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Preface

In recent years, disruptive developments in computing technology, such as large-
scale and mobile computing, has accelerated the growth in volume, velocity, and
variety of multimedia data while enabling tantalizing analytical processing poten-
tial. During the last decade, multimedia data mining research extended its scope to
cover more data modalities and shifted its focus from analysis of data of one
modality to multi-modal data, from content-base search to concept-base search, and
from corporate data to social networked communities data. Ubiquity of advanced
computing devices such as smart phones, tablets, e-book readers, networked
gaming platforms, which serve both as data producers and ideal personalized
delivery tools, brought a wealth of new data types including geographical aware
data, and personal behavioral, preference and sentiment data. Developments in
networked sensor technology allow enriched behavioral personal data that include
physiological and environmental data that can be implemented to build deep,
intrinsic, and robust models.

This book reflects on the major focus shifts in multimedia data mining research
and applications toward networked social communities, mobile devices, and sen-
sors. Vast amount of multimedia are produced, shared, and accessed everyday in
various social platforms. These multimedia objects (images, videos, texts, tags,
sensor readings, etc.) represent rich, multifaceted recordings of human behavior in
the networked society, which lead to a range of important social applications, such
as consumer behavior forecasting for business to optimize advertising and product
recommendations, local knowledge discovery to enrich customer experience (e.g.,
for tourism or shopping), detection of emergent news events and trends, etc. In
addition to techniques for mining single media items, all these applications require
new methods for discovering robust features and stable relationships among the
content of different media modalities and users, in a dynamic, social context rich,
and likely noisy environment.

Mobile devices with multimedia sensors, such as cameras and geographic
location sensors (GPS), have further integrated multimedia into people’s daily lives.
New features, algorithms, and applications for mining multimedia data collected
with mobile devices enable the accessibility and usefulness of multimodal data in
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peoples’ daily lives. Examples of such applications include personal assistants,
augmented reality systems, social recommendations, entertainment, etc.

In addition to the research topic mentioned above, this book also includes
chapters devoted to privacy issues in multimedia social environments, large-scale
biometric data processing, content and concept-based multimedia search, advanced
algorithms for multimedia data representation, processing, and visualization.

This book is mostly based on extended and updated papers presented at the
Multimedia Data Mining Workshops held in conjunction with Association of
Computing Machinery (ACM) Special Interest Group Knowledge Discovery and
Data Mining (SIGKDD) Conferences in 2010–2013. The book also includes several
invited chapters. The editors recognize that this book cannot cover the entire
spectrum of research and applications in multimedia data mining but provides
several snapshots of some interesting and evolving trends in this field.

The editors are grateful to the chapter authors whose efforts made this book
possible and organizers of the ACM SIGKDD Conferences for their supports. We
also thank Dr. Farhan Balush for sharing his LaTex expertise that helped to unify
the chapters.

We thank the Springer-Verlag employees Wayne Wheeler, who supported the
book project, and Simon Rees, who helped with coordinating the publication and
editorial assistance.

Durham, NC, September 2014 Aaron K. Baughman
Sunnyvale, CA Jiang Gao
Mountain View, CA Jia-Yu Pan
Carlsbad, CA Valery A. Petrushin
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Chapter 1
Disruptive Innovation: Large Scale
Multimedia Data Mining

Aaron K. Baughman, Jia-Yu Pan, Jiang Gao
and Valery A. Petrushin

Abstract This chapter gives an overview of multimedia data processing history as
a sequence of disruptive innovations and identifies the trends of its future develop-
ment. Multimedia data processing and mining penetrates into all spheres of human
life to improve efficiency of businesses and governments, facilitate social interac-
tion, enhance sporting and entertainment events, and moderate further innovations in
science, technology and arts. The disruptive innovations in mobile, social, cognitive,
cloud and organic based computing will enable the current and future maturation
of multimedia data mining. The chapter concludes with an overview of the other
chapters included in the book.

1.1 Introduction

Multimodal, hyper-dimensional, and ultimatelymultimedia data is the digital vehicle
that captures and augments the human experience. The human senses of touch, smell,
taste, hearing, and vision are stimulated by multimedia. High definition cameras,
biometric devices, audio acquisition, odor characterization and etc. capture bands of
information through the lens of a human.

A.K. Baughman (B)
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4 A.K. Baughman et al.

Disruptive innovation is the catalyst for changes that enable technological integra-
tion into everyday life. The computing backbone that supports multimedia data min-
ing is undergoing technological disruption with trillions of interconnected devices
that produce large volumes of data consumable by mathematical algorithms and sta-
tistical tools within a cloud computing environment. The accelerating data avalanche
is gaining unimpeded momentum that is producing an overwhelming volume and
density of information. Specifically, a growing and required component of today’s
corpora of information is multimedia data. The fabric of an instrumented, intercon-
nected, and intelligent human experience is stitched together bymultimedia analytics.

Within the knowledge discovery and data mining community and as evidenced
by the success of the previous decade of the Multimedia Data Mining (MDM) work-
shops, there is an increasing interest in new techniques and tools that can detect
and discover patterns in multimedia data. Latest research within MDM describes
multimedia information as a digital capsule, which is ubiquitous, rich, artful, and
empirical. Entertainment venues, businesses, sporting events, social networks, gov-
ernments, academia, and the imagination produce and consume multimedia infor-
mation. Multimedia value and markets are not created from sustained innovation but
rather disruptive innovation. In addition, mobile, social, cognitive, cloud and organic
based computing will enable the current and future maturation of multimedia data
mining.

1.2 Multimedia Disruptive Innovation

Technological change and advancement is fueled by both imagination and empirical
design around an overall problem statement. The top down approach begins with
imagining the future within the constraints of a business problem. Approaches such
as the Walt Disney Imagineering “yes and” are helpful in expanding and encourag-
ing creativity. The “yes and” technique builds upon previous ideas, no matter how
outrageous an assertion is. The creativity box is expanded by serendipity, or by the
discovery of an ingenious idea within the known and unknown, with the imagination
force multiplier. As the process continues, the imagined realities are inputs into the
innovation stage. Empirical constraints are applied to each idea such that the inno-
vation can be turned into reality. The conversation from imagination to innovation
produces a business impact.

Alternatively, a business goal or desire can be established a priori. After the
business constraints are defined, the innovation constraints are defined such as human
capital, natural resources, geography, etc. With the bottom level boxes of impact and
innovation defined, imagination can be unleashed for within-the-box thinking. The
imagination stages use outputs from both the innovation and impact stages to filter
creative thought.
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Fig. 1.1 Depiction of disruptive innovations with S-curves

The set of stages Imagine, Innovate, and Impact are represented by the notation
i3. The top down approach imagines the future, innovates to achieve the ideas, and
watches the impact of the ideas throughout society and the world. In the other direc-
tion, a required impact for society to thrive is defined, innovative techniques are
assembled, and ideas are imagined to create a desirable environment. The successful
completion of i3 produces disruptive innovations. Figure1.1 depicts the phenomenon
of disruptive innovation: the S-curve. Each disruptive innovation within a domain is
defined by an S-curve, which accelerates the domain’s capability along the x-axis.
An exponential growth line results when all of the S-curves are curve fitted [1].

The use and combination of multimedia data such as images, sound, movies,
vibration, and smell within the world around us, provide the i3process with a problem
statement. How can multimedia data be used to create a safer, sustainable, collabo-
rative, and engaging world? Multimedia Disruptive Innovation is the result from a
plurality of possibilities. Within this book, “Multimedia Data Mining and Analytics:
Disruptive Innovation”, we present some of the leading ideas within the multime-
dia field. Many of the chapters and sections come from the presentations at the
Multimedia Data Mining Workshop held jointly with the Association of Computing
Machinery (ACM) SIGKDD Knowledge Discovery and Data Mining Conferences
in the previous five years.

1.3 Examples of Multimedia Disruptive Innovations

Disruptive innovation adopts cutting edge technology and ideas that enable new and
novel applications to sustain exponential growth. A disruptive innovation increases
long term productivity and changes the way people experience and live daily life.
In this section, we discuss several disruptive innovations in multimedia, namely, (1)
effective human-computer interfaces that increase productivity, (2) new life experi-
ences from world digitization, and (3) ubiquitous multimedia information that facil-
itates people’s life.
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1.3.1 Effective Human-Computer Interfaces

Although typing has been the most effective way for a human to interact with a
computer, it has never been the most convenient way for a human user. The most
natural way for a human to express oneself is through talking and body gesture.
Despite many years of research and engineering efforts on speech recognition and
gesture understanding, it is not until the past one or two years that commercial
products provide effective human-computer interfaces that human can interact with
computing devices in a natural fashion. Currently, services such as Siri on iPhone or
“Google Now” on Android phones, have been able to understand speech commands
from human users with high accuracy.

Large data sets of human speech that are available for training speech recogni-
tion models are one of the reasons that effective speech recognition are available
today [2]. These large datasets of human speech come in various forms and quality.
Some of these data sets are high quality, professionally made radio or podcast pro-
grams. There are alsomid-quality videos such as lectures from university courses and
conferences, as well as, a vast collection of user-posted materials on video-sharing
websites such as YouTube. The professionally made data allows researchers to build
systems with high recognition accuracy. However, the mid-quality and low-quality
videos provides training samples that are less formal and more conversational which
can make recognition systems more successful in interacting with ordinary users in
daily tasks.

In addition, the availability of large data sets allow the use of novel algorithms to
build speech recognition models. In particular, the big data sets allow the use of deep
neural networks, which have been shown to outperform previous speech recognition
systems [3].

1.3.2 New Life Experiences from the Digitized World

Advances inmultimedia recording devices and post-processing algorithms have been
gradually digitizing the life experience of humans. The digitization of the physical
world and life experience not only facilitates the recording and sharing of life experi-
ences, but also has profoundly changed people’s lives in many ways. One example of
such change is the Internet services that provide detail maps and even 3D models of
the physical world, which have allowed human users to experience the world without
being at the physical location.

Internet map services, such as Google Maps and Google StreetView, provide a
virtual experience of the physical world [4]. Maps with the 3D model and 360-
degree imagery of a location allows a user a good impression of a location, without
traveling to the actual place. With such convenience, a user can now check out a
travel destination when planning for a vacation. A house buyer can inspect the look
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of a property and its neighborhood when making purchase decisions. Businesses and
governments can also take advantages of this geographical information in planning
and forming strategies.

1.3.3 Ubiquitous Multimedia Information Facilitates
Individuals’ Lives

If having large and informative collections of multimedia information is the founda-
tion on which multimedia disruptive innovations are from, being able to make such
information ubiquitously available to everyone at any time is the catalyst of these
disruptive innovations. Smart personal devices with Internet access allows a user to
access all kinds of multimedia services on the Web, and human life has evolved and
transformed.

Currently, multimedia information has become an element of decision making.
Before buying a product, a user checks the appearance, price, and customer reviews
of the item, as well as information of other competing products. When planning for
a vacation, a user inspects the facility and the location of a hotel before making a
reservation.When looking for a restaurant on the road, a user can locate nearby restau-
rants, review comments from friends or previous customers, and checks the menus.
In education, multimedia materials (video lectures, slides, interactive homework,
and so on) made available by the Massive Open Online Course (MOOC) initiatives
have given many more students, no matter where they are, access to high-quality
education and can have large impacts on society.

1.4 Multimedia Data Mining S-Curves

Over the last several decades, a few key disruptive innovations had significant impact
to the multimedia data mining field. The first contributor to multimedia data min-
ing was the evolution of the Internet. In the 1960s, the Defense Advanced Research
Projects Agency (DARPA) awarded several contracts to construct packet network
systems to send data between computational devices across disperse geographical
locations. The network was called Advanced Research Projects Agency Network
(ARPANET), which implemented Transmission Control Protocol (TCP)/Internet
Protocol (IP). Charley Kline sent the first message from UCLA to a computer at the
Stanford Research Institute (SRI). After several decades of network technology mat-
uration, Tim Berners invented the Hypertext Transfer Protocol (HTTP) and coined
the World Wide Web (WWW) [5]. HTTP provides the foundation for data commu-
nication over the WWW. The Internet when combined with the WWW and HTTP
enabled the possibility to quickly retrieve large collections of documents containing
text, images, videos, and audio. The sharing and access to multimedia information
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over the WWW, which is still considered a research area today, propelled the entire
field of multimedia retrieval.

A second boost within the field of multimedia was the development of digital
cameras. The introduction of digital cameras with video capability has exponentially
multiplied the amount of multimedia content year over year. In the 1990s, digital
cameras became affordable and functional for everyday consumers. In fact, one of
the pioneers of photography, EastmanKodak, filed for bankruptcy in January of 2012
in part because the company did not embrace digital camera technology. The portable
digital camera helped pave the way to today’s 60% contribution of multimedia to all
content [6].

As consumers purchased digital cameras, social media sites began offering ser-
vices to share photographs. For example, Flickr was created in 2004 to host videos
and images. The service has been an open and accessible goldmine for multime-
dia data collection. The site enabled users to tag photographs while also extracting
geolocations, when available, from headers of data in exif format. Shortly thereafter
in 2005, YouTube focused efforts on allowing users to freely share and comment
about videos. Flickr and YouTube provided the foundation to provide open datasets
to evaluate techniques and algorithms within the multimedia field.

Thenext S-Curveoccurredwith themass adoptionof smart phones. In 2007,Apple
Inc., introduced the iPhone while in 2008 an Andriod operating system phone, HTC
Dream (T-MobileG1), was released as a consumer product [7, 8]. By 2011, Facebook
became the largest photograph host in part due to the integration of cameras into
mobile phones. The photo aggregator service, Pixable, had over 100 billion photos
from Facebook by the middle of 2011 [9]. Users could easily take a picture, video, or
sound clip with their smart phone and upload to a social media site. A few staggering
stats are that three billion Facebook photo uploads are made per month and 72 hours
of video are uploaded to YouTube every minute [6]. Perhaps more importantly than
the increase in multimedia volume was the addition of metadata for an image that
was acquired by a smart phone meter such as instant geolocation and accelerometer
readings. The adoption of the smart phone into every aspect of life has paved the
way to an endless number of apps developed to interpret multimedia data.

Currently, the field is experiencing another technological disruption, depth cam-
eras or contextual systems. An example of a depth camera or system is the Kinect.
The Kinect enables users to interact with a digital medium by gestures, facial expres-
sions, sound or movements. The technology has opened a line of research that inte-
grates multimedia and augments virtual spaces. Quite possibly in the future, the next
S-Curve is forming with wearable computing technology. Google Glass has made
wearable computing a reality by going on sale to the general public in May 15,
2014. Wearable computing is evolving a new line of research called egocentric video
analysis and summarization [10, 11].
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Fig. 1.2 Depiction of Moore’s Law with respect to processing power

1.5 Moore’s Law

Moore’s law is a famous and at times infamous curve that shows that computing
power will double every 18months [12]. Figure1.2 shows a log-scale curve of the
computations per second that $1,000 could buy over a 120 year period. As predicted
byMoore’s Law, the curve is linear in log scale. In addition, the historical exponential
growth of computations will continue into the future with the development of organic
computing as described below.

In the 1900s, mechanical devices were used to compute. For example, spaghetti
sort encoded numbers onto uncooked strands of pasta. The lengths of the pasta were
then sorted by a machine and decoded such that the original data was sorted [13].
The mechanical computing paradigm produced 1E-5 computations per second for a
$1,000. In the 1930s and 40s, previous breakthroughs in physics that paired electrical
and magnetism together produced the electromechanical computing paradigm. Elec-
trical charge could move a switch, which resulted in binary gates. By 1940, $1,000
would buy 1E-3 computations per second. The next shift occurred in the 1960s with
the vacuum tubes. Electrical current could be amplified within a vacuum to active
switches in a computer.Mass producing themachines was a challenge. In the vacuum
tube paradigm, $1,000 produced one computation per second.

By the 1980s, the discrete transistor was developed. Transistors could be individ-
ually packaged and required detailed soldering. Much like the vacuum tube, mass
producing the transistors was extremely difficult. The number of computations per
second for $1,000 reached 1,000 (or 1E3). The next phase produced the integrated
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circuits, which were perfected by companies such as Intel and AMD. Semiconductor
material is used to create silicon wafers. The technological advancement earned Jack
S. Kilby a Nobel Prize award in physics. The integrated circuit disruption enabled
the number of computations per second to approach 1E9 for $1,000. In the future,
nanotechnology and organic computing can sustain the technological progress that
is required for multimedia data.

The exponential growth in computing capability depicted in Figs. 1.2, 1.4 and
1.5 is critical for multimedia applications. Sites such as Facebook, Twitter, Flickr,
LinkedIn, Pinterest, Google Plus+, Tumblr, Instagram, VK and Meetup allow users
to post multimedia time capsules. The continuing progress of computing permits
the processing and storage of complex data on large distributed cloud centers. The
growth ofmobile computing increases the velocity ofmultimedia data acquisition and
upload to social media sites. To keep pace with multimedia proliferation, the expo-
nential growth of computing technology is an enabler for multimedia data mining.
Complex data representations that cause a curse of dimensionality within algorithms
are reduced. In addition, large-scale multimedia data mining is possible with large
cloud computing plexes.

1.6 Data Law

As the inverse of Moore’s Law, the multimedia data law or data law in general
asserts that the cost of acquiring data is exponentially decaying with the progress
of technology. Figure1.3 depicts the curve of the multimedia data law. Data is one
of the drivers for technological improvement. Before embedded devices and smart
phones, the acquisition of data was extremely labor intensive and costly such as the
use of punch cards. Other input devices such as keyboards, mice, tablets, and mobile
phones are on the continuum of human assisted information acquisition. The frontier
of data acquisition is automatic without much if any human intervention.

A new value ofmultimedia data is created as information that is acquired automat-
ically and seamlessly. Sensory devices such as eye gaze tracker, heart rate variability
monitors, physical location tracker, automatic speech and sound recognition, and
etc. are current and future technology enablers. Miniaturization of sensors such as
cameras and microphones enable computational systems to provide contextual com-
puting. As production of bio-electronic devices will follow theMoore’s Law, the cost
of data will plummet as sensors automatically acquire information. Accelerating the
movement towards zero cost and Open Data.

Open Data is defined as: “A piece of data or content is open if anyone is free to
use, reuse, and redistribute it—subject only, at most, to the requirement to attribute
and/or share-alike.”1 The climax of open data began in 2004 with the Organization
for Economic Cooperation and Development (OECD), which represents most of
the developed countries in the world, signed a declaration that all publically funded

1 http://opendefinition.org/.

http://opendefinition.org/
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Fig. 1.3 A depiction of the Data Law, which is the inverse of Moore’s Law

archive data should be public [14]. The concept of Open Government was embraced
and many academic works and commercial companies began leveraging the free and
available government data [15]. The eight principles of open government include2:

• Data Must Be Complete.
• Data Must Be Primary and published as collected from the source.
• Data Must Be Timely to preserve the value of the data.
• Data Must Be Accessible so that the widest range of users can access the data.
• Data Must Be Machine Processable to enable algorithm consumption.
• Access Must Be Non-Discriminatory whereby data is accessible by anyone.
• Data Formats Must Be Non-Proprietary where an entity does not have exclusive
control.

• Data Must Be License Free so that data restrictions do no exist.

As a well rounded benefit to all, the general public has increased transparency
towards their publicly funded government, governments find cost efficiencies by
providing free data instead of building service providers, and economic growth occurs
as small businesses developed new products as innovative systems of engagement
were developed. The United States alone has published over 11,193 datasets from
federal agencies and states. The impact of the open data is estimated to have the
potential to generate more than $3 trillion a year in diverse sectors such as education,
energy, consumer products, health and finance. Clearly, data is a natural resource.
In parallel, the scientific community is supporting Open Data called Open Science.
A search on the IEEE or ACM libraries with the keywords “Open Data” results in
hundreds of innovative papers.

2 http://www.data.gov/.

http://www.data.gov/
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Within multimedia data mining, many different data sets are available for experi-
mentation. The MediaEval Datasets support Open Science by providing multimedia
open data within speech, audio, visual content, context, users, and tags. For exam-
ple, MediaEval has provided Spoken Web Search 2013, Violent Scenes Detection
2013, Geographical Placing set, Fashion 10,000, Social Event Detection, Anno-
tated Music, Boredom Detection and etc. The United States National Institutes of
Standards and Technology3 (NIST) provides several types of data sets. Since 2001,
NIST has sponsored digital video retrieval (TRECVID) to encourage research in
automatic indexing, object recognition, segmentation, and semantic reasoning with
large video datasets. In addition, NIST provides fingerprint, mugshot, and facial data-
bases. Other popular people oriented databases include Carnegie Mellon University
Pose, Illumination, and Expression (PIE) of humans and Columbia University Public
Figures Face Database (PubFig). Several spoken or speech related datasets include
University of Pennsylvania’s TIMIT Acoustic-Phonetic Continuous Speech Corpus
and several data sets from the Massachusetts Institute of Technology including the
Negotiation DataSet, Group Polarization DataSet, Speed Dating DataSet, and the
Conversational Interest DataSet. Over 121 multimedia datasets that were acquired
by diverse devices are listed and referenced on a computer vision open data website
[16].

1.7 Moore’s Law Meets the Multimedia Data Law

The Moore’s Law curve showed in Fig. 1.4 depicts exponential growth on a linear
scale and linear growth on a log scale. Throughout history, key technological events
produced disruption. The S-curves shown in the Fig. 1.1 depict disruptive innovation
that sustained the exponential growth. The regression of the S-curves produces the
exponential relationship of computing progress.

For example, the semiconductor sector experienced several S-curves or disruptive
innovations. In the 1990s, bipolar silicon capability allowed the persistence of both
charge and state [17]. The next S-curve occurred with the Aluminum and Copper
CMOS. The technology enabled the integrated circuit on a silicon wafer. In the
early 2000s the semiconductor industry was again disrupted by using copper as
a conductor over aluminum and copper. By 2005 and leading into 2010, silicon
on insulator technology used layers of silicon-insulator-silicon substrates for better
computing performance. Leading into 2015, the maturation of embedded Dynamic
Random Access Memory (DRAM) enables the placement of memory on the chips
themselves. TheS-curve pattern continueswith thematuration of chip architecture. In
the early 1970s, scalar processing was the simplest kind of computing that processed
one datum at a time. By the 2000s, superscalar computing brought about parallelism
or instruction level parallelism with a single processor. A few years later, multicore
processors were introduced that allowed a single computing component with two

3 http://www.nist.gov/.

http://www.nist.gov/
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Fig. 1.4 Moore’s Law within the context of chip architecture

or more processors to share the same bus. The next jump in computing architecture
produces systems that bundle together hardware and software to handle large-scale
data processing otherwise known as Big Data.

The Moore’s Law and the Data Law are working together to accelerate the possi-
bilities of multimedia data mining. Quite staggering, multimedia data makes up 60%
of Internet traffic, 70% of available unstructured data and 70% of mobile phone traf-
fic. In addition, over 100 million photos per day are uploaded to Facebook while over
72 hours of video are uploaded to YouTube every minute [6]. The cost of computing
power and of acquiring data for a monetary unit is decreasing. The combination of
access to cheap and powerful cloud resources and multimedia data should thrust
forward multimedia research.

1.8 Multimedia Technology Drivers

1.8.1 Organic Computing and Nano Systems

As described above, multimedia data will be a large driver for the maturation of
computational systems. The miniaturization of data acquisition devices minimizes
the cost of data. As such, nanosystems such as systems on a chip, photonics, quantum
computing and the DNA transistor are key technological drivers to help simplify
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complex systems while enabling large-scale multimedia data processing. In 2001,
an autonomic computing manifesto was released that asserted the software industry
was in a complexity crisis where computing systemswere beyond the comprehension
of humans. As more devices interconnect to heterogeneous environments, pervasive
computing and the Internet of things cascade into a web of entanglement. In [18] it
is asserted that the solution to the problem was autonomic computing.

Autonomic computing is a type of computing where systems manage themselves
and have a deep relationship to the metaphor of the human immune system and
natural systems. Such systems have the following properties [18]:

• Self-configuration: Heuristics define automated configuration of components and
systems.

• Self-healing: Software and hardware problems are automatically detected, diag-
nosed, and repaired.

• Self-optimizing: Hyperparameters or Metaparameters are constantly adjusted to
increase performance gains.

• Self-protection: Systems can predict and prevent malicious attacks.

The paper [20] defines thefield ofArtificial ImmuneSystems (AIS) and applies the
problem solving of the human immune system to biological inspired digital immune
systems. The authors examined AIS case studies such as autonomous navigation,
computer network security, job-shop scheduling and data analysis. Concurrently and
before AIS, groups of researchers began developing natural system algorithms. Pre-
vious works developed and designed genetic algorithms and evolutionary computing
that mimics the process of natural selection [21, 22]. In 1992, Robert Collins stud-
ied and published a dissertation on “Studies in Artificial Life” whereby his goal
was to produce biological realism [23]. In addition, biological scientists contributed
to natural computing systems by studying the behaviors of animals such as ants
[24]. Academic programs such as the Department of Integrative Biology at Berkeley
study the influences of structure and function on ecology, biology and the evolution
of organisms. Computer scientists hoist natural science discoveries into algorithms
[25, 26].

Following both function and structure of nature, nanosystems are bioinspired
computing paradigms that have organic properties. Many of the architectures do
not follow the conventional von Neumann architecture [27]. The systems have any
combination of self-* properties [28]:

• Self-organizing:Within a systemof systemsor Internet of things, can automatically
divide and conquer and orchestrate function towards solution.

• Self-configuration: The ability to setup system parameters.
• Self-optimization: Increase the efficiency to solve problems.
• Self-healing: Capability to recover from catastrophic events or malfunctioning
parts.

• Self-explaining: Maintain a sense of self awareness such that the system can intro-
spect and describe itself for humans.
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• Context-awareness: Understand the operational ecosystem and can describe the
context to humans.

Other definitions include amorphous systems whereby a system does not have a
definitive shape or form but maintains an adaptive function within a specific ecosys-
tem. The combination of both function and structure is powerful. For example, within
DNA computing, computers leverage the properties of biological DNA to assemble
answers to problems encoded in DNA strands. Solutions to problems such as the
Traveling Salesman can be instantaneously computed with hydrogen bonding by the
Watson-Crick property [29]. Within a gram of DNA, 700 terabytes of data can be
encoded [30]. Within one human cell, over 6,000,000,000 rungs of DNA are present.
If the base pairs were as far apart as the rungs on a real ladder, the ladder would be
halfway to the moon. The density of DNA material within a drop of water enables
quadrillions of computations to occur instantaneously.

Over the last decade, a lot of work has been published within the field of organic
computing. Several works propose organic computing architectures, principles and
frameworks [31–33]. Currently, we are within the infancy of applying both the func-
tion and structure of organic computing tomultimedia datamining. Only the function
of organic computing has been applied to video analysis tasks designed around the
self-* framework [34]. The popular ACM Genetic and Evolutionary Computation
Conference (GECCO) generally attracts evolutionary generated music papers and
workshops. In the future, encoding in a qubit, DNA strand, light, molecule, or etc.
is the first step towards the empirical validation of function and structure of organic
computing. Potentially, we could look at ourselves as organic left and right brain
intelligent computing beings that understand diverse multimedia data: sound, light,
touch, taste, and smell. By examining computing through the lens of biology and
understanding natural biological processes, we will continue the exponential growth
found in Fig. 1.2.

1.8.2 Large Scale Computing

As multimedia data grows in density, large cloud computing infrastructures are
needed to turn the information into insights. From 2004 to 2020, high performance
computing (HPC) hasmoved fromahigh of several petaflops to potentially zettaflops.
For example, in 2004, IBM’s Blue Gene L achieved 0.3PF. followed by Blue Gene
P that reached 1PF. In the early 2010s, IBM Roadrunner was the first HPC system
to achieve 10PF. Commercially available systems are predicted to reach thousands
of peta flops in 2015. Figure1.5 presents the growth of the theoretical maximum
number of floating point operations that the most powerful computing clusters can
achieve within a given year.4

Large scale computing clusters has evolved into Cloud computing. Cloud com-
puting technology is a term that refers to distributed computing platforms connected

4 http://www.top500.org/lists/, July 22, 2014.

http://www.top500.org/lists/
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Fig. 1.5 The growth of the maximum number of floating point operations

by any number of networks. Within cloud, simple interfaces abstract users from
complex infrastructures that form powerful computing clusters. Cloud computing
technology is shifting toward autonomic behavior that is both reactive and predic-
tive, or some combination thereof [19]. In addition, cloud computing is defined as
a Software Defined Environment (SDE) and providing Infrastructure as a Service
(IaaS). Projects such as OpenStack and OpenNebula are turning infrastructure into
code [35].

Within themultimedia community, recipes and cookbooks can bewritten to create
configured machines or logical partitions that support multimedia data processing.
Full cluster nodes can be converged on demand or autonomously to optimally lever-
age the power of the cloud for multimedia data mining. The field of multimedia SDE
is within its infancy.

1.8.3 Big and Fast Data Analytics

MultimediaData is becoming the core component ofBigData. The newly formedBig
Data Working Group at the NIST defines Big Data as the inability of traditional data
architectures to handle new data [36]. Traditionally, Big Data is broken into 4-V’s:
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Variety or data within diverse formats, Velocity or the rate of flow of information,
Veracity or the quality of data and Volume or the amount of data. Per Sec. 1.6, two
additional V’s can be added to the definition of Big Data to describe traits of Open
Data: Visible or the data should be open to anyone and Value or provides analytical
gain. Multimedia data is a form factor of Big Data whereby it is highly diverse,
in large volume, processed at varying speeds, has varying degrees of openness and
veracity. The culmination of the 6-V’s of data are a significant driver of information
system architecture.

Several paradigms of computing enable the processing of multimedia Big Data.
Large volumes of data that need deep analytics require intense computational
resources. Such data can be processed at rest and within a latent environment. These
types of system typically split data between hundreds of cores and push algorithms to
the data. Inmany cases, the splitting of data is done by amap function and themerging
of individual processed elements is completed by a reduce function. The underly-
ing system automatically parallelizes the processing among all available cores. The
MapReduce paradigm handles machine failures, job scheduling, and parallelization
[37]. The MapReduce paradigm is implemented in a widely known and recognized
open source Hadoop system. Many commercial offerings such as Cloudera, IBM
InfoSphere BigInsights, Amazon Elastic Map Reduce, Cloudspace, Pangool, Hor-
tonworks and etc. have been released to ease the introduction of MapReduce into
information systems. In addition,machine learning packages such asApacheMahout
leverages Hadoop to parallelize machine learning processes.

Data in motion can be streamed through analytical pipelines for real time process-
ing. High velocity and instantaneous computations can be completed as data is
accumulated. Quick analytics can produce more data that is pushed to downstream
processing. Systems such as Aurora, STREAM, and Borealis were early streaming
databases rooted from the academic community [38–41]. Streams processing has
some roots in memory data processing on large cluster computing platforms [42].
Several open source and commercial products are now available to support stream
processing such as DataTorrent, IBM InfoSphere Streams, Emblocsoft, HStreaming,
and Apache Spark.

A third paradigm, data on demand, streams latent data through analytical pipelines
for quick computations. On February 14–16, 2011, the DeepQA project produced
a system called Watson that competed and won on the game show Jeopardy!.
The machine had to answer questions within 2–3s. The team developed Apache
Unstructured Information Management Architecture (UIMA) to support deep Nat-
ural Language Processing (NLP) algorithms on a large amount of data [43]. Pieces
of information and the accumulation of evidence were pushed through the analytical
pipelines to support real time response. Furthermore, many computing architectures
combine both data at rest and in motion data architectures.
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1.8.4 Thinking Machines

Multimedia data affords computing with the opportunity to learn from the world
in ways humans interact with the environment. Decades of research and work have
lead to Cognitive Computing. The new paradigm of computing will enable systems
to learn from multimedia data, enhance humans cognitive ability to understand mul-
timedia data, and will naturally interact with humans through their senses of sight,
taste, touch, hear, and smell. Figure1.6 shows the evolution of thinking machines.

The earliest computer was the abacus followed by the stunningly complex
Antikythera. Because of the complexity, the Antikythera was not replicated until
1400AD inEurope. Circa the 1600s,Napier’s rods only used addition to supportmul-
tiplication. A paper was published in Rabdologia that described how to use Napier’s
rods. Babbage’s machines followed Napier’s rods. Babbage created two types of
machines [17]. The first was a Difference Engine that used only arithmetic addition
to solve problems. In 1834, the second Babbage machine was called an Analytical
Engine, which was a programmable computing engine.

Next, the Elementron Numerical Integrator And Computer (ENIAC) was devel-
oped and announced in circa 1945 as the first general purpose digital computing
device thatwas capable of being reprogrammed [44].Of note, theENIACwasTuring-
complete. The ENIAC contained over 17,000 vacuum tubes. Unfortunately, when
one tube malfunctioned, an entire tube board had to be replaced.

In 1964, International Business Machines (IBM) announced the introduction of
the System/360. The System/360was the firstmainframe computer that was designed
for general purposes and separated architecture and implementation .TheSystem/360
was very successful with a 2/3rds market attainment [45]. Computing innovation
began to accelerate with the introduction of the Integrated Circuit. In 1971, Intel
released The Intel 4004 that was a general purpose 4-bit computer on 4 chips with a
width of 10,000nm [46]. The development of the Integrated Chip (IC), sets the stage
for scientists and engineers to develop “Thinking Machines”.

In 1958, Simon and Newell said that “… within ten years a digital computer will
be the world’s chess champion…”. The two founders of Artificial Intelligence were
wrong about the date but correct with their prediction. In 1997, Deep Blue beat Gary
Kasparov, a chess grandmaster and former World Chess Champion, in chess 3.5 to
2.5 [47]. Alan Turing also posed the Imitation Test where a human and computer
were indistinguishable in games such as chess or question and answer challenges
[48]. On February 14–16, 2011, a massively parallel and probabilistic question and
answer system named Watson, beat both Brad Rutter, the largest money winner on
Jeopary!, and Ken Jennings, the record holder for the longest winning streak [43].
Hayes and Ford were critiques of the Turing and Imitation test. They claimed that
Turing’s measures for AI were much too restrictive and would produce an “artificial
con artist” [49]. However, IBM’s Watson is being put to work through commercial
domain adaptation that included content, functional, and training adaptation [50].
Perhaps the next disruptive innovation within the evolution of “Thinking Machines”
is the use of cognitive chips and biologically inspired systems as described above.
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Fig. 1.6 The progression of intelligent computing

The boundaries of multimedia computational intelligence, reasoning under uncer-
tainty, probabilistic reasoning, pattern recognition, machine learning, and etc. can be
viewed through the proceedings of popular conferences such as:

• ACM Knowledge Discovery and Data Mining (KDD).
• ACM Multimedia (ACMMM).
• IEEE Computer Vision and Pattern Recognition (CVPR).
• IEEE International Conference on Computer Vision (ICCV).
• International Conference on Machine Learning (ICML).

Scientific journals evaluate papers and scientific works to share discovery to
researchers, teachers and practitioners. The following journals provide a leading
edge pulse within the fields of algorithms and multimedia:

• IEEE Transactions on Pattern Analysis and Machine Intelligence.
• IEEE Transactions on Evolutionary Computation.
• IEEE Transaction on Multimedia.
• Foundations and Trends in Machine Learning.
• ACM Transactions on Knowledge Discovery from Data.

We are very excited with the emerging trends of the use of multimedia data
to enhance the physical world and to create immersive environments. Everyday
new mobile applications are developed to interpret images, sounds, location and
accelerometer information. Social networks use images, sound and video to inter-
connect people. New haptic interfaces are being developed to engage users within
systems. Cognitive computing is learning and interactingwith human usage. Systems
of systems are both creating and consuming data. We live within an exciting era of
disruption innovation!
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1.9 Overview of the Book’s Contents

During recent years, the focus of Multimedia Data Mining became wider and shifted
to new data sources. Besides the traditional research that focuses on algorithms for
improving the content and concept based multimedia search, feature representation
and selection, new research directions include processing data from social networks,
mobile devices, and sensors that provide multimedia data enriched with subjective,
environmental and location-aware information. Such richness of data sources on one
hand allows creating more sophisticated applications, but on the other hand increases
the risk of privacy threat.

The book consists of five parts. The first part is an introduction, which includes
the chapter that you are reading now. It gives a historical overview of how the techno-
logical innovations driven by information processing needs create positive feedback
loops to expedite technological progress. It also shows the trends of technology
development in the future and overviews the content of the chapters included within
the book.

The second part is devoted to the rapidly developing field of mobile and social
multimedia data processing and exploration. It includes six chapters. Chapter2 “Sen-
timent Analysis Using Social Multimedia” by Jianbo Yuan, Quanzeng You and Jiebo
Luo deals with sentiment analysis and opinion mining, which is a rapidly developing
area of research with numerous applications almost to every possible domain, from
consumer products, services, health care, and financial services to social events and
political elections. The authors present latest works on topics of sentiment analy-
sis based on both textual data and visual data. They introduce Sentribute, a novel
image sentiment analysis framework based on middle level attributes and eigenface
expression attributes. The chapter also presents a new study aimed at analyzing the
sentiment changes of Twitter users by processing both visual and textual multimedia
data.

Chapter 3 “Twitter as a Personalizable Information Service” by Mario Cataldi,
Luigi Di Caro and Claudio Schifanella explores Twitter as one of the fastest and
dynamic information services in the world. The authors present an approach for
extracting, in real-time, the emerging topics expressed by the community along the
interests of a specific user. The social community is modeled as a directed graph
of the active authors based on their social relationships, calculating their authority
by relying on the well-known PageRank algorithm. The stream of information in
the entire network is monitored by studying the life cycle of each term according
to an aging model that also leverages the reputation of each author. The set of most
emerging keywords are selected by dynamically ranking the terms depending on
their life status, defined through a burstiness value. Finally, each topic is created by
constructing and analyzing a keyword graph, which links the extracted emerging
terms with all the co-occurring keywords. In order to personalize the list of retrieved
emerging topics, the temporal time frames, in which the user has been active, and
the generated content are also analyzed. This time-aware information is finally used
to highlight the topics that best match the interests of the user.

http://dx.doi.org/10.1007/978-3-319-14998-1_2
http://dx.doi.org/10.1007/978-3-319-14998-1_3
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Chapter 4 “Mining Popular Routes from Social Media” by Ling-Yin Wei, Yu
Zheng and Wen-Chih Peng deals with mining spatial trajectories, which are time
series augmented with location coordinates, or linked to objects of known locations.
The amount of such data is rapidly growing due to advances in location detection
technologies using mobile devices and emerging location-basedWeb services. Many
of such trajectories have irregular and low frequency which causes uncertainty about
an object’s location in time between available data points. To work with such data
the authors present a Route Inference framework based on Collective Knowledge
(RICK), which derives the popular routes from uncertain trajectories by aggregating
them and building a routable graph using collaborative learning. Then the top-k
routes going through the locations within the specified time span are constructed.
The framework was developed and tested using two real-life datasets—the users’
check-in dataset inManhattan,NY from the local search and recommendation service
Foursquare, and the taxi trajectories inBeijing.The results showed that the framework
is both effective and efficient.

Chapter 5 “Social Interaction over Location-Aware Multimedia Systems” by Yi
Yu, Roger Zimmermann and Suhua Tang gives an overview of research and develop-
ment in processing location-aware data including techniques for extracting location
information frommultimedia data, geo-tag data processing from social networks, and
applications to numerous location-based services. The authors introduce the basic
concepts and techniques of location-aware data processing, and applying them to
identifying individual user interests and geographic-social behaviors. In particular,
they present the concept of geo-fencing and related techniques, which form a basis
for user-centric mobile location-based services. The chapter describes the authors’
experience in processing geographic-aware social media and social interaction data
from Flickr, Foursquare, and Twitter, including leveraging tweets with geospatial
information for mining music listening patterns, mapping geo-categories to moods,
and multimedia content diffusion.

Chapter 6 “In-house Multimedia Data Mining” by Christel Amato, Marc Yvon,
andWilfredo Ferré present research conducted by the European IBMHuman Centric
Solutions Center. It describes technical solutions made for the in-house multimedia
project, where the goal was creating a framework for monitoring activities of elderly
people at home using several streams of data coming from sensors, such as water
leakage detector, light on/off detector, CO and CO2 level, smoke detector, temper-
ature and humidity values. The solution has a hierarchical structure with Zigbee
communication system for collecting and aggregating data locally, standard telecom
equipment for transmitting data to the IBM server via 3G networks, and the IBM
cloud system for processing data and draw insights. A pilot experiment, which was
conducted during eightmonths in the city ofBolzano in Italy, showed the reliability of
the proposed technical solution. The collected data provided the base for developing
a range of applications that derive insights about wellness of elderly people.

Chapter 7 “Content-based Privacy for Consumer-Produced Multimedia” by Ger-
ald Friedland, Adam Janin, Howard Lei, Jaeyoung Choi, and Robin Sommer is
devoted to a crucial topic of privacy threat, which has become the focus of cur-
rent interest due to the exponential growth of multimedia materials on the Web and

http://dx.doi.org/10.1007/978-3-319-14998-1_4
http://dx.doi.org/10.1007/978-3-319-14998-1_5
http://dx.doi.org/10.1007/978-3-319-14998-1_6
http://dx.doi.org/10.1007/978-3-319-14998-1_7
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improvements in multimedia content analysis techniques such as face recognition,
speaker verification, location estimation, etc. The unethical use of multimedia data
collected on the Web scale could make the privacy threat enormous and pervasive.
The multimedia community therefore has an obligation to understand these risks,
mitigate the effects, and educate the public on the issues. The authors outline exist-
ing and future multimedia content analysis and linking techniques that could support
unethical use, and describe possible attack vectors. Then they describe some prelim-
inary experiments providing evidence that multimedia analytics can circumvent one
aspect of privacy by linking accounts. Finally, mitigation and educational techniques
are outlined.

The third part consists of two chapters that present research in biometric data
processing. Chapter 8 “Large-scale Biometric Multimedia Processing” by Stefan
van der Stockt, Aaron Baughman, and Michael Perlitz describes research and devel-
opment studies on the analysis of large-scale biometrics datasets. The authors provide
an overview of the current state of the art in the field, including search space reduc-
tion, feature selection, and parallel processing of biometric data. They present their
results in solving the fingerprint identification task using the bootstrapped C-means
clustering to reduce the search space and using support vectormachine recognizer for
identification. The proposed approach shows high precision and reduced processing
time. The task of reducing the number of features is very important for improving
performance of large-scale biometric systems. The authors propose an innovative
algorithm based on evolutionary computing to perform efficient facial feature selec-
tion for identification purposes. The authors describe designs of large-scale biometric
systems that take the advantages of multi-core, distributed, cloud and mobile com-
puting technologies.

Chapter 9 “Detection of Demographics and Identity in Spontaneous Speech and
Writing” by Aaron Lawson, Luciana Ferrer, Wen Wang, and John Murray investi-
gates how identity and demographic categories are manifested in spoken and written
language, and highlights approaches to capture this information for real world analy-
sis, including talker andwriter identification, and authentication. The authors address
language use in the virtual world of on-line games and text entries on mobile devices
in the formof chats, emails andnicknames, anddemonstrates socio-linguistic features
and text factors that correlatewith demographics, such as age, gender, personality and
interaction style. As for the spoken language analysis, the authors overview themajor
problems of speaker identification, including differences inherent to the talker and
external environment. Recent findings in terms of features (acoustic and prosodic), as
well as modeling techniques that have provided breakthroughs in recent evaluations,
such as low-dimensional iVector representations of an utterance and probabilistic
linear discriminant analysis (PLDA) for score generation, are examined. The authors
present an on-going work that combines research from both written and spoken
authentication and characterization approaches to provide continuous authentication
of users on their mobile devices using spoken and written inputs on the device. This
continuous authentication will make use of the shared space of language, which cov-
ers speech and writing, and the sociolinguistic relationships that emerge from the

http://dx.doi.org/10.1007/978-3-319-14998-1_8
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intersection of language use and personality, background, gender, age, ethnicity, and
interaction style.

The fourth part is devoted to multimedia data modeling, search and evaluation. It
includes some traditional topics in multimedia data research, such as content-based
image search, video retrieval and concept detection, as well as new topics, such
as identifying features that drive attention in video, and detecting illegal changes
in images. It includes six chapters. Chapter 10 “Evaluating Web Image Context
Extraction” bySadetAlcic andStefanConrad dealswith evaluation of image retrieval
from the Web. For image retrieval, both visual features extracted from images and
textual information extracted from the image context such as image captions or text
surrounding the image can be used. The problemof finding the relevant image context
is not trivial. Several methods that automatically determine and extract the Web
image context from Web documents have been applied in various applications over
the years. However, in these applications context extraction is only a preprocessing
step and therefore the quality of the extraction task has not been evaluated on its
own. The authors propose an evaluation framework that objectively measures and
compares the quality of Web Image Context Extraction (WICE) algorithms. The
main parts of the framework are a large ground truth dataset consisting of diverse
Web documents from real Web servers and objective quality measures tailored to
the special characteristics of the image context extraction task. Common extraction
methods from the literature are implemented and integrated into the Framework, and
the evaluation results are summarized and discussed.

Chapter 11 “Content Based Image Search for Clothing Recommendations in E-
Commerce” by Haoran Wang, Zhengzhong Zhou, Changcheng Xiao and Liqing
Zhang is devoted to content based image search. The authors present three models
for searching similar clothing. The first model is based on sketch-based image search
and uses contour features. To expedite search, the features are sorted according their
importance and a three-level hierarchical search process is implemented. At each
level, more features are used and fewer top rated images are selected. The second
model uses the spatial bag-of-feature approach, which takes into account the spatial
distribution of features in the image. The third model is a query adaptive shape topic
model, which combines shape features with high-level concepts that are represented
by natural language words assigned to clothing images. Experimental results based
on a dataset of 100,000 clothing images with more than 30 categories of clothing
showed that the thirdmodel which uses both low-level visual and high-level semantic
features outperforms the models based only on visual features.

Chapter 12 “Video Retrieval based on Uncertain Concept Detection using
Dempster-Shafer Theory” by Kimiaki Shirahama, Kenji Kumabuchi, Marcin Grze-
gorzek and Kuniaki Uehara presents research in high-level concept detection and
concept-based video retrieval. The authors give an introduction and overview of the
current state of the art in the fields of content-based and concept-based retrieval.
In opposite to the content-based retrieval, which uses low-level visual features to
fetch relevant video shots, the concept-based retrieval approach first uses a number
of concept detectors each gives probability of presence of a particular high-level
concept in a shot and then merges the results and ranks shots according to their rele-

http://dx.doi.org/10.1007/978-3-319-14998-1_10
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vance. Merging the results of concept detectors is a very critical step that defines the
accuracy of retrieval. The authors proposes a novel approach that uses the Dempster-
Shafer Theory for merging the concept detectors’ scores, taking into account their
uncertainties. Experiments using TRECVID 2009 data and 24 queries show that, for
three queries, the approach outperforms the best results and for four other queries
the results are in the top five results.

Chapter 13 “Multimodal Fusion: Combining visual and textual cues for concept
detection in video” by Damianos Galanopoulos, Milan Dojchinovski, Tomas Kliegr,
Krishna Chandramouli, and Vasileios Mezaris describes research in concept-based
video retrieval. The authors explore different approaches to improve concept detec-
tion accuracy by merging the results from recognizers that are based on visual fea-
tures with results from text-based recognizers that use automated speech recognition
transcripts. The chapter gives an overview of visual-based and text-based concept
detection algorithms and justifies using the Explicit Semantic Analysis approach
for text-based concept recognition. For merging recognition results from recogniz-
ers of different modalities, the authors suggest linear combination of results, meta-
classification using additional recognizers that use the original results as inputs, and
second level fusions where the results of original recognizers are combined with
results of meta-classification. Experiments using 34 concepts and the TRECVID
2012 Semantic indexing task dataset show that using meta-classification with SVM
could improve the accuracy of recognition by 13% and using second level fusion by
36%.

Chapter 14 “Mining Videos for Features that Drive Attention” by Farhan Baluch
andLaurent Itti describes research on identifying visual features that capture people’s
attention in video. The authors conducted experiments with eight subjects who were
watching videos and their attention allocations were measured by an eye tracker.
The aggregated localization data served as the ground truth for measuring accu-
racy of attention localization using models based on different visual features and
their weighted combinations. The authors explored 18 features from low-level color,
intensity, motion and texture features to more advanced shape features such as T- and
X-shaped edge junctions and human-like shapes. After estimating the performance
of each feature individually, the authors selected the following top features: motion,
color, orientation, intensity and flicker. A simple linear combination of the features
results in a model that performs reasonably well. In particular, a genetic algorithm
was proposed to estimate the weights for combining these features and was shown
to improve the model performance.

Chapter 15 “Exposing Image Tampering with the Same Quantization Matrix”
by Qingzhong Liu, Andrew H. Sung, Zhongxue Chen and Lei Chen is devoted to
multimedia forensics, which has emerged recently as a new discipline. The authors
focus on image forgery detection using a shifted-recompression-based approach to
detect the image tampering with the same quantization matrix. Several classifiers
are designed and experiments are performed to evaluate the effectiveness of the
approach. Results indicate that the approach is indeed highly effective in detecting
image tampering and relevant manipulations by using the same quantization matrix.

http://dx.doi.org/10.1007/978-3-319-14998-1_13
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The fifth part is a collection of four chapters that present algorithms for multime-
dia data processing and presentation. Chapter 16 “Fast Binary Embedding for High-
Dimensional Data” by Felix X. Yu, Yunchao Gong, and Sanjiv Kumar presents novel
algorithms for dimensionality reductionusingbinary embeddingof high-dimensional
data. Traditional binary coding methods often involve very high computation and
storage cost. The authors propose two solutions: the Bilinear Binary Embedding,
which converts high- dimensional data to compact similarity-preserving binary codes
using compact bilinear projections, and the Circulant Binary Embedding, which gen-
erates binary codes by projecting the data with a circulant matrix using Fast Fourier
Transformation to speed up the computation. Both methods dramatically reduce the
time and space complexity comparing with the best state-of-the-art techniques. The
authors present the two approaches in a unified framework, covering randomized
binary embedding, learning-based binary embedding, and learning with dimension
reductions. To demonstrate the advantages of the proposed methods, experiments
were conducted using three real-world high-dimensional datasets used by the current
state-of-the-art method for generating binary codes. The proposed methods showed
both significant reduction in processing time and an increase in accuracy.

Chapter 17 “Fast Approximate k-Means via Cluster Closures” by JingdongWang,
Jing Wang, Qifa Ke, Gang Zeng, and Shipeng Li presents a novel approximate
k-means clustering algorithm that outperforms in terms of both accuracy and run-
ning time the state-of-the-art approximate k-means algorithms such as hierarchical
k-means, approximate k-means and Canopy clustering. The approach was motivated
by the observation that during iterative reassigning data points to clusters, the points
that are changing their cluster assignments frequently are located on or near cluster
boundaries. The algorithm efficiently identifies those active points by pre-assembling
the data into groups of neighboring points using multiple random spatial partition
trees, and uses the neighborhood information to construct a closure for each clus-
ter, in such a way only a small number of cluster candidates need to be considered
when assigning a data point to its nearest cluster. The authors provide the complexity
analysis of the algorithm and describe its applications on image data clustering and
image retrieval.

Chapter 18 “Fast Neighborhood Graph Search using Cartesian Concatenation”
by Jingdong Wang, Jing Wang, Gang Zeng, Rui Gan, Shipeng Li, and Baining Guo
is devoted to improving efficiency of approximate nearest neighbor search for large
scale and high-dimensional multimedia data. The authors describe an approach that
greatly augments neighborhood graph search by proposing a newdata structure. First,
Cartesian concatenation is applied to produce a large set of vectors, called bridge
vectors, from several small sets of sub-vectors. Each bridge vector is connected with
a few reference vectors near to it, forming a bridge graph. The neighborhood graph
is augmented with the bridge graph. The proposed approach finds nearest neighbors
by simultaneously traversing the neighborhood graph and the bridge graph using
best-first strategy. The success of this approach stems from two factors: the exact
nearest neighbor search over a large number of bridge vectors can be done quickly,
and the reference vectors connected to a bridge (reference) vector near the query
are also likely to be near the query. Experimental results on searching over several
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large-scale datasets show that the proposed approach outperforms state-of-the-art
approximate nearest neighbor search algorithms in terms of efficiency and accuracy.

Chapter 19 “Listen to the Sound of Data” by Mark Last and Anna Usyskin
describes an approach to data perception using the auditory channel, which could
complement data visualization techniques or substitute them in cases when visual
representation is impossible to use. After introducing the sonification techniques and
overviewing the current state of the art in the field, the authors present a sonification
algorithm for univariate or multivariate (up to ten dimensions) time series. The input
time series are converted into a Western tonal music in MIDI format. The approach
is tested by conducting two usability studies. During the studies, subjects listened to
sonified versions of time series and were asked questions about how the data values
are changing over time, or which dataset of two alternatives is similar to third one.
The results of both studies showed that subjects were able to successfully perform a
variety of common data exploration tasks using the proposed sonification approach.

Acknowledgments Special thanks to David McQueeney and Michele Merler for guidance and
content review.
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Chapter 2
Sentiment Analysis Using Social
Multimedia

Jianbo Yuan, Quanzeng You and Jiebo Luo

Abstract Sentiment analysis is one of the most active research areas in natural
language processing, web/social network mining, and text/multimedia data mining.
The growing importance of sentiment analysis coincides with the popularity of social
network platforms, such as Facebook, Twitter, and Flickr, which provide a rich repos-
itory of people’s opinion and sentiment about a vast spectrum of topics. Moreover,
the fact that we are exposed to a tremendous amount of data in different forms includ-
ing text, images, and videos makes sentiment analysis a very challenging task due
to its nature of multimodality. In this chapter, in order to provide a big picture of
sentiment analysis, we will discuss some of the latest works on topics of sentiment
analysis based on visual content and textual content.

2.1 Introduction

Sentiment analysis and opinion mining are fields of study that analyze people’s
opinions, evaluations, attitudes, and emotions generally from written language [1].
To the best of our knowledge, the term sentiment analysis first appeared in [2].
Because of the explosive communication and information exchanges using social
media, researchers are now given the opportunity to access a tremendous amount of
texts and images that express people’s opinions and sentiments. Therefore, research in
sentiment analysis not only has an important impact on Natural Language Processing,
but may also have a profound impact on management sciences, political science,
economics, and social sciences as they are all affected by opinions.
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Sentiment analysis applications have spread to almost every possible domain,
from consumer products, services, health care, and financial services to social events
and political elections. Many big corporations have also built their own in-house
capabilities, e.g., Microsoft, Google, Hewlett-Packard, SAP, and SAS. Such practical
applications and industrial interests have provided strong motivations for research in
sentiment analysis.

Most recently, social networks such as Twitter and microblogs such as Weibo have
become major platforms of information exchange and communication between users,
between which the common information carrier is tweets. Social networks such as
Twitter and microblogs such as Weibo provide billions of pieces of both textual and
visual information, making it possible and imperative to detect sentiment indicated
by both textual and visual data, respectively. Multimedia content, such as images,
are more likely to express and convey people’s subtle feelings compared with text
information alone [3]. However, sentiment analysis based on a visual perspective is
still in its infancy.

With respect to sentiment analysis, much work has been done on textual infor-
mation [4–6], as well as online sentiment dictionary [7, 8]. Semantics and concept
learning [9–12] based on visual features is another way of sentiment analysis without
employing textual information. However, semantics and concept learning approaches
are hampered by the limitations of computer vision. The analysis of aesthetics [13,
14], interestingness [15] and affect or emotions [16–19] of images are most related
to sentiment analysis based on visual content. Moreover, sentiment analysis based
on human activities’ content, for example, images of facial expressions, has played
a significate role in the fields of psycology and human–computer interaction. Many
works have been explored on facial emotion classification [20–22]. Hernandez et al.
[23] created a computer vision-based system that automatically encouraged, recog-
nized, and counted smiles on a college campus. Hoque et al. [24] took a step forward
by building a novel system that provides ubiquitous access to social skills training
based on recognitions of facial expressions, speech, and prosody and responds with
verbal and nonverbal behaviors.

There are many existing works on sentiment analysis of social media. In particular,
Twitter sentiment analysis is one of the most popular research topics. Most existing
methods differ in terms of features and emphasize on different aspects of the problem.
Guerra et al. [25] proposed a method to measure the bias of social media users toward
a topic. Transfer learning is employed to learn the textual features, in such a way
that they can build a more accurate classification model using the user biases as a
new feature. However, the identification of users’ bias on a particular topic itself
may be challenging. In [26], the authors employed label propagation to handle noisy
labels and use the network for the propagation of the labels. Their results indicate an
improvement of accuracy over existing approaches. In [27], the authors used Twitter
as a platform to analyze the language characteristics of mothers during postpartum.
Their results indicate that using social media can help discover and understand the
health and wellness of women following childbirth. Meanwhile, in [28], a method on
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streaming data sentiment analysis is proposed. The core of the solution is a training
augmentation procedure. It will automatically incorporate new relevant messages
into the training data. In [29], the authors used the social relations extracted from
tweets, and applied graph Laplacian to form a sparse formulation. An optimization
algorithm is proposed to solve this problem. All of these methods only use textual
features for sentiment analysis. Even though noisy labels and network structures are
also considered, these approaches did not combine with image features for sentiment
analysis, which is another main content feature of tweets.

Meanwhile, other works related to the mining of different aspects of social net-
works have also been proposed. Kosinski et al. [30] analyzed the likes in Facebook,
and discovered that people in social media are more likely to share some common
interests with their friends and some particular community. Based on their model,
they are able to predict the behavior of the users according to their online social
activities. Rao et al. [31] used Bayesian models for latent attribute detection based
on topic models. Goel et al. [32] used social media to study the browsing behavior
of online users. Wong et al. [33] used online social network data to quantify polit-
ical leaning using the information extracted from tweets and retweets. Choudhury
et al. [34] analyzed the sentiment or mood in social media. They used valence and
activation to represent moods. Their work provided validation of conceptualization
of human mood.

For social media networks, the network structure itself can also be employed for
the analysis of sentiment propagation of different nodes across the network. In [35],
the authors used the hyperlinks in the network to analyze the sentiment flow. Their
results indicate that a node is significantly influenced by its immediate neighbors.
The structure of information propagation graph also illustrates the impact of different
sentiment flow patterns. Similarly, users connected in social networks are more likely
to have similar opinions. To analyze sentiment, [36] employed network relationship
to analyze the sentiment of a group of users over a particular topic. In [29], both
the user-content and the user–user relations were exploited for sentiment analysis.
More specifically, they proposed a semi-supervised learning framework by using
the network relations and formalized the problem in an optimization framework.
An empirical study of the proposed framework over two existing Twitter datasets
illustrated the improved performance of the algorithm. You and Luo [3] analyzed the
sentiment changes of Twitter users using both textual and visual features.

In the remainder of this chapter we will present some latest works on topics
of sentiment analysis based on both textual data and visual data. In Sect. 2.2, we
introduce Sentribute, a novel image sentiment analysis framework based on middle
level attributes and eigenface expression detection. In Sect. 2.3, we present a new
study aimed at analyzing the sentiment changes of Twitter users due to multimedia
data including both visual and textual information. We conclude and look forward
to future work in sentiment analysis in Sect. 2.4.
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2.2 Sentiment Analysis on Visual Contents

As stated, so far analysis of textual information has been well developed in areas
including opinion mining [4, 5], human decision making [5], brand monitoring [37],
stock market prediction [38], political voting forecasts [4, 39], and intelligence gath-
ering [40]. Figure 2.1 shows an example of image tweets. In contrast, analysis of
visual information covers areas such as image information retrieval [41, 42], aes-
thetics grading [14] and the progress is relatively behind. On the other hand, a recent
study shows that images constitute about 36 % of all the shared links on Twitter,1

which makes visual data mining an interesting and active area to explore. As an old
saying has it, an image is worth a thousand words. Much like the textual content-
based mining approach, extensive studies have been done regarding aesthetics and
emotions in images [13, 15, 43].

Visual content analysis has always been important yet challenging. Thanks to the
popularity of social networks, images become a convenient carrier for information
diffusion among online users. Aiming to conduct visual content-based sentiment
analysis, current approaches include employing low-level features [16, 44, 45], via
facial expression detection [46] user intent [47], and understanding images using
attribute learning [48, 49]. Sentiment analysis approaches based on low-level fea-
tures have the limitation of low interpretability, which in turn makes it undesirable
for high-level use. Metadata of images is another source of information for high-
level feature learning [50]. However, not all images contain such kind of data and
researchers are trying to incorporate techniques such as attribute learning and scene
understanding before going to final sentiment classification. As for understanding

Fig. 2.1 Selected images crawled from Twitter showing (first row) positive sentiment and (second
row) negative sentiments

1 http://socialtimes.com/is-the-status-update-dead-36-of-tweets-are-photos-infographic/.

http://socialtimes.com/is-the-status-update-dead-36-of-tweets-are-photos-infographic/
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the visual concepts of an image, [48] established a large-scale Visual Sentiment
Ontology (VSO) consisting of more than 3,000 adjective noun pairs and used as
detectors for image sentiment. Sentribute [49], on the other hand, built 102 middle
level attributes and used them as features for sentiment classification.

To understand the diffusion patterns and different aspects of the social images,
we need to interpret the images first. Similar to textual content, images also carry
different levels of sentiment to their viewers. However, different from text, where
sentiment analysis can use easily accessible semantic and context information, how
to extract and interpret the sentiment of an image remains quite challenging. In this
section, we introduce an image sentiment prediction framework, which leverages the
mid-level attributes of an image to predict its sentiment. This makes the sentiment
classification results more interpretable than directly using the low-level features
of an image. To obtain better performance on images containing faces, we employ
eigenface-based facial expression detection as an additional mid-level attribute. An
empirical study of the proposed framework shows improved performance in terms
of prediction accuracy. More importantly, by inspecting the prediction results, we
are able to discover interesting relationships between mid-level attribute and image
sentiment.

Compared to the state-of-the-art algorithms, the main contribution of Sentribute
to this area is two-fold: first, the proposed Sentribute, an image-sentiment analysis
algorithm based on 102 mid-level attributes, of which results are easier to interpret
and ready-to-use for high-level understanding. Second, we introduce eigenface to
facial sentiment recognition as a solution for sentiment analysis on images containing
people. This is simple but powerful, especially in cases of extreme facial expressions,
and contributed an 18 % gain in accuracy over decision making only based on mid-
level attributes, and 30 % over the state-of-art methods based on low-level features.

2.2.1 Framework Overview

Figure 2.2 presents the proposed Sentribute framework. The idea for this algorithm
is as follows: first, we extract scene descriptor low-level features from the SUN
Database [47] and use these four features to train the classifiers by Liblinear [16]
for generating 102 predefined mid-level attributes, and then use these attributes to
predict sentiments. Meanwhile, facial sentiments are predicted using eigenfaces. This
method generates really good results, especially in cases of predicting strong positive
and negative sentiments, which makes it possible to combine these two predictions
and generates a better result for predicting image sentiments with faces. To illustrate
how facial sentiment helps refine our prediction based on only mid-level attributes,
we present an example in Sect. 2.4, of how to correct the false positive/negative
prediction based on facial sentiment recognition.
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Visual Contents
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level Attributes
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Sentribute: Algorithm Framework

Eigenface model Images contain Faces

Training Classifiers Asymmetric Bagging

Fig. 2.2 Selected images crawled from Twitter showing a positive sentiment and b negative sen-
timents

2.2.2 Sentribute

In this section we outline the design and construction of the proposed Sentribute, a
novel image sentiment classification method based on mid-level attributes, together
with a decision refine mechanism for images containing people. For image sentiment
analysis, we conclude the procedure starting from dataset introduction, low-level
feature selection, building mid-level attribute classifier,, and image sentiment clas-
sification. As for facial sentiment recognition, we introduce eigenface to fulfill our
intention.

Dataset: Our proposed algorithm mainly contains three steps: first is to generate
mid-level attributes labels. For this part, we train our classifier using SUN Database,2

the first large-scale scene attribute database, initially designed for high-level scene
understanding and fine-grained scene recognition [51]. This database includes more
than 800 categories and 14,340 images, as well as discriminative attributes labeled
by crowd-sourced human studies. Attributes labels are presented in the form of
zero to three votes, of which 0 vote means this image is the least correlated with
this attribute, and three votes means the most correlated as shown in Fig. 2.3. Due
to this voting mechanism, we have an option of selecting which set of images to be
labeled as positive: images with more than one vote, introduced as soft decision (SD),
or images with more than two votes, introduced as hard decision (HD). Mid-level
attribute classifiers learned based on soft decisions are less likely to be overfitting
and less accurate than the classifiers learned based on hard decisions.

The second step of our algorithm is to train sentiment predicting classifiers with
images crawled from Twitter together with their textual data covering more than 800
images. Twitter is currently one of the most popular microblog platforms. Sentiment
ground truth is obtained from visual sentiment ontology3 with permission of the
authors. The dataset includes 1,340 positive, 223 negative and 552 neutral image
tweets. For testing, we randomly select 810 images, containing positive (660 image
tweets) and negative (150 image tweets). Figure 2.1 shows images chosen from our
dataset as well as their sentiment labels.

2 http://groups.csail.mit.edu/vision/SUN/.
3 http://www.ee.columbia.edu/ln/dvmm/vso/download/sentibank.html/.

http://groups.csail.mit.edu/vision/SUN/
http://www.ee.columbia.edu/ln/dvmm/vso/download/sentibank.html/
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Fig. 2.3 The images in the table above are grouped by the number of positive labels (votes) received
from AMT workers. From left to right the visual presence of each attribute increases [51]

The final step is facial emotion detection for decision fusion mechanism. We chose
to use the Karolinska Directed Emotional Faces dataset [52] mainly because the
faces are all well aligned with each other and have consistent lighting, which makes
generating good eigenface much easier. The dataset contains 70 men and women
over 2 days expressing seven emotions (scared, anger, disgust, happy, neutral, sad,
and surprised) in five different poses (front, left prole, right prole, left angle, right
angle).

Feature Selection: In this part, we aim to select low-level features for generating
mid-level attributes, and we choose four general scene descriptors: GIST descriptor
[18], HOG 2x2, self-similarity (SSIM), and geometric context color histogram (GEO-
COLOR-HIST) features [53]. These four features were chosen because they are each
individually powerful and because they can describe distinct visual phenomena in a
scene perspective other than using specific object classifier. These scene descriptor
features suffer neither from the inconsistent performance compared to commonly
used object detectors for high-level semantics analysis of an image, nor from the
difficulty of result interpretation generated based on low-level features.

Generating Mid-level Attribute: Given the selected low-level features, we are
then able to train our mid-level attribute classifiers based on SUN Database. We have
14,340 images as training data, and the low-level features of each image add up to
more than 170,000 dimensions. For classifier options, Liblinear4 outperforms against
LibSVM5 in terms of training time and maintains similar performance in accuracy in
cases where the number of samples are huge and the number of feature dimensions

4 http://www.csie.ntu.edu.tw/~cjlin/liblinear/.
5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 2.4 Computing mutual information for each label (first row is based on SD and second row
is based on HD), where X label indicates the number of each feature and Y label stands for the MI
value

is huge. Therefore, we choose Liblinear toolbox to implement SVM algorithm to
achieve time saving.

The selection of mid-level attribute also plays an important part in image senti-
ment analysis. We choose 102 predefined mid-level attributes based on the following
criteria: (1) have descent detection accuracy, (2) potentially correlated to one senti-
ment label, and (3) easy to interpret. We then select four types of mid-level attributes
accordingly: (a) Material: such as metal, vegetation; (b) Function: playing, cooking;
(c) Surface property: rusty, glossy; and (d) Spatial Envelope [18]: natural, man-made,
enclosed.

We conduct mutual information (MI) analysis to discover mid-level attributes that
are most correlated with sentiments. Mutual information is a measure of variables’
mutual dependence (Fig. 2.4).

For each mid-level attribute, we computed the MI value with respect to both pos-
itive and negative sentiment categories (Fig. 2.4). Table 2.1 illustrates the 10 most
distinguishable mid-level attributes for predicting both positive and negative labels
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Fig. 2.5 AP of the 102 attributes based on SD and HD

in a descending order based on both SD and HD. Figure 2.5 demonstrates Average
Precision (AP) for the 102 attributes we selected, for both SD and HD. It is not surpris-
ing to see that attributes of material (flowers, trees, ice, still water), function (hiking,
gaming, competing) and spatial envelop (natural light, congregating, aged/worn) all
play an important role based on the result of mutual information analysis.

Image Sentiment Classification: In our dataset we have 660 positive samples
and 150 negative samples. It is likely to obtain a biased classifier based on these
samples alone. Therefore, we introduce asymmetric bagging [54] to deal with biased
dataset. Figure 2.6 presents the idea of asymmetric bagging: instead of building one
classifier, we now build several classifiers, and train them with the same negative
samples together with different sampled positive samples of the same amount. Then
we can combine their results and build an overall unbiased classifier.

Facial Sentiment Recognition: Our proposed algorithm, Sentribute, contains a
final step of decision fusion mechanism by incorporating eigenface-based emotion
detection approach. Images containing faces contribute to a great partition of the
whole images so that, 382 images from our dataset have faces. Therefore, facial
emotion detection is not only useful but important for the overall performance of our
algorithm.

In order to recognize emotions from faces we use classes of eigenfaces correspond-
ing to different emotions. Eigenface was one of the earliest successful implementa-
tions of facial detection [55]; we modify the algorithm to be suitable for detecting
classes of emotions. Although this method is widely appreciated already, we are the
first to modify the algorithm to be suitable for detecting classes of emotions, and this
method is simple yet surprisingly powerful for detecting facial emotions for front and
consistent lightened faces. Note that we are not trying to propose an algorithm that
outperforms the state-of-the-art facial emotion detection algorithms. This is beyond
the scope of this section.

According to Ekman [56], there are six principal emotions that human’s experi-
ence: fear, anger, disgust, happiness, sadness, and surprise. Due to the accuracy of the
model and the framework of integrating the results with Sentribute, we reduce the set
of emotions to positive, neutral, and negative emotions. This is done by classifying
the image as one of the seven emotions and then mapping the happy and surprised
emotions to positive sentiment, neutral sentiment to itself, and all other emotions to
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Table 2.1 Attributes with the top 10 mutual information

TOP 10 Soft decision Hard decision

1 Congregating Railing

2 Flowers Hiking

3 Aged/worn Gaming

4 Vinyl/linoleum Competing

5 Still water Trees

6 Natural light Metal

7 Glossy Tiles

8 Open area Direct sun/sunny

9 Glass Aged/worn

10 Ice Constructing

...

...

Group of ClassifiersNegative Samples

Positive Samples

Asymmetric Bagging

Fig. 2.6 Asymmetric bagging

negative sentiment. At a high level, we are computing the eigenfaces for each class
of emotion; we then compare the features of these eigenfaces with the features of
the target image projected onto the emotion class space.

The algorithm requires a set of faces to train the classifier (more specifically to find
the features of the images). We chose to use the Karolinska Directed Emotional Faces
(KFEF) dataset [52] for many reasons, specifically the faces are all well aligned with
each other and have consistent lighting, which makes generating good eigenfaces
much easier. The dataset contains 70 men and women over 2 days expressing seven
emotions (fear, anger, disgust, happy, neutral, sad, and surprised) in five different
poses (front, left profile, right profile, left angle, right angle). We use a subset of the
KDEF database for our training set, only using the seven frontal emotions from one
photographing session.

Training the dataset and extracting the eigenfaces from the images of each emotion
class was accomplished by using principal component extraction. We preprocess the
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training data by running it through fdlibmex,6 a fast facial detection algorithm to
obtain the position and size of the face. We then extract the face from the general
image and scale it to a 64×64 grayscale array; it is then vectored into a 4,096 length
vector. We concatenate the individual faces from each class into an M × N array
X , where M is the length of each individual image and N is the number of images
in the class. We then are able to find the eigenfaces by using Principal Component
Extraction. Principal component extraction converts correlated variables, in our case
a set of images, into an uncorrelated variables via an orthogonal transform. We
implement principal component analysis by first computing the covariance matrix

C = (x − µ)(x − µ)T , (2.1)

where µ is the vector of empirical mean of matrix X over each row. The eigenvectors
of C (donated by Ec where c is the emotion class) are then calculated and arranged by
decreasing eigenvalues. Only the 20 largest eigenvectors are chosen for each class of
facial emotions. The principal eigenfaces are simply the eigenvectors of the system
that have the largest eigenvalues. We compute the features Fc of class c as shown
below.

Ec = PCA(Xc) (2.2)

Fc = Ec(Xc − µc) (2.3)

In order to classify the target image preprocessing is necessary to preprocess the
image as we preprocess the training dataset, which we will denote y. The classification
of a test face is performed by comparing the distance of the features of the target
face (projected onto the emotion subspace) to the features of the eigenfaces of the
subspace. We then choose the class that minimizes this function as the predicted
class, specifically

arg min
c

∑

i

‖ Ec
i (y − µ) − Fc

i ‖, (2.4)

where i is each individual feature column vector in the array [55].
Given the distance value we are able to set a threshold value in order to filter

out results that are weakly classified. Figure 2.7 shows examples of classified facial
emotions.

2.2.3 Experiments

Image Sentiment Classification: As mentioned before, state-of-the-art sentiment
analysis approach can be mainly concluded as: (1) textual information-based

6 http://www.mathworks.com/matlabcentral/fileexchange/20976.

http://www.mathworks.com/matlabcentral/fileexchange/20976
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(a)

(b)

Fig. 2.7 Examples of eigenface-based emotion detection. a Classification: Positive. b Classifica-
tion: Negative

sentiment analysis, as well as online sentiment dictionary [7, 8] and (2) sentiment
analysis based on low-level features. Therefore, in this section, we set three base-
lines: (1) low-level feature-based approach, (2) textual content-based approach [8],
and (3) online sentiment dictionary SentiStrength [7].

1. Image Sentiment Classification Performance:
First we demonstrate results of our proposed algorithm, image sentiment classifi-

cation based on 102 mid-level attributes (SD vs. HD). Both Linear SVM and Logistic
Regression algorithms are employed for comparison.

As demonstrated in Table 2.2, performance of precision for both Linear SVM
and Logistic Regression outperforms that of recall. Due to the benefits of using
asymmetric bagging, we are now able to raise the classification accuracy of negative
samples. Smaller number of false positive samples and relatively larger number of
detected true positive samples contribute to this unbalanced value of precision and
recall performance.

The next thing we are interested in is the comparison against baseline algorithms.
2. Low-level Feature-Based and Textual Content-Based Baselines:
For low-level feature-based algorithm, Ji et al. employed the following visual

features: a dimensional color histogram extracted from the RGB color space,
a 512-dimensional GIST descriptor [18], a 53-dimensional local binary pattern
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Table 2.2 Image sentiment classification performance

Precision (%) Recall (%) Accuracy (%)

Linear SVM SD 82.6 56.8 55.2

HD 86.7 59.1 61.4

Logistic regr SD 84.3 54.7 54.8

HD 88.1 58.8 61.2

Table 2.3 Accuracy of sentiment classification

(a) Comparison between low-level-based algorithm and mid-level-based algorithm

SVM (low) Logistic regr (low) SVM (mid)

AC 50 % 53 % 61.4 %

(b) Comparison between mid-level visual content-based algorithm and textual content-based
algorithm

Contextual polarity Sentistrength SVM (mid)

AC 61.7 % 61 % 61.4 %

(LBP), a bag-of-words quantized descriptor using a 1,000 word dictionary with a
two-layer spatial pyramid, and a 2,659-dimensional Classemes descriptor. Both lin-
ear SVM and logistic regression algorithms are used for classification. For textual
content-based algorithm, we choose contextual polarity, a phrase-level sentiment
analysis system [6], as well as SentiStrength API.7 Table 2.3 shows the results of
accuracy based on low-level features, mid-level attributes, and textual contents.

Decision Fusion: The final step of Sentribute is decision fusion. By applying
eigenface-based emotion detection, we are able to improve the performance of our
decision based on mid-level attributes only. We only take into account images with
complete face with reasonable lighting condition. Therefore among all the images
with faces, we first employ a face detection process and generate a set of 153 images
as the testing dataset for facial emotion detection and decision fusion. For each face
we detected, we assigned them a label indicating sentiments: 1 for positive, 0 for
neutral, and −1 for negative sentiments. We thus computed a sentiment score for
each image as a whole. For instance, if we detect three faces from an image, two of
them are detected as positive and one of them is detected as neutral, then the overall
facial sentiment score of this image is 2. These sentiment scores can be used for
decision fusion with the decision made based on mid-level attributes only, i.e., we
add up the facial sentiment score and the outputs of the classifiers based on mid-level
attributes only returned by our classifiers to implement a decision fusion mechanism.
Table 2.4 shows the improvements in accuracy after decision fusion.

7 http://sentistrength.wlv.ac.uk/.

http://sentistrength.wlv.ac.uk/
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Table 2.4 Accuracy of
Sentribute algorithm

Accuracy (%)

Mid-level-based prediction 64.71

Facial emotion detection 73.86

Sentribute (after synthesis) 82.35

Figure 2.8 presents examples of true positive (TP), false positive (FP), true nega-
tive (TN), and false negative (FN) samples generated by Sentribute. False classified
samples show that it is hard to distinguish images only containing texts from both
positive and negative labels, and images of big event/celebration (football game or a
concert) from those of protest demonstration. They both share similar general scene
descriptors, similar lighting condition, and similar color tone. Another interesting
false detected sample is the first image shown in false negative samples. Figures
make frown expression on their faces, however the sentiment behind this expression
is positive since they were meant to be funny. This sample is initially classified as
positive based on mid-level attributes only, and then refined as negative because two
strong negative facial expressions are detected by our eigenface expression detector.
These kinds of images show a better decision fusion metric would be one of our
potential improvements.

2.2.4 Conclusion

In this section, we present Sentribute, a novel image sentiment analysis algorithm
based on mid-level attributes. Asymmetric bagging approach is employed to deal with
unbalanced training data. To enhance the classification performance, eigenface-based
emotion detection algorithm is applied, to deal with images containing faces and
achieve a significant gain in accuracy over results based on mid-level attributes alone.
The proposed algorithm explicitly explores visual content for sentiment analysis by
employing mid-level attributes and without using textual content.

2.3 Sentiment Analysis in Multimedia Tweets

Online social networks have attracted the attention of people from both the acad-
emia and real-world. In particular, the rich multimedia information accumulated in
recent years provides an easy and convenient way for more active communication
between people. This offers an opportunity to research people’s behaviors and activi-
ties based on those multimedia content that can be considered as social imagematics.
One emerging area is driven by the fact that these massive multimedia data contain
people’s daily sentiments and opinions. However, existing sentiment analysis typi-
cally only pays attention to the textual information regardless of the visual content,
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(a)

(b)

(c)

(d)

Fig. 2.8 Examples of sentiment detection results by Sentribute. a True positive samples. b True
negative samples. c False positive samples. d False negative samples

which may be more informative in expressing people’s sentiments and opinions.
In this section, we attempt to analyze the online sentiment changes of social media
users using both the textual and visual content. In particular, we analyze the sentiment
changes of Twitter users using both textual and visual features. An empirical study
of real Twitter datasets indicates that the sentiments expressed in textual content and
visual content are correlated. The preliminary results in this section give insight into
the important role of visual content in online social media.

Twitter is one of the most influential social networks across the world. Research
work of different topics related to Twitter has been published in different conference
venues. The large amount of daily generated user content attracted many researchers
around the world to analyze potential interesting patterns in social media, including
prediction of political election, sentiment analysis, information diffusion, topic trend,
etc. However, it should be noted that at the beginning, Twitter as a social platform
only allows a maximum of 140 characters to compose users’ messages. However,
things changed in 2011, when Twitter allowed online users to post images in their



46 J. Yuan et al.

Fig. 2.9 Example of an image tweet, where the left image shows a picture of justin Bieber and the
right image shows the ejection of Noah during the NBA playoffs

tweets. We denote the tweets that contain images as image tweets. The impacts of
image tweets are tremendous. This part will focus on one particular impact of image
tweets, namely the impact on sentiment analysis.

Multimedia content, like images, are more likely to express and convey people’s
subtle feelings compared with text information [3]. With the popularity of smart-
phones and convenient social media APPs, more and more people are likely to post
image tweets to attract attention from other users in Twitter. Figure 2.9 shows an
example of an image tweet, where the big picture conveys more information about
the Tweet.

One of the most interesting aspects of Twitter is that people’s sentiments in Twitter
seem to be related to real social life. For instance, in [57], the authors found that
the sentiment changes of Twitter users are closely related to the overall economy
situations in the U.S. and the stock market. However, most research on sentiment
changes are related to the overall text tweets. Little attention has been paid to the
analysis of image tweets. The work described in this part is an attempt toward the
analysis of sentiment conveyed in the multimedia content in tweets. We intend to
investigate social multimedia analysis, which we refer to as social imagematics. We
conduct an empirical study on the sentiments expressed in people’s tweets, especially
the impact of sentiments in image tweets.

2.3.1 Approaches

As discussed in Sect. 2.1, there are many existing works on sentiment analysis using
textual features. In this section, we employ existing algorithms to analyze the sen-
timent of the textual tweets. For the sentiment analysis of visual features, we build
classifiers using low-level and mid-level respectively.
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Textual Sentiment Analysis: There are many related works on sentiment analysis
of Twitter [26, 29, 33, 36]. Meanwhile, there are also many online services that
provide easy access API to evaluate the sentiment of online tweets. Many of these
tools 8 come directly from the academic research. Since we are more concerned with
image tweets and the sentiment of images, we directly use existing online service
for the sentiment analysis of collected tweets.

In particular, we use the sentiment1409 [58]. Sentiment140 is a semi-supervised
machine learning approach. It exploits emotions as noisy labels for training data.
Moreover, it provides convenient API for the sentiment analysis of different tweets.
Typically, one can send the data to the server using HTTP request. The server then
returns the sentiment for each line contained in that file. The returned value in this file
contains three different values (0, 2, and 4). Here 0 represents the negative sentiment,
4 represents the positive sentiment, and 2 means neutral. In this way, we are able to
classify the tweets into different sentiment categories.

Sentiment Changes with the Number of Images: Users in Twitter generally pre-
ferred different types of tweets. Some of the users like to post many image tweets,
while many other users love to post traditional text tweets. To analyze the sentiments
of users with different preferences over image tweets, we conduct an experiment on
the relation between the proportion of image tweets and the proportion of positive
tweets. We use the textual sentiment analysis in Sect. 2.3.1 to analyze the sentiments
of different users. Then, the number of positive tweets over the sum of positive and
negative tweets is used to represent the proportion of positive sentiment.

We randomly picked about 300 users and downloaded their tweets using the user
timeline API. Figure 2.10 shows that users who like to post many image tweets are
more likely to have positive sentiments. On the other hand, for users with fewer
proportion of image tweets, the proportion of positive sentiments among these users
varies significantly.

Visual Sentiment Classification: Image sentiment analysis is quite challenging. As
discussed in [59], the authors used the textual sentiment analysis as the rough labels
of the corresponding images. Then, RGB Hist and SIFT features are employed to
train a classifier and classify the test images. Their results indicate that the positive
and negative sentiments seem to share different interesting image patterns.

In our implementation, we use the image sentiment corpora from visual sentiment
ontology10 with kind permission from the authors. Then according to the dataset,
we trained two levels of classifiers. The first classifier only uses the low-level fea-
tures, which include HOG [60], GIST [18], SSIM [61], and GEO-COLOR-HIST
[62]. Different features have different advantages over different tasks [53]. HOG is
good for object and human recognition. GIST is another feature designed for scene
recognition. On the other hand, SSIM provides measure of invariant scene layout.
Meanwhile, geometric color histogram offers a robust histogram feature, which is
invariant of scene layout.

8 http://matei.org/ithink/2012/02/08/a-list-of-twitter-sentiment-analysis-tools/.
9 http://www.sentiment140.com/.
10 http://visual-sentiment-ontology.appspot.com/.

http://matei.org/ithink/2012/02/08/a-list-of-twitter-sentiment-analysis-tools/
http://www.sentiment140.com/
http://visual-sentiment-ontology.appspot.com/
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Fig. 2.10 Relationship of proportion of image tweets and the proportion of positive tweets
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Fig. 2.11 Framework of image sentiment classification using low-level and middle level features
respectively

The low-level features can be easily extracted from the given images. Figure 2.11
shows the framework employed for image sentiment classification. The main compo-
nent in this framework is the low-level and middle level image features. Accordingly,
there are two classifiers. In our implementation, we choose liblinear11 as the classi-
fier for both levels due to its scalability in large-scale learning. The first classifier is
based on the low-level features discussed above. Based on these low-level features,
we also train and learn some middle level features. Middle level features are more
interpretable than low-level features. In our implementation, we use the middle level
features described in Table 2.5. For each middle level feature, we need to train a
classifier, which can determine whether or not the given image contains the corre-
sponding middle level description. By combining all the middle level features, we
are able to construct a middle level features description for the given image set. Then,
a second-level classifier based on the extracted middle level features is constructed
and employed to classify the test images into different sentiment categories.

11 http://www.csie.ntu.edu.tw/~cjlin/liblinear/.

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Table 2.5 Summary of the middle level features used in this study

Dirt/soil Matte Man-made Rugged scene

Natural light Dirty Open area Cluttered space

Direct sun/sunny Rusty Semi-enclosed area Scary

Electric/indoor lighting Arm Enclosed area Soothing

Aged/orn Cold Far-away horizon Stressful

Glossy Natural No horizon

For all the images contained in image tweets, we then download these images
according to the URL contained in the metadata of each image tweet. Then low-level
and middle level features are extracted using the same procedure for the training
images. In this way, we are able to classify the sentiment of image tweets according
to the visual features of the images contained in image tweets.

2.3.2 Experiments

We collect tweets using online Twitter API.12 Twitter provides different categories of
API. We mainly use the Twitter streaming API and Twitter timeline API. In order to
choose some relatively active users, we use the streaming API to download over 19
million tweets. Active users simply refer to users who tweet, reply, and retweet more
than others over a certain period of time. We chose empirical thresholds (over 100
original tweets in 1 month) to determine the relatively active users. To store such a
large amount of data, we use couchdb,13 a document database, to store the download
tweets. Then, by analyzing the downloaded 19 million tweets, we are able to identify
the activity levels of different online users. First we identify over 8,000 users, and
we use the timeline API to download the tweets of these users. We collected over 20
million tweets for all the 8,000 users. Next, the tweets of these 8,000 users are further
analyzed. Among these 8,000 Twitter users, we further pick out about 300 users who
are relatively active in posting both text and image tweets based on the threshold we
mentioned because we want to analyze the correlation between sentiments behind
text tweets and image tweets. Given these users and the URL contained in their image
tweets, we collect all the users’ posted images. We got over 90,000 thousand images
for these active Twitter users.

In the downloaded 25 million tweets, we analyze the proportion of image
tweets. Over the 25 million tweets, about 6 million tweets are image tweets
(5,988,058/25,580,000 = 0.23). About every 1 in 4 tweets contains images in
Twitter. Figure 2.12 shows the distribution of number of retweets. Similar to many
other user activities, the distribution is a power law distribution with long tail.
Figure 2.12a, b shows that the number of image retweets share a similar distribution,

12 https://dev.twitter.com/.
13 http://couchdb.apache.org/.

https://dev.twitter.com/
http://couchdb.apache.org/
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Fig. 2.12 Statistics of retweets number for all tweets and image tweets only. a Distribution of
number of retweets. b Distribution of number of image retweets. c Probability distribution of top
retweets number between 1 and 100. d Probability distribution of top retweets number between 1
and 1,000

with a slight difference in the slope of the fitted line of the log-log plot of the dis-
tribution. If we further look at the cumulative probability distribution of retweets
number for all tweets and image tweets only, we can conclude from Fig. 2.12c, d that
compared to image tweets, the proportion of tweets that received small number of
retweets takes a larger proportion than image tweets. This evidence also verifies the
fact that image tweets are more likely to attract online users’ attention and are more
easily diffused in the social network.



2 Sentiment Analysis Using Social Multimedia 51

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1(c)

(d)

retweet number

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Retweet distribution

Retweet distribution of image tweets

0 100 200 300 400 500 600 700 800 900 1000

0.4

0.5

0.6

0.7

0.8

0.9

1

retweet number

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Retweet distribution

Retweet distribution of image tweets

Fig. 2.12 (continued)

Correlation of Sentiment Between Image Tweets and Text Tweets: To illustrate the
correlation between text and image tweets, we randomly select 10 users from the
300 users. We employ the methods discussed in Sect. 2.3.1. The sentiment analysis
results using text and image features are shown in Figs. 2.13 and 2.14. In both figures,
the red line represents the sentiment changes of each user according to the sentiment
analysis of using text tweets, while the blue line represents the sentiment changes
of each user according to the sentiment analysis of image tweets. The blue lines in
the left column give the sentiment analysis using low-level image features, while the
blue lines in the right column give the sentiment analysis using middle level image
features. In Fig. 2.13, we average the long-term sentiment for each user in terms of
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Fig. 2.13 Long-term sentiment changes of tweets and image tweets using low-level and mid-level
features. The red line represents the sentiment of each user using the textual features and the
blue line represents the sentiment of each user using the visual features from the image tweets.
a 110914277. b 110914277. c 1135866961. d 1135866961. e 183352499. f 183352499. g
320657019. h 320657019. i 341587111. j 341587111. k 606333611. l 606333611. m 745235832.
n 745235832. o 910880371. p 910880371. q 924674300. r 924674300. s 98005782. t 98005782

days, which means that each point represents the average sentiment score for a user.
Similarly, in Fig. 2.14, the sentiment is averaged in terms of 1 h.

Table 2.6 shows the correlation coefficients between sentiment of the selected
users using text features and image features. Although there is noise in the predic-
tion of user’s sentiment, the results indicate that there is still positive correlation
between the sentiment expressed in text tweets and image tweets. In particular, for
user 606333611, the sentiments are highly correlated. The reasons for this may
include two aspects. First, we see this user is a relatively more active user. This can
be reflected by the date in the x-axis of the figure. Since Twitter only allows us to
download up to 3,200 of a user’s most recent statuses, therefore, this user posted many
tweets in a relatively short period. Second, there is no negative sentiment predicted
by the text tweets. At the same time, for some users, they only have positive senti-
ment (there is no negative and neutral sentiment), thus the correlation is unavailable.
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Fig. 2.13 (continued)

However, overall we see that sentiment classification using middle level features
seems to be more correlated with the sentiment of using text tweets.

