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Foreword

I am delighted to introduce the first book on multimedia data mining. When
I came to know about this book project undertaken by two of the most active
young researchers in the field, I was pleased that this book is coming in an
early stage of a field that will need it more than most fields do. In most
emerging research fields, a book can play a significant role in bringing some
maturity to the field. Research fields advance through research papers. In
research papers, however, only a limited perspective can be provided about
the field, its application potential, and the techniques required and already
developed in the field. A book gives such a chance. I liked the idea that there
will be a book that will try to unify the field by bringing in disparate topics
already available in several papers that are not easy to find and understand.
I was supportive of this book project even before I had seen any material on
it. The project was a brilliant and a bold idea by two active researchers. Now
that I have it on my screen, it appears to be even a better idea.

Multimedia started gaining recognition in the 1990s as a field. Processing,
storage, communication, and capture and display technologies had advanced
enough that researchers and technologists started building approaches to com-
bine information in multiple types of signals such as audio, images, video, and
text. Multimedia computing and communication techniques recognize corre-
lated information in multiple sources as well as insufficiency of information
in any individual source. By properly selecting sources to provide comple-
mentary information, such systems aspire, much like the human perception
system, to create a holistic picture of a situation using only partial information
from separate sources.

Data mining is a direct outgrowth of progress in data storage and processing
speeds. When it became possible to store large volumes of data and run
different statistical computations to explore all possible and even unlikely
correlations among data, the field of data mining was born. Data mining
allowed people to hypothesize relationships among data entities and explore
support for those. This field has been applied to applications in many diverse
domains and keeps getting more applications. In fact, many new fields are
a direct outgrowth of data mining, and it is likely to become a powerful
computational tool behind many emerging natural and social sciences.

Considering the volume of multimedia data and difficulty in developing
machine perception systems to bridge the semantic gap, it is natural that
multimedia and data mining will come closer and be applied to some of the
most challenging problems. And that has started to happen. Some of the
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toughest challenges for data mining are posed by multimedia systems. Sim-
ilarly, the potentially most rewarding applications of data mining may come
from multimedia data.

As is natural and common, in the early stages of a field people explore
only incremental modifications to existing approaches. And multimedia data
mining is no exception. Most early tools deal with data in a single medium
such as images. This is a good start, but the real challenges are in dealing
with multimedia data to address problems that cannot be solved using a single
medium. A major limitation of machine perception approaches, so obvious
in computer vision but equally common in all other signal based systems,
is their over reliance on a single medium. By using multimedia data, one
can use an analysis context that is created by a data set of a medium to
solve complex problems using data from other media. In a way, multimedia
data mining could become a field where analysis will proceed through mutual
context propagation approaches. I do hope that some young researchers will
be motivated to address these rewarding areas.

This book is the very first monograph on multimedia data mining. The
book presents the state-of-the-art materials in the area of multimedia data
mining with three distinguishing features. First, this book brings together
the literature of multimedia data mining and defines what this area is about,
and puts multimedia data mining in perspective compared to other, more
well-established research areas.

Second, the book includes an extensive coverage of the foundational the-
ory of multimedia data mining with state-of-the-art materials, ranging from
feature extraction and representations, to knowledge representations, to sta-
tistical learning theory and soft computing theory. Substantial effort is spent
to ensure that the theory and techniques included in the book represent the
state-of-the-art research in this area. Though not exhaustive, this book has a
comprehensive systematic introduction to the theoretical foundations of mul-
timedia data mining.

Third, in order to showcase to readers the potential and practical appli-
cations of the research in multimedia data mining, the book gives specific
applications of multimedia data mining theory in order to solve real-world
multimedia data mining problems, ranging from image search and mining, to
image annotation, to video search and mining, and to audio classification.

While still in its infant stage, multimedia data mining has great momentum
to further develop rapidly. It is hoped that the publication of this book shall
lead and promote the further development of multimedia data mining research
in academia, government, and industries, and its applications in all the sectors
of our society.

Ramesh Jain
University of California at Irvine
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Preface

Multimedia data mining is a very interdisciplinary and multidisciplinary area.
This area was developed under the two parent areas — multimedia and data
mining. Since both parent areas are considered young areas with the history
of around the last ten years or so, the formal development of multimedia data
mining was not even established until very recently. This book is the very
first monograph in the general area of multimedia data mining written in a
self-contained format. This book addresses both the fundamentals and the
applications of multimedia data mining. It gives a systematic introduction to
the fundamental theory and concepts in this area, and at the same time, also
presents specific applications that showcase the great potential and impacts
for the technologies generated from the research in this area.

The authors of this book have been actively working in this area for years,
and this book is the final culmination of their years of long research in this
area. This book may be used as a collection of research notes for researchers in
this area, a reference book for practitioners or engineers, as well as a textbook
for a graduate advanced seminar in this area or any related areas. This book
may also be used for an introductory course for graduate students or advanced
undergraduate seniors. The references collected in this book may be used as
further reading lists or references for the readers.

Due to the very interdisciplinary and multidisciplinary nature of the area
of multimedia data mining, and also due to the rapid development in this
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recent developments related to the specific topics addressed in this book in
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to connect all of the dots together. For those who are beginners to the area
of multimedia data mining, this book serves the purpose of a formal and
systematic introduction to this area.

It is not possible for us to accomplish this book without the great support
from a large group of people and organizations. In particular, we would like to
thank the publisher — Taylor & Francis/CRC Press for giving us the opportu-
nity to complete this book for the readers as one of the books in the Chapman
& Hall/CRC Data Mining and Knowledge Discovery series, with Prof. Vipin
Kumar at the University of Minnesota serving as the series editor. We would
like to thank this book’s editor of Taylor & Francis Group, Randi Cohen, for
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Chapter 1

Introduction

1.1 Defining the Area

Multimedia data mining, as the name suggests, presumably is a combi-
nation of the two emerging areas: multimedia and data mining. However,
multimedia data mining is not a research area that just simply combines the
research of multimedia and data mining together. Instead, the multimedia
data mining research focuses on the theme of merging multimedia and data
mining research together to exploit the synergy between the two areas to
promote the understanding and to advance the development of the knowl-
edge discovery in multimedia data. Consequently, multimedia data mining
exhibits itself as a unique and distinct research area that synergistically relies
on the state-of-the-art research in multimedia and data mining but at the
same time fundamentally differs from either multimedia or data mining or a
simple combination of the two areas.

Multimedia and data mining are two very interdisciplinary and multidis-
ciplinary areas. Both areas started in early 1990s with only a very short
history. Therefore, both areas are relatively young areas (in comparison, for
example, with many well established areas in computer science such as op-
erating systems, programming languages, and artificial intelligence). On the
other hand, with substantial application demands, both areas have undergone
independently and simultaneously rapid developments in recent years.

Multimedia is a very diverse, interdisciplinary, and multidisciplinary re-
search area1. The word multimedia refers to a combination of multiple media
types together. Due to the advanced development of the computer and dig-
ital technologies in early 1990s, multimedia began to emerge as a research
area [87, 197]. As a research area, multimedia refers to the study and de-
velopment of an effective and efficient multimedia system targeting a specific
application. In this regard, the research in multimedia covers a very wide
spectrum of subjects, ranging from multimedia indexing and retrieval, multi-
media databases, multimedia networks, multimedia presentation, multimedia

1Here we are only concerned with a research area; multimedia may also be referred to

industries and even social or societal activities.
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quality of services, multimedia usage and user study, to multimedia standards,
just to name a few.

While the area of multimedia is so diverse with many different subjects,
those that are related to multimedia data mining mainly include multime-
dia indexing and retrieval, multimedia databases, and multimedia presenta-
tion [72, 113, 198]. Today, it is well known that multimedia information is
ubiquitous and is often required, if not necessarily essential, in many appli-
cations. This phenomenon has made multimedia repositories widespread and
extremely large. There are tools for managing and searching within these
collections, but the need for tools to extract hidden useful knowledge embed-
ded within multimedia collections is becoming pressing and central for many
decision-making applications. For example, it is highly desirable for devel-
oping the tools needed today for discovering relationships between objects or
segments within images, classifying images based on their content, extract-
ing patterns in sound, categorizing speech and music, and recognizing and
tracking objects in video streams.

At the same time, researchers in multimedia information systems, in the
search for techniques for improving the indexing and retrieval of multimedia
information, are looking for new methods for discovering indexing informa-
tion. A variety of techniques, from machine learning, statistics, databases,
knowledge acquisition, data visualization, image analysis, high performance
computing, and knowledge-based systems, have been used mainly as research
handcraft activities. The development of multimedia databases and their
query interfaces recalls again the idea of incorporating multimedia data min-
ing methods for dynamic indexing.

On the other hand, data mining is also a very diverse, interdisciplinary,
and multidisciplinary research area. The terminology data mining refers to
knowledge discovery. Originally, this area began with knowledge discovery
in databases. However, data mining research today has been advanced far
beyond the area of databases [71, 97]. This is due to the following two rea-
sons. First, today’s knowledge discovery research requires more than ever the
advanced tools and theory beyond the traditional database area, noticeably
mathematics, statistics, machine learning, and pattern recognition. Second,
with the fast explosion of the data storage scale and the presence of multime-
dia data almost everywhere, it is not enough for today’s knowledge discovery
research to just focus on the structured data in the traditional databases;
instead, it is common to see that the traditional databases have evolved into
data warehouses, and the traditional structured data have evolved into more
non-structured data such as imagery data, time-series data, spatial data, video
data, audio data, and more general multimedia data. Adding into this com-
plexity is the fact that in many applications these non-structured data do not
even exist in a more traditional “database” anymore; they are just simply a
collection of the data, even though many times people still call them databases
(e.g., image database, video database).

Examples are the data collected in fields such as art, design, hyperme-
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dia and digital media production, case-based reasoning and computational
modeling of creativity, including evolutionary computation, and medical mul-
timedia data. These exotic fields use a variety of data sources and structures,
interrelated by the nature of the phenomenon that these structures describe.
As a result there is an increasing interest in new techniques and tools that
can detect and discover patterns that lead to new knowledge in the problem
domain where the data have been collected. There is also an increasing in-
terest in the analysis of multimedia data generated by different distributed
applications, such as collaborative virtual environments, virtual communi-
ties, and multi-agent systems. The data collected from such environments
include a record of the actions in them, a variety of documents that are part
of the business process, asynchronous threaded discussions, transcripts from
synchronous communications, and other data records. These heterogeneous
multimedia data records require sophisticated preprocessing, synchronization,
and other transformation procedures before even moving to the analysis stage.

Consequently, with the independent and advanced developments of the two
areas of multimedia and data mining, with today’s explosion of the data scale
and the existence of the pluralism of the data media types, it is natural to
evolve into this new area called multimedia data mining. While it is pre-
sumably true that multimedia data mining is a combination of the research
between multimedia and data mining, the research in multimedia data mining
refers to the synergistic application of knowledge discovery theory and tech-
niques in a multimedia database or collection. As a result, “inherited” from
its two parent areas of multimedia and data mining, multimedia data mining
by nature is also an interdisciplinary and multidisciplinary area; in addition to
the two parent areas, multimedia data mining also relies on the research from
many other areas, noticeably from mathematics, statistics, machine learning,
computer vision, and pattern recognition. Figure 1.1 illustrates the relation-
ships among these interconnected areas.

While we have clearly given the working definition of multimedia data min-
ing as an emerging, active research area, due to historic reasons, it is helpful
to clarify several misconceptions and to point out several pitfalls at the be-
ginning.

• Multimedia Indexing and Retrieval vs. Multimedia Data Mining: It is
well-known that in the classic data mining research, the pure text re-
trieval or the classic information retrieval is not considered as part of
data mining, as there is no knowledge discovery involved. However, in
multimedia data mining, when it comes to the scenarios of multimedia
indexing and retrieval, this boundary becomes vague. The reason is that
a typical multimedia indexing and/or retrieval system reported in the
recent literature often contains a certain level of knowledge discovery
such as feature selection, dimensionality reduction, concept discovery,
as well as mapping discovery between different modalities (e.g., imagery
annotation where a mapping from an image to textual words is discov-
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FIGURE 1.1: Relationships among the interconnected areas to multimedia
data mining.

ered and word-to-image retrieval where a mapping from a textual word
to images is discovered). In this case, multimedia information indexing
and/or retrieval is considered as part of multimedia data mining. On the
other hand, if a multimedia indexing or retrieval system uses a “pure”
indexing system such as the text-based indexing technology employed
in many commercial imagery/video/audio retrieval systems on the Web,
this system is not considered as a multimedia data mining system.

• Database vs. Data Collection: In a classic database system, there is
always a database management system to govern all the data in the
database. This is true for the classic, structured data in the traditional
databases. However, when the data become non-structured data, in
particular, multimedia data, often we do not have such a management
system to “govern” all the data in the collection. Typically, we simply
just have a whole collection of multimedia data, and we expect to de-
velop an indexing/retrieval system or other data mining system on top of
this data collection. For historic reasons, in many literature references,
we still use the terminology of “database” to refer to such a multime-
dia data collection, even though this is different from the traditional,
structured database in concept.

• Multimedia Data vs. Single Modality Data: Although “multimedia”
refers to the multiple modalities and/or multiple media types of data,
conventionally in the area of multimedia, multimedia indexing and re-
trieval also includes the indexing and retrieval of a single, non-text
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modality of data, such as image indexing and retrieval, video index-
ing and retrieval, and audio indexing and retrieval. Consequently, in
multimedia data mining, we follow this convention to include the study
of any knowledge discovery dedicated to any single modality of data as
part of the multimedia data mining research. Therefore, studies in im-
age data mining, video data mining, and audio data mining alone are
considered as part of the multimedia data mining area.

Multimedia data mining, although still in its early booming stage as an
area that is expected to have further development, has already found enor-
mous application potential in a wide spectrum covering almost all the sectors
of society, ranging from people’s daily lives to economic development to gov-
ernment services. This is due to the fact that in today’s society almost all
the real-world applications often have data with multiple modalities, from
multiple sources, and in multiple formats. For example, in homeland security
applications, we may need to mine data from an air traveler’s credit history,
traveling patterns, photo pictures, and video data from surveillance cameras
in the airport. In the manufacturing domains, business processes can be im-
proved if, for example, part drawings, part descriptions, and part flow can be
mined in an integrated way instead of separately. In medicine, a disease might
be predicted more accurately if the MRI (magnetic resonance imaging) im-
agery is mined together with other information about the patient’s condition.
Similarly, in bioinformatics, data are available in multiple formats.

1.2 A Typical Architecture of a Multimedia Data Min-
ing System

A typical multimedia data mining system, or framework, or method always
consists of the following three key components. Given the raw multimedia
data, the very first step for mining the multimedia data is to convert a spe-
cific raw data collection (or a database) into a representation in an abstract
space which is called the feature space. This process is called feature extrac-
tion. Consequently, we need a feature representation method to convert the
raw multimedia data to the features in the feature space, before any mining
activities are able to be conducted. This component is very important as
the success of a multimedia data mining system to a large degree depends
upon how good the feature representation method is. The typical feature
representation methods or techniques are taken from the classic computer vi-
sion research, pattern recognition research, as well as multimedia information
indexing and retrieval research in multimedia area.

Since knowledge discovery is an intelligent activity, like other types of intel-
ligent activities, multimedia data mining requires the support of a certain level
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of knowledge. Therefore, the second key component is the knowledge repre-
sentation, i.e., how to effectively represent the required knowledge to support
the expected knowledge discovery activities in a multimedia database. The
typical knowledge representation methods used in the multimedia data min-
ing literature are directly taken from the general knowledge representation
research in artificial intelligence area with the possible special consideration
in the multimedia data mining problems such as spatial constraints based
reasoning.

Finally, we come to the last key component — the actual mining or learning
theory and/or technique to be used for the knowledge discovery in a multime-
dia database. In the current literature of multimedia data mining, there are
mainly two paradigms of the learning or mining theory/techniques that can be
used separately or jointly in a specific multimedia data mining application.
They are statistical learning theory and soft computing theory, respectively.
The former is based on the recent literature on machine learning and in par-
ticular statistical machine learning, whereas the latter is based on the recent
literature on soft computing such as fuzzy logic theory. This component typ-
ically is the core of the multimedia data mining system.

In addition to the three key components, in many multimedia data mining
systems, there are user interfaces to facilitate the communications between the
users and the mining systems. Like the general data mining systems, for a
typical multimedia data mining system, the quality of the final mining results
can only be judged by the users. Hence, it is necessary in many cases to have a
user interface to allow the communications between the users and the mining
systems and the evaluations of the final mining quality; if the quality is not
acceptable, the users may need to use the interface to tune different parameter
values of a specific component used in the system, or even to change different
components, in order to achieve better mining results, which may go into an
iterative process until the users are happy with the mining results.

Figure 1.2 illustrates this typical architecture of a multimedia data mining
system.

1.3 The Content and the Organization of This Book

This book aims at defining the area of multimedia data mining. We give
a systematic introduction to this area by outlining what this area is about,
what is considered as the theory of this area, and what are the examples of the
applications of multimedia data mining. Since this area is so diverse, inter-
disciplinary, and multidisciplinary, this introduction as well as the materials
covered in this book can by no means be exhaustive and complete. We have
tried our best to select materials included in this book that are representative
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FIGURE 1.2: The typical architecture of a multimedia data mining system.
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enough to expose the readers to the whole area of multimedia data mining as
much as possible under the limited time constraint to publish this book. On
the other hand, due to the rapid development in the literature of this area, we
have also tried our best to select the materials that represent the most recent
advances and status quo of the development of multimedia data mining.

The organization of this book is as follows. The whole book contains three
parts. Part I is this Introduction chapter to define the area of multimedia data
mining and to outline what this book is about. Part II is dedicated to the the-
oretical foundation of the area of multimedia data mining. Specifically, there
are three chapters in this Part. Chapter 2 introduces the commonly used fea-
ture representation techniques and the knowledge representation techniques
in multimedia data mining research. Chapter 3 introduces the commonly
used statistical theory and techniques for multimedia data mining. Chapter
4 introduces the commonly used soft computing theory and techniques for
multimedia data mining. Finally, Part III showcases application examples
in multimedia data mining research. Specifically, there are five chapters in
this Part. Chapter 5 presents an image database modeling approach to mul-
timedia data mining; the focus is to develop a semantic repository training
method. Chapter 6 presents another image database modeling approach to
multimedia data mining where the focus is on developing a concept discovery
method in an imagery database. Chapter 7 presents yet another example in
imagery data mining where we address a specific image mining problem —
imagery annotation, in which we demonstrate how knowledge discovery helps
achieve the goal of imagery annotation. Chapter 8 demonstrates the appli-
cation of video data mining to developing an effective solution to large-scale
video search on the Web. Chapter 9 describes an application of audio data
classification and categorization.

1.4 The Audience of This Book

This book is a monograph on the authors’ recent research in the emerging
area of multimedia data mining. Therefore, the expected readership of this
book is all the researchers and system developing engineers working in the
area of multimedia data mining as well as all the related areas, including
but not limited to, multimedia, data mining, machine learning, computer
vision, pattern recognition, statistics, as well as other application areas that
use multimedia data mining techniques such as bioinformatics and marketing.
Since this book is self-contained in the presentations of the materials, this book
also serves as an ideal reference book for people who are interested in the new
area of multimedia data mining. Consequently, in addition, the readership
also includes any of those who have this interest or work in a field which

© 2009 by Taylor & Francis Group, LLC



Introduction 37

needs this reference book. Finally, this book can be used as a textbook for a
graduate course or even undergraduate senior elective course on the topic of
multimedia data mining, as it provides a systematic introduction to this area.

1.5 Further Readings

As is defined in Section 1.1, the area of multimedia data mining emerges
from the two independent areas of multimedia and data mining. Therefore,
the history of multimedia data mining may trace back to the histories of the
two parent areas. Since multimedia data mining is just in its infant stage,
currently there is no dedicated, premier venue for the publications of the
research in this area. Consequently, the related work in this area, as the sup-
plementary information to this book for further readings, may be found in
the literature of the two parent areas. Specifically, in the multimedia area,
related work may be found in the premier conferences of ACM Multimedia
(ACM MM) and IEEE International Conference on Multimedia and Expo
(IEEE ICME). In particular, the most relevant venue is the annual ACM
International Conference on Multimedia Information Retrieval (ACM MIR),
which used to be an annual workshop in conjunction with ACM MM. Also
recently, there has been a new premier conference that is dedicated to image
and video retrieval, ACM International Conference on Image and Video Re-
trieval (ACM CIVR). In addition, much of the related work may be found
in the computer vision premier conferences, noticeably, IEEE International
Conference on Computer Vision (IEEE ICCV), IEEE International Confer-
ence on Computer Vision and Pattern Recognition (IEEE CVPR), and Eu-
ropean Conference on Computer Vision (ECCV). Some of the related work
may also be found in the pattern recognition premier conference, International
Conference on Pattern Recognition (ICPR), as well as the audio and speech
signal processing premier conference, International Conference on Audio and
Speech Signal Processing (ICASSP). For journals, the related work may be
found in the premier journals in the multimedia area as well as the related ar-
eas of computer vision and pattern recognition, including IEEE Transactions
on Multimedia (IEEE T-MM), IEEE Transactions on Pattern Analysis and
Machine Intelligence (IEEE T-PAMI), IEEE Transactions on Image Process-
ing (IEEE TIP), IEEE Transactions on Speech and Audio Processing (IEEE
T-SAP), and Pattern Recognition (PR), as well as the recently inaugurated
journal, ACM Transactions on Multimedia Computing, Communications and
Applications (ACM TOMCCAP).

In the data mining area, related work may be found in the premier con-
ferences such as ACM International Conference on Knowledge Discovery and
Data Mining (ACM KDD), IEEE International Conference on Data Mining
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(IEEE ICDM), and SIAM International Conference on Data Mining (SDM).
In particular, related work may be found in the annual workshop dedicated to
the area of multimedia data mining in conjunction with the annual ACM KDD
conference, the International Workshop on Multimedia Data Mining (ACM
MDM). For journals, the premier journals in the data mining area may con-
tain related work in multimedia data mining, including IEEE Transactions
on Knowledge and Data Engineering (IEEE T-KDE) and ACM Transactions
on Data Mining (ACM TDM).

In addition, there is recently published literature that is related to multime-
dia data mining. Gong and Xu [90] introduce the machine learning techniques
commonly used in multimedia research. Petrushin and Khan [167]; Zaiane,
Smirof, and Djeraba [233]; and Djeraba [62] edited collections on the recent
research in the area of multimedia data mining. Zhang et al [250] edited a
special issue in IEEE Transactions on Multimedia dedicated to the area of
multimedia data mining.
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Chapter 2

Feature and Knowledge
Representation for Multimedia Data

2.1 Introduction

Before we study multimedia data mining, the very first issue we must resolve
is how to represent multimedia data. While we can always represent the
multimedia data in their original, raw formats (e.g., imagery data in their
original formats such as JPEG, TIFF, or even the raw matrix representation),
due to the following two reasons, these original formats are considered as
awkward representations in a multimedia data mining system, and thus are
rarely used directly in any multimedia data mining applications.

First, these original formats typically take much more space than necessary.
This immediately poses two problems – more processing time and more storage
space. Second and more importantly, these original formats are designed
for best archiving the data (e.g., for minimally losing the integrity of the
data while at the same time for best saving the storage space), but not for
best fulfilling the multimedia data mining purpose. Consequently, what these
original formats have represented are just the data. On the other hand, for the
multimedia data mining purpose, we intend to represent the multimedia data
as useful information that would facilitate different processing and mining
operations. For example, Figure 2.1(a) shows an image of a horse. For such
an image, the original format is in JPEG and the actual “content” of this
image is the binary numbers for each byte in the original representation which
does not tell anything about what this image is. Ideally, we would expect
the representation of this image as the useful information such as the way
represented in Figure 2.1(b). This representation would make the multimedia
data mining extremely easy and straightforward.

However, this immediately poses a chicken-and-egg problem – the goal of
the multimedia data mining is to discover the knowledge represented in an
appropriate way, whereas if we were able to represent the multimedia data in
such a concise and semantic way as shown in the example in Figure 2.1(b),
the problem of multimedia data mining would already have been solved. Con-
sequently, as a “compromise”, instead of directly representing the multimedia
data in a semantic knowledge representation such as that in Figure 2.1(b), we

41
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(a) (b)

FIGURE 2.1: (a) An original image; (b) An ideal representation of the image
in terms of the semantic content.

first represent the multimedia data as features. In addition, in order to effec-
tively mine the multimedia data, in many multimedia data mining systems,
additional knowledge representation is also used to appropriately represent
different types of knowledge associated with the multimedia data for the min-
ing purpose, such as domain knowledge, background knowledge, and common
sense knowledge.

The rest of this chapter is organized as follows. While the feature and
knowledge representation techniques introduced in this chapter are applicable
to all the different media types and/or modalities, we first introduce several
commonly used concepts in multimedia data mining, and some of them are
media-specific concepts, at the very beginning of this chapter, in Section 2.2.
Section 2.3 then introduces the commonly used features for multimedia data,
including statistical features, geometric features, and meta features. Sec-
tion 2.4 introduces the commonly used knowledge representation methods in
the multimedia data mining applications, including logic based representa-
tion, semantic networks based representation, frame based representation, as
well as constraint based representation; we also introduce the representation
methods on uncertainty. Finally, this chapter is concluded in Section 2.5.

2.2 Basic Concepts

Before we introduce the commonly used feature and knowledge represen-
tation techniques that are typically applicable to all the media types and/or
modalities of data, we begin with introducing several important and com-
monly used concepts related to multimedia data mining. Some of these con-
cepts are applicable to all the media types, while others are media-specific.
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2.2.1 Digital Sampling

While multimedia data mining, like its parent areas of data mining and
multimedia, essentially deals with digital representations of the information
through computers, the world we live with is actually in a continuous space.
Most of the time, what we see is a continuous scene; what we hear is continu-
ous sound (music, human talking, many of the environmental sounds, or even
many of the noises such as a vehicle horn beep). The only exception is prob-
ably what we read, which are the words that consist of characters or letters
that are sort of digital representations. In order to transform the continuous
world into a digital representation that a computer can handle, we need to
digitize or discretize the original continuous information to the digital repre-
sentations known to a computer as data. This digitization or discretization
process is performed through sampling.

There are three types of sampling that are needed to transform the continu-
ous information to the digital data representations. The first type of sampling
is called spatial sampling, which is for the spatial signals such as imagery. Fig-
ure 2.2(a) shows the spatial sampling concept. For imagery data, each sample
obtained after the spatial sampling is called a pixel, which stands for a picture
element. The second type of sampling is called temporal sampling, which is
for the temporal signals such as audio sounds. Figure 2.2(b) shows the tem-
poral sampling concept. For audio data, after the temporal sampling, a fixed
number of neighboring samples along the temporal domain is called a frame.
Typically, in order to exploit the temporal redundancy for certain applica-
tions such as compression, it is intentionally left as an overlap between two
neighboring frames for at least one third of a frame-size.

For certain continuous information such as video signals, both spatial and
temporal samplings are required. For the video signals, after the temporal
sampling, a continuous video becomes a sequence of temporal samples, and
now each such temporal sample becomes an image, which is called a frame.
Each frame, since it is actually an image, can be further spatially sampled to
have a collection of pixels. For video data, in each frame, it is common to
define a fixed number of spatially contiguous pixels as a block. For example,
in the MPEG format [4], a block is defined as a region of 8× 8 pixels.

Temporal data such as audio or video are often called stream data. Stream
data can be cut into exclusive segments along the temporal axis. These seg-
ments are called clips. Thus, we have video clip files or audio clip files.

Both the spatial sampling and the temporal sampling must follow a cer-
tain rule in order to ensure that the sampled data reflect the original con-
tinuous information without losing anything. Clearly, this is important as
under-sampling shall lose essential information and over-sampling shall gen-
erate more data than necessarily required. The optimal sampling frequency
is shown to be the twice the highest structural change frequency (for spa-
tial sampling) or twice the highest temporal change frequency (for temporal
sampling). This rule is called the Nyquist Sampling Theorem [160], and this
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(a)

(b)

FIGURE 2.2: (a) A spatial sampling example. (b) A temporal sampling
example.

optimal sampling frequency is called the Nyquist frequency.

The third type of sampling is called signal sampling. After the spatial or
temporal sampling, we have a collection of samples. The actual measuring
space of these samples is still continuous. For example, after a continuous
image is spatially sampled into a collection of samples, these samples represent
the brightness values at the different sampling locations of the image, and
the brightness is a continuous space. Therefore, we need to apply the third
type of sampling, the signal sampling, to the brightness space to represent a
continuous range of the original brightness into a finite set of digital signal
values. This is what the signal sampling is for. Depending upon different
application needs, the signal sampling may follow a linear mathematical model
(such as that shown in Figure 2.3(a)) or a non-linear mathematical model
(such as that shown in Figure 2.3(b)).

2.2.2 Media Types

From the conventional database terminologies, all the data that can be
represented and stored in the conventional database structures, including the
commonly used relational database and object-oriented database structures,
are called structured data. Multimedia data, on the other hand, often refer to
the data that cannot be represented or indexed in the conventional database
structures and, thus, are often called non-structured data. Non-structured
data can then be further defined in terms of the specific media types they be-
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(a)

(b)

FIGURE 2.3: (a) A linear signal sampling model. (b) A non-linear signal
sampling model.
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(a)

(b)

(c)

FIGURE 2.4: (a) One-dimensional media type data. (b) Two-dimensional
media type data. (c) Three-dimensional media type data.

long to. There are several commonly encountered media types in multimedia
data mining. They can be represented in terms of the dimensions of the space
the data are in. Specifically, we list those commonly encountered media types
as follows.

• 0-dimensional data: This type of the data is the regular, alphanumeric
data. A typical example is the text data.

• 1-dimensional data: This type of the data has one dimension of a space
imposed into them. A typical example of this type of the data is the
audio data, as shown in Figure 2.4(a).

• 2-dimensional data: This type of the data has two dimensions of a space
imposed into them. Imagery data and graphics data are the two common
examples of this type of data, as shown in Figure 2.4(b).

• 3-dimensional data: This type of the data has three dimensions of a
space imposed into them. Video data and animation data are the two
common examples of this type of data, as shown in Figure 2.4(c).

As introduced in Chapter 1, the very first things for multimedia data mining
are the feature extraction and knowledge representation. While there are
many feature and knowledge representation techniques that are applicable to
all different media types, as are introduced in the rest of this chapter, there are
several media-specific feature representations that we briefly introduce below.

• TF-IDF: The TF-IDF measure is specifically defined as a feature for text
data. Given a text database of N documents and a total M word vocab-
ulary, the standard text processing model is based on the bag-of-words
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assumption, which says that for all the documents, we do not consider
any linguistic or spatial relationship between the words in a document;
instead, we consider each document just as a collection of isolated words,
resulting in a bag-of-words representation. Given this assumption, we
represent the database as an N ×M matrix which is called the Term
Frequency Matrix, where each entry TF (i, j) is the occurrence frequency
of the word j occurring in the document i. Therefore, the total term
frequency for the word j is

TF (j) =

N∑

i=1

TF (i, j) (2.1)

In order to penalize those words that appear too frequently, which does
not help in indexing the documents, an inverse document frequency
(IDF) is defined as

IDF (j) = log
N

DF (j)
(2.2)

where DF (j) means the number of the documents in which the word j
appears, and is called the document frequency for the word j. Finally,
TF-IDF for a word j is defined as

TF-IDF(j) = TF (j)× IDF (j) (2.3)

The details of the TF-IDF feature may be found in [184].

• Cepstrum: Cepstrum features are often used for one-dimensional media
type data such as audio data. Given such a media type data represented
as a one-dimensional signal, cepstrum is defined as the Fourier transform
of the signal’s decibel spectrum. Since the decibel spectrum of a signal is
obtained by taking the logarithm of the Fourier transform of the original
signal, cepstrum is sometimes in the literature also called the spectrum
of a spectrum. The technical details of the cepstral features may be
found in [49].

• Fundamental Frequency: This refers to the lowest frequency in a series of
harmonics a typical audio sound has. If we represent the audio sound in
terms of a series of sinusoidal functions, the fundamental frequency refers
to the frequency that the sinusoidal function with the lowest frequency
in the spectrum has. Fundamental frequency is often used as a feature
for audio data mining.

• Audio Sound Attributes: Typical audio sound attributes include pitch,
loudness, and timbre. Pitch refers to the sensation of the “altitude” or
the “height”, often related to the frequency of the sounds, in particular,
related to the fundamental frequency of the sounds. Loudness refers to
the sensation of the “strength” or the “intensity” of the sound tone,
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often related to the sound energy intensity (i.e., the energy flow or the
oscillation amplitude of the sound wave reaching the human ear). Tim-
bre refers to the sensation of the “quality” of the audio sounds, often
related to the spectrum of the audio sounds. The details of these at-
tributes may be found in [197]. These attributes are often used as part
of the features for audio data mining.

• Optical Flow: Optical flows are the features often used for three-dimensional
media type data such as video and animation. Optical flows are defined
as the changes of an image’s brightness of a specific location of an image
over the time in the motion pictures such as video or animation streams.
A related but different concept is called motion field, which is defined as
the motion of a physical object in a three-dimensional space measured
at a specific point on the surface of this object mapped to a correspond-
ing point in a two-dimensional image over the time. Motion vectors
are useful information in recovering the three-dimensional motion from
an image sequence in computer vision research [115]. Since there is no
direct way to measure the motion vectors in an image plane, often it is
assumed that the motion vectors are the same as the optical flows and
thus the optical flows are used as the motion vectors. However, concep-
tually they are different. For the details of the optical flows as well as
their relationship to the motion vectors, see [105].

2.3 Feature Representation

Given a specific modality of the multimedia data (e.g., imagery, audio,
and video), feature extraction is typically the very first step for processing
and mining. In general, features are the abstraction of the data in a spe-
cific modality defined in measurable quantities in a specific Euclidean space
[86]. The Euclidean space is thus called feature space. Features, also called
attributes, are an abstract description of the original multimedia data in the
feature space. Since typically there are more than one feature used to describe
the data, these multiple features form a feature vector in the feature space.
The process of identifying the feature vector from the original multimedia
data is called feature extraction. Depending upon different features defined in
a multimedia system, different feature extraction methods are used to obtain
these features.

Typically, features are defined with respect to a specific modality of the
multimedia data. Consequently, given multiple modalities of multimedia data,
we may use a feature vector to describe the data in each modality. As a result,
we may use a combined feature vector for all the different modalities of the
data (e.g., a concatenation of all the feature vectors for different modalities)
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if the mining is to be performed in the whole data collection aggregatively, or
we may leave the individual feature vectors for the individual modalities of
the data if the mining is to be performed for different modalities of the data
separately.

Essentially, there are three categories of features that are often used in
the literature. They are statistical features, geometric features, and meta
features. Except for some of the meta features, most of the feature repre-
sentation methods are applied to a unit of multimedia data instead of to the
whole multimedia data, or even to a part of a multimedia data unit. A unit
of multimedia data is typically defined with respect to a specific modality of
the data. For example, for an audio stream, a unit is an audio frame; for an
imagery collection, a unit is an image; for a video stream, a unit is a video
frame. A part of a multimedia data unit is called an object. An object is
obtained by a segmentation of the multimedia data unit. In this sense, the
feature extraction is a mapping from a multimedia data unit or an object to
a feature vector in a feature space. We say that a feature is unique if and
only if different multimedia data units or different objects map to different
values of the feature; in other words, the mapping is one-to-one. However,
when this uniqueness definition of features is carried out to the object level
instead of the multimedia data unit level, different objects are interpreted in
terms of different semantic objects as opposed to different variations of the
same object. For example, an apple and an orange are two different semantic
objects, while different views of the same apple are different variations of the
same object but not different semantic objects.

In this section, we review several well-known feature representation methods
in each of the categories.

2.3.1 Statistical Features

Statistical features focus on a statistical description of the original multi-
media data in terms of a specific aspect such as the frequency counts for each
of the values of a specific quantity of the data. Consequently, all the sta-
tistical features only give an aggregate, statistical description of the original
data in an aspect, and therefore, it is in general not possible to expect to re-
cover the original information from this aggregate, statistical description. In
other words, statistical features are typically not unique; if we conceptualize
obtaining the statistical features from the original data as a transformation,
this transformation is, in general, lossy. Unlike geometric features, statisti-
cal features are typically applied to the whole multimedia data unit without
segmentation of the unit into identified parts (such as an object) instead of
to the parts. Due to this reason, in general all the variation-invariant proper-
ties (e.g., translation-invariant, rotation-invariant, scale-invariant, or the more
general affine-invariant) for any segmented part of a multimedia data unit do
not hold true for statistical features.

Well-known statistical features include histograms, transformation coeffi-
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cients, coherent vectors, and correlograms. We give a brief review of each of
these statistical features.

2.3.1.1 Histogram

Histograms as a well-known feature date back to the early literature of pat-
tern recognition and image analysis [67]. A histogram is a statistical method
to convert an original data representation to the occurrence frequency infor-
mation measured for a specific quantity in the original data; consequently, a
histogram is represented as a 1-dimensional vector, where the X-axis is the
range of this specific quantity and the Y -axis is the occurrence frequency in-
formation measured for each value in the range of the specific quantity. The
specific quantity depends on different data modalities and also on different
applications, and is often defined in advance by the user. For example, given
an image, we may use the image intensity value as the specific quantity; we
may also use the image optical flow magnitude as the specific quantity.

Mathematically, given a specific quantity F (p) as a function of a sample
vector p of the multimedia data (e.g., p may be a spatial point represented as
a pair of coordinates p = (x, y)T for an image), the histogram H(r) defined
with respect to this quantity F (p) for a value r in the range R of the function
F (p) is defined as follows:

∀r ∈ R,H(r) =
∑

∀p

δ(F (p) = r) (2.4)

where δ is the Kronecker Delta function. In the definition Equation 2.4, it is
assumed that the whole domain of the variable r is quantized into a parameter
of the granularity b. This parameter b is called bucket size. With a pre-
determined bucket size b, a histogramH(r) is a vector, with the dimensionality
of the vector depending upon the specific value of b. A larger bucket size
results in a “coarser” histogram with a lower dimensionality, while a smaller
bucket size results in a “finer” histogram with a higher dimensionality. For
example, given an image, assuming that the intensity is quantized to the
range [0, 255], if b = 1, the histogram has 256 buckets and the dimensionality
is 256; if b = 10, the histogram has 26 buckets and the dimensionality is 26.
Figure 2.5(a) illustrates a small image represented in the original intensity
values for the pixels, and Figure 2.5(b) is the corresponding histogram with
b = 1.

As mentioned above, like many other statistical features, histograms are
typically used as features of a multimedia unit as a whole, such as an audio
frame, a video frame, or an image. If we are interested in the features of
the semantic objects captured in the multimedia data (e.g., just the horse in
Figure 2.1 without caring about the background of other objects in the image),
we need to first segment the objects in question from the multimedia data
and then use the geometric features such as the moments that are variation-
invariant for the objects, as histograms in general are variation-variant.
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(a) (b)

(c) (d)

FIGURE 2.5: (a) Part of an original image; (b) A histogram of the part of
the original image in (a) with the parameter b = 1; (c) A coherent vector of
the part of the original image in (a) with the parameters b = 1 and c = 5; (d)
The correlogram of the part of the original image in (a) with the parameters
b = 1 and k = 1.
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2.3.1.2 Coherent Vectors

Coherent vectors were first proposed in the early days of image retrieval in
the mid-nineties [164]. They were used extensively in the early literature of
image retrieval and were initially developed for color image retrieval. Since
it is well-known that a histogram is not unique for representing a multimedia
data unit, coherent vectors were proposed to improve this uniqueness.

Specifically, the idea of a coherent vector is to incorporate the spatial infor-
mation into a histogram. Thus, a coherent vector is defined on top of a regular
histogram, which is a vector. Given a regular histogram vector, data points
in each component (called a bucket) of the histogram vector are further par-
titioned into two groups, one called coherent data points and the other called
incoherent data points. A group of data points is defined as coherent if they
are connected to form a connected component in the original domain of the
multimedia data; otherwise, the data points are defined as incoherent. The
specific implementation of the coherence definition is to set up a threshold c
in advance such that a group of data points are coherent if their total count
in the number of the data points that are connected exceeds c. Consequently,
a coherent vector is a vector with each component as a pair of the number of
the total coherent data points and the number of the total incoherent data
points for the component.

Mathematically, if a regular histogram is represented as a regular vector

H = (h1, ..., hn)
T

then a coherent vector is represented as a vector of pairs

C = (α1 + β1, ..., αn + βn)
T

where αi is the number of all the coherent data points in bucket i, βi is the
number of all the incoherent data points in bucket i, and αi + βi = hi, for all
i = 1, ..., n. Figure 2.5(c) illustrates the coherent vector for the image shown
in Figure 2.5(a) with parameters b = 1, c = 5.

2.3.1.3 Correlograms

Correlograms were another feature first proposed in the nineties in the im-
age retrieval community [112]. Like coherent vectors, they were initially also
developed for color image retrieval. The motivation for developing correlo-
grams was also to further improve the representation uniqueness for this type
of feature.

While coherent vectors incorporate the spatial information into the his-
togram features by labeling the data points in each bucket of the histogram
into two groups — the coherent and the incoherent, through a connected com-
ponent search — correlograms are a step further in incorporating the spatial
information into the histogram features. Given a specific multimedia data unit
of a specific modality of the data, a specific quantity F (p) defined for a data
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point p in this unit, and a pre-defined distance value k between two data points
in the unit, a correlogram of this unit is defined as a two-dimensional matrix
C where each cell of the matrix C(i, j) captures the frequency count of this
unit for all the pairs of data points p1 and p2 such that F (p1) = i, F (p2) = j,
and d(p1,p2) = k, where d() is a distance function between two data points.
Like a histogram, the dimensions of a correlogram C depend upon the gran-
ularity parameter b, with a larger b resulting in a “coarser” correlogram in
lower dimensions and a smaller b resulting in a “finer” correlogram in higher
dimensions. Figure 2.5(d) illustrates a correlogram of the original image in
Figure 2.5(a) with parameters b = 1, k = 1, and the distance function d() as
the L∞ metric, i.e., d((x1, y1)

T , (x2, y2)
T ) = max(‖x1 − x2‖, ‖y1 − y2‖).

2.3.1.4 Transformation Coefficient Features

Multimedia data are essentially all digital signals. As digital signals, all the
different mathematical transformations may be applied to them to map them
from their original domains to different domains typically called the frequency
domains. Consequently, the coefficients of these transformations encode the
statistical distributions of the multimedia data in their original domains as
energy distributions in the frequency domains. Therefore, the coefficients of
these transformations may also be used as features to represent the original
multimedia data.

Since there are many mathematical transformations in the literature, dif-
ferent transformations result in different coefficient features. Here we review
two important features that are often used in the literature, the Fourier trans-
formation features and the wavelet transformation features. For simplicity
purposes, we use one-dimensional multimedia data as an example. All the
transformations may be applied to higher dimensional multimedia data.

Given a one-dimensional multimedia data sequence f(x), its Fourier trans-
formation is defined as follows [160]:

F (u) =

∫ ∞

−∞

f(x)e−i2πxudx (2.5)

where F (u) maps to the frequency domain and u is the variable in the fre-
quency domain. Note that while typically f(x) is a real function, F (u) be-
comes a complex function based on this transformation. Due to this fact, F (u)
may be represented in the polar coordinate system as two real components,
the amplitude A(u) and the phase φ(u), i.e.,

F (u) = A(u)eiφ(u) (2.6)

In real-world applications, since f(x) is always represented as a numeri-
cal series, the resulting coefficient functions A(u) and φ(u) are also discrete
series. In this case, the resulting transformation is actually called Discrete
Fourier Transform (DFT), where A(u) and φ(u) are both discrete sequences.
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Consequently, either A(U) or φ(u) alone or both of them may be used as the
features for the original multimedia data f(x). Given the fact that f(x) can
be completely recovered from Fourier Inverse Transformation [160]:

f(x) =

∫ ∞

−∞

F (u)ei2πuxdu (2.7)

if we use both A(u) and φ(u) as the whole series for the features of f(x), these
features are unique. Nevertheless, this would be the same as using the original
data f(x) themselves as the features and thus would have no benefits at all
for the feature representation of the original data f(x). Instead, we typically
just truncate the series of A(u) to the top few items as the features for f(x),
as typically the rest of the series items are very close to zero except for the
first few items. The statistical interpretation of this practical truncation to
generate the Fourier features is that those first few, non-zero items of A(u)
give a summarization of the global statistical distribution of the multimedia
data, while the majority of the close-to-zero items of A(u) indicate the many
local details of the original data. In the literature, the first few items of
A(u) (corresponding to low u values) are called low-frequency components,
whereas the rest of the items of A(u) (corresponding to higher u values)
are called high-frequency components. The reason why for many multimedia
data the high-frequency components are always close to zero is that the high-
frequency components represent the local changes, while the low-frequency
components represent the global distributions; when we compare different
multimedia data, the “thing” that makes them look different is the global
distributions, whereas they often exhibit very similar local changes. Clearly,
due to this truncation for representing Fourier features, the resulting features
are no longer unique.

While Fourier coefficient features are good to capture the global information
of multimedia data, in many applications it is important to pay attention to
the local changes as well. In this case, wavelet transformation coefficient
features are a good candidate for consideration.

Wavelet transformation is another very frequently used transformation.
Given one-dimensional multimedia data f(x), the classic wavelet transfor-
mation is defined as follows [93]:

W (a, b) =
1√
a

∫ ∞

−∞

f(x)ψ∗(
x− b
a

)dx (2.8)

where a and b are the two variables to control the scaling and shift, respec-
tively, of the transformation and ψ() is called a mother function; ψ∗() is its
complex conjugate function. Like Fourier transformation, given the function
W (a, b) and a mother function ψ(), the original multimedia data f(x) may be
completely recovered from the wavelet inverse transformation [93]:

f(x) = Cψ

∫ ∞

0

∫ ∞

−∞

1

a2
√
a
W (a, b)ψ(

x− b
a

)dadb (2.9)
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Cψ =

∫ ∞

0

ψ∗(ν)ψν

ν
dν (2.10)

From the definitions in Equations 2.8 and 2.9, it is clear that the wavelet
transformation is more flexible than Fourier transformation for the following
two reasons. First, the wavelet transformation allows different mother func-
tions to be incorporated into the transform, while Fourier transformation can
be considered as a special case of the wavelet transformation in the sense that
the specific exponential function is used as the mother function. Second, the
wavelet transformation involves two variables a and b controlling the scale and
shift simultaneously for the transformation; since the scale reflects the space
change and the shift reflects the time change, the wavelet transformation takes
care of the time and space simultaneously to deliver a more powerful and flex-
ible transformation. For these two reasons, the wavelet transformation is able
to capture not only the global information but also the local changes as a
good candidate for feature representation.

Like Fourier transformation, in real-world applications, the transformation
W (a, b) is always sampled into discrete series, with the variables a and b dis-
cretized into integers. Also, in real-world applications we are unable to keep
the whole transformation series as the features because otherwise the features
would be no better than having the original data as the representation. Con-
sequently, like Fourier features, we always sample a few lower values of a and
b, respectively, to obtain a few items of the wavelet transformation coeffi-
cients as the wavelet features. Due to this truncation, like Fourier features,
the wavelet features are not unique, either.

2.3.2 Geometric Features

Unlike statistical features, geometric features are typically applied to seg-
mented or identified objects within a multimedia data unit of a specific modal-
ity of the data. Consequently, a segmentation method must be first applied
to a multimedia data unit to obtain such objects. Once such objects are
obtained, geometric features are used to describe these objects. Due to this
purpose, many geometric features are variation-invariant, offering the capabil-
ity to preserve the same description while the objects are subject to different
variations such as rotation changes, translation changes, and scale changes
from one unit to another.

Depending upon how “completely” a specific geometric feature method is
capable of describing an object in a multimedia data unit, some of the geomet-
ric features are unique, while others are not. Well-known geometric features
include moments, inertia coefficients, and Fourier descriptors.

2.3.2.1 Moments

Moments also have a long history of being used as a type of geometric
features for objects dating back to the early days of pattern recognition [67].
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If we have the semantic objects segmented from the multimedia data, moments
are a good candidate for the representation features, as they are variation-
invariant; specifically, they are translation-invariant, rotation-invariant, and
scale-invariant.

If an object is represented as a mathematical function f(p) with respect to
a coordinate vector p (e.g., if the object is a 1D signal, p = x; if the object
is a 2D signal, p = (x, y)T ), the moments of the function f(p) represent a
series:

mq =

∫ ∞

0

1Tpqf(p)dp (2.11)

where q is an integer vector series where each component of the vector takes
all non-negative integers independently, and pq are all the vectors where each
component of p takes all the possible non-negative exponents of q indepen-
dently and separately. For example, if p is a two-dimensional vector, i.e., p =
(x, y)T , pq = {(1, 1)T , (1, y)T , (1, y2)T , ..., (x, 1)T , (x, y)T , (x, y2)T , ..., (x2, 1)T ,
(x2, y)T , (x2, y2)T , ...}. The vector q is called the order of the moments. The
vector 1 is an all-unit-component vector, i.e., 1 = (1, 1, ..., 1)T in the same
dimension as that of p.

There are two special moments, the zeroth-order moment m0 and the first
order moment me where e is the full set of the basis vectors: (1, 0, ..., 0)T ,
(0, 1, ..., 0)T , ...(0, 0, ..., 1)T . Clearly, while m0 is a single value, me is a vector
of the same dimension as that of p. We call m0 the area of the object and
define the center of the object as

p̄ =
me
m0

(2.12)

Thus, we may change the original definition of the moments in Equa-
tion 2.11 to the central moments defined as follows:

µq =

∫ ∞

0

1T (p− p̄)qf(p)dp (2.13)

From the central moments, it is shown in the literature [109] that there is a
set of invariants made from the central moments for translational, rotational,
and scaling changes. It is also shown in the literature that, under certain
conditions, if the whole (infinite) series of the moments is used, this feature is
unique to represent a semantic object. Since in practice we can never use the
whole infinite series, we always truncate to a limited few lower-order moments;
this uniqueness property is compromised to a certain degree.

2.3.2.2 Fourier Descriptors

Like the moments, Fourier descriptors have also been used in a long history
in the literature of pattern recognition [67]. Also like the moments, the Fourier
descriptors can only be used when a semantic object is segmented from the
multimedia data.
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Given a segmented semantic object from the multimedia data, the idea of
Fourier descriptors is to sample the contour of the segmented semantic object
to form a sequence of the sampling points p1, p2, · · · , pn on the contour, such
as the point sequence in Figure 2.6(a), in a specific order (e.g., the counter-
clockwise order); then the sequence of the points may be transformed into the
Fourier frequency domain by a Discrete Fourier Transform (DFT). This DFT
sequence is called Fourier descriptors in the literature. Consequently, Fourier
descriptors consist of two sequences, the amplitude A(u) and the phase φ(u).

In the pattern recognition literature [67], it is shown that under a certain
normalization, the amplitude sequence A(u) alone exhibits an invariance un-
der translation, rotation, scale, and the starting point of the original contour
sequence variations. This is due to the fact that all these variations only
contribute to a change in the phase sequence φ(u). Based on this fact, the
amplitude sequence A(u) may be used as a type of features for a segmented
semantic object. On the other hand, due to this invariance fact, using A(u)
alone as the features, the features are not unique.

In order to accommodate extending the Fourier descriptors’ invariance to
the general affine transformation, in the literature, Zhang et al proposed to
extend the existing Fourier descriptors to the Area Based Fourier descriptors
[249]. The idea is to sample the object contour only for those “key” points in-
stead of an arbitrary point or a uniform sampling such as that in Figure 2.6(a).
A practical definition of the “key” points is those with a high curvature or
with no curvature, such as those points q1, q2, · · · , qn in Figure 2.6(b). Then
we identify the center of the object O. Thus, instead of forming a sequence
of the points along the contour in the Fourier descriptors, we now form a se-
quence of the areas along the contour where each area is determined by a pair
of neighboring “key” points along the contour and the center of the object;
i.e., each area Ai is defined by the points Oqiqi+1, as shown in Figure 2.6(b).
It is shown [249] that under a certain normalization the amplitude sequence of
the DFT of this area-based sequence is invariant under any affine transform.
Therefore, this amplitude sequence can also be used as another type of feature
for a segmented semantic object that is invariant under any affine transform.
Due to this invariance, this type of feature is not unique, either.

2.3.2.3 Normalized Inertia Coefficients

Normalized inertia coefficients are actually a special case of the centralized
moments representation. In the literature it was first proposed to be used
as a feature to describe the shape of an object in an image [88]. Assuming
a segmented object in a multimedia data unit has an area O, a complete
description of the normalized inertia for an object in the multimedia data
unit is a whole series with the order parameter q:

l(q) =

∫
∀p∈O ‖p− p̄‖q/2dp∫

∀p∈O dp
(2.14)
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(a) (b)

FIGURE 2.6: (a) The sequence of contour points sampled to form a Fourier
descriptor. (b) The sequence of the areas to form an area-based Fourier de-
scriptor.

where p is a point of the object O and p̄ is the center point of the object.

Like other features, in practice, we always truncate the whole series to the
first few lower q terms as the normalized inertia coefficients for the feature
representation of the objectO. Thus, this feature representation is not unique.

2.3.3 Meta Features

Meta features include the typical meta data to describe a multimedia data
unit such as the scale of the unit, the number of objects in the unit, and the
value range of the points in the unit.

2.4 Knowledge Representation

In order to effectively mine the multimedia data, it is important that not
only an appropriate feature representation is used for the multimedia data
but also that appropriate knowledge support is available in a multimedia
database to facilitate the mining tasks. Like all other intelligent systems, a
typical multimedia data mining system is often equipped with a knowledge
support component to “guide” the mining tasks. Typical types of knowledge
in the knowledge support component include the domain knowledge, the com-
mon sense knowledge, as well as the meta knowledge. Consequently, how to
appropriately and effectively represent these types of knowledge in a multi-
media data mining system has become a non-trivial research topic. On the
other hand, like the general data mining activities, a typical multimedia data
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(a) (b)

FIGURE 2.7: (a) A natural scene image with mountains and blue sky. (b)
An ideal labeling for the image.

mining task is to automatically discover the knowledge in a specific context.
Thus, there is also a knowledge representation problem after the knowledge
is discovered in the mining activity.

Knowledge representation has been one of the active core areas in artificial
intelligence research, and many specific representation methods are proposed
in the literature [29]. In the rest of this chapter, we first review several
well-known knowledge representation methods in multimedia data mining ap-
plications and then demonstrate how to use these knowledge representation
methods in different types of knowledge used in a multimedia data mining
system.

2.4.1 Logic Representation

For human beings, a natural way to represent knowledge is through nat-
ural language. For example, in an imagery data mining system, if we want
to restrict the domain to the natural scenery, we may want to have the fol-
lowing specific piece of knowledge: All the blue areas indicate either sky or
water. This piece of knowledge would help generate the labels for the image
in Figure 2.7(a) as shown in Figure 2.7(b), and that labeling further leads to
knowledge discovery such as an answer to the question What is considered the
typical scene in the images of the database with a blue sky?.

