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Preface

As other complex systems in social and natural sciences as well as in engineering,
the Internet is difficult to understand from a technical point of view. The structure
and behavior of packet switched networks is hard to model in a way comparable
to many natural and artificial systems. Nonetheless, the Internet is an outstanding
and challenging case due to its incredibly fast development and the inherent lack of
measurement and monitoring mechanisms in its core conception. In short, packet
switched networks defy analytical modeling.

It is generally accepted that Internet research needs better models. A great deal
of development in network measurement systems and infrastructures have enabled
many advances throughout the last decade in understanding how the basic mecha-
nisms of the Internet work and interact. In particular, a number of works in Internet
measurement have led to the first results in what some authors call Internet Science,
i.e., an experimental science that studies laws and patterns in Internet structure.
However, many mechanisms are still not well understood. As a consequence, users
experience performance degradations and networks cannot be used to their full po-
tential. For instance, it is a common experience to see real-time applications perform
poorly unless (or even if) the network is largely overprovisioned.

This monograph deals with applications of computational intelligence methods,
with an emphasis on fuzzy techniques, to a number of current issues in measure-
ment, analysis and control of traffic in packet switched networks. The general ap-
proach followed here is to address concrete problems in the areas of data mining and
control of network traffic by means of specific fuzzy logic based techniques. The set
of problems has been chosen on the basis of their practical interest in current net-
working systems as well as our aim at providing a unified approach to network traffic
analysis and control. Of course, not all open issues are addressed here but the set of
methods we propose and apply provides a fairly comprehensive approach to current
open problems. This set of methods is in addition open to countless extensions to
address current and future related problems.

Data mining and control problems are addressed. In the first class we include two
issues: predictive modeling of traffic load as well as summarization and inductive
analysis of traffic flow measurements. In the second class we include other two



VI Preface

issues: active queue management schemes for Internet routers as well as window
based end-to-end rate and congestion control. While some theoretical developments
are described, we favor extensive evaluation of models using real-world data by
simulation and experiments.

The field of computational intelligence embraces a varied number of computa-
tional techniques such as neural networks, fuzzy systems, evolutionary systems,
probabilistic reasoning and also computational swarm intelligence, artificial im-
mune systems, fractals and chaos theory and wavelet analysis. Some if not all of
the areas covered by the term computational intelligence are also often referred to
as soft computing. As opposed to operations research, also known as hard comput-
ing, soft computing techniques require no strict conditions on the problems and do
not provide guarantees for success. This is a shortcoming that is compensated in
practice by the robustness of soft computing methods, a widely accepted fact.

Fuzzy inference systems (FIS for short, also commonly referred to as fuzzy rule-
based systems or FRBS) play a central role in this monograph. FIS are used for
tasks such as performance evaluation, prediction and control. However, in addi-
tion to fuzzy inference based techniques we apply other computational intelligence
methods and complementary techniques including nonparametric statistical meth-
ods, OWA operators, association rules mining algorithms, fuzzy calculus, nearest
neighbor methods, support vector machines and neural networks.

Fuzzy logic is a precise logic of imprecision, based on the concept of fuzzy set.
Fuzzy logic integrates numerical and symbolic processing into a common scheme.
This way, it allows for the inclusion of human expert knowledge into mathematical
models, i.e., it provides a mathematical framework into which we can translate the
solutions that a human expert expresses linguistically.

FIS are rule-based modeling systems. Fuzzy inference mechanisms have been
shown to be an effective way to address problems that are subject to uncertainty
and inaccuracy For modeling and control, one major reason to use fuzzy systems
is that fuzzy rules can be expressed in a linguistic manner and are thus compre-
hensible for humans. This is what makes it possible to use a priori knowledge. In
addition, fuzzy inference based models can be interpreted and thus evaluated by ex-
perts. Many methods to generate different kinds of fuzzy inference models with an
interpretability-accuracy trade-off have been proposed.

An additional key feature of fuzzy inference systems is that they are universal
approximators. Also, so-called neuro-fuzzy systems combine FIS with the learning
capabilities of artificial neural networks (ANNs), often using the same learning algo-
rithms that were initially developed for ANNs. Neuro-fuzzy systems offer the com-
putational power of nonlinear computational intelligence techniques and can also
provide a natural language approach to solving a number of current issues around
the analysis and control of network traffic. On the one hand, the rule based structure
of FIS allows for the incorporation of domain expert knowledge. On the other hand,
the ability to learn allows neuro-fuzzy systems to be used on problems where no a
priori or expert knowledge based rule-based solutions seem feasible or one is pri-
marily interested in inducing an interpretable model from data. In addition, efficient
hardware implementations can be developed in an structured and systematic manner.
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This monograph is organized as follows. In chapter 1 we introduce and provide
concise descriptions of the core building blocks of Internet Science and other re-
lated networking aspects that will be used throughout the next chapters. Chapter 2
describes a methodology for for building predictive time series models combining
statistical techniques and neuro-fuzzy techniques.

Data mining of network traffic is the topic of chapters 3 and 4 where we focus on
two related issues: traffic load prediction and analysis of traffic flows measurements.

In chapter 3 we investigate first the predictability of network traffic at different
time scales, following a quantitative approach based on statistical techniques for
nonparametric residual variance estimation. With an extensive experimental back-
ground of a wide set of diverse and publicly available network traffic traces, it is
shown that, in some cases, it is possible to predict network traffic with a satisfac-
tory accuracy for a wide range of time scales. Then, the methodology described
in chapter 2 is applied to diverse network traffic traces. The methodology is com-
pared against least squares support vector machines (LS-SVM), Ordered Weighted
Averaging Aggregation Operators (OWA)-induced nearest neighbors and optimally
pruned extreme learning machines (OP-ELM). These methods are applied to an
extensive set of time series derived from publicly available traffic traces. The
methodology proposed is shown to provide advantages in terms of accuracy and in-
terpretability. Further, it has been implemented in a tool integrated into the Xfuzzy
development environment.

In chapter 4 a method and a tool for extracting concise linguistic summaries
about network statistics at the flow level are described. In addition, a procedure for
mining extended linguistic summaries from network flow collections is developed
and the results for a number of publicly available traces are discussed. The theory of
linguistic summaries has been extended for traffic statistics summarization and new
tools for linguistic analysis of traffic traces at the flow level have been developed.

Chapter 5 deals with control of network traffic in routers, by means of active
queue management schemes, as well as on an end-to-end basis, by means of win-
dow based techniques. First it is proposed an scheme for implementing end-to-end
traffic control mechanisms through fuzzy inference systems. A comparative eval-
uation of simulation and implementation results from the fuzzy rate controler as
compared to that of traditional controlers is performed for a wide set of realistic
scenarios. Then, fuzzy inference systems for traffic control in routers are designed.
A particular proposal has been evaluated in realistic scenarios and is shown to be
robust. The proposal is compared against the random early detection (RED) scheme.
It is experimentally shown that fuzzy systems can provide better performance and
better adaptation to different requirements with mechanisms that are easy to modify
using linguistic knowledge.

Finally, chapter addresses 6 the practical implementation of some of the fuzzy
inference systems proposed in previous chapters. Both architectural and operational
constraints are considered. The chapter focuses on an open FPGA-based hardware
platform for the implementation of efficient fuzzy inference systems for solving
networking analysis and control problems. A feasibility study is conducted in order
to show that the techniques developed can be deployed in current and future network
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scenarios with satisfactory performance. The major contribution is the development
of a platform and a companion development methodology that does not only fulfill
operational requirements but also addresses the scalability and flexibility challenges
posed by current routing architectures. In addition, evidence for the feasibility of
real implementations is provided.

In conclusion, this monograph describes computational intelligence based meth-
ods and tools for addressing a number of current issues around network traffic mea-
surement, modeling and control. Besides developing methods, special attention is
paid to a number of practical aspects that have a determining impact on the adop-
tion of novel methods and mechanisms for traffic analysis and control.

Espoo, Finland and Sevilla, Spain Federico Montesino Pouzols
September 2010 Diego R. Lopez

Angel Barriga Barros
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Chapter 1
Internet Science

Abstract. The structure and behavior of packet switched networks is difficult to
model in a way comparable to many natural and artificial systems. Nonetheless, the
Internet is an outstanding and challenging case because of its incredibly fast de-
velopment, unparalleled heterogeneity and the inherent lack of measurement and
monitoring mechanisms in its core conception. In short, packet switched networks
defy analytical modeling. This chapter is intended to introduce and provide con-
cise descriptions of some of the building blocks of what some authors call Internet
Science [21, 104], i.e., the study of laws and patterns in Internet structure. Addi-
tional related aspects that will be used throughout the next chapters are discussed
as well. We will briefly define and describe the most relevant concepts about Inter-
net performance and measurement that will be used throughout the next chapters.
However, we will not get into details about all the networking concepts this mono-
graph deals with. We refer to [37] for a good overall and in-depth analysis of traffic
measurement and performance analysis. There are also a number of research papers
that provide good insight into more specific topics. Among these, we highlight [21],
where some key mathematical concepts in Internet traffic analysis are discussed.
It is also out of the scope of this monograph to analyze in detail the mathematical
aspects of most of the concepts this monograph deals with, and in particular those
related to traffic control. For this, we refer the interested reader to [153] and [15].
Some of the most relevant and seminal research papers in this area can also be con-
sulted [134, 132, 129, 171, 71].

1.1 Modeling the Internet

Analyzing and modeling traffic in packet switched computer networks can turn into
a daunting task due to the virtually unlimited amount of data. There are both spatial
and temporal issues. Considering the spatial dimension, the amount of end nodes,
routers and switches can be of the order of several thousands even in local area
networks [22]. Regarding the temporal dimension, the volume of data is huge even
in medium-sized low-speed subnetworks for todays standards: a traffic trace taken
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2 1 Internet Science

during a week on a gateway of an university in 1995 added up to 89 GB of data
corresponding to 439 millions of packets [24].

The complexity of modeling the Internet of today and the foreseeable future can
be understood considering the sustained exponential increase of traffic and nodes
observed throughout the years [65] as well as the fast evolution of network protocols
and applications. Currently, capturing packet header traces in fast links for a few
minutes or hours may produce of the order of hundreds of GBs or even several TBs
of data [38].

The recent development of high performance hardware for IP packet capture up
to 10 Gb/s [47] has made it possible to record traffic traces in backbone nodes of
current high-speed networks. However, it is not feasible to use such a huge volume
of information for research and operation tasks. Filtering and preprocessing methods
are required. Often, data volumes have to be reduced by 12 orders of magnitude,
from 1012 bytes down to a report of 10 lines of text [48]. It is also common to
reduce huge volumes of traffic measurement data down to a set of a few graphs and
tables [145].

The difficulties in this field are clear if we consider the analysis and modeling of
wide area networks and the Internet in particular. In addition, there is a lack of mea-
surement and monitoring mechanisms in the Internet architecture [164], which has
been defined in a rather unstructured manner through an aggregation of protocols,
technologies and applications developed independently. This architecture, that has
been called a cooperative anarchy [123], defies measurement and characterization.
As Willinger and Paxson point out, “it is difficult to think of any other area in the
sciences where the available data provide such detailed information about so many
different facets of behavior” [170].

In this sense, technologies based on the Simple Network Management Protocol
(SNMP) and the concept of network flow have seen a great deal of development
and deployment during the last years [37]. Still, many efforts are required to enable
macroscopic analysis of the Internet.

During the last decade, some areas, such as switching techniques and topology
design, have seen fast development. However, systems and infrastructures for traffic
measurement are still in early stages of development and scarcely deployed. The
fast evolution and great diversity of the Internet together with the long periods of
time required to analyze measurement data have a drastic consequence: experiments
and studies based on traffic measurements are already obsolete when finished and
specially when published [32]. Thus, it is hardly feasible to implement measurement
and analysis systems that can be used to support other infrastructures.

A number of works in Internet measurement [124, 32] have led to the first results
in what some authors call Internet Science [21]: an experimental science that studies
laws and patterns in Internet structure [104]. Traditional statistical inference tech-
niques often used to analyze networks are limited. Instead, Internet research require
inference methods for searching for law-like relationships across large collections
of high-volume data sets that generalize to a wide range of conditions [170]. That
is, scientific inference is required in order to unveil traffic invariants. This requires
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building intuition and physical understanding rather than using conventional black-
box descriptions and data fitting techniques.

At first sight Internet Engineering might seem a more precise term for this area
of research since the current Internet is the result of applying diverse engineering
disciplines. However, issues and questions currently posed require an approach more
close to that of the experimental sciences. This area involves theories as well as
techniques and infrastructures for measurement, analysis and modeling.

Broadly speaking, three main aspects in Internet measurement, analysis and mod-
eling have to be addressed in order to construct models of the Internet as a whole:

1. Traffic.
2. Topology.
3. Effect of protocols on traffic and topology.

In particular, Internet traffic modeling comprises macroscopic characterization as
well as multi-scale modeling. Throughout the last years, many developments have
shed some light on traffic dynamics. As a result, long-range dependencies, self-
similarity and power-laws and wavelets have been established as common modeling
tools. These aspects will be overviewed in the next sections. Often, traffic and topol-
ogy are analyzed as orthogonal aspects. For instance, the obvious effect of routing
protocols on traffic dynamics and congestion episodes is not well understood. In
fact, the last research efforts towards an in-depth analysis of this interactions, the
so-called traffic-sensitive routing, were abandoned several years ago. The adaptive
routing protocols designed were found to be highly unstable [167].

Analysis and data mining of topology related measurements are commonly per-
formed off-line and require cooperation from operators. operators, etc.). The objec-
tive of these studies is to identify invariants that help understand how topologies
evolve. For instance, at the application level, it has been found that two randomly
chosen documents on the web are on average 19 clicks away from each other [4].
Research on the overall topology of the Internet has been successful in revealing
and validating the so-called jellyfish model: the network is compact, i.e, 99% of
pairs of nodes are within 6 hops, there exists a highly connected center, there exists
a loose hierarchy, and one-degree nodes are scattered everywhere. In summary, the
network has the tendency to be one large connected component. Power laws ap-
pear in other settings, such as WWW pages and peer-to-peer networks. In short, the
topology of Internet is described by power-laws, its growth is slowing down (fol-
lowing a sigmoid curve), it is compact, becomes denser with time, and looks like a
jellyfish [49, 101].

Major advances in Internet modeling include the identification of self-similarity
and long-range dependencies in traffic as well the use of power-laws to describe
the global topology of the Internet. But many issues are still open: spatio-temporal
correlations, interest and group behavior, anomaly detection, etc. From the data min-
ing viewpoint, there are many modeling challenges, including massive multidimen-
sional data, time-space correlations, and case dependent phenomena.
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1.2 Measurement Systems and Infrastructures

Network performance depends on and can be measured in terms of a number of pa-
rameters such as capacity, available bandwidth, delay, jitter, packet loss and packet
disorder. These and other network parameters are related in a complex manner and
to a varying extent. Measuring the network is crucial to understanding the Internet
behavior and designing control mechanisms for improving performance.

Unfortunately, the original Internet architecture has little or no support for mea-
surement. End hosts and their applications, however, have a limited capability in
accessing and acquiring information about the network behavior. To them, end-to-
end measurement of the network behavior is usually the only available information.

A number of factors have led to a surge in research of Internet measurement
systems and infrastructures during the last years. The outcomes of these research
activities have a positive impact in two areas. First, experimental support is provided
for a better understanding of network traffic dynamics. Second, the availability of
measurement infrastructures enables the development of measurement based traffic
control and quality of service mechanisms.

In particular, nodes and protocols in the current Internet provide very little sup-
port for performance measurement. In addition, a number of new applications would
greatly benefit from dynamic adaptation mechanisms based on network measure-
ment. Also, improved methods and tools for network performance monitoring and
troubleshooting are sought.

In fact, besides the development of novel techniques and tools within current ar-
chitectures, firm proposals have been made [164] towards introducing modifications
in network layer protocols as well as switching and routing equipment so that better
support for measurement tasks is available in basic infrastructures.

In order to study the dynamics of Internet traffic both on-line and off-line tech-
niques are required. These techniques and the infrastructures that support them are
usually based on counting interesting events such as sessions, connections, arrivals
of packets or cells to a node for a given period of time.

Current measurement systems [37, 124, 131] can be classified into two main
types: active and passive. The former are of a distributed nature and are usually ac-
cessible to end users and applications. The latter are centralized and often restricted
to network operators and engineers. The current challenges in this area are to in-
crease the maturity of these systems, to deploy measurement infrastructures and to
enable generalized macroscopic analysis of the Internet.

1.2.1 Active Systems

Active measurement systems work by sending probe traffic from an end node in
order to measure parameters such as round-trip time and packet loss percentage
[118, 124, 136]. Active measurement tools inject probe packets into the
network and analyze the response. Following a particular network model, some
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characteristics are estimated, such as propagation delay and a number of metrics
related to bandwidth.

Active measurement tools can not only provide network operators with useful
information on network characteristics and performance, but also can enable end
users (and user applications) to perform independent network auditing, load bal-
ancing, and server selection tasks, among many others, without requiring access to
network elements or administrative resources.

The research community is developing a set of metrics and techniques for ac-
tive bandwidth measurement, including concise reporting to users [146]. Many of
them [136] are well understood and can provide accurate estimates under certain
conditions.

Some institutions are currently undertaking initiatives to deploy test platforms for
active and passive bandwidth estimation as well as other related techniques. Also,
some partial measurement and evaluation studies of bandwidth estimation tools have
been published [147, 116, 86, 158].

The models underlying active systems often rely on a large number of parameters
difficult to model in an independent manner. As a consequence, these systems suffer
from errors and accuracy limitations in measurements and estimations, especially
regarding timing accuracy in general purpose platforms [95, 2].

The network model chosen for designing an active measurement tool has a de-
termining impact on the applicability and performance of the tool. Thus, research
on active measurement tools [95, 160, 5], and specially of those that estimate band-
width related metrics by probing the network [86, 46], has been very active during
the last years. This area has made important contributions to the understanding of
network traffic dynamics, particularly in the case of the behavior of aggregated flows
in router queues.

The first attempt at using bandwidth estimates for application adapta-
tion purposes reported in the literature can be tracked back to 1996, when
BPROBE/CPROBE were introduced as tools for server selection tasks. Soon af-
ter appeared pathchar, introduced in 1997 as a per-hop network capacity estimation
tool.

For about a decade, a number of bandwidth estimation methods and tools have
been developed. These tools show a wide spectrum of requirements and character-
istics, such as accuracy and intrusiveness. Underlying models, metrics definitions,
terminologies as well as measurement and processing methodologies also differ.

A number of techniques for estimating bandwidth capacity and available capacity
have been developed: variable packet size (VPS), packet pairs, packet trains, packet
tailgating, ALBP (Asymmetric Link Bandwidth Probing), self-loading streams, to
name a few. Implementations of these techniques can be found in a number of
tools [86, 46, 116]. The performance of each technique usually provides insights
on how the network reacts to a certain traffic pattern. Note that some tools also es-
timate parameters related to bandwidth, such as the ADR (asymptotic dispersion
rate). The tool thrulay [146] further elaborates on the same idea and combines ap-
plication level measurement of available bandwidth capacity and round-trip time.
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1.2.2 Passive Systems

Passive measurement systems are based on recording data at a network node, i.e.,
no probe packets are sent. While passive systems do not require cooperation or co-
ordination among end nodes, the quality and relevance of data decisively depends
on the location of the measurement point. Thus, cooperation between network op-
erators [118, 32] is a prerequisite of passive measurement infrastructures.

Passive systems are a field for the application of analysis and interpretation tech-
niques for large volumes of data where measurements are often missing and inaccu-
rate. These systems run in network nodes and particularly in routers gathering data
usually through sampling procedures applied to traffic as traverses the network in
real-time. These measurements are usually transfered to collection points following
standards such as SNMP and NetFlow. The NetFlow technology is further discussed
in chapter 4 where a novel method for summarizing network flow collections is
described.

Passive systems enable global analysis of subnetworks at the infrastructure level.
They make it possible to detect the emergence and growth of new applications,
protocols and related traffic patterns. Some of the main current areas of research in
traffic analysis based on passive measurement systems can be listed as follows:

• Analysis of the interactions between macroscopic traffic dynamic and routing
algorithms. In particular, the analysis of routing tables in the BGP protocol [138,
139, 161] is key for understanding traffic flows between service providers and
autonomous systems.

• Analysis of the distribution of traffic over the address space (both IPv4 and IPv6).
This is a requirement for building maps of the address space assigned to insti-
tutions and service providers as well as the set of addresses that can be globally
accessed.

• Analysis of the dynamic characteristics linked to protocols, applications and
technologies. This area becomes more and more important as different novel
services are deployed on the Internet.

• Development of tools and hardware support for traffic measurement and analy-
sis [47, 43, 81].

• Privacy and security related procedures and techniques, including anonymization
of network traces.

1.2.3 Publicly Available Measurements

Traces are one of the main outcomes of measurement infrastructures. The use of
common traces recorded by both active and passive measurement infrastructures
are key reproducible research and comparison of results in general. Traces may
comprise data about topology, traffic, specific applications and a variety of hetero-
geneous measurements.
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In this sense, the recent availability traffic traces of high-speed networks, spe-
cially at OC48 and OC192 speeds, requires a great deal of effort and cooperation
among different agents. Cooperative measurement projects and infrastructures also
allows for wide scale analysis of networks.

A remarkable initiative in this context is the Day in the Life of the Internet series
of events held in 2007 and 2008, that gathered together institutions from several
continents in order to record continuous traffic traces in a coordinated manner for a
considerable large period of time, spanning more than 50 hours in some cases.

In this monograph we will use a wide set of publicly available network traf-
fic traces obtained through passive monitoring. These traces are usually made of
a sequence of packet headers (possibly including part or all the payload as well).
Some other traces only provide a restricted set of data about each received packet,
in particular the arrival time and size, as well as some other specially relevant data
such as TCP flags. In chapters 3 and 4 we will analyze traffic traces from two
perspectives. First, time series models for traffic load as derived from these traces
are designed. Then, a method for summarizing flow collections derived from these
traces is described.

Some traces have an historical relevance such as the Bellcore traces and the traces
taken at the Lawrence Berkeley National Laboratory. The first were the empirical
basis for finding self-similarity and long-range dependence in Ethernet traffic [69,
106] whereas the second were instrumental in showing that the Poisson model fails
to capture the general behavior of traffic in wide area networks [134]. It is interesting
to note that the limitations of the Poisson model in the communications field, though
often overlooked and usually not dealt with in the literature, were well-known by
practitioners since more than 2 decades before.

1.3 Network Traffic

The problem of modeling Internet traffic is both interesting in its own right and
useful for a variety of applications, including congestion control and protocol de-
sign. It is out of the scope of this monograph to review all the proposed descriptive
and predictive approaches to modeling Internet traffic. For an in-depth and exhaus-
tive overview we refer the interested reader to a general book on traffic measure-
ment [37] as well as a number of research papers on the topic [71, 36, 140, 141,
128, 41, 109]. In this section, we overview some of the most relevant, often antago-
nistic, models for network traffic with the focus on those models that can shed some
light on the modeling of network traffic from a time series modeling point of view.

Network traffic can be analyzed either from the perspective of the network and
transport layers and the impact of generic metrics on the performance perceived by
users [118], or from application specific viewpoints, such as Web traffic [120], peer-
to-peer traffic [119] and multimedia traffic [121]. Here we will discuss the most
important issues in modeling network traffic, network performance metrics and the
concept of congestion in a general manner.
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1.3.1 Traffic Models

Data obtained by measurement systems are usually processed using statistical tools
in order to obtain as much information as possible [162]. This way, in the case
of a video or audio application network flow, packets can be distributed over time
following an exponential, subexponential or light-tailed distribution [132, 134]. This
process leads to the extraction of empirically derived analytic models of traffic [129]
and helps identifying invariants.

The natural step after network measurements are gathered is to analyze them and
run simulations [65]. Network measurement enables analysis of data as well as real-
istic simulation of networks. By identifying and reproducing invariants in network
traffic in simulation scenarios a better understanding on how these invariants impact
traffic dynamics can be obtained.

Describing traffic properties for supporting analysis and simulation tasks requires
simple models that capture different levels of abstraction and time scales. That is,
different levels of detail in simulation systems, represented by application sessions,
connections, transfers, packets, etc. In an analogous manner, simulations can be
run with different levels of detail, ranging from analytical models to more detailed
behavioral simulation at the session and packet levels.

Let us now overview some of the traffic models that have been applied to and de-
veloped for packet switched networks. Teletraffic theory originally embraced all the
mathematics applied to the design, control and management of the public switched
telephone network (PSTN). Techniques belonging to the fields of queuing theory,
statistical inference, performance analysis, mathematical modeling and optimiza-
tion were used to lay out teletraffic theory. The natural step with the advent of the
Internet was to extend this theory in order to include data networks. This way, In-
ternet engineering (emcompassing the design, control, operation and management
of the global Internet) would become part of teletraffic theory. However, Internet
practitioners have emphasized engineering and experimental deployment rather than
rigorous mathematical modeling and application of theories. In fact some in the In-
ternet community would say that the Internet works because “it ignored mathematics
-in particular, teletraffic theory-” [170].

Teletraffic theory has been remarkably successful in the case of the PSTN. Con-
ventional PSTN is however a highly static environment where the notion of limited
variability is well-defined and ever-present. Typical users, generic behavior and av-
erages are proper descriptions of the overall system performance. In addition the
most widely used models are specially practical from an engineering viewpoint.
These models are parsimonious and additionally the few required parameters can be
easily estimated in practice.

These factor led to the belief that a universal law in voice networks established the
Poisson nature of call arrivals for aggregated traffic. According to this assumption,
call arrivals are mutually independent and the interarrival times are exponentially
distributed. Poison models are the first model widely applied to communications
traffic.
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The application of Poison models dates back to the early telephone networks and
the pioneering works by Erlang and others. In general, a Poisson process is char-
acterized as a renewal process with interarrival times An exponentially distributed
with rate parameter λ . If X = (Xt : t ≥ 1) is the number of arrivals in successive,
non-overlapping time intervals of length Δt > 0, then X is the increment process of
a Poisson process with parameter λ if and only if the random variables Xt are i.i.d.
with:

P[Xt = n] = e(−λ t)(λ t)/n!

In this formulation, Poisson process are described as a counting process where the
number of arrivals in different intervals is statistically independent.

The so-called Poisson law has been widely accepted for several decades. The
same applies to the following laws: call durations follow an approximately exponen-
tial distribution, there is a high predictability in growth rates, network control and
operation are fully centralized (so information about the global state of the network
is available), and services are strictly monitored and regulated. However, the high
stability of telephone networks was compromised by the advent of fax in the 1980s.
This was due to the fundamentally different statistical properties of fax transmis-
sions. With the popularization of TCP/IP networks and the WWW, teletraffic theory
was no longer able to cope with data transmissions in a satisfactory manner.

Still, the first formal models proposed for Internet traffic were based on tra-
ditional teletraffic theory [134]. However, in the Internet, the engineering reality
overcomes traditional teletraffic analytical modeling. Since self-similarity and long-
range dependencies were first formally identified in data traffic [106] a number of
studies have shown extensive evidence of the failure of Poisson models in the In-
ternet. Poisson models have thus been rejected for characterizing packet arrival pro-
cesses in the Internet [128, 134] at different levels of aggregation (ranging from
local area networks to backbones).

The relevant mathematics for the PSTN deals with limited variability in both
time and space, i.e., traffic processes are either independent or have exponentially
decaying temporal correlations, and the distributions of traffic related properties
have exponentially decaying tails.

In contrast, the mathematics relevant to packet switched networks has to deal
with extreme variability. In many cases, very bursty at many different time scales
(or fractal-like) behavior can be identified in network traffic load over a wide range
of time scales from milliseconds to tens of seconds and beyond, i.e., traffic is self-
similar [128].

More formally, a discrete-time, covariance-stationary, zero-mean stochastic pro-
cess X = (Xt : t ≥ 1) is exactly self-similar or fractal with scaling (Hurst) parameter
H ∈ [0.5,1) if, for all levels of aggregation m ≥ 1,

X(m) = mH−1X ,

where the equality should be understood in the sense of finite-dimensional distribu-
tions. The aggregated processes X(m) are defined as follows:
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X (m) = m−1(X(m−1)k+1 + . . .+ Xkm), k ≥ 1.

For this kind of process, it is easy to show that the following relationship holds:

var(X(m)) = km2H−2.

That is, there is a relationship between a quantity Q of the underlying process, traffic
load, and the resolution m that follows:

Q(τ) ≈ k f τ f (D),

where f (·) is a simple function of D, and D is a fractal dimension. Thus, such
processes are fractal.

In addition, the resulting linear log-log plot representation of var(X(m)) versus m
is the so-called variance-time plot, which is one of the methods commonly applied
to identify the Hurst parameter of traffic time series.

Many evidences suggest that traffic in packet switched networks is self-similar
and fractal in nature. A plausible explanation is that self-similarity is a consequence
of the power-law distribution of different types of traffic workload, such as flow
durations, web transfers, file sizes and even the way users interact with networked
applications [128, 36, 37].

The heavy-tailed property exhibited by the distribution of flow sizes and dura-
tions is an invariant for an aggregate property of flows. It does not provide any
information on the packet-level behavior of traffic sources. However, direct links
between connection sizes and durations with infinite variance and fractal scaling in
aggregate network traffic have been mathematically proven. Thus, this invariant has
been key in finding a physical explanation of the observed fractal nature of aggregate
traffic. A heavy-tailed distribution is defined as follows:

P[X > x] ∝ x−α ,

as x → ∞, and 0 < α < 2. The fact that this kind of distribution governs different
traffic workloads can be explained in a generic manner by Zipf’s law [128, 36].

Poisson models cannot cope with high variability at the packet level. However,
there is evidence that these models are satisfactory for human interactions with net-
worked applications [36]. That is, the times at which users start interactions with
applications conform to a memoryless process with an arrival rate that can be satis-
factorily approximated as constant over time intervals of many minutes or perhaps
an hour [170]. In addition, some works have shown the usefulness of time-varying
Poisson models for small time scales in networks with a high level of traffic aggre-
gation [97, 180, 23]. The argument that network traffic tends to Poisson as the level
of aggregation increases is disputed though, as only a few limited studies support it.

In this context, it is currently widely recognized that better theoretical models
with more extensive experimental basis are required [10, 64] in order to enable full
understanding of the dynamics of Internet traffic.
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1.3.2 Transport Layer Models. TCP

Modeling the dynamics of transport layer flows, and TCP flows in particular, is a
central problem in Internet traffic research. Applications of predictive performance
models range from peer-to-peer and content distribution networks (CDN) to grid
computing. Most traffic in the current Internet, in terms of flows, packets and octets,
is due to TCP connections [114]. Models for TCP dynamics have been developed
following either of two approaches known as model based and equation based [162,
169].

Modeling TCP performance has also deep implications in transport protocol de-
sign. Preventing congestion collapse in the Internet and guaranteeing fairness at least
in a TCP-compatible manner are two key aspects that should be addressed when de-
veloping new standard transport protocols [58]. In a similar way, TCP models have
a significant impact on the design of active queue management and mechanisms for
differentiated quality of service provisioning. Additional implications of TCP mod-
els include the definition of a meaningful set of evaluation scenarios and conditions
for transport protocols [8, 7].

Some simple equation based models [169] point out the dramatic effect of packet
loss on the performance of TCP. These models establish the relationship between
the transfer rate of a TCP flow, T , and the packet loss rate, p, as follows:

T ∝
1√
p
.

Further elaborating on the same simple model, a basic formulation of the expected
average TCP transfer rate can be established as follows [78, 112]:

E[T(s,tRT T , p)] =
s

tRTT

√
2Dp
3

,

where s is the maximum segment size, tRTT is the round trip time, p is the packet
loss rate, and D denotes the number of data units (TCP segments) acknowledged for
each ACK packet, The tRT T of a TCP connection between a sender and a receiver is
defined as the time elapsed between the instant a packet is sent by the source to the
instant the corresponding ACK from the receiver is received by the source.

However, obtaining equations for modeling and predicting the stationary behav-
ior of TCP in a general manner is a complex problem. A number of solutions have
been proposed. To date, the most complete model that has been extensively evalu-
ated through experimentation [75, 168] defines the following equation for the TCP-
compatible transfer rate:

E[T (s,tRT T , p,tRTO)] =

min

⎛
⎜⎜⎝

sWm

tRTT
,

s

tRT T

√
2Dp
3 + tRTOmin

(
1,3
√

3Dp
8

)
p(1+32p2)

⎞
⎟⎟⎠ ,
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where Wm is the maximum size of the TCP congestion window and tRTO is the
packet retransmission timeout of the TCP protocol under the particular conditions
given by the parameters of the equation. Note the application of this model requires
the sender to know the parameters of the equation. Thus, it is necessary that TCP
receivers provide the required information. As a particular case, where there is no
packet loss, the expected rate is given by the ratio Wms

tRT T
.

The model above can be extended to multicast networks [168], which requires the
definition of a variety of feedback mechanisms so that senders are informed about
network conditions at the reception points.

Nonetheless, accurate modeling of TCP is an increasingly complex problem due
to the many variants proposed throughout the years [156, 133, 92] and the intricate
evolution of the standard variants [98, 93, 20, 155]. Therefore, there are many open
issues in the design of TCP variants that can cope with technological and archi-
tectural changes in the Internet [10]. Some TCP variants recently proposed will be
overviewed in chapter 5, where a new approach to end-to-end congestion control is
described based on fuzzy logic.

1.3.3 Models of Applications and Services

During the last years, the diversity of network conditions and traffic patterns that
can be found in the Internet has been progressively increasing [10, 64]. Thus, the
development of schemes for generating flexible aggregate flows and topologies is
key for modeling applications and services.

Characterizing the dynamics of specific types of traffic linked to particular ser-
vices and applications is key for providing proper definitions of the quality of ser-
vice requirements of current and foreseeable network applications. In addition, the
definition of traffic models for different applications is crucial not only for charac-
terization purposes but also to enable the development of realistic simulation and
emulation environments.

In particular, extensive studies have addressed traffic patterns for widespread ap-
plications, such as web [120], bulk transfers by FTP and similar protocols [26],
peer-to-peer applications [119], and voice and video applications [121, 143].

1.3.4 Network Simulation

Simulation of network scenarios can help overcome the limitations of measurement
and experimentation. In particular, simulation models make it possible to explore
new protocols, environments and architectures. By simulation is also possible to ex-
plore complex scenarios that would otherwise be difficult or impossible to analyze.

Nonetheless, there does not exist a complete suite of simulation scenarios that
can be deemed as sufficient to demonstrate that a new protocol or mechanism will
perform properly in the future evolving Internet. Instead, simulations are limited to
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exploring specific aspects of new proposals or the behavior of the Internet, as well
as advancing the understanding of traffic dynamics. The role of network simulation
is thus to explore scenarios in order to build understanding of dynamics, to illustrate
a point, or to explore for unexpected behavior [65]. Simulations however can be
misleading when used for producing quantitative performance comparisons.

In particular, network simulation is the most proper method for addressing many
of the open issues in traffic dynamics, specially the complex interactions between
topologies and traffic, as well as the central role of adaptive congestion control.

Simulating the behavior of the global Internet or a significant part of it is an
immense challenge. This is due to its heterogeneity and fast evolution. Experience
shows that techniques that were studied using partial models were not implemented
eventually because of doubts about their limitations [64]. Thus, the variety of sce-
narios and conditions taken into consideration for the simulation and evaluation of
new systems is a key factor for their eventual acceptance.

A sound network model for simulation comprises all the aspects that can have
an impact on a simulation or experiment. These include the topology, traffic gen-
eration patterns, behavior of protocols at every layers of the protocol stack, queue
control mechanisms, among many other possible factors. In general, it is useful to
lay out simulations in such a way that invariants can be identified by exploring the
simulation parameter space [65].

However, many research works rely on simulations with assumptions that are not
experimentally proven. These include long-lived and large flows, simple topologies
with often only one congested link, small range of round-trip times for the simu-
lated flows, most traffic flowing in a single direction through the congested link and
negligible amount of reverse traffic.

Instead, the use of a number of well known invariants can help designing
realistic simulation scenarios. These invariants include diurnal patterns of activ-
ity, self-similarity in packet arrival processes, Poisson session arrivals, log-normal
connection sizes, heavy-tail distributions and topological invariants of the
global Internet derived from the Earth’s geography and the distribution of human
population [65].