Correlation of Sentiment in a Shorter Period: The above results are averaged in
terms of a day. This may not reflect people’s sentiment fluctuation in a particular day.
In this section, we average the short-term sentiment of a user in terms of an hour. The
results are shown in Fig. 2.14. The results indicate that different users have different
sentiment change patterns. Some users are more likely to have emotional fluctuation
in terms of both text and image tweets. For some users, their sentiment changes are
reflected by text tweets. Meanwhile, some users are more likely to post images to
express their sentiment changes. There is a correlation between the sentiment changes
for the randomly selected 10 users. Table 2.7 shows the correlation coefficients for the
40 most recent periods. Different from the results in terms of days, in this case some
of the correlation coefficients are negative. However, for most users, the correlation
coefficients are mostly positive. The results of using low-level visual features and
middle level visual features are not consistent all the time. The results on one hand
indicate the difficulty in image sentiment analysis. On the other hand, they also
illustrate the different patterns of online users in expressing their sentiment.
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Fig. 2.14 Short-term sentiment of the recent 40 periods. We choose 1 h in which the users posted
tweets as one short period. a 110914277. b 110914277. c 1135866961. d 1135866961. e 183352499.
f 183352499. g 320657019. h 320657019. i 341587111. j 341587111. k 606333611. l 606333611.
m 745235832. n 745235832. o 910880371. p 910880371. q 924674300. r 924674300. s 98005782.
t 98005782

2.3.3 Conclusion

The results in this section are based on preliminary work. Some users are more likely
to express their sentiments using image tweets, while others are still more likely to
express their sentiment using text tweets. This reveals the challenges in predicting the
sentiment of online social network users. The results in this section are encouraging
for using the multimedia information for sentiment analysis.

Nevertheless, sentiment analysis is quite challenging for social multimedia. The
short text nature of tweets imposes more challenges on this task. The results in this
study indicate that both the textual and visual features are informative in determining
one’s sentiment. We discover the correlation between the sentiment expressed by
text tweets and image tweets. At the same time, different users also reveal different
behavior patterns in online social networks. Although the results do indicate some
correlation between image tweets and textual tweets, to get more robust and more
interpretable results, we need more features and more robust data to discover the
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Fig. 2.14 (continued)

Table 2.6 Correlation
coefficients of textual
sentiment and visual
sentiment (NA means not
available)

User id Low-level features Mid-level features

0110914277 0.132197 0.137298

1135866961 0.059131 0.108657

0183352499 0.038009 0.095219

0320657019 0.105444 0.084368

0341587111 NA NA

0606333611 0.618337 0.322811

0745235832 NA NA

0910880371 0.199853 0.023016

0924674300 0.297284 0.317496

0098005782 0.015088 0.166366

influence of multimedia content in the social network. The sentiment analyses of
images are still not mature. This, on the other hand, indicates that we have a great
opportunity for discovery in this area.
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Table 2.7 Correlation
coefficients of textual
sentiment and visual
sentiment for recent 40
periods

User id Low-level features Mid-level features

0110914277 0.176150 0.132065

1135866961 0.172788 0.172788

0183352499 0.075004 −0.197358

0320657019 0.226449 0.212064

0341587111 0.150699 0.221518

0606333611 0.398337 0.065079

0745235832 0.089547 0.006048

0910880371 −0.071518 −0.244712

0924674300 0.245525 0.252585

0098005782 −0.127538 −0.027864

2.4 Discussion and Future Work

In this chapter, we have discussed some of the current works in the field of sentiment
analysis and presented our new research results on image and multimedia sentiment
analysis. We are living in an increasingly open society and individuals are now more
and more willing to share feeling with others and listen to others’ opinions at the same
time. Due to the enormous growth in social network platforms, sentiment analysis is
receiving more attention. Although we now have more data sources at greater scales
than ever before, sentiment analysis based on visual and multimodality perspective
is still in its infancy. In the computer vision field, the development of attribute learn-
ing and deep neural network structures have shown some promising results, which
can lead to sentiment analysis approaches such as Sentribute. Additionally, from a
multimodality perspective, topics on deep multimodal structures are drawing more
attention these days. For example, Srivastava showed in [63] that multimodal learn-
ing with deep boltzmann machines can improve the classification performance from
the joint features extracted from both text and images. These techniques are expected
to bring a new chapter to sentiment analysis and opinion mining.
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Chapter 3
Twitter as a Personalizable
Information Service

Mario Cataldi, Luigi Di Caro and Claudio Schifanella

Abstract Twitter is a free social networking microblogging service that allows reg-
isteredmembers to broadcast, in real-time, short posts called tweets. Twittermembers
can broadcast tweets and follow other users’ tweets by using multiple devices, mak-
ing this information system one of the fastest in theworld. In this chapter, we leverage
this characteristic to introduce a novel topic-detection method aimed at informing,
in real-time, a specific user about the most emerging arguments expressed by the
network around his/her domain interests. With this goal, we aim at formalizing the
information spread over the network by studying the topology of the network and
by modeling the implicit and explicit connections among the users. Then, we pro-
pose an innovative term aging model, based on a biological metaphor, to retrieve
the freshest arguments of discussion, represented through a minimal set of terms,
expressed by the community within the foci of interest of a specific user. We finally
test the proposed model through various experiments and user studies.

3.1 Introduction

Microblogging today has become a very popular communication system among
users. In fact, due to the short format of messages and the accessibility of microblog-
ging platforms, users tend to shift from traditional communication tools (such as
blogs, websites, and mailing lists) to microblogging services. Billions of messages
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appear daily in these services such as Twitter,1 Tumblr,2 Facebook,3 etc. The authors
of those messages share content about their private life, exchange opinions on a vari-
ety of topics, and discuss a wide range of information news.

Among all the existing platforms, after its launch on July 2006, Twitter became
the most popular microblogging system; on February 2012, its number of users was
estimated to be about 500 million worldwide with around a half million of new
accounts per day, which makes Twitter one of the fastest-growing websites in the
world. Moreover, in contrast to other popular social networks such as Facebook or
Google+, most of its users are adults; in fact, according to a demographic report,4

88% of the users are older than 18, which makes the service likely oriented to
information than other social aspects.5 In fact, as information producers, people post
tweets (text messages up to 140 characters) for a variety of purposes, like including
daily conversations, share of information/URLs, news reports, etc. This produces a
continuous real-time information stream about every argument.

Even if Twitter cannot represent an alternative to the authoritative information
media, considering the number of its users and the impressive response time of
their contributions, it represents a sort of real-time news sensor that can also predate
the best newspapers in informing the Web community about the emerging topics
and trends. In fact, the most important information media always needs a certain
amount of time to react to a news event; i.e., professional journalists require time,
collaborators, and/or technology support to provide a professional report. However,
within Twitter, a user can easily report, in 140 characters, what is happening in
front of the user’s eyes, without any concern about the readers or the writing style.
This characteristic makes Twitter probably one of the fastest, low-level, information
service in the world.

In this chapter, this informative role of Twitter is recognized, presenting an exten-
sion of the approach proposed in [2] to extract, in real-time, the most emerging topics
expressed by the community along the interests of a specific user. Considering an
active user, the interests are analyzed by extracting and formalizing the content of
her generated tweets. Then, the social community is modeled as a directed graph
of the active authors based on their social relationships, calculating their authority
by relying on the well-known PageRank algorithm [3]. The stream of information
expressed by the entire network is monitored by studying the life cycle of each term
according to an aging model that also leverages the reputation of each author. The set
of most emerging keywords is selected by dynamically ranking the terms depending
on their life status defined through a burstiness value. Finally, each topic (expressed
as minimal set of terms, as in [4, 5]) is created by constructing and analyzing a
keyword graph which links the extracted emerging terms with all their co-occurrent

1 http://www.twitter.com.
2 http://www.tumblr.com.
3 http://www.facebook.com.
4 http://palatnikfactor.com/2010/01/29/twitter-demographic-report-who-is-really-on-twitter/.
5 A deeper analysis of the Twitter network is also provided in [1].

http://www.twitter.com
http://www.tumblr.com
http://www.facebook.com
http://palatnikfactor.com/2010/01/29/twitter-demographic-report-who-is-really-on-twitter/
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keywords. At this point, in order to personalize the list of retrieved emerging topics,
the temporal time frames in which the user has been active are analyzed, as well
as the generated content to estimate the user’s interests according to this temporal
information. This time-aware information is finally used to highlight the topics that
best match the interests of the user.

The chapter is organized as follows: Sect. 3.2 presents an overview of the current
state of the art on content aggregation, recommendation, trend analysis, social mon-
itoring, and content personalization by reporting a short summary of the existing
approaches. The proposed personalized topic detection is presented with a formal-
ization of the assumptions and providing real case scenarios (Sect. 3.3). Section3.4
shows a set of experiments and user studies that demonstrate the validity of the
approach. Section3.5 concludes with future issues.

3.2 Related Work

In the last decade, the enormous amount of content generated by Web users created
new challenges and new research questionswithin the datamining community. In this
section,wepresent anoverviewof thoseworks that share part of our techniques, ideas,
and motivations. In particular, we initially report related work on aggregation, rec-
ommendation, and propagation of information from large-scale social networks. We
then survey the related work on automatic detection of events within user-generated
environments and, finally, we analyze the current state of the art on personalization
and user context analysis.

3.2.1 Aggregation, Propagation, and Recommendation
Through Social Networks

A first issue when dealing with large and heterogeneous data sources is the aggrega-
tion of the content through filtering and merging techniques. Considering Twitter as
a source of text data, many Web services like TweetTabs6 and Where What When7

aggregate messages and links through user-friendly interfaces. In general, clustering
techniques help in finding groups of similar content that can be further filtered using
labeling techniques [6].

While these services simply aggregate messages and/or links, one of the most
explored tasks in mining of text entries streams from social media is the recommen-
dation of topics, URLs, friends, and so forth. So far, two main high-level approaches
have been studied: collaborative filtering and content-based techniques. While the

6 http://tweettabs.com.
7 http://where-what-when.husk.org.

http://tweettabs.com
http://where-what-when.husk.org
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first aims at selecting and proposing content by looking at what similar users have
already selected (as in [7]), the second analyzes the semantics of the content with-
out considering its origin (as in [8]). More recently, hybrid approaches have been
also proposed in [9, 10]. Recommendation systems can differ on what they recom-
mend: URLs (as in [11]), users that share same interests (as in [12]) and tags in
folksonomy-based systems (like the approach proposed in [13]).

Another issue when dealing with large, time-sensitive, and user-generated text
content is the analysis of how such information spreads through the blogosphere or
a social network. Generally speaking, research on flows of information in networks
initially started from the analogy with the spread of a disease in a social environment.
Thismodel is based on the following disease life cycle: someone is first susceptible to
the disease and then, if exposed to the disease by an infectious contact, he becomes
infected (and infectious) with some probability. In general, there exist two main
approaches to model propagation, namely threshold models [14] and cascademodels
[15]. While the first treats the problem as a chain-reaction of influence where each
node in the network obeys to a monotone activation function, in the second, nodes
close to each other have some chance to influence each other as well.

In [16], the authors studied the dynamics of Web environments at topic- and user-
level, inducing propagation networks from a sequence of posts in the blogosphere.
In [17] the authors studied how to learn influence probabilities from a log of past
propagations in the Flickr8 community. In [18] the authors developed the Linear
Influencemodel, where the influence functions of individual nodes govern the overall
rate of diffusion through the network. Reference [19] presents a comparison between
threemeasures of influence: indegree, retweets, andmentions inTwitter, investigating
the dynamics of users’ influence across topics and time. In [20] the authors proposed
a model to capture properties of information diffusion like speed, scale, and range.

Focusing on Twitter-based approaches, Trendistic9 and Twopular10 represent two
examples from which it is possible to analyze the trends of some keywords along a
timeline specified by the user. In general, several studies examined topics and their
changes across time in dynamic text corpora. The general approach orders and clus-
ters the documents according to the timestamps, analyzing the relative distributions
(see also [21]). Reference [22] represents social text streams as multi-graphs, where
each node represents a social actor and each edge represents the information flow
between two actors. In [23, 24], the authors present a system that uses curve analysis
of frequencies for automatic segmentation of topics.

In [25] the tolerance rough set model is used to enrich the set of feature words
into an approximated latent semantic space, from which they extract hot topics by a
complete-link clustering. Reference [26] analyzes tweets in order to predict whether
the user is looking for news or not, and determine keywords that can be added to
her Web search query. Reference [27] explores the longevity of trending topics on

8 http://www.flickr.com.
9 http://trendistic.com.
10 http://twopular.com.

http://www.flickr.com
http://trendistic.com
http://twopular.com


3 Twitter as a Personalizable Information Service 65

Twitter, and analyzes the role of users in the emergence of trends. The role of the
users, their collaboration, and the influence among them has been also extensively
studied in social networks [28], from qualitative studies on cooperation behaviors
[29–31] to more quantitative approaches [32, 33]. The latter includes collaboration
network-based studies (because of a social network can be easily seen as a social
network where people form teams to produce some results), which are generally
aimed at understanding the structural determinants and patterns of collaboration
[34–37]. Such networks have been deeply analyzed by looking at properties like
network topology, size, and evolution [38, 39].

In [40] the authors were the first to present an aging theory based on a biological
metaphor. Using this approach, the work presented in [41] is able to rank topics
from online news streams through the concept of burstiness. The burstiness of a
term, already introduced in [42], is computed with a χ -statistic on its temporal
contingency table. Although this work shares our goal, it is based on the concepts
of user attention and media focus, whereas our proposed approach is independent of
them and is assumed to be less complex and more general.

3.2.2 Event Identification in Social Networks

Identifying events in real-time on Twitter is a challenging problem, due to the hetero-
geneity and immense scale of the data. In fact, as already reported in the Introduction,
users post messages with a variety of purposes. For this, while many contents are not
specifically related to any particular real-world event, informative event messages
nevertheless abound.

Regarding the classificationof single tweets, [43] defines a typologyoffivegeneric
classes of tweets (news, events, opinions, deals, and private messages) in order to
improve information filtering and recognize events. The research works proposed
in [44–46] focused on identifying events in social media in general, and on Twitter.
Recent works on this social network started to process data as a stream with the goal
of identifying events of a particular type (e.g., news events , earthquakes, etc.). In
[47]) the authors identify the first Twitter message associated with an event in order
to analyze the starting point of the related information flow.

The real-time social content can also be seen as a sensor that captures what is
happening in the world: similarly to the recommendation task, this can be exploited
for a zero-delay information broadcasting system that detects emerging concepts.
Generally, all the techniques rely on some measure of importance of the keywords.
[48] presents the TF ∗ PDF algorithm which extends the well-known TF—IDF to
avoid the collapse of important terms when they appear in many text documents.
Indeed, the IDF component decreases the frequency value for a keyword when it is
frequently used. Considering different newswire sources or channels, the weight of
a term from a single channel is linearly proportional to the term’s frequency within
it, while it is exponentially proportional to the ratio of documents that contain the
term in the channel itself. In [49] a supervised learning system for the extraction of
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events from unstructured textual information that relies on geotagged Twitter posts
is presented. Reference [50] considers Twitter as a social sensor for detecting large-
scale events like earthquakes, typhoons, and traffic jams. The authors analyze the
context of such keyword in order to discriminate them as positive or negative (the
sentence “Someone is shaking hands with my boss” should be captured as negative
even though it contains the term “shake”).

In [51], the authors present a system called OLDA (Online Topic Model) which
permits to automatically capture the thematic patterns and identifies emerging topics
of text streams and their changes over time. However, in contrast with our approach,
the system detects topics of discussion without any knowledge about user properties
and/or preferences.

3.2.3 Content Personalization

Since our system includes a module for the personalization of the emerging topics
to be retrieved from Twitter, we also cover here the relevant works in this field. Most
of the literature refers to this task as “personalization of search results,” or “user-
driven personalization” (as in the works proposed in [52–55]). As stated in [56], the
motivation behind the interest around this area of research is based on the reasonable
assumption that different users generally expect different information even with the
same query. There obviously exist several approaches to facing such a task. For
instance, depending on the domain, one may be interested in re-ranking the results
based on their relevance [53, 55], rather than diversify them (as in [57–60]). Yet, the
actual personalization of contents (whether they are search results or emerging topics
as in our case) could be made by leveraging different kinds of data: users’ contents
[61, 62], ontologies [63–65], and users’s social network and activity [66, 67]. Given
this brief overview, our system can be classified as a re-ranking approach that makes
use of the users’ contents, i.e., the tweets posted by them. In addition to this simple
scheme, we also wanted to take into account the temporal aspect associated to the
tweets in order to weight more what has been recently posted, and the other way
around.

3.3 Searching Emerging Topics Along the Users’ Interests

This section illustrates the method for analyzing, in real-time, the dynamic stream
of information expressed by the Twitter community and retrieve the most emerging
topics within the user’s interests. First, the set of tweets, generated within a specific
time interval, is represented as a set of keyword vectors, then a term aging model
is explained to monitor the usage of each keyword over time. Moreover, the social
reputation of the Twitter users is leveraged to balance the importance of the infor-
mation expressed by the community. Finally, the user context is taken into account,
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provided by the generated set of tweets, to highlight the most emerging topics within
her interests. In the following sections, these steps are explained in detail.

3.3.1 Real-Time Vectorization of Tweets

As in most information retrieval (IR) systems, the first step in every task is the
extraction of the relevant keywords (also called terms in the chapter) from the stream
of tweets. Thus, given a time range r set by the system (depending on the preferred
topic-detection frequency, see also Sect. 3.3.2.2), the t th considered interval I t is
defined as

I t =< it , it + r > (3.1)

where it is the starting instant of the t th considered time interval (and i0 = 0 repre-
sents the first considered instant). Thus, the corpus TWt is extracted, with n = ∣∣T W t

∣∣
text tweets extracted during the time interval I t , associating to each tweet tw j a rep-
resentative tweet vector, twj, that formalizes the information retrieved from it.

Each component of the vector twj represents a weighted term extracted from the
related tweet tw j . In contrast with common systems, no preliminary phase of stop-
word elimination is performed; in fact, the system considers all the languages in
which Twitter’s users update their status. The idea is to leverage the Twitter user’s
network, using their worldwide extension, in order to be able to retrieve in real-time
relevant news. In fact, the stream of information directly rises in the geographical
origin of the event and expands its influence proportionally to its global importance;
for example, the first news reports about the revolutionary wave of demonstrations
and protests occurring in the Arab world on 2011, also known as “Arab Spring,”11

had been initially generated in Tunisia and Egypt and then, due to the global political
and social importance of these events, they have been also commented by users of
different countries and continents. Thus, in order to be able to quickly catch a rele-
vant news from this worldwide information network, there is no need to discriminate
the information based on the language or the country in which it has been gener-
ated. Obviously, this approach has the significant disadvantage of maintaining all
the keywords, including stop-words, typos, and irrelevant terms; however, it is pos-
sible to recognize this noise by adapting text analysis methods that consider inverse
frequency-like techniques. This information refinement step is applied in Sect. 3.3.2.

Considering this idea, all the keywords are preserved togetherwith those keywords
that appear less frequently but that could be highly relevant for a specific topic. Thus,
the system calculates theweightwx, j of the x th vocabulary term in j th tweet by using
the augmented normalized term frequency [68]:

11 These protests have also been knows for the massive use of Twitter post because of the protesters’
reliance on Twitter and other social-networking Internet sites to communicate with each other.
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wx, j = 0.5 + 0.5 · t fx, j

t f max
j

(3.2)

where t fx, j is the term frequency value of the x th vocabulary term in j th tweet and
t f max

j returns the highest term frequency value of the j th tweet.
Thus, for each tweet tw j , a tweet vector

twj = {w1, j , w2, j , ..., wv, j } (3.3)

is defined, where K t is the vocabulary (set of keywords) of the corpus (and thus
of the tweet tw j ) in the time interval I t and v = ∣∣K t

∣∣ is its size. Notice that, at
this step, we do not make use of any word filtering technique. In fact, considering
our time-sensitive model, we believe that stop-words and/irrelevant keywords will
always have constant use along time and will be easily detectable (and discardable)
by performing a simple temporal analysis. In contrast, a keyword filtering method
would always depend on a specific stop-word list, which could be dependent on a
specific domain of interest. We will explain this idea in detail in the next sections.

At the end of this step, the knowledge expressed by each collected tweet in the
considered time interval has been formalized as a weighted tweet vector.

3.3.2 Analyzing the Stream of Information by Taking
into Account Temporal Conditions

This section illustrates the analysis of the extracted tweets stream in order to study
the semantic relationships that exist among the keywords reported by the community
in a given time interval.

Generally speaking, a term can be viewed as a semantic unit which can potentially
link to a news event. The goal of capturing such correlation relies on an accurate
modeling of both the chronological sequences of tweets and the authors. Follow-
ing this intuition, the system uses a content aging theory to automatically identify
coherent discussions through a life cycle-based content model.

Many conventional clustering and classification strategies cannot be applied to this
problem due to the fact that they tend to ignore the temporal relationships among
documents (tweets in our case) related to a news event. Relying on this temporal
feature, the system uses a metaphor where each term is seen as a living organism.
The life cycle of a keyword can be considered as analogous to the one of a living
being: with abundant nourishment (i.e., related tweets), its life cycle is prolonged;
however, a keyword or a live form dies when nourishment becomes insufficient.

Relying on this analogy, it is possible to evaluate the usage of a keyword by its
burstiness, which indicates the vitality status of the keyword and can qualify the
keyword’s usage. In fact, a high burstiness value implies that the term is becoming
important in the considered community, while a low burstiness value implies that it
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is currently becoming out of favor. Considering this biological metaphor, the contri-
bution in terms of nutrition of each nourishment changes depending on its chemical
composition; for example, each food brings a different calorie contribution depend-
ing on its ingredients. Therefore, the systemuses the concept of authority to define the
quality of the nutrition that each tweet gives to every contained keyword. This way,
different tweets containing the same keyword generate different amount of nutrition
depending on the representativeness of the author in the considered community.

Thus, considering a keyword k ∈ K t and the set of tweets TWt
k ∈ T W t containing

the term k at time interval I t , the amount of nutrition is defined as

nutrtk =
∑

tw j ∈T W t
k

wk, j ∗ rep(user(tw j )) (3.4)

where wk, j represents the weight of the term k in the tweet vector twj (thus, tw j [k]),
the function user(tw j ) returns the author u of the tweet tw j and rep(u) returns the
reputation value associated to u by using some reputation evaluation system. In this
chapter the user reputation is computed by leveraging the connectivity of the author
graph based on the follower relationship (see Sect. 3.3.2.1).

Thus, considering a keyword k used by the community in the time interval I t , this
nutrition formula evaluates the usage of this term by considering its frequency in the
tweets that mention it as well as the reputation of each single user that reported k.
Please notice that the authoritativeness of the users who first talk about an emerging
topic could be not necessary high.However, considering the dynamicity of theTwitter
network, the information spreads very quickly and reaches in a limited time window
(if the information is significant, in some sense, for the active users), a very large
number of authors with different authority values. Thus, the authority of the users
is not the only essential parameter. If a news is massively commented by only not
authoritative users, the system will yet be able to detect the emerging keywords and
retrieve the related topics. In other words, a keyword is labeled as emergent based on
the fastness of its spread over the network. In fact, as reported in [27], “factors such
as user activity and number of followers do not contribute strongly to trend creation
and its propagation.” The authority of the users only helps to further highlight this
fact.

3.3.2.1 Reputation of the Users

While the contents themselves constitute the entire semantics from where to extract
emerging facts, a fundamental issue in the treatment of such knowledge is the impor-
tance of the source. Figuring out a level of importance of a specific source (i.e., a
Twitter user) represents a key point toward a well-advised filtering and weighting of
the contents.

A Twitter user can follow the text stream of other users by making explicit the
social relationship of follower. On the other hand, a user who is being followed by
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another user does not necessarily have to reciprocate the relationship by following
her back, which makes the graph of the network directed. This social model enables
us to define an author-based graph G(U, F) where U is the set of users and F is the
set of directed edges (i.e., the follower relation); thus, given two users ui and u j , the
edge 〈ui , u j 〉 exists only if ui is a follower of u j .

Thus, the reputation of each user is measured by analyzing the connectivity in G;
In particular, since users tend to follow people they think are interesting (for example
because they share the same topics of interest), we can assume that a user with a
high number of followers (incoming edges) represents an influential information
source into this social community. For example, most of the people easily agree
that Barack Obama (with more than 10 million followers) represents a strongly
authoritative twitter user, simply because each of his words can be instantly read
by thousands of other users, and can influence their normal text stream activity.
Moreover, the concept of “reputation” can be also extended by taking into account
the fact that the importance of a user is also related to the degree of importance
of its followers; considering for example Barack Obama again, each of the users
followed by him assumesmore importance based on the influence of this authoritative
relationship. For all these considerations, this scenario can be easily compared to the
problem of topological-based computation of web pages authority in large hyper
textual systems. In particular, as in alternative works [69–71], we can refer to the
well-known PageRank algorithm [3] for this task. PageRank calculates the authority
of each page by analyzing the topological graph of the considered Web entities.
Following this strategy, the reputation of a user depends on the number and the
reputation of its followers. Hence, given a user ui ∈ U , its reputation is computed
as follow:

rep(ui ) = d ×
∑

u j ∈follower(ui )

rep(u j )∣∣following(u j )
∣∣ + (1 − d) (3.5)

where d ∈ (0, 1) is a dumping factor,12 f ollower(ui ) is a function that returns the
set of users following ui and f ollowing(u j ) returns the set of users that u j follows.

In Fig. 3.1, an example of user reputation computation on the input graph, obtained
by performing a graph sampling process [72] in which the “Barack Obama” vertex
represents the starting point, is depicted. User reputation values are visually rep-
resented by the circle sizes. In this case, “Barack Obama” is the most influential
user, since it has the highest number of followers (more than 10 millions). More-
over, its reputation is propagated to the “davidaxelrod” user—the twitter account of
David Axelrod, an American political consultant—because of the follower relation
by “Barack Obama;” this scenario confers to “davidaxelrod” a high reputation value,
even if it has a significantly lower number of followers (∼60k followers).

12 The dumping factor d, introduced by the authors in [3], represents the probability that a “random
surfer” of the graph G moves from a user to another; it is usually set to 0.85.
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Fig. 3.1 The reputation
value computation: a sample
of the “Barack Obama”
community. The size of the
nodes represents their
importance in the considered
community

3.3.2.2 Computing Term Burstiness Values

Once the nutrition of a term is calculated, the aim is tomap it into a value of burstiness.
The burstiness value of a term indicates its actual contribution (i.e., how much it is
emergent) in the corpus of tweets.Our idea is that the temporal information associated
to the tweets can be used as discriminant function in that sense. The term burstiness
used in this chapter closely resembles to the concept of burstiness introduced in
many related works as [40, 73, 74]. In detail, the burstiness of a term is defined as
the ratio of the frequency of the number of occurrences of a keyword on the current
time period with respect to its occurrences on previous time slots. Please notice that
the term burstiness has been used also w.r.t. many different factors (occurrences in
different documents, sentences, and/or position in a text); in this chapter we refer to
this concept only w.r.t. temporal conditions.

In our work, having for each keyword k its amount of nutrition nutrtk in a time
interval I t , it is possible to rank the hottest terms only considering their related
nutrition value. A term can be defined as hot if its usage is extensive within the
considered time interval.

However, as explained in the Introduction, in this stepweare interested in detecting
the emerging terms during the considered time interval I t . For this, we need to
introduce a temporal evaluation of each keyword usage to analyze this property. For
this, a keyword is defined as emergent if it results to be hot in the considered time
interval but not in the previous ones. In other words, we analyze the keyword life
cycles by comparing their nutrition values obtained on the considered time framewith
the usageof the same terms in the past time intervals.Namely, the current nourishment
is analyzed in comparison to the ones built in the previous time intervals.

Let consider the examples shown in Figs. 3.2 and 3.3; considering the time frame
from August 2011 to February 2012, the term “car” is, obviously, significantly more
used by the twitter community than the term “concordia.” Thus, according to our
definition, the term “car” can be considered hotter than “Concordia.” On the other
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Fig. 3.2 Statistical usage of the term “car” (provided by Trendistic) in Twitter from August 2011
to February 2012

Fig. 3.3 Statistical usage of the term “Concordia” (provided by Trendistic) in Twitter from August
2011 to February 2012; the peak represents the catastrophic sinking of the Italian boat “Costa
Concordia” occurred in Italy on January 13, 2012

hand, considering the specific time instant defined by the day January 13, 2012,
the term “concordia” can be easily seen as emerging keyword, while there is no
significant change in the usage of term “car” (because of the extensive use of the
term which can be correlated to the sinking of the cruise ship “Costa Concordia” on
January 13, 2012).

Obviously, it is not necessary to consider the complete usage history of each
keyword: in fact, if for example the keyword “Iraq” has been extensively used in past
intervals, it does not mean that it cannot become again important in the community
for another event in future time frames. However, if its nutrition value stays constant
during closer time intervals (for example two intervals in the same day), it means
that the community is probably still referring to the same news event. In this case,
according to our definition, even if the keyword can be considered as hot, it cannot
be referred as emerging due to this temporal discrimination.

It is important to note that this temporal parameter influences the emerging key-
words retrieved by the system. Let us consider for example the keywords reported by
only one user through her tweets: if we only consider a short keyword’s history (for
example by taking into account only such intervals included in 24h), the system will
only detect such keywords that emerge in a daily perspective (referring to her daily
activities, related for example to her job or hobbies). Otherwise, if we consider a
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longer history (i.e., all the intervals included in a calendar year), the resulting emerg-
ing keywords will represent globally relevant activities that modify the general daily
trends (for example unexpected facts or events).

With this goal we introduce a parameter s, where 0 < s < t , that limits the
number of previous time slots considered by the system to study the keywords life
cycles and defines the history worthiness of the resulting emerging keywords.

Now given a keyword k, it is possible to calculate its burstiness value at the time
interval I t as

bursttk =
t−1∑

x=t−s

((
(nutrtk)

2 − (nutrxk )2
)

· 1

log(t − x + 1)

)
(3.6)

where nutrx
k represents the nutrition obtained by the keyword k during the interval

time I x .
This formula permits to quantify the usage of a given keyword k with respect to

its previous usages in a limited number of time intervals. In fact, considering two
distinct time intervals I x and I t , with x < t , this formula quantifies the difference
in terms of usage of a given keyword, by considering the difference of nutritions
received in the time frames I x and I t , and taking also into account the temporal
distance among the two considered intervals.

3.3.3 Selection of Emerging Terms

This section presents the user-driven and automatic technique to select a limited set
of relevant terms that emerge in the considered time interval.

At the end of this step, given a set of tweets TWt generated on the time interval
It , the system calculates a limited set of keywords EKt that are emerging on the
considered time interval.

3.3.3.1 User-Driven Keywords Selection

The first approach for the selection of emerging terms relies on a user-specified
threshold parameter. Our initial assumption is that, given two keywords with very
high burstiness values, they can be considered as emerging or not depending on
the user evaluation. Indeed, if a user wants to be informed only about the most
emerging events (i.e., when worldwide distribution of users reported it on a big
scale, as for disasters and/or worldwide tragedies), the user probably prefers to avoid
such contents that are only relatively emerging (for example, topics referring to a
less globally important news event).
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In order to do that, we introduce a critical drop value that allows the user to decide
when a term is emergent. In particular, the critical drop is defined as

dropt = δ ·
∑

k∈K t (bursttk)

|K t | (3.7)

where δ ≥ 1. It permits to set the critical drop by also taking into account the average
burstiness value. We define the set of emerging keyword EKt as

∀k ∈ K t , k ∈ E K t ⇐⇒ bursttk > dropt (3.8)

It is possible to note that the cardinality of EKt is directly proportional to the
value of δ.

3.3.3.2 Automatic Keywords Selection

An intrinsic limitation of the ranking approach introduced in Sect. 3.3.3.1 is that
it could be very hard for a user/application to set a proper δ value. In fact, it can
be a hard task to numerically quantify a threshold from an abstract perception as
the desired cardinality of emerging keywords. Moreover, depending on the temporal
context, it could be necessary to set the threshold value differently. Thus, we leverage,
as explained in [75], a fully automatic ranking model that dynamically sets the
critical drop. In particular, following this strategy, for each keyword expressed by
the community, the most emergent are those whose burstiness is above an adaptively
computed critical point (Fig. 3.4). Intuitively, to preserve only the keywords with
very high burstiness, we consider only those terms whose burstiness is higher than
the average burstiness of the most discussed terms. In order to cope with this, we
provide a completely automatic model that works as follows:

1. the systems first ranks the keywords in descending order of burstiness value
previously calculated in Sect. 3.3.2.2.

2. it computes the maximum drop between consecutive entries and identifies the
corresponding drop point.

3. it computes theaverage drop (between consecutive entities) for all those keywords
that are ranked before the identified maximum drop point.

4. the first drop which is higher than the computed average drop is called the critical
drop.

At the end of this four-step process, the keywords ranked before the critical
drop are defined as emerging keywords on time interval I t and are collected in
set called EKt .
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Fig. 3.4 The critical drop
cut-off: the maximum drop is
the highest variation in the
ordered list of weights (red
mark). The average drop
(between consecutive
entities) is the average
difference between those
items that are ranked before
the identified maximum drop
point (yellow mark). The
first drop which is higher
than the computed average
drop is called the critical
drop (green mark)

3.3.4 Leveraging Users’ Context for Personalization Purposes

While the formula presented in Sect. 3.3.2.2 permits to monitor in real-time the
stream of information expressed by the Twitter community, it does not take into
account any user preference and/or context. For this, we introduce a normalization
that uses the content generated by the user (i.e., the tweets/re-tweets generated by
her) to personalize the list of emerging topics.

We first analyze the temporal time frames in which the user has been active within
the Twitter environment. For this, we calculate the entire user’s life activity as the
time range included between the instant of her first tweet (or retweet) and the current
instant.

From this, we segment the user’s life activity into time intervals by taking into
account her frequency of posting. The rationale is that any user has different habits
and abilities with respect to the social network environment and expresses herself
at different rhythms. Thus, we aim to take into account these different behaviors by
analyzing the personal attitude with respect to the posting activity.

For this, we divided the user’s life activity into numbered intervals, by segmenting
the user lifetime based on the number of tweets generated by the user. Thus, with
the function interval(tw j , ui ), we are able to determine in which interval, relatively
to the considered user, each tweet has been generated. The lower the interval value,
the more recent the tweet with respect to her posting frequency. Note that the value
of the interval function ranges from 1 to k, where k is the farthest time interval
while 1 indicates the most recent one. This permits to take into account when the
user expresses an interest to a topic (by reporting a correlated tweet) and numerically
quantify her interest into the topic according to this temporal information.
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At this point, given the set of tweets TWui generated by the user ui , we define the
context of the user ui as her vocabulary Kui containing the set of terms typed by the
user in any of her tweets (or re-tweets). From this, we calculate the weight of each
term z in Kui , within the context of ui , by considering the relative time interval in
which it has been generated. In detail, it is calculated as

pui
z =

∑

tw j ∈T Wui

wz, j

log(interval(tw j , ui ) + 1)
. (3.9)

where wz, j is the weight of the zth vocabulary term in j th tweet by using the aug-
mented normalized term frequency [68] (calculated as explained in Sect. 3.3.1).

At this step, we can contextualize the importance of each retrieved emerging term
(as explained in Sect. 3.3.3), by taking into account the importance of the termwithin
the context of the considered user.

The problemofmatching user contextswith emerging terms lies in the shortness of
the tweets that likelymakes the contexts vocabulary abridged as well. For this reason,
the evaluation of the similarity between these two entities needs to be carefully
chosen. In fact, the naive solution of calculating exact matches between contexts
terms and emerging terms avoids to consider both morphological variations and
similarities between different words with shared meanings. In that sense, we made
use of the system proposed in [76] to estimatewords similarities based on statistically
significant co-occurrences within large corpora, like Wikipedia. An advantage of
using such a resource relies on its multi-language nature (as in our system).

In detail, taking a pair of terms as input, [76] proposed to retrieve the Wikipedia
articles they refer to, and compute a semantic similarity between the two terms based
on the paths, in the Wikipedia categorization graph, that connect these articles. In
this way, we calculate the burstiness of an emerging keyword k relatively to the user
ui as:

bursttk,ui
= bursttk ∗

(
1 +

∑
z∈Kui

(sim(k, z) · pui
z )

|Kui |

)
(3.10)

where |Kui | is the cardinality of the user context vocabulary, while sim is the function
that returns a [0, 1]-similarity value between the emerging keyword and a context
keyword, according to the method presented in [76]. Note that, if the semantic relat-
edness between the two terms results unknown (for example, on of them is not
included in the considered Wikipedia data set), it is estimated as 0. On the other
hand, if k = z, the similarity returned by the system is equal to 1.13 An example,
related to the semantic similarity between the term “keyboard” and “computer,” is
shown in Fig. 3.5.

13 Notice that, considering that the semantic similarity of each pair of term is based on the external
knowledge base ofWikipedia, this information is precomputed offline and it is periodically updated
in order to reflect the novel information introduced in Wikipedia.
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Fig. 3.5 The shortest path in
Wikipedia, between the
terms “keyboard” and
“computer,” which provides
the base for calculating the
semantic similarity between
the terms (0.74 in this case)

Following this strategy, if an emerging term results outside the interests of the
user (because no semantic paths emerged, within the Wikipedia data set, between
the terms within the user context and the emerging one), we do not lower the over-
all burstiness of the considered emerging keyword. In fact, we only proportionally
increase the burstiness of the emerging terms when they resulted semantically close
to someof the interests of the user.Webelieve that this strategy permits to preserve the
most discussed arguments and inform the users about themost important news/topics
expressed by the community, even if not interested into the domain. Following this
high-level assumption, when global events happen and they are extensively com-
mented in Twitter, all the users can remain informed even if they are not specifically
interested in the domain. This assumption will be further commented within the
experimental analysis (Sect. 3.4.2).

3.3.5 From Emerging Terms to Emerging Topics

Considering the given corpus of tweet TWt (representing the corpus of extracted
tweets with n = ∣∣T W t

∣∣ text tweets extracted within the time interval I t ), in this step
we study the semantic relationships that exist among the keywords in K t in order to
retrieve the topics related to each emerging term.

In our system we define a topic as a minimal set of a terms semantically related
to an emerging keyword. Thus, in order to retrieve the emerging topics, we consider
the entire set of tweets generated by the users within the time frame I t , and we
analyze the semantical relationships that exist among the keywords by examining
the co-occurrences information.

Let us consider, for example, the keyword “victory” in a given set of tweets: this
term alone does not permit to express the related topic. In fact, considering as a time
frame November 2008, the related topic can be easily defined by the association with
other keywords (among themost used) as “elections,” “Us,” “Obama,” and “McCain,”
while in other time frame, as for example February 2012, the term could be related to
a sports event by other keywords as “superbowl”— due to the championship game of
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the National Football League (NFL)—“football” or “New York Giants”—the name
of one of the teams that played the final game in 2012.

Thus, in order to express the topics related to the retrieved emerging keywords, we
consider the time frame in which all the tweets have been generated and analyze the
semantic relationships among the keywords basedon the co-occurrences information.

We formalize this idea by associating to each keyword k ∈ K t a correlation vector
cvt

k , formed by a set of weighted terms, which defines the relationships that exist
among k and all the other keywords in the considered time interval. In other words,
we compute the degree of correlation between a keyword k and another keyword
z by using the set of documents containing both terms as positive evidence of the
relationship between the two keywords, and the set of documents containing only
one of them as positive evidence against the relationship. In detail, we treat each
keyword k as a query and the set of the tweets containing the keyword TWt

k as the
explanation of this term in the time interval I t .

Intuitively, this is analogous to treating (a) the keyword k as a query and (b)
the set of tweets containing k as relevance feedback on the results of such query.
Recognizing this, we identify the correlation weight ct

k,z , between k and another
keyword z at time I t relying on a probabilistic feedback mechanism [77]:

ct
k,z = log

rk,z/(Rk − rk,z)

(nz − rk,z)/(N − nz − Rk + rk,z)
×

∣∣∣∣
rk,z

Rk
− nz − rk,z

N − Rk

∣∣∣∣ , (3.11)

where:

• rk,z is the number of tweets in TWt
k containing the keywords k and z;

• nz is the number of tweets in the corpus containing the keyword z (it is equal to∣∣T W t
z

∣∣);
• Rk is the number of tweets containing k (it is equal to

∣∣T W t
k

∣∣); and
• N is the total number of tweets.

Note that the first term increases as the number of the tweets in which k and
z co-occur increases, while the second term decreases when the number of tweets
containing only the keyword z increases.

Thus, given a term k, we associate a so-called correlation vector

cvt
k = 〈ck,1, ck,2, . . . , ck,v〉, (3.12)

which represents the relationships that exist between k and the other v keywords
(with v = ∣∣K t

∣∣) at the time interval I t .
At this point we leverage information conveyed by the correlation vectors in order

to identify the topics related to the emerging terms retrieved during the considered
time interval. In order to do that, we construct a keyword-based topic graph in the
form of a directed, node-labeled, edge-weighted graph, TGt (K t , E, ρ), as follows:

• Let K t be a set of vertices, where each vertex k ∈ K t represents a keyword
extracted during the time interval I t ;
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• For all k ∈ K t and z ∈ K t such that cvt
k[z] �= 0, there exists an edge 〈k, z〉 ∈ E

such that

ρ(〈k, z〉) = ρk,z = cvt
k[z]∥∥cvt

k

∥∥

Therefore ρk,z represents the relative weight of the keyword k in the corresponding
vector cvt

k , i.e., the role of the keyword z in the context of the keyword k.
Finally, the complete graph TGt (K t , E, ρ) is thinned by applying a locally adap-

tive edge thinning algorithm. For each k ∈ K t , we consider the set of all outgoing
edges and we apply an adaptive cut-off (as explained in Sect. 3.3.3.2) based on the
corresponding weights. This process ensures that only those edges that represent
the strongest relationships are maintained (note that, since the graph is directed
and the thinning process is asymmetrical, it is possible that TGt will contain the edge
〈k, z〉 but not vice versa).

3.3.6 Topic Detection, Labeling, and Ranking

Since in our system each topic is defined as a set of semantically related keywords,
we leverage the topological structure of the topic graph TGt to detect the emerging
topics into the Twitter community. In order to do that, we consider the set of emerging
keywords EKt , computed as described in Sect. 3.3.3, and we search for the strongly
connected components (SCC) rooted on them in TGt .

According to the Kosaraju–Sharir algorithm ([78]), given a keyword k that rep-
resents a vertex within the topic graph TGt , we find the set of vertices S reachable
from k through a path, simply applying a depth-first search (DFS) visit (or any other
similar algorithm). Then, we repeat the process on the same topic graph TGt with
reversed edges in order to find the set of vertices T that can reach k through a path.
The strongly connected component EKt

k is formed by all the vertices within the
intersection between T and S. The complexity of this process is linear.

Thus, for each emerging keyword z ∈ E K t , we define the related emerging topic
as a subgraph ETt

z(Kz, Ez, ρ) representing a set of keywords semantically related
to the term z within the time interval I t . Considering the entire set of emerging
keywords EKt , in this step we compute the corresponding set of emerging topics as
ETt = {ET t

1 , ..., ET t
n } of strongly connected components. It is important to note

that the number of the retrieved emerging topics can be lower than the number of the
emerging keywords (n ≤ ∣∣E K t

∣∣); in fact two emerging keywords can belong to the
same emerging topic.

At the end of this step, the set of keywords K t
z belonging to the emerging topic

ETt
z is calculated by considering as starting point in TGt the emerging keyword z,

but also contains a set of common terms semantically related to z but not necessarily
included in EKt .

In Fig. 3.6 is depicted an example in which each topic is represented by a different
color. As it can be seen, each strongly connected component contains both emerging
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Fig. 3.6 A topic graph with two strongly connected components representing two different emerg-
ing topics: the resignation of President Wulff (in red) and the wreck of the Costa Concordia (in
blue). Labels in bold represent emerging keywords while the thickness of an edge represents the
semantical relationship between the considered keywords

terms (labeled in bold) like “Concordia,” “Wulff,” and other popular keywords, like
“Merkel,” “sea,” and “EU,” which are constantly used by twitter users and do not
represent statistically emerging terms. In fact, terms like “Merkel” or “EU” represent
very popular terms always reported by the users in Twitter as in any other information
sources.

With this approach, we not only retrieve such terms that directly co-occur with the
emerging terms, but we can also retrieve those that are indirectly correlated with the
emerging ones (by co-occurring with keywords that they themselves co-occur with
the emerging terms). In fact, the considered topic graph leverages the information
contained in all the tweets, even those that do not report emerging terms; indeed a
user can always report an emerging topic by simply using synonyms.

Thus, as a last step, we need to establish an order among the retrieved topics
in order to guide the user in understanding which topic is more emergent in the
considered time frame. In order to do that, we introduce a ranking value as

rankETt
z
=

∑
k∈K t

z
(bursttk)∣∣K t
z

∣∣ (3.13)

that leverages the average burstiness of the terms in K t
z to define the importance of

the topic led by the emerging keyword z ∈ EKt . Finally, using this value we are able
to rank the retrieved topics in descending order of importance.

At this point, the system has found a set of topics ETt emerging within the time
interval I t . Nevertheless, it is now necessary to carefully select a minimal set of
keywords (belonging to the considered topic) to represent each retrieved emerging
topic to the user. In fact, we believe that too many keywords could represent an
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information overload for the user; on the other hand the cardinality of the retrieved
emerging topics strictly depends on the topological structure of the topic graph TGt .

In order to avoid this problem, given a topic ETt
z ∈ ETt and the related key-

words K t
z , we apply an unsupervised keyword ranking mechanism (as described in

Sect. 3.3.3.2) that permits to select the most representative keywords for each cluster.
Note that, even using this adaptive cut-off, there is no guarantee to obtain a relatively
small set of keywords representatives. Thus, we also introduce a numerical threshold
χ , set by the user/application, that limits the representative keywords of each topic.
This threshold can be set depending on visualization constraints of the device and/or
the user preferences.14

3.4 Experiments: Case and User Studies

In this section, we evaluate the proposed method by analyzing real case scenarios
and user studies. In particular, we conducted several experiments by monitoring the
Twitter community during the period between January 10, 2012 and July 4, 2012
(i.e., we made use of the available dataset provided in [2]). In our experiments we
have monitored a stream that consists of two random samples (taken in two different
time intervals) among all public messages. This access level provides a statistically
significant input for data mining and research applications15; in fact, we evaluated
more than15million of tweets, generated by∼1millionTwitter users,which included
more than 600k different keywords.16

The main aim of the experimental evaluation was twofold: from one side ana-
lyze, through examples and case studies, the impact and the proper setup of each
parameter proposed within the presented technique. On the other hand, considering
that our approach is also based on the idea to take into account the users’ interests,
we asked different users to provide a real feedback on the retrieved personalized
topics. Moreover, as in [79], we compared the retrieve topics to the ones reported by
Associated Press website,17 evaluating the precision of the presented method.

In particular, for the first task, we analyzed different experimental setup strategies:
we initially considered a real case study by evaluating the emerging topics retrieved
by the system within two different time intervals. Then, we varied the number of
considered time intervals (Sect. 3.3.2.2) in order to determine how this parameter
affects the quality of the retrieved topics. We also compared the presented keywords
selections methods (Sect. 3.3.3) evaluating their impact on the resulting emerging
topics.

14 We used χ = 5 as default value.
15 http://apiwiki.Twitter.com.
16 The sampling rate of the used standard Twitter account is 1% over an average of 200 million per
day.
17 http://www.ap.org.

http://apiwiki.Twitter.com
http://www.ap.org
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For the second objective of this experimental evaluation, we asked human users
to subjectively judge the topics and the personalization strategy through a question-
naire. Note that the evaluation of a personalized topic detection strategy results in
a very complex task; in fact no manually annotated data set exists for this prob-
lem and the unique possible ground truth is provided by the users. Based on these
considerations, different users, with different backgrounds, age, and interests, have
been involved in a user study made up of a very diverse set of questions that aim
at covering the problems faced by our approach. We also analyzed the advantages
and disadvantages of the proposed approach highlighting possible future works and
strategies for improvements.

3.4.1 Experiments Based on Real Case Scenarios

As previously reported, we initially evaluated the proposed approach by analyzing
the retrieved emerging topics within the considered time period. For this experiment
we considered the automatic selectionmethod andwe set the time range r as 30min18

(Sect. 3.3.1). As explained in the Introduction, considering the impressive response
time of the users, our assumption is that, if continuously monitored within small time
ranges, Twitter can also predate the most authoritative news sources in informing the
community about emerging news events. Obviously, it is possible to set higher time
range values: in this case, the resulting topics will be statistically more significant (a
higher number of authors certify the importance of the argument) but the advantage
in terms of time with respect to the traditional information source will vanish. The
number s of time slots considered was 400 (with the selected time range, we consid-
ered more than a week). In fact this time slot size is sufficient to avoid such terms
that are significant in a daily/weekly perspective (see also Sect. 3.4.1.1).

Using this experimental setup, the system implementing the framework intro-
duced in this chapter discovered 147 emerging topics. At this point, in order to test
the precision of the proposed method, we asked two external domain experts to
manually compute the precision of the proposed method.19 For this, as in [79], we
considered as baseline the Really Simple Syndication (RSS) of the Associated Press
website. The resulting average precision was 0.892, proving the effectiveness of the
proposed system in detecting relevant topics of discussion (because they deserved to
be commented in authoritative information services).

18 In our experimental evaluation we set r equals to 30 in order to adapt our system to the high
dynamicity of Twitter users. This is clearly in agreement with the experimental results shown in
[27]. In fact, in this work, the authors revealed that there are few topics that last for longer times,
while most topics decay in about 20–40min.
19 Note that we do not compute any recall value. In fact, recall is strictly dependent on the considered
ground truth (CNN, AP, some online newspaper, etc.) and its news domain. For example, some
important news can be reported by some authoritative news source and ignored by others. For
this, counting how many news articles are detected is dependent on a specific ground truth and the
resulting analyzing could not be considered significative for the evaluation task.
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Table 3.1 The list of retrieved topics based on the five most emerging terms (in bold)

Date Emerging Topics

13-01-2012 {concordia, cruise, disaster, schettino, sea}a

13-02-2012 {adele, grammy, 2012, perry, kate}b

06-02-2012 {jubilee, uk, england, diamond, elizabeth, II}c

01-02-2012 {port, killed, match, said}d

04-02-2012 {protest, kremlin, putin, government,}e

a http://www.bbc.co.uk/news/world-europe-16558910
b http://www.nytimes.com/2012/02/14/arts/music/at-the-54th-grammy-awards-everything-old-
is-praised-again.html
c http://www.guardian.co.uk/uk/queen-diamond-jubilee
d http://www.bbc.co.uk/news/world-middle-east-16845841
e http://www.time.com/time/world/article/0,8599,2106183,00.html

In Table3.1 we also show the retrieved topics based on the five most emerging
terms (i.e., the terms with the highest burstiness values). The emerging terms are
visualized in bold. We also link the professional news articles of the retrieved news
topics. It can be seen that the emerging terms are always the most specific ones (i.e.,
“concordia,” the name of the Italian cruise ship that partially sank on the night of
January 13, 2012; in fact, they represent keywords that are generally very unusual in
the community and only emerge in correspondence to unexpected events. Although,
by analyzing the co-occurrences information in the tweets reporting such terms (as
explained in Sect. 3.3.5), it is possible to link them to other popular keywords (as
“sea,” in the topic leaded by “concordia”) that have very common usages in the
community.

3.4.1.1 History Worthiness

As reported in Sect. 3.3.2.2, a term is defined as emerging by evaluating its usage in a
limited number of previous time slots. However, depending on the selected number of
considered time intervals, the retrieved topics can significantly differ. Thus, in order
to study the impact of this parameter, we analyze two different numbers of considered
slots, s = 50 and s = 300 (by considering again a time range r of 30min and the
automatic selection method). We recall that the parameter s, where 0 < s < t , limits
the number of previous time slots considered by the system to study the keywords
life cycles and defines the history worthiness of the resulting emerging keywords.

In Table3.2a and b we present the results obtained on January 20, 2012: the
most emerging topics obtained by setting s = 50 represent common daily activities
from a user perspective. Most of the terms, indeed, can be considered as emerging
only if the system does not take into account comparable time intervals. Terms like
“weekend” have very standard usages in the community due to the fact they represent
periodic events.We guess that users systematically use such terms in correspondence
to their natural occurrence. For example, in Fig. 3.7 we show the usage of the terms

http://www.bbc.co.uk/news/world-europe-16558910
http://www.nytimes.com/2012/02/14/arts/music/at-the-54th-grammy-awards-everything-old-is-praised-again.html
http://www.nytimes.com/2012/02/14/arts/music/at-the-54th-grammy-awards-everything-old-is-praised-again.html
http://www.guardian.co.uk/uk/queen-diamond-jubilee
http://www.bbc.co.uk/news/world-middle-east-16845841
http://www.time.com/time/world/article/0,8599,2106183,00.html
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Table 3.2 The emerging topics retrieved at January 20, 2012 by considering (a) a daily history
worthiness (s = 50) and (b) a 7-day history worthiness. The labels in bold represent emerging terms

Date Emerging Topics (s=50)

(a)

20-01-2012 {tonight, working, dead, work}

20-01-2012 {weekend, ready , start, Friday }

20-01-2012 {weather, nice , cold, morning, then}

20-01-2012 {school, day , later, sleep, morning}

Date Emerging Topics (s=300)

(b)

20-01-2012 {etta, james, death, today, rip}

20-01-2012 {army, thx, day}

Fig. 3.7 Statistical usage in Twitter of the terms “morning” and “weekend” (provided byTrendistic)
in consecutive days and/or weeks

“morning” and “weekend” in consecutive days; the system reported a peak if it only
takes into account a 24h history (or 7-day period); however, if it considers a relatively
higher time frame, it recognizes a constant pattern in time. Thus, the life status of a
keyword strictly depends on the considered number of time intervals (Sect. 3.3.2.2)
and this value directly affects the temporal relevance of the retrieved topics.
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Table 3.3 The five most emerging terms (and their related burstiness values) retrieved by the
proposed temporal-based topic detection system within the considered time interval

Date Emerging terms Burstiness value (total avg = 135.67)

13-01-2012 concordia 193461.83

13-01-2012 carre 9677.42

13-01-2012 sarah 6764.79

13-01-2012 dark 3284.39

13-01-2012 holmes 1345.25

3.4.1.2 User-Selected Threshold Versus Automatic Ranking Mechanism

In Sect. 3.3.3 we reported two different selection methods (user-selected threshold
and automatic) to identify emerging terms. In this experiment we evaluate the impact
of each of them in the retrieved topics by analyzing the example proposed inTable3.1:
each of the considered five emerging terms (“concordia,” “adele,” “jubilee,” “port,”
and “protest”) was identified as emergent in different time intervals.

In order to understand why they have been considered as emerging, we need
to analyze the considered intervals and their associated burstiness values. Let us
consider the time interval related to the term “concordia”: in Table3.3 we show
the five most emerging terms and their burstiness values retrieved by the system on
January 13, 2012.We notice that, considering the automatic approach (Sect. 3.3.3.2),
only the terms “concordia” has been considered as emergent. In fact, the system
identified the difference in terms of burstiness values between “concordia” and the
second most emerging terms (“carre”—who refers to the writer John Le Carré—)
as the critical drop point and only considered as emerging such keywords that are
ranked better than the critical drop.

However, considering the user-driven selection method (Sect. 3.3.3.1), the
retrieved emerging terms depend on the δ value set by the user. In fact, consid-
ering for instance δ = 1,000 (i.e., each term is identified as emergent only if its
burstiness value is 1,000 times higher than the total average burstiness value), only
the term “concordia” is selected as emergent. Instead, with δ = 10, also the terms
“carre,” “sarah,” and “dark” will be considered as emergents (and analyzed using the
topic graph to retrieve the related topics).

3.4.2 User Study: Evaluating Personalization and Topic
Detection Strategies

In order to analyze the personalization strategy of the proposed topic-detection tech-
nique, we conducted a user study by asking multiple Twitter users to reply to a ques-
tionnaire when evaluating the emerging topics, retrieved by the system, within their
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Table 3.4 Two subjective questionnaires run on different time intervals and involving different
users; they replied to four questions related to worldwide importance of the retrieved topics, under-
standability, closeness to their interest, and degree of novelty of the retrieved topics of discussion
(variance is reported between parentheses)

Time interval Closeness Importance Novelty Understandability

February 2012 2.94 (0.54) 4.22 (0.56) 4.31 (0.45) 4.44 (0.41)

June 2012 3.21 (0.40) 3.98 (0.36) 4.61 (0.52) 4.12 (0.36)

Avg 3.07 4.1 4.46 4.28

interests. The users represent a various range of ages, backgrounds, jobs, interests,
and education level and they have intermediate Web ability (they are not computer
scientists or social networks analysts). Among all, 64 Twitter users replied to our call.
Among them, 84% of the users were men while only 16% of the users were women.
The average age of the users was 29 (with the minimum of 19 and the maximum
of 54).

For this experiment, we asked to the users to analyze and report their opinions
about the most emerging topics within two different time intervals; the first, from
February 6 to 20, 2012 and the second from June 25 to July 4, 2012. In order to also
test the reliability, we involved in the two tests different users with different foci of
interest. The results are shown in Table3.4.

The first question asked to evaluate, with a 5-point scale rating, how much the
returned topics could be considered within their interests (expressed by their Twitter
activity). The higher the rating, the more adherent the emerging topics to the user’s
interests. The result showed an average rate of 3.07, highlighting an intermediate level
of pertinence of the retrieved topics to their topic interests. Note that, even if this
result can appear lower than desired, it permits to report an important consideration.
The personalization approach proposed in Sect. 3.3.4 does not filter the topics that
most emergedwhen they are notwithin the user interests; in fact, it only highlights the
discussions closer to the interests of the user but it does not filter the emerging ones
that are not explicitly within them. In other words, this strategy permits to inform
the users about the most important news/topics expressed by the community even if
they are not specifically interested with the domain. With this approach, when global
news events happen (and they are extensively discussed within the community) the
user can remain informed even if not specifically interested in the domain. Let us
consider for example the case of Haiti earthquake (happened in 2010) and/or the
tsunami that hit Japan on 2011. Twitter collected a huge amount of data coming from
people in directly-affected areas [80]. We can easily believe that very few people
are specifically interested in monitoring these information domains per se, but every
person could desire to be informed about these global events when they happen.

To better evaluate this assumption, we asked the users to report their opinion (with
a 5-point scale rating) about the overall importance of the reported topics. For this
reason, we asked the users the following question: “Can be considered the reported
topics of general and world-wide interest?” The users reported their opinion for each
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of the presented topics. The average valuewas 4.1, demonstrating that the systemwas
able to identify worldwide emerging discussions that can be considered interesting
to any user, independently of the specific domain interests.

Moreover, the third question investigated the ability of the proposedmechanism to
predate traditional information systems (newspapers, television, blogs, etc.). Specifi-
cally, we asked the user if they hadnalready read about the reported discussion, within
alternative information channels, before being informed by our system (“Did you
already heard about the topics reported by the system?”). The users expressed, again,
their responses with a 5-point scale rating (the higher the rate, the more unknown
the related news). The feedback of the users within the first time interval, with an
average rate of 4.46, clearly showed the ability of the proposed topic detection and
tracking mechanism to predate, in real-time, the traditional information systems in
reporting fresh, emergent, information news.

Finally, each user also replied to the question “Were the reported topics easy to
understand?” The users replied that the reported topics were, in average, very “easy
to understand” (with an average subjective rate of 4.28), highlighting the fact that the
proposed topic construction strategy (Sect. 3.3.5) is able to associate a minimal set
of terms to each most emerging keyword that can effectively summarize the overall
discussion.

Also notice that the results are consistent between the two considered time inter-
vals, highlighting the ability of the proposed approach to automatically detect emerg-
ing topics in different conditions, with different users and with different domains of
interests.

In conclusion, we can summarize these results as follows: as initially supposed,
the proposed topic-detection mechanism is able to predate the classic information
channels in informing the users about themost discussed news events, in a way that is
both compact and understandable from a human point of view. In fact, the user study
highlighted the fact that the topic construction mechanism provides sufficient details
(i.e., number of keywords) to understand the core of the related event/discussion.
Moreover, even when the reported topics were not within the users interests, they
resulted to be important to be reported for their global importance.

3.5 Conclusions

Starting from our previous work aimed at detecting real-time emerging topics on
Twitter [2], this chapter focused attention on how the interests of the users can be
exploited to contextualize such mined knowledge. The approach is based on the
assumption that everything that appears to be of high interest for all Twitter users
worldwide, should be of interest to anyone. Thus, there is no intention to leverage
user profiles as central bases for the contextualization of the extracted topics. In fact,
the idea was that user contents and interests only need to be accentuated and added
to world-level important events.
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In this chapter, we first formalized the life cycle of a term occurring in the tweets
through an aging theory that aimed at modeling the temporal usage of each keyword
expressed by the community. The assumption was that important topics start from
little information (i.e., single terms) that acquire unexpected importance within the
user-generated data. Then, we took into account the social relationships in the Twitter
network (i.e., follower and following relationships) to estimate an authority level
of the authors, thus normalizing their propagation of information in the network.
Finally, we constructed the topics as minimal sets of keywords co-occurring with
high emerging ones. In addition, we considered the user context (given by the posted
tweets) to highlight those topics that better match her specific interests.

Within our experimentations, we found that the approach was able to extract
important events even before the most important information media, which usually
needed a certain amount of time to react.

The relatedwork presented in Sect. 3.2 showed that Twitter is the ideal scenario for
the study of real-time information spreading phenomena. Moreover, we think that
the approach could be used in the communication network analysis of both more
similar microblogs, like Weibo,20 and systems like Facebook or, more in general, in
online forums.
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47. Petrović S, OsborneM, LavrenkoV (2010) In: Human language technologies: The 2010 annual
conference of the north american chapter of the association for computational linguistics,
HLT ’10. Association for Computational Linguistics, Stroudsburg, pp 181–189. http://dl.acm.
org/citation.cfm?id=1857999.1858020

48. Bun KK, Ishizuka M, Ishizuka BM (2002) In: Proceedings of 3rd Int’l conference on web
informtion systems engineering (WISE 2002). IEEE Computer Society, Washington, 2002),
pp 73–82

49. Lampos V, Cristianini N (2012) ACM Trans Intell Syst Technol 3(4), 72:1. doi:10.1145/
2337542.2337557http://doi.acm.org/10.1145/2337542.2337557

50. Takeshi Sakaki MO, Matsuo Y (2010) ACM. USA, New York
51. AlSumait L, Barbará D, Domeniconi C (2008) In: Proceedings of the 2008 eighth IEEE inter-

national conference on data mining, ICDM ’08. IEEE computer society, Washington, pp 3–12.
doi:10.1109/ICDM.2008.140. http://dx.doi.org/10.1109/ICDM.2008.140

52. Sugiyama K, Hatano K, Yoshikawa M (2004) In: Proceedings of the 13th international con-
ference on world wide web, WWW ’04. ACM, New York, pp 675–684.doi:10.1145/988672.
988764

53. Teevan J, Dumais ST, Horvitz E (2005) In: Proceedings of the 28th annual international ACM
SIGIR conference on research and development in information retrieval, SIGIR ’05. ACM,
New York, pp 449–456. http://doi.acm.org/10.1145/1076034.1076111.http://doi.acm.org/10.
1145/1076034.1076111

54. Ziegler CN,McNee SM,Konstan JA, LausenG (2005) In: Proceedings of the 14th international
conference on world wide web, WWW ’05. ACM, New York, pp 22–32. http://doi.acm.org/
10.1145/1060745.1060754.http://doi.acm.org/10.1145/1060745.1060754

55. Noll MG, Meinel C (2007) In: Proceedings of the 6th international the semantic web and 2nd
Asian conference on Asian semantic web conference, ISWC’07/ASWC’07. Springer, Berlin,
pp 367–380. http://dl.acm.org/citation.cfm?id=1785162.1785190

56. Teevan J, Dumais S, Horvitz E (2005) In: Proceedings of the workshop on new technologies
for personalized information access (PIA), pp 84–92

57. LinGL, PengH,MaQL,Wei J, Qin JW (2010) In:Machine learning and cybernetics (ICMLC),
2010 international conference on, vol. 5, IEEE Computer Society, Washington, pp 2116–2421.
doi:10.1109/ICMLC.2010.5580733

58. Agrawal R, Gollapudi S, Halverson A, Ieong S (2009) In: Proceedings of the second ACM
international conference on web search and data mining, WSDM’09. ACM, New York,
pp 5–14. http://doi.acm.org/10.1145/1498759.1498766

59. Radlinski F, Dumais S (2006) In: Proceedings of the 29th annual international ACM SIGIR
conference on research and development in information retrieval, SIGIR ’06. ACM, NewYork,
pp 691–692. http://doi.acm.org/10.1145/1148170.1148320

60. Wedig S, Madani (2006) In: Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’06. ACM, New York, pp 742–747. http://doi.
acm.org/10.1145/1150402.1150497

61. Cantador I, Bellogín A, Vallet D (2010) In: Proceedings of the fourth ACM conference on
recommender systems, RecSys ’10.ACM,NewYork, pp 237–240. http://doi.acm.org/10.1145/
1864708.1864756

http://dx.doi.org/10.1145/1835449.1835643
http://doi.acm.org/10.1145/1835449.1835643
http://doi.acm.org/10.1145/1835449.1835643
http://dl.acm.org/citation.cfm?id=1857999.1858020
http://dl.acm.org/citation.cfm?id=1857999.1858020
http://dx.doi.org/10.1145/2337542.2337557
http://dx.doi.org/10.1145/2337542.2337557
http://doi.acm.org/10.1145/2337542.2337557
http://dx.doi.org/10.1109/ICDM.2008.140
http://dx.doi.org/10.1109/ICDM.2008.140
http://dx.doi.org/10.1145/988672.988764
http://dx.doi.org/10.1145/988672.988764
http://doi.acm.org/10.1145/1076034.1076111.
http://doi.acm.org/10.1145/1076034.1076111
http://doi.acm.org/10.1145/1076034.1076111
http://doi.acm.org/10.1145/1060745.1060754.
http://doi.acm.org/10.1145/1060745.1060754.
http://doi.acm.org/10.1145/1060745.1060754
http://dl.acm.org/citation.cfm?id=1785162.1785190
http://dx.doi.org/10.1109/ICMLC.2010.5580733
http://doi.acm.org/10.1145/1498759.1498766
http://doi.acm.org/10.1145/1148170.1148320
http://doi.acm.org/10.1145/1150402.1150497
http://doi.acm.org/10.1145/1150402.1150497
http://doi.acm.org/10.1145/1864708.1864756
http://doi.acm.org/10.1145/1864708.1864756


3 Twitter as a Personalizable Information Service 91

62. Xu S, Bao S, Fei B, Su Z, Yu Y (2008) In: Proceedings of the 31st annual international ACM
SIGIR conference on research and development in information retrieval, SIGIR ’08. ACM,
New York, pp 155–162. http://doi.acm.org/10.1145/1390334.1390363

63. Han X, ShenZ, Miao C, Luo X (2010) In: Proceedings of the 6th international conference
on Active media technology, AMT ’10. Springer, Berlin, pp 34–46. http://dl.acm.org/citation.
cfm?id=1886192.1886201

64. Sieg A, Mobasher B, Burke R (2007) In: Proceedings of the sixteenth ACM conference
on conference on information and knowledge management, CIKM ’07. ACM, New York,
pp 525–534. http://doi.acm.org/10.1145/1321440.1321515

65. Gauch S, Chaffee J, Pretschner A (2003) Web intelligence and agent systems 1, 219. http://dl.
acm.org/citation.cfm?id=1016416.1016421

66. WangQ, JinH (2010) In: Proceedings of the 19thACM international conference on Information
and knowledge management CIKM ’10. ACM, New York, pp 999–1008. http://doi.acm.org/
10.1145/1871437.1871564

67. Carmel D, Zwerdling N, Guy I, Ofek-Koifman S, Har’el N, Ronen I, Uziel E, Yogev S, Cher-
nov S (2009) In: Proceedings of the 18th ACM conference on Information and knowledge
management, CIKM ’09. ACM, New York, pp 1227–1236. doi:10.1145/1645953.1646109

68. Salton G, Buckley C (1988) In: Information processing and management. Cornell University,
Ithaca

69. Weng J, LimEP, Jiang J,HeQ (2010) In: Proceedings of the thirdACMinternational conference
on web search and data mining, WSDM ’10. ACM, New York, pp 261–270. http://doi.acm.
org/10.1145/1718487.1718520

70. Bakshy E, Hofman JM, Mason WA, Watts DJ (2011) In: Proceedings of the fourth ACM
international conference on Web search and data mining, WSDM ’11. ACM, New York,
pp 65–74. http://doi.acm.org/10.1145/1935826.1935845

71. Kwak H, Lee C, Park H, Moon S (2010) In: Proceedings of the 19th international conference
on world wide web,WWW ’10. ACM, NewYork, pp 591–600. doi:10.1145/1772690.1772751

72. Leskovec J, Faloutsos C (2006) In: KDD ’06: Proceedings of the 12th ACM SIGKDD inter-
national conference on knowledge discovery and data mining. ACM, New York, pp 631–636.
http://doi.acm.org/10.1145/1150402.1150479

73. Glance NS, Hurst M, Tomokiyo T (2004) In: WWW 2004 Workshop on the weblogging
ecosystem. ACM, New York. http://www.blogpulse.com/papers/www2004glance.pdf

74. Liang X, Chen W, Bu J (2010) In: Computer engineering and technology (ICCET), 2010 2nd
international conference on, vol. 6, IEEE Computer Society, Washington, pp 249–253

75. Cataldi M, Schifanella C, Candan KS, Sapino ML, Di Caro L (2009) In Proceedings of the
international conference on management of emergent digital ecosystems, MEDES ’09. ACM,
New York, pp 33:218–33:225. http://doi.acm.org/10.1145/1643823.1643864

76. Ponzetto SP, Strube M (2007) In: Proceedings of the 45th annual meeting of the ACL on inter-
active poster and demonstration sessions, ACL ’07. Association for Computational Linguistics,
Stroudsburg, pp 49–52. http://dl.acm.org/citation.cfm?id=1557769.1557785

77. Ruthven I, Lalmas M (2003) Knowl Eng Rev 18(2), 95. doi:10.1017/S0269888903000638.
http://dx.doi.org/10.1017/S0269888903000638

78. AhoAV,Hopcroft JE,Ullman J (1983)Data structures and algorithms, 1st edn.Addison-Wesley
Longman Publishing Co., Inc, Boston

79. Lu R, Xu Z, Zhang Y, Yang Q (2012) in PAKDD (2). Springer, Berlin
80. Acar A, Muraki Y (2011) Int J Web Based Commun 7(3):392

http://doi.acm.org/10.1145/1390334.1390363
http://dl.acm.org/citation.cfm?id=1886192.1886201
http://dl.acm.org/citation.cfm?id=1886192.1886201
http://doi.acm.org/10.1145/1321440.1321515
http://dl.acm.org/citation.cfm?id=1016416.1016421
http://dl.acm.org/citation.cfm?id=1016416.1016421
http://doi.acm.org/10.1145/1871437.1871564
http://doi.acm.org/10.1145/1871437.1871564
http://dx.doi.org/10.1145/1645953.1646109
http://doi.acm.org/10.1145/1718487.1718520
http://doi.acm.org/10.1145/1718487.1718520
http://doi.acm.org/10.1145/1935826.1935845
http://dx.doi.org/10.1145/1772690.1772751
http://doi.acm.org/10.1145/1150402.1150479
http://www.blogpulse.com/papers/www2004glance.pdf
http://doi.acm.org/10.1145/1643823.1643864
http://dl.acm.org/citation.cfm?id=1557769.1557785
http://dx.doi.org/10.1017/S0269888903000638
http://dx.doi.org/10.1017/S0269888903000638


Chapter 4
Mining Popular Routes from Social Media

Ling-Yin Wei, Yu Zheng and Wen-Chih Peng

Abstract The advances in location-acquisition technologies have led to a myriad of
spatial trajectories. These trajectories are usually generated at a low or an irregular
frequency due to applications’ characteristics or energy saving, leaving the routes
between two consecutive points of a single trajectory uncertain (called an uncertain
trajectory). In this paper, we present a Route Inference framework based on Collec-
tive Knowledge (abbreviated as RICK) to construct the popular routes from uncertain
trajectories. Explicitly, given a location sequence and a time span, the RICK is able
to construct the top-k routes which sequentially pass through the locations within the
specified time span, by aggregating such uncertain trajectories in a mutual reinforce-
ment way (i.e., uncertain + uncertain → certain). Our work can benefit trip planning,
traffic management, and animal movement studies. The RICK comprises two compo-
nents: routable graph construction and route inference. First, we explore the spatial
and temporal characteristics of uncertain trajectories and construct a routable graph
by collaborative learning among the uncertain trajectories. Second, in light of the
routable graph, we propose a routing algorithm to construct the top-k routes accord-
ing to a user-specified query. We have conducted extensive experiments on two real
datasets, consisting of Foursquare check-in datasets and taxi trajectories. The results
show that RICK is both effective and efficient.
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4.1 Introduction

The increasing availability of location-acquisition technologies (e.g., GPS) has led to
a huge volume of spatial trajectories that represent the movement routes of humans,
animals, hurricanes, and vehicles. Without loss of generality, a trajectory is a sequence
of data points where each data point records location information and a time-stamp
[18]. For example, the driving routes of vehicles and migratory routes of animals
are usually recorded by GPS trajectories. Meanwhile, users could perform check-in
services (e.g., Foursquare) to note their locations via a mobile phone and share their
photos and activities. The time-ordered check-in records of a user are able to be
expressed by trajectories. Moreover, on a photo sharing website (e.g., Flickr), people
share geotagged photos whose time-stamps and geolocations can be represented as
trajectories as well. However, these trajectories are usually generated at a low fre-
quency due to energy saving and features of applications, resulting in the uncertainty
of a moving object’s mobility in a trajectory.

Figure 4.1 shows statistic information from Foursquare datasets in Manhattan. As
shown in Fig. 4.1a, most check-in time intervals vary from 1 to 180 min. Moreover,
we further investigate the distances among these check-in records. The medians
of the distances between two check-in records are less than 2 km in Fig. 4.1b. The
above two observations show that even in Manhattan, which has a lot of tourists, the
uncertain routes apparently exist between two check-in records.

These trajectories with low sampling rate do not detail the routes, and raise uncer-
tain routes between two consecutive sampled points in the trajectories. In this paper,
we call such trajectories uncertain trajectories. Examples of uncertain trajectories are
illustrated in Fig. 4.2. Figure 4.2a shows two check-in trajectories, tra1:A → C → D
and tra2:D → B, in a rural space (i.e., road network information is not available).
If a tourist would like to travel from q1 to q2, he/she may have no idea of how to
travel without the aid of road networks or by referring to a trajectory (e.g., tra1 or
tra2). Another example is, given one migratory trajectory of a bird, we do not know
where the bird flew between two sampled points which are several miles away from
each other. Due to the uncertainty of the trajectories with low sampling rate, how to
derive detailed routes from uncertain trajectories is an important task.
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Fig. 4.2 Examples of uncertain trajectories. a Uncertain trajectories. b Simple concatenation.
c Uncertain trajectories. d Mutual reinforcement

The prior work [17] proposed a framework to discover the routes from historical
trajectories. Explicitly, given a set of historical trajectories, an underlying road net-
work, and a location sequence, the work aims to suggest the top-k possible routes
sequentially passing the queried locations. Note that by the aid of the given road
network, the work explores possible routes derived from road networks. However,
for some applications (e.g., animal migration routes or hurricane routes), road net-
work information is not available. As for check-in datasets and geo-photo datasets,
the service providers may not have road network information either. Without road
network information, the work [17] cannot derive the top-k routes.

In this paper, we propose a Route Inference framework based on Collective Knowl-
edge (abbreviated as RICK) to construct the popular routes from uncertain trajectories
without road network information. Explicitly, given a location sequence and a time
span, RICK constructs the top-k routes, sequentially passing the locations within the
specified time span. The RICK is beneficial for many practical applications. Exam-
ples of applications are trip planning [1, 4, 6, 8, 14, 16], animal movement behavior
studies [7] and traffic flow analysis [15]. For example, a user plans to take a tour that
consists of three attractions (e.g., the Temple of Heaven, the Palace Museum and
the Houhai Bar Street in Fig. 4.3a) in Beijing, while having no idea of how to travel
around them. At this moment, the RICK can recommend the popular travel route,

3 hrs

(a) (b)

Fig. 4.3 Scenarios of applications
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inferred from check-in records (or geo-tagged photos) generated by other tourists.
Another example in Fig. 4.3b is to help biologists discover birds’ moving behaviors
from uncertain trajectories.

To infer routes from uncertain trajectories, in many cases, we need to construct a
route based on segments from multiple uncertain trajectories as there is no historical
trajectory passing all the queried locations. For instance, in Fig. 4.2a, tra1 and tra2
do not pass through both q1 and q2. If a tourist would like to travel from q1 to q2,
existing trip planning [6, 12, 14, 16] could explore the sequential relations among
these places and derive A → C → D → B by concatenation, as shown in Fig. 4.2b.
However, the distances between two consecutive locations are still far away and a
travel route still cannot be derived according to the users’ trajectory. One could extract
the trajectories that capture similar movements. However, due to the sparseness of
data points in uncertain trajectories, two uncertain trajectories usually have totally
different geospatial representations even though the two trajectories follow the same
route or have the same subroutes (i.e., are correlated). As such, the similarity between
two uncertain trajectories is hard to measure.

In this paper, given a set of uncertain trajectories (e.g., Fig. 4.2c), a routable graph
(e.g., the blue part in Fig. 4.2d) is generated for indicating routing information in a
free space by exploring spatio-temporally correlated uncertain trajectories. In light
of the routable graph, we have designed a route score function and proposed a routing
algorithm to construct the top-k routes (e.g., the dashed curve in Fig. 4.2d) satisfying
the query. We have conducted extensive experiments on two real datasets and the
results show the effectiveness and efficiency of the RICK.

The contributions of this paper are summarized as follows:

• Without the aid of road networks, we develop a route inference framework to infer
routes from uncertain trajectories.

• We propose a routable graph with routing information, generated by exploring
spatio-temporal correlations among uncertain trajectories.

• In light of the routable graph, we define a route score function and develop a
routing algorithm to construct the top-k routes.

• We have conducted extensive experiments using real datasets of 15,000 driving tra-
jectories and 6,600 check-in sequences. The results indicate the RICK is effective
and efficient.

The remainder of the paper is organized as follows. Section 4.2 gives the prelimi-
nary of our work. Section 4.3 illustrates the routable graph construction. Section 4.4
details the route inference. Section 4.5 presents the experimental results. Section 4.6
reviews related work. Section 4.7 concludes the paper.

4.2 Preliminary

We present some terms and the problem addressed in this paper, and then overview
the proposed framework.
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Definition 4.1 (Trajectory) A trajectory trai is a time-ordered sequence of sampled
points, i.e., trai :pi

1 → pi
2 · · · → pi

n . Each point is pi
k ∈ trai represented by

(pi
k .l, pi

k · t) where pi
k .l is a geographic coordinate (a location for short) at a time-

stamp pi
k · t .

As discussed before, trajectories are usually generated at a low sampling rate, lead-
ing to the real route between two consecutive points of a trajectory being uncertain.
If a time interval between two consecutive sampled points is large, the uncertainty
of the route between the two points would increase. In this paper, we further claim
that road networks are not always available for inferring routes between two loca-
tions. For example, for animal trace data and outdoor activities in urban areas, the
movements are not along road networks. Thus, our problem is defined as follows:

Problem Given an uncertain trajectory dataset D and a user-specified query consist-
ing of a time span �t and a location sequence q:q1 → q2 → · · · → qm , we infer the
top-k popular routes in a free space such that each route sequentially traverses the
given locations, and the travel time of the route between any two consecutive query
locations is within �t .

Figure 4.4 overviews our RICK framework, which consists of two components:
routable graph construction and route inference.

Routable graph construction: This offline component builds up a routable graph from
an uncertain trajectory dataset. To generate a routable graph, there are two stages:
region construction and edge inference. First, we partition the space into disjoint cells
and then index the given uncertain trajectories in the gridded space. By exploring
the spatio-temporal characteristics of the uncertain trajectories passing through these
cells, we merge these individual cells to form some geographical regions. Here, each
cell forms a vertex in the routable graph that we are going to build up. Second, we
infer the edges between the cells with the uncertain trajectories. These edges can
be categorized into two types: inside a region or between regions. The information

Uncertain Trajectories

Routable Graph Construction Route Inference

Region Construction

Edge Inference

Query

Route Refinement

Route Inference

Fig. 4.4 Overview of RICK
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inferred for an edge comprises a moving direction, a transition support, and a travel
time, indicating the transition relationship between two cells.

Route inference: This component, consisting of route generation and route refine-
ment, is responsible for on-line queries. In the route generation stage, given a query,
we propose a routing algorithm to infer the top-k rough routes, each of which is rep-
resented by a sequence of cells, with the constructed graph. The routing algorithm
first finds out the qualified subroutes between any two consecutive query locations,
and then concatenates these subroutes into completed routes in a branch-and-bound
manner. In addition, we define a score function based on historical movements for
ranking these routes. In the route refinement stage, we further refine each rough route
to derive a detailed route represented by a sequence of consecutive segments from
historical data points of uncertain trajectories.

4.3 Routable Graph Construction

4.3.1 Region Construction

To construct a routable graph, we discover connected geographical areas by collabo-
rative learning among historical uncertain trajectories. We first observe the spatial and
temporal characteristics of the uncertain trajectories. For instance, Fig. 4.5a shows
three trajectories, tra1:p1

1−−−→
10 min

p1
2−−−→

20 min
p1

3, tra2:p2
1−−−→

13 min
p2

2−−−→
10 min

p3
2, and tra3:p3

1−−−→
30 min

p3
2,

where times are the travel times between two consecutive points. The locations of
data points of tra1 and tra2 are different even if the two trajectories follow the same
route (e.g., the black solid line). We observe that (1) p1

2 · l and p2
2 · l are at the same

place; (2) tra1 and tra2 have similar travel times from their first points (e.g., p1
1, p2

1)
to the place; (3) p1

1 · l and p2
1 · l are spatially close. The observations indicate that

the route of tra1 from p1
1 to p1

2 and the route of tra2 from p2
1 to p2

2 may be the same.
We say that the two subtrajectories p1

1 → p1
2 and p2

1 → p2
2 are spatio-temporally

correlated (st-correlated). Moreover, if p1
1 and p2

1 are sampled on the same route,
p1

1 · l and p2
1 · l could be connected. Specifically, this means that there exists at least

1
2p

1
3p

2
1p

2
2p

2
3p

1
1p

1t

t2

t'1

t'2

Rule 1

Rule 2

(a) (b)

Fig. 4.5 Spatio-temporally correlated uncertain trajectories
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one route between p1
1 · l and p2

1 .l. On the other hand, in Fig. 4.5a, although p1
2 · l and

p3
2 · l are at the same place and p1

1 and p3
1 · l are spatially close, tra3 may be sampled

from the other route (e.g., the green dotted line). The reason is that tra3 has a longer
travel time from p3

1 to p3
2.

Based on the aforementioned observations, we define some terms for constructing
connected geographical areas. Table 4.1 summarizes the notations used in this paper.
To clearly describe spatial relations among data points of uncertain trajectories, we
adopt a gridded space. First, we divide a geographical range into disjoint cells by a
given cell length l. The set of the cells is denoted as G, and the index of a cell G is
represented by (x, y), called GID. Moreover, each point of an uncertain trajectory
can be mapped into a cell, and an uncertain trajectory can be transformed into a
sequence of cells. As such, given an uncertain trajectory trai :pi

1 → pi
2 → · · · → pi

n ,
the trajectory can be transformed into pi

1 · g → pi
2 · g → · · · → pi

n · g, where pk
i · g

represents the cell that pk
i .l locates in. Given two cells g = (x, y) and g′ = (x ′, y′),

the cells g and g′ are called spatially close if |x − x ′| ≤ 1 and |y − y′| ≤ 1.
To explore connected geographical areas, we formally define st-correlated rela-

tions among uncertain trajectories. Given a cell g, if g = pi
k · g for some pk

i ∈ trai ,
we say that trai traverses cell g, denoted g ∈ trai . If trai traverses from cell g to cell
g′, we say g → g′ ∈ trai . The set of the travel times of g → g′ by trai is denoted by
T (G → G ′, trai ). If g → g′ ∈ trai , T (G → G ′, trai ) �= ∅.

Definition 4.2 (Spatio-temporally correlated relation) Given two uncertain trajec-
tories trai :pi

1 → · · · → pi
n and tra j :pi

1 → · · · → p j
m , and a temporal constraint θ ,

trai ’s subtrajectory pi
k → · · · → pi

k′ and tra j ’s subtrajectory p j
h → · · · → p j

h′ are
st-correlated if

(1) ∃ �t1 ∈ T (pi
k · g → pi

k′ · g, trai ),�t2 ∈ T (p j
h · g → p j

h′ · g, tra j )

s.t. |�t1−�t2|
max{�t1,�t2} ≤ θ ;

(2) One of the two rules is satisfied:
Rule 1: pi

k · g and p j
h · g are spatially close, and pi

k′ · g = p j
h′ · g.

Rule 2: pi
k · g = p j

h · g, and pi
k′ · g and p j

h′ · g are spatially close.

Note that if a trajectory tra′ is a subtrajectory of a trajectory tra, we denote it as
tra′ ⊆ tra.

Table 4.1 Notations Symbol Description

p j
i The jth point in trajectory i

p · g The cell that p locates in

(x,y) A cell id

c(x,y) The number of distinct trajectories
traversing (x,y)

θ A temporal constraint

C A minimum connection support

T (G → G ′, tra) A set of the travel times from g to g′ by tra
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Given trajectories in Fig. 4.5a, b depicts the st-correlated relation between tra1
and tra2. Let �t1 ∈ T (p1

1 · g → p1
2 · g, tra1) and �t2 ∈ T (p2

1 · g → p2
2 · g, tra2)

and assume �t1 and �t2 satisfy a given temporal constraint. According to Rule 1 in
Definition 4.2, p1

1 → p1
2 and p2

1 → p2
2 are st-correlated, because p1

1 · g and p2
1 · g are

spatially close and p1
2 · g = p2

2 · g. Similarly, let �t ′1 ∈ T (p1
2 · g → p1

3 · g, tra1) and
�t ′2 ∈ T (p2

2 · g → p2
3 · g, tra2) and assume �t ′1 and �t ′2 satisfy a given temporal

constraint. According to Rule 2 in Definition 4.2, p1
2 → p1

3 and p2
2 → p2

3 are
st-correlated since p1

2 · g = p2
2 · g and p1

3 · g and p2
3 · g are spatially close.

Definition 4.3 (Connection support) Given an uncertain trajectory dataset D, a set of
cells G, a temporal constraint θ , and two cells g, g′ ∈ G, where G and G ′ are spatially
close, the connection support of the cell pair (G ,G ′) is defined as |T1 ∪ T2| where
T1 = {(trai , tra j )|tra′

i and tra j
′ are st-correlated, g → g′′ ∈ tra′

i , and g → g′′ ∈ tra′
j

for some g′′ ∈ G − {G ,G ′}, tra′
i ⊆ trai , tra′

j ⊆ tra j , and T2 = {trai , tra j )|tra′
i and

tra′
j are st-correlated, g′′ → g ∈ tra′

i , and g′′ →∈ tra′
j for some g′′ ∈ G − {G ,G ′},

tra′
i ⊆ trai , tra′

j ⊆ tra j }.

For example, in Fig. 4.5b, given p1
1 · g and p2

1 · g, which are spatially close, the
support of the cell pair (p1

1 · g, p2
1 · g) = |T1 ∪ T2| = 1 because T1 = {(tra1, tra2)}

and T2 = ∅. Similarly, given p1
2 ·g and p2

3 ·g, which are spatially close, the support of
the cell pair (p1

3 · g, p2
3 · g) = |T1 ∪ T2| = 1 because T1 = ∅ and T2 = {(tra1, tra2)}.

Definition 4.4 (Neighbor) Given an uncertain trajectory dataset D, a set of cells G,
two cells G ,G ′ ∈ G, a temporal constraint θ , and a minimum connection support C,
if the connection support of the cell pair (g, g′) is greater than or equal to C, g and
g′ are neighbors, denoted as gNg′.

We define a region as a connected geographical area as follows:

Definition 4.5 (Region) Given a set of cells G′,G′, forms a region if for any two
cells G ,G ′ ∈ G′ , there exists a chain of cells (G=)G1 = G2 = · · · = gk(=g′) s.t.
gi Ngi+1 for each gi ∈ G′ and i ∈ [1, k).

To construct regions, a naïve method is that we generate all cell pairs from the
set of cells and then compute the connection support of each cell pair by checking
other cells in G. We then verify whether the connection supports of cell pairs satisfy
the given minimum connection support C to construct regions. However, the time
complexity of the method is costly. In this paper, we propose an efficient algorithm
to construct regions.

The proposed algorithm utilizes an index structure presented as follows. Given
a cell length and an uncertain trajectory dataset D, we build up a grid index in
which each cell G has a unique GID, a value c(g) = |{tra|g ∈ tra, tra ∈ D}|,
and a corresponding trajectory list. Note that . In the grid index, each GID indexes
a list of trajectories that records which uncertain trajectories traverse the cell and
which points of these uncertain trajectories locate in the cell by TIDs and PIDs,
respectively. To improve the efficiency of the region construction, the trajectories in
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Fig. 4.6 An example of an index structure

a cell’s corresponding trajectory list are sorted by mtra, where mtra is the median of
{c(p · g)|p ∈ tra} with given tra.

For instance, given a cell length l and an uncertain trajectory dataset D =
{tra1, tra2, tra3, tra4, tra5}, Fig. 4.6 shows an example of an index structure. Given a
cell (1,4), c(1,4) = 3 since three distinct uncertain trajectories (i.e., tra1, tra3, tra5) tra-
verse cell (1,4). The trajectory list of cell (1,4) records these TIDs (i.e., tra1, tra3, tra5)
and the corresponding PID of each trajectory. The corresponding PID of tra1 is 1
since the point of tra1 that locates in cell (1,4) is the first point of tra1. As shown
in Fig. 4.6, tra3 traverses four cells (i.e., (1,4), (1,3), (3,2), and (4,1)), and we can
calculate that c(1,4) = 3, c(1,3) = 2, c(3,2) = 2, and c(4,1) = 2. The median among
{2, 2, 2, 3} is 2 and thus mtra3 = 2.

