation] for eight representative tags. In each box, the tag is listed first
[in bold]. The second row is the area under the ROC curve (AUC) and the
average precision [AP] for the tag [averaged over 10-fold cross validation]. Each
artist-song pair is the top ranked song for the tag and is followed by “[m]” if
it is considered misclassified, according to the ground truth. Note that some
of the misclassified songs may actually be representative of the tag [e.g., see
“Blues”].)
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Figure 8.4
Screenshot of Meerkat: (A) The volume control, play/pause toggle, and fast-
forward button allow the user to control the music playback. (B) Past songs
(in a gray font) are displayed above the current song (in a red font) while
future songs (also in a gray font) are below. (C) A list of tags associated with
the current song provides context for the music. A user can click on a tag if
he or she wishes to add it to the radio station. (D) The user selects tags to
control the radio station. A user can also add tags using the text box.

evaluation metrics. The best performance is achieved using CSA, though the
performance is not significantly better than RankBoost or KC-SVM.

8.6 Meerkat: A Semantic Music Discovery Engine

We conclude this chapter with the description of a research-based seman-
tic music discovery engine called Meerkat [33]. Meerkat is a personalized In-
ternet radio player that functions much like Pandora14 and Slacker.15 How-
ever, Meerkat has been explicitly designed to use semantic tags, rather than
artist or song similarity, as the primary mechanism for generating personal-
ized playlists. That is, a user might start a playlist by asking for “bluegrass”

14http://www.pandora.com.
15http://www.slacker.com.
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music. Bluegrass music starts playing and the user has the opportunity to
control the music by adding additional tags like “female vocals.” (See Figure
8.4 for a screenshot of the user interface.)

Meerkat’s backend uses four sources of music information (Web documents,
social tags, autotags, and preference information) to index music with a large
set of semantic tags [38]. These data sources are quickly combined using lin-
ear regression (see Equation 8.6.) The current music corpus consists of 10,870
songs that are representative of 18 genres (e.g., “rock,” “electronic,” “classi-
cal”) and 180 subgenres (e.g., “grunge,” “trance,” “romantic period opera”)
of music [37]. Our vocabulary of tags consists of hundreds of genres and sub-
genres, dozens of emotions (“happy”), dozens of instruments (“distorted elec-
tric guitar”), hundreds of acoustic characteristics (“dominant bass riff”), and
thousands of free-text social tags (from Last.fm). Based on the user-specified
list of tags, the backend returns a ranked list (i.e., a playlist) of semantically
relevant songs which have been ordered according to cosine similarity (see
Equation 8.1).

Last.fm’s MultiTag Radio16 and the AMG Tapestry Demo17 are two exam-
ples of commercial systems that enable tag-based playlist generation. However,
both systems only allow users to seed a station with tags whereas Meerkat
allows for the dynamic modification of a station as a user adds or removes
tags over time. Also, each commercial system relies only on one data source
to power their music discovery engines.18

Glossary

AP: Average precision. A useful IR evaluation metric that is found by moving
down our ranked list of songs and averaging the precisions at every point
where we correctly identify a relevant song.

AUC: Area under the Receiver Operating Character curve. A useful IR eval-
uation metric that we can use to evaluate the quality of rank-ordered list
of relevant and irrelevant documents. AUC has an expected value of 0.5
when we randomly rank documents and 1.0 when we have a perfect rank-
ing of documents (i.e., all relevant documents ranked before all irrelevant
documents).

cold-start problem: A problem when a new (or less popular) document
(e.g., a song) cannot be retrieved because it has not been indexed. This
problem is often related to the popularity bias.

16http://www.last.fm/listen.
17http://www.amgtapestry.com/radio/.
18Last.fm uses social tags and AMG relies on expert human surveys when calculating

tag-based music relevance.
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corpus: A set of documents (e.g., songs).

crowd-sourcing: Engaging a large group of individuals to solve a big prob-
lem by breaking it down into smaller, more manageable tasks.

document: A generic data item like a Web page, song, or artist.

information retrieval: A field of study that focuses on techniques for effi-
ciently accessing data.

long tail: The long-tail/short-head metaphor refers to a plot of the rank of a
document based on its popularity versus the popularity of the document.
This curve tends to be shaped like a power law probability distribution
(i.e., y = 1/x) where most of the mass is attributed to a small number of
popular documents (the short-head) and the remaining mass is distributed
over a large number of unpopular songs (the long-tail) [1, 22].

popularity bias: The idea that more popular documents (e.g., “Hey Jude”
by The Beatles) receive more attention and thus will likely be more thor-
oughly annotated in a crowd sourcing environment.

precision: Percentage of retrieved documents that are relevant.

recall: Percentage of relevant documents that are retrieved.

semantic music discovery engine: A computer-based tool that helps peo-
ple find music through the use of tags as well as other forms of music
information.

short head: See definition for long tail.

social tag: A tag that is applied to a document in social networking frame-
work (e.g., Last.fm, Digg, Flicker).

strongly labeled data: Data where every document has a known positive
or negative association with each tag.

subjectivity problem: When two or more annotators disagree whether (or
to what degree) a term applies to a document.

tag: A short text-based token like “bluegrass” or “distorted electric guitar.”

term: A label that can be used to describe (i.e., index) a document. For music
indexing, a term is often referred to as a tag.

weakly labeled data: Data where the absence of an association between a
document and a tag does not necessarily mean that they are not related
to one another.

vocabulary: A set of tags or terms.
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9.1 Introduction

One of the key challenges in music information retrieval is the need to quickly
and accurately index the ever growing collection of music on the Web. There
has been an influx of recent research on machine learning methods for auto-
matically classifying music by semantic tags, including Support Vector Ma-
chines [12, 13], Gaussian Mixture Models [18, 19], Boosting [2], Logistic Re-
gression [1], and other probabilistic models [6]. The majority of these methods
are supervised learning methods, requiring a large amount of labeled music
as training data, which has traditionally been difficult and costly to obtain.
Today, the shortage of labeled music data is no longer a problem. There is
now a proliferation of online music Web sites that millions of users visit daily,
generating an unprecedented amount of useful information about each piece
of music. For example, Last.fm, a collaborative tagging Web site, collect on
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the order of 2 million tags per month [8]. Without prompting, human users
are performing meaningful computation each day, mapping music to tags.

Collaborative tagging Web sites operate on the premise of an open call—
anyone can freely label any pieces of music. In contrast, there are computa-
tional systems that exert finer control over how computation (in this case,
the mapping from music to tags) is carried out, in order to optimize the effi-
ciency and accuracy of the computation. These so-called human computation
systems take many forms. For example, Amazon Mechanical Turk is a human
computation market where workers perform explicit tasks (e.g., annotating
music) in return for small monetary payments. In this chapter, we focus on
the use of human computation games, or games with a purpose (GWAP), to
elicit participation from humans to perform computation.

Human computation games are multiplayer online games with an under-
lying mechanism (a set of rules) that incentivize players to volunteer data in
a truthful manner. These games typically enjoy high throughput—by design-
ing a game that is entertaining, players are willing to spend a huge amount of
time playing the game, contributing massive amounts of data as a by-product.
Conceptualized in 2003 [21], human computation games are designed to tackle
difficult artificial intelligence (AI) problems that humans find easy but com-
puters still cannot solve. The very first human computation game—the ESP
Game [21]—was designed to tackle the image labeling problem. In this game,
two players are asked to provide tags for the same image. If any of their tags
match, players are rewarded and that tag becomes a label for that image. The
ESP Game operates under the output-agreement mechanism in which play-
ers are rewarded for agreeing with each other. Since players do not have any
knowledge of their partner, the best strategy is to think of tags that are likely
to be entered by any person, essentially motivating players to enter tags that
do describe the image. The ESP Game is hugely successful: millions of image
tags have been collected, and ultimately used to power image search on the
Web [4]. Since its deployment, many human computation games have been
built to tackle other AI problems, including image ranking, music classifica-
tion, semantic role analysis, translation, Web search, knowledge extraction,
and so forth.

Despite being powerful applications capable of engaging millions of workers
to perform useful computation, the effectiveness (i.e., in terms of efficiency and
accuracy) of a human computation system depends critically on how well it
meets two objectives—the objectives of the human worker (i.e., to earn money,
to be entertained, and so on) and the computation objectives. In the case of
music tagging, one of the computation objectives is to collect labeled data
that is useful towards training supervised music tagging algorithms. Specif-
ically, the ideal data set should have a set of distinct labels that are each
associated with roughly equal and a large number of examples. Game play-
ers, on the other hand, are mainly interested in playing a fun game that is
easy to understand, and neither too trivial nor too difficult. To be successful,
a human computation game designed to collect tags for music must strike
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a balance between these two objectives—if players are unmotivated or have
difficulty playing the game, then computation would be inefficient, requiring
a long time to complete. On the other hand, designing the game around the
needs of the players can compromise data quality—the resulting data set can
be extremely noisy or unbalanced, making it necessary to invent new learning
and evaluation methods before one can make full use of the collected data.

TagATune is a prime example of a human computation game with such
design tradeoffs. In this chapter, we will describe the rationale behind the
design of TagATune, the positive and negative consequences of this design,
and techniques for mitigating each of the challenges.

9.2 TagATune: A Music Tagging Game

Our first attempt at building a music tagging game was a straightforward
adaptation of the ESP Game for music. In the prototype game [11], two play-
ers are given the same music clip and asked to enter tags to describe the music.
Similar to the ESP Game, players are rewarded if their tags match. From the
pilot study, it was quickly realized that players had difficulty matching on a
tag—36% of the time players opted to pass after failing a few unsuccessful
attempts. To mitigate this problem, an additional design choice in the proto-
type game was to specify the kinds of tags (e.g., genre, mood, speed) we want
the players to enter during a particular round, in the hopes of improving the
chances of agreement. This design did not fare well—even under constraints,
there is enough variation in the way music is described that matching re-
mains difficult. For example, there are many ways to express the same mood
of a piece of music (e.g., soothing, calm, calming, serene, meditative, peace-
ful, quiet, soft, relaxing, tranquil). For audio clips, this problem is even more
severe, as players try to express what they hear in phrases, e.g., “cars on a
street” versus “traffic.” In their attempt to match, players chose tags that are
common and general (e.g., “music”). This problem of tags being uninforma-
tive is characteristic of games that use the output agreement mechanism [16],
and has inspired research on new game mechanisms [5] that can generate more
specific tags.

9.2.1 Input-Agreement Mechanism

There were several music-related human computation games built using the
output-agreement mechanism, including MajorMiner [14], the Listen Game
[20], Herd It, and MoodSwings [7]. While distinct in the details of their designs,
all of these games use agreement as an indicator of output accuracy. Among
these games, the ones for music tagging address the problem of matching by
having players match against a database of previously collected tags [14], or
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Figure 9.1
A TagATune screenshot.

by having players select from a small set of preselected tags [20]. There are
disadvantages to such design approaches: having people play by themselves
eliminates the social aspects of online game, and limiting players to predefined
set of tags may make the game significantly less fun and useful.

The matching problem implies that a game mechanism for tagging music
must make use of other means of verifying the correctness (or trustworthiness)
of players’ output. In the final design of TagATune [10], we took a completely
different design approach—instead of requiring two players to match, the game
gives each of the players a music clip and asked them to exchange tags with
each other, then decide whether the music clips are the same or different.
Figure 9.1 shows the interface of TagATune.

TagATune leverages the fact that players must be truthful to each other
in order to successfully guess whether the music clips are the same or differ-
ent. The game belongs to a class of mechanisms called function computation
mechanism, in which players are motivated to exchange their private informa-
tion (e.g., tags) with each other in order to jointly compute a function (e.g.,
whether the two pieces of music are the same or different). The TagATune
mechanism is a specific instance of the function computation mechanism called
input-agreement [10], where the function to compute is “1 if the inputs (i.e.,
music clips) are the same, 0 otherwise.” The input-agreement mechanism can
be generalized to handle other types of input data (e.g., images, video, or text)
that has high description entropy.

The open communication protocol introduced by the input-agreement
mechanism has two natural consequences. By allowing players to freely
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communicate using an open vocabulary that poses no restriction on what tags
can be entered, the resulting data set is noisy—there is a huge number of im-
balanced classes, each corresponding to a tag that can be misspelled, redun-
dant (i.e., synonymous), or irrelevant to content. On the other hand, because
players are allowed to see each other’s outputs, TagATune can also serve as
a platform for collecting human evaluations of machine-generated music tags,
simply by having music tagging algorithms (also referred to as music taggers)
pose as human players. In the following two sections, we will explore these
two aspects of TagATune.

9.2.2 Fun Game, Noisy Data

As reported by Law and von Ahnl [10], over a seven-month period, there
were a total of 49,088 games played by more than 14,224 unique players. The
number of games each person played ranged from 1 to 6,286, or equivalently,
between 3 minutes and 420 hours of game play. There were 512,770 tags
collected, of which 108,558 were verified by at least two players, and 70,908
were unique. The average number of tags generated by the game per minute is
four. The final design of TagATune was a huge improvement over the prototype
version—the game allows players to openly communicate with each other,
without requiring them to match. As evidence of lowered player frustration,
players only passed on 0.50% of the total number of rounds, as opposed to the
36% pass rate in the output-agreement based prototype game.