A large amount of techniques and methodologies for network simulation have
been proposed and applied throughout the years and further research is being car-
ried out. These techniques and methodologies include discrete event, web-based and
agent-based simulation schemes, Petri nets, fluid-flow based simulation, specific
languages for simulation and overlay networks among many others. In particular,
the use of advanced simulation tools, such as ns-2 [88], SSF Net [154] and OM-
NET++ [163], and emulators, such as Netbed/Emulab [68], Planetlab [135], NIST
Net [25], iproute2 [80] and dummynet [142]), to name only a few, is key for ad-
dressing the aforementioned problems [65]. In chapters 5 and 6 we will describe
how we have used some simulation and emulation environments in order to test new
traffic control mechanisms.



14 1 Internet Science

1.3.5 Performance Metrics

In order to assess the performance and reliability of networks, a set of parameters
are usually measured or indirectly estimated from measurements. When these pa-
rameters are unambiguously specified, whether qualitatively or quantitatively, they
are identified as performance metrics.

Even though the definition of these parameters can be unambiguous, there many
not be clear procedures for their effective measurement. This way, measuring some
of the most common network performance metrics, such as connectivity, delay, loss
pattern and reordering pattern, poses different practical issues. Moreover, a certain
parameter that describes network performance, such as packet reordering, may have
several associated metrics. Also, the definition of metrics usually depends on the
network model under which they are interpreted.

Defining metrics that provide quantitative and unbiased information about net-
work parameters is required in order to develop tools for network quality, perfor-
mance and reliability evaluation. Currently, the IP Performance Metrics (IPPM)
group of the IETF is working together with the T1A1.3, SG 12 and SG 13 groups of
the ITU-T towards laying out and standardizing quantitative metrics on data delivery
by transport protocols. The objective is to obtain metrics that provide quantitative
information about performance avoiding any ambiguity. The metrics, considered for
both end-to-end paths and subnetworks can be listed as follows:

• Connectivity.
• One-way delay and loss rate.
• Round-trip delay and loss rate.
• Delay variation.
• Loss pattern.
• Packet reordering.
• Bulk transfer rate.
• Capacity and bandwidth of links.

The IPPM working group has defined through a series of RFC documents a large
number of richly parameterized metrics in order to address the many possible objec-
tives of network measurement procedures. Often, the ultimate purpose is to report
a concise set of metrics describing a network’s state to an end user. Elaborating
on this idea, the Internet Draft on reporting metrics to users [146] defines a small
set of metrics that are robust, easy to understand, orthogonal, relevant, and easy to
compute.

The standardization process for this metrics considers not only their formal def-
inition but also documentation and measurement procedures. There is however the
need for establishing procedures for measuring individual metrics and interpreting
their values as relevant properties for different classes of service, such as bulk trans-
fer, periodic and multimedia flows.

Nonetheless, this standardization effort embraces only low level metrics, i.e.,
those that characterize the network regardless of transport protocols and applica-
tions. That is, the definition of metrics for characterizing different traffic patterns
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(such as VoIP applications) are beyond the scope of these working groups and are
thus left within the general domain of network modeling.

Moreover, some parameters, in particular the available link capacity [46, 45],
have not been considered due to the lack of mature and accepted definitions, models
and measurement procedures. Additionally, high level parameters such as inter-flow
fairness, congestion control and resource sharing metrics are equally outside of the
scope of this standardization effort. Some of these aspects are being addressed by
other IETF groups in a more general manner [67, 7].

1.3.6 Congestion

Congestion control has been identified as a critic function for the growth and evolu-
tion of the Internet [63, 10]. In the past, some global congestion collapse episodes
have been experienced in the Internet [58, 19]. In order to avoid congestion col-
lapse and provide proper management of different kinds of traffic, congestion con-
trol mechanisms have to be implemented.

The following sentence may be a good summary of the general notion of con-
gestion: “We have seen that as a system gets congested, the service delay in the
system increases.” Here, the service delay can be considered at a number of levels:
application level responsiveness, server response time, etc. For instance, the amount
of congestion in terms of packet loss may be low whereas that low loss at the net-
work layer is the reason behind a high degree of congestion as perceived by users at
the application layer. In packet switched networks, the performance degradation is
dramatical beyond a certain congestion point, as depicted in figure 1.1.

Fig. 1.1 Throughput and delay increase as the load increases up to the congestion point

This effect is particularly severe for reliable transport services, such as TCP trans-
fers, because of the progressive increase of packet retransmissions [59, 92]. This
can lead to a state where the percentage of packets that arrive at their destination de-
creases drastically as the traffic generated by end nodes increases. Parameters such
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as the packet loss rate in an end-to-end connection or a link as well as the trans-
mission delay can indicate congestion. However there is a lack of formal definitions
of congestion and congestion collapse. There is no quantitative estimation of the
concrete parameters nor the scale at which a degraded network condition can be
considered a congestion episode. In fact, the perception of congestion by end users
depend, among other factors, on the traffic patterns and quality of service require-
ments of the applications in use.

A very general definition of the concept of congestion can be stated as follows:
a decrease in utility, from the perspective of a given traffic source, due to increased
load [153]. The problem can be looked at from both the source and network perspec-
tive. The convenience and practical need for end-to-end congestion control mech-
anisms has been extensively documented [59] and procedures for the evaluation of
congestion control mechanisms [67] have been recently layed out.

The congestion control schemes currently deployed in the Internet as well as the
proposed alternatives follow either of the two following approachers:

• Congestion control distributed among the end nodes, implemented by the trans-
port protocols used by the applications.

• Centralized congestion control, implemented in routers as queue control mecha-
nisms. However, these mechanisms have to work in a cooperative manner.

In the current Internet the dominant congestion control scheme is implemented as
a transport layer mechanism, particularly in the TCP congestion control scheme.
In order to address the limitations and drawbacks of this scheme, a large number
of TCP variants have been proposed. Complementary active queue management
schemes have been proposed as well. In particular, the RED mechanisms has been
advocated for some years [61, 59, 19] though little deployment has happened so far.
Other complementary proposals include explicit congestion notification [137]) and
novel architectures [14, 89, 172].

However, there is lack of plausible theories, simulation procedures and exper-
imental evidence for supporting any of these schemes, whether deployed or not,
with enough efficiency and robustness under a wide range of conditions. Some au-
thors [31] note the poor performance and cyclic behavior of TCP/IP systems. This
drawbacks have been found in some works by means of simulation [111] and theo-
retical analyses [105]. However, these performance degradations happen only under
very specific and unrealistic conditions. Thus, these effects are rarely seen in real
networks. Anyway, the lack of experimentation and the ad-hoc nature of some of
the congestion control mechanisms deployed in the Internet is generally accepted.

1.4 Traffic Control

Traffic control involves different tasks, such as control of flow, congestion and ad-
mission as well as quality of service (QoS) provisioning. In the current Internet,
TCP implements end-to-end flow and congestion control. Admission control and
QoS mechanisms are rarely found and only in very specific cases.



1.4 Traffic Control 17

Congestion control has long been considered an important research problem in
computer networks. Different types of congestion control algorithms have been de-
fined for packet switching networks. In the taxonomy by Yang and Reddy [178], the
standard TCP congestion control falls within the class of closed loop with implicit
feedback schemes, whereas drop-tail and the most accepted active queue manage-
ment schemes belong to the class of open loop with destination control schemes.

A comprehensive set of metrics for evaluating congestion control algorithms in
the Internet has been defined as well [67]. These include throughput, delay, loss, re-
sponse time, minimizing oscillations, fairness, convergence robustness for challeng-
ing environments, robustness to misbehaving users and to failures, deployability as
well as metrics for specific types of transport and user-centric metrics. The relations
among these parameters are complex and in general all of them can effect both end-
to-end and router based traffic control mechanisms. For instance, the distribution of
round-trip time can dramatically affect not only the data rates achievable by TCP
flows sharing a link but also the utilization of network links.

In addition, congestion control and quality of service provisioning are two tightly
related functions. It is possible and common to implement congestion control with-
out taking into consideration QoS mechanisms. However, the design and deploy-
ment of architectures and mechanisms for QoS has a twofold justification:

1. From the viewpoint of the operation and requirement of the current Internet, the
cooperative and distributed traffic control implemented in TCP requires comple-
mentary control schemes in the network layer [59, 63].

2. From an abstract viewpoint, considering the distribution of services and func-
tions among the different network layers, tasks such as QoS provisioning and
admission control correspond to the network layer.

In general, the tranport layer of networks that implement QoS provisioning allows
for the applications to specify the required or wished quality. These specifications
can be satisfied to a varying degree while keeping a balance between the many
parameters that might be in conflict. No comprehensive set of transport level QoS
parameters has been widely accepted. Also, there is no concrete definition of the
way QoS specifications have to be processed and enforced under different network
conditions.

A proposal of QoS parameters has been made in the X.214 recommendation of
the ITU-T about the definition of transport services [91]. This is the most exhaus-
tive list of QoS parameters among the different standardization efforts carried out
to date. Thus, it can be considered as a reference. The parameters included inthis
standard are listed as follows:

• Connection establishment delay.
• Connection establishment failure probability.
• Transfer rate.
• Transit delay of data.
• Residual error rate (including wrong, loss and duplicated data).
• Probability of failure of a data transfer.
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• Connection release delay.
• Probability failure of connection release.
• Protection (regarding integrity and confidentiality).
• Priority.
• Resilience (against spontaneous connection termination due to internal problems

of congestion).

Negotiation mechanisms are considered for all the parameters above during the
transport connection establishment phase. Objective, acceptable and minimum val-
ues can be specified for the whole set of parameters.

However, QoS support is far from being complete and deployed in the real world.
For instance, ATM networks only supported two QoS parameters: propagation delay
and transfer rate. It is only since a few years that the required technolgoies are avail-
able in routing equipment. As an alternative, there have been proposals of adaptive
bandwidth control [149, 150]. This schemes adjust the bandwidth reservation at the
packet level time scale in order to guarantee QoS requirements.

The functions we have dealt with so far are directly related to transport protocols.
That is, the higher network layer (above the network layer and the set of underlying
routers, bridges and links as shown in figure 1.2), works on an end-to-end basis
and provides applications with services that abstract the technologies, design and
operation of the underlying network.

The basic function of the transport layer is to provide a communication service
between processes, abstracting the underlying network. In fact, relying exclusively
on TCP for implementing congestion control in the Internet is a disputed scheme.
It is accepted that hybrid systems should be implemented where the network layer
performs some congestion control functions [19].

Fig. 1.2 Flow and congestion control and QoS at different network layers
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1.4.1 End-To-End Traffic Control

We will focus on TCP congestion control mechanisms. It should be noted however
that tens of alternative protocols have been proposed throughout the last years. In
particular, from the viewpoint of traffic control TCP is nowadays a family of proto-
cols rather than a particular protocol. Several modifications to the TCP traffic control
mechanisms have been proposed throughout the years. In fact, versions of TCP cur-
rently deployed have little to do with its early versions or even versions widely used
10 years ago as far as traffic control is concerned. It is plausible to anticipate that
TCP will go on evolving as the dominant transport protocol in the Internet for the
next years while keeping an standard programming interface and header format.

Both flow control and congestion control are thus implemented in TCP. At the
transport layer, the distinction between these two functions blurs [90]. Flow control
between end nodes includes all the mechanisms by which the sender node limits
the transfer rate in order not to overload the receiver and the network. Those mech-
anisms implemented with the aim of preventing global network overload are then
referred to as congestion control mechanisms [178].

Most transport protocols designed during the last years, and TCP in particular,
implement flow and congestion control in an intertwined manner. This way, the
same mechanisms may implement flow and congestion control. This is a possible
scheme for performing congestion control. In other architectures, congestion control
is implemented at the network layer separated from flow control at the transport
layer.

Congestion control at the transport layer is more complex than flow control at the
link and network layers. This is due to the variability of the round-trip delay, packet
reordering and other problems specific to end-to-end paths. Transport layer conges-
tion control mechanisms are usually implemented based on sequence numbers and
transmission windows. These two elements are equally used for implementing error
control algorithms. The coupling between error control and congestion control is
however a limitation in high-speed networks [52] that has motivated a number of re-
cent proposals of modifications to TCP. In general, congestion control mechanisms
at the transport layer can be classified into two kinds of techniques:

• Sliding window. This technique is based on the definition of a data window of
whether static or variable maximum size that limits the amount of data in flight.
Each time data are transmitted, the sender reduces the window size proportion-
ally. When the maximum window size is static, the current size is increased
when acknowledgment packets are received from the receiver. When the maxi-
mum window size is variable (known as credit schemes), the window is adjusted
through decision procedures performed by the receiver. In this systems, the re-
ceiver informs the sender of the allowed window size.

• Rate control. This technique is based in the use of timers at the sender. Two basic
variants are distinguished. In the first variant, the timers define the interval the
sender has to wait between data bursts. In the second variant, the timers define
the interval the sender has to wait between data units. The second option usually
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provides better performance for flow and congestion control at the expense of the
difficulty in implementing highly accurate timers.

The use of flow control techniques in order to implement congestion control at the
transport level has a twofold objective:

• Optimize the use of resources, specially router input and output links. When no
support for admission control is provided at the network layer, it is necessary
to implement implicit admission control functions by identifying overload con-
ditions and bottlenecks. To this end, current network conditions have to be in-
ferred from a number of parameters such as the round-trip delay. The possible
approaches to this end by mechanisms implemented in routers are analyzed in
section 1.4.2.

• Fairness in resource sharing among end-to-end data flows and thus users. In or-
der to accomplish this objective, transport layer is limited to guaranteeing that
transport flows behave in a cooperative manner. It should be noted that so called
misbehaving flows (or flows that do not conform to TCP congestion control prin-
ciples) cannot be properly controled unless fairness techniques are implemented
in routers. This is further discussed in section 1.4.2.

In order to fulfill these two objectives, TCP congestion control mechanisms follow
two design principles:

• Additive increase. Initially, TCP connections use a bandwidth value lower than
the available bandwidth. This value is progressively incremented in an additive
manner until overload is detected. Since additions are performed each time ac-
knowledgment packets from the receiver arrive at the sender, this scheme results
in an increase exponential with time.

• Multiplicative decrease. In standard TCP, packet loss is taken as a sign of con-
gestion. When packet loss is detected, the transfer rate is decreased exponentially
(commonly by a factor of 2) and the increase process is initiated again.

This scheme guarantees cooperation among competing TCP end-to-end flows. The
additive increase-multiplicative decrease (AIMD) scheme is further discussed in
chapter 5, where a generalization based on fuzzy logic is described.

1.4.2 Traffic Control in Routers

Traffic control in routers are required in order to perform functions that are be-
coming more and more important as the Internet evolves. However, these func-
tions have seen little implementation to date [63, 58], including protection against
flows with no congestion control, misbehaving flows, large traffic bursts, denial-
of-service attacks, incentives to flows performing congestion control, and service
differentiation.

Router flow and congestion control schemes are based on queue management
techniques. These techniques can be classified into two groups: active queue man-
agement (AQM) and class based queuing (CBQ).
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CBQ systems can in principle be applied in a more general manner, both for
congestion and admission control. However, CBQ schemes suffer from scalability
issues. This is essentially because CBQ schemes are based on per-flow classification
of packets. Thus, they are only generally applicable in edge or access routers [57].

The most simple queue management scheme is the First Come, First Served
(FCFS) queue. It is the most deployed scheme in the current Internet where it is
usually implemented by fast FIFO queues. This scheme is known in general as tail-
drop. This scheme has two major drawbacks:

• As the network approaches an overload condition, queues are quickly filled and
signals of congestion, i.e. packet loss, are only evident to end-nodes when queues
are already full and packets are being dropped. Due to the bursty nature of net-
work traffic this phenomena can be specially frequent, recurrent and severe.

• Synchronization among end-to-end data flows with different sources and desti-
nations occur in certain network scenarios [19, 60, 62]. In these cases, bandwidth
is shared unevenly in tail-drop queues.

The second problem can be addressed by alternative procedures for discarding pack-
ets, such as random selection. However, the first problem poses some conflicts
among different parameters of traffic dynamics, including link utilization and round-
trip delay due to queuing. Thus, active queue management techniques are sought
that can help overcome the two aforementioned drawbacks [19].

A number of approaches to the problem of active queue management have been
proposed. Some proposed algorithms [61, 84, 165, 9, 103] have been shown to pro-
vide significant performance improvements in terms of utilization and end-to-end
delay variability. However, instability and oscillations can occur in some cases de-
pending on configuration parameters. In addition, these algorithms suffer from per-
formance degradation for some regions of the wide space of operating conditions of
an AQM scheme [107].

In particular, Random Early Detection (RED) [61, 59] was the first firm proposed
algorithm for AQM in the global Internet. It is also the most accepted algorithm and
the common choice of router vendors. Deployment of RED in the real world is
still very limited though. RED establishes a preventive strategy against congestion
conditions, dropping packets before buffers are full so that the end-nodes respond
to the packet loss events before queue are overloaded and wider congestion starts to
occur. This way, the end-to-end delay is reduced as well, and less packets should be
dropped because of buffer overload.

The RED algorithm has some issues though. [113, 53, 54]. These issues can
translate into network instability and resource and performance degradation. More-
over, it has been shown that proper adjustment of the parameters of RED for a wide
range of applications is a complex problem because of the dependence of the RED
threshold value on the number of connections traversing a RED router. Because
of this, several variants of RED have been designed [125, 166, 35, 82, 66], being
Adaptive RED [66] the most popular among them.
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With the aim of designing AQM algorithms that can be adapted to a wider range
of network conditions, nonlinear and adaptive systems design techniques have been
applied [108, 83, 56]. Alternative schemes have been proposed following a control
theoretic approach as a way of overcoming the limitations of the heuristic approach
taken by RED. Among them we cite algorithms based on PI controlers [84], new
techniques such as random marking with exponential distribution [9], and adaptive
virtual queues [103]. Some schemes based on fuzzy logic have been proposed as
well [42, 55, 177]. This alternative will be addressed in chapter 5. However, little
evidence, whether through simulation or experimentation, has shown the practical
applicability of these alternatives in real networks.

1.4.2.1 QoS Provisioning Architectures

Traffic control and management in packet switched networks, i.e., the efficient dis-
tribution of bandwidth and other network resources in order to provide quality of
service to end-to-end flows, poses many challenges due to the lack of a statistical
characterization of these environments. In particular, it is very difficult to model
and predict the behavior of traffic flows and flow aggregates [150]. Only incom-
plete information about traffic is usually available in routing equipment. Thus, static
bandwidth distribution schemes are inefficient.

Two levels of quality of service can be distinguished in general. The first consists
in providing better performance to elastic applications. This type of quality of ser-
vice finds applications in best-effort networks. The second level requires providing
well-specified performance bounds (or specialized management) to in-elastic ap-
plications as opposed to elastic ones. Besides, the number of classes of quality of
service can be unbound in principle.

In most cases, elastic applications can perform well in best-effort networks as far
as significant congestion does not occur. On the contrary, in-elastic applications may
be often totally unusable when some quality of service parameters are not bound,
such as delay too high or bandwidth too low. In this context, QoS guarantees can be
provided and enforced within different administrative realms: end-to-end, edge-to-
edge, edge-to-middle, middle-to-middle, edge-to-campus, etc.

IP networks have evolved throughout the years from a model that provided only
best-effort services, i.e., the best possible service is provided yet with no guaran-
tees, to a model where multiple types of services with different characteristics and
QoS requirements are provided. Although a large majority of traffic in the current
Internet is still best-effort, as new services are deployed users start to push for QoS
guarantees and differentiated services.

More than fifteen years after the first standards were developed, quality of service
(QoS) provisioning in Internet is still a highly debated topic. Among the proposed
architectures, IntServ [17] was designed for providing individualized quality of ser-
vice to application sessions. This architecture is based on the reservation of band-
width on the end-to-end path by means of the RSVP signaling protocol [18, 11, 17].
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Due to scalability and heterogeneity issues, IntServ has had little practical ac-
ceptance and has not been deployed [99]. In particular, it is not feasible for current
routers to process the large number of per-flow states the IntServ architecture re-
quires. In addition, the use of IntServ in an end-to-end path requires all the nodes
involved to implemented the same reservation protocol, RSVP. As a result, currently
there is little deployment of QoS technologies at the network layer.

Currently, it is accepted that it is not feasible to implement any individualized
quality of service scheme in general in Internet routers. Consequently, the analysis
of flow aggregates has become more important during the last years, and the tech-
nologies for QoS provisioning that have the highest possibilities of eventual large-
scale deployment, DiffServ and MPLS, are designed to support flow aggregates.

As an alternative to IntServ, the IETF has proposed the architecture for differ-
entiated QoS provisioning DiffServ [14, 89]. The approach of DiffServ emphasizes
progressive deployment as an evolution of the current Internet and thus does not
require significant structural changes. For better scalability, the DiffServ architec-
ture defines specialized services at a more general scale than IntServ. In DiffServ,
specialization can be performed on a per node or per flow aggregate basis.

The development of DiffServ was initially motivated by the requirements of voice
and video applications. The QoS differentiation possible with DiffServ is relative or
qualitative, i.e., of the type high bandwidth, low delay, low packet loss rate, etc. This
is due to the nature of the reservation mechanisms of DiffServ where resources are
allocated by mechanisms such as reservation of more bandwidth and lower packet
dropping probability for preferential flow aggregates. That is, DiffServ does not
allow for provisioning quantitative QoS guarantees [150].

The DiffServ working group of the IETF has defined two classes of service in
addition to the best-effort class. The three classes are defined for every hop in a
network, that is, in every router. The overall characteristics of these classes can be
summarized as follows:

Expedited forwarding (EF per-hop behavior [40]). The definition of EF includes
guarantees of low packet loss rate, low latency and latency variation, as well as an
end-to-end communication service with guaranteed bandwidth. The arrival rate
of packets belonging to EF flows has to be lower or equal to the retransmission
rate of such packets in every router. Therefore, implementing this class of service
requires all the routers to reserve the proper resources in advance. This class of
service has operating and structural implications and in practice requires the def-
inition of service level agreements (SLA) between providers. Also, routers have
to implement some traffic control mechanism for EF flows in order to provide
the end-to-end bandwidth guarantee. The concrete implementation of this mech-
anisms is not addressed in the standard definition of the EF class. However, it is
specified that leaky-bucket queues, see [30], have to be used.



24 1 Internet Science

Assured forwarding (AF per-hop behavior [79] ). The AF group provides 4 inde-
pendent classes of IP packet delivery. Within each class, 2 o 3 levels of preference
are used regarding the packet loss rate. The objective of this group is to differ-
entiate (with preferential drops in case of congestion) packets of best-effort type
and packets that exceed the subscribed information rate. As an example, AF can
be used to implement the so-called Olympic service. Three classes of service are
defined within this service: gold, silver and bronze. Packets in the gold class ex-
perience lighter load than silver packets. The same relationship applies to silver
and bronze packets.

Fig. 1.3 Scheme of the DiffServ architecture

An scheme of a DiffServ network is shown in figure 1.3. Priorities or groups are
set by the end nodes, which is scalable and reduces the deployment complexity .
However, no concrete measures have been defined for keeping guarantees of ser-
vice once packets leave edge routers towards inner routers. In conclusion, DiffServ
aims at providing QoS guarantees by means of congestion control algorithms that
consider service differentiation. RED is the most firm proposal to this end [14, 33].
The combined use of the mechanisms designed in the DiffServ architecture and the
network management systems based on MPLS [51] gives rise to an scalable model.
While MPLS allows for controling data paths, DiffServ allows for differentiating
QoS.

AQM With Differentiated Services

The RED AQM algorithm [61] is the most firm proposal both for best-effort and
DiffServ networks. It is thus the algorithm that has more probabilities of being
widely deployed. RED is based on the definition of two threshold values, minimum
and maximum, on a router packet queue. Within these two values packet are dis-
carded to a varying probability, p. When the network is overloaded, i.e., the queue
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size, q increases above the minimum threshold, some packets are discarded with
a probability that increases with the queue size until the maximum probability is
reached for the maximum threshold. This scheme is shown in figure 1.4(a).

(a) RED Control (b) RIO Control

Fig. 1.4 Packet drop rate versus queue size

The initial proposal for implementing RED within the DiffServ architecture adds
the definition of different threshold values for each class of service. The two lowest
threshold values are assigned to the best-effort class. Also, there is the possibil-
ity of reclassifying AF packets into best-effort packets when the subscribed rate is
exceeded.

Figure 1.5 shows an scheme of the way a DiffServ router implements RED.
First, a leaky-bucket type filter is applied on the incoming flows in order to enforce
bandwidth constraints. Packets of class EF not compliant with these constraints are
discarded, while non compliant AF packets are reclassified as best-effort packets.
Packets belonging to the AF and best-effort classes are managed by the RIO (RED
In/Out) scheme [39] which distinguishes between compliant and non compliant
packets. Packets belonging to the EF class are managed by an independent high
priority FIFO scheme.

The best-effort and EF classes are differentiated by means of different thresholds.
RIO queues work in a similar manner to RED queues with the exception that two set
of parameters are configured for compliant and non compliant packets. Parameters
for non compliant packets are set in a particularly restrictive manner, as shown in
figure 1.4(b).
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Fig. 1.5 Scheme of the RED algorithm as applied in DiffServ routers

1.5 Time Series Models for Network Traffic

It is well known that network traffic exhibits complex nonlinear behavior. Many
classes of dynamical behavior have been described, including regular predictable
and unpredictable behavior, transient and intermittent chaos, narrow-band and broad-
band chaos, pseudo-randomness and superposition of several basic patterns [96].
Most of them can be seen in network traffic load series (see chapter 3 for extensive
experimental evidence).

In many cases network traffic shows patterns that suggest that regarding dynam-
ical behavior traffic series can be properly classified within regular predictable phe-
nomena. In this aspect, the analysis of network traffic can be addressed from the
time series analysis viewpoint. In these cases, the theory of nonlinear dynamics pro-
vides a proper framework for the analysis, identification and prediction of network
traffic time series.

Network traffic prediction finds applications in a variety of fields, including con-
gestion and admission control, adaptive applications and network management. The
essential idea in network traffic prediction is to predict traffic for the next control or
action period based on on-line or off-line traffic measurements.

Services such as the network weather service (http://nws.cs.ucsb.edu)
are lately becoming more important for adaptive applications. In particular, Grid
Computing systems often rely on the availability of measurements and predictions
of network conditions in order to optimize performance. This has motivated the
development of grid oriented services for predicting TCP/IP end-to-end throughput
and latency [110].

Predicting traffic load at low time scales (of the order of seconds and minutes)
finds applications for dynamic resource allocation, whereas prediction at longer time
scales (of the order of days and months) is of interest for higher level planning and
dimensioning, as depicted in figure 1.6. Works within the first class are far more
common than for the second class.

As in any field of application of time series prediction techniques, one of the
major objectives is prediction accuracy. Hence, predictability of IP traffic, or the
possibility to satisfy a certain prediction accuracy constraint, is a major issue that
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Fig. 1.6 Traffic load prediction at different time scales

is still essentially open. The first known attempt at long-term prediction of traffic
in an IP network was performed in the NSFNET backbone in the mid-1990s [74].
However, the expression long-term should not be misunderstood as it is used to refer
to the yearly scale and not for multiple steps ahead prediction. In the aforementioned
work a single value for the next year is predicted.

Papagiannaki et al. in [126, 127] use ARIMA models in order to predict traffic
in a Tier-1 backbone and achieve satisfactory results for up to 6 months ahead pre-
diction on a 12 hours time scale (i.e. approximately 50 values are predicted within
reasonable bounds). They apply the Box-Jenkins technique to two separated com-
ponents of the traffic series, the long term trend and the fluctuations at the 12 hours
scale, which are identified as contributing to 98% of the energy and 90% of the vari-
ance by means of the wavelet multiresolution method for multiscale analysis. Also,
they are interested mostly in the overall long-term trend and target their analysis at
a particular time scale (for instance, the standard deviation is computed as a weekly
average of the daily standard deviations, and then the signal is approximated by the
long term trend ±3 times the standard deviation (also, the long-term trend is sim-
plified with a weekly average)). In addition, no automated procedure is defined to
select the combination of trend and detailed signals, and the methodology as ap-
plied in the paper requires human intervention. Thus, this method does not seem
applicable for lower time scales.

Krithikaivasan et al. [102] use ARCH models in order to predict network traffic
for one application case: an Internet link that connects the University of Missouri-
Kansas City to MOREnet. Their focus is on nonstationarity.

Some authors have attempted at developing time series models at smaller time
scales for limited data sets [12] as well as nonlinear time-series models for Ether-
net traffic [27]. You and Chandra have analyzed stationarity issues and proposed
threshold auto-regressive models for campus area traffic [179].

Some additional works have been published on the subject. These will be cited in
chapter 3. However, except for the latter two papers [27, 179], no trace from these
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works is publicly available at present. Thus, these results are not only particular to
specific applications but also difficult if not impossible to reproduce and compare.

All the aforementioned models, some of which will be described in what follows,
are of the black-box kind. In chapter 3 we will address the prediction of traffic load
in network links by means of autoregressive systems that can be interpreted from
a linguistic viewpoint. Let us define a few building blocks to this end. Consider a
discrete time series as a sequence of values, Xt = X0,X1, . . . ,Xn−1, that represents an
ordered set of values, where t is the number of values in the series. The problem of
predicting one future value, Xn, using a general autoregressive model (autoregressor)
with no exogenous inputs can be stated as follows:

X̂n = fr(Xn−1,Xn−2, . . . ,Xn−M),

where X̂t is the prediction of model fr for the prediction horizon 1 and M is the
number of inputs to the regressor, i.e., the regressor size.

Very simple time-series models can be used as starting points. Among these, let
us consider the following three:

• Mean (long-term mean of the series).
• Last value (or naive), where the last observed value is taken as prediction.
• BM(N): average over a history window of optimal size N.

The results that can be expected from these techniques are clearly not useful for
dealing with traffic load. The next natural step is to use traditional autoregressive
models. That is, Box-Jenkins and derived models, both for short-memory and long-
memory stochastic models, including AR, MA, ARMA and ARIMA-like models.

In what follows, we overview a set of models that have been applied to network
traffic as well as models that will be applied in the next chapter of this monograph.
The former include short-memory and long-memory stochastic models and mean
square error predictors. The latter include a set of computational intelligence based
models. We do not aim at performing a complete overview of stochastic or compu-
tational intelligence predictive models. Instead, our focus is twofold. First, we dis-
cuss models that have been proposed for predicting traffic load. Second, we briefly
discuss some computational intelligence methods that will be used in chapters 2
and 3. For a more detailed discussion of stochastic models we refer the interested
reader to some of the many books that provide a more general treatment of this
field [28, 16, 50].

1.5.1 Short-Memory Stochastic Models

A wide set of well established stochastic time series models, such as Markov and re-
gression models [16], can only capture short-range dependencies. We refer to these
models as short-memory models.
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1.5.1.1 Markov Models

In a Markov model, the behavior of a system is modeled by defining a finite number
of states. In general, increasing the number of states leads to more accurate models
at the expense of higher computational complexity. The Markovian property, i.e.,
the next state of the system depends only on the current state is the common char-
acteristic of these models. Markov models often have a complicated structure and
many parameters to adjust when used to model a long-range dependent or a mixed
process [6].

1.5.1.2 Regression Models

Regression models compute the next random variable in the sequence of a time
series from previous ones within a specified time window and a moving average
of white noise. These models are based on the lag operator, B, and the difference
operator, Δ . B is defined as BXt = Xt−1, where BsXt = Xt−s. Δ is defined as ΔXt =
Xt −Xt−1, and analogously Δ d = (1−B)d , which can be expressed as follows using
the binomial expansion:

(1−B)d = ∑b∞
k=0

(
d
k

)
(−1)kBk,

where
(

d
k

)
=

d!
k!(d − k)!

=
Γ (d +1)

Γ (k +1)Γ (d − k +1)
.

Two additional polynomials, φ and θ are defined as well:

φ(B) = (1−φ1B− . . .−φpBp)

θ (B) = (1− θ1B− . . .− θpBq).

1.5.1.3 Autoregressive (AR) Models

An autoregressive model of order p, AR(p), has the following general form:

φ(B)Xt = εt ,

where εt is an error component assumed to be white noise (independent identically
distributed random variables with zero mean and variance σ2). The variable Xt is
regressed on its previous values:

Xt = φ1Xt−1 + . . .+ φpXt−p + εt .



30 1 Internet Science

AR models can model stationary time series. If all the root of φ(B) lie outside the
unit circle, then it is invertible, i.e., can be rewritten in the form Xt = φ−1(B)εt . The
autocorrelation of AR(p) is expressed as follows:

ρk = A1Gk
1 + . . .+ApGk

p,

where 1
Gi

, i = 1, . . . , p are the roots of φ(B).

1.5.1.4 Autoregressive Moving Average (ARMA) Models

An ARMA model, ARMA(p,q), has the following general form:

φ(B)Xt = θ (B)εt ,

where θ(B)εt is the moving average component of the model. In an equivalent form,
ARMA models can be expressed as follows:

Xt = φt Xt−1 + . . .+φpXt−p + εt − . . .−θqεt −q,

These models exhibit a high modeling flexibility but are also restricted to stationary
time series. In practice, proper models for time series can be built with p and q equal
to or even lower than 2.

1.5.1.5 Autoregressive Integrated Moving Average (ARIMA) Models

ARIMA models, ARIMA(p,d,q), are defined as an extension to ARMA models
where the polynomial φ(B) is allowed to have d roots equal to 1. The other roots lie
outside the unit circle. An ARIMA model has the following general form:

φ(B)Δ dXt = θ (B)εt .

ARIMA models can predict non-stationary processes. Note that

Δ dXt = (1− B)dXt = φ−1(B)θ (B)εt ,

and,
Xt = (1+ B +B2+ . . .)dφ−1(B)θ (B)εt .

Thus, Xt is regressed to a sum (or integration) of infinite noise variables. By in-
cluding the difference operator Δ , ARIMA models address those cases where the
original series Xt is non-stationary but the increments Xt − Xt−d = (1 − B)dXt are
stationary.
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1.5.1.6 Nonparametric Autoregressive Models

Since nonlinear time series can have any possible form in general, a natural approach
to modeling them is to adopt a nonparametric model form. In general, it can be
assumed that:

Xt = f (Xt−1, . . . ,Xt−p)+ σ(Xt−1, . . . ,Xt − p)εt ,

where f and σ are unknown functions and {εt} ∼ IID(0,1). Thus, no particular form
is imposed on f and σ . Instead, some qualitative assumptions are usually made, such
as that f and σ are smooth.

These models are referred to as nonparametric autoregressive conditional het-
eroscedastic (NARCH) or nonparametric autoregressive (NAR), if σ is a constant.
NARCH and NAR models are manifestly very general, as they make very few as-
sumptions on the process that generates the data. Such models are normally useful
for a small value of p. For moderately large values of p, the functions in such a satu-
rated form are difficult to estimate. This intrinsic limitation is commonly referred to
as the curse of dimensionality in the nonparametric regression literature and other
fields. A number of simplified models between parametric models and fully general
nonparametric models have been proposed that can substantially ease the curse of
dimensionality issue at the expense of restricting the model form [50].

A particular class of NAR models includes computational intelligence methods.
In the next chapters, some computational intelligence methods will be used to de-
velop nonparametric autoregressive models for network traffic load time series. Or-
dered Weighted Averaging-Induced nearest neighbor models, Least Squares Support
Vector Machines and Optimally-Pruned Extreme Learning Machines will be briefly
described later on in this section. In addition, a methodology to design nonlinear
regressive models by means of fuzzy inference systems is described in chapter 2.
These methods will be applied to a wide set of traffic load time series.

1.5.2 Long-Memory Stochastic Models

Long-memory models are more recent models which are capable of capturing long-
range dependencies. We overview some models that have been widely used in both
theory and practice.

1.5.2.1 Fractional Brownian Motion (fBm)

Brownian motion [44, 13, 73] is a stochastic process, Bmt ,t ≥ 0, characterized by
the property that increments Bmt0+t −Bmt0 are normally distributed with zero mean
and variance σ2t. The fractional Brownian motion fBmt is a self-similar process
with Hurst parameter 1/2 ≤ H ≥ 1, and with variance σ2t2H . Fractional Brownian
motion is non-stationary.
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1.5.2.2 Fractional Gaussian Noise

Fractional Gaussian noise, fGnt , is the increment process of a fractional Brownian
motion for a finite increment τ:

fGnt = fBmtτ − fBm(t−1)τ ,

As opposite to fractional Brownian motion, fractional Gaussian noise is stationary.
The autocorrelation function of fGnt has the following form:

ρk = 1/2[(k +1)2H − 2k2H +(k +1)2H ],

which, as k → ∞, turns into:

ρk = H(2H −1)k2H−2.

Fractional Gaussian noise processes can be used to generate synthetic self-similar
traffic patterns [130, 157]. There is a direct predictor for fGn [73], although it is
fairly complicated and computationally intensive. In addition, fGn processes are
pure long-memory. Thus, fGn based predictors usuarlly require large regressor sizes
(of the order of hundreds and thousands of values).