Before constructing regions, we letG = G−G′, whereG′ = {G |c(g) = 0, g ∈ G}.
The algorithm of region construction is detailed in Algorithm 1. Note that the term
enclosed is defined as follows.

Definition 4.6 (Enclosed) Given a set of cells G and a cell G ∈ G, the cell G is
enclosed if there exists a region r ⊆ G s · t . G ,G ′ ∈ r,∀g′ ∈ {g′|g′ and g are
spatially close, g′ ∈ G}.

In Algorithm 1, we iteratively merge cells to form regions by calculating the
connection supports of cell pairs. To efficiently construct regions, we determine an
order for the calculation of connection supports of cell pairs according to c(g). Once
a cell is chosen, we iteratively pick a trajectory from the cell’s trajectory list in Step
4. We then calculate the connection supports of the cell pairs around the points of
the trajectory and merge qualified cells from Step 5 to Step 18. An example of this
procedure is illustrated in Fig. 4.7. Let a chosen cell be g. Assume the trajectory tra1
traversed it and p1

2 · g = p1
4 · g = g (i.e., τ(g) = {p1

2, p1
4}). In Step 6, we pick a

point (e.g., p1
1) from but not the point is not in τ(g). If the cell that the point locates in

is not enclosed, the cell would be possibly merged with other cells. The connection
supports of the cell pairs of p1

1 · g and each cell around p1
1 · g are calculated and the
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qualified cell pairs will be merged. Based on p1
1 · g, a region (e.g., the blue cells in

Fig. 4.7) is generated in the first round and more cells (e.g., the red cells in Fig. 4.7)
are merged into the region around in the second round (i.e., Step 14 in Algorithm 2).



4 Mining Popular Routes from Social Media 103

Fig. 4.7 Region construction process

Similarly, for p1
1 · g, a merging process will be stopped if no cell can be merged

around p1
1 · g. We then chose other points (e.g., p1

3, p1
5) to construct regions around

these points in the same way.
Time complexity analysis: Given an uncertain trajectory dataset D and a set of cells

G, the time complexity of the naïve method is o(mn3) where |G| = n and |D| = m.
Similarly, the time complexity of Algorithm 1 is o(n(log n+cm2)), where c is the min-
imal number of the first loop. For Step 1 in Algorithm 1, it costs to sort cells in decreas-
ing order of c(g). In addition, the time complexity of Algorithm 2 is o(m) because
there are at most m uncertain trajectories for counting the connection support of a cell
pair. Thus the time complexity of the remaining steps in Algorithm 1 is o(cn m2).
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4.3.2 Edge Inference

Once the regions are generated, we then infer edges and derive edge information
including moving directions, transition supports, and travel times from historical
uncertain trajectories. To generate the edges of a routable graph, we infer the edges
within each region, and then infer the edges among regions.

A routable graph is a directed graph G = (V, E) where V is a set of vertices and E
is a set of edges. Each vertex represents a geographical area, i.e., a cell. Each directed
edge e indicates a transition relationship and has two attributes, the transition support
e·s and the travel time e·t. To derive the transition support of an edge, we record
which distinct uncertain trajectories traverse the edge. In other words, an edge has
an uncertain trajectory list to record which distinct uncertain trajectories traverse it.

According to the definition of a region, a region is composed of connected cells,
and thus we first generate virtual bidirected edges between cells if the cells are
neighbors in a region, To infer edges’ realistic directions, transition supports, and
travel times, we propose a shortest path based inference approach.

Given a region and an uncertain trajectory dataset, we utilize the uncertain
trajectories traversing the region to derive edge information in the region. For each
trajectory traversing the region, we infer the shortest path between any two consec-
utive points of the trajectory by virtual bidirected edges in the region. We illustrate
edge inference in a region in Fig. 4.8. As shown in Fig. 4.8a, four uncertain tra-
jectories pass through the region. For instance, in Fig. 4.8b, an uncertain trajectory
p1 → p2 → p3 (blue squares) traverses the region, and we infer the shortest paths
from p1 to p2 and the shortest paths from p2 to p3. As shown in Fig. 4.8b, we find
one shortest path from p1 to p2, and two shortest paths from p2 to p3. After finding
the shortest path between two consecutive locations, we divide the travel time evenly
and add it to the travel time list of each edge in the shortest path. In addition, each
edge of the shortest path adds the trajectory ID into its corresponding trajectory list,
and the transition support of each edge in the shortest path is accumulated one. If
there are multiple shortest paths between two consecutive locations, we similarly
update the information of each edge in these paths.

By using historical uncertain trajectories to infer edge information in a region, we
further eliminate the redundant edges in the region and the edges whose transition
supports are 0. Given an edge e1 from the cell g and the cell g′, where g and g′ are
spatially close, the edge e1 is redundant in a region if there exist an edge e2 from it

p1 p2

p3

(a) (b) (c)

Fig. 4.8 Edge inference in a region
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Fig. 4.9 Edge inference between regions

g to g′′ and an edge e3 from g′′ to g′, such that (1) g and g′′ are spatially close and g′
and g′′ are spatially close, (2) e2·se3·s

2 > e1 · s, and (3) |e2·t+e3·t−e1·t |
max{(e2·t+e3·t),e1·t} ≤ θ where

θ is a given temporal constraint. Figure 4.8c shows the inferred edges in the region
after reducing edges. The travel time of each edge is estimated by the median of all
the travel times of the edge.

In the following, we construct edges between regions. Similarly, we generate
edges between regions by using historical uncertain trajectories first. This means
that if an uncertain trajectory traverses a cell of one region to a cell of another region,
an edge is constructed between the two cells. Next, we eliminate the redundant edges
between regions. Given an edge e1 from the cell g to the cell g′, where g and g′ are
in different regions, the edge e is a redundant edge between the two regions if there
exists an alternative route ei → · · · → ej from the cell g to the cell g′ such that

(1) 1
j−i+1

∑ j
k=i ek · s > e · s, and (2)

| ∑ j
k=i ek ·t−e·t |

max{∑ j
k=i ek ·t,e·t}

≤ θ where θ is a given

temporal constraint. Figure 4.9 shows an example of edge inference between two
regions. As shown in Fig. 4.9a, edge e1 and edge e2 are generated between the two
regions by historical uncertain trajectories. For instance, in Fig. 4.9b, edge e1 is a

redundant edge if (1) 1
4

∑5
k=2 ek · s > e1 · s, and (2) | ∑5

k=2 ek ·t−e1·t |
max{∑5

k=2 ek ·t,e1·t} ≤ θ with a

given θ .
Note that the transition information of an eliminated edge is propagated to alter-

native routes. The travel time of an eliminated edge is evenly propagated to the edges
of each alternative route. The trajectory list of an eliminated edge is updated to each
edge’s corresponding trajectory list in alternative routes.

4.4 Route Inference

Given a location sequence and a time span, we generate the top-k popular routes in
two phases: route generation and route refinement. In the first phase, we propose
routing algorithms to search for the top-k coarse routes with the routable graph. We
further refine the discovered top-k routes to effectively derive specific routes in the
second phase.

In the route generation phase: we first generate possible routes between each
two consecutive queried locations (called local routes) and then search for the top-k
routes (called global routes) from the generated local routes.
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A route derived in this phase is represented by a sequence of vertices with a given
graph G = (V, E). Note that a vertex in the graph represents a cell; thus a route
here is regarded as a sequence of cells, denoted as p:g1 → g2 → · · · → gk . Given a
sequence of query locations and a time span, we search for qualified routes between
any two consecutive query locations with the constructed graph. Before searching
for routes with the graph, we need to specify the corresponding vertices of query
locations. Since a vertex represents a geographical area of a cell, a query location
can be mapped to the vertex whose corresponding geographical area overlaps the
location. However, it is possible that a query location cannot be mapped to any
vertex in the graph. We further select the vertices whose corresponding cells are
close to the query location. We adopt the minimum distance (MINDIST) [11] to
formulate the distance between a query location and a cell. According to the distance
measurement, we specify the cells that are close to such query locations. Thus, a
given location sequence is transformed into a sequence of sets of cells. Moreover,
we transform a location sequence into cell sequences by combining these cells. After
query transformation, we search for the top-k routes according to each cell sequence.

For instance, given a location sequence q:q1 → q2 → q3 in Fig. 4.10a, the
locations q1 and q2 are mapped to cells g1 and g2, respectively. By the minimum
distance measurement, the set of cells {g3, g4} is used to represent the location q3.
Then, the location sequence q1 → q2 → q3 is transformed into two cell sequences,
i.e., g1 → g2 → g3 and g1 → g2 → g4.

We generate routes with respect to each cell sequence. Before introducing the
routing algorithm, we define the score function for the routes as follows.

Definition 4.7 (Route score) Given a graph G = (V, E), a route P:P1 → P2 →
· · · → Pm, where Pi:gi1 → gi2 → · · · → gi j , the score of the route is defined as

f (P) = ∑m
i=1 ρ(Pi), where ρ(Pi) = 1

j−1 | ∪ j−1
k=1 {tra|gik → gik+1 ∈ tra}|.

For each cell sequence, we first search for the top-k local routes between any two
consecutive cells in the cell sequence (e.g., g and g′) by an A*-like routing algorithm.
Furthermore, a possible maximum speed could be derived from historical uncertain
trajectories or be determined by difference applications. Given a maximum speed,
possible positions between any two consecutive query locations can be restricted in a
range if a time interval between the two locations is specified [10]. That is, the possible
routes are restricted in the cells overlapping the range. For the A*-like routing algo-
rithm, an estimated score of a route from a cell g to a cell g′ is represented as follows.

q1 q2

q3

g1 g2

g3

g4

g1 g2

g3

g1 g2

g3

(a) (b) (c)

Fig. 4.10 Route inference. a Query transformation. b Route generation. c Route refinement
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Given two cells g and g′, a current visited cell g′′, and a specified range r, an
estimated score of a route P:Pc → Pf from a cell g to a cell g′ in a specified range
r is f̂ (P) = ρ(Pc) + h(Pf ), where Pc is a known route from cell g to cell g′′,
and h(Pf ) is the score of an estimated route Pf from cell g′′ to cell g′.

Definition 4.8 (Optimal score) Given a graph G = (V, E), an uncertain trajectory
dataset D, a specified range r, and two cells g and g′, the optimal score of the routes
from a cell g to a cell g′ in r is defined as

ĥ(P) = |{tra|tra passes through the range r, tra ∈ D}|

for some estimated route P from a cell g to a cell g′.

Once a local route is generated from the cell g to the cell g′ and satisfies the given
time span, the score of the local route is calculated. If there are more than k local
routes constructed from the cell g to the cell g′, the k-th maximum score of these
local routes is recorded and incrementally updated. Based on the estimated optimal
score function, a branch of searching routes will be stopped if the optimal score of
routes generated from the branch is less than the updated k-th maximum score.

Based on the top-k local routes between any two consecutive cells of each cell
sequence, we search for the top-k global routes by a branch-and-bound search
approach. For instance, given a cell sequence g1 → g2 → g3 in Fig. 4.10a, a global
route is derived as a sequence of cells (dark grey) in Fig. 4.10b. To derive a specific
route, a route is further transformed into a line by concatenating the centers of any
two consecutive cells in the route. Figure 4.10b shows an example of such a route
by a blue line. However, it is possible that we search for local routes between two
cells belonging to different regions. In the A*-like algorithm, although we search
for local routes between two given cells in a restricted range of a graph, the search
space is still large if the distance between two given cells is far and they are in dif-
ferent regions. A route between the two cells would possibly pass through several
other regions. On the other hand, a lower bound of transition times between any
two regions can be estimated by edge information. It helps us stop searching for
routes between two regions if the lower bound of transition time between the two
regions exceeds the time span. Hence, to improve the efficiency of route generation,
we modify the proposed A*-like routing algorithm and introduce a two-layer routing
algorithm.

Before searching for local routes between two given cells, we first determine the
region sequences to reduce searching space. By utilizing a lower bound of transition
times between any two regions, we can generate region sequences with respect to two
given cells. According to each region sequence, we search for possible local routes
that sequentially traverse these regions. Note that the proposed A*-like algorithm is
used for searching for routes between any two regions here. In Fig. 4.11, for instance,
given a location sequence q1 → q2, and a corresponding range r, the location q1 and
the location q2 locate in region R1 and region R4, respectively. There are multiple
possible region combinations for searching for routes between the two locations.
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Fig. 4.11 The scenario of the two-layer routing algorithm

Although the searching space of route generation is restricted to the range r (e.g., the
red part), the routes from q1 to q2 would possibly traverse the regions in different
orders. In Fig. 4.11, there are many possible region sequences from q1 to q2 (e.g.,
R1 → R4, R1 → R2 → R4, R1 → R3 → R4, R1 → R2 → R3 → R4 etc.).
By utilizing lower bounds of transition times between regions, the possible region
sequences would be reduced to satisfy the given time span. For instance, the qualified
region sequences are marked by red edges in Fig. 4.11 (i.e., R1 → R2 → R4,
R1 → R3 → R4 ). After deriving region sequences, we search for possible routes
which traverse each region sequence.

After route generation, the top-k routes are inferred, and we further refine each
route using historical data points. Route refinement has three steps: data point selec-
tion, segment formulation, and segment concatenation. First, given an inferred rough
route represented by a sequence of cells, we select the historical uncertain trajectories
that traverse the cells in the same order as the route. Next, we extract the data points
that locate in cells of the rough route from these selected uncertain trajectories, and
thus derive a set of points for each cell of the route. To formulate a specific route
from selected points, we adopt linear regression for the set of points of each cell to
derive a segment. We then concatenate the segments in the same order as an original
inferred route. Figure 4.10c shows an example of a refined route.

4.5 Performance Evaluation

In this section, we evaluate the performance of the proposed RICK using real datasets,
including check-in records from Foursquare and taxi trajectories. The datasets and
experimental setting is presented in Sect. 5.1. In the experiments, we first demonstrate
the results using check-in records in Manhattan. To evaluate the effectiveness of our
proposed RICK, we use the dataset of taxi trajectories. In the experiments of the
performance study, we compare our proposed RICK with the existing method in
terms of effectiveness and efficiency. Furthermore, the experiments demonstrate the
improvements of routable graph construction and route inference.

http://dx.doi.org/10.1007/978-3-319-14998-1_5
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4.5.1 Datasets and Settings

4.5.1.1 Real Datasets

In this paper, we use two real datasets to conduct the extensive experiments. One is
the check-in dataset from Foursquare. We collected check-in records in Manhattan,
and for each user, a series of check-in records recorded in one day is regarded as a
trajectory. We pruned the trajectories that contained less than three check-in records.
There are totally 6,600 trajectories. The other real dataset contained 15,000 taxi
trajectories in Beijing. The average sampling rate of the raw trajectories is less than
one minute. To simulate uncertain trajectories, we resampled each raw trajectory such
that the time interval between two consecutive resampled points of the trajectory at
least exceeded a given sampling rate S. In the experiments, the sampling rate S is
set from one minute to five minutes and the default S is five minutes. For example,
given S = 5, the time interval between two consecutive resampled points is at least
five minutes or even more.

4.5.1.2 Metrics

To evaluate the effectiveness of our RICK, we introduce an approach to generate the
ground-truth from the raw trajectories to evaluate the effectiveness of the inferred
routes. For each query, the raw trajectories that satisfy the query are selected and
ranked. To rank these trajectories, a raw trajectory is transformed into a sequence
of road segments and the frequency of a road segment is defined as the number of
distinct trajectories that traverse it. The score of a transformed trajectory tra:r1 →
r2 → · · · → rn is defined by (

∑n
i=1 d(ri ))/tra · length, where ri is a road segment

and d(ri ) is the frequency of the road segment ri . Hence, the selected trajectories
can be ranked by their scores.

To evaluate the difference between an inferred trajectory and a raw trajectory
of the ground-truth, we first apply the length-normalized dynamic time warping
distance (NDTW). Given an inferred route p and a raw trajectory tra, we define the
NDTW between two trajectories as NDTW(p, tra) = DTW(p, tra)/p · length for
an optimal alignment path. To further reflect the quality of inferred routes, we utilize
a maximum distance (MD) between an inferred route and a raw trajectory of the
ground-truth according to the discovered NDTW. MD is defined as the maximum
value of the distances measured by the optimal alignment path. Therefore, the two
measurements for evaluating the inferred top-k routes are defined as follows:

NDTW(T, T′) = Avgpk∈Tmintra∈T′NDTW(pk, tra), and

MD(T, T′) = Avgpk∈TMD(pk, tra′)

where T is the set of inferred top-k routes, T′ is the set of top-k raw trajectories, and
tra′ = Arg mintra∈T′NDTW(pk, tra).

In the experiments, the default rank threshold k is 3.
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4.5.2 Visualization of Results

In this subsection, we use the check-in dataset in Manhattan to visualize the results
derived by RICK. We first demonstrate the constructed routable graph in Fig. 4.12
with given cell length l = 500 (m), temporal constraint θ = 0.2 and minimum
connection support C = 3. In Fig. 4.12, the regions are represented by different colors
in Fig. 4.12a, b shows the edges between cells. Note that the edges within a region are
drawn by blue lines, and the edges between regions are drawn by black lines. Based
on the routable graph, we perform one query and let the span time be one hour for
each query. Given a query as “Central Park → The Museum of Modern Art → Times
Square → Empire State Building → SoHo”, the top-1 route inferred by RICK is
depicted in Fig. 4.12c. As shown in Fig. 4.12c, the route does not simply connect the
query locations, but passes through other attractions. For example, for the partial route
from “The Museum of Modern Art” to “Times Square”, RICK constructs this partial
route to pass by the “Rockefeller Center” based on users’ historical check-in records.

4.5.3 Performance Study

In this section, we evaluate the performance of RICK by taxi trajectories. First, to
analyze the effect of queries, the length of query location sequence |q| is set from
2 to 4. In addition, a query location sequence is generated by considering a given
distance between any two consecutive query locations, denoted as �d. For a query,
�t is determined according to �d. In the experiments, �d is varied from 1 to 5 (in
kilometers), and the corresponding �t is set from 4 to 20 (in minutes). For each
experiment, we perform almost 100 queries and averaged the results.

Fig. 4.12 Visualization of results in Manhattan. a Regions. b Routable graph. c Top-1 route
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4.5.3.1 Evaluation of Route Inference

We compare our framework with a baseline and analyze the effectiveness of our
inferred routes in different aspects.

Baseline: To evaluate the effectiveness of the discovered routes, we compare the
proposed RICK with the existing approach (MPR) in [2]. In [2], given two locations
(i.e., |q| = 2), the most popular rout, which connects the two query locations, is
derived. In the experiments, the parameters of MPR are set as α = 2, β = 2, the
coherence threshold τ = 0.8, and the cluster size threshold ϕ = 20. For RICK, the
settings are l = 300 (m) and k = 1. Figure 4.13 shows the experimental results of MPR
and RICK under the Taxi dataset with S and �d varied. As shown in Fig. 4.13a, the
error of MPR increases as S or �d increases. It is worth mentioning that the error of
RICK slightly increases as S or �d increases, showing that RICK is able to derive the
routes from uncertain trajectories. Figure 4.13a shows that RICK is more effective
than MPR, although Fig. 4.13b demonstrates that the query time of RICK is slightly
higher than the query time of MPR.
Effect of route refinement: In the route inference of the proposed RICK, the top-k
routes are derived after route generation and are further refined by route refinement.
In this subsection, we compare the effectiveness of the route inference without route
refinement (w/o RR) and that of the route inference with route refinement. We set
k = 1 and |q| = 2 in the experiments. Figure 4.14 shows the error of top-1 routes
by NDTW and MD. As shown in Fig. 4.14, the errors of inferred routes increase as
�d increases. In addition, a larger l increases the error of routes discovered without
route refinement. In Fig. 4.14, with route refinement, the error of the inferred routes
is obviously reduced as l increases.

Impact of data sparseness: To study the effect of the data sparseness, we calculate
the number of GPS points per km2 and derive different data sparseness by setting
different S. The number of GPS points per km2 is increased from 77 to 275 while S
is decreased from five minutes to one minute. Figure 4.15 shows that the errors (both
NDTW and MD) slightly decrease as the data sparseness increases. When the data
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Fig. 4.13 Performance comparison of RICK and MPR
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Fig. 4.15 Effectiveness evaluation with data sparseness varied

sparseness is 275 GPS points per km2, the errors of the inferred routes of at least
4 km (i.e., |q| = 2 and �d = 4) are less than 500 m and the errors of the inferred
routes of at least 12 km (i.e., |q| = 4 and �d = 4) are less than 800 m. However,
NDTW is less than 300 m even though the data sparseness is 77 GPS points per km2.
The proposed framework is effective for inferring the top-k routes.

Efficiency: We investigated the query time of RICK and show the results in Fig. 4.16.
In the experiments, l = 300 (meters), θ = 0.1, C = 8, S = 5 (minutes), and k = 3. In the
route inference, we improve the efficiency of the route generation by a two-layer rout-
ing algorithm. To demonstrate the effectiveness of the two-layer routing algorithm,
we compare the query time of RICK and the query time of RICK without using the
two-layer routing algorithm (denoted by RICK-) in Fig. 4.16a with varied |q| and �d.
As shown in Fig. 4.16a, RICK outperforms RICK-, and the query time is obviously
reduced while |q| or �d is larger. In Fig. 4.16b, the query time of RICK gradually
increases as |q| or �d increases. However, the query time is less than one second.



4 Mining Popular Routes from Social Media 113

 0

 200

 400

 600

 800

 1000

 1  2  3  4  5

Q
ue

ry
 ti

m
e 

(in
 m

s)

Δd (in km)

|q|=3(RICK)
|q|=4(RICK)

|q|=3(RICK-)
|q|=4(RICK-)

 0

 100

 200

 300

 400

 500

 1  2  3  4  5

Q
ue

ry
 ti

m
e 

(in
 m

s)

Δd (in km)

|q|=2
|q|=3
|q|=4

(a) (b)

Fig. 4.16 Efficiency evaluation

4.5.3.2 Evaluation of Routable Graph

In the routable graph construction of RICK, we construct the regions referring to
the connected areas and further infer and refine the moving directions within the
regions. To investigate the impact of exploring shortest path on refining the routable
graph, we evaluate the graph built without refinement (denoted as RG), and the graph
refined by shortest path based edge inference (denoted as RG+).

To evaluate the correctness of the connectivity in a routable graph, given a raw
trajectory dataset D and a graph G = <V, E>, the precision of connectivity in G is
measured as follows:

|{e|e is traversed by some tra ∈ D and e ∈ E}/|E |.

The temporal constraint θ and the minimum connection support C are used for
constructing a routable graph. Hence, we analyze the precision of connectivity in the
graph with varying θ and C.
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In Fig. 4.17, S is set as 5 min in the experiments. In Fig. 4.17a, C is varied from 8
to 12 and θ = 0.1. Figure 4.17a shows that the precision of RG and the precision of
RG+ increase as C increases. This is because a stricter constraint induces a higher
precision (i.e., a higher C). In Fig. 4.17b, C = 8 and θ is varied from 0.1 to 0.9. As
shown in Fig. 4.17b, the precision of RG and the precision of RG+ decrease as θ

increases. The reason is that the precision is reduced as the constraint is loosened
(i.e., a higher θ ). Figure 4.17 depicts that the precision of RG+ is higher than that
of RG, and it demonstrates that the shortest path based edge inference improves the
correctness of the explored connectivity in a geographic space.

4.6 Related Work

Route planning based on GPS trajectories: Route planning is widely investigated in
[2, 3, 13, 15] with GPS trajectories. The work [15] mainly inferred fastest routes
from historical trajectories. In [13], the authors study travel route planning based
on searching GPS trajectories. In [3], given a set/a sequence of locations, the top-k
trajectories that best connect the given locations are retrieved from existing GPS
trajectories. In [2], the authors investigated the problem of popular route planning
without road network information. They introduced a transfer network model by
exploiting intersections from historical GPS trajectories, and inferred the most pop-
ular route between two given locations by the turning probability of each intersection.
However, these works were carried out using high sampled GPS trajectories. Given
uncertain trajectories, the results obtained by [3, 13] are historical uncertain tra-
jectories and these uncertain trajectories still reveal rough routes. In addition, the
trajectories derived by [3] may be far away from the query locations because these
trajectories are low sampled. Using a dataset of uncertain trajectories, the accuracy
of a transfer network model in [2] would be destroyed and then the effectiveness of
inferred routes would be decreased.

Trip Planning based on geo-tagged social media: In recent years, mobile social
applications have become popular, generating a huge volume of social media data,
such as check-in records or geo-tagged photos. Such social media data can be
regarded as sequences of visited locations, thereby revealing users’ travel experi-
ence in terms of travel routes that link points-of-interest (POIs). Using geo-tagged
photos, several studies [6, 12, 14] have investigated the problem of trip planning.
However, the recommended trips are represented by a sequence of POIs, and the
detailed route between two consecutive POIs is not specified. Different from these
works, our method aims to construct the detailed route that is most likely to be taken
by people by learning from the uncertain POI sequences in a mutual reinforcement
way (e.g., Fig. 4.2).

Uncertain trajectories: The research topics of trajectory uncertainty are studied in
[5, 9, 10, 17]. The work [9] introduces the problem of uncertain trajectory clustering,
and focuses on the trajectory uncertainty caused by measurement errors. To reduce the
uncertainty of an uncertain trajectory, the work [10] formulates an uncertain trajectory
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in a free space by a given maximum moving speed. However, the indistinct parts of
an uncertain trajectory are enclosed in a spatio-temporal range without pointing
out specific routes. In addition, the study [5] applies the techniques developed in a
free space to model an uncertain trajectory in a road network. The possible routes
between two sampled locations of an uncertain trajectory are restricted in a set of
road segments by road network information and speed limits. Although the work [17]
investigated the problem of discovering the top-k possible routes sequentially passing
the queried locations from uncertain trajectories, they use road network information
to reduce the uncertainty of low sampled trajectories. These works cannot derive
routes from uncertain trajectories without road network information.

4.7 Conclusions

In this paper, we proposed RICK to infer the top-k routes traversing a given location
sequence within a specified travel time from uncertain trajectories. The proposed
RICK consists of the routable graph construction and the route inference. We have
evaluated the proposed RICK in terms of both effectiveness and efficiency using two
real datasets, check-in datasets and driving trajectories. The experiments show three
aspects: (1) the inferred routes not only connect user-specified locations but also
indicate detailed routes; (2) the proposed routable graph provides a good model of
the uncertain trajectory dataset with an accuracy of 0.9; (3) on average, our routing
algorithm can find the top-3 routes within 0.5 seconds, with a distance error smaller
than 300 meters compared to its corresponding ground-truth. Meanwhile, RICK
clearly outperforms the baseline by generating routes 300–700 meters closer (than
those of the baseline) to the ground-truth. The experiments demonstrate the effec-
tiveness and the efficiency of RICK. In the future, we will plan routes considering
different start times and different user preferences. In addition, we will evaluate
RICK by given other uncertain trajectory datasets, e.g., geo-tagged photo trips.
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Chapter 5
Social Interactions over Location-Aware
Multimedia Systems

Yi Yu, Roger Zimmermann and Suhua Tang

Abstract Advancements in positioning techniques and mobile communications
have enabled location-based services with a broad range of location-aware multi-
media applications. Accordingly, various social multimedia data, relevant to dif-
ferent aspects of users’ daily life, is aggregated over time on the Internet. Such
location-aware multimedia data contains rich context of users and has two impli-
cations: individual user interest and geographic-social behaviors. Exploiting these
multimedia landscapes helps mine personal preferences, geographic interests and
social connections, and brings the opportunities of discovering more interesting top-
ics. In this chapter, we first introduce some examples of location-aware multimedia
data and social interaction data. Then, we report some latest methods related to
context detection and location-aware multimedia applications. We further present
some analysis of geo-social data. Finally, we point out the trend in the integration
of social and content delivery networks. In brief, this chapter delivers a picture of
emerging geographic-aware multimedia technologies and applications, with location
information as a clue.
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5.1 Motivation and Introduction

Conventionally, content sharing websites [1] and online social networks [2] are
separately deployed. Users visit content sharing websites to upload, view, and share
their multimedia contents. Users login to social networks to exchange messages and
keep in contact with their friends. Recently, various online communities (e.g., Flickr,
Foursquare, Facebook, Twitter) have started to provide users with location-based
services [3]. In this way, users can record and upload geo-tagged images and videos
to these web sites anytime and anywhere with their mobile devices. For example,
many fantastic geo-tagged photos taken by users are shared at Flickr. As a result,
every day a huge volume of user-generated geo-tagged multimedia data is generated
in the Internet.

Location, as an extra information, is playing an important part in complementing
content retrieval and recommendation [4–9]. As shown in Fig. 5.1, it also serves as
an important element to connect content sharing services and online social services,
which facilitates personalized, localized, and socialized multimedia content discov-
ery, retrieval, recommendation, and diffusion across diverse user-generated multi-
media datasets. In particular, registered users can check in1 at various venues and
contact their friends nearby to share experiencewith them. Geographic trajectories of
users are associated with their preferences and can be used for personalized location
recommendation [10]. Check-in information at business venues can be leveraged for

Fig. 5.1 Connecting social networks and content-sharing platforms via location information

1 Many social networking services allow users to self-report presence (known as check in) to a
physical place and share their locations with their friends. Refer to http://en.wikipedia.org/wiki/
Check-in.

http://en.wikipedia.org/wiki/Check-in
http://en.wikipedia.org/wiki/Check-in
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geo-fencing services [11–14], mobile advertising [15, 16], business analytics, and
used to analyze the geo-spatial distribution of users and user social behaviors.

A new trend is the integration of social networks and content sharing platforms
[4], as follows: Users share their opinions of multimedia contents or recommend
multimedia contents on social networking platforms; This helps to spreadmultimedia
contents and events all over the world through the social connections between users
[17]; In addition, the geo-spatial distribution of users and social connections between
users can be further exploited to optimize the distributed cache [18] of multimedia
contents.

The rest of this chapter addresses different parts in Fig. 5.1. First, we introduce
different location-awaremedia data in Sect. 5.2. Then,we show somemethods related
to location inference and geo-fencing in Sect. 5.4. Next, we present some location-
aware multimedia applications in Sect. 5.5 and the analysis of geo-social data in
Sect. 5.6. We also discuss the integration of social networks and content-sharing
networks in Sect. 5.7. Finally, we conclude this chapter with Sect. 5.8.

5.2 Geo-Tagged Multimedia Data on Social Networks

Here, we introduce several typical examples of location-aware multimedia data,
e.g., Flickr images, Foursquare check-in, Twitter messages. This demonstrates how
user-centric location-aware datasets are associated with multimedia contents. Such
location-aware social multimedia datawith geo-tags can be exploited in later sections
to analyze user behavior, especially user interest.

5.2.1 Geo-Tagged Photos on Flickr

Location information is important for remembering where a particular photo came
from and showing off user’s favorite photos to the world over a map. Online photo
sharing website Flickr2 has created the geo-tagging3 function to let users geo-tag
their photos, as shown in Fig. 5.2. According to the location names, these geo-tagged
photos can be classified and displayed on a map.

Flickr acts as a repository of all kinds of photos together with geo-tags. Through
crowdsourcing from Flickr’s geo-tagged photo collections, geographic discovery
can be studied to discover knowledge about different aspects of information on
the surface of the Earth, for example, classifying the land-use into classes [19] of
academic, sports and residential according to both images and their geo-tags.

2 https://www.flickr.com/.
3 Geo-tagging is the process of adding geographical identification metadata to various media data.
Refer to http://en.wikipedia.org/wiki/Geotagging.

https://www.flickr.com/
http://en.wikipedia.org/wiki/Geotagging
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Fig. 5.2 Geo-tagged Flickr photos shown on the map

5.2.2 Geo-Social Data on Foursquare

Foursquare4 implements a location layer for the Internet, which is an intersection
of virtual social networks and physical world to help connect people with their
friends around the world. In addition, Foursquare provides an API to map location
information to geo-categories. Specifically, with a given location (latitude and lon-
gitude), Foursquare returns venues nearby with metadata (geo-category etc.). From
Fig. 5.3, we can see top 10 check-in countries and top 10 check-in geo-categories in
Foursquare.

User-generated geographic data may be shared on social networking platforms.
For example, checking-in at a venue via Foursquare, Foursquarewill tell youwho and

4 https://foursquare.com/.

https://foursquare.com/
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Fig. 5.3 Top check-in countries and categories in Foursquare, reported by http://gnip.com/
foursquare/

what are nearby and broadcast your location to your friends and update your Twitter
and Facebook status. Foursquare also can serve as a metadata of local business
information. When users check-in at the stores, the check-in data provides a spatial
distribution of users visiting these stores, and can be used for analyzing the primary
trade areas of these stores [15]. Check-ins in Foursquare also can provide user visit
information [10].

Data about the geographic positions of users can be made publicly available,
together with their online social connections. For example, many Foursquare
users choose to automatically push their check-ins to Twitter messages. Although
Foursquare does not provide unauthorized access to user friends list, each tweet pro-
vides a URL to the Foursquare website, where information about the geographic
location of the venue can be acquired. Twitter provides a public API to search and
download these tweets. Then, friendship ties and location information canbe acquired
from tweets. These datasets are publicly available and can be used to study social
and geographic networks of users.

5.2.3 Location-Aware Messages on Twitter

As music plays an important role in our life, users often tweet music-related topics
on Twitter.5 Through crowdsourcing in Twitter, tweets with geospatial coordinates
can be leveraged for estimating artist similarity, popularity, and local music trends.
In addition, geographic music listening pattern inferred from all music tweets can be
visualized on an electronic map [20].

Some social media systems utilize and provide location information at various
accuracy levels and run over different geographical scopes (e.g. a street, a suburb,

5 https://twitter.com/.

http://gnip.com/foursquare/
http://gnip.com/foursquare/
https://twitter.com/
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a city, a country), and work with different social web sources (e.g. Twitter, Facebook,
etc.). For example, Crisis tracker6 is a web-based system that automatically tracks
sets of keywords on Twitter, and filters stories based on location information.

5.3 Location and Context-Awareness

Location-based services have experienced different generations. The first generation
location-based services were released around 2000 [3]. Various icons are used to
represent different categories of point of interest on an electronic map. The preferred
application was the delivery of nearby points of interest (such as restaurants and
bars). Advancements in positioning techniques and mobile communications have
enabled the second generation location-based services with a broad range of new and
sophisticated applications. Here, we mention two typical applications as examples.
(i) Social community platforms like Facebook and Foursquare have enabled location
sharing for the mutual exchange of location data between users. A special form of
location sharing is the check-in function. It is used to explicitly acquire user locations
at certain venues. (ii) Locating people to provide special offers or discounts has
attracted much attention in mobile marketing. In this way, advertisers could catch
the attentions of users by providing advertisements matching their needs. The area
of mobile marketing is the next big thing in the mobile Internet [16]. Particularly, we
explain in detail the geo-fencing application [13], which is a promising technique
for user-centric mobile location-based services.

5.3.1 Location Inference from Social Messages

Social media messages contain different types of location information, such as place
names appearing in the message, a location fromwhich the message was sent, and so
on. Four types of locations, shown in Fig. 5.4, can be inferred from social web data.
Location in text is a location type for place names described in a target message (for
example, London, Canada, Ontario). Targeted location is relevant to themain topic of
the target message (for example, Canada, Ontario). User location profile is a location
type that a user discloses in his profile (for example, Los Angeles). The user’s current
location is a location type that is obtained from location-based service in physical
world (for example, 1095 Mainland St.).

When we geo-locate a message, we should consider which location type is appro-
priate. A framework is proposed in [21] for classifying location elements and a
method for their extraction from social web data. This work is related to location
inference from text messages. Usually the inputs are the messages and the outputs
are the locations. There are two components in the system: location name recognition

6 http://irevolution.net/2012/07/30/collaborative-social-media-analysis/.

http://irevolution.net/2012/07/30/collaborative-social-media-analysis/
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Fig. 5.4 Location information that can be inferred from social media data

and toponym resolution. The system extracts terms that are possibly location names
as location candidates, and resolves whether or not they are location names in the
toponym resolution component. A confidence score for each location instance is
calculated by multiplying the location popularity and region context scores [21].
After these calculations, the location instance with the highest confidence score is
selected as the result of toponym resolution. Finally, the detected location is assigned
coordinates.

5.3.2 Location Inference from Tweets via the SAGE Model

Term distribution of tweets written by a given user depends on several factors such as
user preference, region distribution and topic distribution. A user has his preferences
over regions where he usually spends his time, and preferences over topics that he
often tweets about. In addition, at a specific region, the tweets may contain localized
keywords such as an airport, a park, a mall, a city, etc. Moreover, the content of
tweets may be associated with the topics at a region and can be classified as sports,
politics, travel, daily life, etc. Therefore, a tweet is composed of a bag of words from
topic, region and background language models. Then, given a tweet, its location can
be inferred by using these language models.

We first give some preliminaries in Fig. 5.5 on how tomodel term frequency in the
log space. For a term v in a model φ, its term frequency is βv, and its log frequency is
defined as φv = logβv. Then, the term distribution can be computed by normalizing
βv, and more importantly, it is equivalent to computing the term distribution directly
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Fig. 5.5 Modeling term frequency in the log space

from the log frequency φv (Eq. 5.1).

p(v|φ) = βv∑
v

βv
= exp(φv)∑

v
exp(φv)

. (5.1)

Now consider the sparse additive generative model (SAGE) [22], where several
models φ0, φu , φg are added together (Eq. 5.2). Their addition in the log space is
equivalent to the multiplication of term frequency. In this process, φ0 is a basic
reference model (β0 is the term frequency distribution), φu is the difference between
one model and the reference model (βu is the rate by which term frequency is
increased in this model), and φg is the difference between another model and the
reference model.

p(v|φ0 + φu + φg) = exp(φ0
v + φu

v + φ
g
v )

∑
v
exp(φ0

v + φu
v + φ

g
v )

. (5.2)

The above SAGE model can be used to represent multiple facets involved in
automatic generation of text messages. For example, here, use φ0 to denote the log
value of term frequencies of a background model. Other components, such as φu and
φg , are used to describe the topic model and perspective model, which only record
the difference from the background model. The SAGE model has two properties.
First is sparsity-inducing for a specific model. In other words, only the difference
of term frequency of a subset of terms is modeled. For example, in Fig. 5.5, φu and
φg only have a few non-zero items. Second is to combine generative facets through
simple addition in log space. For each term, the non-zero values in all models are
added together, and then normalized to get the distribution of terms.

Next, we introduce how a tweet is automatically generated using the SAGE
model, based on the term distribution, regional language models, global topics, user
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Fig. 5.6 Location prediction via tweets using the SAGE model

preferences etc. [23]. A tweet is generated by several steps. In the first step, using both
global distribution over latent regions η0 and user dependent distribution over latent
regions ηu , a region r is drawn from the mixed region model p(r |η0+ηu). In the sec-
ond step, using global distribution over topics θ0, regional distribution over topics θr ,
and user dependent distribution over topics θu , a topic z is drawn from themixed topic
model p(z|θ0 + θr + θu). In the third step, each word w in the tweet is successively
generated by drawing from the aggregate distribution p(w|φ0 + φr + φz), where φ0
parametizes a global distribution over terms, φr describes the region-dependence of
terms, and φz is a topic-specific distribution of terms.

Although Twitter provides location service, currently only 1% of tweets are geo-
tagged (latitude and longitude). The previous tweet generation model can be used
for location prediction of tweets [23], as shown in Fig. 5.6. Location prediction for
a new tweet is based on the words used in the tweet and its user information. User
information gives the user dependent distribution over latent regions (ηu). The addi-
tive model for region gives a guess of a region r from the model p(r |η0+ηu). Words
in the tweet are related to regional distribution over topics (θr ) and user dependent
distribution (θu) over topics. On this basis, the additive model p(z|θ0 + θr + θu)
for topic gives a guess of topic which maximizes the probability. This probability
is associated with the region r . Further maximizing this probability with respect to
different regions gives themost proper region for the tweet. This is a rough estimation
of the location for the tweet.
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Fig. 5.7 Semantic geo-boundaries in real life reported from http://www.maponics.com/

5.3.3 Context Awareness via Geo-Fencing

More and more location-based social services want to locate, reach and interact with
users on-the-go and provide various services. To this end, the geo-fencing service
[13] (e.g., placecast, sensewhere, zentracker) is introduced to respond to personal
user needs, and recent years have seen a growing need for user-centric geo-fencing
technique in location-based services.

A geo-fence is a virtual perimeter for a real-world confined geographic area. This
area can be the coverage of a particular radio cell or aWi-Fi access point, or specified
by a geographic shape.As a result, geo-fencesmay have different shapes, e.g., circles,
rectangles, polygons, which are specified by geographic coordinates. The basic idea
behind geo-fencing is very intuitive: when users enter or exit geo-fences based on
geo-fencing-enabled location preferences, notifications are sent out to users or their
networks of friends.

Various semantic geo-fence boundaries can be predefined to target very specific
geographic areas and customers, visualize business opportunities and help to make
more informative decisions. Figure5.7 shows example geo-fences corresponding to
zip code boundaries, college campus boundaries, carrier route boundaries, shopping
boundaries, respectively.

Geo-fencing is a big feature for user-centric location-based social networks. It
mainly deals with pairing a point (a user’s coordinate) with a polygon (a seman-
tic geo-fence boundary). In other words, the task is to estimate whether a point is
INSIDE or WITHIN a distance of a polygon. Each point has multiple instances
each with a unique sequence number, i.e., points can be moving. Each polygon has

http://www.maponics.com/
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Fig. 5.8 Polygons, points and edges from training dataset of ACM SIGSPATIAL GIS Cup 2013

multiple instances each with a unique sequence number, i.e., the shapes and posi-
tions of polygons may change as well. A point may appear in several polygons (in the
overlapping area of polygons). Sequence numbers of points and polygons belong to
the same space and have no overlapping. Sequence number works as timestamp and a
large sequence number means a recent time. When the sequence number of a point is
given, all instances of polygons up to that time should be examined. Figure5.8 shows
examples of polygons. Here, we can find polygons usually are irregular, and each
polygon on average contains around 200 edges. Two polygons (12 and 13) further
have inner rings, whose numbers of edges are equal to 15 and 20, respectively.

5.3.4 Efficient Geo-Fencing

Geo-fencing is broadly applied in location-based services, e.g., advertisements, child
location service. It can be well solved by using the crossing number algorithm [11]
(or the winding number algorithm [12]). However, with the rapid increase of geo-
spatial datasets, the geo-fencing technique is required to process millions of points
and hundreds of polygons or evenmore in real-time. So, how to efficiently pair points
with polygons is becoming a very important task. Here, we introduce a simple but
effective and efficient geo-fencing algorithm [14], which is one of the top winners
in ACM SIGSPATIAL GIS Cup 2013.
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Fig. 5.9 Geo-fencing:
detecting whether a point is
inside a polygon

Fig. 5.10 Geo-fencing:
detecting whether a point is
within a distance dth of a
polygon

According to the crossing number algorithm [12], the number of intersections for
a ray passing from a point to the exterior of a polygon, if odd, indicates that the point
lies inside the polygon, as shown in Fig. 5.9. But this crossing number algorithm
requires checking all edges, and becomes inefficient when each polygon contains
many edges. Actually, this problem can be simplified by two steps [14]: First, by
exploiting the minimum bounding rectangle (MBR) of a polygon, a point outside the
MBR of a polygon is surely outside the polygon. An R-tree is further used to quickly
detect whether a point is inside the MBR of a polygon. Second, when the point is
inside the MBR, instead of an exhaustive search, an edge-based locality sensitive
hashing (LSH) scheme is proposed to adapt to the crossing number algorithm. As for
the WITHIN detection in Fig. 5.10, a point might be outside the MBR of a polygon
but still within a distance dth of the outer-ring of the polygon. In this case, a rectangle
centered at the point, with an edge length being 2dth is constructed. If this rectangle
does not overlap with the MBR of the polygon, the point is surely not within a
distance dth of the polygon. Applying LSH in the WITHIN detection is a little more
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Fig. 5.11 MBR of polygons
are organized in the R-tree

complex. A probing scheme is suggested to locate adjacent buckets so as to check
all edges near to the target point.

Figure5.11 shows an example of the relationship between an input point and its
latest instances of polygons. In this figure, each polygon has its own MBR, and
15 basic MBRs are further divided into three groups in a higher level in an R-
tree. In this way, MBRs that contain the given point are quickly found instead of
exhaustive search. The corresponding polygons are regarded as candidates and are
further examined.

5.4 Localized and Personalized Search

Personalization has been a trend of web searching. A method to personalized search
is to exploit the location information. As is known, there is a geographic locality
in user’s interest and culture. So, for the same query, people in different areas may
expect different results. These days, search engines can return most relevant local
results to users according to the location information in user’s profile, while filtering
out irrelevant information. For example in Fig. 5.12, users searching for a pasta
restaurant in Kyoto and Singapore may get local relevant results. From these search
results, it is obvious thatGoogle search enginemaypersonalize results basedonusers’
location information. In this way, location information, as an important dimension,
complements multimedia retrieval and recommendation.
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Fig. 5.12 Personalized search via exploiting location information

5.5 Location-Aware Multimedia Applications

Here, we introduce emerging geo-tagged multimedia applications and techniques
(e.g., land-use classification, geo-tagged image retrieval). Their common part is
to incorporate geographic information as a context in multimedia information
processing.

5.5.1 Music Geo-Listening Patterns

Twitter streaming API can be leveraged to retrieve tweets with geo-spatial coordi-
nates. Further using music-related hashtags helps to extract music listening-related
tweets. Then, artist information can be extracted by parsing and analyzing the content
of these tweets. Music-related tweets often contain patterns, for example artist name
followed by song title. In some cases, the artist name might appear as a valid song
title, which results in some ambiguity. Generally, pattern-based approaches can be
used to match potential artist names against the artist dictionary. Track information
can be used to help distinguish artist names, by exploiting the musicbrainz database
as a knowledge base for artist names and related song titles.
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These music related tweets are classified according to artist genre information
[20]. More specifically, the genre tags available for each artist are collected from
last.fm, and further refined by using a list of known genres from freebase. Then, the
artists (and genre tags) are split into k clusters, k ranging from 10 to 20. Next, each
tweet is assigned an artist cluster number based on its included artist information.
Further exploiting the coordinates of tweets, the number of tweets per artist cluster
per area can be computed as music listening pattern and visualized on a world map.

5.5.2 Geo-Tagged Images for Land-Use Classification

Next example is exploring geo-tagged images for land-use classification. In this
application, the problemof geographic discovery, particularly land-use classification,
is investigated through crowdsourcing of geographic information from geo-tagged
photo collections in Flickr. The geo-tagged photos are represented by their visual or
text features to perform land-use classification. This is formulated as a supervised
classification problem, in which support vector machine (SVM) [24] is used. Three
land-use classes are considered in [19]: academic, residential, and sports. To generate
a predicted land-use map, the target area is divided into multiple sub-regions, each
separately classified.

Visual features and text features are main components in land-use classification
model [19]. An intuitive question in the classification is how to model proximate
sensing from visual features or textual features contained in geo-tagged images. Bag
of visual words (BoW) with a soft-weighing scheme is used to extract a BoW feature
from each image, and a dictionary of 500 visual words is used. Flickr images com-
monly have user-supplied text associated with them. A dictionary of terms is created
based on the words extracted from the title, descriptions, and tags associated with
each image. The text analysis is performed at the group level since there is typically
not enough text associated with the individual images for effective classification.
Each of the text components associated with an image is parsed into a set of terms,
and each group of images is represented by a histogram of terms among the dictio-
nary. Then, pLSA (probabilistic latent semantic analysis) [25] is used as a tool to
reduce the dimensionality of the term histogram of each image group.

5.5.3 Geo-Visual Image Similarity

Sometimes, it is necessary to identify geo-tagged images that contain similar views
of identical objects so as to retrieve similar images taken at the same location. The
geographic location of the photo image is measured where the picture is captured,
not where the object is located. So, the position in the geo-tag is not the position of
the captured object (but of the camera position where the object is taken). Images
having identical objects are defined as orthologous images, for example, in Fig. 5.13,
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Fig. 5.13 Different photos showing the identical Merlion

three photos are similar to each other. Then, an orthologous identity function (OIF)
[26] is used to estimate the degree to which two images are similar. OIF is a similarity
rating function that uses both the geographic distance and image distance of photos.

5.5.4 Geo-Location and Context-Based Pedestrian Detection

In previous examples, we introduced classification of immovable objects such as
land-use. Now we discuss the classification of movable objects, pedestrian detection
related to geo-location.

Pedestrian detection can be conducted by differentmodelswith different complex-
ities [27]. In the conventional model, the detection problem can be simply formulated
as computing the posterior probability p(P|V ), where P denotes the pedestrian label
and V denotes visual appearance of image or image batch. The second model adds
the geographic location G as p(P|V, G). Different locations will influence both the
visual appearance and pedestrian presence probability. Therefore, the third model
further exploits the environment context E , considering that different environments
will influence the visual appearance of pedestrians. This model involves all factors
including geographic location and environment context. Its context-based posterior
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probability p(P|V, G, E) means the probability that an image contains a pedestrian
given the visual appearance V , the location G and the environment E .

By leveraging a vast amount of web images, a contextual image database is con-
structed, in which each image is automatically attached with geographic location
(i.e., latitude and longitude) and environment information (i.e., season, time and
weather condition). Two pre-trained classifiers are exploited: a time classifier to
decide whether an image was taken in the daytime or at night, a season classifier to
decide which season an image was taken in. There is no any hint on weather condi-
tion in image metadata. Therefore, the weather condition is divided into three classes
(snow, fog and normal), and a weather classifier is trained as well. By incorporating
visual feature, geographic location (i.e., latitude and longitude) and environment con-
text (i.e., season, time and weather condition), a context-based pedestrian detection
method [27] can be realized by the probabilistic model discussed above.

5.5.5 Soundtrack Recommendation for User-Generated Videos
via Context Information

Most user-generated videos, taken outdoor, lack suitable soundtracks. Adding a
matching soundtrack to a video can make the video much more attractive for shar-
ing. Generally, different geo-locations convey different affective atmospheres. For
example, a busy city has a different atmosphere from a majestic mountain view. In
this sense, each geo-category is associated with a mood. Based on mood similarity,
a soundtrack can be recommended to a video scene.

Geo-locations can be classified into geo categories through leveraging Foursquare
API. A geo-category is further associated with an atmosphere, or a mood at a venue.
Table5.1 shows a potential mapping from geo-categories to moods [7]. User study
is conducted to identify which mood should be associated with each geo contextual

Table 5.1 Relationship between geo-categories and moods

Geographic category Related mood(s)

Arts and entertainment Quiet, calm

Colleges and Universities Quiet, calm

Food Sweet, happy

Great outdoors Dreamy

Nightlife spots Funny, intense, playful

Professional and other places Aggressive, heavy

Residences Sweet, sleepy

Shops and services Happy

Travel and transport Melancholic, bittersweet, funny
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category. By using the relationship in this table, a system can automatically rank
mood categories for a given geo-location.

The whole soundtrack generation system [7] has two parts: smartphone applica-
tion and server side.User generated videos are captured by smartphones togetherwith
continuous streams of geo-sensor (GPS) information. These geo-sensor data streams
are mapped to a set of ranked, textual geo-tags. Geo-tags are further classified to
geo-categories via the API provided by Foursquare, and then mapped to mood tags
according to a predetermined geo-mood mapping table (refer to Table5.1). Mood-
tags provide the input into amusic retrieval engine, which returns amusic soundtrack
most matching these tags. Finally, the music soundtrack is associated with the video
and the new video is ready for sharing.

The performance of soundtrack recommendation for user-generated videos can be
further improved by exploiting visual features as well. Especially, the classification
results from geo-feature and visual feature via SVM [24] are late-fused to generate
a more robust result, as discussed in [8, 9].

5.6 Analysis of Geo-Social Data

Social media are user-centric, and designed for the interactions and communications
between users all over the world. Social networking platforms provide ways to create
and exchange user-generated contents while sustaining human contact at the same
time. Social media have different forms and languages, which include, e.g., videos,
images, audio songs, comments, reviews, ratings. Users participate in social network-
ing platforms via different devices, e.g., using desktop PCs, tablets, smart phones, or
game consoles. Conventionally, user interface approaches address the user’s inter-
action with devices, the interactions between a user and a software or application.
In comparison, online social interactions [2] are the communications between users
via the help of social interface. They are established through the self-reinforcing
activities of participating users. Social interactions reveal what is going on, what an
application or site is about, and reflect psychological views of an identity, the self,
interpersonal relationships, and social structures.

In the following, we show with examples some approaches related to the analysis
of geo-social data, especially personal preference mining, social knowledge discov-
ery, and geographic distribution of social activities.

5.6.1 Analysis of Social Expertise Based on Number
of Check-Ins

A user visits different venues and generates different check-ins online. These check-
ins reflect user’s location history in the physical world. Foursquare has a hierarchical
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Fig. 5.14 Iterative model for social expertise discovery

category structure which includes 9 top categories and 410 sub-categories. Using the
API provided by Foursquare, the geographic trajectory of a user can be converted to a
series of geo-categories,which contains user’s personal preferences.Auser’s location
history is regarded as a document and categories or sub-categories are considered as
terms in the document. By exploiting the TF-IDF (term frequency inverse document
frequency) method [28], features can be computed at different levels, using either
categories or sub-categories as vocabularies.When computing the similarity between
two users in terms of the trajectories, a similarity score can be computed at each level
of the hierarchical category, and their weighted sum gives a total similarity between
two users [10].

An example is used to explain how to make use of an iterative model for social
expertise discovery [10]. In the model shown in Fig. 5.14, each user has his scores for
different venue categories, and a venue category is associated with multiple users.
For a specific category m, a user’s knowledge, um .h, can be represented by the sum
of the authority scores (vm .a) of the venues visited by the user (Eq. 5.3). On the other
hand, the authority score of a venue, vm .a, can be represented by the hub scores
(um .h) of the users who have visited this venue (Eq.5.4).

um .h =
∑

u.v∈m

vm .a. (5.3)

vm .a =
∑

u∈U

um .h. (5.4)

Then, a user with a high score in a category is regarded as a local expert of
that category. To identify the local experts of a venue category, for example, Italian
food, based on category information recorded in the user’s location history, a user’s
expertise in each category in different cities can be computed by an iterative model,
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known as mutual inference [29]. In this process, the initial authority and hub scores
are set as the number of user’s visits.

5.6.2 Analysis of Business Venues Based on Check-Ins

Asmentioned before, Foursquare has 9 top-categories and 410 sub-categories. How-
ever, in some cases, for example, in trade area analysis, shopping habits are desired
[15]. Top 9 categories cannot effectively distinguish check-in patterns. 410 sub-
categories can be more valuable in user profiling but with too high dimension.

The LDA (latent dirichlet allocation) method [30] can be used to identify hidden
check-in patterns as topics from the histogram of user check-ins in terms of sub-
categories. LDA is widely adopted in document topic modeling. It assumes that
each document contains a mixture of topics and each topic has certain probability of
mentioning a word. LDA identifies topics and calculates the proportion of different
topics in each document by examining word distributions in the documents.

More specifically, the distribution of different topics is calculated for a document.
Each user is treated as a document, and each topic is regarded as a term. By analyzing
the distribution of topics of customers of a store and computing the histogram of the
main topic of all customers, the stores can be profiled as well in terms of potential
topics [15].

Another example is shown inFig. 5.15 for business attractiveness discovery,where
the size of an icon is proportional to the popularity of the corresponding business.
Consider a number of customers C1 to Cn and a number of competitor venues V1
to Vm . ai j represents the number of visits of customer Ci to venue Vj . Then, the
probability that a venue Vj is visited can be calculated via

P(Vj ) =
∑n

i=1 ai j∑n
i=1

∑m
k=1 aik

. (5.5)

Fig. 5.15 Business
attractiveness, the size of an
icon is proportional to the
popularity of the
corresponding business
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Fig. 5.16 User activities on weekdays in Yelp

This probability is an indicator of local popularity of a business venue. In other
words, the probability of venue Vj being visited by all customers in an area reflects
its business attractiveness compared with other competitor venues.

5.6.3 Analysis of User Check-Ins in Yelp

In this section,we investigate user behaviors in physicalworld, by using experimental
check-ins data. This data includes 11,537 businesses and 8,282 sets of check-ins from
March 2005 to January 2013 in Phoenix, which was provided by Yelp.

Figures5.16 and 5.17 respectively show user activity patterns across the 10 most
popular categories of Yelp on weekdays and on weekends. Top 7 categories are the
same in the two figures, which indicates that user business activities on weekdays
and weekends have no significant differences in the area of Phoenix. However, we
still can find that more people like to travel and go to grocery stores on weekends
than on weekdays.

Figure5.18 shows the CCDF (complementary cumulative distribution function)
of the number of per-user check-ins. The number of check-ins varies greatly among
users. 50% users have a check-in count no more than 20. On the other hand, 1%
users have more than 1,000 check-ins.

5.6.4 Analysis of Interest Focus and Entropy in Foursquare

User-generated geo-social data contains user behaviors in physical world and also
reflects geographic reach and interest of a geo-category context or a multimedia
content across the globe. Here, some methods and examples are given to address
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Fig. 5.17 User activities on weekend in Yelp

Fig. 5.18 CCDF of the
number of check-ins at
business venues in Yelp

geographic distribution of social activities related to geographic popularity of photos,
tips and videos.

We investigate the distribution of social media data of LA and NYC, crawled
from Foursquare, where 2,728,411 venue photos and 1,212,136 tips are used in the
experiments. Since Foursquare is a location-based social networking platform, large
volumes of tips and photos are posted in this community. Each user has different
interest over all the geo-categories, reflected in the variations of the number of per-
category tips or photos. In other words, the distribution of a user’s visit in terms of
geo-category would likely exhibit a non-uniform distribution, with a large fraction
of visits in only a few categories. The distribution of user interest can be measured
by two metrics, interest focus and interest entropy.

Figure5.19 shows the distribution of the number of visits of a user in each category,
which is usually non-uniform. Let vik represent the number of visits of a single user
i to a category k. Then, interest focus of a user is defined as its highest fraction of
visits, as follows:

Fi = max
j

vi j∑
k vik

. (5.6)
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Fig. 5.19 Distribution of the
number of visits to different
categories for a user

Fig. 5.20 CCDF of interest
focus in terms of photos and
tips in Foursquare

A higher interest focus means that the interest of a user is more limited to a specific
category.

CCDF of per-user interest focus is shown in Fig. 5.20, where the visit is defined
in terms of tips (messages) or photos. In this figure, we used the top-9 categories.
Nearly 50% users have an interest focus greater than 0.5, which indicates that many
users have a primary interest (in terms of geo-category).

Interest entropy is the other metric for evaluating how user interests are distributed
over different categories. With the fraction of visits to a category in Fig. 5.19 as a
probability, interest entropy is computed as a standard entropy, as follows:

Hi = −
∑

k

pik log2 pik,

pik = vik∑
j vi j

. (5.7)

It reflects howuser interests are distributed over different categories. A higher interest
entropy means a more uniform distribution of visits to different categories while a
lower value means interests are focused in fewer categories.
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Fig. 5.21 CCDF of interest
entropy in terms of photos
and tips in Foursquare

Figure5.21 shows the CCDF of per-user interest entropies, in terms of tips and
photos. Only 20% users have an interest entropy of photo greater than 1bit, or the
number of categories being frequently visited is equal to 2. The interest entropy of
tips is lower.

5.7 Integration of Social and Content Networks

These days, users find videos from the Internet by different methods. Some of the
videos are directly searched via the web sites, some other videos may be recom-
mended between users through their social connections. As a result, social connec-
tion has a significant impact on video views. In addition, the effect of social sharing
is becoming more important as more users are involved in the social networks.

5.7.1 Geo-Social Networks

Every day, a huge volume of Internet traffic is generated by onlinemultimedia sharing
platforms such as YouTube, Flickr, Last.fm. These platforms often rely on content
delivery networks [1] to distribute their content from storage servers to multiple
locations over the planet. Servers exchange content in a cooperative way tomaximize
the overall efficiency. Recently, content diffusion is also fostered byweb-links shared
on online social networks [2]. This may generate large amounts of requests to the
provider through the cascading across a user’s social links. Content discovery heavily
depends on the web search. Web search services like Bing and Google Web Search
now are an integral part of our daily life. Google Search alone receives 12.8 billion
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queries7 every month fromU.S. users. People use web search for a couple of reasons,
including listening to music, watching baseball, and making purchase decisions.

Lots of applications and services on the Internet have been developed to make
use of location information to meet users’ daily needs. The increase of various social
media services requires a global platform for sharing user-generated contents, such as
videos, images,music, blogs and tweets. Location-enabled tagging for social contents
via smart phones and social media services reflects geo-spatial logs of user activ-
ities. Users can link their presences and multimedia contents (for example, video,
image) to a particular place. Geo-spatial footprints generated by users provide inter-
esting information about the spatio-temporal dynamics of online memes [31], which
have important implications for a variety of multimedia systems and applications
[8, 20, 32]. On the one hand, geo-spatial data contains personal physical logs of
each individual user. On the other hand, it also reflects social behaviors related to
the community as data of more users is aggregated. These geo-spatial data could be
very useful for studying various lifestyle patterns [33], e.g., public health, cultural
identification, urban computing.

5.7.2 Graph Representation of Geo-Social Networks

Next we introduce how to model social networks via a graph [17]. Online users
are located over the 2-dimensional surface of the Earth. The great-circle distance is
adopted as the metric. The distance in Fig. 5.22 between any two nodes is calculated
as a great-circle distance from their geographic coordinates. The social tie between
two nodes is represented by a link between them.

A social network can be represented as an undirected graph G, with a node set
N and a link set K . When there is a social tie between two users i and j , a link is
established between them. The link length is associated with the great circle distance
li j . It is useful to find how friends of a user are geographically distributed. One useful
metric is node locality (Eq.5.8). Considering node i and all its neighbors in a set Γi ,
the geographic closeness between two nodes is measured by a function of normalized

Fig. 5.22 Friendship and
great circle distance

7 http://bit.ly/ThGnOc.

http://bit.ly/ThGnOc
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distance using a parameter β. The average over all nodes in the neighbor set Γi gives
node locality [17] of node i .

Li = 1

|Γi |
∑

j∈Γi

e−li j /β . (5.8)

In this way, the node locality represents the average closeness between a user and his
friends, and decreases as the actual distance gets larger. It is useful when exploiting
social connections to recommend multimedia contents, as is discussed later.

The node locality can be investigated by using the cascade of Twitter messages.
Twittermessages are shown on the author’s personal page and also sent to the author’s
followers. A node is used to represent a user with a geographic location. Then, a
directed graph of users can be extracted from the dataset of tweets, and node locality
of each user can be calculated.

A more interesting phenomenon is the spreading of YouTube video links via
tweets.A cascade over a social network beginswhen thefirst user shares some content
and becomes the initiator of the cascade. After this event, some of his contacts will
share the same content again, and the cascade will recursively spread over the social
links.

5.7.3 Geo-Social Multimedia Content Delivery

Now we introduce some methods related to multimedia content diffusion, for exam-
ple, geo-social cascades, caching policies and distributed cache. The popularity of
multimedia content over the Web can be driven by public media coverage. This
type of phenomena often results in globally popular items, which should be widely
replicated throughout a content delivery network. Alternatively, content may become
popular over social networking platforms because people share it and talk about it.
In this way, content may easily spread from a small set of users to a vast audience
through social connections, for example, 700 YouTube video links are shared on
Twitter every minute.8

Social sharing also has a large impact on content delivery network. The latter
is a system of networked servers holding copies of data items, placed at different
geographic locations as shown in Fig. 5.23. Its performance is influenced by the geo-
graphical distributions of the requests. Then, it would be very useful to understand
whether an item becomes popular on a planetary scale or just in a particular geo-
graphic area. A globally popular content item should be replicated at every location,
since it receives many requests from all around the world. On the other hand, when
content is only locally popular, it should be cached only in specific locations.

As for standard caching policies [34] used in content delivery networks, each
policy assigns a priority P(v) to a video v, and the video with the lowest priority is

8 http://www.streamsend.com/.

http://www.streamsend.com/
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Fig. 5.23 Content delivery
networks handling locally
popular and globally popular
contents differently

chosen for deletion when the cache buffer gets full. There are three typical caching
policies. In Least-Recently-Used (LRU) policy, P(v) equals clock(v). clock(v) is
the last time that the video v is watched, and it involves the simple aging effect.
In Least-Frequently-Used (LFU) policy, P(v) equals Freq(v), where Freq(v) is
the number of times video v has been requested since it was stored in the cache.
The mixed policy combines LRU and LFU, and the priority of video v is given
by P(v) = clock(v) + Freq(v), in order to balance both temporal and popularity
effects.

The above caching policies can be further augmented by exploiting geo-social
information. Twitter fosters the popularity of YouTube, since users tend to tweet
about videos they like, triggering a spreading of the video. This provides us some
opportunities to investigate how geographic information is extracted and used to
improve caching of multimedia files. There are two augment caching policies [18]
based on the characteristics of the geo-social cascades involving one video. One is
Geosocial (shown in Fig. 5.24), the extra weight of video v, which is added to its
priority, is the sum of the node locality values of all the users that have posted a
message about the video, even though they are not involved in a social cascade. The
other is Geocascade (shown in Fig. 5.25), the extra weight of video v that is added
to the priority is the sum of the node locality values of all the users participating in
the video’s social cascade. In this way, exploiting social connections helps in finding
whether a video becomes popular and helps in optimizing the cache management.

Fig. 5.24 Geosocial in
geographic social networks:
users access the same video
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Fig. 5.25 Geocascade in
geographic social networks:
users are in the same social
cascade

5.8 Summary of This Chapter

With an overwhelming amount of social multimedia content on the Internet, it is
difficult to find what users are really interested in. For example, a search for “pasta”
may return hundreds of millions of social media items. In addition, sometimes, an
incomplete query may lead to results of different meanings, where more accurate
search requires further information on user preference. For example, a search for
“apple” returns the fruit apple and the apple brand. Personalization has been a trend of
web searching. Recently, many social networking platforms have provided location-
based services, by either explicitly letting users choose their places or implicitly
enabling geo-tagging to associate multimedia content with latitude and longitude.
Location information has been a very important aspect that helps better understand
online social media contents and people activities in physical world.

This chapter takes user location as a clue to discuss broad topics over location-
aware multimedia systems. We have talked about fundamental components related
to geographic-aware social media, mobile users, social activities and multimedia
content delivery. More specifically, geo-social data contains rich context and has two
aspects of implication: individual user interest and geographic-social behaviors. We
have shown some examples of geographic-aware social media and social interaction
data, and reported latest geographic-aware multimedia applications and methods,
for example, how to leverage tweets with geospatial information for mining music
listening patterns, how to map geo-categories to moods. We also have discussed
some location-enabled advanced topics and approaches. Particularly, we explained
geo-fencing in detail,which is a promising technique for user-centricmobile location-
based services. We showed some approaches related to personal preference mining,
social knowledge learning, geographic distributionof social activities andmultimedia
content diffusion. To sum up, exploiting location information tomine user preference
and social links to predict content popularity will greatly affect the form of content
retrieval and delivery, which are attracting, and will continue to attract much research
interest.
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Chapter 6
In-house Multimedia Data Mining

Christel Amato, Marc Yvon and Wilfredo Ferré

Abstract Multimedia Data Mining research conducted by the European IBM
Human Centric Solutions Center group is presented by the in-house multimedia
project, whose objective is creating a framework for in-house smart care monitoring
for the aging population. The chapter presents an overall framework for collecting,
aggregating, and preprocessing multimedia data in real-time and uploading it to a
backend system. As a result, this combination of data from diverse sensors provides
a wide range of opportunities for applications, which can be built in the prospect of
Smart Care. The objective of these applications is to get insights from sets of raw
data. In the in-house multimedia implementation we demonstrated how multimedia
data collected over time does provide valuable insights about a particular person
behavior and wellness. Collecting data from multiple sensors and combining them
is essential for better understanding people behavior and helps to avoid misleading
conclusions.

6.1 Introduction

Digging in the mass of multimedia information becomes a key challenge and oppor-
tunity for business and individuals. More and more devices and connected objects
are equipped with sensors participating in the collection of many kinds of data [1].
Machine-to-Machine communications are developing more and more with smart
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applications as described in [2]. This is quite representative of the big data phe-
nomenon with a strong heterogeneity as described in [3, 4]. They feed systems with
multimedia informationmaking it very challenging to identify hiddenmeaning.Mul-
timedia data can be gathered and integrated in real-time and in mobility to a backend
system.

Dealing with data has to go through several consecutive steps that we are going to
describe in this chapter through a development related to an in-house multimedia for
the aging population project. Helping and accompanying elderly people is a rising
concern since connected objects are opening up newpossibilities. As described in [5],
a vision-based smart home care system aims at monitoring elderly persons remotely.
Such a system is dedicated to accidental fall down only and is intrusive with installed
cameras in the house. In [6] an intelligent, robust, costless, flexible, and real-time
homemonitoring system is described that records the basic home activities and timely
response, when there is a change in the regular daily activity of the elderly person.
This system records the usual activity (on or off) of many devices such as TV set,
oven, etc., by installing an electronic card inside the device.

Our purpose was not only to detect abnormal behaviors of aging people according
to their habits (the normal) but also to supervise their activity regarding wellness
without being intrusive. In this way we have equipped houses with connected sensors
so that data can be collected and analyzed.

The first step we accomplished was related to data acquisition. It is not as simple
as it may look. Several aspects to take care of are the following:

• Managing the acquisition devices: sensors and indicators.
• Ensuring a proper digital format to facilitate further processing.
• Managing the transmission system.
• Filtering and aggregating data.

Once data are gathered, the next phase is apply analytics.
This is currently a booming area in IT. It is about finding meaningful information

for the purpose: improving the client value-proposal, detecting not yet obvious trends
in the society, customizing a treatment for a specific patient, improving the accuracy
of predictions, etc.

There is one aspect to take care of before applying methods and statistics to the
data: clean up the collected data. The challenge here is to identify data of interest
and to isolate it from “noise”.

6.2 Smart Care in Bolzano: In-house Multimedia Project

The trend of aging explosion of the population has no parallel in human history. The
growth of population over the age of 60 happens with a simultaneous and gradual
decline of the population under the age of 15. By 2050 the elderly population is
predicted to surpass the teenage population for the first time in human history. Life
expectancy has increased on average up to nearly 82 years.
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The growth of aging population is already heavily influencing all areas of day-
to-day human life, and its influence will continue. In the economic area, the aging
population will affect economic growth, savings, investment and consumption, labor
markets, pensions, taxation and the transfers of wealth, property, and care from one
generation to another.

Aging population will continue to affect health and health care, family composi-
tion and living arrangements, housing, and migration.

The Smart Care in Bolzano Project has the following goals:

• Meeting high quality health care needs of elderly people.
• Maintaining support of elderly people at manageable levels for society.

The potential offered by technology also extends to other domains, including
deeper immersion of old people in everyday social life and support for active aging
in the context of work/employment.

The City of Bolzano aimed to become a model in developing new approaches
to assistance and support to aging population by introducing innovations in social
services through technology and establishing new economically sustainable models.
This project target was to remotely monitor health of citizens of age 75+ at home
across their daily activities.

The “Secure Living Project,” sponsored by the City of Bolzano was part of an
initiative to enhance the quality of life of the elderly, providing greater independence
and integration into society,while, at the same time, loweringpublic spending through
more accessible and less invasive technologies.

Data from each home were collected and analyzed, and if necessary, if immediate
action was required, a first alert was sent to a panel of relatives/or so called “angels”
and subsequently to a dedicated team from the Bolzano Social Services Department.

6.3 Data Acquisition

6.3.1 Managing the Acquisition Devices

Managing the acquisition devices is a crucial step in any project. Each device must
be chosen not only according to the needs but also to the constraints. Each device
must be selected for captured data taking into account the requirements for accuracy
and frequency of data stream, and technical requirements for output connections,
power consumption, size, noisiness, and disturbance.

In our in-house multimedia project 30 elderly people between 66 and 80-years
old and in need of in-home assistance were equipped with sensors and monitoring
equipment in their homes as part of the pilot project. The main challenges from a
technical setting were not to be intrusive in the houses with residents inside. Elderly
people do not like when their everyday life is being disturbed. All devices were



150 C. Amato et al.

IBM Cloud 

Control Box

End-user’s
home 

IBM 
Server Farm

MQTT

Sensors

Zigbee

IBM Server IBM Cloud 

Control Box

End-user’s
home 

IBM 
Server Farm

MQTT

Sensors

Zigbee

IBM Server

Fig. 6.1 Structure of the device system inside and outside the end-user’s home

selected to be discrete and autonomous. They have to be launched and to connect
themselves. Figure6.1 shows the overall structure of the system inside and outside
the user’s home.

Each home was equipped with sensors to monitor constantly the following home
parameters: water leakage, light, CO, CO2, smoke, temperature, and humidity. All
the sensors were running on battery power so that they did not need to be connected to
the electrical network.Water sensors were used to detect abnormal water on the floor.
They were installed in the kitchen under the sink so that it remained discreet. The
other sensors were put in the main room. All the multimedia sensors were coming
from several manufactures. We preferred devices that met needs, size, and easy way
to install.

All sensors were sending data over a wireless network to a control box, which role
was to send collected data to the IBM servers. Data stored in the IBM cloud were
available immediately on a dashboard for supervising in real-time or for analyzing
them.

6.3.2 Ensuring a Proper Digital Format of the Multimedia
Data

In multimedia project, the collected data come from several devices of different
types. As they can be selected from distinct manufacturer, the output data usually
have different format. The output format can be in a manufacturer format (for exam-
ple, binary data and strings that contain data about localization, time, etc.) or in a
proprietary format.
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Due to the IBM Cloud able to store unstructured data, all these heterogeneous
data can remain in the initial form without any modifications. In this context of
data manipulation, it means one needs to know the initial format for each type. As
the collected data is not necessarily explored and analyzed by the same team that
collected it, it is very important to standardize this data. Thus, the technical challenge
in standardizing the collected data is to keep the most relevant information in the
data.

In the in-house multimedia project, the control box gets the data from each sensor
and attaches additional data, such as the id of the house,where the datawere collected,
the sensor id and type, etc. When the timestamp is not contained in the input frame,
the control box added it from its own internal clock. Before doing this, all the existing
equipment clocks were synchronized with the control box.

6.3.3 Managing the Transmission System

The selection of a network must be in compliance with local conditions and data
flow bandwidth. The transmission between node devices is adapted and has different
characteristics than transmission to the cloud server.

The technical challenges in the in-house multimedia project were to create a
wireless network in a building made of several apartments without any Internet
connection. The best practice was to install a Zigbee communication system. We
had to cope with this issue and transmit data from the standard telecom network by
positioning the control box unit (the component receiving all data from all sensors)
at the highest floor for better network connection.

The solution was interconnected in two ways:

• The sensors were interconnected between themselves via a Zigbee mesh-network
for broadcasting data about one unit, i.e., apartment and assisted person.

• Aggregated data was broadcasted to the IBM server using a 3G network.

6.3.4 Filtering and Aggregating Data

Collecting data periodically everyminute or every secondmay generate large amount
of data in one week. The collected values may be redundant and not worth to be
stored. Some sensors do not vary often; their consecutive values may be constant
during hours. Filtering the data consists of eliminating redundancies according to a
defined precision. If the difference between the last collected value and the new one
is less than the precision, then the new value is ignored.

Once all the devices are installed, switched on, and connected with each other,
the entire solution can be tested from the terminal device to the IBM Cloud. The
test consists of verifying that all the chains are running well and that the sensors are
varying depending on environmental conditions.
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Table 6.1 Volume of collected data during the in-house multimedia project

Sensor type Total readings Type of data Units of measurements

CO2 69,272 Numeric Part per million

Temperature 50,621 Numeric Degree celsius

Humidity 35,441 Numeric Percentage

Light 31,466 Numeric Lumens

Water 19,831 Numeric Percentage

CO 17,931 Numeric Part per million

Smoke 8,804 Numeric Part per million

In the in-house multimedia project the test consisted of verifying that data was
arriving to the cloud in real-time without being disturbred by the flow of data coming
from the 30 houses in the 3G network. Then we had to verify the water leak sensor by
spilling water on it and to notice that the collected value increased. The CO2 sensors
were tested by blowing into the sensors.

Once the overall system has been tested, the experiment begins. The pilot had been
up and running for 8 months. During this time 238,965 data values were collected.
Table6.1 shows the volume of the collected data for each sensor.

As we can see “CO2” is the most variable parameter while “smoke” detector is
the most stable one. “CO2” is varying each time people are coming in the room or
leaving it. “Smoke” value is varying when a person is cooking. Smoking is forbidden
inside apartments.

6.4 Data Analytics

6.4.1 Cleaning Up the Data

Cleaning data is an important step that helps to alleviate the load on the limited
available computing power. But first we have to decide what is considered as noise.
Obviously, it is made of data that is not relevant to your specific purpose. However,
what is considered as noise for one purpose could be useful for another one.

We used filtering for the following targets:

• Eliminating information not relevant to the pursued goal.
• Assessing the quality of collected data.

The quality assessment of the collected data is a major feature. It is important for
further analytics accuracy to know what is the confidence associated with to each
collected piece of data. It depends on the quality of the sensor, the position of the
source, and several other factors. And it is very important to treat it as a dynamic
process—a sensor may break down or degrade at some point of time.
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6.4.2 Analyzing the Data

Analyzing data consists of operating multidimensional methods on data. Most of
them come from statistics or machine learning. Two kinds of analyses are distin-
guished: descriptive analysis and predictive analysis.

Descriptive analysis describes the features of a collection of data. It can be applied
to one parameter calculatingmean, range, regression, variance, pattern detection, etc.,
or include several data sources identifying dependencies, correlation, etc. It comes
with a learning phase.

We have applied the Multimedia Data Management method to the collected data
in the in-house multimedia project, which allowed us to detect patterns over a certain
time. Figure6.2 shows a correlation between the participant’s sleep pattern, daily
routine, and the safe levels of carbon monoxide (CO). The CO level is very low and
stable while the person is asleep until 7 a.m. We can notice little or no activity in the
home. The level of CO noticeably rises when the person wakes up at 7a.m and uses
the kitchen for breakfast. The level drops again and rises around noon for lunch. The
pattern is then repeated at 4p.m and in the evening. CO then falls back to the very
low level again once the occupant goes to bed at night.

Once we have pattern associated to each people, divergencies can be notified and
alerts can be sent.

HavingCO increased inmany times is dangerous for the people living in the house.
It can be due to the gas cooker being left on. In that case, someone must interact
in emergency. In another case, CO remaining flat during the day is significant and
people must be closely watched.

Having regularmeals indicates that the person is active and in good shape.Missing
meals or irregular behavior could be an early indicator of change in the person’s
physical or psychological health.

Fig. 6.2 CO readings in a period of one day
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Fig. 6.3 CO2 readings in a period of one day

Figure6.3 shows another example of behavior that is correlatedwith sensor values.
It shows a correlation between visits to a participant and the safe level of carbon
dioxide (CO2). The CO2 level is low and stable until 11a.m when a nurse brings
medicines to the participant. Another visit occurred at 3p.m and it increased the
CO2 level.

When a person has guests at home mostly on weekends the CO2 increases. The
person can then be supervised without being intrusive (we never know “who”).
Regular visits indicate that the person is not alone and can talk to someone. Depriving
visits could be an early indicator of change in the person’s physical or psychological
health.

When we first demonstrated the system, there were 20 people in one of the rooms
and as a consequence theCO2 rapidly increased over the alert limit. The administrator
received its first real alert.

6.5 Conclusion

In the Smart Care Bolzano implementation we demonstrated how multimedia data
does provide valuable information about a given person’s wellness by analyzing
records accumulated over a certain period of time. Using several data streams com-
bined together helps to improve understanding. Looking at only one data stream
could not be enough or misleading for making conclusions. For instance, if the CO
level rises up very quickly with no activity, it would require immediate attention from
the administrators, while confirmed with another parameter it might validate a nor-
mal activity. The system emphasizes that the correlation of parameters is important
in the surveillance setting. As people may change their way of doing things, either
by change in their habits or by an evolution of technology and equipment, a smart
system must be able to take into account of these new factors.
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Another aspect of multimedia data mining that has not been studied here is that it
has been exceeding most storage capacity with the emergence of big data and requir-
ing specific processing such as the parallelized computing techniques. Information
has been known as a representation and an interpretation: this is exactly what we
need to tackle. On one hand we have representation of multimedia datasets and on
the other hand we have to deliver a consistent interpretation. Once we embark in the
world of cognitive systems, we develop progressively the capacity for the computing
system to find by itself the meaning of the data and take autonomous action. This
is a new frontier for computing science that will open a new world of possibilities,
challenges, opportunities, and risks.
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Chapter 7
Content-Based Privacy
for Consumer-Produced Multimedia

Gerald Friedland, Adam Janin, Howard Lei, Jaeyoung Choi
and Robin Sommer

Abstract We contend that current and future advances in Internet scale multimedia
analytics, global inference, and linking can circumvent traditional security and pri-
vacy barriers. We therefore are in dire need of a new research field to address this
issue and come up with new solutions. We present the privacy risks, attack vectors,
details for a preliminary experiment on account linking, and describe mitigation and
educational techniques that will help address the issues.

7.1 Introduction

The growth of multimedia as demonstrated by social networking sites such as Face-
book and YouTube combined with advances in multimedia content analysis (face
recognition, speaker verification, location estimation, etc.) provides novel opportu-
nities for the unethical use of multimedia. In small scale or in isolation multimedia
analytics have always been a powerful but reasonably contained privacy threat. How-
ever, when linked together and used on an Internet scale, the threat can be enormous
and pervasive. The multimedia community therefore has an obligation to understand
these risks, mitigate the effects, and educate the public on the issues.

Imagine a future where multimedia query engines just work. You can search by
topic, location, person, camera identity, and time—even when the uploader did not
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explicitly include such information. An unscrupulous attacker could query for videos
recently recorded at resorts and then find videos takenwith the same camera in nearby
wealthy residential neighborhoods. This would produce an ideal “hit list” of targets
who are likely away from home, which the thief could then refine. As reported in
previous work (see Sect. 7.2), cybercasing already occurs, but with a multimedia
query engine, simple methods of anonymizing posts and suppressing metadata will
no longer be enough. Rather, the multimedia community must work to educate the
public about the risks of inferencing at the Internet scale, invent methods to identify
when information (such as the “identity” of the camera) is being unintentionally
leaked, and develop mitigation techniques to reduce the potential harm.

After defining the topic and presenting prior work (Sect. 7.2), we outline existing
and future multimedia content analysis and linking techniques that could support
unethical use and describe possible attack vectors (Sect. 7.5). Next, we describe
some preliminary experiments providing evidence that multimedia analytics can
circumvent one aspect of privacy by linking accounts (Sect. 7.7). Finally, we outline
mitigation and educational techniques (Sect. 7.12) and conclude that this is a new
topic to be explored (Sect. 7.15).

7.2 Definition and Prior Work

Privacy is a concept that is hard to define. As a consequence, many definitions exist,
including “privacy is the right to be left alone” [1] and more modern definitions, such
as U.S. President Barak Obama’s “Framework for Protecting Privacy” [2]. Merriam
Webster defines privacy as “(a) the quality or state of being apart from company
or observation and (b) freedom from unauthorized intrusion” [3]. While all of the
definitions aim at the same goal, they are too broad for our engineering purposes.
Therefore, in this paper we restrict ourselves to amore technical definition.We define
privacy as “practically securing the implications of communication”, which sets it
apart from the field of secure communication, which is “securing the properties of the
communication itself” [4] throughmethods of cryptography, steganography, identity
hiding, and other well-known computer science topics. In other words, our privacy
research is not about securing a communication line between several parties; it is
to make sure that publicly available information conveys only the data the author
intended. We acknowledge that this goal, like the aims of secure communication,
will most likely never be achieved perfectly. However, improvements in methods
can make communication “more private”. Given that even our narrower definition is
still a very broad goal, we will limit ourselves to attack vectors that pose an actual
criminal threat and/or directly influence life-changing decisions.

While the scientific community has investigated correlation between different
data sets in terms of privacy implications, most of these efforts have focused on de-
anonymizing or compromising a single data setwith the help of auxiliary information.
Except for the few exceptions described below, efforts have mostly concentrated on
structured data, ignoring multimedia content analysis.
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7.3 Work on Structured Data

In 1997, Sweeney [5] showed that anonymously published medical records can be
de-anonymized when correlated with external data, triggering a large body of follow-
up work on designing anonymous statistical databases as well as understanding their
limitations [6–10].

More relevant to themultimedia community,Narayanan et al. present an algorithm
and proof for de-anonymizing sparse datasets [11]. They apply their algorithm to
anonymized Netflix movie ratings: given knowledge of a subset a person has rated
(e.g. learned froma lunch conversation or public ratings), the system is able to identify
all movies in the database that the user has rated. In [12], the same idea is used to de-
anonymize a social network graph by leveraging a graph from a second network with
real identities as auxiliary data. Researchers from Parc investigated inference using
web search engines in order to analyze whether anonymized (or obfuscated) private
documents that are going to be released publicly can be de-anonymized [13, 14].
They do not consider multimedia content nor inference between information that is
already publicly available.

Griffith et al. [15] correlate public birth, death and marriage records from the
state of Texas to derive the mother’s maiden name of more than 4 million Texans.
Balduzzi et al. [16] automatically query 8 social networks with a list of 10 million
e-mail addresses to retrieve the associated user profiles. They then correlate that
profile information across the networks and are able to identify mismatches between
them. (i.e. they find users who chose different names, age, etc. in different networks).
More generally, Bishop et al. [17] discuss the need to go beyond “closed worlds”
when sanitizing a data set and consider external knowledge explicitly.

With geo-location information being a popular key to image and video retrieval,
another area of related research is locational privacy. The Electronic Frontier Foun-
dation published an overview of locational privacy aspects [18]. Locational pri-
vacy in vehicular systems, e.g. toll collection, is addressed in [19, 20]. Zhong et al.
[21] present protocols for secure privacy preserving location sharing. The upcoming
HTML5 standard will include APIs to query a client’s location. The Cree.py [22]
application uses geolocation data from social networks and media hosting services
to track a person’s movements.

Several web sites highlight the potential of information leakage users might not
be aware of:
Sleeptime.org estimates sleep patterns of Twitter users.
Stolencamerafinder.co.uk crawls for digital camera serial numbers in

online photos in order to find pictures taken with stolen cameras.
Icanstalku.com published geotags found in tweets.
pleaserobme.com used status updates form social networks to locate users

who were currently not at home but had published their home address.
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7.4 Work on Multimedia Data

The above section was presented to outline current work on structured data. History
has shown that work on multimedia data follows in the footsteps of structured data
with a delay (for example, work on compression, messaging capabilities, or even
World Wide Web content itself). As a result, we see an initial growth in multimedia
articles that present work on privacy. We see this early work as evidence for our
hypothesis of a new field of research.

In a recent effort [23], we analyzed the privacy implications of geotagging, i.e.
high-accuracy location information attached as meta-data to audio, image, and video
files. Specifically, we examined the risk that such geotags pose for what we termed
“cybercasing”: using online data and services tomount real-world attacks.Moreover,
we showed that geo-tags are not needed as they can be replaced by multimedia
analytical location estimation techniques [24].

In [25] Lukas et al. propose a method for the problem of digital camera iden-
tification from images based on the sensor’s pattern noise. For each camera under
investigation, they first determine its reference pattern noise, which serves as a unique
identification fingerprint. This is achieved by averaging the noise obtained frommul-
tiple images using a denoising filter. To identify the camera from a given image, they
consider the reference pattern noise as a spread-spectrumwatermark, whose presence
in the image is established by using a correlation detector. Experiments on approx-
imately 320 images taken with nine consumer digital cameras are used to estimate
false alarm rates and false rejection rates.

Many researchers haveworkedonautomatic videoblurring (for example [26–28]);
however, [29] showed that many of the proposed techniques are not effective. In
response to this problem, [30] has presented an initial framework to validate video
privacy.

7.5 Privacy Risks and Possible Attacks

In this section, we describe some existing and future multimedia analytic techniques
that pose a privacy risk including how these risks could be exploited. This is by no
means an exhaustive list.

Location Estimation. Multimedia location estimation formed the genesis of our
interest in privacy in multimedia, and was reported in previous work (see Sect. 7.2).
Using multimodal methods, state-of-the-art algorithms can estimate the location of
about 40%of Flickr videoswith an accuracy better than 100m, and over 50%with an
accuracy better than 1km. This extends the amount of exactly trackable multimedia
by a significant factor without requiring actual GPS sensors.

Time Estimation. The date and time that a multimedia document was recorded
can be estimated using cues such as sun location or measuring shadow lengths. More
powerfully, if you can determine that Video A was recorded at the same time and
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place as Video B, and you know or can infer VideoA’s time, you now knowVideo B’s
time. Just excluding time/date metadata from your vacation video does not protect
you if somebody else includes it in theirs.

Person Detection. In the image realm, this is usually known as face detection; in
audio, speaker recognition.While the uploader can take activemethods to anonymize
the foreground participants if privacy is an issue (e.g. replacing their face with a black
box, replacing their audiowith a bleep sound), the privacy of background participants
is problematic because the uploader may not care about incidental privacy breaches
of the background participants.

Object Detection. Detecting an iphone in a person’s hand might make them a
more desirable robbery target. Marketers could target people based on the furniture
quality in the background of a video. Note that mitigation techniques are particularly
problematic with object detection, since one cannot simply remove all objects from
a multimedia document without severely impacting the document’s content.

Environmental Acoustic Noise. Uploaders often recognize the need to obscure
faces. However, when recording video data they often forget that the audio track
includes a unique signature that might break their anonymity. This has been shown
in several studies, including our previous work (Sect. 7.2). Also, the combination of
such linking methods with other methods such as location estimation leads to even
more powerful privacy invading possibilities.

Sensor Detection. It is already possible to narrow down or even uniquely identify
what camera was used to record a video or what microphonewas used to record audio
based on the artifacts of the sensor. For example, pixel noise is unique to a particular
camera; the exact frequency response of a microphonemight be used to narrow down
the possible microphones. This provides a whole new avenue of linking, completely
bypassing other means of anonymization.

3D Recordings. Time-of-flight cameras, light field camera, stereo cameras, and
microphone arrays are all becoming more pervasive. It is clear that similar devices
will continue to be developed. Each comes with its own sets of issues, and have the
potential to capture even more unwanted data. Since this trend will only accelerate,
it is necessary for the multimedia community to address these issues.