In a Mechanical Turk evaluation of the tags collected by TagATune for 20
randomly selected songs, it was found that on average five to six out of seven
tags are deemed to be accurate descriptions of the music clip [10]. The small
error (the one to two out of seven tags that do not describe the music) can be
attributed to the existence of easily filterable junk words that we decided to
present to the judges in the experiment (such as “same,” “diff,” and so on).
As a human computation game, TagATune enjoyed great success in collecting
accurate music tags quickly. The collected tags were made into one of the
largest tagged music data sets (called magnatagatune) made publicly available
to the research community.

Table 9.1 shows examples of different types of tags collected using the
TagATune game. The Common Tags, sampled from the 50 most frequently
used tags, typically describe the genre, instrumentation, speed, and mood of
the music. Among the most frequent tags are Negation Tags, which are tags
that describe what is not in the music, for example, “not classical” or “no
piano.” Negative tags are natural consequences of the open communication
protocol, and are unique to the input-agreement mechanism. For example,
when a player enters “singing,” the partner might respond with “no singing”
in order to assert his beliefs that the music clips are different.

Found among the least frequently used tags are compound tags, transcrip-
tion tags, misspelled tags, and communication tags. Compound tags are de-
scriptive and accurate tags that consist of two or more words, for example,
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Common Tags Negation Tags
rock no piano
guitar no guitar
singing no lyrics
soft not classical
light violin not English
Compound Tags Transcription Tags
epileptic seizure music fill me up ...
big guitar riff intro rain on my parade
burly man song fa la la la
quiet string instrument the highest of sunny days
ballet extravaganza you can run, you can fall
Misspelled Tags Communication Tags
dreums nice to meet you
sofr you’re alright at this :)
wman vocal I love this song
violene gonna say diff
orcherstras more info please

Table 9.1
Characteristics of the Tags Collected from the TagATune Game

“helicopter sound,” “Halloween,” “cookie monster vocals,” “wedding recep-
tion music.” Transcription tags are phrases that contain lyrics from the song.
Both types of tags are useful for describing and retrieving music, but difficult
to process into well-defined labels for training music tagging algorithms. Mis-
spelled tags and communication tags are found among the least frequent tags,
but sometimes also among the most frequent. For example, “same,” “diff,”
“yes,” and “no” are often used by players to communicate their final decision
of whether the music clips are the same or not.

9.2.3 A Platform for Collecting Human Evaluation

While open communication leads to more noisy data, it also has a positive
effect—allowing players to observe each other’s tags enables TagATune to
function as a new platform for evaluating music tagging algorithms. The key
idea is to have human players play the game against a music tagger, instead of
another human player. The extent to which players can make correct guesses
using the tags generated by the music tagger becomes an implicit measure of
the algorithm’s performance.

This new method of soliciting human evaluation addresses some of the
problems associated with current methods of evaluation. The conventional
way to determine whether an algorithm is producing accurate music tags is to
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compute the level of agreement between the output generated by the algorithm
and the ground truth set. Agreement-based metrics, for example, accuracy,
precision, F-measure and ROC curve, have been long-time workhorses of eval-
uation, accelerating the development of new algorithms by providing an au-
tomated way to gauge performance. The most serious drawback to using
agreement-based metrics is that ground-truth sets are never fully compre-
hensive. First, there are exponentially many sets of suitable tags for a piece of
music—creating all possible sets of tags and then choosing the best set of tags
as the ground truth is difficult, if not impossible. Second, tags that are appro-
priate for a given piece of music can simply be missing in the ground truth set
because they are less salient, or worded differently (e.g., baroque versus 17th
century classical). Furthermore, because an exhaustive set of negative tags is
impossible to specify, when a tag is missing, it is impossible to know whether
it is in fact inappropriate for a particular piece of music.

Agreement-based metrics also impose restrictions on the type of algorithms
that can be evaluated. To be evaluated, tags generated by the algorithms must
belong to the ground truth set. This means that audio tagging algorithms
that are not trained on the ground truth set, for example, those that use
text corpora or knowledge bases to generate tags, cannot be evaluated using
agreement-based metrics. Finally, to be useful, tags generated by audio tagging
algorithms must, from the perspective of the end user, accurately describe the
music. However, because we do not yet fully understand the cognitive processes
underlying the representation and categorization of music, it is often difficult
to know what makes a tag “accurate” and what kinds of inaccuracies are
tolerable. For example, it may be less disconcerting for users to receive a folk
song when a country song is sought, than to receive a sad, mellow song when
a happy, up-beat song is sought. Ideally, an evaluation metric should measure
the quality of the algorithm by implicitly or explicitly capturing the users’
differential tolerance of incorrect tags generated by the algorithms.

9.2.3.1 The TagATune Metric

The TagATune metric for measuring the performance of tagging algorithms
is simple. Suppose a set of algorithms A = {ai, . . . , a|A|} and a test set S =
{sj , . . . , s|S|} of music clips. During each round of the game, a particular
algorithm i is given a clip j from the test set and asked to generate a set
of tags for that clip. To be a valid evaluation, we only use rounds where the
clips given to the human player and the algorithm bot are the same. This is
because if the clips are different, an algorithm can output the wrong tags for
a clip and actually help the players guess correctly that the clips are different.

A human player’s guess is denoted as G = {0, 1} and the ground truth
is denoted as GT = {0, 1}, where 0 means that the clips are the same and 1
means that the clips are different. The performance P of an algorithm i on
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clip j under TagATune metric is as follows:

Pi,j =
1
N

N∑
n

δ(Gn,j = GTj) (9.1)

where N represents the number of players who were presented with the tags
generated by algorithm i on clip j, and δ(Gn,j = GTj) is a Kronecker delta
function which returns 1 if, for clip j, the guess from player n and the ground
truth are the same, 0 otherwise. The overall score for an algorithm is averaged
over the test set S:

Pi =
1
S

S∑
j

Pi,j (9.2)

9.2.3.2 MIREX Special TagATune Evaluation

To test out the feasibility of TagATune as an evaluation platform, we or-
ganized a “Special TagATune Evaluation” benchmarking competition as an
off-season Music Information Retrieval Evaluation Exchange (MIREX) task.
Participating algorithms were asked to provide two different types of outputs:

1. A binary decision on whether each tag is relevant to each clip.

2. A real-valued estimate of the “affinity” of the clip for each tag. A larger
affinity score means that a tag is more likely to be applicable to the clip.

There were five submissions to the competition, which we will refer to
as Mandel, Manzagol, Marsyas, Zhi, and LabX1 from this point on. A sixth
algorithm we are using for comparison is called AggregateBot, which serves
tags from a vocabulary pool of 146 tags collected by TagATune since deploy-
ment, 91 of which overlap with the 160 tags used for training the algorithms.
The AggregateBot essentially mimics the aggregate behavior of human players
from previous games. The inclusion of AggregateBot demonstrates the utility
of TagATune in evaluating algorithms that have different tag vocabulary.

We trained the participating algorithms on a subset of the TagATune
data set. The training and test sets comprise 16,289 and 100 music clips
respectively. The test set was limited to 100 clips for both the human evalua-
tion using TagATune and evaluation using the conventional agreement-based
metrics, in order to facilitate direct comparisons of their results. Each clip
is 29 seconds long, and the set of clips are associated with 6,622 tracks,
517 albums, and 270 artists. The data set is split such that the clips in the
training and test sets do not belong to the same artists. Genres include

1The LabX submission was identified as having a bug which negatively impacted its
performance, hence, the name of the participating laboratory has been obfuscated. Since
LabX essentially behaves like an algorithm that randomly assigns tags, its performance
establishes a lower bound for the TagATune metric.
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Algorithm TagATune
AggregateBot 93.00%
Mandel 70.10%
Marsyas 68.60%
Manzagol 67.50%
Zhi 60.90%
LabX 26.80%

Table 9.2
Evaluation Statistics under the TagATune versus Agreement-Based Metrics

Classical, New Age, Electronica, Rock, Pop, World, Jazz, Blues, Metal, Punk,
and so forth. The tags used in the experiments are each associated with more
than 50 clips, where each clip is associated only with tags that have been
verified by more than two players independently.

Algorithm Ranking

While there are many benchmarking competitions for algorithms, little
is said about the level of performance that is acceptable for real-world
applications. In our case, the performance of the AggregateBot serves as an
upper ceiling for performance—if the algorithms can achieve the same level
of performance as the AggregateBot under the TagATune metric, they are
essentially achieving human level performance at playing this game. In our
experiment, it was shown (Table 9.2) that human players can correctly guess
that the music are the same 93% of the times when paired against the Ag-
gregateBot, while only approximately 70% of the times when paired against
an algorithm. In other words, human performance (i.e., AggregateBot) is
significantly better than the performance of all the music tagging algorithms
used in the competition.

Game Statistics

In a TagATune round, the game selects a clip from the test set and serves
the tags generated by a particular algorithm for that clip. For each of the 100
clips in the test set and for each algorithm, 10 unique players were elicited
(unknowingly) by the game to provide evaluation judgments. This totals to
5,000 judgments, collected over a one-month period, involving approximately
2,272 games and 657 unique players.

How many tags were actually evaluated by players?

One complication with using TagATune for evaluation is that players are
motivated to end the round as soon as they believe that they have enough
information to guess correctly. Not surprisingly, it was found that players
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reviewed only a small portion (i.e., two to five tags) of the tags before
guessing. In essence, the TagATune metric is similar to the precision@N
metric, which only consider the accuracy of the top N tags.

Is the TagATune metric correlated with precision?

Results show that there are generally more true positive tags (that are
reviewed by players before guessing) in rounds where players successfully
guessed the answer than in rounds where they failed. Additionally, players re-
viewed, on average, fewer number of tags in the failed rounds, suggesting that
guesses are made more hastily when the music taggers produce the wrong tags.

Can we detect which tag(s) cause players to make incorrect guesses?

Our hypothesis is that in a failed round, the last tag reviewed before
guessing is usually an incorrect tag that causes players to make a mistake.
To test this hypothesis, we evaluate the correctness of the last tag a player
reviewed before making an incorrect guess.

Table 9.3 shows the percentage of times that the last tag is actually wrong
in failed rounds, which is above 75% for all algorithms. In contrast, the prob-
ability of the last tag being wrong is much lower in successful rounds, showing
that using game statistics alone, one can detect problematic tags that cause
most players to make the wrong guess in the game. This trend does not hold
for LabX, possibly because players were left guessing randomly due to the
lack of information (since this algorithm generated only one tag per clip).

9.2.3.3 Strength and Weaknesses

One drawback of using TagATune for evaluation is that players do not ex-
pect their human partners to make mistakes in tagging, that is, they have
very little tolerance for a partner that appears “stupid” or wrong. Unfortu-
nately, the music tagging algorithms that are posing as human players do
make mistakes—for example, they often generate tags that are contradictory

System Failed Round Success Round
Mandel 86.15% 49.00%
Marsyas 80.49% 45.00%
Manzagol 76.92% 33.33%
Zhi 84.38% 70.10%
LabX 100.0% 95.77%

Table 9.3
Percentage of the Time That the Last Tag Displayed before Guessing Is Wrong
in a Failed Round versus Success Round
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Algorithm Generated Contradictory or Redundant
Mandel 36.47 16.23
Marsyas 9.03 3.47
Manzagol 2.82 0.55
Zhi 14.0 5.04
LabX 1.0 0.00

Table 9.4
Average Number of Tags Generated by Algorithms and Contradic-
tory/Redundant Ones among the Generated Tags

(e.g., slow followed by fast, or guitar followed by no guitar) or redundant (e.g.,
string, violins, violin). Table 9.4 provides a summary of the number of tags
generated (on average) by each algorithm for the clips in the test set, and
how many of those are contradictory or redundant. To ensure that the game
remains fun despite the mistakes of the music taggers, we adopted two pre-
ventive measures. First, we filtered out tags (with lower affinity scores) that
are contradictory or redundant. Second, we limited the use of music taggers
to only a very small portion of the game.

Our work has shown that TagATune is a feasible and cost-effective platform
for collecting a large number of evaluations from human users. We were able to
get more than 100 hours worth of evaluation work done by 657 unique human
judges, without incurring any cost. However, as an evaluation platform, the
TagATune mechanism is not efficient—for example, not every tag is evaluated,
and not every round of the game is used for evaluation. The design of new
game mechanisms that are more suitable for evaluation is one of our future
research directions.

9.3 Learning to Tag Using TagATune Data

The open vocabulary tags collected by TagATune are extremely noisy, requir-
ing substantial postprocessing before they can be used to train music tagging
algorithms. For example, after filtering out unreliable tags (ones that were
entered by only a single player) and rare tags (those that are associated with
very few music clips), the magnatagatune data set consists of only a very small
subset (i.e., 188 tags) of the 10, 000+ tags that were collected by TagATune.
In contrast, most data sets used for training music classification algorithms
[2, 18, 12, 13, 19, 1, 6] typically consist of labels that are considered to be
devoid of errors and belonging to a small, fixed vocabulary. In this section, we
will describe a particular learning method (based on Topic Models) that can
be trained on an open vocabulary data set [9].
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9.3.1 A Brief Introduction to Topic Models

A topic model [3, 17] is a hierarchical probabilistic model that describes the
process of how the constituents of an entity, such as the words of a document
or the tags of a music clip, are generated from a set of hidden topics. In our
case, a topic is a distribution over music tags, and each music clip is associated
with a set of topics with different probabilities.