However, it is difficult, if not impossible, to make a computer system com-
pletely understand the natural language. An effective way to make the natural
language understandable to a computer system is to use logic representation.
A commonly used logic is called predicate logic, and the most popular predi-
cate logic used in the literature is called propositional first order logic, typically
abbreviated as FOL.
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In FOL, all the variables are set variables in the sense that they can take
any one of the values of the set defined for this variable. For example, a
variable x may be defined as a real set [0, 1], which means that x may be
any value in the domain of [0, 1]; or the variable x may be defined as a color
set variable, in which we may explicitly define x = {red, blue,white} and x
may take any of the three possible colors. All the functions in FOL are called
predicates. All the predicates in FOL are boolean predicates in the sense that
they can only return one of the two values: 0 for false and 1 for true. In
addition, there are three operators defined for all the variables as well as the
predicates. ¬ is a unitary operator applied to either a variable or a predicate
resulting in a negation of the value of the operand; i.e., if the operand has a
value 1, this operation has a value 0, and vice versa. ∧ is a binary operator
applied to either variables or predicates; it takes a multiplication between the
values of the two operands; i.e., this operator returns 1 if and only if both
values of the two operands are 1, and returns 0 otherwise. ∨ is another binary
operator applied to either variables or predicates; it takes an addition between
the two values of the two operands and, therefore, it returns 0 if and only if
both operands have the values 0, and returns 1 otherwise. Finally, there are
two quantifiers defined for variables only, but not for predicates. They are
the universal quantifier ∀ and the existential quantifier ∃. ∀ means for all the
values of the variable to which this quantifier applies. ∃ means there exists at
least one value of the variable to which this quantifier applies.

Given this FOL, the natural language sentence All the blue regions are
either sky or water may be represented as the following FOL statement:

∀x(blue(x)→ sky(x) ∨water(x))

where blue(), sky(), and water() are the predicates, and → means “imply”.
On the other hand, the natural language sentence Some blue regions are sky
may be represented as the following FOL statement:

∃x(blue(x)→ sky(x))

The advantage of using FOL for knowledge representation in a multimedia
data mining system is that FOL makes deductive reasoning very easy and
powerful; the reasoning process is also very efficient due to the symbolic com-
putation using the FOL statements. The disadvantage is when the knowledge
base is dynamically and constantly updated from time to time, it is difficult
to maintain the consistency of the FOL statements in the knowledge base for
the multimedia data mining system.

2.4.2 Semantic Networks

Semantic networks are one very powerful knowledge representation tool
used in today’s artificial intelligence research and applications [199, 182]. They
are proposed in the literature to use graphs to represent the concepts and
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FIGURE 2.8: An example of a semantic network.

their relationships, in which the nodes in the graphs are the concepts and
the edges in the graphs are the relationships. Historically, they were used to
represent the English words as well as their relationships in natural language
understanding research in artificial intelligence [182].

Figure 2.8 illustrates an example of a typical semantic network. In real
world applications, the well-known WorldNet [1] is a good example of using
semantic networks to represent the words and their relationships to serve as a
lexical English word database. Note that the graph of a semantic network is
a digraph, as the relationships are directional. Typical relationships include:

• Meronymy: A is part of B

• Holonymy: B is part of A

• Hyponymy: A is subordinate of B

• Hypernymy: A is superordinate of B

• Synonymy: A is the same as or similar to B

• Antonymy: A is the opposite of B

In multimedia data mining, semantic networks are used to represent the
concepts, in particular, the spatial concepts, and their relationships. One
example is the KMeD system developed by Hsu et al [107], which uses a
hierarchical semantic network to represent the knowledge that is necessary
for facilitating the reasoning, mining, and retrieval of the medical images in
the database. Specifically, in the second layer of the hierarchy, called the
semantic layer, objects and their relationships are identified and abstracted
based on an entity-relationship model, and in the third layer a higher level of
semantics called knowledge base abstraction is used to represent the domain
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expert knowledge using semantic networks to guide and improve the image
mining and retrieval for the radiological image database.

Semantic networks represent loose associations between concepts. However,
when they are used with added logical descriptions, semantic networks may
have even more expressive power than FOL. Examples of these extensions of
the semantic networks include the existential graphs [126] and the conceptual
graphs [193].

2.4.3 Frames

Frames are another type of knowledge representation method used in a mul-
timedia database for describing a specific type of object or a specific abstract
concept. This knowledge representation method was initially due to Minsky
[152]. A frame may have a name as well as other attributes which have values;
these attributes are also called slots. Concepts related to each other may be
described for one frame as a slot value of another frame. Minsky’s original
definition and description about frames is excerpted as follows [152].

A frame is a data structure for representing a stereotyped
situation, like being in a certain kind of living room or
going to a child’s birthday party. Attached to each frame
are several kinds of information. Some of this information
is about how to use the frame. Some is about what one
can expect to happen next. Some is about what to do if
these expectations are not confirmed.

We can think of a frame as a network of nodes and rela-
tions. The “top levels” of a frame are fixed, and represent
things that are always true about the supposed situation.
The lower levels have many terminals — “slots” that must
be filled by specific instances of data. Each terminal can
specify conditions its argument must meet. (The assign-
ments themselves are usually smaller “sub-frames.”) Sim-
ple conditions are specified by markers that might require
a terminal assignment to be a person, an object of suffi-
cient value, or a pointer to a sub-frame of a certain type.
More complex conditions can specify relations among the
things assigned to several terminals.

For example, we may have the house frame to define and describe the related
concepts below, where the frame house has slots of style, color, door, etc.,
and some slots are described by next levels of the frame. For example, the
slot door is defined by the sub-frame door-frame. This can be further defined
recursively. For example, the slot garden is described by the sub-frame garden-
frame, which has a slot pool that is further defined by its sub-frame pool-frame;
similarly, the slot basement is described by the sub-frame basement-frame,
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which has a lot finished that is further defined by its sub-frame finished-
basement-frame if its value is not NULL, i.e., if the basement is finished. This
whole house frame gives a network of nodes and relations to fully define what
a typical two-story house looks like.

house:

style: two story;

color: white;

door: door-frame;

window: window-frame;

room: room-frame;

garden: garden-frame;

garage: garage-frame;

bathroom: bathroom-frame;

basement: basement-frame;

door-frame:

number-of-outside-door: 1;

number-of-inside-door: 10;

garage-frame:

size: 2;

has-side-door: yes;

bathroom-frame:

number-of-full: 3;

number-of-half: 2;

window-frame:

number-of-large: 3;

number-of-small: 10;

number-of-bay: 1;

room-frame:

number-of-bedroom: 4;

number-of-study-room: 1;

number-of-living-room: 1;

number-of-family-room: 1;

number-of-workshop-room: 1;

number-of-dining-room: 1;

garden-frame:

fence: full;

landscape: yes;
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lawn: yes;

pool: pool-frame;

number-of-trees: 3;

area-in-acre: 0.2;

basement-frame:

finished: finished-basement-frame;

finished-basement-frame:

number-of-room: 2;

number-of-bathroom: 1;

number-of-storage-room: 1;

walked-out: yes;

pool-frame:

raised-or-ground: ground;

area-in-square-feet: 150;

A typical example of using frames in knowledge representation in a multi-
media database is the system proposed by Brink et al [30]. Specifically, frame
abstractions are used to facilitate the encapsulation of file names, features,
and relevant attributes of the image objects in the image database.

There is literature [100] arguing that frames have an equivalent expressive
power in knowledge representation to that of logic. This is later demonstrated
to be true to a certain extent [194].

2.4.4 Constraints

A constraint is a condition or a set of conditions that constrains the de-
scription of an object or an event. In the classic artificial intelligence research,
many problems are described through constraints, and therefore constraint
satisfaction is considered an effective approach to solving for those problems
[182]. In multimedia data mining, typically there are three types of con-
straints:

• Attribute Constraints: Attribute constraints define the characteristic
description of a multimedia object or a multimedia data item or an
event. Examples include The human face in this image is a male with
red hair; The number of red color pixels in this image should be no more
than 300; and The probability that there appears to be a moving target
in the next five minutes of the surveillance video is about 0.3.

• Spatial Constraints: Spatial constraints specify the spatial conditions
that must hold true between multimedia data items or objects. Exam-
ples include The person to the left of John Smith in this image is Harry
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Brown; Located in the northwest corner of this map is the headquarters
of ABC Inc.; and Pay attention to the top-right corner area in this video.

• Temporal Constraints: Temporal constraints specify the temporal con-
ditions that must hold true between multimedia data items or objects
in an event. Examples include John Smith shows up in the surveillance
video before Harry Brown does; John Smith disappears in the surveil-
lance video before Harry Brown does; and During all the time when John
Smith shows up in the surveillance video, Harry Brown briefly shows up
and disappears immediately.

At the methodological level, constraints may be easily represented in terms
of FOL sentences. If we are restricted only to the constraints of unitary or bi-
nary variables, which is the most typical scenario in multimedia data mining,
we may also use a constraint graph to represent a set of constraints where each
node represents a variable and each edge represents a binary constraint be-
tween the two variables; the unitary constraints are represented as attributes
for the related variable nodes in the graph.

Given a set of constraints, finding a feasible solution with the presence of
such a set of constraints is called constraint satisfaction in artificial intelligence
research. Solutions to constraint satisfaction are part of the artificial intel-
ligence search methods. Typical methods for constraint satisfaction include
generate and test, backtracking, forward checking, and constraint propagation.
Generate and test is a completely blind search method. The idea is to ran-
domly generate the values for the whole set of the constrained variables and
to test whether the values satisfy the whole set of constraints. Due to the
“blindness” of the search, this method typically is very slow. Backtracking
is another blind search method. Typically, backtracking is implemented with
Depth-First-Search [182], in which, if any node along the search path violates
a constraint, the search backtracks to the previous node to try an alternative
path. Forward checking is yet another blind search method. In comparison
with backtracking, this method further narrows down the search space by
first lining up all the legitimate values for the constrained variables and then
starting the search; during the search process, backtracking is used whenever
a constraint is violated. Constraint propagation is also a blind search method
but goes further than forward checking by propagating the constraints to ob-
taining the legitimate values of the constrained variables. Details of constraint
satisfaction and the solutions may be found in [205].

A typical example of representing knowledge in constraints and using these
constraints to facilitate the reasoning and mining in multimedia data is the
Show&Tell system reported in [196]. Since this system is for mining aerial
imagery data, only multimedia data of static imagery and text are used. Con-
sequently, only characteristic constraints and spatial constraints are used in
representing the knowledge; no temporal constraints are used. Figure 2.9
shows an example of the constraint satisfaction based spatial reasoning for
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FIGURE 2.9: A hypothetical example to show how constraint satisfaction
based reasoning helps mine the buildings from an aerial imagery database,
where the dashed box indicates the current search focus.

mining the buildings in an aerial survey. Given the three buildings in the
image and the following six constraints, where Constraints 2, 3, and 4 are
characteristic constraints and Constraints 1, 5, and 6 are spatial constraints,
Figure 2.9 demonstrates the constraint satisfaction based spatial reasoning
for identifying all the three buildings. Specifically, Constraint 1 is first used
to narrow down the focus of attention to the left of the image; then, based
on Constraints 5 and 2, the square building located at the upper-left cor-
ner is identified as the headquarters building; then the focus of attention is
moved to the leftmost, L-shaped building based on Constraints 6 and 3, and
that building is immediately identified as the operation building; finally, using
Constraint 4, the rectangular building is identified as the training building.

1. Constraint 1: There are three buildings in the western half of the image.

2. Constraint 2: The square building is the headquarters building.

3. Constraint 3: The L-shaped building is the operation building.

4. Constraint 4: The rectangular building is the training building.

5. Constraint 5: The building located at the northwestern corner is the
headquarters building.

6. Constraint 6: The left-most building is the operation building.
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2.4.5 Uncertainty Representation

While all the knowledge representation methods introduced above are for
“certain” knowledge, in many real-world multimedia data mining problems,
there are many occasions in which there is uncertainty in the knowledge. Con-
sequently, we need to study how to represent the uncertainty in the knowledge.

In multimedia data mining, two commonly used approaches to representing
uncertainties in knowledge are probability theory and fuzzy logic. In the
following two sections, we review the two approaches and give examples in
using these approaches in representing the uncertainties.

2.4.5.1 Using Probability Theory in Representing Uncertainties

Uncertainties in multimedia data mining may be represented in probability
theory if we know a priori the probabilistic distributions of the variables in
the data. In many scenarios we may not have this a priori knowledge. In
this case, we must make assumptions for the a priori probabilistic distribu-
tions (e.g., we may assume a uniform prior probabilistic distribution for the
variables). Given the prior probabilistic distributions, knowledge discovery
is typically made possible through determining the posterior probabilities of
the related variables in multimedia data. This is again typically achieved
through Bayesian reasoning [182], and this reasoning may also be completed
iteratively if there are latent variables involved (such as the Expectation and
Maximization method [58]).

Chapter 6 focuses on a specific application example in using a probabilistic
model to discover the hidden latent semantic concepts in an image database.
Figure 2.10(a) shows a query image Im to be learned for the semantic concepts
contained in the image, and Figure 2.10(b) shows the six image tokens ri(i =
1, . . . , 6) learned in a method (see Chapter 6). Finally, Figure 2.10(c) shows
the posterior probabilities P (zk|ri, Im) for the concept castle zk given each
of the six tokens ri in the image Im, as well as the posterior probability
P (zk|Im) for the concept castle zk given this image Im.

2.4.5.2 Using Fuzzy Logic to Represent Uncertainties

Uncertainties in multimedia data mining may be represented in fuzzy logic
if we know in advance or if we may assume in advance the fuzzy membership
function or the fuzzy resemblance function of the variables in a multimedia
database. Fuzzy logic is derived from the fuzzy set theory [231] that deals
with the typical approximate or fuzzy reasoning instead of the classic, precise
reasoning in the predicate logic.

In fuzzy logic, variables are described in terms of the degree of truth typ-
ically represented in terms of a fuzzy membership function or a resemblance
function that is mapped to an inclusive range of [0, 1] [128, 260]. The de-
gree of truth is often confused with a probability which is also mapped to
an inclusive range of [0, 1]. However, they are conceptually different. Fuzzy
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(a) (b) (c)

FIGURE 2.10: (a) An original query image. (b) The token image of the query
image, where each token is represented as a unique color in the image. (c)
The learned posterior probabilities for the concept castle in the query image.

truth represents membership in vaguely defined sets, whereas a probability
of a certain event or condition states a deterministic likelihood. Below we
use the example of using fuzzy logic to represent the fuzzy concept of a color
histogram [242].

The color representation of an image pixel is coarse and imprecise if we
simply extract the color feature of the pixel to index each region. Color
is one of the most fundamental properties to discriminate images, so that
we should take advantage of all available information in it. Considering the
typical uncertainty stemming from color quantization and human perception,
we develop a modified color histogram using the fuzzy technique [163, 211] to
accommodate the uncertainty.

The fuzzy color histogram is defined as follows. We assume that each color
is a fuzzy set, while the correlation among colors is modeled as a membership
function of different fuzzy sets. A fuzzy set F on the feature space Rn is
defined as a mapping µF : Rn → [0, 1] with µF as the membership function.
For any feature vector f ∈ Rn, the value of µF (f) is called the degree of
membership of f to the fuzzy set F (or, in short, the degree of membership
to F ). A value closer to 1 for µF (f) means more representative the feature
vector f is to the fuzzy set F .

An ideal fuzzy color model should have the resemblance inversely pro-
portional to the inter-color distance. Based on this requirement, the most
commonly used prototype membership functions include conic, trapezoidal,
B-splines, exponential, Cauchy, and paired sigmoid functions [104]. We have
tested the conic, trapezoidal, exponential, and Cauchy functions, respectively.
In general, the performances1 of the exponential and the Cauchy functions are
better than those of the conic and trapezoidal functions. Considering the com-

1The performance means the average image retrieval accuracy given the same other settings.
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putational complexity, we use the Cauchy function due to its computational
simplicity. The Cauchy function, C : Rn → [0, 1], is defined as

C(~x) =
1

1 + (‖~x−~v‖d )α
(2.15)

where ~v ∈ Rn, d and α ∈ R, d > 0, α ≥ 0, ~v is the center location (point)
of the fuzzy set, d represents the width of the function, and α determines
the shape (or smoothness) of the function. Collectively, d and α describe the
grade of fuzziness of the corresponding fuzzy feature.

Accordingly, the color resemblance in a region is defined as:

µc(c
′) =

1

1 + (d(c,c
′)

σ )α
(2.16)

where d is the Euclidean distance between color c and c′ in the Lab color
space, and σ is the average distance between colors

σ =
2

B(B − 1)

B−1∑

i=1

B∑

k=i+1

d(c, c′) (2.17)

where B is the number of the bins in the color partition. The average dis-
tance between colors is used to approximate the appropriate width of the
fuzzy membership function. The experiments show that given the same other
settings of the system, the average retrieval accuracy changes insignificantly
when α is in the interval [0.7, 1.5], but degrades rapidly outside the interval.
We set α = 1 in Equation 2.16 to simplify the computation.

This fuzzy color model enables us to enlarge the influence of a given color to
its neighboring colors according to the uncertainty principle and the percep-
tual similarity. This means that each time a color c is found in the image, it
influences all the quantized colors according to their resemblance to the color
c. Numerically, this could be expressed as:

h2(c) =
∑

c′∈µ

h1(c
′)µc(c

′) (2.18)

where µ is the color universe in the image and h1(c
′) is the standard normalized

color histogram (see Section 2.3.1.1). Finally, the normalized fuzzy color
histogram is computed as:

h(c) =
h2(c)

maxc′∈µ h2(c′)
(2.19)

which falls in the range [0,1].
Note that this fuzzy histogram computation is, in fact, a linear convolution

between the standard color histogram and the fuzzy color model. This con-
volution expresses the histogram smoothing, provided that the color model is
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indeed a smoothing, low-pass filtering kernel. The use of the Cauchy function
as the color model produces the smoothed histogram, which is a mean for the
reduction of the quantization errors [122].

In the actual prototype implementation [242], the Lab color space is quan-
tized into 96 buckets2 by using the uniform quantization (L by 6, a by 4, and b
by 4). To reduce the online computation, for each bin µc(c

′) is pre-computed
and implemented as a lookup table.

2.5 Summary

In this chapter, we have introduced and reviewed the commonly used fea-
ture and knowledge representation methods in the context of multimedia data
mining. Specifically, for feature representation, we have reviewed statistical
features including histograms, coherent vectors, correlograms, and transfor-
mation coefficient features; geometric features including moments, Fourier
descriptors, and normalized inertia coefficients; as well as meta features. For
knowledge representation, we have reviewed methods using logic representa-
tion, semantic networks, frames, constraint representations, as well as uncer-
tainty representations. These feature and knowledge representation methods
have found extensive use and applications in all the multimedia data min-
ing problems. Specifically, we have showcased their applications in solving
different multimedia data mining problems in those chapters in Part III.

2Different numbers of buckets are tested, namely 96, 144, and 216 buckets; the difference

on the final image retrieval accuracy is ignorable. For efficiency consideration, we use 96

buckets.
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Chapter 3

Statistical Mining Theory and
Techniques

3.1 Introduction

Multimedia data mining is an interdisciplinary research field in which generic
data mining theory and techniques are applied to the multimedia data to fa-
cilitate multimedia-specific knowledge discovery tasks. In this chapter, com-
monly used and recently developed generic statistical learning theory, con-
cepts, and techniques in recent multimedia data mining literature are intro-
duced and their pros and cons are discussed. The principles and uniqueness
of the applications of these statistical data learning and mining techniques to
the multimedia domain are also provided in this chapter.

Data mining is defined as discovering hidden information in a data set.
Like data mining in general, multimedia data mining involves many different
algorithms to accomplish different tasks. All of these algorithms attempt to fit
a model to the data. The algorithms examine the data and determine a model
that is closest to the characteristics of the data being examined. Typical data
mining algorithms can be characterized as consisting of three components:

• Model : The purpose of the algorithm is to fit a model to the data.

• Preference: Some criteria must be used to select one model over another.

• Search: All the algorithms require searching the data.

The model in data mining can be either predictive or descriptive in nature. A
predictive model makes a prediction about values of data using known results
found from different data sources. A descriptive model identifies patterns or
relationships in data. Unlike the predictive model, a descriptive model serves
as a way to explore the properties of the data examined, not to predict new
properties.

There are many different statistical methods used to accommodate different
multimedia data mining tasks. These methods not only require specific types
of data structures, but also imply certain types of algorithmic approaches.
The statistical learning theory and techniques introduced in this chapter are
the ones that are commonly used in practice and/or recently developed in

71
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the literature to perform specific multimedia data mining tasks as exemplified
in the subsequent chapters of the book. Specifically, in the multimedia data
mining context, the classification and regression tasks are especially perva-
sive, and the data-driven statistical machine learning theory and techniques
are particularly important. Two major paradigms of statistical learning mod-
els that are extensively used in the recent multimedia data mining litera-
ture are studied and introduced in this chapter: the generative models and
the discriminative models. In the generative models, we mainly focus on
the Bayesian learning, ranging from the classic Naive Bayes Learning, to the
Belief Networks, to the most recently developed graphical models including
Latent Dirichlet Allocation, Probabilistic Latent Semantic Analysis, and Hi-
erarchical Dirichlet Process. In the discriminative models, we focus on the
Support Vector Machines, as well as its recent development in the context of
multimedia data mining on maximum margin learning with structured out-
put space, and the Boosting theory for combining a series of weak classifiers
into a stronger one. Considering the typical special application requirements
in multimedia data mining where it is common that we encounter ambigui-
ties and/or scarce training samples, we also introduce two recently developed
learning paradigms: multiple instance learning and semi-supervised learning,
with their applications in multimedia data mining. The former addresses the
training scenario when ambiguities are present, while the latter addresses the
training scenario when there are only a few training samples available. Both
these scenarios are very common in multimedia data mining and, therefore,
it is important to include these two learning paradigms into this chapter.

The remainder of this chapter is organized as follows. Section 3.2 intro-
duces Bayesian learning. A well-studied statistical analysis technique, Prob-
abilistic Latent Semantic Analysis, is introduced in Section 3.3. Section 3.4
introduces another related statistical analysis technique, Latent Dirichlet Al-
location (LDA), and Section 3.5 introduces the most recent extension of LDA
to a hierarchical learning model called Hierarchical Dirichlet Process (HDP).
Section 3.6 briefly reviews the recent literature in multimedia data mining
using these generative latent topic discovery techniques. Afterwards, an im-
portant, and probably the most important, discriminative learning model,
Support Vector Machines, is introduced in Section 3.7. Section 3.8 introduces
the recently developed maximum margin learning theory in the structured
output space with its application in multimedia data mining. Section 3.9
introduces the boosting theory to combine multiple weak learners to build
a strong learner. Section 3.10 introduces the recently developed multiple
instance learning theory and its applications in multimedia data mining. Sec-
tion 3.11 introduces another recently developed learning theory with extensive
multimedia data mining applications called semi-supervised learning. Finally,
this chapter is summarized in Section 3.12.
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3.2 Bayesian Learning

Bayesian reasoning provides a probabilistic approach to inference. It is
based on the assumption that the quantities of interest are governed by prob-
ability distribution and that an optimal decision can be made by reasoning
about these probabilities together with observed data. A basic familiarity
with Bayesian methods is important to understand and characterize the oper-
ation of many algorithms in machine learning. Features of Bayesian learning
methods include:

• Each observed training example can incrementally decrease or increase
the estimated probability that a hypothesis is correct. This provides
a more flexible approach to learning than algorithms that completely
eliminate a hypothesis if it is found to be inconsistent with any single
example.

• Prior knowledge can be combined with the observed data to determine
the final probability of a hypothesis. In Bayesian learning, prior knowl-
edge is provided by asserting (1) a prior probability for each candidate
hypothesis, and (2) a probability distribution over the observed data for
each possible hypothesis.

• Bayesian methods can accommodate hypotheses that make probabilistic
predictions (e.g., the hypothesis such as “this email has a 95% proba-
bility of being spam”).

• New instances can be classified by combining the predictions of multiple
hypotheses, weighted by their probabilities.

• Even in cases where Bayesian methods prove computationally intractable,
they can provide a standard of optimal decision making against which
other practical methods can be measured.

3.2.1 Bayes Theorem

In multimedia data mining we are often interested in determining the best
hypothesis from a space H, given the observed training data D. One way
to specify what we mean by the best hypothesis is to say that we demand
the most probable hypothesis, given the data D plus any initial knowledge
about the prior probabilities of the various hypotheses in H. Bayes theorem
provides a direct method for calculating such probabilities. More precisely,
Bayes theorem provides a way to calculate the probability of a hypothesis
based on its prior probability, the probabilities of observing various data given
the hypothesis, and the observed data themselves.
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First, let us introduce the notations. We shall write P (h) to denote the
initial probability that hypothesis h holds true, before we have observed the
training data. P (h) is often called the prior probability of h and may reflect
any background knowledge we have about the chance that h is a correct
hypothesis. If we have no such prior knowledge, then we might simply assign
the same prior probability to each candidate hypothesis. Similarly, we will
write P (D) to denote the prior probability that training data setD is observed
(i.e., the probability of D given no knowledge about which the hypothesis
holds true). Next we write P (D|h) to denote the probability of observing
data D given a world in which hypothesis h holds true. More generally, we
write P (x|y) to denote the probability of x given y. In machine learning
problems we are interested in the probability P (h|D) that h holds true given
the observed training data D. P (h|D) is called the posterior probability of
h, because it reflects our confidence that h holds true after we have seen
the training data D. Note that the posterior probability P (h|D) reflects the
influence of the training data D, in contrast to the prior probability P (h),
which is independent of D.

Bayes theorem is the cornerstone of Bayesian learning methods because it
provides a way to compute the posterior probability P (h|D) from the prior
probability P (h), together with P (D) and P (D|h). Bayes Theorem states:

THEOREM 3.1

P (h|D) =
P (D|h)P (h)

P (D)
(3.1)

As one might intuitively expect, P (h|D) increases with P (h) and with
P (D|h), according to Bayes theorem. It is also reasonable to see that P (h|D)
decreases as P (D) increases, because the more probably D is observed inde-
pendent of h, the less evidence D provides in support of h.

In many classification scenarios, a learner considers a set of candidate hy-
potheses H and is interested in finding the most probable hypothesis h ∈ H
given the observed dataD (or at least one of the maximally probable hypothe-
ses if there are several). Any such maximally probable hypothesis is called a
maximum a posteriori (MAP) hypothesis. We can determine the MAP hy-
potheses by using Bayes theorem to compute the posterior probability of each
candidate hypothesis. More precisely, we say that hMAP is a MAP hypothesis
provided

hMAP = argmax
h∈H

P (h|D)

= argmax
h∈H

P (D|h)P (h)

P (D)

= argmax
h∈H

P (D|h)P (h) (3.2)
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Notice that in the final step above we have dropped the term P (D) because
it is a constant independent of h.

Sometimes, we assume that every hypothesis in H is equally probable a
priori (P (hi) = P (hj) for all hi and hj in H). In this case we can further
simplify Equation 3.2 and need only consider the term P (D|h) to find the
most probable hypothesis. P (D|h) is often called the likelihood of the data
D given h, and any hypothesis that maximizes P (D|h) is called a maximum
likelihood (ML) hypothesis, hML.

hML ≡ argmax
h∈H

P (D|h) (3.3)

3.2.2 Bayes Optimal Classifier

The previous section introduces Bayes theorem by considering the question
“What is the most probable hypothesis given the training data?” In fact,
the question that is often of most significance is the closely related question
“What is the most probable classification of the new instance given the train-
ing data?” Although it may seem that this second question can be answered
by simply applying the MAP hypothesis to the new instance, in fact, it is
possible to even do things better.

To develop an intuition, consider a hypothesis space containing three hy-
potheses, h1, h2, and h3. Suppose that the posterior probabilities of these
hypotheses given the training data are 0.4, 0.3, and 0.3, respectively. Thus,
h1 is the MAP hypothesis. Suppose a new instance x is encountered, which is
classified positive by h1 but negative by h2 and h3. Taking all hypotheses into
account, the probability that x is positive is 0.4 (the probability associated
with h1), and the probability that it is negative is therefore 0.6. The most
probable classification (negative) in this case is different from the classification
generated by the MAP hypothesis.

In general, the most probable classification of a new instance is obtained
by combining the predictions of all hypotheses, weighted by their posterior
probabilities. If the possible classification of the new example can take on
any value vj from a set V , then the probability P (vj |D) that the correct
classification for the new instance is vj is just

P (vj |D) =
∑

hi∈H

P (vj |hi)P (hi|D)

The optimal classification of the new instance is the value vj , for which
P (vj |D) is maximum. Consequently, we have the Bayes optimal classification:

arg max
vj∈V

∑

hi∈H

P (vj |hi)P (hi|D) (3.4)

Any system that classifies new instances according to Equation 3.4 is called
a Bayes optimal classifier, or Bayes optimal learner. No other classification
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method using the same hypothesis space and the same prior knowledge can
outperform this method on average. This method maximizes the probability
that the new instance is classified correctly, given the available data, hypoth-
esis space, and prior probabilities over the hypotheses.

Note that one interesting property of the Bayes optimal classifier is that
the predictions it makes can correspond to a hypothesis not contained in H .
Imagine using Equation 3.4 to classify every instance in X . The labeling of
instances defined in this way need not correspond to the instance labeling of
any single hypothesis h from H . One way to view this situation is to think
of the Bayes optimal classifier as effectively considering a hypothesis space
H ′ different from the space of hypotheses H to which Bayes theorem is being
applied. In particular, H ′ effectively includes hypotheses that perform com-
parisons between linear combinations of predictions from multiple hypotheses
in H .

3.2.3 Gibbs Algorithm

Although the Bayes optimal classifier obtains the best performance that can
be achieved from the given training data, it may also be quite costly to apply.
The expense is due to the fact that it computes the posterior probability for
every hypothesis in H and then combines the predictions of each hypothesis
to classify each new instance.

An alternative, less optimal method is the Gibbs algorithm [161], defined
as follows:

1. Choose a hypothesis h from H at random, according to the posterior
probability distribution over H .

2. Use h to predict the classification of the next instance x.

Given a new instance to classify, the Gibbs algorithm simply applies a
hypothesis drawn at random according to the current posterior probability
distribution. Surprisingly, it can be shown that under certain conditions the
expected misclassification error for the Gibbs algorithm is at most twice the
expected error of the Bayes optimal classifier. More precisely, the expected
value is taken over target concepts drawn at random according to the prior
probability distribution assumed by the learner. Under this condition, the ex-
pected value of the error of the Gibbs algorithm is at worst twice the expected
value of the error of the Bayes optimal classifier.

3.2.4 Naive Bayes Classifier

One highly practical Bayesian learning method is the naive Bayes learner,
often called the naive Bayes classifier. In certain domains its performance
has been shown to be comparable to those of neural network and decision
tree learning.
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The naive Bayes classifier applies to learning tasks where each instance x is
described by a conjunction of attribute values and where the target function
f(x) can take on any value from a finite set V . A set of training examples of
the target function is provided, and a new instance is presented, described by
the tuple of attribute values (a1, a2, ..., an). The learner is asked to predict
the target value, or classification, for this new instance.

The Bayesian approach to classifying the new instance is to assign the most
probable target value, vMAP , given the attribute values (a1, a2, ..., an) that
describe the instance.

vMAP = arg max
vj∈V

P (vj |a1, a2, ..., an)

We can use Bayes theorem to rewrite this expression as

vMAP = arg max
vj∈V

P (a1, a2, ..., an|vj)P (vj)

P (a1, a2, ..., an)

= arg max
vj∈V

P (a1, a2, ..., an|vj)P (vj) (3.5)

Now we can attempt to estimate the two terms in Equation 3.5 based on the
training data. It is easy to estimate each of the P (vj) simply by counting the
frequency in which each target value vj occurs in the training data. However,
estimating the different P (a1, a2, ..., an|vj) terms in this fashion is not feasible
unless we have a very large set of training data. The problem is that the
number of these terms is equal to the number of possible instances times the
number of possible target values. Therefore, we need to see every instance in
the instance space many times in order to obtain reliable estimates.

The naive Bayes classifier is based on the simplifying assumption that the
attribute values are conditionally independent given the target value. In other
words, the assumption is that given the target value of the instance, the
probability of observing the conjunction a1, a2, ...an is just the product of the
probabilities for the individual attributes: P (a1, a2, ..., an|vj) =

∏
i P (ai|vj).

Substituting this into Equation 3.5, we have the approach called the naive
Bayes classifier:

vNB = arg max
vj∈V

P (vj)
∏

i

P (ai|vj) (3.6)

where vNB denotes the target value output by the naive Bayes classifier. No-
tice that in a naive Bayes classifier the number of distinct P (ai|vj) terms that
must be estimated from the training data is just the number of distinct at-
tribute values times the number of distinct target values — a much smaller
number than if we were to estimate the P (a1, a2, ..., an|vj) terms as first con-
templated.

To summarize, the naive Bayes learning method involves a learning step in
which the various P (vj) and P (ai|vj) terms are estimated, based on their fre-
quencies over the training data. The set of these estimates corresponds to the
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learned hypothesis. This hypothesis is then used to classify each new instance
by applying the rule in Equation 3.6. Whenever the naive Bayes assumption
of conditional independence is satisfied, this naive Bayes classification vNB is
identical to the MAP classification.

One interesting difference between the naive Bayes learning method and
other learning methods is that there is no explicit search through the space
of possible hypotheses (in this case, the space of possible hypotheses is the
space of possible values that can be assigned to the various P (vj) and P (ai|vj)
terms). Instead, the hypothesis is formed without searching, simply by count-
ing the frequency of various data combinations within the training examples.

3.2.5 Bayesian Belief Networks

As discussed in the previous two sections, the naive Bayes classifier makes
significant use of the assumption that the values of the attributes a1, a2, ..., an
are conditionally independent given the target value v. This assumption dra-
matically reduces the complexity of learning the target function. When it is
met, the naive Bayes classifier outputs the optimal Bayes classification. How-
ever, in many cases this conditional independence assumption is clearly overly
restrictive.

A Bayesian belief network describes the probability distribution governing
a set of variables by specifying a set of conditional independence assumptions
along with a set of conditional probabilities. In contrast to the naive Bayes
classifier, which assumes that all the variables are conditionally independent
given the value of the target variable, Bayesian belief networks allow stating
conditional independence assumptions that apply to subsets of the variables.
Thus, Bayesian belief networks provide an intermediate approach that is less
constraining than the global assumption of conditional independence made
by the naive Bayes classifier, but more tractable than avoiding conditional
independence assumptions altogether. Bayesian belief networks are an active
focus of current research, and a variety of algorithms have been proposed for
learning them and for using them for inference. In this section we introduce
the key concepts and the representation of Bayesian belief networks.

In general, a Bayesian belief network describes the probability distribution
over a set of variables. Consider an arbitrary set of random variables Y1, ..., Yn,
where each variable Yi can take on the set of possible values V (Yi). We define
the joint space of the set of variables Y to be the cross product V (Y1) ×
V (Y2)× ...V (Yn). In other words, each item in the joint space corresponds to
one of the possible assignments of values to the tuple of variables (Y1, ..., Yn).
A Bayesian belief network describes the joint probability distribution for a set
of variables.

Let X , Y , and Z be three discrete-value random variables. We say that
X is conditionally independent of Y given Z if the probability distribution
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governing X is independent of the value of Y given a value for Z; that is, if

(∀xi, yj, zk)P (X = xi|Y = yj , Z = zk) = P (X = xi|Z = zk)

where xi ∈ V (X), yj ∈ V (Y ), zk ∈ V (Z). We commonly write the above
expression in the abbreviated form P (X |Y, Z) = P (X |Z). This definition of
conditional independence can be extended to sets of variables as well. We
say that the set of variables X1...Xl is conditionally independent of the set of
variables Y1...Ym given the set of variables Z1...Zn if

P (X1...Xl|Y1...Ym, Z1...Zn) = P (X1...Xl|Z1...Zn)

Note the correspondence between this definition and our use of the condi-
tional independence in the definition of the naive Bayes classifier. The naive
Bayes classifier assumes that the instance attribute A1 is conditionally inde-
pendent of instance attribute A2 given the target value V . This allows the
naive Bayes classifier to compute P (A1, A2|V ) in Equation 3.6 as follows:

P (A1, A2|V ) = P (A1|A2, V )P (A2|V )

= P (A1|V )P (A2|V ) (3.7)

A Bayesian belief network (Bayesian network for short) represents the joint
probability distribution for a set of variables. In general, a Bayesian network
represents the joint probability distribution by specifying a set of conditional
independence assumptions (represented by a directed acyclic graph), together
with sets of local conditional probabilities. Each variable in the joint space is
represented by a node in the Bayesian network. For each variable two types of
information are specified. First, the network arcs represent the assertion that
the variable is conditionally independent of its nondescendants in the network
given its immediate predecessors in the network. We say X is a descendant of
Y if there is a directed path from Y to X . Second, a conditional probability
table is given for each variable, describing the probability distribution for that
variable given the values of its immediate predecessors. The joint probabil-
ity for any desired assignment of values (y1, ..., yn) to the tuple of network
variables (Y1...Yn) can be computed by the formula

P (y1, ..., yn) =

n∏

i=1

P (yi|Parents(Yi))

where Parents(Yi) denotes the set of immediate predecessors of Yi in the
network. Note that the values of P (yi|Parents(Yi)) are precisely the values
stored in the conditional probability table associated with node Yi. Figure
3.1 shows an example of a Bayesian network. Associated with each node is a
set of conditional probability distributions. For example, the “Alarm” node
might have the probability distribution shown in Table 3.1.

We might wish to use a Bayesian network to infer the value of a target vari-
able given the observed values of the other variables. Of course, given the fact
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FIGURE 3.1: Example of a Bayesian network.

Table 3.1: Associated conditional probabilities with the node “Alarm” in
Figure 3.1.

E B P (A|E,B) P (¬A|E,B)
E B 0.90 0.10
E ¬B 0.20 0.80
¬E B 0.90 0.10
¬E ¬B 0.01 0.99
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that we are dealing with random variables, it is not in general correct to assign
the target variable a single determined value. What we really wish to refer
to is the probability distribution for the target variable, which specifies the
probability that it will take on each of its possible values given the observed
values of the other variables. This inference step can be straightforward if
the values for all of the other variables in the network are known exactly. In
the more general case, we may wish to infer the probability distribution for
some variables given observed values for only a subset of the other variables.
Generally speaking, a Bayesian network can be used to compute the prob-
ability distribution for any subset of network variables given the values or
distributions for any subset of the remaining variables.

Exact inference of probabilities in general for an arbitrary Bayesian network
is known to be NP-hard [51]. Numerous methods have been proposed for prob-
abilistic inference in Bayesian networks, including exact inference methods and
approximate inference methods that sacrifice precision to gain efficiency. For
example, Monte Carlo methods provide approximate solutions by randomly
sampling the distributions of the unobserved variables [170]. In theory, even
approximate inference of probabilities in Bayesian networks can be NP-hard
[54]. Fortunately, in practice approximate methods have been shown to be
useful in many cases.

In the case where the network structure is given in advance and the variables
are fully observable in the training examples, learning the conditional proba-
bility tables is straightforward. We simply estimate the conditional probabil-
ity table entries just as we would for a naive Bayes classifier. In the case where
the network structure is given but only the values of some of the variables are
observable in the training data, the learning problem is more difficult. This
problem is somewhat analogous to learning the weights for the hidden units
in an artificial neural network, where the input and output node values are
given but the hidden unit values are left unspecified by the training examples.
Similar gradient ascent procedures that learn the entries in the conditional
probability tables have been proposed, such as [182]. The gradient ascent
procedures search through a space of hypotheses that corresponds to the set
of all possible entries for the conditional probability tables. The objective
function that is maximized during gradient ascent is the probability P (D|h)
of the observed training data D given the hypothesis h. By definition, this
corresponds to searching for the maximum likelihood hypothesis for the table
entries.

Learning Bayesian networks when the network structure is not known in ad-
vance is also difficult. Cooper and Herskovits [52] present a Bayesian scoring
metric for choosing among alternative networks. They also present a heuris-
tic search algorithm for learning network structure when the data are fully
observable. The algorithm performs a greedy search that trades off network
complexity for accuracy over the training data. Constraint-based approaches
to learning Bayesian network structure have also been developed [195]. These
approaches infer independence and dependence relationships from the data,
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and then use these relationships to construct Bayesian networks.

3.3 Probabilistic Latent Semantic Analysis

One of the fundamental problems in mining from textual and multimedia
data is to learn the meaning and usage of data objects in a data-driven fashion,
e.g., from given images or video keyframes, possibly without further domain
prior knowledge. The main challenge a machine learning system has to address
is rooted in the distinction between the lexical level of “what actually has
been shown” and the semantic level of what “what was intended” or “what
was referred to” in a multimedia data unit. The resulting problem is two-
fold: (i) polysemy, i.e., a unit may have multiple senses and multiple types of
usage in different contexts, and (ii) synonymy and semantically related units,
i.e., different units may have a similar meaning; they may, at least in certain
contexts, denote the same concept or refer to the same topic.

Latent semantic analysis (LSA) [56] is a well-known technique which par-
tially addresses these questions. The key idea is to map high-dimensional
count vectors, such as the ones arising in vector space representations of mul-
timedia units, to a lower-dimensional representation in a so-called latent se-
mantic space. As the name suggests, the goal of LSA is to find a data mapping
which provides information well beyond the lexical level and reveals semantic
relations between the entities of interest. Due to its generality, LSA has proven
to be a valuable analysis tool with a wide range of applications. Despite its
success, there are a number of downsides of LSA. First of all, the methodolog-
ical foundation remains to a large extent unsatisfactory and incomplete. The
original motivation for LSA stems from linear algebra and is based on L2-
optimal approximation of matrices of unit counts based on the Singular Value
Decomposition (SVD) method. While SVD by itself is a well-understood and
principled method, its application to count data in LSA remains somewhat ad
hoc. From a statistical point of view, the utilization of the L2-norm approxi-
mation principle is reminiscent of a Gaussian noise assumption which is hard
to justify in the context of count variables. At a deeper, conceptual level the
representation obtained by LSA is unable to handle polysemy. For example,
it is easy to show that in LSA the coordinates of a word in a latent space
can be written as a linear superposition of the coordinates of the documents
that contain the word. The superposition principle, however, is unable to
explicitly capture multiple senses of a word (i.e., a unit), and it does not take
into account that every unit occurrence is typically intended to refer to one
meaning at a time.

Probabilistic Latent Semantic Analysis (pLSA), also known as Probabilistic
Latent Semantic Indexing (pLSI) in the literature, stems from a statistical
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view of LSA. In contrast to the standard LSA, pLSA defines a proper genera-
tive data model. This has several advantages as follows. At the most general
level it implies that standard techniques from statistics can be applied for
model fitting, model selection, and complexity control. For example, one can
assess the quality of the pLSA model by measuring its predictive performance,
e.g., with the help of cross-validation. At the more specific level, pLSA as-
sociates a latent context variable with each unit occurrence, which explicitly
accounts for polysemy.

3.3.1 Latent Semantic Analysis

LSA can be applied to any type of count data over a discrete dyadic domain,
known as the two-mode data. However, since the most prominent application
of LSA is in the analysis and retrieval of text documents, we focus on this
setting for the introduction purpose in this section. Suppose that we are given
a collection of text documents D = d1, ..., dN with terms from a vocabulary
W = w1, ..., wM . By ignoring the sequential order in which words occur in a
document, one may summarize the data in a rectangular N×M co-occurrence
table of counts N = (n(di, wj))ij , where n(di, wj) denotes the number of the
times the term wj has occurred in document di. In this particular case, N is
also called the term-document matrix and the rows/columns of N are referred
to as document/term vectors, respectively. The key assumption is that the
simplified “bag-of-words” or vector-space representation of the documents will
in many cases preserve most of the relevant information, e.g., for tasks such
as text retrieval based on keywords.

The co-occurrence table representation immediately reveals the problem of
data sparseness, also known as the zero-frequency problem. A typical term-
document matrix derived from short articles, text summaries, or abstracts
may only have a small fraction of non-zero entries, which reflects the fact
that only very few of the words in the vocabulary are actually used in any
single document. This has problems, for example, in the applications that
are based on matching queries against documents or evaluating similarities
between documents by comparing common terms. The likelihood of finding
many common terms even in closely related articles may be small, just because
they might not use exactly the same terms. For example, most of the matching
functions used in this context are based on similarity functions that rely on
inner products between pairs of document vectors. The encountered problems
are then two-fold: On the one hand, one has to account for synonyms in order
not to underestimate the true similarity between the documents. On the
other hand, one has to deal with polysems to avoid overestimating the true
similarity between the documents by counting common terms that are used in
different meanings. Both problems may lead to inappropriate lexical matching
scores which may not reflect the “true” similarity hidden in the semantics of
the words.

As mentioned previously, the key idea of LSA is to map documents — and,
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by symmetry, terms — to a vector space in a reduced dimensionality, the
latent semantic space, which in a typical application in document indexing is
chosen to have an order of about 100–300 dimensions. The mapping of the
given document/term vectors to their latent space representatives is restricted
to be linear and is based on decomposition of the co-occurrence matrix N by
SVD. One thus starts with the standard SVD given by

N = USV T (3.8)

where U and V are matrices with orthonormal columns UTU = V TV =
I and the diagonal matrix S contains the singular values of N . The LSA
approximation ofN is computed by thresholding all but the largestK singular
values in S to zero (= S̃), which is rank K optimal in the sense of the L2-
matrix or Frobenius norm, as is well-known from linear algebra; i.e., we have
the approximation

Ñ = US̃V T ≈ USV T = N (3.9)

Note that if we want to compute the document-to-document inner products
based on Equation 3.9, we would obtain ÑÑT = US̃2UT , and hence one
might think of the rows of US̃ as defining coordinates for documents in the
latent space. While the original high-dimensional vectors are sparse, the corre-
sponding low-dimensional latent vectors are typically not sparse. This implies
that it is possible to compute meaningful association values between pairs of
documents, even if the documents do not have any terms in common. The
hope is that terms having a common meaning are roughly mapped to the
same direction in the latent space.

3.3.2 Probabilistic Extension to Latent Semantic Analysis

The starting point for probabilistic latent semantic analysis [101] is a sta-
tistical model which has been called the apsect model. In the statistical lit-
erature similar models have been discussed for the analysis of contingency
tables. Another closely related technique called non-negative matrix factor-
ization [135] has also been proposed. The aspect model is a latent variable
model for co-occurrence data which associates an unobserved class variable
zk ∈ {z1, ..., zK} with each observation, an observation being the occurrence
of a word in a particular document. The following probabilities are introduced
in pLSA: P (di) is used to denote the probability that a word occurrence is
observed in a particular document di; P (wj |zk) denotes the class-conditional
probability of a specific word conditioned on the unobserved class variable
zk; and, finally, P (zk|di) denotes a document-specific probability distribution
over the latent variable space. Using these definitions, one may define a gen-
erative model for words/document co-occurrences by the scheme [161] defined
as follows:

1. select a document di with probability P (di);
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2. pick a latent class zk with probability P (zk|di);

3. generate a word wj with probability P (wj |zk).

As a result, one obtains an observation pair (di, wj), while the latent class
variable zk is discarded. Translating the data generation process into a joint
probability model results in the expression:

P (di, wj) = P (di)P (wj |di) (3.10)

P (wj |di) =
K∑

k=1

P (wj |zk)P (zk|di) (3.11)

Essentially, to obtain Equation 3.11 one has to sum over the possible choices
of zk by which an observation could have been generated. Like virtually
all the statistical latent variable models, the aspect model introduces a con-
ditional independence assumption, namely that di and wj are independent,
conditioned on the state of the associated latent variable. A very intuitive
interpretation for the aspect model can be obtained by a close examination
of the conditional distribution P (wj |di), which is seen to be a convex combi-
nation of the k class-conditionals or aspects P (wj |zk). Loosely speaking, the
modeling goal is to identify conditional probability mass functions P (wj |zk)
such that the document-specific word distributions are as faithfully as possible
approximated by the convex combinations of these aspects. More formally,
one can use a maximum likelihood formulation of the learning problem; i.e.,
one has to maximize

L =

N∑

i=1

M∑

j=1

n(di, wj) logP (di, wj)

=

N∑

i=1

n(di)[logP (di) +

M∑

j=1

n(di, wj)

n(di)
log

K∑

k=1

P (wj |zk)P (zk|di)] (3.12)

with respect to all probability mass functions. Here, n(di) =
∑
j n(di, wj)

refers to the document length. Since the cardinality of the latent variable
space is typically smaller than the number of the documents or the number of
the terms in a collection, i.e., K ≪ min(N,M), it acts as a bottleneck variable
in predicting words. It is worth noting that an equivalent parameterization
of the joint probability in Equation 3.11 can be obtained by:

P (di, wj) =

K∑

k=1

P (zk)P (di|zk)P (wj |zk) (3.13)

which is perfectly symmetric in both entities, documents and words.
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3.3.3 Model Fitting with the EM Algorithm

The standard procedure for maximum likelihood estimation in the latent
variable model is the Expectation-Maximization (EM) algorithm. EM alter-
nates in two steps: (i) an expectation (E) step where posterior probabilities
are computed for the latent variables, based on the current estimates of the
parameters; and (ii) a maximization (M) step, where parameters are updated
based on the so-called expected complete data log-likelihood which depends
on the posterior probabilities computed in the E-step.

For the E-step one simply applies Bayes’ formula, e.g., in the parameteri-
zation of Equation 3.11, to obtain

P (zk|di, wj) =
P (wj |zk)P (zk|di)∑K
l=1 P (wj |zl)P (zl|di)

(3.14)

In the M-step one has to maximize the expected complete data log-likelihood
E[Lc]. Since the trivial estimate P (di) ∝ n(di) can be carried out indepen-
dently, the relevant part is given by

E[Lc] =

N∑

i=1

M∑

j=1

n(di, wj)

K∑

k=1

P (zk|di, wj) log [P (wj |zk)P (zk|di)] (3.15)

In order to take care of the normalization constraints, Equation 3.15 has to
be augmented by appropriate Lagrange multiples τk and ρi,

H = E[Lc] +

K∑

k=1

τk(1−
M∑

j=1

P (wj |zk)) +

N∑

i=1

ρi(1 −
K∑

k=1

P (zk|di)) (3.16)

Maximization of H with respect to the probability mass functions leads to
the following set of stationary equations

N∑

i=1

n(di, wj)P (zk|di, wj)− τkP (wj |zk) = 0, 1 ≤ j ≤M, 1 ≤ k ≤ K. (3.17)

M∑

j=1

n(di, wj)P (zk|di, wj)− ρiP (zk|di) = 0, 1 ≤ i ≤ N, 1 ≤ k ≤ K. (3.18)

After eliminating the Lagrange multipliers, one obtains the M-step re-estimation
equations

P (wj |zk) =

∑N
i=1 n(di, wj)P (zk|di, wj)∑M

m=1

∑N
i=1 n(di, wm)P (zk|di, wm)

(3.19)

P (zk|di) =

∑M
j=1 n(di, wj)P (zk|di, wj)

n(di)
(3.20)
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The E-step and M-step equations are alternated until a termination con-
dition is met. This can be a convergence condition, but one may also use a
technique known as early stopping. In early stopping one does not necessarily
optimize until convergence, but instead stops updating the parameters once
the performance on hold-out data is not improved. This is a standard pro-
cedure that can be used to avoid overfitting in the context of many iterative
fitting methods, with EM being a special case.

3.3.4 Latent Probability Space and Probabilistic Latent Se-
mantic Analysis

Consider the class-conditional probability mass functions P (•|zk) over the
vocabulary W which can be represented as points on the M − 1 dimen-
sional simplex of all probability mass functions over W . Via its convex
hull, this set of K points defines a k − 1 dimensional convex region R ≡
conv(P (•|z1), ..., P (•|zk)) on the simplex (provided that they are in general
positions). The modeling assumption expressed by Equation 3.11 is that all
conditional probabilities P (•|di) for 1 ≤ i ≤ N are approximated by a convex
combination of the K probability mass functions P (•|zk). The mixing weights
P (zk|di) are coordinates that uniquely define for each document a point within
the convex region R. This demonstrates that despite the discreteness of the
introduced latent variables, a continuous latent space is obtained within the
space of all probability mass functions over W . Since the dimensionality of
the convex region R is K−1 as opposed to M −1 for the probability simplex,
this can also be considered as the dimensionality reduction for the terms and
R can be identified as a probabilistic latent semantic space. Each “direction”
in the space corresponds to a particular context as quantified by P (•|zk) and
each document di participates in each context with a specific fraction P (zk|di).
Note that since the aspect model is symmetric with respect to terms and doc-
uments, by reversing their roles one obtains a corresponding region R′ in the
simplex of all probability mass functions over D. Here each term wj par-
ticipates in each context with a fraction P (zk|wj), i.e., the probability of an
occurrence of wj as part of the context zk.

To stress this point and to clarify the relation to LSA, the aspect model as
parameterized in Equation 3.13 is rewritten in matrix notion. Hence, define
matrices by Û = (P (di|zk))i,k, V̂ = (P (wj |zk))j,k, and Ŝ = diag(P (zk))k.
The joint probability model P can then be written as a matrix product P =
Û ŜV̂ T . Comparing this decomposition with the SVD decomposition in LSA,
one immediately points out the following interpretation of the concepts in
linear algebra: (i) the weighted sum over outer products between rows of Û
and V̂ reflects the conditional independence in pLSA; (ii) the K factors are
seen to correspond to the mixture components of the aspect model; and (iii)
the mixing proportions in pLSA substitute the singular values of the SVD in
LSA. The crucial difference between pLSA and LSA, however, is the objective
function utilized to determine the optimal decomposition/approximation. In
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LSA, this is the L2- or Frobenius norm, which corresponds to an implicit
additive Gaussian noise assumption on (possibly transformed) counts. In
contrast, pLSA relies on the likelihood function of the multinomial sampling
and aims at an explicit maximization of the cross entropy of the Kullback-
Leibler divergence between the empirical distribution and the model, which
is different from any type of the squared deviation. On the modeling side
this offers important advantages; for example, the mixture approximation P
of the co-occurrence table is a well-defined probability distribution, and the
factors have a clear probabilistic meaning in terms of the mixture component
distributions. On the other hand, LSA does not define a properly normalized
probability distribution, and even worse, Ñ may contain negative entries. In
addition, the probabilistic approach can take advantage of the well-established
statistical theory for model selection and complexity control, e.g., to determine
the optimal number of latent space dimensions.