Exotic Sensors. Everything from air pressure sensors to heart rate monitors are
becoming more common, and it is likely data from these sensors will be incorporated
intomultimedia documentsmuch asGPS is now. Since users often have no real notion
of what is being collected or how accurate it is, they have little or no intuition on the
privacy implications. A prominent historic example is GPS—it was only recently
that the profound privacy implications of geotagging became commonly known.

We outline a small number of specific attacks that can now or could shortly be
used to invade privacy in detrimental ways using Internet scale multimedia analytics
and linking.

Today, one can readily access much of the structured information available online
via programmatic interfaces: major services like Google, Facebook, Twitter, Flickr,
YouTube, and LinkedIn all offer extensive APIs that make automatic retrieval trivial.
These APIs often offer more comprehensive access than the corresponding web



162 G. Friedland et al.

interface, and their availability is the primary driver behind the wide range of 3rd
party “apps” that constitute a key part of today’s social networking space.

We contend that as multimedia retrieval technology matures, it will eventually
become part of such APIs, making the capabilities available to everybody able to
write a few lines of Python code. For example, Google already provides simple
forms of image and video search, and rumor has it that face recognition is ready for
mass deployment as part of their Goggles service. Facebook has already integrated
face recognition into their platform, and though it is not yet exposed via the Facebook
API, third party companies such as face.com are already providing programmable
access to face recognition of Facebook content.

Having large-scale multimedia retrieval at one’s fingertips provides an opportu-
nity for amazing next-generation online services. However, we believe that it will
also open up a new dimension of privacy threats that our community has not yet
understood.

The availability of Internet-scale multimedia retrieval capabilities allows a wide
range of attacks that threaten users’ privacy. Whereas today’s search queries remain
limited to mostly textual information, attackers will eventually query for audio and
video content. Criminals could leverage that to reliably locate promising targets. For
example, they may first identify individuals owning high-value goods within a target
area and then pinpoint times when their victims’ homes are unattended.

Another threat is background checks becoming much more invasive than today:
many companies have strong incentives to examine their customers’ private life
for specifics impacting business decisions. An insurer, for example, might refuse
payment to a customer receiving disability where the insurer finds Facebook photos
of the customer skiing. Likewise, an employer seeking new hires might check a
candidate’s Twitter followers for potentially embarrassing information that could be
used against the company in the future and refuse to hire such candidates.

A whole new realm of marketing techniques are enabled by multimedia retrieval
and linking. A company could extract all videos of people wearing brandedmerchan-
dise, cluster them by location and time, and target that location for direct marketing.
The privacy implications of such broad and automatic analysis have been insuffi-
ciently studied.

The new capabilities make stalking easier by providing the means to not only
quickly locate the victims, but also profile their typical behavior patterns, friends,
relatives, and acquaintances.

7.6 Example

In this section, we will exemplify the power of multimedia retrieval in combination
with structured-data retrieval in a mockup scenario adopted from [31].

Consider the following business: Fred works for Schooner Holdings and wishes
to gain (possibly illicit) inside information on future profits at the chipmaker Letin.
Fred hires Eve, who runs an “expert network”. Eve puts Fred in touch with Bob, a
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Letin employee. In the process of consulting for Fred, Bob is encouraged to reveal
information about Letin’s upcoming products.1

Currently, the greatest limit on this process is Eve finding experts like Bob who
(perhaps unknowingly) possess potential insider information and are willing to act
as consultants. Eve would greatly improve her business if she could find “corrupt-
ibles”: individuals in the business of interest who might be favorable to legitimate or
illegitimate offers.

Thus Eve starts searching social networks for individuals who are compatible with
her desired level of (il)legality. She instructs her crawler to begin with LinkedIn and
web searches, crawling the names and contact information for personnel at companies
of interest.

Then her crawler shifts to Facebook, Twitter, other social networks, and blogs,
beginning with all candidates found in the first pass. This crawler does not just look
at the candidates but also at friends of candidates.

She also searches anymedia, including images and videos, for links to other people
that the social network might not provide directly. Face recognition for example can
provide probable connections to other profiles. She also examines media for any
compromising material, such as illegal acts, drug paraphernalia, or party photos. Eve
knows that her automated content analysis does not need to be perfect: she leverages
crowdsourcing services like Mechanical Turk [33] to validate potential candidate
matches using human labor at a very low cost.

Eve’s crawler also queries further public and semi-public records. There are com-
mercial services that map an email address to a mailing address. Her crawler uses
these to discover where candidates live and how much their property is worth (e.g.
by using Zillow.com’s access to property tax data and sales history).

With all this data, Eve’s crawler can now create “inference chains” which esti-
mate the probability that any given candidate in her set has a potential weakness,
enabling Eve to search for possible points of corruptibility. An individual who is
dating someone with a reputation as a gold digger, or who purchased their house at
the height of the real estate bubble, might have financial problems. Such candidates
could be honestly corrupted by offering consulting positions, allowing Eve to expand
her expert network.

Eve might also contract with those operating outside the law. Then blackmail
becomes an attractive option, especially if considering guilt by association. Someone
with a security clearance may be vulnerable if his associates are drug abusers, or if
he is having an affair that can be inferred through social patterns.

Nothing in the preceding scenario is unrealistic: every step Eve takes can be
constructed using today’s technology. It is simply a matter of putting all the pieces
together to collect and analyze the reams of data which exist on today’s social net-
works and other databases.

1 In many countries, this practice is possibly illegal but exists in a gray area and is seemingly
routine practice. The Galleon insider trading trial [32] was based largely on the use of expert
network consultants.
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Unfortunately, there is also hardly any protection in place against somebody like
Eve. Furthermore, while structured data still plays a dominant role in this scenario, it
is easy to see howmultimedia datawill blur the boundaries evenmore. For example, if
we assume that face recognition technology reaches close to perfection, user names
will no longer provide a boundary as long as a face photo is part of the website.
Moreover, speaker recognition, location estimation, and other techniques described
in Sect. 7.9 will add even more possibilities. Finally, note that the methods need not
be perfect—Eve needs only a small number of likely hits to follow up on to allow
nefarious actions to proceed

7.7 Preliminary Experiments

This section presents technical details on a preliminary experiment on matching
user accounts based on consumer-produced videos, demonstrating that multimedia
retrieval can circumvent traditional security and privacy barriers, such as the assump-
tion that different account names will separate the same persona.

Consider the following scenario: A professor at a University is proud to present
lectures to a very large audience on a public video distribution site. These lectures
contain her voice, her face, and her name in the credits, making their authorship
anything but anonymous. At the same time, she is dating online and follows the
dating site’s suggestion to provide introduction videos of herself to make her profile
more personable. The suggestion comes with the assurance that, unless the author
of the introduction video identifies herself, the video will remain anonymous.

In the following, we will provide evidence that this promise of anonymity is hard
to keep in the face of increasingly accurate multimedia retrieval technologies.

7.8 Dataset

We begin by describing the data sets used in this experiment. The audio tracks are
extracted from the videos distributed as training and test sets for the Placing Task
of MediaEval 2011 [34], a multimedia benchmark evaluation. The Placing Task
involves automatically estimating the location of each test video using one or more
of: metadata (e.g. textual description, tags), visual/audio contents, and social infor-
mation. The videos are not pre-filtered or pre-selected in any way to make the data
set more relevant to the user-verification task, and are therefore likely representative
of videos selected at random.

A total of 10,857 Creative Commons licensed Flickr videos, uploaded by 2,943
Flickr users, were used in our experiments. Flickr requires that an uploaded video
must be created by its uploader (if a user violates this policy, Flickr sends a warn-
ing and removes the video). This policy generally ensures that each uploader’s set
of videos is “personal” in the sense that they were created by the same person and
therefore likely have certain characteristics in common, such as editing style, record-
ing device, or frequently recorded scenes/environments, etc.
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Fig. 7.1 A histogram visualizing the duration of the videos of the data set used in our experiments

From a by-hand examination of 123 short-duration videos from the data set,
we found that most of videos’ audio tracks are quite “wild”. 59.3% of the videos
are home-video style with ambient noises. 47.2% of the videos had heavy ambient
noises such as crowds chatting in the background, traffic noise, andwind blowing into
microphone. 25.2% of the videos contained music, either played in the background
of the recorded scene, or inserted at the editing phase. 59.3% of the videos did not
contain any form of human speech at all, and even for the ones that contained human
speech, 64% were from multiple subjects and crowds in the background speaking
to one another, often at the same time. Although we found that 10.5% of videos
contained audio of the person behind the camera, there is no guarantee that the
owner of the voice is the actual uploader; it is possible that all videos from the same
uploader were recorded by different people (such as family members).

Figure7.1 displays a histogram of the lengths of the 10,857 videos used in our
dataset. All videos are limited to 90, accounting for the peak at 90. 71.8% of videos
have less than 50 of playtime, while 50% have less than 30 of playtime.

7.9 Technical Approaches

This section describes the multimodal user verification experiments based on audio
and a set of five visual features. Note that the task of user verification is to deter-
mine if two videos are uploaded by the same user or different users. The i-vector-
based approach [35], which is currently the state-of-the-art in the field of speaker
recognition, is used to perform classification and audio-visual feature combinations.
The approach involves extracting a set of low-dimensional vectors to represent the
user identity of each video. The vectors can be derived from either the audio or visual
features.
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To extract the audio-based low-dimensional vectors, which are known as the
i-vectors in [35], a total variability matrix T is first trained to model the variabil-
ity (both user-, acoustic environment-, and acoustic channel-related) of the high-
dimensional Baum-Welch statistics obtained from the MFCC C0−C19+Δ+ΔΔ

(60 dimensions total) audio feature vectors of each video. The matrix acts as a pro-
jection matrix used to obtain the low-dimensional vectors, which characterize the
user of each video based on its audio. Specifically, for each video, the audio track
is first extracted, and a vector of first-order Baum-Welch statistics M of the audio
feature vectors, centered around the means of a GMMworld model, is obtained. The
statistics can be decomposed as follows:

M = m + T ω (7.1)

where m is the GMM world model mean vector, and ω is the low-dimensional
vector. The GMM contains 1,024 mixtures, and each mixture contains 60 mean
dimensions corresponding to the dimensionality of the MFCC features. Hence, the
total dimensionality of M is 61,440, which the T-matrix projects onto a set of 400
dimensions to form the low-dimensional audio-based vectors.

The visual-based low-dimensional vectors are obtained from the result of a Prin-
cipal Components Analysis (PCA) projection of a set of pre-extracted visual features
onto a small set of its eigen-dimensions. The visual features are extracted using the
open source library LIRE [36]. The features used include Tamura (TAM), Gabor
(GAB), Auto Color Correlogram (ACC), Color and Edge Directivity Descriptor
(CEDD), and Fuzzy Color and Texture Histogram (FCTH). The TAM feature is a
texture-based feature. For our experiments, 24 dimensions are used to represent the
low-dimensional vectors for the GAB, ACC, CEDD, and FCTH features, and 12
dimensions are used for the TAM feature.

The audio and visual features are combined by concatenating the correspond-
ing low-dimensional vectors (in this way, the combined-feature experiments use
more parameters than the standalone-feature experiments). The system performs
a Within-Class Covariance Normalization (WCCN) [37] on the resulting vectors,
which whitens their covariance via a linear projection matrix. A generative Proba-
bilistic Linear Discriminant Analysis (pLDA) [38] log-likelihood ratio is then used
to obtain a similarity score between the low-dimensional vectors of each training and
test video. The generative pLDA log-likelihood ratio for similarity score computation
is shown below:

score(ω1, ω2) = logN

([
ω1
ω2

]
;
[

μ1
μ2

]
,

[
Σtot Σbc
Σbc Σtot

])

− logN

([
ω1
ω2

]
;
[

μ1
μ2

]
,

[
Σtot 0
0 Σtot

])

where ω1 and ω2 are the vectors for a pair of training and test videos, N (·) is
the normal Gaussian probability density function, and Σtot and Σbc are the total
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and between-class scatter matrices computed from the training vectors. Hence, one
user-similarity score is obtained for each training versus test video using the above
approach.

The BrnoUniversity of Technology’s (BUT’s) Joint Factor AnalysisMatlab demo
[39] is used to assist in the system development, and the open-source ALIZE toolkit
[40] is used to train the UBM. The HTK Library [41] is used for MFCC feature
extraction.

7.10 Experiments and Results

A set of 1,268 Flickr users in the corpus were designated as training users, and 2,851
were designated as test users, with roughly 1,200 users in common with the training
users. Each training user is associated with one video in the training set, and 4,869
videos are associated with the 2,784 test users. Overall, a set of 6,251 videos were
used for training and testing. A separate set of 146 users with 4,605 videos were used
to train the T-matrix, PCAprojectionmatrices, and the total and between-class scatter
matrices used in the system. 2,302 videos from the 146 users were used to train the
GMM world model. A total of 6 million similarity scores were computed between
video pairs from the training and test users, with 3,385 of the scores from pairs with
the same user. Table7.1 shows the Equal Error Rate (EER), and the Miss Rates at
1% and 0.1% False Positive (FP) rates for the 6 million scores of the system. A
Miss occurs when a pair of same-user videos are classified as having different users,
and a FP (false positive) occurs when different-user videos are classified as having
same users, given a particular scoring threshold. For the Miss rate at 1% FP, the
threshold is set such that 1% of the different-user pairs are classified as having same
users. User verification results for both audio and visual features, standalone and
in combination, are shown. Also shown are the number of dimensions used in the
low-dimensional vectors used to compute the user-similarity scores for each feature,
or combination of features.

Results in Table7.1 indicate that the audio-based MFCC feature has the best
standalone performance—26.1% EER, 65.6% Miss at 1% FP, and 86.6% Miss at
0.1% FP. If the MFCC features are combined with the top-four standalone visual
features in terms ofEER (ACC,CEDD,GAB,FCTH, andTAM), then the performance
improves to 24.0% EER, 59.2% Miss at 1% FP, and 78.4% Miss at 0.1% FP. This
represents an 8.0% relative EER improvement, a 9.8% relative improvement of
Miss at 1% FP, and a 9.5% relative improvement of Miss at 0.1% FP. The results
demonstrate the effectiveness of combining the audio and visual modalities for this
task. The standalone visual features perform significantly worse than the MFCC
feature.
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Table 7.1 User matching results for audio and visual features standalone and in combination

Feature EER (%) Miss at 1% FP
(%)

Miss at 0.1%
FP (%)

Vector dims

ACC 35.1 84.9 96.0 24

CEDD 35.0 82.1 91.4 24

FCTH 34.9 82.2 91.5 24

GAB 44.4 97.3 99.6 24

TAM 33.9 87.6 98.8 12

GAB+CEDD+ACC+FCTH+
TAM

33.0 76.6 91.5 108

ACC+CEDD+FCTH+TAM 32.4 74.9 89.7 84

MFCC 26.1 65.6 86.6 400

MFCC+ACC+CEDD+GAB+
FCTH+TAM

24.1 60.0 79.3 508

MFCC+CEDD+ACC+ 24.0 59.2 78.4 484

FCTH+TAM

Similarity scores were computed on 6 million pairs of videos, with a total of 1,268 training users
and 2,784 test users as described in Sect. 7.10

7.11 Summary of Experimental Results

The outcome of the above experiment for user matching is certainly not yet a reason
for panic as user matching based on content is still very preliminary. However, given
that our best approach was able to match random, short consumer-produced videos
with an equal error rate of 24% (compared to 50% for chance), it means that a future
can be foreseen where attacks like this become feasible. Moreover, many attacks are
not targeted at matching one particular user. When finding victims from a large pool,
the miss and false alarm rates are more important. The above experiments show that
at 1% false alarm, we would only miss about 60% of the true positives. Given a
scenario where the 1% false alarm does not represent many videos, one can search
through the 40% of the non-missed true positives for a pair of videos containing the
same user uploader.

7.12 New Topics for Research

Countering the attacks described above is not straight-forward since filtering out
sensitive information from audio and video content is fundamentally harder than
with structured text data. We therefore propose a new topic in multimedia devoted
to considering both privacy research as well as education.
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7.13 Mitigation Research

Amajor challenge for conserving privacy in consumer produced videos is the devel-
opment of methods to identify the foreground information information that the user
considers important from the background information. It is this background data that
has the highest risk of incidentally leaking private information.

We believe that machine learning will play a key role in detecting such unnoticed
information leaks. For example, one can label who is an “extra” in a movie by
the number of times they appear and the number of lines they speak. The extras
form the semantic background to the movie—they are noticeable, but not directly
relevant. A machine learning algorithm could use “star” versus “extra” as ground
truth, and learnmodels to distinguish the two. Applied to consumer-produced videos,
the system could then identify foreground versus background participants using the
trained model.

Once the information that is breaking privacy is identified, it must also be removed
or distorted sufficiently to reduce the threat. This is difficult with most existing
multimedia analysis algorithms, since they are statistical in nature. If we understood
the specific cues the statistical methods learn, we could obscure those cues, hopefully
without distorting the rest of the content. For example, if the background semantic
“bird call of a Nene” is detected, you are leaking location information (Hawaii). Just
damping that soundmay be enough to obscure the location. This sort of cue detection
is in the nascent stages for somemethods (e.g. concept detection as inTrecVIDMED),
and nearly non-existent for others. It is incumbent on the multimedia community to
develop an understanding of the cues so that mitigation techniques can be developed.

For othermethods,more directmitigationmaybepossible. For example, an upload
tool could blur semantically background faces in a video (however, this might not
be enough, see also discussion in Sect. 7.2). A query tool could refuse to perform
speech recognition and indexing on background voices. This would be very similar
to today’s common practice for copy machines to refuse the copying of bank notes.
A key component of such a system would be to ensure, possibly with the interaction
of the uploader, that foreground content is not compromised.

7.14 Education on Privacy

Independent of any technological protection, we believe a key ingredient to compre-
hensive mitigation must be education. University electrical engineering and com-
puter science curricula usually include an abundance of material on how to improve
retrieval based on the underlying multimedia content analysis but only rarely talk
about the negative impacts of these technologies. Privacy content is mostly limited
to traditional topics in secure communications such as steganography, encryption,
and other well-known techniques and/or even removed from consideration, as eth-
ical concerns are considered not to be part of engineering. Therefore, even when
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acknowledged as a problem, many new technologists lack the knowledge of how
to react to society’s concerns and even mitigate easy-to-address risks. An argument
often heard from students is: “We’ll deal with privacy and social issues later—right
now we need to focus on development.” The truth, however, is that, for example, if
privacy and security had been a concern in the early stages of developing the Inter-
net, many of today’s issues, such as spam and phishing email, would most likely
be much less of a problem. Undergraduate and graduate engineering education cur-
riculums should therefore include a strong component on privacy that makes future
technologists aware of the societal implications of their research and development.

The second line of education should concern users, especially young people.
Among the groups most affected by privacy concerns are high-school students [42].
They are the most frequent users of social-networking sites and apps, but often
do not have a full understanding of the potential consequences their current online
activities might have later in their lives. For example, a Facebook posting that a
high-schooler’s friends think is “cool” might be seen by a much larger audience
than she or he expected—including perhaps future employers who wouldn’t agree
with the high-schooler’s judgement. In addition, not understanding—or not thinking
about—the consequences of posting often leads to oversharing information about
other people, including friends and relatives. Consequently, users can take steps to
protect themselves once they realize the power that modern content analysis tools
yield in the hands of adversaries. They might then even choose not to post certain
content in the first place.

Figure7.2 shows a preliminary mockup for a teaching tool that we created as part
of a project for social media privacy education for teenagers [43]. The input for the
web-based tool is an arbitrary image that has been published on the web. The image

Fig. 7.2 Education is part of the new topic. A mockup of an educational browser tool showing that
online image often includes meta-data that allows inference beyond the content of the image
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is than analyzed for EXIF data. If found, the data is displayed textually. Furthermore,
if the EXIF data contains geo-tags, the location for the image is shown on a map and
all Twitter feeds that belong to that location are also shown. We saw that people are
often shocked, how much information an indoor image like the one shown conveys
and at the same time, howmuch can be inferred from that location, e.g. when a photo
that does not contain any faces actually maps back to their own twitter feeds.

Building effective educational components that transfer knowledge on privacy
protection and the consequences of multimedia retrieval to younger adults who are
not yet capable of understanding deep research results constitutes a new domain for
research.Here, educational researchneeds to teamupwithHCI andothermultimedia-
related fields to attack this part of the new topic. The question is how to enable
educators to master an up-to-date, scientifically-informed understanding of privacy,
without having to rely on (often exaggerated) newspaper articles.

7.15 Conclusion

The growth of multimedia as demonstrated by social networking sites such as Face-
book and YouTube combined with advances in multimedia content analysis (face
recognition, speaker verification, location estimation, etc.) provides novel opportu-
nities for the unethical use of multimedia. The article surveyed the field and showed
that awareness of the issue is focused on structured data but does not extend to
multimedia retrieval. Using a scenario, a taxonomy of attacks, and a preliminary
experiment, we outlined how multimedia retrieval adds a new quality to privacy and
security research. We believe that mitigation is both a question of research as well
as education. In summary, we believe the diversity of attacks and the complexity of
solving the privacy issues with multimedia content will require creative thinking of
a community of researchers and therefore spawn a new field in multimedia content
analysis. We believe web-scale multimedia privacy is not only a new topic, but also
a necessary new field.
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Chapter 8
Large-Scale Biometric Multimedia
Processing

Stefan van der Stockt, Aaron K. Baughman and Michael Perlitz

Abstract The field of Biometrics analyses organic signals from people to identify
or verify an identity using a combination of physiological, behavioural or cognitive
characteristics such as voice, fingerprints, eye color, facial features, iris, handwriting
or other characteristics. Large-scale biometric identification systems can benefit from
modern optimisation, classification and parallel computation techniques to reduce
cost and increase accuracy. This chapter discusses recent and novel developments by
the authors in the approaches taken to enable large-scale biometric identification. The
authors present an overview of different techniques to perform the tasks of search
space reduction, feature selection and parallel processing of biometrics data. Topics
covered are: support vector machines and hyperspace transformations for effectively
searching extremely large fingerprint databases to identify individuals; evolutionary
computing to perform efficient facial feature selection for identification purposes;
and cloud and high-performance designs for biometric systems.

8.1 Introduction

Traditionally, the field of Biometrics applies pattern recognition and analyses organic
signals frompeople to identify or verify an identity using a combination of physiolog-
ical, behavioural or cognitive characteristics such as voice, fingerprints, eye color,
facial features, iris, handwriting or other characteristics [1]. A biometric should
maximise the following criteria:

• Universal: such that everyone has the signature
• Unique: such that true positives are maximised
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• Acceptable: such that society adopts the use
• Permanent: such that the trait minimally changes over time
• Collectable: such that the signal can be acquired

Biometric samples that are universal, unique, permanent, acceptable and col-
lectable, or some combination thereof, are a mechanism to uniquely and accurately
identify or verify people. Verification, or a one-to-one (1:1) match, involves the con-
firmation or authentication of a person’s identity. Identification, or a many-to-many
match (1:M or N:M) where M is the gallery size and N are the probe biometrics,
requires the person’s identity to be looked up in a database containing the biomet-
rics of many individuals. Verification is considered easier to implement and is less
challenging in large-scale systems [1].

One of the most well-known biometrics used for identification and verification is
the fingerprint, which satisfies all of the required criteria above. Forensic scientists
use fingerprints to identify and verify identities. The pattern on the skin at the tip of the
finger phalanx is referred to as a fingerprint [1, 2]. Evenfingerprints between identical
twins are different [1]. The singularities in the ridge pattern of a fingerprint are known
asminutiae [3]. Figure8.1 shows an example of fingerprint minutia. The combination
of fingerprint ridge flow, n-furcations, and minutiae are known as features and are
used in criminal court cases to refute or support identification around the world such
as the 1999 US versus Byron Mitchell, 2000 US versus Hilerdieu Alteme, and the
Commonwealth versus Owen McCants (2914).

Biometric data is growing at an accelerating rate and is creating an unimpeded data
avalanche. Smart devices with cameras, microphones and esoteric sensors combined
with maturing networking capabilities is making applications that utilise biometrics
viable on a previously unimagined scale. Recent hand-held device advances such as
the Apple iPhone 5S allows fingerprint data to be gathered and potentially incor-
porated into mobile apps. Social media sites such as Facebook are beginning to use
facial recognition to automatically tag humans in images. Further, large-scale bio-
metric systems can be exemplified by India’s National ID programme, Aadhaar, with
goals to enrol multi-modal biometrics from 1.2 billion people from the country’s gen-
eral population [4]. Interest in using biometrics is exploding in areas such as criminal

Fig. 8.1 Example
fingerprint images and
minutia
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Fig. 8.2 The growth of
cores on top supercomputers
since 2006

investigation, customs control, health care, banking, insurance, industrial and resi-
dential access control. These applications typically require candidate gallerymatches
within a few seconds from the submission of a biometric probe identification job.

The alarming growth of biometrics data has implications for existing techniques.
On the algorithm level, the process of feature extraction or templatisation and the
process of performing a match can be difficult to reach high levels of specificity,
sensitivity or precision. Identification is more challenging than verification when
applied against a large database of biometrics or gallery where a probe could contain
several biometric samples [1]. To increase performance, many techniques have been
used in biometric identification research that focus searches on the area of the data
that most likely contains the identity in question [1, 2, 5–9]. As such, the penetration
of a large-scale biometric database is reduced. A few of these techniques include
binning and hashing functions [1]. Large-scale biometric identification systems can
benefit frommodern optimisation, classification and parallel computation techniques
to reduce cost and increase accuracy.

The field of biometrics is a natural fit for parallel computing. Parallel computing
allows a single problem to be broken down into many smaller pieces that can be
addressed simultaneously. In the past, this kind of technology was only available in
supercomputers, but recent advances in processor design and lower costs have made
it possible for firms of modest size to have access to hundreds or even thousands
of processor cores. Figure8.2 depicts the number of cores on the fastest supercom-
puter since 2006.1 New tools and methods have emerged that enable rapid and cost-
effective deployment of massively parallel data intensive applications. This chapter
focuses on techniques and designs to address large-scale biometric identification.

While the process of identification may not necessarily be implementable as a
parallel operation, the use of search space reduction techniques togetherwith relevant
parallel computing techniques enables the same amount of hardware to performmore
simultaneous searches.

This chapter discusses recent and novel developments by the authors in the
approaches taken to enable large-scale biometric identification. The authors present

1 www.Top500.org.

www.Top500.org
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an overview of different techniques to perform the tasks of search space reduc-
tion, feature selection and parallel processing of biometrics data. Section8.2 dis-
cusses how support vector machines and hyperspace transformations can be used
to effectively search extremely large fingerprint databases to identify individuals.
Section8.3 discusses the use of evolutionary computing to perform more efficient
facial feature selection for identification purposes. Section8.4 discusses new cloud
and high-performance designs for biometric systems.

8.2 Large-Scale Fingerprint Identification Using SVM

This section shows how large-scale fingerprint identification can be performed using
support vectormachines. ASVM is used to reduce the search space needed to identify
the person.

8.2.1 Related Work

The quantity andmagnitude of fingerprint databases are increasing in size. Generally,
the community is converging towards a definition of large-scale databases. A readily
accepted source defines a very large biometric database with 1 million records [2].

Several country citizen repositories pass the extremely large database category as
shown in Table8.1. All of the repositories below are part of the very large database
classification.TheUSVisit programme, operated by theUSDepartment ofHomeland
Security (DHS), contains over 100 million people’s fingerprints. The Federal Bureau
of Investigation (FBI) maintains over 54 million sets of 10 fingerprints each. The
Unique Identification Authority of India maintains over 5 Billion fingerprints.2 The
database sizes of a number of countries are listed in Table8.1. As database sizes
increase, the number of false positives increases quadratically with the size of the
database [2].

Technological advances have improved all layers within the large scale biomet-
ric identification problem. Automated fingerprint identification can be decomposed
into fingerprint capture, feature extraction, file partitioning or binning, pre-screen
matcher, secondarymatcher and decision logic [3]. Numerous feature extraction, pat-
tern recognition and templatematching algorithms have been developed and analysed
with respect to speed and a receive operator curve (ROC) [2, 10, 11]. File partition-
ing, indexing or binning algorithms reduce the search space of a biometric database.
Baughman et al. investigated the viability of using a novel hyperspace structure with
a plurality of kernel functions within a Support Vector Machine (SVM) as a method
to perform search space reduction [6].

2 https://portal.uidai.gov.in/uidwebportal/dashboard.do.

https://portal.uidai.gov.in/uidwebportal/dashboard.do
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Table 8.1 International
biometric repositories [2]

Country Programme Database size Biometric

India National ID 5B

UAE National ID 103M

Thailand National ID 15–40M Fingerprint

Peru Voter registration 13M

Hong Kong National ID 7M

ASVMkernel can utilise fingerprint minutiae and ridge flow information. Finger-
print minutiae points are ridge endings, bifurcation or n-furcation of the fingerprint.
Within a Cartesian grid, the (x, y) position give the location of the point while the
θ point defines the angle of incidence to the ridge flow [12, 13]. A delta point is
the area on a fingerprint where the ridge flow diverges while the core is the point
where ridge flow is symmetric [12, 13]. Fingerprint ridge flows can be classified into
six main classes: scar, whorl, left loop, right loop, arch and tinted arch, with many
derivations [12, 13].

Yao et al. used SVMswith theNIST-4 special database [9]. The fingerprints were a
priori classified intowhorl, right loop, left loop, arch and tented arch.Abank of SVMs
was trained on the classes for one versus all, pair wise and error-correction scheme
experimentation [9]. Each of the classifiers found the support vector between two
fingerprint classifications. With the error-correction scheme, the algorithm achieved
89.3% classification accuracy with 1.8% rejection rate during feature extraction [9].

In 2008, Jin-Hyuk et al. extended Yao’s SVM work and used the NIST-4 special
database. The SVM was used to vector fingerprints according to an image’s ridge
flow [14]. The one versus all scheme was dynamically ordered with naive Bayes
classifiers to break ties that occur with multi-class classification systems. The algo-
rithms produced 90.8% classification accuracy [14]. This paper extends both works
by utilising a plurality of kernels within a hyperspace construct.

As an alternative to SVMs, a few works have addressed fingerprint index-
ing. Within Germain’s work, an algorithm of transformation parameter clustering
attempts to build fingerprint database index maps [1]. Triangular minutiae constel-
lations are created from

C(n, 3) = n!
3!(n − 3)! (8.1)

minutia points, where n is the total number minutiae points within a fingerprint. A
bound is established so that not every triangular shape is computed. The full index or
key consists of nine components: length of each side, ridge counts between the pair
and angles between the pair [1]. Each index is placed into a multi-map or container.
If the key is already within with a container, the entry is added. Through a search,
accumulation of evidence for a potential match is generated based upon the members
that are found within the probe key set. On average, the algorithm achieved 7.3 µsec
per print with a 1/10 False Negative Rate (FNR) and 1/1,000,000 False Positive Rate
(FPR) [1]. This paper presents an alternative dynamic and modular SVM for search
space reduction.
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8.2.1.1 Support Vector Machines

A Support Vector Machine (SVM) [15, 16] is a supervised learning pattern recog-
nition algorithm that is commonly implemented within the pattern recognition field.
An SVM projects feature vectors into a linear or non-linear state space using kernel
function(s) and attempts tomaximise themargin between classes [16]. The projection
of low-dimensional feature vectors into a higher dimensional hyperspace structure
helps to provide sparse separable clusters of data, which in turn makes classification
easier. SVMs perform well on very high-dimensional data (1,000s of columns). Bio-
metric data such as fingerprints that have been transformed into feature vectors are
good candidates for SVM classification.

8.2.2 Fingerprint Identification Using SVM

The aim of using an SVM for fingerprint identification is to reduce the search space
by returning a smaller result set to search for a matching fingerprint. The process
starts by converting fingerprint position and ridge flow pattern classifications into
feature vectors. The feature vectors in turn serve as input to one or more kernel func-
tions. When multiple kernel functions and SVMs are defined, a hyperspace structure
encapsulates the space. A composite kernel of fingerprint position and a ridge pattern
classification heuristics maps fingerprint data into a hyperspace structure. A hyper-
space structure provides a construct that groups and creates relationships between
kernels and SVMs. The result is an infinite projection space for kernel functions. As
samples are projected into a hyperspace construct, fingerprint identification velocity
improves while system performance will increase or remain constant.

8.2.2.1 Kernel Definition

A parametric function projects low-dimensional data onto high-dimensional spaces
vector data into similar sparse groups [16]. A function,

y = f (x, w) (8.2)

is a mapping of input vector x to output vector y with w weights. A training phase
selectsw thatminimises classification error E(.) [16]. FromEq.8.3, the errormeasure
is equal to a distance measure l(.) between a prediction f (x, w) and target value yt.

E( f (x, w)) =
m∑

t=1

l( f (x, w), yt) (8.3)

The kernel function selected and trained within the paper includes multiple inde-
pendent kernels [16]

k(x, x′) = k1(x, x′) + k2(x, x′) (8.4)
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where k is a kernel functiondefinedby the summationof two separate kernel functions
k1 and k2, x is the feature vector, and x′ is the projection weights vector. The first
kernel maps fingerprints into finger digit positions. The right thumb is position one
while the left thumb is position ten, i.e.

k1(xi , x′) = p(x′
i ) = r, r ∈ [1, 10] (8.5)

where the function p(x′
i ) projects a feature vector xi into a range r that maps to

fingerprint digits 1 through 10.A kernel k2 defines a bootstrapped c-means cluster-
ing function from the x′ weights or initial cluster epicentres. Using the minimum
squared difference between normalised features q(x j ) and epicentre x′

k , the cluster
membership is selected as follows:

k2(x j , x′) = c(x j , x′) = min ‖
N∑

k=0

(q(x j ) − x′
k)

2‖ (8.6)

The selected minimum cluster(s) will become the group value for q(x j ). The feature
vector of a fingerprint feature vector q(x j ) is transformed into normalised values as

q(x j ) = sx j , s ∈ R (8.7)

where s is any real value that normalises feature values from potentially different
feature extractors. A function M defines the higher dimensional mapping

k(x, x′) = M(r + c) (8.8)

where r = k1(xi , x′) and c = k2(x j , x′).Working towards a linear dual representation,

k(x, x′) = Φ(xi )
T Φ(x′) = (ri , ci ) (8.9)

leads to dimensional mapping [16], which is used in this chapter.

8.2.2.2 Feature Classification

A bootstrapped C-Means clustering algorithm, as defined in algorithm 1, separates
fingerprint scar, whorl, left loop, right loop, arch and tinted arch classes. Initially,
each data element was itself a cluster [17]. Sequentially, the data elements were
evaluated for cluster membership by the Euclidean distance between its feature vec-
tor, a single classification point, and each cluster’s epicentre. If the sample’s smallest
distance from a cluster is equal to a threshold of 0 metric units, the data sample was
placed into the cluster. The threshold for clustering was 0 because the classification
of fingerprint patterns was integers in the range [1, 6] [13]. If a cluster does not
exist for a fingerprint classification, a new cluster is formed. When the probability is
lower than amajority vote of 50%, the fingerprint is boosted for all patterns [18]. The
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Algorithm 1 Bootstrapped C-means clustering pseudocode
A priori define (τ, t)where τ is an empirically determined threshold and t is the time requirement
for biometric identification
Step 1: For all fingerprints in the set of all fingerprints, ∀ fi ∈ F , all fingerprints

∑N
k=0( fi ∈ C j )

2

are assigned to cluster C j where 0 ≤ j ≤ |C|
Step 1a: For each fingerprint ∀ fi ∈ F and i − |F |
Step 1b: Determine the minimum Euclidean distance, c = min ‖ ∑N

k=0(q(x j ) − x′
k)

2‖, to a
cluster where x j = u( fi ) and u(.) is the feature extraction algorithm for fingerprints.
Step 2: If c > τ create a new cluster x′

k+1 = u( fi ).

Step 3: If c ≤ τ recalculate an existing cluster xk = ∑N+1
i=0

xi
N+1 + N (x′

i )

N+1

Step 4: Check to determine if the cluster epicentres have changed, b = ∑N
k=0 x′

kt == x′
kt+1.

Step 4a: If b&c == ∑N
i−0 2

i where c = 11 ∪ · · · ∪ 1N then the c-means algorithm stops.
Step 4b: If tc > t , where Tc is the cumulative algorithm time and t is the a priori time then the
c-means algorithm stops.
Step 5: Continue step 1 if both step 4a and step 4b are not true.
Step 6: Return the cluster space, ∀ fi ∈ x′

clustering algorithm continued until none of the epicentres moved or began thrashing
within the cluster space.

8.2.2.3 Hyperspace Structure

Below, the following automaton defines the hyperspace construct:

Hyperspace construct: H = Hyperspace,Λi = Sub-Universe,Ωw = World,
φi, j = Dimension, ρi, j = Policy, δi, j,k = Operator, Al = Cluster, αl,i, j =
Bin Member, where i = sub-universe number, j = dimension number, k =
operator number, l = cluster number, m = world number, Al = ∀αl,i, j

A cluster is defined as the set of all cluster members. Recall that a cluster is
related to SVMkernel k2(x j , x′) fromEq.8.6. Each cluster member is vectored into a
n-dimensional space. From kernel k1(xi , x′) from Eq.8.5, each dimension represents
a fingerprint position. A sub-universe is defined as a set of dimensions or set of
fingerprint positions:

Λi = {∀φi, j } (8.10)

For each dimension there exists an associated policy and a set of operators. The
policy provides an association between operators or heuristics and a dimension.

φi, j = ∃ρi, j ∪ {∀δi, j,k} (8.11)

Within the context of fingerprint identification, the heuristic determines which fin-
gerprint feature vector belongs to each fingerprint classification such as whirl, tented
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arch, left loop, etc. and to which cluster based on Cartesian distance. The world
automaton, Ωw, specifies the set of all data elements or fingerprints which belong to
all clusters within a sub-universe and the sub-universe itself:

Ωw = {{∀αl,i, j }ε{Δi }} ∪ {Δi } (8.12)

The world automaton could span multiple SVMs if required. Within this chapter,
we only use 1 SVM with 2 kernels. Finally, the hyperspace automaton defines the
universe of a problem domain and contains the SVM:

H = {∀Ωw} (8.13)

8.2.3 Experimental Procedure

All experiments that were performed used the SVM technique as described in
Section 8.2.2. The dataset comprised of a 6,278 sub-sample of 24,000 records in
the National Institute for Standards and Technology (NIST) special database 14. All
of the fingerprint images were encoded with theWavelet Scalar Quantisation (WSQ)
specification [19]. Thefile name contained the fingerprint position label. Several open
source algorithms fromNIST were implemented to produce the features required for
the hyperspace structure [13]. MINDTCT, BOZORTH3 and PCASYS were respect-
fully used as templatisers, matchers and pattern classifiers [13]. The implementation
of PCASYS as single layer Probabilistic Neural Network (PNN) was chosen for fin-
gerprint classification to vector a fingerprint into the appropriate clustering algorithm
within the Hyperspace structure. The PCASYS PNN was tested on 2,700 fingerprint
images and trained on 24,000 fingerprint images from the NIST special database 14.
Each fingerprint image had a header that labels the image’s classification. The total
percentage of misclassification was 7.07% [13].

MINDTCT produces a fingerprint template with an (x, y) coordinate and an
angle of incidence with respect to the ridge [13]. BOZORTH3 accepts as input two
MINDTCT templates andproduces a correlation score. Severalmetrics definedbelow
were used to measure the performance of the fingerprint matching system before and
after the implementation of the hyperspace structure. The confusion matrix shown
in Fig. 8.3. depicts the relationship of true positives, false positives, false negatives
and true negatives relative to actual and predicted class. Further, confusion matrices
are the basis of Receiver Operator Characteristics (ROC) curves that can be used to
compare classification systems [11].

To measure the velocity of the true positives (TPR), the total number of true
positives TP is divided by all predicted positive classes P:

TPR = TP/P (8.14)

Similarly, the false positive rate is calculated as follows:

FPR = FP/N (8.15)
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Fig. 8.3 Typical confusion
matrix
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The higher the TPR, the better classification velocity the system achieves. The
accuracy metric measures the percentage that is correctly classified from both match
and non-match sets:

accuracy = TP + TN∑
match + ∑

non-match
(8.16)

Equally important is the precision of the classification system, which calculates the
percentage of true matches over all predicted and actual positives [11]:

precision = TP

FP + TP
(8.17)

Finally, the penetration rate, pr , and penetration average, pa , measure how well the
SVM system reduces the search space:

pr =
∑

k ‖c(probe, galleryk)‖∑
i ‖c(probe, galleryi )‖

(8.18)

pa = 1

N

N∑

i

‖c(probe, galleryi )‖ (8.19)

where c(probe, galleryi ) is the total number of fingerprint comparisons between the
probe and gallery after search space reduction, c(probe, galleryk) is the count of
fingerprint comparisons before search space reduction, and N is the total number of
probes.

8.2.4 Experimental Results

The results of using support vector machines and hyperspace transformations to
effectively search extremely large fingerprint databases to identify individuals are
outlined below.
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8.2.4.1 Bootstrapped C-Means Results

The accumulation of all 10 dimensions defined by fingerprint position had an average
of 5.6 clusters with all six fingerprint patterns: arch, left loop, right loop, scar, tented
arch, and whorl. Each kernel defined by fingerprint position and cluster space had an
average of 122.1 fingerprint images. Of the kernel members, 101 fingerprints were
not confidently classified. As a result, the fingerprints were inserted into each cluster
within the fingerprint position dimension. In summation, 505 fingerprint samples
were clones of poorly classified fingerprints by PCASYS. The additive property of
kernel functions results in several C-Means cluster spaces that overlap to reduce false
negatives.

8.2.4.2 SVM Results

As shown in Table8.2, the SVM system reduced search space where the N × N
search type had a total of 6,278 images in the gallery or search space. On the full
identification search, each fingerprint searched 6,278 other samples. With the SVM,
on average, each probe was correlated with 306.7 gallery samples. Only 4.89% of
the full gallery was searched with SVM searches.

The total gallery search contained 20 times more true non-match pairs than the
SVM search despite the sample boosting by the c-means clustering algorithm. Both
search types contained five match scores or false positives that were below the score
threshold of 100. For data visualisation, if a comparison was missing from the SVM
run, the pair was added as a non-match. Figures8.4 and 8.5 depict that the SVM and
N ×N score distributions have the same number of samples and the score distribution

Table 8.2 Penetration rate comparison

Avg. penetration (pa) Penetration ratio (pr ) (%) Penetration mode

Full N × N 6,278 100 6,278

SVM system 306.7 4.89 530

Fig. 8.4 Full N × N search match (left) and non-match (right) score distribution [6]
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Fig. 8.5 SVM match (left) and non-match (right) score distributions [6]

Table 8.3 Full N × N run
description [6]

Match set size 6,278

Non-match set size 39,400,726

Match scores < 100 4, 12, 55, 74 and 75

Table 8.4 SVM run
description [6]

Match set size 6,278

Non-match set size 1,919,468

Match scores < 100 4, 12, 55, 74, and 75

is identical. As a result, the SVM does not change the normal score distribution of
the N × N comparison.

The SVM and N × N runs maintained constant fingerprint data and implemented
the same fingerprint matcher. Before the implementation of the SVM, the fingerprint
matcher performed extremely well with a 0.99 TPR at 0.07 FPR. The high accuracy
of 0.92 is offset with a low precision of 0.002 due to a high number of false positives.
The precision begins to improve as the score threshold reduces the number of false
positives. The SVM statistics empirically proves that the best TPR at a threshold of
10 has a lower FPR and higher precision than the same corresponding TPR in the
N × N run. The tradeoffs between TPR, FPR, accuracy, precision and threshold are
better with the SVM than the full N × N (Tables8.3 and 8.4).

8.3 Facial Feature Selection Using Evolutionary Algorithms

To perform identification using facial features, all matching face profiles need to be
retrieved as fast and reliably as possible from a database of facial features. Some
subsets of features might be more important than others in retrieving the relevant
individual’s identity. Correctly identifying this subset of features has major implica-
tions on system performance. This section shows how an EA facial feature selector
chooses a set of features from prior contextual and meta-face features that reduces
the search space for large data sets [5].
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8.3.1 Related Work

Modern biometric systems require increasingly sophisticated solutions to address
the areas of data volume, velocity and variety through data dimension reduction and
simplification. Often the resulting search space of possible data features, ways to
create clusters and the sheer amount of data requires optimisation to find the best
combination of operators. EA offers a powerful, resilient and flexible technique to
address this challenge.

8.3.1.1 Evolutionary Algorithms

Evolutionary Algorithms (EA) and Genetic Algorithms (GA) describe a system that
uses computationalmodelling of evolution, including processes such as natural selec-
tion, survival of the fittest and reproduction [20–24]. EA captures ideas from biologi-
cal evolutionary theory by ‘evolving’ a solution instead of using algebraic derivation.
Many types of EAs exist, including genetic algorithms, genetic programming, dif-
ferential evolution, etc. GAs model genetic evolution by mimicking aspects such as
survival of the fittest (selection) and reproduction (crossover and mutation) [21].

EAs can be used to find approximate solutions toNP hard problems, where several
criteria for a good solution are known, but analytical techniques are not able to directly
derive a solution. This is possible because an EA does not require the “genetics” of
a problem to be known: the rules that govern whether solutions are valid or invalid,
perform well or badly, or the exact transformation between states do not need to
be known. Using stochastic operators, an EA is able to distinguish good genetic
combinations from bad ones, and is able to modify and steadily improve the quality
of solutions. An EA can also efficiently avoid getting stuck in local minima by
adequately exploring the search space.

An EA is a “guided random walk”. A set of initial random solutions (the par-
ent generation) is modified by random operators (reproduction and mutation). The
resulting solution set (the offspring generation) is evaluated by a fitness function. The
offspring with the highest fitness become the next parent generation (selection), upon
which the procedure is repeated. In a tuned EA, the population will converge towards
solutions which are close to the optima of the fitness function [20, 22, 23, 25–27].

Learning the face space of a face databasemaintains or reduces the dimensionality
of data. The reduction of data complexity reduces the amount of computational com-
plexity. The evolutionary pursuit seeks to learn an optimal face space for the purpose
of pattern classification and data compression [28]. Evolution is driven by a fit-
ness function. An example fitness function combines performance accuracy, ξa(F),
with the predicted risk, ξb(F), to evaluate a face space [28]. Chengjun Liu et al.
examined the application of genetic algorithms to face recognition. The fitness func-
tion includes ξa(F), which defines facial recognition accuracy and λξb(F), which
defines class scatter [29]:

ξ(F) = ξa(F) + λξb(F) (8.20)
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8.3.2 Facial Feature Selection Using EA

In a static system, the implementation of Principle Component Analysis (PCA) is
straightforward to reduce the search space and only focus on the most important
predictors. The challenge faced by identification systems is that, firstly, each data
set is unique and, secondly, that many data sets are dynamic: new identities and
facial features are constantly added or removed. Different or new information has
the potential to completely change the importance of features. This in turn means
the features selected for tuning the classifier will probably not be the most important
features as more data is ingested. The implication is that the accuracy of the system
will suffer over time. The optimal set of important features needs to be selected
regularly as guided by the changing data space.

An Evolutionary algorithm approach was applied to facial feature selection to
search over the space of all meta-face features to reduce the search space [5]. The
result is a subset of those features that provides the highest identification accuracy
together. The paper also presents the design, parameter selection and experimental
results of an evolutionary facial feature selector algorithm. EA improves upon ran-
dom search by exploiting structural knowledge of the search space. This structural
knowledge is imposed by the features of the elements of the search space.

The creation of a search algorithmon the space of facial features has to address two
problems: first, according to what criteria shall the search space be structured; and
second, what is the best actual algorithm which should be chosen given that search
space structure. The problemof imposing an appropriate structure on the search space
is discussed in [5], i.e. which facial features need to be included in the search space

Algorithm 2 Evolutionary facial feature selection
A priori define G A = {pc, pm , G, l, μξ , xig, sξ , σ, t} where pc is the probability of crossover,
pm is the probability of mutation, G is the number of generations, l is the length of a chromosome,
μξ is the fitness function, xig is the schema or set of chromosomes for generation g, sξ is the
selection method such as tournament selection, t is the maximum clustering run time to avoid
thrashing and σ is an empirically determined threshold for k-means clustering [3].
Step 1: Initialise the genetic algorithm with G A.
Step 2: For all facial images, ∀Ii ∈ I , create chromosome feature selectors where ξgi ∈ ξg and
each chromosome has length l.
Step 3: Decode each ξgi into feature vector ξgi with function ξgi = f (ξgi ).
Step 4: Run an agglomerative k-means clustering algorithm for all ξgi ∈ ξg where K = |ξg |.
Step 5: Merge clusters together that are dist(k)i, K j ) ≤ σ to produce cluster space cps where s
is the cluster step or iteration.
Step 5a: End clustering if cps−1 == cps or the total runtime, tt ≥ t and return cpξi .
Step 6: For all ∀C Pξi ∈ C P , apply a fitness function, μξ , to produce a ranked clusterspace set,
C Pr .
Step 7: Select the next set of chromosomes with ξ ′

g+1 = sξ (ξg).
Step 8: For each ranked ∀ξ ′

g+1,i ∈ ξ ′
g+1, apply pm(ξ ′

g+1,i ) and pc(ξ
′
g+1,i , ξ

′
g+1, j ) to produce the

next generation’s set of chromosomes ξg+1
Step 9: Continue the genetic algorithm for G generations or until ξg−1 == ξg .
Step 10: Return the optimal chromosome ξg,i .
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to maximise the system’s classification abilities. The results in [5] show that the evo-
lutionary algorithm (EA) approach is a convenient method to tackle such problems.
First, advanced mathematical knowledge, the exact importance of each feature, and
the efficiency of a particular search algorithm do not need to be known upfront to
make use of EA to optimise the system. Secondly, implementation can be rapid,
even when starting from scratch, and results can be generated fast. EA can easily be
tailored to this algorithm selection problem to fine-tune performance. One drawback
of EAs is their computational complexity, and a big part of good EA design goes
into computational efficiency. The pseudo code for algorithm 2 follows Holland’s
notation and describes the Evolutionary Facial Feature Selection work [24, 26].

8.3.3 Experimental Procedure

An EA approach was used with agglomerative k-means cluster spaces as input para-
meters into a Linear Discriminant Analysis (LDA) evaluation function to select facial
features from the Carnegie Mellon University Pose, Illumination and Expression
database of human faces (PIE) [5, 30]. Example meta-features include blinking, has
a hat, has glasses, pose, smiling, chubby cheeks, hair color, etc. (Fig. 8.6).

A basic principle of a search space structure is that similar items are “close
together”, meaning that if a search algorithm encounters one item, then items sim-
ilar to that item are readily available. To this end, the approach chosen in [5]

Fig. 8.6 Functional architecture of the evolutionary facial feature selection method [5]
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combines agglomerative k-means clustering and LDA. Agglomerative k-means clus-
tering establishes the clusters within which faces are similar to each other, and LDA
measures the quality of the cluster space by relating the diameter of the clusters with
their distance from each other. The LDA score is the between distance divided by
the in-between distance, so the larger the score, the better the cluster space. A cluster
space is considered better if the average diameter of clusters is small and the average
in-between distance between clusters is large.Different cluster spaces are obtained by
different projections of the feature space, essentially eliminating subsets of features.

An evolutionary algorithm approach was used to search for a good-performing
cluster space. The EA operated on the population of binary vectors that indicate
whether a feature was considered or not. A value of 0 means the feature was omitted
while 1 indicates the feature is present. Each binary feature vector gives rise to
an agglomerative k-means cluster space for which the LDA score was calculated.
The LDA analytic was chosen since the goal of the clustering was to have clusters
tightly centred around an epicentre with each cluster maximally spread apart [12]. In
addition, LDA is a quick and simple analytic to calculate within the framework of a
complex genetic algorithm framework. For each generation, the performing binary
feature vectors were selected for crossover and mutation to form the next generation
of binary feature vectors. The overall number of features for these experiments was
12, and the population size was 10. In each generation the best two binary feature
vectors were subjected to either one point or two point crossover. The mutation rate
was either 1 or 100%, so there were 4 overall experiment configurations.

8.3.4 Experimental Results

Two sets of experiments were run on the full Pose, Illumination and Expression
(PIE) database [30]. Each experiment consisted of two batches. Within each batch,
one genetic operator was selected as an independent variable, while all other genetic
algorithm parameters were held constant. Between batches, the affect of the chosen
genetic algorithm parameters were examined with respect to LDA and the average
number clusters for each generation. In total, four different sets of parameters were
chosen for the evolutionary facial feature selection.

The experiment depicted in Fig. 8.7 was setup as:

• |G| = 25, where G is the generation.
• Independent Variable: mutate(x j , P(1)) or mutate(x j , P(0.01)) where x j

is a chromosome and P(.) is the probability of a mutation.
• Constant: onePoint(x j , xi , P(1)) where x j and xi are two chromosomes
from tournament selection and P(.) is the probability of a one point
crossover.

• Dependent Variables: LDA.
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Fig. 8.7 Mutation and LDA
results (25 generations) [5]

Fig. 8.8 Mutation and
average number of clusters
(25 generations) [5]

The experiment depicted in Fig. 8.8 was setup as:

• |G| = 25, where G is the generation.
• Independent Variable: mutate(x j , P(1)) or mutate(x j , P(0.01)).
• Constant: onePoint(x j , xi , P(1)).
• Dependent Variables: Average number of clusters.

The experiment depicted in Fig. 8.9 was setup as:

• |G| = 25, where G is the generation.
• Independent Variable: onePoint(x j , xi , P(1)) or twoPoint(x j , xi , P(1))
• Constant: mutate(x j , P(0.01))
• Dependent Variables: LDA

The experiment depicted in Fig. 8.10 was setup as:

• |G| = 25, where G is the generation.
• Independent Variable: onePoint(x j , xi , P(1)) or twoPoint(x j , xi , P(1))
• Constant: mutate(x j , P(0.01))
• Dependent Variables: Average number of clusters
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Fig. 8.9 Crossover type
and LDA results
(25 generations) [5]

Fig. 8.10 Crossover type
and average number of
clusters (25 generations) [5]

With one point crossover, 0.01 mutation and 25 generations, the best converged
solution included the chromosome with blinking, smiling and pose. By generation
14, the best fit chromosome was evaluated to 845.5 and appeared once. The entire
population consisted of the best fit chromosome by generation 22. Two-point
crossover yielded an identical best chromosome as one point crossover. By the fifth
generation, the best fit chromosome appeared once. By generation 15, the best fit
chromosome was the entire population. Two-point crossover oscillated between the
best fit chromosome and a second member that was three times less fit.

Two-point crossover achieved the best fit chromosome faster than one point
crossover. However, after achievement, the two point crossover operator diverged
more than the single point crossover.

With amutation of 1, one point crossover and 25generations, the best chromosome
oscillated between one that only contained blinking with a score of 25.42 and another
that contained all traits except light with a score of 33.53. Neither score was close
to a previous best of 845.5. When the mutation rate was changed to 0.01, the best
converged solution contained blinking, smiling and pose with a score of 845.5. From
Fig. 8.7, the LDAevaluation results with amutation rate of 0.01was over amagnitude
better than with 1.
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The LDA evaluation score was 25.42 as contrasted to a previous best of 845.5.
The first ranked chromosome was present 5 times. The second ranking chromosome
contained blinking and neutral weights. A mutation rate of 0.01 with 10 generations
produced a chromosome of blinking and smiling of rank 1 twice. The second ranking
chromosome was present twice and contained weights for neutral, pose, flash and
needs glasses. Both mutation rates of 0.01 and 1 contained chromosome 101000000
within the top two.

This indicates that a lower mutation rate is better than an extremely high rate with
achieving the best chromosome. In addition, Fig. 8.8 depicts the oscillation charac-
teristic of mutation 1. Local optimum solutions were not annealed. The overall result
was that the experiment with 1% mutation rate and one point crossover produced
the best binary vector by generation 14. By generation 22 the whole population had
converged on this same solution. Two point crossover and 1% mutation rate yielded
the best vector to appear in generation 5, with the entire population converging to
it by generation 15.A mutation rate of 100% resulted in no selection whatsoever,
although the best vector did emerge (Fig. 8.9 and Fig. 8.10).

8.4 Parallel Computing and Cloud Architecture
for Biometrics

This section highlights some recent developments in multi-core programming and
cloud computing, and how these technologies are enabling applications of biometrics
on a scale to leverage Big Data. Specific architectural designs that foster greatly
improved biometric application performance are also discussed.

8.4.1 Related Work

The first biometric system was built in 1967 by Cornell Aeronautical and North
American Aviation, which was a precursor to the first US Federal Bureau of Inves-
tigation system that was deployed in 1972 [31]. The Finder system supported 10
matches per second and enrolled 1 fingerprint per second [31]. Starting in the 1990s,
the National Institute of Standards and Technology (NIST) has pushed the progres-
sion of biometric algorithm development to improve overall biometric accuracy with
programmes such as the Facial Recognition Vendor Tests (FRVT), Iris Competition
and Evaluation (ICE), Fingerprint Vendor Technology Evaluation (FpVTE) and the
Biometric Grand Challenge (BGC) [32–34].

The trade space on the Receiver Operator Characteristic Curve (ROC) and the
Detection Error Trade (DET) curve has improved over several orders of magnitude
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[32–35].As a residual, time limitationswere set on eachof the evaluation experiments.
For example:

• Within FRVT 2002, a high computational intensity test of 15 billion facial com-
parisons were evaluated with a limit of 264h andminimum of 15,555 comparisons
per secondwas designed to encourage extremely fast algorithms [32]. Themedium
computational intensive test was designed to evaluate slower and perhaps more
accurate algorithms with a minimum of 66 matches per second [32].

• Within FpVTE 2003, the large-scale test set of 1.044 billion comparisons had a
limit of 21 days or a minimum of 575.4 matches per second [34].

• The ICE 2006 competition limited algorithms that could run on a single Intel
Pentium 4 3.6 GHz 660 processor in 3 weeks that matched 59,558 iris images
or 0.03 comparisons per second [33]. The fluctuating matching velocity bounds
between biometric evaluations was a compromise between speed and accuracy.

8.4.1.1 Multi-core Parallel Computing and Cloud

The usage of data acquisition devices is in high demand by application areas such
as aware homes, surveillance, identity resolution, access control, medical prognosis
and diagnosis, entertainment, transaction processing and national security. The key
characteristics of Big Data are volume, variety and velocity of data. Multimedia data
such as photos, videos and sound is accelerating in all three of these characteristics.
A tremendous and ever-increasing amount of computing resources is required to
process the biometric signatures to turn information into insight.

Cloud computing provides shared resources, software and information to com-
puting devices through the Internet. Distributed computing platforms are connected
by any number of networks to support high demand load. The density of Big Data
can be defined by the mass of the data within a unit of bytes over a volume of inde-
pendent cores. Cloud computing can help lessen the density of biometric Big Data.
Large quantities of biometric data or processing cores can be distributed across any
number of jobs.

Cloud computing technology is shifting towards continuously available cogni-
tive systems that learn over time to be both proactive, reactive and some combina-
tion thereof [36, 37]. A shift from highly available to continuously available cloud
computing began with a seminal paper by Scadden et al. [37]. Starting with the
Nagano Olympics in 1998, a 3-active continuously available computing infrastruc-
ture spread over three geographically dispersed regions has supported major sporting
and entertainment events such as the Australian Open, Tournoi de Roland-Garros,
Wimbledon, the USOpen, TheMasters, United States Golf Association and the Tony
Awards [37]. The team has never experienced a computing resource outage during
a major event [37].

The current state of the art within cloud attempts to be autonomic and self con-
figuring [38, 39]. CloudScale predicts computing resource requirements several
minutes into the future using burst factors [40]. Another system such as PRESS



8 Large-Scale Biometric Multimedia Processing 197

uses action events to allocate computing resources ahead of the current time horizon
[41]. An alternative method of prediction that uses cyclic information is exemplified
byAGILE, which scales Infrastructure as a Service (IaaS) 10min into the future [42].
Longer term prediction methods were proposed by Gmach et al. and Kalyvianaki
et al. [43, 44]. The popular Amazon Elastic Compute Cloud (EC2)3 is a reactive
system that enables users to define how the system should respond to high demand
loads. Scalr and Rightscale4 are other reaction based cloud systems [44]. Galante
and Bona provide a survey on elastic computing systems [45].

Continuously available cognitive cloud computing technology is rapidly becom-
ing a prerequisite for large-scale biometric systems. As a thought exercise, if the
entire United States population at roughly 300 million compared 10 fingerprints to
a single probe of 10 additional fingerprints at a rate of 1k comparisons per second,
the entire job would require 347 days of continuous computing. The population of
China with 1.3 billion people would require a system that can stream many more
fingerprint comparison in parallel.

8.4.2 Designs for Parallelism

Ideally, a dynamic biometric cloud would continuously provision and de-provision
resources to optimise matching speed on available hardware. Figure8.11 depicts a
high level biometric architecture. Human signatures are acquired from any type of
device such as a camera, retina scanner, thermogram measure, and etc. After the
signal has been converted into a digital representation, features are extracted from
the sample. Within fingerprints, minutiae points are discovered that indicate ridge
endings, bifurcations or any ridge ending. An x-coordinate and y-coordinate provide
the location within a Cartesian grid while an angle of incidence encodes the direction
of the ridge flow. Within the NIST Biometric Image Software (NBIS), an algorithm
called MINDTCT extracts minutiae points from an image by convolving minutia
templates [46]. Each of the features becomes an element within a feature vector or
within the case of fingerprints, a template. Matching technology that supports ver-
ification or identification attempts to assert a hypothesis about the feature vector.
As an example, another NBIS algorithm called BOZORTH3 measures the similar-
ity between fingerprint templates [46]. Statistical models that use pattern recognition
technology such as the probability of an identity given evidence froma voice print and
knowledge is another commonmethod of implementing biometric systems. The out-
put of matchers and pattern recognition technologies can be used by any type of
application.

Within a cloud, biometric services and processes can be provisioned to reduce
the density of the large pending job. The allocated computing resources can be
called high performance computing (HPC) and includes parallel, distributed, and grid
computing. Typical HPC computers build up from cores, processors, node boards,

3 http://aws.amazon.com/ec2.
4 http://www.rightscale.com.

http://aws.amazon.com/ec2
http://www.rightscale.com
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Fig. 8.11 High-level biometric architecture

cabinets, and finally to the entire system. A famous example of an HPC computer
that successfully manages a single question-and-answer task consisting of hundreds
of parallel processes that need to be distributed over thousands over cores is the
IBM Watson computing system. Watson beat Brad Rutter and Ken Jennings on the
Jeopardy! game show on 14 January 2011 and was scaled out on over 2,500 compute
cores to answer a question in 2–3s [47]. Before the parallelisation, Watson took 2
hours on a single processor to answer a single question. Over 400 parallel processes
were deployed across 72 Power 750 machines [48]. To achieve performance similar
to Watson within large-scale biometric applications, feature extraction, matching,
and pattern recognition algorithms can be parallelised. As a result, the density of the
biometric job decreases as the number of parallel operations increases.

Separation of heavy CPU algorithmic processes within fingerprint matching is
depictedwithin Fig. 8.12. A gallery is the dataset that defines all enrolled fingerprints,

Fig. 8.12 Separating heavy CPU algorithmic process
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and is spread out over any number of nodes. A probe is the search fingerprint that is
compared against the gallery for similarity scores. The data on each node can utilise
independent RAM to reduce I/O while also consuming cycles of independent cores.
After the processing of all matchers is complete, the results aremerged together into a
candidate hit list. The process is similar to theMap Reduce paradigm of Hadoop. The
feature extraction modules follow the Streams computing paradigm whereby each
fingerprint is pushed through parallel analytic pipelines to build a feature vector for
enrolment.

To further reduce the search space and to decrease themass of data that is searched
per probe, techniques such as binning, Support VectorMachines (SVM) as described
above, or indexing on subsets of features can be used. Germain et al. depict a novel
algorithm to construct constellations of meta-features that can further eliminate the
gallery space [1]. Additionally, information about the subject such as gender, age,
etc. can be used within evolutionary computing to select the best features to construct
a database index [5].

High-Performance Computing (HPC) within a cloud creates a group of coupled
computing machines that work together over a plurality of networks to solve deep
arithmetic problems. If a problem can be solved by divide and conquer techniques,
parallel operations can be performed on portions of the problem. Biometrics is a
separable problem as depicted by fingerprint and facial recognition case studies.
Figures8.14 and 8.15 depict examples of distributing both biometric modalities
within a cloud environment.

An initial fingerprint identification system that includedmatching, templetisation,
pattern classification and image quality algorithms was deployed onto a single pro-
prietary Solaris machine. The following NIST algorithms were used within an initial
fingerprint identification system:

• MINDTCT : a template generating algorithm.
• BOZORTH3: a matching algorithm that correlates the output from the MINDTCT
algorithm.

Fig. 8.13 Single System
fingerprint identification
system
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Fig. 8.14 Distributed fingerprint identification system

Fig. 8.15 Distributed facial biometric identification system
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• PCASYS: classifies fingerprint ridge flows as an arch, left loop, right loop, scar,
tented arch, whorl, or unknown.

• NFIG: ranks the quality of a fingerprint image

Figure8.13 shows the process flow of a user submitting an Electronic Biometric
Transmission Specification (EBTS) file that contains 10 fingerprints to a web server.
The web server processes the request and spawns additional processes to create
fingerprint patterns, templates, quality scores and matching. On a proprietary Solaris
machine, the matching rate reached 20 comparisons per second.

A distributed architecture is shown in Fig. 8.14. A user submits a file to a biometric
web server. Theweb server passes the EBTS to a clusteredweb service that parses the
EBTS format. The EBTS parsing is encapsulated within several web containers to
provide a failover in the event that a JavaVirtualMachine that is linking to native code
fails. Each parsed fingerprint within the Wavelet Scalar Quantisation (WSQ) format
to minimise the image size and to prevent lossy based artefacts that would reduce the
accuracy of a fingerprint identification system [19]. The WSQs are sent to a scalar
machine that templatises the WSQ and pushes the templates to discrete matchers.
Each of the matchers contains a shard of data that can be processed in parallel. The
result set from each matcher is returned to the scaler for a merge operation. The
candidate hit list is returned back to the original biometric web server to be rendered
to the user’s browser. With only two matchers and on proprietary hardware, the
system reached 1,800 comparisons per second within a fault tolerant environment.

A custom built facial recognition system, depicted in Fig. 8.15, is very similar
to the distributed fingerprint identification system. An Automatic Identification Bio-
metric System that was developed by L1 Identification and acquired by Safran, was
distributed and deployed on proprietary hardware [49]. A user submits a facial image
to aweb server that is in either bmp, gif, tif, raw or tiff format. The facial image is sent
to the facial cluster to be distributed out to parallel services. The scaler receives the
facial image and pushes the image to create a token image and template representa-
tion. Several thousand images can be enrolled at a much higher rate because several
nodes support the ingestion process. Further, the matching nodes are parallelised
to apply an assembly of facial matching algorithms in parallel on paired probe and
gallery images.

Figures8.14 and 8.15 depict high available and fault tolerant systems that are
defined by Eq.8.21. The serial availability (SA) is the product of all the component
availability (CA) within a particular system:

SA =
N∏

i=1

CA (8.21)

If a distributed BioMatcher, BioCreate or Matcher goes down, the other nodes
will take over the functionality. Theweb server that provides the biometric Enterprise
ARchive (EAR) web application has scripts and monitors to restart the application
upon a failure. The scalers on both systems are also monitored throughout the com-
puting life time. However, if the entire cluster, network, or other catastrophic event
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occurs, the biometric system will be offline. The parallel availability (PA) of the
system is equal to 1 minus the product of the downtime for all of the components in
a system [37]:

PA = 1 −
[

N∏

i=1

(1 − CAi )

]
(8.22)

From Eq.8.22, if high available system has a 99.5% uptime potential, then a 2-active
site will have 99.9975% uptime potential [37]. By extension, a 3-active site will have
99.99999% up time potential [37]. A 3-active site enables the biometric to not only
attain high availability but also continuous availability.

8.5 Conclusion

Biometric data is growing at an accelerating rate, and new methods are needed to
turn data at rest and in motion into insights. This chapter discussed some recent and
novel developments in the approach taken to enable large-scale biometric identifi-
cation. Novel work in the areas of fingerprint identification, facial feature selection
and high-performance architectures for biometrics was empirically presented. Using
kernel functions and support vector machines allows biometric data to be easily
separated into clusters, which in turn reduces biometric probe penetration rate. Evo-
lutionary algorithms offer effective ways to learn over time and to dynamically refine
which biometric features are important. As a result, the overall dimensionality of the
problem is reduced to avoid the curse of dimensionality. The maturity of cloud com-
puting and mobile technologies gives biometric applications unprecedented reach to
computation capability. The chapter illustrated how computing cores can be lever-
aged within several parallel biometric system architectures. Overall, the combination
of the techniques described in this chapter enable the use of biometric analyticswithin
large-scale data in a cloud computing environment.
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Chapter 9
Detection of Demographics and Identity
in Spontaneous Speech and Writing

Aaron Lawson, Luciana Ferrer, Wen Wang and John Murray

Abstract This chapter focuses on the automatic identification of demographic traits
and identity in both speech and writing. We address language use in the virtual
world of online games and text entry on mobile devices in the form of chat, email
and nicknames, and demonstrate text factors that correlate with demographics, such
as age, gender, personality, and interaction style. Also presented here is work on
speakers identification in spontaneous language use, where we describe the state
of the art in verification, feature extraction, modeling and calibration across mul-
tiple environmental conditions. Finally, we bring speech and writing together to
explore approaches to user authentication that span language in general. We discuss
how speech-specific factors such as intonation, and writing-specific features such as
spelling, punctuation, and typing correction correlate and predict one another as a
function of users’ sociolinguistic characteristics.

9.1 Introduction

This chapter investigates several facets of how identity and demographic categories
are manifested in spoken and written language use, along with approaches to cap-
turing this information for real world analysis, authentication, and talker and writer
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identification. The first section details work done by the verus (Virtual Environment
Real User Study) team under the AFRL (Air Force Research Laboratory) verus
program, which was tasked with identifying features in virtual world activity that
contribute to predicting the real world demographics of the participants involved.
In this chapter we specifically focus on virtual world language use, which generally
came from two sources: online chat and avatar nicknames. This work was crucial
to providing features to determine gender, age group, ethnicity, education level, and
nativeness of the real-world participant based solely on activity in the virtual world.

The next section switches focus to spoken language, and the recent progress
that has been made in the domain of speaker identification from their voice. We
focus on the major problems inherent in speaker identification, both differences
inherent to the talker (language, phonetic content, speaker state) and external factors
(channel of collection and transmission, noise, reverberation).We examine the recent
findings in terms of features (acoustic and prosodic), as well as modeling techniques
that have provided breakthroughs in recent evaluations, such as low-dimensional i-
vector representations of an utterance and probabilistic linear discriminant analysis
(PLDA) for score generation. Further, we discuss the important area of calibration,
in particular the issue of maintaining a coherent representation of the likelihood of a
speaker given a specific utterance across a range of varying conditions.

The final section presents ongoing work that combines research from both writ-
ten and spoken authentication and characterization approaches under the DARPA
(Defense Advanced Research Projects Agency) Active Authentication program. The
goal of this work is to provide continuous authentication of users on their mobile
devices using spoken and written inputs on the device, such that if an unauthorized
user accesses the device their behavior will quickly reveal them to be an unau-
thorized user. This continuous authentication will make use of the shared space of
language, which covers speech and writing, and the sociolinguistic relationships that
emerge from the intersection of language use and personality, background, gender,
age, ethnicity, interaction style, etc. Our ultimate goal is to develop a framework for
predictive models of users that is robust to incomplete enrollment samples, making
use of natural feature correlations across speech and writing.

9.2 Demographics in Virtual World Environments

9.2.1 Background

This section focuses on research into the relationship between virtual world or online
linguistic behavior and real-world demographic characteristics, with the goal of auto-
matically predictingmajor real-world (RW)demographic attributes using only virtual
world (VW) behavior. Much of this research came out of the verus study [1]. The
RW attributes studied include age group, gender, ethnicity, income level, education
level, leadership role and urban/rural background, among others. Volunteer partici-
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Table 9.1 Data distribution
of the verus corpus

Game Turns Talkers Tokens

Guardian academy 914 57 2,688

Sherwood 13,149 271 57,843

SecondLife 79 4 392

WoW 2,337 117 56,036

Total 11,214 445 89,521

pants provided their RWdemographic information and allowed their online behaviors
to be recorded. Over one thousand participants generated data during online activi-
ties, including text chat and names chosen for online personae (aka their “avatars”).
Hypotheses were gathered from the theoretical sociolinguistics literature, phonology
and sound symbolism, semantics, and discourse analysis and from empirical obser-
vations of the data collected to generate features. These features were combined in
a global model using statistical classifiers that enabled high-accuracy prediction of
users RW attributes.

Participants ranged from minors in their early teens to retirees in their 70s from
Canada, the United Kingdom, and the United States. Data from four virtual worlds
was collected from existing online communities, namely SecondLife and World of
Warcraft, and two VWs that were specifically developed for this study, Sherwood
and Guardian Academy (see [30]) (Table9.1).

9.2.2 Features

The focus of feature development was both to understand what factors and behaviors
manifest in the text were associated with specific demographic categories and to
identify textual elements that could be automatically extracted for use in effective
machine learning. A substantial amount of feature research involved understanding
the motivation behind a phenomenon in the text (e.g., use of ellipsis) and its asso-
ciation with a demographic category (older users). The primary sources for features
were thus identified using both a top-down and bottom-up approach. The top-down
features were motivated from findings in the sociolinguistic literature—claims about
how males and females used language differently, or how adult language use would
differ from teenaged language use, etc. Bottom-up features arose from an exami-
nation of the data itself. This is especially important since virtual world and online
discourse represent emerging modes of communication and there is a reasonable
expectation that theories of traditional spoken and written discourse may be inade-
quate in this context.

Sources for top-down features mainly came from studies of gender and discourse,
beginning with Robin Lakoff’s work in 1975, and including studies by [32, 37–39].
References [12, 13] has specifically focused on the interaction between language and
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Table 9.2 Gender traits from
the sociolinguistic literature

Trait Gender Source

Hedging, hesitation, uncertainty F Lakoff,
Herring

Polite forms F Lakoff

Challenging or confrontational
forms

M Herring

Question forms and intonation F Lakoff, S&K,
Herring

Frequent or gratuitous apologies F Lakoff,
Herring

Modal verbs F Lakoff

Insults, cursing or put downs M Lakoff,
Herring

Contentious assertions M Herring

Supportive and empathetic
statements

F S&K

Sarcasm, self promotion M Herring

Agreeing and thanking F Herring

Commands M S&K

gender in online communities yet many of her findings corroborate the results of the
earliest studies by Lakoff. In general, the literature points out that linguistic features
associated with females tend to be attenuative, indirect and cooperative, while male
linguistic behavior tends to be more adversarial, direct and independent. Table9.2
summarizes the major traits identified in the literature that were investigated in this
study.

In addition, new phenomena that were observed to correlate highly with demo-
graphic classes were also added to our set of features (see Table9.3). These include
typographic variations, which are associated with age differences, as well as more
subtle distinctions between slurs and direct and indirect apologies.

Additional features came from consultation with Subject Matter Experts (SME)
on virtual worlds, freely available lexical class databases, and features developed
from the structure of virtual world environments. We divide these features into two
sets: lexical features and structural features.

Lexical features include unigram probabilities of words in the list of Internet
slang and emoticons, unigram probabilities of other nonstandard words/shorthands
(e.g., ur (you are), thn (then), im (I’m), qust (quest)), features related to disfluencies,
features related to person addressing, and features related to occurrence of foreign
characters.
We also studied features representing sentence complexity and structure, including
vocabulary size of a participant, maximum length of 10% most frequent words, fea-
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Table 9.3 Sociolinguistic features from data observations

Trait Demographic Example

Use of slurs Male “You jerk!”

Direct apologies Female “I’m sorry”

Indirect apologies Male “Ooops”, “my bad”

Standard emoticons Female : ) : (

Use of all caps Youth “STOP BEING DUMB”

Frequent use of ellipsis Adult “if you bring up your questlog...”

Commas, apostrophes Adult “we’re done. let’s turn in”

Lowercase ‘i’ for ‘I’ and ‘u’ for ‘you’ Youth “u losted to 4 pokemno”

Single word texts Youth “come”, “yo”

tures related to discourse markers, and features related to grammaticality (estimated
based on the normalized likelihood of the sentence from a state-of-the-art statistical
English parser adapted to game text chat).

We further used features from databases of lexical categories, including the “Dic-
tionary of Affect in Language” (DAL) [42] and the Linguistic Inquiry Word Count
(LIWC) [34]. The DAL is an instrument designed to measure the emotional meaning
of words and texts. It does this by comparing individual words to a list of 8,742
words that have been rated by people for their activation, evaluation, and imagery.
Eachword in the lexicon also receives a score according to “pleasantness,” “activity,”
and “imagery.” Then we computed the average of these scores for the sentences con-
tributed by a participant and average counts of words belonging to each of these
three categories, and used them as DAL features. The goal of LIWC was to identify
a group of words that tapped basic emotional and cognitive dimensions often studied
in the social sciences, health and psychology and use them as features reflecting
disposition, personality, etc.

We also developed a set of “structural” features, inspired by conversation analysis
and based on observations from game subject matter experts on player behavior, to
quantitatively represent the different participation patterns of participants in a text
chat conversation. Structural features for a participant include the percentage of
sentences and ‘turns’ (i.e., exchanges between speakers in a conversation) from that
participant out of all sentences and turns in the session respectively, and the average
number of words per sentence and per turn of that participant.

We also studied features related to “structure” of game chat. For example,
“silence” (no chat) durations from a participant in a game session may be syn-
chronized with other gaming activities (i.e., the participant was possibly busy with
other in-game activities hence could not contribute much text chat). Other structures
that were useful were the use of positive and negative extreme case formulations—
for example “that was the worst game ever” and expressions of self-affirmation
(e.g., I’m the best). We further extracted features based on social network analysis,
by capturing who is talking to who and how frequently they do it in the text chat.
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An additional set of featureswas also developedbasedon thenamesusers chose for
their avatar andVWcharacter. Since the name chosen by a particular player generally
reflected information about the player in terms of gender, age, personal interests,
ethnicity, etc., many effective features were extracted from components of the avatar
names. This included sound symbolism-based features [33] related to gender (e.g.,
female names having high, front vowels, sibilants and ending in ‘a’), typographic
features related to age (use of capitalization, numbers and special characters), and
features based on real-world cultural references in the name (e.g., youth names
referencing elements from Harry Potter books). For a more detailed overview of the
avatar naming phenomena see [21, 22].

9.2.3 Machine Learning and Findings

We further exploredmachine learning approaches to identify predictive features from
a variety of features for detecting real-world (RW) target variables based on virtual
world (VW) data. We applied these techniques to predicting the following RW target
variables: gender, age group, community, ethnicity, English nativeness, RW and VW
leadership and followership.

Twoclassification approacheswere found to performwell on the features extracted
from text chat from players: AdaBoost and linear kernel Support Vector Machines
(SVMs), using RW target variable labels for supervised training. For feature
normalization, we compared the effect of mean/variance normalization and rank
normalization on RW target variable prediction accuracy. For feature selection,
we compared forward–backward feature selection, the SVM-RFE (Support Vec-
tor Machine-Recursive Feature Elimination) algorithm, and logistic regression for
fusion parameters.

We evaluated precision, recall, and overall classification accuracy for target vari-
ables, from tenfold cross-validation for model training/testing and feature selection,
by polling text chat from all four VW together. We built multi-class classifiers for
predicting RW target variables. For example, for predicting age group, the overall
classification accuracy is 82.54%; for predicting community, the overall classifi-
cation accuracy is 83.51%. The most predictive features for age and gender are
presented in Tables9.4 and 9.5.

Gender conclusion both tend to corroborate the findings of the sociolinguistic
community, while adding new findings to our understanding of how gender traits
manifest in language use.

9.2.4 Combined Results

Final results were obtained by combining the language-based features with fea-
tures from VW economic activity, movement, dress, and game play activity (e.g.,
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Table 9.4 The most predictive features for age group (Adult >24, YoungAdult (18–24), Youth
(<18)

Rules for age group

• Adult has larger average number of words per turn than Youth

• Youth use all uppercase (shouting) much more than nonyouth

• Adult has larger average modal words per sentence than Youth

• Youth has larger average number of name addressing per sentence than YoungAdult

• Youth has larger average number of disfluencies per sentence than Adult

• YoungAdult uses more Internet slang per sentence than Youth

• Youth tend to use single word utterances at a rate almost double than adults and to use shorter
phrases in general

• YoungAdult uses more extreme case formulations than Youth

• The use of proper contractions (e.g., “I’m” vs “im”) increases with users’ age

• The use of both periods ‘.’ and commas ‘,’ increases with users’ age

• Adults’ use of personal pronouns is double that of Youth
• Adults are twice as likely to use traditional emoticons as Youth and 3–4 times more likely to
use ellipsis

Table 9.5 Most predictive features for gender

Rules for gender

• Females tend to use hedging forms more than men, including modal verbs, expressions of
uncertainty and questions

• Males tend to use more offensive language and slurs than females, though females use more
attenuated swears (e.g., ‘darn’, ‘crud’)

•Females tend to apologizemore thanmales, thoughmales usemore indirect apologies (‘Ooops’)

• Females are more likely to agree and to express empathy than males

• Females are more likely to use traditional emotions than males, but males are more likely to
use lewd emotions

• Both females and males choose avatar names or nicknames that tend to conform to the findings
of the sound symbolism literature (Jespersen, Ohala, Gordon and Keith)

• Female avatar names tend to end in ‘a’, have sibilant consonants (‘sh’) or front vowels ‘i, y, e’

• Male avatar names tend to end in back vowels (‘u’, ‘o’) or consonants, especially back or
alveolar stops

dueling). Combination was done using the WEKA toolkit [11] and feature selection
techniques based on work by [9]. The main goal of the program was arriving at
human-understandable and human-usable rules—thus precision for each category
and each feature was of paramount importance, with recall being of lesser impor-
tance. Results for the main categories are presented in Table9.6.

Precision was prioritized over recall in this program, since the overall goal was
to develop human-understandable collections of rules that could effectively pick out
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Table 9.6 Final combined
results for the major program
demographic targets

Category Precision (%) Recall (%)

Gender 98 52

Approximate age group 88 13

Ethnicity 83 37

English as native language 77 22

Education 79 52

Socioeconomic status 83 67

Income level 85 35

demographic traits with high accuracy. Thus, even if a rule only applied to a minor
subset of the total population, so long as it was precise, it was of high utility.

9.3 Detecting Identity in Large Collections
of Spontaneous Speech

Automatic speaker recognition is the task of recognizing the person speaking in an
audio recording. It can be classified into two main tasks: identification and verifica-
tion. Speaker identification aims at identifying the speaker present in the recording
among a set of known speakers. Speaker verification, sometimes also called speaker
detection, on the other hand, aims at deciding whether the audio recording corre-
sponds or not to a certain speaker of interest.

The task of speaker identification can be solved through a series of speaker ver-
ification queries against all target speakers, as explained for the related tasks of
language detection and identification by [1]. Furthermore, given its binary nature,
verification is easier to define and evaluate than identification. For these reasons most
research in the area has been done for the speaker verification task.

Speaker verification is used in security applications to verify whether a speaker is
who he claims he is. It is also used in applications that search for specific speakers
within a large database of speech. In the last few years, speaker verification per-
formance on clean telephone data has reached extremely good performance levels,
with error rates below 1% for recordings of around 2min of duration making the
technology adequate for use under these conditions.

On the other hand, performance on harder recording conditions involving noise,
channel distortion, reverberation, and other nonideal conditions is severely affected
and can reach unusable levels. Nevertheless, much progress has been made in these
areas in recent years. This section covers some of the techniques that have lead to
major improvements under these challenging scenarios.



9 Detection of Demographics and Identity in Spontaneous Speech and Writing 213

9.3.1 Overview

The core speaker verification task is defined as determining whether a specified
target speaker is speaking during a given segment of speech. More explicitly, one
or more samples of speech data from a speaker (referred to as the “target” speaker)
are provided to the speaker recognition system. These samples are the “training”
or “enrollment” data. The system uses these data to create a “model” of the target
speaker’s speech. Then a sample of speech data is provided to the speaker recogni-
tion system. This sample is referred to as the “test” segment. Performance is judged
according to how accurately the test segment is classified as containing (or not con-
taining) speech from the target speaker.

Metrics that reflect accuracy are related to a typical hypothesis test (i.e., based
on false positives (referred to as false alarms) and false negatives (misses)). In this
work, we report equal error rates (EER), where false alarm and miss rates are equal,
or the false alarm rate at a particular miss rate. The performance of a system over
the range of possible operation points is generally represented in a Decision-Error
Tradeoff (DET) curve, which plots the relationship between false alarms and misses
over all points.

9.3.1.1 Challenges

As for any detection task, the main challenge of speaker recognition is extracting
features that will represent a speaker independent of variations that can occur in the
observations. Minimizing the intra-class variability while maximizing the interclass
variability is our goal.

Speech is a complex signal, and many possible variations of that signal exist
for the same individual. During the previous few years, the community has tack-
led the problem of extrinsic variability and how to factor out extrinsic variability
from the speaker model (sometimes referred to as channel compensation in articles).
This kind of variability is detrimental to high accuracy speaker recognition. Indeed,
recorded speech varies as a function of many factors that are not a function of the
speaker’s identity, including: acoustic environment (e.g., background noise), channel
(e.g., microphone, handset, recording equipment), high signal-to-noise ratio (SNR),
audio degradation through compression, speaker’s physical condition (emotion,
intoxication, illness), what is said (text-independent versus text-dependent), and
speaking context (level of formality, planning, language).

9.3.1.2 Approaches for Mitigation of Undesired Variability

Mitigation of the undesired variability can be performed at different levels in the
system from the feature extraction to the last stage of system fusion. This section
summarizes several different approaches, focusing on recent methods implemented
in state of the art systems.
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(1) Feature Diversity
A successful approach to speaker verification is to combine different knowledge
sources by separately modeling them and by fusing them at the score level to produce
the final score that is later thresholded to obtain a decision. Combinations of systems
are most successful when the individual systems being combined are significantly
different from each other.

Prosody—the intonation, rhythm, and stress patterns in speech—is not directly
reflected in the spectral features. As a consequence, these features showgreat effect in
combinationwith traditional features [18]. The state-of-the-art approach to extracting
prosodic features is to compute the pitch and energy contour in the signal using
Legendre polynomial coefficients.

Standard spectral-based features include perceptual linear prediction (PLP) fea-
tures and mel-frequency cepstrum coefficients (MFCC). In addition, many spectral-
based features were developed specifically for noise robustness under the DARPA
RATS (Robust Automatic Transcription of Speech) program.Medium durationmod-
ulation cepstrum (MDMC) features [29] extract modulation cepstrum-based infor-
mation by estimating the amplitude of the modulation. Power-normalized cepstral
coefficient (PNCC) [17] features use a power law to design the filter bank as well as
a power-based normalization instead of a logarithmic one. Mean Hilbert envelope
coefficient (MHEC) features [36] use a gammatone filter bank instead of the Mel
filter bank, and the filter bank energy is computed from the temporal envelope of the
squaredmagnitude of the analytical signal obtained using the Hilbert transform. Sub-
band autocorrelation classification (SACC) [23] provides a pitch estimate from an
estimator that is trained using a multilayer perceptron, allowing for a robust prosodic
system implementation, which we call PROSACC (Prosodic Subband AutoCorrela-
tion Classification) in this article.

(2) Advanced Modeling
Recently, the speaker verification community has enjoyed a significant increase in
accuracy from the successful application of the factor analysis framework. In this
framework, the i-vector extractor paradigm [5] alongwith a Bayesian backend is now
the state of the art in speaker verification systems. An i-vector extractor is generally
defined as a transformation where one speech utterance with variable duration is pro-
jected into a single low-dimensional vector, typically of a few hundred components.

The low rank of the i-vector itself opened up new possibilities for the application
of advanced machine-learning paradigms that would have been otherwise too costly
with the very high dimensionality used by most earlier systems. Probabilistic linear
discriminant analysis (PLDA) [14, 35] has proved to be one of the most powerful
techniques for producing a verification score. In thismodel, each i-vector is separated
into a speaker and a channel part, analogous to the formulation in the Joint Factor
Analysis framework [15].

A simple and quite effective approach for robustness against undesired variability
is to include data with the corresponding variability during training of the PLDA
model [24], so that the model can learn the appropriate intraspeaker variability under
the conditions of interest. On the other hand, the components of the i-vector extractor
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seem much less sensitive to exposure to a new type of variability and can be kept
untouched without much, if any, effect in performance.

(3) Metadata Extraction
Metadata information about the audio recording can be used to affect the parameters
of the models, allowing adaption to the specific conditions of the recording. Rather
than relying on either annotated data, or developing specific systems for each type
of variability, a universal audio characterization system can be used to extract meta-
data information based on the i-vector [7]. This enables the system to detect if an
audio recording contains certain kinds of noise, channels, or the speaker’s gender or
language.

(4) System Fusion and Calibration
Fusion of systems is usually performed either at the score level or at the i-vector level.
At the score level, system fusion is generally performed using logistic regressionwith
a cross entropy objective [2], the standard fusion approach in speaker recognition.
This approach offers the benefit of producing calibrated scores, treatable as log-
likelihood ratios, which are ideal for forensic comparisons and decisions.

As mentioned in [7], the metadata extracted from the universal audio character-
ization system can be used during fusion to adapt the output score to the signal’s
conditions. A modified version of the logistic regression fusion algorithm is used so
that log-likelihood ratios are still produced but are biased depending on the metadata
between the enrollment and test utterances.

9.3.2 Robustness to Undesired Variability

In this section,wehighlight the impact of the approaches described above for different
types of degraded audio conditions and other extrinsic variations.

9.3.2.1 Channel, Noise, Reverb, Vocal Effort and Language Variation

To evaluate speaker recognition accuracy on multiple types of variability, SRI cre-
ated the PRISM (Promoting Robustness for Speaker Modeling) dataset [8], building
on data previously collected by the Linguistic Data Consortium and creating trials
from waveforms degraded by adding noise or reverberation. The PRISM data set is
available online at https://code.google.com/p/prism-set/.