1.5.2.3 Fractional ARIMA (FARIMA)

Fractional ARIMA models, FARIMA, proposed in 1980 [85], are the natural ex-
tension to the ARIMA models when the parameter d of the difference operator can
have a real value. Xt is a stationary invertible FARIMA(p,d,q) process if:

φ(B)Δ dXt = θ (B)εt ,

where d is a real number (−1/2 < d < 1/2), and where φ(B) and θ(B) are sta-
tionary AR and invertible MA polynomials, respectively. The equation H = d + 1

2
holds between d and H. Thus, Xt is a long-memory process if (0 < d < 1/2) and
a short-memory process if d = 0. These models have been used for network traffic
modeling [148]. FARIMA(0,d,0) is the basic form of these models:

Δ dXt = εt .

For which,

ρk =
(−d)(k +d +1)!
(d −1)(k − d)!

,



1.5 Time Series Models for Network Traffic 33

and, as k → ∞,

ρk =
(−d)!

(d −1)!
k2d−1.

1.5.2.4 Generalized ARMA (GARMA)

GARMA models are the generalization of all the regression models and can be
applied to model both short-range and long-range dependencies. These models
can also model cyclical patterns with fewer parameters than ARMA models. A
GARMA(p,q) model of a process Xt is defined as follows:

φ(B)(1−2ηB+ B2)dXt = θ (B)εt ,

where (−1/2 < d < 1/2) and (1 < η < 1), and the term (1 − 1ηB + B2)d is the
Gegenbauer polynomial, which can be expanded using the power series expansion.

1.5.2.5 Fractional Predictors

Let Xt be an invertible FARIMA(p,d,q) process:

φ(B)Δ dXt = θ (B)εt .

Considering invertibility, it can be written:

εt =
∞

∑
j=0

π jXt− j,

where
∞

∑
j=0

π jXt− j = φ(B)θ−1(B)(1− B)d.

From the theorems of linear prediction, a one step ahead predictor of a FARIMA
process can be defined as:

X̂t = −
∞

∑
j=1

φ jXt− j+1.

GARMA models are very similar to FARIMA models. Thus, the method can be
extended to a GARMA predictor. The extension lies in the computation of the π j

coefficients which are given as follows:

∞

∑
j=0

π jB
j = φ(B)θ−1(B)(1− 2ηB +B2)d .
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1.5.3 Mean Square Error Predictors

Let {Xt} be a linear stochastic process and let us assume that the next value of {Xt}
can be expressed as a linear combination of previous observations:

Xt+1 = wnXt + . . .+ w1Xt−m+1 + εt ,

where m is the order of the regression. The same predictor can be expressed in
matrix form:

Xt+1 = WX′ + εt .

It can be seen that this is the case for all the regression models above, and particu-
larly for the FARIMA and GARMA models. In many practical applications, such as
network measurement and control, on-line prediction is needed and no prior knowl-
edge about the underlying dynamics of the series is available. However, it is possible
to estimate the weights wi as follows. Let Ŵ be the estimated weight vector, then:

X̂t+1 = ŴX′ + εt ,

where X̂t+1 is the predicted value of Xt+1. In what follows, we detail two solutions
for this estimation problem. The first solution is based on minimum mean square
error. The second approach is based on recursive linear regression. The former re-
quires a matrix inversion and autocorrelation computations whereas the latter avoids
these computationally intensive operations at the expense of lower accuracy.

1.5.3.1 Minimum Mean Square Error Predictors

One simple solution to the estimation problem above is the minimum square error
(MMSE) method. In MMSE, the optimal weight vector is computed by minimizing
the expected value of squared errors:

εt = Xt+1 − X̂t+1,

and the corresponding expected value is:

E|ε2
t | = E|(Xt+1 − X̂t+1)2|

That is, a minimization problems has to be solved. By using the derivative equation
of the expression above, the following solution can be found:

Ŵ = ΓG−1,

where G is the autocorrelation matrix and Γ is an autocorrelation vector starting at
lag m defined as follows:
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G =

⎡
⎢⎢⎢⎣

ρ0 ρ1 . . . ρm−1

ρ1 ρ0 . . . ρm−2
...

...
. . .

...
ρm−1 ρm−2 . . . ρ0

⎤
⎥⎥⎥⎦

and
Γ = [ρm . . .ρ1].

The autocorrelation coefficients ρk can be computed by the following equation:

ρk =
1
m

m

∑
t=k+1

XtXt−k,

where m is the order of the MMSE predictor.
MMSE predictors have the advantage that there is no need to know the underlying

structure of the time series and thus can be used for on-line prediction. In addition,
these models do not assume stationarity. They are also very simple to implement as
they only require a few matrix manipulations which can be efficiently implemented
as software and hardware. In addition, some approximation techniques have been
proposed for computing the weight vector Ŵ that eliminate the need for matrix
inversion and autocorrelation computations [3]. However, for some traffic series it
has been shown that the performance of MMSE for one step ahead prediction is not
significantly better than that of a naive model [70].

1.5.3.2 Normalized Minimum Mean Square Error Predictors

The normalized MMSE method [77] uses an adaptive and recursive approach to
compute the weight vectors for the MMSE method. It is sometimes referred to as
normalized recursive linear regression [3]. It does not require prior knowledge of
the correlation structure of the time series. Thus, it can be applied as an on-line
prediction algorithm. The recursive linear estimator for the weight vector is defined
as follows:

Ŵt+1 = Ŵt + μ
X̂

||X̂||2 εt ,

where μ is the adaptation constant and determines the convergence speed. NMMSE
is convergent with respect to the mean square error if the adaptation constant satis-
fies the following relations: 0 < μ < 2.

The NNMSE method eliminates the need for computing a matrix inversion and
autocorrelations as compared to MMSE. Thus, it is a very fast option. It has been
claimed that NMMSE can attain a satisfactory accuracy for VBR video traffic pre-
diction [1]. However, other authors have found this technique to provide very limited
predictive capabilities for different traces [70]. In addition, it has been shown that
NMMSE performs poorly for some traffic series, yielding worse results than a naive
predictor for one step ahead prediction [70].
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1.5.4 OWA-Induced Nearest Neighbor Models

Nearest neighbor pattern classification schemes have been applied in a variety of
fields for several decades [34]. These schemes can provide good results in time se-
ries prediction applications [151] as well. A specific variant of the nearest neighbor
scheme is the fuzzy k-nearest neighbor algorithm [100].

An Ordered Weighted Averaging (OWA) operator [173] of order m is a mapping
FW : R

m → R characterized by an m−dimensional vector W , the weighting vector,
whose elements, w j, lie in the unit interval and sum to one. The mapping is defined
as follows:

FW (a1, . . . ,am) =
m

∑
j=1

wjb j,

with b j being the jth largest element within the ai. If we call B the m dimensional
vector whose jth element is b j, then the mapping can be expressed as FW (a1, . . . ,an)
= W T B. B is called the ordered augmented vector.

Induced OWA operators [175, 176] are a more general type of OWA operator that
take as their argument pairs, called OWA pairs. One component of the pair is used
to induce an ordering over the second components which are then aggregated.

IOWA operators are used to aggregate tuples of the form (vi,ai). In these pairs, vi

is called the order inducing value and ai is called the argument value. The following
procedure for performing IOWA aggregations has been proposed [176]:

FW (〈v1,a1〉, . . . ,〈vm,am〉) = W T Bv,

where W is an OWA weighting vector of dimension m as before. However, the or-
dered augmented vector, Bv is such that its jth element is the argument value of
the pair having the jth largest value for the order inducing variable, vi. Thus, if we
let v − index be an index function such that v − index( j) is the index of the argu-
ment pair with the jth largest order inducing value, then the mapping FW for IOWA
operators can be expressed as follows:

FW (〈v1,a1〉,〈v2,a2〉, . . . ,〈vm,am〉) =
n

∑
j=1

wjav−index( j).

Among other methods, fuzzy methods based on IOWA operators have been pro-
posed to model nearest neighbor rules [174].

1.5.5 Least Squares Support Vector Machines

Support Vector Machines (SVM) [144] are a type of learning algorithm developed
in the 1990s based on results from statistical learning theory. The development of
SVMs led to the definition of a new class of learning machines that use a central
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concept of SVMs: kernels. Kernel machines or kernel based methods are by defi-
nition a modular framework that can be adapted to different tasks and domains by
choosing the kernel function and the base algorithm.

LS-SVM [159] are defined as a least square modification to SVMs. SVMs have
been shown to be a powerful method in classification and regression applications
due to its generalization capability and robustness against high dimensional prob-
lems. LS-SVM are regularized supervised approximators. Let us consider a set of
training samples given in the form of multiple input-single output pairs, (x j,y j),
with j = 1, . . . ,N, where x j ∈ R

n are the inputs and y j ∈ R are the corresponding
outputs. In short, an LS-SVM model is defined in its primal weight space as follows:

ŷ = ωωωT ϕϕϕ(x)+ b,

where ŷ ∈ R is the output of the model (X̂t+1 in the notation of previous sections),
x ∈ R

n is an input vector (consisting of previous, known values of a time series for
the case of regression with no exogenous inputs), ϕϕϕ : R

n → R
nϕϕϕ is a nonlinear fea-

ture map that transforms the original input space into a higher dimensional feature
space of dimension nϕϕϕ , b ∈ R is a bias term and ωωω ∈ R

nϕϕϕ is an unknown vector of
coefficients. The constrained optimization problem with a regularized cost function
for LS-SVM models is formulated as follows:

min
ωωω,b,e j

=
1
2

ωωωT ωωω + γ
1
2

N

∑
j=1

e2
j ,

where y j = ωωωT ϕϕϕ(x j)+ b + e j, with e j being the model errors (defined as y j − ŷ j),
and γ > 0 is a regularization parameter that balances the flatness-accuracy trade-
off for the regression function. By Mercer’s theorem applied to the kernel matrix
ωωω i j = K(xi,x j) = ϕϕϕ(xi)T ϕϕϕ(x j), i, j = 1, . . . ,N, it is not necessary to compute the
nonlinear mapping ϕϕϕ(·) nor anything in the higher dimensional space, but this can
be done in an implicit manner using positive definite kernel functions K [144]. For
the kernel functions K(xi,x j) there are three common choices:

• linear, K(xi,x j) = xT
i x j,

• polynomial of degree d, K(xi,x j) = (xT
i x j + c)d , with c ≥ 0 being a tuning

parameter,
• and radial basis function (RBF) kernels, in particular Gaussian kernels, K(xi,x j)

= exp(−||xi −x j||22/σ2), where σ is a tuning parameter.

The constrained optimization problem can be solved using Lagrangian multipliers.
This way, the final expression in dual form for estimating a regression function is as
follows:

f̂ (x) =
N

∑
j=1

α jK(x j,x)+ b,

where α j are the Lagrangian multipliers. In practice, the training process involves
the selection of the regularization parameter and the kernel parameters. Given a set
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of inputs, a proper choice of these parameters is key for obtaining a good regression
model. To this end, it is common to use cross-validation approaches.

Whereas the training process for a SVM consists in a quadratic programming task
that guarantees optimality, the optimization of an LS-SVM is simplified into a linear
programming task. This implies that LS-SVM are significantly faster to optimize
while training optimality is also guaranteed, i.e., local minima are avoided.

1.5.6 Extreme Learning Machine

The Extreme Learning Machine (ELM) [87] is a simple yet effective learning algo-
rithm for training single-hidden-layer feed-forward artificial neural networks (SLFNs)
with random hidden nodes. In ELM, the hidden neuron parameters are randomly
assigned whereas the output weights are analytically determined. ELM is a unified
framework of generalized SLFNs that has the universal approximation capability
for a wide range of hidden node types. The training process for ELM can be sev-
eral orders of magnitude faster than traditional learning algorithms for feed-forward
neural network, while attaining similar or even better approximation capabilities.

In particular, in this monograph we will apply and assess the performance of Op-
timally Pruned Extreme Learning Machines (OP-ELM) models [115, 152] for traffic
load. OP-ELM models are build in three stages and use Gaussian, sigmoid and lin-
ear kernels in general. First, an ELM is constructed, then, an exact ranking of the
neurons in the hidden layer is obtained, and finally the decision on how many neu-
rons are pruned is made based on an exact leave-one-out error estimation method.
These stages are performed by means of fast methods and lead to extremely fast yet
accurate models.

The accuracy of OP-ELM models has been shown to be comparable to or even
better than that of other (much more computationally intensive) computational intel-
ligence methods [115, 117], such as Least Squares Support Vector Machines [159]
and Multilayer Perceptrons [76].

1.5.7 Prediction Performance Metrics

In regression problems, performance metrics are important not only because they
allow for assessing and comparing different modeling methods but also because the
goodness of fit metric is key for driving the tuning process. A number of metrics
have been proposed in order to address different applications.

In the next chapter, a methodology for the long-term prediction of time series by
means of fuzzy inference systems will be described. To this end, we use the Xfuzzy
design environment for fuzzy inference systems [122]. The common mean square
error (MSE) definition in the Xfuzzy environment, the MSE normalized with respect
to the square of the range of the series:

NMSErange =
1
N

1
M ∑

i, j

(
Xi j − X̄i j

r j

)2

, i = 1, . . . ,M,
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where N is the number of training data, M is the number of output variables of the
system Xi j is the j-th output generated by the system for the i-th data, X̄i j is the
correct output given in the training data, and r j is the range of the j-th output (used
to normalize the deviations). By restricting the system to one output variable, with
range r, we get the following simplified expression for the MSE normalized with
respect to the square of the range of the series:

NMSErange =
N

∑
t=1

(
Xi − X̂i

r

)2

.

Alternatively, for single output systems, the normalized MSE with respect to the
variance of the series is defined as follows:

NMSEvar =
1

var(y)

N

∑
t=1

(yi − ŷi).

This variant will be used in chapter 3 for assessing regressive models for network
traffic load.

An alternative metric for the goodness of a regressive model is the reverse of
signal to noise ratio [1]:

SNR−1 = ∑ε2

∑X2
.

As before, the smaller the ratio, the better prediction accuracy.
An additional metric is the signal-to-error ratio proposed in [29], defined as fol-

lows:

SRR = 10 · log10
E[X2

t )]
E[ε2

t ]
.

The metrics described so far are based on squared errors. Regarding non-squared
errors, the percentage error (PE) can be seen as a measure of the error magnitude, but
also indicates the direction of error and identifies outliers. The absolute percentage
error (APE) is computed without regard to the direction of errors. The mean absolute
percentage error (MAPE) is an statistical measure that summarizes the distribution
of the APE. APE and MAPE are defined as follows:

APEt =
|Xt − X̂t |

Xt
×100.

MAPE =
n

∑
t=1

APEt .

It has been argued that the MAPE is not symmetric, i.e., it treats predictions errors
above the actual values differently from errors below this value. In order to over-
come this limitation, the the symmetric mean absolute percent error (SMAPE) has
been proposed. The SMAPE is a measure of the symmetric absolute error in percent
between the actual values Xt and the predictions X̂t across all observations t of the
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test set of size n. The SMAPE is defined as follows:

SMAPE =
1
n

n

∑
t=1

|Xt − X̂t |
(Xt + X̂t)

·100.

SMAPE is a mean percentage metric and thus accounts for different numbers of
observations in the training and test subsamples as well as different scales among
different time series. However, SMAPE is not really a symmetrical measure, spe-
cially when the errors have large absolute values [72].

It should be noted that all the metrics considered here assume no specific decision
problem of the prediction task and hence assume errors have a symmetric cost.

In analysis of variance [94], the total sum of squares (SST), measures the vari-
ation of the observed xi values about their expected value, and represents the total
variation of the dependent variable X . Thus, SST is defined as follows:

SST =
M

∑
i=1

(Xi − X̄)2.

Can a significant part of this total variation be explained or attributed to a certain
model? Analysis of Variance (ANOVA) provides information about levels of vari-
ability in a regression model and can be used as the basis for tests of significance.
Using ANOVA, we test how representative a model is in terms of the proportion of
variance it explains [94].

The ANOVA methodology is based on partitioning the SST into two sums: one
due to the model relationship between inputs and outputs (referred to as the sum of
squares due to regression, or SSR), and the residual variation that is not explained
by the model (SSE). Then, SSR can be defined as the difference between SST and
SSE,

SSR = SST −SSE,

or, equivalently, the sum of squares (SS) explained by the regression model is equal
to the difference between the total SS and the unexplained SS. The basic regres-
sion line concept, where data are given a fit function plus a residual component, is
reformulated this way. Thus, the distance Xi − X̄ is divided into two components:

Xi − X̄ = (Ŷi − Ȳ )+ (Xi − X̂i),

where the first term is the total variation in the signal, the second term is the variation
in mean response of the model and the third term is the residual value. Or, in terms
of sums of squares,

M

∑
i=1

(Xi − X̄)2 =
M

∑
i=1

(Ŷi − Ȳ)2 +
M

∑
i=1

(Xi − X̂i)2.

The ratio SSR/SST, called the coefficient of determination, R2, tells the proportion of
the variation of X that can be explained and determines the goodness of the model.
That is, the square of the sample correlation is equal to the ratio of the regression
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model sum of squares to the total sum of squares: R2 = SSR/SST . This formalizes
the interpretation of R as explaining the fraction of variability in the data explained
by the regression model. So if the R2 term is for instance 0.78, it indicates that
78% of the variability in the response is explained by the model. The coefficient of
multiple correlation is defined as the square root of the coefficient of determination.

Thus, within this framework, the mean square error of a predictive model nor-
malized against the variance of the series, as defined above, is equivalent to the
coefficient of determination and thus indicates the extent to which the variability
of a series is explained by the model. We will apply a basic ANOVA technique as
proposed in [127] in chapter 3 in order to assess a number of regressive models for
network traffic load time series.

1.6 Conclusions

We have given a brief overview of a number of issues related to Internet Science,
i.e., the study of laws and patterns in Internet structure. The following aspects have
been briefly defined: measurement systems and infrastructures (both active and pas-
sive), performance metrics (with an emphasis on end-to-end metrics), models for
network traffic, network modeling and simulation issues, relevant protocols and
control mechanisms at the network and transport layers, quality of service and dif-
ferentiated services.

Time series models for network traffic load were also reviewed. Both short-
memory and long-memory models have been considered as well as parametric and
nonparametric models. First, we focused on stochastic techniques that have been
previously proposed for modeling Internet traffic. Then, we briefly described a set
of computational intelligence techniques (including OWA-induced nearest neighbor
models, LS-SVM and OP-ELM) that will be applied in the next chapters. Finally,
we described some generic performance metrics for time series models.
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Chapter 2
Modeling Time Series by Means of Fuzzy
Inference Systems

Abstract. In this chapter, we focus on long-term modeling and prediction of uni-
variate nonlinear time series. First, a method for long-term time series prediction
by means of fuzzy inference systems combined with residual variance estimation
techniques is developed and validated through a number of time series prediction
benchmarks. This method provides an automatic means of modeling and predict-
ing network traffic load, and can thus be classified as a method for predictive data
mining. Although the primary focus in this section is to develop a methodology for
building simple and thus interpretable fuzzy inference systems, it will be shown that
they also outperform some of the most accurate and commonly used techniques in
the field of time series prediction.

2.1 Predictive Models for Time Series

Time series prediction and analysis in general is a recurrent problem in virtually
all areas of natural and social sciences as well as in engineering. In the time series
prediction field, prediction accuracy is not the only major goal. Understanding the
behavior of time series and gaining insight into their underlying dynamics is a highly
desired capability of time series prediction methods [39].

In the past, conventional statistical techniques such as AR and ARMA models
have been extensively used for forecasting [4]. However, these techniques have
limited capabilities for modeling time series data, and more advanced nonlinear
methods including artificial neural networks have been frequently applied with
success [6].

Fuzzy logic based modeling techniques are appealing because of their inter-
pretability and potential to address a broad spectrum of problems. In particular,
fuzzy inference systems exhibit a combined description and prediction capability
as a consequence of their rule-based structure [37]. The application of fuzzy infer-
ence systems to time series modeling and prediction dates back to [38], in which
the authors develop the well known learn from examples identification algorithm
for fuzzy inference systems and use the Mackey-Glass time series as a validation
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case. Nevertheless, in spite of its good performance in terms of accuracy and inter-
pretability, fuzzy inference systems have seen little application in the field of time
series prediction as compared to other nonlinear modeling techniques such as neural
networks and support vector machines.

The methodology proposed here is intended to apply to crisp time series, i.e.
those time series consisting of crisp values, as opposed to other kinds of values,
such as interval and fuzzy values. That is, we propose here a methodology frame-
work to perform autoregressive prediction of crisp time series by means of fuzzy
inference systems [23, 25]. We will call fuzzy autoregressors those autoregressors
implemented as fuzzy inference systems. This is not to be confused with what is
usually called fuzzy regression [5] and fuzzy time series [33] in the literature.

When developing fuzzy inference systems for time series prediction, many ques-
tions remain still open: How to perform long-term prediction? How many and what
inputs to the inference system must be defined? To what extent the theoretical uni-
versal approximation capability of fuzzy systems is achieved with existing tech-
niques? What are the best fuzzy methods for these tasks?

In practice, one finds two problems when building a fuzzy model for a time series:
choosing variables or inputs to the inference system, and identifying the structure
of the system (linguistic labels and rule base). Once these steps have been accom-
plished, the fuzzy model can be tuned through supervised learning techniques. We
propose an automatic methodology framework to address these two problems using
fuzzy techniques and nonparametric residual variance estimation techniques in an
intertwined manner.

The first problem can be addressed by means of a priori feature selection tech-
niques based on nonparametric residual variance estimation, which also provide an
estimate of the error of the most accurate nonlinear model that can be built with-
out overfitting. The second problem is addressed by techniques for identification of
fuzzy systems from numerical examples [10], such as the algorithm by Wang and
Mendel (W&M) [37, 38] and fuzzy identification algorithms based on clustering
techniques [22, 7].

In this section, we also address a relatively recent challenge in the field of time se-
ries prediction: long-term prediction (as a generalization to short-term prediction),
for which lack of information and accumulated errors pose additional difficulties.
Also, real world benchmarking time series, in addition to synthetic series (chaotic
but noise-free) are analyzed. The methodology proposed here will be compared
against Least Squares Support Vector Machines (LS-SVM) [35], a method that has
been shown to be highly accurate in the field of time series prediction.

The next section outlines a nonparametric residual variance estimation method
that will be used for both variable and proper model complexity selection. In sec-
tion 2.3 we propose a methodology framework and one concrete implementation
that uses well known algorithms for identifying and optimizing fuzzy inference sys-
tems. Section 2.4 illustrates the methodology through a case study. Finally, sec-
tions 2.5 and 2.5.7 present and further discuss experimental results for a number of
time series benchmarks from diverse fields of application.
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2.2 Nonparametric Residual Variance Estimation: Delta Test

Nonparametric residual variance estimation (or nonparametric noise estimation,
NNE) is a well-known technique in statistics and machine learning, finding many
applications in nonlinear modeling [15]. NNE methods can be applied to recurrent
problems such as variable and model structure selection. These methods are not
however in widespread use in the machine learning community as most work has
been done to date within the statistics community.

Delta Test (DT), introduced for time series in 1994 [30], is a NNE method, i.e, it
estimates the lowest mean square generalization error (MSE) that can be achieved
by a model without overfitting the training set. Given N multiple input-single output
pairs, (x̄i,yi)∈ R

M ×R, the theory behind the DT method considers that the mapping
between x̄i and yi is given by the following expression:

yi = f (x̄i)+ ri,

where f is an unknown perfect fitting model and ri is the noise. DT is based on
hypothesis coming from the continuity of the regression function. When two inputs
x and x′ are close, the continuity of the regression function implies that the corre-
sponding outputs, f (x) and f (x′), will be close enough. When this implication does
not hold, it is due to the influence of the noise.

Let us denote the first nearest neighbor of the point x̄i in the set {x̄1, . . . , x̄N} by
x̄NN . Then the DT, δ , is defined as follows:

δ =
1

2N

N

∑
i=1

∣∣yNN(i) − yi
∣∣2 ,

where yNN(i) is the output corresponding to x̄NN(i). For a proof of convergence, we
refer to [18, 19]. DT is an unbiased and asymptotically perfect estimator with a
relatively fast convergence [19] and is useful for evaluating nonlinear correlations
between two random variables, namely, input-output pairs. DT can be seen as part
of a more general NNE framework known as the Gamma Test [15]. Despite the
simplicity of DT, it has been shown to be a robust method in real world applica-
tions [18]. This method will be used in the next sections for both model complexity
selection and a priori input selection.

2.3 Methodology Framework for Time Series Prediction with
Fuzzy Inference Systems

Consider a discrete time series as a vector, ȳ = y1,y2, . . . ,yt−1,yt that represents an
ordered set of values, where t is the number of values in the series. The problem
of predicting one future value, yt+1, using an autoregressive model (autoregressor)
with no exogenous inputs can be stated as follows:

ŷt+1 = fr(yt ,yt−1, . . . ,yt−M+1)
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Where ŷt+1 is the prediction of model fr and M is the number of inputs to the
regressor.

Predicting the first unknown value requires building a model, fr, that maps re-
gressor inputs (known values) into regressor outputs (predictions). When a predic-
tion horizon higher than 1 is considered, the unknown values can be predicted fol-
lowing two main strategies: recursive and direct prediction.

The recursive strategy applies the same model recursively, using predictions as
known data to predict the next unknown values. For instance, the third unknown
value is predicted as follows:

ŷt+3 = fr(ŷt+2, ŷt+1,yt ,yt−1, . . . ,yt−M+3)

Recursive prediction is the most simple and intuitive strategy and does not require
any additional modeling after an autoregressor for one step ahead prediction is built.
However, recursive prediction suffers from accumulation of errors. The longer the
prediction term is, the more predictions are used as inputs. In particular, for predic-
tion horizons greater than the regressor size, all inputs to the model are predictions.

Direct prediction requires that the process of building an autoregressor be applied
for each unknown future value. Thus, for a maximum prediction horizon H, H direct
models are built, one for each prediction horizon h:

ŷt+h = fh(yt ,yt−1, . . . ,yt−M+1), with1 ≤ h ≤ H

While building a prediction system through direct prediction is more computation-
ally intensive (as many times as values are to be predicted) it is also straightforward
to parallelize. As opposed to recursive prediction, direct prediction does not suffer
from accumulation of prediction errors.

We follow the direct prediction strategy. In order to build each autoregressor, a
fuzzy inference system is defined as a mapping between a vector of crisp inputs, and
a crisp output. This way, assuming all (M) inputs are used, the fuzzy autoregressor
for prediction horizon h can be expressed as a set of N fuzzy rules:

Rh
i : IF yt isLi,h

1 AND yt−1 isLi,h
2 AND . . .

. . . AND yt−M+1 isLi,h
M THEN ŷt+h ← μRh

i

Where the fuzzy sets Li,h
j ∈ {Li,h,1

j ,Li,h,2
j , . . . ,L

i,h,n j
j }, with n j being the number of

linguistic labels (membership functions) defined for the input variable j. For ex-
ample, in a system with two inputs, if Li,h

1 is renamed LOW1 and Li,h
2 is renamed

HIGH2, the rule i for horizon 1, R1
i , would have the following form:

IF yt wasLOW1 AND yt−1 wasHIGH2 THEN ŷt+h ← μRh
i
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Depending on the fuzzy operators, inference model and type of membership func-
tions employed, the mapping between inputs and outputs can have different formu-
lations. In principle, the methodology proposed here can be applied for any com-
bination of membership functions, operators and inference model, but the selection
can have a significant impact on practical results.

As a concrete implementation, we use the minimum as T-norm for conjunction
operations and implications, Gaussian membership functions for inputs, singleton
outputs and fuzzy mean as defuzzification method. Therefore, in this particular case
a fuzzy autoregressor for prediction horizon h can be formulated as follows:

Fh(ȳ) =

Nh

∑
l=1

min
(

μRh
l
, min
1≤v≤M

μ
Li,h

l
(yv)

)

Nh

∑
l=1

min
1≤v≤M

μ
Li,h

l
(yv)

Where Nh is the number of rules in the rulebase for horizon h, μ
Li,h

l
are Gaussian

membership functions and μRh
l

are singleton membership functions.

The problem of building a regressor can be precisely stated as that of defining
a proper number and configuration of membership functions and building a fuzzy
rulebase from a data set of t sample data from a time series such that the fuzzy
systems Fh(ȳ) closely predict the h−th next values of the time series. The error
metric to be minimized is the mean squared error (MSE).

We propose a methodology framework in which a fuzzy inference system is de-
fined for each prediction horizon throughout the stages shown in figure 2.1. These
stages are detailed in the following subsections.

2.3.1 Variable Selection

In principle, the whole set of known past values of a time series may influence the
unknown future values. However, using all known values as inputs to a time series
autoregressor does not necessarily improve its accuracy. As the number of inputs
increases, and the known data become more sparse in a high-dimensional space,
building a model gets more and more complex. This is the well known “curse of
dimensionality” problem [3].

A proper choice of input variables can provide a balance between considering
all the relevant inputs versus the simplicity of building an accurate autoregressor.
As first step in the methodology, DT estimates are employed so as to perform an a
priori selection of the optimal subset of inputs from the initial set of M inputs, given
a maximum regressor size M.

Variable selection requires a selection criterion. We use the result of the DT ap-
plied to a particular variable selection as a measure of the goodness of the selection.
The input selection that minimizes the DT estimate is chosen for the next stages.
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Fig. 2.1 Methodology framework for time series prediction

In addition, a selection procedure is required. For small (up to around 10-20)
regressor sizes, an exhaustive evaluation of DT for all the possible selections (a total
of 2M − 1) is feasible. We will call this procedure exhaustive DT search. Its main
advantages is that the optimal selection is found. However, its algorithmic order is
exponential and it is thus unfeasible for high regressor sizes.

For higher regressor sizes, forward-backward search of selections (FBS) [34] is
employed. This procedure combines both forward and backward selection. FBS can
be started alternatively from random selections or selections for lower regressor
sizes performed by means of exhaustive search. While this procedure does not guar-
antee optimality of the chosen selection, it provides a convenient balance between
performance and computational requirements.

NNE based selection can be classified into the set of input selection approaches
which select a priori features, i.e., selection is based only on the dataset. Thus, the
computational cost of DT-based selection is lower than that of the model dependent
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cases, in which input selection is addressed as a generalization error minimization
problem, using leave-one-out, bootstrap or other resampling techniques.

2.3.2 System Identification and Tuning

This stage comprises three substages that are performed iteratively and in a coor-
dinated manner. The whole process is driven by the third (complexity selection)
substage, until a system that satisfies a training error condition derived from the DT
estimate is constructed.

2.3.2.1 Stage 2.1: System Identification

In this substage, the structure of the inference system (linguistic labels and rule base)
is defined by means of an automatic fuzzy systems identification algorithm. The set
of inputs is fixed after the previous variable selection stage. Regardless of the iden-
tification algorithm used, one or more parameters are usually required that specify
the potential complexity of the inference system. Thus, the desired boundaries of
complexity for the systems being built are additional inputs.

The identification substage, as well as the next (tuning) substage are iteratively
performed for increasing degrees of complexity. The concrete procedure used to
explore different complexities depends on the identification and tuning algorithms
applied.

For the concrete implementation analyzed here, identification is performed using
the W&M algorithm driven by the DT estimate. The W&M algorithm is based on the
“learn by example” principle and considers a fixed grid partition of the universes of
discourse of the inputs, which are proper characteristics for modeling time series in
an interpretable manner. Though a number of modifications and derived algorithms
have been proposed, for the sake of simplicity and interpretability we adhere to the
original specification of the algorithm for generating fuzzy inference rules directly
from input-output data pairs [37] as implemented in version 3.2 of the Xfuzzy design
environment [27].

In the case of the W&M algorithm, the number of membership functions per
input must be specified a priori. Thus, the complexity boundaries would be specified
as a maximum number of linguistic labels. Our approach is to explore the set of
possible systems starting from the lowest possible number of linguistic labels. The
same number of linguistic labels is used for each input.

2.3.2.2 Stage 2.2: System Tuning

We define an additional tuning step in the methodology as a substage separated
from the identification substage. Note that in some cases (as for example in the
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algorithm by Higgins and Goodman [11]), these two substages can be integrated into
a standalone algorithm. The tuning process is driven by one or more error metrics.

As concrete implementation, we apply the Levenberg-Marquardt second order
optimization method [9, 2] for supervised learning driven by the normalized MSE
(NMSE)1. A number of supervised learning and optimization methods implemented
in the Xfuzzy environment were compared, including backpropagation and other
gradient descent methods such as QuickProp and RProp, no derivative methods such
as simulated annealing and downhill simplex, several second order methods as well
as conjugate gradient methods. Matching previous experience in other fields of ap-
plication [26], the best results in terms of accuracy were consistently achieved by
the Levenberg-Marquardt method.

All the parameters of the membership functions of every input and output are
adjusted so that the training error is minimized, i.e., self-tuning inference systems
are defined. The learning algorithm applied is the Levenberg-Marquardt method as
implemented in Xfuzzy [28].

2.3.3 Complexity Selection

As last step in the process of identifying and tuning fuzzy autoregressors, the proper
complexity of the estimated best autoregressor is selected depending on the DT
estimate. The iterative identification and tuning stage stops when a system is built
such that its training error is equal to or lower than the DT estimate or a threshold
based on the DT estimate. Since identification and tuning iterations are performed
for increasing complexities, the simplest system that satisfies the DT-based error
condition is selected.

For the particular implementation described in this section, the complexity of
fuzzy systems is measured as the number of linguistic labels per input. Thus, this
substage selects the system with the lowest number of labels per input that has a
training error equal to or lower than an optimal error threshold based on the DT
estimate.

We note that the DT estimate is an estimate of the lowest possible error, i.e,
the error that an optimal model would achieve. Since the models we will apply
are not likely to be optimal, we introduce a DT based threshold. The DT-based
threshold, equal to or greater than the DT estimate, will be defined and validated
experimentally in the next section.

Regarding the convergence and guarantee of finalization of this iterative process,
neither the identification algorithm or the optimization method used here guaran-
tee any error bound. However, it should be noted that fuzzy inference systems of
the class being designed here, zero-order TSK models, are universal approxima-
tors [14, chapter 12]. Thus, for a sufficiently large number of membership functions
and rules, any input-output mapping should be approximated with an arbitrary accu-
racy after the identification and optimization stage, i.e., the training error should be
as small as required. In practice, it will be shown that the iterative identification and

1 Normalization is performed against the squared range of the series.
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tuning process proposed here converges fast and the number of membership func-
tions required per input is in most cases below or around 5, with very few exceptions
for which below or around 10 membership functions are required.

2.4 Case Study and Validation: ESTSP´07 Competition Dataset

For the purposes of validating and illustrating the proposed methodology framework
and concrete algorithms and criteria, we analyze the data set from the ESTSP 2007
time series prediction competition [8]. This data set (see figure 2.2) consists of 875
samples of temperatures of the El Niño-Southern Oscillation phenomenon. Further
illustration and examples can be found in [25].

In this section we analyze the original ESTSP 2007 series splitted into two sub-
sets: a training set (first 475 samples) and a second set (last 400 samples) that will be
used for validation. We will call this series ENSO. Though one of the major goals of
the proposed methodology is to avoid the requirement of validation and test series,
we define two subsets in order to validate the methodology with the residual noise
estimator and algorithms being used.
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Fig. 2.2 ESTSP´07 competition data set (ENSO series, 875 samples)

A maximum regressor size of 10 and a prediction horizon of 50 are considered.
As first stage within our methodology, DT is performed on the training set for all
the possible variable selections (210 − 1) and the one that leads to the lowest DT
estimate is chosen. This process is performed independently for each prediction
horizon. The number of selected variables is shown in figure 2.3. Between 3 and 5
variables are selected out of a maximum of 10. Thus, the employment of DT-based
variable selection does not only increase accuracy but also leads to a significant
decrease of the complexity of the fuzzy inference systems in terms of number of
inputs. This fact, in turn, relieves the curse of dimensionality problem.
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We should note that in principle an initial regressor size larger than 10 could be
considered and it should be expected to improve the accuracy. However, for sizes
above 15-20, an exhaustive search becomes too computationally expensive and fi-
nally unfeasible with current computational resources. A regressor size of 10 has
thus been selected as a twofold heuristic compromise: first, the whole space of pos-
sible selections can be explored within a reasonable amount of time (around 1-6
hours approximately for 50 predictions, with current computers depending on the
computer configuration). Second, after variable selection, the number of inputs is
sufficiently small so as to avoid the curse of dimensionality in nonlinear models.
Larger regressor sizes, for which the DT estimate is lower, usually lead however to
little improvement or even poorer performance of the models. We thus, select 10
as an initial regressor size that additionally leads to fuzzy inference systems with a
number of inputs sufficiently small so as to be easy to read. The effect that different
initial regressor sizes can have on final performance will be illustrated through some
examples in section 2.5.
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Fig. 2.3 ENSO: number of selected variables for horizon up to 50. DT-based selection with
exhaustive search. Maximum regressor size 10.