3.3.5 Model Overfitting and Tempered EM

The original model fitting technique using the EM algorithm has an over-
fitting problem; in other words, its generalization capability is weak. Even if
the performance on the training data is satisfactory, the performance on the
testing data may still suffer substantially. One metric to assess the generaliza-
tion performance of a model is called perplexity, which is a measure commonly
used in language modeling. The perplexity is defined to be the log-averaged
inverse probability on the unseen data, i.e.,

P = exp[−
∑
i,j n

′(di, wj) logP (wj |di)∑
i,j n

′(di, wj)
] (3.21)

where n′(di, wj) denotes the counts on hold-out or test data.
To derive conditions under which a generalization on the unseen data can be

guaranteed is actually the fundamental problem of a statistical learning the-
ory. One generalization of maximum likelihood for mixture models is known
as annealing and is based on an entropic regularization term. The method is
called tempered expectation-maximization (TEM) and is closely related to the
deterministic annealing technique. The combination of deterministic anneal-
ing with the EM algorithm is the foundation basis of TEM.

The starting point of TEM is a derivation of the E-step based on an op-
timization principle. The EM procedure in latent variable models can be
obtained by minimizing a common objective function — the (Helmholtz) free
energy — which for the aspect model is given by

Fβ = −β
N∑

i=1

M∑

j=1

n(di, wj)

K∑

k=1

P̃ (zk; di, wj) log[P (di|zk)P (wj |zk)P (zk)]

= +

N∑

i=1

n(di)

K∑

k=1

P̃ (zk; di, wj) log P̃ (zk; di, wj) (3.22)
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Here P̃ (zk; di, wj) are variational parameters which define a conditional dis-
tribution over z1, ..., zK and β is a parameter which — in analogy to physi-
cal systems — is called the inverse computational temperature. Notice that
the first contribution in Equation 3.22 is the negative expected log-likelihood
scaled by β. Thus, in the case of P̃ (zk; di, wj) = P (zk|di, wj) minimizing F

w.r.t. the parameters defining P (di, wj |zk) amounts to the standard M-step
in EM. In fact, it is straightforward to verify that the posteriors are obtained
by minimizing F w.r.t. P̃ at β = 1. In general P̃ is determined by

P̃ (zk; di, wj) =
[P (zk)P (di|zk)P (wj |zk)]β∑
l[P (zl)P (di|zl)P (wj |zl)]β

=
[P (zk|di)P (wj |zk)]β∑
l[P (zl|di)P (wj |zl)]β

(3.23)
This shows that the effect of the entropy at β < 1 is to dampen the posterior
probabilities such that they will be closer to the uniform distribution with
decreasing β.

Somewhat contrary to the spirit of annealing as a continuation method,
an “inverse” annealing strategy which first performs EM iterations and then
decreases β until performance on the hold-out data deteriorates can be used.
Compared with annealing, this may accelerate the model fitting procedure
significantly. The TEM algorithm can be implemented in the following way:

1. Set β ←− 1 and perform EM with early stopping.

2. Decrease β ←− ηβ (with η < 1) and perform one TEM iteration.

3. As long as the performance on hold-out data improves (non-negligibly),
continue TEM iteration at this value of β; otherwise, goto step 2.

4. Perform stopping on β, i.e., stop when decreasing β does not yield fur-
ther improvements.

3.4 Latent Dirichlet Allocation for Discrete Data Anal-
ysis

The Latent Dirichlet Allocation (LDA) is a statistical model for analyzing
discrete data, initially proposed for document analysis. It offers a framework
for understanding why certain words tend to occur together. Namely, it posits
(in a simplification) that each document is a mixture of a small number of
topics and that each word’s creation is attributable to one of the document’s
topics. It is a graphical model for topic discovery developed by Blei, Ng, and
Jordan [23] in 2003.

LDA is a generative language model which attempts to learn a set of topics
and sets of words associated with each topic, so that each document may be
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viewed as a mixture of various topics. This is similar to pLSA, except that in
LDA the topic distribution is assumed to have a Dirichlet prior. In practice,
this results in more reasonable mixtures of topics in a document. It has been
noted, however, that the pLSA model is equivalent to the LDA model under
a uniform Dirichlet prior distribution [89].

For example, an LDA model might have topics “cat” and “dog”. The
“cat” topic has probabilities of generating various words: the words tabby,
kitten, and, of course, cat will have high probabilities given this topic. The
“dog” topic likewise has probabilities of generating words in which puppy and
dachshund might have high probabilities. Words without special relevance,
like the, will have roughly an even probability between classes (or can be
placed into a separate category or even filtered out).

A document is generated by picking a distribution over topics (e.g., mostly
about “dog”, mostly about “cat”, or a bit of both), and given this distribution,
picking the topic of each specific word. Then words are generated given their
topics. Notice that words are considered to be independent given the topics.
This is the standard “bag of words” assumption, and makes the individual
words exchangeable.

Learning the various distributions (the set of topics, their associated words’
probabilities, the topic of each word, and the particular topic mixture of each
document) is a problem of Bayesian inference, which can be carried out using
the variational methods (or also with Markov Chain Monte Carlo methods,
which tend to be quite slow in practice) [23]. LDA is typically used in language
modeling for information retrieval.

3.4.1 Latent Dirichlet Allocation

While the pLSA described in the last section is very useful toward prob-
abilistic modeling of multimedia data units, it is argued to be incomplete
in that it provides no probabilistic model at the level of the documents. In
pLSA, each document is represented as a list of numbers (the mixing pro-
portions for topics), and there is no generative probabilistic model for these
numbers. This leads to two major problems: (1) the number of parameters
in the model grows linearly with the size of the corpus, which leads to serious
problems with overfitting; and (2) it is not clear how to assign a probability
to a document outside a training set.

LDA is a truly generative probabilistic model that not only assigns proba-
bilities to documents of a training set, but also assigns probabilities to other
documents not in the training set. The basic idea is that documents are
represented as random mixtures over latent topics, where each topic is char-
acterized by a distribution over words. LDA assumes the following generative
process for each document w in a corpus D:

1. Choose N ∼ Poisson(ξ).

2. Choose θ ∼ Dir(α).
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3. For each of the N words wn:

Choose a topic zn ∼Multinomial(θ).

Choose a word wn from p(wn|zn,β), a multinomial probability con-
ditioned on the topic zn.

where Poisson(ξ), Dir(α), and Multinomial(θ) denote a Poisson, a Dirich-
let, and a multinomial distribution with parameters ξ, α, and θ, respectively.
Several simplifying assumptions are made in this basic model. First, the di-
mensionality k of the Dirichlet distribution (and thus the dimensionality of
the topic variable z) is assumed known and fixed. Second, the word probabil-
ities are parameterized by a k × V matrix β where βij = p(wj = 1|zi = 1),
which is treated as a fixed quantity that is to be estimated. Finally, the Pois-
son assumption is not critical to the modeling, and a more realistic document
length distribution can be used as needed. Furthermore, note that N is in-
dependent of all the other data generation variables (θ and z). It is thus an
ancillary variable.

A k-dimensional Dirichlet random variable θ can take values in the (k− 1)-

simplex (a k-dimensional vector θ lies in the (k−1)-simplex if θj ≥ 0,
∑k
j=1 θj =

1), and has the following density on this simplex:

p(θ|α) =
Γ(

∑k
i=1 αi)∏k

i=1 Γ(αi)
θα1−1
1 . . . θαk−1

k (3.24)

where the parameter α is a k-dimensional vector with components αi > 0,
and where Γ(x) is the Gamma function. The Dirichlet is a convenient distri-
bution on the simplex — it is in the exponential family, has finite dimensional
sufficient statistics, and is conjugate to the multinomial distribution. These
properties facilitate the development of inference and parameter estimation
algorithms for LDA.

Given the parameters α and β, the joint distribution of a topic mixture θ,
a set of N topics z, and a set of N words w is given by:

p(θ, z,w|α,β) = p(θ|α)

N∏

n=1

p(zn|θ)p(wn|zn,β) (3.25)

where p(zn|θ) is simply θi for the unique i such that zin = 1. Integrating over
θ and summing over z, we obtain the marginal distribution of a document:

p(w|α, β) =

∫
p(θ|α)(

N∏

n=1

∑

zn

p(zn|θ)p(wn|zn, β))dθ (3.26)

Finally, taking the product of the marginal probabilities of single documents
d, we obtain the probability of a corpus D with M documents:

p(D|α, β) =

M∏

d=1

∫
p(θd|α)(

Nd∏

n=1

∑

zdn

p(zdn|θd)p(wdn|zdn, β))dθd (3.27)
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FIGURE 3.2: Graphical model representation of LDA. The boxes are “plates”
representing replicates. The outer plate represents documents, while the inner
plate represents the repeated choice of topics and words within a document.

The LDA model is represented as a probabilistic graphical model in Figure
3.2. As the figure indicates clearly, there are three levels to the LDA repre-
sentation. The parameters α and β are corpus-level parameters, assumed to
be sampled once in the process of generating a corpus. The variables θd are
document-level variables, sampled once per document. Finally, the variables
zdn and wdn are word-level variables and are sampled once for each word in
each document.

It is important to distinguish LDA from a simple Dirichlet-multinomial
clustering model. A classical clustering model would involve a two-level model
in which a Dirichlet is sampled once for a corpus, a multinomial clustering
variable is selected once for each document in the corpus, and a set of words is
selected for the document conditional on the cluster variable. As with many
clustering models, such a model restricts a document to being associated with
a single topic. LDA, on the other hand, involves three levels, and notably the
topic node is sampled repeatedly within the document. Under this model,
documents can be associated with multiple topics.

3.4.2 Relationship to Other Latent Variable Models

In this section we compare LDA with simpler latent variable models — the
unigram model, a mixture of unigrams, and the pLSA model. Furthermore,
we present a unified geometric interpretation of these models which highlights
their key differences and similarities.

1. Unigram model
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FIGURE 3.3: Graphical model representation of unigram model of discrete
data.

Under the unigram model, the words of every document are drawn in-
dependently from a single multinomial distribution:

p(w) =
N∏

n=1

p(wn)

This is illustrated in the graphical model in Figure 3.3.

2. Mixture of unigrams

If we augment the unigram model with a discrete random topic variable
z (Figure 3.4), we obtain a mixture of unigrams model. Under this mix-
ture model, each document is generated by first choosing a topic z and
then generating N words independently from the conditional multino-
mial p(w|z). The probability of a document is:

p(w) =
∑

z

p(z)
N∏

n=1

p(wn|z)

When estimated from a corpus, the word distributions can be viewed
as representations of topics under the assumption that each document
exhibits exactly one topic. This assumption is often too limiting to
effectively model a large collection of documents. In contrast, the LDA
model allows documents to exhibit multiple topics to different degrees.
This is achieved at a cost of just one additional parameter: there are
k−1 parameters associated with p(z) in the mixture of unigrams, versus
the k parameters associated with p(θ|α) in LDA.

3. Probabilistic latent semantic analysis

Probabilistic latent semantic analysis (pLSA), introduced in Section 3.3
is another widely used document model. The pLSA model, illustrated
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FIGURE 3.4: Graphical model representation of mixture of unigrams model
of discrete data.

FIGURE 3.5: Graphical model representation of pLSI/aspect model of dis-
crete data.

in Figure 3.5, posits that a document label d and a word wn are condi-
tionally independent given an unobserved topic z:

p(d, wn) = p(d)
∑

z

p(wn|z)p(z|d)

.

The pLSA model attempts to relax the simplifying assumption made in
the mixture of unigrams model that each document is generated from
only one topic. In a sense, it does capture the possibility that a doc-
ument may contain multiple topics since p(z|d) serves as the mixture
weights of the topics for a particular document d. However, it is impor-
tant to note that d is a dummy index into the list of documents in the
training set. Thus, d is a multinomial random variable with as many
possible values as there are in the training documents, and the model
learns the topic mixtures p(z|d) only for those documents on which it is
trained. For this reason, pLSA is not a well-defined generative model of
documents; there is no natural way to use it to assign a probability to a
previously unseen document. A further difficulty with pLSA, which also
stems from the use of a distribution indexed by the training documents,
is that the number of the parameters which must be estimated grows
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linearly with the number of the training documents. The parameters
for a k-topic pLSA model are k multinomial distributions in size V and
M mixtures over the k hidden topics. This gives kV + kM parameters
and therefore a linear growth in M . The linear growth in parameters
suggests that the model is prone to overfitting, and, empirically, over-
fitting is indeed a serious problem. In practice, a tempering heuristic
is used to smooth the parameters of the model for an acceptable pre-
dictive performance. It has been shown, however, that overfitting can
occur even when tempering is used. LDA overcomes both of these prob-
lems by treating the topic mixture weights as a k-parameter hidden
random variable rather than a large set of individual parameters which
are explicitly linked to the training set. As described above, LDA is a
well-defined generative model and generalizes easily to new documents.
Furthermore, the k + kV parameters in a k-topic LDA model do not
grow with the size of the training corpus. In consequence, LDA does
not suffer from the same overfitting issues as pLSA.

3.4.3 Inference in LDA

We have described the motivation behind LDA and have illustrated its
conceptual advantages over other latent topic models. In this section, we
turn our attention to procedures for inference and parameter estimation under
LDA.

The key inferential problem that we need to solve in order to use LDA is
that of computing the posterior distribution of the hidden variables given a
document:

p(θ, z|w, α, β) =
p(θ, z,w|α, β)

p(w|α, β)

Unfortunately, this distribution is intractable to compute in general. Indeed,
to normalize the distribution we marginalize over the hidden variables and
write Equation 3.26 in terms of the model parameters:

p(w|α, β) =
Γ(

∑
i αi)∏

i Γ(αi)

∫
(

k∏

i=1

θαi−1
i )(

N∏

n=1

k∑

i=1

V∏

j=1

(θiβij)
wj

n)dθ

a function which is intractable due to the coupling between θ and β in the
summation over latent topics. It has been shown that this function is an
expectation under a particular extension to the Dirichlet distribution which
can be represented with special hypergeometric functions. It has been used
in a Bayesian context for censored discrete data to represent the posterior on
θ which, in that setting, is a random parameter.

Although the posterior distribution is intractable for exact inference, a wide
variety of approximate inference algorithms can be considered for LDA, in-
cluding Laplace approximation, variational approximation, and Markov chain
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Monte Carlo. In this section we describe a simple convexity-based variational
algorithm for inference in LDA.

The basic idea of convexity-based variational inference is to obtain an ad-
justable lower bound on the log likelihood. Essentially, one considers a family
of lower bounds, indexed by a set of variational parameters. The variational
parameters are chosen by an optimization procedure that attempts to find the
tightest possible lower bound.

A simple way to obtain a tractable family of lower bounds is to consider
simple modifications of the original graphical model in which some of the edges
and nodes are removed. The problematic coupling between θ and β arises due
to the edges between θ, z, and w. By dropping these edges and the w nodes,
and endowing the resulting simplified graphical model with free variational
parameters, we obtain a family of distributions on the latent variables. This
family is characterized by the following variational distribution:

p(θ, z|γ, φ) = p(θ|γ)
N∏

n=1

p(zn|φn) (3.28)

where the Dirichlet parameter γ and the multinomial parameters (φ1, ..., φN )
are the free variational parameters.

We summarize the variational inference procedure in Algorithm 1, with
appropriate starting points for γ and φn. From the pseudocode it is clear
that each iteration of the variational inference for LDA requires O((N + 1)k)
operations. Empirically, we find that the number of iterations required for a
single document is in the order of the number of words in the document. This
yields a total number of operations roughly in the order of N2k.

3.4.4 Parameter Estimation in LDA

In this section we present an empirical Bayes method for parameter es-
timation in the LDA model. In particular, given a corpus of documents
D = {w1,w2, ...wM}, we wish to find parameters α and β that maximize
the (marginal) log likelihood of the data:

L(α, β) =

M∑

d=1

log p(wd|α, β)

As described above, the quantity p(w|α, β) cannot be computed tractably.
However, the variational inference provides us with a tractable lower bound
on the log likelihood, a bound which we can maximize with respect to α and β.
We can thus find approximate empirical Bayes estimates for the LDA model
via an alternating variational EM procedure that maximizes a lower bound
with respect to the variational parameters γ and φ, and then, for the fixed
values of the variational parameters, maximizes the lower bound with respect
to the model parameters α and β.
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Algorithm 1 A variational inference algorithm for LDA

Input: A corpus of documents with N words wn and k topics (i.e., clusters)
Output: Parameters φ and γ
Method:

1: Initialize t = 0
2: Initialize φni

t = 1
k for all i and n

3: Initialize γi
t = αi + N

k for all i
4: repeat
5: for n = 1 to N do
6: for i = 1 to k do
7: φni

t+1 = βiwn
exp(Φ(γi

t))
8: end for
9: Normalize φn

t+1 to sum to 1
10: end for
11: γt+1 = α+

∑N
n=1 φn

t+1

12: t = t+ 1
13: until Convergence

There is a detailed derivation of the variational EM algorithm for LDA [23].
The derivation yields the following iterative algorithm:

1. (E-step) For each document, find the optimizing values of the variational
parameters {γ∗d , φ∗d : d ∈ D}. This is done as described in the previous
section.

2. (M-step) Maximize the resulting lower bound on the log likelihood with
respect to the model parameters α and β. This corresponds to finding
the maximum likelihood estimates with the expected sufficient statistics
for each document under the approximate posterior which is computed
in the E-step.

These two steps are repeated until the lower bound on the log likelihood
converges. In addition, the M-step update for the conditional multinomial
parameter β can be written out analytically:

βij =

M∑

d=1

Nd∑

n=1

φ∗dniw
j
dn

It is also shown that the M-step update for Dirichlet parameter α can be
implemented using an efficient Newton-Raphson method in which the Hessian
is inverted in a linear time.
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FIGURE 3.6: Graphical model representation of the Hierarchical Dirichlet
Process of discrete data.

3.5 Hierarchical Dirichlet Process

indexhierarchical Dirichlet process
All the proposed language models introduced so far have a fundamental

assumption that the number of the topics in the data corpus must be given in
advance. Given the fact that all the Bayesian models can be developed into
a hierarchy, recently Teh et al have proposed a nonparametric hierarchical
Bayesian model called the Hierarchical Dirichlet Process, abbreviated as HDP
[203]. The advantage of HDP in comparison with the existing latent models
is that HDP is capable of automatically determining the number of topics or
clusters and sharing the mixture components across topics.

Specifically, HDP is based on Dirichlet process mixture models where it
is assumed that the data corpora have different groups and each group is
associated with a mixture model, with all the groups sharing the same set of
mixture components. With this assumption, the number of clusters can be
left as open-ended. Consequently, HDP is ideal for multi-tasking learning or
learning to learn. When there is only one group, HDP is reduced to LDA.
Figure 3.6 shows the graphical model for HDP. The corresponding generative
process is given as follows.

1. A random measure G0 is drawn from a Dirichlet process DP [24, 258,
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158] parameterized by concentration parameter α and base probability
measure H :

G0|γ,H ∼ DP(γ,H). (3.29)

G0 can be constructed by the stick-breaking process [77, 19], i.e.,

G0 =

∞∑

k=1

πkδφk

π
′

k| γ,H ∼ Beta(1, γ)
φk| γ,H ∼ H

πk = π
′

k

∏k−1
l=1 (1− π′

l)
G0 =

∑∞
k=1 πkδφk

(3.30)

where δφ denotes a probability measure concentrated on φ, π is the
weight set {πk}∞k=1, and Beta is a Beta distribution.

2. A random probability measure Gdj for each document j is drawn from a
Dirichlet process with concentration parameter α and base probability
measure G0:

Gdj |α,G0 ∼ DP(α,G0). (3.31)

In this case, Gdj , which is a prior distribution of all the words in docu-

ment j, shares the mixture components {φk}∞k=1 with G0. Namely, Gdj
can be written as Gdj =

∑∞
k=1 πjkδφk

.

3. A topic θji for each word i in document j is drawn from Gdj such that
θji is sampled as one of {φk}∞k=1.

4. Each word i in document j, i.e., xji, is drawn from a likelihood distri-
bution F (xji|θji).

3.6 Applications in Multimedia Data Mining

Ever since the idea of the latent topic (or the latent concept) discovery from
a document corpus reflected by LDA [23] or HDP [203] or the related pLSA
[101] was published, these language models have succeeded substantially in
text or information retrieval. Due to this success, a number of applications
of these language models to multimedia data mining have been reported in
the literature. Noticeable examples include using LDA to discover objects in
image collections [191, 181, 33, 213], using pLSI to discover semantic concepts
in image collections [240, 243], using LDA to classify scene image categories
[73, 74, 76], using pLSI to learn image annotation [155, 245, 246], and using
LDA to understand the activities and interactions in surveillance video [214].
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Since models such as LDA, pLSI, and HDP are originally proposed for text
retrieval, the applications of these language models to multimedia data imme-
diately lead to two different but related issues. The first issue is that in text
data, each word is naturally and distinctly presented in the language vocab-
ulary, and each document is also clearly represented as a collection of words;
however, there is no clear correspondence in multimedia data for the concepts
of words and documents. Consequently, how to appropriately represent a
multimedia word and/or a multimedia document in multimedia data has be-
come a non-trivial issue. In the current literature of multimedia data mining,
a multimedia word is typically represented either as a segmented unit in the
original multimedia data space (e.g., an image patch after a segmentation of
an image [213]) or as a segmented unit in a transformed feature space (e.g.,
as a unit of a quantized motion feature space [214]); similarly, a multimedia
document may be represented as a certain partition of the multimedia data,
such as a part of an image [213], or an image [191], or a video clip [214].

The second and more important issue is that the original language models
are based on the fundamental assumption that a document is simply a bag
of words. However, in multimedia data, often there is a strong spatial cor-
relation between the multimedia words in a multimedia document, such as
the neighboring pixels or regions in an image, or related video frames of a
video stream. In order to make those language models work effectively, we
must incorporate the spatial information into these models. Consequently,
in the recent literature, variations of these language models are developed
specifically tailored to the specific multimedia data mining applications. For
example, Cao and Fei-Fei propose the Spatially Coherent Latent Topic Model
(Spatial-LTM) [33] and Wang and Grimson propose the Spatial Latent Dirich-
let Allocation (SLDA) [213]. To further model the temporal correlation for
temporal data or time-series data, Teh et al [203] further propose a hierarchi-
cal Bayesian model that is a combination of the HDP model and the Hidden
Markov Model (HMM) called HDP-HMM for automatic topic discovery and
clustering, and have proven that the infinite Hidden Markov Model (iHMM)
[17], based on the coupled urn model, is equivalent to an HDP-HMM.

3.7 Support Vector Machines

The support vector machine (SVM) is a supervised learning method typi-
cally used for classification and regression. SVMs are generalized linear classi-
fiers. SVMs attempt to minimize the classification error through maximizing
the geometric margin between classes. In this sense, SVMs are also called the
maximum margin classifiers.

As a typical representation in classification, data points are represented as
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feature vectors in a feature space. A support vector machine maps these in-
put vectors to a higher-dimensional space such that a separating hyperplane
may be constructed between classes; this separating hyperplane may be con-
structed in such a way that the two parallel boundary hyperplanes to the
separating hyperplane are constructed on each side of the hyperplane that
the distance between these two boundary hyperplanes is maximized, where a
boundary hyperplane is the hyperplane that passes at least one data point of
the class and all the other data points of the class are located in the other side
of the boundary hyperplane across the parallel separating hyperplane. Thus,
the separating hyperplane is the hyperplane that maximizes the distance be-
tween the two parallel boundary hyperplanes. Presumably, the larger the
margin or distance between these parallel boundary hyperplanes, the better
the generalization error of the classifier is.

Let us first focus on the simplest scenario of classification — the two-class
classification. Each data point is represented as a p-dimensional vector in a
p-dimensional Euclidean feature space. Each of these data points is in only
one of the two classes. We are interested in whether we can separate these
data points of the two classes with a p − 1 dimensional hyperplane. This
is a standard problem of linear classifiers. There are many linear classifiers
as solutions to this problem. However, we are particularly interested in de-
termining whether we can achieve maximum separation (i.e., the maximum
margin) between the two classes. By the maximum margin, we mean that we
determine the separating hyperplane between the two classes such that the
distance from the separating hyperplane to the nearest data point in either of
the classes is maximized. That is equivalent to say that the distance between
the two parallel boundary hyperplanes to the separating hyperplane is max-
imized. If such a separating hyperplane exists, it is clearly of interest and is
called the maximum-margin hyperplane; correspondingly, such a linear classi-
fier is called a maximum margin classifier. Figure 3.7 illustrates the different
separating hyperplanes on a two-class data set.

We consider data points of the form {(x1, c1), (x2, c2), ..., (xn, cn)}, where
the ci is either 1 or -1, a constant denoting the class to which the point xi

belongs. Each is a p-dimensional real vector and may be normalized into the
range of [0,1] or [-1,1]. The scaling is important to guard against variables with
larger variances that might otherwise dominate the classification. At present
we take this data set as the training data; the training data set represents
the correct classification that we would like an SVM to eventually perform,
by means of separating the data with a hyperplane, in the form

w · x− b = 0

The vector w is perpendicular to the separating hyperplane. With the
offset parameter b, we are allowed to increase the margin, as otherwise the
hyperplane must pass through the origin, restricting the solution. Since we
are interested in the maximum margin, we are interested in those data points
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FIGURE 3.7: Different separating hyperplanes on a two-class data set.
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closer or touch the parallel boundary hyperplanes to the separating hyperplane
between the two classes. It is easy to show that these parallel boundary
hyperplanes are described by equations (through scaling w and b) w ·x−b = 1
and w ·x− b = −1. If the training data are linearly separable, we select these
hyperplanes such that there are no points between them and then try to
maximize their distance. By the geometry, we find the distance between the
hyperplanes is 2/|w| (as shown in Figure 3.8); consequently, we attempt to
minimize |w|. To exclude any data points between the two parallel boundary
hyperplanes, we must ensure that for all i, either w ·x−b ≥ 1 or w ·x−b ≤ −1.
This can be rewritten as:

ci(w · xi − b) ≥ 1, 1 ≤ i ≤ n (3.32)

where those data points x that make the inequality Equation 3.32 an equal-
ity are called support vectors. Geometrically, support vectors are those data
points that are located on either of the two parallel boundary hyperplanes.

The problem now is to minimize |w| subject to the constraint (3.32). This is
a quadratic programming (QP) optimization problem. Further, the problem
is to minimize (1/2)||w||2, subject to Equation 3.32. Writing this classification
problem in its dual form reveals that the classification solution is only deter-
mined by the support vectors, i.e., the training data that lie on the margin.
The dual of the SVM is:

max

n∑

i=1

αi −
∑

i,j

αiαjcicjxi
Txj (3.33)

subject to αi ≥ 0, where the α terms constitute a dual representation for the
weight vector in terms of the training set:

w =

n∑

i

αicixi (3.34)

At this time it is assumed that there always exists a separating hyperplane
that perfectly separates the given training samples of the two classes. What
if there are errors in the training data such that there is no such perfect
separating hyperplane existing? Cortes and Vapnik have proposed a modified
maximum margin method that allows for mislabeled examples [53]. If there
exists no hyperplane that can split the +1 and −1 examples, this method
selects a hyperplane that splits the examples as cleanly as possible, while still
maximizing the distance to the nearest cleanly split examples. This work
further promotes the understanding of SVM. This proposed method is called
soft-margin SVM. The soft-margin SVM introduces slack variables, ξi, which
measure the degree of misclassification of the datum xi:

ci(w · xi − b) ≥ 1− ξi, 1 ≤ i ≤ n (3.35)
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FIGURE 3.8: Maximum-margin hyperplanes for an SVM trained with sam-
ples of two classes. Samples on the boundary hyperplanes are called the
support vectors.
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The objective function is then increased by a function which penalizes non-
zero ξi, and the optimization becomes a trade-off between a large margin and
a small error penalty. If the penalty function is linear, the objective function
now becomes

min ||w||2 + C

n∑

i

ξi (3.36)

such that the constraint Equation 3.35 holds true. The minimization in Equa-
tion 3.36 may be solved using Lagrange multipliers. The obvious advantage
of a linear penalty function is that the slack variables vanish from the dual
problem, with the constant C appearing only as an additional constraint on
the Lagrange multipliers. Non-linear penalty functions are also used in the
literature, particularly to reduce the effect of outliers on the classifier; how-
ever, typically the problem becomes non-convex, and thus it is considerably
more difficult to find a global solution.

The original optimal hyperplane algorithm developed by Vapnik and Lerner
[208] was a linear classifier. Later Boser, Guyon, and Vapnik addressed the
non-linear classifiers by applying the kernel trick (originally proposed by Aiz-
erman et al [7]) to the maximum-margin hyperplanes [27]. The resulting
algorithm was formally similar to the linear solution, except that every dot
product was replaced with a non-linear kernel function. This allows the algo-
rithm to fit the maximum-margin separating hyperplane in the transformed
feature space. The transformation may be non-linear and the transformed
space may be high-dimensional; consequently, the classifier becomes a sepa-
rating hyperplane in a higher-dimensional feature space but at the same time
it is non-linear in the original feature space, also.

If the kernel used is a Gaussian radial basis function, the corresponding
feature space is a Hilbert space of infinite dimension. Maximum margin clas-
sifiers thus become well regularized. Consequently, the infinite dimension does
not spoil the results. Commonly used kernels include:

1. Polynomial (homogeneous): k(x,x′) = (x · x′)d

2. Polynomial (inhomogeneous): k(x,x′) = (x · x′ + 1)d

3. Radial Basis Function: k(x,x′) = exp(−γ||x− x′||2) for γ > 0

4. Gaussian Radial basis function: k(x,x′) = exp( ||x−x′||2

2σ2 )

5. Sigmoid: k(x,x′) = tanh(kx · x′ + c), for some (not every) k > 0 and
c < 0

SVMs were also proposed for regression by Vapnik et al [65]. This method
is called support vector regression (SVR). As we have shown above, the classic
support vector classification only depends on a subset of the training data,
i.e., the support vectors, as the cost function does not care at all about the
training data that lie beyond the margin. Correspondingly, SVR only depends
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on a subset of the training data, because the cost function also ignores any
training data that are close (within a threshold ε) to the model prediction.

The parameters of the maximum-margin hyperplane are obtained by solving
the optimization problem. In the literature there are several specialized algo-
rithms for quickly solving the QP problem that arises from the SVMs; most of
the solutions use heuristics for breaking the problem down into smaller, more
manageable subproblems. A commonly used method for solving the QP prob-
lem is Platt’s SMO algorithm [169], which breaks the original problem down
into 2-dimensional subproblems that may be solved analytically, eliminating
the need for a numerical optimization algorithm such as the conjugate gradi-
ent methods. Recent work includes the fast training of SVM such as Joachims
[120], which gives a cutting plane algorithm for training an SVM. This is the
first algorithm that optimizes the traditional hinge-loss SVM formulation in
linear time in the size of the training data (where the training data are rep-
resented in the sparse format with zero-valued attributes not included). The
software is available in SVMPerf, which is a freely downloadable off-the-shelf
package [3].

For the case of multiple-classes classification, there are four commonly used
approaches to extending the two-classes (called binary-classes) SVM classifi-
cation method introduced above to the multiple-classes SVMs. Assume that
there are n classes in the original n-classes classification problem, and that
each of the n classes has N data samples. Below we use O(a, b) to denote the
two-classes SVM training complexity with the numbers of the data samples
in the two classes are a and b, respectively.

• One-against-one: This is the most straightforward solution. For any pair
of classes among the n classes, we apply a two-classes SVM. Then we

need to simultaneously solve for a set of n(n−1)
2 two-classes classification

problems. The final result may be obtained through statistical voting.

Thus, for this approach, the total training complexity is n(n−1)
2 O(N,N),

and it requires n(n−1)
2 total times of testing.

• One-against-all: In this approach, for each of the n classes, it is taken
to be classified against the rest n− 1 classes. Then we need to solve for
a set of n two-classes classification problems. The final result may be
obtained through statistical voting. Thus, for this approach, the total
training complexity is nO(N, (n−1)N), and it requires n−1 total times
of testing.

• Top-down binary tree: In this approach, initially all the n classes are
considered as a single group. A recursive splitting is repeatedly applied
to the group to split into two classes and the two-classes SVM is applied
until the test pattern is assigned to a final class. Thus, this approach

requires
∑log

2
n

i=1 2i−1O(nN2 , nN2 ) total training complexity, and log2 n
total times of testing.
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• Bottom-up binary tree: In this approach, a pair-wise SVM classifica-
tion is applied initially to the whole group of the n classes and then
recursively among the survivors until the test pattern is assigned to the

final class. Thus, this approach requires n(n−1)
2 O(N,N) total training

complexity, and n− 1 total times of testing.

More extensive discussions on the solutions to the multiple-classes SVMs
may be found in the literature [148].

3.8 Maximum Margin Learning for Structured Output
Space

SVMs as the maximum margin classifiers are originally proposed for solving
the classic classification problem. For a classic classification problem, the
output space has the following two properties. First, the number of classes
is finite where this number is typically a very limited integer. Second and
more importantly, the classes are exclusive, and for each input data object,
there is one but only one output class that maps to the input data object.
However, in many multimedia data mining applications, the output space no
longer satisfies these two properties. In other words, in the output space,
classes are not exclusive with dependency among the classes such that an
input data object may belong to multiple classes, and the number of the
output classes may no longer be a very limited integer anymore. We call
this type of output space a structured space. Examples of the classification
problems with structured output space include machine translation in which
both the input space and the output space are the specific language vocabulary
spaces which are the structured space where words have the dependency in
the translated meanings such that one input word may map to different words
in the output space; learning the parsing tree where the input space is a
language vocabulary space and the output space is a parsing tree which is
another structured space; and the image annotation problem where the input
space is a collection of images and the output space is a language vocabulary
space which once again is a structured space.

To exploit the dependency relationships for a structured space, we need to
learn the relationship among the dependency explicitly. Given two domains
X and Y and an input x ∈ X and an output y ∈ Y as structures, the learning
problem is therefore formulated as finding a function f : X×Y→ R such that

ŷ = argmax
y∈Y

f (x,y) (3.37)

is the desired output for the input x.
To demonstrate how to solve for the maximum margin learning problem

in a structured output space, we use the image annotation problem as an
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example [95]. Assume that the image database consists of a set of instances
S = {(Ii,Wi)}Li=1, where each instance consists of an image object Ii and
the corresponding annotation word set Wi. Note here that since the output
space is a structured one, one input instance (here an image object) may be
mapped to multiple words instead of just a single, unique class (i.e., a word).
Here we assume that each image is partitioned into a set of blocks, and we use
each block as an image object. Thus, an image can be represented by a set
of such blocks. Further, each image block is represented as a feature vector
in an image feature space. Consequently, an image is represented as a set of
feature vectors in the feature space. A clustering algorithm is then applied
to the whole feature space to group similar feature vectors together. The
centroid of a cluster represents a visual representative (we refer to it as VRep
here) in the image space. In Figure 3.9, there are two VReps, water and duck
in the water. The corresponding annotation word set can be easily obtained
for each VRep. Consequently, the image database becomes the VRep-word
pairs S = {(xi,yi)}ni=1, where n is the number of the clusters, xi is a VRep
object, and yi is the word annotation set corresponding to this VRep object.
Another simple method to obtain the VRep-word pairs is that we randomly
select some images from the image database and each image is viewed as a
VRep.

Suppose that there are W distinct annotation words. An arbitrary subset
of annotation words is represented by the binary vector ȳ whose length is
W ; the j-th component ȳj = 1 if the j-th word occurs in this subset, and 0
otherwise. All possible binary vectors form the word space Y. We use wj to
denote the j-th word in the whole word set. We use x to denote an arbitrary
vector in the feature space. Figure 3.9 shows an illustrative example in which
the original image is annotated by duck and water which are represented by
a binary vector. There are two VReps after the clustering, and each has a
different annotation. In the word space, a word may be related to other words.
For example, duck and water are related to each other because water is more
likely to occur when duck is one of the annotation words. Consequently, the
annotation word space is a structured output space where the elements are
interdependent.

The relationship between the input example VRep x and an arbitrary out-
put ȳ is represented as the joint feature mapping Φ(x, ȳ), Φ : X × Y → R

d

where d is the dimension of the joint feature space and R means a real space. It
can be expressed as a linear combination of the joint feature mapping between
x and all the unit vectors. That is,

Φ(x, ȳ) =

W∑

j=1

ȳjΦ(x, ej)

where ej is the j-th unit vector. The score between x and ȳ can be expressed
as a linear combination of each component in the joint feature representation:
f (x, ȳ) = 〈α,Φ(x, ȳ)〉. Then the learning task is to find the optimal weight
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FIGURE 3.9: An illustration of the image partitioning and the structured
output word space for maximum margin learning.
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vector α such that the prediction error is minimized for all the training in-
stances. That is,

argmax
ȳ∈Yi

f (xi, ȳ) ≈ yi, i = 1, · · · , n

where Yi = {ȳ|∑W
j=1 ȳj =

∑W
j=1 yij}. We use Φi(ȳ) to denote Φ(xi, ȳ). To

make the classification be the true output yi, we must follow

α⊤Φi(yi) ≥ α⊤Φi(ȳ), ∀ȳ ∈ Yi\{yi}

where Yi\{yi} denotes the removal of the element yi from the set Yi. In
order to accommodate the classification error on the training examples, we
introduce the slack variable ξi. The above constraint then becomes

α⊤Φi(yi) ≥ α⊤Φi(ȳ)− ξi, ξi ≥ 0 ∀ȳ ∈ Yi\{yi}

We measure the classification error on the training instances by the loss func-
tion, which is the distance between the true output yi and the prediction ȳ.
The loss function measures the goodness of the learning model. The standard
zero-one classification loss is not suitable for the structured output space. We
define the loss function l(ȳ,yi) as the number of the different entries in these
two vectors. We include the loss function in the constraints as proposed by
Taskar et al. [200]:

α⊤Φi(yi) ≥ α⊤Φi(ȳ) + l(ȳ,yi)− ξi

We interpret 1
‖α‖α

⊤[Φi(yi) − Φi(ȳ)] as the margin of yi over another ȳ ∈
Y(i). We then rewrite the above constraint as 1

‖α‖α
⊤[Φi(yi) − Φi(ȳ)] ≥

1
‖α‖ [l(ȳ,yi)− ξi]. Thus, minimizing ‖α‖ maximizes such a margin.

The goal now is to solve the optimization problem

min
1

2
‖α‖

2

+ C
n∑

i=1

ξri (3.38)

s.t. α⊤Φi(yi) ≥ α⊤Φi(ȳ) + l(ȳ,yi)− ξi
∀ȳ ∈ Yi\{yi}, ξi ≥ 0, i = 1, · · · , n

where r = 1, 2 corresponds to the linear or quadratic slack variable penalty.
C > 0 is a constant that controls the trade-off between the training error
minimization and the margin maximization.

Note that in the above formulation, we do not introduce the relationships
between different words in the word space. However, the relationships between
different words are implicitly included in the VRep-word pairs because the
related words are more likely to occur together. Thus, Equation 3.38 is, in
fact, a structured optimization problem.
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Maximum margin learning has been studied extensively in the recent ma-
chine learning literature due to the important multimedia data mining appli-
cations [55, 206, 201, 9]. The challenge of learning with structured output
variables is that the number of the structures is exponential in terms of the
size of the structure output space. Thus, the problem is intractable if we
treat each structure as a separate class. Consequently, the classic multiclass
approach is not well fitted into the learning with structured output variables.

As an effective approach to this problem, the maximum margin principle
has received substantial attention since it was used in the support vector
machine (SVM) [207]. In addition, the perceptron algorithm is also used to
explore the maximum margin classification [84]. Taskar et al [200] reduce
the number of the constraints by considering the dual of the loss-augmented
problem. However, the number of the constraints in their approach is still
large for a large structured output space and a large training set.

For learning with structured output variables, Tsochantaridis et al [206] pro-
pose a cutting plane algorithm which finds a small set of active constraints.
One issue of this algorithm is that it needs to compute the most violated con-
straint which would involve another optimization problem in the output space.
Recently, Guo et al propose the Enhanced Maximum Margin Learning frame-
work (called EMML) [95]. In EMML, instead of selecting the most violated
constraint, they arbitrarily select a constraint which violates the optimality
condition of the optimization problem. Thus, the selection of the constraints
does not involve any optimization problem. Osuna et al [162] propose the de-
composition algorithm for the support vector machine. EMML is proposed to
extend this idea to the scenario of learning with structured output variables.
The rest of this section is to introduce the EMML framework.

One can solve the optimization problem Equation 3.38 in the primal space
— the space of the parameters α. In fact, this problem is intractable when
the structured output space is large because the number of the constraints is
exponential in terms of the size of the output space. As in the traditional sup-
port vector machine, the solution can be obtained by solving this quadratic
optimization problem in the dual space — the space of the Lagrange multipli-
ers. Vapnik [207] and Boyd and Vandenberghe [28] have an excellent review
for the related optimization problem.

The dual problem formulation has an important advantage over the primal
problem: it only depends on the inner products in the joint feature repre-
sentation defined by Φ, allowing the use of a kernel function. We introduce
the Lagrange multiplier µi,ȳ for each constraint to form the Lagrangian. We
define Φi,yi,ȳ = Φi(yi) − Φi(ȳ) and the kernel function K ((xi, ȳ), (xj , ỹ)) =
〈Φi,yi,ȳ,Φj,yj ,ỹ〉. The derivatives of the Lagrangian over α and ξi should be
equal to zero. Substituting these conditions into the Lagrangian, we obtain
the following Lagrange dual problem
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min
1

2

∑

i,j
ȳ 6=yi
ỹ 6=yj

µi,ȳµj,ỹK ((xi, ȳ), (xj , ỹ))
∑

i

ȳ 6=yi

µi,ȳl(ȳ,yi) (3.39)

s.t.
∑

ȳ 6=yi

µi,ȳ ≤ C µi,ȳ ≥ 0 i = 1, · · · , n

After this dual problem is solved, we have α =
∑

i,ȳ µi,ȳΦi,yi,ȳ.

For each training example, there are a number of constraints related to it.
We use the subscript i to represent the part related to the i-th example in the
matrix. For example, let µi be the vector with entries µi,ȳ. We stack the µi

together to form the vector µ. That is µ = [µ1
⊤ · · ·µn

⊤]⊤. Similarly, let Si
be the vector with entries l(ȳ,yi). We stack Si together to form the vector S.
That is, S = [S⊤

1 · · ·S⊤
n ]⊤. The lengths of µ and S are the same. We define

Ai as the vector which has the same length as that of µ, where Ai,ȳ = 1 and
Aj,ȳ = 0 for j 6= i. Let A = [A1 · · ·An]

⊤. Let matrix D represent the kernel
matrix where each entry is K ((xi, ȳ), (xj , ỹ)). Let C be the vector where each
entry is constant C.

With the above notations, we rewrite the Lagrange dual problem as follows:

min
1

2
µ⊤Dµ− µ⊤S (3.40)

s.t. Aµ � C

µ � 0

where � and � represent the vector comparison defined as entry-wise less
than or equal to and greater than or equal to, respectively.

Equation 3.40 has the same number of the constraints as Equation 3.38.
However, in Equation 3.40 most of the constraints are lower bound con-
straints (µ � 0) which define the feasible region. Other than these lower
bound constraints, the rest constraints determine the complexity of the opti-
mization problem. Therefore, the number of constraints is considered to be
reduced in Equation 3.40. However, the challenge still exists to solve it effi-
ciently since the number of the dual variables is still huge. Osuna et al. [162]
propose a decomposition algorithm for the support vector machine learning
over large data sets. Guo et al [95] extend this idea to learning with the struc-
tured output space with their EMML framework as follows. They decompose
the constraints of the optimization problem Equation 3.38 into two sets: the
working set B and the nonactive set N. The Lagrange multipliers are also
correspondingly partitioned into two parts µB and µN . The interest is then
in the subproblem defined only for the dual variable set µB when keeping
µN=0.
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This subproblem is formulated as follows.

min
1

2
µ⊤Dµ− µ⊤S (3.41)

s.t. Aµ � C

µB � 0, µN = 0

It is clearly true that we can move those µi,ȳ = 0, µi,ȳ ∈ µB to set µN

without changing the objective function. Furthermore, we can move those
µi,ȳ ∈ µN satisfying certain conditions to set µB to form a new optimization
subproblem which yields a strict decrease in the objective function in Equa-
tion 3.40 when the new subproblem is optimized. This property is guaranteed
by the following theorem [95].

THEOREM 3.2

Given an optimal solution of the subproblem defined on µB in Equation 3.41,
if the following conditions hold true:

∃i, ∑
ȳ µi,ȳ < C

∃µi,ȳ ∈ µN , α⊤Φi,yi,ȳ − l(ȳ,yi) < 0 (3.42)

the operation of moving the Lagrange multiplier µi,ȳ satisfying Equation 3.42
from set µN to set µB generates a new optimization subproblem that yields
a strict decrease in the objective function in Equation 3.40 when the new
subproblem in Equation 3.41 is optimized.

In fact, the optimal solution is obtained when there is no Lagrange multi-
plier satisfying the condition Equation 3.42. This is guaranteed by the follow-
ing theorem [95].

THEOREM 3.3

The optimal solution of the optimization problem in Equation 3.40 is achieved
if and only if the condition Equation 3.42 does not hold true.

The above theorems suggest the EMML algorithm listed in Algorithm 2.
The correctness (convergence) of the EMML algorithm is provided by Theo-
rem 3.4 [95].

THEOREM 3.4

The EMML algorithm converges to the global optimal solution in a finite
number of iterations.

Note that in Step 5 of Algorithm 2, we only need find one dual variable
satisfying Equation 3.42. We need examine all the dual variables in the set
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Algorithm 2 EMML Algorithm

Input: n labeled examples, dual variable set µ
Output: Optimized µ
Method:

1: Arbitrarily decompose µ into two sets: µB and µN .
2: Solve the subproblem in Equation 3.41 defined by the variables in µB.
3: While there exists µi,ȳ ∈ µB such that µi,ȳ = 0, move it to set µN .
4: While there exists µi,ȳ ∈ µN satisfying condition Equation 3.42, move it

to set µB. If no such µi,ȳ ∈ µN exists, the iteration exits.
5: Goto Step 2.

µN only when no dual variable satisfies Equation 3.42. It is fast to examine
the dual variables in the set µN even if the number of the dual variables is
large. In addition to demonstrating that EMML has a powerful multimodal
data mining capability, Guo et al [95] also demonstrate that EMML is about
70 times faster in learning than the method proposed by Taskar et al [200].

3.9 Boosting

Boosting refers to a family of machine learning meta-algorithms for per-
forming supervised learning. The motivation to develop boosting algorithms
is based on the question posed by Kearns [123]: can a set of weak learn-
ers create a single strong learner? Here a weak learner refers to a classifier
that is weakly correlated with the true classification, whereas in contrast, a
strong learner is a classifier that is almost always well-correlated with the true
classification.

The investigation to Kearns’ question has led to the development of the
boosting algorithm family as an important contribution to the machine learn-
ing and statistics literature. While boosting is not algorithmically constrained,
most boosting algorithms follow a template. Typically, boosting occurs in it-
erations, by incrementally adding weak learners to a final strong learner. At
every iteration, a weak learner learns the training data with respect to a dis-
tribution. The weak learner is then added to the accumulative strong learner.
This is typically performed by weighting the weak learner in a certain way,
relating to the weak learner’s accuracy. After the weak learner is added to the
accumulative strong learner, the data are re-weighted in a reinforced way. For
instance, examples that were misclassified now are given weight and examples
that were classified correctly now are forced to lose weight (certain boosting
algorithms, on the other hand, actually decrease the weight for repeatedly
misclassified examples, such as the boost by majority and BrownBoost [82]).
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Thus, subsequent weak learners focus more on the examples that previous
weak learners have misclassified.

As a family, there are many boosting algorithms proposed in the literature.
The original algorithms proposed by Schapire (a recursive majority formu-
lation [186]) and by Freund (boost by majority [81]) were not adaptive and
were unable to take full advantage of the weak learners. Also in the liter-
ature, several algorithms refer to themselves as “boosting algorithms”, and
they are quite effective. However, in terms of the probably approximately cor-
rect learning (PAC) model [132], only provable boosting algorithms may be
called “boosting algorithms”. Consequently, algorithms that are similar to
boosting in spirit, but not PAC-boosters, are sometimes called “leveraging
algorithms”. These can be quite effective machine learning algorithms [132].

Given the many boosting algorithms, the main variation depends on how
to give the weight to the training data points and hypotheses. AdaBoost [83]
is a very popular boosting algorithm and is considered as a classic boosting
algorithm in the literature; historically, this algorithm may also be considered
as the most significant method, as it was the first algorithm developed in
the literature that could adapt to the weak learners. Nevertheless, there are
many more effective boosting algorithms developed in the literature, such
as LPBoost [57], TotalBoost [215], BrownBoost [82], MadaBoost [64], and
gradient descent boosting tree [85]. Many boosting algorithms fit into the
AnyBoost framework [147], which shows that boosting performs the gradient
descent in the function space with a convex cost function. In the rest of this
section, we give an introduction to AdaBoost.

AdaBoost, standing for Adaptive Boosting, was developed by Freund and
Schapire [83]. It is a meta-algorithm, in the sense that it can be used in
conjunction with many other learning algorithms to improve their perfor-
mance. AdaBoost is adaptive in the sense that subsequently built classifiers
are trained in favor of those training samples misclassified by the previous
classifiers. On the other hand, AdaBoost is sensitive to noisy data and out-
liers. Nevertheless, it is less susceptible to the overfitting problem than most
learning algorithms in the literature.

Given a series of iterations t = 1, 2, ..., T , AdaBoost calls a weak classifier
repeatedly. For each call a distribution of weights Dt is updated that reflects
the importance of the samples in the training data for the classification. In
each iteration, the weight of each incorrectly classified sample is increased (or
alternatively, the weight of each correctly classified sample is decreased), such
that the new classifier focuses more on those samples. Algorithm 3 lists the
AdaBoost algorithm.

In Algorithm 3, after selecting an optimal classifier ht for the distribution
Dt, the training samples xi that the classifier ht has identified correctly are
weighted less and those that ht has identified incorrectly are weighted more.
Consequently, when the algorithm uses the classifiers on the distributionDt+1,
it selects a classifier that better identifies those training samples that the pre-
vious classifiers have missed. Boosting may be considered as a minimization
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Algorithm 3 AdaBoost Algorithm

Input: (xi, yi), i = 1, . . . ,m where xi ∈ X, yi ∈ Y = {−1,+1}
Output: A strong classifier H(.)
Method:

1: Initialize t = 1
2: Initialize Dt(i) = 1

m for all i = 1, . . . ,m
3: for t = 1 to T do
4: Train weak learner using distribution Dt

5: Obtain weak hypothesis ht : X → {−1,+1} with error ǫt =
Pri∼Dt

(ht(xi) 6= yi)
6: Choose αt = 1

2 ln(1−ǫt
ǫt

)
7: Update:

Dt+1(i) =
Dt(i)

Zt
× { e

−αt if ht(xi) = yi
eαt if ht(xi) 6= yi

=
Dt(i) exp(−αtyiht(xi))

Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a dis-
tribution)

8: end for
9: Output the final hypothesis:

H(x) = sign(

T∑

t=1

αtht(x))
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of a convex loss function over a convex set of functions
∑
i e

−yif(xi). Specif-
ically, the loss being minimized is the exponential loss with the function we
expect to obtain as f =

∑
t αtht.

3.10 Multiple Instance Learning

In addition to the typical discriminative learning and generative learning
methods, multiple instance learning is considered as a new type of learning
method recently developed in the machine learning community and is applied
in multimedia data mining.

Originally independently proposed by Dietterich et al [59], Auer [11], and
Maron and Lozano-Perez [146], multiple instance learning addresses a special
type of learning problems in which there are ambiguities involved during the
training. Consequently, multiple instance learning sometimes is also called
learning with ambiguities.

Unlike the classic classification training in which each example instance
is given a definite label, in multiple instance learning, a label is not given
to an instance; instead, it is given to a group of instances. In the classic
multiple instance learning definition [59], training labels are given to groups
of example instances where each group has multiple instances which may
either be relevant (and thus would be labeled as “yes”) to a specific class or
be irrelevant (and thus would be labeled as “no”) to the specific class. Such
a group of instances is called a “bag”. In other words, the training data
labels are only given to bags of instances instead of instances themselves in
the classic training scenario. A bag is labeled “yes” if and only if there is at
least one instance in the bag that is relevant, and a bag is labeled “no” if and
only if there is no instance in the bag that is relevant.

Ever since the seminal work of multiple instance learning appeared in the
machine learning literature, this type of learning approach has been immedi-
ately applied to multimedia data mining [225, 237]. This is due to the fact
that in many multimedia data mining applications, the training labels are
not available to instances, but may be available to groups of instances, i.e.,
bags of instances. For example, in image data mining, regions or blocks of an
image may be considered as instances and the image itself may be considered
as a bag. If the image contains a house in the foreground and mountains, sky,
and grass in the background, the image can clearly be labeled as “house”.
But this label is typically given to the whole image even though the actual
reference of this label is to one of the regions (or objects) contained in this
image — the house, with the other regions or objects irrelevant to this label
(i.e., the mountains, sky, and grass). More recent work on applying multiple
instance learning to multimedia data mining includes [235, 256]. Chen et al

© 2009 by Taylor & Francis Group, LLC



118 Multimedia Data Mining

[46] recently add the embedded instance selection principle into the classic
multiple instance learning algorithm, resulting in a better learning perfor-
mance, and also have applied this method to image data mining. Zhou and
Xu [254] have established the connection between multiple instance learning
and semi-supervised learning, which is the topic of the next section.

On the other hand, ever since the development of multiple instance learning
in the literature, there are several classic multiple instance learning methods
proposed in the machine learning community, including the diverse density
method [146], the chi-square method [149], and the EM-DD method [236].
Below we introduce the co-learning framework developed based on the mul-
tiple instance learning paradigm and implemented using the Diverse Density
algorithm in the specific application of image annotation [248].

We first consider the scenario that the whole database is initially used as the
training set to build up the database indexing before the database is allowed
to evolve under the assumption that the word vocabulary stays the same. We
will relax this assumption in the scalability analysis in Section 3.10.6.

In the rest of this section, we use calligraphic letters to denote the set
variables or functions, and to use regular letters to denote regular variables or
functions. A database D = {I,W} consists of two parts, an image collection
I and a vocabulary collection W. A collection of images I = {Ii, i = 1, ..., N}
is the whole database images used as the training set; N = |I|; for each image
Ii, there is a set of words annotating this image Wi = {wij , j = 1, ..., Ni}; the

whole vocabulary set of the database is W; and M = |W| = |⋃N
i=1 Wi|. We

define a block as a subimage of an image such that the image is partitioned
into a set of blocks and all the blocks of this image share the same resolution.
We define a VRep (visual representative) as a representative of a set of all
the blocks for all the images in the database that appear visually similar to
each other. A VRep of an image may be represented as a feature vector in a
feature space.

Before we present the co-learning framework, we first make a few assump-
tions.

• A semantic concept corresponds to one or multiple words, and a word
corresponds to one semantic concept for each image. Consequently,
semantic concepts may be represented in words.