In Fig. 9.1, we show the benefit of different mitigation approaches by showing
the increase in speaker recognition accuracy for every step of the pipeline. Note
that results for different conditions are not comparable since they involve different
speakers and other factors that affect the absolute performance. Comparisons should
be made within condition and across systems.

The conditions defined in the PRISM set and represented in the horizontal axis
of the figure are:

https://code.google.com/p/prism-set/
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Fig. 9.1 SRI’s speaker verification results on the PRISM set

• telphn: Telephone calls over telephone channels.
• intmic: Microphone recordings in an interview setting.
• telall: Telephone calls over telephone channels and other microphones.
• voc: Vocal effort: low and high.
• lang: Trials made of languages other than English.
• noise: Clean signals degraded with real noise samples at different SNR levels
ranging from 20 to 6 dB.

• reverb: Clean signals degraded with artificial reverb at reverb times (RT) of 0.3,
0.5, and 0.7 s.

The baseline system is a standard i-vector/PLDA recognition pipeline on MFCC
features, without the mitigation mechanism for the variations of interest.

The robust system uses an enhanced PLDA model designed to be robust to the
variations of interest by adding data with these types of variation during training.
This system also includes other techniques that add robustness to the system, namely
i-vector length normalization [10], an LDA step for dimensionality reduction, and
i-vector adaptation, where the mean i-vector over each condition is subtracted from
the corresponding i-vectors before PLDA modeling. Improvements are highly sig-
nificant, reducing error by a factor of ten times on the noise condition while also
improving results for “cleaner” conditions like telephone calls.

The robust+ prosody system is a fusion of the robust MFCC system and a robust
prosodic system. We see that an additional improvement can be observed in most
conditions. Finally, we enable metadata extraction and handling in the robust +
prosody + metadata system to obtain additional improvements for most conditions
except language and vocal effort. These conditions were not represented as classes
for the metadata extractor due to lack of training data for them and, hence, could not
be appropriately predicted.

The figure shows how the different approaches for mitigation reduce the effect of
the undesired variations, in some cases reducing the false alarm rates at 10% miss
rate by an order of magnitude.
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9.3.2.2 Highly Degraded Channels

The DARPA RATS program aims at developing robust processing methods for
speech acquired from highly degraded transmission channels. The audio record-
ings [40] used in the RATS program are severely degraded with additive noise,
channel-convolved noise, bandwidth limitations, and frequency shifting. Telephone
conversations are retransmitted over eight differentmilitary transmitter/receiver com-
binations. All the data was retransmitted across all the channels and re-recorded,
resulting in more than 100,000 files. The core languages from which speakers are
selected are Levantine Arabic, Farsi, Dari, Pashto, and Urdu. In the speaker verifi-
cation task each speaker model was trained using six different sessions from differ-
ent channels. A trial was designed using one speaker model and one test session.
The duration of each training and testing session was 3, 10, 30 or 120s depending
on the condition.

SRI’s system was composed of five different features: PLP, MDMC, MHEC,
PNCC, PROSACC. For the i-vector framework used by all feature streams, we
used universal backgroundmodels (UBMs)with 2,048 diagonal covarianceGaussian
components trained in a gender-independent fashion. The PROSACC systems used
1,024-component UBMs. The i-vector dimensions of 400 were further reduced to
200 dimensions by LDA (in the case of PROSACC, 200D i-vectors were reduced to
100D), followed by length normalization and PLDA.

The systems are fused at the i-vector level by concatenating each i-vector from
each stream into a single vector before employing the PLDA backend. The i-vector
dimensions are first reduced using LDA, and only after concatenation does a second
dimensionality reduction shrink the total dimension to 200. Fusion of systems at the
score level was performed using logistic regression.

Results from four core conditions are provided in Fig. 9.2, showing the relative
performance of the five acoustic features with both HMM (Hidden Markov Model)

Fig. 9.2 SRI speaker recognition system results on the DARPARATS development set for different
combinations of train and test durations



218 A. Lawson et al.

and GMM (Gaussian Mixture Model) SAD (Speech Activity Detection), as well as
the gain from the final score plus i-vector fusion system (in dashed lines). For more
details on the results presented in this figure, see [27, 28]. For all durations, the
MDMC and PNCC features with GMM SAD had the least errors. The fusion system
was always significantly better than any single system, benefiting in particular from
the PNCC features and substantially from the inclusion of PROSACC, despite the
system’s low accuracy on its own.

9.4 Work in Progress: Identification of Identity Factors
from Both Speech and Text in the Active Authentication
Program

This section describes an ongoing project, LinguaKey, to combine both speech and
text data for continuous authentication of mobile device users through their language
usage. The goal of this work system is to provide continuous authentication of users
actively performing routine tasks on a mobile device. These include telephone con-
versation, spoken device interaction (e.g., “SIRI”), text chat, instant messaging and
email. This research builds a profile of a user’s distinctive linguistic usage and gener-
atesmodels to provide an ongoingmeans of ensuring that only authorized individuals
have access to their mobile device.

Our approach is to identify discriminative features based on behavioral and cog-
nitive dimensions of individual linguistic variability. These factors represent deeply
ingrained parts of a user’s way of thinking and behaving, of which the user may not
even be conscious. The notion is that since these factors are difficult to control they
will be resistant to spoofing. Behavioral dimensions include features from speech
and text production, i.e., the idiosyncrasies of how users actually produce spoken
or written language. In speech this includes factors such as intonation, speech rate,
and speech energy/frequency. In text, behavioral features will target spelling errors,
punctuation style, use of abbreviations, sentence and word length, among other fac-
tors. Cognitive features are focus on sociolinguistic factors derived from linguistic
activity that provides clues about the individual user’s background, personality, and
approach to interpersonal relations. An individual’s language use is highly colored
by sociolinguistic background, with influences from gender, age, ethnicity, native
language, region, level of education, social class, dialect, and others. We further
leverage the rich information in word sense information and linguistic context to
provide parameters for identifying users based on personality traits and their typical
approaches to interacting with others.

9.4.1 Approach

The LinguaKey process begins with the capture of speech and text on the mobile
device (see Fig. 9.3). This will be accomplished through tools that provide hooks into
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Fig. 9.3 LinguaKey feature extraction and modeling process

the Android operating system to record keystrokes and themicrophone on themobile
device. Three initial features are extracted from speech: (1) the words being spoken
are identified using a speech-to-text tool, (2) the intonation contours and prosody
are identified and (3) the spectral features are extracted from every frame. For text,
the input to the keystroke logger is collected, both in its raw form and the final sent
message. This text then feeds a module that identifies behavioral features from the
text dealing with spelling and typography. In an analogous speech behavior module,
the spectral and prosodic features are modeled as a short duration biometric. The
cognitive modeling component receives words from both the spoken and text inputs,
as well as intonation, pitch, etc., and identifies linguistic features that encompass
spoken and written language use. The three modeling components output scores as
log-likelihood ratios to the fusion and calibration engine which is continuously using
current and recent past information to determine the probability that the current user
is the authorized user.

The system architecture to support this processing relies on a client/server config-
uration, in which the algorithms to process the data, extract features and score reside
on a remote server that communicates via wireless or cellular connection. In Fig. 9.4,
the basic flow of Linguakey is depicted, with a database serving to contain audio and
speech organized by enrolled users. A modality server contains models developed
from different modalities of data (spoken, written, etc.). The mobile device collects
data in real time from users, which is passed to the core server, which processes the
data, extracts features, scores the data against the proper model and stores the audio
in the database. The client allows access to the system offline for research purposes
such as extracting and studying the data and running authentication experiments.

9.4.2 Data Collection

Volunteer participant data collection is a crucial component of this effort, since
data is required to understand the relationship between how language behavior and
cognition manifests itself in both spoken and written modalities. Four types of data



220 A. Lawson et al.

LinguaKey 
Mobile 

Device(s)

LinguaKey
Server 

LinguaKey 
DB

Sends email, 
SMS, Hangout 
(chat), and audio 
data to server Archive of collection 

and authentication 
data LinguaKey

Client  

Modality
Engine(s)

Server invokes Modality 
Engine(s)

Client allows researchers to query collection data, 
export data, and reprocess data with modality service(s)

Fig. 9.4 The LinguaKey client/server architecture

were collected in this effort over 90 sessions: (1) phone calls, (2) personal digital
assistant-type queries, (3) text chat and (4) emails.

The final tally of collected data was 1,300 audio files collected totaling 1,200min
of speech, which amounted to about 15min per user. On the text side, 1,800 lines of
text and 21,000 words were collected and 18,000 corrections were recorded. We are
calling this collection the SpOntaneous Mobile Language Use Corpus (SOMLUC).
The eventual goal is to release this data andmake this widely available to the research
community (Fig. 9.5).

Fig. 9.5 Probability of starting a sentence with a lowercase letter in the SOMLUC corpus
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9.4.3 Research and Results

We have implemented a large set of 102 features covering everything from basic
behavioral traits (punctuation, capitalization, word length, etc.) to higher level fea-
tures focused on word semantics, emotional content, and language frames. Speech-
specific features include pitch, intonation, speech rate, and cepstrum; text specific
features focus on typographic and orthographic information and corrections.We have
also implemented a set of language general features that are the core of this effort,
including words, speech act frames, semantics, and sociolinguistic trends.

We are currently working to understand and take advantage of entailment—the
fact that features are correlated across individuals because they are associated with
the same set of personality and background traits. Part of our research program is to
look at how features interact to predict higher level aspects of a person’s cognitive
and behavioral traits, traits that effectively characterize users but about which they
have little control.

Since our goal is to combine our 100 or so features into groups that correlate with
higher level personality, cognition or demographic factors, understanding entailment
within and across speech and writing is crucial.

In Tables9.5 and 9.6 we present data from SOMLUC showing the variability
between participants in terms beginning a sentence with a capital letter and prob-
ability that they will make a written correction. On their own, these two pieces of
information are useful in terms of both characterizing individuals, and certainly cor-
relatewith aspects of an individual’s personality in that careful userswill tend tomake
corrections and use standardwritten forms, as do older users andmore educated users
based on evidence from the verus program.

A major focus on the LinguaKey program is to understand not just which features
are useful, but to understand the relationship between features in both spontaneous
writing and speech. This is important in its own right in terms of basic research as a
means of clarifying the relationship between demographics and personality and types
of linguistic phenomena. It is also important for the goal of authentication of users,
since one of the main problems encountered in supervised system is availability of
sufficient training data both in terms of raw amount and in terms of coverage of
phenomena important for characterizing the user in the feature space (Fig. 9.6).

Thus being able to predict absent features from the presence of other features is of
high value in modeling an individual when limitless enrollment data is not available.
In support of this approach Fig. 9.7 shows the extent to which features interact and
bundle, revealing higher level correlations between the phenomena and allowing us
to group features into higher level classes that predict other features. For example,
users who are careful to use the proper forms of “I” and “you” (rather than “i” and
“u”) are naturally going to have a higher rate of corrections, since the form of the text
is important to them. Likewise, users who fail to capitalize sentences are inversely
correlated with correction rate, with the same rationale.

Next steps for LinguaKey will focus on the relationship between features in the
spoken language, such as uptalk or filled pauses, and sociolinguistic factors in the
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Fig. 9.6 Differences in correction rate among users in the SOMLUC corpus

Fig. 9.7 Positive and inverse correlations between features in the SOMLUC corpus

written spontaneous language use, such as use of emoticons, questions and other
phenomena associated with hedging. For example, in the verus data it was found
that females tended to use emoticons much more than males, and that emoticons
played the role of “softening” or hedging the utterance they were associated with.
Likewise, “uptalk” (the persistent rising of pitch at the end of statements—Ref. [4]) is
considered to be a kind of hedging phenomenon. Our hypothesis is that individuals
who have pervasive uptalk in their speech will also tend to use written hedging
phenomena (such as emoticons and modal verbs) more frequently. These findings
will allow us tomove from a set of isolated and uncorrelated features to the capability
to represent the feature space as a natural gestalt, where users can be characterized
effectively in a predictive space based on naturally clustering of sociolinguistically
related features.
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9.5 Conclusion

The future of identity detection lies in the intersection of higher level features and
machine learning—both in speech, where prosody and phonetic content are begin-
ning to play a crucial role and writing where sociolinguistic factors are having a
significant impact. In speaker identification the use of highly accurate neural network-
based phone identification systems at the senone level [25] are being combined with
i-vector modeling approaches to help eliminate the influence of phonetic content on
speaker traits. In text processing the verus research demonstrated how the findings
of sociolinguistics could be applied to a completely new domain and form the basis
for an effective system to extract demographic information from spontaneous text
chat in the virtual world environment. Ongoing work targets the intersection of text,
speech, and identity to identify the commonalities and correlations between features
across language use, and factors that reflect the background, behavior, cognition, and
physical makeup of the individual.
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Chapter 10
Evaluating Web Image Context Extraction

Sadet Alcic and Stefan Conrad

Abstract Images on theWeb appear with other textual contents—referred to asWeb
Image Context—providing valuable information to the image semantics. Unfortu-
nately, HTML documents are usually cluttered with multiple different contents to
different topics and therefore the right image context needs to be precisely deter-
mined in order to deliver high quality descriptions. Several methods that automati-
cally determine and extract the Web image context from Web documents have been
applied in different applications over the years. However, in these applications con-
text extraction is only a preprocessing step and therefore the quality of the extraction
task has rather been evaluated on its own. To sum up, there is hardly information
about which extraction method to choose in order to get best results. Keeping this
necessity in mind, an evaluation framework that objectively measures and compares
the quality of different Web Image Context Extraction (WICE) algorithms will be
the main subject in this book chapter. The main parts of the framework are a large
ground truth dataset consisting of diverse Web documents from real Web servers
and objective quality measures tailored to fit the special characteristics of the image
context extraction task. In order to demonstrate the capabilities of the framework,
common extraction methods from the literature are implemented and integrated into
the framework. Finally, the evaluation results are summarized and discussed.
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10.1 Introduction

In recent years, the World Wide Web has become an integral part in our lives with
millions of documents for almost every conceivable topic. This tremendous amount
of data is only useful when its information is explicitly accessible. While the textual
contents of Web documents are retrievable using proven indexing techniques from
Information Retrieval (IR), the automatic indexing of images by means of their
semantics is still an open challenge. The difficulty is known as the Semantic Gap
[1], which describes the lack of a reliable mapping from the raw representation of
images to the semantic meaning of the depicted objects.

Fortunately, images on the Web appear in a context within textual articles or
explicit image captions that provide meaningful information to the semantics of
the depicted objects. This additional information can be exploited to provide useful
image annotations and thus to avoid the direct confrontation with the Semantic Gap.
By Web Image Context we are not referring to some meta attributes of an image
found in a Web document like filename, alternative text and others—these can also
be useful but are out of the scope. For now, we are only talking about visible text
that appears nearby an image on a Web page.

Figure10.1 shows a typical Web image and its context as placed on a news
overview page. Although the image context does not exactly describe the depicted
scene, we can extract keywords like “water” and “holdings hands” from the context.
Furthermore, we get a background story about micro-clustered water and its prop-
erties which is beyond the semantics of the image alone. Whether this additional
information is valuable or the opposite depends on the application and is not the
subject of this work.

However, Fig. 10.1 further illustrates how the article is embedded in a Web docu-
ment. We can observe that this Web document is built up from contents of multiple
topics, advertisements, social network add-ons and other structural data. In order to
gather the best possible descriptions, we have to apply an extraction algorithm that
will separate the text content belonging to the image from the complete text of the
document.

The idea of usingWeb image context as description source is not new and has been
addressed by several researchers in different applications using different extraction
methods. Each applied extraction method seems eligible, but to our knowledge there
is no objective investigation and comparison of extraction methods. Most of the
evaluations done so far (see Related Work) examined the main application and in
this way are implicit, reflecting only an impact of the extraction method on the main
application.

We fill this gap by presenting an evaluation framework that uses a huge dataset of
Web documents that were automatically collected from real Web servers and custom
designed evaluation metrics that fit the characteristics of the problem and ensure the
objectivity that we demand. Common extraction methods are implemented within
the framework and are used to demonstrate the functionality of the framework.
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Fig. 10.1 Web image context example on a typical News Web page (extracted from NewsUSA,
http://www.copyrightfreecontent.com, on September 6th, 2014)

The proposed framework was first introduced as a research paper [2] at the
Multimedia Data Mining Workshop of the KDD 2010 conference. Later on, it was
successfully applied to measure the performance of newly introduced extraction
methods in [3, 4].

This work is structured as follows: first, we are going to present and discuss
related work in the next section. Following that, in Sect. 10.3 the problem of Web
Image Context Extraction will be formalized. The evaluation framework and its
modules are the subject of Sect. 10.4. There we first give general overview to the
framework followed by a deeper description of the particular components and their
concrete implementation. Finally, the chapter is concluded with a reflection on the
evaluation results.

10.2 Related Work

Image context has been used as description source in several applications over the
years. As a result, different context extraction techniques have been proposed in the
literature. However, sinceWICEwas only a preprocessing step in these applications,
there is hardly direct evaluation of this task. At this point, we give an overview to
the few evaluation scenarios that deal with image context to a certain degree.

Souza-Coelho et al. [5] list four sources for image descriptions within a Web
document, namely description text (image filename or alternative text), meta tags
(located in the HTML head of the document), full text, and surrounding text

http://www.copyrightfreecontent.com
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passages (see window of surrounding terms in Sect. 10.4.4). Within an evaluation
task they analyzed the image retrieval performance based on the different descrip-
tion sources applied for image indexing. They have found that the surrounding text
passage consisting of 20 terms before and after the image (passages of 10, 20 and 40
terms were separately inspected) performed best in their evaluation task. Although
other methods of WICE have not been evaluated, this result supports our assumption
that beside all structured data that can be directly extracted from Web documents as
image description, Web image context is most valuable and this encourages us to
search for reliable extraction methods.

Another system, where the surrounding text passage plays a great role is Image
Rover [6]. The image indexing in this system is based on textual and visual descrip-
tions of images, while the textual descriptions are obtained from plain text of web
documents. Different document parts are weighted depending on their parent tag
properties, where the surrounding text weight is among the highest. The system per-
formance has been evaluated by applying the target test paradigm [7], which tests
how efficiently a system performs in finding a target image in the data collection.
As in [5], the presented evaluation shows only the impact of one context extraction
method to the image retrieval task. However, there is no comparison, since no other
extraction method has been tested.

Tian et al. [8] extract visual, relational, and textual image descriptions for Web
image classification. The textual information are gathered from the sibling nodes
of Web images in the DOM representation. Based on the associated descriptions,
the images are classified and the classification performance is analyzed. This is
another example where only the impact of one WICE method on another applica-
tion (namely image classification) was evaluated. As an alternative textual context
extraction method, VIPS [9] is mentioned but not applied in the scenario due to
its high complexity. VIPS (Vision Based Page Segmentation) is a page partitioning
algorithm, that will be described in Sect. 10.4.3 briefly.

The effectiveness of VIPS was only judged indirectly by its inventors. In [9],
Cai et al. proposed and tested VIPS’s segmentation quality by employing 5 human
experts who classified the segmentation results to perfect, satisfactory, fair and bad.
He et al. [10] applied VIPS for context extraction and have evaluated Web image
retrieval and clustering efficiency, without focusing on the context extraction, nor
comparing with other extraction methods.

To our knowledge, the only direct evaluation on WICE has been done in [11].
In order to evaluate their extraction method (see Monash Extractor in Sect. 10.4.3),
Fauzi et al. have built the following testing environment:

Document Collection. As data set, 100 Web documents were randomly selected
across various categories in Alexa Web Directory [12] and manually labelled by 30
volunteers. Each volunteer processed 10 Web pages, which means that every page
was labelled 3 times. This resulted in 3 labelled sets of data, and as the final set,
they took the broadest context from the 3 available. Banners and layout graphics
were filtered by checking image dimensions: only images with a width and height
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greater than 45 pixels and a width-height ratio between 1
2 and 2 were processed. The

outcome is a set of 1,019 image-and-context pairs.

Evaluation Measures. The evaluation of the proposed extraction algorithm is done
within a system-based framework where the Precision and Recall measures are
applied. In this context, Precision is the percentage of correctly (test on exact
matching) extracted image descriptions over the total extracted image descriptions
and recall is the percentage of correctly extracted image description over the total
actual number of image descriptions in the dataset. For both measures, the average
value over all extracted image-context pairs is computed. Furthermore, the average
processing time needed to extract all images and the corresponding contexts perWeb
page has been estimated.

Evaluated Methods. Within this study, two methods were evaluated: the Monash
Extractor and a VIPS-based extractor. VIPS has one central parameter called
Permitted Degree of Coherence (PDoC), which regulates the granularity of the seg-
mentation. In this task the PDoC value has been varied from 5 to 7, similar as in [13],
so that three different extractions were computed using VIPS. This resulted in four
precision and respectively recall values in total. However, the average processing
time has only been estimated for the Monash Extractor.

As mentioned above, this work is the only direct evaluation task of image context
extraction. However, the evaluation task has some weaknesses. First, the document
collection consists of only 100 documents which is very small in order to represent
the diversity of a repository that consists of billions of documents. Secondly, the
ground truth data has been combined by taking the broadest text segment from three
human labelled extractions, but taking the broadest text means usually accepting
errors in all of the manual labels. Here possibly an intersection of the three would fit
better. Finally, the evaluation metric is not focused on one mapping (image-context-
pair) but on the complete Web document. The particular mappings are compared on
exact matches, meaning that if the ground truth data and the extracted data match
99%, the metric treats them as they do not match at all. We think that this criterion
is very strict and does not reflect the performance of extraction task adequately.

10.3 WICE Problem Formulation

Web Image Context Extraction (WICE) deals with finding the image context of an
image within a Web document. To be more precisely, it describes the process of,
given a Web image, estimating those textual parts from the hosting Web page that
are semantically related to the image; we refer to these textual parts as the Web image
context.

A common representation forWeb documents is the node-basedDocumentObject
Model (DOM) tree, where each content is wrapped within so-called tag-nodes. The
inner content units (text-, image- or object-nodes) are represented as leaf nodes.
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Based on this representation, we can emphasize three main parts within the WICE
task:

• the Web image, represented by an image node,
• the hosting Web page, which contains the image node, and of course
• the image context, a subset of the documents text contents, which has to be esti-
mated.

Having outlined these concepts, a more formal definition of WICE can be given.

Definition 10.1 Let I be a Web image and D be the Web document that contains I .
The WICE task can be denoted as a two dimensional function

f (I, D) = CI ,

where
CI = {ti | ti is the content of a text node element in D}

is the set of text node contents representing the image context.
From this general formalization of the WICE task, we can derive that the Web

image and the Web document serve both as input, while the returned image context
represents the output.

10.4 Evaluation Framework Design

Figure10.2 presents a flow diagram showing the basic parts the WICE evaluation
environment is composed of.

Evaluation 
Metrics

Ground Truth

WICE
Method

Extraction 
Output

Input Web 
Document

Results

Fig. 10.2 Overview of the different modules of the evaluation framework
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The input data in this evaluation process are Web documents that are collected
from different Web servers. On one side, these documents are processed by a human
expert who labels the documents and in this way creates the ground truth data for the
evaluation. On the other side, there are concreteWICE methods that analyze the input
Web documents and automatically compute image-context pairs that are assumed to
belong together. Both outputs, the ground truth as well as the extraction results are
of the same output format. In the next step, these outputs are compared to each other
by applying suitable evaluation metrics. The result of the evaluation framework is
the outcome gained during that final comparison step which can be visualized and
presented to the user in different graphs.

In the following, the particular modules of the framework will be presented in
more detail.

10.4.1 Input Data

The evaluation framework estimates the performance ofWICEmethods by applying
them on realWeb documents. These documents are served as input data for theWICE
methods and are therefore an essential part of the framework.

Web documents are mostly written in HTML by different authors around the
world with different programming experience and designing skills. This variety is
further encouraged by the loosely restricted standard of HTML which allows the
author to produce a needed output in different ways, which can be misleading for
the later analysis, e.g., a bold tag with an increased font size can produce the same
output as an header tag. Even more challenging are deficient HTML documents that
are affected with missing (unclosed) tags but are accepted and correctly presented in
browsers, which apply different techniques to repair the ill-formed documents. In this
framework, the input documents are therefore passed through the JTidy parser [14],
which is able to generate valid HTML code as the parsers in most browsers do. This
preprocessing method is imperative at this step since without a well-defined HTML
structure, it is not possible to build the DOM tree which is the core presentation for
further analysis.

Another difficulty for the extraction process becomes apparent when we look at
the desired contents in an input document. As described in the introduction, Web
documents are cluttered with different kinds of contents which belong to functional,
structural and the main information content. This implies that there are also images
that belong to these different parts. It is therefore necessary to find out which images
belong to the real content of a Web page and which are only structural or naviga-
tional, because it does not make sense to search for the image context of non-content
images. In our implementations, we therefore apply a rule-based image filter, which
detects the unwanted images and excludes them from being analyzed. Structural
and functional images serve as background or click-areas in different parts of a Web
page.We empirically found out that these images mostly are characterized by certain
image dimensional properties which allow us to define filtering rules based on these
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values. We have applied the following filtering rules which are very similar to those
suggested in [5, 11, 15]:

1. Filter images with a width or height smaller than 60px.
2. Filter images with a width-height ratio greater than 2.5 or smaller than 0.4.
3. Filter images of Graphic Interchange Format (GIF).

The first rule excludes too small images, because they are assumed to be either
decoration images or button areas. The second rule filters images whose width-
height ratio exceeds a predefined range. The affected images are mostly background
graphics, website logos or banners which do not belong to the main content of
the Web page. Finally, the third rule filters all GIF images which mostly represent
advertisement images and rotating banners.

Web documents are hypermedia documents which contain links to other docu-
ments and also include many objects of other media types by pointing to the URLs
of these data objects. For example, images are included in a Web document using
the source attribute of the image tag that gets an URL of the image as input. For
our evaluation framework it was necessary to collect a set of Web documents and to
store this set locally in order to ensure a reliable and fast access on the documents.
However, URLs in Web documents are mostly encoded relatively in respect to the
actual location of the document on theWeb server. If we download theWeb document
source to store it locally, the relative links and paths become invalid and have to be
adapted. It is possible either to store all of the needed resources in the same directory
structure as they are presented on the Web server, or—the way we have chosen for
this evaluation framework—to convert all relative links and URLs to absolute ones
and thus provide the access on the desired resources (scripts, images) without the
need to store them locally.

To sum up, an inputWeb document is preprocessed in three steps in our evaluation
framework as depicted in Fig. 10.3. First, the document is checked for validity and
possible errors are corrected using the JTidy library. In the second step, all URLs
are converted to absolute paths. And finally, some images that are not of the main
part of the Web document are filtered. Filtered does not mean that they are removed
from the original Web document but just that they are not passed to the next analysis
steps.

URL 
Adapta on

HTML 
Corre on

Image 
Filtering

Raw Web
Document

Processed
Web

Document

1st Step 2nd Step 3rd Step

Fig. 10.3 Web document preprocessing
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10.4.2 Ground Truth Dataset

The ground truth dataset plays a very important role during the evaluation process,
since it defines the desired extraction result that a WICE method should output.
However, the creation of a ground truth dataset that is representative for all the
documents on the Web comes with several problems that will be described next.

The convenient way to create the ground truth data is to let a human expert do it
manually. Although the determination of the context of an image can be subjective
and therefore not always deterministic—there are parts of a Web page that in some
situations belong to the context, in others not (e.g., the complete article text can
be omitted when a detailed image caption is present)—we assume that the human
expert at least has a good idea of what the image context should be. On the other
hand, the effort needed to determine the image context manually is tremendous. The
average time needed to manually process a Web page containing 20 image-context
pairs using a special labelling tool [16] that alleviates the process took 183s. As a
consequence, the processing of 1,000 documents would take approximately 51h of
work. This brought us to the decision to think about an automation of the process.

Finding a general extraction method that is able to create our ground truth dataset
seems to be impossible since if such a method would exist, the problem of WICE
would be solved. On the other hand, for one specific Web document, it is possible
to write a tailored extraction application (supported by a human expert) that exactly
determines the image context for the images within this document. This extractor
can be based on rules determining the desired DOM structure.

Using textnodes as smallest image context units in the ground truth, seems to be
inflexible and to privilegeDOM-based extractionmethods.However, a broad analysis
of several documents used in this evaluation task showed that a further partitioning of
textnodes into, e.g., the particular words, would not be more useful, since all image
context parts are complete textnode texts and never portions of them.

Example 10.1 An example extraction rule for collecting the image context in a Web
document:

// 1st rule

IF ImgTag has ParentNode with Attribute a = "b"

THEN

extractAllTextNodes under ParentNode as ImageContext;

exit;

// 2nd rule

...

The order of the rules is very important, since the images covered by different
rules may overlap. For some documents, rules can be much more complex, e.g., they
can exclude particular textnodes under a parent node.

Example 10.1 contains a typical extraction rule that is based on particular HTML
tag properties. The example rule is performed for a given ImgTag which contains the
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image for which the context is sought. The rule condition dictates if the given tag
contains a parent node with an attribute “a” having a value “b” then collects all text
nodes under the estimated parent node as the image context.

Insteadof creating a tailored image context extractor for eachWebdocument—this
would be even more time consuming than directly estimating the image context—we
observed that there are collections of Web documents for which one specific image
context extractor would fit. These are Web documents that are part of a common
Web site (e.g., Wikipedia) that is maintained using a Content Management System
(CMS). Usually these documents are based on a common structural template. There
are two different methods to gather documents that share a common template, either
by crawling a specific Web site or by recalling a Web page that changes very often
such as the start page of many news portals.

We decided to apply bothmethods to collect the data collections, the first for static
documents like the pages collected from Wikipedia, and the latter for dynamically
changing documents like the news pages. To be more detailed, while the first method
could be implemented straight forward by crawling through several documents on
one Web page, the algorithm for the latter is more complex:

LOOP until NrOfCollectedDocuments = M

current := load source from www.example.com

IF (difference(current, last) > threshold)

THEN

store current to disk

last := current

ENDIF

wait N minutes

The algorithm consists of one loop that is repeated until the desired number
of documents M has been collected. Inside the loop, first the source code of the
Web document (here www.example.com) is downloaded as current. Then the
difference of the current document to the last stored is estimated. We have tried
different algorithms for computing the difference of two Web page sources and
we decided to compare the sources line-by-line. If the difference is greater than a
predefined threshold, we store the current document to disk since it seems to differ
significantly from the last stored. After that the “last” content is overwritten by the
current and the algorithm waits a small period before repeating the whole process.

Finally, the result is a collection of Web documents that have different contents
that are based on one template. For this template, a human expert can now define rules
that extract the images and corresponding context. To do this, the expert only needs
to analyze a small portion of the Web documents, which is an enormous reduction of
the needed effort compared to manual image context extraction. Figure10.4 depicts
different pages from NewsUSA.com domain that are based on the same template.
As we can see, there are many elements as the header, the footer and the navigation
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Fig. 10.4 Three different pages based on the same template (extracted from http://newsusa.com)

Table 10.1 Test collections
with total number of
documents and images

Collection #Documents #Images

BBC 1,077 7,878

CNN 874 11,612

Golem 789 3,061

Heise 79 1,403

MSN 375 9,264

New-York Times 556 10,927

Spiegel 1,076 36,310

Telegraph 530 10,503

The Globe and Mail 735 15,808

Wikipedia 3,000 6,728

Yahoo! (english) 3,737 41,170

Diverse (manual) 79 901

Total 12,907 155,565

bar that hardly differ. Also there are high structural similarities between the content
articles.

The properties of the resulting test collections are summarized in Table10.1.
According to these values, to our knowledge this is the greatest existing test collection
of extracted image-context pairs.

http://newsusa.com
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10.4.3 Applied WICE Methods

In order to test the framework capabilities, we have implemented some of the com-
monly used extraction methods that will be described next.

10.4.4 Window of Surrounding Terms

A very fast and therefore commonly used method to extract image descriptions is
the window-based method. The N-Terms Window algorithm has been applied in
[5, 15, 17, 18].

In most Web pages, the image context is placed next to the corresponding image
(as depicted in Fig. 10.1). Following this assumption, the idea behind this method is
to extract text that surrounds the image in the HTML source code as image context.

Data: Web document d, image I, window size N
Result: Set T of terms surrounding the image
S ← get I mages AndT erms(d);
i ← index O f (I, S);
for k ← (i − N

2 ) to (i + N
2 ) do

if S[k] instanceOf term then
T .add(S[k]);

end
end

Algorithm 1: N-Terms Window

The extraction method is described in Algorithm 1 in pseudocode notation. As
input, it needs a Web document, an image of this document and a window size N . In
the initialization step (line 1), the document is transformed into a sequence of terms
and images S. The terms are the particular words of the textual content of the given
Web page and the images correspond to the images in the document embedded by
<img> tags. The elements in sequence S are ordered by their position in the original
HTML code of the document. Further, we denote the i th element of S as S[i]. The
transformation can easily be accomplished by a linear scan of the HTML code.

In the next step (line 2), the position of the image in the sequence S is determined
and stored as index i. This step is necessary in order to know where to position the
window frame in the next step.

The main part of the algorithm (lines 3–7) is a loop which iterates over S from
S[i − n

2 ] to S[i + n
2 ] and collects the visited terms. Additionally, if the window

exceeds the borders of S, the iteration index has to be adapted (not contained in the
pseudocode algorithm). Provided that the element S[i] is an image, the Web image
context is estimated as in Fig. 10.5.

The parameter n determines the size of the frame of terms surrounding the image
and has to be estimated. Souza-Coelho et al. [5] have used different frame sizes in
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i-n/2 ... i-2 i-1 i i+1 i+2 ...i+n/2......

n-terms surrounding position i

Fig. 10.5 Frame of n terms surrounding an image in a list of terms and images

their evaluation studies while n = 20 has performed best (experiments have been
carried out with n = 10, n = 20 and n = 40). Sclaroff et al. [17] have applied a
frame of 30 terms, while the number of terms before the image was set to 10 and
respectively after the image to 20 terms, which can bewell justified by an observation
of Feng et al. [15] stating that for 73% of the examined images the context appears
after the image and for 27% of the images context appears before the image.

The time complexity of the described method is linear, since the Web page trans-
formation, the image index estimation, and the window of terms computation are
sequentially executed and each of them is linear in time depending on the length of
the document.

10.4.5 Paragraph Extractor

As the name implies, this extraction method (applied in [19, 20]) aims to find the
nearest paragraph of an image and considers this paragraph to be the image caption.

This is a DOM-based approach that uses the parent-child relation between DOM
elements to determine the context paragraph by estimating the parent tag element
of the given image element, which includes text elements in its subtree. All text
elements under the estimated parent tag are considered as parts of the image context.

Data: Web document d, image I
Result: Set T of text nodes representing the image caption
D ← createDO M(d);
i ← f ind(I, D);
while ¬ containsTextnodes(i) do

i ← i.get Parent ;
end
T ← getTextnodes(i);

Algorithm 2: Paragraph extraction

The algorithm proceeds as follows: in the initialization step (line 1–2), the DOM
tree D of the input document and the image element I corresponding to the input
image are initialized. The main part is the while-loop, which starting at the image
element, walks the tree upwards, until a parent element is reached that includes
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text elements in its sub-tree. In the final step (line 6), the text elements under the
determined parent are collected as the image context.

Another, possibly more expressive way to describe this algorithm is to point out
that the extracted context is always the text contained in all sibling nodes of an image
node in DOM tree. Thus this method is also known as the siblings extractor.

Computation complexity of the algorithm depends linearly on the length of the
document in regard to building the DOM tree and further the while-loop is at maxi-
mum in O(d · t), with d as the depth of the DOM tree and t as the total number of
nodes of the tree.

10.4.6 Monash Extractor

The monash extractor [11] can be viewed as an extension to the paragraph extractor
and has been introduced by Fauzi to handle the different template types in which
an image can be embedded in. The basic idea relies on the concept of list pages
and detail pages [21] in which generally extractable data records can be placed. List
pages usually contain a list of many records with similar structure (e.g., a listing
of products of a catalog), while detail pages contain detailed information on one
particular record.

Depending on how listed and unlisted data records can principally be modeled in
HTML, Fauzi distinguishes three classes of Web images: listed, unlisted and semi-
listed images. Listed images are two or more images that are ordered within a regular
pattern ofHTMLelements (see Fig. 10.6a, segment 3–7). In theDOMtree each image
is placed under one sub-root node (see Fig. 10.6c). Unlisted images are standalone
images that can be placed at any position in the Web page (see Fig. 10.6a, segment 1
or segment 2 and Fig. 10.6b). Semi-listed images own the same visual properties as
listed images. However, in the DOM tree the segments of particular images are not
each placed under one root node, but they are all together under a root node while the
visual separations are made by special HTML elements (see Fig. 10.6d). Although
semi-listed image is a justifyable layout style for images, we could not found any
sample of image-context where it was applied. One reason is surely the fact that, in
modern well structured documents the layout style has changed towards grouping
cohesive contents into separate DOM blocks.

The algorithm proceeds as follows. The input is a DOM tree and the image node
whose context has to be identified. There are three state variables that maintain the
current state of the algorithm: stateText and state keep the current number of
text nodes under the actual node and respectively its previous value. Both are set to
0 at beginning. The variable stateChangeTwice is true, if the state variable has
changed twice during the actual run.

Starting at the image node, the algorithm walks upward the DOM tree, until
the number of text nodes under the tree has changed (identified by stateText
�= state). The algorithm now checks if the number of text contents has changed
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Fig. 10.6 Different classes of images in browser and DOM representation (Webpage extracted
from http://newsusa.com). a Image segments 1–7. b DOM tree for segment 1(unlisted image). c
DOM tree for segments 3–7 (listed image). d DOM tree for semi-listed images

twice. Since in the first run this is not the case, the current node is checked for typical
semi-listed structurewith repeating patterns ofHTML tags. If suchpatterns are found,
the image is a semi-listed image and the region of the image is extracted and returned
as image context. If no semi-listed structure can be found, the algorithm continues
to traverse the tree upwards until a parent node is found at which the number of
nodes in the sub-tree changes again. In this case, the number of nodes has changed
twice and the sub-tree is checked for sibling nodes with similar tree structure. If such

http://newsusa.com
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Fig. 10.7 Flowchart diagram to Monash extractor (based on [11])

sibling nodes are found, the current image is a listed image and the sub-tree which
belongs to the image is returned as image region. Otherwise, the image is an unlisted
image, and the complete tree under the actual node is returned as image region. The
algorithm is specified in the following flow-chart (see Fig. 10.7) adapted from [11].

The time complexity is the same as that for the siblings extractor, since DOM
traversion and text node collection are both contained in the Monash Extractor.

10.4.7 Page-Segmentation-Based Context Extraction

The nature of Web documents being overloaded with multiple contents demands for
methods to partition such documents into particular segments which would allow
processing each segment more precisely. There are different approaches to page
segmentation in the literature, but it is out of scope to present them here. However,
one of these algorithms, namely the Vision-based Page Segmentation (VIPS) [22],
has been applied as a preprocessing step for WICE and thus will be described here
in detail.

The VIPS algorithm [22] is an hierarchical top-down approach, which starts with
the whole page as the initial block. For each block, a Degree of Coherence (DoC)
is computed using heuristic rules based on the DOM Tree structure and visual cues
obtained from the browser representation. To get an idea of what the rules look like,
we present one of the thirteen rules applied in [22]:
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IF (currentNode.bgcolor != childNode.bgcolor)

THEN

divide currentNode;

childNode.setDoC(childNode.TAG, childNode.size);

END iF;

This rule checks whether the current node has the same background color as one
of its child node. If it is not the case, the current node is divided and at the same
time, the child node with different background color will not be divided in this round.
Finally, the DoC value for the child node is set to a value between 6 and 8 based on
the HTML tag and the size of the child node.

The algorithm applies different rules on determined HTML tags. For example, the
presented rule is only applied on TABLE-tag and TR tag. However, there are some
general rules that are applied on every tag.

The assigned DoC value determines how much the contents within a block corre-
late to each other. It ranges from 1 to 10 while 10 represents the highest correlation.
At the beginning a Permitted Degree of Coherence (PDoC) value is specified, which
controls the segmentation granularity. If a particular block has a DoC value smaller
than PDoC, this block has to be subdivided recursively until all blocks on the bottom
fulfill the condition.

Although the VIPS algorithm was not primarily designed to extract the context of
a Web image, we can use the segmented block structure to assign the text of a block
to an image within this block, as used by Cai et al. in [13]. He et al. [10] estimated a
PDoC of 5 as a best suited value. We have extracted the image context for a PDoC
value of 5, 6 and 7, since in our runs, the PDoC value of 5 produced too coarse
segments.

Since the VIPS library exists only for the Windows operating system, we run
a batch job over our Web site collections and stored the results in XML files for
different PDoC values. In a further processing step, the image context was extracted
from the XML files.

10.4.8 Full Plain-Text

One of the simplest methods to context detection is to associate the complete text of
aWeb document with the images within this document. At first glance, this approach
seems to be defective since in multi-topic documents every image will get the same
context resulting in reduction of the precision. Nevertheless, this method has been
applied to image indexing for Web image retrieval [23]. We have implemented this
baseline in our system to show what accuracy is reachable without any selection and
also to compare and highlight the benefits of particular WICE methods.
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10.4.9 Performance Measures

In order to compare the extracted image context with the ground truth objectively,
appropriate performance measures are needed that will reward any congruence and
penalize any divergence between the two sets.

Even among human experts there might be slightly different opinions on where
exactly the borders of image context are, therefore testing on exact matches between
extracted and ground truth context poses a criterion that is too strong. Instead, a partial
accordance between the expert judgments and the output of a context extracting
algorithm should be considered.

Another research fieldwhere the partial accordance is considered in the evaluation
task is Information Retrieval (IR). The scenario in IR is usually as follows: the user
has a collection of documents and he or she wants to know which documents in the
collection are related to a predefined query; the task is processed by a human expert
whodefines the ground truth, and by an automatic searchmethodwhich is to be tested.
Finally, the accordance of the two sets is measured by Precision and Recall. In IR,
the concept of precision P is defined as the ratio of the relevant retrieved document
to all retrieved documents, and the concept of recall R is the ratio of the relevant
retrieved documents to all relevant documents. Since these measures complement
each other, the harmonic mean of both comprised in the F-score provides a suitable
performance measure to compare the retrieved objects to the relevant objects. It is
defined as follows:

Fscore = 2 · P · R

P + R

The usage of the mentioned IRmeasures in the context extraction scenario requires a
specification of what the retrieved and relevant objects are. As the context is written
in natural language, we can simply use the individual words of the document as
these objects. The context can then be represented as a sequence of words. The
computation of the intersection for two word sequences, as required to compute
precision and recall, is accomplished by the longest common subsequence (LCS) of
the two sequences.

In order to analyze the stability of the WICE methods within a specific document
collection C , we compute the standard deviation of the F-score within a collection
C , which is defined as

σ(C) =
√√√√ 1

N

N∑

i=1

(Fi − μ)2

where Fi is the F-score for a document Di ∈ C and μ is the average F-score over
the complete collection C . Further N is the number of documents in C .
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10.4.10 Framework Output

The final output of the evaluation framework are the different evaluation results that
were computed for different combinations ofWICEmethods, evaluation metrics and
ground truth collections. For example, one data block in the output could be the recall
value of the extraction done with the N-terms extraction method, where the CNN
ground truth collection was used.

Here, the output is generated as a csv-filewhich allows us to use the data as input in
a visualizing application that creates appropriate diagrams in order to better present
the results to a user. Furthermore, the output data can be passed to other applications
where other useful computations can be performed (e.g., the computation of the
standard deviation).

10.5 Evaluation Results

The results of the performed evaluation are summarized into the diagrams in
Figs. 10.8 and 10.9. The diagrams show the precision, recall, F-score and the stan-
dard deviation of the F-score for every included WICE method. The precision and
the recall values were admitted in the diagrams to reason the F-score. The title of
each diagram refers to one of our test collections.

Figure10.8 shows the results for the test collections created with simpler extrac-
tion rules. By simple extraction rule, we mean a rule of the format:

IF ImgTag has ParentNode with Attribute a ="b"

THEN

extractAllTextNodes under ParentNode as ImageContext;

exit;

On the other hand, a complex rule is more tailored and looks like:

IF ImgTag has ParentNode with Attribute a = "b"

THEN

IF ParentNode has ChildNode with Attribute c = "d"

THEN

addAllTextNodes under ChildNode to ImageContext;

IF ParentNode has ChildNode with Attribute e = "f"

THEN

addAllTextNodes under ChildNode to ImageContext;

exit;

The Monash and the Siblings method perform best with an F-score value in the
range of 85–100%. The standard deviation of F-score for the DOM-based methods
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Fig. 10.8 Evaluation results for test collections with simpler extraction rules

is relatively small and hence we can argue that the reliability of these algorithm is
high.

The N-Term Extractor has a lower accuracy, since its F-score ranges within the
middle third. The precision value indicates that about half of the extracted text does
not belong to the image context. This can be explained by analyzing a small portion
of the test documents, considering that the image context is mostly placed either
before the image or after it. The N-Term methods choose the N words before and
after the image, therefore half of them is falsely selected. The recall values vary
from 30 to almost 86% depending on the collection. Of course, the recall for 20-
term method is always higher than for the 10-term method. On the other hand, it
is obvious that the 10-term method has a higher precision. A significant advantage
of the 20-term method over the 10-term method could not be detected, as there is
no winner according to the F-scores. It is interesting, that the standard deviation of
F-score for the N-Term methods is very small indicating the similar structure for all
the documents within a test collection.
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Fig. 10.9 Evaluation results for test collections with more complex extraction rules

TheVIPS algorithm almost always has an excellent recall value but its precision is
relatively small which results in small F-score values. This indicates, that the visual
segments obtained by the VIPS algorithm envelop too broad content. We expected
that greater PDoC value would yield a higher precision which, however, surprisingly
was not the case. A PDoC value of 6 seems to perform best for almost all collections.
The best results for VIPS were evaluated on the Heise and the Wikipedia collection.
But the standard deviation of the F-score in these collections has the highest value,
meaning that the extraction accuracy has a high variance and thus the reliability of
the method is low. Compared to the N-Term method, the VIPS algorithm is much
more complex but does not achieve a significant improvement.

The baseline algorithm extracting the full text of the document achieved always
a recall of 100% (which was expected), but since the precision value is close to zero
the overall F-score is also near zero. This fact implies the necessity for applicable
WICE methods.

In Fig. 10.9, the diagramswith the evaluation results for the collectionswhich need
more complex extraction rules are shown. Also, the results for the diverse collection
of manually extracted context pairs is included in this figure.
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To start with, for the VIPS based extractors, we remember these are based on the
browser Internet Explorer. Because the collected BBC pages could not be displayed
by this browser due to java scripting failures, VIPSwas not able to deliver any context
and thus the values are missing. This is a very important disadvantage of VIPS that
relies on a specific browser application. On the other collections, VIPS performed
best with high PDoC values. A higher PDoC value than 7 was not suitable, since then
the visual block solely contained the image. The F-score ranges from fair for the
telegraph collection to poor for the Yahoo! collection. As already discussed for the
first group of evaluation results, VIPS has a high F-score standard deviation which
signals that its performance highly varies from image to image.

The N-Term extractors yield very similar performance values as in the first eval-
uation group: the performance does not depend much on N , the F-score ranges in
the middle third, and the standard deviation of F-score is low, indicating that the
extraction performance is highly reliable and repeatable.

The Siblings extractor could not solidly achieve high performance values as in the
first evaluation group, due to the more complex template structures of the telegraph
and the Yahoo! website. For these collections, the other algorithms performed better.
But surprisingly, the Siblings extractor produces a very high F-score in the diverse
collection, which argues that most of the Web pages available in the internet contain
a simple-structured HTML code.

The Monash extractor performed best for almost all collections. Nevertheless,
when the template structure gets more complex, its reliability and repeatability gets
lower, as indicated in higher F-score standard deviation.

10.6 Conclusion and Future Work

In this work, an evaluation framework for image context extraction was proposed
and tested with different common extraction methods.

Amain result from the evaluation experiments is that theWICEmethods based on
DOM achieved the best performance (almost always an F-score over 90), indicating
that many HTML documents gathered from popular domains are well structured
(with regard to their DOMs). As a second result—to our surprise—VIPS, one of
the mostly applied methods for image context extraction in the literature, performed
poorly on the test data, since the page blocks computed by VIPS were too broad.

The obtained results can help scientists on deciding which method to use in their
applications when image context is needed.

Further, the framework is easily extendable with other metrics and other extrac-
tion methods. Therefore, this system can also be used to evaluate and compare the
performance of new extracting methods, which will be the main scope of our future
work.
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Chapter 11
Content Based Image Search for Clothing
Recommendations in E-Commerce

Haoran Wang, Zhengzhong Zhou, Changcheng Xiao and Liqing Zhang

Abstract A number of algorithms exist in measuring clothing similarity for
clothing recommendations in E-commerce. The clothing similarity mostly depends
on its shape, texture and style. In this paper we introduce three models of defining
feature space for clothing recommendations. The sketch-based image search mainly
focuses on defining similarity of clothing in contour dimension. The spatial bag-
of-feature approach is employed to measure the clothing similarity of local image
patterns. Finally, we introduce a query adaptive shape model which combines shape
characteristics and labels of clothing, in order to take the semantic information of
clothing. A large number of simulations are given to show the feasibility and perfor-
mance of the clothing recommendations by using content-based image search.

11.1 Introduction

Content Based Image Retrieval (CBIR) is to retrieve images from image database,
by using features derived from images. The term “content” of an image refers to col-
ors, shapes, textures or any other features that can be derived from the image itself.
CBIR has a large number of potential applications, such as clothing recommenda-
tions in internet, picture drawing learning and image copyright verification. Almost
every big E-commerce company like eBay andAmazon supports the keywords based
recommendations, such as by typing “red, round collar t-shirt”. Taobao, a Chinese
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E-commerce platform provider, has recently released a new service of bags/shoes
recommendations based on shape similarities. In this paper we investigate clothing
similarity problem and develop a number of rules to measure the similarities for
clothing recommendations.

There’re quite lot of studies on clothing similarities. Liu et al. [11] proposed a sys-
tem for automatic occasion-oriented clothing recommendations. Occasion-oriented
means given a user-input occasion (e.g., wedding, shopping or dating), the system
suggests the most suitable clothing from the user’s own clothing photo album. Liu
utilized middle-level clothing attributes (e.g., clothing category, pattern) as latent
variables in latent Support Vector Machine (SVM) for recommendations. Wang
et al. [19] proposed a re-ranking system for apparel recommendations. First, the sys-
tem extracted color features and retrieved by bag-of-visual features (BOW). Then
re-ranking approach is fulfilled by exploiting clothes attributes. Di et al. [8] also
used attribute learning to recommend [2]. Chen et al. [5] proposed a system that
is capable of generating a list of nameable attributes for clothes on human body in
unconstrained images. Chen extracted low-level features in a pose-adaptive manner,
and combine complementary features for learning attribute classifiers.

On cross-scenario clothing recommendation, Liu et al. [12] used transfer learning
method to deal with the big discrepancy between snapshot in the street and clothing
image in internet shops. The extracted features for learning include HOG, LBP,
Color moment, Color histogram and skin descriptor. Besides, Fu et al. [9] utilized
semantic-preserving visual phrases formed by vocabulary tree [15].

Other works including Yang et al. [20] which leveraged both face detection, track-
ing and clothing segmentation for clothing recognition in surveillance videos. Wang
et al. [18] studied a multi-person clothing segmentation algorithm blocking mod-
els for highly occluded images. Two clothing recommendation systems have been
proposed by Liu et al. and Shen et al. [11, 16].

Image similarity depends on both similarities in visual feature and image seman-
tics. As shown in Fig. 11.1, even the same-class clothing varies significantly in con-
tour and visual features, which is called intra-class variation. Besides, there also

Fig. 11.1 Examples of intra-class variation. Same objects in a line present quite different contour



11 Content Based Image Search for Clothing Recommendations in E-Commerce 255

Fig. 11.2 Examples of inter-class ambiguity. The shapes of different objects in a line might have
similar shapes

Fig. 11.3 Framework of image content based clothing recommendations. We use contour, local
feature for image content extraction and textual feature for query constraint respectively

exists many different types of clothing with equivocal contours, called inter-class
ambiguity, as shown in Fig. 11.2.

To address the intra-class variation and inter-class ambiguity, we introduce three
different methods of image similarities for clothing recommendations shown in
Fig. 11.3. First, a Histograms of Oriented Gradients (HOG), proposed in Dalal and
Triggs [7], is developed to measure the similarity in image contour. Then, a Bag of
Features (BOF) approach [4] is proposed to measure the image similarity in sophisti-
cated local features, and a hybrid topic model [17] is achieved by both visual features
and textual information. In this article, contour feature presents the contour of cloth-
ing, precision local feature accounts the local detail of clothing (e.g. position of
button, shape of neckline). Textual information means the words that describes the
clothing (e.g. color, pattern, material).

Zhou et al. [21] proposed a shift-invariance and size-invariance Hierarchical Ori-
entation Feature (HOF) for large scale image retrieval, see Sect. 11.2. The main idea
for dealing with object size in the image is to adopt the selective attention model.
The human visual system will pay attention to the most informative region in the
scene, instead of the whole image. This mechanism in the visual system is known as
the selective attention. The selective attention model comes from the fact that when
human beings see an image, they usually look through the whole image for a short
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L1

L2

L3

Fig. 11.4 Feature extraction consists of these steps: (I) Hierarchical orientation combination. (II)
Orientation refinement. (III) Locate candidate region. (IV) Multi-scale feature extraction

while and then focus their eyes on the salient place of the image. To adopt such a
mechanism for image retrieval, we don’t extract features on the the whole image.
Instead, firstly we find the region of interest from the saliency map which is usually
a part of the image with an interesting object, and then extract features on that region
for finding similar objects from image dataset.

To speed up image search, indexing the feature vectors of images is necessary.
We introduce a hierarchical inverted index algorithm and split the next process into
coarse-to-fine similarity measure. The whole process will filter out a large number of
irrelevant images as early as possible, and make it possible to perform the real-time
retrieval. The whole retrieval procedure is illustrated in Fig. 11.4.

Besides contour characteristic, clothing similarity in many cases depends on
sophisticate local features. To explore such local features, Cao et al. [4] proposed a
new class of bag-of-features [10] to encode local geometric features of objects, see
Sect. 11.3. Beyond existing orderless bag-of-features, local features of an image are
first projected to different directions or points to generate a series of ordered bag-of-
features, based on which different families of spatial bag-of-features are designed
to capture the invariance of object translation, rotation, and scaling. Then the most
representative features are selected based on a boosting-like method to generate
a new bag-of-features-like vector representation of an image. The retrieval frame-
work works well in image retrieval task owing to the following three properties: (1)
the encoding of geometric information of objects for capturing objects with spatial
transformation, (2) the supervised feature selection and combination strategy for
enhancing the discriminative power, and (3) the representation of bag-of-features for
effective image matching and indexing for large scale image retrieval.

To further explore semantical features and combine them with contour features,
Sun et al. [17] developed a hybrid topic model to retrieve images with both contour
similarity and semantic similarity, see Sect. 11.4. Shape Topic Model provided a



11 Content Based Image Search for Clothing Recommendations in E-Commerce 257

general sketch recognition system to recognize any semantically meaningful objects.
Sketchmeans a hand-draw draft. To increase the recognition coverage, Sun et al. [17]
utilized aweb-scale clip art image collection as the knowledge base of the recognition
system.

To alleviate the problems of intra-class shape variation and inter-class shape ambi-
guity in this unconstrained situation, a query-adaptive shape topic model is proposed
to mine object topics and shape topics related to the sketch, in which, multiple layers
of information such as sketch, object, shape, image, and semantic labels are modeled
in a generative process [6]. Besides sketch recognition, the proposed topic model
can also be used for related applications like sketch tagging, image tagging and
sketch-based image search.

11.2 Hierarchical Orientation Feature

Different from existing algorithms, the features used in the retrieval system contain
not only local information, but also global information of the object. By taking
advantage of this characteristic, we could build a hierarchical index structure to
accelerate retrieving images from the large scale database.

11.2.1 Feature Extraction

The framework of feature extraction is showed in Fig. 11.4. By leveraging hierarchi-
cal information with multi-scale feature extraction, it could obtain both position and
global-to-local feature of the salient object. Global-to-local means feature contains
both global and local information of object, the usage of global-to-local feature will
be discussed in Sect. 11.2.2.

We calculate the hierarchical difference image DO j and the contour saliency map
S from an image from:

S =
N∑

j=1

DO j =
N∑

j=1

(
M∑

i=1

[max
k

{DHi O j }]m×n

)
(11.1)

where DHi O j is the difference image of the i th level and the j th orientation as shown
in Fig. 11.4. The size of DHi−1O j is lower than the size of DHi O j by two times. k
is the color index, taking values of red, green and blue. maxk{·} is the maximum of
difference image among the three channels. [·]m × n means scaling the difference
image proportionably to themaximum sizem× n. S is the contour saliencymap of an
image and is normalized to between 0 and 1. In Fig. 11.4, M = 3, N = 4, O j denotes
0, π /4, π /2 and 3π /4 orientation respectively. Because the minimum resolution of
images for human beings is 32 × 32, we set the maximum size of DH1O j is 32× 32,
and then m × n is 128 × 128.
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Sx = argmax
x

{
∑

(�S�Ts )x � gx }, Sy = argmax
y

{
∑

(�S�Ts )y � gy} (11.2)

where �·�Ts denotes the value greater than Ts , in our experiment, Ts = 0.25, which
is determined by experiment.

∑
(·)x and

∑
(·)y are the sum along the axis x and

the axis y respectively, g is the Gaussian kernel, and � denotes convolution. (Sx , Sy)

denote the centroid of the object in the image. From Fig. 11.4 we can see, DO j cannot
represent contour orientation information of the object clearly. Since 0 and π /4, π /2
and 3π /4 are orthogonal respectively, we make the following operation:

CO1 = �DO1 − DO3�0, CO3 = �DO3 − DO1�0
CO2 = �DO2 − DO4�0, CO4 = �DO4 − DO2�0

(11.3)

where CO j denotes clear orientation map. The final feature of an image is:

FL p O j t =
∑

CO j (xL pt , yL pt , rL p ) · G(rL p ) (11.4)

where FL p O j t denotes t th feature of the L pth level and the O j th orientation, and
G(rL p )) is the Gaussian kernel which radius is rL p , and CO j (x, y, r) is the region of
the clear orientationmapwhich centroid is (x, y) and the radius is r, and rL p = 2rL p+1 ,
rL3 = 32.When p = 1, t ∈ {1}, and when p = 2, t ∈ {1, 2, . . . , 8}, and when p = 3,
t ∈ {1, 2, . . . , 64}. So the feature vector F = FL p O j t has 1×4+8×4+8×8×4 =
4 + 32 + 256 = 292 dimensions. Finally, values of the feature are normalized to
between 0 and 1. So the similarity measure of two images with feature vector F and
F ′ is given by:

Dist(F, F
′
) = sim

(
{FL p O j t }, {F

′
L p O j t }

)
(11.5)

where sim(·) could be any similarity measure, for example, Euclidean distance or
cosine similarity.

Figure11.5 is the histogramof average value of feature vector F from100 thousand
images. As shown in Fig. 11.4, region L1 denotes the first 4 values of F, which are
the most discriminative features in image similarity L2 denotes the following 32
values of F, and region L3 denotes the rest 256 values of F. From Fig. 11.5, we can
observe that the component value of the features decreases as the component index
increases. This observation indicates the feature vector F contains the global-to-
local feature. Values from L1 to L3 denote the information which is from global
to local respectively. Therefore, the component values in L1 will dominate distance
computing of Eq. (11.5). If objects in two images are very different in contour, the
difference of the feature vectors must be large, and resulting in small similarity score
in Eq. (11.5). But if two objects are only a little different, they should have almost
the similar global information and are just different in local parts, resulting in high
similarity score in Eq. (11.5).
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L3

L2

L2

L1
L1

L3

Fig. 11.5 Histogram of average feature values from 100,000 images. The first 4 values of F belong
to region L1, the components from 5 to 36 of F belong to region L2, and the rest 256 values of F
belong to region L3

11.2.2 Index Structure

The feature vector contains an objects global-to-local information. For speedingup, at
first we select only global values of F which is from both L1 and L2, which means,
in this step, we ignore local L3 values (see L1, L2, L3 in Fig. 11.4). Specifically,
global value takes exactly the first 36 values of F . And for each value, we separate it
into some parts, and for each part, there is a corresponding inverted list of images, as
shown in Fig. 11.6. With the index structure, we could select top N1(≤T ) candidate
results from the database quickly, and then,we select top N2 results from L1 candidate
results with similarity measure of first 36 values of F . Finally, we rank the L2 results

Fig. 11.6 Index process of database. For each query, N1 results are first selected from 100 thousand
images by inverted files, and then top N2 results are selected from N1 results with similaritymeasure
of first 36 values of F , and final results are from N2 results with similarity measure of all 292 values
of F
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with similaritymeasure of all values of F (global-to-local) and take them as the finally
retrieval results. Thus we could build a hierarchical top-down retrieval structure. In
our experiment, T = 50,000 (N1 ≤ T ), N2 = 2,000.

11.3 Spatial-Bag-of-Features

Local features such as SIFT [13] and SURF [1] are widely used in image retrieval,
which detect interest points from the images and use descriptors to describe them.
To be convenient for retrieval, we use BOF technology to translate the local features
extracted from images into one-dimensional vectors. The procedure is described as
follows: First, we extract descriptors from all the images in database. Then k-means
or other clustering methods is performed over these descriptors. Finally, we produce
a “dictionary” of local features, in which each “word” is defined as the centers of
the clusters and the size of “dictionary” is the number of clusters. For a given image,
we map each descriptor detected from it to a “word” through the clustering process
and the image can be represented by the histogram of the “word”s. We index these
histogram features by inverted files [10] so as to support large-scale online image
retrieval.

However, the accuracy of such an approach is not satisfactory. The main reason is
that it ignores the spatial information of interest points in process procedure. To solve
this problem, we propose a new class of features for large-scale image retrieval. It
encodes spatial information as well as visual information of images. Besides, it has
the same format as current bag-of-features, which guarantee that traditional index
technologies can be applied to it.

Generally, scene images such as buildings or sea, have horizontal and vertical
relationships among local features, while objects like sun and flowers have circle-
like relationships. We aim to project local descriptors onto certain lines or circles in
order to capture basic geometric information in images.We call the features generated
by this way as “ordered bag-of-features”. Two families of ordered bag-of-features
are designed in Cao et al. [4]: Linear ordered bag-of-features and Circular ordered
bag-of-features.

Linear ordered bag-of-features projects the descriptors in the image plane onto
a line with an arbitrary angle θ . The locality of each feature is transformed to a
one-dimensional coordinate along the line. We divide this line into L equal segments
and treat them as bins. The descriptors inside each bin are represented by a his-
togram statistics. Therefore the feature of an image can be described as L connected
histograms. We enumerate the values of θ and L , and determine the best ones by
machine learning technology.

Circular ordered bag-of-features divides the image plane into L sectors with the
same radian after locating the center (x, y). This time we treat each sector as a
bin and use a histogram to represent the descriptors in it. Similar to Linear ordered
bag-of-features, we can use L connected histograms to describe the feature of an
image.
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We use � to represent the parameters of linear projection {L , θ} and circular
projection {L , (x, y)}. The feature generated by either a linear or a circular projection
is denoted by:

H� = [h1,�, h2,�, . . . hL ,�]. (11.6)

where hi,� is the histogram in the i th bin of the projection parameterized by �. The
similarity between image P and image Q is defined as:

〈H�
P , H�

Q 〉 =
∑L

i=1
Sim(hi,�

P , hi,�
Q ) (11.7)

where Sim(·, ·) could be any histogram similarity measure.
In addition, we propose three variant features of ordered bag-of-features which

could handle typical transformations of objects such as translation, rotation, and
scaling. We call them as “spatial bag-of-features”. Technologies like histogram cali-
bration and histogram equalization are applied in the extraction procedure, which is
further discussed in his paper.

A series of spatial bag-of-features could be obtained by enumerating parameter
θ , (x, y) and L . We treat each histogram hi,� in them as a “spatial bag-of-word”.
� = {�, k(k ≤ M)}, in which M is the number of bins of the projection (with or
without encoding invariance) parameterized by �, and k is the index of the bin. The
final feature we applied is defined as the linear combination of these “word”s. The
similarity between image P and Q is given by:

〈H�
P , H�

Q 〉 =
∑

i∈S
a�Sim(hi,�

P , hi,�
Q ) (11.8)

where S represents a set of best “spatial bag-of-words”. We can use RankBoost
algorithm to learn S and coefficient a�s.

To verify the effectiveness of “spatial bag-of-features”, we conduct a series of
experiments on the collected database in Experiment section. The results show that
the proposed approach does capture the local precision features of the clothing.

11.4 Query-Adaptive Shape Topic Model

Most existingContent-based ImageRetrieval systemsfind similar images in low level
features, while Text-based Image Retrieval finds images with relevant tags regardless
of content in the images. Generally, people are more interested in finding similar
images both in contours and high-level concepts. Same type of objects usually have
different shapes as shown in Fig. 11.1, while the same shape may belong to different
objects shown in Fig. 11.2. This results in large variance in intra-class shape, and
also uncertainty in inter-class shapes. Therefore, using sketch as query image is not
sufficient to express user’s expectation for retrieved images. We need to explore both
the shapes and descriptive features in retrieving images via sketch.
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To explore both semantics and shape information in images, we introduce a hybrid
topic model to discover semantic topics possibly representing the sketch. In this
section, we introduce a probabilistic topic model for hand-drawn sketch recognition,
i.e. Query-adaptive ShapeTopic (QST)model [17], to simulate the generative process
of an image and its textual information.

We first analyze and discover the generative process for the observed information
and latent topics. Since there are only simple clip art images in the collection, it
is natural to assume there is only one object topic in each image. To overcome the
challenge of shape ambiguity, besides the visual feature, the textual information of
images is also leveraged in the model. Therefore, for each image, its object topic
further generates both visual information like shapes and semantic information like
the surrounding text of the image. Since one object might correspond to different
shapes, it is natural to add another layer of topics, i.e. shape topics, to represent variant
types of shapes related to the sketch. This can further alleviate the problems of shape
variation and shape ambiguity. The shape feature is then generated according to the
shape topic. Instead of a purely unsupervised topic mining problem, in this work
it is necessary to discover object topics that are more relevant to the sketch query.
Different from sLDA [14], in which the supervised information (a response variable)
is generated by the latent topics, in QST we use the sketch query to influence the
possibility of generating a shape feature from a shape topic. This guarantees that the
discovered shape topics are more relevant to the sketch query, and so are the object
topics.

It should be noted that, to make the model more general, we also enable users to
optionally add keywords when they draw sketches. Thus, two factors, i.e. the sketch
and the keywords, will supervise the generative process, in which the keywords could
be an empty set ∅.

We first introduce some notations and definitions. Assume there are N images
{I1, I2, . . . , IN } in the collection, and the words in the dictionary are {w1, w2, . . . ,

wM }. The shape feature of In is represented by rn and the noisy labels are represented
by {w1, w2, . . . , wT }. δ(wm, In) = 1 if wm ∈ {w1, w2, . . . , wT }; and 0, otherwise.
Let z denote a latent variable to represent an object topic, with discrete values z =
1, . . . , K , and s denote a latent variable to represent a shape topic, with discrete
values s = 1, . . . , Ns . We abbreviate “sketch” and “keywords” to “ske” and “key”
for long equations. Given N , M , K and Ns , the generative process of QST model is
given as follow:

1. For each image In , sample the object topic: z ∼ p(z|In)

2. For each object topic z:

(a) sample T words {w1, w2, . . . , wT }, in which for each word wm we have

wm ∼ p(wm |z, β, keywords) = β
δ(wm ,keywords)
z,wm (11.9)

(b) Sample the shape topic

s ∼ p(s, z, θ) = θz,s
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(c) For each shape topic s sample the shape feature:

rn ∼ p(rn|s, μ, σ, β, sketch)

= 1√
2πσs

exp

{
−dist(rn, μs)

2

2σ 2
s

dist(rn|sketch)
}

(11.10)

in which dist(rn, μs) is defined as the distance between rn and μs , and
dist(rn, sketch) is the distance between rn and the sketch. In particular we
define δ(w,∅) = 1.

Given the parameters θ, μ, σ, β, we have the following joint probability of a set
of N objects topics z, a set of N shape class s and a set of N shape feature r and
words w:

p(I, w, r, z, s|θ, μ, σ, β, sketch, keywords)

=
N∏

n=1

{p(In)p(z, In)p(rn|s, μ, σ, β, sketch)p(s|z, θ)

M∏

m=1

(p(wm |z, β, keywords))δ(In ,wm )

}
(11.11)

QST contains different levels of parameters, such as the parameters of corpus and
parameters of shape features. These parameters can be learned from hybrid training
image dataset. The detailed training procedure is referred to Zhou et al. [21].

11.5 Experiment

In this section, we introduce image datasets for evaluating the performance of three
different image retrieval methods, i.e. HOF in Sect. 11.2, spatial bag-of-features
(SBOF) in Sect. 11.3 and QST in Sect. 11.4.

11.5.1 Image Dataset

There are several proposed datasets, however, none of them is suitable for training
the model of QST. Yang et al. [20] collected the dataset with 200×300 pixels ,which
is not appropriate for local feature detection. The dataset proposed by Bourdev et
al. [3] contains attributes but no textual information. Hence we collect a new dataset
with 100 thousand clothing images mainly from Taobao, an E-commerce platform
provider in China. For obtaining textual information of each image in the dataset,
we collect the surrounding texts of image. For each clothing image, we select the top
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20 most frequent words (e.g., color, style, material) to describe the clothing image
which appear in the same web page.

There are over 30 categories (e.g., skirt, longuette) of clothing in our dataset. These
categories are defined in Liu et al. [12]. For each category, we collect the images
and relevant textual information from top results from online shopping website by
search engines. We didn’t collect the nonstandard images with messy backgrounds
because QST requires images with single piece object and clean background.

We run experiments on the server with 2 Intel Xeon 2.66GHz Six-Core processors
and 64GB memory. The average retrieval time is between 1∼2s.

11.5.2 Experimental Results and Analysis

We measure the precision-recall rate on category (class). For each class, we sample
100 images of same category, measure the average rate and compare the performance
of HOF, SBOF and QST. The precision of top k retrieved clothings with respect to
a query clothing q is calculated by:

Precision@k =
∑k

1 Rel(i)

k
(11.12)

where Rel(i) = 1 if i th result belongs to the same category as q, Rel(i) = 0
otherwise.

As shown in Fig. 11.7, QST outperforms the low-level feature methods, both
HOF and SBOF, in average rate among all categories. Besides, for classes such

Fig. 11.7 The precision-recall rate over three example category and average rate among all
categories
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Fig. 11.8 Example of retrieval results. For each query image, the top row is result of HOF, the
middle row is SBOF and bottom is QST. a longuette, hat, jacket, b slip dress, fancy short shirt,
casual shorts
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as “longuette” and “skirt”, the improvement of effect is significant. There are two
main reasons. First, large intra-class shape variation exists in such classes of images.
Second, different sellers take photos with various angles in these classes. Therefore,
the low-level visual feature does not reflect the contour variation information in this
situation.

As shown in Fig. 11.8, we list the recommendations results on several examples
with comparison of other methods.

From “longuette” and “hat” in Fig. 11.8a, QST is more robust to the post variation
of fashion models compare with SBOF and HOF. Because QST not only utilizes
low-level visual features, but also text words. SBOF captures local-precision feature,
which is quite powerful in modeling texture as “Fancy short shirt” in Fig. 11.8b, but
not enough for style recommendations. HOF is more effective as shown in “hat”
in Fig. 11.8a, for the common shape of “hat”. But still HOF is not enough due to
Intra-class variation and Inter-class ambiguity.

To show the power of QST, from “Casual shorts” in Fig. 11.8b, QST captures
the textual information “casual”, while the results from HOF contains many shape
analogous“sports shorts”. As result in “slip dress” Fig. 11.8b, QST captures text like
“slip” and “sling” which is hard for visual features to express.

11.6 Conclusion

In this work, we studied the problem of apparel recommendations, and compared
the performances of three image retrieval algorithms, HOF, SBOF and QST. The
experimental results showQST outperforms the rest two visual feature methods. The
main reason is huge variation in intra-class variance and different poses in taking
photos, which lead to significant changes in the visual features. And QST takes both
text and visual contents into consideration, which generates more robust features
than HOF and SBOF in such large variation.

There still exist a number of grand technical challenges, such as clothing style,
age suitability, in clothing recommendations for online service. It is still difficult
to represent clothing style by using visual features of images. Some new models
exploring clothing style are needed to be further developed in order to make image
search algorithms suitable for clothing recommendations.
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Chapter 12
Video Retrieval Based on Uncertain Concept
Detection Using Dempster–Shafer Theory

Kimiaki Shirahama, Kenji Kumabuchi, Marcin Grzegorzek
and Kuniaki Uehara

Abstract For a long time, it was difficult to automatically extract meanings from
video shots, because, even for a particular meaning, shots are characterized by sig-
nifincantly different visual appearances, depending on camera techniques and shoot-
ing environments. One promising approach for this has been recently devised where
a large amount of shots are statistically analyzed to cover diverse visual appearances
for a meaning. Inspired by the significant performance improvement, concept-based
video retrieval receives much research attention. Here, concepts are abstracted names
of meanings that humans can perceive from shots, like objects, actions, events, and
scenes. For each concept, a detector is built in advance by analyzing a large amount
of shots. Then, given a query, shots are retrieved based on concept detection results.
Since each detector can detect a concept robustly to diverse visual appearances,
effective retrieval can be achieved using concept detection results as “intermediate”
features. However, despite the recent improvement, it is still difficult to accurately
detect any kind of concept. In addition, shots can be taken by arbitrary camera tech-
niques and in arbitrary shooting environments, which unboundedly increases the
diversity of visual appearances. Thus, it cannot be expected to detect concepts with
an accuracy of 100 %. This chapter explores how to utilize such uncertain detection
results to improve concept-based video retrieval.
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12.1 Introduction

With the recent progress in multimedia technology, the volume of video data that
one can access is explosively increasing on the Web. Since videos are essentially
temporal media, even browsing one video often takes a long time. It is necessary to
develop video retrieval methods, which efficiently analyze a large number of videos
to find shots (video segments) of interest. This has been traditionally investigated as
content-based video retrieval which retrieves visually similar shots to example shots
provided by a user [1]. The term “content-based” in this context means that “low-
level” features like colors, edges, and motions are used to represent and describe
shots. These features can be directly extracted from shots via some physical metrics
or mathematical transformations.

Figure 12.1 illustrates an overview of content-based video retrieval. First, a feature
is extracted from each example shot and is generally organized into a vector. In other
words, the example shot is represented as a point in a multi-dimensional space.
Similarly, shots in the database are located in the multi-dimensional space based
on their features. These feature representations of shots are stored as an index to
facilitate the retrieval process. Based on this, shots located near to the example shot
are retrieved as depicted by the dashed circle in Fig. 12.1.

However, since a feature just represents the physical characteristic of a shot,
content-based video retrieval often fails to retrieve shots that are semantically the
same or similar to example shots. For example, in Fig. 12.1, the example shot is
provided to represent the query “a person appears with a computer.” But, as shown
on the right side, the irrelevant shot is falsely retrieved together with the relevant one.
The reason is that the computer monitor in the example shot and the car window in the
irrelevant shot have similar rectangular shapes, and these shots have similar spatial
layouts formed by a person and a rectangle. This problem is called the semantic gap
which is the lack of coincidence between automatically extractable low-level features
and user-perceived high-level semantics [2]. In other words, shots containing similar
features often display different semantic meanings, and shots displaying similar
meanings do not necessarily contain similar features. The semantic gap is the central
problem in many multimedia applications like image/video categorization and object
recognition, and has received much research attention [3, 4].

The current research progress reveals that one key for bridging the semantic gap
is to statistically analyze a large amount of shots. Let us consider the detection of

Query: A person appears with a computer (Retrieved shots)

Shot representation by a low-level feature

(Example shot)

[ 1.2, 0.8, -0.5,            ]

Relevant Irrelevant

Fig. 12.1 An overview of content-based video retrieval
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Fig. 12.2 An illustration of diverse visual appearances of cars a: Shot taken by a camera at a very
long distance. b: Shot taken by a camera at a long distance. c: Shot taken by a camera at a short
distance. d: Shot displaying a bus. e: Shot displaying a truck. f : Shot taken in a dark situation. g:
Shot where a car is occluded by persons

an object like person, car, or building. The semantic gap is attributed to the diversity
of visual appearances of the object, depending on camera techniques and shoot-
ing environments. Figure 12.2 illustrates this regarding cars. Figure 12.2a–c present
that the visual appearance of a car varies depending on its distance to the camera.
Figure 12.2d and e exemplify that different types of cars are shaped differently. More-
over, Fig. 12.2e and f show that lighting conditions and occlusions (a car is masked by
other objects) cause different visual appearances. Thus, features of the above shots
form significantly different vectors.

One approach for accurately covering such vectors is to compare many shots
where an object is present to the ones where it is absent. As a result, it is possible
to identify what kind of vectors characterize the presence or absence of the object.
Thereby, the object can be accurately detected regardless of camera techniques and
shooting environments. In general, the detection performance is proportional to the
logarithm of the number of shots to be analyzed, although each object has its own
complexity of detection [5]. Along with objects, the approach is applicable to detect
various semantic meanings, such as actions, events, and scenes.

The above progress inspires researchers to devise concept-based video retrieval
which retrieves relevant shots to a query based on detection results of concepts
[6]. Here, concepts are textual descriptions of various semantic meanings that can
be observed from shots, such as objects like Person and Car, actions like Walking
and Airplane_Flying, events like Car_Crash and Explosion_Fire, and scenes like
Beach and Desert. In the following discussion, concept names are written in italics
to distinguish them from the other terms. A concept is regarded as present in a shot
as long as humans can recognize it from a small region on video frames or short
sequence of video frames. This accounts for neither the location of the concept on
a video frame nor the time period where it is present. Hence, concept-based video
retrieval can be considered as an analogy with the vector space model in text retrieval.
This model represents a document as a vector, where each dimension represents the
frequency of a word without considering the order of words. Similarly, each concept
defines a human-perceivable dimension like a word. Compared to this, dimensions
of a low-level feature used in content-based video retrieval just represent physical
metrics. In addition, as text retrieval matches words in documents with keywords
specified as a query, concept-based video retrieval examines whether shots display
concepts exemplified by example shots.
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Query: A person appears with a computer (Retrieved shots)

Shot representation by concept detection scoresConcept detectors

Computers

Indoor

Person

Outdoor

(Example shot)

[ 0.9, 0.7, 0.8, 0.1,          ]
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Com
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s

In
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Relevant Relevant

Fig. 12.3 An overview of concept-based video retrieval

Figure 12.3 illustrates an overview of concept-based video retrieval. First of all,
for each concept, a detector is constructed in advance by analyzing a large amount of
shots. The detector outputs detection scores each of which represents a scoring value
between 0 and 1. Large and small detection scores highlight the concept’s presence
and absence, respectively. For example, in Fig. 12.3, the detector for Person provides
the example shot with the score 0.9, meaning that a person probably appears in this
shot. On the other hand, the score 0.1 obtained by the detector for Outdoor indicates
that the example shot is unlikely to show an outdoor scene.

By combining such detection scores for different concepts, each shot is repre-
sented as a vector and located in a multi-dimensional space, as shown in the middle
part of Fig. 12.3. In this space, shots near to the example shot are retrieved, that
is, they are similar to the example shot in terms of detection scores. In particular,
the irrelevant shot falsely retrieved in Fig. 12.1 is not retrieved, because it has high
detection scores for neither Computers nor Indoors. Additionally, each concept can
be robustly detected owing to the analysis on a large amount of shots. Thus, although
the rightmost shot in Fig. 12.3 shows the side view of a computer, it is associated
with a high detection score for Computers and can be retrieved. In this way, concept-
based video retrieval can achieve state-of-the-art performance, where each concept
detector works as a semantically meaningful filter of shots [6–10].

This chapter addresses concept-based video retrieval based on the following struc-
ture: The next section describes fundamental problems to achieve effective concept-
based retrieval, and clarifies the problem that is mainly addressed in this chapter.
Section 12.3 presents some ideas necessary for our method, which is closely pre-
sented in Sect. 12.4. Section 12.5 evaluates our method and compares it to state-of-
the-art methods. In Sect. 12.6, our method is compared to related methods developed
in fields other than concept-based retrieval. Finally, Sect. 12.7 concludes this chapter
by providing some future directions.

12.2 Fundamental Problems in Concept-Based Video
Retrieval

In this section, we explain three fundamental problems in concept-based video
retrieval. The first is how to define a vocabulary of concepts, that is, what kinds
of concepts should be detected for retrieval. The second problem is how to construct
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a detector which can accurately distinguish shots where a concept is present from the
other shots. The last problem is how to utilize concept detection scores to achieve
effective retrieval. Finally, we deeply elaborate the last problem to find the most
relevant conclusion of this chapter.

12.2.1 Defining a Concept Vocabulary

A query is characterized by a set of concepts that are present in example shots. Thus,
a concept vocabulary should be sufficiently rich for covering various queries. One
of the most popular vocabularies is Large-Scale Concept Ontology for Multimedia
(LSCOM) which defines a standardized set of 1,000 concepts in the broadcast news
video domain [11]. These concepts are selected through the collaboration of multi-
media researchers, library scientists and end users. Specifically, LSCOM concepts
are selected based on their “utility” for classifying content in videos, their “coverage”
for responding to a variety of queries, their “feasibility” for automatic detection, and
the “availability” (observability) of a large amount of shots to build a detector.

Figure 12.4 shows a part of the hierarchy of LSCOM concepts under the category
OBJECT (non-human objects). It should be noted that, to the best of our knowledge,
there is no officially provided hierarchy of LSCOM concepts, except for the very
simple one in [11]. The hierarchy in Fig. 12.4 has been created in our past work [12],
where concepts written only with capital letters are newly defined by us to build
a semantically meaningful hierarchy.1 For example, in Fig. 12.4, Ground_Vehicle
is categorized into TWO_WHEELS, Car and Armored_Vehicle, and Car is further
classified into Bus, Truck and Emergency_Vehicle. This kind of hierarchy works
as useful constraints for not only achieving semantically consistent detection of
concepts, but also reducing computational costs [13]. Specifically, if Bus or Truck
is detected in a shot like Fig. 12.2d or e, its parent concept Car should be also
detected. In addition, if Car is not detected in a shot, it is not needed to detect its
child concepts. As illustrated by the hierarchy in Fig. 12.4, LSCOM defines a variety

OBJECT

CONSTRUCTION Vehicle Animal

TWO_WHEELS                 Car

Bicycle Motorcycle Emergency_VehicleBus     Truck

Ground_Vehicle

Airplane     Helicopters

AIR_VEHICLE

Boat            Ship

Freighter

Boat_Ship

Battleship

Armored_Vehicle

Fig. 12.4 An illustration of hierarchically organized LSCOM concepts under OBJECT [12]

1 Since the purpose of this section is to provide an overview of concept-based retrieval, Fig. 12.4
only presents generalization/specialization relations. Please refer to [12] for other relations (e.g.,
part-of, attribute-of, and co-occurrence) and our approach for organizing LSCOM concepts.
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of concepts ranging from general to specific ones. It is estimated that if the number
of LSCOM concepts reaches an amount of 3,000, granting the quality of the new
concepts remains similar to the existing ones, the retrieval performance becomes
comparable to that of one best Web search engine in text information retrieval [14].
Considering the above logical and practical validity, we use LSCOM concepts.

Ideally, any query should be characterized by “specific” concepts. However, such
concepts are not necessarily defined in a vocabulary. For example, Birthday_Cake and
Candle seem useful for retrieving shots relevant to the query “birthday party”, but they
are not defined in LSCOM. Nonetheless, without using specific concepts, retrieval
can be performed using “related” concepts. For instance, if Indoor, Food, Table
and Explosion_Fire are shown in a shot, their combination implies Birthday_Cake
and Candle, and the shot is probably relevant to “birthday party”. To exhaustively
cover specific concepts, Deng et al. are currently developing a huge-scale concept
vocabulary called ImageNet [15]. This aims to assign in average 500–1,000 images
to each of 80,000 concepts. Currently, 3.2 million images have been associated with
5,247 concepts using Amazon’s Mechanical Turk [16], through which the assignment
of images is outsourced to Web users.

It should be noted that concepts themselves are just linguistic terms. To utilize
them in video retrieval, we need to examine whether each concept is contained in
the audiovisual form of a shot. Hence, detectors described in the following section
serve as mediators between linguistic concepts and their audiovisual forms.

12.2.2 Concept Detection

Concept detection can be formulated as a binary classification problem in machine
learning, where for each concept a detector is trained to distinguish shots showing it
from the others. This requires two types of training shots, positive shots and negative
shots. The former and latter are shots that are annotated with the concept’s presence
and absence, respectively. By referring to these training shots, the detector examines
test shots where neither the concept’s presence nor absence is known. As described
in Sect. 12.1, accurate concept detection requires a large amount of training shots.
These are recently available as a result of Web-based collaborative annotation effort,
where manual annotation on large-scale video data is distributed to many users on
the Web [17]. Below, assuming that a large amount of training shots are available,
we explain how to construct a detector for the concept.

Figure 12.5 shows an overview of concept detection. First, we need to consider
how to describe shots that display diverse visual appearances of a concept. Regarding
this, a shot is generally represented as a collection of many descriptors, each of
which describes a local region like circles in Fig. 12.5a. The rationale behind this is
that if many descriptors are sampled from a shot, some of them probably represent
characteristic regions of the concept. For example, even if the Car in Fig. 12.5a is
partially masked by other objects, descriptors that characterize a wheel, window, or
headlight should be sampled from its visible part.
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Fig. 12.5 An overview of concept detection based on local region descriptors. a Descriptor
sampling. b Feature extraction. c Detector construction

Descriptor sampling involves the following two research themes. The first one
is how to detect local regions, from which descriptors are sampled. Several region
detectors such as Harris-Affine region detector and Hessian-Affine region detector
[18], have been developed to detect local regions with characteristic edge shapes (e.g.,
corners and blobs). Another approach is dense sampling which exhaustively picks up
local regions with a fixed interval. The second research theme is how to describe each
detected region. Many descriptors, like Scale-Invariant Feature Transform (SIFT)
[19], Speeded Up Robust Features (SURF) [20] and RGB SIFT [21], are currently
available. These descriptors are designed to have invariance properties for various
factors like changes in illumination, rotation, scaling, and viewpoint. This means
that the same or similar descriptors can be sampled from shots, where a concept is
present in different lighting conditions or with different directions.

The second problem in concept detection is how to organize sampled descriptors
into an overall representation (i.e., feature) of a shot. As shown in Fig. 12.5b, this
is generally conducted by computing the distribution of sampled descriptors. For
example, the distribution in Fig. 12.5b indicates that the shot includes many descrip-
tors similar to the one marked with (1), and few descriptors similar to (2). A vector
representing the characteristic of such a distribution is extracted as the feature of a
shot (see Fig. 12.5b). The simplest approach for feature extraction is to first extract
characteristic descriptors, called visual words, by grouping descriptors into clusters
of similar ones [22]. A histogram is then created to represent the number of sam-
pled descriptors assigned to each visual word. A more sophisticated approach is to
estimate a Gaussian Mixture Model (GMM) based on descriptors sampled from a
shot [23]. Compared to “prespecified” visual words, the GMM precisely represents
means and variances of sampled descriptors. Furthermore, the Fisher kernel approach
is used not to directly represent the distribution of descriptors, but represent its first
and second order differences to the reference distribution [24].

The last problem is how to construct a detector for a concept, using positive and
negative shots represented by the above kind of features. The feature of each shot
essentially becomes a high-dimensional vector (more than 10,000 dimensions) in
order to precisely characterize the distribution of sampled descriptors. Thus, a con-
cept detector is usually constructed as a Support Vector Machine (SVM), which
is known as effective for high-dimensional data [25]. As shown in Fig. 12.5c, the
SVM utilizes the “margin maximization” principle to place a decision boundary
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(hyperplane) in the middle between positive and negative shots. This principle the-
oretically makes the generalization error of the SVM independent of the number of
dimensions, if this number is sufficiently large [25]. The decision boundary is used to
determine the presence or absence of the concept in test shots. In particular, detection
scores are computed as the SVM’s probabilistic outputs, each of which approximates
the distance between a shot and the decision boundary using a sigmoid function [26].

Finally, in recent days, there are several worldwide competitions like TRECVID
[27], PASCAL VOC [28], and ILSVRC [29]. These aim to evaluate concept detec-
tors (object recognizers) developed all over the world using the same large-scale
benchmark data. The above competitions have been promoting the improvement of
concept detectors. In this chapter, we use a slightly different variant of our concept
detector, which achieved the top performance at TRECVID 2012 [30].

12.2.3 Retrieval Based on Concept Detection Scores

While concepts are primitive meanings, queries issued by users are high-level
meanings. Thus, the last fundamental problem is how to utilize detection scores
for different concepts in order to retrieve shots relevant to a query. This is formulated
as a classification problem where a classifier (retrieval model), which discriminates
between relevant and irrelevant shots to the query, is constructed based on concept
detection scores in example shots. In other words, this classifier fuses detection scores
for different concepts into a single relevance score, which indicates the relevance of
a shot to the query. Below, we describe existing classifiers by putting them into four
categories, linear combination, discriminative, similarity-based or probabilistic.

Linear combination classifiers compute the relevance score of a shot by weight-
ing detection scores for multiple concepts. These classifiers assign large weights to
concepts that are related to a query, while small weights are assigned to not related
ones. One popular weighting method is to use concept detection scores in example
shots. If the average detection score for a concept in example shots is large (small),
this concept is regarded as related (not related) to the query and associated with a
large (small) weight [10, 31]. Furthermore, text-based weighting methods have been
developed by assuming that the text description of a query is available. For example,
a concept is associated with a large weight if its name is lexically similar to a term in
the text description of the query [8, 10, 31]. The lexical similarity between a concept
name and a term can be measured using a lexical ontology like WordNet.

Discriminative classifiers (typically, SVMs) are constructed using example shots
[8, 9]. Note that the construction of a discriminative classifier requires both example
shots and “counter example shots”, which serve as representatives of relevant and
irrelevant shots to the query, respectively. In general, only a small number of shots
are relevant to the query. Thus, counter example shots are usually collected as ran-
domly sampled shots because almost all of them are irrelevant [32]. A discriminative
classifier is constructed by contrasting the above two types of shots. Intuitively, this
prioritizes concepts for which detection scores in example shots are significantly



12 Video Retrieval Based on Uncertain Concept Detection … 277

large or small, compared to those in counter example shots. The relevance score of
a shot is obtained as the classifier’s output.