Consider the example (shown in Figure 9.2(a)) of a topic model learned
over the music tags collected by TagATune. Figure 9.2(b) and Figure 9.2(c)

1 indian drums sitar eastern drum jazz tribal oriental
2 slow quiet classical soft solo classic low calm
3 ambient slow synth new age electronic weird quiet soft
4 classical violin strings harpsichord cello classic violins orchestra
5 opera female woman vocal choir singing female vocal choral
6 flute classical flutes oboe classic slow organ clarinet
7 guitar strings slow classical harp country solo classical guitar
8 electronic beat fast drums synth dance beats electro
9 rock guitar loud metal drums hard rock fast heavy
10 male man male vocal pop vocal male voice vocals singing

(a) Topic Model
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(b) sitar, twang, country,
steel guitar, bluegrass, yeah,
fast, guitar, western, strum,
twangy, yep, blues, strings
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(c) horn, classical, violins,
flute, getting louder, wood-
winds, flute, chamber, orches-
tra, wind instrument, violin,
quiet, odd, strings

Figure 9.2
An example of a topic model learned over music tags, and the representation
of two music clips by topic distribution.
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show the topic distributions for two very distinct music clips and the ground-
truth tags associated with them (in the caption), with one music clip associ-
ated with only topic 7 (the “classical/country/guitar” topic), and the other
music clip associated with a mix of topic 2 (the “soft/calm” topic), topic 4
(the “violin/cello” topic), and topic 6 (the “flute/oboe” topic).

A widely used method in topic modeling is a latent variable model called
the latent dirichlet allocation (LDA) [3]. In our adaptation of LDA, the music
tags collected by TagATune are the observed variables, and the latent variables
to be inferred are (i) the topic distribution for each music clip (such as the
ones shown in Figure 9.2(b) and 9.2(c)), (ii) the probability of tags in each
topic, and (iii) the topics responsible for generating the observed tags. LDA
is a generative model; it describes the process of how players of TagATune,
using a topic structure that they have in mind, could have generated the tags
that we observed in the game—given a music clip, the player first selects a
topic according to the topic distribution for that clip, then generates a tag
according to the tag distribution of the chosen topic. Our goal, then, is to
discover these latent topic structures and use them to automatically tag new
music.

9.3.2 Leveraging Topic Models for Music Tagging

The main idea behind the algorithm introduced by Law et al. [9] is to organize
noisy tags into well-behaved labels using topic modeling, and learn to predict
tags accurately using a mixture of topic labels. This technique is scalable (i.e.,
makes full use of an arbitrarily large set of noisy labels) and efficient (i.e., the
training time remains reasonably short as the tag vocabulary grows).

Our music tagging algorithm (referred to as Topic Method) consists of
two phases. During the training phase, we use the music tags collected by
TagATune to induce a topic model, using which we can infer the topic distri-
bution of each music clip. Using these topic distributions as labels, we then
train a classifier g to map audio features to topic distributions. During the
inference phase, we use the learned classifier to predict the topic distribution
of an previously unseen music clip. Based on this predicted topic distribution,
each tag can be given a relevance score for a given music clip c, by multiplying
the probability of that tag in each topic and the probability of that topic in
c, summing over all topics.

There are two desiderata in the design of a music tagging algorithm that
make use of an open vocabulary data set—the algorithm should be (a) ca-
pable of generating tags that are reasonably accurate and useful toward in-
dexing music for retrieval, and (b) scalable. We compared the performance of
our algorithm to binary classification (i.e., training a classifier for each tag),
which we referred to as the Tag Method, as well as to a random baseline.
Our experiments address the feasibility, annotation and retrieval performance
and efficiency of our proposed algorithm, as well as highlight some challenges
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regarding the evaluation of music taggers against an open vocabulary ground-
truth set.

9.3.2.1 Experimental Results

Feasibility

The first question is whether the topic models derived from the mu-
sic tags collected from TagATune are semantically meaningful. Table 9.5
shows examples of learned topic models with 10, 20, and 30 topics. In
general, the topics reflect meaningful groupings of tags, such as syn-
onyms (e.g., “soft/quiet,” or “talking/speaking”), misspellings (e.g., “harp-
sichord/harpsicord” or “cello/chello”), or associations (e.g., “jungle/bongos/
fast/percussion”). As the number of topics increases, we also observe the emer-
gence of new topics as well as refined topics (e.g., topics 6 and 24 in the 30-topic
model all describe male vocals, but for different genres of music).

The second feasibility question is how well topic distributions can be pre-
dicted from audio features. Table 9.6 summarizes the performance results, in
terms of accuracy, average rank of the most relevant topic, and KL divergence
between the ground truth and predicted topic distributions. Although the per-
formance degrades as the number of topics increases, all models significantly
outperform the random baseline. Even with 50 topics, the average rank of
the most relevant topic is still around 3, suggesting that the classifier is quite
capable of predicting the most relevant topic. This is crucial, as the most
appropriate tags for a music clip are likely to be found in the most relevant
topics.

Annotation and Retrieval Performance

The second set of questions concerns the quality of the generated tags,
both in terms of their accuracy as well as their utility in music retrieval. We
evaluated the precision, recall and F-1 measure for each tag, averaged over
all the tags that are generated by our algorithm. Results (in Table 9.7) show
that the Topic Method significantly outperforms the Tag Method under these
metrics.

However, as it has been pointed out by previous work [6, 19], these metrics
do not take into account the fact that the algorithms can achieve high scores
just by omitting tags that are less common and more difficult to learn. In fact,
when we analyze the same set of results under the omission-penalizing metrics
[9], the tag method is performing better (Table 9.8). This is because the Tag
Method omits much fewer tags than the Topic Method.
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10 Topics
1 indian drums sitar eastern drum jazz tribal oriental middle eastern beat
2 slow quiet classical soft solo classic low calm silence strings
3 ambient slow synth new age electronic weird quiet soft dark spacey
4 classical violin strings harpsichord cello classic violins orchestra fast slow
5 opera female woman vocal choir singing female vocal choral vocals female voice
6 flute classical flutes oboe classic slow organ clarinet pipe wind
7 guitar strings slow classical harp country solo classical guitar acoustic banjo
8 electronic beat fast drums synth dance beats electro pop modern
9 rock guitar loud metal drums hard rock fast heavy electric guitar male
10 male man male vocal pop vocal male voice vocals singing male vocals guitar

20 Topics
1 male man male vocal vocal male voice pop vocals singing male vocals voice
2 ambient slow dark weird drone water synth quiet low birds
3 ambient synth slow new age electronic soft weird instrumental spacey organ
4 guitar slow strings classical harp solo classical guitar acoustic soft spanish
5 drums drum beat beats tribal percussion indian fast jungle bongos
6 choir choral opera chant chorus vocal vocals singing voices chanting
7 flute classical flutes oboe slow classic clarinet pipe wind woodwind
8 violin classical strings cello violins classic orchestra slow string solo
9 electronic beat synth fast dance drums beats electro trance electric
10 guitar country blues irish folk banjo fiddle celtic harmonica clapping
11 jazz jazzy drums sax bass funky guitar funk trumpet beat
12 opera female woman classical vocal singing female opera female voice voice
13 indian sitar eastern oriental strings middle eastern foreign arabic india guitar
14 rock guitar loud metal hard rock drums heavy fast electric guitar heavy metal
15 slow soft quiet sad calm solo classical mellow low bass
16 classical solo harp classic slow fast soft quiet strings light
17 female woman vocal female vocal singing female voice vocals female vocals pop voice
18 harpsichord classical harpsicord baroque strings classic organ harp medieval harps
19 fast loud upbeat quick fast beat very fast fast paced dance happy fast tempo
20 quiet slow soft classical silence silent low very quiet strings ambient

30 Topics
1 ambient slow synth new age electronic soft bells spacey instrumental quiet
2 cello violin classical strings solo slow classic string violins chello
3 electronic synth beat electro weird ambient electric modern drums new age
4 rock guitar loud metal hard rock drums heavy fast electric guitar heavy metal
5 ambient slow dark bass low drone deep synth weird quiet
6 rap hip hop male man male vocal vocals beat voice vocal male vocals
7 indian sitar eastern oriental middle eastern strings arabic india guitar foreign
8 classical oboe orchestra flute classic strings clarinet horns horn violin
9 quiet slow soft classical silence silent low very quiet calm ambient
10 talking weird voice electronic loud voices beat speaking strange male voice
11 female woman female vocal vocal female voice pop singing female vocals vocals voice
12 classical violin strings violins classic orchestra slow string cello baroque
13 classical solo fast classic slow soft quiet light clasical instrumental
14 violin irish fiddle celtic folk strings clapping medieval country violins
15 vocal vocals singing foreign female voices women choir woman voice
16 harp strings guitar dulcimer classical slow string sitar plucking oriental
17 organ classical solo slow classic keyboard accordian new age soft modern
18 opera female woman classical vocal singing female opera female voice operatic
19 guitar country blues banjo folk harmonica bluegrass twangy acoustic fast
20 flute classical flutes pipe slow wind woodwind classic soft wind instrument
21 drums drum beat beats tribal percussion indian fast jungle bongos
22 ambient water weird slow birds wind quiet new age dark drone
23 harpsichord classical harpsicord baroque strings classic harp medieval harps guitar
24 male man male vocal vocal male voice pop singing vocals male vocals rock
25 choir choral opera chant chorus vocal male chanting vocals singing
26 fast loud quick upbeat very fast fast paced fast beat happy fast tempo fast guitar
27 jazz jazzy drums sax funky guitar funk bass pop reggae
28 beat fast electronic dance drums beats synth electro trance upbeat
29 slow soft quiet sad solo calm mellow classical very slow low
30 guitar classical slow strings solo classical guitar acoustic soft harp spanish

Table 9.5
Topic Model with 10, 20, and 30 Topics
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No. of
Method Accuracy KL Divergence Average Rank

Topics

10 LDA (Distribution) 0.6972 (0.0054) 0.9982 (0.0056) 0.6676 (0.0161)
Random 0.1002 (0.0335) 2.5906 (0.0084) 4.4287 (0.5155)

20 LDA 0.6370 (0.0060) 1.3233 (0.0142) 1.1375 (0.0328)
Random 0.0335 (0.0094) 2.9056 (0.0081) 10.2867 (0.4676)

30 LDA 0.5684 (0.0040) 1.6010 (0.01461) 1.7240 (0.04437)
Random 0.03408 (0.00898) 2.9964 (0.0076) 15.0050 (0.7400)

40 LDA 0.5174 (0.0047) 1.8499 (0.0077) 2.3378 (0.04211)
Random 0.02925 (0.0082) 3.0817 (0.0055) 19.5751 (1.3955)

50 LDA 0.4943 (0.0029) 2.008 (0.0062) 3.0993 (0.0522)
Random 0.0223 (0.0084) 3.1258 (0.0074) 25.0087 (0.9001)

Table 9.6
Results Showing How Well Topic Distribution or the Best Topic Can Be Pre-
dicted from Audio Features (The metrics used include accuracy and average
rank of the top topic, and KL divergence between the ground truth and pre-
dicted topic distributions.)

Model Precision Recall F-1
10 Topics 0.3159 (0.0117) 0.4360 (0.0243) 0.3359 (0.0159)
20 Topics 0.3390 (0.0049) 0.3517 (0.0087) 0.2970 (0.0087)
30 Topics 0.3617 (0.0113) 0.3268 (0.0053) 0.2885 (0.0036)
40 Topics 0.3720 (0.0078) 0.3171 (0.0065) 0.2848 (0.0064)
50 Topics 0.3846 (0.0113) 0.3138 (0.0077) 0.2834 (0.0073)

Tag Method 0.3176 (0.0037) 0.2141 (0.0038) 0.2131 (0.0034)
Random 0.0132 (0.0004) 0.01174 (0.0003) 0.0115 (0.0003)

Table 9.7
Annotation Performance

Specifically, as shown in Figure 9.3, the Tag Method gains in outputting
rarer tags (such as “meditation,” “didgeridoo,” etc.) that the Topic Method
omits. For more common tags (such as “opera,” “drums,” “oboe,” etc.), we
found that the Topic Method and Tag Method are very similar in their per-
formance, with the 50-topic model slightly outperforming the 10-topic model.