• A semantic concept corresponds to one or multiple VReps, and a VRep
corresponds to one or multiple semantic concepts.

• A word corresponds to one or multiple VReps, and a VRep corresponds
to one or multiple words.

• An image may have one or more words for annotation.
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3.10.1 Establish the Mapping between the Word Space and
the Image-VRep Space

For each image Ii, we partition it into a set of exclusive blocks Bij , i.e.,

Ii =
⋃

j

Bij , j = 1, ..., ni Bij ∩Bih = ∅, j 6= h (3.43)

where ni is a function of the resolution of Ii such that the resolution of Bij
is no less than a threshold. If all the images in the database are in the same
resolution, all the ni’s are the same as a constant. Since each block may be
represented as a feature vector in a feature space, for all the blocks of all the
images in the database, a nearest neighbor clustering in the feature space leads
to a partition of the whole block feature vectors in the feature space into a
finite number of clusters such that each cluster is represented by its centroid;
let L be the number of such clusters. This centroid is a VRep corresponding
to this cluster for all the images in the database. Consequently, the whole
VRep set in the database is

V = {vi|i = 1, ..., L} (3.44)

Thus, each image Ii may be represented by a subset of V. Each VRep is
represented as a feature vector in the feature space and corresponds to a
subset of all the images in the database such that this VRep appears in those
images in the subset; i.e., for each VRep vi, there is a subset Ivi

of the images
in the database such that

Ivi
= {Ih|h = 1, ..., nvi

} (3.45)

where nvi
= |Ivi

|.
Once we have obtained all the VReps for the images in the database, we

sort all the textual vocabulary words in W (say alphabetically), and for each
word wk, there is a corresponding set of images, Sk, such that this word wk
appears in the annotation of each of the images in the set. Since each image
is represented as a set of decomposed blocks, Sk may be represented as

Sk = {Iki
|Iki

=
⋃

j

Bkij
, j = 1, ..., nki

} (3.46)

where Bkij
is the jth block in image Iki

. For each block Bkij
in image Iki

, a
feature vector fkij

in the feature space is used to represent the block. In order
to establish the relationship between the word space and the image-VRep
space, we map the problem to a multiple instance learning problem [59]. A
general multiple instance learning problem is to learn a function y = F (x),
where we are given multiple samples of x represented as bags, and each bag
has ambiguities represented by the multiple instances of x. Here the problem
is that each bag is an image, and all the instances of this bag are the blocks
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represented by the corresponding feature vectors; the y here is a word vector
instead of a value in the range of [0, 1] in the classic version of multiple instance
learning, consisting of all the words given in the training set that correspond to
a specific VRep; the function to be learned each time is the function of a VRep
mapping to the words. Specifically, for each word wk ∈ W, we use multiple
instance learning to apply to the whole image database to obtain the optimal
block feature vector tk. Given the distribution of all the fkij

corresponding
to the image set Sk in the feature space, using the diverse density algorithm
of multiple instance learning [146], we are able to immediately obtain the
optimal block feature vector tk:

tk = arg max
t

∏

t

P (t ∈ I|I ∈ Sk)
∏

t

P (t ∈ I|I /∈ Sk) (3.47)

where P (.|.) is a posterior probability. Now we have established the one-to-
one mapping between the word wk and the block feature vector tk. Then we
use the nearest neighbor clustering to identify all the closest VReps vkl

such
that

‖tk − vkl
‖ < Tk (3.48)

where Tk is a threshold. Denote the set of those VReps that satisfy this
constraint as Vk,

Vk = {vkl
|l = 1, ..., nwk

} (3.49)

where nwk
is the number of such VReps satisfying this constraint. Thus, for

each word wk, there is a corresponding set of VReps Vk that are close to tk
subject to the threshold Tk. In addition, according to Equation 3.45, each
such VRep vkl

has an associated image set Ikl
such that all the images in

the set have this VRep. For each such image Ikli
∈ Ikl

, using the mixture of
Gaussian model [60], we compute the posterior probability P (Ikli

|wk). Then,
we rank all the images in the set Ikl

by the posterior probability P (Ikli
|wk).

We denote such a ranked list of images in the database as Lk. Hence, for each
word wk, there is a corresponding ranked list of images in the database

Lk = {Ikh
|h = 1, ..., |Lk|} (3.50)

i.e.,
wk ↔ Lk (3.51)

Similarly, we use multiple instance learning to learn the function y = F ′(x)
where x’s are the ambiguous instances of the annotation words for an image
and y is the set of the corresponding VReps to a word; here again the bag is
an image. Specifically, for each VRep vi, according to Equation 3.45, there
is a corresponding image set Ivi

, and for each image Ivij
∈ Ivi

, there is a
corresponding annotation word set Wvij

:

Wvij
= {whvij

|h = 1, ..., |Wvij
|} (3.52)
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Thus, using the diverse density algorithm of multiple instance learning [146]
again, we are able to obtain the optimal annotation word wk corresponding
to the image set Ivi

:

wk = argmax
w

∏

w

P (w ∈Wvij
|I ∈ Ivi

)

×
∏

w

P (w ∈Wvij
|I /∈ Ivi

) (3.53)

Similarly, we may use the same algorithm to compute the ith best annotation
word corresponding to VRep vi. Consequently, for every VRep vi, there is a
corresponding ranked list of annotation words Lvi

, i.e.,

vi ↔ Lvi
(3.54)

Finally, for every VRep vi ∈ V, we compute the prior probability P (vi) by de-
termining the relative occurrence frequency of vi in the whole image database.
Similarly, for every word wk ∈ W, we compute the prior probability P (wk)
by determining the relative occurrence frequency of wk for all the images in
the database.

Given this learned correspondence relationship between the word space
and the imagery space, we have completed the co-learning for indexing the
database as part of the framework. Now we are ready for across-modality
retrieval and mining.

3.10.2 Word-to-Image Querying

If a query is given by several words for mining and retrieving images from
the database, we assume that the query consists of words wqk

, k = 1, ..., p. We
also assume that all the query words are within the textual vocabulary of the
training data. Since each wqk

has a corresponding ranked list of images Lk,
we just need to merge these p ranked lists Lk, k = 1, ..., p by P (Iki

|wqk
) for

all the different images Iki
.

Since the bottleneck of the computation is on merging the p ranked lists,
the total computation is in O(p|Lk|), which is independent of the database
scale O(M,N). Hence, this querying complexity is O(1).

3.10.3 Image-to-Image Querying

If a query is given by several images for mining and retrieving images from
the database, we assume that the query consists of images Iqk

, k = 1, ..., p.
These images may or may not be necessarily from the database; however, we
assume that these images follow the same feature distributions as those in the
database. For each query image Iqk

, we partition it into pk blocks following
the definition in Equation 3.43, and extract the feature vector fqkl

for each
block Bqkl

. For each fqkl
, we compute the similarity distances to all the VReps
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vi in the feature space. Based on the similarity distances and the assumption
that the features in the query images follow the same distributions as those
of the images in the database, each Bqkl

is replaced with the corresponding
closest VRep vi in the feature space. From Equation 3.45, each vi has a
corresponding image set Ivi

; we assume that there are in total rk such VReps
vi found in the query image Iqk

and rk ≤ pk. Let Sqk
be the largest common

set of the rk image sets Ivi
.

On the other hand, for each VRep vi of Iqk
, we immediately have a ranked

word list Uvi
based on P (wk|vi). We merge the rk ranked lists based on

P (wk|vi)P (vi|Iqk
) to form a new ranked list Uqk

, where P (vi|Iqk
) is the oc-

currence frequency of the VRep vi appearing in the image Iqk
. For all the

words in the list Uqk
(in the implementation we may truncate to the top few

words for the list), we use the word-to-image querying scheme in Section 3.10.2
to generate a ranked image list Lqk

. Lqk
is then further trimmed such that

only those images that are in Sqk
survive with the same relative ranking order

in Lqk
. Finally, we merge the p ranked lists Lqk

, k = 1, ..., p.
Given an appropriate hashing function for all the images in the database,

this querying may be done in O(p|Uqk
|), which again is independent of the

database scale O(M,N). Hence, this querying complexity is O(1).

3.10.4 Image-to-Word Querying

If the query is given by several images for word mining and retrieval, i.e., for
automatic annotation, we assume that the query consists of p images, Iqk

, k =
1, ..., p. Similar to the image-to-image mining and querying in Section 3.10.3,
each query image Iqk

is decomposed into several VReps, and assume that the
p query images have in total sk VReps vi, i = 1, ..., sk. Let P (vi|Iq) be the
relative frequency of the VRep vi in all the query images Iqk

, k = 1, ..., p.
Since each VRep vi has a corresponding ranked list of words Uvi

based on
P (wk|vi), the final mining and retrieval are the merged ranked list of words
based on P (wk|vi)P (vi|Iq) from the sk ranked lists Uvi

.
Similarly, this querying is done in O(sk|Uvi

|), which is again independent
of the database scale O(M,N). Hence, this querying complexity is O(1).

3.10.5 Multimodal Querying

If the query is given by a combination of a series of words and a series of
images for multimedia data mining and retrieval, without loss of generality,
we perform multimodal image querying as follows. We use the word-to-image
querying in Section 3.10.2 and the image-to-image querying in Section 3.10.3,
respectively, and finally merge the queryings together based on their corre-
sponding posterior probabilities.

Clearly, this querying is in O(max{p|Lk|, p|Uqk
|, sk|Uvi

|}) = O(1), indepen-
dent of the database scale O(M,N). Consequently, the general multimodal
querying complexity is again O(1).

© 2009 by Taylor & Francis Group, LLC



Statistical Mining Theory and Techniques 123

3.10.6 Scalability Analysis

As is given in the analysis presented in Sections. 3.10.2 and 3.10.5, it is clear
that it only takes a constant time to process any type of query for the mining
and querying. At the same time, the mining effectiveness is also independent
of the database scale. This advantage is supported and verified in the em-
pirical evaluations [248]. Thus, this co-learning framework is highly scalable.
Note that many existing multimodal data mining methods in the literature
have a complexity dependent upon the databases’ scales, typically linear, and
their mining effectiveness degrades substantially when the databases scale up.
With this advantage, the co-learning framework substantially advances the
literature and excels these existing methods in the sense that it pushes to a
new horizon a major step forward toward a real-world application with a very
large-scale database.

3.10.7 Adaptability Analysis

In this section, we show through the complexity analysis that the co-
learning framework is adaptable very well when the database undergoes dy-
namic changes. This analysis is also consistent with the empirical evaluations
[248]. Specifically, we show that the database indexing updating only takes
O(1) computation for the following three exhaustive cases. The first two cases
consider the scenario when images are added into or deleted from the database
while the accompanying annotation words stay with the same vocabulary of
the database; the last case considers the scenario when the vocabulary also
changes. For all the cases, we assume that any newly added images follow the
same feature distributions as those already in the database.

3.10.7.1 Case 1: When a New Image Is Added into the Database

Let Inew be the new image. We first consider the new image added with no
annotation. We show that the following steps complete updating the indexing
of the database and that in each of the steps only a local change is necessary;
i.e., the updating complexity is a constant w.r.t. the database size (N,M).

• Step 1: Determining VReps

Following the definition in Equation 3.43, we partition the image into
blocks; based on the assumption that any newly added images follow
the same distributions in the feature space as those of the images in the
database, from the VRep definitions in the feature space of the images
in the database in Equation 3.44, each block of Inew is replaced with
the nearest VRep in the feature space. This step takes O(L) time. Since
L≪ N,M , this step is O(1).

• Step 2: Updating VRep-to-image mapping
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For each VRep vi of Inew, we revise the corresponding image set Ivi
in

Equation 3.45 by adding Inew into the set Ivi
to become Ivi

new and thus
revise the occurrence frequency as the prior probability P (vi) (through
incrementing both the numerator and the denominator of the previous
prior probability). We assume that the list Ivi

is indexed by an array,
such that the insertion of a new image takes a constant time. Thus, this
step is O(1).

• Step 3: Determining annotation words

In order to determine the annotation words for Inew, i.e., to determine
the image-to-word mapping for Inew, since each VRep in Inew has a
corresponding ranked list of words in the original database indexing al-
ready, the annotation words for Inew is the merged ranked list of all
the ranked lists of words corresponding to the VReps in Inew based
on P (wk|vi)P (vi|Inew) where P (vi|Inew) is the relative occurrence fre-
quency of VRep vi in Inew. Let AInew be this merged ranked list for
Inew. In practice, this list may be truncated to a top few words as
the appropriate annotation words for Inew based on the ranking weight
P (wk|vi)P (vi|Inew). The total time is O(L). Since L≪ N,M , this step
is O(1).

• Step 4: Updating word-to-VRep mapping

For updating the word-to-VRep mapping in the database indexing, in
order to avoid redoing the indexing from scratch, we approximate the
original mapping in the database indexing from a word to a set of VReps
in Equation 3.49 using the weighted VReps instead of the actual block
feature vectors of all the images in the feature space in the original
database. Thus, we just need to revise the weights (i.e., the occurrence
frequencies) of those VReps that appear in Inew. From Equation 3.54,
each VRep vi appearing in Inew has a corresponding ranked list of an-
notation words Lvi

. Given all the VReps appearing in Inew , we im-
mediately have a merged ranked list of annotation words from all the
ranked lists Lvi

. Since in practice we truncate each ranked word list Lvi

to the top few words, these truncated ranked lists are merged together.
Let Ct be such a merged list. Consequently, we only need to update
the word-to-VRep mapping for those words in Ct. Specifically, for each
wk ∈ Ct, we check the corresponding VRep set Vk in Equation 3.49 and
increment the frequency counts by one for those VReps in Vk that ap-
pear in Inew; we then update the optimal centroid tk

new based on the
updated VRep frequencies in Vk in the feature space. Finally, we use
the same threshold Tk to update the new nearest neighborhood Vk

new

of tk
new based on Equation 3.48. Thus, the complexity of this step is

O(|Ct|L). Since |Ct| ≪M , and L≪M,N , this step is O(1).

• Step 5: Updating word-to-image mapping
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In order to update the word-to-image mapping list in Equation 3.50
and the prior probability P (wk), we only need to focus on those words
wk ∈ AInew obtained in Step 3. For each word wk ∈ AInew , we have
the updated corresponding VRep set Vk

new obtained in Step 4. We
only need to check those VReps vi ∈ Vk

new that were updated for the
corresponding image set Ivi

new in Step 2. Let Lu be the number of
such VReps in Vk

new. Thus, the posterior probability P (Inew|wk) is
approximated as

P (Inew|wk) =
Lu

L
(3.55)

and the prior probability P (wk) is approximated as

P (wk) =
Lu

N
(3.56)

Finally, the word-to-image mapping ranked list Lk in Equation 3.50 is
updated by inserting Inew based on the weight P (Inew|wk) determined
in Equation 3.55. Clearly, this step takes O(L) which is O(1) due to
L≪M,N .

When the new image is added with annotation words, AInew in Step 3
is given and thus Step 3 is skipped; Step 4 now may be only focused on
determining the word-to-VRep mapping for those annotation words given in
the new image, which can be similarly shown to be done in O(1) time; the rest
of the procedure is exactly the same. Consequently, the constant updating
conclusion still holds true.

3.10.7.2 Case 2: When an Existing Image Is Deleted from the
Database

Let Idel be the image in the original database that needs to be deleted. Let
vi, i = 1, ..., rd be the VReps of Idel. Let wk, k = 1, ..., sd be the annotation
words accompanying Idel. We show that the following steps complete the
indexing updating with a constant time.

• Step 1: Updating VRep-to-image mapping

For each vi, i = 1, ..., rd, we remove Idel in the corresponding image list
Ivi in Equation 3.45. We then update the prior probability P (vi) by
decrementing the numerator (the occurrence frequency of images with
vi) and the denominator (i.e., N). We assume that the list Ivi is indexed
by an array, such that deleting an image from the list takes a constant
time. Thus, this step is O(1).

• Step 2: Updating word-to-VRep mapping

Similar to Step 4 in Case 1, we update the word-to-VRep mapping.
Here, instead of incrementing the occurrence frequencies of those vi
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in the feature space, we decrement the occurrence frequencies of the
vi. In practice, it is sufficient to focus on updating the mapping for
wk, k = 1, ..., sd. Since sd ≪ M , as is the complexity of Step 4 in Case
1, this step is O(1).

• Step 3: Updating word-to-image mapping

To update the word-to-image mapping, according to Equation 3.50, we
just need to remove Idel from the ranked list Lk for each word wk. The
prior probability P (wk) can also be updated immediately by decrement-
ing the occurrence frequency of wk. Assuming that the ranked list Lk is
indexed in an array, the removal of an image from this list is a constant
operation. Thus, this step is O(1).

3.10.7.3 Case 3: When the Database Vocabulary Changes

Since we only consider the scenario in which text vocabulary in a database
is the accompanying information for the annotation of the images in the
database, there are only two subcases for the dynamic change of the text
vocabulary in the database: (1) when a new image is added into the database
with textual annotations using new text vocabulary; and (2) when an exist-
ing text word is deleted from the text vocabulary in the database at the time
when its accompanying image is deleted from the database. Clearly, Subcase
2 is a special case of Section 3.10.7.2. Thus, we only need to discuss Subcase
1 here.

Let Inew be the new image to be added into the database. Letwl, l = 1, ..., rl
be the annotation words of Inew that are from the existing vocabulary in
the database, and let wk, k = 1, ..., rk be the annotation words new to the
database text vocabulary. We show that following a procedure similar to that
in Section 3.10.7.1 the database indexing may be updated with a constant
time. Specifically, Steps 1, 2, and 5 are exactly the same as the corresponding
steps in Section 3.10.7.1, and Step 3 is skipped as the annotation words for
Inew are given. Thus, we just need to show the remaining Step 4: updating
word-to-VRep mapping as follows.

For each wl, the updating is exactly the same as that in Step 4 of Sec-
tion 3.10.7.1. For each wk, since all the VReps corresponding to wk in the
feature space are those appearing in Inew, following the same procedure in
Section 3.10.1 with the same constraint in Equation 3.48 and the threshold
Tk, we obtain the optimal VRep feature vector tk as well as its neighborhood,
from which we immediately obtain a list of the VReps corresponding to wk

defined similarly to Vk in Equation 3.49. Let Vk be such a VRep list corre-
sponding to wk, k = 1, ..., rk. Since the number of the VReps appearing in
Inew is finite, and since rk ≪M , the complexity of this step is O(1).

In summary, we have shown that regardless of how the database changes,
the updating of the indexing may be done incrementally with a constant
time without needing to redo the indexing from the scratch. This allows
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that the database indexing can always be updated in a timely manner with
an incremental change of the database content. Therefore, this co-learning
framework is highly adaptable. This adaptability advantage of the framework
enables it to excel many of the peer methods in the literature that do not
adapt at all; i.e., the database must be reindexed (or retrained) from scratch
even if the database is only incrementally updated. The evaluations of the
effectiveness and the superiority of this co-learning framework to a peer, state-
of-the-art multimedia data mining method in the literature as well as the
co-learning framework’s high scalability and adaptability may be found at
[248].

3.11 Semi-Supervised Learning

In many multimedia data mining applications, it is common that we do not
have the luxury to have plenty of training samples. There are two reasons
contributing to the presence of this constraint. First, obtaining the training
samples with known labels is typically expensive. Second, in many applica-
tions the complexity to obtain the training samples with known labels is so
high that we are unable to afford to have many such training samples. Con-
sequently, it is important to live with the reality with only a few training
samples in order to still be able to mine the multimedia data. In machine
learning literature, the paradigm of semi-supervised learning nicely satisfies
this constraint, making it very popular recently in multimedia data mining
applications.

Unlike the classic supervised learning in which there is only labeled training
data available for training, semi-supervised learning addresses the scenario
in which the training data consists of two parts: labeled training data and
unlabeled training data. Typically, the labeled training data only constitute
a small set, while the unlabeled training data may be a large set, as the
latter are easier to obtain in many applications than the first. The key to a
successful semi-supervised learning method is to exploit the existence of the
large number of unlabeled data samples to help improve the performance of
the classifier that would only be trained by the small set of the labeled training
data samples.

Ever since the seminal work of co-training [26], semi-supervised learning has
been developed as a hot topic in the machine learning literature. Zhu gives
a comprehensive review on the early work of semi-supervised learning [257].
Recently, in the context of multimedia data mining, Yao and Zhang have
studied the accuracy issue of semi-supervised learning. Specifically, they have
addressed how to achieve an optimal accuracy [228] and how to ensure that
the accuracy increases with the iterations in semi-supervised learning [227]. In
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this section, we introduce a recently developed semi-supervised learning frame-
work — a semiparametric regularization based approach [96], which attempts
to discover the marginal distribution of the data to learn the parametric func-
tion through exploiting the geometric distribution of the data. This learned
parametric function can then be incorporated into the supervised learning on
the available labeled data as the prior knowledge.

Most of the semi-supervised learning models are based on the cluster as-
sumption, which states that the decision boundary should not cross the high-
density regions, but instead lie in the low-density regions. In other words,
similar data points should have the same label and dissimilar data points
should have different labels. The approach introduced here is also based on
the cluster assumption. Moreover, we believe that the marginal distribution
of the data is determined by the unlabeled examples if there is a small labeled
data set available along with a relatively large unlabeled data set, which is
the case for many applications. The geometry of the marginal distribution
must be considered such that the learned classification or regression function
adapts to the data distribution. An example is shown in Figure 3.10 for a bi-
nary classification problem. In Figure 3.10(a) the decision function is learned
only from the labeled data and the unlabeled data are not used at all. Since
the labeled data set is very small, the decision function learned cannot reflect
the overall distribution of the data. On the other hand, the marginal distri-
bution of the data described by the unlabeled data has a particular geometric
structure. Incorporating this geometric structure into the learning process
results in a better classification function, as shown in Figure 3.10(b).

The above observation suggests that the unlabeled data help change the
decision function toward the desired direction. Therefore, the question we set
for ourselves here is the following:

How do we incorporate the geometric structure of the marginal distribution
of the data into the learning such that the resulting decision function f̄ reflects
the distribution of the data?

A variety of graph based methods is proposed in the literature to achieve
this goal. The approach presented here exploits the geometric structure in a
different way. This is achieved by a 2-step learning process. The first step is
to obtain a parametric function from the unlabeled data which describes the
geometric structure of the marginal distribution. This parametric function
is obtained by applying the Kernel Principal Component Analysis (KPCA)
algorithm to the whole data, including the labeled and unlabeled data. In
KPCA, the function to extract the most important principal component is a
linear combination of the kernel functions in the Reproducing Kernel Hilbert
Space (RKHS), f(x) = K(x, .)α, where K is a kernel function and α is
the coefficients vector. This learned parametric function can be shown to
reflect the geometric structure of the marginal distribution of the data. The
second step is a supervised learning on the labeled data. To incorporate
this parametric function into the supervised learning, we extend the original
RKHS to be used in the supervised learning by including this parametric
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(a)

(b)

FIGURE 3.10: (a) The decision function (dashed line) learned only from the
labeled data. (b) The decision function (solid line) learned after the unlabeled
data are considered also.
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function learned from the whole data. Consequently, we call this approach a
semiparametric regularization based semi-supervised learning.

By selecting different loss functions for the supervised learning, we obtain
different semi-supervised learning algorithms. We primarily focus on two fami-
lies of the algorithms: the semiparametric regularized Least Squares (hereafter
SpRLS) and the semiparametric regularized Support Vector Machines (here-
after SpSVM). These algorithms demonstrate the state-of-the-art performance
on a variety of multimedia data mining tasks.

3.11.1 Supervised Learning

We begin with a brief review of supervised learning. Suppose that there is
a probability distribution P on X × Y,X ⊂ R

n according to which data are
generated. We assume that the given data consist of l labeled data points
(xi, yi), 1 ≤ i ≤ l which are generated according to P . In this section, we
assume the binary classification problem where the labels yi, 1 ≤ i ≤ l, are
binary, i.e., yi = ±1.

In the supervised learning scenario, the goal is to learn a function f to
minimize the expected loss called risk functional

R(f ) =

∫
L(x, y, f (x))dP(x, y) (3.57)

where L is a loss function. A variety of loss functions have been considered
in the literature. The simplest loss function is 0/1 loss:

L(xi, yi, f (xi)) =

{
0 if yi = f (xi)

1 if yi 6= f (xi)
(3.58)

In Regularized Least Square (RLS), the loss function is given by

L(xi, yi, f (xi)) = (yi − f (xi))
2

In SVM, the loss function is given by

L(xi, yi, f (xi)) = max(0, 1− yif (xi))

For the loss function Equation 3.58, Equation 3.57 determines the probability
of a classification error for any decision function f . In most applications
the probability distribution P is unknown. The problem, therefore, is to
minimize the risk functional when the probability distribution function P (x, y)
is unknown but the labeled data (xi, yi), 1 ≤ i ≤ l are given. Thus, we need
to consider the empirical estimate of the risk functional [209]:

Remp(f ) = C

l∑

i=1

L(xi, yi, f (xi)) (3.59)
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Table 3.2: Most frequently used kernel functions.

Kernel Name Kernel Function
polynomial kernel K(x,xi) = (〈x,xi〉+ c)d

Gaussian radial ba-
sis function kernel

K(x,xi) = exp(− ‖x−xi‖
2

2σ2 )

sigmoid kernel K(x,xi) = tanh(κ〈x,xi〉+ ϑ)

where C > 0 is a constant. We often use C = 1
l . Minimizing the empirical

risk Equation 3.59 may lead to numerical instabilities and bad generalization
performance [187]. A possible way to avoid this problem is to add a sta-
bilization (regularization) term Θ(f ) to the empirical risk functional. This
leads to better conditioning of the problem. Thus, we consider the following
regularized risk functional:

Rreg(f ) = Remp(f ) + γΘ(f )

where γ > 0 is the regularization parameter which specifies the tradeoff be-
tween minimization of Remp(f ) and the smoothness or simplicity enforced by
small Θ(f ). A choice of Θ(f ) is the norm of the RKHS representation of the
feature space:

Θ(f ) = ‖f ‖2K
where ‖.‖K is the norm in the RKHS HK associated with the kernel K.
Therefore, the goal is to learn the function f which minimizes the regularized
risk functional

f ∗ = arg min
f∈HK

C

l∑

i=1

L(xi , yi , f (xi )) + γ‖f ‖2K (3.60)

The solution to Equation 3.60 is determined by the loss function L and
the kernel K. A variety of kernels has been considered in the literature.
The three most often-used kernel functions are listed in the Table 3.2, where
σ > 0, κ > 0, ϑ < 0.

The following classic Representer Theorem [187] states that the solution to
the minimization problem Equation 3.60 exists in HK and gives the explicit
form of a minimizer.

THEOREM 3.5

Denote by Ω : [0,∞) → R a strictly monotonic increasing function, by X a
set, and by Λ : (X × R

2)l → R ∪ {∞} an arbitrary loss function. Then each
minimizer f ∈ HK of the regularized risk

Λ((x1, y1, f(x1)), · · · , (xl, yl, f(xl))) + Ω(‖f ‖K)
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admits a representation of the form

f(x) =

l∑

i=1

αiK(xi,x) (3.61)

with αi ∈ R.

According to Theorem 3.5, we can use any regularizer in addition to γ‖f ‖2K
that is a strictly monotonic increasing function of ‖f ‖K . This allows us in
principle to design different algorithms. Here we take the simplest approach
to use the regularizer Ω(‖f ‖K) = γ‖f ‖2K . Given the loss function L and
the kernel K, we substitute Equation 3.61 into Equation 3.60 to obtain a
minimization problem of the variables αi, 1 ≤ i ≤ l. The decision function f ∗

is immediately obtained from the solution to this minimization problem.

3.11.2 Semi-Supervised Learning

In the semi-supervised learning scenario, in addition to l labeled data points
(xi, yi), 1 ≤ i ≤ l, we are given u unlabeled data points xi, l + 1 ≤ i ≤
l + u, which are drawn according to the marginal distribution PX of P . The
decision function is learned from both the labeled data and the unlabeled
data. The semi-supervised learning attempts to incorporate the unlabeled
data into the supervised learning in different ways. We here present a semi-
supervised learning approach based on semiparametric regularization which
extends the original RKHS by including a parametric function learned from
the whole data, including the labeled and unlabeled data.

In the supervised learning, we may have additional prior knowledge about
the solution in many applications. In particular, we may know that a specific
parametric component is very likely to be a part of the solution. Or we might
want to correct the data for some (e.g., linear) trends to avoid overfitting.
Overfitting degrades the generalization performance when outliers exist.

Suppose that this additional prior knowledge is described as a family of
parametric functions {ψp}Mp=1 : X → R. These parametric functions may be
incorporated into the supervised learning in different ways. Here we consider
the following regularized risk functional

f̄ ∗ = arg min
f̄

C

l∑

i=1

L(xi , yi , f̄ (xi)) + γ‖f ‖2K (3.62)

where f̄ := f + h with f ∈ HK and h ∈ span{ψp}. Consequently, we extend
the original RKHS HK by including a family of parametric function ψp with-
out changing the norm. The semiparametric representer theorem [187] tells
us the explicit form of the solution to Equation 3.62. The following semipara-
metric representer theorem is an immediate extension of Theorem 3.5.
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THEOREM 3.6

Suppose that in addition to the assumptions of Theorem 3.5 we are given a
set of M real valued functions {ψp}Mp=1 : X → R, with the property that the

l ×M matrix (ψp(xi))ip has rank M . Then for any f̄ := f + h with f ∈ HK

and h ∈ span{ψp}, minimizing the regularized risk

Λ((x1, y1, f̄(x1)), · · · , (xl, yl, f̄(xl))) + Ω(‖f ‖K)

admits a representation of the form

f̄(x) =

l∑

i=1

αiK(xi,x) +

M∑

p=1

βpψp(x) (3.63)

with αi, βp ∈ R.

In Theorem 3.6, the parametric functions {ψp}Mp=1 can be any functions.
The simplest parametric function is the constant function ψ1(x) = 1,M = 1,
as in the standard SVM model where the constant function is used to maximize
the margin.

In Equation 3.62, the family of parametric functions {ψp}Mp=1 does not con-
tribute to the standard regularizer ‖f ‖2K . This need not be a major concern if
M is sufficiently smaller than l. Here we use M = 1 and this parametric func-
tion is learned from the whole data, including the labeled and unlabeled data.
Therefore, the l ×M matrix (ψp(xi))ip is a vector whose rank is 1. We de-
note by ψ(x) this parametric function and by β the corresponding coefficient.
Thus, the minimizer of Equation 3.62 is

f̄∗(x) =

l∑

i=1

α∗
iK(xi,x) + β∗ψ(x) (3.64)

where K is the kernel in the original RKHS HK .
ψ(x) is obtained by applying the KPCA algorithm [187] to the whole data

set. KPCA finds the principal axes in the feature space which carry more
variance than any other directions by diagonalizing the covariance matrix
C = 1

l+u

∑l+u
j=1 Φ(xj)Φ(xj)

⊤, where Φ is a mapping function in the RKHS.
To find the principal axes, we solve the eigenvalue problem, (l+u)λγ = Kuγ,
where Ku is the kernel used. Let λ denote the largest eigenvalue of Ku and
γ the corresponding eigenvector. Then the most important principal axis is
given by

v =
l+u∑

i=1

γiΦ(xi) (3.65)

Usually we normalize v such that ‖v‖ = 1. Given the data point x, the pro-
jection onto the principal axis is given by 〈Φ(x),v〉. Let ψ(x) = 〈Φ(x),v〉 =
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Ku(x, .)γ. Figure 3.11 shows an illustrative example for the binary classifi-
cation problem. As shown in this example, ψ(x) might not be the desired
classification function. However, ψ(x) is parallel to the desired classification
function (the dashed line). They are different up to a constant. Therefore,
ψ(x) reflects the geometric structure of the distribution of the data. From
this example, it is clear that the data points projected onto the most impor-
tant principal axis still keep the original neighborhood relationship. In other
words, after projection onto the principal axis, similar data points stay close
and dissimilar data points are kept far away from each other. In the ideal
case of separable binary class problem, we have the following theorem, which
says that the similar data points in the feature space are still similar to each
other after projected onto the principal axis [96].

THEOREM 3.7

Denote by Ci, i = 0, 1 the set of the data points of each class in the binary
class problem. Suppose Ci = {x| ‖Φ(x) − ci‖ ≤ ri} and ‖c0 − c1‖ > r0 + r1.
For each class, suppose that the data points are uniformly distributed in the
sphere of radius ri. ‖.‖ denotes the Euclidean norm and v denotes the prin-
cipal axis derived from KPCA as defined in Equation 3.65. Then

∀p ∈ Ci,v
⊤Φ(p) ∈ Ri, i = 0, 1

where Ri = [µi − ri, µi + ri] and µi = v⊤ci. Moreover, R0 and R1 do not
overlap.

Based on the above analysis, the semi-supervised learning is achieved by
a 2-step learning process. The first step is to obtain a parametric function
ψ(x) from the whole data. Since this parametric function ψ(x) is obtained by
KPCA, ψ(x) reflects the geometric structure of the marginal distribution of
the data revealed by the whole data.This implements the cluster assumption
indirectly. The second step is to solve Equation 3.62 in a new function space
to obtain the final classification function.

IfKu = K, the final classification function has the form f̄(x) =
∑l+u
i=1 α

′

iK(xi,x)

where α
′

i is the linear combination of αi and β. This classification function
has the same form as that in [18]; but the methods to obtain it are different.
In this case, the parametric function belongs to the original RKHS. Adding
ψ(x) does not change the RKHS, but guides the learned classification function
toward the desired direction described by ψ(x). If Ku and K are two different
kernels, the original RKHS is extended by ψ(x).

The coefficient β∗ reflects the weight of the unlabeled data in the learn-
ing process. When β∗ = 0, the unlabeled data are not considered at all
and this method is fully a supervised learning algorithm. This means that
the unlabeled data do not provide any useful information. In other words,
the unlabeled data follow the marginal distribution described by the labeled
data. When β∗ 6= 0, the unlabeled data provide useful information about the
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FIGURE 3.11: Illustration of KPCA in the two dimensions.

marginal distribution of the data and the geometric structure of the marginal
distribution revealed by the unlabeled data is incorporated into the learning.

To learn the final classification function, we substitute Equation 3.64 into
Equation 3.62 to obtain an objective function of α∗

i and β∗. The solution of
α∗
i and β∗ depends on the loss function. Different loss functions L result in

different algorithms. We now discuss two typical loss functions: the squared
loss for RLS and the hinge loss for SVM. For the squared loss function, we
obtain the explicit form of α∗

i and β∗. In the following analysis of this section,
we use K interchangeably to denote the kernel function or the kernel matrix.

3.11.3 Semiparametric Regularized Least Squares

We first outline the RLS approach which applies to the binary classification
and the regression problem. The classic RLS algorithm is a supervised method
where we solve:

f ∗ = arg min
f∈HK

C

l∑

i=1

(yi − f (xi ))
2 + γ‖f ‖2K

where C and γ are constants.
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According to Theorem 3.5, the solution is of the following form:

f∗(x) =

l∑

i=1

α∗
iK(xi,x)

Substituting this solution in the problem above, we arrive at the following
differentiable objective function of the l-dimensional variable α = [α1 · · ·αl]⊤:

α∗ = argminC(Y −Kα)⊤(Y −Kα) + γα⊤Kα

where K is the l × l kernel matrix Kij = K(xi,xj) and Y is the label vector
Y = [y1 · · · yl]⊤.

The derivative of the objective function over α vanishes at the minimizer

C(KKα∗ −KY) + γKα∗ = 0

which leads to the following solution:

α∗ = (CK + γI)−1CY

The semiparametric RLS algorithm solves the optimization problem in
Equation 3.62 with the squared loss function:

f̄ ∗ = argmin
f̄

C

l∑

i=1

(yi − f̄ (xi))
2 + γ‖f ‖2K (3.66)

where f̄ := f + h with f ∈ HK and h ∈ span{ψ}.
According to Theorem 3.6, the solution has the form

f̄ ∗ =
l∑

i=1

α∗
iK(xi,x) + β∗ψ(x)

Substituting this form in Equation 3.66, we arrive at the following objective
function of the l-dimensional variable α = [α1 · · ·αl]⊤ and β:

(α∗, β∗) = arg minCδ⊤δ + γα⊤Kα

where δ = Y −Kα−βψ, K is the l×l kernel matrix Kij = K(xi,xj), Y is the
label vector Y = [y1 · · · yl]⊤, and ψ is the vector ψ = [ψ(x1) · · ·ψ(xl)]

⊤. The
derivatives of the objective function over α and β vanish at the minimizer:

C(KKα∗ + β∗Kψ −KY) + γKα∗ = 0

ψ⊤Kα∗ + β∗ψ⊤ψ −ψ⊤Y = 0

which lead to the following solution:

α∗ = C(γI− Cψψ⊤K

ψ⊤ψ
+ CK)−1(I− ψψ

⊤

ψ⊤ψ
)Y (3.67)

β∗ =
ψ⊤Y −ψ⊤Kα∗

ψ⊤ψ
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3.11.4 Semiparametric Regularized Support Vector Machines

We outline the SVM approach to the binary classification problem.
In the binary classification problem, the classic SVM attempts to solve the

following optimization problem on the labeled data.

min
1

2
‖w‖2 + C

l∑

i=1

ξi (3.68)

s.t. yi{〈w,Φ(xi)〉 + b} ≥ 1− ξi
ξi ≥ 0 i = 1, · · · , l

where Φ is a nonlinear mapping function determined by the kernel and b is a
regularized term.

Again, the solution is given by

f∗(x) = 〈w∗,Φ(x)〉+ b∗ =

l∑

i=1

α∗
iK(xi,x) + b∗

To solve Equation 3.68, we introduce one Lagrange multiplier for each con-
straint in Equation 3.68 using the Lagrange multipliers technique and obtain
a quadratic dual problem of the Lagrange multipliers.

min
1

2

l∑

i,j=1

yiyjµiµjK(xi,xj)−
l∑

i=1

µi (3.69)

s.t.
l∑

i=1

µiyi = 0

0 ≤ µi ≤ C i = 1, · · · , l

where µi is the Lagrange multiplier associated with the i-th constraint in
Equation 3.68.

We have w∗ =
∑l

i=1 µiyiΦ(xi) from the solution to Equation 3.69. Note
that the following conditions must be satisfied according to the Kuhn-Tucker
theorem [209]:

µi(yi(〈w,Φ(xi)〉+ b) + ξi − 1) = 0 i = 1, · · · , l (3.70)

The optimal solution of b is determined by the above conditions.
Therefore, the solution is given by

f∗(x) =
l∑

i=1

α∗
iK(xi,x) + b∗

where α∗
i = µiyi.
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The semiparametric SVM algorithm solves the optimization problem in
Equation 3.62 with the hinge loss function:

min
1

2
‖w‖2 + C

l∑

i=1

ξi (3.71)

s.t. yi{〈w,Φ(xi)〉+ b+ βψ(xi)} ≥ 1− ξi
ξi ≥ 0 i = 1, · · · , l

As in the classic SVM, we consider the Lagrange dual problem for Equa-
tion 3.71:

min
1

2

l∑

i,j=1

yiyjµiµjK(xi,xj)−
l∑

i=1

µi (3.72)

s.t.

l∑

i=1

µiyi = 0

l∑

i=1

µiyiψ(xi) = 0

0 ≤ µi ≤ C i = 1, · · · , l

where µi is the Lagrange multiplier associated with the i-th constraint in
Equation 3.71. The semiparametric SVM dual problem Equation 3.72 is the
same as the SVM dual problem Equation 3.69 except for one more constraint
introduced by the parametric function ψ(x). As in the classic SVM, the
following conditions must be satisfied:

µi(yi(〈w,Φ(xi)〉+ b + βψ(xi)) + ξi − 1) = 0 (3.73)

We have w∗ =
∑l
i=1 µiyiΦ(xi) from the solution to Equation 3.72. This is

the same as that in the SVM.
The optimal solution of b∗ and β∗ is determined by Equation 3.73. If the

number of the Lagrange multipliers satisfying 0 < µi < C is no less than two,
we may determine b∗ and β∗ by solving two linear equations corresponding
to any two of them in Equation 3.73 since the corresponding slack variable
ξi is zero. In the case that the number of the Lagrange multipliers satisfying
0 < µi < C is less than two, b∗ and β∗ are determined by solving the following
optimization problem derived from Equation 3.73:

min b2 + β2 (3.74)

s.t. yi{〈w,Φ(xi)〉+ b+ βψ(xi)} ≥ 1

if µi = 0

yi{〈w,Φ(xi)〉+ b+ βψ(xi)} = 1

if 0 < µi < C
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The final decision function is

f̄∗(x) =
l∑

i=1

α∗
iK(xi,x) + β∗ψ(x) + b∗

where α∗
i = µiyi. The semiparametric SVM can be implemented by using a

standard quadratic programming problem solver.

3.11.5 Semiparametric Regularization Algorithm

Based on the above analysis, the semiparametric regularization algorithm
is summarized in Algorithm 4.

Algorithm 4 Semiparametric Regularization Algorithm

Input: l labeled data points (xi, yi), 1 ≤ i ≤ l, yi = ±1 and u unlabeled data
points xi, l + 1 ≤ i ≤ l + u
Output: Estimated function f̄∗(x) =

∑l
i=1 α

∗
iK(xi,x) + β∗ψ(x) for SpRLS

or f̄∗(x) =
∑l

i=1 α
∗
iK(xi,x) + β∗ψ(x) + b∗ for SpSVM

Method:

1: Choose the kernel Ku and apply KPCA to the whole data to obtain the
parametric function ψ(x) =

∑l+u
i=1 γiKu(xi,x).

2: Choose the kernelK and solve Equation 3.67 for SpRLS or Equations 3.72
and 3.74 for SpSVM.

3.11.6 Transductive Learning and Semi-Supervised Learn-
ing

Transductive learning refers to the learning scenario where we are given
a set of labeled training data and another set of unlabeled training data,
and the goal is to predict the labels for the unlabeled training data without
necessarily inducing the classifier function. Semi-supervised learning refers to
the scenario where we are given a set of labeled training data and another
set of unlabeled training data, and the goal is to induce the classifier function
using both the labeled and unlabeled training data such that for any unseen
data we can use the induced function to predict the label of the unseen data.

Transductive learning only works on the labeled and unlabeled training data
and cannot handle unseen data. Out-of-sample extension is already a serious
limitation for transductive learning. In contrast to transductive learning,
inductive learning can handle unseen data. Semi-supervised learning can be
either transductive or inductive. Many existing graph-based semi-supervised
learning methods are transductive in nature since the classification function
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is only defined on the labeled and unlabeled training data. One reason is that
they perform the semi-supervised learning only on the graph where the nodes
are the labeled and unlabeled data in the training set, not on the whole space.

In this presented approach, the decision function Equation 3.64 is defined
over the whole X space. Therefore, this approach is inductive in nature and
can extend to the out-of-sample data.

3.11.7 Comparisons with Other Methods

In the literature, many existing semi-supervised learning methods rely on
the cluster assumption directly or indirectly and exploit the regularization
principle by considering additional regularization terms on the unlabeled data.
Belkin et al [18] propose a manifold regularization approach where the geo-
metric structure of the marginal distribution is extracted using the graph
Laplacian associated with the data. They consider the following regulariza-
tion term:

l+u∑

i,j=1

(f(xi)− f(xj))
2Wij = f⊤Lf (3.75)

where Wij are edge weights in the data adjacency graph and L is the graph
Laplacian given by L = D −W. Here, the diagonal matrix D is given by
Dii =

∑l+u
j=1Wij . The incorporation of this regularization term leads to the

following optimization problem:

f ∗ = arg min
f∈HK

C
l∑

i=1

L(xi , yi , f (xi)) + γ‖f ‖2K + f⊤Lf

Equation 3.75 attempts to give the nearby points (large Wij) in the graph
similar labels. However, the issue is that Equation 3.75 tends to give similar
labels for points i and j as long as Wij > 0. In other words, dissimilar
points might have similar labels. Therefore, their approach depends on the
neighborhood graph constructed from the data. Similarly, Zhu et al [259]
minimize Equation 3.75 as an energy function.

The semiparametric regularization based semi-supervised learning approach
presented in this section exploits the cluster assumption by the parametric
function ψ(x). Learned from the whole data, this parametric function reflects
the geometric structure of the marginal distribution of the data. Different
from the manifold regularization approach, this approach uses a parametric
function obtained from the whole data to describe the geometric structure of
the marginal distribution. Similar to the manifold regularization approach,
this approach obtains the same form of the classification function if we use the
same kernel (K = Ku) in the 2-step learning process. However, the methods
to obtain the expansion coefficients are different.
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Sindhwani et al [189] derive a modified kernel defined in the same space of
the functions as the original RKHS, but with a different norm. Here we warp
an RKHS in a different way. We extend the original RKHS by including the
parametric function without changing the norm such that the learned decision
function reflects the data distribution. In some cases, this parametric function
belongs to the original RKHS and thus the RKHS is unchanged. However,
the learned classification function still reflects the data distribution since the
classification function has a preference to the parametric function according
to Equation 3.64.

The parametric function ψ(x) learned by KPCA can be incorporated into
the supervised learning to separate different classes very well for the binary
classification problem. For the multiclass problem, KPCA cannot separate
different classes very well because some classes overlap after projection onto
the principal axis. That is why we focus on the binary class problem in
this approach. The evaluations of this approach as well as the superiority to
the peers methods from the state-of-the-art machine learning literature are
reported and demonstrated in [96].

3.12 Summary

In this chapter we have introduced the commonly used and recently de-
veloped statistical learning and mining theory and techniques in the context
of multimedia data mining. We have studied and introduced the two well-
known paradigms of statistical learning in the recent multimedia data mining
literature — the generative learning models and the discriminative learning
models. In the former we focus on the probabilistic inference based learning
methods, including Bayesian networks, probabilistic latent semantic analy-
sis, latent Dirichlet allocation, and hierarchical Dirichlet process for discrete
data analysis, and we have briefly reviewed their applications in multimedia
data mining. In the latter we focus on the support vector machines as well
as the recently developed maximum margin learning with structured output
space and the boosting theory to combine a series of weak learners to build
up a strong learner. We then have studied and introduced two recently de-
veloped statistical learning paradigms that have been extensively applied in
the recent multimedia data mining literature — multiple instance learning
and semi-supervised learning. These statistical learning methods are the the-
oretical foundation of all multimedia data mining tasks. They are extensively
applied in the subsequent chapters in Part III of this book.
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Chapter 4

Soft Computing Based Theory and
Techniques

4.1 Introduction

In many multimedia data mining applications, it is often required to make
a decision in an imprecise and uncertain environment. For example, in the
application of mining an image database with a query image of green trees,
given an image in the database that is about a pond with a bank of earth and a
few green bushes, is this image considered as a match to the query? Certainly
this image is not a perfect match to the query, but, on the other hand, it is
also not an absolute mismatch to the query. Problems like this example, as
well as many others, have intrinsic imprecision and uncertainty that cannot be
neglected in decision making. Traditional intelligent systems fail to solve such
problems, as they attempt to use Hard Computing techniques. In contrast,
a Soft Computing methodology implies cooperative activities rather than au-
tonomous ones, resulting in new computing paradigms such as fuzzy logic,
neural networks, and evolutionary computation. Consequently, soft comput-
ing opens up a new research direction for problem solving that is difficult to
achieve using traditional hard computing approaches.

Technically, soft computing includes specific research areas such as fuzzy
logic, neural networks, genetic algorithms, and chaos theory. Intrinsically, soft
computing is developed to deal with pervasive imprecision and uncertainty of
real-world problems. Unlike traditional hard computing, soft computing is
capable of tolerating imprecision, uncertainty, and partial truth without loss
of performance and effectiveness for the end user. The guiding principle of soft
computing is to exploit the tolerance for imprecision, uncertainty, and partial
truth to achieve a required tractability, robustness, and low solution cost. We
can easily come to the conclusion that precision has a cost. Therefore, in
order to solve a problem with an acceptable cost, we need to aim at a decision
with only the necessary degree of precision, not exceeding the requirements.

In soft computing, fuzzy logic is the kernel. The principal advantage of
fuzzy logic is the robustness to its interpolative reasoning mechanism. Within
soft computing, fuzzy logic is mainly concerned with imprecision and ap-
proximate reasoning, neural networks with learning, genetic algorithms with
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global optimization and search, and chaos theory with nonlinear dynamics.
Each of these computational paradigms provides us with complementary rea-
soning and searching methods to solve complex, real-world problems. The
interrelations between these paradigms of soft computing contribute to the
theoretical foundation of Hybrid Intelligent Systems. The use of hybrid intel-
ligent systems leads to the development of numerous manufacturing systems,
multimedia systems, intelligent robots, and trading systems, well beyond the
scope of multimedia data mining.

4.2 Characteristics of the Paradigms of Soft Computing

Different paradigms of soft computing can be used independently and more
often in combination. In soft computing, fuzzy logic plays a unique role.
Fuzzy sets are used as a universal approximator, which is often paramount
for modeling unknown objects. However, fuzzy logic in its pure form may not
necessarily always be useful for easily constructing an intelligent system. For
example, when a designer does not have sufficient prior information (knowl-
edge) about the system, the development of acceptable fuzzy rules becomes
impossible; further, as the complexity of the system increases, it becomes dif-
ficult to specify a correct set of rules and membership functions for adequately
and correctly describing the behavior of the system. Fuzzy systems also have
the disadvantage of the inability to automatically extract additional knowl-
edge from the experience and to automatically correct and improve the fuzzy
rules of the system.

Another important paradigm of soft computing is neural networks. Artifi-
cial neural networks, as a parallel, fine-grained implementation of non-linear
static or dynamic systems, were originally developed as a parallel computa-
tional model. A very important advantage of these networks is their adaptive
capability, where “learning by example” replaces the traditional “program-
ming” in problem solving. Another important advantage is the intrinsic par-
allelism that allows fast computations. Artificial neural networks are a viable
computational model for a wide variety of problems, including pattern classi-
fication, speech synthesis and recognition, curve fitting, approximation, image
compression, associative memory, and modeling and control of non-linear un-
known systems, in addition to the application of multimedia data mining. The
third advantage of artificial neural networks is the generalization capability,
which allows correct classification of new patterns. A significant disadvantage
of artificial neural networks is their poor interpretability. One of the main
criticisms addressed to neural networks concerns their black box nature.

Evolutionary computing is a revolutionary paradigm for optimization. One
component of evolutionary computing — genetic algorithms — studies the al-
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Table 4.1: Comparative characteristics of the components of soft computing.
Reprint from [8] c©2001 World Scientific.

Fuzzy sets Artificial neu-
ral networks

Evolutionary
computing,
Genetic algo-
rithms

Weakness Knowledge
acquisition;
Learning

Black box inter-
pretability

Coding; Compu-
tational speed

Strengths Interpretability;
Transparency;
Plausibility;
Modeling;
Reasoning;
Tolerance to
imprecision

Learning; Adap-
tation; Fault
tolerance; Curve
fitting; General-
ization ability;
Approximation
ability

Computational
efficiency;
Global opti-
mization

gorithms for global optimization. Genetic algorithms are based on the mech-
anisms of natural selection and genetics. One advantage of genetic algorithms
is that they effectively implement a parallel, multi-criteria search. The mech-
anism of genetic algorithms is simple. Simplicity of operations and powerful
computational effect are the two main principles for designing effective genetic
algorithms. The disadvantages include the convergence issue and the lack of
strong theoretic foundation. The requirement of coding the domain variables
into bit strings also seems to be a drawback of genetic algorithms. In addition,
the computational speed of genetic algorithms is typically low.

Table 4.1 summarizes the comparative characteristics of the different paradigms
of soft computing. For each paradigm of soft computing, there are appropriate
problems where this paradigm is typically applied.

4.3 Fuzzy Set Theory

In this section, we give an introduction to fuzzy set theory, fuzzy logic, and
their applications in multimedia data mining.

4.3.1 Basic Concepts and Properties of Fuzzy Sets

DEFINITION 4.1 Let X be a classic set of objects, called the universe,
with the generic elements denoted as x. The membership of a classic subset
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FIGURE 4.1: Fuzzy set to characterize the temperature of a room.

A of X is often considered as a characteristic function µA mapped from X to
{0,1} such that

µA(x) =

{
1 iff x ∈ A
0 iff x /∈ A

where {0,1} is called a valuation set; 1 indicates membership while 0 indicates
non-membership.

If the valuation set is allowed to be in the real interval [0,1], A is called a
fuzzy set. µA(x) is the grade of membership of x in A:

µA : X −→ [0, 1]

The closer the value of µA(x) is to 1, the more x belongs to A. A is completely
characterized by the set of the pair:

A = {(x, µA(x)), x ∈ X}

Solutions to many real-world problems can be developed more accurately
using fuzzy set theory. Figure 4.1 shows an example regarding how fuzzy set
representation is used to describe the natural drift of temperature.

DEFINITION 4.2 Two fuzzy sets A and B are said to be equal, A = B,
if and only if ∀x ∈ X µA(x) = µB(x).
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In the case where universe X is infinite, it is desirable to represent fuzzy
sets in an analytical form, which describes the mathematical membership
functions. There are several mathematical functions that are frequently used
as the membership functions in fuzzy set theory and practice. For exam-
ple, a Gaussian-like function is typically used for the representation of the
membership function as follows:

µA(x) = c exp(− (x− a)2
b

)

which is defined by three parameters, a, b, and c. Figure 4.2 summarizes
the graphical and analytical representations of frequently used membership
functions.

An appropriate construction of the membership function for a specific fuzzy
set is the problem of knowledge engineering [125]. There are many methods for
an appropriate estimation of a membership function. They can be categorized
as follows:

1. Membership functions based on heuristics

2. Membership functions based on reliability concepts with respect to the
specific problem

3. Membership functions based on a certain theoretic foundation

4. Neural networks based construction of membership functions

The following rules which are common and valid in the classic set theory
also apply to fuzzy set theory.

• De Morgan’s law:
A ∩B = A ∪B

and
A ∪B = A ∩B

• Associativity:
(A ∪B) ∪ C = A ∪ (B ∪C)

and
(A ∩B) ∩ C = A ∩ (B ∩C)

• Commutativity:
A ∪B = B ∪A

and
A ∩B = B ∩A

• Distributivity:

A ∪ (B ∩C) = (A ∪B) ∩ (A ∪ C)

and
A ∩ (B ∪C) = (A ∩B) ∪ (A ∩ C)
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FIGURE 4.2: Typical membership functions. Reprint from [8] c©2001 World
Scientific.
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4.3.2 Fuzzy Logic and Fuzzy Inference Rules

In this section fuzzy logic is reviewed in a narrow sense as a direct exten-
sion and generalization of multi-valued logic. According to one of the most
widely accepted definitions, logic is an analysis of methods of reasoning; in
studying these methods, logic is mainly taken in the form, not in the content,
of the arguments used in a reasoning process. Here the main issue is to es-
tablish whether the truth of the consequence can be inferred from the truth
of premises. Systematic formulation of the correct approaches to reasoning is
one of the main issues in logic.