As second stage, once input variables have been selected, the W&M algorithm
is applied to the training set in order to identify fuzzy inference systems. These
models are then tuned through supervised learning using the Levenberg-Marquardt
algorithm over the training set. The process is repeated for increasing numbers of
linguistic labels (membership functions) per input, starting from 2. Within this iter-
ative process, the DT estimate is used to check whether the best possible approx-
imation has been achieved, i.e., the right compromise between model complexity
and training error has been found.

For the horizon 1 regressor, table 2.1 shows the number of rules identified for
different numbers of linguistic labels per input (between 2 and 15). Training and
validation errors are shown as well. The two columns labeled “before tuning” show
the errors for the fuzzy systems as identified by means of the W&M algorithm, while
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the columns labeled “after tuning” show the errors for the systems tuned by means
of supervised learning.

After the tuning substage, there is a considerable accuracy improvement. In par-
ticular, it can be seen that tuned systems with a low number of rules perform better
than untuned systems with a much greater complexity. Thus the supervised learning
substage also contributes to reducing model complexity.

Table 2.1 Number of membership functions and rules as well as errors for prediction horizon
1. Exhaustive DT-based selection of inputs. All errors as NMSE.

Before tuning After tuning
#MF #Rules Training Validation Training Validation
2 6 2.833 ·10−2 2.899 ·10−2 1.479 ·10−3 1.705 ·10−3

3 15 8.813 ·10−3 1.016 ·10−2 1.250 ·10−3 1.558 ·10−3

4 20 4.190 ·10−3 4.884 ·10−3 1.189 ·10−3 1.580 ·10−3

5 31 2.709 ·10−3 3.113 ·10−3 1.082 ·10−3 1.616 ·10−3

6 44 1.986 ·10−3 2.466 ·10−3 1.009 ·10−3 1.738 ·10−3

7 56 1.868 ·10−3 2.617 ·10−3 9.228 ·10−4 1.794 ·10−3

8 66 1.453 ·10−3 1.978 ·10−3 9.509 ·10−4 1.869 ·10−3

9 85 1.289 ·10−3 1.915 ·10−3 8.676 ·10−4 1.979 ·10−3

10 101 1.229 ·10−3 1.920 ·10−3 7.509 ·10−4 2.153 ·10−3

11 128 1.130 ·10−3 2.043 ·10−3 6.104 ·10−4 2.602 ·10−3

12 132 1.114 ·10−3 2.113 ·10−3 5.848 ·10−4 2.491 ·10−3

13 175 1.121 ·10−3 2.139 ·10−3 4.902 ·10−4 2.816 ·10−3

14 178 1.006 ·10−3 2.194 ·10−3 4.426 ·10−4 3.455 ·10−3

15 191 9.713 ·10−4 2.126 ·10−3 4.793 ·10−4 2.865 ·10−3

We also note that systems with a low number of linguistic labels per input (par-
ticularly between 2 and 5) are only very rough approximators before tuning. How-
ever, after the tuning substage their accuracy improve significantly while keeping
the same rule base. This fact suggests that the rule bases correctly reflect the un-
derlying dynamics of the series, though tuning the membership function parameters
is no doubt required in order to build accurate models with such a low number of
linguistic labels.

For selecting the proper complexity of the tuned fuzzy systems, a tolerance band
above the DT estimate is considered. This band is defined by a threshold (DT-based
threshold, DTBTh) which increases with increasing horizons h according to equa-
tion 2.1, where DTh is the DT estimate for horizon h:

DTBTh = (1+min(0.90,1.15∗ h))DTh. (2.1)

For each horizon h, the simplest system that satisfies MSEh ≤ DTh, where MSEh is
the training mean square error, is selected as the best autoregressor. This threshold
has been defined on the basis of trial and error as a soft limit that favors simplicity
to the detriment of accuracy. However, it was found to be robust for all the series
analyzed. The definition is based on the following experimental observations:
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Fig. 2.4 ENSO: errors for horizon 1, exhaustive DT-based selection of inputs. Continuous
line: training error. Dashed line: validation error.

• A tolerance approximately of 15% over the DT estimate for horizon 1 is appro-
priate.

• The best results can be achieved with tolerances increasing with the prediction
horizon (particularly for the first 10 predictions approximately).

• A tolerance between 80%-100% over the DT estimates provides good results for
long-term prediction.

We note though that the impact of the threshold is not determining for accuracy (the
error increase is of the order of 10-20% at most for any prediction horizon). Similar
results can be achieved by selecting a fixed adjustment factor of around 50%-75%.
We chose the particular values in equation 2.1 so as to favor model simplicity to the
detriment of accuracy.

For the ENSO series, DTBT1 ≈ 1.26−3 and, as shown in figure 2.4, the fuzzy
system with 3 linguistic labels per input is chosen as autoregressor for horizon 1.

Figure 2.5 shows the normalized DT NNE estimates (NDT-NNE) for prediction
horizons up to 50 as well as the training and validation errors of the fuzzy autore-
gressors built and selected according to our methodology.

We note that besides the limitations of the fuzzy modeling techniques being em-
ployed, an additional source of error has been introduced in the proposed method-
ology: the DT-based selection of complexity does not guarantee optimal selection
under all conditions. Although the fuzzy regressor for horizon 1 prediction that is
chosen is the one with the lowest validation error, this is not the case for all hori-
zons. In general, the deviation from the optimal selection depends on the time series
being modeled and the prediction horizon.

By comparing the validation errors of the systems actually selected against the
lowest validation errors that could have been achieved for any complexity we can
know the order of magnitude of the error due to the DT-based selection of com-
plexity. Figure 2.6 compares the NDT estimate (a robust estimation of the lowest
training error that can be achieved without overfitting), the validation errors of the
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Fig. 2.5 ENSO: NDT estimates (∗), training (+) and validation (×) errors of fuzzy autore-
gressors. Maximum regressor size 10. DT-based selection of inputs.
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Fig. 2.6 ENSO: NDT estimates (∗), test errors for the selected fuzzy autoregressors (+),
validation errors for the optimal complexity selections (×). Maximum regressor size 10. DT
based selection of inputs.

fuzzy autoregressors selected according to the DT estimate, and the lowest possible
validation errors for any number of linguistic labels.

Figure 2.7 shows the predictions for the first 50 values after the training set to-
gether with a fragment of the actual time series.

Finally, we compare the accuracy of fuzzy models against LS-SVM models with
the same autoregressor size and input selection. LS-SVMs were built for the same
training subset selecting Radial Basis Function (RBF) kernels, grid search as opti-
mization routine and cross-validation as cost function, see [35] for a detailed speci-
fication of these and other options. Figure 2.8 shows the training and generalization
errors for LS-SVM and fuzzy models. Averages errors are listed in table 2.2. Two
main conclusions can be drawn from the comparison:
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Fig. 2.7 ENSO: prediction of 50 values after the training set. Continuous line: actual time
series. Dashed line: predictions.

• As for generalization capability, the performance of fuzzy autoregressors is clearly
better than that of LS-SVM models. There are 4 exceptions: test errors of fuzzy
autoregressors are slightly higher (less than 5%) for horizons 13 to 16. How-
ever, the overall superiority of fuzzy regressors is specially evident for long-term
prediction (beyond horizon 25).

• Training and generalization errors are much closer for fuzzy models than for LS-
SVM models. For long-term prediction, generalization errors may be even lower
than training errors. Also, generalization errors are within approximately 200%
of training errors for the worst cases. Thus, training errors of fuzzy models can
be trusted as more realistic estimations of actual prediction errors.
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Fig. 2.8 ENSO: comparison of our methodology against LS-SVM. Generalization errors of
LS-SVM models (+). Generalization errors of fuzzy models (�). Training errors of fuzzy
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2.5 Experimental Results

In this section, the proposed concrete implementation of the methodology frame-
work described is applied to a number of varied time series prediction problems
from different fields of application, namely the Poland electricity time series pre-
diction benchmark, the monthly averaged sunspot number, the daily averaged ag-
gregated traffic in the Internet2 backbone network, the laser generated data set of
the Santa Fe time series competition, the Mackey-Glass series and one of the se-
ries of the NN3 forecasting competition for neural networks and computational
intelligence.

For every series, models are built to predict the next 50 values. Though one of
the major goals of the methodology proposed here is to avoid the need for valida-
tion and test series, we will split the series into two subsets in order to assess the
performance of the residual noise estimator and algorithms being used. Results will
be compared against those of analogous LS-SVM models built using the same input
selections, RBF kernels, grid search as optimization routine and cross-validation as
cost function.

2.5.1 Poland Electricity Benchmark

This time series (PolElec henceforward) represents the normalized average daily
electricity demand in Poland in the 1990s. The benchmark consists of a training
set of 1400 samples, shown in figure 2.9, and a test set of 201 samples, shown
in figure 2.10. It has been shown that the dynamics of this time series is nearly
linear [17]. Besides the yearly periodicity, a clear weekly periodicity can be seen on
smaller time scales (see figure 2.10).
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Fig. 2.9 PolElec: training series (1400 samples)
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Fig. 2.10 PolElec: test series (201 samples)

We will show the results obtained for two different maximum regressor sizes: 7
and 14. In both cases, input selection was performed by exhaustive search of the
lowest DT estimate. The number of selected variables is shown in figure 2.11.
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Fig. 2.11 PolElec: number of selected variables (exhaustive DT-based selection). Continuous
line: regressor size 7. Dashed line: regressor size 14.

Training and test errors of a set of fuzzy autoregressors for horizon one are shown
in figure 2.12 for different numbers of linguistic labels per input, in the case of a
maximum regressor size of seven. The regressor with five membership functions is
selected according to the DT-based threshold.

Figure 2.13 shows training and test errors of fuzzy regressors with different num-
bers of linguistic labels for prediction horizon seven (also in the case of a maximum
regressor size of seven). The system with two linguistic labels is selected according
to the DT-based threshold. However, the system with 3 linguistic labels achieves the
lowest test error. This is an illustrative case in which a simpler and less accurate
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Fig. 2.12 PolElec: training (continuous line) and test (dashed line) errors against linguistic
labels per input for horizon 1. Exhaustive DT-based selection of variables with regressor
size 7.

model is selected because of the permissive nature of the DT-based threshold. Be-
sides a lower number of linguistic labels, the system with two linguistic labels per
input has eight rules, whereas the system with three linguistic labels per input has
15 rules.
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Fig. 2.13 PolElec: training (continuous line) and test (dashed line) errors against linguistic
labels per input for horizon 7. Exhaustive DT-based selection of variables with regressor
size 7.

For seven steps ahead prediction, using the notation for discrete time series intro-
duced in section 2.3, three input variables are selected to predict yt+7: yt , yt−1 and
yt−5. As an example of the interpretability of the models developed, let us suppose
that the last seven daily electricity demand measurements that are available corre-
spond to the demand for a week from Monday through Sunday. Then, the fuzzy
autoregressor predicts the demand for next Sunday based on the last known daily
demand (Sunday), the demand of last Saturday and the demand of last Tuesday. The
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inputs can be called Sunday, Saturday and Tuesday. The two fuzzy sets defined for
each input can be labeled as Low and High, and the output of the regressor can be
called NextSunday. Considering this notation, a sample rule from the rule base of
the regressor can be expressed as follows:

IF TuesdaywasHigh AND SaturdaywasLow AND

SundaywasLow THEN NextSunday is “0.92”

Where “0.92” is used as linguistic label for a singleton output centered approxi-
mately at 0.92.

Figures 2.14 and 2.15 show the DT estimates as well as training and test errors
for the two regressor sizes used.
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Fig. 2.14 PolElec: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregressors.
Maximum regressor size 7. Exhaustive DT-based selection of inputs.
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Fig. 2.15 PolElec: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregressors.
Maximum regressor size 14. Exhaustive DT-based selection of inputs.
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The average training and test error of LS-SVM models are shown together with
the errors of fuzzy models in table 2.2. Fuzzy autoregressors achieve a greater ap-
proximation accuracy for the test subset. In this case, there are no exceptions for
any prediction horizon, and the differences are higher than in the case of the ENSO
series. We also note that for this series test errors are bounded within a range of
133% of training errors.

Table 2.2 Training and test errors of LS-SVM and fuzzy models averaged for horizons 1
through 50. All errors as NMSE. Maximum regressor size specified between parenthesis.

LS-SVM Fuzzy inference
Series Training Test Training Test
ENSO (10) 8.055 ·10−3 3.192 ·10−2 1.943 ·10−2 2.043 ·10−2

PolElec (7) 1.158 ·10−2 3.566 ·10−2 1.696 ·10−2 1.779 ·10−2

PolElec (14) 1.037 ·10−2 3.241 ·10−2 1.582 ·10−2 1.816 ·10−2

Sunspots (9) 1.338 ·10−2 3.284 ·10−2 1.691 ·10−2 2.623 ·10−2

Sunspots (12) 9.637 ·10−3 3.024 ·10−2 1.590 ·10−2 2.546 ·10−2

AbileneI (7) 8.587 ·10−3 2.476 ·10−2 1.448 ·10−2 1.732 ·10−2

AbileneI (12) 6.771 ·10−3 2.153 ·10−2 1.228 ·10−2 1.506 ·10−2

SFL (10) 1.481 ·10−3 6.578 ·10−3 1.020 ·10−2 1.285 ·10−2

SFL (16) 5.275 ·10−4 5.290 ·10−3 8.791 ·10−3 1.202 ·10−2

MG (9) 7.881 ·10−4 3.658 ·10−3 1.385 ·10−2 1.775 ·10−2

2.5.2 Sunspot Numbers

The series of sunspot numbers is a periodic measure of the sunspot activity as a
function of the number of spots visible on the face of the sun and the number of
groups into which they cluster. Values from this series (Sunspots) are subject to
uncertainty and noise, particularly during the past centuries. We analyze a series
of monthly averaged sunspot numbers covering from January 1749 to December
2007, as provided by the National Geographical Data Center from the US National
Oceanic and Atmospheric Administration2. The series is split into a set of 1000
values for training and a set of 2108 values for testing. The whole series is shown in
figure 2.16.

Figure 2.17 shows the number of variables selected for the two maximum regres-
sor sizes used for the Sunspots series: 9 and 12. Figures 2.18 and 2.19 show the
DT estimates as well as training and test errors for the two regressor sizes chosen.
The average training and test error of LS-SVM models are shown together with the
errors of fuzzy models in table 2.2. For both regressor sizes, fuzzy autoregressors
are more accurate with no exception for any of the prediction horizons.

2 The series used here can be obtained from http://www.ngdc.noaa.gov/stp/SOLAR/
ftpsunspotnumber.html. The International Sunspot Number is produced by the Solar In-
fluence Data Analysis Center (SIDC) at the Royal Observatory of Belgium [36].
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Fig. 2.16 Sunspots: training (first 1000 samples) and test (last 2098 samples) series
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Fig. 2.17 Sunspots: number of selected variables (exhaustive DT-based selection). Continu-
ous line: regressor size 9. Dashed line: regressor size 12.
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Fig. 2.18 Sunspots: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregres-
sors. Maximum regressor size 9. Exhaustive DT-based selection of inputs.
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Fig. 2.19 Sunspots: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregres-
sors. Maximum regressor size 12. Exhaustive DT-based selection of inputs.

2.5.3 Aggregated Incoming Traffic in the Internet2 Backbone
Network

This series, Internet2 henceforward, represents the total amount of aggregated in-
coming traffic in the routers of the Abilene network, the Internet2 backbone, during
several years. The Internet2 series consists of 1458 daily averages (in b/s), shown
in figure 2.20 covering from the 4th of January of 2003 to the 31st of December of
2006. The data are available from the Abilene Observatory [12]. The daily averages
for years 2003 and 2004 (the first 728 values) were selected as training set, whereas
the daily averages for years 2005 and 2006 (the last 730 values) were selected as
test set.

Figure 2.21 shows the number of variables selected for the two maximum re-
gressor sizes considered for the Internet2 series: 7 and 12. Figures 2.22 and 2.23
show the DT estimates as well as training and test errors for the two regressor sizes
chosen. The average training and test error of LS-SVM models are shown together
with the errors of fuzzy models in table 2.2. Again, for both regressor sizes, fuzzy
autoregressors are more accurate on the average and with no exception for any of
the prediction horizons.

2.5.4 Santa Fe Time Series Competition: Laser Dataset

The laser data set of the Santa Fe Laser time series competition [32] (SFL) consists
of 1000 training samples and 9000 test samples, as shown in figures 2.24 and 2.25,
respectively. The series represents the intensity of a far-infrared-laser in a chaotic
state, measured in a physics laboratory experiment. This time series is a cross-cut
through periodic to chaotic pulsations of the laser. Chaotic pulsations can be closely
modeled using the theoretical Lorenz model of a two level system [39].

This series is a good example of noise-free complicated behavior in a clean, sta-
tionary, low-dimensional physical system for which the underlying dynamics is well
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Fig. 2.20 Internet2: daily averaged aggregated incoming traffic in the Abilene backbone for
1458 days. Training series (first 728 values) and test series (last 730 values).
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Fig. 2.21 Internet2: number of selected variables (exhaustive DT based selection). Continu-
ous line: regressor size 7. Dashed line: regressor size 12.
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Fig. 2.22 Internet2: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregres-
sors. Maximum regressor size 7. Exhaustive DT-based selection of inputs.
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Fig. 2.23 Internet2: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregres-
sors. Maximum regressor size 12. Exhaustive DT-based selection of inputs.
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Fig. 2.24 SFL: training series (1000 samples)

understood. The data set is very predictable on short time scales because of the rel-
atively simple oscillations. However, the rapid decay of the oscillations are events
harder to predict.

In this case, we develop fuzzy autoregressors for two maximum sizes: 10 (for
which exhaustive search of DT estimates is applied) and 16 (for which the exhaus-
tive search is extended with a forward-backward search up to size 16). The number
of variables selected for both cases is shown in figure 2.26.

Figure 2.27 shows training and test errors of fuzzy regressors with different num-
bers of linguistic labels for predicting horizon 1, for the case with maximum regres-
sor size 10. The autoregressor with 8 linguistic labels is the first to fall within the
DT-based threshold. However, the test error is nearly monotonically decreasing with
the number of linguistic labels.
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Fig. 2.25 SFL: test series (9093 samples)
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Fig. 2.26 SFL: number of selected variables. Continuous line: exhaustive DT search with
maximum regressor size 10. Dashed line: forward-backward DT search with maximum re-
gressor size 16.
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Fig. 2.27 SFL: training (continuous line) and test (dashed line) errors against linguistic labels
per input. Horizon 1. Maximum regressor size 10. Exhaustive DT-based selection of inputs.
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This fact suggests that the number of linguistic labels required to achieve the
lowest possible test errors may be even higher than 15. This phenomenon occurs
for short-term prediction horizons but is less evident for longer-term predictions.
Figure 2.28 shows training and test errors for different numbers of linguistic labels
for prediction horizon 35. A similar behavior can be observed for regressors with
maximum size set to 16.
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Fig. 2.28 SFL: training (continuous line) and test (dashed line) errors against linguistic labels
per input. Horizon 35. Maximum regressor size 10. Exhaustive DT-based selection of inputs.

Figures 2.29 and 2.30 show the DT estimates as well as training and test errors for
the two regressor sizes used. As shown in table 2.2, for this series LS-SVM based
autoregressors clearly outperform their fuzzy counterpart.
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Fig. 2.29 SFL: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregressors.
Maximum regressor size 10. Exhaustive DT-based selection of inputs.
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Fig. 2.30 SFL: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregressors.
Maximum regressor size 16. Forward-backward DT-based selection of inputs.

2.5.5 Mackey-Glass Series

The Mackey-Glass time series [21] (MG henceforth) is fully deterministic and is
generated numerically, as opposed to the time series analyzed so far. It is often used
in the literature for evaluating fuzzy systems identification and prediction meth-
ods [1, 38, 16, 31, 13, 7, 25]. The time series is defined by the following differential
equation:

dy(t)
dt

=
0.2y(t − τ)

1+ y10(t − τ)
−0.1y(t)

When τ > 17, the series exhibits chaotic behavior. Higher values of τ yield higher
dimensional chaos. In this section, a discrete time series is generated using the 4th
order Runge-Kutta numerical integration method with τ = 30.

A series of 1500 values (see figure 2.31) was generated and splitted into a set of
500 samples for training and a set comprising the remaining 1000 samples for test.
As in [38], we use a maximum regressor size of 9. We note though that accurate
long-term prediction would require greater regressor sizes.

Figure 2.32 shows the number of selected variables for horizons up to 50. Fig-
ure 2.33 shows the training and test errors together with the DT estimates. From
table 2.2, it is evident that LS-SVM models achieve a greater accuracy averaged for
horizons 1 through 50.

For comparison purposes with the literature about fuzzy modeling of the Mackey-
Glass series, we examine the 1 step ahead autoregressor for the MG series. For a
regressor size of 9, the inference system has only two inputs, both with 5 linguistic
labels, and 13 rules. In spite of the simplicity of this system, its test error is approx-
imately 9% lower than the DT estimate.
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Fig. 2.31 MG: fragment of the Mackey-Glass series (1500 samples). The first 500 samples
are selected as training set. The remaining 1000 samples are selected as test set.
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Fig. 2.32 MG: Number of selected variables for horizons up to 50. Exhaustive DT-based
selection of inputs. Maximum regressor size 9.
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Fig. 2.33 MG: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregressors.
Exhaustive DT-based selection of inputs. Maximum regressor size 9.
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2.5.6 NN3 Competition

The NN3 forecasting competition [29] comprises a set of 111 series with monthly
measures of financial variables for several years. The next unknown 18 values have
to be predicted for each time series.

Here we analyze the time series number 104, belonging to the subset B of the
competition. The time series together with the predictions are shown in figure 2.34.
These predictions were obtained using a maximum regressor size of 18. Variable
selection was performed through exhaustive search up to size 12 extended with
forward-backward search up to size 18. From the plot, it can be concluded that the
cyclic behavior of the series is correctly identified and the predictions are within rea-
sonable boundaries. This result shows that the methodology employed can perform
well when the training series is small.

Fig. 2.34 NN3 104 series. 115 known values (continuous line) and 18 predictions (dashed
line).

2.5.7 Discussion

The combined use of a nonparametric noise estimation method with fuzzy modeling
techniques has been experimentally shown to perform well for long-term time series
prediction. The methodology developed does not require a validation stage and thus
the whole available data set can be used as training data to build autoregressive
models.

The use of DT estimates in a first input selection stage as well as in the identifi-
cation and tuning stage has been shown to be advantageous in two main aspects:

• It does not only improve the regressor accuracy but also increases its inter-
pretability and reduces its complexity by decreasing the number of inputs to the
fuzzy inference system. Input selection allows for a drastic reduction of the num-
ber of inputs. For instance, it is specially clear for the MG series, for which only
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2 inputs out of 9 are selected for short-term prediction. This complexity reduc-
tion is also very clear in the case of the PolElec series with maximum regressor
size 14.

• It has been shown to be a robust solution to the problem of selecting the proper
system complexity.

A tolerant DT-based threshold has been defined. In general, the optimal threshold
is dependent on the nonlinear approximation technique employed, i.e., fuzzy opera-
tors, membership functions, inference model as well as the identification and tuning
methods. This threshold can be thus understood as a hint on what degree of accu-
racy can be expected from a particular fuzzy modeling technique. By using a tolerant
DT-based threshold, we have favored simplicity to the detriment of accuracy.

All these factors contribute to a methodology for building fuzzy inference models
that are both accurate and interpretable for both short-term and long-term prediction.
In addition, fuzzy models have been shown to clearly outperform LS-SVM models
in terms of prediction accuracy in the case of noisy time series for which there are
no satisfactory deterministic models available.

A remarkable property of the fuzzy regressors developed with our methodology is
their generalization capability. Test errors have been found to be very close to train-
ing errors. The difference between them is typically no more than 20-30% except in
the case of the Sunspots series, where test errors are approximately 60% higher than
training errors. While LS-SVM are usually praised for their good generalization
performance, fuzzy autoregressors exhibit a much lower degree of overfitting.

On the other hand, It has been shown that LS-SVM models achieve a greater ac-
curacy than fuzzy models for a specific type of series represented by the SFL and
MG series. The MG series is purely deterministic, whereas the SFL series is nearly
deterministic. Both are noise-free and stationary, can be predicted with relatively
simple dynamical models and can be approximated with a very high accuracy. This
fact leads us to conclude that in the absence of noise and perturbations, fuzzy in-
ference based autoregression may not be a proper technique if the main objective
is approximation accuracy and interpretability is a secondary objective. This type
of series is however not common in real world applications. In addition, the higher
accuracy of LS-SVM does not come at no cost. For the MG (9), SFL (10), and SFL
(16) series, the construction and optimization of the LS-SVM model requires ap-
proximately 37, 35 and 103 times more run time respectively, as shown in table 2.3.
Thus, the methodology proposed here, while clearly less accurate for this kind of
series, is still significantly faster and exhibits less overfitting.

As far as computational requirements is concerned, the proposed methodology
has a very low cost compared against the LS-SVM method. A software tool, xftsp
[24], has been developed that implements the methodology as a whole and pro-
vides support for the identification and tuning algorithms included in the Xfuzzy
development environment [40]. This Java based implementation of the methodol-
ogy presented here is consistently between 1 and 2 orders of magnitude faster than
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the implementation of LS-SVM used for this study: the optimized C version of the
LS-SVMlab1.5 Matlab/C toolbox [20]. Table 2.3 shows the time required to build
time series models with both methods for a subset of the time series considered
here. Memory consumption is also much lower for the fuzzy methodology, which
enables it to be applied to large training series beyond the few thousand samples
current practical limitation of LS-SVM models.

Table 2.3 Run time (in seconds) required to build models for prediction horizons 1-50. All
tests were run on the same system, with no significant competing load. Maximum regressor
size specified between parenthesis.

Series LS-SVMlab1.5 Fuzzy inference
ENSO (10) 3.45 ·105 1.05 ·104

PolElec (7) 3.04 ·105 1.05 ·104

PolElec (14) 9.91 ·105 2.30 ·104

Sunspots (9) 3.10 ·105 1.04 ·104

Sunspots (12) 2.42 ·105 1.22 ·104

AbileneI (7) 1.40 ·105 1.75 ·103

AbileneI (12) 1.27 ·105 4.69 ·103

SFL (10) 1.28 ·106 3.49 ·104

SFL (16) 1.61 ·106 4.55 ·104

MG (9) 3.64 ·105 3.54 ·103

The fact that the test results are improved when a DT-based threshold higher than
the DT estimate itself is introduced, leads us to two remarks on the performance of
the identification and tuning stage:

• There is likely room for improvement of the identification and tuning procedures.
• The DT-based threshold can be seen as an aggressiveness index. 1 would be the

most aggressive option, most often leading to overfitting and high complexity.
Values in the range [1.2,2]DTh are reasonable for the identification and learning
techniques employed, most often leading to both low complexity and overfitting.

The fact that the impact of the DT-based threshold is very similar for all the series
analyzed leads us to conclude that it is a factor eminently dependent on the identi-
fication and learning procedure and its inner limitations. Other methods for fuzzy
inference systems identification, tuning and simplification exist, and the ones used
here could be improved. This is an area of future research.

For complex and noisy time series, it is common that the most simple fuzzy
system that can be built (the one with 2 linguistic labels per input) is comparable
in accuracy to the LS-SVM model. For example, the fuzzy system with 2 linguistic
labels per input for horizon 1 prediction of the PolElec series outperforms LS-SVM
with the same input selection. In this case, the test error of the fuzzy regressor is
approximately 35% lower.

In general, it can be concluded that fuzzy systems with the minimum number
of linguistic terms, though not optimal in terms of accuracy, provide a reasonable
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approximation to the best system that can be built. Thus, it is easy to obtain very
simple approximate models that ease the understanding of the time series dynamics.

We have developed an automatic methodology framework for long-term time se-
ries prediction by means of fuzzy inference systems. Experimental results for a con-
crete implementation of the methodology confirm good approximation accuracy and
generalization capability. Linguistic interpretability and low computational require-
ments are two remarkable advantages over common time series prediction methods.

A fundamental advantage of autoregressive time series prediction with fuzzy in-
ference systems is the fact that the models constructed consist of linguistic rules that
can be interpreted by humans. For some time series, the most accurate rulebases
have a low number of rules (below 10-15 rules), which makes it easy to extract a
linguistic explanation for the system dynamics.

Several procedures have been shown to play a key role in achieving good approx-
imation accuracy and low overfitting while keeping the complexity low: variable se-
lection, application of a supervised learning method for tuning after identification,
and using DT-NNE for selecting the proper number of linguistic labels per input.
Also, when systems have a high number of rules and are thus not interpretable by
humans in practice, there is still the possibility to build simpler, approximate models
with a degree of accuracy of the same order.

2.6 Conclusions

A methodology for long-term time series prediction by means of fuzzy inference
systems has been presented and validated through a number of benchmarks. In this
methodology, the use of DT, a nonparametric residual variance estimation tech-
nique, provides two advantages: it is used for optimal a priori input selection and it
provides a quantitative estimation that can be used for driving the model learning
process.

This methodology has been shown to outperform LS-SVM models in terms of
accuracy, interpretability and computational cost for an heterogeneous set of bench-
marks. It has been extensively applied to a wide set of packet level traffic traces in
order to extract linguistic models of traffic load at different time scales.
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Chapter 3
Predictive Models of Network Traffic Load

Abstract. Understanding the dynamics and performance of packet switched net-
works on the basis of measurements enables practitioners to optimize resources.
As network measurement research further advances and new measurement tools
and infrastructures are available, the task of network operation becomes more and
more complex. In this chapter we apply the methodology developed in the previous
chapter to time series concerning network traffic load. An extensive predictabil-
ity analysis is performed using the same nonparametric residual variance estima-
tion technique that is integrated into the prediction methodology. Based on the
predictability results, fuzzy inference based models that are both interpretable and
accurate are derived for a wide set of heterogeneous time series for network traffic.

3.1 Models for Network Traffic Load

Traffic load in packet switched networks is hard to model and predict. In general,
most if not all classes of complex dynamical behavior can be observed in network
traffic. Thus, traditional linear methods do not seem powerful enough so as to prop-
erly model and predict network traffic. Instead, nonlinear and nonparametric models
have to be explored. Although some work along these lines has been done, much
work remains.

Complex properties have been identified in traffic at different time scales. As
outlined in section 1.5, models -and predictive models in particular- are sought at
all time scales. Models at scales ranging from the order of the microseconds up
to milliseconds are key to develop prediction-based control mechanisms. At scales
of seconds, minutes and hours, predictive models can be used for network weather
prediction services, useful for adaptive applications, network operators and users. At
scales of weeks and months, predictive models are specially relevant for medium-
and long-term capacity planning.

In this section, we will analyze time series for the traffic volume measured at cer-
tain network points for a given period. We will refer to these time series as network
traffic time series. In principle, since models will be entirely derived from data, a
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direct physical interpretation is not possible. In order to address this issue and make
it possible to interpret the models, we will apply the fuzzy inference based method
developed in chapter 2.

Here we adopt a broad perspective on predictive models and analyze network
traces at different time scales. In general, we will analyze 4 or 5 different scales
differing by exactly one order of magnitude (ranging from a minimum of 1 ms to a
maximum of 100 s and 1 day in a particular case). Not all traces are analyzed at all
these time scales for different reasons, such as lack of enough measurements and
low link speed that would render series at low time scales very sparse.

When developing a predictive model for a time series, multiple factors such as
the features selected and the class of model have an impact on the final perfor-
mance. The most direct approximation to the problem is to develop an autoregres-
sive model. Many nonlinear modeling techniques exist. In this section we look into
the possibility of building autoregressive nonlinear models for network traffic with
satisfactory performance. We use the nonparametric residual variance estimation
technique described above in order to analyze the predictability of network traffic
load at different time scales.

Four different methods for predictive modeling are used: fuzzy inference systems
with nonparametric residual variance estimation (NRVE-FIS), optimally pruned ex-
treme learning machines (OP-ELM), induced OWA operators based nearest neigh-
bors (IOWA-NN) and ARIMA models. Fuzzy inference models are built using the
methodology described in the preceding section. The variable selection stage is
performed not only for NRVE-FIS models but also for OP-ELM and IOWA-NN
models. It is important to note that by using the ARIMA technique we do not aim
at performing a thorough comparison between computational intelligence meth-
ods and stochastic methods. More elaborated linear and nonlinear stochastic meth-
ods that consider long-range dependence have been developed [10, 6, 4]. We used
ARIMA models here as a reference method that is simple, feasible and well
established.

Some previous works on predictive models for network traffic load can be found
in the literature. These studies are however very specific regarding the time scale
and kind of models taken into consideration. Long-term load prediction studies on
the the NSFNET backbone [14], the Sprint Tier-1 backbone [28] and the Georgia
Institute of Technology campus network [3], among others, reveal trends, periodic-
ities and other predictable patterns and show that predictions can be made for long-
term horizons within acceptable error bounds. Predictability analyses of network
traffic with models assumptions have been performed as well. In particular, nonlin-
ear threshold autoregressive models have been applied to filtered traffic traces [46].
Also, Markov models have been applied to modeling long-range dependence [2].
Also, Sang and Li [32] use of autoregressive moving average (ARMA) and Markov-
modulated Poisson process (MMPP) models in order to assess predictability in
a parametric manner. Qiao et al study the predictability of some network traces.
However, the study is limited to one-step-ahead predictability and a small set of
similar network traces. Yi et al. study one-step-ahead predictability as well using
wavelet-based multiresolution analysis and a set of linear and nonlinear regressive
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models [45]. Recently, Cortez et al. [8] have attempted at predicting network traffic
in several links belonging to the United Kingdom Education and Research Network
(UKERNA) network using univariate and multivariate feed-forward neural network
models. Two scales are taken into consideration for one step-ahead prediction in
this work, 10 minutes and hourly intervals, where it is found that neural networks
can perform better than some naive methods as well as Holt-Winters exponential
smoothing models.

A related predictability problem arises in mobile environments is that of the
predictability of mobility and its effects on bandwidth provisioning among other
tasks [37].

Possible applications of traffic load prediction include overall weather services
that provide predictions at a high scale, both temporal and spatial [41]. Predictors
have been proposed as well for supporting real time video [1, 23], and admission
control [36] among other applications. Many works have attempted at predicting
video traffic, particularly in ATM scenarios. A concrete application of multiresolu-
tion learning neural networks to predicting VBR video traffic has been reported by
Liang [23].

Predictability of traffic is important not only at network links but also from an
end-to-end perspective [13]. As discussed in chapter 1, so-called formula based pre-
dictive models for the stationary behavior of TCP transfers have been available for
some years. More recently, predictability of large TCP transfers has been addressed
by He at al. [15], where both analytical models for TCP throughput and autoregres-
sive models approaches are analyzed and it is found that autoregressive models can
be quite accurate even for very short training samples (of the order of 10–20). How-
ever, the study is parametric and restricted to one-step ahead prediction as well as
simple linear regressive models.

3.2 Analysis of Traffic Traces

In this chapter, we focus on aggregate traffic at network links. Links with differ-
ent degrees of aggregation are studied. From a qualitative perspective, it is obvi-
ous that the amount of traffic is predictable to a certain degree for some networks.
For instance, clear daily patterns can be identified in most links. Other weekly and
monthly seasonal variations can be observed as well [28]. Current knowledge about
network traffic and previous works seem to indicate that two factors have an im-
portant impact on predictability: the prediction horizon and the degree of traffic
aggregation.

On the one hand, it can be expected that predictability will decrease as the predic-
tion horizon increases, i.e., prediction errors increase as we try to predict further in
the future. the other hand, it has been observed that traffic load in links with a high
degree of aggregation is sometimes simpler to predict. A number of techniques for
estimating complexity exist, including fractal dimension and Lyapunov exponents.
Even if these invariants could be calculated accurately, they still do not provide
enough information for the construction of a predictive model. Here we look into
this issue from the point of view of time series analysis and prediction.
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Some previous results [45] indicate that predictability does not necessarily in-
crease monotonically with decreasing time resolution, i.e., smoother signals, that it
is largely independent of the prediction mechanism and that simple models are suf-
ficient while more complex non-stationary, nonlinear models are advantageous only
at very coarse resolutions. As this section will show, time scale is a crucial param-
eter when looking at the questions above. Besides, both short-term and long-term
prediction are addressed.

The approach followed here is to predict network traffic load in the form of the
load series aggregated at a certain time interval. Thus, inter-arrival times are not
modeled.