The quality of tags can also be measured by how well they facilitate music
retrieval. Given a search query, each music clip can be rank ordered by the
KL divergence between the boolean vector representing the query and the
probability distribution over the tags generated by our algorithm for that clip.
Retrieval performance is measured using the mean average precision (MAP)
[15] metric, which computes precision (the number of retrieved music clips
whose ground-truth tags include the search query) while placing more weight
on the higher-ranked clips. Table 9.9 shows that the retrieval performance of
the Topic Method (with 50 topics) is indistinguishable from the Tag method,
and both methods significantly outperform the random baseline.
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Figure 9.3
Detailed performance of the algorithms under the F-1 measure.
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Model Precision Recall F-1
No. Tags

Outputted

10 Topics 0.0321 (0.0004) 0.0361 (0.0008) 0.0278 (0.0004) 70.8 (2.3)
Upper Bound 0.1068 (0.0024) 0.0829 (0.0027) 0.0829 (0.0027) 854

20 Topics 0.0465 (0.0004) 0.0431 (0.0007) 0.0364 (0.0008) 104.6 (1.4)
Upper Bound 0.1425 (0.0013) 0.1225 (0.0016) 0.1225 (0.0016) 854

30 Topics 0.0558 (0.0022) 0.0462 (0.0005) 0.0407 (0.0007) 120.6 (2.0)
Upper Bound 0.1598 (0.0021) 0.1412 (0.0022) 0.1412 (0.0022) 854

40 Topics 0.0597 (0.0015) 0.0470 (0.0005) 0.0422 (0.0006) 126.6 (1.9)
Upper Bound 0.1664 (0.0020) 0.1482 (0.0022) 0.1482 (0.0022) 854

50 Topics 0.0618 (0.0021) 0.0467 (0.0002) 0.0422 (0.0003) 127.2 (2.8)
Upper Bound 0.1670 (0.0031) 0.1489 (0.0033) 0.1489 (0.0033) 854

Tag Method 0.0990 (0.0015) 0.0592 (0.0006) 0.0589 (0.0009) 236.2 (3.5)
Upper Bound 0.2878 (0.0040) 0.2766 (0.0041) 0.27658 (0.0041) 854

Random 0.0131 (0.0004) 0.0115 (0.0003) 0.0119 (0.0003) 853.4 (0.49)

Table 9.8
Annotation Performance under the Omission-Penalizing Metrics (Note that
these metrics are upper bounded by a quantity that depends on the number
of tags outputted by the algorithm.)

Model Average Mean Precision
10 Topics 0.2572 (0.0054)
20 Topics 0.2964 (0.0120)
30 Topics 0.3042 (0.0182)
40 Topics 0.3140 (0.0119)
50 Topics 0.3236 (0.0111)

Tag Method 0.3117 (0.0114)

Random 0.1363 (0.0061)

Table 9.9
Retrieval Performance, in Terms of Average Mean Precision

Efficiency

Scalability is one of the main motivations behind the use of topic models
for music tagging—it is much faster to train a classifier to predict 50 topic
classes than 834 tag classes. Table 9.10 shows an estimate of the training time
of the different models.

Model Training Time (in minutes)

10 Topics 18.25
20 Topics 19.00
30 Topics 45.25
40 Topics 42.50
50 Topics 48.00

Tag Method 845.5

Table 9.10
Annotation Performance, in Terms of Training Time
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While the training time does increase with the number of topics, training
time does reach a plateau. More importantly, the Topic Method is approx-
imately 94% times faster to train than the Tag Method, confirming our
intuition that Topic Method will be significantly more scalable as the size of
the tag vocabulary grows.

Human Evaluation

The performance metrics we used to evaluate tags assume the existence
of a perfect, comprehensive ground-truth set. This is far from true, especially
for data sets that contain open vocabulary labels. There are often missing
tags (e.g., the music tagger can generate tags that a music clip has never
been associated with) or vocabulary mismatch (e.g., the music tagger pre-
dicts “serene,” but the music clip has only been tagged “calm”). In fact, in
several experiments [9] where we asked Mechanical Turk workers to evaluate
the annotation and retrieval performance of the algorithms, it was found that
comparisons against an open vocabulary ground-truth set grossly underesti-
mate performance. Out of the tags that turkers consider relevant, on average,
approximately 50% of them are missing from the ground-truth sets [9].

Another interesting finding is that in the evaluation of tags, the sum of
parts does not equal whole. For example, when the Topic Method and Tag
Method are evaluated by having workers judge the relevance of each tag, the
performance of the two algorithms are quite similar. However, when asked
“which list of tags do you prefer the most,” the Tag Method was strongly
favored (winning 6.20 out of 10 votes, as opposed to the 3.34 votes for the Topic
Method and 0.46 votes for the Random Method). This shows that human
evaluations can be invaluable if we want to measure the performance of music
taggers the same way humans perceive them. As we described in the previous
section, TagATune is a viable solution for collecting human evaluations of
music tags in an economical and timely fashion.

9.4 Conclusion

In this chapter, we described the design of a human computation game called
TagATune, which is shown to be capable of eliciting the help of the crowd
to annotate music. While the game is made more fun by allowing players
to openly communicate with each other, the data collected via TagATune is
also more noisy, necessitating the development of new learning algorithms and
evaluation methods. The key take-away message is simple—without motivated
human volunteers, there will be no human computation systems. Therefore,
a human computation system must be designed to solve the computational
problem at hand without failing to meet the users’ needs.
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Hit Song Science is an emerging field of investigation that aims at predicting
the success of songs before they are released on the market. This chapter
defines the context and goals of Hit Song Science (HSS) from the viewpoint
of music information retrieval. In the first part, we stress the complexity of
the mechanisms underlying individual and social music preference from an
experimental psychology viewpoint. In the second part, we describe current
attempts at modeling and predicting music hits in a feature oriented view of
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popularity and, finally, draw conclusions on the current status of this emerging
but fascinating field of research.

10.1 An Inextricable Maze?

Can someone predict whether your recently produced song will become a hit?
Any pop song composer would probably laugh at this question and respond:
How could someone predict the success of what took so much craft, pain, and
immeasurable creativity to produce? I myself do not even have a clue!

This question raises a recurring fantasy in our culture: wouldn’t it be
thrilling to understand the “laws of attraction” that explain how this sort
of preference system of music in human beings works, to the point of being
able to predict the success of a song or any other cultural artifact before it
is even released? This fantasy is elaborated in detail in Malcom Gladwell’s
story “The Formula” [14]. In this fiction, a—needless to say, fake—system is
able to predict the success of movies by analyzing their script automatically.
The system is even smart enough to propose modifications of the script to
increase the success of the movie, with a quantified estimation of the impact
in revenues. In the introduction, Gladwell begins by describing the reasons
why we like a movie or not as resulting from a combination of small details.
He writes:

Each one of those ... narrative details has complicated emotional
associations, and it is the subtle combination of all these associa-
tions that makes us laugh or choke up when we remember a certain
movie... Of course, the optimal combination of all those elements
is a mystery. [14]

This process is also true for music: what makes us like a song or not probably
has to do with a complex combination of micro-emotions, themselves related
to our personal history, to the specifics of the song and to many other elusive
elements that escape our direct understanding. In spite of the many claims
that writing hit songs is just a matter of technique (see, for example, Blume
[5]), it is likely that, as the highly successful Hollywood screenwriter William
Goldman said: “Nobody knows anything” [15].

Or is this the case? However daring, Hit Song Science attempts to challenge
this assumption by precisely undertaking the task of making these kinds of
predictions. Several companies now claim to be able to automatically analyze
songs in order to predict their success (HSS, PlatiniumBlue) and to sell their
results to record labels. Unfortunately, the exact mechanisms behind these
predictions are not disclosed, and no reproducible data is provided to check
the accuracy of these predictions. At the same time, the very existence of these
services shows that hit prediction is taken seriously by the music industry.
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Considering this hit song prediction fantasy from a scientific viewpoint
raises issues in several disciplines, interrelated in complex ways that involve
the following issues: (1) the psychology of music listening and the effects of
repeated exposure, (2) the paradoxical nature of the Western media broad-
casting system, radios in particular, and (3) the social influence human beings
exert and receive from each other. Before describing the specific Music Infor-
mation Retrieval (MIR) approach to Hit Song Science, each of these issues is
first addressed.

10.1.1 Music Psychology and the Exposure Effect

Surprisingly, the question of “Why we like or not a particular song?” has
received little attention from music psychology. Although music preference
is recognized as a central aspect of modern identities, the field is “still in its
infancy” [30]. The issue of liking per se is indeed difficult to study directly, and
music psychologists have traditionally focused on less elusive, more directly
measurable phenomena such as memorization, recognition or learning.

In our context, a central issue in trying to explain music hits is exposure,
that is, the simple fact of listening to a musical piece. What is the effect
of exposure on preference or liking? Studies on exposure show that there is
indeed an impact of repeated exposure on liking, but also that this impact is
far from simple. Parameters such as the context, type of music or listening
conditions (focused or incidental), seem to influence the nature of this impact,
and many contradictory results have been published.

The popular idea that repeated exposure tends to increase liking was put
forward early [21] and was confirmed experimentally in a wide variety of con-
texts and musical genres [27]. The so-called mere exposure effect, akin to the
familiarity principle, or perceptual fluency , is considered by many psycholo-
gists to be a robust principle, pervading many facets of music listening.

However, as noted by Schellenberg [29], this increase in liking may be re-
stricted to musically impoverished or highly controlled stimuli. Indeed, other
studies have shown a more subtle effect of repeated exposure. The study by
Siu-Lan et al. [31] showed different effects of exposure on intact and patchwork
compositions. An inverted U-curve phenomena was observed in particular by
Szpunar et al. [33] and Schellenberg [30], itself explained in large part by
the “two factor model” of Berlyne [3]. In this model, two forces compete to
build up liking: (1) the arousal potential of the stimulus (the music), which
decreases with repeated listening, thereby increasing liking (with the habit-
uation to this arousal potential), and (2) familiarity, which tends to create
boredom. These two forces combined produce typical inverted U-shapes that
have been observed in many studies of preference. This model is itself related
to the famous “Wundt curve” [36]. The Wundt curve describes the typical
experience of arousal as being optimal when achieving a compromise between
repetition/boredom and surprise (Figure 10.1). Interestingly, reaching such
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Figure 10.1
The Wundt curve describes the optimal “hedonic value” as the combination
of two conflicting forces.

an optimal compromise in practice is at the root of the psychology of flow
developed by Cśıkszentmihályi [8].

Yet, other studies [35] show in contrast a polarization effect, whereby re-
peated exposure does not influence initial likings but makes them stronger,
both positively or negatively. Finally, Loui et al. [19] studied exposure effects
by considering exotic musical temperaments, to study the relation between
learning and preference. They showed that passive exposure to melodies built
in an entirely new musical system led to learning and generalization, as well
as increased preference for repeated melodies. This work emphasizes the im-
portance of learning in music preference.

These psychological experiments show that a relation between exposure
and liking exists, but that this relation is complex and still not well under-
stood, in particular for rich, emotionally meaningful pieces. It is therefore
impossible to simply consider, from a psychological point of view, that re-
peated exposure necessarily increases liking: it all depends on a variety of
factors.
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10.1.2 The Broadcaster/Listener Entanglement

If the relation between exposition and preference is unclear in socially neutral
contexts, the issue becomes even more confusing when considering the tangled
interplay between the preference engine of individuals and the editorial choices
of broadcasters, radio programmers, in particular.

Indeed, exposure is largely dependent upon the editorial strategies of pro-
grammers in the field of radio (in a broad definition of the term). Again, it
is often said that it suffices to play a tune often enough to make it a hit,
and that therefore hits are basically built by music marketing. However, the
influence of radios on musical taste is paradoxical. On one hand, mass media
(radio, television, etc.) want to broadcast songs that most people will like, in
the hope of increasing their audience. Yet, what these media broadcasts actu-
ally influence, in turn, is the taste of audiences by means of repeated, forced
exposition.

One process by which radios, for instance, maximize their audiences is so-
called radio testing , which is performed regularly by various companies (e.g.,
musicresearch.com). Radio testing consists in playing songs to a selected panel
that is representative of the radio audience, and then asking the listeners to
rank songs. Eventually, only songs having received top ranks are kept and
programmed. This radio testing phenomenon is more and more prevalent in
Western society [17], but, strangely, has received so far little attention from
researchers. Montgomery and Moe [22] exhibit a dynamic relationship be-
tween radio airplay and album sales, with vector autoregressive models, in
an attempt to better inform marketing managers. Montgomery and Moe also
stress the unpredictable evolution of this relationship as audiences may pro-
gressively evaluate these airplays critically by considering them as forms of
advertisements.

This situation creates a paradox, also stressed by Montgomery and Moe
[22]: “Not only is a radio station able to influence the public, but the public
can also affect what is aired on the radio. Increased album sales may lead
radio stations to play an album more.” In turn, these songs are repeatedly
exposed to a larger population with effects that are not completely clear, as
seen above. As a result, if it is clear that radios do have an impact on musical
taste, it is, again, difficult to assess exactly which one.

10.1.3 Social Influence

This is not the whole story. The situation is further complicated by the social
influence that we all exert on one other. Knowing that a song is a hit, or at least
preferred by others in our community, influences our liking. This phenomenon
has been studied by Salganik et al. [28] in a remarkable experiment, which
consisted in studying preferences in two groups of people: in the first group
(independent), users had to rank individually, unknown songs. In the second
group (social influence), users had the same task, with additional information
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about what the other users of the group ranked. This information regarding
the preferences of others had itself two strength levels.