Let us define the semantic truth function of fuzzy logic. Let P be a state-
ment and T(P) be its truth value, where T (P ) ∈ [0, 1]. Negation values of the
statement P are defined as T (¬P ) = 1−T (P ). The implication connective is
always defined as

T (P → Q) = T (¬P ∨Q)

and the equivalence is always defined as

T (P ↔ Q) = T [(P → Q) ∧ (Q→ P )]

Based on the above definitions, we further define the basic connectives of
fuzzy logic as follows.

• T (P ∨Q) = max(T (P ), T (Q))

• T (P ∧Q) = min(T (P ), T (Q))

• T (P ∨ (P ∧Q)) = T (P )

• T (P ∧ (P ∨Q)) = T (P )

• T (¬(P ∧Q)) = T (¬P ∨ ¬Q)

• T (¬(P ∨Q)) = T (¬P ∧ ¬Q)

It is shown that multi-valued logic is the fuzzification of the traditional
propositional calculus (in the sense of the extension principle). Here each
proposition P is assigned a normalized fuzzy set in [0,1]; i.e., the pair {µP (0), µP (1)}
is interpreted as the degree of false or true, respectively. Since the logical con-
nectives of the standard propositional calculus are functionals of truth, i.e.,
they are represented as functions, they can be fuzzified.

Let A and B be fuzzy sets of the subsets of the non-fuzzy universe U ; in
fuzzy set theory it is known that A is a subset of B iff µA ≤ µB, i.e., ∀x ∈ U ,
µA(x) ≤ µB(x).

In fuzzy set theory, great attention is paid to the development of fuzzy
conditional inference rules. This is connected to the natural language under-
standing where it is necessary to have a certain number of fuzzy concepts;
therefore, we must ensure that the inference of the logic is made such that the
preconditions and the conclusions both may contain such fuzzy concepts. It
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is shown that there is a huge variety of ways to formulate the rules for such
inferences. However, such inferences cannot be satisfactorily formulated using
the classic Boolean logic. In other words, here we need to use multi-valued
logical systems. The conceptual principle in the formulation of the fuzzy rules
is the Modus Ponens inference rule that states: IF(α→ β) is true and α is true,
THEN β must also be true.

The methodological foundation for this formulation is the compositional
rule suggested by Zadeh [231, 232]. Using this rule, he has formulated the
inference rules in which both the logical preconditions and consequences are
conditional propositions, including the fuzzy concepts.

4.3.3 Fuzzy Set Application in Multimedia Data Mining

In multimedia data mining, fuzzy set theory can be used to address the
typical uncertainty and imperfection in the representation and processing of
multimedia data, such as image segmentation, feature representation, and
feature matching. Here we give one such application in image feature repre-
sentation as an example in multimedia data mining.

In image data mining, the image feature representation is the very first step
for any knowledge discovery in an image database. In this example, we show
how different image features may be represented appropriately using the fuzzy
set theory.

In Section 2.4.5.2, we have shown how to use fuzzy logic to represent the
color features. Here we show the fuzzy representation of texture and shape
features for a region in an image. Similar to the color feature, the fuzzifi-
cation of the texture and shape features also brings a crucial improvement
into the region representation of an image, as the fuzzy features naturally
characterize the gradual transition between regions within an image. In the
following proposed representation scheme, a fuzzy feature set assigns weights,
called the degree of membership, to feature vectors of each image block in the
feature space. As a result, the feature vector of a block belongs to multiple
regions with different degrees of membership as opposed to the classic region
representation, in which a feature vector belongs to exactly one region. We
first discuss the fuzzy representation of the texture feature, and then discuss
that of the shape feature.

We take each region as a fuzzy set of blocks. In order to propose a unified
approach consistent with the fuzzy color histogram representation described in
Section 2.4.5.2, we again use the Cauchy function to be the fuzzy membership
function, i.e.,

µi(f) =
1

1 + (d(f,f̂i)
σ )α

(4.1)

where f ∈ Rk is the texture feature vector of each block with k as the di-
mensionality of the feature vector; f̂i is the average texture feature vector of
region i; d is the Euclidean distance between f̂i and any feature f ; and σ
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represents the average distance for texture features among the cluster centers
obtained from the k-means algorithm. σ is defined as:

σ =
2

C(C − 1)

C−1∑

i=1

C∑

k=i+1

‖f̂i − f̂k‖ (4.2)

where C is the number of regions in a segmented image, and f̂i is the average
texture feature vector of region i.

With this block membership function, the fuzzified texture property of re-
gion i is represented as

~fi
T

=
∑

f∈UT

fµi(f) (4.3)

where UT is the feature space composed of texture features of all blocks.
Based on the fuzzy membership function µi(f) obtained in a similar fashion,

we also fuzzify the p-th order inertia as the shape property representation of
region i as:

l(i, p) =

∑
f∈US [(fx − x̂)2 + (fy − ŷ)2]p/2µi(f)

[N ]1+p/2
(4.4)

where fx and fy are the x and y coordinates of the block with the shape
feature f , respectively; x̂ and ŷ are the x and y central coordinates of region
i, respectively; and N is the number of blocks in an image and US is the
block feature space of the images. Based on Equation 4.4, we have obtained

the fuzzy representation for the shape feature of each region, denoted as ~fi
S
.

4.4 Artificial Neural Networks

Historically, in order to “simulate” the biological systems to make non-
symbolic computations, different mathematical models were suggested. The
artificial neural network is one such model that has shown great promise and
thus attracted much attention in the literature.

4.4.1 Basic Architectures of Neural Networks

Neurons represent a special type of nervous cells in the organism, having
electric activities. These cells are mainly intended for the operative control
of the organism. A neuron consists of cell bodies, which are enveloped in the
membrane. A neuron also has dendrites and axons, which are its inputs and
outputs. Axons of neurons join dendrites of other neurons through synaptic
contacts. Input signals of the dendrite tree are weighted and added in the
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FIGURE 4.3: Mathematical model of a neuron. Reprint from [8] c©2001
World Scientific.

cell body and formed in the axon, where the output signal is generated. The
signal’s intensity, consequently, is a function of a weighted sum of the input
signal. The output signal is passed through the branches of the axon and
reaches the synapses. Through the synapses the signal is transformed into a
new input signal of the neighboring neurons. This input signal can be either
positive or negative, depending upon the type of the synapses.

The mathematical model of the neuron that is usually utilized under the
simulation of the neural network is represented in Figure 4.3. The neuron
receives a set of input signals x1, x2, ..., xn (i.e., vector X) which usually
are output signals of other neurons. Each input signal is multiplied by a
corresponding connection weight w — analogue of the synapse’s efficiency.
Weighted input signals come to the summation module corresponding to the
cell body, where their algebraic summation is executed and the excitement
level of the neuron is determined:

I =

n∑

1=1

xiWi

The output signal of a neuron is determined by conducting the excitement
level through the function f , called the activation function:

y = f(I − θ)
where θ is the threshold of the neuron. Usually the following activation func-
tions are used as function f :

• Linear function (see Figure 4.4),

y = kI, k = const

• binary (threshold) function (see Figure 4.5),

y =

{
1 if I ≥ θ
0 if I < θ
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FIGURE 4.4: Linear function. Reprint from [8] c©2001 World Scientific.

FIGURE 4.5: Binary function. Reprint from [8] c©2001 World Scientific.

• sigmoid function (see Figure 4.6),

y =
1

1 + exp−I

The totality of the neurons, connected with each other and with the envi-
ronment, forms the neural network. The input vector comes to the network by
activating the input neurons. A set of input signals x1, x2, ..., xn of a network’s
neurons is called the vector of the input activeness. Connection weights of
neurons are represented in the form of a matrix W , the element wij of which
is the connection weight between the i-th and the j-th neurons. During the
network functioning process, the input vector is transformed into output one;
i.e., a certain information processing is performed. The computational power
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FIGURE 4.6: Sigmoid function. Reprint from [8] c©2001 World Scientific.

FIGURE 4.7: A fully connected neural network. Reprint from [8] c©2001
World Scientific.

of the network consequently solves problems with its connections. Connec-
tions link the inputs of a neuron with the outputs of others. The connection
strengths are given by the weight coefficients.

The network’s architecture is represented by the order of the connections.
Two frequently used network types are the fully-connected networks and the
hierarchical networks. In a fully connected architecture, all of its elements are
connected with each other. The output of every neuron is connected with the
inputs of all others and its own input. The number of the connections in a
fully-connected neural network is equal to v× v, with v links for each neuron
(see Figure 4.7).

In the hierarchical architecture, a neural network may be differentiated by
the neurons grouped into particular layers or levels. Each neuron in any
hidden layer is connected with every neuron in the previous and the next
layers. There are two special layers in the hierarchical networks. Those layers
have contacts and interact with the environment (see Figure 4.8).

In terms of the signal transference direction in the networks, they are catego-
rized into the networks without feedback loops (called feed-forward networks)
and the networks with feedback loops (called either feedback or recurrent
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FIGURE 4.8: A hierarchical neural network. Reprint from [8] c©2001 World
Scientific.

networks).

In feed-forward networks the neurons of each layer receive signals either
from the environment or from neurons of the previous layer and pass their
outputs either to the environment or to neurons of the next layer (see Fig-
ure 4.9). In recurrent networks (Figure 4.10) neurons of a particular layer
may also receive signals from themselves and from other neurons of the layer.
Thus, unlike non-recurrent networks, the values of the output signals in a re-
current neural network may be determined only if (besides the current value
of the input signals and the weights of the corresponding connections) there
is information available about values of the outputs of the neurons in the pre-
vious step of the time. This means that such a network possesses elements of
memory that allow it to keep information about the outputs’ state from some
time interval. That is why recurrent networks can model the associative mem-
ory. The associative memory is content-addressable. When an incomplete or
a corrupted vector comes to such a network, it can retrieve the correct vector.

A non-recurrent (feed-forward) network has no feedback connections. In
this network topology neurons of the i-th layer receive signals from the en-
vironment (when i = 1) or from the neurons of the previous layer, i.e., the
(i − 1)-th layer (when i > 1), and pass their outputs to the neurons of the
next (i+ 1)-th layer or to the environment (when i is the last layer).

The hierarchical non-recurrent network may be single-layer or multi-layer.
A non-recurrent network containing one input and one output layer, respec-
tively, usually is called a single-layer network. The input layer serves to dis-
tribute signals out of all the inputs of a neuron to all the neurons of the output
layer. Neurons of the output layer are the computing units (i.e., they compute
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FIGURE 4.9: A feed-forward neural network. Reprint from [8] c©2001 World
Scientific.

FIGURE 4.10: A feedback neural network. Reprint from [8] c©2001 World
Scientific.
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FIGURE 4.11: A simple neuron model. Reprint from [8] c©2001 World Sci-
entific.

their outputs as a function applied to the weighted sum of the input signals).
That function can be linear or non-linear. For the linear activation function,
the output of the network is determined in the following manner:

Y = WX + θ

where W is the weight vector of the network, and X and Y are the input and
output vectors correspondingly.

The use of the nonlinear activation function allows an increase in the com-
putational power of the network. For the sigmoid activation function, the
network output is determined in the following manner:

Y =
1

1− exp−XW+θ

A multi-layer neural network consists of the input, the output, and the
hidden layers. Single-layer networks, which do not have hidden layers, cannot
solve complicated problems. The use of the hidden layers allows an increase
in the computational power of the network. The outputs of the i-th layer
are the functions of the outputs of the (i − k)-th (here k = 1...i − 1) layers.
By choosing an optimal topological structure of a network, an increase in
reliability and computational power, as well as a decreased processing time,
may be achieved.

4.4.2 Supervised Learning in Neural Networks

The simplest neural network is a perceptron, which is shown in Figure 4.11.
Here σ multiplies each input xi by a weight wi, i ∈ [1, n], and sums the
weighted inputs. If this sum is greater than the perceptron’s threshold, then
the output is one; otherwise, it is zero. A perceptron is trained repeatedly by
presenting a set of input patterns to its inputs and adjusting the connection
weights until the desired output occurs.

Each input pattern of a perceptron can be represented as a vector X =
{x1, x2, ..., xn}T . The output Y of the perceptron is determined by compar-
ing the weighted sum of the input signals with a threshold value θ: if the

© 2009 by Taylor & Francis Group, LLC



158 Multimedia Data Mining

weighted sum of the elements of the input vector exceeds θ, the output of
the perceptron is one; otherwise, it is zero. Learning is accomplished in the
following manner. A pattern X is applied to the input of perceptron, and
an output Y is calculated. If the output is correct (i.e., corresponds to the
desired one), the weights are not changed. If not, the weights, correspond-
ing to the input connections that cause this incorrect result, are modified to
reduce the error. Note that the training must be global; i.e., the perceptron
must learn over the entire set of the input patterns, applied to the perceptron
either sequentially or randomly. The training method may be generalized by
the “delta rule”:

• Step 1. Accept the regular input pattern X and calculate output Y for
it.

• Step 2.

– If output Y is correct, go to Step 3.

– If output Y is incorrect, for each weight wi,△wi = γexi, wi(t+1) =
wi(t) +△wi, where e = y∗ − y is the error for this pattern (y∗ is
the target output value) and γ is the “learning rate” to regulate
the average size of the weight change.

• Step 3. Repeat steps 1–3 until the learning error is at an acceptable
level.

Note that this “delta rule” algorithm leads a perceptron to a correct func-
tioning in a finite number of steps. However, we cannot precisely evaluate this
number. In certain cases simply trying all possible adjustments of the weights
may be sufficient. In addition, it is noted that the representational ability of
a perceptron is limited by the condition of the linear separability; there is no
way to determine this condition if the dimension of the input vectors is large.

This “delta rule” algorithm can also be used for perceptrons with continuous
activation functions. If activation function f is non-linear and differentiable,
one may obtain the “delta rule” algorithm in which the correction of the
weight coefficients is carried out as follows:

△wi = γ(y∗i − yi)f
′

(I)xi (4.5)

wi(t+ 1) = wi(t) +△wi (4.6)

where △wi is the correction associated with the i-th input; wi(t) is the value
of the weight before the adjustment; and wi(t+ 1) is the value of the weight
after the adjustment.

For training a multi-layer neural network, the least squares procedure must
be generalized in order to provide an adequate adjustment for the weight
coefficients of the connections, which come to the hidden units. The error
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back-propagation algorithm [180, 179] is a generalization of the least squares
procedure for networks with hidden layers.

When such a generalization is built, the following question occurs: how do
we determine the measure of error for the neurons of the hidden layers? This
problem is solved by estimating the measure of the error through the error
of the units of the subsequent layer. At every step of the learning for each
input/output training pair, a first forward pass is performed. This means
that the input of a neural network is given by the input vector; as a result,
the activation flow passes through the network in the direction from the input
layer toward the output. After this process, the states of all the neurons of
the network are determined. The output neurons generate the actual output
vector, which is compared with the desired output vector, and the learning
error is determined. Subsequently, this error is propagated backwards along
the network in the direction toward the input layer, updating the values of
the weight coefficients.

Thus, the learning process is the consequence of interchanging forward and
backward passes; during the forward pass the states of the network units
are determined, while during the backward pass the error is propagated and
the values of the weights of the connections are updated. That is why this
procedure is called the error back-propagation algorithm.

As we mentioned above, increasing the number of layers leads to enhanc-
ing the computational power of a network, ultimately, to the possibility of
providing much more complex computations. It is shown that a three-layer
network is capable of handling convex regions in the input space. Adding
a fourth layer may further allow handling non-convex regions [216]. Thus,
with the use of four-layer neural networks, practically any computation can
be provided. However, adding more layers to a network obviously increases
the complexity and learning cost. In addition, with the hidden units in the
network, there arises an issue of the optimal number of hidden units in the
network.

As is clear from Equation 4.5, for defining the step of updating weight wi,
the determination of the value of the derivative ∂E/∂wi is required. This
derivative, in turn, is determined through ∂E/∂yj. In a neural network, we
require that the activation function f be differentiable everywhere. For this
requirement, the sigmoid function is typically used as an activation function,
which has the following derivative:

dy

dx
= y(1− y)

Before the learning process begins, small random values are assigned to all
the weight coefficients. It is important that the initial values of the weights
not be equal to each other. The above given equation for adjusting weight
coefficients is explicitly derived from the gradient descent method

△wi = −γ ∂E
∂wi
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where E is the squared error that cumulatively measures the error through
all the cases given by the training set. Consequently, all the input training
vectors are applied to the network and the measure of the error is obtained.
According to this error, corrections are made. This procedure is called the
batch version of the error back-propagation algorithm.

There is another approach to updating the weight coefficients. In the case
where a single input vector is applied at each time, the current output is gen-
erated; given the output error for this single input vector, weight updating is
performed. Then the next single input vector is selected and the process is re-
peated until a convergence is reached. This single weight updating procedure
is called the real-time version of the error back-propagation algorithm.

The back-propagation algorithm is conceptually described in Algorithm 5.

Algorithm 5 Back-propagation algorithm

Input: Network topological structure and a set of input-output pairs as the
training data
Output: The network connection weights
Method:

1: Initialize the weights in the network (often randomly)
2: repeat
3: for Each example s in the training set do
4: O = network output given the input s
5: T = given output in the training set for s
6: Calculate error T −O at the output units
7: Compute △wi for all the connection weights from the hidden layer

to the output layer
8: Compute △wi for all the connection weights from the input layer to

the hidden layer
9: Update the weights in the network

10: end for
11: until All the examples classified correctly or a stopping criterion satisfied

The main downside of the error back-propagation algorithm in Algorithm 5
is the possibility of the network to converge into a local minimum during
the back-propagation learning. Another potential issue with this learning
algorithm is the low learning speed; i.e., it typically takes many iterations to
converge. Complexity-wise, if the network contains Q1 neurons expected to
provide Q2 output values with Q3 learning steps, the total learning time is
Q2 × Q1 × Q3. Assuming Q1 = Q2 = Q3 = Q, this means that the learning
time is proportional to O(Q3). Using parallel computations decreases this
estimation to O(Q2), as the neurons may work in parallel.

The error back-propagation algorithm is also useful for training the radial
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FIGURE 4.12: Multi-input and multi-output structure of RBFNN with a
hidden layer. Reprint from [8] c©2001 World Scientific.

based function neural networks (RBFNNs). A series of supervised learning
algorithms are employed for training RBFNNs. A RBFNN has a hidden layer
of the RBF units, shown in Figure 4.12. This network, consisting of n in-
put and m output neurons, performs the mapping of the n-dimensional input
vector X to the m-dimensional output vector Y (Rn −→ Rm). The node
elements ϕk (k = 1, 2, ..., L) of the hidden layer represent the RBFNN trans-
formation for the input signals xi (i = 1, 2, ..., n). The connections between
the input layer and the hidden layer have no corresponding weights. Selection
of an appropriate RBF depends on the type of the problems we solve using
the RBFNN. As RBF ϕk = ϕ(‖X−ak‖) = ϕk(r), the following specific radial
functions may be selected:

• ϕ(r) = r, a linear radial function;

• ϕ(r) = r2, a quadratic radial function;

• ϕ(r) = exp(−r2/b2), a Gaussian radial function;

• ϕ(r) = r2 log(r), a thin-plate-spline radial function;

• ϕ(r) =
√

(r2 + b2), a multi-quadratic radial function.

In Figure 4.12 the response of the k-th hidden unit is given by

ϕ(X) = ϕ(
‖X − ak‖

b2k
)

where ϕ(•) is a strictly positive radially symmetric function with a unique
maximum at the k-th “center” ak and the function drops off rapidly to zero
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away from the center; the parameter bk is the “width” of the receptive field
in the input space for unit k.

The supervised learning algorithms for training a RBFNN are based on a
training set of N input-output pairs (Xk, Y k) (k = 1, 2, ..., N) that represent
the associations of a given mapping or samples of a continuous multivariate
function. RBFNNs have a differentiable nature, providing a differentiation
approach to all the parameters for the network training consideration. There-
fore, it is possible to use a gradient method to train the parameters of a
RBFNN. This method takes the following iteration procedures:

ai(t+ 1) = ai(t) +△ai

bi(t+ 1) = bi(t) +△bi
wij(t+ 1) = wij(t) +△wij

Here △ai = −γa ∂E∂ai
, △bi = −γb ∂E∂bi

, and △wij = −γw ∂E
∂wij

, where γa, γb, and

γw are small positive constraints and E is a mean-square error between the
output of a modeled object (or a function) y∗jr and the corresponding output
of the RBFNN yjr:

E =
1

2

S∑

r=1

M∑

j=1

(y∗jr − yjr)2

4.4.3 Reinforcement Learning in Neural Networks

Unlike traditional supervised learning, in which the expected output is given
directly and explicitly as part of the training data to guide or “supervise” the
learning process, reinforcement learning refers to those learning methods in
which a neural network adjusts its behavior based on the given information
provided in the training data that indicates an approval or a disapproval of
the current behavior of the network. The signal given to the network is called
the reinforcement signal, which is sent by a supervisor during the learning
process.

Reinforcement learning is developed with an analogy to human learning
development. In particular, during children’s development, behavior is learned
based on the guidance from the environment, including the supervision of an
adult. For example, if actions of a child cause non-desirable effects from the
environment (e.g., causing pain, or receiving disapproval from an adult), the
child will not likely repeat these actions in the future. If, on the other hand,
actions of a child cause positive reward from an environment (e.g., praise or
approval from an adult), the child will likely repeat these actions in the future.

Due to this analogy, reinforcement learning algorithms are considered bi-
ologically plausible. In these algorithms, only a single reinforcement signal
is necessary, also called a reward/penalty signal. When the network obtains
a reward signal (positive reinforcement), it attempts to repeat the current
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behavior in similar circumstances. If a penalty signal (negative or zero rein-
forcement) arrives, the weight coefficients are modified in order to stay away
from the current behavior.

Using the reinforcement signal for learning is known from the classic au-
tomata theory [234, 157]. Consider an automaton, which selects one of the
possible actions to perform based on the corresponding probabilities. When
an action is selected, the environment responds to that action by sending the
positive (reward) or negative (penalty) reinforcement signal to the automa-
ton. Based on this information, the automaton may modify the corresponding
probabilities in order to increase the expectation of the positive reinforcement
signal. This process is carried out repeatedly until the frequency of deriving
the positive reinforcement is at a sufficiently high level.

Consider one of the well-known reinforcement algorithms, the linear reward–
penalty algorithm, LR−P [157]. At first, consider the automaton, which has
the set of selected actions (a1, a2, ..., an), selected based on the probabilities
(p1, p2, ..., pn). Since during the learning process the probabilities of the action
selection are to be updated, we introduce the additional index, such that
(p1
t , p

2
t , ..., p

n
t ) is the set of the current probabilities in the t-th iteration. At

the t-th learning step action, ai (i ∈ [1, n]) is selected and the environment
responds to that choice by sending the signal bt, which has two possible values:
-1 or 1. No additional information is given besides this signal. The automaton
then updates the probabilities pnt in accordance with the following rules:

• If the selected actions at = ai and bt = 1, then

{
pit+1 = pit + γ1(1− pit)
pjt+1 = (1− γ1)p

j
t , j 6= i

(4.7)

• If bt = −1, then

{
pit+1 = (1 − γ2)p

i
t

pjt+1 = γ2
r−1 + (1 − γ2)p

j
t , j 6= i

(4.8)

Here γ1 and γ2 are the learning rates, and r is the number of the automata.
Thus, the probability of a successful action is increased to the value propor-
tional to the difference between one and the probability before the learning
step, while probabilities of other actions are decreased. Certainly, γ1 and γ2

must be within the range between zero and one.
In the context of neural networks, consider the number of the neurons,

represented in Figure 4.13. Here ai is considered as the activation of the
i-th neuron. As in the case of an automaton, the learning is accomplished
by repeatedly updating the probabilities for neuron firing. However, in this
case, individual neurons do not compose a global network. Consequently, they
lose the computational power derived by using connections, and thus cannot
accomplish associations and classifications.
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FIGURE 4.13: Neurons for LR−P algorithm. Reprint from [8] c©2001 World
Scientific.

FIGURE 4.14: Network for AR−P algorithm. Reprint from [8] c©2001 World
Scientific.

Taking into account this issue in [16], the enhanced LR−P algorithm is
developed, which is called associative reinforcement learning. A network is
considered that contains both output and input neurons as illustrated in Fig-
ure 4.14. The input vectors are connected to the input units in order to
accomplish the classification. The network is trained to perform the correct
classification with the use of a reinforcement signal, derived from the training
data. In order to effectively reward the correct network behavior, the infor-
mation on the relation between the input vectors Xk and the output vectors
Yk must be given. One way to store such information is to use the array
d(Xk, Yk).

Assume that there are two neurons in the output layer of the network. This
means that the input vectors correspond to two different classes. When a par-
ticular input vector X is connected to the input units, the classification error
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is minimized if the neuron y1 fires under the condition P (y1|X) > P (y2|X) or
if the neuron y2 fires under the condition P (y2|X) > P (y1|X). The challenge
is how to determine the given conditional probabilities.

Barto and Anandan [16] have suggested using the vector Θ, which approx-
imates those probabilities:

ΘX = P (y1|X)− P (y2|X)

Thus, if the condition ΘX > 0 is satisfied, the output neuron y1 fires; oth-
erwise, the second output neuron fires. The vector Θ is adjusted during the
learning process. Besides the above firing rule, the class label Z of the in-
put vector is introduced. This class label is equal to 1 if X is in the class,
which corresponds to y1; otherwise, Z = −1. It is shown that minimizing the
mathematical expectation of (ΘX − Z)2 causes minimizing the classification
error.

To achieve this goal, the Robinson-Monro algorithm [121] may be used.
The partial derivative of error E on Θ is defined as follows:

∂E

∂Θ
= 2(ΘX − 2)X (4.9)

The equation below is used to adjust the vector Θ during the learning process:

Θt+1 = Θt − γt(Θt − Zt)Xt (4.10)

where γt is a constant for each t; these constants have different values at dif-
ferent steps of the learning process. Their values decrease during the learning
process and influence the convergence of the algorithm.

Components of vector Θ can be considered as the weights of the connections,
which connect the input neurons to one of the output neurons. These output
neurons are activated (fired) when their total input exceeds zero; otherwise,
they are not activated.

For developing an associative reward/penalty algorithm, AR−P , the ran-
domness elements are used. In [16], it is assumed that each output neuron
can be in two states: 1 and -1. The activation rule takes the following form:

yt =

{
1 if Xt + ξt > 0,
−1 otherwise.

Here ξt is a random variable with a known distribution. When Xt and Θt

are given, the mathematical expectation E(yt|Θt, Xt) is known, too. The
mathematical definition for Θ updating stays similar to that in the Robinson-
Monro algorithm (i.e., Equation 4.9).

To distinguish the case of the positive reinforcement (b = 1) from the neg-
ative one (b = −1), the coefficient λ is introduced. In the reward case, we
have:

Θt+1 = Θt − γt(E(yt|Θt, Xt)− btyt)Xt
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In the case of penalty:

Θt+1 = Θt − λγt(E(yt|Θt, Xt)− btyt)Xt

When λ = 0, the above algorithm is called the associative reward in action
algorithm. It is shown that if:

1. the input vectors are linearly independent;

2. the appearance of each input vector has a finite probability;

3. the distribution of the random variable is continuous and monotonous;
and

4. the sequence of γk satisfies certain requirements, providing minimizing
γk to zero as k increases,

then the weight vector converges.
The main downside of reinforcement learning is that it is not efficient in

solving large problems. In large networks, it is difficult to adjust the behavior,
based only on the single global reward/penalty signal. Another problem is
that the ascent toward increasing the reinforcement signal expectation can
lead to a local optimum. When the network moves closer to that optimum, it
derives less information about other possible solutions.

4.5 Genetic Algorithms

While reinforcement learning algorithms are developed under the anal-
ogy to human behavior development, genetic algorithms are developed under
the analogy to natural process development. The known algorithms in this
paradigm developed in analogy to natural process development include evolu-
tionary programming, genetic algorithms, evolution strategies, and simulated
annealing. Furthermore, recent research has led to the generalization of ge-
netic algorithms to evolution programs. Classic genetic algorithms operate on
fixed-length binary strings, which do not need to be the case for evolution pro-
grams. Also, evolution programs usually incorporate a variety of “genetic”
operators, whereas classic genetic algorithms use the binary crossover and
mutation operators only.

4.5.1 Genetic Algorithms in a Nutshell

The beginning of genetic algorithms can be traced back to the early 1950s,
when several biologists used computers for simulations of biological systems.

© 2009 by Taylor & Francis Group, LLC



Soft Computing Based Theory and Techniques 167

However, the work done in late 1960s and early 1970s led to the formal devel-
opment of the genetic algorithms, as they are known today.

Genetic algorithms (GAs) are global optimization algorithms based on the
mechanics of natural selection and natural genetics. GAs have a number of
specific peculiarities by which they differ from the other methods of optimiza-
tion. These include:

1. GAs employ only an objective function, not the derivative function or
some other information on the object. It is convenient in case that the
function is neither differentiable nor discrete.

2. GAs employ a parallel multi-point search strategy by maintaining a
population of the potential solutions, which provide wide information
on the function behavior and exclude the possibility of sticking to a
local extremum of the function, while the traditional search methods
are typically unable to cope with this problem.

3. GAs use the probability-transitive rules instead of the deterministic
rules. Besides, GAs are very simple for computer implementation.

Genetic algorithms use a vocabulary borrowed from natural genetics. A
candidate solution is called an individual. Quite often this individual is also
called a string or a chromosome. This might be a bit misleading: each cell of
every organism of a given species carries a certain number of chromosomes;
however, we talk about only one individual chromosome. Chromosomes are
made of units — genes arranged in a linear succession; every gene controls
the inheritance of one of several characteristics.

Each gene can assume a finite number of values. In a binary representation,
a chromosome is a vector, consisting of the bits in succession, i.e., the suc-
cession of zeroes and ones. A set of chromosomes makes a population. The
number of the chromosomes in a population defines the population size. The
genetic algorithms evaluate a population and generate a new one iteratively,
with each successive population referred to as a generation. The population
undergoes a simulated evolution: at each generation the relatively “good”
solutions reproduce, while the relatively “bad” solutions die. To distinguish
between different solutions we use an objective (evaluation) function, which
plays the role of an environment. Quite often the objective function is also
called the fitness function.

The structure of a simple genetic algorithm is the same as the structure
of any evolution program. During iteration t, a genetic algorithm main-
tains a population of the potential solutions (chromosomes, vectors), G(t) =
{xt1, ..., xtn}. Each solution xti is evaluated to give some measure of its “fit-
ness”. Then, a new population (iteration t+1) is formed by selecting the more
fit individuals. Some members of this new population undergo reproduction
by means of crossover and mutation, to form new solutions. The crossover
combines the features of two parent chromosomes to form two similar off-
springs by swapping the corresponding segments of the parents. For example,

© 2009 by Taylor & Francis Group, LLC



168 Multimedia Data Mining

FIGURE 4.15: The structure of a simple genetic algorithm. Reprint from [8]
c©2001 World Scientific.

if the parents are represented by five-dimensional vectors (a1, b1, c1, d1, e1) and
(a2, b2, c2, d2, e2), a possible crossover may generate the offsprings (a1, b1, c2, d2, e2)
and (a2, b2, c1, d1, e1).

The mutation is defined to arbitrarily alert one or more genes of a selected
chromosome by a random change, with a probability equal to the mutation
rate. For a particular problem, a genetic algorithm is presented in Figure
4.15.

We discuss the actions of a genetic algorithm for a simple parameter opti-
mization problem. Suppose that we wish to maximize a function of k variables
f(x1, ..., xk) : Rk −→ R. If the optimization problem is to minimize the func-
tion f , this is equivalent to maximizing the function g, where g = −f , i.e.,

min{f(x)} = max{g(x)} = max{−f(x)}

Suppose further that each variable xi can take values from a domain Di =
[ai, bi] ⊆ R and f(x1, ..., xk) > 0 for all xi ∈ Di. We wish to optimize the
function f with a required precision: suppose that six decimal digits for the
variables’ values are desirable.

It is clear that to achieve such precision each domain Di should be cut into
(bi − ai)106 equal-size units. Let us denote by mi the smallest number of the
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bits such that (bi − ai)106 ≤ 2mi − 1. Then, a representation having such a
variable xi coded as a binary string of length mi clearly satisfies the precision
requirement. Additionally, the following formula interprets each such string:

xi = ai + decimal(1001...0012)×
bi − ai
2mi − 1

where decimal(string2) represents the decimal value of that binary string.

Now each chromosome (as a potential solution) is represented by a binary

string of length m =
∑k
i=1mi; the first m1 bits map into a value from the

range [a1, b1], the next group of m2 bits map into a value from the range
[a2, b2], and so on; the last group of mk bits map into a value from the range
[ak, bk].

To initialize a population, we can simply set some p number of chromosomes
randomly in a bitwise fashion. However, if we have a priori knowledge about
the distribution of the potential optima, we may use such information in
arranging the set of the initial (potential) solutions. The rest of the algorithm
is straightforward: in each generation we evaluate each chromosome (using the
function f on the decoded sequences of the variables), select a new population
with respect to the probability distribution based on the fitness values, and
recombine the chromosomes in the new population by mutation and crossover
operators. After a number of generations, when no further improvement is
observed, the best chromosome represents a (possibly the global) optimal
solution. Often we stop the algorithm after a fixed number of iterations,
depending upon the speed and resource criteria.

For the selection process (selection of a new population with respect to the
probability distribution based on the fitness values), we must implement the
following actions at first:

• Compute the fitness value ui for each chromosome vi, (i = [1, p])

• Find the total fitness of the population F =
∑p

i=1 ui

• Compute the probability of a selection pis for each chromosome vi(i =
[1, p]): pis = ui/F

• Compute a cumulative probability picum for each chromosome vi(i =

[1, p]): picum =
∑i
j=1 p

j
s

The selection process is implemented p times; each time we select a single
chromosome for a new population in the following way:

• Generate a random (float) number r from the range [0,1].

• If r < p1
cum, then select the first chromosome (v1); otherwise, select the

i-th chromosome vi (2 ≤ i ≤ p such that pi−1
cum < r < picum).
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Obviously, some chromosomes may be selected more than once; the best
chromosomes generate more copies, the average ones remain, and the worst
die off. Now we are ready to apply the first combination operator, crossover,
to the individuals in the new population. One of the parameters of a genetic
system is the probability of crossover pc. The probability gives us the expected
number pc × p of the chromosomes, which undergo the crossover operation.
We proceed in the following way. For each chromosome in the new population:

• Generate a random (float) number r from the range [0, 1];

• if r < pc, select the given chromosome for crossover.

Now we mate the selected chromosomes randomly: for each pair of the
coupled chromosomes, we generate a random integer number pos from the
range [1,m − 1] (m is the total length — the number of the bits in a chro-
mosome). The number pos indicates the position of the crossing point. Two
chromosomes

(b1, b2, ..., bpos, bpos+1, ..., bm)

and

(c1, c2, ..., cpos, cpos+1, ..., cm)

are replaced by a pair of their offsprings:

(b1, b2, ..., bpos, cpos+1, .., cm)

and

(c1, c2, ..., cpos, bpos+1, ..., bm)

The intuition behind this application of the crossover operator is the infor-
mation exchange between the different potential solutions.

The next combination operator, mutation, is performed on a bit-by-bit
basis. Another parameter of the genetic system, the probability of mutation
pm, gives us the expected number of the bits pm × m × p. Every bit (in
all chromosomes in the whole population) has an equal chance to undergo a
mutation, i.e., changing from 0 to 1 or vice versa. Thus, we proceed in the
following way. For each chromosome in the current (i.e., after the crossover)
population and for each bit within the chromosome:

• Generate a random (float) number r from the range [0, 1];

• if r < pm, mutate the bit.

The intuition behind this application of the mutation operator is the intro-
duction of an extra variation into the population.

Following the selection, crossover, and mutation, the new population is
ready for its next stage of the development. This stage of the development
is used to build the probability distribution (for the next selection process).
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The rest of the stage of the development (or the evolution) is just a cyclic
repetition of the above steps.

However, as may frequently occur, in the earlier generations the fitness
values of some chromosomes may be better than the values of the best chro-
mosomes after a finite number of the generations. It is relatively easy to keep
track of the best individual in the evolution process. It is customary (in the
genetic algorithms’ implementation) to store “the best ever” individual at
a separate location; in that way, the algorithm would report the best value
found during the whole process (as opposed to the best value in the final
population).

It is necessary to note that a classic genetic algorithm may employ the
roulette wheel method for the selection, which is a stochastic version of the
survival-of-the-fittest mechanism. In this method of the selection, candidate
strings from the current generation G(t) are selected to survive in the next
generation G(t + 1) by designing a roulette wheel where each string in the
population is represented on the wheel in proportion to its fitness value. Thus,
those strings which have a higher fitness value are given a larger share of the
wheel, while those with a lower fitness value are given a relatively smaller
portion of the roulette wheel. Finally, selections are made by spinning the
roulette wheel p times and candidates are accepted for those strings which are
indicated at the completion of the spin.

4.5.2 Comparison of Conventional and Genetic Algorithms
for an Extremum Search

Genetic algorithms of an extremum search differ to a great extent from the
conventional methods of optimization.

Let us find the maximum of the function f1(x) illustrated in Figure 4.16 us-
ing the gradient method. This method helps solve the problem rather quickly,
starting from an initial point and gradually approaching the top.

However, if we use the same method to find the global optimum of the func-
tion f2(x) illustrated in Figure 4.17, we would be stuck in a local optimum, in
the neighborhood of which the initial approximation was chosen. Neverthe-
less, a genetic algorithm operated by a population of the points may approach
the global optimum without any risk of being stuck in a local optimum.

On the other hand, for the same genetic algorithm there are always different
variations proposed by different authors, with the aim to facilitate the algo-
rithm and to make it more effective. For this purpose it is also suggested to
use hybrid algorithms, combining genetic algorithms with conventional learn-
ing algorithms, such as the gradient descent, hill-climbing, and coordinate
methods. These hybrid methods have shown a high efficiency for a certain
class of the problems.

One of the essential advantages of genetic algorithms is the black box prin-
ciple. That is, it is enough to give the input data X and to obtain the output
Y without necessarily knowing the actual “function” expected. In genetic
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FIGURE 4.16: Graph of the function f1. Reprint from [8] c©2001 World
Scientific.

FIGURE 4.17: Graph of the function f2. Reprint from [8] c©2001 World
Scientific.
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algorithms, it is not always required to code variables from the decimal rep-
resentation to the binary representation, or vice versa, in each generation.
Also, there is no need to compute the derivative of a function f or any other
additional information about the function. In comparison, in order to use the
traditional search methods, differentiability and continuity of an analytical
form of a function are usually required. All these advantages make genetic
algorithms attractive in solving complex problems.

Let us discuss three algorithms for a more specific comparison. They are the
hill-climbing, simulated annealing, and genetic algorithms. We apply these
algorithms to a simple optimization problem. This comparison underlines
the uniqueness of the genetic algorithm approach. The search space in this
application is a set of binary strings v of length 30. The objective function f
to be maximized is given as

f(v) = |11× one(v)− 150|

where the function one(v) returns the number of 1s in the string v.
The function f is linear and does not provide any challenge as an optimiza-

tion task. We use it only to illustrate the difference in performances of these
three algorithms. However, the interesting point of the function f is that it
has one global maximum for

vg = (111111111111111111111111111111)

f(vg) = |11× 30− 150| = 180, and one local maximum for

vl = (000000000000000000000000000000)

f(vl) = |11× 0− 150| = 150.
There are several versions of the hill-climbing algorithm. They differ in the

way a new string is selected for comparison with the current string. Algorithm
6 lists a simple version of the hill-climbing algorithm (the steepest ascent hill-
climbing).

Initially, all the 30 neighbors are considered, and the vn which returns the
largest f(vn) is selected to compete with the current string vc. If f(vc) <
f(vn), then the new string becomes the current string. Otherwise, no local
improvement is possible — the algorithm has reached the optimum. In this
case, the next iteration (t←− t+ 1) of the algorithm is executed with another
string selected at random.

It is interesting to note that the starting string (randomly selected) deter-
mines the success or failure of the single iteration of the above hill-climbing
algorithm (i.e., return of the global or local optimum). It is clear that if the
starting string has thirteen 1s or less, the algorithm will always terminate
in the local optimum (failure). The reason is that a string with thirteen 1s
returns a value 7 of the objective function, and any single-step improvement
toward the global optimum, i.e., to increase the number of 1s to fourteen,
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Algorithm 6 The steepest ascent hill-climbing algorithm

Input: A set of strings
Output: The best string corresponding to the maximum objective function
value
Method:

1: Initialize t←− 0
2: repeat
3: local←− FALSE
4: Select a current string vc at random
5: Evaluate vc
6: repeat
7: Select 30 new strings in the neighborhood of vc by flipping single bits

of vc
8: Select the string vn from the set of the new strings with the largest

value of the objective function f
9: if f(vc) < f(vn) then

10: vc ←− vn
11: else
12: local←− TRUE
13: end if
14: until local = TRUE
15: t←− t+ 1
16: until t == MAX
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decreases the value of the objective function to 4. On the other hand, any
decrease in the number of 1s would increase the value of the function — a
string with twelve 1s yields a value of 18, a string with eleven 1s yields a value
of 29, etc. This would push the search in the wrong direction, toward the
local maximum. For the problem with multiple local optima, the chance of
hitting the global optimum (in a single iteration) is even weaker.

The algorithm of the simulated annealing is given in Algorithm 7. The
Boltzmann probability is

p = exp((f(vn)− f(vc))/T )

Algorithm 7 Simulated annealing algorithm

Input: A set of strings
Output: The best string corresponding to the maximum objective function
value
Method:

1: Initialize t←− 0
2: Initialize temperature T
3: Select a current string vc at random
4: Evaluate vc
5: repeat
6: repeat
7: Select a new string vn in the neighborhood of vc by flipping a single

bit of vc
8: if f(vc) < f(vn) then
9: vc ←− vn

10: else
11: if random[0, 1] < exp{(f(vn)− f(vc))/T } then
12: vc ←− vn
13: end if
14: end if
15: until Termination condition met
16: T ←− g(T, t)
17: t←− t+ 1
18: until Stop criterion met

The function random[0, 1] returns a random number from the range [0, 1].
The termination condition checks whether the thermal equilibrium has been
reached, i.e., whether the probability distribution of the selected new strings
approaches the expected distribution. However, in certain implementations,
this loop is executed just k times (k is an additional parameter of the Boltz-
mann method).

© 2009 by Taylor & Francis Group, LLC



176 Multimedia Data Mining

The temperature T is lowered in steps (g(T, t) < T for all t). The algorithm
terminates for a small value of T — the stop criterion checks whether the
system is frozen, i.e., virtually no changes are accepted anymore.

Since the simulated annealing algorithm can escape local optima, let us
consider a string

vs = (111000000100110111001010100000)

with twelve 1s, which evaluates to f(vs) = |11 × 12 − 150| = 18. For vs
as the starting string, the hill-climbing algorithm (as discussed above) would
approach the local maximum

vh = (000000000000000000000000000000)

since any string with thirteen 1s (i.e., toward the global optimum) evaluates to
7 (less than 18). On the other hand, the simulated annealing algorithm would
accept a string with thirteen 1s as a new current string with a probability
which, for a certain temperature such as T = 20, gives

p = e−
11

20 = 0.57695

i.e., the chance of acceptance is better than 50%.
Generic algorithms maintain a population of strings. Two relatively poor

strings
vp = (111110000000110111001110100000)

and
vq = (000000000001101110010101111111)

each of which evaluates to 16, can produce much better offsprings (if the
crossover point falls anywhere between the 5th and the 12th position):

vr = (111110000001101110010101111111)

The new offspring vr evaluates to

f(vr) = |11× 19− 150| = 59

The above comparison analysis through the given simple example illustrates
the advantages of the genetic algorithms over the traditional optimization
methods.

4.6 Summary

In this chapter we have reviewed soft computing techniques as an ap-
proach to multimedia data mining. Specifically, we have studied three dif-
ferent paradigms of soft computing: fuzzy sets and logic, neural networks,
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and genetic algorithms. These paradigms can be applied to various machine
learning and optimization tasks in general and to multimedia data mining in
particular. It is noted that these different paradigms of soft computing com-
plement each other, rather than compete with each other. It becomes clear
that fuzzy sets and logic, neural networks, and genetic algorithms are more
effective when used in combinations. Some combination examples include:

• neural networks + fuzzy logic (Neuro-Fuzzy);

• Fuzzy logic + genetic algorithms;

• Neural network + genetic algorithms;

• Fuzzy logic + neural networks + genetic algorithms;

• Combinations of the other paradigms of soft computing are also possible.

Various applications of these soft computing techniques are further discussed
in developing specific solutions to different multimedia data mining problems
in the chapters in Part III of this book.
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Chapter 5

Image Database Modeling –
Semantic Repository Training

5.1 Introduction

This chapter serves as an example to investigate content based image database
mining and retrieval, focusing on developing a classification-oriented method-
ology to address semantics-intensive image retrieval. In this specific approach,
with Self Organization Map (SOM) based image feature grouping, a visual dic-
tionary is created for color, texture, and shape feature attributes, respectively.
Labeling each training image with the keywords in the visual dictionary, a
classification tree is built. Based on the statistical properties of the feature
space, we define a structure, called an α-semantics graph, to discover the
hidden semantic relationships among the semantic repositories embodied in
the image database. With the α-semantics graph, each semantic repository
is modeled as a unique fuzzy set to explicitly address the semantic uncer-
tainty existing and overlapping among the repositories in the feature space.
An algorithm using classification accuracy measures is developed to combine
the built classification tree with the fuzzy set modeling method to deliver se-
mantically relevant image retrieval for a given query image. The experimental
evaluations have demonstrated that the proposed approach models the seman-
tic relationships effectively and outperforms a state-of-the-art content based
image mining system in the literature in both effectiveness and efficiency.

The rest of the chapter is organized as follows. Section 5.2 introduces
the background of developing this semantic repository training approach to
image classification. 5.3 briefly describes the previous work. In Section 5.4, we
present the image feature extraction method as well as the creation of visual
dictionaries for each feature attribute. In Section 5.5 we introduce the concept
of the α-semantics graph and show how to model the fuzzy semantics of each
semantic repository from the α-semantics graph. Section 5.6 describes the
algorithm we have developed to combine the classification tree built and the
fuzzy semantics model constructed for the semantics-intensive image mining
and retrieval. Section 5.7 documents the experimental results and evaluations.
Finally, the chapter is concluded in Section 5.8.
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5.2 Background

Large collections of images have become popular in many multimedia data
mining applications, from photo collections to Web pages or even video databases.
To effectively index and/or mine them is a challenge which is the focus of many
research projects (for instance, the classic IBM’s QBIC [80]). Almost all of
these systems generate low-level image features such as color, texture, shape,
and motion for image mining and retrieval. This is partly because low-level
features can be computed automatically and efficiently. The semantics of the
images, which users are mostly interested in, however, are seldom captured
by the low-level features. On the other hand, there is no effective method yet
to automatically generate good semantic features of an image. One common
compromise is to obtain the semantic information through manual annota-
tion. Since visual data contain rich information and manual annotation is
subjective and ambiguous, it is difficult to capture the semantic content of an
image using words precisely and completely, not to mention the tedious and
labor-intensive work involved.

One compromise to this problem is to organize the image collection in a
meaningful manner using image classification. Image classification is the task
of classifying images into (semantic) categories based on the available train-
ing data. This categorization of images into classes can be helpful both in
the semantic organizations of image collections and in obtaining automatic
annotations of the images. The classification of natural imagery is difficult in
general due to the fact that images from the same semantic class may have
large variations and, at the same time, images from different semantic classes
might share a common background. These issues limit and further compli-
cate the applicability of the image classification or categorization approaches
proposed recently in the literature.

A common approach to image classification or categorization typically ad-
dresses the following four issues: (i) image features — how to represent an
image; (ii) organization of the feature data — how to organize the data; (iii)
classifier — how to classify an image; and (iv) semantics modeling — how to
address the relationships between the semantic classes.

In this chapter, we describe and present a new classification oriented method-
ology to image mining and retrieval. We assume that a set of training images
with known class labels is available. Multiple features (color, texture, and
shape) are extracted for each image in the collection and are grouped to cre-
ate visual dictionaries. Using the visual dictionaries for the training images,
a classification tree is constructed. Once the classification tree is obtained,
any new image can be classified easily. On the other hand, to model the se-
mantic relationships between the image repositories, a representation called
an α-semantics graph is generated based on the defined semantics correlations
for each semantic repository pairs. Based on the α-semantics graph, each se-
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mantic repository is modeled as a unique fuzzy set to explicitly address the
semantic uncertainty and the semantic overlap between the semantic repos-
itories in the feature space. A retrieval algorithm is developed based on the
classification tree and the fuzzy semantics model for the semantics-relevant
image mining and retrieval.

We have evaluated this method on 96 fairly representative classes of the
COREL image database [2]. These image classes are, for instance, fashion
models, aviation, cats and kittens, elephants, tigers and whales, flowers, night
scenes, spectacular waterfalls, castles around the world, and rivers. These im-
ages contain a wide range of content (scenery, animals, objects, etc.). Compar-
ing this method with the nearest-neighbors technique [69], the results indicate
that this method is able to perform consistently better than the well-known
nearest-neighbors algorithm with a shorter response time.

5.3 Related Work

Very few studies have considered data classification on the basis of image
features in the context of image mining and retrieval. In the general context
of data mining and information retrieval, the majority of the related work
has been concerned with handling textual information [131, 41]. Not much
work has been done on how to represent imagery (i.e., image features) and
how to organize the features. With the high popularity and increasing volume
of images in centralized and distributed environments, it is evident that the
repository selection methods based on textual description is not suitable for
visual queries, where the user’s queries may be unanticipated and referring to
unextracted image content. In the rest of this section, we review some of the
previous work in automatic classification based image mining and retrieval.

Yu and Wolf presented a one-dimensional Hidden Markov Model (HMM) for
indoor/outdoor scene classification [229]. An image is first divided into hori-
zontal (or vertical) segments, and each segment is further divided into blocks.
Color histograms of blocks are used to train HMMs for a preset standard set
of clusters, such as a cluster of sky, tree, and river, and a cluster of sky, tree,
and grass. Maximum likelihood classifiers are then used to classify an image
as indoor or outdoor. The overall performance of classification depends on the
standard set of clusters which describe the indoor scene and outdoor scene.
In general, it is difficult to enumerate an exhaustive set to cover a general
case such as indoor/outdoor. The configural recognition scheme proposed by
Lipson et al [140] is also a knowledge-based scene classification method. A
model template, which encodes the common global scene configuration struc-
ture using qualitative measurements, is handcrafted for each category. An
image is then classified to a category whose model template best matches the
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image by deformable template matching (which requires intensive computa-
tion, despite the fact that the images are subsampled to low resolutions) —
the nearest neighbor classification. To avoid the drawbacks of manual tem-
plates, a learning scheme that automatically constructs a scene template from
a few examples is proposed by [171]. The learning scheme was tested on two
scene classes and suggested promising results.

One early work for resource selection in distributed visual information sys-
tems was reported by Chang et al [42]. The method proposed was based on
a meta database at a query distribution server. The meta database records a
summary of the visual content of the images in each repository through image
templates and statistical features. The selection of the database is driven by
searching the meta database using a nearest-neighbor ranking algorithm that
uses query similarity to a template and the features of the database associated
with the template. Another approach [110] proposes a new scheme for auto-
matic hierarchical image classification. Using banded color correlograms, the
approach models the features using singular value decomposition (SVD) [56]
and constructs a classification tree. An interesting point of this approach is the
use of correlograms. The results suggest that correlograms have more latent
semantic structures than histograms. The technique used extracts a certain
form of knowledge to classify images. Using a noise-tolerant SVD description,
the image is classified in the training data using the nearest neighbor with
the first neighbor dropped. Based on the performance of this classification,
the repositories are partitioned into subrepositories, and the interclass disas-
sociation is minimized. This is accomplished through using normalized cuts.
In this scheme, the content representation is weak (only using color and some
kind of spatial information), and the overlap among semantic repositories in
the feature space is not addressed.

Chapelle et al. [43] used a trained Support Vector Machine (SVM) to per-
form image classification. A color histogram was computed to be the feature
for each image and several “one against the others” SVM classifiers [20] were
combined to determine the class a given image was designated to. Their results
show that SVM can generalize well compared with other methods. However,
their method cannot provide quantitative descriptions for the relationships
among classes in the database due to the “hard” classification nature of SVM
(one image either belongs to one class or not), which limits its effectiveness to
image mining and retrieval. More recently, Djeraba [63] proposed a method
for classification based image mining and retrieval. The method exploited the
associations among color and texture features and used such associations to
discriminate image repositories. The best associations were selected on the
basis of confidence measures. Reasonably accurate retrieval and mining re-
sults were reported for this method, and the author argued that content- and
knowledge-based mining and retrieval were more efficient than the approaches
based on content exclusively.

In the general context of content-based image mining and retrieval, although
many visual information systems have been developed [114, 166], except for
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a few cases such as those reviewed above, none of these systems ever con-
siders knowledge extracted from image repositories in the mining process.
The semantics-relevant image selection methodology discussed in this chap-
ter offers a new approach to discover hidden relationships between semantic
repositories so as to leverage the image classification for better mining accu-
racy.

5.4 Image Features and Visual Dictionaries

To capture as much content as possible to describe and distinguish images,
we extract multiple semantics-related features as image signatures. Specifi-
cally, the proposed framework incorporates color, texture, and shape features
to form a feature vector for each image in the database. Since image features
f ∈ R

n, it is necessary to perform regularization on the feature set such that
the visual data can be indexed efficiently. In the proposed approach, we create
a visual dictionary for each feature attribute to achieve this objective.

5.4.1 Image Features

The color feature is represented as a color histogram based on the CIELab
space [38] due to its desired property of the perceptual color difference pro-
portional to the numerical difference in the CIELab space. The CIELab space
is quantized into 96 bins (6 for L, 4 for a, and 4 for b) to reduce the computa-
tional intensity. Thus, a 96-dimensional feature vector C is obtained for each
image as a color feature representation.

To extract texture information of an image, we apply a set of Gabor filters
[145], which are shown to be effective for image mining and retrieval [143], to
the image to measure the response. The Gabor filters are one kind of two-
dimensional wavelets. The discretization of a two-dimensional wavelet applied
on an image is given by

Wmlpq =

∫∫
I(x, y)ψml(x − p△x, y − q△y)dxdy (5.1)

where I denotes the processed image; △x, △y denote the spatial sampling
rectangle; p, q are image positions; and m, l specify the scale and orientation
of the wavelets, respectively. The base function ψml(x, y) is given by

ψml(x, y) = a−mψ(x̃, ỹ) (5.2)

where
x̃ = a−m(x cos θ + y sin θ)

ỹ = a−m(−x sin θ + y cos θ)
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denote a dilation of the mother wavelet (x, y) by a−m, where a is the scale
parameter, and a rotation by θ = l×△θ, where △θ = 2π/L is the orientation
sampling period.