In order to apply a time series prediction technique, three general issues have to
be addressed:

• choosing the input variables,
• defining the architecture and parameters of the model, and
• applying a criterion for selecting the best model.

Here we address the first issue using the delta test based a priori input selection
scheme described in chapter 2 in the context of a methodology for time series
prediction by means of fuzzy inference systems. This scheme is followed for all
the modeling techniques used. In particular, the following modeling techniques are
compared: fuzzy inference systems with the methodology described in chapter 2,
optimally pruned extreme learning machines (OP-ELM) [24, 38] and nearest neigh-
bors with induced OWA operators [43, 44] (IOWA-NN) as well as traditional au-
toregressive models. In particular, ARIMA models are analyzed as a representative
case of traditional autoregressive models.

Each of these techniques define specific architectures, parameters and criteria for
model selection, that were briefly described in chapter 1. More specifically, OP-
ELM models are built using the following configuration options: a combination of
linear, Gaussian and sigmoid kernels is used, a maximum of 100 neurons is allowed,
and data are normalized before modeling. ARIMA models are built for maximum
orders of 10. The model that minimizes the Akaike information criteria (AIC) is
selected. IOWA-NN models are optimized by means of the simple iterative learning
procedure proposed in [42]. These linear models have been included for comparison
purposes and should be regarded as a lower bound on the acceptable performance
of more complex models.

Models will be built for long-term prediction at all the time scales considered. In
particular, the 30 next values will be modeled.

Besides, no preprocessing technique is applied. This includes smoothing tech-
niques based on wavelets such as the one used in [28] which is an example of
a filtering technique with a particular objective: approximate forecasting of long-
term overall trend for provisioning. Thus, the training and test sets that will be used
for building models in what follows consist in the aggregated traffic load as mea-
sured in a particular link. This way, we intend to assess the overall performance of
the method presented here, independently of specific preprocessing steps which are
usually dependent on the particular network and time scale of interest.
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In general, in what follows we extract network traffic load time series from pas-
sive traces and then analyze them. The following overall principles apply:

• Some traces are available in the form of constant period series, such as the Bell-
core traces analyzed in the next section. However, most of the traces analyzed
here have been generated from packet level traces (which would allow for recon-
structing the corresponding packet point process). In order to get a discrete time
series from a packet level trace, a uniform time scale is needed. Time series have
been generated by aggregating packet sizes at constant intervals. It is worthwhile
to note that clock inaccuracies in packet arrival times can thus distort the final
time series, specially for small periods. This will be pointed out for those series
for which timestamping inaccuracies can be significant.

• For all series, at least 5 different time resolutions, as far as available, scaled by
a factor of 10 are analyzed for the whole timespan of the trace (be it originally
recorded as a constant period series or a packet level trace). The scales used
range from 1 millisecond up to 1 day. This way, for example the WIDE-F-DITL-
200701 trace is used to analyze a series of traffic load at 10ms, 100 ms, 1 s, 10 s
and 100 s intervals.

• A particular case is that of the Internet2 Abilene backbone traffic measurements.
For this trace, a packet level trace is not available. In addition, the time span de-
pends on the time interval and the set of time intervals was fixed at measurement
time as 1 day, 12 hours, 2 hours, 30 minutes and 5 minutes. The whole time span
of the measurements carried out in the Abilene backbone is only available at the
daily interval. For higher resolution measurements, the total time span is smaller.

• Load at the IP layer is considered, i.e., link header/trailer information is not in-
cluded for accounting load. This is in line with the definition of MTU by the
IETF, where the link layer headers are not summed up for computing the MTU,
i.e, IP MTU as defined by the IETF is not the total frame size.

In general, a maximum regressor size of 10 was used as a reasonable bound that
made it possible to perform the analysis outline above which took more than 400000
hours of computation. A regressor size of 10 is also a convenient choice from the
point of view of the dimensionality of the nonlinear predictive models that are built
after the input selection stage, as it was shown in chapter 2.

The symmetric absolute percent error (SAPE) is used instead of the absolute per-
cent error (APE) in order to have more readable plots of an absolute error measure.
As compared to the APE, the SAPE mitigates the effect of large prediction errors
for small actual values, in which cases the APE measure has greatly oscillations that
decrease the readability of figures.

For each network trace we perform a systematic analysis presented here by means
of four figures, following the general scheme outlined below:

• In a first figure, a plot of the traffic load series at the different time scales consid-
ered is shown.



92 3 Predictive Models of Network Traffic Load

• Then, a second figure shows the residual variance estimates computed with the
Delta Test. The intend of this figure is to give an overall idea of the predictability
of the traffic load trace at different time scales. For each time scale two plots are
shown.

– In the first one, the normalized Delta Test estimates for prediction horizons 1,
2, 5 and 15 are shown for different subseries lengths (ranging from 200 up to
3000 or 3200 when available). The estimates shown are averages taken over
20 repetitions for randomly selected subseries. This plot serves two purposes:
1) the variance of the noise (or non-predictable component of the signal) at
both short- and mid-term is depicted, and 2) the stability of the variance of
the noise estimate with regards to the subseries length can be drawn from the
variations in the NDT estimate.

– The second plot shows a 3D representation of the NDT estimate against the
regressor size (ranging from 1 to 10) and the prediction horizon (ranging from
1 to 30). This plot provides a visual representation of: 1) the effect of the max-
imum regressor size used on the lowest training error possible (that decreases
as the maximum regressor size increases), and 2).

• A third figure shows for every time scale considered the training and test errors
of the four predictive models considered here. The models are build using 1000
samples long (as far as available) training subseries and tested on 1000 samples
long (as far as available) test subseries. The plots show average errors for up to
20 models built for each of up to 20 subseries (as far as available). The errors are
shown for prediction horizons ranging from 1 to 30. Errors for NRVE-FIS and
OP-ELM models are shown on the left, whereas errors for ARIMA and IOWA-
NN models are shown on the right.

• In a fourth figure, an example of the results of the fuzzy inference predictive
model is shown for one randomly selected training subseries of 1000 samples
(as far as available) and a test subseries of 1000 samples (as far as available).
This figure shows the SAPE for the whole training set (on the left side) as well
as the prediction of the next 30 samples after the training set (on the right). The
intend of the figure is to give an approximate idea of the order of the linear errors
of the predictions on the test subseries as well as how close the short-term and
medium-term predictions are to the real test subseries.

Some specific remarks will be made for individual time series throughout the next
pages. However, for better readability the results will be discussed in detail in a
unified manner in section 3.5, on page 130.

We will analyze traces made publicly available from a number of institutions and
projects, including both traces of historic interest as well as more recent traces.
Within the historic traces, we analyze the LBL traces, the BellCore traces and
the DEC traces. The recent traces will be analyzed distributed among sections de-
voted to different classes of links: backbone links, exchange points, intercontinen-
tal links, access links and wireless links. Traces for two backbones, the Abilene
network and the CAIDA OC48 measurement point will be analyzed. Regarding ex-
change traffic, traces recorded at the AMPATH exchange point will be analyzed. For
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intercontinental traffic, traces recorded at the measurement point of a link between
Japan and the USA will be analyzed. Then, we will analyze traces for two access
links corresponding to two research institutions. Finally, we analyze a trace recorded
at a wireless access point.

Unless explicitly stated, traces collected by the Cooperative Association for
Internet Data Analysis (CAIDA) can be obtained, with certain use and access
restrictions, from the CAIDA Internet Data – Passive Data Sources site
(http://www.caida.org/data/passive/) as well as from the Internet
Measurement Data Catalog [33, 9] (http://datcat.org). Traces from the
Internet Traffic Archive can be obtained from [20]. Additionally, traces originally
collected by the National Laboratory for Network Research (NLANR) Passive Mea-
surements and Analysis (PMA) project can be obtained from the PMA special traces
archive [27]; traces collected by the MAWI working group of the WIDE project can
be obtained from [40]; and traces belonging to the Community Resource for Archiv-
ing Wireless Data At Dartmouth (CRAWDAD) can be obtained from [19].

3.3 Series of the Internet Traffic Archive

The Internet Traffic Archive (ITA) [20] hosts a number of network traffic traces of
high historical relevance. These include the the Bellcore traces and the traces taken
at the Lawrence Berkeley National Laboratory. The first were the empirical basis
for finding self-similarity and long-range dependence in Ethernet traffic [12, 21]
whereas the second were instrumental in showing that the Poisson model can fail to
capture the behavior of traffic in wide area networks [29]. These traces have been
extensively analyzed throughout the literature and have been the basis for some
remarkable developments in traffic modeling [22, 21, 12, 20].

3.3.1 LBL Traces

This set of traces includes the LBL-TCP-3 and LBL-PKT-4 and LBL-PKT-5 traces
and correspond to the LBL-PKT-3, LBL-PKT-4 and LBL-PKT-5 traces used in [29].
The tracing was done on the Ethernet demilitarized zone network over which flows
all traffic into or out of the Lawrence Berkeley Laboratory, located in Berkeley,
California. All times were recorded in Pacific Standard Time and timestamps have
microsecond precision. We should note that the LBL-CONN-7 trace available from
ITA is not analyzed here since no information on the packet arrival process is avail-
able in the original trace. As the results obtained for the three LBL traces are similar
to a significant extent, for better readability we only show here the results for the
LBL-TCP-3 trace. The reader interested in details about other LBL traces is referred
to [25].
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3.3.1.1 LBL-TCP-3

This trace includes two hours of WAN TCP traffic between the Lawrence Berkeley
Laboratory and the rest of the world. The trace ran from 14:10 to 16:10 on Thursday
20th of January, 1994, capturing 1.8 million TCP packets. About 0.0002% of these
were dropped.

In figure 3.1, the traffic load series for the LBL-TCP-3 trace at 4 different time
scales are shown. Figure 3.2 shows the DT based estimation of predictability of the
series derived from the LBL-TCP-3 trace at different time scales. The column on
the left shows for every time scale the averaged NDT for 100 randomly selected
subseries of different lengths (horizons 1, 2, 5, 10 and 15, regressor size 10). The
column on the right shows for every time scale the NDT for horizons 1-30 and
regressor sizes 1-10 in the case of one randomly selected subseries of length 1000
(or less when not enough samples are available).

In figure 3.3, the training and test errors for the LBL-TCP-3 trace at different time
scales are shown. Four models are used: a) fuzzy inference models built with the
NRVE-FIS methodology and OP-ELM models (left column), and b) IOWA derived
nearest neighbor models and ARIMA models (right). Prediction horizons 1 through
30 are considered.

Figure 3.4 shows an example of prediction made with fuzzy inference models for
every time scale, for one random selection of a training set of up to 1000 training
samples and up to 1000 test samples (as far as available). On the left, it is shown
the test symmetric absolute percentage error (SAPE). On the right, it is shown the
predictions of the next 30 values after the training set.

3.3.2 Bellcore Traces

The Bellcore dataset includes four traces each containing a million packet arrivals on
an Ethernet link at the computing laboratory of the Bellcore Morristown Research
and Engineering facility in the late 80s. These traces were the empirical basis for
finding self-similarity and long-range dependence in Ethernet traffic [21]. The mea-
surement techniques used to record these traces are discussed in detail in [12]. The
first two traces, BC-pAug89 and BC-pOct89 contain packet arrivals for both local
traffic and traffic to and from the Internet. The second two traces, BC-Oct89Ext and
BC-Oct89Ext4 include only external packet arrivals, i.e., WAN traffic. Timestamps
are provided in microsecond units but have a nominal precision of 4 microsecond.
Further analysis by the authors of the traces indicate that the actual accuracy is
limited to roughly 10 microseconds. All Ethernet packets were captured in these
traces [20]. The interested reader is referred to [25], where a similar analysis to that
shown above for the LBL-TCP-3 trace is detailed.
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Fig. 3.1 LBL-TCP-3: traffic load series at different time scales
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Fig. 3.2 LBL-TCP-3: predictability estimate for different time scales. NDT for prediction
horizons 1, 2, 5, 10 and 15 are shown on the left for different subseries lengths (starting at
random points, averaged for 100 repetitions). NDT for a randomly selected subseries of 1000
samples is shown on the right (horizons 1-30 and regressor sizes 1-10).
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Fig. 3.3 LBL-TCP-3: test errors for different time scales. Left: errors for NRVE-FIS (+ for
training, × for test) and OP-ELM (∗ for training, � for test) models. Right: errors for ARIMA
(+ for training, × for test) and IOWA-NN (∗ for training, � for test) models.
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Fig. 3.4 LBL-TCP-3: predictions of a random test set per time scale with NRVE-FIS. Left:
SAPE for one-step ahead predictions of the test set. Right: predictions of the next 30 values
after the training set. The last 100 values of the training set, the first 30 values of the test
set (both as +, continuous line) and the 30 corresponding predictions (×, dashed line) are
plotted.
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3.3.3 DEC Traces

Each of the four original DEC-PKT traces [20] recorded an hour of WAN traffic
between Digital Equipment Corporation (DEC) and the rest of the world. The traces
were recorded at the primary Internet access point of DEC, which is an Ethernet
demilitarized zone (DMZ) network operated by DEC Palo Alto research groups.
The traces correspond to the DEC-WRL-1 through DEC-WRL-4 traces used in [29].
All times were recorded in Pacific Standard Time and timestamps have millisecond
precision.

The traces that we will call DEC-PKT-1 through DEC-PKT-4 correspond to the
files dec-pkt-1.tcp through dec-pkt-4.tcp in the original traces. Only TCP traffic is
thus taken into consideration here. UDP, encapsulated IP and other traffic is not
analyzed since not enough information is included in the original traces in order to
construct traffic load series (as packet sizes were recorded only for TCP packets).
These traces and the associated time series that will be analyzed are thus transport
protocol specific. Again, we refer the interested reader to [25].

3.4 Application to Recent Traffic Time Series

The more recent traffic time series will be analyzed in four groups: backbone traffic
(for high capacity links internal to specific networks), exchange traffic (for normally
lower capacity long distance links), access links and wireless traffic (including both
campus range and event specific setups).

3.4.1 Backbone Traffic

In this section we analyze traffic traces recorded at two backbone links of high
performance networks: the Internet2 Abilene network and the CAIDA OC-48 mea-
surement point.

3.4.1.1 Aggregated Incoming and Outgoing Traffic in the Internet2
Backbone Network

This trace represents the total amount of aggregated incoming and outgoing traffic
in the routers of the Abilene network, the Internet2 backbone, during several years.
The data are available from the Abilene Observatory [16]. This trace is analyzed at
the following time scales: 1 day, 12 hours, 2 hours, 30 minutes and 5 minutes. These
are the time scales at which it is used to be plotted in the Internet2 observatory for
online monitoring.

The daily series consists of 1458 daily averages covering from the 4th of January,
2003 to the 31st of December, 2006. Although measurements for some months of
2007 are also available, we have discarded all measurements taken on and after 1st
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of January, 2007. This is because some routers of the Abilene backbone started to
be shutdown as part of the transition to the new Internet2 backbone in 2007 that
took a few months. As a consequence of the transition, the topology of the Abilene
network as well as the total amount of traffic traversing the Abilene routers were
deeply affected. We thus prefer to exclude from our study those measurements taken
during the transition.

Note as well that the series at 5 minutes, 30 minutes, 2 hours and 12 hours span
from 4th of August, 2005 to 31st of December, 2006. Earlier values were not avail-
able at these time scales. Aggregated incoming traffic is analyzed in the subtrace
Abilene-I whereas outgoing traffic is analyzed in the subtrace Abilene-O. Strong
correlations between them can be observed in the plots of the two series at all the
time scales examined. As a consequence of the clear symmetry between the two
series, the short- and long-term predictability as well as the training and test errors
for the different techniques applied are very similar. The interested reader can find
the results for the Abilene-O trace in [25].

In figure 3.5, the traffic load series for the Abilene-I trace at 5 different time scales
are shown. Figure 3.6 shows the DT based estimation of predictability of the series
derived from the Abilene-I trace at different time scales. The column on the left
shows for every time scale the averaged NDT for 100 randomly selected subseries
of different lengths (horizons 1, 2, 5, 10 and 15, regressor size 10). The column on
the right shows for every time scale the NDT for horizons 1-30 and regressor sizes
1-10 in the case of one randomly selected subseries of length 1000 (or less when not
enough samples are available).

In figure 3.7, the training and test errors for the Abilene-I trace at different time
scales are shown. Four models are used: a) fuzzy inference models built with the
NRVE-FIS methodology and OP-ELM models (left column), and b) IOWA derived
nearest neighbor models and ARIMA models (right). Prediction horizons 1 through
30 are considered.

Figure 3.8 shows an example of prediction made with fuzzy inference models for
every time scale, for one random selection of a training set of up to 1000 training
samples and up to 1000 test samples (as far as available). On the left, it is shown
the test symmetric absolute percentage error (SAPE). On the right, it is shown the
predictions of the next 30 values after the training set.

3.4.1.2 CAIDA OC48 Traces

Here we analyze the OC 48 measurements made in 2002 [34], for the OC48-
20020814-0 and OC48-20020814-1 traces; January 2003, for the OC48-20030115-
0 and OC48-20030115-1 traces; and March 2003 [35], for the OC48-20030424-0
and OC48-20030424-1 traces. All these traces belong to the CAIDA OC48 Traces
Dataset. Extensive results are only shown for the OC48-20030424-1 trace. For an in
depth analysis of all the traces, the interested reader is referred to [25].



3.4 Application to Recent Traffic Time Series 101

 0
 2e+09
 4e+09
 6e+09
 8e+09
 1e+10

 1.2e+10
 1.4e+10
 1.6e+10
 1.8e+10

 0  200  400  600  800  1000  1200  1400

L
oa

d 
(b

/s
)

t (1 d)

(a) 1 d period

 2e+09
 4e+09
 6e+09
 8e+09
 1e+10

 1.2e+10
 1.4e+10
 1.6e+10
 1.8e+10

 0  200  400  600  800  1000

L
oa

d 
(b

/s
)

t (12 h)

(b) 12 h period

 0
 5e+09
 1e+10

 1.5e+10
 2e+10

 2.5e+10
 3e+10

 0  1000  2000  3000  4000  5000  6000

L
oa

d 
(b

/s
)

t (2 h)

(c) 2 h period

 0
 5e+09
 1e+10

 1.5e+10
 2e+10

 2.5e+10
 3e+10

 0  5000  10000  15000  20000  25000

L
oa

d 
(b

/s
)

t (30 m)

(d) 30 m period

 0
 5e+09
 1e+10

 1.5e+10
 2e+10

 2.5e+10
 3e+10

 3.5e+10

 0  20000  40000  60000  80000  100000  120000  140000

L
oa

d 
(b

/s
)

t (5 m)

(e) 5 m period

Fig. 3.5 Abilene-I: traffic load series at different time scales



102 3 Predictive Models of Network Traffic Load

 0

 0.2

 0.4

 0.6

 0.8

 1

 400  800  1200  1600

N
D

T
 e

st
im

at
e

Subseries length  0
 5

 10
 15

 20
 25

 30

 1 2 3 4 5 6 7 8 9 10

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

NDT

Prediction horizon
Regressor size

NDT

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

(a) 1 d period.

 0

 0.2

 0.4

 0.6

 0.8

 1

 400  800  1200

N
D

T
 e

st
im

at
e

Subseries length  0
 5

 10
 15

 20
 25

 30

 1 2 3 4 5 6 7 8 9 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
NDT

Prediction horizon
Regressor size

NDT

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(b) 12 h period.

 0

 0.2

 0.4

 0.6

 0.8

 1

 400  800  1200  1600  2000  2400  2800  3200

N
D

T
 e

st
im

at
e

Subseries length  0
 5

 10
 15

 20
 25

 30

 1 2 3 4 5 6 7 8 9 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
NDT

Prediction horizon
Regressor size

NDT

 0
 0.1 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9 1

(c) 2 h period.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 400  800  1200  1600  2000  2400  2800  3200

N
D

T
 e

st
im

at
e

Subseries length  0
 5

 10
 15

 20
 25

 30

 1 2 3 4 5 6 7 8 9 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
NDT

Prediction horizon
Regressor size

NDT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

(d) 30 m period.

 0

 0.2

 0.4

 0.6

 0.8

 1

 400  800  1200  1600  2000  2400  2800  3200

N
D

T
 e

st
im

at
e

Subseries length  0
 5

 10
 15

 20
 25

 30

 1 2 3 4 5 6 7 8 9 10

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
NDT

Prediction horizon
Regressor size

NDT

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

(e) 5 m period.

Fig. 3.6 Abilene-I: predictability estimate for different time scales. NDT for prediction hori-
zons 1, 2, 5, 10 and 15 are shown on the left for different subseries lengths (starting at random
points, averaged for 100 repetitions). NDT for a randomly selected subseries of 1000 samples
is shown on the right (horizons 1-30 and regressor sizes 1-10).
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Fig. 3.7 Abilene-I: test errors for different time scales. Left: errors for NRVE-FIS (+ for
training, × for test) and OP-ELM (∗ for training, � for test) models. Right: errors for ARIMA
(+ for training, × for test) and IOWA-NN (∗ for training, � for test) models.
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Fig. 3.8 Abilene-I: predictions of a random test set per time scale with NRVE-FIS. Left:
SAPE for one-step ahead predictions of the test set. Right: predictions of the next 30 values
after the training set. The last 100 values of the training set, the first 30 values of the test
set (both as +, continuous line) and the 30 corresponding predictions (×, dashed line) are
plotted.
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3.4.1.3 CAIDA OC48-20030424-1

This trace is one of the two traces collected in both directions of an OC48 link on
24th of April, 2003 for 1 hour starting at 00:00. The measurement link is a USA
West Coast peering link for a large ISP. The traces consist of 13 GB of data for 203
million packets and 96 GB of observed IP traffic [35]. Here we analyze the trace for
direction 1. Results for the trace for the complementary direction, OC48-20030424-
0, are detailed in [25].

In figure 3.9, the traffic load series for the OC48-20030424-1 trace at 5 different
time scales are shown. Figure 3.10 shows the DT based estimation of predictability
of the series derived from the OC48-20030424-1 trace at different time scales. The
column on the left shows for every time scale the averaged NDT for 100 randomly
selected subseries of different lengths (horizons 1, 2, 5, 10 and 15, regressor size
10). The column on the right shows for every time scale the NDT for horizons 1-30
and regressor sizes 1-10 in the case of one randomly selected subseries of length
1000 (or less when not enough samples are available).

In figure 3.11, the training and test errors for the OC48-20030424-1 trace at dif-
ferent time scales are shown. Four models are used: a) fuzzy inference models built
with the NRVE-FIS methodology and OP-ELM models (left column), and b) IOWA
derived nearest neighbor models and ARIMA models (right). Prediction horizons 1
through 30 are considered.

Figure 3.12 shows an example of prediction made with fuzzy inference models
for every time scale, for one random selection of a training set of up to 1000 training
samples and up to 1000 test samples (as far as available). On the left, it is shown
the test symmetric absolute percentage error (SAPE). On the right, it is shown the
predictions of the next 30 values after the training set.

3.4.1.4 WIDE-C-20080211

This trace was recorded on Monday 11th of February, 2008 at the measurement
point C of the WIDE backbone. This measurement point is an IPv6 line connected to
6Bone. It started at 18:00:01 and ended at 21:16:37. 2 million packets were captured.
This trace shows some specific properties. In particular, 100% of traffic is IPv6, and
25% of packets are related to DNS requests. The average transfer rate during the
recording was 188.01 Kb/s.

In figure 3.13, the traffic load series for the WIDE-C-20080211 trace at 4 different
time scales are shown. Figure 3.14 shows the DT based estimation of predictability
of the series derived from the WIDE-C-20080211 trace at different time scales. The
column on the left shows for every time scale the averaged NDT for 100 randomly
selected subseries of different lengths (horizons 1, 2, 5, 10 and 15, regressor size
10). The column on the right shows for every time scale the NDT for horizons 1-30
and regressor sizes 1-10 in the case of one randomly selected subseries of length
1000 (or less when not enough samples are available).
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Fig. 3.9 OC48-20030424-1: traffic load series at different time scales
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Fig. 3.10 OC48-20030424-1: predictability estimate for different time scales. NDT for pre-
diction horizons 1, 2, 5, 10 and 15 are shown on the left for different subseries lengths (start-
ing at random points, averaged for 100 repetitions). NDT for a randomly selected subseries
of 1000 samples is shown on the right (horizons 1-30 and regressor sizes 1-10).
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Fig. 3.11 OC48-20030424-1: test errors for different time scales. Left: errors for NRVE-FIS
(+ for training, × for test) and OP-ELM (∗ for training, � for test) models. Right: errors for
ARIMA (+ for training, × for test) and IOWA-NN (∗ for training, � for test) models.



3.4 Application to Recent Traffic Time Series 109

 0

 2

 4

 6

 8

 10

 12

 14

 0  20  40  60  80  100  120  140  160

SA
PE

Test samples

 7e+07
 8e+07
 9e+07
 1e+08

 1.1e+08
 1.2e+08
 1.3e+08
 1.4e+08
 1.5e+08

 0  20  40  60  80  100  120  140

V
al

ue
s 

an
d 

pr
ed

ic
tio

ns
 (

b/
s)

Last training and first test samples

(a) 10 s period.

 0

 2

 4

 6

 8

 10

 12

 14

 0  100  200  300  400  500  600  700  800  900  1000

SA
PE

Test samples

 1.15e+07

 1.2e+07

 1.25e+07

 1.3e+07

 1.35e+07

 1.4e+07

 1.45e+07

 1.5e+07

 0  20  40  60  80  100  120  140
V

al
ue

s 
an

d 
pr

ed
ic

tio
ns

 (
b/

s)
Last training and first test samples

(b) 1 s period.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  100  200  300  400  500  600  700  800  900  1000

SA
PE

Test samples

 1.2e+07

 1.3e+07

 1.4e+07

 1.5e+07

 1.6e+07

 1.7e+07

 1.8e+07

 0  20  40  60  80  100  120  140

V
al

ue
s 

an
d 

pr
ed

ic
tio

ns
 (

b/
s)

Last training and first test samples

(c) 100 ms period.

 0

 10

 20

 30

 40

 50

 60

 70

 0  100  200  300  400  500  600  700  800  900  1000

SA
PE

Test samples

 8e+06
 1e+07

 1.2e+07
 1.4e+07
 1.6e+07
 1.8e+07

 2e+07
 2.2e+07
 2.4e+07

 0  20  40  60  80  100  120  140

V
al

ue
s 

an
d 

pr
ed

ic
tio

ns
 (

b/
s)

Last training and first test samples

(d) 10 ms period.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  100  200  300  400  500  600  700  800  900  1000

SA
PE

Test samples

 0
 5e+06
 1e+07

 1.5e+07
 2e+07

 2.5e+07
 3e+07

 3.5e+07
 4e+07

 4.5e+07
 5e+07

 0  20  40  60  80  100  120  140

V
al

ue
s 

an
d 

pr
ed

ic
tio

ns
 (

b/
s)

Last training and first test samples

(e) 1 ms period.

Fig. 3.12 OC48-20030424-1: predictions of a random test set per time scale with NRVE-FIS.
Left: SAPE for one-step ahead predictions of the test set. Right: predictions of the next 30
values after the training set. The last 100 values of the training set, the first 30 values of the
test set (both as +, continuous line) and the 30 corresponding predictions (×, dashed line)
are plotted.
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Fig. 3.13 WIDE-C-20080211: traffic load series at different time scales
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In figure 3.15, the training and test errors for the WIDE-C-20080211 trace at dif-
ferent time scales are shown. Four models are used: a) fuzzy inference models built
with the NRVE-FIS methodology and OP-ELM models (left column), and b) IOWA
derived nearest neighbor models and ARIMA models (right). Prediction horizons 1
through 30 are considered.

Figure 3.16 shows an example of prediction made with fuzzy inference models
for every time scale, for one random selection of a training set of up to 1000 training
samples and up to 1000 test samples (as far as available). On the left, it is shown
the test symmetric absolute percentage error (SAPE). On the right, it is shown the
predictions of the next 30 values after the training set.

3.4.2 Exchange and Peering Traffic

As examples of time series for network traffic at exchange points we study the AM-
PATH OC12 traces recorded in the DITL 2007 event and the Equinix-Chicago traces
recorded during the DITL 2008 event.

The AMPATH (AMericasPATH) traces, belonging to the CAIDA Anonymized
2007 Internet Traces, contains pcap packet header traces collected on both directions
of an OC12 link at the AMPATH International Internet Exchange point located in
Miami, Florida. This OC12 link carries traffic between U.S. research and education
(R&E) networks and R&E networks in South and Central America. These traces
were collected as part of the Day in the Life of the Internet (DITL) project in Jan-
uary, 2007. They cover the full 2 days of DITL-2007-01-09 which started midnight
on 9th of January, 2007 (UTC) and ended midnight on 11th of January, 2007 (UTC).
These traces consist of over 850 million IPv4 packet headers. The reader is referred
to [25] for the omitted details.

3.4.2.1 Equinix-Chicago-DITL-2008

This collection, belonging to the CAIDA Anonymized 2008 Internet Traces, con-
tains trace files for a single direction recorded at the CAIDA passive monitor equinix-
chicago during the DITL event in 2008. The equinix-chicago Internet data collection
monitor is located at an Equinix datacenter in Chicago, IL, and is connected to an
OC192 backbone link (9953 Mb/s) of a Tier1 ISP between Chicago and Seattle,
WA. It was recorded on direction B (from Chicago to Seattle). The trace started on
19th of March, 2008 at 18:59:08 UTC, and ended at 20:01:00 UTC. This trace was
recorded as part of the Day in the Life of the Internet (DITL) 2008 measurement
event (http://www.caida.org/projects/ditl/).

In figure 3.17, the traffic load series for the Equinix-Chicago-DITL-2008 trace
at 5 different time scales are shown. Figure 3.18 shows the DT based estimation
of predictability of the series derived from the Equinix-Chicago-DITL-2008 trace at
different time scales. The column on the left shows for every time scale the averaged
NDT for 100 randomly selected subseries of different lengths (horizons 1, 2, 5, 10
and 15, regressor size 10). The column on the right shows for every time scale the
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Fig. 3.14 WIDE-C-20080211: predictability estimate for different time scales. NDT for pre-
diction horizons 1, 2, 5, 10 and 15 are shown on the left for different subseries lengths (start-
ing at random points, averaged for 100 repetitions). NDT for a randomly selected subseries
of 1000 samples is shown on the right (horizons 1-30 and regressor sizes 1-10).
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Fig. 3.15 WIDE-C-20080211: test errors for different time scales. Left: errors for NRVE-FIS
(+ for training, × for test) and OP-ELM (∗ for training, � for test) models. Right: errors for
ARIMA (+ for training, × for test) and IOWA-NN (∗ for training, � for test) models.
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Fig. 3.16 WIDE-C-20080211: predictions of a random test set per time scale with NRVE-
FIS. Left: SAPE for one-step ahead predictions of the test set. Right: predictions of the next
30 values after the training set. The last 100 values of the training set, the first 30 values of
the test set (both as +, continuous line) and the 30 corresponding predictions (×, dashed line)
are plotted.
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Fig. 3.17 Equinix-Chicago-DITL-2008: traffic load series at different time scales
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NDT for horizons 1-30 and regressor sizes 1-10 in the case of one randomly selected
subseries of length 1000 (or less when not enough samples are available).

In figure 3.19, the training and test errors for the Equinix-Chicago-DITL-2008
trace at different time scales are shown. Four models are used: a) fuzzy inference
models built with the NRVE-FIS methodology and OP-ELM models (left column),
and b) IOWA derived nearest neighbor models and ARIMA models (right). Predic-
tion horizons 1 through 30 are considered.

Figure 3.20 shows an example of prediction made with fuzzy inference models
for every time scale, for one random selection of a training set of up to 1000 training
samples and up to 1000 test samples (as far as available). On the left, it is shown
the test symmetric absolute percentage error (SAPE). On the right, it is shown the
predictions of the next 30 values after the training set.

3.4.3 Intercontinental Traffic

Here we analyze two traces recorded at the measurement point F of the the MAWI
Working Group of the Widely Integrated Distributed Environment (WIDE) [7, 40]
This measurement point is is an intercontinental link between Japan and the USA.
For this reason, we analyze these traces in a separate section devoted to transconti-
nental traffic as some differences in traffic behavior can be expected as compared to
intracontinental backbone links.

3.4.3.1 WIDE-F-DITL-200701

This trace was recorded by the MAWI Working Group of the Widely Integrated
Distributed Environment (WIDE) project as part of the DITL 2007 event. The trace
spans more than 48 hours and was recorded at the samplepoint-F of the WIDE back-
bone [40], a 155 Mb/s trans-pacific link between Japan and the USA in operation
since first of June, 2006, upgraded from 100 Mb/s to 150 Mb/s on first of June, 2007.
It started at 07:45:01 on 9th of January, 2007 and ended at 10:00:00 on 11th of Jan-
uary, 2007. The trace is available from the WIDE packet traces archive [40]. The
reader interested in the complete analysis of this trace is referred to [25].

3.4.3.2 WIDE-F-DITL-200803

This trace was recorded by the MAWI Working Group of the Widely Integrated
Distributed Environment (WIDE) project as part of the DITL 2008 event. As in
the DITL 2007 event, this trace was recorded at the samplepoint-F of the WIDE
backbone [40], a 155 Mb/s trans-pacific link between Japan and the USA. It spans
more than 72 hours, starting at 23:45:00 on 17th of March, 2008 and ending at
00:00:00 on 21st of March, 2008. The trace is available from the WIDE packet
traces archive [40].
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Fig. 3.18 Equinix-Chicago-DITL-2008: predictability estimate for different time scales.
NDT for prediction horizons 1, 2, 5, 10 and 15 are shown on the left for different subseries
lengths (starting at random points, averaged for 100 repetitions). NDT for a randomly se-
lected subseries of 1000 samples is shown on the right (horizons 1-30 and regressor sizes
1-10).
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Fig. 3.19 Equinix-Chicago-DITL-2008: test errors for different time scales. Left: errors for
NRVE-FIS (+ for training, × for test) and OP-ELM (∗ for training, � for test) models. Right:
errors for ARIMA (+ for training, × for test) and IOWA-NN (∗ for training, � for test) models.
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Fig. 3.20 Equinix-Chicago-DITL-2008: predictions of a random test set per time scale with
NRVE-FIS. Left: SAPE for one-step ahead predictions of the test set. Right: predictions of
the next 30 values after the training set. The last 100 values of the training set, the first 30
values of the test set (both as +, continuous line) and the 30 corresponding predictions (×,
dashed line) are plotted.
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In figure 3.21, the traffic load series for the WIDE-F-DITL-200803 trace at 5
different time scales are shown. Figure 3.22 shows the DT based estimation of pre-
dictability of the series derived from the WIDE-F-DITL-200803 trace at different
time scales. The column on the left shows for every time scale the averaged NDT
for 100 randomly selected subseries of different lengths (horizons 1, 2, 5, 10 and
15, regressor size 10). The column on the right shows for every time scale the NDT
for horizons 1-30 and regressor sizes 1-10 in the case of one randomly selected
subseries of length 1000 (or less when not enough samples are available).

In figure 3.23, the training and test errors for the WIDE-F-DITL-200803 trace
at different time scales are shown. Four models are used: a) fuzzy inference mod-
els built with the NRVE-FIS methodology and OP-ELM models (left column), and
b) IOWA derived nearest neighbor models and ARIMA models (right). Prediction
horizons 1 through 30 are considered.

Figure 3.24 shows an example of prediction made with fuzzy inference models
for every time scale, for one random selection of a training set of up to 1000 training
samples and up to 1000 test samples (as far as available). On the left, it is shown
the test symmetric absolute percentage error (SAPE). On the right, it is shown the
predictions of the next 30 values after the training set.

3.4.4 Access Point Traffic

Here we analyze traffic traces recorded at access points where a certain organization
connects to the Internet, such as the Bell Labs-I trace, measured at a 9 Mb/s link to
the Internet, and the NCAR-I trace, measured at a Gb/s access link.