The comparison between these two groups showed two interesting facts:
(1) In the independent group, the distribution of preference was not uniform,
showing that there are indeed songs that are statistically preferred to others,
independently of social influence. This preference can only come from the songs
themselves and can be considered as an indicator of their intrinsic quality.
(2) The strength of the “social signal” increases the unpredictability of hits,
that is, the more information about what others like, the less replicable are
the experiments in terms of which songs become hits. This unpredictability,
well-studied in network analysis, is referred to as the cumulative advantage
effect. In the social influence group, hits are much more popular than in the
independent group, but they are also different for each experiment, with the
same initial conditions. One interesting argument put forward in this study is
that the determination of which songs will become hits, in the social influence
condition, eventually depend on “early arriving individuals” [34], in other
words on initial conditions, which are themselves essentially random.

Under all of these conditions (unknown effects of repeated exposure, com-
plex interplay between broadcasters and listeners, and the effects of social
influence), is it reasonable even to attempt to program computers to predict
hits in the first place?

10.1.4 Modeling the Life Span of Hits

Recognizing the importance of social pressure and the rich-get-richer effect,
some works have attempted to predict hits using only social information,
regardless of the intrinsic characteristics of songs.

For instance, Chon et al. [7] attempt to predict the popularity and life span
of a jazz album given its entry position in the charts. This work used only
charts information from Billboard, an American magazine maintaining music
charts on a weekly basis. Analysis of the distribution of hits over time showed
that the life span of a song tended to increase with its starting position in the
charts. This result was interpreted as an encouragement to record labels to
market albums before the sales, since the higher the starting position is, the
longer it will stay in the charts. However, such a technique does not seem to
be sufficient to yield more accurate predictions.

In the same vein, Bischoff et al. [4] attempted to identify critical early-
stage effects of cumulative advantage. More precisely, this work posits that the
success of a hit depends only on two factors: (1) its initial observed popularity
after one week, as well as (2) contextual information such as the album, the
general popularity of the artist, and the popularity of other tracks in the
album. Similarly, this approach does not use any information concerning the
actual content of the songs. Initial popularity and contextual information are
converted into a 18 feature vector, and standard machine-learning techniques
are then used to train and test a predictor (as described in detail in the next
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section). Like in the previous work, ground-truth data is taken from Billboard.
This experiment was conducted on a database of 210,350 tracks, performed
by 37,585 unique artists. The results yield an improvement of 28% in AUC
(area under ROC) compared to the work of Dhanaraj and Logan [9] described
below.

These works show that there are patterns in the way social pressure gen-
erates hits. However, requiring initial popularity data, and being independent
of both the characteristics of the songs and the listeners, they don’t tell us
much about why we like or not a given song. The following approaches take
the opposite stance, trying explicitly to identify the features of songs that
make them popular, regardless of social pressure effects.

10.2 In Search of the Features of Popularity

Several MIR researchers have recently attempted to consider hit prediction
from a candid viewpoint. Like mathematicians trying to predict forecast or
evolutions of financial markets, Hit Song Science has emerged as a field of pre-
dictive studies. Starting from the observation of the nonuniform distribution
of popularity [12], the goal is to understand better the relation between in-
trinsic characteristics of songs (ignored in the preceding approaches) and their
popularity, regardless of the complex and poorly understood mechanisms of
human appreciation and social pressure at work.

In this context, popularity is considered as a feature of a song, and the
problem, then, is to map this feature to other features that can be measured
objectively. In other words, MIR sees Hit Song Science as yet another “feature
problem,” like genre or instrument classification.

It is important to stress the hypothesis at stake in this view, in light of the
three difficulties described in the previous section. The attempt to directly
model popularity with objective features ignores the difficulties that experi-
mental psychology encounters in explaining the exposure effect. However, the
yet unclear nature of human music habituation mechanisms does not imply
that a predictor cannot be built. Of course, even if successful, such a predictor
would probably not say much about the mysteries of the exposure effect.

The radio entanglement problem is related to the social influence issue: the
final distributions of hits in a human community depend on random initial
conditions which are not under control, from the choice of the members in
the panel to the preferences of the “early arriving individuals.” This intrinsic
unpredictability in the hit distribution seems at first glance to threaten the
whole Hit Song Science enterprise. An answer to this criticism consists in con-
sidering Hit Song Science as an idealistic attempt to determine the “objective
causes” of individual music preference, independently of the effects of social
influence.

 



312 Music Data Mining

Even if it is not realistic for individuals to listen and rate songs indepen-
dently of each other, such an attempt is an important and sound approach
for two reasons. First, if the works of Salganik et al. [28] aim at stressing the
importance of social influence, they also show, in passing, that individual pref-
erences do exist and are consistent and grounded. The difference between the
nonuniform distribution of the independent group and a random one can pre-
cisely be seen as what remains of individual preference, once social influence
is ignored. Because these remains of individuality are not random, it is worth
trying to model them. Second, the search for the causes of our aesthetic expe-
rience, even partial ones, is a legitimate goal of cognitive science and should
also be a goal of modern musicology. The remainder of this chapter focuses
on this MIR view of hits, and more precisely on the following problem: under
the absence of social pressure, which features of songs are able to explain their
popularity?

10.2.1 Features: The Case of Birds

Before reviewing works that specifically address music features, we review here
a fascinating and successful case of feature-based hit song prediction in a less
complex area than human music: bird songs. Researchers in animal behavior
have long been interested in the phenomenon of bird song production and
its role in the mating process. In several bird species, male birds produce
songs primarily to attract females. The issue of what makes a bird song more
attractive than others has received particular attention in the recent years.
This question echoes the Hit Song Science question (What are the features of
popularity?), but in a simpler context, where social pressure is considered to
be less significant.

Various results have indeed shown that specific features of songs can ac-
count for their popularity. For instance, great reed warbler females (Acro-
cephalus arundinaceus) were shown to prefer long over short songs in the wild
[2].

More interestingly, the study by Draganoiu et al. [10] focused on the case
of the domesticated canary (Serinus canaria). In this species, male bird songs
have a specific phrase structure. Two features of these phrases were shown
to significantly increase liking: (1) frequency bandwidth and (2) trill rate.
However, it was also shown that these two features are somehow contradictory:
a trade-off is observed in real phrases, due to the specific motor constraints of
the bird vocal track.

The breakthrough experiment by Draganoiu et al. [10] consisted in syn-
thesizing artificial phrases optimizing these two features in an unrealistic way,
that is “beyond the limits of vocal production.” The exposition of these ar-
tificial phrases to bird females showed unequivocally that females preferred
these artificial phrases to the natural ones (see Figure 10.2). An interesting
interpretation for this preference is that the production of “difficult” phrases
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Figure 10.2
The distribution of canary phrases, in a bandwidth/tempo space, representing
the natural trade-off between bandwidth and syllabic tempo. Circles represent
the phrases used for the experiment. The artificial top right phrases optimizing
the two features in unrealistic ways were the most successful [10].

maximizing both bandwidth and syllable rate may be a reliable indicator of
male physical or behavioral qualities.

This evolutionary argument emphasizes the role of virtuosity in music ap-
preciation. In popular music, virtuosity is explicitly present in specific genres
(e.g., shredding in hard-rock, or melodic-harmonic virtuosity in bebop). How-
ever, it is probably a marginal ingredient of most popular styles (pop, rock),
although virtuosity is still a largely understudied phenomenon. To which ex-
tent can these works be transposed to popular music?

10.2.2 The Ground-Truth Issue

In the MIR view of Hit Song Science, the nonuniform distribution of pref-
erences is taken as ground-truth data. The problem is then to find a set of
song features that can be mapped to song popularity. Once the mapping is
discovered, the prediction process from a given, arbitrary new item (a song or
a movie scenario) can be automated.

Considering the preceding arguments, a suitable database to conduct the
experiment should ideally contain preference data which results from non-
“socially contaminated” rankings. Such rankings can be obtained as in the
experiment by Salganik et al. [28]. However, this process works only for a set
of carefully chosen, unknown songs by unknown artists. In practice, there is
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no database containing “normal songs” associated with such pure preference
data. The experiments given in the following sections are based on databases
of known music, with socially determined preference data, as described below.
The impact of this approximation is not clear, and this approach by default
could clearly be improved in future works.

10.2.3 Audio and Lyrics Features: The Initial Claim

The first attempt to model directly popularity in a feature-oriented view of
music preference is probably the study by Dhanaraj and Logan [9]. This study
consisted in applying the traditional machine-learning scheme, ubiquitous in
MIR research, to the prediction of popularity. The features consisted both
in traditional audio features Mel-frequency cepstral coefficients (MFCCs) ex-
tracted and aggregated in a traditional manner, as well as features extracted
from the lyrics. The lyrics features were obtained by extracting an eight-
dimensional vector representing the closeness of the lyrics to a set of eight
semantic clusters, analyzed in a preliminary stage using a nonsupervised learn-
ing scheme.

The experiment was performed on a 1,700 song database, using Support
Vector Machines (SVMs), and a boosting technique [13]. The conclusion of
this study is that the resulting classifiers using audio or lyric information do
perform better than random in a significant way, although the combination
of audio and lyric features do not improve the accuracy of the prediction.
However, a subsequent study described below showed contradictory results.

10.3 A Large-Scale Study

The studies by Pachet and Roy [23, 25] describe a larger-scale and more com-
plete experiment designed initially to assess to which extent high-level music
descriptors could be inferred automatically using audio features. A part of
this study was devoted to the specific issue of popularity, seen as a particu-
lar high-level descriptor among many others. This experiment used a 32,000
song database of popular music titles, associated to fine-grained human meta-
data, in the spirit of the Pandora effort (http://www.pandora.com) as well as
popularity data, obtained from published charts data like in the preceding ap-
proaches. To ensure that the experiment was not biased, three sets of different
features were used: a generic acoustic set à la MPEG-7, a specific acoustic set
using proprietary algorithms, and a set of high-level metadata produced by
humans. These feature sets are described in the next sections.

 

http://www.pandora.com/
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10.3.1 Generic Audio Features

The first feature set was related to the so-called bag-of-frame (BOF) approach.
The BOF approach owes its success to its simplicity and generality, as it can
be, and has been, used for virtually all possible global descriptor problems. The
BOF approach consists in modeling the audio signal as the statistical distribu-
tion of audio features computed on individual, short segments. Technically, the
signal is segmented into successive, possibly overlapping frames, from which a
feature vector is computed. The features are then aggregated together using
various statistical methods, varying from computing the means/variance of the
features across all frames to more complex modeling such as Gaussian Mixture
Models (GMM). In a supervised classification context, these aggregated fea-
tures are used to train a classifier. The BOF approach can be parameterized
in many ways: frame length and overlap, choice of features and feature vec-
tor dimension, choice of statistical reduction methods (statistical moments or
Gaussian Mixture Models), and choice of the classifier (decision trees, Support
Vector Machines, GMM classifiers, etc.). Many articles in the Music Informa-
tion Retrieval (MIR) literature report experiments with variations on BOF
parameters on several audio classification problems [1, 11, 20, 26]. Although
perfect results are rarely reported, these works demonstrate that the BOF
approach is relevant for modeling a wide range of global music descriptors.

The generic feature set considered here consisted of 49 audio features taken
from the MPEG-7 audio standard [18]. This set includes spectral character-
istics (Spectral Centroid, Kurtosis and Skewness, High-Frequency Centroids,
Mel-frequency cepstrum coefficients), temporal (Zero-Crossing Rate, Inter-
Quartile Range), and harmonic (chroma). These features were intentionally
chosen for their generality, that is they did not contain specific musical infor-
mation nor used musically ad hoc algorithms. Various experiments (reported
by Pachet and Roy [25]) were performed to yield the optimal BOF parameters
for this feature set: localization and duration of the signal, statistical aggre-
gation operators used to reduce dimensionality, frame size and overlap. The
best trade-off between accuracy and computation time was achieved with the
following parameters: 2,048 sample frames (at 44,100 Hz) with a 50% overlap
computed on a two-minute signal extracted from the middle part of the title.
The aggregated features were the two first statistical moments of this distri-
bution (mean and variance) yielding eventually a feature vector of dimension
98 (49 means + 49 variances).

10.3.2 Specific Audio Features

The specific approach consisted in training the same (SVM) classifier with
a set of “black-box” acoustic features developed especially for popular mu-
sic analysis tasks by Sony Corporation [32]. These proprietary features have
been used in commercial applications such as hard disk based Hi-Fi systems.
Altogether, the specific feature set also yielded a feature vector of dimension
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98, to guarantee a fair comparison with the generic feature set. As opposed
to the generic set, the specific set did not use the BOF approach: each fea-
ture was computed on the whole signal, possibly integrating specific musical
information. For instance, one feature described the proportion of perfect ca-
dences (i.e., resolutions in the main tonality) in the whole title. Another one
represented the proportion of percussive sounds to harmonic sounds.

10.3.3 Human Features

The last feature set considered was a set of human-generated features. We
used the 632 Boolean labels provided by a manually annotated database (see
the following section) to train the classifiers. This was not directly compa-
rable to the 98 audio features as these labels were Boolean (and not floating
point values). However, these features were good candidates for carrying high-
level and precise musical information that are typically not well learned from
features extracted from the acoustic signal.