In the frequency domain, with the following Gabor function as the mother
wavelet, we use this family of wavelets as the filter bank:

Ψ(u, v) = exp {−2π2(σ2
xu

2 + σ2
yv

2)} ⊗ δ(u −W )

= exp {−2π2(σ2
x(u−W )2 + σ2

yv
2)}

= exp {−1

2
(
(u−W )2

σ2
u

+
v2

σ2
v

)} (5.3)

where ⊗ is a convolution symbol, δ(�) is the impulse function, σu = (2πσx)
−1,

and σv = (2πσy)
−1. The constant W determines the frequency bandwidth of

the filters.
Applying the Gabor filter bank to an image results, for every image pixel

(p, q), in an M (the number of scales in the filter bank) by L array of responses
to the filter bank. We only need to retain the magnitudes of the responses:

Fmlpq = |Wmlpq | m = 0, . . . ,M − 1, l = 0, . . . L− 1 (5.4)

Hence, a texture feature is represented as a vector, with each element of
the vector corresponding to the energy in a specified scale and orientation
sub-band w.r.t. a Gabor filter. In the implementation, a Gabor filter bank
of 6 orientations and 4 scales is performed for each image in the database,
resulting in a 48-dimensional feature vector T (24 means and 24 standard
deviations for |Wml|) for the texture representation.

The edge map is used with the water-filling algorithm [253] to describe the
shape information for each image due to its effectiveness and efficiency for
image mining and retrieval [154]. An 18-dimensional shape feature vector, S,
is obtained by generating edge maps for each image in the database.

Figure 5.1 shows visualized illustrations of the extracted color, texture, and
shape features for an example image. These features describe the content of
images and are used to index the images.

5.4.2 Visual Dictionary

The creation of the visual dictionary is a fundamental preprocessing step
necessary to index features. It is not possible to build a valid classification
tree without the preprocessing step in which similar features are grouped.
The centers of the feature groups constitute the visual dictionary. Without
the visual dictionary, we would have to consider all feature values of all images,
resulting in a situation where very few feature values are shared by images,
which makes it impossible to discriminate repositories.

For each feature attribute (color, texture, and shape), we create a visual
dictionary, respectively, using the Self Organization Map (SOM) [130] ap-
proach. SOM is ideal for the problem, as it can project high-dimensional
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(a) (b) (c) (d)

FIGURE 5.1: An example image and its corresponding color, texture, and
shape feature maps. (a) The original image. (b) The CIELab color histogram.
(c) The texture map. (d) The edge map. Reprint from [244] c©2004 ACM
Press.

feature vectors to a 2-dimensional plane, mapping similar features together
while separating different features at the same time.

A procedure is designed to create “keywords” in the dictionary. The pro-
cedure follows 4 steps:

1. Performing the Batch SOM learning [130] algorithm on the region fea-
ture set to obtain the visualized model (node status) displayed in a
2-dimensional plane map;

2. Considering each node as a “pixel” in the 2-dimensional plane such that
the map becomes a binary image, with the value of each pixel i defined
as follows:

p(i) =

{
0 if count(i) ≥ t
255 else

where count(i) is the number of features mapped to the node i and the
constant t is a preset threshold. The pixel value 255 denotes objects,
while pixel value 0 denotes the background;

3. Performing the morphological erosion operation [38] on the resulting
binary image p to make sparse connected objects in the binary image
p disjointed. The size of the erosion mask is determined to be the
minimum that makes two sparse connected objects separated;

4. With the connected component labeling [38], we assign each separated
object a unique ID, a “keyword”. For each “keyword”, the mean of all
the features is determined and stored. All “keywords” constitute the
visual dictionary for the corresponding feature attribute.

In this way, the number of “keywords” is adaptively determined and the
similarity-based feature grouping is achieved. Applying this procedure to each
feature attribute, a visual dictionary is created for each one. Figure 5.2 shows
the generation of the visual dictionary. Each entry in a dictionary is one
“keyword” representing the similar features. The experiments show that the
visual dictionary created captures the clustering characteristics in the feature
set very well.
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FIGURE 5.2: Generation of the visual dictionary. Reprint from [238] c©2004
IEEE Computer Society Press.
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5.5 α-Semantics Graph and Fuzzy Model for Reposito-
ries

Although we can take advantage of the semantics-oriented classification
information from the training set, there are still issues not addressed yet.
One is the semantic overlap between the classes. For example, one repository
named “river” has affinities with the category named “lake”. For certain users,
the images in the repository “lake” are also interesting, although they pose
a query image of “river”. Another issue is the semantic uncertainty, which
means that an image in one repository may also contain semantic objects
inquired by the user although the repository is not for the semantics in which
the user is interested. For instance, an image containing people in a “beach”
repository is also relevant to users inquiring the retrieval of “people” images.
To address these issues, we need to construct a model to explicitly describe
the semantic relationships among images and the semantics representation for
each repository.

5.5.1 α-Semantics Graph

The semantic relationships among images can be traced to a large extent
in the feature space with statistical analysis. If the distribution of one se-
mantic repository overlaps a great deal with another semantic repository in
the feature space, it is a significant indication that these two semantic repos-
itories have strong affinities. For example, “river” and “lake” have similar
texture and shape attributes, e.g.,“water” component. On the other hand,
a repository having a loose distribution in the feature space has more uncer-
tainty statistically compared with another repository having a more condensed
distribution. In addition, the semantic similarity of two repositories can be
measured by the shape of the feature distributions of the repositories as well
as the distance between the corresponding distributions.

To describe these properties of semantic repositories quantitatively, we pro-
pose a metric to measure the scale, called semantics correlation, which reflects
the relationship between two semantic repositories in the feature space. The
semantics correlation is based on statistical measures of the shape of the
repository distributions.

Perplexity. The perplexity of feature distributions of a repository reflects
the uncertainty of the repository; it can be represented based on the entropy
measurement [188]. Suppose there are k elements s1, s2, . . . , sk in a set with
probability distribution P = {p(s1), p(s2), . . . , p(sk)}. The entropy of the set
is defined as

En(P ) = −
k∑

i=1

p(si) log p(si)
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By Shannon’s theorem [188], this is the lower bound on the average number
of bits per element (bpe) required to encode a state of the set. For particular
semantics represented in the images, it is difficult to precisely determine the
probability of an image feature p(si). Consequently, we use the statistics
in the training semantic repository to estimate the probabilities. Since each
image is represented as a 3-component vector [C, T, S], the entropy of each
repository, ri, is defined as

H(ri) = − 1

Ni

Nj∑

j=1

P (Cj , Tj , Sj) logP (Cj , Tj , Sj) (5.5)

where P (Ci, Ti, Si) is the joint occurrence probability of an image feature in
the repository and Ni is the number of images in the repository. Assuming
that color, texture, and shape properties are independent in the image rep-
resentation, i.e., P (Cj , Tj, Sj) = P (Cj)P (Tj)P (Cj) where P (Cj), P (Tj), and
P (Sj) are the occurrence probabilities of the single feature attribute in the
repository, respectively, it follows that

H(ri) = − 1

Ni

Ni∑

j=1

P (Cj)P (Tj)P (Sj) log{P (Cj)P (Tj)P (Sj)} (5.6)

As an analogy to the concept of perplexity [202, 177] for a text corpus, we
define the perplexity of a semantic repository ri in the image database as

℘(ri) = 2H(ri) (5.7)

which is an approximate measure of the homogeneity of the feature distribu-
tions in the repository ri. The more perplex in the repository, the larger ℘,
and vice versa.

Distortion. The distortion is a statistical measure to estimate the com-
pactness degree of the repository. For each repository, ri, distortion is defined
as

D(ri) =
1

Ni

√√√√
Ni∑

j=1

‖fj − ci‖2 (5.8)

where fj is the feature point j in this repository and ci is the centroid of the
repository. The distortion describes the distribution shape of repositories; i.e.,
the looser the repository, the larger D is defined.

Based on these statistical measures on the repositories, we propose a metric
to describe the relationship between any two different repositories ri and rj ,
i 6= j, in the repository set Re. The metric, called semantics correlation, is
a mapping corr : Re × Re −→ R. For any repository pair {ri, rj}, i 6= j, the
semantics correlation is defined as

Li,j =

√
(D2(ri) +D2(rj))℘(ri)℘(rj)

‖ci − cj‖
(5.9)
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corri,j = Li,j/Lmax (5.10)

where Lmax is the maximal Li,j between any two different semantic reposito-
ries, and Lmax = maxrk,rt∈Re, k 6=t(Lk,t). This definition of semantics correla-
tion has the following properties:

• If the perplexity of a repository is large, which means that the homo-
geneity degree of the repository is weak, it has a larger correlation with
other repositories.

• If the distortion of a repository is large, which means that the repository
is looser, it has a larger correlation with other repositories.

• If the inter-repository distance between two repositories is larger, the
repository pair has a smaller correlation.

• The range of the semantics correlation is [0,1].

For convenience, the supplement of the semantics correlation for each semantic
repository pair is defined as

disci,j = 1− corri,j (5.11)

and is called the semantics discrepancy of the two different semantic reposito-
ries. In this way, we give a quantitative measure of the relationship between
any two different semantic repositories based on their distributions in the
feature space.

With semantics correlation defined above, a graph is constructed on the
repository space. We call the graph an α-semantics graph. It is defined as
follows:

DEFINITION 5.1 Given a semantic repository set D = {r1, r2, . . . , rm},
the semantics correlation function corri,j defined on the set D, and a constant
α ∈ R, a weighted undirected graph is called an α-semantics graph if it is
constructed abiding by the following rules:

• The node set of the graph is the symbolic repository set.

• There is an edge between any nodes i, j ∈ D if and only if corri,j ≥ α.

• The weight of the edge (i, j) is corri,j .

The α-semantics graph uniquely describes the relationships between seman-
tic repositories for an arbitrary α value. With a tuned α value, we can model
a semantic repository based on its connected neighbors and corresponding
edge weights in the α-semantics graph.
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5.5.2 Fuzzy Model for Repositories

To address the semantic uncertainty and the semantic overlap problems,
we propose a fuzzy model for each repository based on the constructed α-
semantics graph. In this model, each semantics repository is defined as a fuzzy
set while one particular image may belong to several semantic repositories.

A fuzzy set F on the feature space R
n is defined as a mapping µF : R

n →
[0, 1] named as the membership function. For any feature vector f ∈ R

n,
the value of µF (f) is called the degree of membership of f to the fuzzy set
F (or, in short, the degree of membership to F ). A value closer to 1 for
µF (f) means the more representative the feature vector f is to the fuzzy
set F (i.e., the semantic repository). For a fuzzy set F , there is a smooth
transition for the degree of membership to F besides the hard cases f ∈ F
(µF (f) = 1) and f /∈ F (µF (f) = 0). It is clear that a fuzzy set degenerates
to a conventional set if the range of µF is {0,1} instead of [0,1] (µF is then
called the characteristic function of the set).

The most commonly used prototype membership functions are cone, trape-
zoidal, B-splines, exponential, Cauchy, and paired sigmoid functions [104].
Since we could not think of any intrinsic reason why one should be preferred
to any other, we tested the cone, trapezoidal, exponential, and Cauchy func-
tions on the system. In general, the performances of the exponential and the
Cauchy functions are better than those of the cone and trapezoidal functions.
Considering the computational complexity, we use the Cauchy functions be-
cause it requires much less computation. The Cauchy function is defined as

F(x) =
1

1 + (‖x−v‖d )β

where d and β ∈ R, d > 0, β > 0, v is the center location (point) of the fuzzy
set, and d represents the width of the function and determines the shape
(or smoothness) of the function. Collectively, d and β portray the grade of
fuzziness of the corresponding fuzzy set. For fixed d, the grade of fuzziness
increases as β decreases. If β is fixed, the grade of fuzziness increases with
increased d. Figure 5.3 illustrates the Cauchy function in R with v = 0, d = 36,
and β varying from 0.01 to 100. As we see, the Cauchy function approaches
the characteristic function of an open interval (-36,36) when β goes to positive
infinity. When β equals 0, the degree of membership for any element in R

(except 0, whose degree of membership is always 1 in this example) is 0.5.

For each repository, the parameters v and d are determined based on the
constructed α-semantics graph. The center point of each semantic repository
ri can be conveniently estimated by the mean vector, ci, of the feature vectors
in the repository. The width di is determined as follows:

di =

w∑

k=1

‖ci − cw‖corri,w (5.12)
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FIGURE 5.3: Cauchy function in one dimension.

where {c1, c2, . . . , cw} is the set of the centroids of all connected nodes to
the node ri in the α-semantics graph and ‖ � ‖ is the Euclidean distance in
R
n. In other words, the width of the membership function for each repos-

itory is a semantics correlation weighted combination of the distance to its
connected nodes in the α-semantics graph. Consequently, each repository ri
in the training set is modeled as a unique fuzzy set:

Fi(f) =
1

1 + (‖f−ci‖
di

)β
(5.13)

Denoting the distance between a feature f and ci as dist, the above equation
can be equally presented as

Fi(dist) =
1

1 + (distdi
)β

(5.14)

The experiments in Section 5.7 show that the performance changes insignif-
icantly when β is in the interval [0.7, 1.5] but degrades rapidly outside the
interval. Thus, we set β = 1 in Equation 5.13 to simplify the computation.
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5.6 Classification Based Retrieval Algorithm

With the three visual dictionaries ready, an order for the “keywords” in
the visual dictionaries is determined and an index to each “keyword” is as-
signed. Given an image, for each feature attribute, replace it with the in-
dex of the “keyword” to which it is assigned in the corresponding visual
dictionary. Hence, each image in the training set is represented as a tuple
Img[Color, T exture, Shape], while each attribute has a discrete value type in
a limited domain.

To build a classification tree, the C4.5 algorithm [69] is applied on the train-
ing tuple sets transformed. We assume that each image in the training set
belongs to only one semantic repository. The splitting attribute selection for
each branch is based on the information gain ratio [69]. Associated with each
leaf node of the classification tree is a ratio m/n, where m is the number of
images classified to this node and n is the number of incorrectly classified im-
ages. This ratio is a measure of the classification accuracy of the classification
tree for each class in the training image set.

Algorithm 8 lists the algorithm we have proposed for image mining and
retrieval using an image query based on the classification with the fuzzy model
for the repository to which the query image is classified.

In this algorithm, the repository is predicted by the classification tree for
the query image. At the same time, a reference feature is determined by
an inverse analysis from the classification accuracy; the reference feature’s
membership values of the semantic repositories of the neighborhood to the
predicted repository in the α-semantics graph are determined. The intuition is
illustrated in Figure 5.4. In this figure, two repositories modeled with the fuzzy
set are shown. Every vector in the feature space is associated with the two
repositories by the obtained membership values. These membership values
are used as the sampling weights in the corresponding semantic repositories.
In addition, since the algorithm is orthogonal to the distance metric DM,
different distance metrics DM can be used for different applications. In the
evaluation experiments reported in Section 5.7, we use Euclidian distance as
DM for its simplicity and effectiveness.

With this algorithm the images are mined and retrieved not only based on
the repository the query image is classified to (which is called the primary
repository) but also based on the semantics correlations between this primary
repository and neighboring repositories in the α-semantics graph constructed.
The percentage weight of images sampled in each potential relevant repository
is determined by the corresponding classification accuracy and its fuzzy model.
Intuitively, we give the majority of the share to the primary repository; the
rest of the share to the connected repositories of the primary repository in the
α-semantics graph is based on their semantics correlations with the primary
repository. In other words, more weight of the share is given to the high

© 2009 by Taylor & Francis Group, LLC



Image Database Modeling – Semantic Repository Training 195

Algorithm 8 Image Querying Algorithm

Input: q, “keyword” tuple of the query image
Output: Images retrieved for the query image q
Method:

1: Initialization: returned image set Result = {}
2: Q = the repository q is classified by the classification tree
3: accQ = the accuracy of the classification associated with Q
4: cQ = the center of the repository Q
5: dQ = the width of the repository Q
6: Determine the distance distQ between the reference feature rf and the

center of the repository Q: distQ = β

√
( 1
accQ

− 1)dQ

7: SetSQ = the images randomly sampled from the repository Q with per-
centage of accQ

8: Result = Result ∪ SetSQ
9: for Each node connected to the node Q in the α-semantics graph, V do

10: if ‖cV − cQ‖ >= distQ then
11: distV = ‖cV − cQ‖ − distQ
12: else
13: distV = distQ − ‖cV − cQ‖
14: end if
15: Determine the membership values of the rf , FV (distV ), using Equa-

tion 5.14
16: The percentage sampling in the repository V , PRV = FV (rf)
17: SetSV =the images randomly sampled from the repository V with per-

centage of PRV
18: Result = Result ∪ SetSV
19: end for
20: Return the set Result in a distance metric DM based rank with the query

image
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(a) (b)

FIGURE 5.4: Illustration of two semantic repository models in the feature
space. (a) Side view. (b) Top view; the dark curve represents part of the
intersection curve. Reprint from [244] c©2004 ACM Press.

semantics-correlated repositories, while less weight of the share is given to the
low semantics-correlated repositories. Consequently, we have solved for the
semantic uncertainty and semantic overlap problems explicitly.

5.7 Experiment Results

We have implemented the methodology in a prototype system on a platform
of a Pentium IV 2.0 GHz CPU with 256 MB memory. The image mining
and retrieval evaluations were performed on a general-purpose color image
database containing 10,000 images from a COREL collection of 96 semantic
repositories. Each semantic repository had 85–120 images. Images in the
same repository were often not all visually similar. Training images sampled
from all 96 repositories were used to build the classification tree. Figure 5.5
shows a few samples of the images in the database.

5.7.1 Classification Performance on a Controlled Database

To provide quantitative evaluations on the performance of the image clas-
sification, we ran the prototype on a controlled subset of the COREL col-
lection. This controlled database consisted of 10 image repositories (African
people, beach, buildings, buses, dinosaurs, elephants, flowers, horses, moun-
tains and glaciers, and food), each containing 100 pictures. Within this con-
trolled database, we could assess classification performance reliably with the
expected categorization accuracy because the repositories were semantically
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FIGURE 5.5: Sample images in the database. The images in each column are
assigned to one category. From left to right, the categories are Africa rural
area, historical building, waterfalls, British royal event, and model portrait,
respectively.
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Table 5.1: Results of the classification tree based image classification exper-
iments for the controlled database. Legend: A – Africa, B – Beach, C –
Buildings, D – Buses, E – Dinosaurs, F – Elephants, G – Flowers, H – Horses,
I – Mountains, and J – Foods. Reprint from [238] c©2004 IEEE Computer
Society Press.

% A B C D E F G H I J
A 52 2 4 0 8 16 10 0 6 2
B 0 32 6 0 0 0 2 2 58 0
C 8 4 64 0 8 6 0 0 6 6
D 0 18 6 46 2 8 0 0 16 4
E 0 0 0 0 100 0 0 0 0 0
F 8 0 2 0 8 40 0 8 34 0
G 0 0 2 0 0 0 90 0 2 6
H 0 2 0 0 0 4 24 50 4 6
I 0 6 6 0 2 2 0 0 84 0
J 6 4 0 2 6 0 8 0 6 68

non-ambiguous and shared no semantic overlaps.

The classification performance of the constructed classification tree is com-
pared with that of the nearest-neighbor classification method [36]. For both
methods, 40 randomly chosen images for each repository are used to train
the classifiers; the classification methods are then tested using the remaining
600 images outside the training set. The classification results of the proposed
method and the raw feature based nearest-neighbor classification method [36]
are shown in Tables 5.1 and 5.2, respectively. In both tables each row lists
the percentage of the images in one repository classified to each of the 10
repositories. Numbers on the diagonal show the classification accuracy for
every repository. The classification behavior of the proposed method is quite
different from that of the nearest-neighbor method in the sense that the clas-
sification tree of the former is better than that of the latter because (i) the
overall number of misclassifications between repositories is smaller, and (ii)
the overall number of correct classifications is larger.

5.7.2 Classification Based Retrieval Results

For the 10,000 COREL image collection with 96 repositories, we have ran-
domly shuffled the images in each repository and have taken 50% of them
as the training set to train the image classifier. To evaluate the image min-
ing and retrieval performance, 1,500 images are randomly selected from all
repositories of the remaining 50% of the COREL collection as the query set.

Algorithm 8 is implemented as a prototype system, and Figure 5.6 shows
the interface of the prototype system. We have invited a group of 5 users to
participate in the evaluations. The participants consist of Computer Science
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Table 5.2: Results of the nearest-neighbor based image classification exper-
iments for the controlled database. Legend: A – Africa, B – Beach, C –
Buildings, D – Buses, E – Dinosaurs, F – Elephants, G – Flowers, H – Horses,
I – Mountains, and J – Foods. Reprint from [238] c©2004 IEEE Computer
Society Press.

% A B C D E F G H I J
A 33 11 10 0 7 12 6 8 10 3
B 3 35 4 0 0 20 1 13 14 10
C 7 7 45 3 5 17 0 3 13 0
D 4 13 7 40 0 8 2 4 18 4
E 0 0 1 0 88 0 6 5 0 0
F 3 0 6 0 2 46 0 9 27 7
G 1 1 2 8 0 0 78 0 2 10
H 1 3 0 7 0 11 18 34 15 11
I 4 7 9 0 2 4 0 0 69 5
J 10 4 5 6 3 6 10 0 23 33

graduate students as well as lay people outside the Computer Science Depart-
ment. The relevancy of the retrieved images is subjectively examined by the
users, and the retrieval accuracy includes the average values across all query
sessions.

Before we evaluate the prototype system, an appropriate α has to be de-
cided. For the extreme case α = 0, each node is connected to all other nodes
in the 0-semantics graph (all the repositories are treated as semantics-related
to each other); for α = 1, each node is isolated (with no edges connected to
other nodes), and the 1-semantics graph is degraded to a repository set. In
the experiments we compute pair-wise semantics correlations corri,j for all
the repository pairs in the training set; the third quartile, which is obtained
as 0.649 for the training set, is used as the α in the prototype.

Figure 5.7 shows an excerpted α-semantics graph example with α = 0.649
for the repositories in the training set. The annotation of each repository is
labeled on its node. The length of each edge between two nodes in the fig-
ure is proportional to the semantics discrepancy between the two connecting
repositories. It is noticeable that the semantic uncertainty and the semantic
overlap among repositories described in Section 5.5.1 are measured explic-
itly. For example, for the “outdoor scene” repository, repository “castle”
is more semantics-correlated than repository “beach”; repository “waterfall”
has strong semantics correlations with repositories “fishing”, “rafting”, and
“beach”; repository “peasant life” is connected to repositories “outdoor scene”
and “fashion model”. These semantics correlations measured in the feature
space among repositories agree well with the subjective perceptions of the
image contents.

Figure 5.8 shows three test images with 1, 3, and 7 repositories connected in

© 2009 by Taylor & Francis Group, LLC



200 Multimedia Data Mining

FIGURE 5.6: Interface of the prototype system.

FIGURE 5.7: An example of an α-semantics graph with α = 0.649. Reprint
from [244] c©2004 ACM Press.
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(a) (b) (c)

FIGURE 5.8: Three test images. (a) This image is associated with a sin-
gle repository in an α-semantics graph. (b) This image is associated with 3
repositories. (c) This image is associated with 7 repositories. Reprint from
[244] c©2004 ACM Press.

the constructed α-semantics graph, respectively. The primary repository as-
signed to Figure 5.8(a) is the repository “china”, which is correct, without any
edges connected. Figure 5.8(b) is assigned the primary repository “people”,
and two repositories, “building” and “outdoor scene”, are connected with the
primary repository with the corresponding semantics correlations 0.652 and
0.723, respectively. Based on the subjective observation, “building” is not rel-
evant, while the primary repository “people” and the other connected repos-
itory, “outdoor scene”, are. The primary repository of Figure 5.8(c) is “win-
ter season” with connections to repositories “building”, “beach”, “European
town”, “mountain”, “sea shore”, and “vacation resort” in the α-semantics
graph. Although the primary repository “winter season” assigned to this im-
age by the classification tree is not semantically relevant, there are 4 seman-
tically relevant repositories (“building”, ”European town”, “sea shore”, and
“vacation resort”) connected with the primary repository (“winter season”).
Thus, the retrieval accuracy is significantly improved by incorporating these
repositories into the fuzzy model described in Section 5.5.

To evaluate the effectiveness of the semantics correlation measurement and
the fuzzy model for repositories, we have compared the retrieval precision with
and without the α-semantics graph. Figure 5.9 shows the results. From the
figure, it is evident that the α-semantics graph and the derived fuzzy model
for repositories improve the precision significantly. These results substantiate
the motivations: by explicitly addressing the semantic uncertainty and the
semantic overlap, the classification errors can be substantially reduced for
image mining and retrieval.

To evaluate the influence of the error rate of the classification tree, we have
documented the statistics of the classifications and the corresponding retrieval
precisions for the testing and training sets. Three evaluation statistics are
documented. They are:

Average classification error rate: The average rate at which a query im-
age is misclassified.

Average classification accuracy: The average value of the classification
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FIGURE 5.9: Average precision comparison with/without the α-semantics
graph. Reprint from [244] c©2004 ACM Press and from [238] c©2004 IEEE
Computer Society Press.
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Table 5.3: The classification statistics of our method and the nearest-neighbor
method.

Average classifi-
cation error rate

Average classifi-
cation accuracy

The classifica-
tion tree

0.235 0.868

Nearest-
neighbor
method

0.307 0.775

Table 5.4: The classification and retrieval precision statistics. Reprint from
[244] c©2004 ACM Press and from [238] c©2004 IEEE Computer Society Press.

Average
classifi-
cation
accuracy

Average
retrieval
precision

Correctly classified images 0.902 0.672
Incorrectly classified images 0.815 0.343

accuracy for training images in all repositories.

Average retrieval precision: The average ratio of relevant images in the
top 50 retrieved images for every query image.

The results are shown in Table 5.3 and Table 5.4. We have also com-
pared the classification performances of the classification tree and the nearest-
neighbor classification method on the testing image database, as shown in Ta-
ble 5.3. In the comparison, the classification tree is consistently better than
the nearest-neighbor classification in that: (i) the average classification error
for testing images is smaller; and (ii) the average classification accuracy for
training images is larger.

For an image retrieval example, Figure 5.10 shows the top 16 retrieved
images by the prototype system for an query image from the repository “city
skyline”. The retrieval precision is satisfactory; 15 of 16 of the top returned
images are relevant.

Considering that it is difficult to design a fair comparison with very few ex-
isting classification-based image mining and retrieval methods, we have com-
pared the effectiveness of the proposed method with that of UFM [47]. UFM
is a methodology based on fuzzified region representation to build region-to-
region similarity measures for image retrieval. It does not address semantics
of images explicitly. We compare the proposed approach with UFM because
UFM is available to us and also because UFM reflects the performance of
the state-of-the-art image mining and retrieval. The results are shown in
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FIGURE 5.10: Query result for an image from the repository “city skyline”.
15 out of the top 16 returned images are relevant.

Figure 5.11. From the comparisons, it is clear that the proposed method is
superior to UFM in both absolute precision and potential (attenuation trend).

Another advantage of the proposed method is its high online query effi-
ciency. In most state-of-the-art image mining and retrieval systems in the
research literature, the search is performed linearly. In other words, the com-
putation complexity is O(n) for a image database with n images. In the
proposed method, the average computation complexity is O(logm) for im-
age classification and O(w) for image similarity calculation, where m is the
number of image repositories and w is the average number of images in a
repository. Since w = n

m , the overall complexity is O(logm+ n
m). In general,

m << n; hence, with image classification the computation complexity of this
method is much more tractable than that of the linear search methods. This
conclusion is also observed in the experiments. The average query time for
returning the top 30 images is less than 0.5 second in the reported platform.
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FIGURE 5.11: Average precision comparison between the proposed method
and UFM. Reprint from [238] c©2004 IEEE Computer Society Press.
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5.8 Summary

In this chapter, we have presented an image classification based approach
in the traditional architecture of the content based mining and retrieval in
a large image database. A semantics correlation based structure called the
α-semantics graph is proposed to represent the semantic uncertainty and the
semantic overlap explicitly. Founded on the α-semantics graph, each semantic
repository is modeled as a fuzzy set which captures the statistical distribution
in the feature space. With the generation of a multiple-features (color, texture,
and shape) supported visual dictionary, a classification tree is trained using
a provided training set. A unique image mining and retrieval algorithm is
developed through integrating the classification results and the fuzzy model
for each repository. With the effective supervised learning applied to the
image database and the precise modeling of image semantic repositories, the
proposed methodology inaugurates a new generation of content-based image
mining and retrieval approaches, that aims at achieving a more semantics-
relevant performance.
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Chapter 6

Image Database Modeling – Latent
Semantic Concept Discovery

6.1 Introduction

This chapter addresses image database modeling in general and, in particu-
lar, focuses on developing a hidden semantic concept discovery methodology to
address effective semantics-intensive image data mining and retrieval. In the
approach proposed in this chapter, each image in the database is segmented
into regions associated with homogenous color, texture, and shape features.
By exploiting regional statistical information in each image and employing
a vector quantization method, a uniform and sparse region-based represen-
tation is achieved. With this representation a probabilistic model based on
the statistical-hidden-class assumptions of the image database is obtained, to
which the Expectation-Maximization (EM) technique is applied to discover
and analyze semantic concepts hidden in the database. An elaborated min-
ing and retrieval algorithm is designed to support the probabilistic model.
The semantic similarity is measured through integrating the posterior prob-
abilities of the transformed query image, as well as a constructed negative
example, to the discovered semantic concepts. The proposed approach has
a solid statistical foundation; the experimental evaluations on a database of
10,000 general-purpose images demonstrate the promise and the effectiveness
of the proposed approach.

The rest of this chapter is organized as follows. Section 6.2 gives back-
ground information regarding why it is necessary to propose and develop the
latent semantic concept discovery approach to model an image database and
reviews the related work in the literature. Section 6.3 introduces the region
feature extraction method and the region based image representation scheme
used in developing this latent semantic concept discovery approach. Sec-
tion 6.4 then presents the proposed probabilistic region–image–concept model
and the hidden semantic concept discovery procedure using the Expectation-
Maximization method developed in this approach. Section 6.5 presents the
posterior probability based image similarity measure scheme and the support-
ive relevance feedback based mining and retrieval algorithm. An analysis of
the characteristics of the proposed approach and its uniqueness in compari-
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son with the existing region based image data mining and retrieval methods
is provided in Section 6.6. Section 6.7 reports the experimental evaluations
of this proposed approach in comparison with a state-of-the-art method from
the literature and demonstrates the superior performance of this approach in
image data mining and retrieval. Finally, this chapter is concluded in Section
6.8.

6.2 Background and Related Work

As stated before, large collections of images have become available to the
public, from photo collections to Web pages or even video databases. To
effectively mine or retrieve such a large collection of imagery data is a huge
challenge. After more than a decade of research, it has been found that
content based image data mining and retrieval are a practical and satisfactory
solution to this challenge. At the same time, it is also well known that the
performance of the existing approaches in the literature is mainly limited by
the semantic gap between low-level features and high-level semantic concepts
[192]. In order to reduce this gap, region based features (describing object
level features), instead of raw features of the whole image, to represent the
visual content of an image are widely used [36, 212, 119, 47].

In contrast to traditional approaches [112, 80, 166], which compute global
features of images, the region based methods extract features of the segmented
regions and perform similarity comparisons at the granularity of regions. The
main objective of using region features is to enhance the ability to capture
and represent the focus of users’ perception of the image content.

One important issue significantly affecting the success of an image data
mining methodology is how to compare two images, i.e., the definition of the
image similarity measurement. A straightforward solution adopted by most
early systems [36, 142, 221] is to use individual region-to-region similarity as
the basis of the comparisons. When using such schemes, the users are forced to
select a limited number of regions from a query image in order to start a query
session. As discussed in [212], due to the uncontrolled nature of the visual
content in an image, automatically and precisely extracting image objects is
still beyond the reach of the state-of-the-art in computer vision. Therefore,
these systems tend to partition one object into several regions, with none of
them being representative for the object. Consequently, it is often difficult for
users to determine which regions should be used for their interest.

To provide users a simpler querying interface and to reduce the influ-
ence of inaccurate segmentation, several image-to-image similarity measure-
ments that combine information from all of the regions have been proposed
[91, 212, 47]. Such systems only require users to impose a query image and
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therefore relieve the users from making the puzzling decisions. For example,
the SIMPLIcity system [212] uses integrated region matching as its image sim-
ilarity measure. By allowing a many-to-many relationship of the regions, the
approach is robust to inaccurate segmentation. Greenspan et al [92] propose
a continuous probabilistic framework for image matching. In this framework,
each image is represented as a Gaussian mixture distribution, and images
are compared and matched via a probabilistic measure of similarity between
distributions. Improved image matching results are reported.

Ideally, what we strive to measure is the semantic similarity, which physi-
cally is very difficult to define, or even to describe. The majority of the existing
methodologies do not explicitly connect the extracted features with the pur-
sued semantics reflected in the visual content. They define region-to-region
and/or image-to-image similarities to attempt to approximate the semantic
similarity. However, the approximation is typically heuristic and consequently
not reliable and effective. Thus, the retrieval and mining accuracies are rather
limited.

To deal with the inaccurate approximation problem, several research ef-
forts have been attempted to link regions to semantic concepts by supervised
learning. Barnard et al proposed several statistical models [14, 70, 15] which
connect image blobs and linguistic words. The objective is to predict words
associated with whole images (auto-annotation) and corresponding to partic-
ular image regions (region naming). In their approaches, a number of models
are developed for the joint distribution of image regions and words. The mod-
els are multi-modal and correspondence extensions to Hofmann’s hierarchical
clustering aspect model [102, 103, 101], a translation model adapted from sta-
tistical machine translation, and a multi-modal extension to the mixture of
latent Dirichlet allocation models [22]. The models are used to automatically
annotate testing images, and the reported performance is promising. Rec-
ognizing that these models fail to exploit spatial context in the images and
words, Carbonetto et al augmented the models such that spatial relationships
between regions are learned. The model proposed is more expressive in the
sense that the spatial correspondences are incorporated into the joint proba-
bility learning [34, 35], which improves the accuracy of object recognition in
image annotation. Recently, Feng et al proposed a Multiple Bernoulli Rele-
vance Model (MBRM) [75] for image-word association, which is based on the
Continuous-space Relevance Model (CRM) proposed by [117]. In the MBRM
model, the word probabilities are estimated using a multiple Bernoulli model
and the image feature probabilities using a non-parametric kernel density es-
timate.

We argue that for all the feature based image mining and retrieval methods,
the semantic concepts related to the content of the images are always hidden.
By hidden, we mean (1) objectively, there is no direct mapping from the
numerical image features to the semantic meanings in the images, and (2)
subjectively, given the same region, there are different corresponding semantic
concepts, depending on different context and/or different user interpretations.
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FIGURE 6.1: The architecture of the latent semantic concept discovery based
image data mining and retrieval approach. Reprint from [243] c©2007 IEEE
Signal Processing Society Press.

This observation justifies the need to discover the hidden semantic concepts
that is a key step toward effective image retrieval.

In this chapter, we propose a probabilistic approach to addressing the hid-
den semantic concept discovery. A region-based sparse but uniform image
representation scheme is developed (unlike the block-based uniform represen-
tation in [255], region-based representation is more effective for image min-
ing and retrieval due to the fact that humans pay more attention to objects
than blocks in an image), which facilitates the indexing scheme based on a
region-image-concept probabilistic model with validated assumptions. This
model has a solid statistical foundation and is intended for the objective of
semantics-intensive image retrieval. To describe the semantic concepts hid-
den in the region and image distributions of a database, the Expectation-
Maximization (EM) technique is used. With a derived iterative procedure,
the posterior probabilities of each region in an image for the hidden semantic
concepts are quantitatively obtained, which act as the basis for the semantic
similarity measure for image mining and retrieval. Therefore, the effective-
ness is improved as the similarity measure is based on the discovered semantic
concepts, which are more reliable than the region features used in most of the
existing systems in the literature. Figure 6.1 shows the architecture of the
proposed approach. This work is an extension of the previous work [240].
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Different from the models reviewed above, the model and the approach
we propose and present here do not require training data; we formulate a
generative model to discover the clusterings in a probabilistic scheme by un-
supervised learning. In this model, the regions and images are connected
through a hidden layer — the concept layer, which constitutes the basis of
the image similarity measures. In addition, users’ relevance feedback is incor-
porated into the model fitting procedure such that the subjectivity in image
mining and retrieval is addressed explicitly and the model fitting is customized
toward users’ querying needs.

6.3 Region Based Image Representation

In the proposed approach, the query image and images in a database are
first segmented into homogeneous color-texture regions. Then representative
properties are extracted for every region by incorporating multiple features,
specifically, color, texture, and shape properties. Based on the extracted
regions, a visual token catalog is generated to explore and exploit the content
similarities of the regions, which facilitates the indexing and mining scheme
based on the region-image-concept probabilistic model elaborated in Section
6.4.

6.3.1 Image Segmentation

To segment an image, the system first partitions the image into blocks
of 4 by 4 pixels to compromise between the texture effectiveness and the
computation time. Then a feature vector consisting of nine features from
each block is extracted. Three of the features are average color components
in the 4 by 4 pixel size block; we use the LAB color space due to its desired
property that the perceptual color difference is proportional to the numerical
difference. The other six features are the texture features extracted using
wavelet analysis.

To extract texture information of each block, we apply a set of Gabor
filters [145], which are shown to be effective for image indexing and retrieval
[143], to the block to measure the response. The Gabor filters measure the
two-dimensional wavelets. The discretization of a two-dimensional wavelet
applied to the blocks is given by

Wmlpq =

∫ ∫
I(x, y)ψml(x− p△x, y − q△y)dxdy (6.1)

where I denotes the processed block; △x and △y denote the spatial sampling
rectangle; p, q are image positions; and m, l specify the scale and orientation
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of the wavelets. The base function ψml(x, y) is given by

ψml(x, y) = a−mψ(x̃, ỹ) (6.2)

where
x̃ = a−m(x cos θ + y sin θ)

ỹ = a−m(−x sin θ + y cos θ)

denote a dilation of the mother wavelet (x, y) by a−m, where a is the scale
parameter, and a rotation by θ = l×△θ, where △θ = 2π/V is the orientation
sampling period; V is the number of orientation sampling intervals.

In the frequency domain, with the following Gabor function as the mother
wavelet, we use this family of wavelets as our filter bank:

Ψ(u, v) = exp {−2π2(σ2
xu

2 + σ2
yv

2)} ⊗ δ(u −W )

= exp {−2π2(σ2
x(u−W )2 + σ2
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2)}

= exp {−1

2
(
(u−W )2

σ2
u

+
v2

σ2
v

)} (6.3)

where ⊗ is a convolution symbol, δ(�) is the impulse function, σu = (2πσx)
−1,

and σv = (2πσy)
−1; σx and σy are the standard deviations of the filter along

the x and y directions, respectively. The constantW determines the frequency
bandwidth of the filters.

Applying the Gabor filter bank to the blocks, for every image pixel (p, q),
in U (the number of scales in the filter bank) by V array of responses to the
filter bank, we only need to retain the magnitudes of the responses:

Fmlpq = |Wmlpq | m = 0, . . . , U − 1, l = 0, . . . V − 1 (6.4)

Hence, a texture feature is represented by a vector, with each element of
the vector corresponding to the energy in a specified scale and orientation
sub-band w.r.t. a Gabor filter. In the implementation, a Gabor filter bank of
3 orientations and 2 scales is used for each image in the database, resulting
in a 6-dimensional feature vector (i.e., 6 means for |Wml|) for the texture
representation.

After we obtain feature vectors for all blocks, we perform normalization
on both color and texture features such that the effects of different feature
ranges are eliminated. Then a k -means based segmentation algorithm, similar
to that used in [47], is applied to clustering the feature vectors into several
classes, with each class corresponding to one region in the segmented image.

Figure 6.2 gives four examples of the segmentation results of images in
the database, which show the effectiveness of the segmentation algorithm
employed.

After the segmentation, the edge map is used with the water-filling al-
gorithm [253] to describe the shape feature for each region due to its re-
ported effectiveness and efficiency for image mining and retrieval [154]. A
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FIGURE 6.2: The segmentation results. Left column shows the original im-
ages; right column shows the corresponding segmented images with the region
boundary highlighted.
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6-dimensional shape feature vector is obtained for each region by incorporat-
ing the statistics defined in [253], such as the filling time histogram and the
fork count histogram. The mean of the color-texture features of all the blocks
in each region is determined to combine with the corresponding shape feature
as the extracted feature vector of the region.

6.3.2 Visual Token Catalog

Since the region features f ∈ R
n, it is necessary to perform regularization

on the region property set such that they can be indexed and mined effi-
ciently. Considering that many regions from different images are very similar
in terms of the features, vector quantization (VQ) techniques are required to
group similar regions together. In the proposed approach, we create a visual
token catalog for region properties to represent the visual content of the re-
gions. There are three advantages to creating such a visual token catalog.
First, it improves mining and retrieval robustness by tolerating minor varia-
tions among visual properties. Without the visual token catalog, since very
few feature values are exactly shared by different regions, we would have to
consider feature vectors of all the regions in the database. This makes it not
effective to compare the similarity among regions. However, based on the
visual token catalog created, low-level features of regions are quantized such
that images can be represented in a way resistant to perception uncertain-
ties [47]. Second, the region-comparison efficiency is significantly improved
by mapping the expensive numerical computation of the distances between
region features to the inexpensive symbolic computation of the differences be-
tween “code words” in the visual token catalog. Third, the utilization of the
visual token catalog reduces the storage space without sacrificing the accuracy.

We create the visual token catalog for region properties by applying the
Self-Organization Map (SOM) [130] learning strategy. SOM is ideal for this
problem, as it projects the high-dimensional feature vectors to a 2-dimensional
plane through mapping similar features together while separating different
features at the same time. The SOM learning algorithm we have used is
competitive and unsupervised. The nodes in a 2-dimensional array become
specifically tuned to various classes of input feature patterns in an orderly
fashion.

A procedure is designed to create “code words” in the dictionary. Each
“code word” represents a set of visually similar regions. The procedure follows
4 steps:

1. Performing the Batch SOM learning [130] algorithm on the region fea-
ture set to obtain the visualized model (node status) displayed on a
2-dimensional plane map. The distance metric used is Euclidean for its
simplicity.

2. Regarding each node as a “pixel” in the 2-dimensional plane map such
that the map becomes a binary lattice with the value of each pixel i

© 2009 by Taylor & Francis Group, LLC



Image Database Modeling – Latent Semantic Concept Discovery 215

(a) (b) (c)

FIGURE 6.3: Illustration of the procedure: (a) the initial map; (b) the binary
lattice obtained after the SOM learning is converged; (c) the labeled object
on the final lattice. The arrows indicate the objects that the corresponding
nodes belong to. Reprint from [243] c©2007 IEEE Signal Processing Society
Press.

defined as follows:

p(i) =

{
0 if count(i) ≥ t
1 else

where count(i) is the number of features mapped to node i and the
constant t is a preset threshold. Pixel value 0 denotes the objects, while
pixel value 1 denotes the background.

3. Performing the morphological erosion operation [38] on the resulting
lattice to make sparse connected objects in the image disjointed. The
size of the erosion mask is determined to be the minimum to make two
sparsely connected objects separated.

4. With connected component labeling [38], we assign each separated ob-
ject a unique ID, a “code word”. For each “code word”, the mean of
all the features associated with it is determined and stored. All “code
words” constitute the visual token catalog to be used to represent the
visual properties of the regions.

Figure 6.3 illustrates this procedure on a portion of the map we have obtained.
Simple yet effective Euclidean distance is used in the SOM learning to de-

termine the “code word” to which each region belongs. The proof of the
convergence of the SOM learning process in the 2-dimensional plane map is
given in [129]. The details about the selection of the parameters are also cov-
ered in [129]. Each labeled component represents a region feature set among
which the intra-distance is low. The extent of similarity in each “code word” is
controlled by the parameters in the SOM algorithm and the threshold t. With
this procedure, the number of the “code words” is adaptively determined and
the similarity-based feature grouping is achieved. The experiments reported
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FIGURE 6.4: The process of the generation of the visual token catalog.
Reprint from [243] c©2007 IEEE Signal Processing Society Press and from
[240] c©2004 IEEE Computer Society Press.

in Section 6.7 show that the visual token catalog created captures the cluster-
ing characteristics existing in the feature set well. We note that the threshold
t is highly correlated to the number of the “code words” generated; it is de-
termined empirically by balancing the efficiency and the accuracy. We discuss
the issue of choosing the appropriate number of the “code words” in the visual
token catalog in Section 6.7. Figure 6.4 shows the process of the generation
of the visual token catalog. Each rounded rectangle in the third column of
the figure is one “code word” in the dictionary.

For each region of an image in the database, the “code word” that it is
associated with is identified and the corresponding index in the visual token
catalog is stored, while the original feature of this region is discarded. For
the region of a new image, the closest entry in the dictionary is found and the
corresponding index is used to replace its feature. In the rest of this chapter,
we use the terminologies region and “code word” interchangeably; they both
denote an entry in the visual token catalog equivalently.

Based on the visual token catalog, each image is represented in a uniform
vector model. In this representation, an image is a vector with each dimension
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corresponding to a “code word”. More formally, the uniform representation ~Iu
of an image I is a vector ~Iu = {w1, w2, . . . , wM}, whereM is the number of the
“code words” in the visual token catalog. For a “code word” Ci, 1 ≤ i ≤ M ,
if there exists a region Rj of I that corresponds to it, then wi = WRj for ~Iu,
where WRj is the number of the occurrences of Rj in the image I; otherwise,
wi = 0. This uniform representation is sparse, for an image usually contains
a few regions compared with the number of the “code words” in the visual
token catalog. Based on this representation of all the images, the database is
modeled as a M×N “code word”-image matrix which records the occurrences
of every “code word” in each image, where N is the number of the images in
the database.

6.4 Probabilistic Hidden Semantic Model

To achieve the automatic semantic concept discovery, a region-based prob-
abilistic model is constructed for the image database with the representation
of the “code word”-image matrix. The probabilistic model is analyzed by the
Expectation-Maximization (EM) technique [58] to discover the latent seman-
tic concepts, which act as a basis for effective image mining and retrieval via
the concept similarities among images.

6.4.1 Probabilistic Database Model

With a uniform “code word” vector representation for each image in the
database, we propose a probabilistic model. In this model, we assume that
the specific (region, image) pairs are known i.i.d. samples from an unknown
distribution. We also assume that these samples are associated with an un-
observed semantic concept variable z ∈ Z = {z1, . . . , zK}, where K is the
number of concepts to be discovered. Each observation of one region (“code
word”) r ∈ R = {r1, . . . , rM} in an image g ∈ G = {g1, . . . , gN} belongs to
one concept class zk. To simplify the model, we have two further assumptions.
First, the observation pairs (ri, gj) are generated independently. Second, the
pairs of random variables (ri, gj) are conditionally independent given the re-
spective hidden concept zk, i.e., P (ri, gj|zk) = P (ri|zk)P (gj |zk). Intuitively,
these two assumptions are reasonable, which are further validated by the ex-
perimental evaluations. The region and image distribution may be treated as
a randomized data generation process, described as follows:

• Choose a concept with probability P (zk);

• Select a region ri ∈ R with probability P (ri|zk); and

• Select an image gj ∈ G with probability P (gj |zk).
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As a result, one obtains an observed pair (ri, gj), while the concept variable
zk is discarded.

Based on the theory of the generative model [150] (see Chapter 3), the
above process is equivalent to the following:

• Select an image gj with probability P (gj);

• Select a concept zk with probability P (zk|gj);
• Generate a region ri with probability P (ri|zk).

Translating this process into a joint probability model results in the expres-
sion

P (ri, gj) = P (gj)P (ri|gj)

= P (gj)

K∑

k=1

P (ri|zk)P (zk|gj) (6.5)

Inverting the conditional probability P (zk|gj) in Equation 6.5 with the appli-
cation of Bayes’ rule results in

P (ri, gj) =
K∑

k=1

P (zk)P (ri|zk)P (gj |zk) (6.6)

Following the likelihood principle, one determines P (zk), P (ri|zk), and
P (gj |zk) by the maximization of the log-likelihood function

L = logP (R,G) =

M∑

i=1

N∑

j=1

n(ri, gj) logP (ri, gj) (6.7)

where n(ri, gj) denotes the number of the regions ri that occurred in image gj .
From Equations 6.7 and 6.5 we derive that the model is a statistical mixture
model [150], which can be resolved by applying the EM technique [58].

6.4.2 Model Fitting with EM

One powerful procedure for maximum likelihood estimation in hidden vari-
able models is the EM method [58]. EM alternates in two steps iteratively:
(i) an expectation (E) step where posterior probabilities are computed for the
hidden variable zk, based on the current estimates of the parameters, and
(ii) a maximization (M) step, where parameters are updated to maximize
the expectation of the complete-data likelihood logP (R,G,Z) for the given
posterior probabilities computed in the previous E-step.

Applying Bayes’ rule with Equation 6.5, we determine the posterior prob-
ability for zk under (ri, gj):

P (zk|ri, gj) =
P (zk)P (gj |zk)P (ri|zk)∑K

k′=1 P (zk′)P (gj |zk′)P (ri|zk′)
(6.8)
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The expectation of the complete-data likelihood logP (R,G,Z) for the esti-
mated P (Z|R,G) derived from Equation 6.8 is

E{logP (R,G,Z)} =
K∑

(i,j)=1

M∑

i=1

N∑

j=1

n(ri, gj) log [P (zi,j)P (gj |zi,j)P (ri|zi,j)]P (Z|R,G)

(6.9)
where

P (Z|R,G) =

M∏

m=1

N∏

n=1

P (zm,n|rm, gn)

In Equation 6.9 the notation zi,j is the concept variable that is associated
with the region-image pair (ri, gj). In other words, (ri, gj) belongs to concept
zt where t = (i, j).

With the normalization constraint
∑K

(i,j)=1 P (zi,j |ri, gj) = 1, Equation 6.9
further becomes:

E{logP (R,G,Z)} =

K∑

l=1

M∑

i=1

N∑

j=1

n(ri, gj) log[P (ri|zl)P (gj |zl)]P (zl|ri, gj) +

+
K∑

l=1

M∑

i=1

N∑

j=1

n(ri, gj) log[P (zl)]P (zl|ri, gj) (6.10)

Maximizing Equation 6.10 with Lagrange multipliers to P (zl), P (ru|zl),
and P (gv|zl), respectively, under the following normalization constraints

K∑

k=1

P (zk) = 1 (6.11)

K∑

k=1

P (zk|ri, gj) = 1 (6.12)

M∑

i=1

P (ri|zl) = 1 (6.13)

for any ri, gj , and zl, the parameters are determined as

P (zk) =

∑M
i=1

∑N
j=1 n(ri, gj)P (zk|ri, gj)

∑M
i=1

∑N
j=1 u(ri, gj)

(6.14)

P (ru|zl) =

∑N
j=1 n(ru, gj)P (zl|ru, gj)

∑M
i=1

∑N
j=1 u(ri, gj)P (zl|ri, gj)

(6.15)

P (gv|zl) =

∑M
i=1 n(ri, gv)P (zl|ri, gv)∑M

i=1

∑N
j=1 u(ri, gj)P (zl|ri, gj)

(6.16)
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Alternating Equation 6.8 with Equations 6.14–6.16 defines a convergent pro-
cedure that approaches a local maximum of the expectation in Equation 6.10.
The initial values for P (zk), P (gj|zk), and P (ri|zk) are set to be the same as if
the distributions of P (Z), P (G|Z), and P (R|Z) are the uniform distributions;
in other words, P (zk) = 1/K, P (ri|zk) = 1/M , and P (gj |zk) = 1/N . We have
found in the experiments that different initial values only affect the number of
iterative steps to the convergence but have no effects on the converged values
of them.

6.4.3 Estimating the Number of Concepts

The number of concepts, K, must be determined in advance to initiate the
EM model fitting. Ideally, we would like to select the value of K that best
represents the number of the semantic classes in the database. One readily
available notion of the goodness of the fitting is the log-likelihood. Given
this indicator, we apply the Minimum Description Length (MDL) principle
[174, 175] to select the best value of K. This can be operationalized as follows
[175]: choose K to maximize

log(P (R,G))− mK

2
log(MN) (6.17)

where the first term is expressed in Equation 6.7 and mK is the number of
the free parameters needed for a model with K mixture components. In the
case of the proposed probabilistic model, we have

mK = (K − 1) +K(M − 1) +K(N − 1) = K(M +N − 1)− 1

As a consequence of this principle, when models using two values of K fit
the data equally well, the simpler model is selected. In the database used in
the experiments reported in Section 6.7, K is determined through maximizing
Equation 6.17.

6.5 Posterior Probability Based Image Mining and Re-
trieval

Based on the probabilistic model, we can derive the posterior probability of
each image in the database for every discovered concept by applying Bayes’
rule as

P (zk|gj) =
P (gj |zk)P (zk)

P (gj)
(6.18)

which can be determined using the estimations in Equations 6.14–6.16. The
posterior probability vector P (Z|gj) = [P (z1|gj), P (z2|gj), . . . , P (zK |gj)]T is
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used to quantitatively describe the semantic concepts associated with the
image gj . This vector can be treated as a representation of gj (which orig-
inally has a representation in the M-dimensional “code word” space) in the
K-dimensional concept space determined using the estimated P (zk|ri, gj) in
Equation 6.8.

For each query image, after obtaining the corresponding “code words” as
described in Section 6.3, we attain its representation in the discovered concept
space by substituting it in the EM iteration derived in Section 6.4.2. The
only difference is that P (ri|zk) and P (zk) are fixed to be the values we have
obtained for the whole database modeling (which are obtained in the indexing
phase, i.e., to determine the concept space representation of every image in
the database).

In designing a region-based image mining and retrieval methodology, there
are two characteristics of the region representation that must be taken into
consideration:

1. The number of the segmented regions in one image is normally small.

2. Not all regions in one image are semantically relevant to a given image;
some are unrelated or even non-relevant; which regions are relevant or
irrelevant depends on the user’s querying subjectivity.

Incorporating the “code words” corresponding to unrelated or non-relevant
regions would hurt the mining or retrieval accuracy because the occurrences
of these regions in one image tend to “fool” the probabilistic model such
that erroneous concept representations would be generated. To address the
two characteristics in image mining and retrieval explicitly, we employ the
relevance feedback for the similarity measurement in the concept space. Rel-
evance feedback has been demonstrated as great potential to capture users’
querying subjectivity both in text retrieval and in image retrieval [210, 178].
Consequently, a mining and retrieval algorithm based on the relevance feed-
back strategy is designed to integrate the probabilistic model to deliver a more
effective mining and retrieval performance.