3.4.4.1 Bell Labs-I

The Bell Labs-I trace was captured jointly by the NLANR PMA project and the In-
ternet Traffic Research group from 19th to 25th of May, 2002. It is a one week
contiguous Internet access IP header trace collected from Sunday 19th through
Saturday 25th at Bell Labs research, Murray Hill, NJ, USA. The data set was col-
lected with a Dag3.2E 10/100 Mb/s Ethernet card at the outside of the firewall ser-
vicing researchers at Bell Labs via a 9 Mb/s link to the Internet. The Dag3.2E is
sychronzed to a CDMA time receiver, with an absolute accuracy to UTC to within
10 microseconds, the frequency stability comparable to GPS-based solutions. Some
overall characteristics of the traffic at this link can be summarized as follows: the
local network hosts serve 400 people, mostly technical, and about 50 administra-
tive staff, all HTTP traffic has clients inside the network and servers outside, and
all flows are bidirectional whereas routing is fully symmetric. Again, the interested
reader is referred to [25] for an exhaustive analysis of all the traces.
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Fig. 3.21 WIDE-F-DITL-200803: traffic load series at different time scales
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Fig. 3.22 WIDE-F-DITL-200803: predictability estimate for different time scales. NDT for
prediction horizons 1, 2, 5, 10 and 15 are shown on the left for different subseries lengths
(starting at random points, averaged for 100 repetitions). NDT for a randomly selected sub-
series of 1000 samples is shown on the right (horizons 1-30 and regressor sizes 1-10).
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Fig. 3.23 WIDE-F-DITL-200803: test errors for different time scales. Left: errors for NRVE-
FIS (+ for training, × for test) and OP-ELM (∗ for training, � for test) models. Right: errors
for ARIMA (+ for training, × for test) and IOWA-NN (∗ for training, � for test) models.
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Fig. 3.24 WIDE-F-DITL-200803: predictions of a random test set per time scale with NRVE-
FIS. Left: SAPE for one-step ahead predictions of the test set. Right: predictions of the next
30 values after the training set. The last 100 values of the training set, the first 30 values of
the test set (both as +, continuous line) and the 30 corresponding predictions (×, dashed line)
are plotted.
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3.4.4.2 NCAR-I

The NCAR-I data set is a one hour long IP header trace captured by the NLANR
PMA project using an Endace DAG4.2GE dual Gigabit Ethernet network measure-
ment card at the end of December 2003. The measurement point is located at the
access link of the National Center for Atmospheric Research, Boulder.

In figure 3.25, the traffic load series for the NCAR-I trace at 5 different time
scales are shown. Figure 3.26 shows the DT based estimation of predictability of
the series derived from the NCAR-I trace at different time scales. The column on
the left shows for every time scale the averaged NDT for 100 randomly selected
subseries of different lengths (horizons 1, 2, 5, 10 and 15, regressor size 10). The
column on the right shows for every time scale the NDT for horizons 1-30 and
regressor sizes 1-10 in the case of one randomly selected subseries of length 1000
(or less when not enough samples are available).

In figure 3.27, the training and test errors for the NCAR-I trace at different time
scales are shown. Four models are used: a) fuzzy inference models built with the
NRVE-FIS methodology and OP-ELM models (left column), and b) IOWA derived
nearest neighbor models and ARIMA models (right). Prediction horizons 1 through
30 are considered.

Figure 3.28 shows an example of prediction made with fuzzy inference models
for every time scale, for one random selection of a training set of up to 1000 training
samples and up to 1000 test samples (as far as available). On the left, it is shown
the test symmetric absolute percentage error (SAPE). On the right, it is shown the
predictions of the next 30 values after the training set.
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Fig. 3.25 NCAR-I: traffic load series at different time scales
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Fig. 3.26 NCAR-I: predictability estimate for different time scales. NDT for prediction hori-
zons 1, 2, 5, 10 and 15 are shown on the left for different subseries lengths (starting at random
points, averaged for 100 repetitions). NDT for a randomly selected subseries of 1000 samples
is shown on the right (horizons 1-30 and regressor sizes 1-10).
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Fig. 3.27 NCAR-I: test errors for different time scales. Left: errors for NRVE-FIS (+ for
training, × for test) and OP-ELM (∗ for training, � for test) models. Right: errors for ARIMA
(+ for training, × for test) and IOWA-NN (∗ for training, � for test) models.
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Fig. 3.28 NCAR-I: predictions of a random test set per time scale with NRVE-FIS. Left:
SAPE for one-step ahead predictions of the test set. Right: predictions of the next 30 values
after the training set. The last 100 values of the training set, the first 30 values of the test
set (both as +, continuous line) and the 30 corresponding predictions (×, dashed line) are
plotted.
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3.4.5 Wireless Traffic

3.4.5.1 SIGCOMM 2004 Wireless Access

This trace was recorded at an access point of the open wireless network provided
to approximately 550 participants who attended the SIGCOMM conference in Port-
land, Oregon from 30th of August, 2004 to 3rd of September, 2004 [31]. The wire-
less network set up for the conference comprised 5 access points. Connectivity to the
Internet was provided by four separated DSL lines. Traces from both wireless and
wired monitors are available. Here we use the traces captured by the wired sniffer on
the network segment connected to the access points. Thus, the trace provides a view
of packets exchanged between the access points and the Internet. This measurement
point and setup is regarded as characteristic of a large hotspot setting.

This trace spans all the three days of the conference. About 300000 flows from
195 users were captured for an overall bandwidth consumption of 4.6 GB. The
scheduled times of the conference on each day are as follows: 8:00-18:00 for the
full days, and 8:00-14:00 on the half (last) day. An in depth analysis of the trace can
be found in [30].

In figure 3.29, the traffic load series for the SIGCOMM 2004 trace at 5 different
time scales are shown. Figure 3.30 shows the DT based estimation of predictability
of the series derived from the SIGCOMM 2004 trace at different time scales. The
column on the left shows for every time scale the averaged NDT for 100 randomly
selected subseries of different lengths (horizons 1, 2, 5, 10 and 15, regressor size
10). The column on the right shows for every time scale the NDT for horizons 1-30
and regressor sizes 1-10 in the case of one randomly selected subseries of length
1000 (or less when not enough samples are available).

In figure 3.31, the training and test errors for the SIGCOMM 2004 trace at dif-
ferent time scales are shown. Four models are used: a) fuzzy inference models built
with the NRVE-FIS methodology and OP-ELM models (left column), and b) IOWA
derived nearest neighbor models and ARIMA models (right). Prediction horizons 1
through 30 are considered.

Figure 3.32 shows an example of prediction made with fuzzy inference models
for every time scale, for one random selection of a training set of up to 1000 training
samples and up to 1000 test samples (as far as available). On the left, it is shown
the test symmetric absolute percentage error (SAPE). On the right, it is shown the
predictions of the next 30 values after the training set.

3.5 Discussion

Let us consider a first general summary of the analysis performed:

• The plots of the series at different time scale (first figure) confirm the often found
fact that traffic load is self-similar for a wide range of time scales. Though there
are notable exceptions, and the degree of self-similarity is diverse, which is in line
with experimental results that show that the Hurst coefficient is usually not high
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Fig. 3.29 SIGCOMM 2004: traffic load series at different time scales
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Fig. 3.30 SIGCOMM 2004: predictability estimate for different time scales. NDT for predic-
tion horizons 1, 2, 5, 10 and 15 are shown on the left for different subseries lengths (starting
at random points, averaged for 100 repetitions). NDT for a randomly selected subseries of
1000 samples is shown on the right (horizons 1-30 and regressor sizes 1-10).
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Fig. 3.31 SIGCOMM 2004: test errors for different time scales. Left: errors for NRVE-FIS
(+ for training, × for test) and OP-ELM (∗ for training, � for test) models. Right: errors for
ARIMA (+ for training, × for test) and IOWA-NN (∗ for training, � for test) models.
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Fig. 3.32 SIGCOMM 2004: predictions of a random test set per time scale with NRVE-FIS.
Left: SAPE for one-step ahead predictions of the test set. Right: predictions of the next 30
values after the training set. The last 100 values of the training set, the first 30 values of the
test set (both as +, continuous line) and the 30 corresponding predictions (×, dashed line)
are plotted.
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for current network measurements [18]. For instance, the degree of self-similarity
is remarkably higher in the Bellcore traces, which correspond to Ethernet traffic
with a low level of aggregation.

• The predictability analysis with a nonparametric estimator (second figure) leads
us to the following conclusions:

– From the 2D plots a conclusion can be drawn: the DT estimate is stable for
series of length ranging from 200 to 3000 samples, although an slightly trend
increasing with the number of samples can be observed. This increasing trend
can be seen as a logical consequence of the general non-stationarity of the
series analyzed. There are some exceptions for some series at certain time
scales where the DT estimate can vary up to 100%. This is however the case
for series with a high degree of self-similarity typical of traces with a low
degree of aggregation, in particular, the Bellcore and DEC series. The values
for subseries lengths between 1000 and 2000 samples are in most cases fairly
stable tough, with variations within 10% approximately.

Also, the dependence of the residual variance estimate on subseries lengths
is mostly invariant with the prediction horizon, i.e., the increases and de-
creases of the DT estimates for certain subseries lengths occur consistently
for all the prediction horizons shown. For instance, the variance of the noise
estimates for the series AMPATH-OC12-200701-0 are significantly irregular
with regards to the subseries length for time scales of 10 s, 1 s 100 ms and
10 ms. However, the pattern of variation of the DT estimate is remarkably the
same for all the prediction horizons shown in the plots.
This first part of the predictability plots has an important implication: rela-
tively short subseries, of 1000 or even between 400 and 1000 samples in some
cases, can be used for computing approximate estimations of the variance of
the noise. It can be concluded that it is feasible to build models for training
subseries of 1000 or even less samples.

– The second (3D) plot of the predictability figure shows that the dependence
of the variance of the noise on the maximum regressor size as well as the
prediction horizons varies greatly depending on the time series. In general, it
is confirmed that the lowest training error possible decreases as the regres-
sor size increases. Regarding the dependence of the variance of the noise on
the prediction horizon, the DT estimate is strictly increasing with the predic-
tion horizon in some cases. However, there are a number of series and time
scales for which the variance of the noise oscillates, which indicates cyclic
behavior to a certain extent. In these cases, the series can be expected to be
more predictable for some long- or medium-term horizons than for short-term
horizons.

• The performance of four predictive modeling methods has been analyzed in the
third and fourth figures for each traffic trace. From the four modeling methods,
it is clear that fuzzy inference models and OP-ELM models are the two best
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options in terms of accuracy. In general, the first kind of models is slightly more
accurate, although it can be significantly more accurate for long-term prediction.
There are however a few exceptions where OP-ELM models outperform fuzzy
models in terms of accuracy for short-term predictions, with slight but consis-
tent better accuracy for a range of prediction horizons. Thus, we can conclude
that fuzzy models are usually (but with some exceptions) slightly more accurate
for short-term prediction and more accurate for long-term prediction in general.
However, both methods are close enough so that we would expect grossly the
same capability to predict traffic load from both methods. This can be seen in the
left column of figure 3.33. Note however that the plots in this figure show overall
results for all the traces analyzed at all the time scales considered, and hence they
must be interpreted with care.

IOWA nearest neighbor models and ARIMA models, as examples of more tra-
ditional approaches, are consistently less accurate than fuzzy and OP-ELM mod-
els. Although ARIMA models are overall less accurate than IOWA-NN models,
they are often more robust for long-term prediction. This can be seen in the right
column of figure 3.33. There are also a number of exceptions where the ARIMA
technique provides more accurate short-term predictions such as the WIDE-F-
DITL-200701 series, specially at the 10 s time scale.

Results show that the computational intelligence based techniques are able to
take advantage of predictability, i.e., are able to capture the information about
the traffic dynamics contained in the training datasets. For example, consider the
10 s period series for the OC48-20030424-0 trace. For a maximum regressor size
of 10, the DT estimate quickly increases as the prediction horizon increases up to
approximately 20 yet decreases for greater horizons. This fact reveals some kind
of periodic behavior that renders the series easier to predict on the mid-term than
on the long-term.

The SAPE for the one step ahead prediction at 10 s scale is in general below
10%, with the exception of a maximum at 12%. By looking at the prediction ex-
ample shown, it can be seen that while the predictions quickly loose track of the
real series for the lower prediction horizons, the model is able to provide surpris-
ingly good predictions for the last 15-20 horizons. It follows also that for these
cases mid-term predictability should be improved possibly by indirectly increas-
ing the regressor size using projection or other complementary techniques.

For the traffic load series analyzed at different time scales, with a difference of up
to five orders of magnitude, the DT estimate of the residual variance, or variance
of the noise, has been found to be remarkably stable for all the lengths of the sub-
series considered. This is the case even at time scales of the order of the millisecond,
thus suggesting that traffic is approximately invariant as for predictability for con-
siderably long time periods. For instance, the residual variance for 1 step ahead
prediction ranges from 0.45 to 0.55 for the trace Equinix-Chicago-DITL-2008 at
1 ms intervals. Considering that this trace spans more than 1 hour, i.e., more than
3.6 · 106 intervals of 1 ms, it can be concluded that predictability at scales of the
order of the millisecond is remarkably constant over scales 4 orders of magnitude
higher.
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Fig. 3.33 Cumulative distribution function plot of the 1, 5, 15 and 30 steps ahead test errors
of NRVE-FIS, OP-ELM, ARIMA and IOWA-NN models for the whole set of traces and all
the time scales analyzed. Note the log-normal scale. Left: NRVE-FIS (continuous line) and
OP-ELM (dashed line). Right: ARIMA (continuous line) and IOWA-NN (dashed line).
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Some remarkable cases of accurate short-term predictions are listed as follows:

• OC48-20020814-1, at all time scales with a few individual exceptions for the
1 ms scale.

• OC48-20020814-0, at time scales ranging from 10 s down to 10 ms and also at
1 ms to a lesser extent.

• OC48-20030115-1 and OC48-20030115-0, specially at time scales ranging from
10 s, down to 10 ms time scales and also at 1 ms to a lesser extent.

• OC48-20030424-0 and OC48-20030424-1, specially at time scales ranging from
10 s down to 10 ms time scales and also at 1 ms to a lesser extent. Interestingly,
traffic load in direction 1 can be clearly predicted with better accuracy (with a
one-step ahead SAPE approximately half of that of direction 0).

In general, in CAIDA OC48 traces, it can be observed that predictability at time
scales of the order of the second and above is significantly better. For lower scales,
the NDT estimate increases as the time scale decreases by approximately 0.2 per
order of magnitude.

However, in all these cases there is no possibility to perform accurate long-term
prediction with the methods used here. In contrast, some other series exhibit remark-
able cyclic patterns that translate into a high predictability as estimated by DT and
found in practice. In particular, some subseries of the 100 ms and 10 ms period se-
ries for the Equinix-Chicago-DITL-2008 trace show clear nonlinear cyclic patterns
that can be predicted on a long-term basis using NRVE-FIS models.

By a simple analysis of variance, as described in section 1.5.7, it can be found
that the NRVE-FIS model for the subseries of the Equinix-Chicago-DITL-2008 at
100 ms time scale shown in figure 3.20, page 119, explains 84% of the total vari-
ability of the subseries despite the clear non-linearity. In this respect, it should be
mentioned that in general predictability comes largely from nonlinear determinism
rather than from linear correlations, as can be found by simple autocorrelation anal-
ysis on the series analyzed [17].

In some cases, the errors for ARIMA model are considerably small for long-
term prediction as compared to the errors of computational intelligence models,
which can be of the order of several normalized units. This is the case for the trace
OC48-20020814-1 at 10 s time scale. However, it should be noted that these traces
are in general predictable to a certain extent only on a very short-term basis. For
short-term prediction (horizons lower than 5), both fuzzy models and OP-ELM take
advantage of the predictability of he series to a greater extent than ARIMA models.
ARIMA models are nonetheless more robust in some cases for long-term prediction.
In any case, these long-term predictions have a very low accuracy and thus cannot
be expected to be useful in general.

Interestingly, for time series which are essentially unpredictable at long-term
horizons ARIMA models are more robust against significant changes due to non-
stationarities. In these cases, computational intelligence techniques seem to mistak-
enly (and partially) predict changes identified in the training set that do not actually
take place in the test set, which translates into very high prediction errors. This fact
can be clearly observed in the case of the series OC48-20020814-1 at 10 s scale.
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The MSE has been used as the error metric driving the learning process for all
the modeling methods applied. It should be noted that a number of alternative error
metrics have been proposed for different purposes and the relations among them
are hard to establish. For instance, an NMSE around 1 (between 0.9 and 1.1) can
correspond to an SMAPE that varies greatly (approximately between 40-150%).
Also, an NMSE around 1 corresponds to a MxAE that is always above 0.50, mostly
between 0.60 and 0.70. It is well known that the modeling process may yield very
different results for alternative error metrics. Here we have however limited our
analysis to MSE driven learning methods. Thus, an important area of future work is
the identification of error metrics that better serve the purpose of predicting extreme
events.

It is important to note that, in some cases, it can be observed a certain degree of
symmetry in predictability for traffic traversing some links in opposite directions.
In particular, the Abilene-I and Abilene-O exhibit a high degree of symmetry at all
the time scales examined. Also, the CAIDA-OC48-20030424 and CAIDA-OC48-
20030115 traces show a a clear symmetry at 10 ms and 1 ms time scales, while there
are significant differences in predictability and performance of predictive models for
scales of 100 ms and above, being traffic in direction 1 more predictable than traffic
in direction 0. This fact indicates some degree of persistence of traffic load char-
acteristics in a same link as for predictability for periods of months. By comparing
the results for these two traces in both directions each it can be observed as well
that a better predictability at certain time scales does not necessarily imply a better
predictability for different time scales.

In previous sections, all series have been analyzed as univariate processes, i.e., no
exogenous inputs have been taken into consideration. As a first step towards extend-
ing the methodology proposed here, correlations between traffic load with different
directions in a same link should be explored. This analysis could possibly be ex-
tended to a more general analysis of the correlations among the traffic load series at
topologically related links, which would make it possible to find relations between
traffic patterns and network topology, one of the areas where little results have been
reported to date, as introduced in chapter 1. This would entail the analysis of multi-
point, synchronized traces, such as the Abilene aggregate, the two directions of the
CAIDA OC48 traces and the traces from the NLANR PMA Special Traces Archive,
including Abilene-I, Auckland-VI and Leipzig-II.

In this same area, another venue of future research is the use of exogenous inputs
or explanatory variables in general. In particular, for traffic series at scales of days
and above, a significant performance improvement can be expected if additional
features such as holiday periods and related predictable events are considered as
inputs to the models. These and other factors can have a significant impact that has
to be analyzed on a per trace basis. In the context of fuzzy inference models, this
is specially relevant, as many of these features are usually available in the form of
linguistic knowledge that can be seamlessly integrated into rulebases.

The major aim of the methodology for time series prediction by means of fuzzy
inference systems developed in chapter 2 was to provide a method for the automatic
identification of fuzzy models that can be interpreted linguistically. However, it has
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been found that with the proper configuration these systems can perform as well
or even better that other techniques commonly applied in the time series prediction
field. We however by no means imply that the NRVE-FIS methodology is in general
more accurate than the other methods applied. It is worth to mention that the com-
parison performed here can be seen only as an study that shows that for the time
series analyzed, with the selected configurations, fuzzy inference systems can be
compared to or even outperform LS-SVMs, OP-ELM and other methods in terms
generalization capability.

Nonetheless, an essential advantage of fuzzy inference models that motivated
our work in chapter 2 is the possibility to interpret them in a linguistic manner.
Fuzzy inference systems are inherently comprehensible, specially when the rules are
defined by human experts. However, when rules are automatically identified from
data and optimization methods are applied, interpretability cannot be guaranteed in
general [5].

The methodology for times series prediction by means of fuzzy inference systems
developed in this monograph has been designed in order to address this issue. First,
the input selection stage reduces the number of inputs to a significant extent. Second,
the consistency of the rulebases obtained is guaranteed by the identification method
applied. Third, as a result of the dimensionality reduction and the choice of a proper
optimization method, a reduced number of linguistic terms per input and compact
rulebases are obtained.

Similarly to the series studied in chapter 2, in general, rulebases are consider-
ably compact. Also, as a general rule, longer term models have a significant lower
number of rules, which denotes these systems are rougher. This way, the NRVE-
FIS models are highly interpretable in general. From our viewpoint it should not be
expected that NRVE-FIS models will provide a satisfactory, complete and compre-
hensible explanation of the behavior of a traffic load series in every case. However,
this is possible in some particular cases, and hints on the dynamics of time series
are often obtained. Of course, the procedure required to provide a physical interpre-
tation of the models is case dependent to a great extent.

Let us show an example of NRVE-FIS model. The one step ahead model for
the AMPATH-OC12-200701-0 trace at 1 s time scale has 4 inputs and a rulebase
consisting of 16 rules. However, only 15 output values are different, with two rules
sharing the same output. The four inputs selected correspond to the traffic load at
the last interval, yt−1, two seconds before, yt−3, four seconds before, yt−4, and eight
seconds before, yt−8. The selection of these inputs already indicates that these are
the relevant variables for predicting the traffic load in this link at 1 s time scale. In
addition, the relations between the inputs and the output can be interpreted linguis-
tically. Two linguistic terms are defined for each input, as shown in figure 3.34, that
can be thought of as LOW (or L) and HIGH (or H) values in general, represented by
Gaussian membership functions in the range of observed values, [7.6 ·106, 3.0 ·107].
The rulebase is shown in table 3.1, where the centers of the output singleton values
are specified.

In the table, it can be observed, among other aspects, that a significant increase of
traffic load can be expected for the next second when the conditions specified by the
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(a) yt−8 (b) yt−4 (c) yt−3 (d) yt−1

Fig. 3.34 Linguistic terms for the example one step ahead predictive model of the AMPATH-
OC12-200701-0 series at 1 s time scale

Table 3.1 Rulebase for the NRVE-FIS model of the AMPATH-OC12-200701-0 series at 1 s
time scale

yt−8 yt−4 yt−3 yt−1 yt

L L L L 8.15 ·106

L L L H 3.00 ·107

L L H L 1.12 ·107

L L H H 3.00 ·107

L H L L 1.48 ·107

L H L H 1.95 ·107

L H H L 1.22 ·107

L H H H 1.29 ·107

H L L L 1.52 ·107

H L L H 2.43 ·107

H L L H 2.44 ·107

H L H L 9.72 ·106

H H L L 1.63 ·107

H H L H 2.29 ·107

H H H L 1.77 ·107

H H H H 2.12 ·107

second and fourth rules hold. In the interpretation process, additional techniques for
simplification of fuzzy inference systems can be of considerable help. For this, the
simplification methods included in the Xfuzzy environment, where the xftsp tool is
integrated, can be used. For instance, if the system is pruned in order to keep the
six best rules, a system with an MSE only 2.03% higher than that of the original
system is obtained. In particular, the first, second, third, eight, 11th and 15th rules
are selected.

The results shown above have been obtained using the fuzzy systems identifi-
cation and tuning methods described in previous sections. Nonetheless, the same
methodology can be applied using alternative identification methods, such as the
subtractive clustering based method proposed in [26]. Obviously, different system
structures are obtained depending on the identification method applied. Besides dif-
ferences in prediction performance, the number of rules identified as well as their
form can vary significantly. For instance, in the example discussed above for the
AMPATH-OC12-200701-0, the cited subtractive clustering based alternative attains
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a MSE 4.6% higher than that of the method used above, while 12 linguistic terms
are identified for every input and the rulebase consists of 12 rules.

It is sometimes argued that a large number of models have been applied to net-
work traffic yet these models provide little insight into traffic dynamics. In this con-
text, black-box models that are purely descriptive in a numerical sense and provide
no insight and physical understanding are of little value. However, we have ad-
dressed issues that have not been dealt with to date: long-term prediction at differ-
ent time scales and predictability from a nonparametric viewpoint. In addition, the
fuzzy models developed here emphasize interpretability in a linguistic sense, thus
providing a novel technique that can provide readily interpretable insights on how
network traffic evolves.

On a related subject, we should note that the analysis performed here has fol-
lowed an essentially black-box, or blind approach in that no specific exploratory
data analysis has preceded the application of prediction algorithms. This has made
it possible to analyze a large collection of heterogeneous traffic traces. However,
experience shows that an initial exploratory data analysis stage tailored to each time
series can improve results significantly [39, 11].

It is worth to mention that traffic time series at scales of days, weeks and above
have been shown to be predictable in practice to a considerable extent. This pro-
vides evidence of the practical applicability of current prediction techniques to net-
work operation and planning, confirming previous work on non-disclosed measure-
ments [28], as well as the accepted common sense that certain daily, weekly and
yearly patterns observed in many networks should be predictable. However, series at
lower time scales have been found to be essentially unpredictable with very few ex-
ceptions. In fact, only coarse predictions are possible even for short-term. This fact
poses a challenge on the development of prediction based traffic control schemes.

As final remark, a future research venue would be an extended analysis of traffic
load series for higher dimensional models, which would entail developing accurate
nonlinear models for very high dimensional problems. This, in turn, involves novel
developments in a number of fields related to time series prediction that may be
useful to better exploit the long-range dependencies commonly found in network
traffic load series.

3.6 Conclusions

A predictability analysis has been conducted for network traffic traces using DT.
Results showed that the degree of predictability is satisfactory for a number of appli-
cations and that the proposed fuzzy regressive models can approach the theoretical
predictability boundary to a high degree under most conditions.

While for some scenarios and time scales prediction is only possible on a very
short-term basis and to a limited extent, in some other scenarios and time scales it
is possible to achieve fairly accurate predictions for both short- and medium-term.
This results have important practical implications for a number of applications, such
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as prediction based traffic control strategies as well as design of network protocols.
Fuzzy regressive models were shown to outperform LS-SVM, OP-ELM and some
statistical autoregressive models in terms of accuracy and generalization.
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Chapter 4
Summarization and Analysis of Network Traffic
Flow Records

Abstract. Current network measurement systems are becoming highly sophisti-
cated, producing huge amounts of convoluted measurement data and statistics. As
a very common case, those networks implementing statistics reporting based on
the NetFlow [15] technology can generate several GBs of data on a daily basis. In
addition, these measurements are often very hard to interpret. In this chapter we de-
scribe a method that provides linguistic summaries of network traffic measurements
as well as a procedure for finding hidden facts in the form of linguistic association
rules. Thus, here we address an association rules mining problem. The method is
suitable for summarization and analysis of network measurements at the flow level.
As a first step, fuzzy linguistic summaries are applied to analyze and extract concise
and human consistent summaries from NetFlow collections. Then, a procedure for
mining hidden facts in network flow measurements in the form of fuzzy associa-
tion rules is developed. The method is applied to a wide set of heterogeneous flow
measurements, and is shown to be of practical application to network operation and
traffic engineering [6, 5], where it can help solve a number of current issues.

4.1 Network Traffic Measurement Systems

As described in section 1, network performance measurement and monitoring are
key for both network users and practitioners. The past years have seen a great deal
of development in network measurement infrastructures and systems [19, 7, 12,
44]. Currently, the dominant approach to network measurement and monitoring is
based on the passive measurement of traffic flows using the NetFlow technology [15,
28]. With an increasing diversity of technologies, applications and traffic patterns,
the analysis of network traffic flows is becoming more and more complex. A full
understanding of all the relevant facts is now far beyond the practical possibilities
of network operators, managers and planners.

As the tasks of network operation and management become more and more com-
plex, network measurement systems are being further developed. Current network
measurement systems are becoming highly sophisticated and produce huge amounts
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of measurement data that have to be presented in the form of reports and statistics.
These can be very hard to interpret. In particular, those networks implementing the
NetFlow [15] technology can generate several GBs of data on a daily basis even
though sampling techniques are used in order to reduce the amount of data gener-
ated. High-precision network measurement in current backbones implies the gener-
ation of tens of GBs of data per hour.

The major objective of network measurement systems is to provide an
understanding of how networks perform. However, the gap between network mea-
surement systems and users’s comprehension is increasing. There are many visu-
alization tools for network measurements (see [17] for an extensive list) which are
mostly based on plots and charts to evaluate statistical properties of time series,
scaling properties and protocol behavior [43]. The visualization and reporting tools
employed nowadays provide reports made of tens of plots, graphs and tables. Thus,
it is not easy for experts to extract simple summaries. Additionally, the complexity
of tools for flow reporting and monitoring is holding back the adoption of these by
end users.

Although there exist a number of tools that generate short summaries of network
statistics, such as the analysis tools provided by router vendors and the popular
flow-report tool, included in the flow-tools suite [24], it can be argued that human
readability is achieved only at a very basic level. Also, complex relations underly-
ing these statistics are missed and require a great deal of research to be unveiled.
Complementary visualization tools are required to understand these reports. Ad-
ditionally, a significant degree of expertise in statistical techniques is required to
interpret the descriptors usually available.

Furthermore, flow based measurement systems are often used for real-time mon-
itoring and operation tasks in general. Because of the large amounts of data that
flow based measurement systems have to process in current high speed networks,
real-time analysis requires fast, often simplified, methods and optimized implemen-
tations. This has motivated the development of specific hardware for packet classi-
fication and flow monitoring [51].

Many methods for analyzing Internet measurement data have been developed
throughout the years. For example, some techniques common in the data mining
field, such as Principal Component Analysis, PCA, have been applied to analyzing
traffic flows from a structural viewpoint [34]. However, most of these techniques
are quantitative, suited for specific data types, and designed for a particular purpose.
There is a lack of general-purpose tools for qualitative exploration and analysis of
Internet measurements, which is a first step needed for hypothesis-driven discovery,
analysis and validation [45].

Our approach here departs from these ideas, as we seek to obtain a linguistic
summarization that extracts all the relevant information that can be expressed in a
human-readable manner. In this context, it is becoming more and more necessary to
extract concise summaries that should be several orders of magnitude smaller than
the original measurement dataset and should express how the network performs in
ideally no more than a few lines of human-readable text [23].
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We address the problem of summarizing network measurements into brief reports
and making them human-readable by means of fuzzy linguistic summaries [38].

Linguistic summaries via fuzzy logic have been shown to be a simple, efficient
and human consistent data mining means. This technique can be used as a natural
language based knowledge discovery tool. The idea behind linguistic summaries
is to use linguistic, natural language, terms to express information and knowledge
that are hidden in a potentially large collection of objects. Linguistic summaries as
introduced by Yager [47, 49] and further developed by Kacprzyk and Yager [29] and
Kacprzyk and Zadrożny [31], are linguistically quantified propositions (as “Most
traffic flows have an average packet size small”) with a degree of truth. This type
of fuzzy linguistic summaries is specially generic and fast to implement, two key
properties for analyzing flow collections.

Some other approaches to the linguistic summarization of data based on fuzzy
logic have been proposed. For instance, the method in [41] is based on clustering
techniques in order to build a hierarchy of summaries while the proposal in [42]
focuses on fuzzy and gradual functional dependencies. An alternative approach not
considered here would have been to use Dempster-Shafer theory of evidence in or-
der to extract rules [4]. The belief and plausibility functions can be used to define
the degree of support for a proposition [11]. Thus, they can be used to perform an
inductive rule extraction process based on the mass allocations for various proposi-
tions. In addition, belief and plausibility can be seen as pessimistic and optimistic
measures of the strength of a rule [50].

Section 4.2 outlines network statistics based on the NetFlow technology. Sec-
tion 4.3 defines linguistic summaries as applied in this work. Section 4.4 defines
linguistic summaries of network flow collections and describes two complemen-
tary ways of implementing them. Section 4.5.3 shows experimental results for a set
of benchmark NetFlow collections. Finally, we discuss the results and conclude in
sections 4.5.7.

4.2 Flow Measurement and Statistics: NetFlow and IPFIX

Most network operations centers currently collect statistics on the performance of
their infrastructure. These statistics are mainly based on the concept of flow, defined
as a unidirectional sequence of packets between given source and destination end-
points.

NetFlow [15], introduced by Cisco Systems in 1996 as a technology for route
caching, is nowadays a de facto standard for passive measurement and monitoring
in the Internet. NetFlow based measurement is used for performance analysis, appli-
cation and user monitoring, traffic engineering, capacity planning, billing, peering
agreement and security applications.

From the viewpoint of a router, a flow is made of a sequence of IP packets sharing
the same values for a set of properties within a time interval: source and destination
IP address, source and destination transport level port, transport (layer 3) protocol
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type, type of service and incoming interface (see figure 4.1). Thus, a flow in the
sense of NetFlow is unidirectional and is defined by a 7-tuple of values. In Internet
routers, these 7 values made up the key field for the cache of flows. NetFlow records
include flow properties at the link, network (IP) and transport layers, i.e., no specific
information from the application layer is included.

When new flows are detected by a NetFlow capable router, a mapping between
the flow and an outgoing interface is saved in memory. This way, next packets be-
longing to identified flows will not require to check routing tables, thus saving time
and processing load.

This capability to identify flows can be applied to measure and characterize traffic
traversing a router in real-time. Proper aggregation and summarization techniques
allow for analyzing network performance.

Fig. 4.1 Scheme of layers of information contained in NetFlow traces

The flow identifiers and some of the basic attributes considered in the most ex-
tended versions of NetFlow (version 5) are listed in Table 4.1. Additional attributes
are available as extensions introduced in versions 6, 7, 8 and 9. Derived attributes
are also defined from the measured attributes, such as the throughput or transfer rate
(bytes/duration). Upon expiry of a flow, its statistics are accumulated and they are
reported to a collector using the NetFlow protocol.

In order to standardize the NetFlow technology, the IP Flow Information Export
(IPFIX) working group of the Internet Engineering Task Force (IETF) [16] is defin-
ing the IPFIX standard for reporting information about established flows in TCP/IP
based connections. This standard is based on the NetFlow version 9 implementation
and, being supported by a large number of vendors, is expected to be the industry
standard for flow monitoring in the near future. Flows are defined as sequences of IP
packets that traverse a measurement point in a period of time. IPFIX also defines the
procedures required for exporting reports and processing them in devices outside of
the network under analysis.

The IPFIX standard only differs from NetFlow in terminology and minor details
as well as improvements to the flow transfer protocol but keeps the same principles,
architecture, applicability and information model as NetFlow version 9.
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Table 4.1 Flow identifiers and some of the attributes defined in NetFlow versions 5 and later

Attribute Description

Source IP IP layer address of sender

Destination IP IP layer address of receiver

Packet count Amount of packets transmitted

Byte count Amount of bytes transmitted

Start time Arrival time of first packet

End time Arrival time of last packet

Input ifIndex Index of input/source interface

Output ifIndex Index of output/destination interface

Type of service IP header TOS field (Differentiated Services Code Point)

TCP Flags Logical conjunction of activated flags

Protocol Protocol code in the IP header

Next hop address IP address of next router or host

Source AS number Code of the source Autonomous System

Destination AS number Code of the destination Autonomous System

Duration Time the flow was active

Currently, the information and statistics reported by basic collector tools summa-
rize flow collections in the form of aggregation of counters and statistical descriptors
such as percentiles. In essence, the reports generated by tools commonly used, such
as flow-report [24], softflowd [3], ntop [21] and FlowScan [39], are summaries that
specify simple descriptors of NetFlow attributes: minimum, maximum, average and
total counters for bytes and packets on an aggregate or per-protocol basis. Analysis
and visualization of flow collections is an active area of research [17] and many
visualization techniques have been developed, particularly for topology analysis.

Results from analyses of NetFlow records are usually presented through cumu-
lative distribution function plots and various graphs about the distribution of sizes,
durations, distribution per transport protocol, subnetworks, protocol numbers, appli-
cation, etc. However, the general summarization capabilities of available tools do not
go beyond basic statistic descriptors, reports of top users and tables and plots of distri-
bution functions, as for example the automatically generated Internet2 weekly reports
[44] available online from http://netflow.internet2.edu/weekly/.

These tools are usually based on simple principles of descriptive statistics and
provide relevant reports. However, the reports can easily become human unreadable
because of the huge amount of tables and graphs generated. Techniques and tools
for extracting short yet meaningful reports are sought.

Simple aggregation capabilities have been introduced with recent versions
of NetFlow (version 9 onwards) as a simple method for summarization of flow
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collections. It is possible for instance to request from a router flow records aggre-
gated by autonomous system. This novel capability has been introduced as a re-
sponse to the need of summarization mechanisms for preprocessing flow collec-
tions. This need is motivated by two major factors: reducing the amount of data
collected, and improving the understanding of measurement data. Although these
methods are powerful and reveal a great deal of useful information about how net-
works perform, the whole amount of available measurement data and most complex
relations underlying them are still difficult to understand.

Recent versions of NetFlow also integrate sampling capabilities [14]. With Net-
Flow sampling, only a percentage of traffic is accounted for measurement purposes.
Most current monitoring systems and infrastructures are based in flow data exported
from routers. In order to prevent overloading routers in terms of NPU usage, mem-
ory and record look-up time, a sampling of packets is performed typically on the 1-
10% of the total traffic, while 90-99% of packets are not accounted for performance
measurement purposes [22]. Then, flow statistics are computed from the collected
sampled packet statistics. Thus, packet sampling is an inherently lossy process that
discards information. As a consequence, some flow statistics are affected by uncer-
tainty. Usually, sampling is performed by a simple deterministic process of choosing
1 packet every certain number of packets on a per-interface basis. For instance, in
the Cisco Sampled NetFlow scheme, one packet is randomly chosen within every
window of N consecutive arrivals. These sampling capabilities are extensively used
in current measurement infrastructures.