10.3.4 The HiFind Database

10.3.4.1 A Controlled Categorization Process

Several databases of annotated music have been proposed in the MIR com-
munity, such as the RWC database [16], the various databases created for
the MIREX tests [6]. However, none of them had the scale and number of
labels needed to conduct this experiment. For this study the authors used
a music and metadata database provided by the defunct HiFind Company.
This database was a part of an effort to create and maintain a large repos-
itory of fine-grained musical metadata to be used in various music distribu-
tion systems, such as playlist generation, recommendation, or advanced music
browsing. The HiFind labels were binary (0/1 valued) for each song. They
were grouped in 16 categories, representing a specific dimension of music:
Style, Genre, Musical setup, Main instruments, Variant, Dynamics, Tempo,
Era/Epoch, Metric, Country, Situation, Mood, Character, Language, Rhythm,
and Popularity. Labels described a large range of musical information: objec-
tive information such as the “presence of acoustic guitar,” or the “tempo
range” of the song, as well as more subjective characteristics such as “style,”
“character” or “mood” of the song. The Popularity category contained three
(Boolean) labels: low, medium, and high, representing the popularity of the
title, as observed from hit charts and records of music history. These three
labels were mutually exclusive.

The HiFind categorization process was highly controlled. Each title was
listened to entirely by one categorizer. Labels to be set to true were selected
using an ad hoc categorization software. Label categories were considered in
some specific order. Within a category, some rules could apply that prevented
specific combinations of labels to be selected. The time taken, for a trained
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categorizer, to categorize a single title was about six minutes. Categorized ti-
tles were then considered by a categorization supervisor, who checked consis-
tency and coherence to ensure that the description ontologies were well under-
stood and utilized consistently across the categorization team. Although errors
and inconsistencies could be made during this process, the process nevertheless
guaranteed a relative good “quality” and consistency of the metadata, as op-
posed for instance to collaborative tagging approaches with no supervision. As
a consequence, the metadata produced was very precise (up to 948 labels per
title), a precision difficult to achieve with collaborative tagging approaches.

The total number of titles considered in this study was 32,978, and the
number of labels 632. Acoustic signals were given in the form of a wma file at
128 kbps. This database was used both for training and testing classifiers, as
described in Section 10.3.5.3.

10.3.4.2 Assessing Classifiers

To avoid the problems inherent to the sole use of precision or recall, a tradi-
tional approach is to use F-measure to assess the performance of classifiers.
For a given label, the recall R is the proportion of positive examples (i.e., the
titles that are true for this label) that were correctly predicted. The precision
P is the proportion of the predicted positive examples that were correct. When
the proportion of positive examples is high compared to that of negative ex-
amples, the precision will usually be artificially very high and the recall very
low, regardless of the actual quality of the classifier. The F-measure addresses
this issue and is defined as:

F = 2× R× P
R+ P

However, in this specific case, the authors had to cope with a particularly
unbalanced two class (True and False) database. Therefore, the mean value
of the F-measure for each class (True and False) could be artificially good.
To avoid this bias, the performances of classifiers were assessed with the more
demanding min F-measure, defined as the minimum value of the F-measure
for the positive and negative cases. A min-F-measure near 1 for a given label
really means that the two classes (True and False) are well predicted.

10.3.5 Experiment

10.3.5.1 Design

The HiFind database was split in two “balanced” parts, Train and Test, so
that Train contained approximately the same proportion of examples and
counterexamples for each label as Test. This state was obtained by performing
repeated random splits until a balanced partition was observed.

Three classifiers were then trained, one for each feature set (generic,
specific, and human). These classifiers all used an SVM algorithm with a
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radial-basis function (RBF) kernel. Each classifier, for a given label, was
trained on a maximally “balanced” subset of Train, that is, the largest sub-
set of Train with the same number of “True” and “False” titles for this label
(popularity: Low, Medium, and High). In practice, the size of these individual
train databases varied from 20 to 16,320. This train database size somehow
represented the “grounding” of the corresponding label. The classifiers were
then tested on the whole Test base. Note that the Test base was usually not
balanced with regards to a particular label, which justified the use of the
min-F-measure to assess the performance of each classifier.

10.3.5.2 Random Oracles

To assess the performance of classifiers, these were compared to that of random
oracles defined as follows: given a label with p positive examples (and therefore
N − p negative ones, with N the size of the test set), this oracle returns true
with a probability p

N . By definition, the min-F-measure of a random oracle
only depends on the proportion of positive and negative examples in the test
database.

For instance, for a label with balanced positive and negative examples, the
random oracle defined as above has a min-F-measure of 50%. A label with
200 positive examples (and therefore around 16,000 negative examples) leads
to a random oracle with a min-F-measure of 2.3%. So the performance of the
random oracle was a good indicator of the size of the train set and could
therefore be used for comparing classifiers as described below.

10.3.5.3 Evaluation of Acoustic Classifiers

The comparison of the performance of acoustic classifiers with random oracles
showed that the classifiers did indeed learn something about many of the
HiFind labels. More than 450, out of 632 labels, were better learned with the
acoustic classifiers than with random oracle. Table 10.1 indicates, for each
feature set, the distribution of the relative performance of acoustic classifiers
with regards to random oracles.

Table 10.1 also shows that around 130 to 150 labels lead to low-
performance classifiers, that is, acoustic classifiers that did not perform signif-
icantly better than a random oracle (the last row Table 10.1); approximately
half of the labels led to classifiers that improve over the performance of a
random classifier by less than 10; the rest (top rows) clearly outperformed a
random oracle, that is, they were well modeled by acoustic classifiers.

It is interesting to see that the performance of these acoustic classifiers
varied from 0% for both feature sets to 74% for the generic features and 76%
for the specific ones. The statistical distribution of the performance was close
to a power law distribution, as illustrated by the log-log graph of Figure 10.3.

These acoustic classifiers learned aspects of human musical categorization
with a varying degree of success. The problem, as outlined below, is that
popularity stands at the bottom line of this scale.
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Improvement Specific Generic
50 8 0
40 12 15
30 43 20
20 111 79
10 330 360
0 128 158

Table 10.1
Number of Labels for Which an Acoustic Classifier Improves over a Random
Classifier by a Certain Amount (Column “Improvement” reads as follows:
there are 111 labels for which a specific acoustic classifier outperforms a ran-
dom classifier by +20 [in min-F-measure].)

Not surprisingly, it could be observed that specific features performed al-
ways better than the generic ones (see Figure 10.4). Since the classifiers were
both based on the same SVM/kernel, the difference in performance could only
come from the actual features considered.

Last, the relationship between the performance and the size of the training
set was studied. The trend lines in Figure 10.5 show that the performance of
acoustic classifiers increase with the training data set size, regardless of the
feature set. This was consistent with the acknowledged fact that machine-
learning algorithms require large numbers of training samples, especially for
high-dimensional feature sets.

These experiments showed that acoustic classifiers definitely learned mu-
sical information, with varying degrees of performance. It also showed that
the subjective nature of the label did not seem to influence their capacity to
be learned by audio features. For instance, the label “Mood nostalgic” was
learned with 48% (specific features), and 43% (generic features), to be com-
pared to the 6% of the random oracle. Similarly, label “Situation evening
mood” was learned with 62% and 56% respectively, against 36% for random.
Since a priori high-level features of songs could be learned with some success,
why not popularity?

10.3.5.4 Inference from Human Data

This double feature experiment was complemented by another experiment
with classifier trained using all the HiFind labels but the Popularity ones.
Some pairs of HiFind labels were perfectly well correlated so this scheme
worked obviously perfectly for those, but this result was not necessarily mean-
ingful in general (e.g., to infer the country from the language). The same Train
/ Test procedure described above applied with the 629 nonpopularity labels
as input yielded the following result (min-F-measure): 41% (Popularity-Low),
37% (Popularity-Medium), and 3% (Popularity-High).
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Figure 10.3
Log-log graph of the distribution of the performance of acoustic classifiers for
both feature sets.

10.3.6 Summary

The results concerning the Popularity labels are summarized in Table 10.2.
These results show clearly that the Popularity category was not well-modeled
by acoustic classifiers: its mean performance was ranked fourth out of 16
categories considered, but with the second lowest maximum value among cat-
egories.

Although these results appear to be not so bad at least for the “Low” label,
the comparison with the corresponding random classifiers shows that popular-
ity is in fact not learned. Incidentally, the performance was not improved with
the correction scheme, a method that exploits inter-relations between labels
to correct the results [25]. Interestingly, human features (all HiFind labels)
did not show either any significant improvement over random classifiers.

A last experiment was conducted with a priori irrelevant information:
the letters of the song title, that is, a feature vector of size 26, containing the
number of occurrences of each letter in the song title. The performances of the
corresponding classifiers were respectively 32%, 28%, and 3%. (For the low-,
medium-, and high-popularity labels, see Table 10.2.) This shows that even
dumb classifiers can slightly improve the performance of random classifiers
(by 5% in this case for the medium- and low-popularity labels). Obviously,
this information does not teach us anything about the nature of hits and can
be considered as some sort of noise.

These results suggest that there are no significant statistical patterns

 



Hit Song Science 321

Figure 10.4
Cumulated distribution of the performance of acoustic classifiers for the
generic and specific feature sets.

concerning popularity using any of the considered features sets (audio or hu-
mans). This large-scale evaluation, using the best machine-learning techniques
available to date, contradicts the initial claims of Hit Song Science, that is that
the popularity of a music title could be learned effectively from well-identified
features of music titles. A possible explanation is that these early claims were
likely based on spurious data or on biased experiments. This experiment was
all the more convincing that other subjective labels could be learned reason-
ably well using the features sets described here (e.g., the “mood nostalgic”
label).

The question remains: Do these experiments definitely dismiss the Hit
Song Science project?

10.4 Discussion

The experiments described above show that current feature-oriented ap-
proaches to hit song prediction are essentially not working. This negative
result does not mean, however, that popularity could not be learned from
the analysis of a music signal or from other features. It rather suggests that
the features used commonly for music analysis are not informative enough to
grasp anything related to subjective aesthetic judgments.
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Figure 10.5
The relative performance of the 632 acoustic classifiers (i.e., the difference
between the min-F-measures of the classifier and of the corresponding random
oracle) for specific and generic features, as a function of the training database
size. The performance of the acoustic classifiers increases with the size of the
training database.

A natural way forward is to consider other feature sets. A promising ap-
proach is the use of feature generation techniques, which have been shown to
outperform manually designed features for various audio classification tasks
[24]. However, more work remains to be done to understand the features of
subjectivity for even simpler musical objects such as sounds or monophonic
melodies. Concerning the problem of social pressure, an interesting approach
is to use music produced with exotic musical temperaments, an approach de-
scribed by Loui et al. [19] to study the effects of exposure on musical learning
and preference. This approach cannot be used on existing music, but has the
great advantage of avoiding the biases of social pressure.

These negative results cast serious doubts on the predictive power of com-
mercial Hit Song Science systems. Therefore, notwithstanding the limitations
of current feature-based approaches, the arguments of social pressure effects
are crippling: Hit Song Science cannot be considered, in its current state,
as a reliable approach to the prediction of hits, because of the chaotic way
individual preferences are mingled and propagated.

In spite of these negative results, we think that the main scientific inter-
est of Hit Song Science, from a MIR viewpoint, lies precisely in the feature
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Low 36 35 31 41 32 27
Medium 36 34 38 37 28 22
High 4 3 3 3 3 3

Table 10.2
The Performance (Min-F-Measures) of the Various Classifiers for the Three
Popularity Labels (No significant improvement on the random oracle is ob-
served.)

questions: Are there features of popularity, for an individual or for a commu-
nity, and, if yes, what are they? From this perspective, Hit Song Science is a
fascinating enterprise for understanding more what we like, and hence, what
we are. The studies presented here have only started to scratch the surface of
these questions: Hit Song Science is not yet a science but a wide open field.
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11.1 Introduction

Symbolic data mining in musicology is concerned with extracting musical
information from symbolic representations of music: that is, music that is rep-
resented by sequences of symbols over time. Representing music symbolically
is certainly not a new practice; the majority of Western music exists primarily
in a symbolic notation system evolved over more than a thousand years, and
there are many examples of symbolic musical notation in other cultures. How-
ever, in the majority of cases the symbols used in this kind of study come from
common practice musical notation, in the Western European tradition, within
the last half millennium. Usually, these are the familiar notes and rests, but
sometimes other representations such as chord symbols, neumes, tablature, or
various kinds of performance markings are used.

327
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There are significant differences between working with symbolic data and
audio recordings. One view is that a score is an “ideal” version of music that
exists prior to a performance, and recordings are simply instantiations. This is
a common viewpoint but is rather limited and does not usually deal well with
situations such as transcriptions made from recordings. From a data mining
viewpoint, another perhaps more useful way to view symbolic music is as a
kind of filtered, normalized recording where many details such as timbre, pitch
variation, or performance aspects that usually complicate audio analysis are
simply not present. Something as simple as finding the notes in a melody
can be a difficult task to accomplish with precision from a recording, and
working with polyphony is extremely difficult in most cases. With symbolic
music data these are usually the starting point for analysis. In effect, the
symbolic music analysis is often close to what an audio analysis would hope to
achieve if the present state of our existing transcription techniques were more
flexible, and these considerations can greatly influence the kinds of analysis
that can be undertaken. Many types of musical analysis regarding traditional
musicological concepts such as melody, harmonic structure, or aspects of form
are easier to investigate in the symbolic domain, and usually more successfully.