In the algorithm, we move the query point in the “code word” token space
toward the good example points (the relevant images labeled by the user) and
away from the bad example points (the irrelevant images labeled by the user)
such that the region representation has more supports to the probabilistic
model. At the same time, the query point is expanded with the “code words”
of the labeled relevant images. On the other hand, we construct a negative
example “code word” vector by applying a similar vector moving strategy
such that the constructed negative vector lies near the bad example points
and away from the good example points. The vector moving strategy uses
a form of Rocchio’s formula [176]. Rocchio’s formula for relevance feedback
and feature expansion has proven to be one of the best iterative optimization
techniques in the field of information retrieval. It is frequently used to estimate
the “optimal query” in relevance feedback for sets of relevant documents DR
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and irrelevant documents DI given by the user. The formula is

Q′ = αQ+ β(
1

NR

∑

j∈DR

Dj)− γ(
1

NI

∑

j∈DI

Dj) (6.19)

where α, β, and γ are suitable constants; NR and NI are the number of
documents in DR and DI , respectively; and Q′ is the updated query of the
previous query Q.

In the algorithm, based on the vector moving strategy and Rocchio’s for-
mula, in each iteration a modified query vector pos and a constructed negative
example neg are computed; their representations in the discovered concept
space are obtained and their similarities to each image in the database are
measured through the cosine metric [12] of the corresponding vectors in the
concept space, respectively. The retrieved images are ranked based on the sim-
ilarity to pos as well as the dissimilarity to neg. The algorithm is described
in Algorithm 9.

We use the cosine metric to compute sim1(•) and sim2(•) in Algorithm
9 because the posterior probability vectors are the basis for the similarity
measure in this proposed approach. The vectors are uniform, and the value
of each component in the vectors is between 0 and 1. The cosine similarity
is effective and ideal for measuring the similarity for the space composed of
these kinds of vectors. The experiments reported in Section 6.7 show the
effectiveness of the cosine similarity measure. At the same time, we note
that Algorithm 9 itself is orthogonal to the selections of similarity measure
metrics. The parameters α, β, and γ in Algorithm 9 are assigned a value
of 1.0 in the current implementation of the prototype system for the sake
of simplicity. However, other values may be used to emphasize the different
weights between good sample points and bad sample points.

6.6 Approach Analysis

It is worth comparing the proposed probabilistic model and the fitting
methodology with the existing region based statistical clustering methods in
the image mining and retrieval literature, such as [241, 48]. In the clustering
methods, one typically associates a class variable with each image or each
region in the database based on specific similarity metrics cast. One funda-
mental problem overlooked in such methods is that the semantic concepts of a
region are typically not entirely determined by the features of the region itself;
rather, they are dependent upon and affected by the contextual environment
around the region in the image. In other words, a region in a different context
in an image may convey a different concept. It is also noticeable that the
degree of a specific region associated with several semantic concepts varies
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Algorithm 9 A semantic concept mining based retrieval algorithm

Input: q, “code word” vector of the query image
Output: Images retrieved for the query image q
Method:

1: Plug q to the model to compute the vector P (Z|q)
2: Retrieve and rank images based on the cosine similarity measure of the

vectors P (Z|q) and P (Z|g) of each image in the database
3: rs = {rel1, rel2, . . . , rela}, where reli is a “code word” vector of each

image labeled as relevant by the user on the retrieved result
4: is = {ire1, ire2, . . . , ireb}, where irej is a “code word” vector of each

image labeled as irrelevant by the user on the retrieved result
5: pos = αq + β( 1

a

∑a
i=1 reli)− γ(1

b

∑b
j=1 irej)

6: neg = α(1
b

∑b
j=1 irej)− γ( 1

a

∑a
i=1 reli)

7: for k = 1 to K do
8: Determine P (zk|pos) and P (zk|neg) with EM and Equation 6.18
9: end for

10: n = 1
11: while n <= N do
12: sim1(gn) = P (Z|pos)•P (Z|gn)

‖P (Z|pos)‖‖P (Z|gn)‖

13: sim2(gn) = P (Z|neg)•P (Z|gn)
‖P (Z|neg)‖‖P (Z|gn)‖

14: if (sim1(gn) > sim2(gn)) then
15: sim(gn) = sim1(gn)− sim2(gn)
16: else
17: sim(gn) = 0
18: end if
19: Rank the images in the database based on sim(gn)
20: end while
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with different contextual region co-occurrences in an image. For example, it
is likely that the sand “code word” conveys the concept of beach when it co-
occurs in the context of the water, sky, and people “code words”; on the other
hand, it becomes likely that the same sand “code word” conveys the concept
of African with a high probability when it co-occurs in the context of the plant
and black “code words”. Wang et al [212] attempted to alleviate the effect
caused by this problem by using integrated region matching to incorporate
similarity between two images for all their region pairs; this matching scheme,
however, is heuristic such that it is impossible for a more rigorous analysis.

The probabilistic model we have described addresses these problems quan-
titatively and analytically in an optimal framework. Given a region in an
image the conditional probability of each concept and the conditional proba-
bility of each image in a concept are iteratively determined to fit the model
representing the database as formulated in Equations 6.8 and 6.16. Since the
EM technique always converges to a local optimality, from the experiments
reported in Section 6.7, we have found that the local optimum is satisfactory
for typical image data mining and retrieval applications. The effectiveness of
this methodology in real image databases is demonstrated in the experimental
analysis presented in Section 6.7. To find the global maximum is computation-
ally intractable for a large-scale database, and the advantage of such model
fitting compared to the model fitting obtained through this proposed approach
is not obvious and is under further investigation.

With the proposed probabilistic model, we are able to concurrently obtain
P (zk|ri) and P (zk|gj) such that both regions and images have an interpreta-
tion in the concept space simultaneously, while typical image clustering based
approaches, such as [119], do not have this flexibility. Since in the proposed
scheme, every region and/or image may be represented as a weighted sum of
the components along the discovered concept axes, the proposed model acts
as a factoring analysis [150], yet the same model offers important advantages,
such as that each weight has a clear probabilistic meaning and the factoring
is two-fold, i.e., both regions and images in the database have probabilistic
representations with the discovered concepts.

Another advantage of the proposed methodology is its capability to reduce
the dimensionality. The image similarity comparison is performed in a derived
K-dimensional concept space Z instead of in the originalM -dimensional “code
word” token space R. Note that typicallyK << M , as has been demonstrated
in the experiments reported in Section 6.7. The derived subspace represents
the hidden semantic concepts conveyed by the regions and the images, while
the noise and all the non-intrinsic information are discarded in the dimension-
ality reduction, which makes the semantic comparison of regions and images
more effective and efficient. The coordinates in the concept space for each im-
age as well as for each region are determined by automatic model fitting. The
computation requirement in the lower-dimensional concept space is reduced
as compared with that required in the original “code word” space.

Algorithm 9 integrates the posterior probability of the discovered concepts
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with the query expansion and the query vector moving strategy in the “code
word” token space. Consequently, the accuracy of the representation of the
semantic concepts of a user’s query is enhanced in the “code word” token
space, which also improves the accuracy of the position obtained for the query
image in the concept space. Moreover, the constructed negative example
neg improves the discriminative power of the probabilistic model. Both the
similarity to the modified query representation and the dissimilarity to the
constructed negative example in the concept space are employed.

6.7 Experimental Results

We have implemented the approach in a prototype system on a platform of a
Pentium IV 2.0 GHz CPU and 256 MB memory. The interface of the system
is shown in Figure 6.11. The following reported evaluations are performed
on a general-purpose color image database containing 10,000 images from
the COREL collection with 96 semantic categories. Each semantic category
consists of 85–120 images. In Table 6.1, exemplar categories in the database
are provided. We note that the category information in the COREL collection
is only used to ground-truth the evaluation, and we do not make use of this
information in the indexing, mining, and retrieval procedures. Figure 6.5
shows a few examples of the images in the database.

To evaluate the image retrieval performance, 1,500 images are randomly
selected from all the categories as the query set. The relevancy of the retrieved
images is subjectively examined by users. The ground truth used in the mining
and retrieval experiments is the COREL category label if the query image is
in the database. If the query image is a new image outside the database,
users’ specified relevant images in the mining and retrieval results are used to
calculate the mining and retrieval accuracy statistics. Unless otherwise noted,
the default results of the experiments are the averages of the top 30 returned
images for each of the 1,500 queries.

In the experiments, the parameters of the image segmentation algorithm
[212] are adjusted with the consideration of the balance of the depiction de-
tail and the computation complexity such that there is an average of 8.3207
regions in each image. To determine the size of the visual token catalog, dif-
ferent numbers of the “code words” are selected and evaluated. The average
precisions (without the query expansion and movement) within the top 20, 30,
and 50 images, denoted as P(20), P(30), and P(50), respectively, are shown
in Figure 6.6. It indicates that the general trend is that the larger the visual
token catalog size, the higher the mining and retrieval accuracy. However,
a larger visual token catalog size means a larger number of image feature
vectors, which implies a higher computation complexity in the process of the
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Table 6.1: Examples of the 96 categories and their descriptions. Reprint from
[243] c©2007 IEEE Signal Processing Society Press.

ID Category description
1 reptile, animal, rock
2 Britain, royal events, queen, prince, princess
3 Africa, people, landscape, animal
4 European, historical building, church
5 woman, fashion, model, face, cloth
6 hawk, sky
7 New York City, skyscrapers, skyline
8 mountain, landscape
9 antique, craft
10 Easter egg, decoration, indoor, man-made
11 waterfall, river, outdoor
12 poker cards
13 beach, vacation, sea shore, people
14 castle, grass, sky
15 cuisine, food, indoor
16 architecture, building, historical building
.. ......

FIGURE 6.5: Sample images in the database. The images in each column are
assigned to one category. From left to right, the categories are Africa rural
area, historical building, waterfalls, British royal event, and model portrait,
respectively.

© 2009 by Taylor & Francis Group, LLC



Image Database Modeling – Latent Semantic Concept Discovery 227

FIGURE 6.6: Average precision (without the query expansion and movement)
for different sizes of the visual token catalog. Reprint from [243] c©2007 IEEE
Signal Processing Society Press and from [240] c©2004 IEEE Computer Society
Press.

hidden semantic concept discovery. Also, a larger visual token catalog leads
to a larger storage space. Therefore, we use 800 as the number of the “code
words”, which corresponds to the first turning point in Figure 6.6. Since there
are a total of 83,307 regions in the database, on average each “code word”
represents 104.13 regions.

Applying the method of estimating the number of the hidden concepts
described in Section 6.4.3, the number of the concepts is determined to be
132. Performing the EM model fitting, we have obtained the conditional
probability of each “code word” to every concept, i.e., P (ri|zk). Manual ex-
amination of the visual content of the region sets corresponding to the top
10 highest “code words” in every semantic concept reveals that these discov-
ered concepts indicate semantic interpretations, such as “people”, “building”,
“outdoor scenery”, “plant”, and “automotive race”. Figure 6.7 shows several
exemplar concepts discovered and the top regions corresponding to P (ri|zk)
obtained.

In terms of the computational complexity, despite the iterative nature of
EM, the computing time for the model fitting at K = 132 is acceptable (less
than 1 second). The average number of iterations upon convergence for one
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FIGURE 6.7: The regions with the top P (ri|zk) to the different concepts
discovered. (a) “castle”; (b) “mountain”; (c) “meadow and plant”; (d) “cat”.
Reprint from [243] c©2007 IEEE Signal Processing Society Press.

(a) (b)

FIGURE 6.8: Illustration of one query image in the “code word” space. (a)
Image Im; (b) “code word” representation. Reprint from [243] c©2007 IEEE
Signal Processing Society Press.

image is less than 5.

We give an example for discussion. Figure 6.8 shows one image, Im, be-
longing to the “medieval building” category in the database. Im (i.e., Figure
6.8(a)) has 6 “code words” associated. Each “code word” is presented using
a unique color graphically in Figure 6.8(b). For the sake of discussion, the
indices for these “code words” are assigned to be 1–6, respectively.

Figure 6.9 shows the P (zk|ri, Im) for each “code word” ri (represented
as a different color) and the posterior probability P (zk|Im) after the first
iteration and the last iteration in the course of the EM model fitting. Here
the 4 concepts with highest P (zk|Im) are shown. From left to right in Figure
6.9, they represent “plant”, “castle”, “cat”, and “mountain”, respectively,
interpreted through manual examination. As is seen in the figure, the “castle”
concept has indeed the highest weight after the first iteration; nevertheless,
the other three concepts still account for more than half of the probability.
The probability distribution changes after several EM iterations, since the
proposed probabilistic model incorporates co-occurrence patterns between the
“code words”; i.e., P (zk|ri) is not only related to one “code word” (ri) but is
also related to all the co-occurring “code words” in the image. For example,
although “code word” 2, which accounts for “meadow”, has higher fitness in
the concept “plant” after the first iteration, the context of the other regions
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FIGURE 6.9: P (zk|ri, Im) (each color column for a “code word”) and
P (zk|Im) (rightmost column in each bar plot) for image Im for the four con-
cept classes (semantically related to “plant”, “castle”, “cat”, and “mountain”,
from left to right, respectively) after the first iteration (first row) and the last
iteration (second row). Reprint from [243] c©2007 IEEE Signal Processing
Society Press.

in image Im increases the probability that this “code word” is related to the
concept “castle” and decreases its probability related to “plant” as well.

Figure 6.10 shows the similar plot to Figure 6.9 except that we apply the
relevance feedback based query expansion and moving strategy to image Im
as described in the Algorithm 9. The “code word” vector of image Im is
expanded to contain 10 “code words”. Compared with Figure 6.9, it is clear
that with the expansion of the relevant “code words” to Im and the query
moving strategy toward the relevant image set, the posterior probabilities
favoring the concept “castle” increase while the posterior probabilities favoring
other concepts decrease substantially, resulting in an improved mining and
retrieval precision, accordingly.

To show the effectiveness of the probabilistic model in image mining and
retrieval, we have compared the accuracy of this methodology with that of
UFM [47] proposed by Chen and Wang. UFM is a method based on the
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FIGURE 6.10: The similar plot to Figure 6.9 with the application of the
query expansion and moving strategy. Reprint from [243] c©2007 IEEE Signal
Processing Society Press.
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fuzzified region representation to build region-to-region similarity measures
for image retrieval; it is an improvement of their early work SIMPLIcity [212].
The reasons why we compare this proposed approach with UFM are: (1)
the UFM system is available to us; and (2) UFM reflects the performance of
the state-of-the-art image mining and retrieval performance. In addition, the
same image segmentation and feature extraction methods are used in UFM
such that a fair comparison on the performance between the two systems is
ensured. Figure 6.11 shows the top 16 retrieved images by the prototype
system and as well as by UFM, respectively, using image Im as a query.

More systematic comparison results on the 1,500 query image set are re-
ported in Figure 6.12. Two versions of the prototype (one with the query
expansion and moving strategy and the other without) and UFM are eval-
uated. It is demonstrated that the performances of the probabilistic model
in both versions of the prototype have higher overall precisions than that of
UFM, and the query expansion and moving strategy with the interaction of
the constructed negative examples boost the mining and retrieval accuracy
significantly.

6.8 Summary

In this chapter we have presented an approach to image data mining and
retrieval based on automatically discovering the hidden semantic concepts in
the database. The main contributions of the work described in this chap-
ter are the identification of the problems existing in most region-based image
mining and retrieval methods —- unreliable region evidence in semantic con-
tents and the development of a promising hidden semantics concept discovery
technique to solve the problems. Performing image segmentation with multi-
ple features and developing an SOM based quantization method to generate a
visual token catalog, a uniform and sparse region-based representation scheme
is obtained. On the basis of this representation, a probabilistic model of the
image database is defined. The model assumes that the regions, hidden se-
mantic concepts, and images are random variables and the objective is to
discover concept distributions with samples from the (region, image) pair dis-
tributions. Based on this model, the EM method is applied to derive an
iterative procedure to discover the hidden semantic concepts in the database.
An elaborated relevance feedback based mining and retrieval algorithm is de-
signed to support the model and to improve the mining and retrieval accuracy.
The image querying is performed by integrating the posterior probabilities of
the transformed images for the discovered semantic concepts. Supported by
a solid statistical foundation, this approach enables mining and retrieval by
higher-order semantic indicants that are more reliable, hence improving the
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(a)

(b)

FIGURE 6.11: Retrieval performance comparisons between UFM and the
prototype system using image Im in Figure 6.8 as the query. (a) Images
returned by UFM (9 of the 16 images are relevant). (b) Images returned by
the prototype system (14 of the 16 images are relevant).
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FIGURE 6.12: Average precision comparisons between the two versions of
the prototype and UFM. Reprint from [243] c©2007 IEEE Signal Processing
Society Press and from [240] c©2004 IEEE Computer Society Press.
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mining and retrieval accuracy. The experimental evaluations on a database of
10,000 general-purpose images demonstrate the effectiveness and the promise
of the approach in general image data mining and retrieval.
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Chapter 7

A Multimodal Approach to Image
Data Mining and Concept Discovery

7.1 Introduction

This chapter gives an example on multimedia data mining by addressing the
automatic image annotation problem and its application to multimodal image
data mining and retrieval. Specifically, in this chapter, we propose a prob-
abilistic semantic model in which the visual features and the textual words
are connected via a hidden layer which constitutes the semantic concepts to
be discovered to explicitly exploit the synergy between the two modalities;
the association of visual features and the textual words is determined in a
Bayesian framework such that the confidence of the association can be pro-
vided; and extensive evaluations on a large-scale, visually and semantically
diverse image collection crawled from the Web are reported to evaluate the
prototype system based on the model. In the proposed probabilistic model,
a hidden concept layer which connects the visual features and the word layer
is discovered by fitting a generative model to the training images and anno-
tation words. An Expectation-Maximization (EM) based iterative learning
procedure is developed to determine the conditional probabilities of the vi-
sual features and the textual words given a hidden concept class. Based on
the discovered hidden concept layer and the corresponding conditional prob-
abilities, the image annotation and the text-to-image retrieval are performed
using the Bayesian framework. The evaluations of the prototype system on
17,000 images and 7,736 automatically extracted annotation words from the
crawled Web pages for multimodal image data mining and retrieval have in-
dicated that the model and the framework are superior to a state-of-the-art
peer system in the literature.

The rest of the chapter is organized as follows: Section 7.2 introduces the
motivations to this work and outlines the main contributions of this work.
Section 7.3 discusses the related work on image annotation and multimodal
image mining and retrieval. In Section 7.4 the proposed probabilistic seman-
tic model and the EM based learning procedure are described. Section 7.5
presents the Bayesian framework developed to support the multimodal image
data mining and retrieval. The acquisition of the training and testing data
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collected from the Web, and the experiments to evaluate the proposed ap-
proach against a state-of-the-art peer system in several aspects, are reported
in Section 7.6. Finally, this chapter is concluded in Section 7.7.

7.2 Background

Efficient access to multimedia database requires the ability to search and
organize multimedia information. In traditional image retrieval, users have
to provide examples of images that they are looking for. Similar images are
found based on the match of image features. Even though there have been
many studies on this traditional image retrieval paradigm, empirical studies
have shown that using image features solely to find similar images is usually
insufficient due to the notorious semantic gap between low-level features and
high-level semantic concepts [192]. As a step further to reduce this gap,
region based features (describing object level features), instead of raw features
of whole image, to represent the visual content of an image are proposed
[37, 212, 47].

On the other hand, it is well-observed that often imagery does not exist in
isolation; instead, typically there is rich collateral information co-existing with
image data in many applications. Examples include the Web, many domain-
archived image databases (in which there are annotations to images), and
even consumer photo collections. In order to further reduce the semantic gap,
recently multimodal approaches to image data mining and retrieval have been
proposed in the literature [251] to explicitly exploit the redundancy co-existing
in the collateral information to the images. In addition to the improved mining
and retrieval accuracy, a benefit for the multimodal approaches is the added
querying modalities. Users can query an image database either by imagery,
by a collateral information modality (e.g., text), or by any combination.

In this chapter, we propose a probabilistic semantic model and the cor-
responding learning procedure to address the problem of automatic image
annotation and show its application to multimodal image data mining and
retrieval. Specifically, we use the proposed probabilistic semantic model to
explicitly exploit the synergy between the different modalities of the imagery
and the collateral information. In this work, we only focus on a specific col-
lateral modality — text. The model may be generalized to incorporate other
collateral modalities. Consequently, the synergy here is explicitly represented
as a hidden layer between the imagery and the text modalities. This hid-
den layer constitutes the concepts to be discovered through a probabilistic
framework such that the confidence of the association can be provided. An
Expectation-Maximization (EM) based iterative learning procedure is devel-
oped to determine the conditional probabilities of the visual features and the
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words given a hidden concept class. Based on the discovered hidden concept
layer and the corresponding conditional probabilities, the image-to-text and
text-to-image retrievals are performed in a Bayesian framework.

In recent image data mining and retrieval literature, COREL data have
been extensively used to evaluate the performance [14, 70, 75, 136]. It has
been argued [217] that the COREL data are much easier to annotate and
retrieve due to their small number of concepts and small variations of the
visual content. In addition, the relative small number (1,000 to 5,000) of
the training images and test images typically used in the literature further
makes the problem easier and the evaluation less convictive. In order to truly
capture the difficulties in real scenarios such as Web image data mining and
retrieval and to demonstrate the robustness and the promise of the proposed
model and the framework in these challenging applications, we have evaluated
the prototype system on a collection of 17,000 images with the automatically
extracted textual annotations from various crawled Web pages. We have
shown that the proposed model and framework work well on this scale of a
very noisy image dataset and substantially outperform the state-of-the-art
peer system MBRM [75].

The specific contributions of this work include:

1. We propose a probabilistic semantic model in which the visual features
and textual words are connected via a hidden layer to constitute the
concepts to be discovered to explicitly exploit the synergy between the
two modalities. An EM based learning procedure is developed to fit the
model to the two modalities.

2. The association of visual features and textual words is determined in a
Bayesian framework such that the confidence of the association can be
provided.

3. Extensive evaluations on a large-scale collection of visually and seman-
tically diverse images crawled from the Web are performed to evaluate
the prototype system based on the model and the framework. The ex-
perimental results demonstrate the superiority and the promise of the
approach.

7.3 Related Work

A number of approaches have been proposed in the literature on automatic
image annotation [14, 70, 75, 136]. Different models and machine learning
techniques are developed to learn the correlation between image features and
textual words from the examples of annotated images and then apply the
learned correlation to predict words for unseen images. The co-occurrence
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model [156] collects the co-occurrence counts between words and image fea-
tures and uses them to predict annotated words for images. Barnard and
Duygulu et al [14, 70] improved the co-occurrence model by utilizing machine
translation models. The models are correspondence extensions to Hofmann et
al’s hierarchical clustering aspect model [102, 103, 101], and incorporate multi-
modality information. The models consider image annotation as a process of
translation from “visual language” to text and collect the co-occurrence infor-
mation by the estimation of the translation probabilities. The correspondence
between blobs and words are learned by using statistical translation models.
As noted by the authors [14], the performance of the models is strongly af-
fected by the quality of image segmentation. More sophisticated graphical
models, such as Latent Dirichlet Allocation (LDA) [22] and correspondence
LDA, have also been applied to the image annotation problem recently [21].
Specific reviews on using the graphical models for multimedia data mining
including image annotation are given in Section 3.6.

Another way to address automatic image annotation is to apply classifica-
tion approaches. The classification approaches treat each annotated word (or
each semantic category) as an independent class and create a different image
classification model for every word (or category). One representative work
of these approaches is the automatic linguistic indexing of pictures (ALIPS)
[136]. In ALIPS, the training image set is assumed well classified and each
category is modeled by using 2D multi-resolution hidden Markov models. The
image annotation is based on the nearest-neighbor classification and word oc-
currence counting, while the correspondence between the visual content and
the annotation words is not exploited. In addition, the assumption made in
ALIPS that the annotation words are semantically exclusive is not valid in
nature.

Recently, relevance language models [75] have been successfully applied to
automatic image annotation. The essential idea is to first find annotated
images that are similar to a test image and then use the words shared by the
annotations of the similar images to annotate the test image. One model in
this category is the Multiple-Bernoulli Relevance Model (MBRM) [75], which
is based on the Continuous-space Relevance Model (CRM) [134]. In MBRM,
the word probabilities are estimated using a multiple Bernoulli model and
the image block feature probabilities are estimated using a non-parametric
kernel density estimate. The reported experiments show that the MBRM
model outperforms the previous CRM model, which assumes that annotation
words for any given image follow a multinomial distribution and applies image
segmentation to obtain blobs for annotation.

It has been noted that in many cases both images and word-based docu-
ments are of interest to users’ querying needs, such as in the Web search en-
vironment. In these scenarios, multimodal image data mining and retrieval,
i.e., leveraging the collected textual information to improve image mining
and retrieval and to enhance users’ querying modalities, are proven to be very
promising. Studies have been reported on this problem. Chang et al [40] have
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applied the Bayes Point Machine to associate words and images to support
multimodal image mining and retrieval. In [252], latent semantic indexing is
used together with both textual and visual features to extract the underlying
semantic structures of Web documents. Improvement of the mining and re-
trieval performance is reported, attributing to the synergy of both modalities.

7.4 Probabilistic Semantic Model

To achieve automatic image annotation as well as multimodal image data
mining and retrieval, a probabilistic semantic model is proposed for the train-
ing imagery and the associated textual word annotation dataset. The prob-
abilistic semantic model is developed by the EM technique to determine the
hidden layer connecting image features and textual words, which constitutes
the semantic concepts to be discovered to explicitly exploit the synergy be-
tween the imagery and text.

7.4.1 Probabilistically Annotated Image Model

First, a word about notation: fi, i ∈ [1, N ] denotes the visual feature vec-
tor of images in the training database, where N is the size of the image
database. wj , j ∈ [1,M ] denotes the distinct textual words in the training
annotation word set, where M is the size of annotation vocabulary in the
training database.

In the probabilistic model, we assume the visual features of images in the
database, fi = [f1

i , f
2
i , . . . , f

L
i ], i ∈ [1, N ], are known i.i.d. samples from an

unknown distribution. The dimension of the visual feature is L. We also
assume that the specific visual feature annotation word pairs (fi, w

j), i ∈
[1, N ], j ∈ [1,M ] are known i.i.d. samples from an unknown distribution.
Furthermore, we assume that these samples are associated with an unobserved
semantic concept variable z ∈ Z = {z1, . . . , zK}. Each observation of one
visual feature f ∈ F = {fi, f2, . . . , fN} belongs to one or more concept classes
zk, and each observation of one word w ∈ V = {w1, w2, . . . , wM} in one image
fi belongs to one concept class. To simplify the model, we have two more
assumptions. First, the observation pairs (fi, w

j) are generated independently.
Second, the pairs of random variables (fi, w

j) are conditionally independent
given the respective hidden concept zk,

P (fi, w
j |zk) = pF(fi|zk)PV(wj |zk) (7.1)

The visual feature and word distribution are treated as a randomized data
generation process, described as follows:

• Choose a concept with probability PZ(zk);
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FIGURE 7.1: Graphic representation of the model proposed for the random-
ized data generation for exploiting the synergy between imagery and text.

• Select a visual feature fi ∈ F with probability PF(fi|zk); and

• Select a textual word wj ∈ V with probability PV(wj |zk).

As a result, one obtains an observed pair (fi, w
j), while the concept variable

zk is discarded. The graphic representation of this model is depicted in Figure
7.1.

Translating this process into a joint probability model results in the expres-
sion

P (fi, w
j) = P (wj)P (fi|wj)

= P (wj)
K∑

k=1

PF(fi|zk)P (zk|wj) (7.2)

Inverting the conditional probability P (zk|wj) in Equation 7.2 with the ap-
plication of Bayes’ rule results in

P (fi, w
j) =

K∑

k=1

PZ(zk)PF(fi|zk)PV(wj |zk) (7.3)

The mixture of Gaussian [60] is assumed for the feature-concept conditional
probability PF(•|Z). In other words, the visual features are generated from
K Gaussian distributions, each one corresponding to a zk. For a specific
semantic concept variable zk, the conditional pdf of visual feature fi is

pF(fi|zk) =
1

(2π)L/2|∑k |1/2
e−

1

2
(fi−µk)T

P−1

k
(fi−µk) (7.4)
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where
∑

k and µk are the covariance matrix and mean of the visual fea-
tures belonging to zk, respectively. The word-concept conditional probabili-
ties PV(•|Z), i.e., PV(wj |zk) for k ∈ [1,K], are estimated through fitting the
probabilistic model to the training set.

Following the likelihood principle, one determines PF(fi|zk) by the maxi-
mization of the log-likelihood function

log

N∏

i=1

pF(fi|Z)ui =

N∑

i=1

ui log(

K∑

k=1

PZ(zk)pF(fi|zk)) (7.5)

where ui is the number of the annotation words for image fi. Similarly, PZ(zk)
and PV(wj |zk) can be determined by the maximization of the log-likelihood
function

L = logP (F, V ) =

N∑

i=1

M∑

j=1

n(wji ) logP (fi, w
j) (7.6)

where n(wji ) denotes the weight of annotation word wj , i.e., the occurrence
frequency, for image fi.

7.4.2 EM Based Procedure for Model Fitting

From Equations 7.5, 7.6, and 7.2, we derive that the model is a statistical
mixture model [150], which can be resolved by applying the EM technique
[58]. The EM alternates in two steps: (i) an expectation (E) step where
the posterior probabilities are computed for the hidden variable zk, based on
the current estimates of the parameters; and (ii) a maximization (M) step,
where parameters are updated to maximize the expectation of the complete-
data likelihood logP (F, V, Z) given the posterior probabilities computed in
the previous E-step. Thus, the probabilities can be iteratively determined by
fitting the model to the training image database and the associated annota-
tions.

Applying Bayes’ rule to Equation 7.3, we determine the posterior probabil-
ity for zk under fi and (fi, w

j):

p(zk|fi) =
PZ(zk)pF(fi|zk)∑K
t=1 PZ(zt)pF(fi|zt)

(7.7)

P (zk|fi, wj) =
PZ(zk)PZ(fi|zk)PV(wj |zk)∑K
t=1 PZ(zt)PF(fi|zt)PV(wj |zt)

(7.8)

The expectation of the complete-data likelihood logP (F, V, Z) for the esti-
mated P (Z|F, V ) derived from Equation 7.8 is

K∑

(i,j)=1

N∑

i=1

M∑

j=1

n(wji ) log [PZ(zi,j)pF(fi|zi,j)PV(wj |zi,j)]P (Z|F, V ) (7.9)
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where

P (Z|F, V ) =

N∏

s=1

M∏

t=1

P (zs,t|fs, wt)

In Equation 7.9 the notation zi,j is the concept variable that associates with
the feature-word pair (fi, w

j). In other words, (fi, w
j) belongs to concept zt

where t = (i, j).
Similarly, the expectation of the likelihood logP (F,Z) for the estimated

P (Z|F ) derived from Equation 7.7 is

K∑

k=1

N∑

i=1

log(PZ(zk)pF(fi|zk))p(zk|fi) (7.10)

Maximizing Equations 7.9 and 7.10 with Lagrange multipliers to PZ(zl),
pF(fu|zl), and PV(wv|zl), respectively, under the following normalization con-
straints

K∑

k=1

PZ(zk) = 1,

K∑

k=1

P (zk|fi, wj) = 1 (7.11)

for any fi, w
j , and zl, the parameters are determined as

µk =

∑N
i=1 uifip(zk|fi)∑N
s=1 usp(zk|fs)

(7.12)

∑

k

=

∑N
i=1 uip(zk|fi)(fi − µk)(fi − µk)T∑N

s=1 usp(zk|fs)
(7.13)

PZ(zk) =

∑M
j=1

∑N
i=1 u(w

j
i )P (zk|fi, wj)

∑M
j=1

∑N
i=1 n(wji )

(7.14)

PV(wj |zk) =

∑N
i=1 n(wji )P (zk|fi, wj)∑M

u=1

∑N
v=1 n(wuv )P (zk|fv, wu)

(7.15)

Alternating Equations 7.7 and 7.8 with Equations 7.12–7.15 defines a conver-
gent procedure to a local maximum of the expectation in Equations 7.9 and
7.10.

7.4.3 Estimating the Number of Concepts

The number of concepts, K, must be determined in advance for the EM
model fitting. Ideally, we intend to select the value of K that best agrees with
the number of the semantic classes in the training set. One readily available
notion of the fitting goodness is the log-likelihood. Given this indicator, we
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can apply the Minimum Description Length (MDL) principle [175] to select
among values of K. This can be done as follows [175]: choose K to maximize

log(P (F, V ))− mK

2
log(MN) (7.16)

where the first term is expressed in Equation 7.6 and mK is the number of
free parameters needed for a model with K mixture components. In our
probabilistic model, we have

mK = (K − 1) +K(M − 1) +K(N − 1) + L2 = K(M +N − 1) + L2 − 1

As a consequence of this principle, when models with different values of K
fit the data equally well, the simpler model is selected. In the experimen-
tal database reported in Section 7.6, K is determined through maximizing
Equation 7.16.

7.5 Model Based Image Annotation and Multimodal Im-
age Mining and Retrieval

After the EM based iterative procedure converges, the model fitting to the
training set is obtained. The image annotation and multimodal image mining
and retrieval are conducted in a Bayesian framework with the determined
PZ(zk), pF(fi|zk), and PV(wj |zk).

7.5.1 Image Annotation and Image-to-Text Querying

The objective of image annotation is to return words which best reflect
the semantics of the visual content of images. In this proposed approach, we
use a joint distribution to model the probability of an event that a word wj

belonging to semantic concept zk is an annotation word of image fi. Observing
Equation 7.1, the joint probability is

P (wj , zk, fi) = PZ(Zk)pF(fi|zk)PV(wj |zk) (7.17)

Through applying Bayes’ law and the integration over PZ(zk), we obtain the
following expression:

P (wj |fi) =

∫
PV(wj |z)p(z|fi)dz

=

∫
PV(wj |z)pF(fi|z)P (z)

p(fi)
dz

= Ez{
PV(wj |z)pF(fi|z)

p(fi)
} (7.18)
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where

p(fi) =

∫
pF(fi|z)PZ(z)dz = Ez{pF(fi|z)} (7.19)

In the above equations Ez{•} denotes the expectation over P (zk), the proba-
bility of semantic concept variables. Equation 7.18 provides a principled way
to determine the probability of word wj for annotating image fi. With the
combination of Equations 7.18 and 7.19, the automatic image annotation can
be solved fully in the Bayesian framework.

In practice, we derive an approximation of the expectation in Equation 7.18
by utilizing the Monte Carlo sampling [79] technique. Applying Monte Carlo
integration to Equation 7.18 derives

P (wj |fi) ≈
∑K

k=1 PV(wj |zk)pF(fi|zk)∑K
h=1 pF(fi|zh)

=

K∑

k=1

PV(wj |zk)xk (7.20)

where xk = pF(fi|zk)
P

K
h=1

pF(fi|zh)
. The words with the top highest P (wj |fi) are

returned to annotate the image. Given this image annotation scheme, the
image-to-text querying may be performed by retrieving documents for the
returned words based on the traditional text retrieval techniques.

7.5.2 Text-to-Image Querying

The traditional text-based image retrieval systems, e.g., Google image search,
solely use textual information to index images. It is well-known that this
approach fails to achieve satisfactory image retrieval, which actually has mo-
tivated the content based image indexing research. Based on the model ob-
tained in Section 7.4 to explicitly exploit the synergy between imagery and
text, we here develop an alternative and much more effective approach using
the Bayesian framework to image data mining and retrieval given a text query.

Similar to the derivation in Section 7.5.1, we retrieve images for word queries
by determining the conditional probability P (fi|wj):

P (fi|wj) =

∫
PF(fi|z)P (z|wj)dz

=

∫
PV(wj |z)pF(fi|z)P (z)

P (wj)
dz

= Ez{
PV(wj |z)pF(fi|z)

P (wj)
} (7.21)
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FIGURE 7.2: The architecture of the prototype system.

The expectation can be estimated as follows:

P (fi|wj) ≈
∑K

k=1 PV(wj |zk)pF(fi|zk)∑K
h=1 PV(wj |zh)

=

K∑

k=1

pF(fi|zk)yk (7.22)

where yk = PV(wj|zk)
P

h
PV(wj |zh) . The images in the database with the top highest

P (fi|wj) are returned as the querying result for each query word.

7.6 Experiments

We have implemented the approach in a prototype system. The architecture
of the prototype system is illustrated in Figure 7.2. The system supports both
image-to-text (i.e., image annotation) and text-to-image queryings.
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FIGURE 7.3: An example of image and annotation word pairs in the gener-
ated database. The number following each word is the corresponding weight
of the word.

7.6.1 Dataset and Feature Sets

It has been noted that the datasets used in the recent automatic image
annotation systems [14, 70, 75, 136] fail to capture the difficulties inherent in
many real image databases. Two issues are taken into the consideration in the
design of the experiments reported in this section. First, the commonly used
COREL database is much easier for image annotation and retrieval due to its
limited semantics conveyed and small variations of the visual content. Second,
the typical small scales of the datasets reported in the recent literature are
far away from being realistic in all the real-world applications. To address
these issues, we decide not to use the COREL database in the evaluation
of the prototype system; instead, we evaluate the system on a collection of
a large-scale real-world dataset automatically crawled from the Web. The
web pages crawled are from the Yahoo! photos website; then the images
and the surrounding text describing the images’ content are extracted from
the blocks containing the images by using the VIPS algorithm [32]. The
surrounding text is processed using the standard text processing techniques
to obtain the annotation words. Apart from the images and the annotation
words, the weight of each annotation word for the images is computed by
using a scheme incorporating TF, IDF, and the tag information in VIPS, and
is normalized to range (0,10]. The image-annotation word pairs are stemmed
and manually cleaned before using as the training database for the model
fitting and testing. The data collection consists of 17,000 images and 7,736
stemmed annotation words. Among them, 12,000 images are used as the
training set and the remaining 5,000 images are used for the testing purpose.
Compared with images in COREL, the images in this set are more diverse
both on semantics and on visual appearance, which reflects the true nature of
image search in many real applications. Figure 7.3 shows an image example
with the associated annotation words in the generated database.

The focus of this chapter is not on image feature selection and the proposed
approach is independent of any visual features. For implementation simplicity
and easy comparison purposes, similar features used in [75] are used in the
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prototype system. Specifically, a visual feature is a 36-dimensional vector,
consisting of 24 color features (auto correlogram computed over 8 quantized
colors and 3 Manhattan Distances) and 12 texture features (Gabor energy
computed over 3 scales and 4 orientations).

7.6.2 Evaluation Metrics

To evaluate the effectiveness and the promise of the prototype system for
multimodal image data mining and retrieval, the following performance mea-
sures are defined:

• Hit-Rate3 (HR3): the average rate of at least one word in the ground
truth of a test image is returned in the top 3 returned words for the test
set.

• Complete-Length (CL): the average minimum length of the returned
words which contain all the ground truth words for a test image for the
test set.

• Single-Word-Query-Precision (SWQP(n)): the average rate of the rele-
vant images (here “relevant” means that the ground truth annotation
of this image contains the query word) in the top n returned images for
a single word query for the test set.

HR3 and CL measure the accuracy of image annotation (or the image-to-
text querying); the higher the HR3, and/or the lower the CL, the better the
annotation accuracy. SWQP(n) measures the precision of the text-to-image
querying; the higher the SWQP(n), the better the text-to-image querying
precision.

Furthermore, we also measure the image annotation performance by us-
ing the annotation recall and precision defined in [75]. recall = B

C and

precision = B
A , where A is the number of the images automatically anno-

tated with a given word in the top 10 returned word list; B is the number of
the images correctly annotated with that word in the top-10-returned-word
list; and C is the number of the images having that word in the ground truth
annotation. An ideal image annotation system would have a high average
annotation recall and annotation precision simultaneously.

7.6.3 Results of Automatic Image Annotation

The interface of the prototype system for automatic image annotation is
shown in Figure 7.4. In this system, words and their confidence scores (con-
ditional probabilities) are returned to annotate images upon users’ querying.

Applying the method of estimating the number of the hidden concepts
described in Section 7.4.3 to the training set, the number of the concepts
is determined to be 262. Compared with the number of the images in the
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Table 7.1: Comparisons between the examples of the automatic annotations
generated by the proposed prototype system and MBRM. Reprint from [246]
c©2006 Springer-Verlag Press and from [245] c©2005 IEEE Computer Society
Press.

Systems MBRM Our Prototype

animal, water, wolf,
house, tiger

wolf, winter, wild, ani-
mal, stone

male-face, hair, people,
bear, sky

male-face, people, hair,
man, monologue

bird, grass, leopard, sail,
cuckoo

bird, cuckoo, yellow,
sand, sky

flower, red, tree,
meadow, outdoor

flower, red, azalea, leaf,
landscape

desert, beach, mummy,
building, church

pyramid, Egypt, desert,
mummy, beach
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FIGURE 7.4: The interface of the automatic image annotation prototype.

training set, 12,000, and the number of the stemmed and cleaned annotation
words, 7,736, the number of the semantic concept variables is far less. In terms
of the computational complexity, the model fitting is computation-intensive;
it takes 45 hours to fit the model to the training set on a Pentium IV 2.3 GHz
computer with 1 GB memory. Fortunately, this process is performed offline
and only once. For online image annotation and single-word image querying,
the response time is acceptable (less than 1 second).

To show the effectiveness and the promise of the probabilistic model in
image annotation, we have compared the accuracy of the proposed method
with that of MBRM [75]. In MBRM, the word probabilities are estimated
using a multiple Bernoulli model, and no association layer between visual
features and words is used. We compare the proposed approach with MBRM
because MBRM reflects the performance of the state-of-the-art automatic
image annotation research. In addition, since the same image visual features
are used in MBRM, a fair comparison of the performance is expected. Table
7.1 shows examples of the automatic annotation obtained by the proposed
prototype system and MBRM on the test image set. Here the top 5 words
(according to probability) are taken as the automatic annotation of an image.
The performance comparison demonstrated in the table clearly indicates that
the proposed system performs better than MBRM.

The systematic evaluation results are shown for the test set in Table 7.2.
The results are reported for all (7,736) words in the database. The proposed
approach clearly outperforms MBRM. As is shown, the average recall im-
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Table 7.2: Performance comparison on the task of automatic image annotation
on the test set. Reprint from [246] c©2006 Springer-Verlag Press and from
[245] c©2005 IEEE Computer Society Press.

Models MBRM Proposed Model
HR3 0.56 0.83
CL 1265 574

#words with recall > 0 3295 6078
Results on all 7736 words

Average Per-word Recall 0.19 0.28
Average Per-word Precision 0.16 0.27

proves by 48% and the average precision improves by 69%. The multiple
Bernoulli generation of the words in MBRM is artificial and the association
of the words and features is noisy. On the contrary, in the proposed model
no explicit word distribution is assumed, and the synergy between the visual
features and the words exploited by the hidden concept variables reduces the
noise substantially. We believe that these reasons account for the better per-
formance of the proposed approach. We note that certain returned words
with top rank from the proposed system for a given image query are found
semantically relevant by subjective examinations, although they are not con-
tained in the ground truth annotation of the image. We did not count these
words in the computation of the performance in Table 7.2. Consequently, the
HR3, recall, and precision in the table are actually underestimated while the
CL is overestimated for the proposed system.

7.6.4 Results of Single Word Text-to-Image Querying

The single word text-to-image querying results on a set of 500 randomly
selected query words are shown in Figure 7.5. The average SWQP (2, 5,
10, 15, 20) values of the proposed system and those of MBRM are reported.
A returned image is considered as relevant to the single word query if this
word is contained in the ground truth annotation of the image. It is shown
that the performance of the proposed probabilistic model has higher over-
all SWQP than that of MBRM. It is also noticeable that when the scope of
the returned images increases, the SWQP(n) in the proposed system attenu-
ates more gracefully than that in MBRM, which is another advantage of the
proposed model.

7.6.5 Results of Image-to-Image Querying

From Equations 7.18 and 7.21, it is clear that if we have an image query
qf , based on Equation 7.18, we immediately generate the top m annotation
words based on the probability P (wj |qf ). For each of the m annotation words,
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FIGURE 7.5: Average SWQP(n) comparisons between MBRM and the pro-
posed approach. Reprint from [246] c©2006 Springer-Verlag Press and from
[245] c©2005 IEEE Computer Society Press.
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based on Equation 7.21, we immediately generate an image list based on the
probability P (fi|wj). Finally, we merge the m ranked lists as the final re-
trieval result based on the posterior probability P (fi|wj)P (wj |qf ). Clearly,
for a general query consisting of words and images, each component of the
query may be individually processed and the final retrieval may be obtained
by merging all the retrieved lists together based on the posterior probability.
For reference purpose, we call this general indexing and retrieval method UP-
MIR, standing for Unified Posterior based Multimedia Information Retrieval.
For the image-to-text annotation and single word text-to-image retrieval, we
have reported the evaluations of UPMIR against MBRM. Since the originally
reported MBRM method did not include the image-to-image scenario, we re-
port the image-to-image evaluations for UPMIR against UFM [47]. Figures
7.6 and 7.7 document the averaged precision and recall as the performance
comparison with UFM using the image-to-image querying mode for the 600
query images on the same evaluation dataset. It is clear that with the pure
image querying mode, UPMIR performs at least the same as UFM and in
most cases better than UFM (e.g., with the top 2 images retrieved, UPMIR
has a 10% better retrieval precision than UFM). To further demonstrate that
UPMIR is also more efficient than UFM in image retrieval, we note that UP-
MIR and UFM are both implemented and evaluated in the same environment
of a Pentium IV 2.26 GHz CPU with 1 GB memory. Given the scale of 17,000
images and 7,736 word vocabulary, the average response time for each query
for UPMIR is 0.936 second, while that for UFM is 9.14 seconds. Clearly, UP-
MIR beats UFM substantially. This is due to the fact that UPMIR has much
lower complexity than UFM, as UFM is region-based and for each compari-
son between two images UFM requires a combinatorial complexity, while for
UPMIR it is only a constant complexity.

7.6.6 Results of Performance Comparisons with Pure Text
Indexing Methods

Since the UPMIR performance is biased toward the text component query-
ing, we intend to experimentally justify and demonstrate that UPMIR still
offers a better image retrieval than a pure text indexing scheme. For this
purpose, we manually evaluate UPMIR using the pure text querying mode
(i.e., single word text-to-image querying mode) against Google and Yahoo!.
We randomly select 20 words out of the 7,736 word vocabulary and use each
of them as a pure text query to pose to UPMIR, Google image search, and
Yahoo! image search, respectively. We manually examine the precisions. Fig-
ure 7.8 clearly demonstrates that UPMIR outperforms Google and Yahoo!
for different numbers of the top images retrieved. Since we do not have ac-
cess to Google or Yahoo! image databases, though the comparing databases
are different in size and content, this is the best we can do to compare their
performances. The purpose is to show that a multimodal image mining and
retrieval system such as UPMIR still has clear advantages for image retrieval
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FIGURE 7.6: Precision comparison between UPMIR and UFM.

FIGURE 7.7: Recall comparison between UPMIR and UFM.
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FIGURE 7.8: Average precision comparison among UPMIR, Google Image
Search, and Yahoo! Image Search.

over a pure text based indexing system.

7.7 Summary

In this chapter, we have developed a probabilistic semantic model for au-
tomatic image annotation and multimodal image data mining and retrieval.
Instead of assuming artificial distributions of the annotation words and the
unreliable association evidence used in many existing approaches, we assume
a hidden concept layer to generate and connect visual features and annotation
words. The hidden concept variables are discovered and corresponding proba-
bilities are determined by fitting the generative model to the training set. The
model fitting is performed in the criterion of MLE and an EM based itera-
tive learning procedure is developed to approach a local maximum. Based on
the model obtained, the image-to-text and text-to-image queryings are con-
ducted in a Bayesian framework, which is adaptive to the dataset and has a
clear interpretation of the confidence measure. The proposed model is shown
to be promising for image annotation and multimodal image data mining and
retrieval; this is demonstrated by the evaluations of the prototype system on
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17,000 images and 7,736 textual annotation words automatically extracted
from the crawled Web pages. In comparison with a state-of-the-art image an-
notation system, MBRM, and a state-of-the-art image retrieval system, UFM,
it shows the higher reliability and the superior effectiveness of the proposed
model and the querying framework, given the noisy and diverse semantics and
visual variations of the data we have used.
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Chapter 8

Concept Discovery and Mining in a
Video Database

8.1 Introduction

In the last two chapters, we have shown examples of concept discovery and
mining in an image database in which we use generative models to discover
the concepts in the database. In this chapter, we switch the focus to a video
database; in addition, we use a combination of the generative models and
the discriminative models to discover the concepts in a video database. In
particular, we focus on the natural database querying problem in the context
of video — the Web video search — and show how concept discovery and
mining can help in delivering an effective solution to the Web video search.

Building a video search engine on the Web is a very challenging problem.
Compared with the Web page search, video search faces unique challenges
(such as a high volume of data for each video and the existence of multimodal
information including meta data, visual content, audio, and closed caption).
In this chapter, we investigate several promising approaches to boosting the
search relevance of a large-scale video search engine on the Web. Specifically,
we describe a developed, specialized video categorization framework which
combines multiple classifiers based on different modalities; by learning users’
querying histories and clicking logs, we propose an automatic query profile
generation technique and apply this profile to query categorization; based
on this scheme, a highly scalable prototype system is developed, which inte-
grates the online query categorization and offline video categorization. The
naive Bayes with a mixture of multinomials, the maximum entropy, and the
support vector machine categorization methods and the profile learning tech-
nique are evaluated on a large-scale set of video data on the Web. The eval-
uation of the developed system and user study has indicated that the joint
categorization of queries and video data boosts the video search relevance
and user search experience. The high efficiency of the proposed approaches
is also demonstrated by the good responsiveness of the prototype system for
the video search engine on the Web.

The rest of the chapter is organized as follows. Section 8.2 introduces the
background and motivation of this research on video search based concept
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discovery and mining in the video data from the Web. Section 8.3 reviews
the related work from the literature. In Section 8.4 the video categoriza-
tion framework based on the meta data and content features is described.
Three classifiers we have developed are introduced in this section. Section
8.5 presents the query profile generation technique and the application of the
technique to query categorization. The implementation issues of the system,
the characteristics of the training and testing data set, the experiments to
evaluate the proposed approach, and the comparison study of the classifiers,
both on recall/precision and on computation complexity, are reported in Sec-
tion 8.6. Finally, this chapter is concluded in Section 8.7.

8.2 Background

The task of a video search engine on the Web is to search a large amount of
video clips on the Web for users’ queries. To develop a successful video search
engine, several factors are essential. First, the coverage of the searchable video
clips should be extremely large such that most video clips on the Web can
be queried. Second, the relevance of the search results should be sufficiently
high to be useful and to be personalized to individual users. Third, the search
system must be highly scalable, and the response time of users’ queries should
not be dependent upon (at least not linearly dependent upon) the size of the
video set. Compared with already successful Web page search technologies,
video search technology on the Web is still in its infant stage. Although video
search and Web page search share many basic characteristics of information
retrieval and data mining, there are several unique difficulties of video search
(as well as multimedia search).

One difficulty is that the semantics of a video on the Web is typically not
explicitly labeled such that it is very difficult to be precisely indexed. On the
other hand, video is much more content-rich than other media in that it con-
tains additional information such as visual, audio, and closed caption. Though
content-based video (multimedia) retrieval has been under intensive research
for more than a decade [98] and a large number of features [99, 190, 185] and
similarity metrics have been proposed, the success is rather limited due to the
notorious semantic gap [192]. On the other hand, for video data mining and
retrieval, the query-by-text and recently the query-by-concept [10] paradigms
have proven very powerful and convenient for users to search the content,
while the query-by-example paradigm used has not shown clear attractive-
ness to general users for the video search scenario. To reduce the semantic
gap, multimedia data mining using multimodal information (e.g., text, audio,
video, and image) has been proposed and shown to be very promising [245].
The objective of this research is to develop a practically usable video search
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engine on the Web which can meet the above requirements.
By studying the query logs of a video search engine, we have found that

most Web users search for video clips falling in certain categories (e.g., News,
Movie, Music) but they typically just input very short query words (more
than 90% of the queries contain fewer than three words). For example, users
searching for “hurricane katrina” actually look for news video clips about the
recent Hurricane Katrina instead of education videos about the generation
of hurricanes instructed by Katrina; users searching for “Madonna” are most
likely interested in music video clips of the pop star Madonna, instead of
some funny videos of a person whose name is Madonna. The motivation of
this study is to infer the categories of users’ queries and to use these categories
further to guide or constrain the video search. In addition, the video clips to
be searched are automatically categorized. In this way, the returned video
clips fit users’ querying needs better. This can be done by utilizing the well-
labeled training video data and users’ querying histories to boost the search
relevance. This chapter proposes and evaluates an approach to the problem
by jointly categorizing video clips and users’ queries automatically.

Specifically, in this chapter,

1. we describe a specialized video categorization framework which com-
bines multiple classifiers based on both meta data and content features;
three categorization learning methods are developed and evaluated, in-
cluding the naive Bayes classifier with a mixture of multinomials [173],
the maximum entropy classifier [159], and the support vector machine
[207] classifier;

2. by learning users’ querying histories and clicking logs, we propose an
automatic query profile generation technique and apply the profile to
query categorization; and finally,

3. a highly scalable prototype system is developed, which integrates the
online query categorization and offline video categorization; different
classifiers and the profile learning technique are compared and the per-
formance differences are studied; and the prototype system is extensively
evaluated on a large-scale set of hundreds of queries and millions of video
clips on the Web and shows significant improvement on search accuracy.

8.3 Related Work

The video classification concerned in this chapter is in the context of a
video search engine. It belongs to a wide input domain video classification. A
wide domain has an unlimited and unpredictable variability in its appearance
even for the same semantic meaning [192]; such domains include broadcasting
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news video, sports video, mainstream entertainment video, etc. This video
classification problem has been under intensive research [61, 204] since the
mid-1990s. One of the first attempts was the work by Fischer et al [78].
They present a three-step approach to classify news, commercial, cartoon,
and sports video clips. The first step is collecting basic acoustic and visual
statistics; the second step attempts to derive style attributes (SA) which in-
clude scene length, camera motion intensity, caption detection, etc; finally, the
distributions of these SAs are used in the discrimination of the video genres.
While the approach is simple, the classification is based on ad hoc rules; thus,
the system is not robust and cannot be generalized well. Most of the existing
video classification work focuses on the low-level feature representation of the
video [112, 111], and little work has integrated the video classification into a
video search engine and has investigated the impacts to the search relevance.

How to provide more context to user queries to develop a personalized search
experience is another hot topic in the search engine research. Many researchers
address this problem from the information filtering [218, 39] and intelligent
agent [165] perspectives. Most of them recommend documents using the user
profiles [6]. However, the technique we investigate is to retrieve categories of
interest for a user query and to guide the user to the category of video clips,
matching the user’s querying interests. Although capturing users’ querying
needs for multimedia content is much more complicated than for the general
Web search, user research shows that text based queries still are more accurate
and convenient than the queries based on other formats (e.g., queries based on
examples, queries based on sketches) for users to search multimedia content
on the Web. No related work is reported yet on users’ query classification
without users’ explicit awareness for multimedia search applications on the
Web.