4.3 Linguistic Summaries

Linguistic summaries as proposed by Yager [47] are a data mining technique for
summarizing data collections using linguistically quantified propositions [53], such
as “Most traffic flows are short lived”. In this work, we consider the extended defi-
nition by Kacprzyk and Zadrożny [31], that leverages on the concept of protoform
or prototypical form.

Linguistic summaries have a number of advantages when compared against clas-
sical statistical methods of summarization: they can summarize both numeric and
non-numeric data, can provide many different summaries for specific purposes and
have the ability to provide natural language summaries.

Linguistic summaries are obtained by means of a mining process performed on
a usually large set of entities, by which a natural language expression summarizes
essential facts about the set. In the sense of Yager [47, 49], a linguistic summary is
defined as follows. Given:

• D = {d1, . . . ,dN}, a set of entities that manifest some attributes, e.g., a set of
traffic flows in a NetFlow collection.

• A = {A1, . . . ,AM} a set of attributes defined over the entities in the set D , e.g.,
the set of attributes in a NetFlow collection, such as packet count, destination
address, starting time, etc.
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A basic linguistic summary is made of:

• A summarizer, S , defined as a linguistic expression (or predicate) semantically
represented by a fuzzy set, i.e., “short lived”.

• A quantity in agreement or quantifier, Q, defined as a linguistic quantifier that
indicates the extent to which the entities satisfy the summary, e.g., “most”.

• A measure of validity or quality of the summary. The basic validity criterion is
the truth value of the summary, T , defined as a truth value of a linguistically
quantified statement. The truth value can be computed using a number of meth-
ods, in particular Zadeh’s fuzzy-logic-based calculus of linguistically quantified
propositions [53, 36] and Yager’s OWA operators [48, 36].

Fuzzy subsets are employed to represent the linguistic terms that specify a summa-
rization S and a quantifier Q [36, 37]. Thus, the truth value of both can be denoted
by their respective membership functions, μS (x) and μF (x), being its universe of
discourse that of one or more of the attributes in the set A .

A summary ({S , Q}) of a data set D with N elements from a measurement
space X is usually written in generic form as “Q d’s are S ”, i.e., Q flows are S, as
in the statement “most flows are long lived”:

{D ,{Q,S }}, readasQdi areS (4.1)

S is then a fuzzy subset of D and Q is a fuzzy set in the range [0,1]. For instance,
the membership function of the quantifier most can be defined as:

μQ(x) =

⎧⎨
⎩

1, forx ≥ 0.85
2x −0.7, for0.35 < x < 0.85

0, forx ≤ 0.35

Then T is a truth value in [0,1] that can be computed from a summary as in equa-
tion 4.1 applying Zadeh’s calculus:

T (D ,{Q,S }) = μQ

(
1
N

N

∑
i=1

μS (di)

)
,

where the term ∑N
i=1 μS (di) is the precise cardinality of the fuzzy set S (the sum-

marizer), defined as the sum of the membership degrees of the di values [53].
In this formulation the truth value is computed as a linguistic quantifier driven

aggregation. The truth value of fuzzy linguistically quantified propositions is just
a primary measure of validity or quality of summaries. Additional measures of the
goodness of a linguistic summary, in terms of degree of interest, non-triviality or
unexpectedness, are usually required in practice in order to select relevant sum-
maries [29].

It is straightforward to generalize the kind of summarizer in equation 4.1 to a
compound summarizer made of the conjunction of any number of linguistic expres-
sions about the attributes of the entities in D , as in “Most flows are long lived and
have an average packet size small and are high throughput”.
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Extended linguistic summaries can be defined by adding a qualifier, R, also a
subset of D , as “QR d’s are S ”, i.e., QR flows are S , as in the statement “most
flows at night are long lived”:

{D ,{Q,R,S }}, readas“QRd′sareS ′′ (4.2)

Summaries of this kind describe dependencies between specific values of particular
attributes. In the case of equation 4.2, the degree of truth of the summary can be
determined by Zadeh’s calculus as follows:

T (D ,{Q,R,S } = μQ

⎛
⎜⎜⎜⎝

N

∑
i=1

(μS (di)∧ μR(di))

N

∑
i=1

μR(di)

⎞
⎟⎟⎟⎠

Extended linguistic summaries can be interpreted as fuzzy if-then rules in which
the antecedent is R and the consequent S , stating that if Q entities (flows) satisfy
R then they satisfy S . This analogy will be exploited later on in order to define a
mining process for linguistic summaries.

Linguistic summaries, whether extended or not, can be compound as well, as in
“most high throughput flows are long lived and have a packet size medium”. In this
case, the universe of discourse of the summarizer is extended to that of a set of
attributes.

Thus, linguistic summaries as considered here are essentially linguistically qual-
ified propositions in the sense of Zadeh’s calculus [53].

Protoforms of linguistic summaries are defined as abstracted prototypes and may
form a hierarchy [54]. A classification of possible protoforms of linguistic sum-
maries is developed in [31]. For instance, replacing Q with a concrete quantifier
Most in equation 4.1, we obtain a particular kind of protoform: “Most flows are S .

Another kind of protoform can be specified by fixing the attribute or attributes
of interest for S , as “Q flows are S Ac”, where Ac is the attribute of interest. For
instance, when one is interested in the duration of flows an appropriate protoform
can be defined by restricting the summarizer to the linguistic labels defined for the
duration attribute, “Q flows are S duration”, where S duration may take the form of
any of the linguistic variables defined for the attribute duration.

4.4 Definition of Linguistic Summaries of Network Flow
Collections

We propose two methods for the linguistic summarization of NetFlow collections.
Both are complementary to traditional methods of analysis and visualization of net-
work flow statistics. To this end, a set of linguistic variables for flow attributes as
well as a set of fuzzy quantifiers have to be defined.

In this context, the domain of discourse is the set of NetFlow attributes. Some
NetFlow attributes can be modeled with crisp values (such as protocol, destination
port and interface numbers), while some others are more properly modeled using
linguistic variables [52].
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In practice, a number of attributes are inherently crisp from our point of view.
Their inclusion in summarizers and qualifiers of linguistic summaries can thus be
modeled as filters that keep a subset of flows for certain crisp values or ranges of
crisp values. For example, if the user is interested in summaries regarding only TCP
flows, a first filtering step is carried out in order to account only those flows that
correspond to TCP connections. This way, the summary “Most TCP flows are long-
lived” differs from “Most flows are long-lived” in the set of flows to which they
apply. Both are equivalent as for its evaluation as quantified proposition. Crisp at-
tributes include the IP protocol field (IPv4, IPv6, ICMP, PIM, etc.), the transport
layer protocol (TCP, UDP, SCTP, etc.) and transport port (HTTPS, SMTP, SSH,
etc.), among others.

Two attributes, the input and output interface numbers, can be analyzed only
when a detailed knowledge of the local topology surrounding measurement point is
available. In principle, both attributes could be modeled as crisp attributes, though it
can make sense to model either or both as fuzzy values provided some type of fuzzy
classification of traffic flows according to the input/output interfaces is of interest. In
addition, the content of these attributes is usually meaningless in publicly available
traces. Thus, we exclude them from our analysis.

Two approaches are followed here in order to define linguistic labels for those
attributes that can be more properly modeled by fuzzy sets. First, linguistic labels
can be defined on the basis of a priori knowledge drawn from traditional analysis
tools and measurement studies found in the literature. As a second and more auto-
matic approach, unsupervised learning techniques such as clustering methods can
be applied on previously recorded NetFlow collections in order to automatically de-
fine linguistic labels from the clusters identified. In the next section, we will detail
linguistic summaries following the first approach. Identification of labels based on
clustering techniques will be described later. The procedure for both approaches is
depicted in figure 4.2.

Fig. 4.2 Procedure for extracting linguistic summaries of NetFlow collections. Summaries
can be generated using either a priori linguistic labels or labels identified by clustering
methods.
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A number of schemes have been proposed to define linguistic labels for a given
input space [25]. Some schemes partition the domain of the input variables into
regions. These include regular grids and more sophisticated methods for hierarchical
and local partitioning. Other schemes define labels from clustering procedures.

Our aim is to keep the maximum interpretability for both summarization ap-
proaches. Thus, we use a simple regular partitioning scheme. There is no accepted
formal definition of interpretability of a fuzzy system. Nonetheless, we will adhere
to a few simple principles accepted in the literature [13] in order to maximize in-
terpretability. For each flow attribute a partition of the input domain is defined such
that only triangular and trapezoidal membership functions are used for the sake of
simplicity and readability. The partitions are defined as standardized grids and are
irregular in general. These partitions are defined in such a way that the whole in-
put domain is covered, the degree of overlapping is limited to one, the number of
different labels for an attribute ranges between 2 and 4, and the sum of all the mem-
bership degrees for any given point of the input domain is 1, i.e., the partition is
standardized. This way, we maximize both completeness and distinguishability and
thus interpretability.

4.4.1 Defining Linguistic Labels from a Priori Knowledge

For the case of labels defined from a priori knowledge, we propose here a general
set of fuzzy sets using domain specific terminology as shown in table 4.2. In the
general approach followed, the input space in partitioned with as many labels as
relevant classes have been identified in measurement studies.

The dominant values, ranges and classes of elements in attributes of network
flows are most often identified by using statistical tools such as common distribution
functions (CDF) and histograms [34]. For instance, it is common to analyze the
mode and subsequent peaks in the histograms that can be visualized as sudden jumps
in the CDF plot.

Let us consider the duration of flows as a first example of definition of labels from
previous knowledge. Ideally three linguistic labels should be defined: very short,
short and long-lived. This would approximately reflect the classification of flows
lasting less than 2 seconds, between 2 and 15 minutes, and more than 15 minutes
than follows from some measurement studies [10, 9]. However, in practice most flow
measurement infrastructures impose a limit of 5 minutes on the duration of flows.
After 5 minutes, flows are expired in order to constrain memory consumption. Thus,
we define two linguistic terms for the duration attribute: short- and long-lived.

An invariant in traffic that has been well known for a long time (with implications
in router design is the distribution of packet sizes. For instance, one can consider
packets around 54 bytes long to be modeled by the label small, as this represents the
class of TCP ACK packets with little or not payload, which often account for a sig-
nificant percentage of the total amount of packets. This way, the small label accounts
for ACK packets, DNS queries, or ARP packets. Following on the same approach,
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packets around 1500 bytes long can be considered large, as this is the approximate
value of the currently prevailing MTU in most networks1. For packet sizes between
the small and large classes, an additional medium class can be considered. Finally,
packets with sizes higher than 1500 can be classified into the jumbo class, account-
ing for jumbo frames, whose state of deployment currently varies greatly depending
on the network.

This is in fact a classification very similar to the one used for generating the
Internet2 NetFlow weekly reports [44], where 4 different size ranges are used: small
(less than 100 bytes), medium (between 100 and 1400 bytes), large (between 1401
and 1500 bytes) and jumbo (above 1500 bytes).

For the bytes count attribute, mice, bulk and elephants are terms usually em-
ployed in the Internet measurement literature to refer to recurrent types of traffic
flows with regards to its place in flow size distributions [9, 44, 10]. As for the pack-
ets count attribute, three labels are defined in an analogous manner to the flow bytes
count (or size) attribute: pkt-mice, pkt-bulk and pkt-elephant.

Derived metrics are also considered, as is the case of throughput, defined from the
flow attributes as the ratio bytes/duration. Three labels for the throughput attribute
are defined: low, medium and high [44, 10].

The linguistic labels for the average packet size attribute is shown in figure 4.3(b).
This is an attribute that can be expected to exhibit a clear increasing evolution with
time, as well as show different values for different networks depending on the over-
all bandwidth capacity. Based on measurement studies, we have defined three labels:
low, medium and high [10].

The start and end time attributes have specially to do with daily usage patterns.
The definition of linguistic labels that reflect these patterns would in general require
a specialized analysis. For the sake of generality and simplicity, we define two la-
bels: day and night (figure 4.3(f)). Note that more refined terms could be consider
in order to integrate additional knowledge, such as distinguishing between morning
and afternoon traffic patterns.

Table 4.2 Linguistic Labels for Some Flow Attributes

Attribute Linguistic Labels

Duration Short-lived, Long-lived

Average packet size Small, Medium, Large, Jumbo

Bytes Mice, Bulk, Elephants

Throughput Low, Medium, High

Packets Packet-Mouse, Packet-Bulk, Packet-elephant

Time (start, end) Day, Night

1 We note the definition of link MTU as the IP MTU over a link uniformly found in IETF
documents is considered here. Thus, the IP header is included in the MTU size but link
layer headers and other framing which is not part of IP or the IP payload are excluded.
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(a) Duration (b) Average packet size

(c) Throughput (d) Byte count

(e) Packet count (f) Start Time

Fig. 4.3 A priori linguistic labels for network flow attributes

4.4.2 Automatic Definition of Linguistic Labels by Unsupervised
Learning

We adopt a simple scheme for defining standardized grid partitions that guarantees
completeness and provides distinguishability. Values identified as cluster centers are
used as vertices of the trapezoidal membership functions. Since a hard constrain of
completeness of the partitions of the input domain has been imposed, we have that
for each trapezoidal membership function with vertices ai, bi and ci:

Ai(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if x ≤ ai
x−ai
bi−ai

, if ai < x < bi

1, if bi ≤ x ≤ ci
x−ci
bi−ci

, if ci < x < di

0, if x ≥ di

,

where ai < bi < ci < di. Any partition is complete if the following equalities:
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ai+1 = ci, bi+1 = di

hold for all the sets in the partition, where Ai and Ai+1 are two neighbor fuzzy sets.

4.4.3 Quantifiers

The following sequence of quantifiers has been defined: very few, few, about 1/3,
about 1/2 about 2/3, most and almost all. The quantifiers very few, few, most and
almost all denote different degrees of disparity [9] in the distribution of some prop-
erty and are specially meant to find disparity conditions. Similar quantifiers have
been extensively used in other application domains [32]. Here we emphasize the
usefulness of the Very few and Almost all for discovering cases of disparity.

4.5 Summarization of NetFlow Collections

Once fuzzy quantifiers, qualifiers and summarizers are defined, linguistic summaries
for flow collections can be computed. When looking for the summaries that best
describe flow collections, two approaches can be considered: 1) the summarizer,
the qualifier and the quantifier are given by the user, and 2) the three fuzzy sets
corresponding to the quantifier, summarizer and qualifier are not fixed a priori and
thus any possible combination must be taken into consideration. On the one hand,
a tool that implements case 1) would be of little value for users. On the other hand,
an implementation of case 2) is extremely computationally intensive, as it would
require the exploration of an unlimited number of possible combinations. This is
thus not suitable for fast on-line summarization. However, applying the concept of
protoforms [54], intermediate cases can be defined in between. In what follows, we
will describe two approaches: fast, on-line summarization for real-time monitoring,
and off-line mining of linguistic summaries.

4.5.1 On-Line Summarization of NetFlow Collections

A first way of implementing linguistic summaries of NetFlow collections is applied
to on-line monitoring and generation of short reports. Since only one-pass proce-
dures with no significant memory requirements are needed to compute linguistic
summaries, a bounded set of summaries can be generated in real-time.

For on-line summarization, a set of protoforms identified as conditions of interest
are evaluated. Additionally, specific summaries specified as options to the tool can
be evaluated as well.

In order to select a set of relevant protoforms our proposal combines ideas from
reports found in traditional flow analysis and visualization tools, in particular from
Internet2 NetFlow weekly reports [44]. The basic set of protoforms considered for
automatic on-line reports is shown in table 4.3. Additional optional summaries have
been defined for control, multicast and routing traffic.

The first six protoforms can be thought of as a linguistic packet classifier. As a
case of particular interest, the distribution of packet sizes is a key factor for router
performance, as detailed in chapter 6. In the last summary line considered, a general-
ization of common filtering methods is achieved with the fuzzy bulk TCP constraint
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Table 4.3 Basic protoforms for on-line linguistic summaries of NetFlow collections

Concept Summarizer (S ) Qualifier (R) Example

Duration distri-
bution

Aduration - “Few flows are long-lived”

Throughput
distribution

Athroughput - “Very few flows are high
throughput”

Transfer size
distribution

Abytes - “About 1/3 flows are bulk”

Average packet
size distribu-
tion

Apacketsize - “Few flows have avgerage
packet size medium”

Packets per
flow distribu-
tion

Apackets - “Almost all flows are pkt-bulk”

Throughput
distribution
qualified by
transfer size

Athroughput Abytes “About 2/3 elephant flows are
low throughput”

Bulk TCP
transfer dura-
tion distribu-
tion

Aduration TCP crisp filter and
fuzzy qualifier bulk on
Abytes

“Most Bulk TCP flows are short
lived”

For instance, in the Internet2 NetFlow weekly reports [27], TCP flows that transfer
more than 10 MB of data are considered bulk TCP flows. In the case of the linguistic
summaries presented here, TCP flows that transfer a lower volume of data are also
partially accounted, and flows transferring more than 200 MB are excluded from the
bulk class (see figure 4.3(d)).

In principle, the aggregation of flow collections can be done every 5 minutes,
daily, weekly, monthly, etc. However, as pointed out by the authors of the Internet2
weekly reports [27], an aggregation period lower than a week (or a day) tends to
show too much statistical volatility. This makes reports generated from flow col-
lections taken on short periods useful for operation purposes but probably not for
capturing stable long-term trends.

Regarding the last summary line, it should be recognized that common NetFlow
collection mechanisms are always configured so that flows cannot last longer than
a certain maximum period of time. Thus, the distribution of transfer sizes is to a
certain extent skewed in the upper part.

The set of protoforms shown in table 4.3 has been defined with the aim to provide
a reduced set of summaries to be shown. Their interpretation and possible usefulness
is left to the user. Thus, a set that is not too large but not too small is provided for
fast interpretation. This is usually regarded as an important factor to guarantee user’s
autonomy [31].
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Also, it should be noted that all the summarizers defined in the on-line set consist
of a single fuzzy set. Although more complex summarizers would be more informa-
tive about particular aspects, simple summarizers have been chosen for two reasons.
First, long summarizers are less readable for users. Second, the aim of the on-line
summaries is to spot overall properties of flow collections, which would be obscured
by more specific summarizers.

Concrete examples for a number of NetFlow collections will be presented
below. As mentioned above, the method proposed is complementary to a large
number of summarization and visualization tools that are currently used to ana-
lyze NetFlow collections. Let us compare the output of the flow-lsummary tool
against that of widespread summarization tools. Since the first developments on
passive measurements, tools for reducing data and providing summaries of traf-
fic traces have been available. The tcp-reduce and tcp-summary (available from
http://ita.ee.lbl.gov/html/contrib/tcp-reduce.html) were
some of the first to be introduced. At the time, the NetFlow technology was not
still deployed in general. The first produces a summary of one liner per TCP con-
nection (or flow) from a packet level trace, whereas the second produces a table
with one row per TCP protocol (or port number). The kind of table generated by the
second tool is commonly used in current network analysis and monitoring tools.

In current NetFlow analysis tools, besides graphical representations of the distri-
bution of several parameters, it is for instance common to find statistical summaries
such as the two examples showed below. For a fragment of the Internet2-LOSA-
May08 collection, described below, the softflowd [3] tool can generates a text sum-
mary as the following:

E x p i r e d f low s t a t i s t i c s : minimum a v e r a g e maximum
Flow b y t e s : 1 1150861 3570584485
Flow p a c k e t s : 1 35 102735
D u r a t i o n : 0 . 0 0 s 23 .88 s 831 .46 s

E x p i r e d f low r e a s o n s :
t c p = 0 t c p . r s t = 0 t c p . f i n = 0
udp = 0 icmp = 0 g e n e r a l = 0

m a x l i f e = 0
ove r 2Gb = 68
maxflows = 302486

f l u s h e d = 8259

Per−p r o t o c o l s t a t i s t i c s : O c t e t s P a c k e t s Avg L i f e Max L i f e
icmp ( 1 ) : 464764825 31430 3 . 2 4 s 256 .11 s
igmp ( 2 ) : 326656 34 146 .87 s 557 .75 s

i p e n c a p ( 4 ) : 2184962 128 320 .92 s 669 .15 s
t c p ( 6 ) : 221304920583 7059112 76 . 00 s 831 .46 s

udp ( 1 7 ) : 18858197645 965373 18 . 59 s 300 .30 s
ipv6 ( 4 1 ) : 11180042 475 188 .39 s 715 .19 s

g r e ( 4 7 ) : 28080399 1100 231 .88 s 324 .65 s
esp ( 5 0 ) : 116930666347 2818043 60 . 66 s 254 .71 s

Unknown ( 5 4 ) : 87040 5 0 . 0 0 s 0 . 0 0 s
ax . 2 5 ( 9 3 ) : 26880 1 0 . 0 0 s 0 . 0 0 s

pim ( 1 0 3 ) : 6730317 447 618 .79 s 763 .73 s
Unknown ( 1 6 9 ) : 95348736 5173 547 .54 s 796 .29
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A related report, as provided by the flow-report [24] tool reads as follows:

I g n o r e s : 0
T o t a l Flows : 53588313
T o t a l O c t e t s : 222703590422
T o t a l P a c k e t s : 273750307
T o t a l D u r a t i o n ( ms ) : 327873242594
Rea l Time : 1207094398
Average Flow Time : 6118 .000000
Average P a c k e t s / Second : 813 .000000
Average Flows / Second : 4155 .000000
Average P a c k e t s / Flow : 5 .000000
Flows / Second : 23 .554512
Flows / Second ( r e a l ) : 0 .044394

Average IP p a c k e t s i z e d i s t r i b u t i o n :

1−32 64 96 128 160 192 224 256 288 320 352 384 416 448 480
. 0 0 4 . 4 8 2 . 0 7 1 . 0 3 4 . 0 2 4 . 0 1 2 . 0 1 2 . 0 0 9 . 0 0 9 . 0 1 2 . 0 0 9 . 0 0 6 . 0 0 7 . 0 0 4 . 0 0 5

512 544 576 1024 1536 2048 2560 3072 3584 4096 4608
. 0 0 4 . 0 0 5 . 0 0 9 . 0 5 2 . 2 3 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0

P a c k e t s p e r f low d i s t r i b u t i o n :

1 2 4 8 12 16 20 24 28 32 36 40 44 48 52
. 7 3 8 . 0 9 8 . 0 6 5 . 0 4 2 . 0 1 7 . 0 0 9 . 0 0 6 . 0 0 4 . 0 0 3 . 0 0 2 . 0 0 2 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1

60 100 200 300 400 500 600 700 800 900 >900
. 0 0 1 . 0 0 5 . 0 0 4 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0

O c t e t s p e r f low d i s t r i b u t i o n :

32 64 128 256 512 1280 2048 2816 3584 4352 5120 5888 6656 7424 8192
. 0 0 4 . 3 8 3 . 1 3 2 . 0 8 1 . 0 6 9 . 0 7 7 . 1 3 2 . 0 1 1 . 0 3 2 . 0 0 9 . 0 1 1 . 0 0 6 . 0 0 6 . 0 0 3 . 0 0 4

8960 9728 10496 11264 12032 12800 13568 14336 15104 15872 >15872
. 0 0 2 . 0 0 3 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 1 . 0 0 2 . 0 0 1 . 0 0 1 . 0 0 1 . 0 2 4

Flow Time D i s t r i b u t i o n ( ms ) :

10 50 100 200 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
. 7 4 3 . 0 0 2 . 0 0 4 . 0 0 7 . 0 1 3 . 0 1 2 . 0 1 3 . 0 0 9 . 0 0 7 . 0 0 6 . 0 0 6 . 0 0 5 . 0 0 4 . 0 0 4 . 0 0 4

12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 >30000
. 0 0 7 . 0 0 7 . 0 0 7 . 0 0 6 . 0 0 6 . 0 0 6 . 0 0 5 . 0 0 6 . 0 0 5 . 0 0 5 . 1 0 0

The so-called top-10 talkers reports are also frequently used by the networking
community, which reflects the importance of disparity in several distributions con-
cerning network traffic. In these reports, global counters are shown for the flows
coming from the 10 addresses that generated the most traffic for a given period of
time.

It should be noted that some authors argue that an interaction with users has to
be assumed for the determination of a class of summaries of interest [31]. This is
because it does not seem feasible to perform a fully automatic generation of lin-
guistic summaries. However, in this particular application case, we have defined a
consistent and small set of relevant summaries for the on-line summarization pro-
cedure by following a number of previous results on the analysis and description of
flow collections. With the set in table 4.3 we aim at covering most generic monitor-
ing and concise reporting tasks. Nonetheless, the tool implemented, flow-lsummary,
described later on, allows for the inclusion of different protoforms in the set of
summaries for on-line summarization. This makes it possible to tailor the on-line
procedure to specific requirements.
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In previous sections, we have described methods for computing the degree of
truth of a fuzzy linguistic summary. Let us now describe additional measures of the
quality or informativeness of linguistic summaries in the context of on-line sum-
maries for NetFlow collections. Since linguistic summaries were introduced it has
been recognized that the degree of truth is not necessarily a measure of informa-
tiveness [47]. That is, the summary with the highest degree of truth may not be
significantly informative or even not informative at all.

In a sense, the most informative description of a dataset is the dataset itself. Any
summary entails some loss of information. The question is thus to what extent a
particular linguistic summary is informative.

In order to overcome this limitation, a number of metrics of quality and informa-
tiveness (or the amount of information provided) of linguistic summaries have been
proposed [49, 29, 31]. Also, it has been proposed the use of a weighted combination
of different metrics.

In what follows we will describe 3 additional metrics: confidence, preciseness
and appropriateness The confidence of a linguistic summary (called covering in [31]),
indicates to which extent the summary holds for the whole set of entities in the data
set. That is, the confidence indicates the percentage of entities in the data set that are
consistent with the summary, i.e., the the percentage of entities for which the sum-
marizer holds when the qualifier holds. The confidence, Tc, of an extended fuzzy
linguistic summary is defined as follows:

Tc(D ,{R,S }) = ∑N
i ci

∑N
i si

,

where

ci =
{

1, if μ∫ (di) > 0 and μR(di) > 0
0, otherwise

s j =
{

1, if μR(di)
0, otherwise

In the case of non-extended summaries, i.e., summaries without qualifiers, s j =
1, i = 1, . . . ,N and ci is defined as follows:

ci =
{

1, if μS (di) > 0
0, otherwise

However, the confidence metric may lead to discarding extreme infrequent facts
when applied to summaries with no qualifier. In our case, we are particularly inter-
ested in some facts of this kind. An example would be the summaries “Q flows are
elephants”. One would expect these summaries to hold for a small or even extremely
small percentage of flows; however, knowing the presence of these flows is desir-
able, i.e., when a summary like “Very few flows are elephants” has a high degree of
truth it may be the most interesting summary for its protoform in spite of its (likely)
low confidence. For this reason, the confidence metric has to be used with care.
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In fact, when analyzing network flows, summaries about a small percentage of the
flows may be highly informative as these few flows may be responsible for a large
amount of traffic load. For instance, in the WIDE-F-DITL-2007 flow collection,
described later on, the summary “Very few flows are high throughput” is selected
as the most relevant summary on the distribution of throughput. The confidence is
8.6 · 10−4, whereas the confidence for other summaries corresponding to the same
protoform is 0.97. This summary shows the presence of a long-tail in the throughput
distribution, and it is the fact about throughput that can be asserted with the highest
degree of truth2.

The preciseness (as opposed to the imprecision, non-specificity or fuzziness), Tp,
of a fuzzy linguistic summary with a summarizer S that consists of a set of fuzzy
sets R = S1, . . . ,SNS is defined as follows:

Tp(S ) = 1− NS

√√√√ NS

∏
i=1

in(Si),

with in(Si) defined as:

in(Si) =
card{x ∈ X j : μS j (x) > 0}

card Xj
,

where Xj is the universe of discourse for the fuzzy set S j. The in(S〉) indicate of
the degree of fuzziness of a summarizer. That is, the preciseness can be understood
as a metric opposed to fuzziness.

It is important to note that the degree of precision depends exclusively on the form
of the summary and not on the set of entities. That is, the precision of a summary
can be computed from the membership functions of the linguistic terms that define
the family of possible fuzzy sets in S .

However, the standard definition of preciseness does not necessarily makes sense
in all application cases since it assumes some kind of uniform distribution of seman-
tics over the universe of discourse. Consider for instance the byte count attribute. We
have defined three labels with very different values of in(Si). For a summary with
a summarizer defined on the byte count attribute, the three linguistic terms that can
apply to the attribute are equally precise from a conceptual viewpoint. For instance,
the preciseness, Tp, of “Q flows are elephants” is clearly much lower than that of
“Q flows are mice”. In contrast, both seem equally informative, as the range of byte
count values for the elephants term is naturally much wider.

The appropriateness is in a sense the most important metric of informativeness
for summaries with complex summarizers. If the summarizer of a summary consists
of a set of fuzzy sets, S = S1, . . . ,SNS , the appropriateness, Ta, of the summary is
defined as follows:

2 Or, more precisely, with the highest value for a combination of the degree of truth and the
preciseness of the quantifier, as will be detailed later on.
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Ta(D ,S ) =

∥∥∥∥∥Tc −
NS

∏
i=1

si

∥∥∥∥∥ ,

where

si =
∑N

i=1 ai

N
,

and

ai =
{

1, if μS (di) > 0
0, otherwise

That is, the appropriateness is computed with respect to the confidence. However
it is a measure that makes sense only when the summarizer consists of the conjunc-
tion of two or more linguistic terms. In such cases, the appropriateness is a highly
relevant metric. To illustrate the meaning of the appropriateness and its suitability
for analyzing flow collections, let us consider a simple example. Let S = S1,S2 be
the summarizer of a summary where S1 corresponds to Athroughput and S2 corre-
sponds to Aduration. Let us suppose that 80% of flows are medium throughput and
70% of flows are short lived. In this case, if the distributions of duration and through-
put were uniform, one would expect approximately 46% of flows to be short lived
and medium throughput. However, it is well known that this is not often the case in
real network [10, 9]. The appropriateness aims at measuring this kind of disparity.

Finally, some authors propose the length of a summary [31], measured in terms of
the number of sets in the summarizer of a summary, as an additional quality metric.
In particular, Kacprzyk et al. [31] propose the following measure of the length of a
summary, Tl :

Tl(S ) = 2
(

1
2

)NS

.

As in the case of the precision metric, the length of a summary depends exclusively
on the form of the summary and not on the set of entities. Note that this metric does
not make any difference for the set protoforms defined for on-line summarization,
as all these protoforms include only one fuzzy set in the summarizer.

A straightforward approach to measuring the quality of linguistic summaries is
to compute a weighted average of the different metrics described so far. In this case,
the final quality metric would be computed as a weighted average as follows:

I5(D ,R,S ) = I(T,Tc,Tp,Ta,Tl ;w,wc,wp,wa,wl) =

= wT + wcTc +wpTp +waTa +wlTl ,

where the weights assigned to each quality measure take values on the unit interval.
Finding the values of the weights, or more generally a good combination of informa-
tiveness and quality metrics is a complex problem. In general, this usually requires
the cooperation of users in an essentially heuristic process. Some authors propose
the use of processes and approaches well-known in the decision theory field [31].
This is however hardly feasible when the summarization process is intended to apply
to an essentially dynamic object rather than a particular database, as is the case for
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on-line summarization of NetFlow collections. Thus, we prefer to define a simple
combination of quality measures that is easy to understand for users.

As discussed before, the length and appropriateness measures do not apply to on-
line summarization of flow collections. The general applicability of the preciseness
measure is arguable as well, we thus prefer not to use it as defined above. Similarly,
the confidence metric is not used. In practice, a robust and fully automatic measure-
ment of interest should avoid favoring frequent facts to the detriment of extreme
events.

Instead, we define here an informativeness measure for linguistic summaries, I, as
a combination of the degree of truth and the preciseness of the quantifier or quantity
in agreement. The preciseness of the quantifier, defined as follows:

TpQ(Q) = 1− in(Q).

Both factors are considered in order to define a global measure of quality or infor-
mativeness about the summaries in the on-line set:

I(D ,{Q,R,S }) = 0.9T +0.1TpQ.

That is, a 10% weight is allocated to the preciseness of the quantifier. This way,
with the goal of emphasizing extreme events, we favor more precise quantifiers
to the detriment of the more fuzzy ones. For instance, TpQ(most) = 0.5, while
TpQ(almost all) = 0.85. TpQ plays the role of promoting, for a particular protoform,
the most precisely quantified summaries among all the summaries that have a degree
of truth close (around 10%) to the maximum.

Finally, it should be noted that alternative proposals of measures of quality of
linguistic summaries have been proposed. We have considered here those that have
minimum time and space computational complexity, i.e., those that have a time of
complexity O(n) and do not require storage of the set of entities. These measures can
thus be applied for both on-line and off-line summarization of NetFlow collections.

More sophisticated measures exist that can provide improved interpretability at
the expense of higher computational cost. In particular, recently Liétard [35] has
proposed a novel measure of validity of a linguistic summary that has a clear mean-
ing in terms of both quantity and quality. This measure is based on a set-oriented
function extended to fuzzy sets. The measure, Tqq, is a guaranteed minimum of both
the quantity and quality of summaries, i.e., Tqq can be interpreted as the highest per-
centage p such that at least p% of entities satisfy a summarizer at least to a degree
p. However, the computational cost of this approach is significantly higher.

Two passes over the whole set of entities (flows) are required to compute this
validity measure. In a first pass, the set of α values for the α-cuts to be used in the
second pass have to be defined. In order to define this set, all the minimum degrees
of membership for the summarizer are computed on a per-entity (per-flow) basis.
When the summarizer is made of two or more fuzzy sets, the minimum among any
of the respective membership degrees is selected for inclusion in the set of α values.
In the second pass, the α-cuts of every set in the summarizer have to be computed
for every entity (flow), for every value in the set of α values.
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As a consequence, computing Tqq requires storing the whole set of entities and
can have an algorithmic complexity close to quadratic. Thus, in principle it is not
suitable for real-time summarization of NetFlow collections and has a considerable
computational cost for off-line summarization of large sets such as common Net-
Flow collections.

4.5.2 Data Mining Summaries of NetFlow Collections

Only a part of the potential of linguistic summaries is exploited using a set of fixed
protoforms and protoforms specified a priori by the user. If only known facts are
considered when looking for informative summaries, more complex, unknown or
unexpected relations will are neglected. This issue can be addressed by means of
automated data mining techniques. In particular, hidden relations can be found in
the form of fuzzy summaries using unsupervised learning algorithms for mining
association rules [26].

Association rules are implications of the form X → Y . With association rules
mining algorithms, associations between fuzzy itemsets [20], NetFlow records in
our case, can be discovered, and, as proposed in [30], equivalent linguistic sum-
maries can be derived from association rules. From these rules, summaries as “X
flows are Y ” can be identified, where the qualifier R is the condition (X ) of the
rule and the summary S is the conclusion (Y ) of the rule.

Original association rules were defined for transactional data and binary valued
attributes. An association rule has the following form: A1 ∧ A2 ∧ . . . ∧ An → An+1,
and states that those items for which attributes {Ai}, i ∈ {1 . . .n} take value 1, will
also take value 1 for attribute An+1. An equivalence between linguistic summaries
and association rules can be considered if the summarizer and the qualifier are in-
terpreted as the consequent and the antecedent of an association rule respectively.
Then, the confidence of a rule can be interpreted as the combination of the linguistic
quantifier and the truth value of the rule.

Two basic measures of the quality of an association rule are usually applied: the
support and the confidence. Intuitively, the support is the percentage of itemsets in
the collection for which the antecedent of the association rule holds. More formally,
the support is defined as the percentage of the total number of itemsets supporting
the set of attributes {Ai}, i ∈ {1 . . .n} in the data collection. The confidence of a rule
can be intuitively thought of as the fraction of itemsets in the support of the associ-
ation rule for which the consequent holds as well. More formally, the confidence is
defined as the percentage of the itemsets supporting {Ai}, i ∈ {1 . . .n+1} among all
itemsets supporting {Ai}, i ∈ {1 . . .n}, i.e., the support of the set of all the itemsets
in the rule divided by the support of the antecedent of the rule.

The confidence can alternatively be thought of as the number of cases where
the rule is correct relative to the number of cases where it is applicable. While the
support is a measure of the statistical significance of a rule, the confidence is a
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measure of its strength. The most interesting rules are those with a high confidence
and a support higher than a minimal threshold, i.e., strong rules with a substantial
statistical significance.

Generalized association rules are redefined for fuzzy linguistic summaries mining
as follows:

A1 is f1 ∧ . . . ∧An is fn → An+1 is fn+1 ∧ . . . ∧ An+m is fn+m,

where fi are fuzzy linguistic variables and m is the number of fuzzy sets that make
up the rule consequent. A number of algorithms for association rules mining have
been proposed. For the implementation described in the next section, the Apriori
algorithm for fast discovery of association rules or frequent itemsets [2] introduced
in its initial form by Agrawal et al [1].