Data mining is used for many different types of knowledge discovery, in-
cluding predictive and exploratory tasks. Data mining in musicology is mostly
concerned with trying to answer specific musicological questions that may be
difficult to answer using other means. Here we attempt to summarize lessons
we have learned from our own experiences in working in this area [8, 9, 3, 12].
After a discussion of the role of the computer in this work in Section 11.2
and some methodological aspects of this kind of data mining (Section 11.3),
in Section 11.4 we present a case study involving the determination of double
leading tones and tuning in a large corpus of 15th-century music.

11.2 The Role of the Computer

One might wonder if these kinds of investigations should not be left to exist-
ing methodologies such as musicology or music theory. In fact, why involve a
computer at all? The most obvious reason of course is that computers save
time. Traditionally, musical analysis is a task accomplished primarily through
manual examination and analysis. A music analyst or theoretician often begins
an analysis by making marks directly on a music score. While many types of
tasks are possible, the majority involve, for example, tasks such as frequency
counts or the comparison of recurring features. These results are then tabu-
lated and presented to the reader in either a summarized form, or as a set
of examples, and this usually forms the basis for further interpretation. The
initial stages of this process can be extremely time consuming; the computer
can be an excellent tool for overcoming these limitations.
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Another consideration is that traditional musical analysis tends to concen-
trate on what we might term the “extraordinary” attributes of a musical work;
that is, the features of a piece of music or collection that are most interesting
to a particular analyst. While it is common practice to overlook the statisti-
cal flaw in this methodology, this is also partially a byproduct of the amount
of work involved. Usually, this results in only a few pieces receiving concen-
trated analysis, often a single composition, or alternately a limited analysis
of a larger group of works. With a large collection of pieces the analyst may
only be able to accommodate surface details of each piece, or concentrate on
a single feature, such as the opening themes of a group of sonatas.

This leads to another consequence. The kinds of computer methods be-
ing explored in this field make it possible to analyze large groups of pieces
in detail. This is especially important as this is an area that has rarely been
dealt with in music theory, again a consequence of the productivity of single
researchers. A study on the scale that is possible with computers would pre-
viously have taken many years to complete, and possibly a researcher’s entire
career! Current trends in research funding do not tend to favor the sort of
long-term study necessary for this kind of work. It is now possible to analyze
enormous collections in minutes (assuming a suitable methodology) and it is
not difficult to imagine comparisons across complete collections of multiple
composers, styles, or time periods, within the boundaries of current research
resources.

One additional advantage of symbolic data mining, and probably the least
obvious, is that it brings to the work a level of consistency that can be difficult
for a single researcher to achieve. A primary difference between computers
and people is that people learn and develop while undertaking a task, and
computers do not. A human proceeding with an analysis will begin to adapt
to it, and analysis projects spanning weeks or months tend to accentuate
this process of adaptation. It is not uncommon for a musicologist to expand
his opinions, methods, and even goals during the course of an analysis. In
contrast, the computer does not do this, and treats each piece in a collection in
exactly the same manner. In a very particular sense this makes the computer
more objective than a human. However, this should not be confused with
true objectivity; computational methods of analysis still contain the analytical
biases of the the analyst, but at least these biases are applied equally across
the entire data set.

11.3 Symbolic Data Mining Methodology

Data mining is typically described as having several stages, including prepro-
cessing, data mining, and the validation and extraction of knowledge from the
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results. This section discusses some of the issues that are specific to this type
of work in the data mining context.

11.3.1 Defining the Problem

One of the most important steps in the entire data mining process is decid-
ing on what the goals are of the analysis and what it is likely to achieve.
Is it to find a way to predict melodies for hit songs, for instance, to learn
something about cadence usage patterns, or to discover recurring elements
of a composer’s style across his entire corpus? Giving some consideration to
what is to be investigated is extremely important, as it can save considerable
effort and avoid difficulties that may occur later in the process. This is espe-
cially important if a preexisting data set is not available. Experiments that
require new data to be entered require some careful thought as to the choice
of encodings and formats. Also some musicological questions are simply too
difficult or ephemeral to answer in a data mining context (although a great
many can) and some forethought at this stage is recommended, and often not
given enough attention.

11.3.2 Encoding and Normalization

Symbolic data for musical data mining is available in many different formats.
Probably the most common is the Musical Instrument Digital Interface (MIDI)
format. MIDI is primarily designed to store keyboard performances and is ac-
ceptable for pitch and duration queries, but tends to represent notated scores
rather poorly. For instance, measures are not explicitly encoded, there is no
differentiation between flat and sharp accidentals, and rests must be inferred
from the absence of notes. However, this may be sufficient for some research
questions.

There are also a variety of more specific music formats, including Hum-
drum [7], MuseData [17], MusicXML [4], and GUIDO [5]. In our work we tend
to prefer using the Humdrum kern notation because it is easy to use, edit,
and parse, and has some visual affinity as a data format with score notation
(albeit vertically instead of horizontally)[10]. A recent addition is the Music
Encoding Initiative (MEI) format that is still under development and looks
extremely promising [16].

If an existing collection is not available, often the only choice is to create
the data from scratch. Encoding data directly from musical scores by hand can
be an extremely labor-intensive process, and can take considerable amounts
of time for proofreading. One method for creating collections more easily is to
use an optical music recognition (OMR) system. OMR systems can be faster
for adding data but are prone to error [2, 11]. They may not capture some of
the details of a score, although these systems keep improving. Symbolic music
information can also be entered by a skilled performer using a MIDI keyboard
or some other entry device, although this usually entails using the deficient
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MIDI file format. In any case, all three methods usually require considerable
editing, proofreading, and verification of the data against the original scores.

Some consideration must also be given to how this data is to be normalized.
Keys, note names, accidentals, rhythms, and chord symbols can be encoded in
different ways, and the choice of representation can be influenced by the prob-
lem under investigation. For instance, when comparing melodies, it is often
beneficial to transpose them to a common key or mode instead of encoding
them as found in the original scores.

The primary purpose of data mining is to discover knowledge from a data
set by reducing it to something more manageable and exposing hidden infor-
mation, and the cases we present here do not deviate from this idea. Most
of our work has focused on answering specific musicological questions. Gen-
erally we are more concerned with discovering answers in preexisting groups
of pieces, and less concerned with predicting specific outcomes. While there
are many different types of classifiers used in data mining, the tools we have
found most useful for summarization are histograms, scatter plots, decision
trees, and basic clustering procedures. Also, the results of the extraction pro-
cess will usually require additional filtering of some kind.

11.3.3 Musicological Interpretation

Music is a complex subject, and to discover worthwhile knowledge in this
context requires a final interpretive stage. In our opinion, this is best done
in conjunction with an informed researcher experienced in the music and lit-
erature of the domain under investigation, so that false trails, assumptions,
and conclusions may be avoided. Additionally, this interpretive stage often
suggests new directions and refinements of the entire process.

11.4 Case Study: The Buxheim Organ Book

To demonstrate the possibilities inherent in symbolic music data mining we
discuss applications to two related problems in the area of 15th-century per-
formance practice. A brief outline of each problem is followed by an analysis
of the data-mining process, results, and musicological interpretation.

Both questions concern the same collection of music. The core of this col-
lection consists of the Buxheim Organ Book, the largest extant manuscript
of 15th-century keyboard music, and notated in Old German organ tabla-
ture. Many of the pieces are based on models that exist elsewhere in the
conventional mensural notation of the period. The collection also contains the
concordances of these pieces found in mensural manuscripts. Altogether, the
Buxheim Organ Book consists of about 250 pieces, about 60 of which have
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Buxheim files 268
Buxheim notes 155252
Model files 228
Model notes 76812
Earliest concordance ca. 1400
Latest concordance ca. 1520s
Known composers 25

Table 11.1
Buxheim Data Set

one or more concordances in nearly 100 manuscripts, for a total of about 500
files. Precise details of the data collection are given in Table 11.1.

11.4.1 Research Questions

Many principal research questions of interest to modern scholars of perfor-
mance practice are concerned with the interpretation of pitch material, the
precise details of which rely on performance conventions that have not been
accurately preserved in written form. The case study discussed here addresses
two important musicological questions.

Our first question concerns the “double leading tone” accidental. In the
15th century, performers relied on conventions for adding accidentals to no-
tated music. One of the most common chromatic alterations was the raising
of the leading tone at cadences. A simple definition of a cadence in this music
is a progression between two voices of a sixth moving outwards to an octave.
The repertoire under consideration is predominantly in three voices, and when
two of these form a cadence, the third voice can often be found in parallel to
the top voice, stepping from the fourth degree above the cadential note to the
fifth degree (illustrated in Figure 11.1). A “double leading tone” is the raising
of the fourth degree to create a type of leading tone to the fifth degree. This
chromatic inflection is extremely rare in mensural notation. Our first task at-
tempts to discover empirically the frequency of this inflection in the Buxheim
Organ Book and the circumstances under which it is notated.

Our second question concerns possible keyboard tunings in the 15th cen-
tury. While it is beyond the scope of this chapter to explore in detail all of the
musicological aspects of this topic, as well as the controversies, the following
summary is given as a background to understanding the problem.

The problem, simply stated, is as follows: purely tuned intervals do not
fit neatly into an octave, to give purely tuned triads. For example, in the
Pythagorean tunings that predominated until the late middle ages, the notes
of a keyboard are generated by tuning a long chain of pure perfect fifths and
transposing the pitches to end up within the same octave. Each successive
fifth has a ratio of 3/2 against the previous frequency, so a chain beginning
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Figure 11.1
Cadences to G and C, showing the double leading tone.

on “middle” C (261.63 Hz, according to the most common modern standard)
would be followed by G (392.44 Hz), then D (588.66 Hz) and so on. At the
end of the chain the B] (adjusted by octave to 260.74 Hz), which would fall
on the same key as C, will be audibly different from the original C (261.63
Hz).

This small interval is known as the syntonic comma, and all keyboard
temperaments are essentially clever attempts to conceal this inconsistency
[15]. The specific way this is accomplished is known as a temperament, and
depends greatly on the musical priorities of its inventor.1

The two main types of temperament systems in use during the mid-15th
century are Pythagorean tunings and mean-tone tunings. In Pythagorean tun-
ings all fifths except one are pure, and as a result most major thirds are far too
large. Only very few of the triads will sound pure, depending on the place-
ment of the bad, “wolf” fifth. In mean-tone tunings, some of the fifths are
made smaller by fractions of the comma, in order to yield a greater num-
ber of good thirds. Although the most familiar mean-tone tuning is probably
quarter-comma mean-tone, there are other variants.

The choice of tuning system was dependent on the musical priorities of
the musician. While the mathematics of tuning had been well understood for
many centuries, including the theoretical possibility of other tunings, in prac-
tice Pythagorean tuning dominated until the time period in question. In the
case of earlier music the emphasis was on using perfect harmonic intervals,
and the bad thirds of a Pythagorean temperament may not have been con-
sidered detrimental. However, as major thirds (and thus triads) become more
musically significant as consonances, tuning systems were developed to make

1The difficulty of tunings extends beyond keyboard instruments, essentially concerning
any instrument on which more than one pitch is fixed in place (including for example fretted
stringed instruments of many types, as well as wind instruments with finger holes such as
recorders). The reasons for investigating this problem extend beyond the practical (how can
different types of instruments be used together?), into aesthetic and philosophical realms.
For the purposes of this discussion, however, we are confining ourselves to the implications
of a specific keyboard manuscript.
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these available. One implication of this, of particular relevance here, is that
music in which certain simultaneities are treated as consonances can be read
to imply the use of a tuning system in which those simultaneities are especially
good.

However, in order to evaluate the pitch content of a particular repertory,
one needs to be fairly sure of the actual pitches that were meant to be per-
formed. This is a particularly difficult problem in late medieval music, where
unwritten performance conventions often led to alterations of notated pitches.
There are two factors to consider here. First, tuning is more obviously a con-
cern for instruments with fixed pitches such as keyboards, and these are the
instruments where tablature notation was used. Second, the way in which
pitches are notated in tablature suggests that scribes might have been more
likely to notate the actual pitch intended. Certainly, there are far more ex-
plicitly notated accidentals in Buxheim than are found in mensural notation.

To what extent conclusions drawn from tablature, even from originally-
vocal pieces that have been intabulated, can be retrofitted to vocal music,
is controversial. Similarly, vocal performance, and indeed performance on all
nonfixed-pitch instruments, allows for minute adjustments in tuning. This
allows performers to produce perfectly good triads, even while they might be
living inside an ostensibly Pythagorean conceptual framework. It is difficult to
conceive of a productive way of examining the question, “will a composer use
sonorities that are theoretically impure, when they can be practically pure?”2

The evidence we have available to us, however, does invite us to examine
keyboard performance practice more closely with regard to tunings.

Mark Lindley has been a principal scholar examining the music of this pe-
riod for clues to tuning practices, and we have used his investigations as the in-
spiration for our Buxheim experiment. First, he gleaned descriptions of a par-
ticular variant of Pythagorean tuning, which he terms the F]xB scheme, from
predominantly Italian theoretical sources, including writers such as Ugolino,
Prosdocimo, Zwolle, Gaffurio, and Aaron [13, pp. 4–5]. In this tuning, the
white notes of the keyboard are tuned as a chain of fifths (F–B), and the
black notes are generated by adding another chain of fifths to the bottom end
of this chain (a chain of flats, from B[ down to G[). Since the Pythagorean
diminished fourth (for example, D–G[) is much closer to a pure major third
than the Pythagorean third, major triads constructed of two white keys with
a black key in the middle are virtually pure. For example, D–G[–A, reinter-
preted as D–F]–A, is a very good triad, as are major triads on E and on
A.