Considering that video clips have rich content cues to explore for classifica-
tion and retrieval, many aggregation approaches have been developed to com-
bine the search results from multiple modalities. Lin and Hauptmann [139]
have proposed a meta-classification combination strategy. An SVM based
meta-classifier is constructed by concatenating the outputs from an ensemble
of unimodal classifiers. Comparing the probability-based approaches [127],
this approach delivers superior results. More recently, a query-class dependent
weighting scheme has been proposed for the combination of video retrieval re-
sults [224] from multiple modalities. In this approach, different weights are
learned from users’ queries for different modalities by modeling the prob-
lem as a maximum likelihood estimation problem and using the Expectation-
Maximization (EM) technique to solve the problem. The intuition is simple,
but how good the EM learning fits the shots to the hidden variables is not
clear, and the performance is sensitive to the accuracy of query classification.
What is more important is that the above two approaches are evaluated on
only a few hundred video clips. Due to their high computational complex-
ity, they are not able to scale up to handle millions of queries every day on
tens of millions of video clips that a video search engine for the Web faces.
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Wu et al have proposed a two-step optimal multimodal fusion approach in
the context of the video classification task [222, 223]. In this approach, first
a set of statistically independent modalities is found from the raw features
extracted from multiple media sources by using PCA, ICA, and independent
modality grouping (IMG), consecutively. Then a cascade of SVM classifiers
is used to determine the optimal combination of the individual modalities,
which is called super-kernel fusion. The non-linear fusion is achieved by ex-
ploiting the kernel nature of SVM and an improved classification accuracy is
reported in the experiments. Although in this approach the interdependency
among features is exploited and the non-linear fusion is employed, the factors
that affect the fusion performance substantially (i.e., modality independence,
curse of dimensionality, and fusion-model complexity) are manually tuned.

Since 2001, the “TRECVID” [108] has been a benchmark for evaluating
video retrieval systems. The search topics in “TRECVID” contain not only
text but also possible examples (including video, audio, and images) which
represent the user’s information need. We note that some benchmark metrics
in “TRECVID” are not relevant to the video search on the Web because the
quality and content of video clips on the Web are much more heterogeneous
than the video corpus of “TRECVID”; in addition, the Web search querying
form is different from the querying forms used in “TRECVID”. For example,
the text query form to search video clips on the Web is intuitive and powerful
for users, while query-be-example has not been widely accepted for video
search engines on the Web.

The objective of the work described in this chapter is to develop a frame-
work of joint categorization of queries and video clips for Web-based video
search by mining the multi-modalities of video contents on the Web for con-
cept discovery. The very large scale of Web-based video search and the high
efficiency constraint of joint query and video categorization have not been
seriously addressed in the literature before.

8.4 Video Categorization

To classify videos, we use multimodal features (i.e., text features and video
content features) and apply multiple classification models for evaluation and
comparison. Collecting the meta data and extracting the video content fea-
tures from the training video data, we train two classifiers, one for each modal-
ity, respectively. Different classification models are applied and modifications
on these models are conducted to adapt to the specific task of video search.
The system architecture of the framework of the joint categorization of queries
and video clips we have proposed is shown in Figure 8.1.
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FIGURE 8.1: The architecture of the framework of the joint categorization
of queries and video clips. Reprint from [239] c©2006 ACM Press.
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8.4.1 Naive Bayes Classifier

Naive Bayes [66] is a well-studied classification technique and is studied
in Section 3.2.4. As discussed in Section 3.2.4, despite the strong indepen-
dence assumptions, its attractiveness comes from the low computational cost,
relatively low memory consumption, and the ability to handle heterogeneous
features and multiple categories. In the video categorization with collateral
textual data, the distribution of the words for each textual field of the video’s
meta data is modeled as a multinomial distribution. A textual field is treated
as a sequence of words, and it is assumed that every word position is gen-
erated independently of each other. Consequently, each category has a fixed
set of multinomial parameters. The parameter vector for a category c is−→
θ c = {θc1, θc2, . . . , θcn}, where n is the size of the vocabulary, and θci is the
probability that word i occurs in that category with the constraint

∑
i θci = 1.

The likelihood of a video passage is a product of the parameters of the words
that appear in the passage:

p(o|−→θ c) =
(
∑

i

∑
k wkti,k)!∏

i,k(witi,k)!

∏

i,k

(θci)
wkti,k (8.1)

where ti,k is the frequency count of word i in the field k, whose weight is wk, of
video object o. Here we take into consideration of the field importance weight
wk because it is observed from the video clips on the Web that different
fields of the video meta data have different contributions to describing the
semantics of the video clips on the aspects of precision and discrimination
capability. This adjustment of the model improves the video categorization
accuracy, as demonstrated in the experiments reported in Section 8.6. By

assigning a prior distribution over the set of classes, p(
−→
θ c), we arrive at the

minimum-error categorization rule [66] which selects the category with the
largest posterior probability,

l(o) = argmax
c

[log p(
−→
θ c) +

∑

i

∑

k

wkti,k log θci]

= argmax
c

[bc +
∑

i

∑

k

wkti,kzci] (8.2)

where bc is the threshold term and zci is the category c weight for word i.
These values are natural parameters for the decision boundary. The parame-

ters
−→
θ c are estimated from the training data. This is done in the prototype

system by selecting a Dirichlet prior and taking the expectation of the parame-
ter with respect to the posterior. This gives us a simple form for the estimate
of the multinomial parameter, which involves the field-weighted number of
times word i appearing in the passages of the video clips belonging to class c
(
∑

k wkNi,k,c, where Ni,k,c is the number of the times word i appears in the
field k of the video clips in category c), divided by the total field-weighted
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number of word occurrences in field k of class c (
∑

k wkNk,c). For word i,
a prior adds in αi imagined occurrences so that the estimate is a smoothed
version of the maximum likelihood estimate:

−→
θ ci =

∑
k wkNi,k,c + αi∑
k wkNk,c + α

(8.3)

where α denotes the sum of αi. While αi can be set differently for each word,
we follow the common practice by setting αi = 1 for all words.

In video classification based on the visual content, each feature dimension
vd is modeled as a Gaussian in category c:

p(vd|c) =
1√

2πσc,d
exp[− (vd −mc,d)

2

2σ2
c,d

] (8.4)

where mc,d is the mean value of vd, and σc,d is the standard deviation of vd
in category c, respectively. Applying the maximum-likelihood method [25] on
the training video data for each category c, we obtain the following unbiased
estimations of the mean mc,d and the standard deviation σc,d.

m̂c,d =
1

Uc

∑

i∈c

vi,d (8.5)

and

σ̂2
c,d =

1

Uc − 1

∑

i∈c

(vi,d − m̂c,d)
2 (8.6)

where vi,d denotes the d-th dimension of the feature vector vi and Uc is the
number of the video clips belonging to category c. Given the assumption that
the visual features are conditionally independent for category c, the catego-
rization is performed based on a similar formula to Equation 8.2.

8.4.2 Maximum Entropy Classifier

Maximum entropy [116] is a general technique for estimating a probabil-
ity distribution from data. The overriding principle in maximum entropy is
that when nothing is known, the distribution should be as uniform as possi-
ble, that is, should have maximal entropy. The maximum entropy classifier
[45] estimates the conditional distribution of the category label given a video
with constraints specified in the training data. Each constraint expresses a
characteristic of the training data that should also be present in the learned
distribution. In a generalized form, each video object o in a category c is

represented by
−→
f (o, c) = {f1(o, c), f2(o, c), . . . , fn(o, c)}. Maximum entropy

allows us to restrict the model distribution to have the same expected value
for feature fi(o, c) as seen in the training data. Thus, we stipulate that the
learned conditional distribution p(c|o) must have the property:

1

U

∑

o

fi(o, c(o)) =
∑

o

p(o)
∑

c

p(c|o)fi(o, c) (8.7)
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where U is the number of the training video clips. Notice that the video
distribution p(o) is unknown, and we are not interested in modeling it. Thus,
we use the training data, without category labels, as an approximation to the
video distribution, and enforce the constraint as:

1

U

∑

o

fi(o, c(o)) =
1

U

∑

o

∑

c

p(c|o)fi(o, c) (8.8)

Here the feature fi(o, c) is either the normalized word counts for the meta
data or the visual feature we have extracted from the video frames. For each
feature, we measure its expected value over the training data and take this as
a constraint for the model distribution.

When constraints are estimated in this fashion, it is guaranteed that a
unique distribution exists that has the maximum entropy. Moreover, it can
be shown [168] that the distribution is always of the exponential form:

p(c|o) =
1

Z(o)
exp(

∑

i

λifi(o, c)) (8.9)

where λi is a parameter to be estimated and Z(o) is simply the normalizing
factor to ensure a proper probability:

Z(o) =
∑

c

exp(
∑

i

λifi(o, c)) (8.10)

The form of the maximum entropy classifier is a multi-category generalized
form of the logistic regression classifier [151]. When the constraints are esti-
mated from the labeled training data, the solution to the maximum entropy
problem is also the solution to a dual maximum likelihood problem for models
of the same exponential form. The attractiveness of this model is that it is
guaranteed that the likelihood surface is a convex manifold with a single global
maximum and no local maxima. We perform a hill-climbing algorithm [168]
in the likelihood space to find the global maximum. To reduce the overfitting,
we introduce a Gaussian prior on the model, with zero mean, and a diagonal
covariance matrix. This prior favors feature weightings that are closer to zero,
that is, less extreme. The prior probability of the model is just the product
over the Gaussians of all the feature values λi with variance σ2

i :

p(Λ) =
∏

i

1√
2πσ2

exp(
−λ2

i

2σ2
i

) (8.11)

It is shown [45] that introducing a Gaussian prior to each λi improves perfor-
mance for the language modeling tasks when sparse data causes overfitting.
Similar improvements are also demonstrated in the reported experiments in
Section 8.6.
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8.4.3 Support Vector Machine Classifier

Unlike the above generative models, as studied in Section 3.7, the classic
support vector machine (SVM) [207] is a binary categorization method based
on a discriminative model which implements the structural risk minimization
(SRM) principle. It creates a classifier with minimized Vapnik-Chervonenkis
(VC) dimension. SVM minimizes an upper bound on the generalization error
rate. The attractiveness of SVM comes from its good generalization per-
formance for pattern classification problems without needing to incorporate
the domain knowledge. We formulate the video categorization problem as
an ensemble of binary categorization problems, with one SVM classifier for
each category. For a binary categorization problem, if the two categories are
linearly separable, the hyperplane that does the separation can be easily cal-
culated by −→w T o + b = 0, where −→w is a weight vector and b is a bias. The
goal of SVM is to find the parameters −→w and b for the optimal hyperplane
to maximize the distance between the hyperplane and the closest data point
(i.e., the support vectors):

(−→w T o+ b)c ≥ 1 (8.12)

If two categories are non-linearly separable, the input vectors may be non-
linearly mapped to a higher-dimensional feature space by an inner-product
kernel function K(−→x ,−→x i). Here the feature space is a convention name in
SVM literature, which is different from the features we commonly use to rep-
resent the video clips. Typical kernel functions are polynomial, radial-basis,
and sigmoid [207]. An optimal hyperplane is constructed for separating the
data in the higher-dimensional feature space. The hyperplane is optimal in
the sense of being a maximal margin classifier with respect to the training
data (see Section 3.7).

In its standard formulation, SVM only outputs a prediction +1 or -1, with-
out any associated measure of confidence. In the proposed prototype system,
we consider a special modification of SVM, which can output a posteriori
category probability. This modification retains the powerful generalization
capability of SVM and paves the way to wide extensions, such as an integra-
tion within a probabilistic framework. Probabilistic extensions of the SVM,
where an associated probability of category membership is output, have been
independently suggested in the literature. For this work, we use a probabilis-
tic version of the SVM (PSVM) similar to the one proposed in [230]. Here,
the probability of the membership in category y, y ∈ {+1,−1} is given by:

p(y|o) =
1

1 + exp(−yA(−→w T o+ b))
(8.13)

where A is the parameter to determine the slope of the sigmoid function.
This modified SVM retains exactly the same decision boundary as defined
by −→w T o + b = 0, yet allows an easy computation of the posterior category
probabilities. The output of PSVM can be compared with the output of other
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generative model based categorization methods. We use a cross-validation
scheme to set this parameter A for each category. In the proposed prototype
system, we apply a PSVM classifier on both the meta data and the content
feature of the training video data for each category.

8.4.4 Combination of Meta Data and Content Based Classi-
fiers

After constructing classifiers based on the meta data and the content fea-
tures of the video clips, ideally the classifiers of the two modalities are comple-
mentary to each other and we intend to combine the categorization outputs
from the two modalities to boost the accuracy. Therefore, the problem of se-
lecting the most effective classifiers and determining the optimal combination
weights naturally follows. The experiments in Section 8.6 show that for some
categories (e.g., news video, music video), the meta data based classifiers have
a better accuracy than the content feature based classifiers, while for other
categories (e.g., adult video), the content feature based classifiers work bet-
ter. To take advantage of this prior knowledge, we propose a voting-based
category-dependent combination scheme to develop a fused output. Specif-
ically, each video clip can have multiple labels (e.g., a financial news video
belongs to both the news video category and the finance video category).
Hence, we build a binary classifier for each category and in the training phase
we perform a k-fold validation procedure to obtain an estimated categoriza-
tion accuracy ai,m for each category ci by the classifier based on modality m.
The combination scheme is:

p(ci|o) =

∑
m ai,mpm(ci|o)∑

m ai,m
(8.14)

The video is assigned to category ci if p(ci|o) is larger than a threshold; ai,m
reflects the effectiveness of the modality m to the category ci, while pm(ci|o) is
the confidence of assigning o to category ci by the modality m based classifier.
This scheme is a validation accuracy weighted combination scheme, and the
strengths of the classifiers based on both modalities are integrated, which
improves the performance of the final categorization recall and precision. This
proposed fusion approach is easy to implement and is computation-efficient.
In contrast, the highly expensive computation complexity of the approach
in [224] makes it not practical for a search engine with the scale of several
dozens of queries per second and tens of millions of video clips indexed, while
the gain of the recall-precision using the approach is rather limited in the
experiments [224]. Compared with the approach in [222], this fusion approach
safely removes the expensive procedures of PCA, ICA, and IMG because the
features we use are statistically independent by applying a mutual information
based feature selection [133]. Another important advantage of this fusion
model is its lower complexity. The super-kernel fusion in [222] has much higher
complexity and, thus, may jeopardize the model’s generalization capability.
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In addition, the expensive computation cost precludes its application to real-
time classification in practice.

8.5 Query Categorization

How to personalize users’ video search experiences is a huge challenge.
When the same query is submitted by different users, a typical search en-
gine returns the same result, regardless of who submitted the query. This
may not be appropriate for users with different information needs. For exam-
ple, for the query “apple”, some users may be interested in video clips dealing
with “apple gardening” as “fruit gardening”, while other users may expect
news or financial video clips related to Apple Computers. One way to disam-
biguate the words in a query is to manually associate a small set of categories
with the query. However, users are often too impatient to identify the proper
categories before submitting queries. We propose an approach to supplying a
small set of categories as a context for each query submitted by a user, based
on the users’ querying histories. Specifically, we provide a strategy to model
and gather users’ search histories and construct a query profile. Based on the
query profile, appropriate categories are automatically deduced for each user
query.

To construct the query profile, we analyze the query logs of users in the
search engine. The histories of users’ queries and their corresponding clicked
video results are extracted from the log.1. From the log we generate two
matrices, V T and V C, as shown in Table 8.1.

Each cell in V T denotes the significance of the term in the description
of relevant video clips clicked by users, which is computed by the standard
information retrieval techniques (TF-IDF) [12]. V C is generated by Web
surfers to describe the relationships between the categories and video clips.
What we intend to generate is the query profile matrix QP as shown in Table
8.2.

To learn QP from V T and V C, we apply a method based on linear least
square fitting (LLSF) [226], in which QP is computed such that V T ×QPT ≈
V C with the least sum of square errors. Solving the problem by employing
Singular Value Decomposition (SVD) [56], we obtain:

QP = V CT × U × S−1 × V T (8.15)

where the SVD of V T is V T = U ×S×V T ; U and V are orthogonal matrices
and S is a diagonal matrix.

1We also analyze the query log of the Web search to construct the query profile because

users’ semantic querying needs are represented similarly for any vertical search.
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Table 8.1: Matrix representation of users’ query log. Reprint from [239]
c©2006 ACM Press.

(a) Matrix V T . V1 to V4 are video clips.

Video \ Term Tom movie Hollywood football Super touch
Cruise Bowl down

V1 1 1 0.8 0 0 0
V2 0.3 0.8 0.6 0 0 0
V3 0 0 0 1 0 1
V4 0 0 0 0.62 0.7 0.3

(b) Matrix V C. V1 to V4 are video clips.

Video \ Category Movie Sport
V1 1 0
V2 1 0
V3 0 1
V4 0 1

Table 8.2: Matrix representation of query profile QP . Reprint from [239]
c©2006 ACM Press.

Video \ Term Tom movie Hollywood football Super touch
Cruise Bowl down

Movie 0.7 1 0.9 0 0 0
Sport 0 0 0 1 0.67 0.55
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For each query term, we predict its related categories by using QP and
categorize it accordingly. Specifically, the similarity between a query vector
q and each category vector qp in the query profile QP is computed by the
Cosine function [12]. Then the categories are ranked in descending order
of the similarities and the top-ranked queries are provided to the users for
selecting the one as their query’s context.

8.6 Experiments

To evaluate the joint categorization of videos and queries and its impact on
the search relevance, we have built a testbed.

8.6.1 Data Sets

The objective is to develop a video search engine on the Web. Video clips on
the Web have different characteristics in comparison with TREC video data.
First, typically the video clips on the Web have considerable but diverse meta
data and are highly heterogeneous w.r.t. the visual content and semantics,
but the duration of the video clips is typically short. On the other hand,
TREC video data do not have much meta data and most of the TREC video
data are broadcasting news videos [98]. In this sense, the TREC video data
cannot represent well the video data on the Web. Second, the number of
shots in the TREC video corpus is far smaller (e.g., only 32,318 video shots
in the reference set of TREC-2003) than the number of the video clips on the
Web (i.e., hundreds of millions scale). For these reasons, instead of using the
TREC video test corpus, we have crawled the video clips from the Web to
compose the test corpus. The number of the video clips in our test corpus
is much larger than that of the TREC video data. Using this test video set,
we have evaluated the prototype video search engine in a real Web search
environment.

In the testbed, we have collected more than 400,000 video clips and have
associated the meta data from the Web. Among them, 385,739 pre-classified
video clips belong to five categories (News, Music, Movie, Finance, and Funny
Video)2. These video clips compose the training set, which has 2000 GB AVI
files and a total duration of 15,572 hours (2.34 minutes/video on average).
For text features, we have collected the surrounding text in the Web pages
containing the video clips on the Web along with the accompanying meta
data (e.g., file names, titles, closed captions, and user tags) which annotate
the video clips. The text features of each video clip are composed of a number

2In the training set, each video is labeled to one and only one category
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of fields, while each field has an associated weight and is either a text passage
or a categorical field. Due to the complex nature of the video content, fur-
ther investigation is necessary on content feature representation (see Chapter
2 for a systematic study on the multimedia features). At this time, many
content features (e.g., optical flow, image sequence, video OCR, and audio)
are reasonably meaningful for the classification/search applications. Since the
objective of this research is not for feature selection, we use several easy-to-
compute yet effective content features extracted from the video data. To train
content-based classifiers, all the video clips in the testbed are segmented and
one most representative keyframe is extracted for each video clip [68]. We
employ this representation of video clips due to its simplicity and low com-
putation cost. Although simple, this representation proves to be effective in
the experiments. To represent the spatial color distribution of the keyframes
in the video data, color auto-correlograms [112] are computed. As studied in
Section 2.3.1.3, color auto-correlograms compute a histogram of color pairs in
different distances. Formally, it is defined as

Γ(k)
ci,ci

(I) , |{p1 ∈ Ici
, p2 ∈ Ici

||p1 − p2| = k}| (8.16)

where |p1 − p2| is the L1 distance between pixel p1 and p2 whose color is in
the bucket ci. It has been shown that the auto-correlograms are effective in
image retrieval [118]. Another content feature we have extracted is the texture
feature for a keyframe. To represent the texture feature, as studied in Section
2.3.1.4, we uniformly partition each keyframe into blocks and compute Gabor
wavelet coefficients [145] by a filter bank for each block. A two-dimensional
Gabor function g(x, y) and its Fourier transform can be written as:

g(x, y) = (
1

2πσxσy
) exp[−1

2
(
x2

σ2
x

+
y2

σ2
y

) + 2πjWx]

G(u, v) = exp{−1

2
[
(u−W )2

σ2
u

+
v2

σ2
v

]}

where σu = 1/2πσx, σv = 1/2πσy, and W denotes the upper center frequency
of interest. Based on the mother Gabor wavelet g(x, y), a self-similar filter
dictionary may be obtained using appropriate dilations and rotations of g(x, y)
through the generating function:

gmn(x, y) = a−mG(x′, y′), a > 1, m, n = integer

x′ = a−m(x cos θ + y sin θ), and y′ = a−m(−x sin θ + y cos θ)

where θ = nπ/K and K is the total number of orientations. The scalar
factor a−m is meant to measure the energy that is independent of m, m =
0, 1, . . . , S−1. By using the filter response for S scalars andK orientations, we
obtain a vector for each block which describes the texture feature. The color
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auto-correlograms and Gabor wavelet coefficients are combined to compose
the content features for the keyframe of a video clip.

In addition to the above video clips database, we have also collected a
video database in which 10,000 video clips are tagged as offensive video clips.
Among them, 7,000 video clips are used for training. For the meta data based
classification, standard text processing is performed, including upper-lower
case conversion, stop word removal, phrase detection, and stemming.

8.6.2 Video Categorization Results

First, we investigate the effectiveness of the three categorization models
based on the meta data and the content features, respectively. In the proposed
prototype system, to accommodate that each video may have multiple labels,
we train a binary classifier for each category, and the final labels of a video
clip are those categories whose binary classifiers return positive. For each
experiment, the 10-fold cross-validation strategy [153] is employed to validate
the models learned. For the meta data based categorization, the number of
features is very large (58,732 in our experiments); to improve the time/space
performance and to reduce the over-fitting problem, we have performed the
feature selection based on the mutual information [133] and, consequently,
the optimal number of the features is determined by the cross-validation.
For the content feature based categorization, on the other hand, we do not
perform the feature selection because the dimensionality of the features is
not high (192 dimensions). The confusion matrices for the validation data of
the meta data based classifiers are listed in Tables 8.3 to 8.5. The variance
of the Gaussian prior in the maximum entropy classifiers is empirically set
and the iterations are controlled by an upper bound of the relative increase
in the log-likelihood and an upper bound of the number of the iterations.
Since we need to train a large number of video clips and the categorization
must be fast, the linear SVM classifier described in [124] is used due to its
high efficiency. From the experimental results, the maximum entropy classifier
gives better recall (4.8% margin) and precision (6.47% margin) than the naive
Bayes classifier. The reason could be partly due to the too-strong assumption
made in naive Bayes that each feature is generated independently of each
other. Moreover, the exponential form of the posterior probability in the
maximum entropy classifiers fit the data better and higher log-likelihoods
are obtained than in the naive Bayes classifiers. The best performance is
achieved by the SVM classifiers. This demonstrates the advantage of the
discriminative models over the generative models for the categorization task
in this scenario. From the tables, we see that a significantly higher number of
video clips which have one true label are categorized to multiple labels (e.g.,
news to news and music; movie to movie and music; and movie to movie,
music, and funny) using the naive Bayes or the maximum entropy classifiers
than using the SVM classifiers. This shows that the discrimination capability
of SVM is better than its two peers. The difference can be explained by the
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Table 8.3: Confusion matrix of the naive Bayes classifier based on the meta
data. The confusion matrix is a modified version of the classic confusion
matrix to accommodate the multi-label categorization results. “A” denotes
actual category and “P” denotes predicted category. “Negative” denotes that
no classifiers give position predictions. Legend: a – news video, b – finance
video, c – movie, d – music video, e – funny video, f – negative video, t – total,
p – precision, r – recall, and x – not applicable. Reprint from [239] c©2006
ACM Press.

P\A a b c d e t p
f 35 0 6 11 0 52 0
a 25480 1 8 2 0 25491 99

a, b 185 27 0 0 0 212 0
a, d 126 0 0 19 0 145 0
a, e 13 0 0 0 0 13 0
b 57 19460 2 0 0 19519 99
c 32 0 23345 3 0 23380 99

c, a 717 0 221 0 0 938 0
c, a, d 14 0 0 6 0 20 0
c, d 4 0 1794 3402 0 5200 0

c, d, e 0 0 4 0 0 4 0
c, e 0 0 71 0 1 72 0
d 15 0 0 7768 0 7783 99
e 0 0 0 0 2910 2910 100
t 26678 19488 25451 11211 2911 85739 x
r 95 99 91 69 99 x x

different optimization objectives in the two different types of the models. SVM
optimizes the categorization accuracy explicitly by maximizing the margins
between the partition hyperplane and two categories, while both the naive
Bayes and the maximum entropy classifiers maximize the log-likelihood of
the data set for the models learned. Although the models obtained have the
highest probability to generate the data in hand, the categorization errors are
not to be minimized for the models. Figure 8.2 shows the comparisons of the
average categorization recalls and precisions for the three models.

For the content feature based categorization, we use the same metrics and
the results are a little different. Figure 8.3 shows the average categorization ac-
curacies using the different classifiers. The performance of the content feature
based categorization is worse than that of the meta data based categorization
(but still reasonable), which is what we have expected. The SVM classifier
performs the best as in the meta data based categorization. Interestingly,
the naive Bayes classifier performs a little better (3.02% margin) than the
maximum entropy classifier. We assume that each dimension of the content
feature conforms to Gaussian distribution in the naive Bayes learning. This
may be explained that the maximum entropy classification is more sensitive
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Table 8.4: Confusion matrix of the maximum entropy classifier based on the
meta data. The confusion matrix is a modified version of the classic confusion
matrix to accommodate the multi-label categorization results. “A” denotes
actual category and “P” denotes predicted category. “Negative” denotes that
no classifiers give position predictions. Legend: a – news video, b – finance
video, c – movie, d – music video, e – funny video, f – negative video, t – total,
p – precision, r – recall, and x – not applicable. Reprint from [239] c©2006
ACM Press.

P\A a b c d e t p
f 181 160 158 175 10 684 0
a 26094 0 42 0 0 26136 99

a, b 123 0 0 0 0 123 0
a, b, d 2 0 0 0 0 2 0
a, c 91 0 0 2 0 93 0
a, e 5 0 0 0 0 5 0
b 24 19328 5 0 0 19357 99

c, b 0 0 1 0 0 1 0
c, d 0 0 25 29 0 54 0
c, e 0 0 2 0 0 2 0
c 108 0 25175 75 0 25358 99

c, a 40 0 9 0 0 49 0
d 10 0 33 10930 0 10973 99
e 0 0 1 0 2901 2902 99
t 26678 19488 25451 11211 2911 85739 x
r 97 99 98 97 99 x x
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Table 8.5: Confusion matrix of the SVM classifier based on the meta data.
The confusion matrix is a modified version of the classic confusion matrix
to accommodate the multi-label categorization results. “A” denotes actual
category and “P” denotes predicted category. “Negative” denotes that no
classifiers give position predictions. Legend: a – news video, b – finance
video, c – movie, d – music video, e – funny video, f – negative video, t –
total, p – precision, r – recall, and x – not applicable. Reprint from [239]
c©2006 ACM Press.

P\A f a b c d e t r
f 0 1 0 2 6 0 9 0

a, d 0 5 0 0 0 0 5 0
a 0 26669 0 0 0 0 26669 100
b 0 0 19486 0 0 0 19486 100

b, d 0 0 1 0 0 0 1 0
c, b 0 0 1 0 0 0 1 0
c, d 0 0 0 2 0 0 2 0
c 0 0 0 25442 0 0 25442 100

c, a 0 2 0 1 0 0 3 0
c 0 1 0 4 11205 0 11210 99
e 0 0 0 0 0 2911 2911 100
t 0 26678 19488 25451 11211 2911 85739 x
r x 99 99 99 99 100 x x
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FIGURE 8.2: Comparisons of the average classification accuracies for the
three classifiers based on the meta data. (NB: Naive Bayes; ME: Maximum
Entropy; SVM: Support Vector Machine.) Reprint from [239] c©2006 ACM
Press.
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FIGURE 8.3: Comparisons of the average classification accuracies for the
three classifiers based on the content features. Reprint from [239] c©2006
ACM Press.

to feature selection than the naive Bayes and that the content features may
be more natural for the naive Bayes than for the maximum entropy. An-
other observation is that for the offensive video category, the content feature
based classifiers have a much better categorization accuracy than the meta
data based classifiers. Figure 8.4 compares the recalls/precisions of the SVM
classifier based on the meta data and the SVM classifier based on the content
features for the offensive video category. This observation substantiates our
motivation that different modalities of video can complement each other for a
better accuracy. By applying the proposed voting-based category-dependent
combination scheme, the categorization accuracy is boosted, as we have ex-
pected. The results are reported in Figure 8.5.

8.6.3 Query Categorization Results

Apart from the metrics used in “TRECVID”, such as the mean average
precision (MAP) and the average reciprocal rank (ARR) [98], to measure the
query categorization accuracy, the following performance metric is used in the
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FIGURE 8.4: The comparisons of the categorization accuracies of SVM based
on the meta data and the content features for the offensive video category.
Reprint from [239] c©2006 ACM Press.

FIGURE 8.5: Comparisons of the categorization accuracies for different
modalities. Reprint from [239] c©2006 ACM Press.
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Table 8.6: Query categorization results. Reprint from [239] c©2006 ACM
Press.

(a) Query examples in the test set and their classification results.

# Query Returned categories
q1 Michael Jackson News, Music, Funny
q2 Car race Movie, Funny, News
q3 World of the war Movie, News, Finance
q4 Iraq war News, Finance, Music
q5 Great wall in China Funny, News, Kids

(b) QC for the query examples and the 100 sampled queries in the test set.

q1 q2 q3 q4 q5 100 test queries
QC 0.826 0.784 0.923 0.585 0.892 0.845

experiments:

QC = (
∑

c∈topN

sc)/T = (
∑

c∈topN

1

1 + rankc − Trankc
)/T (8.17)

where T is the number of the related categories to the query and sc is the score
of a related category c that is ranked among the top N returned categories.
We set N as 3 in the experiments. rankc is the rank of c and Trankc is
the highest possible rank for c. We have randomly sampled 100 queries and
have computed QC for each query. For example, assume that c1 and c2 are
related categories to a user query, and they are ranked by the system to be
the first and the third; then the accuracy is computed in the following way:
sc1 = 1/(1+1−1) = 1 and sc2 = 1/(1+3−2) = 0.5, such that the accuracy is
QC = (1 + 0.5)/2 = 0.75. QC can be used to measure the accuracy of query
categorization; the higher QC, the better the accuracy.

The query categorization method proposed in Section 8.5 is implemented
and evaluated on a set of the 100 randomly sampled queries from the query
log. Table 8.6 shows QC for the 5 different query examples and the average
QC for those 100 queries in the test set, respectively. The average value of QC
for the 100 queries indicates that the categorization results are satisfactory
for most queries.

8.6.4 Search Relevance Results

Since the number of the video clips indexed in our experiments is very large,
it is impossible to estimate the recall of the search for each query. In the ex-
periments the evaluation is conducted using the following procedure. First, a
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FIGURE 8.6: Comparisons of the search relevance with and without the joint
categorization of query and video. The average precision vs. scope (top N
results) curves. Reprint from [239] c©2006 ACM Press.

user submits a query and then the top three related categories obtained by
the query categorization are returned along with the video results retrieved
without using any categorization. Second, the user selects a category fitting
his/her search query context. Third, the new search is refined to the video
categorized to that category and the results are returned. The impact of the
joint categorization of video and query to the search relevance is measured
by computing the precisions for different numbers of results. Ten laymen are
invited to test the system with and without the joint categorization function
enabled. The relevance of the returned video clips is determined by the sub-
jects. 223 queries are recorded, and the average precision-scope curves are
plotted in Figure 8.6.

The figure indicates that the joint categorization of query and video by
using this proposed approach improves the search relevance significantly (the
precision is enhanced by 10%–20%).

It is noticeable that the video categorization is performed offline and the
query categorization is performed online. The average time for categorizing
a video clip is less than 0.1 second and the average time for categorizing a
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query is less than 0.05 second. The in-category search is very efficient; the
average response time of the proposed prototype system for users’ queries is
less than 0.2 second. The high efficiency of the system makes it a practical
search engine for the real-world video search on the Web.

8.7 Summary

This chapter demonstrates an example of concept discovery and mining in
a large-scale video database by showcasing a developed video search engine
prototype on the Web. We investigate several promising approaches to boost-
ing the search relevance of a large-scale video search engine on the Web. We
have developed a specialized video categorization framework which combines
multiple classifiers based on different modalities. By learning users’ query-
ing histories and clicking logs, we have proposed an automatic query profile
generation technique and have applied the profile to query categorization. A
highly scalable prototype system is developed, which integrates the online
query categorization and the offline video categorization. The naive Bayes
with a mixture of multinomials, the maximum entropy, and the support vec-
tor machine categorization methods and the profile learning technique are
evaluated on millions of the video clips on the Web. The evaluation of the
developed system and user studies has indicated that the joint categorization
of queries and video clips boosts the video search relevance and user search ex-
perience. The high efficiency of the proposed approaches is also demonstrated
by the good responsiveness of the prototype system for the video search engine
on the Web.
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Chapter 9

Concept Discovery and Mining in an
Audio Database

9.1 Introduction

In the last four chapters we have showcased the examples on knowledge
discovery and data mining for imagery databases, video databases, as well as
the multimedia databases combined with multiple modalities such as imagery
combined with text and/or video combined with text that we have experienced
in the commonly encountered multimedia data collections such as the Web.
In this chapter, we focus on the topic of knowledge discovery and data mining
in an audio database.

Audio data are substantially different from the data in other media types
such as text, imagery, and video in the sense that they are essentially one-
dimensional data. Like knowledge discovery in other types of multimedia
databases as we have shown in the last few chapters, knowledge discovery
in an audio database is also context-dependent and task-specific. Here in
this chapter, we focus on concept discovery and mining in an audio database.
Specifically, we address the problem of concept discovery and data mining
in an audio database by showcasing an exemplar solution to audio classi-
fication and categorization of a typical audio database consisting of mixed
types of audio data, including music, speech sounds, non-speech utterances,
animal sounds, environmental sounds, as well as noise. Note that it is not
uncommon that a typical audio database may contain up to millions of audio
clips, resulting in audio classification and categorization as the very first and
essential concept discovery and mining task before any more sophisticated
knowledge discovery tasks may be demanded. On the other hand, given the
scales of millions of audio clips in a typical audio database, it would become
very tedious, if not impossible, to do a manual classification and categoriza-
tion. Consequently, it is important that we study the audio classification and
categorization problem as an example of concept discovery and mining in an
audio database.

As an exemplar solution to audio data classification and categorization to
be introduced and studied here in this chapter, we refer to the specific method
by Lin et al [138]. The reasons why we pick up this method as an exemplar
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solution to study in this chapter are based on the following considerations.
First, this work was published in 2005 and thus represents the state-of-the-art
literature on audio data mining. Second, unlike many existing efforts in the
audio data mining literature which mainly focus on a specific type of audio
data mining such as speech data mining, this work is for classification and
categorization of all different types of audio data. Third, classification and
categorization represent one of the most important applications of audio data
mining in current literature and also represent one of the most urgent needs in
today’s real-world applications of audio data mining. For reference purposes,
we call this method LCTC method (for the last-name initials of all the four
authors of this work).

This chapter is organized as follows. Section 9.2 gives a brief background
description and literature review on the general audio mining as well as the
specific related work on audio data classification and categorization. Section
9.3 introduces the specific features used in the LCTC method as well as how
the features are extracted. Section 9.4 presents the specific solution to audio
classification and categorization based on the LCTC method. Section 9.5
briefly discusses the experimental evaluations of the LCTC method. Finally,
this chapter is concluded in Section 9.6.

9.2 Background and Related Work

Audio data represent sound information. As is discussed in Section 2.2.2,
audio data are one-dimensional data; they may be plotted as a one-dimensional
waveform. Depending upon the different sound sources, audio data may look
differently. Figure 9.1 gives samples of different types of audio data. Clearly,
from the waveforms of these samples, different types of audio data have dif-
ferent “shapes” in the plotting waveforms. For example, speech sound looks
very different from music sound in Figure 9.1. Due to this difference, it is
important that we select and use different audio features for different mining
problems. For example, if the audio data mining problem is to classify and
categorize the audio data, we need to ensure that the selected features are
sufficiently discriminant for different types of audio data; on the other hand,
if the audio data mining problem is related to speech recognition and retrieval,
we need to ensure that the selected features respond well to speech data only.

Audio data mining may trace back to the early 1990s when audio data in-
dexing and retrieval began to receive attention as the multimedia area started
to develop. A notable example is the New Zealand digital libraries project
[13, 219], where music melody data are stored in a digital library for indexing
and retrieval. Since different types of audio data require different feature rep-
resentations and thus may use different data mining techniques, and since in
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(a)

(b)

(c)

FIGURE 9.1: Samples of typical audio data. (a) Music sample. (b) Speech
sample. (c) Noise sample.
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this chapter we showcase an example on audio data classification and catego-
rization, we give a brief review on the audio classification and categorization
work.

Early work on audio data classification dated back to Wold et al [220], who
developed the “Muscle Fish” database that was used later in the literature
as a benchmark database [5]. Different features are used in audio classi-
fication literature. Examples include mel-frequency cepstral features [137],
wavelet features [138, 44, 106], brightness and bandwidth features [137], sub-
band power features [137, 106], and pitch features [44]. In terms of classifica-
tion techniques, typically statistical techniques are used for classification and
categorization. Noticeable examples include neural networks, hidden Markov
models, and support vector machines. Zhang and Kuo [247] proposed a rule-
based method to classify different types of audio data. Lu et al [141] proposed
a two-step method for audio data classification; the first step is for speech and
non-speech binary classification, and the K-nearest neighbor and the linear
spectral-pairs vector quantization methods are used in this step; the second
step uses a rule-based classification method to further classify the non-speech
data into different types of audio data. Li proposed using the nearest-neighbor
line method to classify audio data [137]. Guo and Li further improved the
method by Li [137] by using support vector machines instead of the nearest
neighbor lines [94]. Lin et al [138] proposed a new method for audio data
classification and categorization based on Guo and Li’s method by incorpo-
rating the wavelet features and by using the bottom-up SVMs, which is the
LCTC method we introduce in this chapter. Recently, Ravindran et al [172]
proposed using the Gaussian mixture model based classifier for audio classifi-
cation, and Sainath et al used the extended Baum-Welch transformations for
audio data classification [183].

9.3 Feature Extraction

The features used in the LCTC method include both the perceptual features
and the transformation features specifically defined as the frequency cepstral
coefficients. Before feature extraction, the original audio signal needs to be
preprocessed to identify reliably all the nonsilent frames. The original audio
signal is sampled at 8,000 Hz with 16-bit resolution. Each audio clip data
stream is divided into frames. The frame length is set as 256 samples that
correspond to 32 ms with a 192-sample (i.e., 75%) overlap between neigh-
boring frames. Due to typical speech sounds’ relatively low amplitude in the
frequency spectrum contributed from the radiation effect of the sound from
human lips, the energy enhancement technique is used at the high-frequency
end in the spectrum [50]. This is achieved by using an enhancement filter
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defined as follows:

s′n = sn − 0.96sn−1, n = 1, . . . , 255
s′0 = s0

(9.1)

where sn and s′n are the nth audio sample in a frame before and after, respec-
tively, the application of the filter. The filtered audio signal is then further
Hamming-weighted as follows:

shn = s′nhn, n = 0, . . . , 255
hn = 0.54− 0.46 cos(2πn

255 )
(9.2)

After this preprocessing, a frame is declared as a nonsilent frame if the frame
satisfies the following constraint:

255∑

n=0

(shn)
2 > 4002 (9.3)

where 400 is an experience threshold reported in [137, 94].
After obtaining all the nonsilent frames of the original audio signal after

the preprocessing, we are ready to define and extract all the features de-
signed for this specific classification and categorization problem. Essentially,
the LCTC method uses both perceptual features and the transformation fea-
tures. Specifically, the perceptual features are obtained by applying both the
Fourier transform and the wavelet transform. The transformation features
are obtained using the frequency cepstral coefficients (FCC). We describe the
specific definitions for these features as follows.

• Subband power Pj : Three sections of the subband power are computed
in the wavelet domain [144, 31]. Let ω be the half sampling frequency.
The subband intervals are then [0, ω/8], [ω/8, ω/4], and [ω/4, ω/2], cor-
responding to the approximation and detail coefficients of the wavelet
transform, respectively. The subband power is thus computed as

Pj =
∑

k

zj
2(k) (9.4)

where zj(k) is the corresponding approximation or detail coefficients of
subband j.

• Pitch frequency fp: The noise-robust wavelet based pitch detection
method proposed by Chen and Wang [44] is used for pitch frequency
extraction. The first stage of this method is to apply the wavelet trans-
form with an aliasing compensation [144] to decompose the input signal
into three subbands; this is followed by applying a modified spatial cor-
relation function computed from the approximation signal obtained in
the previous stage for pitch frequency extraction.
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Table 9.1: List of the Extracted Features. Redrawn from [138].

Features Type of Number of
transforms features

Subband power Pj Wavelet 3
Perceptual Pitch frequency fp Wavelet 1
features Brightness ωc Fourier 1

Bandwidth B Fourier 1
Frequency cepstral Fourier L
coefficient (FCC) cn

• Brightness ωc: The brightness is defined as the frequency centroid of
the Fourier trnasform and is computed as

ωc =

∫ ∞

0
u‖F (u)‖2du∫ ω

0
‖f(u)‖2du (9.5)

• Bandwidth B: The bandwidth is defined as the square of the power-
weighted average of the squared difference between the spectral compo-
nents and the frequency centroid:

B =

√∫ ω
0

(u− ωc)2‖F (u)‖2du∫ ∞

0
‖F (u)‖2du (9.6)

• Frequency Cepstral Coefficient (FCC) cn: The FCC is defined as the
L-order coefficients computed as

cn =

√
1

128

255∑

u=0

(log10 F (u)) cos
n(u− 0.5)π

256
, n = 1, . . . , L (9.7)

Table 9.1 summarizes all the features defined and used in the LCTC method.
Clearly, there are a total of 6 +L features. For each of the 6 +L features, the
statistical mean and the standard deviation are computed, resulting in a total
of 12 + 2L features. In addition, the pitch ratio, which is defined as the ratio
of the number of the pitched frames to the total number of the frames in the
signal, and the silence ratio, which is defined as the ratio of the number of the
silent frames to the total number of the frames in the signal, are computed as
the two further features. Consequently, a 14 + 2L-dimensional feature vector
is obtained.

In order to facilitate the subsequent classification, all the samples obtained
as the 14+2L-dimensional vectors need to be normalized. The normalization
is performed in two steps. Given each sample represented as a 14 + 2L-
dimensional vector Tj, the first normalization step is to shift the vector in the
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14 + 2L-dimensional space relative to the distribution center, i.e.,

T ′
j =

Tj − µj
σj

(9.8)

where

µj =
∑ Tj

N
σj =

∑ (Tj − µj)2
N

(9.9)

where N is the total number of the samples in a set (e.g., the training set).
The second step is to further normalize the values of the 2L components in
each of the sample vectors related to FCC, i.e.,

T ′′
j =

T ′
j

mj
(9.10)

where mj is the maximum of the absolute value for all the components of
sample T ′

j .

9.4 Classification Method

Since the goal is to classify and categorize the audio clips in an audio
database, there are many classification methods in the literature that can
be used. Specifically, the LCTC method elects to use support vector ma-
chines (SVMs) for the classification. In order to accommodate the potential
classification errors, the soft-margin SVMs are used. In addition, both the
RBF and Gaussian kernel functions are used in order to make a comparison
regarding which is more effective in the classification using the same features.
Since typically there are more than two classes available, the bottom-up bi-
nary tree approach is used for multiple class SVMs in the LCTC method.
See Section 3.7 for a detailed discussion on the soft-margin SVMs, the dif-
ferent commonly used kernel functions, as well as the different approaches to
extending the binary classes SVMs to the multiple-classes SVMs. Figure 9.2
shows an example of the reconstructed bottom-up binary tree after node 12
is removed.

9.5 Experimental Results

The LCTC method is evaluated using the publicly available Muscle Fish
database [5]. The Muscle Fish database consists of 410 sound clips categorized
into 16 classes. Table 9.2 lists the ground truth of the clip files in the Muscle
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FIGURE 9.2: The reconstructed bottom-up binary tree after node 12 is re-
moved.

Fish database. All the 410 clip files are sorted alphabetically in terms of the
file names; the odd-numbered files in the sorted order are assigned to the
training set; the remaining files are for the testing set. This results in 211
training files and 199 testing files.

As described in Section 9.3, each sample vector is represented as a normal-
ized 14 + 2L-dimensional vector, where the total number of samples, N , in
Equation 9.9 is taken as the total number of the training samples, and the
normalization parameters, µj , σj , and mj in Equations 9.8 to 9.10 are all
computed using the training data; these parameters are used in normalizing
the samples in the testing data set, also.

As mentioned in Section 9.4, both RBF and Gaussian kernel functions are
used for the comparison purpose. They are compared over a range of pre-
selected values for the upper bound C and the variance σ2, where the FCC
level L varies from 1 to 99. This setting translates to a total of 144 pairs
of C and σ2 for each of the two kernel functions. For each combination of
C and σ2 values, Em is defined as the least value of the errors, and Lm
is defined as the specific FCC level L when the first Em happens. Tables
9.3 and 9.4 document the comparison evaluations between the RBF and the
Gaussian kernel functions. From these two tables, it is clear that the RBF
kernel achieves a better accuracy than the Gaussian kernel in most settings.
It is further observed that the RBF kernel function is more stable than the
Gaussian kernel function when C > 20, suggesting that a larger value of
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Table 9.2: Ground Truth of the Muscle Fish Database.

Class name Number of clip files
Alto-trombone 13

Animals 9
Bells 7

Cello-bowed 47
Female 35

Laughter 7
Machines 11

Male 17
Oboe 32

Percussion 99
Telephone 17

Tubular-bells 20
Violin-bowed 45
Violin-pizz 40

Water 7

C has no additional benefit. Table 9.5 reports the performance comparison
evaluations between the LCTC method and two state-of-the-art methods from
the literature, the method developed by Guo and Li [94] (called the GL method
for reference purposes) and the method developed by Li [137] (called the L
method for reference purposes). Note that both the GL and the L methods use
the same features, whereas the GL method uses SVMs for the classification
and the L method uses the nearest feature line method (NFL), the nearest
neighbor method (NN), the top 5 nearest neighbors method (5-NN), and the
nearest center method (NC) for the classification. From the table, it is clear
that the LCTC method outperforms both the GL and the L methods, and
the GL method outperforms the L method.

Since it is shown that the RBF kernel outperforms the Gaussian kernel,
further evaluations are reported using the RBF kernel function for the cate-
gorization with the bottom-up binary tree method for multiple-classes clas-
sification. Table 9.6 documents the evaluations. From these evaluations, it
is clear that the LCTC method achieves 100% accuracy in the top 2 returns
for most settings of C and σ2 values. Further, high accuracy is achieved at
many reasonably sized FCC levels, which demonstrates the promise and the
effectiveness of the LCTC method. For all the six misclassified testing clip
files, this is due to the fact that the sounds are very similar to the training
sounds in other classes, even to the human ear.
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Table 9.3: Experimental results for the preselected values of C and σ2 with
the RBF kernel. Redrawn from [138].

C
Em/Lm 1 5 10 20 30 40 50 60 70 80 90 100

1 43 38 38 38 38 38 38 38 38 38 38 38
/3 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2

5 40 18 18 18 18 18 18 18 18 18 18 18
/39 /11 /11 /11 /11 /11 /11 /11 /11 /11 /11 /11

10 41 12 12 12 12 12 12 12 12 12 12 12
/54 /51 /51 /51 /51 /51 /51 /51 /51 /51 /51 /51

20 60 7 7 7 7 7 7 7 7 7 7 7
/89 /54 /54 /54 /54 /54 /54 /54 /54 /54 /54 /54

30 80 9 7 7 7 7 7 7 7 7 7 7
/99 /84 /54 /54 /54 /54 /54 /54 /54 /54 /54 /54

40 91 12 7 7 7 7 7 7 7 7 7 7
/95 /86 /54 /54 /54 /54 /54 /54 /54 /54 /54 /54

σ2 50 97 14 7 7 7 7 7 7 7 7 7 7
/95 /85 /54 /54 /54 /54 /54 /54 /54 /54 /54 /54

60 102 16 7 6 6 6 6 6 6 6 6 6
/95 /82 /66 /80 /80 /80 /80 /80 /80 /80 /80 /80

70 110 17 8 6 6 6 6 6 6 6 6 6
/82 /98 /83 /80 /80 /80 /80 /80 /80 /80 /80 /80

80 114 19 11 6 6 6 6 6 6 6 6 6
/96 /84 /81 /80 /80 /80 /80 /80 /80 /80 /80 /80

90 123 19 12 38 38 38 38 38 38 38 38 38
/87 /88 /87 /2 /2 /2 /2 /2 /2 /2 /2 /2

100 127 22 13 38 38 38 38 38 38 38 38 38
/98 /90 /99 /2 /2 /2 /2 /2 /2 /2 /2 /2
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Table 9.4: Experimental results for the preselected values of C and σ2 with
the Gaussian kernel. Redrawn from [138].

C
Em/Lm 1 5 10 20 30 40 50 60 70 80 90 100

1 35 20 20 19 20 19 20 20 19 20 20 20
/9 /11 /11 /11 /8 /11 /11 /11 /11 /11 /11 /11

5 51 19 14 13 13 13 13 13 13 13 13 13
/99 /53 /53 /55 /55 /55 /55 /55 /55 /55 /55 /55

10 73 20 15 14 14 14 14 14 14 14 14 14
/89 /96 /96 /96 /96 /96 /96 /96 /96 /96 /96 /96

20 93 30 18 17 17 17 17 17 17 17 17 17
/93 /96 /96 /87 /91 /58 /58 /58 /58 /58 /58 /58

30 101 35 22 16 16 16 16 16 16 16 16 16
/77 /95 /96 /95 /95 /95 /95 /95 /95 /95 /95 /95

40 110 48 26 18 16 17 17 16 16 16 16 16
/54 /97 /96 /95 /95 /91 /95 /95 /95 /95 /95 /95

σ2 50 120 58 31 19 18 16 17 17 16 16 16 16
/81 /98 /96 /97 /95 /95 /91 /95 /95 /95 /95 /95

60 131 64 35 22 18 16 16 17 17 16 16 16
/99 /95 /95 /97 /95 /95 /95 /95 /95 /95 /95 /95

70 135 72 39 23 19 18 16 17 17 17 16 16
/95 /99 /96 /96 /95 /95 /95 /95 /95 /95 /95 /95

80 137 78 45 25 21 18 16 17 17 17 17 17
/97 /99 /98 /99 /95 /95 /95 /95 /95 /95 /95 /95

90 142 86 52 28 22 19 17 16 17 18 18 18
/99 /99 /98 /96 /97 /96 /96 /96 /96 /89 /89 /89

100 147 89 57 30 24 19 18 18 17 18 18 18
/97 /99 /99 /97 /95 /96 /96 /96 /95 /89 /89 /89

Table 9.5: Error rates (number of errors) comparison among the LCTC, GL,
and L methods (where NPC-L means the number of errors/199× 100%, and
PercCepsL means the number of errors/198× 100%). Redrawn from [138].

Method LCTC GL L
Feature Set NPC-L PercCepsL PercCepsL

Classifier SVM SVM SVM
and RBF Gaussian RBF NFL NN 5-NN NC

Kernel C = 30, C = 100, C = 200,
σ2 = 60 σ2 = 5 σ2 = 6

L = 5 11.6% 12.6% 12.6% 12.1% 17.7% 21.2% 43.4%
(23) (25) (25) (24) (35) (42) (86)

L = 8 9.5% 10.6% 8.1% 9.6% 13.1% 22.2% 38.9%
(19) (21) (16) (19) (26) (44) (77)

L = 60 3.5% 9.5% 10.1% 12.1% 15.7% 20.7% 32.8%
(6) (19) (20) (24) (31) (41) (65)
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Table 9.6: Categorization errors in the top 2 returns using the RBF kernel
function for the pre-selected values of C and σ2. Redrawn from [138].

C
Em/Lm 1 5 10 20 30 40 50 60 70 80 90 100

1 23 19 19 19 19 19 19 19 19 19 19 19
/1 /4 /4 /4 /4 /4 /4 /4 /4 /4 /4 /4

5 11 3 3 3 3 3 3 3 3 3 3 3
/29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29

10 17 0 0 0 0 0 0 0 0 0 0 0
/37 /46 /46 /46 /46 /46 /46 /46 /46 /46 /46 /46

20 22 0 0 0 0 0 0 0 0 0 0 0
/98 /38 /37 /37 /37 /37 /37 /37 /37 /37 /37 /37

30 28 0 0 0 0 0 0 0 0 0 0 0
/96 /49 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29

40 37 1 0 0 0 0 0 0 0 0 0 0
/96 /77 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29

σ2 50 49 3 0 0 0 0 0 0 0 0 0 0
/99 /81 /40 /29 /29 /29 /29 /29 /29 /29 /29 /29

60 66 3 0 0 0 0 0 0 0 0 0 0
/91 /97 /46 /29 /29 /29 /29 /29 /29 /29 /29 /29

70 76 4 0 0 0 0 0 0 0 0 0 0
/99 /99 /50 /29 /29 /29 /29 /29 /29 /29 /29 /29

80 79 5 0 0 0 0 0 0 0 0 0 0
/85 /76 /68 /29 /29 /29 /29 /29 /29 /29 /29 /29

90 84 5 1 0 0 0 0 0 0 0 0 0
/93 /95 /80 /33 /29 /29 /29 /29 /29 /29 /29 /29

100 90 8 2 0 0 0 0 0 0 0 0 0
/76 /90 /87 /39 /29 /29 /29 /29 /29 /29 /29 /29
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9.6 Summary

In this chapter, we focus on audio data classification and categorization
as a case study for the application of audio data mining. We first give a
brief background introduction and review on the audio data classification
literature. Then we give a specific example of the audio data classification
literature by introducing the method recently developed by Lin et al [138].
We have introduced the specific features used in the method as well as the
specific method itself. We have also reported the experimental evaluations of
this method in comparison with the peer methods in the literature. We hope
that this case study gives readers the flavor of the state-of-the-art audio data
classification and categorization literature.
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