Similarity-based classifiers compute the relevance score of a shot as its similarity
to example shots in terms of concept detection scores. It should be noted that such
a similarity cannot be “linearly” measured. For example, the difference 0.2 between
the detection scores 0.3 and 0.5 means a semantically big difference, because the
former indicates that a concept is probably absent, and the latter indicates it is possibly
present. On the other hand, the same difference 0.2 between the detection scores 0.6
and 0.8 means a small difference, because both scores indicate that the concept is
probably present. Hence, rather than the Euclidean distance, the cosine similarity
which examines the correlation between concept detection scores in two shots, and
an entropy which examines their probabilistic dependence, are used as similarity
measures [7].

Probabilistic classifiers estimate a probability distribution of concepts using detec-
tion scores in example shots, and use it to compute the relevance score of a shot.
Example shots show many concepts where some of them are related to a query, but
the others are not. For example, an example shot for the query “a person appears with
a computer” may include not related concepts, such as Food and Windows shown
in the background. Probabilistic classifiers statistically differentiate concepts useful
for characterising a query from the others. Rasiwasia et al. computed the relevance
score of a shot as the similarity between the multinomial distribution of concepts
estimated from that shot, and the one estimated from example shots [33].

The above existing classifiers take little account of the fact that, concept detection
is not necessarily accurate. Even using the most effective detectors, it is difficult to
accurately detect any kind of concept. For example, at TRECVID 2012 Semantic
Indexing task [27], the top-ranked detectors achieved high performances for concepts
like Male_Person and Walking_Running. On the other hand, the detection of concepts
like Bicycling and Sitting_down was difficult. In addition, we target real-world videos
which are “uncontrolled” in the sense that, shots can be taken by arbitrary camera
techniques and in arbitrary shooting environments. They can display infinite visual
appearances of a concept, thus detecting it with an accuracy of 100 % cannot be
expected. Relying on such uncertain concept detection scores significantly degrades
the retrieval performance. The following part of this chapter explores how to handle
uncertainties in concept detection to achieve accurate retrieval.

12.3 Overview of Our Concept-Based Video Retrieval

Figure 12.6 illustrates uncertainties in detecting the concept Crowd. The horizontal
axis represents detection scores where plus (+) and times (×) symbols represent
detection scores of shots annotated with Crowd’s presence and absence, respec-
tively. It should be noted that these shots are not positive and negative shots used
to build the detector for Crowd, but are created by annotating shots sampled by our
method described in Sect. 12.4.3. Below, for both concept detector construction and
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Fig. 12.6 An illustration of uncertainties in detecting Crowd

uncertainty exploration, we use the terms “positive shots” and “negative shots” as
long as their usage is clear from the context. Although Fig. 12.6 shows detection
scores that are normalized to have the mean 0 and the variance 1 (see Sect. 12.5),
their magnitude relation is the same as that of original detection scores. Also, for
better visualization, shots are distributed according to their IDs as shown in the left
vertical axis. In other words, we only care about the distribution of shots on the hori-
zontal axis. Figure 12.6 shows that more positive shots and more negative ones lie on
higher and lower detection scores, respectively. However, several positive (negative)
shots also exist on low (high) detection scores. We describe such mixtures between
positive and negative shots as uncertainties. This section provides an overview of our
method for handling uncertainties.

To deal with uncertainties in concept detection, we use Dempster–Shafer Theory
(DST) which is a generalization of Bayesian theory, where a probability is not
assigned to a variable, but instead to a subset of variables [34]. Let C = {c1, . . . , cM }
be a set of M concepts where c j (1 ≤ j ≤ M) represents the j th concept. In addition,
assume the i th shot (1 ≤ i ≤ N ) in a set of N shots. In Bayesian theory, two discrete
variables indicating c j ’s presence and absence are used. The most uncertain state of
c j ’s presence is represented by the probability 0.5. Compared to this, DST represents
uncertainties using the following mass function mi :

Definition 12.1 For any subset S of C (S ⊆ C), the mass function mi outputs the
mass mi (S), which represents the probability that one concept in S could be present
in the i th shot.

For example, the mass mi ({c j , c j ′ }) ( j �= j ′) represents the probability that either
c j or c j ′ could be present in the i th shot. In the extreme case, the mass mi (C)
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represents the probability that every concept could be present in the i th shot, that is,
it is unknown which concept is present. Using this mass function, DST can represent
uncertainties in concept detection, much more powerfully than Bayesian theory.

One big difficulty of DST is how to define a mass function. It is substantially
infeasible to prepare training shots for deriving a mass function. The reason is that
it is very subjective or impossible to annotate shots from the perspective that one
of some concepts could be present. Thus, we avoid the mass function derivation
by transforming the procedure of classifier construction based on the set-theoretic
operation [35] (see Sect. 12.4.2). As a result, a classifier can be constructed based on
the following plausibility pl j

i :

pl j
i =

∑

S�c j

mi (S), (12.1)

where pl j
i is the sum of masses that are defined on sets including c j . In other words,

all possibilities that c j is present in the i th shot are summed up. Thus, the plausibility

pl j
i represents the upper bound probability of c j ’s presence in the i th shot. This is

useful for recovering “false negative” shots where c j is actually present, but their
detection scores are falsely low.

Now, we describe how to compute plausibilities using detection scores for c j .

Supposing that s j
i is the detection score of the i th shot for c j , we derive the following

plausibility function pl j

Definition 12.2 The plausibility function pl j maps any detection score s j
i into a

plausibility of c j ’s presence, that is, pl j (s j
i ) = pl j

i .

Intuitively, a large s j
i is mapped into a large pl j

i . More importantly, to recover false

negative shots, a relatively large pl j
i should be obtained even for a small s j

i , if some

positive shots for c j have similar detection scores to s j
i .

We model pl j as a density ratio function between positive and negative shots
for c j in terms of detection scores [36]. Here, pl j

i for s j
i is computed by checking

whether positive shots have similar detection scores to s j
i . In Fig. 12.6, the dense plot

of asterisks shows the plausibility function estimated based on density ratios between
positive and negative shots for Crowd. The right vertical axis indicates plausibilities.
The dashed arrows in Fig. 12.6 show that, since there are several positive shots around
the middle detection score s j

i = 3.0, it is mapped into the plausibility pl j
i = 0.7.

This means that considering uncertainties in detecting Crowd, the middle detection
score indicates a high possibility that it is present in a shot. Like this, false negative
shots can be recovered.

However, to estimate an appropriate density ratio function, we have to overcome
the imbalanced problem where the number of positive shots (minority class) is much
smaller than that of negative shots (majority class) [37]. Generally speaking, many
machine learning algorithms extract a hypothesis by checking its
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classification accuracy on training shots. This mechanism does not work when the
number of positive shots and the one of negative shots are imbalanced. The reason is
that, meaningless hypotheses that classify almost all shots into negative are favored,
because their classification accuracies on training shots are high. For example, if 10
positive and 990 negative shots are used, the hypothesis that classifies all shots into
negative gets 99 % accuracy. In our case, a concept c j is present only in a small num-
ber of shots. Thus, if we annotate randomly selected shots, almost all shots do not
show c j (i.e., negative shots). What is worse, since most of randomly selected shots
show meanings that are clearly irrelevant to c j , their detection scores are very low.
This makes it infeasible to estimate a density ratio function over various detection
scores for c j .

The above discussion suggests two important factors. The first one is to balance
the number of positive shots and the one of negative shots, and the other is to collect
shots from different ranges of detection scores. The latter enables a density ratio
function to represent how the distribution of positive and negative shots changes
depending on detection scores. To satisfy the above two factors, we have developed
an undersampling method which selects a subset of the whole set of shots, so as to
balance numbers of positive and negative shots [37]. Specifically, we select shots that
not only have similar detection scores to those of already sampled positive shots, but
also have dissimilar detection scores to those of already sampled shots. The former
constraint preferentially selects shots where c j is likely to be present, and the latter
avoids selecting shots with similar detection scores.

Finally, our classifier based on DST is an extension of probabilistic classifiers
described in Sect. 12.2.3. While probability theory can only represent the uncertainty
of c j ’s presence using a probability near to 0.5, DST can precisely represent it
based on a mass function. Furthermore, in [10], the uncertainty of c j ’s presence
was modeled as the accuracy of the detector for c j , and used to weight detection
scores (i.e., linear combination classifier). However, this approach is supported by
neither theoretical rationale nor proof. Compared to this, in the following section,
we formulate a probabilistic classifier using a mass function in DST, and prove that
this classifier can be built only using plausibilities of concepts’ presences. To the
best of our knowledge, such a precise modeling of uncertainties in concept detection
has not yet been explored in existing works.

12.4 Video Retrieval Based on Uncertain Concept Detection

In this section, we first provide a brief explanation of our concept detection method.
Then, our classifier based on DST is described. Afterwards, we present a method
that derives a plausibility function for each concept, by estimating a density ratio
function between positive and negative shots.
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12.4.1 Concept Detection

We use a slightly different variant of our concept detection method which achieved
the highest performance at TRECVID 2012 Semantic Indexing (light) task [30].
This section briefly presents it, please refer to [30] for more details. One key factor
for accurate concept detection is to use a large amount of training shots for cover-
ing diverse visual appearances of a concept (see Sect. 12.2.2). Another key factor
is attributed to the fact that, a concept appears in different regions in video frames,
and it does not necessarily appear in all video frames in a shot. To manage such
unclear appearances, it is required to exhaustively sample descriptors in both the
spatial and temporal dimensions. Regarding this, Nowak et al. reported that the per-
formance is improved as more descriptors are sampled from images [38]. In addition,
Snoek et al. compared the method which uses descriptors extracted only from one
video frame in each shot (one shot contains more than 60 frames), to the one that uses
descriptors extracted every 15 frames [39]. They found that the latter outperforms
the former by 7.5–38.8 %.

However, it requires high computational costs to process a large number of training
shots in concept detector construction, and to extract a feature using millions of
exhaustively sampled descriptors. Hence, we have developed a fast concept detector
construction method and a fast feature exaction method based on matrix operation
[30]. The former realizes batch computation of similarities among many training
shots, and the latter computes probability densities for many descriptors in a batch.
These methods make concept detector construction and feature extraction about
10–37 and 5–7 times faster than the normal implementation, respectively.

In accordance with these fast methods, we summarize our concept detection
method. First, three image features (SIFT-Har, SIFT-Hes and STD-RGB-SIFT) and
two motion features (Traj-Disp and Traj-HOG) are extracted from each shot. Image
features are extracted by exhaustively sampling descriptors which characterize local
regions in every other video frame within the shot. Here, different local regions are
identified depending on each image feature. Motion features are extracted by track-
ing points in the shot based on optical flow fields [40]. These points are exhaustively
located at every fifth pixel in each video frame. One motion feature (Traj-Disp) is
extracted using descriptors each of which represents a sequence of displacements of
a tracked point, and another (Traj-HOG) uses descriptors each represents the edge
around a tracked point. Each feature is represented using a GMM which characterizes
the distribution of descriptors in the shot.

For every concept, we construct five detectors. That is, for each of the above five
features, a detector is constructed as an SVM using 30,000 training shots. These shots
are collected from annotation data on TRECVID 2012 video data, where 545,873
shots are annotated with the presence or absence of an LSCOM concept [17]. Finally,
we combine five detectors on different features into a final detector to achieve an
improved performance. In total, we obtain final detectors for 351 concepts since
annotation data contain more than one positive shots for them.
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The above concept detection method and our method in [30] are different in the
following two points: First, in [30], we used an audio feature in addition to five
features described above. Second, to further cover diverse visual appearances of a
concept, we adopted “bagging” where three detectors are constructed on each fea-
ture using different sets of randomly sampled training shots. Since the performance
improvement using the audio feature and bagging is about 1 %, they are not used in
concept detection in this chapter.

12.4.2 Classifier Based on DST

Given N example shots for a query, we construct a classifier by incorporating a mass
function in DST into maximum likelihood estimation [35]. Assuming a set of M con-
cepts C = {c1, . . . , cM }, we represent the i th example shot xi as an M-dimensional
“complete” vector (x1

i , . . . , x M
i )T. Here, the j th dimension x j

i represents the pres-

ence or absence of the j th concept c j with no uncertainty. That is, x j
i is defined as

a binary variable x j
i ∈ {0, 1} where 0 and 1 represent c j ’s absence and presence,

respectively. Classifier construction aims to estimate a probability distribution which
characterizes each concept’s presence specific to example shots.

More specifically, assuming that concepts are independent of each other, we model
the probability distribution of their presences in xi as follows:

p(xi ; θ) =
M∏

j=1

(θ j )x j
i , (12.2)

where p(xi ; θ) is defined on the complete vector xi , and parameterized by θ =
{θ1, . . . , θ M }, in which θ j represents the probability of c j ’s presence. Equation (12.2)

means that p(xi ; θ) is computed by multiplying θ j for which x j
i = 1. In other words,

p(xi ; θ) is computed as the joint probability of presences of concepts displayed in
xi . Note that c j ’s presence and absence are “complementary” because c j ’s presence
guarantees its absence and vice versa, so considering both of them is redundant.
Thus, we only consider c j ’s presence in p(xi ; θ). Based on the definition of p(xi ; θ),
classifier construction is equivalent to the estimation of the optimal θ .

However, since the detection of c j ’s presence in xi is uncertain, x j
i incurs an

uncertainty which is modeled by a mass function mi . We define a set of mass functions
m = {m1, . . . , m N } where mi is the mass function for the i th example shot xi , and
outputs the mass that one concept in S ⊆ C could be present in xi . Based on [35],
we incorporate m into the following likelihood function:

L(θ; m) =
N∏

i=1

⎛

⎝
∑

S⊆C

mi (S)
∑

c j ∈S

θ j

⎞

⎠ , (12.3)
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where the right summation in the parentheses picks up concepts included in S. Then,
based on Eq. (12.2), probabilities of their presences are summed up as the overall
probability that one concept in S is present in xi . This overall probability on the
“complete” vector representation is weighted by the mass mi (S). The left summation
sums such weighted probabilities for all possible subsets of concepts. Thus, the inside
of the parentheses can be considered as the likelihood of θ given mi for xi . Hence,
assuming that example shots are independent of each other, the overall likelihood is
obtained by multiplying the above likelihoods.

By considering the inclusive relation between S and c j , Eq. (12.3) can be trans-
formed by swapping two summations:

N∏

i=1

⎛

⎝
M∑

j=1

θ j
∑

S�c j

mi (S)

⎞

⎠ (12.4)

=
N∏

i=1

⎛

⎝
M∑

j=1

θ j pl j
i

⎞

⎠ = L(θ; pl). (12.5)

In Eq. (12.4), the right summation sums all masses which are defined on S including
c j . This is exactly the plausibility of c j ’s presence in xi , so Eq. (12.4) can be trans-
formed into (12.5). As a result, the likelihood of θ given m becomes the one given a
set of plausibility functions for M concepts pl = {pl1, . . . , pl M }. Therefore, instead
of using m, θ can be estimated using pl. Equation (12.5) indicates that, estimating θ

which maximizes L(θ; pl) is equivalent to maximizing the agreement between the
probability of c j ’s presence on the complete vector representation, and the uncertain
detection of its presence. In other words, the latter works to recover shots where the
detector misses c j ’s presence, while the former examines the statistical validity of

pl j
i to alleviate recovering many irrelevant shots.
To estimate θ , we use the modified Expectation-Maximisation (EM) algorithm

[35]. It iteratively updates θ to maximize the expectation of the log-likelihood, where
pl is used to weight the probability that xi is observed based on the current θ .
It is guaranteed that an updated θ always improves the likelihood in Eq. (12.5). The
algorithm iterates “Expectation-step” (E-step) and “Maximization-step” (M-step).
The former computes the above expectation of the log-likelihood using the current
θ , and the latter updates θ so as to maximize that expectation. These E-Step and
M-Step are repeated until the improvement of the likelihood becomes smaller than
the threshold (please refer to [35] for more details).

Finally, using the estimated θ , retrieval is performed by computing the relevance
score of a shot xt as follows:

rel(xt ) =
M∑

j=1

θ j pl j
t , (12.6)
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where pl j
t is the plausibility of c j ’s presence in xt . Thus, rel(xt ) examines the

agreement between plausibilities of concepts’ presences in xt and probabilities of
their presences with no uncertainty. From another perspective, θ j can be considered
as the weight to represent whether the plausibility of c j ’s presence is useful for char-
acterizing the query. The set of 1,000 shots with the largest rel(xt ) is returned as a
retrieval result.

12.4.3 Modeling Plausibilities

In this section, we describe a method which derives a plausibility function pl j for the
j th concept c j by estimating a density ratio function between positive and negative

shots. As described in Sect. 12.3, pl j computes pl j
i which is the plausibility of c j ’s

presence in the i th shot xi , using its detection score s j
i (i.e., pl j

i = pl j (s j
i )). We

define pl j
i based on the following density ratio function w j (s j

i ):

pl j
i = w j (s j

i ) = p1(s
j
i )

p0(s
j
i )

, (12.7)

where p1(s
j
i ) and p0(s

j
i ) are probability density functions for c j ’s presence and

absence on s j
i , respectively. Since we have no prior knowledge about the distrib-

ution of positive or negative shots with respect to s j
i , we use the method, called

unconstrained Least-Squares Importance Fitting (uLSIF), which can directly esti-
mate w j (s j

i ) without estimating p1(s
j
i ) or p0(s

j
i ) [36]. Specifically, uLSIF performs

least-square fitting to approximate w j (s j
i ) as the following linear combination of

basis functions:

w j (s j
i ) =

b∑

l=1

αlφl(s
j
i ), (12.8)

where αl is a weight for the lth basis function φl(s
j
i ), which is defined as a Gaussian

function. And, b is the number of basis functions used to approximate w j (s j
i ). We

set b to the number of integers between the maximum and minimum normalized
detection scores. Based on Eq. (12.8), w j (s j

i ) is estimated by computing the optimal
α = {α1, . . . , αb} using positive and negative shots for c j . This optimal α can be

efficiently obtained because least-square fitting of w j (s j
i ) is formulated as a system

of linear equations (please refer to [36] for details).
To estimate an appropriate density ratio function, we need to prepare a proper set

of positive and negative shots by solving the imbalanced problem. To this end, we
develop k-Nearest Neighbor-based Undersampling (kNNU) to selectively sample
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shots, which not only are likely to show c j but also have different detection scores.
First, to avoid sampling several shots with the same detection score, kNNU creates a
set of shots by retaining only one shot for each of unique detection scores. Then, for
each shot, it computes the priority score which represents the usefulness for sampling
that shot. The shot with the highest priority score is sampled. This process is repeated
until the prespecified number of shots are sampled. Finally, a user annotates shots
sampled by kNNU to create positive and negative shots for c j .

In kNNU, the priority score of a shot x, p(x), is computed as follows:

p(x) = 1

k1

k1∑

s=1

d(x, xs) − 1

k2

k2∑

p=1

d(x, xp), (12.9)

where k1 shots in {xs}k1
s=1 are already sampled shots having the most similar detection

scores to that of x. Similarly, k2 shots in {xp}k2
p=1 are already obtained positive shots

having the most similar scores to that of x. We heuristically set both k1 and k2 to 3.
The function d represents the Euclidean distance between two shots in terms of
their detection scores for c j . The first term in Eq. (12.9) is the average of distances

between x and {xs}k1
s=1, in order to avoid sampling shots with similar detection scores.

The second term is the average of distances between x and {xp}k2
p=1. This gives

high priorities to shots which are similar to already obtained positive shots, so that
they are likely to show c j . We average distances using the k1 or k2 most similar
shots, to avoid sampling shots having exceptionally very similar detection scores.
By annotating sampled shots, we can examine inaccuracies on various detection
scores by alleviating the influence of too many shots where c j is absent.

By annotating shots sampled by kNNU, an appropriate density ratio function can
be estimated and used as a plausibility function pl j . In this way, for all concepts, a
set of plausibility functions pl = {pl1, . . . , pl M } is obtained and used to construct
a classifier described in Sect. 12.4.2.

12.5 Experimental Results

Our concept-based video retrieval method is evaluated on TRECVID 2009 video
data, which consist of 36,106 shots in 219 development videos and 97,150 shots in
619 test videos. According to the official instruction of TRECVID 2009 Search task
[27], for each of 24 queries (see Appendix for more details), a classifier is constructed
using four to eight example shots in development videos, and then applied to shots
in test videos. We mainly evaluate the retrieval performance using a precision which
represents the percentage of relevant shots within 1,000 retrieved shots. In other
words, the precision indicates the number of retrieved relevant shots. Our main
purpose is to examine whether diverse relevant shots can be retrieved by recovering
shots where detectors missed concepts’ presences. If two methods use the same
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concept detection scores and the precision of one method is larger than that of another,
it can be considered that the former retrieved more relevant shots by managing
uncertain concept detection better than the latter.

We describe detailed configurations to derive plausibility functions. First of all,
351 concept detectors are built using shots in TRECVID 2012 video data, and then
applied to shots in TRECVID 2009 video data.2 For each concept, a plausibility
function is derived by sampling shots from TRECVID 2012 video data, and annotat-
ing them as positive or negative. Subsequently, the plausibility function is applied to
shots in TRECVID 2009 video data. However, we found that these two datasets are
characterized by different distributions of detection scores. This means that depend-
ing on datasets, the same detection score indicates a different density ratio between
shots where the concept is present and shots where it is absent. Thus, we uniform
(normalize) the distribution of detection scores in each dataset, so as to have the mean
0 and the variance 1. Afterwards, we derive a plausibility function from TRECVID
2012 video data, and apply it to TRECVID 2009 video data.

In addition, a density ratio function is estimated using 1,000 shots sampled by
our undersampling method (kNNU). Here, if sampled shots do not cover diverse
detection scores, we further sample additional 1,000 shots. This is repeated until
sampled shots range over most detection scores or 5,000 shots are sampled. It may
happen that even annotating 5,000 shots, only a small number of positive shots are
collected. They are insufficient for estimating a density ratio function. Thus, if only
less than 30 positive shots are collected, we do not estimate a density ratio function
and directly use detection scores as plausibilities.

Furthermore, for some concept, the estimated density ratio function may not
monotonically increase in terms of detection scores. Specifically, the maximum den-
sity ratio lies at a certain detection score, and density ratios at larger detection scores
are smaller. This results in deriving a semantically inconsistent plausibility function.
To avoid this, we force to continuously assign the maximum density ratio to the
above larger detection scores.

Our retrieval method adopts the following two small extensions: First, many of
351 concepts are not so related to a query. Such not related concepts are redundant
and degrade the retrieval performance. Thus, we select 10 related concepts as the
ones having the highest averages of detection scores in example shots. Then, a classi-
fier is built using plausibilities for selected 10 concepts. The above concept selection
has been used in several state-of-the-art concept-based retrieval methods [31, 41].
Second, a plausibility is the upper bound probability of a concept’s presence. We
found that for most of 10 selected concepts, plausibilities in example shots are com-
monly large. This makes it difficult to prioritize concepts in terms of how useful they
are for characterizing a query. Hence, for each concept, the average detection score
in example shots is used to weight original plausibilities. A classifier is constructed

2 Since the search task has been stopped at TRECVID 2009, videos of this year are the latest ones
where the retrieval performance using example shots can be evaluated.
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and tested using these weighted plausibilities for example shots and shots in test
videos. Our preliminary experiment showed that weighted plausibilities always lead
to better performance than original ones.

12.5.1 Evaluation for Video Retrieval Using Plausibilities

In order to examine the effectiveness for handling uncertain concept detection based
on plausibility functions, our method denoted by PL is compared to the method
Direct, which constructs a classifier directly using concept detection scores. Specif-
ically, in Direct, a classifier is constructed by replacing pl j

i in Eq. (12.5) with the

detection score s j
i . Table 12.1 shows the performance comparison between PL and

Direct in terms of their precisions. Due to the space limitation, Table 12.1 is divided
into three parts, in each of which the top, second, and third rows represent IDs of 24
queries, PL’s precisions and Direct’s precisions, respectively. In addition, for each
method, we show the Mean of Precision (MP) over 24 queries. Moreover, for queries
where PL outperforms Direct, we depict the latter’s precisions in italics.

As can be seen from Table 12.1, for 17 of 24 queries, PL can retrieve more relevant
shots than Direct. Also, precisions of PL and Direct are the same on three queries,
and the former is outperformed by the latter on the remaining four queries. Overall,
as seen from MPs of PL and Direct in Table 12.1, the former can recover much more
relevant shots than the latter, by modeling uncertainties in concept detection using
plausibility functions.

Table 12.1 Performance comparison between PL, Direct and Random in terms of precisions

Query ID 269 270 271 272 273 274 275 276 277

PL 0.108 0.323 0.202 0.008 0.023 0.076 0.014 0.015 0.050

Direct 0.104 0.304 0.209 0.007 0.025 0.071 0.015 0.011 0.013

Random 0.104 0.304 0.209 0.015 0.025 0.055 0.015 0.011 0.091

Query ID 278 279 280 281 282 283 284 285 286

PL 0.300 0.002 0.013 0.129 0.055 0.003 0.235 0.235 0.195

Direct 0.256 0.002 0.005 0.122 0.046 0.003 0.217 0.236 0.195

Random 0.257 0.002 0.013 0.122 0.047 0.003 0.217 0.236 0.195

Query ID 287 288 289 290 291 292 MP

PL 0.130 0.081 0.133 0.338 0.022 0.005 0.112

Direct 0.066 0.022 0.106 0.234 0.005 0.002 0.094

Random 0.119 0.049 0.182 0.234 0.005 0.006 0.104
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12.5.2 Evaluation for Plausibility Modeling Using Selective
Sampling

In order to examine the effectiveness of our undersampling method (kNNU), we
compare PL in the previous section to Random, which uses plausibility functions
derived by annotating randomly sampled shots. Here, for each of PL and Random,
the same number of shots are annotated. For both of them, if only less than 30 positive
shots for a concept are collected, detection scores are directly used as plausibilities.
The bottom row in Table 12.1 shows Random’s precisions. As like Direct, Random’s
precisions in italic indicate that PL achieves larger precisions.

As shown in Table 12.1, PL outperforms Random on 12 queries, and their preci-
sions are the same on four queries. For queries where PL is outperformed by Random,
the difference in their precisions are small except for the 277th and 289th queries.
Thus, we can say that compared to randomly sampled shots, shots sampled by kNNU
yield more useful plausibility functions for managing uncertainties in concept detec-
tion. In particular, targeting 158 concepts which are selected for at least one of 24
queries, we collected total 10, 448 positive shots using kNNU. On the other hand,
from randomly selected shots, we only collected 6,288 positive shots due to the
imbalanced problem.

Table 12.1 shows one interesting observation. First, the comparison between
Random and Direct indicates that, plausibility functions even by annotating ran-
domly sampled shots yield improved performance, compared to directly using con-
cept detection scores. And, further improvement can be achieved by annotating shots
sampled by kNNU, as seen from the comparison between PL and Random.

12.5.3 Performance Comparison with Other Methods

In this section, we compare PL to state-of-the-art video retrieval methods, especially
88 methods developed at TRECVID 2009 Search task (fully automatic category) [27].
For each of 24 queries, Fig. 12.7 shows the comparison of PL’s precision to the highest
and median precisions among the above 88 methods. Overall, the MP of PL (0.1124)
is ranked at the 18th position among 88 methods. Also, in TRECVID 2009 Search
task, an Average Precision (AP) was used as the official evaluation measure [27]. It
represents the average of precisions at every position where a relevant shot is ranked.
The AP becomes large when relevant shots are ranked at higher positions. The mean
of APs (MAP) over 24 queries is used as the overall performance evaluation measure.
Regarding this, PL’s MAP (0.0772) is ranked at the 16th positions among 88 methods.
Thus, overall, PL is ranked within the top quartile.

We consider the above result as notable because of the following big handicaps
for PL: Each query in TRECVID 2009 Search task consists of the text description,
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Fig. 12.7 Comparison of PL’s precisions with the highest and median precisions at TRECVID
2009 Search task

example shots from development videos, and images collected on the Web. Many
methods use all of these query representations to improve the retrieval performance.
On the other hand, PL only uses example shots since processing text data is out of
the scope of this chapter, and motion features (Traj-Disp and Traj-HOG) for concept
detection cannot be extracted from images. In addition, many methods combine
concept-based retrieval with retrieval based on Automatic Speech Recognition (ASR)
and retrieval using low-level features. We did not add the latter two techniques to
PL, because adding them makes it vague to examine whether our main purpose (i.e.,
managing uncertain concept detection) is achieved or not. Thus, it is notable that
PL only using concept-based retrieval with example shots achieved the performance
better than the top-quartile.

In particular, despite the above big handicaps, PL achieves the best precision
among 88 methods for three queries, marked by solid circles in Fig. 12.7. In other
words, for these queries, PL covers the largest number of relevant shots. Furthermore,
for four queries marked with dashed circles, precisions of PL are ranked within the
fifth position. Therefore, it can be concluded that PL successfully manages uncertain
concept detection to recover shots where detectors missed concepts’ presences, so
that diverse relevant shots can be retrieved. For the other queries, especially the ones
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where PL’s precision is significantly lower than the highest one, we think that PL
needs to be extended by adopting retrieval techniques based on ASR and low-level
features.

12.6 Existing Methods for Uncertain Data

This section aims to clarify the characteristics of our method. To this end, irrespec-
tive of research fields, we review existing methods for treating uncertain data, and
compare them to our method. Although an uncertainty has been addressed in fields
of data mining and machine learning, it is generally defined as the variance around a
data point in a multi-dimensional space [42–44]. Examples of such uncertainties are
noises and transmission errors arising from a sensor network, and positional infor-
mation predicted by a mobile device. Existing data mining and machine learning
methods probabilistically model these uncertainties, using a probability that a data
point lies in a certain region [43], using a probability that the distance between two
data points is in a certain range [44], and measuring the density around a data point
[42]. Compared to this, we define an uncertainty as the inaccuracy of assigning a
certain value (i.e., concept’s presence or absence) to a shot. Thus, the above methods
cannot be used to deal with uncertainties in this chapter.

Several methods have been proposed to model uncertain data by deriving mass
and plausibility functions. However, most of them assume special kinds of data
like multivariate (transactional) data [45] and data with nested structures [46], or
assume an underlying data distribution like Gaussian distribution [47]. Compared to
this, we target multi-dimensional categorical data where each dimension represents
a concept’s presence or absence. In addition, we do not have any prior knowledge
about the data distribution. Hence, we adopt a “supervised” approach which derives a
plausibility function for each concept (dimension) using positive and negative shots.
Moreover, existing methods do not consider the imbalanced problem underlying the
data distribution.

Some researchers addressed uncertainties in “multimodal” concept detection
where detection results on different features (modalities) are combined to improve
the performance [48, 49]. Here, uncertainties arise when only using a single feature.
In [49], concept detection results on different features are combined based on Port-
folio theory, so that for each feature, the expected detection accuracy is maximized
and the uncertainty is minimized. Note that in [49] the uncertainty for each feature
is defined as the variance of correctly classified training shots. Compared to this, an
uncertainty in this chapter is inaccurate detection of a concept. Also, Benmokhtar and
Huet used DST to represent uncertainties in concept detection using a single feature
[48]. However, handcrafted mass functions were used, so their appropriateness for
representing uncertainties is not guaranteed. In this chapter, we define a plausibil-
ity function for each concept based on density ratios between positive and negative
shots in terms of detection scores. This function represents statistically supported
uncertainties of the concept’s presence.
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12.7 Conclusion and Future Work

In this chapter, we introduced a concept-based video retrieval method which can
manage uncertainties in concept detection based on DST. Considering the difficulty
of directly deriving a mass function, we theoretically proved that a classifier can be
built using plausibility functions instead of the mass function. Then, we presented
a method which derives a plausibility function for each concept as a density ratio
function between positive and negative shots. In particular, to overcome the imbal-
anced problem between these two types of shots, an undersampling method has been
developed to select a subset of shots, which not only are likely to display the concept
but also have diverse detection scores. Experimental results verified that using plau-
sibility functions yields better retrieval performance than directly using detection
scores, and our undersampling method is useful for deriving effective plausibility
functions. Furthermore, we showed that our method achieves state-of-the-art retrieval
performance, only using much smaller amount of information than other methods.

In the future, we will explore the following two issues: First, our current classifier
is a “generative” model which estimates parameters by maximizing the probability
of observing (generating) example shots. However, many publications report that in
addition to example shots, using counter example shots significantly improves the
retrieval performance [50]. Thus, we plan to incorporate plausibility functions into a
“discriminative” model where parameters are estimated to maximize the conditional
probability of example (or counter example) shots [51].

Second, we feel that until now retrieval methods have been sophisticated only
from the computational perspective. In other words, they adopt little knowledge
about human interpretation of semantic meanings. For example, if a Person moves
his/her Hand near a moving Ball, one can infer that this person throws the ball.
However, this kind of “reasoning” has not yet been explored in large-scale video
retrieval. One main reason can be considered as uncertainties in concept detection.
Therefore, we aim to apply our probabilistic classifier to reasoning based on concept
definitions, properties, and relations defined in an ontology.
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Appendix

We evaluate our video retrieval method on 24 queries specified at TRECVID 2009
Search task [27]. For each query, shots in test videos are manually assessed based
on the following criteria: A shot is relevant to the query if it contains a sufficient
evidence for humans to recognize the relevance. In other words, such an evidence
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may be shown only in a region on some video frames in a shot. Below, we show the
ID and text description of each query:

269: Find shots of a road taken from a moving vehicle through the front window
270: Find shots of a crowd of people, outdoors, filling more than half of the frame

area
271: Find shots with a view of one or more tall buildings (more than four stories)

and the top story visible
272: Find shots of a person talking on a telephone
273: Find shots of a closeup of a hand, writing, drawing, coloring, or painting
274: Find shots of exactly two people sitting at a table
275: Find shots of one or more people, each walking up one or more steps
276: Find shots of one or more dogs, walking, running, or jumping
277: Find shots of a person talking behind a microphone
278: Find shots of a building entrance
279: Find shots of people shaking hands
280: Find shots of a microscope
281: Find shots of two more people, each singing and/or playing a musical instru-

ment
282: Find shots of a person pointing
283: Find shots of a person playing a piano
284: Find shots of a street scene at night
285: Find shots of printed, typed, or handwritten text, filling more than half of the

frame area
286: Find shots of something burning with flames visible
287: Find shots of one or more people, each at a table or desk with a computer

visible
288: Find shots of an airplane or helicopter on the ground, seen from outside
289: Find shots of one or more people, each sitting in a chair, talking
290: Find shots of one or more ships or boats, in the water
291: Find shots of a train in motion, seen from outside
292: Find shots with the camera zooming in on a person’s face
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Chapter 13
Multimodal Fusion: Combining Visual and
Textual Cues for Concept Detection in Video

Damianos Galanopoulos, Milan Dojchinovski, Krishna Chandramouli,
Tomáš Kliegr and Vasileios Mezaris

Abstract Visual concept detection is one of the most active research areas in
multimedia analysis. The goal of visual concept detection is to assign to each ele-
mentary temporal segment of a video, a confidence score for each target concept
(e.g. forest, ocean, sky, etc.). The establishment of such associations between the
video content and the concept labels is a key step toward semantics-based indexing,
retrieval, and summarization of videos, as well as deeper analysis (e.g., video event
detection). Due to its significance for the multimedia analysis community, concept
detection is the topic of international benchmarking activities such as TRECVID.
While video is typically a multi-modal signal composed of visual content, speech,
audio, and possibly also subtitles, most research has so far focused on exploiting the
visual modality. In this chapter, we introduce fusion and text analysis techniques for
harnessing automatic speech recognition (ASR) transcripts or subtitles to improve
the results of visual concept detection. Since the emphasis is on late fusion, the
introduced algorithms for handling text and the fusion can be used in conjunction
with standard algorithms for visual concept detection. We test our techniques on the
TRECVID 2012 Semantic indexing (SIN) task dataset, which is made of more than
800h of heterogeneous videos collected from Internet archives.
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13.1 Introduction

Visual concept detection is one of the most active research areas in multimedia
analysis. The goal of visual concept detection is to assign to each elementary temporal
segment of a video, a confidence score for each target concept (e.g., forest, ocean,
sky, etc.). Due to its significance for the multimedia analysis community, concept
detection is the topic of international benchmarking activities such asTRECVID [21].

While video is typically a multi-modal signal composed of visual content, speech,
audio, and possibly also subtitles, most research has so far focused on exploiting the
visual modality. In this chapter, we will introduce fusion and text analysis techniques
for harnessing automatic speech recognition (ASR) transcripts or subtitles to improve
the results of visual concept detection. Since the emphasis is on late fusion, the
introduced algorithms for handling text and the fusion can be used in conjunction
with standard algorithms for visual concept detection.

This chapter is organized as follows. Section13.2 introduces the visual concept
detection task, recounting the most common algorithms used to process the visual
modality. Section13.3 gives a brief overview of algorithms for exploiting the tex-
tual content (ASR transcripts or subtitles) for concept detection and motivates the
choice of the Explicit Semantic Analysis (ESA) method. The main focus of this
chapter, the strategies for fusion of the textual and visual content, are covered in
Sect. 13.4. Section13.5 covers the experimental evaluation. The conclusion provides
the discussion of results and suggestions for further work.

13.2 Visual Concept Detection

Concept detection using the video’s visual cues typically follows the processing
pipeline of Fig. 13.1. In the first step, the videos are segmented into shots using
methods such as threshold-based approaches [3, 23] or more sophisticated statistical
learning algorithms, e.g., SVM [5, 16] or Adaboost [34]. For each shot, a meaningful
subset of the visual information is selected for further analysis, and visual low-level

Fig. 13.1 The pipeline of a typical visual concept detection system
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Table 13.1 The 25 employed shot representations

Shot representations

Keyframe-based 12 representations, created by considering all possible combinations of 3
descriptors (SIFT, Opponent-SIFT, RGB-SIFT) × 2 sampling strategies
(Dense, Harris-Laplace) × 2 BoW strategies (soft-, hard-assignment)

1 representation based on color histograms

Tomograph-based 12 representations, created by considering all possible combinations of two
types of video tomographs (horizontal, vertical) × three descriptors (SIFT,
Opponent-SIFT, RGB-SIFT) × two BoW strategies (soft-, hard-assignment)

features such as SIFT [17] or SURF [2] are extracted from it. These features are used
as input to a number of classifiers, which are based on machine learning techniques
such as SVM [6], regression [1] or Bayesian networks [19]. Finally, the output of
these classifiers is fused in order to produce the final visual concept detection score.

In our framework, a video is initially segmented into shots using the method of
[29]. To represent a shot’s visual content, one keyframe and two other 2D cross-
selections of the video volume, termed tomographs [28], are selected and used for
subsequent extraction of local image features. The latter local feature extraction
procedure is based on amultitude of combinations of different interest point detectors
(Harris Laplace corner detector [11] or dense sampling), interest point descriptors
(SIFT [17], RGB-SIFT and Opponent SIFT [30]) and techniques for aggregating
the local descriptors into a global image representation (Bag-of-Words using hard
or soft-assignment, 3× 1 pyramidal decomposition [13]). Overall, for each shot, 25
such combinations, each one resulting in the representation of the same shot in a
different low-level feature space, are calculated (Table13.1), as detailed in [20].

Subsequently, the necessary mappings between shot representations and each
considered visual concept are established with the help of SVM classifiers. For each
of these 25 different combinations, a set of five linear SVMs (LSVM) is trained,
each using a subset of the available ground-truth annotated training data, following
the Bag of Models (BoM) approach as in [18]. In this way, 125 LSVM classifiers in
total (25× 5) are trained for each concept. The output of each classifier is a Degree
of Confidence (DoC) in the range [0, 1] for the corresponding concept. A late fusion
strategy (calculating their arithmetic mean) is finally used for combining these 125
intermediate scores in a single DoC per concept.

13.3 Exploiting Textual Information for Concept Detection

The ASR transcripts constitute the most common explicit textual information that
can be expected to be readily available with many videos. In this section, we will
use them instead of visual features to perform concept detection in video. Similarly
to the previous section, the concept detection task is treated as a soft classification
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problem: to each video shot we want to assign a confidence score for every target
concept. Here, however, as input we use not only a set of videos (segmented to shots)
and the set of target concepts, but also the video’s ASR transcripts as well as the
short textual description that accompanies every concept and fully explains it (this
can be up to several sentences long).

This ASR-based video concept detection task is supported by two breeds of algo-
rithms: text categorization and word similarity (relatedness) computation.

13.3.1 Text Categorization

The problem can be cast as a conventional document categorization problem, where
the target concepts correspond to the classes and the ASR fragments are the docu-
ments to be categorized (Example 1). There is a large body of research on text cate-
gorization, for a review of selected approaches please refer to [26]. Many common
algorithms are based on the bag-of-words representation, Term Frequency—Inverse
Document Frequency (TF-IDF) and cosine matching [25].

Example 1 ASR text: “... looming clouds of smoke and fireballs were visible, pos-
sibly on the islands of theWest a New Jersey Turnpike intention was brought down”,
target classes: Explosion-Fire, Basketball, Car-Racing

Here, for the textual modality, a vector representation with as many features as
there are distinctwords in all the descriptions of target concepts is constructed for each
target concept. This feature space is then used to represent also the ASR transcripts
as vectors. Finally, the confidence score for each pair of concept and ASR fragment
is computed as the cosine of the angles between the respective vectors.

The problem with the application of text categorization on the visual concept
detection is the sparsity of the input data. Unlike in the typical text categorization
setting, both input texts (concept description and ASR fragments) tend to be very
short. In the following, we give a brief review of prospective approaches for handling
the textual modality. These approaches motivate our choice of the ESA algorithm.

13.3.2 Semantic Concept Mapping

In [12] we have introduced Semantic Concept Mapping (SCM) as a method for
utilizingWordNet andWikipedia to overcome the problem of sparseness. SCMmaps
the noun phrases representing the entities as well as the target classes to WordNet.
Graph-based WordNet similarity measures are used to assign the closest class to
the noun phrase. If a noun phrase does not match any WordNet concept, a Targeted
Hypernym Discovery (THD) algorithm is executed. The THD algorithm extracts a
hypernym from a Wikipedia article defining the noun phrase using lexico-syntactic
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patterns. This hypernym is then used to map the noun phrase to a WordNet synset,
but it can also be perceived as the classification result by itself, resulting in an
unsupervised classification system. A certain disadvantage of SCM is that since
typically multiple entities (noun phrases) are contained in an ASR fragment, an
additional fusion step is required to produce a single confidence score per concept
and ASR fragment (Example 2).

Example 2 ASR text: “Maradona scores a goal!”, target classes: athlete, writer. The
identified objects are the entities “Maradona” and “goal”. Since “Maradona” is not
in WordNet, THD uses Wikipedia to map this word to (a WordNet-covered) “soccer
player”. Finally, the similarity between each identified entity and each class is com-
puted, producing sim(Maradona, athlete), sim(Maradona, writer), sim(goal, athlete),
sim(goal, writer). Finally, the results are fused to overall similarity sim(“Maradona
scores a goal”, “athlete”) and sim(“Maradona scores a goal”, “writer”).

13.3.3 Explicit Semantic Analysis

Explicit Semantic Analysis (ESA) [8] is one of the new breed of algorithms for mea-
suring semantic relatedness that are based purely on Wikipedia. In the ESA method
[8], the input text T is represented as a weight vector, with positions corresponding
to Wikipedia articles and the entries to the relevance of the corresponding concepts
to text T .1 Since ESA estimates relatedness between two text fragments (or two
words), it can be easily adapted for text classification. Considering that each class
has a textual description, we can use ESA to estimate the semantic similarity between
the document in question and each class description.

While there are other Wikipedia-based algorithms, such as Wikipedia Link Mea-
sure (WLM) [32], these are mostly less suitable for the intended fusion setup, since
they compute similarity only between individual words (orWikipedia articles), while
ESAnaturally handles computation of similarity betweenwords aswell as texts.Until
very recently, when it was overtaken by Temporal Semantic Analysis [24], ESA had
best results (correlation with human judgment) on the standardWordSim353 dataset.
Of all Wikipedia-based word similarity/relatedness algorithms, ESA has the high-
est amount of follow-up applied research in various areas of information retrieval,
including cross-language information retrieval. In image and video processing, ESA
was used in supporting the task of automatic image tagging [14] as well as video
retrieval [31].

1 Thus the nameExplicit SemanticAnalysis—due to the use of natural concepts (Wikipedia articles),
the model is easy to explain to human users.
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13.3.4 Generating Audio DoCs

For the generation of vectors from the audio modality in our framework, we have
selected the ESA algorithm as justified in the previous subsection.2 The input for
ESA comprises the ASR fragment and each of the target concepts. The result of the
computation—the relatedness value—is used as the degree of confidence.

Example 3 ASR text: “... looming clouds of smoke and fireballs were visible, pos-
sibly on the islands of the West a New Jersey Turnpike intention was brought
down.” Concepts with their textual description: Car-Racing—“Shot of scenes at
car races”, Explosion-Fire—“Shots of an explosion or a fire”, and Basketball—
“One or more people playing basketball.” The text similarity vector between the
ASR text and each individual concept is sim(ASRText, [car, fire, basketball]) =
[0.04912, 0.0814, 0.0379].

In the above example (Example 3), computed relatedness values using the ESA
algorithm between the fragment text and each concept description document will
be: 0.04912 for the “Car-Racing”, 0.0814 for the “Explosion-Fire” and 0.0379 for
the “Basketball” concept. The highest confidence score is assigned to the concept
“Explosion-Fire”, followedby the concepts “Car-Racing” and “Basketball”. The con-
cept “Explosion-Fire” receives the highest confidence score because in its description
there are same or similar concept(s) as in the ASR fragment (e.g., smoke, fireballs).

13.4 Multimodal Fusion for Improved Concept Detection

As a result of the previous procedures covered in Sects. 13.2 and 13.3, each video shot
has two scores for each concept, one from each modality (i.e., visual and audio) that
expresses the DoC to this concept. Since N concepts were taken under consideration
for the evaluation test, the i th video shot is represented by two feature vectors xi

m =
[xi

1,m, xi
2,m, . . . , xi

N ,m], where m is the modality index (in our case m = {V, A},
where V stands for Visual and A for Audio).

The target outcome of multimodal fusion is that the i th video shot is represented
by a new feature vector zi = [zi

1, zi
2, . . . , zi

N ], where zi
n is the combination result of

xi
n,V and xi

n,A DoCs and n is the concept ID in the range of [1, N ].

13.4.1 Post-processing Audio DoCs

In order to improve on the results, we choose to post-process the audio DoCs. The
motivation behind this is that the concept-based annotation of the shots that we want

2 The ESAlib implementation obtained from http://ticcky.github.io/esalib/ with ESA background
built from Wikipedia snapshot from 2005.

http://ticcky.github.io/esalib/
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to generate refers to the visual information (i.e., describes what is visible in the shot).
It is therefore reasonable to consider that a concept which appears in shot i is not
necessarily included in the text information of this shot, but might be mentioned
in the audio transcript or subtitle within a broaden time window, i.e., in a transcript
temporally overlappingwith one of the preceding or following shots [i−α, . . . , i+α].

To handle this issue, the following procedure was devised. Let us consider a
video shot i with audio DoC for N concepts xi

A = [xi
1,A, xi

2,A, . . . , xi
N ,A]. We

introduce the xi
p A DoC, which is the average of audio DoCs in a range of ±α

shots (xi
p A = 〈xi−α

A , . . . , xi
A, . . . , xi+α

A 〉). So, the post-processed audio includes the
information of 2α + 1 shots. These vectors are then used as audio results (DoCs) for
shot i , instead of the original ones.

To illustrate the post-processing procedure, the following example is given
(Example 4).

Example 4 The audio DoC post-processing procedure.
Let xi

A = [0.0018, 0.0025, 0.0021] be the audio DoC vector (outcome of the
process of Sect. 13.3) for the i th shot for N = 3. For a range of α = 2 shots,
we will have the following vectors, xi−2

A = [0.0011, 0.0014, 0.002], xi−1
A =

[0.0015, 0.0008, 0.0023], xi+1
A =[0.0009, 0.0011, 0.0015], xi+2

A =[0.0016, 0.0024,
0.0014]. So, the xi

p A will be the average of these five vectors. In the case of arithmetic

averaging the final result will be xi
p A = [0.0014, 0.0016, 0.0019].

13.4.2 Fusion Strategies

In order to find the best strategy to combine the visual and audio DoCs, three
classes of late fusion techniques were originally considered: linear combination,
meta-classification, and second level linear fusion.

To perform linear combination, three types of averaging were examined: arith-
metic, geometric, and harmonic mean. Since it was observed that every DoC of
the visual baseline (xV ) is higher than the respective DoC from the audio baselines
(xA, xp A), techniques such as choosing the maximum of individual scores, or vot-
ing, cannot be used directly, without some normalization step, since the result of the
fusion would always be identical with the dominating visual baseline (Example 5).

Example 5 Let xi
V = [0.1169, 0.1657, 0.07, 0.134] and xi

A = [0.009, 0.01, 0.01,
0.008] be the visual and the audio baseline for the i th video shot. So, the new DoC
after the fusion with arithmetic mean will be zi

arith. = [0.063, 0.0878, 0.04, 0.071].
If the vectors are fused with harmonic or geometric mean, the results will be zi

harm. =
[0.0167, 0.0189, 0.0175, 0.0151] and zi

geom. = [0.0324, 0.0407, 0.0265, 0.0327]
respectively. Each value of zi is the new DoC of shot i for one of the four concepts.

Another class of techniques we considered for fusing the visual and audio
DoCs, alternative to the linear combination discussed above, was meta-classification
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techniques [15]. Let Oi
V A denote the concatenation of the visual and audio baselines

for the shot i , Oi
V A = [xi

V , xi
A]. This can be considered as a new representation of

shot i . Consequently, a kernel SVM or a two-class logistic regression model were
trained on the training portion of a properly partitioned [27] video shot dataset. In
this way, we train N SVMor regressionmodels, one for each concept. As eachmodel
corresponds to a concept, the output of each model zn is in the range [0, 1]. This
value is used as the new DoC for the corresponding concept. Thus, for each video
shot we have N new DoCs zi .

The result of meta-classification can be considered as the fusion between con-
cepts and it is a new classifier [10]. Empirically, fusing this classifier with the initial
visual baseline classifier, which is a strong classifier, was shown in our experiments
to further improve the results. So, second level linear fusion is used as an additional

Fig. 13.2 Meta-classification and second level linear fusion pipeline
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step to the meta-classification approach: the new feature vector zi produced by meta-
classification is further fusedwith the visual baselinexi

V with arithmeticmean averag-
ing in order to produce the final DoC. The meta-classification approach is visualized
in Fig. 13.2 (and also explained in Example 6). The same procedure is followed for
the combination of visual and post-processed audio baselines.

In order to explain the above procedure, a brief example is presented for N = 4
concepts (Example 6).

Example 6 In case of meta-classification, after concatenation of the baselines, we
have the vector Oi

V A = [0.1169, 0.1657, 0.07, 0.134, 0.009, 0.01, 0.01, 0.008],
which is the new representation of video shot i . The vector Oi

V A is the input to
4 trained SVMs, where their outputs are 4 new DoCs zi = [0.04, 0.034, 0.02, 0.07].
Finally, at the second level linear fusion stage, the zi and xi

V are averaged with
arithmetic mean, to produce the final DoCs [0.0785, 0.0998, 0.0450, 0.1020].

13.5 Experiments and Results

13.5.1 Dataset

We test our framework on the TRECVID 2012 Semantic indexing (SIN) task dataset
[22]. This dataset is made of 19,861 videos (>600h) and 8,262 videos (>200h) for
training and testing, respectively. Its videos are short videos collected from Internet
archives, and add up to more than 400,000 video shots in total.

The ASR data [9] provided for the purpose of the TRECVID competition contains
the transcripts of the speech in the videos. Since not all videos include speech,
TRECVID provides ASR files only for 14,507 training videos and 5,587 testing
videos.

13.5.2 Experiment Setup

We apply our framework on 34 concepts (Table13.2) of the TRECVID SIN task.
Most concepts are defined with one sentence of text (e.g., “Shots of an airplane”,
“One or more people singing”), and the remaining few concepts have a somewhat
longer description (about 2–5 sentences). The objective is to detect these concepts
in non-annotated video shots.

Following the application of the unimodal concept detection techniques of
Sects. 13.2 and 13.3, each video shot is represented by two feature vectors in the
R
34 space (one for the visual and one for the audio content), where each vector value

is a DoC for the corresponding concept. We try to combine these two feature vectors,
to improve the performance of our framework.
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Table 13.2 TRECVID concepts used in this work

Concept ID Label Concept ID Label

1 Airplane 2 Basketball

3 Bicycling 4 Boat ship

5 Boy 6 Bridges

7 Chair 8 Computers

9 Girl 10 Government leader

11 Greeting 12 Highway

13 Instrumental musician 14 Kitchen

15 Meeting 16 Motorcycle

17 Nighttime 18 Office

19 Press conference 20 Roadway junction

21 Singing 22 Sitting down

23 Stadium 24 Throwing

25 Baby 26 Fields

27 Forest 28 George Bush

29 Hill 30 Lakes

31 Military airplane 32 Oceans

33 Skier 34 Soldiers

As evaluationmeasure, we use the Extended InferredAverage Precision (XinfAP)
[33] which is the same as what TRECVID 2012 SIN task uses to evaluate the per-
formance of the participants. XinfAP is an extended version of infAP which is an
approximate Average Precision (AP) measure, used instead of AP when the ground-
truth annotation of a dataset is not complete.

13.5.3 Results

The first step was to find the optimum value α for the post-processing of the audio
features. In Sect. 13.4.1, we introduced the value xi

p A, which is the average of (2α+1)
shots. We test the concept detection system with the post-processed audio baseline
for the values of α ∈ [4, 30], and also with the initial audio baseline (α = 0). In
this step we use DoCs only from audio and post-processed audio content and we do
not perform any further step such as meta-classification or second level fusion. The
results are displayed in Fig. 13.3 in terms of Mean XinfAP (MXinfAP). Three types
of averaging were used: arithmetic, geometric, and harmonic.

The results clearly indicate that the averaging with arithmetic mean performs
better than the other types. We decided to use the post-processed audio DoC, which
was produced with the arithmetic average. Henceforth when xi

p A is indicated, it
denotes the arithmetic mean of the audio DoCs for 2α + 1 neighboring shots.
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Fig. 13.3 MXinfAP for the different values of α

In the next stage, we try to combine the visual and audio DoCs. As was mentioned
above (Sect. 13.4.2), three types of averaging were used in order to fuse the DoCs.
In any case, by audio DoC we mean here the post-processed audio with arithmetic
mean, and define α in a range of [4, 12] because of the good performance of this
range of values in the previous experiment. In Fig. 13.4 we can see the results of
fusion for various values of α (audio and visual results fused using the arithmetic
mean). As expected, fusing the post-processed audio with the visual baseline (i.e.,
the visual concept detection method of Sect. 13.2) performs better than the fusion of
the audio (α = 0) and visual baselines.

In Table13.3 we compare the overall performance of the fusion of visual and
audio DoCs using different α values (Sect. 13.4.1), by averaging them with arith-
metic mean. MXinfAP is used for quantifying the performance. We can see that the
combination of visual and post processed audio with α = 6 performs much better
than the combination of the visual and audio baseline (α = 0) and slightly better
than the post-processed audio when values of α higher than six are used.
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Fig. 13.4 XinfAP per concept for the fusion of the audio and visual baselines by calculating the
arithmetic mean of the corresponding DoCs and using various values of α
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Table 13.3 MXinfAP
performance for the fusion of
the audio and visual baselines
with arithmetic mean and
various vales of α

α value MXinfAP

0 10.61

6 12.16

8 12.10

10 12.12

12 12.11
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Fig. 13.5 XinfAP performance per concept, for audio-visual averaging strategies (arithmetic, geo-
metric, and harmonic mean) and comparison with the audio and visual baselines

Table 13.4 MXinfAP
performance for averaging
fusion strategies with α = 6
and comparison with the
audio and visual baselines

Average strategy MXinfAP

Visual baseline 11.75

Arithmetic mean 12.16

Harmonic mean 2.23

Geometric mean 4.68

Figure13.5 compares the three different averaging strategies with fixed α = 6
against the performance of the visual baseline. The MXinfAP of these three and
the visual baseline can be found in Table13.4. The averaging with arithmetic mean
performs better than the other two averaging methods and, most importantly, gives
an improvement compared to the visual baseline. In all experiments described so far,
no meta-classification has been performed.

In the meta-classification approach, we try two different classification techniques,
kernel SVM [4] and logistic regression [7]. For each classification technique, three
different feature vectors were tested. As was mentioned in Sect. 13.4, xi

V and xi
A

are the visual and audio baselines, xi
p A the post-process audio baseline and Oi

V A =
[xi

V , xi
A]. So we have three feature vectors xi

V , Oi
V A and Oi

V p A, where the latter is

defined as Oi
V p A = [xi

V , xi
p A]. These vectors are the inputs for 34 kernel SVM or
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logistic regression models, which are trained in order to learn the relations between
the concepts and improve the evaluation results. After the training phase, the models
were tested on the evaluation set and produced a new set of 34 DoCs for every video
shot. In the second level linear fusion, these DoCswere fused with the visual baseline
using arithmetic averaging and produced the final DoC for every video shot.

Figure13.6 shows the performance of the meta-classification approach with SVM
for different audio baselines (OV A, OV p A) compared with the visual baseline. It is
clear from these results that there is an improvement for the majority of concepts.
However, some concepts do not benefit from the post-processing step. For example, in
concepts such as basketball (id=2), boat ship (id=4), chair (id=7), fields (id=26),
etc. the performance of Visual+Audio_Meta is better than Visual+PostAudio_Meta.

In Table13.5, the overall results of every classification method are shown. We
notice that the SVM classification performs better when it takes as input the com-
bination of visual and post-processed audio baselines (OV p A) (13.6%), rather than
the combination of visual and audio baselines (OV A) (12.4%). In the second level
linear fusion, there was a significant improvement of about 20.2% on top of the
meta-classification’s performance and 36.6% improvement in comparison to the
visual baseline. In contrast, the performance of OV A is improved by 19.8 and 34.7%
compared to the meta-classification and the visual baseline, respectively.
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Fig. 13.6 XinfAP per concept for meta-classification for visual baseline, OV A and OV p A after the
second level linear fusion

Table 13.5 MXinfAP performance for meta-classification fusion

Kernel SVM Logistic regression

xV OV A OV p A xV OV A OV p A

Visual baseline 11.97 11.97 11.97 11.97 11.97 11.97

Meta-classification 12.00 13.46 13.60 12.24 12.33 12.54

Second level linear fusion 15.36 16.12 16.35 14.46 14.48 14.55
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Using logistic regression as a classification method instead of SVM still resulted
in an improvement compared to the baselines, but this improvement is lower than
that is gained when using SVM. More specifically, the improvement from the visual
baseline was 3% for the OV A and 4.7% for the OV p A. After the second level linear
fusion, the final improvement for the OV A was 17.4% from the meta-classification
and 21% from the visual baseline, and for OV p A, the improvement was 16 and
21.6% from meta-classification and visual baseline performance respectively.

13.6 Conclusion

In this chapter, we examined if and how visual concept detection in video can be
improved by effectively combining the visual information, which is typically used
to this end, with textual information coming from the application of ASR techniques
on the audio signal. To support this combination, we started with a short overview
of concept detection using only visual features. We then proceeded with discussing
audio-based concept detection, and particularly the pre-processing of the raw ASR
results that is necessary for building a reasonably well-performing uni-modal audio-
based classifier.

Subsequently, combining these visual and audio based concept detectors was the
main focus, and to this end we considered and experimentally evaluated a number of
strategies, achieving significant accuracy boosts over the uni-modal baselines, and
thoroughly presented how different fusion strategies compare with each other.

Our future work includes introducing even stronger uni-modal classifiers in the
proposed fusion frameworks, e.g., visual classifiers based on Fisher Vector encoding
of the low-level features; examining the usefulness of introducing additional word
relatedness/similarity algorithms, such as theWLM, in the textual information analy-
sis pipeline; and taking into account the correlation between the concepts, which in
uni-modal concept detection approaches has shown significant promise.
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Chapter 14
Mining Videos for Features that Drive
Attention

Farhan Baluch and Laurent Itti

Abstract Certain features of a video capture human attention and this can be
measured by recording eye movements of a viewer. Using this technique combined
with extraction of various types of features from video frames, one can begin to
understand what features of a video may drive attention. In this chapter we define
and assess different types of feature channels that canbe computed fromvideo frames,
and compare the output of these channels to human eye movements. This provides
us with a measure of how well a particular feature of a video can drive attention. We
then examine several types of channel combinations and learn a set of weightings
of features that can best explain human eye movements. A linear combination of
features with high weighting on motion and color channels was most predictive of
eye movements on a public dataset.

14.1 Background

Videos are made up of a stream of running frames each of which has a unique set of
spatial and textural features that evolve over time. Each video therefore presents a
viewer with a large amount of information to process. The human visual system has
limited capacity and evolution has incorporated several mechanisms into the visual
processing systems of animals and humans to allow only the most important and
behaviorally relevant information to be passed on for further processing. The first
stage is the limited amount of high resolution area in the eye, i.e., the fovea.Whenwe
want to focus on a different spatial region of a video we make an eye movement, also
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known as a saccade, to bring the area of interest into alignment with the fovea.Within
the fovea too, attention can focus our perception on features that either interest us or
that are intrinsically visually conspicuous or salient. The former is termed top-down
attention and the latter bottom-up attention [2].

In this chapter we discuss in detail how a video may be decomposed into a set
of features that coarsely map to features computed in the human brain. Using this
neuromorphic approach to predicting eye movements, we can begin to understand
what features of a video attract human attention. This understanding is not only
essential for answering the scientific question of how attentionworks in the brain, but,
in addition, this understanding can also help us build better computer vision systems
and furthermore has other applications. A model that can successfully predict where
humans allocate attention can be used to enhance marketing displays [5], provide a
means to intelligently compress videos [21], speed up object recognition [32], and
also improve video based security systems [37].

14.1.1 Human Attention and Eye Movements

The study of eye movements as a measure of human attention dates back to over
100years ago; however, it was Yarbus [35] who first reported the manner in which
eye movements may reveal the goal of an observer and those items in the scene that
are determined to be interesting. Often objects that are of interest functionally (or
cognitively) also inherently possess the visual attributes that attract attention, i.e.,
these objects are considered salient both visually and psychologically [7]. Therefore,
studying the eye movements of human subjects while they view static or dynamic
scenes can reveal a lot about the cognitive processes underlying human visual per-
ception. Despite the proliferation of tools now available to study the brain, eye move-
ments provide a simple, quick and non-invasive method to probing human attention
using experimental means. Eye movements are monitored using infra-red or high
definition cameras that can detect and continually track the pupil of the eye. By cali-
brating the change in position of the pupil with certain calibration points on a screen,
a mapping or transformation can be used to translate the movement detected by the
eye tracker to screen coordinates. Using this method, an observer’s eye movement
traces can be overlaid on the image or video being presented, thereby providing a
means of locating the observer’s attentional allocation to the scene.

Features of the visual world attract human attention and gaze. There is necessarily
a relationship between the visual world and a particular human or animal’s behavioral
goals that results in eye movements and shifting of attention. The study of the origin
of an eye movement has been the subject of numerous studies and is a very actively
debated and active area of research [2, 22]. Broadly, however, the cause of an eye
movement or attention shift is categorized as bottom-up if it is a result of the visual
appeal of the sensory input (e.g., orientation of attention towards a light that suddenly
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blinks brightly), and top-down if it is a result of the behavioral goal of the human
or animal in question (e.g., a volitional shift of gaze to the left when nothing in
the visual environment has changed). While this distinction helps us model and
understand attention, the separation of the two purported sources (i.e., top-down
and bottom-up) is a very challenging question in neuroscience. Since the onset of
visual experience, a human or animal begins to form a subjective percept which,
depending on experience, may force certain stimuli to appear a certain way that may
be different from another individual’s percept. Subjective experience and perception
therefore can challenge the existence of a “normative” visual percept, and, therefore,
make it very difficult to separate bottom-up and top-down influences on attention
[2, 6, 9].

When modeling the human processes of attention, eye movements serve as the
empirical evidence used to validate and quantify the quality of model. Any model of
visual attention serves to indicatewith faithfulness the likelihood of a human observer
allocating attention to certain salient parts of the scene, i.e., a model generates a
saliency map. Similar to the manner in which eye movements can be overlaid on an
image, these eye movement traces can also be overlaid on a saliency map generated
by a model. In this manner, we can find models that have an output that closely
corresponds with human eye movements. Furthermore, we can use the deviation
between the model output and the human eye movements to construct a cost function
that can be optimized to fit parameters of new models developed.

14.1.2 Models of Human Attention

The development of saliencymodels lies at the interface of understanding human per-
ception and developing visual intelligence inmachines. In several domains, engineers
have built systems that mimic or are inspired by biological systems. Biologically-
inspired computer vision has a similar goal. In particular, modeling of attention has
been an area of interest with numerous publications dedicated to the topic over the
years [4]. Modeling attention is equivalent to computing the most conspicuous or
salient regions of an image, that are likely to drive attention and, as a result, elicit
an orientation of gaze towards the location in the image. Two approaches can be
taken to building a model that can best explain a human viewers’ eye movements.
In the first approach, the functioning of the human visual system can be studied and
modeled to arrive at a computational model of human attention, several models take
this approach [14]. The second approach is to examine the patches of an image that
are fixated by human observers and understand their features to build a dictionary of
patches that are likely to elicit eye movements [17, 26]. In this chapter, we describe
in detail a model that follows the first approach and attempts to arrive at a model
based on the functioning and anatomy of the visual systems in biological organisms.

The Itti and Koch [16] model of salience has been widely successful [14] in
accounting for overt allocation of attention in natural images and has become a
benchmark for comparing other models. The model builds on previous theories [18,
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Fig. 14.1 Computation of features and saliency maps from video frames. Multi-scale features are
computed from each video frame e.g. color, intensity, orientation etc. The feature maps are then
combined generally using a simple linear combination to form a conspicuity maps also known as a
saliency map. This example shows a video frame from a recording of a video game and the resulting
saliency map for this frame after linear combination of features

27] of how attention is allocated by computing individual feature maps and then
combining these maps into a single conspicuity map, where salient locations in the
map attract attention. The general framework of this model consists of a decomposi-
tion of an image into various feature maps, by computing filter based features. Each
computed feature forms a channel in the model that can be added or removed from
the final saliency computation. Examples of these features include intensity contrast,
motion energy, color opponent contrast, etc. Numerous such feature channels can be
computed, and, since the development of the original model, a large number of chan-
nels have been added based on neuroscience discoveries of mechanisms of vision
in the brain as well as useful features based on computer vision. Figure14.1 illus-
trates the manner in which an image is decomposed into a set of features computed
at multiple scales and then finally combined to form a saliency map. The saliency
map can be viewed as an attention probability map that assigns high probability to
regions of the image that are inherently interesting or likely to elicit human attention.
The figure shows the color (C), intensity (I) and orientation (O) channels [16]. In a
similar manner, several other channels can be computed and these have been listed
in Table14.1.

Each channel from this large set may contribute toward the salience of a location
in the image and, therefore, the potential to elicit a gaze shift from a human. Each
channel outputs a featuremap that consists of pixels corresponding to the image. Each
pixel in the feature map indicates the energy that the feature in question contributes at
that location. In the standard implementation, feature maps output from all channels
are linearly summed to form a final saliency map. This saliency map, after some
normalization, serves as a probability map that consists of the same number of pixels
as the input image and the value at each pixel indicates the likelihood of that pixel
eliciting an attention orientation towards it by a human viewer. There are several
strategies to combining the features maps into a final saliency map [15] and this
continues to be an active area of research. In this chapter we will also focus on
methods to combine feature maps and build a saliency map that maximizes the
probability of predicting human gaze.
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Table 14.1 List of feature channels

Channel name Abbrev Refs Description

Color C [16] Double-opponent color center-surround, for
red-green and blue-yellow contrasts

Flicker F [12] Flicker center-surround channel based on frame
by frame differences

Multi-color band G [24] Multi-color band channel with N Gaussian bands
spanning the hue axis

H2SV H [23] A variant over the HSV color space

Intensity I [16] Intensity center-surround channel

DKL Color J [36] A biologically-inspired color model

Skin hue K [31] Skin hue detector

L-junction L [20] Channel tuned to L-shaped corner edges

Motion M [12, 31] Motion channel based on frame by frame
differences

Intensity-band N [24] Intensity channel with N Gaussian bands
spanning the intensity axis

Orientation O [16] Gabor-based orientation channel with N
orientations

CIELab Color Q [10] Color channel using the CIE L*a*b* color model

Pedestrian R [31] Pedestrian channel based on simple template
matching for humans

Single-opp. color S [24] Composite of single-opponent color
center-surround computed separately in the red,
green, blue and yellow color bands

T-junction T [20] Detector tuned to T-shaped edge junctions

Foreground U [13] Foreground/background detection channel

Contour W [23, 25] Elongated contour detection channel

X-junction X [20] Detector tuned to X-shaped crossings of edges

In addition to the specific references listed below, papers [12, 16, 20, 25, 28] provide summary
descriptions of collections of channels, and [13] provides reference source code implementation

14.2 Experimental Study of Attention

To evaluate a model of attention we need to obtain evidence of correspondence
between the output of the model, i.e., its prediction of attention allocation within a
scene, and human attention allocation. As discussed above, one means of measuring
human attention allocation is by examining human eye movements using an eye
tracker. Typically in experiments a specific set of stimuli is chosen and displayed on
the screen. Study participants are given instructions on how to observe the scenes.
Instructions can make a large difference on eye movements, in particular different
types of instructions can emphasize either bottom-up or top-down aspects of the
scene. For example, asking subjects to look for a yellow road sign in scenes may
influence their eye movements spatially towards expected locations of road signs
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(spatial bias) and also may influence them to fixate on items that are yellow (feature
bias). On the other hand, providingminimal instructions and asking subjects to watch
and enjoy the scenes may emphasize bottom-up aspects of attention allocation by
recording eye movements based on scene changes. While efforts can be made to
emphasize bottom-up aspects of a scene there is no way to completely eliminate the
influence of top-down aspects such as the viewers’ personal bias and preferences.

14.2.1 Methods

Wewill discuss a studywhere three females andfivemales aged 23–32with normal or
corrected-to-normal vision were recruited. This data set, including both the videos
as well as the recorded eye movement traces, are available openly to the public
through the CRCNS program [11] for exploration. All subjects were USC students
or staff members. Subjects gave written consent under a protocol approved by the
Institutional Review Board and were paid for participating in the study. The stimuli
for this study consisted of 50 video clips between 6 and 90s each shown at 30 fps.
A total of 46,000 video frames and 25min of total video time. The videos contain a
mix of indoor and outdoor scenes including park scenes, crowds, rooftop bars, TV
news, sports, commercials, and video game footage. Figure 14.2 shows an example
of these stimuli. The stimuli were presented on a monitor at 640× 480 resolution
running at 60Hz. An ISCAN RK-464 eye tracker was used to track the subjects’
eyes at 240Hz. A nine point calibration was performed every five clips.

Fig. 14.2 Sample frames from video stimuli consisting of videos of different scenes including
video game, TV adverts, outdoor and indoor scenes
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Subjects were seated in a comfortable chair and asked to view the clips while their
eyes were tracked. The instructions to the subjects were: “Follow the main actors
and actions, try to understand overall what happens in each clip. We will ask you
questions about the main contents. Do not worry about details”. This instruction
aimed to emphasize the bottom up component of the visual input being presented to
the subjects. If they were asked to look for anything specific this would introduce
a heavy top-down component and subjects’ eye movements would reflect their own
search strategies more than the inherent ability of the stimulus to draw attention. The
goal of our modeling effort is to model bottom up or purely sensory components of
the environment that can explain attentional shifts and allocation. Therefore subjects
are instructed to focus more on the general scene rather than any specific targets.

As described earlier, the eye movements can be overlaid on the images being
displayed in a post-processing step and in this manner we can observe the viewer’s
location of gaze on the scene and thus infer attentional allocation. The eye traces
recorded during the viewing of the stimuli by the subjects were parsed into saccades
based on a threshold of velocity as described before [1]. A total of 11,430 saccades
were extracted and analyzed. Using the saliency model, we were able to extract
feature maps and saliency maps using different combination rules. We then sampled
these feature and saliency maps at the saccade endpoints to look for correlations
between gaze location and saliency/feature values.

14.2.2 The Inter-observer Model and AUC Metric

To set an upper bound for the performanceofmodelswebuilt an inter-observermodel.
To build this model we grouped together the eye movements of all the subjects at
each video frame and added them into a map consisting of all zeros and ones at
locations of eye movement end points as shown in Fig. 14.3. A Gaussian centered
at the location of each saccade endpoint or eye movement was defined with radius
5 pixels and applied to the map. This generated smooth “salience” maps defining the
output of an inter-observer model. Since we know that each human observer will be
different and we do not expect all to be the same we build this map as an average
location of where we expect humans to fixate in a scene. The expectation is that a
group of humans should predict the eye movements of a new observer who was not
in the set of observers used to build the inter-observer model. To assess the quality
of the model, however, we need a metric.

To quantify the performance of a particular model in predicting gaze, we use an
ROC (receiver operating characteristics) like measure called area under the curve
(AUC). This measure is computed by plotting the values generated in the models
map at saccade end points against the values at 100 random locations on the map [3,
29]. Once these samples are drawn we can slide a threshold of salience and ask what
percentage of human versus random locations were selected by the model at this
threshold. A good model would result in a larger number of human fixated locations
containing high values of and few random locations. The plot serves as an ROC curve
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InterObserver model AUC: 0.80
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Fig. 14.3 Inter-observer model. Left shows a schematic of how the inter-observer model saliency
maps were generated by pooling together eye movements from all subjects and then applying a
gaussian at the saccade end points. Right shows the ROC curve by predicting saccades based on
the inter-observer model. This curve was computed by computing inter-observer maps from seven
subjects and then predicting the saccades of the one left out subject

and the area under this curve gives a measure of the quality of the model in question.
A value of 1 indicates a model that completely accounts for saccade allocation while
a value of 0.5 indicates a model that is no better than chance at predicting the location
of gaze. All models we discuss in later sections will be gauged using this metric.
Note that the theoretical maximum AUC of 1 is not achievable with a generic model
that is not tailored to each particular individual, because all humans do not always
agree, hence a single model cannot perfectly capture attention allocation of every
single human.

Calculating the AUC metric for the inter-observer model, we obtain a very high
AUC score of 0.80, indicating high (though not perfect) inter-observer agreement.
This AUC score was significantly higher than all individual channels computed
as well as various trained and untrained models as we examine in later sections.
The inter-observer model, therefore sets the upper bound on the performance of the
models. Intuitively, we do not expect a computational model of attention to be any
better (or as good) at predicting human attention than a model constructed from the
eye movements of a group of human observers.

14.3 Analysis of Feature Contributions

To understand the manner in which features interact to guide attention we decom-
posed each video frame into a set of feature maps that when combined would provide
a saliencymap [14] as discussed in earlier sections. Each so called channel provided a
single featuremap for each video frame.The channels computedwere color, intensity,
orientation, flicker, motion, and several others including complex junction channels
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Fig. 14.4 Individual channel AUC. Each bar represents the performance of models built form
individual channels in predicting gaze. See Table14.1 for channel descriptions. CIOFM represents
a linear combination of the C, I, O, F and M channels without any weighting. The bar labeled
Human represents the inter-observer model. The red line indicates chance level i.e. AUC = 0.5

as listed in Table14.1. We first analyzed the performance of each of these channels
individually at predicting gaze. This is done by computing a feature map or channel
on each video frame and then applying the AUC metric to test for performance. The
lower bound for AUC is 0.5 i.e. a model is at chance at predicting whether a location
will receive human attention or not, while the upper bound is set by the inter-observer
model.

Figure14.4 plots the AUC scores for individual channels as well as the inter-
observer model. It is clear that individual channels fall short of the AUC score
obtained from the inter-observer model. As expected humans are able to predict the
attention allocation of other humans better than models of attention. A simple linear
combination of the color (C), intensity (I), orientation (O), flicker (F) and motion
(M) channels results in a model that performs reasonably well at predicting human
attention allocation in scenes. In the rest of our discussion we focus on methods
of finding highly predictive combinations of features using linear and non-linear
combinations. We focus on the C, I, O, F, M channels because those have been
historically prevalent, and we examine how different combinations of these would
provide differences in gaze prediction.

When comparing features, we found that the motion channel was most predictive
among the five analyzed channels (C, I, O, F and M). Figure14.5 plots a histogram
of the number of locations versus saliency value assigned by the model. One set of
bars indicate the number of random locations that were assigned a certain saliency
value while another set indicates the number of locations that were targets of human
attention/saccades assigned that same level of saliency. The inset ROC curve in
Fig. 14.5 plots is used to compute the AUC score which for the motion channel is
0.64, a reasonably good score.

Since the videos contain a significant amount of motion and the instruction to
the subjects was to follow the main actors and actions it is intuitive that the motion
channel is predictive of locations where subjects make saccades. While the inter-
observer map sets the absolute upper bound on models, the motion channel with its
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Fig. 14.5 Performance of the motion channel. Histogram shows probability of saccade (green) or
random location hit (blue) towards locations of different saliency values from 0 to 1. The histogram
is for saliency of the motion channel. Inset is an ROC curve computed by sliding a threshold along
saliency values. The yellow area shows the area over which the AUC score is computed

high AUC score also sets a benchmark for other channels and models that combine
channels.

14.4 Results

14.4.1 Linear Model with Trained Weights

To test the prediction that is driven by a weighted linear combination of features
we trained a linear model to predict saccades by optimizing an objective function
defined by theAUCcost.We used a genetic algorithm to find the optimal combination
of weights for five features C, I, O, F and M. A genetic algorithm approach was
used to enable comparison of this model with the larger optimization of a model
with 20 features as discussed below. We started with random weights and enforced
a constraint of allowing a weight to vary between 0 and 1.A population of 100
candidates was used and each individual consisted of five values of weights for each
of the features. At each iteration each individual provided five weights for features
which were used to build a saliency model and output a final saliency map. This
map was used to compute the AUC score and determine how well the model did at
predicting humangaze. Each individual’sAUCscorewas computed and thiswas used
as the fitness value for this candidate. Standard mutation and cross-over operators
were used to breed new individuals. The results of the optimization with five features
are shown in Fig.14.6.
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Fig. 14.6 Linear combination with learned weights. a Multi-scale features are computed from each
video frame e.g. color, intensity, orientation etc. The feature maps are then combined generally
using a simple linear combination to form a conspicuity maps also known as a saliency map.
b The evolution of the best AUC of the population of individuals used in the genetic algorithm
optimization. c The final weights learned by the genetic algorithm. It can be seen that motion has
the highest weight at the end of learning. d A comparison of ROC curves between a linear model
with uniform weights versus a linear model with learned weights

The genetic algorithm converged on a solution in about 200 generations. The
fittest individuals had an average AUC value of 0.69. As predicted, the weight for
the motion channel was the highest. The color and orientation channels also show
a significant contribution in predicting salience. The weight for the flicker channel
was very low, probably because this channel is highly correlated with the motion
channel [36], and hence the optimization algorithm discarded it as redundant. Our
results are in line with studies that have found that color and motion are among
the top features that attract gaze [1, 34]. The weighted linear model with first order
features performed significantly better than the uniform linear model that combined
the features with uniform weights. As discussed below this turns out to be the most
predictive model among the ones analyzed in this study.

14.4.2 Second Order Feature Interaction Model

To study the effect of non-linear interactions we generated second order features
by point-to-point multiplication of each of the five features studied (CIOFM). This
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Fig. 14.7 Inter-observer model. a The manner in which features were combined to form second
order terms and were then linearly combined. 20 weights were learned by the genetic algorithm.
b Top shows the evolution of AUC scores as a function of generation of the population, the score
converges around 800 generations. Bottom shows the weights for each term

generated a total of 20 features including combinations such as CO (color orientation
combination), CI (color intensity interaction) etc. Once again we used the genetic
algorithm approach to search for the parameters for this model. In this case we had
20 features to learn and therefore this was a much larger optimization problemwhich
took longer to converge on a solution. Figure14.7 shows the manner in which the
genetic algorithm learned the best weights and converged to a solution after about
800 generations. This is significantly longer than the linear weighted model with
five terms as would be expected since a much higher dimensional space (20) was
explored in this experiment.

The results from this experiment are surprising in that second-order complex
features do not help boost performance and the genetic algorithm converges to a
solution that is similar to the linear case with only first order terms. Motion again is
the strongest feature. The best AUC score 0.69 is similar to the model with only first
order term. Second order features therefore did not improve the score and while one
would expect this additional interaction information to help predict eye movements
better, the principle of parsimony compels us to consider the first order model the
better one. This is somewhat consistent with evidence from the physiology of the
visual system in that there is a very small number of cells that might be tuned
to second order combinations of features. While there is evidence of hierarchy of
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Fig. 14.8 Model comparison. a The ROC curves for the different models computed. Chance is
represented by the dashed black line the red line labeled human in the legend represents the inter-
observer model which performs the best. The uniform linear model represents the model using
CIOFM features in a simple linear combination with uniform weights. The weighted linear model
is the one that was trained using a genetic algorithm but consists only of linear terms. The 2nd
order model uses both first order and 2nd order terms to define feature combinations. b The AUC
computed from the curves in a. As can be seen the second order model does not perform any better
than the linear model

features building up to a single percept, neurons tuned to combinations of features
within our set are limited to color-orientation and color-motion cells [19, 30]. Even
in lower brain areas like the superior colliculus, a key structure that enables the
mechanisms of attention, there exist cells that are responsive to motion and even
color [8, 33].

14.4.3 Model Comparison

We compared the performance of all the models studied (Fig. 14.8), i.e., linear model
with uniform weights, linear model with learned weights, trained model with 2nd
order terms and the human inter-observer model. The linear model with trained
weights performs the best, but the inter-observer model has the highest performance
in predicting human attention. This shows that a linear model with no higher level
knowledge of the semantic content of the scene performs the best when compared
to other models.

It is important and interesting to note that the model that included both linear
and second-order terms performed no better than a model that consisted of linear
terms but these terms were weighted. The weights were learned by using a genetic
algorithm that maximized the AUC score. These results suggest that a biologically
inspired model of attention that combines features in a linear manner to form a
saliency map is likely to be closely related to mechanisms of attention in the brain
that give rise to the observed eye movements.
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14.5 Conclusions

In this chapter we processed and decomposed videos into several features and then
searched for a good combination of features that can predict human attention allo-
cation. Human attention consists of a volitional top-down component and an image
driven bottom-up component. We presented a study that focused on the bottom-up
aspects of attention. By recording of human observers as they watched natural videos
we established a means to validate various models explored.

A linear combination of features was sufficient to provide prediction of human
gaze, and second-order interactions of these features did not help performance.There-
fore salience of a region in an image is determined through a linear combination of
features and we can account for almost 70% of the variance through a weighted
linear model. Top-down attention then may act by providing the weights that were
learned by our genetic algorithm.

While the linear combination model did reasonably well in predicting human
gaze, an inter-observer model built from the eye movements of several observers
outperformed the linear model. Humans are therefore better at predicting the eye
movements of each other when compared to such a model of saliency. There is much
further research to be done to both elucidate the mechanisms of attention in humans
as well as build models that can mine videos for features that drive attention.
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Chapter 15
Exposing Image Tampering with the Same
Quantization Matrix

Qingzhong Liu, Andrew H. Sung, Zhongxue Chen and Lei Chen

Abstract Image tampering, being readily facilitated and proliferated by today’s
digital techniques, is increasingly causing problems regarding the authenticity of
images. As the most popular multimedia data, JPEG images can be easily tampered
without leaving any clues; therefore, JPEG-based forensics, including the detection
of double compression, interpolation, rotation, etc., has become an active research
topic in multimedia forensics. Nevertheless, the interesting issue of detecting image
tampering and its related operations by using the same quantization matrix has not
been fully investigated. Aiming to detect such forgery manipulations under the same
quantization matrix, we propose a detection method by using shift-recompression-
based reshuffle characteristic features. Learning classifiers are applied to evaluating
the efficacy. Our experimental results indicate that the approach is indeed highly
effective in detecting image tampering and relevant manipulations with the same
quantization matrix.

15.1 Introduction

While being widely used, transmitted and enjoyed, digital multimedia can be
easily manipulated without leaving a clue. In recent years, multimedia forensics
has emerged as a new discipline as it has important applications in law, crime
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investigations, and national security, etc. In multimedia forensics, steganalysis and
forgery detection are two important, interrelated topics. While many promising and
effective steganalysis methods have been proposed and several steganographic sys-
tems have been successfully steg-analyzed [12, 19–22, 24–29, 31, 32, 35, 42], it
seems that the research on forgery detection has fallen behind.

In digital multimedia data, JPEG is one of the most popular compression standards.
While we enjoy huge volumes of JPEG images, our traditional confidence in the
integrity of the media via our eyes and ears has been greatly undermined since
doctored pictures, video clips, and audio streams are easily manipulated. For instance,
a state-run newspaper in Egypt published a doctored picture, attempting to create the
illusion that its country’s president was leading the group in Middle East peace talks
in 2010 at Washington DC [16].

Generally, tampering manipulation in digital media involves several basic opera-
tions such as image resize, rotation, splicing, double compression; and the detection
of these fundamental manipulations and relevant forgery has been studied extensively
[2–10, 13, 17, 24, 30, 33, 34, 36–40]. Incidentally, double JPEG compression is a
very common manipulation: while one decodes the bit stream of a JPEG image and
implements some manipulation in spatial domain, and then compresses the modified
image back into JPEG format, if the new quantization matrix is different from the one
used by the original JPEG image, the modified JPEG image is processed by “double
JPEG compression.” Although double JPEG compression does not by itself prove
malicious or unlawful tampering, it provides an evidence of image manipulation. The
detection of double JPEG compression has been well studied [4, 24, 31]. However,
if the original image sources are encoded with the same quantization matrix and the
doctored images are also encoded with the same quantization matrix, the detection
of such forgery becomes much more challenging. The existing methods for exposing
double JPEG compressions are not effective in detecting the forgery with the same
quantization matrix.

Although the detection of the forgery with the same quantization matrix is chal-
lenging, some efforts have already been focused on it. Huang et al. presented a method
to detect double JPEG compression with the same quantization matrix, unfortunately
it cannot tell us the double-compressed JPEG image is composited or not [17]. Luo
et al. designed a set of block artifact characteristics matrix features (BACM) to detect
the JPEG images once cropped and recompressed [33]. Chen and Hsu analyzed the
periodicity of compression artifacts for tampering detection [3]. Both methods are
impressive for the detection of cropping and recompression with different quantiza-
tion matrices, however, they are not effective in detecting the cropping and recom-
pression with the same quantization matrix, as shown by the results in [3]. To our
knowledge, all existing methods do not work well to detect doctored images with
the recompression by using the same quantization matrix, which was once used to
encode the original images.

In this chapter, a shifted-recompression-based approach is introduced to detect
the image tampering with the same quantization matrix. We introduce related study
in Sect. 15.2, describe our proposed shift-recompression-based approach and exper-
iments in Sect. 15.3, and conclude in Sect. 15.4.
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Fig. 15.1 Statistics of the
modification after double
recompression with the same
compression matrix by using
the image database, a total of
5,000 images [24, 27]

15.2 Related Study

To detect double JPEG compression with the same quantization matrix, Huang et al.
designed a method based on the observation that in the process of recompressing a
JPEG image with the same quantization matrix over and over again, the number of
different JPEG coefficients between the two consecutive versions will monotonically
decrease in general. There are, however, serious flaws with the method. Firstly,
the observation is far from being always true. For example, by using the image
database in the references [24, 27, 32], there are about 20 % JPEG images without
any modification of the quantized DCT coefficients between the first compression
and the second compression by using the same quantization matrix. If we consider the
ratio of the number of modified quantized DCT coefficients to the number of nonzero
DCT coefficients among the 5,000 images, most of these values are zeros or very
close to zeros, as shown in Fig. 15.1. In other words, the foundation of the detection
method designed by Huang et al. [17] may not be statistically sound. Secondly,
the detection cannot tell us whether the doubly compressed images were tampered
or not.

To detect the copy-paste tampering wherein a patch from a source is pasted onto
a target, Luo et al. developed a set of features based on artifact characteristics matrix
(BACM) [33]. It claims that the BACM shows regular symmetrical shape for the
original JPEG images. However, the regular symmetrical property of the BACM is
destroyed, while the images are tampered and resaved as JPEG images. The authors
of [33] exploited the BACM property and designed representation features from the
BACM. In their experiments, 2,256 singly compressed JPEG images were obtained at
each given quality factor QF2. Tampered images were obtained by converting original
TIFF images into JPEG images with a random quality factor QF1, then cropping and
resaving it with the given quality factor QF2. In our view, however, the detection is
actually about misaligned double compression with different compression matrices.

Here we briefly introduce the construction of BACM matrix that is based on the
assumption that the pixel difference across different DCT blocks will be different
from that inside of the DCT blocks. The pixel difference within a block and spanning
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Fig. 15.2 Coordinate (x, y) and the positions of A–H

across a block boundary is given by

Z ′
(x,y) = |A + D − B − C | ; Z ′′

(x,y) = |E + H − F − G| . (15.1)

Figure 15.2 shows the position of the pixels A, B, C, D, E, F, G and H, and the
coordinate of A, (x, y), in each block. The coordinates of A to H in each block
change according to the coordinate of A.

Let H I
(x,y)and H I I

(x,y)denote the histograms of Z ′
(x,y)and Z ′′

(x,y), the energy K of

the difference between H I
(x,y)and H I I

(x,y)with the value n (n = 0, 1, . . . , 510) is
calculated by

K (n)
(x,y) =

∣∣∣H I
(x,y)(n) − H I I

(x,y)(n)

∣∣∣ . (15.2)

The average of K(x,y) is denoted as M(x,y),

M(x,y) =
∑

n K(x,y)(n)

255 × 2 + 1
. (15.3)

Lastly, we normalize the matrix M(x,y), and the normalized matrix is called block-
ing artifact characteristics matrix (BACM).