Lindley looked for evidence of this tuning in two of the principal tabla-
ture sources of the period, the Faenza Codex and the Buxheim Organ Book
[13, pp. 38–43]. He regards the appearance of particularly prominent A- and
D-major triads as indicative of this tuning practice, where examples of promi-
nence might be protracted sonorities or thickened textures (such as temporary

2A good introduction to the debate can be found by Bent [1].
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addition of an extra voice). In Buxheim, he identifies a group of pieces in
the first eight (of nine) fascicles as likely candidates. He adds that “none of
the arrangements bears Conrad Paumann’s initials, none is derived from the
transcriptions accompanying the ‘Nürnberg 1452’ version of his Fundamen-
tum organizandi [ in the Lochaimer Liederbuch ]. . . , and none belongs to the
most ornate category in the Buxheim repertory.”[13, p. 42] Elsewhere he uses
a Buxheim Fundamentum (keyboard exercise) to support his arguments that
certain passages in Ramos’s Musica Practica imply a mean-tone temperament,
citing (along with Shohe Tanaka) Paumann’s free use of diatonic triads [14,
p. 50].

In effect, then, Lindley finds that two different temperament systems are
implied by different groups of pieces in Buxheim: a group of early 15th-
century chansons exhibiting F]xB characteristics, and a group of Paumann-
circle pieces suggesting mean-tone tuning.3 This is not a problem, even if they
were collected by one person to be played on one instrument (presumably with
the mean-tone variant suggested by the later Paumann-circle pieces), since the
F]xB pieces would have been composed well before their incorporation into
Buxheim, and would work just fine in a temperament designed to produce
even more acceptable thirds than F]xB.

The purpose of our experiment is both to test Lindley’s theory empirically
(as he does not provide any specific numbers), and to discover if any particular
groupings of pieces or sonorities can be found that suggest changes in the
tuning practices applicable to Buxheim. Other questions of interest, that could
be addressed using data mining, include:

• Are Lindley’s findings empirically borne out by our data?

• Are there clear groupings of pieces within Buxheim, that might suggest
different tuning systems?

• If there are such groupings, do they bear any relation to factors such as
possible date of composition or place of origin?

• Do originally mensural pieces that have been transcribed into Buxheim
show compositional changes that might suggest a different tuning sys-
tem?

11.4.2 Encoding and Normalization

To answer our two primary questions we mainly need to know about pitches
and when in time these pitches occur, and require awareness of the separate
voices. The principal features of pitch and rhythm are available from the late-
medieval notation. In addition, we need to record information about the source
manuscripts, (such as the date or place of copying, if known), and any unusual

3He does not give the exact pieces included in each group.
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features that might make the notation more or less reliable (damage, obvious
copying mistakes, and so on). This metadata is often useful in filtering the
data collection. For example, results that consistently appear in conjunction
with a “damaged page” flag might be discarded.

To represent pitches and rhythms, we used the kern representation asso-
ciated with the Humdrum Toolkit [6]. Other features of the original, such as
ligatures (symbols representing multiple notes in one), foliation, line-breaks,
and areas of ambiguity, while not having immediate application, were seen as
potentially useful. To accommodate this we constructed an additional Hum-
drum representation called fol, for “foliation.”

Mensural notation, the top voice of tablature notation, and the lower voices
of tablature notation all appear differently on a page. The top voice of the
tablature, while on a staff, appears to have been notated in rhythmic values
that are twice as fast as their mensural equivalents, and the lower tablature
voices are written as letter symbols with separate rhythmic symbols above
them (see Figure 11.2). In addition, mensural notation has signature acciden-
tals, as well as “mensural signs” (time signatures). Neither of these exists in
tablature notation. However, tablature notation has bar lines that are nonex-
istent in mensural notation. All of these types were transcribed into the same
representation. A kern half note (minim) was used to represent a tablature
minim and its mensural equivalent, a semibreve. kern’s bar lines were used
to indicate divisions between mensural units in mensural notation, and the
corresponding bar lines in tablature. Figure 11.2 shows how the beginning of
the example tablature piece is represented in kern.

The encoding of the manuscripts was initially accomplished using direct
manual entry from notation into kern, Later, to improve encoding speed, a
MIDI keyboard was used to encode to MIDI format, with subsequent auto-
mated conversion into kern through a custom software solution. Initially, we
investigated OMR, but were unable to find a system that could adequately
handle manuscript music of this period. After data entry, each piece required
several proofreading passes, as well as the addition of fol metadata. The
collection took over a year of an expert’s time to encode.

11.4.3 Extraction, Filtering, and Interpretation

11.4.3.1 Double Leading Tones

First, we had to devise an algorithm that would robustly identify all situa-
tions that could qualify as cadences. This was complicated by the frequent
appearance of the “Landini ornament,” which obscures the sixth-to-octave
progression by turning the interval immediately preceding the octave into a
fifth (see Figure 11.3). Then, situations with the parallel voice-leading de-
scribed above had to be extracted, and the number of double-leading-tone
inflections counted.

Once all double-leading tone cadences had been extracted, further filtering
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!!!ONM: 124
!!!OTL: Fortune
!!!OTA: Gentil madonna
**kern **kern **kern **fol
*tenor *contra *sup *
2r 2r 8cc 66v1
. . 8b .
. . 8a .
. . 8b .
=1 =1 =1 .
1c 1g 2cc .
. . 2cc .
4d 2G 4bM .
4e . 16cc .
. . 16b .
. . 16a .
. . 16b .
=2 =2 =2 =

Figure 11.2
Piece No. 124 as it appears in Buxheim as tablature notation. (Bayerische
Staatsbibliothek München. Mus. Ms 3725, f. 66v.)
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Figure 11.3
The “Landini” ornament.

Figure 11.4
Double leading tones in cadences to C, grouped according to the final pitch
of the pieces.

was necessary. The pitch on which the cadence occurs is significant, because
certain accidentals are more common than others, and because this pitch could
have more or less significance, depending on its relationship to the “final” of
the piece (somewhat analogous to the tonic in later music). Figure 11.4 shows
a graph generated from the extraction results. The cadences shown are all
on the pitch C, making the double leading tone an F] (leading to the fifth
degree G). The X axis shows cadences in the mensural model concordances,
alternating with cadences in Buxheim. Each pair of columns represents pieces
based around the same pitch (C-pieces, D-pieces, etc.). This feature has been
separated out, to allow us to see if “final” in any way influences the tendency
for an indicated double leading tone.

The results shown in this graph are rather startling. It appears that in
the case of the mensural notation, the F] is never notated, whereas in the
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tablature notation, it is notated over 90% of the time! The relationship of
the cadential pitch to the final had no significant impact. The graph suggests
that this particular chromatic alteration is mandatory, and supports the idea
that tablature notation may be more reliable with regard to performed pitches
than mensural notation.

Further investigation of double leading tone behavior at cadences to other
pitches led to the observation that the intabulator appeared to be explicitly
avoiding the pitch D], which would be the double leading tone in cadences
to A. A possible explanation for this might be the use of a tuning system in
which there are no good D]s, those notes having been tuned give good E[s
instead. This piqued our interest, and suggested that further clues to tuning
systems might indeed be found in Buxheim.

11.4.3.2 Keyboard Tuning

All of our tuning questions are addressed by the same core method: count-
ing occurrences of various major triads in places where one might expect a
good, pure sound to be favored. Three types of situations for prominent triads
are: prolonged sonorities, thickenings of texture through the addition of extra
voices, and prominent placement within the mensural unit (what would be
called, in modern terms, a downbeat).

After the chords in these places had been counted, the results were filtered
using metadata contained within the individual piece-files, to group pieces by
characteristics such as concordant manuscripts, composers, or location within
Buxheim.

For illustrative purposes, the following examples show only chords that
occur at the beginning of mensural units. In our Buxheim collection these
are trivial to locate, as the scribes used vertical lines in the manuscripts that
are similar to modern bar lines. Rythmically prominent chords could easily
be extracted by taking the chords following these lines, represented in kern
using the bar-line symbol (“=”). All triads that were not major triads were
discarded, and these triads were then grouped roughly according to the tuning
system they were thought to imply. Without going into too much detail, A
minor, D major, and E major triads are in a “Pythagorean” group, whereas
white-note major triads (C, F, G) and B[ major are in a “Meantone” group.

Our first two graphs simply show the frequency of these triads in the Bux-
heim collection as compared with the concordant manuscripts. In Figure 11.5,
downbeat triads in Buxheim pieces are shown as percentages of all downbeat
triads in the Buxheim pieces. Only those pieces that have concordances in
other manuscripts are shown. Our “Pythagorean” group of D major, A ma-
jor, and E major is well represented, gathering about 15% of the occurrences
in total, with D major and A major representing the largest groupings. By
comparison, our “Meantone” group has nearly 45% of the total triads, with the
E[ major triads forming a small but significant group. G major and C major
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Figure 11.5
Buxheim consonant triads.

triads are the most prevalent, with B[ major and F major triads represented
in distant third and fourth place.

Figure 11.6 shows a profile of downbeat triads in concordances. We are
including only mensural concordances here, to avoid contaminating our data
with accidentals from other keyboard manuscripts. Less than 2% of the triads
found here are in the “Pythagorean” group, and about 32% of the triads are
in the “Meantone” group. The order of triad frequency is the same as in the
intabulations, but the ratio has changed: G major now has the overwhelming
majority, with C major occurring much less prominently, and far closer to B[
major and F major.

On the surface, it looks as though the Buxheim pieces support the presence
of a tuning that allows the “Pythagorean” triads, whereas the models would
seem to be sending us toward a tuning where these triads are not so good!
How can this be? We need to take into consideration the notational practices
of the mensural concordances: notated sharps (the F], C], and G] we are
looking for in our triads) are very rare in mensural manuscripts, and tend to
fall under the heading of conventional performer’s alterations, as described
earlier for the double leading tones. We cannot therefore take the absence



Symbolic Data Mining in Musicology 341

 0

 5

 10

 15

 20

 25

 30

 35

Cm CM Am Fm FM AM BbM Dm DM Gm GM EbM Em

P
e
rc

e
n
ta

g
e
 o

f 
T

o
ta

l 
C

h
o
rd

s

Chord Type

Models Consonant Triads

Figure 11.6
Model consonant triads.
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of such sharps to indicate the absence of our “Pythagorean” triads from the
mensural concordances as they might have been performed . The presence of
these sharps in Buxheim, however, in fairly large numbers, does indicate that
these triads must have sounded reasonably good on the instrument(s) available
to the intabulator(s).

The differences among the “Meantone” triads invite some speculation: why
does C major change so much in prevalence? Is it a particularly sweet triad
on the Buxheim instrument(s), inviting the intabulators to use it more often?

Interpreting these graphs presents us with additional problems. We could
use more context: we need to have some idea of how prevalent these sonorities
are in the complete picture of downbeat sonorities. Perhaps it is not just the
balance among triads that is different between Buxheim and the models, but
also the extent to which complete triads, in general, are employed in exposed
situations. The third voice (the contratenor) is often not as structurally sig-
nificant in this repertoire as the other two (the superius and tenor), and so,
it is the most subject to alterations. In Buxheim, many contratenors are not
as faithfully intabulated as the other parts, and may indeed be missing. This
could have several consequences on the chord profile: triads may be replaced
by diads, or the contratenor may have been rewritten to accommodate more
favored triads. A refinement to take this into consideration would be including
diads in the total count against which chord percentages are calculated.

Figure 11.7 is similar to the previous two; however, it represents the tri-
ads found in Buxheim pieces in one concordant source only: the Lochaimer
Liederbuch. It is unique, in that it is also in Old German organ tablature,
and in that it seems to have a special link to Buxheim through repertoire
connected with the noted blind organist Conrad Paumann, mentioned earlier.
There is a far smaller variety of triads in use. The “Meantone” C major and
G major are far less prevalent than in Buxheim, whereas the “Pythagorean”
D major is more prevalent. This might suggest that the tuning most familiar
in the performance context of this manuscript is more likely to have been
Pythagorean. However, the sample is much smaller (only the few pieces that
are concordant with Buxheim). Testing this further would require encoding a
larger portion of the Lochaim manuscript for confirmation.

All these chord profiles cannot by themselves invite any conclusions, but
they offer tantalizing thread-ends to pursue. This same methodology could also
be used on later bodies of keyboard music for comparison, for some of which we
have more external evidence about likely keyboard tunings. It also indicates
the need for more traditional musicological investigation. These chord profiles
must now be placed in the context of evidence gleaned not only from Lindley’s
theorists, but also archival records of instrument builders, for example.
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11.5 Conclusion

The type of investigation we have described is not an end in itself; nor can it
replace more traditional modes of enquiry. It can however provide a powerful
tool that not only can quickly accomplish time-consuming traditional analysis
tasks, but provide statistical pictures of a kind simply not feasible through
analysis by hand. The use of data mining techniques shows great potential for
musicological research.
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