The BACM features are extracted by the following steps:

1. Crop the 7×7 block from the BACM and divide the 7×7 block to 7 nonoverlapping
parts: R1, R2, R3, R4, Horizontal direction H, vertical direction V, and the center
point C, as shown by Fig. 15.3.

2. The following 14 features are extracted from these 7 nonoverlapping regions.

(a) The symmetry of H and V around the center point C, a subtotal of 2 features;
(b) The symmetry of the four flat region R1, R2, R3, and R4 around H, V, and

C, a subtotal of 6 features;
(c) The percentage of the center point C occupying the region R1, R2, R3, R4,

V, and H respectively, a subtotal of 6 features.
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Fig. 15.3 BACM is cropped and then divided into 7 nonoverlapping parts for BACM feature
extraction

The symmetry feature is the sum of energy of differences between the values in
the matrix. The details are given in the Ref. [33]. For example, the symmetry of H
around C is: |M(1, 4) − M(7, 4)| + |M(2, 4) − M(6, 4)| + |M(3, 4) − M(5, 4)|.

15.3 Shift-Recompression-Based Approach

15.3.1 Misaligned Cropping and Recompression

To prevent a forgery manipulation on JPEG images from being detected, a crafty
forger may try to avoid double JPEG compression during the manipulation since
the detection of JPEG double compression has been well studied with satisfactory
results. It is not difficult for a forger to obtain the two source JPEG images with
the same compression matrix. During the tampering, source JPEG bit streams are
decoded to spatial domain first, and manipulation takes place in spatial domain. The
doctored image is recompressed to JPEG format by using the same quantization
matrix that was once used by the source images.

We describe the manipulation operations as follows: Source images S1 and S2 are
encoded into JPEG format using the same quantization matrix. To create a forgery
from S1 and S2, both source images are decoded into spatial domain, a region of
interest R1 from S1 is copied and pasted to S2. The modified S2 is recompressed to
JPEG format by using the same quantization matrix.

As shown by Fig. 15.4, the original region R1 consists of several 8 × 8 JPEG-
compression blocks ri j in S1. Assuming region R1 is randomly pasted in S2, then
the original JPEG-compression blocks ri j will be reshuffled with the neighboring
8×8 blocks (misaligned cropping and recompression) at a high probability (63/64 =
98.4 %) as new 8×8 blocks; if the block ri j will not be reshuffled with the neighboring
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Fig. 15.4 Two types of
JPEG-based composition.
Misaligned cropping and
recompression (a) occurs at
a high probability. a
Misaligned cropping and
recompression. b Aligned
cropping and recompression

(a.1) S1      (a.2) R1 from S1 composited to S2

(b.1) S1      (b.2) R1 from S1 composited to S2
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8 × 8 blocks, it will be recompressed by itself as an entire 8 × 8 block (aligned
cropping and recompression), such manipulation hits the probability of 1/64.

If S1 and S2 are encoded by using different quantization matrices, or if S1 and S2
are encoded with the same quantization matrix but the recompression uses different
quantization matrix, then double compression takes place and we may reveal such a
forgery by detecting the double compression. However, if S1, S2, and the composited
image are all encoded with the same quantization matrix, the detection of such a
compositing manipulation may not be easy.

15.3.2 A Shift-Recompression-Based Approach

A shift-recompression-based algorithm was proposed to detect misaligned crop-
ping and recompression with the same quantization matrix in JPEG images [24], as
described below.

We surmise that the reshuffle, shown in Fig. 15.4a, will leave clues for us to detect
such manipulation behaviors in the final doctored JPEG image, although double JPEG
compression has been avoided. Accordingly, we design a shift-recompression-based
algorithm to identify the inconsistency of block artifacts due to the reshuffling, and
finally identify the forged area in encoded JPEG formats. The feature exaction is
proceeded according to the following steps:
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SRSC feature extraction algorithm [24]

1. Decode an JPEG image under examination to spatial domain, which is denoted
by matrix S(i, j)(i = 1, 2, . . . , M; j = 1, 2 . . . , N);

2. Shift the matrix S(i, j) by d1 rows and d2 columns in the spatial domain, (d1,
d2)∈ {(0, 1), . . . , (0, 7), (1, 0), . . . , (7, 7)} and generate a shifted spatial image
S′(d1, d2), S′(d1, d2) = S(i − d1, j − d2)(i = d1 + 1, d1 + 2, . . . , M; j = d2 +
1, q + d2, . . . , N), then compress the shifted spatial image S′(d1, d2) to JPEG
format at the same quantization matrix;

3. Decode the shifted JPEG image to spatial domain, denoted by a matrix S′′(d1,
d2);

4. Calculate the difference D (d1, d2)= S′(d1, d2) − S′′(d1, d2);
5. Shift-recompression based ReShuffle Characteristic features (SRSC) on the

region of interest R, SRSCR are defined by:

SRSCR(d1, d2) =
∑ |DR(d1, d2)|∑∣∣S′

R(d1, d2)
∣∣ , (15.4)

where (d1, d2) ∈ {(0, 1) , . . . , (0, 7) , (1, 0) , . . . , (7, 7)}. There are a total of 63
features.

If an image was cropped or misaligned by p rows and q columns, mod (p, 8) �= 0
or mod (q, 8) �= 0, 0 ≤ p ≤ 8, 0 ≤ q ≤ 8, and then recompressed by using the same
quantization matrix that was used for the original JPEG image, we expect that the
SRSC features will be distinct due to the misalignment, and the values of p and q can
be determined by the SRSC features. The example shown in Fig. 15.5 confirms our
conjecture and preliminarily validates our algorithm. Figure 15.5a shows an original
JPEG image and Fig. 15.5b shows a cropped and recompressed image (p = 4 and
q = 4). The SRSC features from the original image (a) and modified image (b) are
shown in Fig. 15.5c, d. The circle highlights the major differences of SRSC features
between the original image and manipulated one. It shows that SRSC features may
be effective in exposing the tampering.

15.3.3 Experiments of Binary Classification

To test our proposed shift-recompression-based SRSC features, we select 5,150
singly compressed JPEG images at quality factor 85, and 5,150 singly compressed
JPEG images at quality factor 40. Respectively, we cropped these JPEG images by
all misalignment combinations (p, q), from (0, 1), . . . , (0, 7); (1, 0), . . . , (1, 7); . . .

to (7, 7), a total of 63 combinations, and produced 5,150 × 63 = 324,450 cropped
JPEG images at quality 85, based on the singly compressed images of the quality
85; and produced 324,450 cropped JPEG image at quality 40, based on the singly
compressed JPEG images of the quality 40. In a fair manner, since these cropped
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Fig. 15.5 A comparison of SRSC features from an original JPEG image and a cropped JPEG
image. X-label shows the SRSC feature index and y-label indicates the value [24]. a An original
image. b A cropped image (p = 4, q = 4). c SRSC (original image). d SRSC (cropped, p = 4,
q = 4)

JPEG images were processed by twice JPEG compressions with the same quanti-
zation matrix, the singly compressed JPEG images are also uncompressed and then
recompressed by using the same quantization matrix. Then we extract SRSC fea-
tures from all these JPEG images. Support vector machines [43] are employed in our
algorithm to discriminate each type of misaligned cropping from no cropping, which
is a binary classification from the perspective of pattern recognition. In our experi-
ments, we apply two popular SVM techniques, SVMlight [18], and LibSVM [15],
with linear kernel, polynomial kernel, and RBF kernel individually to the features,
for training and validation. The ratio of training to testing is 50–50 %, 50 experi-
ments are operated in each type of detection. In each experiment, training samples
are randomly selected and remaining samples are selected for validation. Validation
(testing) results can be divided into true positive (TP), false negative (FN), false posi-
tive (FP), and true negative (TN), based on the ground truth and prediction results. In
our experiments, the classification results by using LibSVM are generally better than
SVMlight, hence we only list the results using LibSVM in Table 15.1. We calculate
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Table 15.1 Binary classification accuracy on testing sets by using LibSVM with linear, polynomial,
and RBF kernels; the best average testing accuracy by using these kernels is shown (Q = 40) [24]

p q feature set 0 1 2 3 4 5 6 7

0 BACM 64.5 % 55.7 54.8 54.2 55.3 56.9 62.2

SRSC 96.6 99.0 98.9 99.3 98.8 98.8 96.9

1 BACM 61.9 57.5 55.7 55.9 56.5 53.9 54.9 57.2

SRSC 95.7 96.7 99.1 99.4 99.4 99.3 99.0 97.5

2 BACM 56.9 57.9 57.5 56.3 57.7 55.3 56.2 57.2

SRSC 98.6 99.0 99.5 99.5 99.5 99.6 99.5 99.0

3 BACM 55.7 58.0 58.2 59.5 56.9 53.9 56.8 56.9

SRSC 98.5 99.4 99.4 98.8 98.9 98.7 99.5 99.3

4 BACM 54.3 57.6 58.0 58.1 57.1 54.1 55.1 56.2

SRSC 98.9 99.5 99.5 98.8 98.9 98.6 99.4 99.4

5 BACM 59.9 56.5 58.6 58.6 55.8 53.9 56.8 57.0

SRSC 98.7 99.4 99.5 98.9 98.9 98.7 99.3 99.2

6 BACM 60.0 56.8 57.0 55.2 55.6 54.1 55.6 56.2

SRSC 98.7 99.0 99.4 99.5 99.5 99.4 99.3 98.9

7 BACM 60.9 57.9 56.3 56.8 55.9 56.6 54.7 56.3

SRSC 95.9 97.3 99.1 99.4 99.4 99.1 99.1 97.5

testing accuracy by one-half of the sum of true positive rate and true negative rate,
or 0.5 ∗ (TP/(TP + FN) + TN/(TN + FP)).

A recent periodicity analysis of compression artifacts for tampering detection
takes advantage of BACM, and the detection results on misaligned cropping and
recompression with the same quantization matrix are not effective, as shown in [3].
In our experiments, we only compare our approach to BACM feature set [33].

As shown in Tables 15.1 and 15.2 SRSC-based approach leads to very impressive
results where most average testing accuracy values are over 98 %, while the detection
accuracy values based on BACM are around 60 %.

15.3.4 Experiments of Multilabel Classification

In Fig. 15.4a, if S2 is cropped, for example, the pixels on the boundary are stripped
off, then the region R1 from S1 is composited to S2, and the doctored image is
compressed with the same quantization matrix. In this case, how do we identify the
forged area in the compositing? The binary classification is not good enough. If we
can identify the misalignment of S2 from the misalignment of R1, then we can reveal
the different cropping manipulations and locate the forged area in the compositing.

In these type of experiments, we select 2,000 singly compressed JPEG images
at quality factor 85, and 2,000 singly compressed JPEG images at quality factor 40.
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Table 15.2 Binary classification accuracy on testing sets by using LibSVM with linear, polynomial,
and RBF kernels; the best average testing accuracy by using these kernels is shown (Q = 85) [24]

p q feature set 0 1 2 3 4 5 6 7

0 BACM 63.6 % 62.6 62.2 61.4 65.2 65.2 62.5

SRSC 99.1 99.3 99.6 99.7 99.4 99.1 98.8

1 BACM 62.5 58.0 59.2 59.8 61.2 60.9 59.6 58.8

SRSC 98.6 98.7 99.0 99.2 99.3 99.1 98.8 98.6

2 BACM 60.4 58.5 58.1 59.1 59.6 60.5 59.3 58.5

SRSC 99.0 99.1 98.9 99.1 99.2 98.9 98.6 98.9

3 BACM 62.3 59.3 58.9 60.5 60.6 63.7 60.2 59.9

SRSC 99.2 99.3 99.1 98.9 98.9 98.6 98.7 99.2

4 BACM 60.6 61.0 61.0 63.2 64.7 65.4 62.3 61.2

SRSC 99.2 99.3 99.1 98.8 98.9 98.6 98.8 99.2

5 BACM 65.9 62.5 62.8 63.3 66.4 66.0 63.7 63.5

SRSC 99.1 99.1 98.9 98.7 98.7 98.5 98.7 98.9

6 BACM 63.1 58.8 58.7 60.5 63.4 63.7 60.5 59.4

SRSC 98.9 98.9 98.7 98.9 99.0 98.7 98.3 98.6

7 BACM 62.9 59.4 59.1 59.5 61.6 62.3 59.7 58.8

SRSC 98.5 98.8 99.1 99.1 99.2 99.0 98.6 98.6

Respectively, we cropped these JPEG images with the all displacement combinations
(p, q), from (0, 1), . . . , (0, 7); (1, 0), . . . , (1, 7); . . . to (7, 7), a total of 63 combinations,
and produced 2,000 × 63 = 126,000 cropped JPEG images at the quality 85, and
126,000 cropped JPEG image at quality 40. We apply a logistic regression classifier
for the multilabel classification. Hundred experiments are operated for each detection.
In each experiment, training feature set is randomly selected and remaining feature
set is used for testing. The ratio of training samples to testing samples is 50–50 %.

Logistic regression or logit regression is a probabilistic statistical classification
model. In order to distinguish m classes on the basis of an input vector of length d,
if x is an input vector x = [x1, x2, . . . , xd ]T and y represents the class label vector y
= [y(1), y(2), . . . , y(m)]T . The training samples are represented as a set of training
data {(x1, y1) , . . . , (xn, yn)}. Under a multinomial logistic regression model, the
probability that x belongs to class i is written as

P
(

y(i) = 1 |x, w
)

=
exp

(
w(i)T

x
)

∑m
j=1 exp

(
w( j)T

x
) , (15.5)

where w(i) is the weight vector corresponding to class i. In supervised learning, the
components of w are estimated from the training data. To perform maximum likeli-
hood estimation of w, we may simply maximizes the log-likelihood function, which
is typically achieved using Newton’s method as iteratively reweighted least squares.
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Fig. 15.6 Confusion matrix of average accuracy values on the testing (first row) and correct classi-
fication for each type of displaced JPEG images (second row) in multilabel classification by using
logistic regression classifier [24]

� (w) =
n∑

j=1

log P
(
y j |x j , w

) =
n∑

j=1

[
m∑

i=1

y(i)
j w(i)T

x j − log
m∑

i=1

exp
(

w(i)T
x j

)]
.

(15.6)

Based on multinomial logistic regression, Krishnapuram et al. [23] introduced a
multiclass formulation and derived fast exact algorithms for learning sparse multi-
class classifiers by combining a bound optimization approach with a component-wise
update procedure, which scale favorably in both the number of training samples and
the feature dimensionality.
We assign the label 1 to the untouched images, and the labels 2–64 to touched images
under different combination of the offsets in the shift recompression. We obtained
the confusion matrix of average accuracy over 100 experiments in the multilabel
classification (total 64 labels, containing 64 × 64 = 4,096 average accuracy values
at each quality factor), the accuracy values are shown in image format by Fig. 15.6a,
b. The average accuracy values along the diagonal direction or correct recognition for
each cropping type of JPEG images are given by Fig. 15.6c, d. The x-label indicates
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Table 15.3 Average detection performance over 50 times using a linear LibSVM and logistic
regression [24]

Classifier True negative rate (%) True positive rate (%)

LogitReg 99.6 99.5

LibSVM 99.5 99.4

The detection results in Table 15.2 were obtained without any error-reduction

the class label (class 1 represents original image, class 2 to class 64 denote the
misalignment distance coordinates from (0, 1) to (7, 7), respectively), and y-label
shows the correct classification for each class in all combinations.

15.3.5 Detecting Relevant Copy-Paste and Composite Forgery

To create copy-paste forgery and composite forgery database, we select 2,000 singly
compressed JPEG images at the quality factor 85 and create 2,000 copy-paste JPEG
forgery at their central 64×64 regions, and 2,000 composite JPEG forgery at central
64 × 64 regions, with a random selection of displacement, and the manipulated
images are encoded in JPEG format at the same compression quality (or by using
the same quantization table) to the premanipulated image. To detect such copy-paste
and composite manipulations, we extract the SRSC features from different regions
of an image by using the following procedure (Table 15.3).

(1) Extract SRSCR features from each region of interest R. Let R(r1, r2) stand for
the (r1, r2) subregion of S, and four horizontal and vertical neighbor regions
are denoted by R(r1 − 1, r2), R(r1 + 1, r2), R(r1, r2 − 1), and R(r1, r2 + 1).
We slide a window over the image under examination from the upper-left to the
right-bottom, in the horizontal direction first and then in the vertical direction.
Each movement of the window shifts 8 pixels. In our experiment, the window
size is set 64 × 64, R(r1 − 1, r2), R(r1 + 1, r2), R(r1, r2 − 1), and R(r1,
r2 + 1) have 87.5 % overlap with R(r1, r2), as shown by Fig. 15.7.

(2) The multilabel classification models are loaded to classify the features from each
region, and all prediction results are organized as a two-dimensional array, in
terms of the region indices.

(3) Based on the class-label occurrence, we can automatically detect a forged image,
and approximately locate the tampering area in the image. Though the detection
accuracy in our multilabel classification is very impressive and mostly higher
than 98 %, it is not 100 %. Therefore, for practical applications, the sparsely
distributed class labels with the label value larger than 1 but not constant with
the neighbor class labels imply that the predictions are probably the classification
errors (due to the high portion overlapping of the neighboring regions, as shown
by Fig. 15.7). It is reasonable to rule out these regions from the list of the forgery.
This processing may be called error-reduction or noise-removal.
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Fig. 15.7 Shaded region
R(r1, r2) and the dashed
neighbors R (r1 − 1, r2),
R(r1, r2 − 1) in a, and
R(r1 + 1, r2), R(r1, r2 + 1)
in b

(a)

(b)

Table 15.2 shows the detection results without error-reduction process when dis-
tinguishing copy-paste and composite forgery from untouched JPEG images by using
a linear LibSVM and logistic regression classifiers, respectively. To obtain the results
in Table 15.2, we first predict the class-label of each subregion of the image under
examination. In each experiment, we randomly select 60 % feature sets for training
and other 40 % feature sets are tested. Fifty experiments are performed for each test-
ing. It is noted that the classification accuracy values shown in Table 15.2 are the
results without applying any error-reduction.

After applying error-reduction, the detection results may improve. Figure 15.8a
shows an untouched image and Fig. 15.8b shows a doctored one with the copy-
paste at the center, with the same quantization matrix. Figure 15.8c, d are the image
representation of detection results by the above steps (1) and (2). The x-axis and
y-axis show the subregion indices. Figure 15.8e, f are the final results after the error-
reduction or noise-removal that is described in the above step (3).
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Fig. 15.8 An illustration of forgery detection using SRSC features and logistic regression classifier
[24]. a An original image. b A copy-paste at the central region. c Classification results of (a). d
Classification results of (b). Error-reduction to e (c) . Error-reduction to f (d)
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15.4 Conclusions

We have proposed a shift-recompression-based spatial approach to detection of mis-
aligned cropping and recompression with the same quantization matrix and relevant
forgery in JPEG images. Experimental results show that the proposed approaches are
very effective in exposing the forgery that is encoded by using the same quantization
matrix in JPEG images.

We should note that the proposed method does not perform well in detecting
seam-carving-based image forgery [1, 11, 41] with the same quantization matrix.
The detection of such a forgery has been well investigated separately and the results
can be found in [27].
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Chapter 16
Fast Binary Embedding
for High-Dimensional Data

Felix X. Yu, Yunchao Gong and Sanjiv Kumar

Abstract Binary embedding of high-dimensional data requires long codes to
preserve the discriminative power of the input space. Traditional binary codingmeth-
ods often suffer from very high computation and storage costs in such a scenario.
To address this problem, we propose two solutions which improve over existing
approaches. The first method, Bilinear Binary Embedding (BBE), converts high-
dimensional data to compact similarity-preserving binary codes using compact bilin-
ear projections. Compared tomethods that use unstructuredmatrices for projection, it
improves the time complexity fromO(d2) toO(d1.5), and the space complexity from
O(d2) to O(d) where d is the input dimensionality. The second method, Circulant
Binary Embedding (CBE), generates binary codes by projecting the datawith a circu-
lant matrix. The circulant structure enables the use of Fast Fourier Transformation to
speed up the computation. This further improves the time complexity toO(d log d).
For both BBE and CBE, we propose to learn the projections in a data-dependent
fashion. We show by extensive experiments that the proposed approaches give much
better performance than the state of the arts for fixed time, and provides much faster
computationwith no performance degradation for fixed number of bits. The BBE and
CBE methods were previously presented in [6, 38]. In this book chapter, we present
the two approaches in a unified framework, covering randomized binary embedding,
learning-based binary embedding, and learning with dimension reductions. We also
discuss the choice of algorithms.
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16.1 Introduction

Embedding input data in binary spaces is becoming popular for efficient retrieval
and learning on massive datasets [5, 6, 10, 11, 13, 19–22, 24, 30]. Moreover, in a
large number of application domains such as computer vision, biology, and finance,
data is typically high-dimensional. Taking image retrieval and classification as an
example, it has been shown recently that in order to achieve high accuracy on large-
scale datasets, it is advantageous to use very high-dimensional descriptors such as
Fisher Vectors (FV) [26, 27, 31], Vector of Locally Aggregated Descriptors (VLAD)
[15], Locally Constraint Linear Code (LLC) [35], or a large set of weak attributes
[37]. When representing such high-dimensional data by binary codes, it has been
shown that long codes are required in order to achieve good performance. In fact,
the required number of bits isO(d), where d is the input dimensionality [6, 19, 31].

The goal of binary embedding is to well approximate the input distance as
Hamming distance so that efficient learning and retrieval can happen directly in
the binary space. It is important to note that another related area called hashing is
a special case with slightly different goal: creating hash tables such that points that
are similar fall in the same (or nearby) bucket with high probability. In fact, even
in hashing, if high accuracy is desired, one typically needs to use hundreds of hash
tables involving tens of thousands of bits.

Most of the existing linear binary coding approaches generate the binary code by
applying a “full” (unstructured) projection matrix, followed by a binarization step.
Formally, given a data point, x ∈ R

d , the k-bit binary code, h(x) ∈ {+1,−1}k is
generated simply as

h(x) = sgn(Rx), (16.1)

where R ∈ R
k×d , and sgn(·) is a binary map which returns element-wise sign.1

Several techniques have been proposed to generate the projection matrix randomly
without taking into account the input data [2, 30]. These methods are very popular
due to their simplicity but often fail to give the best performance due to their inability
to adapt the codes with respect to the input data. Thus, a number of data-dependent
techniques have been proposed with different optimization criteria such as recon-
struction error [17], data dissimilarity [23, 36], ranking loss [24], quantization error
after PCA [7], and pairwise misclassification [34]. These methods are shown to be
effective for learning compact codes for relatively low-dimensional data. However,
theO(d2) computational and space costs prohibit them from being applied to learn-
ing long codes for high-dimensional data. For instance, to generate O(d)-bit binary
codes for data with d ∼ 1M, a huge projection matrix will be required needing TBs
of memory, which is not practical.2

1 A few methods transform the linear projection via a nonlinear map before taking the sign
[30, 36].
2 In principle, one can generate the random entries of thematrix on-the-fly (with fixed seeds) without
needing to store the matrix. But this will increase the computational time even further.
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Table 16.1 Comparison of the proposed methods (BBE and CBE) with the full projection-based
methods for generating long codes (code dimension k comparable to input dimension d)

Method Time Space Time (Learning)

Full projection O(d2) O(d2) O(nd3)

BBE O(d1.5) O(d) O(nd1.5)

CBE O(d log d) O(d) O(nd log d)

n is the number of instances used for learning data-dependent projection matrices. The O(d1.5)

computational complexity of BBE can be achieved when the input vector is reshaped as a
√

d ×√
d

matrix. The O(d log d) computational complexity of CBE is achieved by using FFT to speed up
the computation.

In order to overcome the computational challenges for the full projection-based
methods, we propose two approaches reducing both the computational cost and
storage cost. The first method, Bilinear Binary Embedding (BBE), reshapes the input
vector x into a matrix Z, and applies a bilinear projection to get the binary code:

h(x) = vec(sgn(RT
1 ZR2)). (16.2)

We use vec(·) to denote an operator which reshapes a matrix to a vector. It is easy
to show that when the shapes of Z, R1, and R2 are O(

√
d) × O(

√
d), the method

has time and space complexity ofO(d1.5) andO(d), respectively. The BBE method
was originally presented in [6].

The second method, Circulant Binary Embedding (CBE), is even faster than
BBE. This is achieved by imposing a circulant structure on the projection matrix R
in (16.1).

h(x) = sgn(Rx), R is a circulant matrix. (16.3)

This special structure allows us to use Fast Fourier Transformation (FFT) based tech-
niques, which have been extensively used in signal processing. The proposedmethod
further reduces the time complexity to O(d log d), enabling efficient binary embed-
ding for very high-dimensional data.3 The CBE method was originally presented
in [38].

Table16.1 compares the time and space complexity for different methods. This
book chapter along with [6, 38] make the following contributions:

• We propose the bilinear binary embedding (BBE) and circulant binary embedding
(CBE) methods, which reduce both the computational cost and storage cost of
binary embedding for high-dimensional data.

3 One could in principal use other structured matrices like Hadamard matrix along with a sparse
random Gaussian matrix to achieve fast projection as was done in fast Johnson–Lindenstrauss
transform [1, 3], but it is still slower than circulant projection and needs more space.
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• For both methods, in addition to the randomized versions, we propose to learn the
data-dependent projections. This helps to further improve the coding quality by
considering the data distributions.

• Extensive experiments show that, compared to the state of the art, the proposed
methods improve the result dramatically for a fixed time cost, and provide much
faster computation with no performance degradation for a fixed number of bits.

16.2 Bilinear Binary Embedding (BBE)

Most high-dimensional descriptors have a natural matrix or tensor structure. For
example, aHOGdescriptor is a two-dimensional grid of histograms, and this structure
has been exploited for object detection [29]. A Fisher Vector [26, 27, 31] can be
represented as a k × 2l matrix, where k is the visual vocabulary size and l is the
dimensionality of the local image features (the most common choice is SIFT with
l = 128). VLAD [15], which can be seen as a simplified version of FV, can be
represented as a k × l matrix. Finally, an LLC [35] descriptor with s spatial bins can
be represented as a k × s matrix.

Let x ∈ R
d denote our descriptor vector. Based on the structure and interpretation

of the descriptor, we reorganize it into a d1 × d2 matrix with d = d1d2:

x ∈ R
d1d2×1 �→ Z ∈ R

d1×d2 . (16.4)

We assume that each vector x ∈ R
d is zero-centered and has unit norm, as L2 normal-

ization is a widely used preprocessing step that usually improves performance [28].
We will first introduce a randomized method to obtain d-bit bilinear codes in

Sect. 16.2.1 and then explain how to learn data-dependent codes in Sect. 16.2.2.
Learning of reduced-dimension codes will be discussed in Sect. 16.2.3.

16.2.1 Randomized Bilinear Binary Embedding
(Bilinear-rand)

To convert a descriptor x ∈ R
d to a d-dimensional binary string, we first consider

the framework of [2, 7] that applies a random rotation R ∈ R
d×d to x:

h(x) = sgn(Rx). (16.5)

Since x can be represented as a matrix Z ∈ R
d1×d2 , to make rotation more efficient,

we propose a bilinear formulation using two random orthogonal matrices R1 ∈
R

d1×d1 and R2 ∈ R
d2×d2 :

h(x) = vec
(
sgn(RT

1 ZR2)
)

, (16.6)
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where vec(·) denotes column-wise concatenation.
It is easy to show that applying a bilinear rotation to Z ∈ R

d1×d2 is equivalent to
applying a d1d2 × d1d2 rotation to vec(Z). This rotation is given by R̂ = R2 ⊗ R1,
where ⊗ denotes the Kronecker product:

vec(RT
1 ZR2) = (RT

2 ⊗ RT
1 ) vec(Z) = R̂T vec(Z)

follows from the properties of the Kronecker product [18]. Another basic property of
the Kronecker product is that ifR1 andR2 are orthogonal, thenR2⊗R1 is orthogonal
as well [18]. Thus, a bilinear rotation is simply a special case of a full rotation, such
that the full rotation matrix R̂ can be reconstructed from two smaller matrices R1
and R2.

While the degree of freedom of our bilinear rotation is more restricted than a full
rotation, the projection matrices are much smaller, and the projection speed is much
faster. In terms of time complexity, performing a full rotation on x takesO((d1d2)2)
time, while our approach is O(d2

1d2 + d1d2
2 ). In terms of space for projections, full

rotation takes O((d1d2)2), and our approach only takes O(d2
1 + d2

2 ). For example,
for a 64K-dimensional vector, a full rotation will take roughly 16GB of RAM, while
the bilinear rotations only take 1MB of RAM. The projection time for a full rotation
is more than a second, versus only 3ms for bilinear rotations.

Note that when d1 and d2 are set as d1 = d2 = d1/2, the BBE method has the
lowest computational complexity O(d1.5), and lowest space complexity O(d). As
computational efficiency is the main focus of this paper, we use such settings in the
experiment section. Empirically, tuning d1 and d2, or setting them accordingly based
on the structure of the descriptor may result in better retrieval performance, but it
will lead to higher computational cost.

16.2.2 Learning Bilinear Binary Embedding (Bilinear-opt)

In this section, we present a method for learning the rotations R1 and R2 that is
inspired by two-sided Procrustes analysis [32] and builds on our earlier work [5, 7].

Following [7], we want to find a rotation R̂ such that the angle θi between a
rotated feature vector R̂T xi = vec(RT

1 Zi R2) and its binary encoding (geometrically,
the nearest vertex of the binary hypercube), sgn(R̂T x) = vec(sgn(RT

1 Zi R2)), is
minimized. Given N training points, we want to maximize

N∑

i=1

cos(θi )

=
N∑

i=1

(
sgn(R̂T xi )

T

√
d

(R̂T xi )

)
(16.7)
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=
N∑

i=1

(
vec(sgn(RT

1 Zi R2))
T

√
d

vecRT
1 Zi R2)

)

= 1√
d

N∑

i=1

(
vec(Bi )

T vec(RT
1 Zi R2)

)

= 1√
d

N∑

i=1

tr(Bi RT
2 ZT

i R1), (16.8)

where Bi = sgn(RT
1 Zi R2). Notice that (16.7) involves the large projection matrix

R̂ ∈ R
d×d , direct optimization of which is challenging. However, after reformulation

into bilinear form (16.8), the expression only involves the two small matrices R1 and
R2. Letting B = {B1, . . . , BN }, our objective function is as follows:

Q(B, R1, R2) = max
B,R1,R2

N∑

i=1

tr(Bi RT
2 ZT

i R1) (16.9)

s. t. Bi ∈ {−1,+1}d1×d2 , RT
1 R1 = I, RT

2 R2 = I.

This optimization problem can be solved by block coordinate ascent by alternating
between the different variables {B1, . . . , BN }, R1, and R2. We describe the update
steps for each variable below, assuming the others are fixed.
(S1) Update Bi . When R1 and R2 are fixed, we independently solve for each Bi by
maximizing

Q(Bi ) = tr(Bi RT
2 ZT

i R1) =
d1∑

k=1

d2∑
l=1

Bkl
i Ṽlk

i ,

where Ṽlk
i denote the elements of Ṽi = RT

2 ZT
i R1. Q(Bi ) is maximized by Bi =

sgn(ṼT
i ).

(S2) Update R1. Expanding (16.9) with R2 and Bi fixed, we have the following:

Q(R1) =
N∑

i=1

tr(Bi RT
2 ZT

i R1)

= tr
( N∑

i=1

(Bi RT
2 ZT

i )R1

)
= tr(D1R1) ,

where D1 = ∑N
i=1(Bi RT

2 ZT
i ). The above expression is maximized with the help of

polar decomposition: R1 = V1UT
1 , where D1 = U1S1VT

1 is the SVD of D1.
(S3) Update R2:
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Q(R2) =
N∑

i=1

tr(Bi RT
2 ZT

i R1)

=
N∑

i=1

tr(RT
2 ZT

i R1Bi )

= tr
(

RT
2

N∑

i=1

(ZT
i R1Bi )

)
= tr(RT

2 D2) ,

where D2 = ∑N
i=1(Z

T
i R1Bi ). Analogously to the update rule for R1, the update rule

for R2 is R2 = U2VT
2 , where D2 = U2S2VT

2 is the SVD of D2.
We cycle between these updates for several iterations to obtain a local maximum.

The convergence of the above program is guaranteed in finite number of iterations
as the optimal solution of each step is exactly obtained, each step is guaranteed not
to decrease the objective function value, and the objective function is bounded from
above. In our implementation, we initialize R1 and R2 by random rotations and use
three iterations.We have not found significant improvement of performance by using
more iterations. The time complexity of this program is O(N (d3

1 + d3
2 )) where d1

and d2 are typically fairly small (e.g., d1 = 128, d2 = 500).
Figure16.1 visualizes the structure of a VLAD descriptor and the corresponding

binary code before and after a learned bilinear rotation.
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Fig. 16.1 Visualization of the VLAD descriptor and resulting binary code (given by the sign
function) before and after learned bilinear rotation. We only show the first 32 SIFT dimensions
and visual codewords [6]. Before the rotation, we can clearly see a block pattern, with many zero
values. After the rotation, the descriptor and the binary code look more whitened. a Original VLAD
descriptor. b Original binary code. c Bilinearly rotated VLAD. d Bilinearly rotated binary code



354 F.X. Yu et al.

16.2.3 Learning with Dimensionality Reduction

The formulation of Sect. 16.2.2 is used to learn d-dimensional binary codes starting
from d-dimensional descriptors. Now, to produce a code of size c = c1 × c2, where
c1 < d1 and c2 < d2, we need projection matrices R1 ∈ R

d1×c1 , R2 ∈ R
d2×c2 such

that RT
1 R1 = I and RT

2 R2 = I. Each Bi is now a c1 × c2 binary variable. Consider
the cosine of the angle between a lower dimensional projected vector R̂T xi and its
binary encoding sgn(R̂T x):

cos(θi ) = sgn(R̂T xi )
T

√
c

R̂T xi

‖R̂T xi‖2
,

where R̂ ∈ Rd1d2×c1c2 and R̂T R̂ = I . This formulation differs from that of (16.7)
in that it contains ‖R̂T xi‖2 in the denominator, which makes the optimization dif-
ficult [5]. Instead, we follow [5] to define a relaxed objective function based on the
sum of linear correlations

Q(B, R1, R2) =
N∑

i=1

(
sgn(R̂T xi )

T

√
c

(R̂T xi )

)
.

The optimization framework for this objective is similar to that of Sect. 16.2.2. For
the three alternating optimization steps, (S1) remains the same. For (S2) and (S3), we
compute the SVD of D1 and D2 as U1S1VT

1 and U2S2VT
2 , respectively, and set the

two rotations toR1 = V̂1UT
1 andR2 = Û2VT

2 , where V̂1 is the top c1 singular vectors
of V1 and Û2 is the top c2 singular vectors of U2. To initialize the optimization, we
generate random orthogonal directions.

16.3 Circulant Binary Embedding (CBE)

In the former sections, we have proposed the BBEmethod which can produce binary
codewith computational complexityO(d1.5). In this section,wepropose the circulant
binary embedding (CBE) method which is even faster than the BBE method.

A circulant matrix R ∈ R
d×d is a matrix defined by a vector r = (r0, r1, . . . ,

rd−1)
T [9]. Note that the circulant matrix is sometimes equivalently defined by

“circulating” the rows instead of the columns.

R = circ(r) :=

⎡

⎢⎢⎢⎢⎢⎢⎣

r0 rd−1 . . . r2 r1
r1 r0 rd−1 r2
... r1 r0

. . .
...

rd−2
. . .

. . . rd−1
rd−1 rd−2 . . . r1 r0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (16.10)
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Let D be a diagonal matrix with each diagonal entry being a Bernoulli variable
(±1 with probability 1/2). For x ∈ R

d , its d-bit Circulant Binary Embedding (CBE)
with r ∈ R

d is defined as:

h(x) = sgn(RDx), (16.11)

where R = circ(r). The k-bit (k < d) CBE is defined as the first k elements of
h(x). The need for such a D is discussed in Sect. 16.3.1. Note that applying D to x
is equivalent to applying random sign flipping to each dimension of x. Since sign
flipping can be carried out as a preprocessing step for each input x, here onwards
for simplicity we will drop explicit mention of D. Hence the binary code is given as
h(x) = sgn(Rx).

Themain advantage of circulant binary embedding is its ability to use Fast Fourier
Transformation (FFT) to speed up the computation.

Proposition 1 For d-dimensional data, CBE has space complexity O(d), and time
complexity O(d log d).

Since a circulant matrix is defined by a single column/row, clearly the storage
needed is O(d). Given a data point x, the d-bit CBE can be efficiently computed as
follows. Denote � as operator of circulant convolution. Based on the definition of
circulant matrix,

Rx = r � x. (16.12)

The above can be computed based on Discrete Fourier Transformation (DFT),
for which fast algorithm (FFT) is available. The DFT of a vector t ∈ C

d is a
d-dimensional vector with each element defined as

F(t)l =
d−1∑

m=0

tn · e−i2πlm/d , l = 0, . . . , d − 1. (16.13)

The above can be expressed equivalently in a matrix form as

F(t) = Fd t, (16.14)

where Fd is the d-dimensional DFT matrix. Let FH
d be the conjugate transpose of

Fd . It is easy to show that F−1
d = (1/d)FH

d . Similarly, for any t ∈ C
d , the Inverse

Discrete Fourier Transformation (IDFT) is defined as

F−1(t) = (1/d)FH
d t. (16.15)
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Since the convolution of two signals in their original domain is equivalent to the
hadamard product in their frequency domain [25],

F(Rx) = F(r) ◦ F(x). (16.16)

Therefore,

h(x) = sgn
(
F−1(F(r) ◦ F(x))

)
. (16.17)

For k-bit CBE, k < d, we only need to pick the first k bits of h(x). As DFT and
IDFT can be efficiently computed inO(d log d) with FFT [25], generating CBE has
time complexity O(d log d).

16.3.1 Randomized Circulant Binary Embedding (CBE-rand)

A simple way to obtain CBE is by generating the elements of r in (16.10) indepen-
dently from the standard normal distribution N (0, 1). We call this method random-
ized CBE (CBE-rand). A desirable property of any embedding method is its ability
to approximate input distances in the embedded space. Suppose Hk(x1, x2) is the
normalized Hamming distance between k-bit codes of a pair of points x1, x2 ∈ R

d :

Hk(x1, x2) = 1

k

k−1∑

i=0

∣∣sgn(Ri ·x1) − sgn(Ri ·x2)
∣∣/2, (16.18)

and Ri · is the i th row of R, R = circ(r). If r is sampled from N (0, 1), from [2],

Pr
(
sgn(rT x1) 
= sgn(rT x2)

)
= θ/π, (16.19)

where θ is the angle between x1 and x2. Since all the vectors that are circulant variants
of r also follow the same distribution, it is easy to see that

E(Hk(x1, x2)) = θ/π. (16.20)

For the sake of discussion, if k projections, i.e., first k rows of R, were generated
independently, it is easy to show that the variance ofHk(x1, x2) will be

Var(Hk(x1, x2)) = θ(π − θ)/kπ2. (16.21)
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Thus, with more bits (larger k), the normalized hamming distance will be close to
the expected value, with lower variance. In other words, the normalized hamming
distance approximately preserves the angle.4 Unfortunately in CBE, the projections
are the rows of R = circ(r), which are not independent. This makes it hard to
derive the variance analytically. To better understand CBE-rand, we run simulations
to compare the analytical variance of normalized hamming distance of independent
projections (16.21), and the sample variance of normalized hamming distance of
circulant projections in Fig. 16.2. For each θ and k, we randomly generatex1, x2 ∈ R

d

such that their angle is θ.5 We then generate k-dimensional code with CBE-rand, and
compute the hamming distance. The variance is estimated by applying CBE-rand
1,000 times. We repeat the whole process 1,000 times, and compute the averaged
variance. Surprisingly, the curves of “Independent” and “Circulant” variances are
almost indistinguishable. This means that bits generated by CBE-rand are generally
as good as the independent bits for angle preservation. An intuitive explanation is that
for the circulant matrix, though all the rows are dependent, circulant shifting one or
multiple elementswill in fact result in very different projections inmost cases.Wewill
later show in experiments on real-world data that CBE-rand and Locality Sensitive
Hashing (LSH)6 have almost identical performance (yet CBE-rand is significantly
faster) (Sect. 16.4).

Note that the distortion in input distances after circulant binary embedding comes
from two sources: circulant projection, and binarization. For the circulant projection
step, recent works have shown that the Johnson–Lindenstrauss-type lemma holds
with a slightly worse bound on the number of projections needed to preserve the
input distances with high probability [12, 16, 33, 39]. These works also show that
before applying the circulant projection, an additional step of randomly flipping the
signs of input dimensions is necessary.7 To show why such a step is required, let
us consider the special case when x is an all-one vector, 1. The circulant projection
with R = circ(r) will result in a vector with all elements to be rT 1. When r is
independently drawn from N (0, 1), this will be close to 0, and the norm cannot be
preserved. Unfortunately, the Johnson–Lindenstrauss-type results do not generalize
to the distortion caused by the binarization step.

4 In this paper, we consider the case that the data points are �2 normalized. Therefore the cosine
distance, i.e., 1 − cos(θ), is equivalent to the l2 distance.
5 This can be achieved by extending the 2D points (1, 0), (cos θ, sin θ) to d-dimension, and per-
forming a random orthonormal rotation, which can be formed by the Gram–Schmidt process on
random vectors.
6 Here, by LSH we imply the binary embedding using R such that all the rows of R are sampled
iid. With slight abuse of notation, we still call it “hashing” following [2].
7 For each dimension,whether the sign needs to be flipped is predetermined by a (p = 0.5)Bernoulli
variable.
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Fig. 16.2 The analytical variance of normalized hamming distance of independent bits as in
(16.21), and the sample variance of normalized hamming distance of circulant bits, as a func-
tion of angle between points (θ) and number of bits (k). The two curves overlap [38]. a θ = π/12.
b θ = π/6. c θ = π/3. d θ = π/2

One problem with the randomized CBE method is that it does not utilize the
underlying data distribution while generating the matrix R. In the next section, we
propose to learn R in a data-dependent fashion, to minimize the distortions due to
circulant projection and binarization.

16.3.2 Learning Circulant Binary Embedding (CBE-opt)

We propose data-dependent CBE (CBE-opt), by optimizing the projection matrix
with a novel time–frequency alternating optimization. We consider the following
objective function in learning the d-bit CBE. The extension of learning k < d bits
will be shown in Sect. 16.3.3.

argmin
B,r

||B − ZRT ||2F + λ||RRT − I||2F (16.22)

s.t. R = circ(r),
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whereZ ∈ R
n×d is the datamatrix containingn trainingpoints:Z = [x0, . . . , xn−1]T ,

and B ∈ {−1, 1}n×d is the corresponding binary code matrix.8

In the above optimization, the first term minimizes distortion due to binarization.
The second term tries tomake the projections (rowsofR, andhence the corresponding
bits) as uncorrelated as possible. In other words, this helps to reduce the redundancy
in the learned code. If R were to be an orthogonal matrix, the second term will
vanish and the optimization would find the best rotation such that the distortion due
to binarization is minimized. However, when R is a circulant matrix, R, in general,
will not be orthogonal. Similar objective has been used in previous works including
[6, 7] and [34].

The above is a combinatorial optimization problem, for which an optimal solution
is hard to find. In this section we propose a novel approach to efficiently find a
local solution. The idea is to alternatively optimize the objective by fixing r, and B,
respectively. For a fixed r, optimizing B can be easily performed in the input domain
(“time” as opposed to “frequency”). For a fixed B, the circulant structure of R makes
it difficult to optimize the objective in the input domain. Hence we propose a novel
method, by optimizing r in the frequency domain based on DFT. This leads to a very
efficient procedure.

For a fixed r. The objective is independent on each element of B. Denote Bi j

as the element of the i th row and j th column of B. It is easy to show that B can be
updated as:

Bi j =
{
1 if R j ·xi ≥ 0

−1 if R j ·xi < 0
, (16.23)

i = 0, . . . , n − 1. j = 0, . . . , d − 1.

For a fixed B. Define r̃ as the DFT of the circulant vector r̃ := F(r). Instead of
solving r directly, we propose to solve r̃, from which r can be recovered by IDFT.

Key to our derivation is the fact that DFT projects the signal to a set of orthogonal
basis. Therefore, the �2 norm can be preserved. Formally, according to Parseval’s
theorem, for any t ∈ C

d [25],

||t||22 = (1/d)||F(t)||22.

Denote diag(·) as the diagonal matrix formed by a vector. Denote �(·) and 
(·)
as the real and imaginary parts, respectively. We use Bi · to denote the i th row of B.
With complex arithmetic, the first term in (16.22) can be expressed in the frequency
domain as:

8 If the data is �2 normalized, we can set B ∈ {−1/
√

d, 1/
√

d}n×d to make B and ZRT more
comparable. This does not empirically influence the performance.
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||B − XRT ||2F = 1

d

n−1∑

i=0

||F(BT
i · − Rxi )||22

= 1

d

n−1∑

i=0

||F(BT
i · ) − r̃ ◦ F(xi )||22

= 1

d

n−1∑

i=0

||F(BT
i · ) − diag(F(xi ))r̃||22

= 1

d

n−1∑

i=0

(
F(BT

i · ) − diag(F(xi ))r̃
)T (

F(BT
i · ) − diag(F(xi ))r̃

)

= 1

d

[
�(r̃)T M�(r̃) + 
(r̃)T M
(r̃) + �(r̃)T h + 
(r̃)T g

]
+ ||B||2F ,

(16.24)

where,

M = diag
( n−1∑

i=0

�(F(xi )) ◦ �(F(xi )) + 
(F(xi )) ◦ 
(F(xi ))
)

h = −2
n−1∑

i=0

�(F(xi )) ◦ �(F(BT
i · )) + 
(F(xi )) ◦ 
(F(BT

i · ))

g = 2
n−1∑

i=0


(F(xi )) ◦ �(F(BT
i · )) − �(F(xi )) ◦ 
(F(BT

i · )).

The above can be derived based on the following fact. For any Q ∈ C
d×d , s,

t ∈ C
d ,

||s − Qt||22 = (s − Qt)H (s − Qt) (16.25)

= sH s − sH Qt − tH QH s + tH QH At

= �(s)T �(s) + 
(s)T 
(s)

− 2�(t)T (�(Q)T �(s) + 
(Q)T 
(s))

+ 2
(t)T (
(Q)T �(s) − �(Q)T 
(s))

+ �(t)T (�(Q)T �(Q) + 
(Q)T 
(Q))�(t)

+ 
(t)T (�(Q)T �(Q) + 
(Q)T 
(Q))
(t)

+ 2�(t)T (
(Q)T �(Q) − �(Q)T 
(Q))
(t).
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For the second term in (16.22), we note that the circulant matrix can be diagonal-
ized by DFT matrix Fd and its conjugate transpose FH

d . Formally, for R = circ(r),
r ∈ R

d ,
R = (1/d)FH

d diag(F(r))Fd . (16.26)

Let Tr(·) be the trace of a matrix. Therefore,

||RRT − I||2F = || 1
d

FH
d (diag(r̃)Hdiag(r̃) − I)Fd ||2F

= Tr

[
1

d
FH

d (diag(r̃)Hdiag(r̃) − I)H (diag(r̃)Hdiag(r̃) − I)Fd

]

= Tr
[
(diag(r̃)Hdiag(r̃) − I)H (diag(r̃)Hdiag(r̃) − I)

]

= ||r̃H ◦ r̃ − 1||22 = ||�(r̃)2 + 
(r̃)2 − 1||22. (16.27)

Furthermore, as r is real-valued, additional constraints on r̃ are needed. For any
u ∈ C, denote u as the complex conjugate of u. We have the following result [25]:
For any real-valued vector t ∈ C

d , F(t)0 is real-valued, and

F(t)d−i = F(t)i , i = 1, . . . , �d/2�.

From (16.24) to (16.27), the problem of optimizing r̃ becomes

argmin
r̃

�(r̃)T M�(r̃) + 
(r̃)T M
(r̃) + �(r̃)T h

+ 
(r̃)T g + λd||�(r̃)2 + 
(r̃)2 − 1||22 (16.28)

s.t. 
(r̃0) = 0

�(r̃i ) = �(r̃d−i ), i = 1, . . . , �d/2�

(r̃i ) = −
(r̃d−i ), i = 1, . . . , �d/2�.

The above is nonconvex. Fortunately, the objective function can be decomposed,
such that we can solve two variables at a time. Denote the diagonal vector of the
diagonal matrix M as m. The above optimization can then be decomposed to the
following sets of optimizations.

argmin
r̃0

m0r̃20 + h0r̃0 + λd
(

r̃20 − 1
)2

, s.t. r̃0 = r̃0. (16.29)

argmin
r̃i

(mi + md−i )(�(r̃i )
2 + 
(r̃i )

2) (16.30)

+ 2λd
(
�(r̃i )

2 + 
(r̃i )
2 − 1

)2

+ (hi + hd−i )�(r̃i ) + (gi − gd−i )
(r̃i ),

i = 1, . . . , �d/2�.
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In (16.29), we need to minimize a 4th order polynomial with one variable, with the
closed form solution readily available. In (16.30), we need to minimize a 4th order
polynomial with two variables. Though the closed form solution is hard (requiring
solution of a cubic bivariate system), we can find local minima by gradient descent,
which can be considered as having constant running time for such small-scale prob-
lems. The overall objective is guaranteed to be nonincreasing in each step. In practice,
we can get a good solution with just 5–10 iterations. In summary, the proposed time–
frequency alternating optimization procedure has running time O(nd log d).

16.3.3 Learning with Dimension Reduction

In the case of learning k < d bits, we need to solve the following optimization
problem:

argmin
B,r

||BPk − XPT
k RT ||2F + λ||RPkPT

k RT − I||2F
s.t. R = circ(r), (16.31)

in which Pk =
[

Ik O
O Od−k

]
, Ik is a k × k identity matrix. Od−k is a (d − k)× (d − k)

all-zero matrix, and O is a k × (d − k) all-zero matrix.
In fact, the right multiplication of Pk can be understood as a “temporal cut-off”,

which is equivalent to a frequency domain convolution. This makes the optimization
difficult, as the objective in frequency domain can no longer be decomposed. To
address this issue, we propose a simple solution in which Bi j = 0, i = 0, . . . ,
n − 1, j = k, . . . , d − 1 in (16.22). Thus, the optimization procedure remains the
same, and the cost is alsoO(nd log d).Wewill show in experiments that this heuristic
provides good performance in practice.

16.4 Experiments

To demonstrate the performance of the proposed binary embedding methods, we
conducted experiments on three real-world high-dimensional datasets used by the
current state-of-the-art method for generating binary codes. The Flickr-25600 dataset
contains 100K images sampled from a noisy Internet image collection. Each image
is represented by a 25,600 dimensional vector. The ImageNet-51200 contains 100K
images sampled from 100 random classes from ImageNet [4], each represented by a
51,200 dimensional vector. The third dataset (ImageNet-25600) is another random
subset of ImageNet containing 100K images in 25,600 dimensional space. All the
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vectors are normalized to be of unit norm. Most of the experiment results in this
section have been presented in our former work [38].

We compared the performance of the randomized (bilinear-rand, CBE-rand)
and learned (bilinear-opt, CBE-opt) versions of our embedding methods with the
widely used method for high-dimensional data, i.e., LSH. Note that bilinear binary
embeddings have been shown to perform similar or better than another promising
technique called Product Quantization [14]. We also show an experiment with rela-
tively low-dimensional data in 2,048 dimensional space using Flickr data to compare
against techniques that perform well for low-dimensional data but do not scale to
high-dimensional scenario. Example techniques include ITQ [7], SH [36], SKLSH
[30], and AQBC [5].

Following [6, 8, 23], we use 10,000 randomly sampled instances for training.
We then randomly sample 500 instances, different from the training set as queries.
The performance (recall@1–100) is evaluated by averaging the recalls of the query
instances. The ground truth of each query instance is defined as its 10 nearest neigh-
bors based on �2 distance. For each dataset, we conduct two sets of experiments:
fixed time where code generation time is fixed and fixed bits where the number of
bits is fixed across all techniques. We also show an experiment where the binary
codes are used for classification. For the bilinear method, in order to get fast compu-
tation, the feature vector is reshaped to a near-square matrix, and the dimension of
the two bilinear projection matrices are also chosen to be close to square. Parameters
for other techniques are tuned to give the best results on these datasets.

Computational Time. When generating k-bit code for d-dimensional data, the
full projection, bilinear projection, and circulant projection methods have time com-
plexity O(kd), O(

√
kd), and O(d log d), respectively. We compare the computa-

tional time in Table16.2 on a fixed hardware. Based on our implementation, the
computational time of the above three methods can be roughly characterized as
d2 : d

√
d : 5d log d. Note that faster implementation of FFT algorithms will lead to

better computational time for CBE by further reducing the constant factor. Due to
the small storage requirement O(d), and the wide availability of highly optimized
FFT libraries, CBE is also suitable for implementation on GPU. Our preliminary

Table 16.2 Computational time (ms) of full projection (LSH, ITQ, SH etc.), bilinear projection
(BBE), and circulant projection (CBE)

d Full projection Bilinear projection Circulant projection

215 5.44 × 102 2.85 1.11

217 − 1.91 × 101 4.23

220 (1M) − 3.76 × 102 3.77 × 101

224 − 1.22 × 104 8.10 × 102

227 (100M) − 2.68 × 105 8.15 × 103

The time is based on a single 2.9GHz CPU core. The error is within 10%. An empty cell indicates
that the memory needed for that method is larger than the machine limit of 24GB
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tests based on GPU shows up to 20 times speedup compared to CPU. In this paper,
for fair comparison, we use same CPU-based implementation for all the methods.

In addition, the optimizations of learning-based CBE (Sect. 16.3.2) can be eas-
ily solved in a parallel fashion. The small footprints of both BBE and CBE also
make them suitable to be implemented on mobile devices, which have strict memory
requirement.

Retrieval. The recall for different methods is compared on the three datasets in
Figs. 16.3, 16.5, and 16.7 shows the performance for different methods when the
code generation time for all the methods is kept the same as that of CBE. For a fixed
time, both CBE and BBE significantly outperform LSH. And CBE outperforms BBE
in such high-dimensional settings. Even CBE-rand outperforms LSH and Bilinear
code by a large margin.
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Fig. 16.3 Recall on Flickr-25600 with fixed time. “# bits” is the number of bits of CBE. Other
methods are using less bits tomake their computational time identical toCBE.The standarddeviation
is within 1%. a # bits (CBE) = 3,200. b # bits (CBE) = 6,400. c # bits (CBE) = 12,800. d # bits
(CBE) = 25,600
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Fig. 16.4 Recall on Flickr-25600 with fixed number of bits. CBE-opt/CBE-rand are 2–3 times
faster than Bilinear-opt/Bilinear-rand. Both CBE and BBE(Bilinear) are hundreds of times faster
than LSH. The standard deviation is within 1%. a # bits (all) = 3,200. b # bits (all) = 6,400. c #
bits (all) = 12,800. d # bits (all) = 25,600

Figures16.4, 16.6, and 16.8 compare the performance of different techniques with
codes of same length. In this case, the performance of CBE-rand is almost identical
to LSH even though it is hundreds of times faster. This is consistent with our analysis
in Sect. 16.3.1. Bilinear-rand is also very competitive to LSH. In addition, CBE-
opt/CBE-rand outperform the Bilinear-opt/Bilinear-rand in addition to being 2–3
times faster.

Classification. Besides retrieval, we also test the binary codes for classification.
The advantage is to save on storage allowing even large-scale datasets to fit inmemory
[19, 31]. We follow the asymmetric setting of [31] by training linear SVM on binary
code sgn(Rx), and testing on the original Rx. This empirically has been shown to
give better accuracy than the symmetric procedure. We use ImageNet-25600, with
randomly sampled 100 images per category for training, 50 for validation, and 50 for
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Fig. 16.5 Recall on ImageNet-25600 with fixed time. “# bits” is the number of bits of CBE.
Other methods are using less bits to make their computational time identical to CBE. The standard
deviation is within 1%. a # bits (CBE) = 3,200. b # bits (CBE) = 6,400. c # bits (CBE) = 12,800.
d # bits (CBE) = 25,600

testing. The code dimension is set as 25,600. As shown in Table16.3, our methods,
which have much faster computation, does not show any performance degradation
compared to LSH in classification task as well.

Low-Dimensional Experiment. There exist several techniques that do not scale to
high-dimensional case.Tocompareourmethodwith those,weconducted experiments
with fixed number of bits on a relatively low-dimensional dataset (Flickr-2048),
constructed by randomly sampling 2,048 dimensions of Flickr-25600. As shown in
Fig. 16.9, though BBE and CBE are not designed for such scenario, they perform
better or equivalent to other techniques except ITQ which scales very poorly with
d(O(d3)). Moreover, as the number of bits increases, the gap between ITQ and
our methods becomes much smaller suggesting that the performance of ITQ isnot
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Fig. 16.6 Recall on ImageNet-25600 with fixed number of bits. CBE-opt/CBE-rand are 2–3 times
faster than Bilinear-opt/Bilinear-rand. Both CBE and BBE(Bilinear) are hundreds of times faster
than LSH. The standard deviation is within 1%. a # bits (all) = 3,200. b # bits (all) = 6,400. c #
bits (all) = 12,800. d # bits (all) = 25,600

expected to be better if one could run ITQ on high-dimensional data. Note that in
such small-scale scenario, BBE is faster than CBE due to the computational overhead
of FFT.

16.5 Choice of Algorithms

CBE has better computational complexity compared to BBE. In addition, according
to the experimental results, with fixed bits, CBE outperforms BBE in general. This
suggests that the circulant projection is more powerful than the bilinear projection in
generating the binary code. This resonates with the works using circulant projections
for Johnson-Lindenstrauss transformations [1, 3].
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Fig. 16.7 Recall on ImageNet-51200, with fixed time. “# bits” is the number of bits of CBE.
Other methods are using less bits to make their computational time identical to CBE. The standard
deviation is within 1%. a # bits (CBE) = 6,400. b # bits (CBE) = 12,800. c # bits (CBE) = 25,600.
d # bits (CBE) = 51,200

Table 16.3 Felix et al. [38] multiclass classification accuracy on binary-coded ImageNet-25600.
The binary codes of same dimensionality are 32 timesmore space-efficient than the original features
(single-float)

Original LSH Bilinear-opt CBE-opt

25.59 ± 0.33 23.49 ± 0.24 24.02 ± 0.35 24.55 ± 0.30

The disadvantage of CBE is the computational overhead of FFT. Based on our
implementation, BBE is faster for moderate to high-dimensional data (10–30k), and
CBE is faster on very high-dimensional data (30–100M). Therefore, the final choice
of the algorithm should depend on the evaluationmetric, and the actual computational
cost based on implementation.
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Fig. 16.8 Recall on ImageNet-51200 with fixed number of bits. CBE-opt/CBE-rand are 2–3 times
faster than Bilinear-opt/Bilinear-rand. Both CBE and BBE(Bilinear) are hundreds of times faster
than LSH. The standard deviation is within 1%. a # bits (all) = 6,400. b # bits (all) = 12,800. c #
bits (all) = 25,600. d # bits (all) = 51,200
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Fig. 16.9 Performance comparison on relatively low-dimensional data (Flickr-2048) with fixed
number of bits. CBE gives comparable performance to the state of the art even on low-dimensional
data as the number of bits is increased. However, note that these other methods do not scale to
very high-dimensional datasetting which is the main focus of this work. a # bits = 1,024. b # bits
= 2,048
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16.6 Conclusion

This book chapter introduces two fast binary embedding methods for high-
dimensional data [6, 38] with unified notations and framework. The Bilinear Binary
Embedding (BBE) has time complexity O(d1.5). The Circulant Binary Embedding
(CBE) has time complexity O(d log d). Both algorithms have space complexity
O(d). We have also proposed methods for learning the projection matrices in a
data-dependent fashion to further improve the performance. The proposed methods
show no performance degradation on real-world data compared to the expensive full
projection methods, which has computational complexity O(d2). On the contrary,
with the fixed time, our methods showed significant accuracy gains.

Both proposed methods use highly structured projections to speed up the compu-
tation. Our future work is to study more generalized structured projections for binary
embedding. This requires both theoretical analysis on the randomized projections,
and novel optimization algorithms for learning data-dependent projections.
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Chapter 17
Fast Approximate K -Means
via Cluster Closures

Jingdong Wang, Jing Wang, Qifa Ke, Gang Zeng and Shipeng Li

Abstract K -means, a simple and effective clustering algorithm, is one of the most
widely used algorithms in multimedia and computer vision community. Traditional
k-means is an iterative algorithm—in each iteration new cluster centers are computed
and each data point is re-assigned to its nearest center. The cluster re-assignment
step becomes prohibitively expensive when the number of data points and cluster
centers are large. In this chapter, we propose a novel approximate k-means algo-
rithm to greatly reduce the computational complexity in the assignment step. Our
approach is motivated by the observation that most active points changing their clus-
ter assignments at each iteration are located on or near cluster boundaries. The idea
is to efficiently identify those active points by pre-assembling the data into groups
of neighboring points using multiple random spatial partition trees, and to use the
neighborhood information to construct a closure for each cluster, in such a way
only a small number of cluster candidates need to be considered when assigning a
data point to its nearest cluster. Using complexity analysis, image data clustering, and
applications to image retrieval, we show that our approach out-performs state-of-the-
art approximate k-means algorithms in terms of clustering quality and efficiency.
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17.1 Introduction

K -means [13] has been widely used in multimedia, computer vision and machine
learning for clustering and vector quantization. In large-scale image retrieval, it
is advantageous to learn a large codebook containing one million or more entries
[17, 19, 24], which requires clustering tens or even hundreds of millions of high-
dimensional feature descriptors into one million or more clusters. Another emerging
application of large-scale clustering is to organize a large corpus of web images for
various purposes such as web image browsing/exploring [27].

The standard k-means algorithm, Lloyd’s algorithm [6, 12, 13], is an iterative
refinement approach that greedily minimizes the sum of squared distances between
each point and its assigned cluster center. It consists of two iterative steps, the assign-
ment step and the update step. The assignment step aims to find the nearest cluster
for each point by checking the distance between the point and each cluster center.
The update step re-computes the cluster centers based on current assignments. When
clustering n points into k clusters, the assignment step costs O(nk). For applications
with large nk, the assignment step in exact k-means becomes prohibitively expensive.
Therefore many approximate solutions, such as hierarchial k-means (HKM) [17] and
approximate k-means (AKM) [19], have been developed to improve the efficiency,
but with a sacrifice of clustering accuracy.

In this chapter, we introduce a novel approximate k-means algorithm,1 which
makes abetter tradeoff between the speed and the accuracy.Our approach ismotivated
by the observation that active points, defined as the points whose cluster assignments
change in each iteration, often locate at or near boundaries of different clusters. The
idea is to identify those active points at or near cluster boundaries to improve both the
efficiency and accuracy in the assignment step of the k-means algorithm.We generate
a neighborhood set for each data point by pre-assembling the data points using
multiple random partition trees [26]. A cluster closure is then formed by expanding
each point in the cluster into its neighborhood set, as illustrated in Fig. 17.2. When
assigning a point x to its nearest cluster, we only need to consider those clusters that
contain x in their closures. Typically a point belongs to a small number of cluster
closures, thus the number of candidate clusters are greatly reduced in the assignment
step.

We evaluate our algorithm by complexity analysis, the performance on clustering
real data sets, and the performance of image retrieval applications with codebooks
learned by clustering. Our proposed algorithm achieves significant improvements
compared to the state-of-the-art, in both accuracy and running time.When clustering
a real data set of 1M384-dimensional GIST features into 10K clusters, our algorithm
converges more than 2.5 faster than the state-of-the-art algorithms. In the image
retrieval application on a standard dataset, our algorithm learns a codebook with

1 A conference version appeared in [28].
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750K visual words that outperforms the codebooks with 1M visual words learned
by other state-of-the-art algorithms—even our codebook with 500K visual words is
superior over other codebooks with 1M visual words.

17.2 Literature Review

Given a set of points {x1, x2, . . . , xn}, where each point is a d-dimensional vec-
tor, k-means clustering aims to partition these n points into k (k � n) groups,
G = {G1,G2, . . . ,Gk}, by minimizing the within-cluster sum of squared distortions
(WCSSD):

J (C ,G ) =
k∑

j=1

∑

xi ∈G j

‖xi − c j‖22, (17.1)

where c j is the center of cluster G j , c j = 1
|G j |

∑
xi ∈G j

xi , and C = {c1, . . . , ck}. In
the following, we use group and cluster interchangeably.

17.2.1 Lloyd Algorithm

Minimizing the objective function in Eq.17.1 is NP-hard in many cases [14]. Thus,
various heuristic algorithms are used in practice, and k-means (or Lloyd’s algo-
rithm) [6, 12, 13] is the most commonly used algorithm. It starts from a set of k
cluster centers (obtained from priors or random initialization) {c(1)1 , . . . , c(1)k }, and
then proceeds by alternating the following two steps:

• Assignment step: Given the current set of k cluster centers,C (t) = {c(t)1 , . . . , c(t)k },
assign each point xi to the cluster whose center is the closest to xi :

z(t+1)
i = argmin

j
‖xi − c(t)j ‖2. (17.2)

• Update step: Update the points in each cluster, G (t+1)
j = {xi |z(t+1)

i = j}, and
compute the new center for each cluster, c(t+1)

j = 1
|G (t+1)

j |
∑

xi ∈G (t+1)
j

xi .

The computational complexity for the above assignment step and the update step
is O(ndk) and O(nd), respectively. Various speedup algorithms have been devel-
oped by making the complexity of the assignment step less than the linear time
(e.g., logarithmic time) with respect to n (the number of the data points),
k (the number of clusters), and d (the dimension of the data pint). In the follow-
ing, we present a short review mainly on handling large n and k.
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17.2.2 Handling Large Data

Distance computation elimination. Various approaches have been proposed to speed
up exact k-means.An accelerated algorithm is proposed by using the triangle inequal-
ity [3] and keeping track of lower and upper bounds for distances between points and
centers to avoid unnecessary distance calculations but requires O(k2) extra storage,
rendering it impractical for a large number of clusters.
Subsampling. An alternative solution to speed up k-means is based on sub-sampling
the data points. One way is to run k-means over sub-sampled data points, and then to
directly assign the remaining points to the clusters. An extension of the above solution
is to optionally add the remaining points incrementally, and to rerun k-means to get
a finer clustering. The former scheme is not applicable in many applications. As
pointed in [19], it results in less accurate clustering and lower performance in image
retrieval applications. The Coremeans algorithm [7] uses the latter scheme. It begins
with a coreset and incrementally increases the size of the coreset. As pointed out
in [7], Coremeans works well only for a small number of clusters. Consequently,
those methods are not suitable for large-scale clustering problems, especially for
problems with a large number of clusters.
Data organization. The approach in [9] presents a filtering algorithm. It begins by
storing the data points in a k-d tree and maintains, for each node of the tree, a
subset of candidate centers. The candidates for each node are pruned or filtered, as
they propagate to the children, which eliminates the computation time by avoiding
comparing each center with all the points. But as the paper points out, it works well
only when the number of clusters is small.

In the community of document processing, Canopy clustering [15], which is
closely related to our approach, first divides the data points into many overlapping
subsets (called canopies), and clustering is performed by measuring exact distances
only between points that occur within a common canopy. This eliminates a lot of
unnecessary distance computations.

17.2.3 Handling Large Clusters

Hierarchical k-means. The hierarchical k-means (HKM)uses a clustering tree instead
of flat k-means [17] to reduce the number of clusters in each assignment step. It first
clusters the points into a small number (e.g., 10) of clusters, then recursively divides
each cluster until a certain depth h is reached. The leaves in the resulted clustering
tree are considered to be the final clusters (For h = 6, one obtains one million
clusters).

Suppose that the data points associated with each node of the hierarchial tree are
divided into a few (e.g., a constant number k̄, much smaller than k) subsets (clusters).
In each recursion, each point can only be assigned to one of the k̄ clusters, and the
depth of the recursions is O(log k). The computational cost is O(n log k) (ignoring
the small constant number k̄).
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Approximate k-means. In [19] approximate nearest neighbor (ANN) search replaces
the exact nearest neighbor (NN) search in the assignment step when searching for
the nearest cluster center for each point. In particular, the current cluster centers in
each k-means iteration are organized by a forest of k-d trees to perform an acceler-
ated approximate NN search. The cost of the assignment step consists of two aspects:
O(k log k) for constructing k-d trees, and O(Mn log k) for finding approximate near-
est centers for each data point, where M is the number of accessed nearest cluster
candidates in the k-d trees. Refined-AKM (RAKM) [18] further improves the con-
vergence speed by enforcing constraints of non-increasing objective values during
the iterations. Both AKM and RAKM require a considerable overhead of construct-
ing k-d trees in each k-means iteration, thus a trade-off between the speed and the
accuracy of the nearest neighbor search has to be made.

17.2.4 Others

There are someother complementaryworks in improving k-means clustering. In [22],
the update step is speeded up by transforming a batch update to a mini-batch update.
The high-dimensional issue has also been addressed by using dimension reduction,
e.g., random projections [1, 5] and product quantization [8].

Object discovery and mining from spatially related images is one topic that is
related to image clustering [2, 11, 20, 21, 23], which also aims to cluster the images
so that each group contains the same object. This is a potential application of our
scalable k-means algorithm. In [29, 30], we introduce an algorithm of clustering
spatially-related images based on the neighborhood graph. The idea of constructing
the neighborhood graph is to adopt multiple spatial partition trees, which is similar
to the idea of the proposed approach in this chapter.

17.3 K -means with Cluster Closures

In this section, we first introduce the proposed approach, then give the analysis and
discussions, and finally present the implementation details.

17.3.1 Approach

Active points. K -means clustering partitions the data space into Voronoi cells—each
cell is a cluster and the cluster center is the center of the cell. In the assignment
step, each point x is assigned to its nearest cluster center. We call points that change
cluster assignments in an iteration active points. In other words, x changes cluster
membership from the i th cluster to the j th cluster because d(x, c j ) < d(x, ci ), where
d(·) is the distance function.
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Fig. 17.1 The distribution
of the distance ratio. It shows
that most active points have
smaller distance ratio and lie
near some cluster boundaries
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We observe that active points are close to the boundary between c j and ci . To

verify this, we define distance ratio for an active point x as: r(x) = 1− d(x, c j )

d(x, ci )
. The

distance ratio r(x) is in the range of (0, 1], since we only compute distance ratio for
active points. Smaller values of r mean closer to the cluster boundaries. Figure17.1
shows the distribution of distance ratios when clustering 1M GIST features from
the Tiny image data set (described in 17.4.1) to 10K clusters. We can see that most
active points have small distance ratios, e.g. more than 90% of the active points have
a distance ratio less than 0.15 (shown in the red area), and thus lie near to cluster
boundaries.

During the assignment step, we only need to identify the active points and change
their cluster memberships. The above observation that active points lie close to cell
boundaries suggests a novel approach to speed up the assignment step by identifying
active points around cell boundaries.
Cluster closures. Assume for now that we have identified the neighborhood of a
given point x, a set of points containing x’s neighboring points and itself, denoted
byNx . We define the closure of a cluster G as:

Ḡ =
⋃

x∈G
Nx . (17.3)

Figure17.2 illustrates the relationship between the cluster, the neighborhood points,
and the closure.

If active points are on the cluster boundaries, aswe have observed, then by increas-
ing the neighborhood size Nx , the group closure Ḡ will be accordingly expanded
to cover more active points that will be assigned to this group G in the assignment
step. Figure17.3 shows the recall (of an active point being covered by the closure of
its newly assigned cluster) versus the neighborhood size of Nx over the Tinyimage
data set describe in Sect. 17.4.1. Similar results are also observed in other data sets.
As we can see, with a neighborhood size as small as 50, about 90% of the active
points are covered by the closures of the clusters to which these active points will be
re-assigned.
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Fig. 17.2 Illustration of
uniting neighborhoods to
obtain the closure. The black
dash line indicates the
closure of cluster G

ClosureG−

Fig. 17.3 The coverage of
the active points by the
closure w.r.t. the
neighborhood size. A
neighborhood of size 50 has
about 90% coverage
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We now turn to the question of how to efficiently compute the neighborhoodNx

of a given point x used in Eq.17.3. We propose an ensemble approach using multiple
random spatial partitions. A single approximate neighborhood for each point can
be derived from a random partition (RP) tree [26], and the final neighborhood is
assembled by combining the results frommultiple random spatial partitions. Suppose
that a leaf node of a single RP tree, contains a set of points V = {x j }, we consider
all the points in V to be mutually neighboring to each other. Thus the neighborhood
of a point x in the set V can be straightforwardly computed by Nx = V .

Since RP trees are efficient to construct, the above neighborhood computation is
also efficient. While the group closure from one single RP tree may miss some active
points, using multiple RP trees effectively handles this problem.We simply unite the
neighborhoods of x from all the RP trees:

Nx =
⋃

l

Vl .

Here Vl is a set of points in the leaf from the lth RP tree that contains x. Note that a
point x may belong to multiple group closures. Also note that the neighborhood of
a given point is computed only once.
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Fast assignment. With the group closures {Ḡ j } computed from Eq.17.3, the
assignment step can be done by verifying whether a point belonging to the closure
Ḡ j should indeed be assigned to the cluster G j :

• Initialization step: Initialize the distance array D[1 : n] by assigning an positive
infinity value to each entry.

• Closure-based assignment:
For each cluster closure {Ḡ j }:
For each point xs

i ∈ Ḡ j , s = 1, 2, ..., |Ḡ j |:

if: ‖xs
i − c(t)j ‖22 < D[i],

then: z(t+1)
i = j,

D[i] = ‖xs
i − c(t)j ‖22.

Here c(t)j is the cluster center of G j at the t th iteration, i is the global index for x

and s is the index into Ḡ j for point xi .

In the assignment step, we only need to compute the distance from the center of a
cluster to each point in the cluster closure.A point typically belongs to a small number
of cluster closures. Thus, instead of computing the distances from a point x to all
cluster centers in exact k-means, or constructing k-d trees of all cluster centers at each
iteration to find the approximate nearest cluster center, we only need to compute the
distance from x to a small number of cluster centers whose cluster closures contain
x, resulting in a significant reduction in computational cost. Moreover, the fact that
active points are close to cluster boundaries is the worst case for k-d trees to find the
nearest neighbor. On the contrary, such a fact is advantageous for our algorithm.

17.3.2 Analysis

Convergence. The following shows that our algorithm always converges. Since the
objective function J (C ,G ) is lower-bounded, the convergence can be guaranteed if
the objective value does not increase at each iterative step.

Theorem 1 (Non-increase) The value of the objective function does not increase at
each iterative step, i.e.,

J (C (t+1),G (t+1)) � J (C (t),G (t)). (17.4)

Proof In the assignment step for the (t + 1)th iteration, {c(t)k } computed from the
t th iteration are cluster candidates. xi would change its cluster membership only if it
finds a closer cluster center, thus we have ‖xi −c(t)

z(t+1)
i

‖2 � ‖xi −c(t)
z(t)i

‖2, and Eq.17.4
holds for the assignment step.



17 Fast Approximate K -Means via Cluster Closures 381

In the update step, the cluster center will then be update based on the new point
assignments. We now show that this update will not increase the within-cluster sum
of squared distortions, or in a more general form:

∑

x∈G j

‖x − c̄ j‖22 �
∑

x∈G j

‖x − c‖22, (17.5)

where c̄ j is the j th updated cluster center c̄ j = 1
|G j |

∑
x∈G j

x, and c is an arbitrary

point in the data space. Equation17.5 can be verified by the following:

∑

x∈G j

‖x − c‖22

=
∑

x∈G j

‖(x − c̄ j ) + (c̄ j − c)‖22

=
∑

x∈G j

‖x − c̄ j‖22 + 2(c̄ j − c)T
∑

x∈G j

(x − c̄ j )

+ |G j |‖c̄ j − c‖22
=

∑

x∈G j

‖x − c̄ j‖22 + |G j |‖c̄ j − c‖22

�
∑

x∈G j

‖x − c̄ j‖22. (17.6)

Thus Eq.17.4 holds for the update step. �
Accuracy. Our algorithm obtains the same result as the exact Lloyd’s algorithm if
the closures of the clusters are large enough, in such a way all the points that would
have been assigned to the j th cluster when using the Lloyd’s algorithm belong to
the cluster closure Ḡ j . However, it should be noted that this condition is sufficient
but not necessary. In practice, even with a small neighborhood, our approach often
obtains results similar to using the exact Lloyd’s algorithm. The reason is that the
missing points, which should have been assigned to the current cluster at the current
iteration but are missed, are close to the cluster boundary thus likely to appear in
the closure of the new clusters updated by the current iteration. As a result, these
missing points are very likely to be correctly2 assigned in the next iteration.
Complexity. Consider a point xi and its neighborhood Nxi , the possible groups that
may absorb xi are G̃xi = {G j | ∃ x j s.t. x j ∈ G j and x j ∈ Nxi }. As a result, we have
|G̃xi | � |Nxi |. In our implementation, we use balanced random bi-partition trees,
with each leaf node containing c points (c is a small number). Suppose we use m
random partition trees. Then the neighborhood size of a point will not be larger than
M = cm. As a result, the complexity of the closure-based assignment step is O(nM).

2 “Correctly” w.r.t. assignments if produced by Lloyd’s algorithm.
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For the complexity of constructing trees, our approach constructs a RP-tree in
O(n log n) and AKM costs O(k log k) to build a k-d tree. However, our approach
only needs a small number (typically 10 in our clustering experiments) of trees
through all iterations, but AKM requires constructing a number (e.g., 8 in [19]) of
trees in each iteration, which makes the total cost more expensive.

17.3.3 Discussion

We present the comparison of our approach with most relevant three algorithms,
Canopy clustering, approximate k-means, and hierarchical k-means.
Versus Canopy clustering. Canopy clustering suffers from the canopy creation whose
cost is high for visual features. More importantly, it is non-trivial (1) to define a
meaningful and efficient approximate distance function for visual data, and (2) to
tune the parameters for computing the canopy, both of which are crucial to the
effectiveness and efficiency ofCanopy clustering. In contrast, our approach is simpler
and more efficient because random partitions can be created with a cost of only
O(n log n). Moreover, our method can adaptively update cluster member candidates,
in contrast to static canopies in [15].
Versus AKM. The advantages of the proposed approach over AKM are summarized
as follows. First, the computational complexity of assigning a new cluster to a point
in our approach is only O(1), while the complexity is O(log k) for AKM or RAKM.
The second advantage is that we only need to organize the data points once as
the data points do not change during the iterations, in contrast to AKM or RAKM
that needs to construct the k-d trees at each iteration as the cluster centers change
from iteration to iteration. Last, it is shown that active points (points near cluster
boundaries) present the worst case for ANN search (used in AKM) to return their
accurate nearest neighbors. In contrast, our approach is able to identify active points
efficiently and makes more accurate cluster assignment for active points without the
shortcoming in AKM.
Versus HKM. As shown before, HKM takes less time cost than AKM and our
approach.However, its cluster accuracy is not as good asHKMandour approach.This
is because when assigning a point to a cluster (e.g., quantizing a feature descriptor)
in HKM, it is possible that an error could be committed at a higher level of the tree,
leading to a sub-optimal cluster assignment and thus sub-optimal quantization.

17.3.4 Implementation Details

Cluster Closure computation. The proposed algorithm adopts random partition trees
for creating cluster closures. We first give a short introduction of random partition
trees. The random partition tree is a binary tree structure that is formed by recursively
splitting the space and aims to organize the data points in a hierarchical manner. Each
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node of the tree is associated with a region in the space, called a cell. These cells
define a hierarchical decomposition of the space. The root node r is associated with
the whole set of data points X . Each internal node v is associated with a subset
of data points Xv that lie in the cell of the node. It has two child nodes left(v) and
right(v), which correspond to two disjoint subsets of data pointsXleft(v) andXright(v).
The leaf node l may be associated with a subset of data points or only contain a
single point. Random partition trees have many applications, such as quantization
and approximate nearest neighbor search. Our algorithm as described previously
considers the data points lying in the same leaf node to be mutually neighboring to
each other, to compute the approximate neighborhood for each data point.

In the implementation, we use a random principal direction to form the partition
hyperplane to split the data points into two subsets. The principal directions are
obtained by using principal component analysis (PCA). To generate random princi-
pal directions, rather than computing the principle direction from the whole subset
of points, we compute the principal direction over the points randomly sampled
from each subset. In our implementation, the principle direction is computed by the
Lanczos algorithm [10].

We use an adaptive scheme that incrementally creates random partitions to auto-
matically expand the group closures on demand. At the beginning of our algorithm,
we only create one random partition tree. After each iteration, we compute the reduc-
tion rate of the within-cluster sum of squared distortions. If the reduction rate in
successive iterations is smaller than a predefined threshold, a new random partition
tree is added to expand points’ neighborhood thus group closures. We compare the
adaptive neighborhood scheme to a static one that computes the neighborhoods alto-
gether at the beginning (called static neighborhoods). As shown in Fig. 17.4, we can
see that the adaptive neighborhood scheme performs better in all the iterations and
hence is adopted in the later comparison experiments.

Fig. 17.4 Clustering
performance with adaptive
versus static neighborhoods
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Fig. 17.5 Clustering
performance with different
numbers of threads
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Assignment parallelization. The closure-based assignment step can be implemented
in another equivalent way. For each point x, we first identify the candidate centers
by checking the cluster memberships Zx of the points within the neighborhood of
x. Here Zx = {z(y) | y ∈ Nx }, and z(y) is the cluster membership of point y. Then
the best cluster candidate for x can be found by checking the clusters {c j | j ∈ Zx }.
In this equivalent implementation, the assignments are computed independently and
can be naturally parallelized. The update step computes the mean for each the cluster
independently, which can be naturally parallelized as well. Thus, our algorithm can
be easily parallelized. We show the clustering performance with the parallel imple-
mentation (using multiple threads on multi-core CPUs) in Fig. 17.5.

17.4 Experiments

17.4.1 Data Sets

SIFT. The SIFT features are collected from the Caltech 101 dataset [4]. We extract
maximally stable extremal regions for each image, and compute a 128-dimensional
SIFT feature for each region. We randomly sample 1 million features to form this
data set.
Tiny images. We generate three datasets sampled from the tiny images [25]: 1M tiny
images, 200K tiny images, and 500K tiny images. The 1M tiny images are randomly
sampled without using category (tag) information. We sample 1K (1.2K) tags from
the tiny images and sample about 200 (400) images for each tag, forming 200K
(500K) images. We use a 384-dimensional GIST feature to represent each image.
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Shopping images. We collect about 5M shopping images from the Internet. Each
image is associated with a tag to indicate its category.We sample 1K tags and sample
200 images for each tag to form the 200K image set.We use a 576-dimensional HOG
feature to represent each image.
Oxford 5K. This dataset [19] consists of 5,062 high resolution images of 11 Oxford
landmarks. The collection has been manually annotated to generate a comprehensive
ground truth for 11 different landmarks, each represented by 5 possible queries. This
gives a set of 55 queries over which an object retrieval system can be evaluated.
The images, the SIFT features, and the ground truth labeling of this dataset is pub-
licly available.3 This dataset and the next dataset will be used to demonstrate the
application of our approach to object retrieval.
Ukbench 10K. This dataset is from the Recognition Benchmark introduced in [17]. It
consists of 10,200 images split into four-image groups, each of the same scene/object
taken at different viewpoints. The dataset, the SIFT descriptors, and the ground truth
is publicly available.4

17.4.2 Evaluation Metric

We use two metrics to evaluate the performance of various clustering algorithms,
the within-cluster sum of squared distortions (WCSSD) which is the objective value
defined by Eq.17.1, and the normalized mutual information (NMI) which is widely
used for clustering evaluation. NMI requires the ground truth of cluster assign-
ments G for points in the dataset. Given a clustering result X , NMI is defined
by NMI(G ,X ) = I (G ,X )√

H(G )H(X )
, where I (G ,X ) is the mutual information of G

and X and H(·) is the entropy.
In object retrieval, image feature descriptors are quantized into visual words using

codebooks. A codebook of high quality will result in less quantization errors and
more repeatable quantization results, thus leading to a better retrieval performance.
We apply various clustering algorithms to constructing visual codebooks for object
retrieval. By fixing all the other components and parameters in our retrieval system
except the codebook, the retrieval performance is an indicator of the quality of the
codebook. For the Oxford 5K dataset, we follow [19] to use mean average precision
(mAP) to evaluate the retrieved images. For the UKBench 10K dataset, the retrieval
performance is measured by the average number of relevant images in the top 4
retrieved images, ranging from 0 to 4.

3 http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/index.html.
4 http://www.vis.uky.edu/~stewe/ukbench/.

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/index.html
http://www.vis.uky.edu/~stewe/ukbench/
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Fig. 17.6 Clustering performance in terms of within-cluster sum of squared distortions (WCSSD)
versus time. The first row are the results of clustering 1M SIFT dataset into 0.5, 2 and 10K clusters,
respectively. The second row are results on 1M tiny image dataset

17.4.3 Clustering Performance Comparison

We compare our proposed clustering algorithmwith four approximate k-means algo-
rithms, namely hierarchial k-means (HKM), approximate k-means (AKM), refined
approximate k-means (RAKM) and Canopy algorithm. The exact Lloyd’s is much
less efficient and prohibitively costly for large datasets, so we do not report its results.
We use the implementation of HKM available from [16], and the public release of
AKM.5 The RAKM is modified from the above AKM release. For Canopy algo-
rithm, we conduct principal component analysis over the features to project them
to a lower-dimensional subspace to achieve a fast canopy construction. For a fair
comparison, we initialize the cluster assignment by a random partition tree in all
algorithms except HKM. The time costs for constructing trees or other initialization
are all included in the comparisons. All algorithms are run on a 2.66GHz desktop
PC using a single thread.

Figure17.6 shows the clustering performance in terms of WCSSD versus time.
The experiments are performed on two datasets, the 1M 128-dimensional SIFT
datasets and the 1M 384-dimensional tiny image dataset, respectively. The results
are shown for different number of clusters, ranging from 500 to 10K. Our approach
consistently outperforms the other four approximate k-means algorithms—it con-
verges faster to a smaller objective value.

5 http://www.robots.ox.ac.uk/~vgg/software/fastcluster/.

http://www.robots.ox.ac.uk/~vgg/software/fastcluster/
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Fig. 17.7 Clustering performance in terms of normalized mutual information (NMI) versus time,
on the dataset of a 200K tiny images, b 500K tiny images, and c 200K shopping images

Figure17.7 shows the clustering results in terms of NMI versus time.We use three
labeled datasets, the 200K tiny images, the 500K tiny images and the 200K shopping
images. Consistent with the WCSSD comparison results, our proposed algorithm is
superior to the other four clustering algorithms.

We also show the qualitative clustering results of our algorithm. Figure17.8 shows
some examples of the clustering results over the 200K shopping images. Figure17.9
shows some examples of the clustering results over the 500K tiny images. The first 3
clusters are examples of similar objects, the second 3 clusters are examples of similar
texture images, and the last cluster are an example of similar sceneries.

17.4.4 Empirical Analysis

We conduct empirical studies to understandwhy our proposed algorithm has superior
performance. In particular we compare our proposed approach with AKM [19] and
RAKM [18] in terms of the accuracy and the time cost of cluster assignment, using
the task of clustering the 1M tiny image dataset into 2,000 clusters. To be on the same
ground, in the assignment step the number of candidate clusters for each point is set
the same. For (R)AKM, the number of candidate clusters is simply the number of
points accessed in k-d trees when searching for a nearest neighbor. For our proposed
algorithm, we partition the data points with RP trees such that the average number
of candidate clusters is the same as the number of accessed points in k-d trees.
Figure17.10a compares the accuracy of cluster assignment by varying the number
of candidate clusters. We can see that our approach has a much higher accuracy in
all cases, which has a positive impact on the iterative clustering algorithm to make
it converge faster. Figure17.10b compares the time of performing one iteration, by
varying the number of candidate clusters M for each point. We can see that our
algorithm is much faster than (R)AKM in all cases, e.g., taking only about half the
time of (R)AKM when M = 50. This is as expected since finding the best cluster
costs O(1) for our algorithm but O(log k) for k-d trees used in (R)AKM.
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Fig. 17.8 Six representative clustering results shown from (a) to (f) over the 200K shopping
images: each cluster example is represented by two rows of images which are randomly picked out
from the cluster
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Fig. 17.9 Six representative clustering results shown from (a) to (f) over the 500K tiny images:
each cluster example is represented by two rows of images which are randomly picked out from
the cluster
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Fig. 17.10 Comparison of accuracy and time in the assignment step when clustering the 1M tiny
image data set into 2,000 clusters. a Accuracy versus the number of cluster candidates; b Time for
one iteration versus the number of cluster candidates
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Fig. 17.11 Clustering performance versus the bucket size of a RP tree

We perform another empirical study to investigate the bucket size parameter in the
RP tree, using the task of clustering the SIFT dataset into 10K clusters. Figure17.11a
shows the results in terms of WCSSD versus the number of iterations, with bucket
sizes set to 5, 10, 20, 40, respectively. A larger bucket size leads to a larger WCSSD
reduction in each iteration, because it effectively increases the neighborhood size for
each data point. Figure17.11b shows the result in terms of WCSSD versus time. We
observe that at the beginning, bucket sizes of 10 and 20 perform even better than the
bucket size of 40. But eventually, the performance of various bucket sizes are similar.
The difference between Figs. 17.11a and 17.11b is expected, as a larger bucket size
leads to a better cluster assignment at each iteration, but increases the time cost for
one iteration. In our comparison experiments, a bucket size of 10 is adopted.
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17.4.5 Evaluation Using Object Retrieval

We compare the quality of codebooks built by HKM, (R)AKM, and our approach,
using the performance of object retrieval. AKMandRAKMperform almost the same
when the number of accessed candidate centers is large enough, so we only present
results from AKM.

We perform the experiments on the UKBench 10K dataset which has 7M local
features, and on theOxford 5Kdatasetwhich has 16M local features. Following [19],
we perform the clustering algorithms to build the codebooks, and test only the fil-
tering stage of the retrieval system, i.e., retrieval is performed using the inverted file
(including the tf-idf weighting).

The results over the UKbench 10K dataset are obtained by constructing 1M
codebook, and use the L1 distance metric. The results of HKM and AKM are taken
from [17] and [19], respectively. From Table17.1, we see that for the same codebook
size, our method outperforms other approaches. Besides, we also conduct the exper-
iment over subsets of various sizes, which means that we only consider the images in
the subset as queries and the search range is also constrained within the subset. The
performance comparison is given in Fig. 17.12, from which we can see our approach
consistently gets superior performances.

The performance comparison using the Oxford 5K dataset is shown in Table17.2.
We show the results of using the bag-of-words (BoW) representationwith a 1Mcode-
book and using spatial re-ranking [19]. Our approach achieves the best performance,
outperforming AKM in both the BoW representation and spatial re-ranking.

We also compare the performance of our approach to AKM and HKM using
different codebook sizes, as shown in Table17.3. Our approach is superior compared
to other approaches with different codebook sizes. Different from AKM that gets
the best performance with a 1M-word codebook, our approach obtains the best
performance with a 750K-word codebook, indicating that our approach is producing
a higher quality codebook.

Last, we show some visual examples of the retrieval results in Fig. 17.13. The first
images in each row is the query, followed by the top results.

Table 17.1 A comparison of
our approach to HKM and
AKM on the UKbench 10K
data set using a 1M-word
codebook

Method Scoring levels Average top

HKM 1 3.16

HKM 2 3.07

HKM 3 3.29

HKM 4 3.29

AKM 3.45

Ours 3.50



392 J. Wang et al.

0 2000 4000 6000 8000 10000
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Subset size

A
ve

ra
ge

 T
op

Our approach
AKM
HKM

Fig. 17.12 A comparison of our approach to HKM and AKM on the UKbench 10K data set with
various subset sizes

Table 17.2 A comparison of our approach with HKM and AKM on the Oxford 5K data set with
a 1M-word codebook

Method Scoring level mAP (BoW) mAP (spatial)

HKM-1 1 0.439 0.469

HKM-2 2 0.418

HKM-3 3 0.372

HKM-4 4 0.353

AKM 0.618 0.647

Our approach 0.655 0.666

Table 17.3 Performance comparison of our approach, HKM, and AKM using different codebook
sizes on the Oxford 5K data set

Vocabulary size HKM AKM AKM spatial Ours Ours spatial

250K 0.399 0.598 0.633 0.620 0.636

500K 0.422 0.606 0.642 0.647 0.658

750K 0.440 0.609 0.630 0.664 0.674

1M 0.439 0.618 0.645 0.655 0.666

1.25M 0.449 0.602 0.625 0.650 0.674

2M 0.457 0.604 0.617 0.621 0.647
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Fig. 17.13 Seven representative examples of the retrieval results shown from (a) to (g) over Oxford
5k dataset: the first image in each row is the query image and the following images are the top results

17.5 Conclusions

There are three factors that contribute to the superior performance of our proposed
approach: (1)We only need to consider active points that change their cluster assign-
ments in the assignment step of the k-means algorithm; (2) Most active points locate
at or near cluster boundaries; (3) We can efficiently identify active points by pre-
assembling data points using multiple random partition trees. The result is a sim-
ple, easily parallelizable, and surprisingly efficient k-means clustering algorithm.
It outperforms state-of-the-art on clustering large-scale real datasets and learning
codebooks for image retrieval.

Acknowledgments This work was partially supported by the National Basic Research Program of
China (973 Program) under Grant 2014CB347600.
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Chapter 18
Fast Neighborhood Graph Search Using
Cartesian Concatenation

Jingdong Wang, Jing Wang, Gang Zeng, Rui Gan, Shipeng Li
and Baining Guo

Abstract In this chapter, we propose a new data structure for approximate nearest
neighbor search. This structure augments the neighborhood graph with a bridge
graph.Wepropose to exploit Cartesian concatenation to produce a large set of vectors,
called bridge vectors, from several small sets of subvectors. Each bridge vector
is connected with a few reference vectors near to it, forming a bridge graph. Our
approach finds nearest neighbors by simultaneously traversing the neighborhood
graph and the bridge graph in the best-first strategy. The success of our approach
stems from two factors: the exact nearest neighbor search over a large number of
bridge vectors can be done quickly, and the reference vectors connected to a bridge
(reference) vector near the query are also likely to be near the query. Experimental
results on searching over large scale datasets (SIFT, GIST and HOG) show that our
approach outperforms state-of-the-art ANN search algorithms in terms of efficiency
and accuracy. The combination of our approach with the IVFADC system [1] also
shows superior performance over the BIGANN dataset of 1 billion SIFT features
compared with the best previously published result.
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18.1 Introduction

Similar image search, a.k.a., content-based image retrieval, has been attracted a lot of
attention in multimedia research. The study before the year of 2005 mainly focuses
on designing the low-level features describing the images. Recently, a lot of research
focus has been switched to the nearest neighbor search algorithm as the size of the
database has increased tomillions and even billions because of the popularity of large
scale and high-dimensional multimedia data in Internet and social media websites
such as Flickr. In this chapter, we study the nearest neighbor (NN) search problem.

The simplest solution to NN search is linear scan, comparing each reference
vector to the query vector. The search complexity is linear with respect to both the
number of reference vectors and the data dimensionality. Apparently, it is too time-
consuming and does not scale well in large scale and high-dimensional problems.
Algorithms, including the KD tree [2–5], BD trees [2], cover tree [6], nonlinear
embedding [7] and so on, have been proposed to improve the search efficiency.
However, for high-dimensional cases, it turns out that such approaches are not much
more efficient than linear scan and cannot satisfy the practical requirement. Therefore,
a lot of efforts have been turned to approximate nearest neighbor (ANN) search, such
as KD trees with its variants, hashing algorithms, neighborhood graph search, and
inverted indices.

In this chapter, we propose a new data structure for approximate nearest neighbor
search.1 This structure augments the neighborhood graph with a bridge graph that
is able to boost approximate nearest neighbor search performance. Inspired by the
product quantization technology [1, 9], we adopt Cartesian concatenation (or Carte-
sian product), to generate a large set of vectors, which we call bridge vectors, from
several small sets of subvectors to approximate the reference vectors. Each bridge
vector is then connected to a few reference vectors that are near enough to it, forming
a bridge graph. Combining the bridge graph with the neighborhood graph built over
reference data vectors yields an augmented neighborhood graph. The ANN search
procedure starts by finding the nearest bridge vector to the query vector, and dis-
covers the first set of reference vectors connected to such a bridge vector. Then the
search simultaneously traverses the bridge graph and the neighborhood graph in the
best-first manner using a shared priority queue.

The advantages of adopting the bridge graph lie in two-fold. First, computing
the distances from bridge vectors to the query is very efficient, for instance, the
computation for 1,000,000 bridge vectors that are formed by 3 sets of 100 subvectors
takes almost the same time as that for 100 vectors. Second, the best bridge vector is
most likely to be very close to true NNs, allowing the ANN search to quickly reach
true NNs through bridge vectors.

We evaluate the proposed approach by the feature matching performance on
SIFT and HOG features, and the performance of searching similar images over
tiny images [10] with GIST features. We show that our approach achieves significant
improvements compared with the state-of-the-art in terms of accuracy and search

1 A conference version appeared in [8].
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time. We also demonstrate that our approach in combination with the IVFADC
system [1] outperforms the state-of-the-art over the BIGANN dataset of 1 billion
SIFT vectors [11].

18.2 Literature Review

Nearest neighbor search in the d-dimensional metric space Rd is defined as follows:
given a query q, the goal is to find an element NN(q) from the database X =
{x1, . . . , xn} so that NN(q) = argminx∈X dist(q, x). In this chapter, we assume
that Rd is an Euclidean space and dist(q, x) = ‖q − x‖2, which is appropriate for
most problems in multimedia search and computer vision.

There are two types of ANN search problems. One is error-constrained ANN
search that terminates the search when the minimum distance found up to now lies
in some scope around the true minimum (or desired) distance. The other one is time-
constrained ANN search that terminates the search when the search reaches some
prefixed time (or equivalently examines a fixed number of data points). The latter
category is shown to be more practical and give better performance. Our proposed
approach belongs to the latter category.

The ANN search algorithms can be roughly divided into four categories: partition
trees, neighborhood graph, compact codes (hashing and source coding), and inverted
index. The following presents a short review of the four categories.

18.2.1 Partition Trees

The partition tree based approaches recursively split the space into subspaces, and
organize the subspaces via a tree structure. Most approaches select hyperplanes or
hyperspheres according to the distribution of data points to divide the space, and
accordingly data points are partitioned into subsets.

The KD trees [4, 5], using axis-aligned hyperplane to partition the space, have
beenmodified tofindANNs.Other trees usingdifferent partition schemes, such asBD
tress [2], metric trees [12–15], hierarchical k-means tree [16], and randomized KD
trees [17–19], have been proposed. FLANN [20] aims to find the best configuration
of the hierarchical k-means trees and randomized KD trees, and has been shown to
work well in practice.

In the query stage, the branch-and-bound methodology [4] is usually adopted to
search (approximate) nearest neighbors. This scheme needs to traverse the tree in
the depth-first manner from the root to a leaf by evaluating the query at each internal
node, and pruning some subtrees according to the evaluation and the currently-found
nearest neighbors. The current state-of-the-art search strategy, priority search [2] or
best-first search [3], maintains a priority queue to access subtrees in order so that the
data points with large probabilities being true nearest neighbors are first accessed. It
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has been shown that best-first search (priority search) achieves the best performance
for ANN search, while the performance might be worse for exact NN search than
the algorithms without using best-first search.

18.2.2 Neighborhood Graph Search

The data structure of the neighborhood graph is a directed graph connecting each
vector and its nearest neighbors. Usually a R-NN graph, that connects each vector to
its R nearest neighbors, is used. Various algorithms based on neighborhood graph [3,
21–26] are developed for ANN search.

The basic procedure of neighborhood graph search starts from one or several
seeding vectors, and puts them into a priority queue with the distance to the query
being the key. Then the process proceeds by popping the top one in the queue, i.e., the
nearest one to the query, and expanding its neighborhood vectors (fromneighborhood
graph), amongwhich the vectors that have not been visited are pushed into the priority
queue. This process iterates till a fixed number of vectors are accessed.

Using neighborhood vectors of a vector as candidates has two advantages. One
is that extracting the candidates is very cheap and only takes O(1) time. The other
is that if one vector is close to the query, its neighborhood vectors are also likely
to be close to the query. The main research effort consists of two aspects. One is to
build an effective neighborhood graph [21, 24]. The other is to design efficient and
effective ways to guide the search in the neighborhood graph, including presetting
the seeds created via clustering [24, 25], picking the candidates from KD trees [22],
iteratively searching between KD trees and the neighborhood graph [26]. In this
chapter, we present a more effective way, combining the neighborhood graph with a
bridge graph, to search for approximate nearest neighbors.

18.2.3 Compact Codes

The compact code approaches transform each data vector into a small code, using
the hashing or source coding techniques. Usually the small code takes much less
storage than the original vector, and particularly the distance in the small code space,
e.g., hamming distance or using lookup table can be much more efficiently evaluated
than in the original space.

Locality sensitive hashing (LSH) [27], originally used in a manner similar to
inverted index, has been shown to achieve good theory guarantee in finding near
neighbors with probability, but it is reported not as good as KD trees in practice [20].
Multi-probe LSH [28] adopts the search algorithm similar to priority search, achiev-
ing a significant improvement. Nowadays, the popular usage of hashing is to use the
hamming distance between hash codes to approximate the distance in the original
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space and then adopt linear scan to conduct the search. To make the best of the
data, recently, various data-dependent hashing algorithms are proposed by learn-
ing hash functions using metric learning-like techniques, including optimized ker-
nel hashing [29], learned metrics [30], learnt binary reconstruction [31], kernelized
LSH [32], and shift kernel hashing [33], semi-supervised hashing [34], (multidi-
mensional) spectral hashing [35, 36], iterative quantization [37], complementary
hashing [38] and order preserving hashing [39].

The source coding approach, product quantization [1], divides the vector into
several (e.g., M) bands, and quantizes reference vectors for each band separately.
Then each reference vector is approximated by the nearest center in each band,
and the index for the center is used to represent the reference vector. Accordingly,
the distance in the original space is approximated by the distance over the assigned
centers in all bands,which can be quickly computed using precomputed lookup tables
storing the distances between the quantization centers of each band separately.

18.2.4 Inverted Index

Inverted index is composed of a set of inverted lists each of which contains a subset
of the reference vectors. The query stage selects a small number of inverted lists,
regards the vectors contained in the selected inverted lists as the NN candidates,
and reranks the candidates, using the distance computed from the original vector or
using the distance computed from the small codes followed by a second-reranking
step using the distance computed from the original vector, to find the best candidates.

The inverted index algorithms are widely used for very large datasets of vectors
(hundreds of million to billions) due to its small memory cost. Such algorithms
usually load the inverted index (and possibly extra codes) into the memory and
store the raw features in the disk. A typical inverted index is built by clustering
algorithms, e.g., [1, 9, 16, 40, 41], and is composed of a set of inverted lists, each of
which corresponds to a cluster of reference vectors. Other inverted indices include
hash tables [27], tree codebooks [4] and complementary tree codebooks [42].

18.3 Preliminaries

This section gives short introductions on several algorithms our approach depends
on: neighborhood graph search, product quantization, and the multi-sequence search
algorithm.
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18.3.1 Neighborhood Graph Search

A neighborhood graph of a set of vectorsX = {x1, . . . , xn} is a directed graph that
organizes data vectors by connecting each data point with its neighboring vectors.
The neighborhood graph is denoted as G = {(vi , Adj[vi ])}n

i=1, where vi corresponds
to a vector xi and Adj[vi ] is a list of nodes that correspond to its neighbors.

The ANN search algorithm proposed in [22], we call local neighborhood graph
search, is a procedure that starts from a set of seeding points as initial NN can-
didates and propagates the search by continuously accessing their neighbors from
previously-discovered NN candidates to discover more NN candidates. The best-
first strategy [22] is usually adopted for local neighborhood expansion.2 To this end,
a priority queue is used to maintain the previously-discovered NN candidates whose
neighborhoods are not expanded yet, and initially contains only seeds. The best
candidate in the priority queue is extracted out, and the points in its neighborhood
are discovered as new NN candidates and then pushed into the priority queue. The
resulting search path of discovering NN candidates may not bemonotone, but always
attempts to move closer to the query point without repeating points. As a local search
that finds better solutions only from the neighborhood of the current solution, the
local neighborhood graph search will be stuck at a locally optimal point and has
to conduct exhaustive neighborhood expansions to find better solutions. Both the
proposed approach and the iterated approach [26] aim to efficiently find solutions
beyond local optima.

18.3.2 Product Quantization

The idea of product quantization is to decompose the space into a Cartesian product
of M low-dimensional subspaces and to quantize each subspace separately (e.g.,
using the k-means algorithm). A vector x is then decomposed into M subvectors,
x1, . . . , xM , such that xT = [(x1)T (x2)T . . . (xM )T ]. Let the quantization dictio-
naries over the M subspaces be C1,C2, . . . ,CM with Cm being a set of centers
{cm1, . . . , cmK }. A vector x is represented by a short code composed of its subspace
quantization indices, {k1, k2, . . . , kM }. Equivalently,

x =

⎡

⎢⎢⎢⎣

C(1) 0 · · · 0
0 C(2) · · · 0
...

...
...

...

0 0 · · · C(M)

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

b(1)

b(2)

...

b(M)

⎤

⎥⎥⎥⎦ , (18.1)

2 The depth-first search strategy can also be used. Our experiments show that the performance is
much worse than the best-first search.
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where C(m) = [cm1 cm2 . . . cmK ], and b(m) is a vector in which the km th entry is 1
and all others are 0.

Given a query q, the asymmetric scheme divides q into M subvectors {q1, . . . ,

qM }, and computes M distance arrays {d1, . . . , dM } (for computation efficiency,
store the square of the Euclidean distance) with the centers of the M subspaces. For
a database point encoded as {k1, k2, . . . , kM }, the square of the Euclidean distance
is approximated as

∑M
m=1 dmkm , which is called asymmetric distance.

The application of product quantization in our approach is different from appli-
cations to fast distance computation [1] and code book construction [9], the goal of
Cartesian product in this chapter is to build a bridge to connect the query and the
reference vectors through bridge vectors.

18.3.3 Multi-sequence Search

Given several monotonically increasing sequences, {Sb}m
b=1 where Sb is a sequence

of real values, sb(1), sb(2), . . . , sb(nb), with sb(l) < sb(l + 1), the multi-sequence
search algorithm [9] aims at traversing the set of m-tuples {(i1, i2, . . . , im)|ib =
1 . . . nb} in order of increasing the sum s1(i1) + s2(i2) + · · · + sm(im), or finding t
m-tuples {(i k

1 , i k
2 , . . . , i k

m)|k = 1, 2, . . . , t} whose sums are the smallest among all
the possible m-tuples.

The algorithm uses a min-priority queue of the tuples (i1, i2, . . . , im) with the
key being the sum s1(i1) + s2(i2) + · · · + sm(im). It starts by initializing the queue
with a tuple (1, 1, . . . , 1). At step t , the tuple with top priority (the minimum sum),
(i (t)1 , i (t)2 , . . . , i (t)m ), is popped from the queue and regarded as the t th best tuple whose
sum is the t th smallest. At the same time, the tuple (i1, i2, . . . , im), if all its preceding
tuples, {(i ′1, i ′2, . . . , i ′m)|i ′b = ib, ib −1}−{(i1, i2, . . . , im)} have already been pushed
into the queue, is pushed into the queue. As a result, the multi-sequence algorithm
produces a sequence of m-tuples in order of increasing the sum and can stop at step
t −1 if the best t m-tuples are required. The time cost of extracting the best t m-tuples
is t (log t + m). Here m corresponds to the cost of checking if the m successors of
one tuple popped out from the queue are qualified to be pushed into the queue. log t
corresponds to the cost of inserting a tuple into the queue, where t is the upper bound
of the length of the queue for the t th step.

18.4 Approach

The databaseX contains N d-dimensional reference vectors,X ={x1, x2, . . . , xN },
xi ∈ R

d . Our goal is to build an index structure using the bridge graph such that, given
a query vector q, its nearest neighbors can be quickly discovered. In this section,we
first describe the index structure and then show the search algorithm.
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18.4.1 Data Structure

Our index structure consists of two components: a bridge graph that connects bridge
vectors and their nearest reference vectors, and a neighborhood graph that connects
each reference vector to its nearest reference vectors.
Bridge vectors Cartesian concatenation is an operation that builds a new set out of a
number of given sets. Given m sets, {S1,S2, . . . ,Sm}, where each set, in our case,
contains a set of di -dimensional subvectors such that

∑m
i=1 di = d, the Cartesian

concatenation of those sets is defined as follows,

Y = ×m
i=1Si � {y j = [yT

j1 yT
j2 · · · yT

jm ]T |y ji ∈ Si }.

Here y j is a d-dimensional vector, and there exist
∏m

i=1 ni vectors (ni = |Si | is
the number of elements in Si ) in the Cartesian concatenation Y . Without loss of
generality, we assume that n1 = n2 = · · · = nm = n for convenience. There is a
nice property that identifying the nearest one from Y to a query only takes O(dn)

time rather than O(dnm), despite that the number of elements in Y is nm . Inspired
by this property, we use the Cartesian concatenation Y , called bridge vectors, as
bridges to connect the query vector with the reference vectors.
Computing bridge vectors We propose to use product quantization [1], which aims to
minimize the distance of each vector to the nearest concatenated center derived from
subquantizers, to compute bridge vectors. This ensures that the reference vectors
discovered through one bridge vector are not far away from the query and hence the
probability that those reference vectors are true NNs is high.

It is also expected that the number of reference vectors that are close enough to
at least one bridge vector should be as large as possible (to make sure that enough
good reference vectors can be discovered merely through bridge vectors) and that
the average number of the reference vectors discovered through each bridge vector
should be small (to make sure that the time cost to access them is low). To this end,we
generate a large amount of bridge vectors. Such a requirement is similar to [1] for
source coding and different from [9] for inverted indices.
Augmented neighborhood graph The augmented neighborhood graph is a combi-
nation of the neighborhood graph Ḡ over the reference database X and the bridge
graph B between the bridge vectors Y and the reference vectorsX . The neighbor-
hood graph Ḡ is a directed graph. Each node corresponds to a point xi , and is also
denoted as xi for convenience. Each node xi is connected with a list of nodes that
correspond to its neighbors, denoted by Adj[xi ].

The bridge graph B is constructed by connecting each bridge vector y j in Y to
its nearest vectors Adj[yi ] inX . To avoid expensive computation cost, we build the
bridgegraph approximately byfinding top t (typically 100 in our experiments) nearest
bridge vectors for each reference vector and then keeping top b nearest (typically 5
in our experiments) reference vectors for each bridge vector.
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The bridge graph is different from the inverted multi-index [9]. In the inverted
multi-index, each bridge vector y contains a list of vectors that are closer to y than
all other bridge vectors, while in our approach each bridge is associated with a list
of vectors that are closer to y than all other reference data points.

18.4.2 Query the Augmented Neighborhood Graph

To make the description clear, without loss of generality, we assume there are two
sets of n subvectors, S1 = {y11, y12, . . . , y1n} and S2 = {y21, y22, . . . , y2n}. Given a
query q consisting of two subvectors q1 and q2, the goal is to generate a list of T
(T � N ) candidate reference points from X where the true NNs of q are most
likely to lie. This is achieved by traversing the augmented neighborhood graph in a
best-first strategy.

We give a brief overview of the ANN search procedure over a neighborhood graph
before describing how to make use of bridge vectors. The algorithm begins with a set
of (one or several) vectors Ps = {p} that are contained in the neighborhood graph.
It maintains a set of nearest neighbor candidates (whose neighborhoods have not
been expanded), using a min-priority queue, which we call the main queue, with the
distance to the query as the key. The main queue initially contains the vectors inPs .
The algorithm proceeds by iteratively expanding the neighborhoods in a best-first
strategy. At each step, the vector p∗ with top priority (the nearest one to q) is popped
from the queue. Then each neighborhood vector in Adj[p∗] is inserted to the queue
if it is not visited, and at the same time it is added to the result set (maintained by
a max-priority queue with a fixed length depending on how many nearest neighbors
are expected).

To exploit the bridgevectors,wepresent an extraction-on-demand strategy, instead
of fetching all the bridge vectors to the main queue, which leads to expensive cost in
sorting them and maintaining the main queue. Our strategy is to maintain the main
queue such that it consists of only one bridge vector if available. To be specific, if
the top vector p∗ in the main queue is a reference vector, the algorithm proceeds
as usual, the same to the above procedure without using bridge vectors. If the top
vector is a bridge vector, we first insert its neighbors Adj[p∗] into the main queue
and the result set, and in addition we find the next nearest bridge vector (to the query
q) and insert it to the main queue. The pseudo code of the search algorithm is given
in Algorithm 1 and an example process is illustrated in Fig. 18.1.

Before traversing the augmented neighborhood graph, we first process the bridge
vectors, and compute the distances (the square of the Euclidean distance) from q1 to
the subvectors inS1 and fromq2 to the subvectors inS2, and then sort the subvectors
in the order of increasing distances, respectively. We denote the sorted subvectors as
{y1i1 , . . . , y1in

} and {y2j1 , . . . , y2jn }. As the size n of S1 and S2 is typically not large
(e.g., 100 in our case), the computation cost is very small (See details in Sect. 18.6).
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Fig. 18.1 An example illustrating the search process. Y → X : the bridge graph, and X → X :
the neighborhood graph. The white numbers are the distances to the query. Magenta denotes the
vectors in the main queue, green represents the vector being popped out from the main queue,
and black indicates the vectors whose neighborhoods have already been expanded a Iteration 1,
b Iteration 2, c Iteration 3, d Iteration 4

The extraction-on-demand strategy needs to visit the bridge vector one by one
in the order of increasing distance from q. It is easily shown that dist2(q, y) =
dist2(q1, y1) + dist2(q2, y2), where y is consists of y1 and y2. Naturally, yi1, j1 ,
composed of y1i1 and y2i1 , is the nearest one to q. The multi-sequence algorithm
(corresponding to ExtractNextNearestBridgeVector() in Algorithm 1) is able to fast
produce a sequence of pairs (ik, jl) so that the corresponding bridge vectors are
visited in the order of increasing distances to the query q. The algorithm is very
efficient and producing the t th bridge vector only takes O(log(t)) time. Slightly
different from extracting a fixed number of nearest bridge vectors once [9], our
algorithm automatically determines when to extract the next one, that is when there
is no bridge vector in the main queue.

18.5 Experiments

18.5.1 Setup

We perform our experiments on three large datasets: the first one with local SIFT
features, the second one with global GIST features, and the third one with HOG
features, and a very large dataset, theBIGANNdataset of 1 billion SIFT features [11].
These three kinds of features are useful in real applications: Particular object retrieval
includes a step of mapping a SIFT feature to a visual word, which is a problem of
searching the nearest one from a vocabulary of SIFT features; Similar image search
can use GIST or HOG to represent the images and then is transformed to a nearest
neighbor search problem over the GIST or HOG vector space.
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Algorithm 1 ANN search over the augmented neighborhood graph

/* q: the query; X : the reference data vectors; Y : the set of bridge vectors; G: the augmented
neighborhood graph; Q: themain queue; R: the result set; T : themaximumnumber of discovered
vectors; */

Procedure ANNSearch(q, X , Y , G, Q, R, T )
1. /* Mark each reference vector undiscovered */
2. for each x ∈ X do
3. Color[x] ← white;
4. end for
5. /* Extract the nearest bridge vector */
6. (y, D) ← ExtractNextNearestBridgeVector(Y );
7. Q ← (y, D);
8. t ← 0
9. /* Start the search */
10. while (Q 	= ∅ &&t � T ) do
11. /* Pop out the best candidate vector and expand its neighbors */
12. (p, D) ← Q. pop();
13. for each x ∈ Adj[p] do
14. if Color[x] = white then
15. D ← dist(q, x);
16. Q ← (x, D);
17. Color[x] ← black; /* Mark it discovered */
18. R ← (x, D); /* Update the result set */
19. t ← t + 1;
20. end if
21. end for
22. /* Extract the next nearest bridge vector if p is a bridge vector */
23. if p ∈ Y then
24. (y, D) ← ExtractNextNearestBridgeVector(Y );
25. Q ← (y, D);
26. end if
27. end while
28. return R;

The SIFT features are collected from the Caltech 101 dataset [43]. We extract
maximally stable extremal regions (MSERs) for each image, and compute a 128-
dimensional byte-valued SIFT feature for eachMSER.We randomly sample 1,000K
SIFT features and 100K SIFT features, respectively as the reference and query set.
The GIST features are extracted on the tiny image set [10]. The GIST descriptor
is a 384-dimensional byte-valued vector. We sample 1,000K images as the refer-
ence set and 100K images as the queries. The HOG descriptors are extracted from
Flickr images, and each HOG descriptor is a 512-dimensional byte-valued vector.
We sample 10M HOG descriptors as the reference set and 100K as the queries. The
BIGANN dataset [11] consists of 1B 128-dimensional byte-valued vectors as the
reference set and 10K vectors as the queries.

We use the accuracy score to evaluate the search quality. For k-ANN search, the
accuracy is computed as r/k, where r is the number of retrieved vectors that are
contained in the true k nearest neighbors. The true nearest neighbors are computed
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by comparing each query with all the reference vectors in the data set. We compare
different algorithms by calculating the search accuracy given the same search time,
where the search time is computed as the average query cost when accessing a certain
number of candidate vectors. We report the performance in terms of search time vs.
search accuracy for the first three datasets. Those results are obtained with 64 bit
programs on a 3.4G Hz quad core Intel PC with 24G memory.

18.5.2 Empirical Analysis

The index structure construction in our approach includes partitioning the vector
into m subvectors and grouping the vectors of each partition into n clusters. We
conduct experiments to study how they influence the search performance. The results
over the 1M SIFT and 1M GIST datasets are shown in Fig. 18.2. Considering two
partitions, it can be observed that the performance becomes better with more clusters
for each partition. This is because more clusters produce more bridge vectors and
thus more reference vectors are associated with bridge vectors and their distances
are much smaller. The result with 4 partitions and 50 clusters per partition gets the
best performance as in this case the properties desired for bridge vectors described
in Sect. 18.4.1 are more likely to be satisfied.

18.5.3 Comparisons

We compare our approach with state-of-the-art algorithms, including iterative neigh-
borhood graph search [26], original neighborhood graph search (AryaM93) [22],
trinary projection (TP) trees [17], vantage point (VP) tree [15], Spill trees [13],
FLANN [20], and inverted multi-index [9]. The results of all other methods are
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Fig. 18.2 Search performances with different number of partitions and clusters over a 1M SIFT
and b 1M GIST. x y : y means #partitions and x is #clusters
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Table 18.1 The parameters of our approach and the statistics

Size (M) #partitions #clusters #reference (K) α (%)

SIFT 1 4 50 715 11.4

GIST 1 4 50 599 9.59

HOG 10 4 100 5730 5.73

#reference means the number of reference vectors associated with the bridge vectors, and α means
the average number of unique reference vectors associated with each bridge vector

obtained by well tuning parameters. We do not report the results from hashing
algorithms as they are much worse than tree-based approach, which is also reported
in [19, 20]. The neighborhood graphs of different algorithms are the same, and each
vector is connected with 20 nearest vectors.We construct approximate neighborhood
graphs using the algorithm [44]. Table18.1 shows the parameters for our approach,
together with some statistics.

The experimental comparisons are shown in Fig. 18.3. The horizontal axis cor-
responds to search time (milliseconds), and the vertical axis corresponds to search
accuracy. From the results over the SIFT dataset shown in the first row of Fig. 18.3,
our approach performs the best. We can see that, given the target accuracy 90%
1-NN and 10-NN, our approach takes about 2

3 time of the second best algorithm,
iterative neighborhood graph search.

The second row of Fig. 18.3 shows the results over the GIST dataset. Compared
with the SIFT feature (a 128-dimensional vector), the dimension of the GIST feature
(384) is larger and the search is hence more challenging. It can be observed that
our approach is still consistently better than other approaches. In particular, the
improvement is more significant, and for the target precision 70% our approach
takes only half time of the second best approach, from 1 to 100 NNs. The third row
of Fig. 18.3 shows the results over the HOG dataset. This dataset is the most difficult
because it contains more (10M) descriptors and its dimension is the largest (512).
Again, our approach achieves the best results. For the target accuracy 70%, the search
time in the case of 1 NN is about 4

7 of the time of the second best algorithm.
All the neighborhood graph search algorithms outperform the other algorithms,

which shows that the neighborhood graph structure is good to index vectors. The
superiority of our approach to previous neighborhood graph algorithms stems from
that our approach exploits the bridge graph to help the search. Inverted multi-index
does not produce competitive results because its advantage is small index structure
size but its search performance is limited by an unfavorable trade-off between the
search accuracy and the time overhead in quantization. It is shown in [9] that inverted
multi-index works the best when using a second-order multi-index and a large code-
book, but this results in high quantization cost. In contrast, our approach benefits from
the neighborhood graph structure so that we can use a high-order product quantizer
to save the quantization cost.
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Our Approach Iterative Graph Arya Inverted Multi−Index TP Tree FLANN Spill Tree VP Tree
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Fig. 18.3 Performance comparison on a 1M 128-dimensional SIFT features, b 1M 384-
dimensional GIST features, and c 10M 512-dimensional HOG features. k is the number of target
nearest neighbors

In addition,we also conduct experiments to compare the source codingbasedANN
search algorithm [1]. This algorithm compresses each data vector into a short code
using product quantization, resulting in the fast approximate distance computation
between vectors. We report the results from the IVFADC system that performs the
best as pointed in [1] over the 1M SIFT and GIST features. To compare IVFADC
with our approach, we follow the scheme in [1] to add a verification stage to the
IVFADC system. We cluster the data points into K inverted lists and use a 64-bits
code to represent each vector as done in [1]. Given a query, we first find its M nearest
inverted lists, then compute the approximate distance from the query to each of the
candidates in the retrieved inverted lists. Finally we re-rank the top L candidates
using Euclidean distance and compute the 1-recall [1] of the nearest neighbor (the
same to the definition of the search accuracy for 1-NN). Experimental results show
that K = 2048 gets superior performance. Figure18.4 shows the results with respect
to the parameters M and L . One can see that our approach gets superior performance.
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Fig. 18.4 Search performances comparison with IVFADC [1] over a 1M SIFT and b 1M GIST.
The parameters M (the number of inverted lists visited), L (the number of candidates for re-ranking)
are given beside each marker of IVFADC

18.5.4 Experiments over the BIGANN Dataset

We evaluate the performance of our approach when combining it with the IVFADC
system [1] for searching very large scale datasets. The IVFADC system organizes the
data using inverted indices built via a coarse quantizer and represents each vector by
a short code produced by product quantization. During the search stage, the system
visits the inverted lists in ascending order of the distances to the query and re-ranks
the candidates according to the short codes. The original implementation only uses
a small number of inverted lists to avoid the expensive time cost in finding the exact
nearest inverted indices. The inverted multi-index [9] is used to replace the inverted
indices in the IVFADC system, which is shown better than the original IVFADC
implementation [1].

We propose to replace the nearest inverted list identification using our approach.
The good search quality of our approach in terms of both accuracy and efficiency
makes it feasible to handle a large number of inverted lists. We quantize the 1B fea-
tures into millions (6M in our implementation) of groups using a fast approximate
k-means clustering algorithm [45], and compute the centers of all the groups form-
ing the vocabulary. Then we use our approach to assign each vector to the inverted
list corresponding to the nearest center, producing the inverted indices. The residual
displacement between each vector and its center is quantized using product quan-
tization to obtain extra bytes for re-ranking. During the search stage, we find the
nearest inverted lists to the query using our approach and then do the same reranking
procedure as in [1, 9].

Following [1, 9] we calculate the recall@T scores of the nearest neighbor with
respect to different length of the visited candidate list L and different numbers of extra
bytes, m = 8, 16. The recall@T score is equivalent to the accuracy for the nearest
neighbor if a short list of T vectors is verified using exact Euclidean distances [11].
The performance is summarized in Table18.2. It can be seen that our approach
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Table 18.2 The performance (recall for the top-1, top-10, and top-100 candidates after reranking
and average search time in milliseconds) comparison between IVFADC [11], Multi-D-ADC [9]
and Our approach (Graph-D-ADC)

System List len R@1 R@10 R@100 Time

BIGANN, 1 billion SIFTs, 8 bytes per vector

IVFADC 4 million 0.100 0.280 0.600 960

Multi-D-ADC 10,000 0.165 0.492 0.726 29

Multi-D-ADC 30,000 0.172 0.526 0.824 44

Multi-D-ADC 100,000 0.173 0.536 0.870 98

Graph-D-ADC 10,000 0.199 0.562 0.802 24

Graph-D-ADC 30,000 0.201 0.584 0.873 39

Graph-D-ADC 100,000 0.201 0.589 0.896 90

BIGANN, 1 billion SIFTs, 16 bytes per vector

IVFADC 4 million 0.220 0.610 0.890 1135

Multi-D-ADC 10,000 0.324 0.685 0.755 30

Multi-D-ADC 30,000 0.347 0.777 0.891 47

Multi-D-ADC 100,000 0.354 0.813 0.959 109

Graph-D-ADC 10,000 0.374 0.764 0.831 24

Graph-D-ADC 30,000 0.391 0.829 0.924 39

Graph-D-ADC 100,000 0.395 0.851 0.964 92

IVFADC uses inverted lists with K = 1024, Multi-D-ADC uses the second-order multi-index with
K = 214 and our approach use inverted lists with K = 6M

consistently outperforms Multi-D-ADC [9] and IVFADC [1] in terms of both recall
and time cost when retrieving the same number of visited candidates. The superiority
over IVFADC stems from that our approach significantly increases the number of
inverted indices and produces space partitions with smaller (coarse) quantization
errors and that our system accesses a few coarse centers while guarantees relatively
accurate inverted lists. For inverted multi-index approach, although the total number
of centers is quite large the data vectors are not evenly divided into inverted lists. As
reported in the supplementary material of [9], 61% of the inverted lists are empty.
Thus the quantization quality is not as good as ours. Consequently, it performs worse
than our approach.

18.6 Analysis and Discussion

Index structure size In addition to the neighborhood graph and the reference vectors,
the index structure of our approach includes a bridge graph and the bridge vectors. The
number of bridge vectors in our implementation is O(N ), with N being the number
of the reference vectors. The storage cost of the bridge vectors are then O(

m
√

N ),
and the cost of the bridge graph is also O(N ). In the case of 1M 384-dimensional
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GIST byte-valued features, without optimization, the storage complexity (125M
bytes) of the bridge graph is smaller than the reference vectors (384M bytes) and
the neighborhood graph (160M bytes). The cost of KD trees, VP trees, and TP trees
are ∼180M, ∼180M, and ∼560M bytes. In summary, the storage cost of our index
structure is comparable with those neighborhood graph and tree-based structures.

In comparison to source coding [1, 11] and hashing without using the original fea-
tures, and inverted indices (e.g. [9]), our approach takes more storage cost. However,
the search quality of our approach in terms of accuracy and time ismuch better, which
leaves users for algorithm selection according to their preferences to less memory or
less time. Moreover the storage costs for 1M GIST and SIFT features (<1G bytes)
and even 10M HOG features (<8G bytes) are acceptable in most today’s machines.
When applying our approach to the BIGANN dataset of 1B SIFT features, the index
structure size for our approach is about 14G for m = 8 and 22G for m = 16,
which is similar with Multi-D-ADC [9] (13G for m = 8 and 21G for m = 16) and
IVFADC [1] (12G for m = 8 and 20G for m = 16).
Construction complexity The index construction process consists of bridge vector
computation via product quantization, bridge graph construction, and neighborhood
graph construction.Bridge vector computation includes the quantization process over
m groups of N d

m -dimensional vectors, whose total complexity is O(Nnd Q) with
Q being the number of iterations in the k-means algorithm. Bridge graph construc-
tion consists of 1) building m ordered sequences, which takes O(N (nd +mn log n))

(nd corresponds to the distance computation of a reference point to mn d
m prod-

uct quantization centers and mn log n corresponds to sorting m sequences with the
length of each sequence is n), 2) finding top t nearest bridge vectors for the ref-
erence points, which takes O(Nt (log t + m)), and 3) finding top b reference vec-
tors for a bridge vector from the reference vectors connecting to this bridge vector,
which takes O(Ntb). Here is the explanation for the third step. Suppose that t j

is the number of reference vectors connecting the bridge vector y j , finding top b
reference vectors takes O(t j b). Then the total complexity for all bridge vectors is
O(

∑J
n= j t j b) = O(b

∑J
n= j t j ) = O(Ntb), where J is the number of bridge vec-

tors and the second equality comes from that the number of all the connections
is

∑J
n= j t j = Nt . Approximate neighborhood graph construction using the algo-

rithm [44] takes O(N log N ) time. In our experiments, using a 3.4G Hz quad core
Intel PC, the index structures of the 1M SIFT data, the 1M GIST data, and the 10M
HOG data can be built within half an hour, an hour, and 10 hours, respectively. These
time costs are relatively large but acceptable as they are offline processes.

The algorithm of combining our approach with the IVFADC system [1] over the
BIGANN dataset of size 1 billion requires the similar construction cost with the
state-of-the-art algorithm [9]. Because the number of data vectors is very large (1B),
the most time-consuming stage is to assign each vector to the inverted lists and both
take about 2 days. The structure of our approach organizing the 6M centers takes
only a few hours, which is relatively small. These construction stages are all run with
48 threads on a server with 12 AMD Opteron 1.9GHz quad core processors.



414 J. Wang et al.

Search complexity The search procedure of our approach consists of the distance
computation over the subvectors, the traversal over the bridge graph and the neigh-
borhood graph. The distance computation over the subvectors is very cheap and
takes small constant time (about the distance computation cost with 100 vectors in
our experiments). Compared with the number of reference vectors that are required
to reach an acceptable accuracy (e.g., the number is about 4,800 for accuracy 90%
in the 1M 384-dimensional GIST feature data set), such time cost is negligible.

Besides the computation of the distances between the query vector and the visited
reference vectors, the additional time overhead comes from maintaining the priority
queue and querying the bridge vectors using the multi-sequence algorithm. Given
there are T reference vectors that have been discovered, it can be easily shown
that the main queue is no longer than T . Consider the worst case that all the T
reference vectors come from the bridge graph, where each bridge vector is associated
with α unique reference vectors on average (the statistics for α in our experiments
is presented in Table18.1), we have that T

α
bridge vectors are visited. Thus, the

maintenance of the main queue takes O((1+ 1
α
)T log T ) time. Extracting T

α
bridge

vectors using the multi-sequence algorithm [9] takes O( T
α
log( T

α
)). Consequently

the time overhead on average is O((1 + 2
α
)T log T − T

α
logα) = O(T log T ).

Figure18.5 shows the time cost of visiting 10K reference vectors in different
algorithms on two datasets. Linear scan represents the time cost of computing the
distances between a query and all reference vectors. The overhead of a method is the
difference between the time cost of this method and that of linear scan. We can see
that the inverted multi-index takes the minimum overhead and our approach is the
second minimum. This is because our approach includes extra operations over the
main queue.

Fig. 18.5 Average time cost of visiting 10K reference vectors. The time overhead (difference
between the average time cost and the cost of linear scan) of our approach is comparably small



18 Fast Neighborhood Graph Search Using Cartesian Concatenation 415

Relations to source coding [1] and inverted multi-index [9] Product quantization (or
generally Cartesian concatenation) has two attractive properties. One property is that
it is able to produce a large set of concatenated vectors from several small sets of
subvectors. The other property is that the exact nearest vectors to a query vector
from such a large set of concatenated vectors can be quickly found using the multi-
sequence algorithm. The application to source coding [1] exploits the first property,
thus results in fast distance approximation. The application to invertedmulti-index [9]
makes use of the second property to fast retrieve concatenated quantizers. In contrast,
our approach exploits both the two properties: the first property guarantees that the
approximation error of the concatenated vectors to the reference vectors is small with
small sets of subvectors, and the second property guarantees that the retrieval from
the concatenated vectors is very efficient and hence the time overhead is small.

18.7 Conclusions

The key factors contribute to the superior performance of our proposed approach
include: (1) Discovering NN candidates from the neighborhood of both bridge vec-
tors and reference vectors is very cheap; (2) The NN candidates from the neighbor-
hood of the bridge vector have high probability to be true NNs because there are a
large number of effective bridge vectors generated by Cartesian concatenation; (3)
Retrieving nearest bridge vectors is very efficient. The algorithm is very simple and
is easily implemented. The power of our algorithm is demonstrated by the superior
ANN search performance over large scale SIFT, HOG, and GIST datasets, as well
as over a very large scale dataset, the BIGANN dataset of 1 billion SIFT features
through the combination of our approach with the IVFADC system.
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Chapter 19
Listen to the Sound of Data

Mark Last and Anna Usyskin (Gorelik)

Abstract Timestamped observations, generally known as time series, may contain
valuable information about a variety of natural and man-made phenomena rang-
ing from weather changes to stock markets. Our capability to collect such data has
increased dramatically due to advances in computing and sensory technologies. Visu-
alization is known as a very effective tool for interactive data exploration tasks. In this
research, we have tested the hypothesis that musical sonification (the use of musical
audio) can serve as a viable alternative to visualization of time-series data whenever
the visual representation is unavailable or impossible to use. We have developed a
time-series sonification technique, which utilizes some important features of Western
tonal music to convert univariate and multivariate time series into a musical equiva-
lent. The technique was used to conduct two online user studies, where the subjects
were asked questions about the data behavior by listening to a musical display of
time series rather than viewing their visual representation. The results of both stud-
ies indicate that our methodology for musical representation of time-dependent data
allows most users, including people with low musical hearing ability, to successfully
perform a variety of common data exploration tasks.

19.1 Introduction

A time series is a sequence of time-dependent values or events, usually recorded at
regular intervals. Meteorological measurements, manufacturing process monitoring,
and stock markets are just a few examples of a wide variety of sources for time-series
data. Traditional time series analysis [8, 13] includes the following tasks:

• Indexing and retrieval (given a time series of interest, find the nearest matching
time series)
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• Clustering (find natural groupings of the time series)
• Classification (assign a time series to one of a set of predefined classes)
• Segmentation (approximate a time series by a sequence of piecewise segments)
• Trend discovery (identify long-term trends representing seasonal, cyclic or irreg-

ular variations)
• Correlation analysis (discovering similar/opposite trends between a pair of time

series),
• Event detection (detect events of interest, especially abnormal events, in a time

series).
• Forecasting (prediction of future time series values)

All tasks above apply to both univariate and multivariate time series.
A common perceptual tool for interactive data exploration tasks is visualization,

which exploits the phenomenal abilities of the human eye to detect complex structures
in images. As shown in [18], visualization methods for time-dependent data can
answer a variety of questions on the behavior of univariate and multivariate time
series. However, a visual display of data cannot be used by everybody. Thus, the eyes
of some people (like pilots, drivers, physicians, etc.) may already be overloaded with
visual information, whereas certain professionals may need to take urgent decisions
based on time-series data while being away from their offices and without having
access to a sufficiently large computer monitor. Besides, blind and visually impaired
persons may find even the simplest visual displays completely useless. In these and
other situations, another human sense, the sense of hearing, can come to the rescue.

According to [11], sonification is defined as “the use of non-speech audio to convey
information.” Sonification is also referred to as an auditory display as opposed to the
visual display. Auditory user interfaces are routinely used by sonar devices, sound
alarm systems, Geiger counters, metal detectors, and other tools. Since time series
and audio sequences have the same sequential characteristics, a musical sound should
provide a particularly good means to represent time series [20]. Another important
advantage of time-series sonification is its bandwidth, since the sound is now believed
to be largely processed in the right brain, which is responsible for synergistic thinking
[24]. Thus, a driver can quickly respond to the horn sounds made by other drivers
while listening to the music from his car audio system.

In this chapter, we study the capability of musical sonification to serve as a viable
alternative to visualization of time-series data whenever the visual representation is
unavailable or impossible to use. We present a general-purpose time-series sonifica-
tion technique [12], which utilizes some important features of Western tonal music,
like melody, rhythm, dynamics, and timbre, to convert univariate and multivariate
time series into a musical equivalent. We start with choosing the period of interest
(e.g., a day, a quarter, a year, etc.) and the series (time-dependent attributes) to be
sonified. According to the approach proposed in [12], each attribute is translated
separately into its musical equivalent before playing the entire set of attributes as
one “melody”. Though the total number of concurrently measured time series in a
given data stream may be quite large, we have to take into consideration the natural
limitations of the human auditory perception. Consequently, we do not recommend
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applying this procedure to more than ten attributes simultaneously. Our goal is to
obtain a musical sequence with several voices so that altogether we will be able to
monitor the time-dependent behavior of all attributes by listening to their sounds.

This chapter is organized as follows. Section 19.2 discusses the previous use of
sonification for representation of data. Section 19.3 describes the proposed time-
series sonification technique. In Sects. 19.4 and 19.5, we present the results of two
online user studies aimed at evaluating the human ability to explore sonified data.
Section 19.6 concludes the chapter with a detailed discussion of experimental results
and an outline of proposed directions for future research in auditory mining of time
series databases.

19.2 Related Work

19.2.1 Overview of Sonification Techniques

Hermann [5] summarizes the requirements for a technique to be called sonification
in the following definition:

“Definition: A technique that uses data as input, and generates sound signals
(eventually in response to optional additional excitation or triggering) may be called
sonification, if and only if

(C1) The sound reflects objective properties or relations in the input data.
(C2) The transformation is systematic. This means that there is a precise definition

provided of how the data (and optional interactions) cause the sound to change.
(C3) The sonification is reproducible: given the same data and identical interac-

tions (or triggers) the resulting sound has to be structurally identical.
(C4) The system can intentionally be used with different data, and also be used

in repetition with the same data.”
According to the above definition, sonification is an accurate scientific method,

which leads to reproducible results, addressing the ear rather than the eye (as visual-
ization would do). As indicated by Hermann [5], subjectivity in human interpretation
is common to all techniques that bridge the gap between data and the human sensory
system.

The most common sonification techniques include audification, earcons, auditory
icons, spearcons, parameter-mapping sonification, and model-based sonification. A
brief description of each of these techniques is provided in the following paragraphs.
In addition to those techniques, there is also a branch of sonification that puts the
user into the loop; this is referred to as interactive sonification [6]. This form of
sonification can be integrated with a varying degree of ease into the above listed
techniques.

Audification is the most direct transformation of data values into sound: the sound
samples (instantaneous sound pressure levels) are directly obtained from the data
values. This means that ordered lists of numbers, e.g., seismic data are directly
taken as PCM (pulse code modulation) data for a sound. As a result, sounds are
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played back without interruption. There are a couple of interesting transformations
like resampling, time stretching, pitch scaling, dynamic compression, filtering, etc.,
which allow to adapt the resulting sound to the preferred frequency range of the ear.
Audification is best suited to domains where the data itself is generated by a physical
process (e.g., waves propagating through material) [1].

Earcons were developed to provide an immediate feedback to a user activity in
a graphical user interface (GUI). They can be implemented as simple sounds (such
as typing on a touchscreen keyboard sound) or constructed from a lexicon of simple
sounds to represent more complex meanings, similarly as words can be combined
to form phrases. The lexicon may have elements that vary in rhythm, pitch, timbre,
register, and dynamics. The main disadvantage of earcons is the human difficulty to
learn a “dictionary” of more than seven symbolic sounds [21].

Auditory icons were also originally designed to provide feedback about activities
in a GUI. The auditory icon approach is to map objects and events in the interface
onto everyday sounds that represent reminiscent or conceptually related objects and
events [4]. The meaning of the sound shall be connected to the information by
metaphorical association. For example, when dragging a file icon on the computer
desktop to the trashcan icon, a crushing sound could represent the deletion action. If
the sound level or complexity would depend on the file size being deleted, this would
be a parameterized auditory icon. However, the number of software operations that
can be intuitively associated with sounds from the physical world is quite limited.

Recently, an alternative to earcons and auditory icons has emerged which may be
able to ameliorate some of the flexibility–learnability trade-off in interface sounds.
Spearcons (Speech-Based Earcons) use temporally compressed speech to represent
objects, items, or processes with sound. Spearcons have been shown to outper-
form both earcons and auditory icons and may be especially useful in the design
of advanced auditory menus [30] or for representing a large number of items.

Parameter mapping is the most popular sonification technique for representing
high-dimensional data as sound. Typically, a data dimension is mapped onto an
auditory parameter such as onset, duration, pitch, pitch variation, loudness, position
(spatial cues), reverberation, brilliance, etc. Different data variables can be mapped
to different auditory parameters at the same time to produce a complex sound. Con-
sequently, flexible, multi-dimensional data displays can be obtained. The resulting
sound may become confusing when there are nonlinear relationships between the
represented variables [10].

Model-based sonification has been proposed as an alternative framework for com-
puting data-driven sound in [5–7]. The starting point is that sound in the real world
is a by-product of physical processes and a complex sound encodes in a holistic way
source properties in its temporal evolution. However, since the extraction of source-
related information from the sound has been of high importance in the real world
(e.g., to recognize arriving predators early) evolution has led to an optimization of
these sound processing skills, including the processing hardware, the brain. In addi-
tion, one often learns about the world by interacting with the world and interpreting
the acoustic feedback. To carry these concepts over to the domain of data exploration,
a sonification model defines a kind of “virtual acoustic object,” whose setup might be
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driven by the dataset under analysis. Laws of dynamics (corresponding to the laws of
physics in the real world) determine the temporal evolution of a sonification model.

19.2.2 Sonification of Time Series

Important features of the musical sound are that it has a sequential nature, a particular
duration, and evolves as a function of time. The order of sounds in the musical
sequence is critical—they have to be heard in a given order. Time series depend on
time as well and have the same sequential characteristics. Consequently, it can be
argued, that the musical sound provides a good means to represent time series [20].

We could find only a few articles discussing the use of sonification for represen-
tation of time series, some of them concentrated on combining of visual and audio
information [19, 20]. Several other articles described a toolkit or an algorithm that was
designed to represent specific types of databases, like meteorological observations,
geo-referenced data, EEG, DNA, etc. [3, 11, 28, 29, 31]. There are several works
evaluating interactive data mining tasks, like classification [3, 5, 23] and others. All
these studies argue that in classification tasks, where a human expert evaluates the
data, sonification can improve the classification performance. Only very few works
speak about similarity-related tasks. One of them is Pauletto and Hunt’s research
from 2004 [23], where authors introduce a toolkit for interactive sonification that is
supposed to be generic enough to work on different databases (the empirical case
studies were conducted for two time-series databases—physiotherapy movement
data and helicopter flight data). Pauletto and Hunt define five categories of sonifica-
tion algorithms that can produce perceptually distinguishable sounds. The identified
categories are [23]:

1. Mapping to clearly recognizable perceptual parameters, such as pitch, loudness,
and duration.

2. Mapping onto sound variables so that the overall timbre of the sound represents
the evolution of the data.

3. Creating a mix of separately perceivable sounds, when wishing to portray many
channels of data.

4. Mapping onto many channels of data. This can contribute to the evolution in time
of a single sound with a complex timbre.

5. Utilizing parameter redundancy by mapping one channel of data onto more than
one sound variable.

The Interactive Sonification Toolkit [23] was used in [22] to evaluate three differ-
ent levels of interactive sonification. In the first experiment, subjects were asked to
navigate and listen to a sonified dataset and then to recognize which data structures
were present in the dataset and in which order. Five basic data structures (including
random noise) were synthetically produced for this experiment. Each dataset (time
series) contained a combination of various data structures. The sonification method
used was mapping the datasets to the amplitude of a sine oscillator. In the second
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experiment, multivariate data from electromyography (EMG) sensors was used for
real-time sonification of muscles activity. The EMG data was sonified using a sound
synthesis technique called amplitude modulation (AM). Both studies have shown
that user interaction can increase the usability of sonification systems.

19.3 The Sonification Procedure

19.3.1 The Procedure Overview

The proposed sonification procedure consists of three main steps, or sub-algorithms:
the time-series segmentation algorithm (SWAB), the sonification algorithm (SEG-
>MSQ) translating a segmented database to the MSQ1 format, and the MSQ->MIDI
Converter translating a file in the MSQ format to a standard MIDI file. The input
of the sonification procedure is a time series dataset, which can be a univariate or a
multivariate one. The procedure output is a MIDI and/or an MP3 music file.

The algorithm interprets each time series as an ordered sequence of values related
to a specific attribute. The number of selected attributes should not exceed 10, whereas
we do not recommend using this mode for more than 3–4 continuous and another 1–3
nominal attributes due to the natural limitations of human auditory perception. Each
procedure step runs separately for only one attribute at a time, including all the statis-
tics calculations, the segmentation algorithm, and the translation to a musical equiva-
lent (using the SEG->MSQ algorithm). We refer to this mode of sonification as “verti-
cal” since we parse the input database by selected attributes (time series) and nearly all
calculations are done separately for each attribute without any “horizontal” or “inter-
series” relation. As a result of running the sonification algorithm in the vertical mode,
we obtain a musical sequence with several voices each playing its own melody, the
sounds start and stop only due to changes in a specific attribute, but altogether we hear
what happens to all attributes during some period of time or at some specific moment.

Two different kinds of sonification may be used for continuous data. We repre-
sent continuous attributes (like temperature, price, height, number of items, etc.) by
changes in music pitch2 or by changes in volume (loudness). We have applied four
main rules to sonification of continuous data:

• A direct correspondence exists between a numeric value and music pitch/volume.
For example, if the value on the first day is greater than on the second one, then
the pitch/volume of the first sound will be higher/louder than those of the second
sound.

1 MSQ format was designed by Siegfried Koepf and Bernd Haerpfer in 1998. The idea is to
have a platform-independent, easily readable, and editable file format qualified for algorithmic
manipulation and composition as well as for real-time controlling MIDI instruments. More details
about the MSQ Project are available at [17].
2 Pitch is related to the repetition rate of the waveform of a sound; for a pure tone this corresponds
to its frequency.
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• The order of numbers is important. For example, if 27 comes before 38 in the series,
then the corresponding sound of 27 will be played before the corresponding sound
of 38.

• The sound duration is important. If the values of a numerical sequence did not
change significantly during a given period, then the pitch/volume of musical sound
representing it would not change too and its duration would represent the duration
of the sequence.

• It is important to clarify that representation by volume changes is used only for
multivariate datasets, where one attribute is represented by music pitch and another
attribute is represented by volume changes. As a result, we will obtain a “melody”
where the pitch of music sound represents one attribute and volume (loudness)
represents another attribute from the same dataset.

It is important to understand that volume sonification (sonification by changes
of volume) can only be secondary to the regular, pitch sonification (sonification by
changes of pitch). An attribute represented by volume sonification is always related
to another attribute, represented by pitch sonification.

Besides sonification of continuous data, one may want to sonify nominal data
as well. For representation of nominal data (e.g., yes/no, exists/does not exist, item
categories, etc.) we use the following rules:

• To represent nominal data we use particular musical instruments (usually various
drums or bells) and music sound.

• Each attribute is represented by a different instrument and attribute values are
mapped to different musical pitches.

Let us introduce each of the mandatory sonification parameters, and then every
optional parameter, as well. Besides input and output files, the only mandatory para-
meter of the vertical sonification mode is the list of attributes selected for sonification.
The order of “sonification attributes” is important only if a default set of instruments
is used for sonification. In this case, the serial number of a selected attribute deter-
mines the instrument representing it (if instruments are not specified). As indicated
above, the number of sonification attributes should not be more than 10.

Besides the mandatory parameters, several groups of optional parameters exist.
The first two optional parameters are Percentage of data to be sonified and Use the
same scale. The first parameter determines the “compression ratio” (percentage)
between the final number of segments to be created and the total number of records
in the dataset (values in each time series). If the user is not interested in running any
segmentation on the data, s/he should enter 100 for this parameter. If this parameter
is not entered, the algorithm will use the default settings for the segmentation step (to
be defined later). The second parameter allows using the same scale for representing
different attributes. This means that if all selected attributes have the same range of
values, it may be useful to keep the same scale, or base, for representing the values
of these attributes. For example, if we have a database with closing prices of two
stocks, we can use the same scale to represent these prices, making the stock prices
comparable to each other. Another purpose of the Use the same scale parameter is to
keep the range of each attribute and then run sonification and get representation with
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each attribute “melody” playing in its own “range”. After this scaling operation, it is
much easier to interpret what happens at each moment to every attribute.

Three optional sonification types for each attribute in the list of sonification
attributes (mandatory parameter defined above) include pitch-based sonification
(default for continuous attributes), volume-based sonification (another option for
continuous attributes), and nominal sonification (for all nominal attributes). There can
be maximum three nominal sonification attributes. By our definition, each attribute
represented by volume should correspond to one of attributes represented by pitch.
This results in a maximum of five pairs of pitch-based and volume-based attributes.

For nominal attributes, there are two additional parameters: Default value and
Sonify default value. The first parameter indicates the user-specified “default” value
of each nominal attribute, which is considered more significant than all other values.
The second parameter determines the sonified values of the attribute (all values or just
those that are different from the default value). For some binary-valued attributes like
yes/no and exists/does not exist it makes sense to sonify only “positive” values (yes,
exists), while “negative” values (no, does not exist) would not be represented at all.
For attributes where all values are equally important (like various item categories),
it is better to sonify each value by a unique musical sound played by the same
instrument (per attribute).

The last, but not the least group of optional parameters defines the instruments used
for sonification. We defined two different default sets for continuous and nominal
attributes, respectively. If no specific instrument was entered as a parameter for an
attribute, the default value is used according to the type of the attribute. It is obvious
that no instrument should be used for the volume parameter, because it is only used
for volume changes of its paired pitch attribute.

The pseudo-code of the vertical mode of the sonification algorithm for continuous
attributes can be found in Fig. 19.1. The algorithm works as follows: it starts with
partition of the original input file into the number of sub-files equal to the number
of selected attributes and calculates statistics for each new input file. After this
stage, each sub-file contains all values of one specific attribute. If the user decides
to use a common scale for all selected attributes, the algorithm runs on two arrays,
which contain information about minimal and maximal values for each attribute and
calculates the minimum and the maximum values of all attributes.

In the next step, the segmentation algorithm runs separately on each selected
attribute. If the inSegPers (percent of segmentation) parameter equals 100, there is
no need to run segmentation and we just simulate the output of the segmentation
algorithm by concatenating each input record with the number 2, where 2 is the min-
imal segment that could be found by a segmentation algorithm. Otherwise, by using
statistics calculated for the current attribute, we start iterations of the SWAB (sliding
window and bottom-up) segmentation algorithm [9]. The maximum of number of
iterations is 20. If the best max_error is not found, the algorithm continues with the
best error found after the 20th iteration. Once the best max_error is found, we stop
the algorithm. After completing the segmentation step for all attributes, we go to
the next step of our algorithm. For each attribute, we calculate the vector statistics
for the created segmentation file and use the calculated statistics in the next step
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Input: 

InFile - a univariate or a multivariate time series dataset 

NumCols - number of attributes (time series) in the dataset 

Output: 

OutFile - a MIDI music file

For j = 1 to numCols do

Run ComputeStatistics function to calculate statistics for the original 

values of j

Run Segmentation function to perform segmentation of j

Run ComputeStatistics function to compute vector statistics for the 

segmented values of j

Run SEG - >MSQ function to translate the segmented attribute j to the 

MSQ file format

End for

Merge individual attribute MSQ files into one MSQ file

Convert the file in the MSQ format to a standard  MIDI  file  format

Fig. 19.1 Algorithm 1—The vertical mode of sonification

of our procedure—the SEG->MSQ conversion algorithm, where each record of the
segmented file is translated to its musical equivalent. The final step of the procedure
merges all MSQ files, which were built for each attribute separately, to one complete
MSQ file that contains MSQ data of all selected attributes altogether.

19.3.2 The Algorithm Details

Let us discuss the above procedure in more detail. In Step 1 (see Fig. 19.1), we build
a separate input file for each selected attribute and calculate statistics on it. The
order of files is determined by the order of input attribute parameters. This order
is saved until the final step of the sonification procedure, where many output files
of SEG->MSQ algorithm are merged together into one final output file. For each
record of the original input time series database, we find the value of the current
attribute (according to the attributes order), and calculate its minimal and maximal
values using the ComputeStatistics algorithm. These values are saved in Min and
Max arrays respectively, and besides that, we count the total number of elements
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(records) in the dataset (n). The Range variable of each attribute is calculated as the
difference between its maximal and minimal values.

In Step 2 of the sonification procedure, we run the SWAB (sliding window and
bottom-up) segmentation algorithm [9] separately for each attribute. The SWAB seg-
mentation algorithm gets four parameters—the input file (time series data), the output
file (segmented data), the maximal error, and the indication of nominal attributes.
After running a number of experiments on time series of different sizes with differ-
ent values for the number of segments, we chose the appropriate default number of
segments as follows. 25–50 % of time series size for time series with less than 100
observations, 20–35 % for time series with 100–200 observations, and 15–25 % for
time series with more than 200 observations. If the user is not interested to use the
default value for any reason, he can enter his own number of segments as a parameter
to the algorithm.

Starting with the default values for the minimum and the maximum error, we
run the segmentation algorithm for the first time and get the minimum number of
segments for a given time series (the higher the maximum error, the fewer segments
will be found). Then we decrease the maximum error (and so increase the number
of found segments) trying to narrow the upper and the lower bounds of error by
dividing the base by powers of 2 (like in binary search). Every time after running
the segmentation algorithm with the current maximal error, we test whether this
value gives a better approximation for the optimal number of segments, and so is a
better upper or lower bound for the optimal maximum error. If so, we advance the
appropriate bound to this value. In the beginning, only the upper bound is affected.
However, once we found the lower bound that provides more segments than the
optimum, we continue to look for the optimal number of segments by smaller steps:
the next maximum error is the mean between the current upper and lower bounds.

As follows from our experience with many different time series databases, the
optimal maximal error is usually found within 3–4 iterations. The convergence rate
depends on the input time series database itself. If the algorithm has not converged
within 20 iterations, we stop searching and proceed with the next sonification steps
using the segments found at the 20th iteration.

In Step 3, we calculate vector statistics on each segmented file found in the pre-
vious step, using again the ComputeStatistics algorithm. The statistics of this step
are calculated in the same way as in Step 1 of the algorithm. It is important to do
this once again because of possible changes that happened to the original values
of each attribute due to the segmentation algorithm. We find the updated minimum
and maximum values of each attribute and then calculate the Range variable as the
difference between maximal and minimal values of this attribute. As a result, we get
an updated array of minimal values and an array of Range values. The size of each
array equals to the number of selected attributes.

In Step 4 (see Fig. 19.2), we translate the segmented file of each attribute to its
musical equivalent using the SEG->MSQ sonification algorithm. This step deals with
all three possible kinds of sonification—sonification of continuous attributes by pitch
changes, sonification of continuous attributes by volume changes, and sonification of
nominal attributes. For pitch attributes, the algorithm translates each value of every
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Input: Sj – number of segments in the attribute j

Count jk – number of observations in a segment k of the attribute 

j ( k = 1,…, Sj) 

Valuejk – the value representing a segment k of the attribute j

(default: mean value) ( k = 1,…, Sj)

Minj - the minimum value representing the segments of j

Maxj - the maximum value representing the segments of j

Range j – the range of values representing the segments of j

musBase – musical base, the number of tones to be used for 

sonification (default = 36 tones, which equals to 3 octaves, 12 

tones each)

musDif – musical difference, the lowest pitch that people can 

distinguish (default = 52)  

minDur – the minimal duration of the sound of each segment in 

the final sonified sequence (default = 30 ticks, which equals to half 

a second)

Output: P jk –pitch value representing segment k of attribute j

Start_Tjk – the start time of the sound of a segment k of the 

attribute j ( k = 1,…, Sj)

Finish_Tjk – the end time of the sound of a segment k of the 

attribute j ( k = 1,…, Sj)

Njk – the musical note representing a segment k of the attribute 

j ( k = 1,…, Sj)

Assign channel number, musical instrument,  and volume to attribute j

Start_T j1 = 0 // Set  the  start  time of the first  segment to zero

For k = 1 to Sj do

Sonify ( Start_Tjk, Countjk,Value jk) // Sonify each segment

Write  a  new  record  to the  MSQ  file  (Channel Number, Start_Tjk, 

Finish_Tjk, Pjk, Volume)
End for

Fig. 19.2 Algorithm 2—Sonification of continuous attributes
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attribute to an appropriate musical pitch according to the range and the minimal
value of that attribute. If the calculated pitch value is not equal to one of the seven
tones of the C Major scale (0, 2, 4, 5, 7, 9, 11), it is decremented by one. Then the
algorithm writes this value in a special format to the output file for the respective
attribute. Each attribute obtains its own musical channel (1:10) and either specified
or default instrument. Besides this, the pitches are written to output with the start
and the stop times determined by the segmented file of the current attribute only.
That is why in the output musical sequence we hear different melodies (each voice
is played by a different instrument and progressing in its own way). Monitoring
a specific instrument gives us an opportunity to know what happens to a specific
attribute during a given time period. Nominal attributes are processed very similar;
the only difference is that we use other default instruments for sonification, and
that each value of a nominal attribute (out of maximum 10) is assigned its own
predefined pitch value. Processing a volume attribute is different from processing
standard (pitch or nominal) attributes. First, assigning a channel and an instrument
to a given pitch attribute depends on the number of previously selected volume
attributes. As explained above, the sonification of a volume attribute is secondary to
sonification of a previously selected pitch attribute. Then, despite changing pitches
according to values of segments in the input file, we change volume parameters for
the previous channel—the channel of related pitch attribute. This means that we
adjust the volume parameter of the previously selected (pitch) channel according to
the segmented data of the current volume attribute. The start time of each new event
sent to the volume parameter of a previous channel is determined by the duration of
a segment from the segmented input file of the volume attribute (Fig. 19.3).

In the final step (Step 5), we merge all data from the previous SEG->MSQ step
to one output file. This file starts with the header and channel definitions, according
to the MSQ format, and then it contains all data about pitch and volume changes,
sorted by the timestamp argument. The vertical mode is evaluated empirically in
the following two sections on collections of univariate and bivariate time series,
respectively.

19.3.3 Illustrative Example

In this example, we demonstrate the sonification of the univariate time series no.
1 in our online repository of musical examples [25]. The original 20 values of the
continuous series are shown in Fig. 19.4 and its segmentation by the SWAB algorithm
(resulting in 14 segments and max_error = 0) is presented in Table 19.1. The series
has the minimum, the maximum, and the range values of 10, 60, and 50, respectively.
The sonification of each segment by Algorithm 2 is presented in Table 19.1. All time
variables are presented in ticks (60 ticks = 1 s). For example, row no. 1 shows the
sonification of the first segment, which contains just one observation and hence
its sound duration is 30 ticks (half a second). The original attribute value of 10 is
converted into the pitch value of 52 using Algorithm 2. Since this pitch is tonal
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// Sonify segment k of attribute j
Sonify (Start_Tjk, Countjk,Valuejk)
   //   Compute  the sound duration of segment k as a function of
   //  the number  of observations in the segment
    SoundDuration  <-  Countjk × minDur 

// Compute the end time of the current segment
   Finish_Tjk <-  Start_Tjk + SoundDuration

// Compute the start time of the next segment 
IF (k < Sj) THEN  

Start_ Tj,k+1 <-  Finish_Tjk

   // Compute the pitch using min-max normalization
CalcPitch <- INT (((Value jk – Min j) / (Maxj – Minj))*musBase + musDif)

   IF (((CalcPitch – musDif ) modulo 12) is tonal) THEN
     // If   tonal, keep   the calculated pitch 

Pjk <- CalcPitch 
   ELSE
     // If not tonal, decrement the calculated pitch by one

Pjk <- CalcPitch –1 
END IF

   //  Find the note corresponding to the tonal pitch
Njk <- findNote ( Pjk modulo 12)

Fig. 19.3 The sonify function (Segment Sonification)

Fig. 19.4 Time series no. 1
original values
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according to the C major scale, its value is not changed. In contrast, row no. 14
corresponds to a segment of two observations resulting in the sound duration of 60
ticks (1 s). The mean segment value of 40 is converted into the pitch value of 73,
which is not tonal and thus the algorithm decreases it to the nearest lower value of
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Table 19.1 Time series No. 1 segmentation and sonification

Segment
no

Segment
size

Duration Start time End time Average
value

Calculated
pitch

Tonal
pitch

Note

1 1 30 0 30 10 52 52 E

2 1 30 30 60 12 53 53 F

3 1 30 60 90 15 55 55 G

4 1 30 90 120 17 57 57 A

5 1 30 120 150 20 59 59 B

6 1 30 150 180 24 62 62 D

7 1 30 180 210 27 64 64 E

8 2 60 210 270 38 72 72 C

9 1 30 270 300 50 80 79 G

10 1 30 300 330 60 88 88 E

11 4 120 330 450 48 79 79 G

12 1 30 450 480 46 77 77 F

13 2 60 480 540 42 75 74 D

14 2 60 540 600 40 73 72 C

72. The last column of Table 19.1 shows the notes corresponding to the played tonal
pitches.

19.4 The First Experiment: Univariate Data

19.4.1 Experimental Design

The goal of this experiment was to evaluate the proposed sonification algorithm
on univariate time series. The experiment was supposed to answer the following
questions:

• Can people use our sonification algorithm to detect similarity of two time series?
• Can people hear and find consistent patterns in the data?
• How do people interpret and make decisions from this representation?
• Can people perform standard data mining tasks, like classification and clustering

using our auditory representation of the data?

Many time series datasets are available on the Internet. In our experiment, we used
several popular datasets from the Time Series Data Mining Archive website [27] and
some time series constructed from the data available on the websites of an Israeli
bank [15] and Tel-Aviv Stock Exchange [26]. Specifically, we used information about
some popular stocks and currency exchange rates.
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The experiment was performed as an online user study. The study website con-
tained a questionnaire to be filled by the subjects in their language of choice (English
or Hebrew). The content of the questionnaire in both languages was the same.

The structure of the questionnaire was the following:

1. User identification and demographic information: username (fictional), age, gen-
der, occupation.

2. Musical ability: musical experience (number of practice years, pure musical hear-
ing).

3. Introduction: the subjects were provided a brief explanation of our approach to
sonification of time-series data.

4. Training session: we gave the subjects an opportunity to try answering each of the
typical questions and explained how to approach each of the questions in order
to provide correct answers.

5. Evaluation session: the subjects received five sets of questions; each set consisting
of four types of tasks specified below.

Task 1: Listen to the musical sequence, representing some data, and answer,
when the data values were higher: in the beginning of the sequence, at the end of the
sequence, or they were the same in the beginning and at the end. (Choose one out
of three possible answers). This question was designed to check the user’s ability
to detect changes in data and to test the general ability of the user to “understand”
musical information—his/her level of musical hearing.

Task 2: Are sounds propagating in some well-defined direction in most cases, or is
the sound’s propagation is rather chaotic? (Choose one out of two possible answers).
This question was designed to test the user’s ability to identify any well-defined
direction of propagation. This task was found ambiguous during the evaluation of
the experimental results, and its answers can be discarded.

Task 3: Which of the following charts describes the data the best way? (Choose one
out of five charts). This task was designed to test the user’s ability to classify a given
object into one of predefined categories. The object here is a musical sequence and
the categories are defined by very schematic visual representations of the following
sequences: monotonically increasing, monotonically decreasing, first increasing then
decreasing, first decreasing then increasing, and chaotic.

Task 4: Which of the two musical sequences (Seq B/Seq C) is more similar to
the original sequence (Seq A)? (Choose one out of two answers). This task was
designed to test the user’s ability to perform one of the most important data mining
tasks—similarity search (an essential operation in clustering).

All univariate time series in this experiment were represented by the pitch-based
sonification (see Section y2 above). The subjects received all data “as is”, without any
possibility to change any sonification parameters. Before each set of questions, there
were brief explanations about the data source (e.g., day closing stock price for some
period, currency exchange rate, etc…). Only fully completed questionnaires were
taken into consideration. An example of a sonified univariate time series presented
to the subjects in this experiment is shown in Fig. 19.4.
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The only dependent variable in this experiment was the subject’s total score S. The
independent variables were the subject’s demographic and musical characteristics:
Gender G (m/f), Age A (6 groups), Occupation O (8 groups), Musical Experience E
(4 groups), Absolute Pitch Ability P (yes/no).

19.4.2 Research Hypotheses

Our null hypothesis was that the subjects were unable to provide correct answers
to the questions using musical sequences, which were generated from the original
time series by our sonification technique. The alternative hypothesis was that the
subjects were able to provide correct answers to the questions using generated musical
sequences.

We compared the results of the test questions to random decisions. If the subjects
were guessing their answers randomly, then the expected results would be distributed
uniformly with an equal probability of every possible answer. To determine how well
the subjects were performing, we compared the result distributions to the uniform
distributions that would be obtained by chance.

After rejecting the null hypothesis and then proving that our technique is good
enough for sonification of univariate time series, some other hypotheses were tested:

• Musical experience of the subjects has an influence on their performance.
• Subject’s age has an effect on his/her performance.
• Subject’s gender has an effect on his/her performance.
• Subject’s occupation has an effect on his/her performance.

By the subject’s “performance”, we mean the total number of correct answers the
subject gave to the questions of the test (experiment). By “technique is good enough”
we mean that our technique is better than random guesses for each of the questions
as well as for all questions together and that the average number of correct answers
will be more than 2/3 (66 %).

19.4.3 Subjects

The experiment was carried out using the experimental website of our online user
study. Its web address was posted on several student mailing lists and through the
mailing list of “Ihud”—the Israel Kibbutz choir. The experiment took place from
July to September 2007. During that period, 44 subjects took part in the experiment
(only those who answered all questions). There were 27 male and 17 female subjects
between the ages of 18 and 70. The age distribution of the subjects is shown in
Fig. 19.5. Only one subject claimed to have absolute pitch hearing, no one had any
familiarity with any sonification technique, only few deal with time series databases
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Fig. 19.5 Experiment 1:
Age distribution
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and data mining techniques. The distribution of the subjects’ musical experience (if
any) is shown in Fig. 19.6. Each subject could participate in the test at his/her time of
convenience and no time limitations were imposed either at the stage of explanations
and examples, or during the test itself. All necessary information for completing
the test was posted on the experimental website. No previous experience in the time
series data mining tasks, sonification techniques, or the dataset domain (e.g., finance)
was required.

19.4.4 Experimental Results

The test was designed in increasing order of difficulty. We started from relatively
simple time series (the first set) and proceeded to the last series (the fifth set) which
was relatively complex one. The total score for the test was calculated as follows:

• Each correct answer to a multiple-choice question has received one point.
• No points were deducted for a wrong answer.
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Table 19.2 Number of correct answers per task

Percentage of correct
answers (%)

Percentage of correct
answers by chance (%)

P-value

Task 1 86.36 33 0.00000

Task 2 66.36 50 0.00000

Task 3 76.36 20 0.00000

Task 4 81.36 50 0.00000

Table 19.3 Number of correct answers per set of questions

Number of answers Number of correct answers Percentage of correct answers (%)

Set 1 176 167 94.89

Set 2 176 138 78.41

Set 3 176 130 73.86

Set 4 176 120 68.18

Set 5 176 128 72.73

Hence, the maximum total score for each set was 4 points, and the maximum total
score for the test was 20 points (5 sets, 4 questions in each set). The sample size of 44
subjects enabled us to reach conclusions at the significance level of 0.05 and higher.

In the first phase of analysis, we calculated the significance of the results for each
task (Table 19.2), and for each set of questions (Table 19.3). We compared the results
against chance using a two-tailed binomial distribution. The analysis of results per
task shows that for each task, the subjects performed at a level significantly above
chance, whereas the best result was for first task, and the worst was for second task.
The interesting fact is that subjects perform significantly better (81.36 %) than chance
answering the fourth task. It means that people can detect similarity of sequences by
listening. The results for the third task are significantly better than chance as well. It
means that people can classify a given sequence into given clusters (classes). Here,
the number of possible answers was the highest (5), and nevertheless people were
able to choose the correct answer in 76.36 % cases. The analysis of results per set
of questions shows that for each set of questions, the subjects performed at a level
significantly above chance as well, whereas the best result was for 1st set of questions
(94.89 %), and the worst was for the 4th set of question (68.18 %).

Given our main goal to test the hypothesis that our sonification algorithm is a
useful method for decision making and time series datasets exploration including the
ability to perform some popular data mining tasks, our next hypothesis is defined,
as follows: “Some information about a subject can be useful to predict her/his result
in the experiment.” In other words, some people are more likely to succeed working
with sonified data than others. Then our goal is to find personal attributes/abilities
that affect the results. In the first part of the test, our subjects were asked some simple
questions. Here they are:

• Age; 6 categories: (<20, 20–29 ,30–39, 40–49, 50–59, >60)
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Fig. 19.7 Experiment 1:
The effect of musical
experience

• Gender; 2 categories: m/f
• Occupation; 8 categories: student(stu), lecturer/investigator(lec), teacher(tea),

engineer(eng), manager(man), journalist(jou), musician(mus), other(oth).
• Musical experience; 4 categories: No-Exp (none), Exp 1–5 (1–5 years playing

some instrument or studying vocal), Exp 6–12 (6–12 years playing some instru-
ment or studying vocal), 12+ (more than 12 years playing some instrument or
studying vocal).

• Absolute pitch ability; two categories: yes/no.

According to the results of ANOVA test, there is no statistically significant differ-
ence between total scores for different age, gender, or occupation groups. However,
there is statistically significant difference between total scores for different musical
experience groups. The performance of each group is shown in Fig. 19.7. Although
subjects without any musical experience certainly performed worse, the amount of
musical experience does not seem to matter for the experienced subjects’ perfor-
mance.

19.5 The Second Experiment: Bivariate Data

19.5.1 Experimental Design and Variables

The goal of this study was to evaluate the proposed sonification algorithm on bivari-
ate time series. Specifically, we were interested to test the user’s ability to “hear”
the information represented by each one of the voices, to understand what is repre-
sented and to make decisions relying on a given representation. Additional objective
of this experiment was to evaluate various methods of sonification. Particularly, we
evaluated three variants of sonification of bivariate time series: one nominal + one
continuous attribute, where the last one is represented by pitch changes; two contin-
uous attributes, where the first one is represented by pitch changes and the second
one—by changes of volume; and two continuous attributes represented by pitch
changes on two different instruments. In our experiment, we used piano and flute
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timbres to represent continuous attributes, and bell sound to represent the nominal
one.

Another objective was to explore possible association between the subject’s musi-
cal ability and his/her success in answering the questionnaire. This time, in contrast
to the first experiment, we used three parameters to test the musical ability. One was
“musical experience”—it is an objective parameter, where the user can choose one of
four answers according to the number of years he studied music. The second one was
subjective—the subjects were asked to indicate their level of musical hearing. This
question was aimed at identifying subjects with good musical hearing, who have no
formal musical education. This question was also supposed to identify the subjects
with formal musical education, whose musical hearing was not developed too much.
Some of these users for example, could study music during their childhood, but never
returned to this activity.

The last question connected to music ability was not very straightforward—the
subject’s occupation. Relying on the results of the first experiment, we were able
to recognize some associations between the subject’s profession/occupation, and
his/her musical ability. It is obvious, that if a subject is closely involved with music
in his everyday life either as a professional musician, or as a music hobbyist, his
musical ability is potentially high. However, we also tried to find some other occu-
pations where people could use our algorithm for their professional or other needs.
Consequently, we allowed the subjects to choose multiple occupations. For example,
the second author of this chapter would choose “student”, “engineer” and “musician”
altogether. During the analysis of the results, we could refer each user to any of the
occupation categories he/she chose.

The second experiment, like the first one, was performed as an online user study
and it took place between February and April 2008 using the same experimental
website (see subsection 4.3 above). The questionnaire had the same sections as the
first experiment: User Identification, Musical Ability, Introduction, Training Session,
and Evaluation Session. The Evaluation Session included the following five types of
tasks:
Task 1: This task was designed to test the user’s ability to detect changes in data and
to “understand” musical information, i.e., to test his level of musical hearing. In this
task, we have sonified one nominal and one continuous attribute from a weather time
series. The nominal attribute referred to a weather event (e.g., raining/snow). Each
time there was an event we used the same bell sound. The continuous attribute (e.g.,
temperature) was played by piano voice with pitch sonification. In the first question,
the subjects were asked to count the events during the given period, whereas in the
second question, they were asked about the trend (increasing / decreasing / stable)
in the continuous attribute. Two such datasets are included in the Mul1 folder of our
online repository [25]. One of the datasets (Weather-April2007) is shown in Fig. 19.8.
Task 2: This task was designed to test the user’s ability to distinguish between changes
in two real-valued time series represented by pitch and volume, respectively. Since
using volume to represent numerical values can be problematic, we represented the
more important time series by pitch, and the less important series by volume. In the
two questions, the subjects were asked about the trend in the attributes represented by
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each sonification method. An example of such dataset (included in the Mul2 folder
of our online repository [25]) is shown in Fig. 19.9.
Task 3: This task was designed to test the user’s ability to distinguish between changes
in two real-valued time series each played by a different instrument (piano, flute).
Pitch sonification was used in both cases. In the two questions, the subjects were
asked about the trend in the attributes represented by each musical instrument. An
example of such dataset (included in the Mul2 folder of our online repository [25])
is shown in Fig. 19.10.
Task 4: This task was designed to test the user’s ability to make decisions based
on sonified information only. A broker can take buy/sell decisions by watching the
changes in some stocks using a visual representation. However, since, as we explained
earlier, our sense of hearing is superior to our sense of sight, we can take our deci-
sions faster by listening to the data instead or in addition to watching it. In the first
experiment, we checked if one stream of data can be interpreted correctly by hearing
only, this time we test the ability to interpret two streams played simultaneously. The
two real-valued time-series are represented by pitch sonification, each played by its
own instrument (piano, flute). The subjects were asked one question on long-term
investment in one of the stocks and two questions on the best time to buy/sell each
stock.
Task 5: This task was designed to test the user’s ability to detect similarity/dissimil-
arity of two musical sequences played simultaneously. This task is particularly
relevant as a part of data mining process. Machine learning algorithms sometimes
make mistakes in their similarity decisions because these algorithms are based on
precise mathematical calculations. In contrast, people make decisions according to
the “overall” situation. For example, when using a visual representation, people can
determine the general trend, without calculating the exact differences between each
pair of consecutive values. Moreover, looking at a graphical representation, people
can identify similar sequences even if they are shifted with respect to each other. Our
goal was to test, whether such kind of decisions can be taken using a musical rep-
resentation instead. The subjects were asked five questions, each referring to a pair
of real-valued sequences represented by pitch sonification played on two different
instruments. The data came from the weather and the financial domains.

Fig. 19.8 Weather-April
2007 dataset
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Fig. 19.9 Summer 03–07
dataset

In this experiment, like in the first one, the dependent variable was the subject’s
total score S, whereas the independent variables represented the demographic and
musical characteristics of the subjects.

19.5.2 Hypotheses

Similar to the first experiment (see Sect. 19.4.2), we have tested the null hypothesis
that the subjects are unable to provide correct answers or to take the right decisions by
listening to the musical sequences generated by our sonification methodology. Thus,

Fig. 19.10 Weather-
July1978-1 dataset
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Fig. 19.11 Experiment 2:
Age distribution
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Fig. 19.12 Experiment 2:
Musical experience
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we have compared the distribution of the subjects’ answers/decisions to the uniform
distribution. For tasks where the null hypothesis was rejected, we have explored the
effect of the following subject’s characteristics on his/her performance in the test:
age, gender, occupation, musical experience, and musical hearing ability. The test
performance measures were identical to the ones defined in Sect. 19.4.2.

19.5.3 Subjects

A total of 37 subjects took part in the second experiment (only those who answered
all the questions). All data about the subjects was taken from their answers to the first
part of the questionnaire (user information) only. According to above, there were 21
male and 16 female subjects between the ages of 20 and 70. The age distribution of
the subjects is shown in Fig. 19.11. No one had any familiarity with sonification tech-
niques (excluding possible participation in the first experiment, half a year earlier)
and very few had experience with time series databases or data mining techniques.
The distribution of the subjects’ musical experience (if any) is shown in Fig. 19.12.
Each subject could participate in the test at his/her time of convenience, without any
timing constraints at any stage of the experiment.
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Table 19.4 Number of correct answers per-task

Number of answers Number of correct answers Percentage of correct answers (%)

Task 1 148 137 92.57

Task 2 148 125 84.46

Task 3 148 106 71.62

Task 4 111 82 73.87

Task 5 185 148 80.00

19.5.4 Experimental Results

The experiment was designed in the increasing order of difficulty. We started from
relatively simple sonification techniques and tasks (the first and the second task) and
up to the last task (no. 5), which was a relatively complex one. For all questions in
every task, the percentage of correct answers has been significantly higher than the
percentage that would have been obtained by chance, at the 99.9 % significance level.
As shown in Table 19.4, the best result was obtained for the first task (92.57 %),
whereas the worst one was for the third task (71.62 %). In the first four tasks, the
subjects were required to distinguish between two sequences and to analyze each
one of them separately. Only in the fifth task, they had to listen to the two sequences
simultaneously. It is noteworthy that for this, more complex task, the percentage of
correct answers was still relatively high—80 %.

Having verified that our sonification algorithm is a useful method for decision
making and time series databases examination with ability to perform some popu-
lar data mining tasks, we have proceeded with the second part of our experiment
aimed at finding the personal characteristics/abilities that affect the subjects perfor-
mance. We have evaluated the same attributes as in the first experiment, namely Age,
Gender, Occupation, Musical Experience, and Musical Pitch Ability. The attributes
have been partitioned into the same categories except for the Musical Pitch Ability,
which had the following five categories: mus_1—None, mus_2—Low musical pitch

Fig. 19.13 Experiment 2: The effect of occupation groups
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Fig. 19.14 Experiment 2: The effect of musical experience

Fig. 19.15 Experiment 2: The effect of pitch ability

ability, mus_3—Average musical pitch ability, mus_4—Good musical pitch ability,
mus_5—Excellent musical pitch ability.

According to the results of ANOVA test, there is no statistically significant dif-
ference in total scores across different age, gender, or occupation groups in general.
However, we have found a statistically significant difference in total scores between
the following two specific occupation groups: {natural sciences, engineering} ver-
sus {humanities, music} (see Fig. 19.13). Apparently, people with more technical
background (engineers, physicists, etc.) find it more difficult to understand musi-
fied information. We have also found a statistically significant difference in total
scores across different musical experience groups (contrary to the results of the first
experiment) and different pitch ability categories. These results are demonstrated
in Figs. 19.14 and 19.15, respectively. As expected, the subjects’ performance is
improving with the amount of their musical experience as well as with their pitch
ability. On the other hand, even subjects without any musical experience or pitch
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ability can still perform much better than chance (58–63 % of correct answers versus
29 % with a random guess).

19.6 Conclusions

In this chapter, we have presented and evaluated a novel sonification methodology
for representing information in time series databases so that humans can perform
interactive data mining tasks without the need to view the actual data. Our algorithm
can be used for sonification of univariate and multivariate time series. The algorithm
can use three different sonification techniques: two for sonification of real-valued
attributes and one for sonification of nominal attributes. The user can choose a specific
sonification technique for each time series, according to the task performed.

Our generic sonification methodology can be used for representing time series
from various domains, like weather forecasting, stock market, health care, process
manufacturing, etc. It can assist people who are unable to utilize visual representa-
tions (physically or due to other simultaneously performed tasks), by providing them
with the necessary tools to acquire, understand, and analyze time series data. The
innovative features of our methodology include using a segmentation algorithm as a
pre-sonification step and representing time series data on the Western musical scale.

The empirical evaluation of our technique included two online user studies. The
first user study was designed to evaluate the basic ability of the subjects to use our
sonification technique for performing some basic data mining tasks on a univariate
time series. The second user study has evaluated some more complex tasks on bivari-
ate time series. There were 44 subjects in the first experiment, and 37 subjects in the
second experiment. The questionnaire of the second experiment has been prepared
in the view of the lessons learned from the first experiment. Both experiments have
shown that using our sonification algorithm for exploring univariate and bivariate
time series provides very promising results, in terms of some important data mining
tasks, like classification, clustering, and change detection. In the second experiment,
we have also demonstrated the use of our algorithm for effective decision-making.
Furthermore, we have discovered three factors that can determine the user’s ability
to successfully mine sonified data. These are (in decreasing order of importance):
musical pitch ability, musical experience, and occupation. The average number of
correct answers for both experiments was about 80 %.

Interested readers can listen to examples of sonified time series (including those
used in our experiments) at [25].

In future experiments, one can study the effect of training on the users’ perfor-
mance as well as evaluate the user ability to perform various data exploration tasks on
more than two simultaneously played time series. Future research may also include
developing an “online” version of the proposed sonification algorithm for interactive
mining of continuous, nonstationary data streams.
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