The Apriori algorithm follows a bottom-up approach and is applicable databases
containing transactions or collections of itemsets. The algorithm looks for subsets
that are common to a minimum confidence threshold. Then, frequent subsets are
extended one item at a time, generating candidates that are tested against the data
collection.

Apriori is a fast and scalable algorithm that has found applications in large scale
problems in a variety of fields. We note however that Apriori, while a well estab-
lished algorithm, suffers from a number of trade-offs and efficiency issues that have
to be taken into account when implementing the algorithm. These issues have given
rise to a number of modifications to the original proposal. For the work described in
the next sections, we used an optimized implementation by Borgelt [8].

4.5.3 Experimental Results

An experimental tool for generating NetFlow linguistic summaries with the two ap-
proaches described,flow-lsummary, has been implemented.flow-lsummary
is implemented in Perl, based on the Cflow library [40] and thus supporting both
cflowd and flow-tools raw flow file formats. The tool allows for the definition of
fuzzy linguistic variables and protoforms of interest for the on-line mode in a con-
figuration file. Both the on-line mode and the data mining mode can be executed on
NetFlow collections in the format of the widespread flow-tools [24] suite, as well as
in Cflowd, argus and ifapd format. IPv4, IPv6 and NetFlow versions 1, 5 and 9 are
supported.

We should note that linguistic summaries are not only more concise but also very
fast to generate, which is an additional advantage against traditional tools. Thus, when
software tools are used, only those that are fast one-pass such as flow-report or flow-
lsummary are convenient for real-time monitoring. An alternative option is to apply
VLSI technologies to develop hardware implementations of the performance-critical
tasks of packet classification and flow monitoring into reconfigurable hardware [51]
that can boost the processing capability of a flow measurement and monitoring system
by more than 2 orders of magnitude.
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Table 4.4 Overall counters of the NetFlow collections analyzed

Name Duration Flows Packets Bytes

Darmouth-Fall03 15 days 5.05 ·106 27.5 ·106 16.8 ·109

WIDE-F-1-Aug 15 min. 2.84 ·106 21.8 ·106 15.3 ·109

WIDE-F-DITL-2007 50.25 hours 3.99 ·108 2.69 ·109 1.77 ·1012

WIDE-F-DITL-2008 72.25 hours 7.41 ·108 4.15 ·109 2.44 ·1012

AMPATH-OC12-0-2007 50 hours 1.76 ·107 4.65 ·108 3.05 ·1013

AMPATH-OC12-1-2007 50 hours 1.52 ·107 3.91 ·108 2.54 ·1013

Equinix-Chicago-DITL-2008 63 min. 7.33 ·108 1.75 ·109 1.21 ·1012

Internet2-LOSA-May08 1 month 1.38 ·109 6.48 ·109 4.99 ·1012

Internet2-KANS-May08 1 month 2.44 ·109 8.96 ·109 6.95 ·1012

In order to assess the performance of the method implemented, we have gen-
erated linguistic summaries for a number of flow collections. Some of them are
generated from packet level captures in pcap format and some other are actual Net-
Flow measurements. In the first, case, the process of generating NetFlow collections
from packet level traces in pcap format involves the use of an exporting tool and a
flow recording tool. The tool softflowd [3] was used for exporting flows in Net-
Flow format from the packet level traces. Then, the flow-receive tool included in the
flow-tools package [24] was used to record NetFlow collections.

Some overall properties of these collections are shown in table 4.4. The following
NetFlow collections were analyzed:

• WIDE-F-1-Aug: network trace taken on August 1, 2007 at samplepoint-F of the
WIDE backbone [46], a 155 Mb/s trans-pacific link.

• WIDE-F-DITL-2007 and WIDE-F-DITL-2008: collections extracted from two
traces taken during the 2007 and 2008 Day in the Live of the Internet events, at
the samplepoint-F measurement point of the WIDE backbone. Time series for
these traces were analyzed in chapter 3 (see pages 116 and 116, respectively, for
a more detailed description).

• Darmouth-Fall03: Dartmouth/campus data set [33] from the Community Re-
source for Archiving Wireless Data (CRAWDAD), recorded at a wireless campus
network covering 18 buildings.

• AMPATH-OC12-0-2007 and AMPATH-OC12-0-2007: NetFlow collections ex-
tracted from the AMPATH (AMericasPATH) traces, belonging to the CAIDA
Anonymized 2007 Internet Traces. These traces were also analyzed in chapter 3
(see page 111 for a description).

• Equinix-Chicago-DITL-2008: collection extracted from a trace recorded at an
OC192 link during the 2008 Day in the Live of the Internet event (see page 111
for a more detailed description of this trace).

• Internet2-LOSA-May08 and Internet2-KANS-May08: these datasets were col-
lected on the LOSA and KANS backbone nodes, respectively, of the Internet2
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Network and made available through the Internet2 Observatory project [28]. This
dataset is a remarkable example of status and performance information about an
operational network collected on a systematic basis over a long period of time. In
the datasets available form the Internet2 Observatory, 1% sampling is used on a
per-interface basis, with an additional maximum packet per second rate of 7000
going to the central processor. This way, under most common conditions every
1 in 100 packets are recorded. However, during busy times or under denial-of-
service conditions, the sampling rate may be reduced. The flows are anonymized
by setting the low-order 11 bits of any non-multicast IPv4 address to zero.

4.5.4 Predefined Set of Summaries

The method presented here has been found to provide insightful and concise sum-
maries of flow collections. Simple on-line summaries for the NetFlow collections
analyzed (see table 4.4) are shown in figures 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10
and 4.11. In simple on-line mode, flow-lsummary shows one summary about
each of the defined protoforms (see table 4.3 for the basic set), i.e., only the most
relevant fact concerning each protoform is shown. In a normal run of the tool, re-
ports are shown periodically. The period can be configured and has a default value of
5 minutes. The figures show the final simple reports after the whole flow collections
have been processed.

A more verbose output can be requested by the user. In this case, for each proto-
form the tool shows the most relevant summaries for each possible summarizer. For
instance, the third linguistic summary in the simple report for the Darmouth-Fall03
collection is “very few flows are elephants” (see figure 4.4). In the more verbose
report, the three following summaries are shown with regards to the size of flows:
“very few flows are elephants” (I = 0.985), “almost all flows are mice” (I = 0.984),
and “very few flows are bulk”(I = 0.973).

The figures show the degree of truth, T and the informativeness, I, as defined
above, for each of the summaries selected. These values are included here for com-
pleteness. In the non-verbose output of the flow-lsummary tool, these values are not
shown for clarity’s sake.

Summary I T
Most flows are short lived [0.879 0.921]

Very few flows are high throughput [0.985 0.999]
Very few flows are elephants [0.985 0.999]

Very few flows have an average packet size large [0.961 0.973]
Very few flows are packet elephants [0.985 0.999]

Very few mice flows are medium throughput [0.981 0.996]
Few bulk TCP flows are short-lived [0.553 0.559]

Fig. 4.4 Simple on-line linguistic summary of the Darmouth-Fall03 NetFlow collection
(truth values between brackets). A priori labels.
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Summary I T
Most flows are short lived [0.908 0.954]

Very few flows are high throughput [0.983 0.999]
Very few flows are elephants [0.985 0.999]

Few flows have an average packet size large [0.895 0.939]
Very few flows are packet elephants [0.985 0.999]

Almost all elephant flows are medium throughput [0.985 1]
Most bulk TCP flows are long-lived [0.593 0.603]

Fig. 4.5 Simple on-line linguistic summary of the WIDE-F-1-Aug NetFlow collection (truth
values between brackets). A priori labels.

Summary I T
Most flows are short lived [0.919 0.965]

Very few flows are high throughput [0.984 0.998]
Almost all flows are mice [0.982 0.997]

Few flows have an average packet size large [0.938 0.986]
Very few flows are packet elephants [0.985 0.999]

Very few mice flows are medium throughput [0.971 0.984]
About 1/2 bulk TCP flows are long-lived [0.596 0.588]

Fig. 4.6 Simple on-line linguistic summary of the WIDE-F-DITL-2007 NetFlow collection
(truth values between brackets). A priori labels.

Summary I T
Few flows are long lived [0.915 961]

Few flows are high throughput [0.950 0.999]
Very few flows are elephants [0.985 0.999]

Few flows have an average packet size large [0.941 0.991]
Very few flows are packet elephants [0.985 0.999]

Almost all elephant flows are medium throughput [0.985 1]
About 1/2 bulk TCP flows are short-lived [0.691 0.693 ]

Fig. 4.7 Simple on-line linguistic summary of the WIDE-F-DITL-2008 NetFlow collection
(truth values between brackets). A priori labels.

Summary I T
Few flows are long lived [0.875 0.917]

Few flows are high throughput [0.896 0.940]
Very few flows are elephants [0.969 0.982]

Most flows have an average packet size jumbo [0.941 0.991]
Almost all flows are packet mice [0.984 0.970]

Few elephant flows are low throughput [0.915 0.961]
Few bulk TCP flows are long-lived [0.836 0.873]

Fig. 4.8 Simple on-line linguistic summary of the AMPATH-OC12-0-2007 NetFlow collec-
tion (truth values between brackets). A priori labels.
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Summary I T
Few flows are long lived [0.854 0.893]

Few flows are high throughput [0.887 0.930]
Very few flows are elephants [0.972 0.986]

Few flows have an average packet size small [0.926 0.973]
Most flows are packet mice [0.948 0.998]

About 1/3 bulk TCP flows are low throughput [0.948 0.978]
Few bulk TCP flows are long lived [0.781 0.812]

Fig. 4.9 Simple on-line linguistic summary of the AMPATH-OC12-1-2007 NetFlow collec-
tion (truth values between brackets). A priori labels.

Summary I T
Almost all flows are short lived [0.985 1]
Few flows are high throughput [0.933 0.981]

Almost all flows are mice [0.985 0.999]
About 1/2 flows have an average packet size medium [0.825 0.842]

Almost all flows are packet mice [0.985 0.999]
Very few mice flows are low throughput [0.984 0.999 ]

Almost all bulk TCP flows are short lived [0.985 1]

Fig. 4.10 Simple on-line linguistic summary of the Equinix-Chicago-DITL-2008 NetFlow
collection (truth values between brackets). A priori labels.

Summary I T
Few flows are long lived [0.693 0.714]

Very few flows are high throughput [0.985 0.999]
Very few flows are elephants [0.984 0.999]

Very few flows have an average packet size jumbo [0.985 0.999]
Very few flows are packet elephant [0.950 0.999]

Almost all elephant flows are medium throughput [0.985 1]
Almost all bulk TCP flows are long-lived [0.909 0.954]

Fig. 4.11 Simple on-line linguistic summary of the Internet2-LOSA-May08 NetFlow collec-
tion (truth values between brackets). A priori labels.

Summary I T
Most flows are short lived [0.770 0.800]

Very few flows are high throughput [0.985 0.999]
Very few flows are elephants [0.985 0.999]

Very few flows have an average packet size jumbo [0.985 0.999]
Very few flows are packet elephant [0.985 0.999]

Almost all elephant flows are medium throughput [0.985 1]
Most bulk TCP flows are long-lived [0.735 0.761]

Fig. 4.12 Simple on-line linguistic summary of the Internet2-KANS-May08 NetFlow collec-
tion (truth values between brackets). A priori labels.
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In the simple on-line summaries, the last line informs the most relevant fact re-
garding the distribution of bulk TCP throughputs, which in a regular NetFlow report
would usually be shown as a CDF plot, as shown in figure 4.13, or an equivalent ta-
ble of points selected from the distribution. Note that in the figure, the definition of
bulk TCP as given by the linguistic terms defined above is considered, i.e., bulk TCP
flows are those with a byte counter higher than 100 KB and lower than 200 MB.

Fig. 4.13 Complementary cumulative distribution function plot of the throughput of bulk
TCP flows in the Internet2-LOSA-May08 NetFlow collection, in semi-log (left) and log-log
(right) scales.

For a better interpretation of the results presented here, it should be noted that
there can be more information in what is not said than in what is said in a simple
summary. For instance, for the AMPATH-OC12-1-2007, the most relevant sum-
mary about the duration of bulk TCP flows is “Few bulk TCP flows are long lived”
(with I = 0.781, T = 0.812). The fact that this summary is chosen as the most rele-
vant entails that “Very few bulk TCP flows are long lived” holds with less certainty
(I=0.211, T=0.140). This means that there is a small but not negligible amount of
flows that are long-lived, which in a sense reveals a more interesting aspect of the
flow collection.

As an example, the summary for the average packet queue size in the case of
the Internet2-LOSA-May08, “Very few flows have an average packet size jumbo”,
indicates that jumbo frames are present in this segment of the Internet2 network
and the degree of deployment of jumbo frames is very low. This is in contrast to all
the other flow collections analyzed, where the presence of jumbo frames is at best
negligible. It is also worth to mention for this flow collection that the most relevant
summary for the duration of bulk TCP flows is “Almost all bulk TCP flows are long-
lived”. In other words, long durations are dominant within the class of bulk flows.
In addition, the most relevant summary for the throughput distribution qualified by
byte size count is “Almost all elephant flows are medium throughput”. These two
summaries concisely express an well known property of duration and throughput
distribution in wide are networks, i.e., the presence of the so-called tortoises [10],
that seem to be specially clear in the Internet2-LOSA-May08 flow collection.
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4.5.5 Identifying Attribute Labels by Clustering

This section presents experimental results from the application of clustering tech-
niques to NetFlow collections. Two clustering methods will be applied: k-means (or
hard c-means) and fuzzy c-means. The number of clusters is most often a determin-
ing input variable to the process. Our approach is to check a) whether the number
of optimal clusters match the number of domain specific terms (current assump-
tions) and b) how summaries built with clustering derived labels compare with the
summaries above.

Since fuzzy sets are being used for defining linguistic terms, fuzzy clustering
techniques (i.e., clustering techniques where all data points can belong to all clusters
to a certain degree) seem to be more adequate. We will use two clustering methods:
hard c-means (HCM, or k-means) and fuzzy c-means (FCM).

The clustering processes could be run on the whole data sets. However, it has
been found that it is not necessary to have a large number of flow samples in or-
der to obtain consistent results that give a fairly good approximation to the clusters
identified on the whole data sets. The results shown in the next figures correspond to
subsets of NetFlow collections of sizes ranging from 10000 through 100000 flows.
For each size, 100 repetitions are performed using randomly selected subsets of the
flow collection. Figures 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, 4.20 and 4.21 show
the clusters identified for the Darmouth-Fall03, WIDE-F-1-Aug, WIDE-F-DITL-
200701, WIDE-F-DITL-200803, Equinix-Chicago-DITL-2008, AMPATH-OC12-
2007-0, AMPATH-OC12-2007-1 and Internet2-LOSA-May08 NetFlow collections,
respectively. Results for the duration, bytes, throughput and packets attributes are
shown in the figures.

Four overall conclusions can be drawn from the results shown in the previous
figures:

• The centers identified as vertices are consistently distinguishable.
• Although the results obtained with the HCM and FCM clustering methods are

very similar, FCM yields cluster centers in an slightly more consistent manner.
• Automatically derived labels match reasonably well (with small numerical dif-

ferences) a priori labels.
• In order to obtain consistent cluster centers, subsets of no more than a few tens of

thousands of flows are required. This implies that a) modest computing resources
are sufficient, and b) the labels tuning stage can be performed in a short period of
time for on-line monitoring. For instance, in the case of the WIDE-F-1-Aug col-
lection, 50000 data about flows are available after approximately 15.85 seconds
of recording. For links with a higher degree of aggregation, the required time
is even lower. For instance, in the Internet2-LOSA-May08 collection, the aver-
age flows per second rate is around 4200. Thus, a proper tuning of the linguistic
labels can be performed after only a few seconds.
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(a) Duration

(b) Bytes

(c) Throughput

(d) Packets

Fig. 4.14 Darmouth-Fall03: cluster centers for NetFlow attributes. Left column: HCM; right
column: FCM. Clustering performed on subsets of different sizes, ranging from 10000
through 100000. 100 repetitions per size. The plots show average values and error bars for
the 5th and 95th percentiles.
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(a) Duration

(b) Bytes

(c) Throughput

(d) Packets

Fig. 4.15 WIDE-F-1-Aug: cluster centers for NetFlow attributes. Left column: HCM; right
column: FCM. Clustering performed on subsets of different sizes, ranging from 10000
through 100000. 100 repetitions per size. The plots show average values and error bars for
the 5th and 95th percentiles.
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(a) Duration

(b) Bytes

(c) Throughput

(d) Packets

Fig. 4.16 WIDE-F-DITL-200701: cluster centers for NetFlow attributes. Left column: HCM;
right column: FCM. Clustering performed on subsets of different sizes, ranging from 10000
through 100000. 100 repetitions per size. The plots show average values and error bars for
the 5th and 95th percentiles.
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(a) Duration

(b) Bytes

(c) Throughput

(d) Packets

Fig. 4.17 WIDE-F-DITL-200803: cluster centers for NetFlow attributes. Left column: HCM;
right column: FCM. Clustering performed on subsets of different sizes, ranging from 10000
through 100000. 100 repetitions per size. The plots show average values and error bars for
the 5th and 95th percentiles.
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(a) Duration

(b) Bytes

(c) Throughput

(d) Packets

Fig. 4.18 Equinix-Chicago-DITL-2008: cluster centers for NetFlow attributes. Left column:
HCM; right column: FCM. Clustering performed on subsets of different sizes, ranging from
10000 through 100000. 100 repetitions per size. The plots show average values and error bars
for the 5th and 95th percentiles.
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(a) Duration

(b) Bytes

(c) Throughput

(d) Packets

Fig. 4.19 AMPATH-OC12-0-2007: cluster centers for NetFlow attributes. Left column:
HCM; right column: FCM. Clustering performed on subsets of different sizes, ranging from
10000 through 100000. 100 repetitions per size. The plots show average values and error bars
for the 5th and 95th percentiles.
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(a) Duration

(b) Bytes

(c) Throughput

(d) Packets

Fig. 4.20 AMPATH-OC12-1-2007: cluster centers for NetFlow attributes. Left column:
HCM; right column: FCM. Clustering performed on subsets of different sizes, ranging from
10000 through 100000. 100 repetitions per size. The plots show average values and error bars
for the 5th and 95th percentiles.
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(a) Duration

(b) Bytes

(c) Throughput

(d) Packets

Fig. 4.21 Internet2-LOSA-May08: cluster centers for NetFlow attributes. Left column:
HCM; right column: FCM. Clustering performed on subsets of different sizes, ranging from
10000 through 100000. 100 repetitions per size. The plots show average values and error bars
for the 5th and 95th percentiles.
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4.5.6 Mining Association Rules for Extracting Linguistic
Summaries

We discuss a sample set of summaries identified using the Apriori algorithm for
association rules mining [2]. This algorithm that has been proven to be fast and
effective in a wide variety of applications. Though the amount of association rules
found can be overwhelming, a few simple filtering rules can significantly reduce
the number of rules to analyze. In particular, we disregarded those rules with a low
support or with a low confidence (truth) value. A number of interesting rules were
found for the NetFlow collections analyzed.

In order to mine association rules a crisp attribute describing the application was
considered. The possible values of this attribute (inferred from the transport port at-
tribute) include DNS, SSH, WWW (HTTP and HTTPS protocols) and mail (SMTP,
SSMTP, POP and IMAP protocols). We list as examples a selection of them:

• “Most SSH flows occur during the day, and consists of short lived mice flows”,
with confidence 0.892 in the Darmouth-Fall03 collection.

• “Most DNS request flows occur both during the day and at night, are mice and
short lived”, with confidence 0.970, 0.897 and 0.932 in the WIDE-F-1-Aug,
WIDE-F-DITL-200701 and WIDE-F-DITL-200803 collections, respectively.

• “Most flows at night are mice”, with confidence 0.911, and “Most flows dur-
ing the day are mice”, with confidence 0.988 in the AMPATH-OC12-0-2007
collection.

• “Most flows at night are mice”, with confidence 0.898, and “Most flows dur-
ing the day are mice”, with confidence 0.932 in the AMPATH-OC12-1-2007
collection.

• “Almost all WWW flows are mice and short-lived”, with confidence 0.940, and
“Most SSH flows occur during the day, and consists of short lived mice flows”,
with confidence 0.932 in the Internet2-LOSA-May08 collection.

The facts pointed out by these summaries can be recognized as simplified expres-
sions of well known facts that have been found in a number of measurement stud-
ies [18, 44, 10, 9].

Linguistic summaries provide a novel method to describe qualitative relations in
NetFlow records using natural language. Thus, by using association rules mining to
find relevant summaries we have a suitable method for addressing a problem related
to flow analysis: finding invariants in traffic as well as instances of diversity and
disparity, what is known as one the major goals of Internet Science [9].

4.5.7 Discussion

We have addressed network traffic measurement analysis at the flow level from
the perspective of linguistic summaries. Two approaches for summarizing NetFlow
records have been developed: 1) on-line summarization via a predefined and config-
urable set of protoforms of interest, and 2) discovery of hidden relevant summaries
by means of association rules mining.
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The method proposed here is intended as an analysis tool complementary to tra-
ditional descriptive statistics. The fact that both techniques are complementary is
particularly evident if one considers that fuzzy linguistic labels were defined based
on empirical observations that in turn were obtained using traditional statistical tech-
niques such as distribution function plots and histograms of packet size.

Two approaches to generating linguistic summaries have been proposed: on-line
and off-line summaries. For on-line summarization, a set of protoforms identified as
conditions of interest have been defined. For off-line summarization, a fast associa-
tion rules mining algorithm is used in order to identify relevant summaries.

A tool that implements both the on-line and off-line approaches, flow-lsummary,
has been implemented. Experimental results for a set of benchmark NetFlow collec-
tions confirm linguistic summaries as an alternative look into network flow statistics
useful for both network users and practitioners. This way, operators are not required
to have an in-depth knowledge of many subjects, simple reports for network users
can be provided, and the summarized statistics can help planning and dimensioning
tasks.

The method presented is a novel technique to generate simple and human-
interpretable reports, being useful for both practitioners and users, but also pro-
vides a promising technique for finding invariants in network traffic and advancing
Internet Science. This can be seen as a first step towards natural language based
knowledge discovery tools for Internet Science.

The clustering based approach presented here for the automatic definition of lin-
guistic labels can be extended to additional flow identifiers. For instance, the proto-
col field, which has been defined as a crisp value, could be mapped into classes of
applications.

Figure 4.22 shows the number of flows processed per second for the Internet2-
KANS-May08 flow collection. The process was run on a commodity PC based on
a Intel© Core™ 2 Duo CPU E6550 at 2.33GHz with 4 MB of L1 cache and 2 GB
of RAM memory, running the GNU/Linux operating system with Perl 5.10.0 as
build in the standard packages. Memory consumption is constant and below 7 MB,
as the summarization process only requires one-pass procedures that do not have
significant memory requirements.

In the figure, it can be seen that, after a short initialization stage, the number of
flows that can be processed per second is above 20 ·103. This rate is remarkably high
and constant due to the purely static and one-pass nature of the algorithms applied.
Processing 109 flows took approximately 4571 seconds (1 hour, 16 minutes and
11 seconds). That is, a month worth of NetFlow records for the Internet2-KANS-
May08 can be summarized in approximately 3 hours and 6 minutes. However, a 1%
flow sampling rate was applied for this collection.

If 100% or no sampling were applied, and assuming (as a pessimistic case) a
number of flows 100 times greater, a month work of NetFlow records could be
processed within 13 days. That is, real-time summarization is feasible with flow-
lsummary without particular optimizations on commodity hardware even for 100%
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flow sampling rates on very high speed links. In networks with a more moderate
overall traffic rate, the summarization process has very low computational require-
ments. For instance, the simple on-line summary for the whole Darmouth-Fall03
collection, which spans 15 days, can be generated within approximately 3 minutes
and 50 seconds on the same commodity PC as before.

Fig. 4.22 Flows processed per second with flow-lsummary for the Internet2-KANS-May08
NetFlow collection

We should note that this section has studied the analysis and summarization of
network measurements at the flow level as opposed to network measurement at the
packet level. That is, while in the previous section we analyzed time series directly
extracted from packet level measurements, in this section we have described a flow
level analysis tool. The latter approach is significantly more widespread among
practitioners, finding everyday applications, as flow level measurement facilities
are currently available in virtually all medium- and high-end routing equipments.
However, performing linguistic summarization at the packet level is also a plausible
option we think is worth exploring as a future extension. To this end, the procedures
and some of the linguistic terms defined here could be extrapolated from flow level
analysis to packet level analysis.

Finally, a promising research direction would be to extend the fuzzy association
rules mining method applied in this monograph in order to include topological in-
formation. This would make it possible to analyze the interactions between topology
and traffic using a soft computing approach. This research line can be expected to
lead to interesting discoveries in an area that remains essentially unexplored because
of its complexity.

4.6 Conclusions

Methods for extracting linguistic summaries from network measurements and statis-
tics at the flow level were described in this chapter. Both on-line simple summaries
and off-line mining of fuzzy association rules were addressed.

We first analyzed how prior knowledge can be used to define linguistic labels for
traffic flow attributes and how these match traffic measurements from production
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networks. By means of unsupervised learning techniques we have shown a remark-
able match between the a priori knowledge based linguistic labels proposed and
actual network flow measurements. A measure of goodness or informativeness of
linguistic summaries tailored to network flow summarization has been proposed.

This chapter described a method for the summarization of network flow records
together with a method for inducing association rules from network flow records
have been developed and implemented in an experimental tool. Both methods have
been applied to a wide set of network flow records. The first has been shown to
provide concise and discerning summaries with very low computational cost. The
second has been shown to discover relevant facts hidden in network flow measure-
ments. The summarization methods have been implemented in a tool that is valu-
able for both researchers and practitioners. The tool, flow-lsummary was applied to
a diverse set of large flow collections and the techniques described were shown to
provide concise, self-explanatory and informative summaries.
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Chapter 5
Inference Systems for Network Traffic Control

Abstract. This chapter deals with control of network traffic in routers as well as
end-to-end flows. First it is proposed an scheme for implementing end-to-end traffic
control mechanisms through fuzzy inference systems. A comparative evaluation of
simulation and implementation results from the fuzzy rate controler as compared to
that of traditional TCP flow and rate control mechanisms is performed for a wide
set of realistic scenarios. Then, fuzzy inference systems for traffic control in routers
are designed. A particular proposal has been evaluated in realistic scenarios and is
shown to be robust. The proposal is compared against the random early detection
(RED) scheme. It is experimentally shown that fuzzy systems can provide better
performance and better adaptation to different requirements with mechanisms that
are easy to modify using linguistic knowledge.

5.1 Network Traffic Control

End-to-end Internet packet dynamics is a complex problem for which models avail-
able to date are at best incomplete. A major research problem in Internet transport
layer protocols is the development of rate control mechanisms that can cope with
the requirements of a growing diversity of technologies, applications and services.

A better understanding of the end-to-end dynamics of the Internet is key for
two reasons. First, it would allow the optimization of network resources and conse-
quently the end-to-end performance experienced by users. Second, it would make
it possible to provide improved end-to-end classes of service as well as quality-of-
service guarantees. As Keshav remarks [61], “the Holy Grail of computer network-
ing is to design a network that has the flexibility and low cost of the Internet, yet
offers the end-to-end quality-of-service guarantees of the telephone network.”

That is, in the current Internet there is a need for mechanisms that guarantee cer-
tain quality of service parameters. This requires the capability to provide improved
quality of service, i.e., the capability to avoid performance degradation and failures
due to congestion. In extreme cases, such as remote surgery, emergency calling and
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other applications in mission critical networks, it may be required to totally prevent
any end-to-end unreliability. However, providing quality of service guarantees is not
the only open problem. In fact, the development of efficient mechanisms for best
effort traffic control poses many challenges. In particular, there is a complex trade-
off between aspects such as bandwidth utilization, congestion avoidance, fairness or
delay and jitter minimization.

In practice, most current networks, and specially backbone networks, rely on
overprovisioning. However, due to the complex and bursty nature of traffic in packet
switched networks, users of best effort services may experience degraded perfor-
mance even when there is sufficient available bandwidth and the average bandwidth
utilization is relatively low [17]. In particular, micro-congestion episodes (localized
periods of congestion that occur at scales lower than those usually analyzed by net-
work operators) have been found to be frequent even in underutilized links [78].

In this chapter, we address by means of fuzzy inference systems two tightly re-
lated problems in traffic control: end-to-end rate and congestion control as well as
active queue management in routers. The focus of this chapter is on best effort traf-
fic. We will evaluate software implementations using a packet-level network simula-
tor, experimental software tools and network emulation packages. First, we discuss
two simulation scenarios in section 5.2.

In section 5.3 we describe mechanisms for intelligent end-to-end traffic conges-
tion control in Internet by means of fuzzy inference systems. We first outline a fuzzy
logic based generalization of TCP (Transport Control Protocol) rate control princi-
ples. The design of a fuzzy TCP-like window based congestion controler is then
described. A systematic fuzzy systems design methodology is used in order to sim-
ulate and implement the system as an experimental tool. A comparative evaluation
of simulation and implementation results from the fuzzy rate controler as compared
to that of traditional controlers is performed. Besides being a useful modeling ap-
proach, the fuzzy rule based rate controler is shown to outperform other approaches
with regards to a number of criteria.

A major related research problem in Internet transport and network layers is the
development of traffic control mechanisms that can cope with the requirements of a
growing diversity of technologies, applications and services. Section 5.4 describes
systems for intelligent traffic control in Internet routers by means of fuzzy infer-
ence based systems. A systematic design methodology, interpretability principles,
evaluation over a broad range of network scenarios as well as practical implementa-
tion constraints have been considered. A comparative evaluation of results obtained
by means of our fuzzy controlers as compared to that of traditional approaches is
outlined.

5.2 Simulation Scenarios

As discussed in [42], simulation of network scenarios is a useful generic tool
for building understanding of dynamics, to illustrate a point, or to explore for
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unexpected behavior. However, care should be taken when performing comparisons
among different options and particularly when producing comparative performance
measurements. It is well known that small changes (a few lines of code) in popu-
lar protocols and applications in the real Internet have a massive potential impact
on traffic patterns, users and infrastructures. Consequently, any numeric compari-
son between two protocols performed by simulation is subject to two fundamental
questions: 1) would a small change in the model result in an important change in
the results? and 2) what would be the impact on the results of a change in a detail of
the software implementation of the underlying model?

Thus, in the next two sections, we will explore by means of simulation the be-
havior of the proposed schemes for end-to-end flow and congestion control as well
as active queue management, respectively. In particular, we have defined a complex
scenario in order to analyze the behavior of these schemes under a wide set of re-
alistic network conditions. Here, we describe the two simulation scenarios that will
be considered in the next sections.

The aim of this study is to help designing the fuzzy rule based congestion con-
trol scheme and the fuzzy active queue management scheme proposed in the next
sections. Through simulation, we will check whether these schemes are robust and
their more general approach provide a significant performance improvement under
a number of conditions.

More specifically, for active queue management, we analyze the robustness of
different active queue management algorithms against bursty traffic with different
degrees of overall traffic load on the network. For end-to-end control, we consider
the robustness, performance and fairness with different degrees of load on a par-
ticular end-to-end path of the scenarios with different degrees of competing traffic.
We will compare the proposal described here against two alternatives and it will be
shown that the fuzzy system performs better or in a comparable way to other alter-
natives for a number of network scenarios. However, this comparison is limited by
two aspects:

• The overwhelming diversity of proposals of end-to-end congestion control algo-
rithms, among which the ones that will be mentioned in section 5.3.1 are only
a subset. This makes almost impossible to perform a thorough evaluation of a
representative set of proposals under a wide enough set of simulation scenarios.

• Any protocol performance analysis, whether performed through simulation or
experimental implementation will always be incomplete and face new challenges
as the global Internet evolves.

We will illustrate the behavior of the proposals presented in the next two sections
through simulations and compare its performance against that of other alternatives.
However, this is sensible as far as the results from any qualitative and -specially-
quantitative comparison are regarded with the aforementioned cautions in mind.

The simulations will be complemented with tests performed through emulation
as well as full implementations. The emulation and implementation scenarios will
be described in the next sections. While emulation and implementation tests pro-
vide results that can be expected to match those of deployed implementations more
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closely, simulation allows us to analyze the dynamics of algorithms and control
schemes with much more flexibility in a wider set of conditions.

Simulations will be performed at the packet level. A packet level simulator is
required for an effective evaluation of both TCP-like end-to-end congestion control
algorithms and active queue management schemes. In the first case, the complex be-
havior resulting from window based congestion control algorithms, specially when
background traffic is not neglected, can be fully modeled only if simulations are per-
formed at the packet level. The same applies to active queue management schemes,
for which analytical models are also incomplete at their best. To this end, we use
the ns-2 simulator [56], a de facto standard within the Internet research community.
The ns-2 simulator supports a wide variety of technologies and protocols.

Two simulation scenarios will be used throughout the simulation tests: dumb-
bell and GREN. The first plays the role of a simple scenario that illustrates the
underlying principles where all but the essential components are abstracted away.
In contrast, the second scenario has a large topology where complex traffic patterns
are generated [42].

The first scenario is a typical dumbbell topology with 3 nodes in each edge of the
network, as depicted in figure 5.1. Dumbbell is an scenario with a fixed topology
defined manually. The one-way propagation delays are: 2 and 10 ms for the links of
nodes 1-1 and 1-2, respectively, and 1.5, and 12 ms for the links of nodes 2-1 and
2-2, respectively. The one-way propagation delay of the central link is 10 ms. The
bandwidth capacities of the edge links are 1 Gb/s, whereas the bandwidth capacity
of the central link is 622 Mb/s.

Fig. 5.1 Scheme of a dumbbell topology with 2 nodes in each edge

This simple scenario serves two purposes. First, it allows us to analyze the be-
havior of different algorithms in a topology with an extensively studied dynamics
where it is relatively easy to understand the impact of changes in a particular al-
gorithm. In addition, the results of the simulations in this chapter can be compared
with a large number of publications that focus on the performance of end-to-end
congestion control algorithms and active queue management schemes in dumbbell-
like scenarios [7].

However, simulations and performance studies based on dumbbell-like scenarios
suffer from a number of limitations and pitfalls [42]. Simulations performed using
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the dumbbell topology can be hardly taken as indicative of what could happen in real
networks. As described in chapter 1, simulating the behavior of the global Internet
or a significant part of it is an immense challenge.

For the purposes of performing a simulation study of the fuzzy active queue man-
agement algorithm and the fuzzy end-to-end congestion control scheme presented
in this chapter, we define the GREN scenario, an overall simulation scenario that
aims to be a realistic simulation setup by considering the following points:

• A set of several thousands of nodes interconnected with a topology that resembles
current real networks is first defined.

• Complex traffic patterns are generated as a result of the aggregation of thousands
of traffic sources. In order to generate traffic we use distributions that match a
number of experimental studies [84, 15, 2, 41].

The GREN scenario has been defined with the aim of generating complex back-
ground traffic as a consequence of the aggregation of a large number of individual
flows between end nodes distributed over a network with a realistic topology.

Considering the Internet vast and ever increasing scale, the definition of a realistic
simulation scenario is a very complex task that involves many aspects of modeling a
huge and ever changing target [40]. However, it is possible to describe general mod-
els about substantial parts of the global Internet, including the global research and
education Network (GREN), depicted in figure 5.2, based on [10], and reports from
the Internet2 Observatory, the GÉANT and GÉANT2 projects as well as various
other national research and education networks (NRENs).

The topology of the GREN scenario consists of a fixed part and a dynamic, ran-
domly generated part. The fixed part defines the backbone of the network as well as
the uppermost nodes. The fixed part is complemented with a dynamic part where
end nodes are randomly added following a predefined pattern. In what follows,
we will describe the topology and patterns of traffic generation used in the GREN
scenario.

In order to generate the GREN scenario, 17 additional subnetworks are added.
These subnetworks are intended to play the role of commercial ISPs. 11 of them are
connected through two links to each of the NRENs shown in figure 5.2. The other 6
connect bidirectionally APAN to CERNet, TANet2 to APAN, AARNet to Internet2,
Internet2 to CANEt3, Internet2 to GÉANT, and GÉANT to RBNet, respectively.
The topology of the commercial ISP networks is defined as a backbone mesh of up
to 20 nodes connected through OC192 links, with up to 10 additional access points
connected to each node of the backbone. The links that made up the backbones of the
subnetworks in the GREN scenario (including the NREN networks and the ISPs) as
well as the links between these subnetworks are in general OC192 (10 Gb/s) OC48
(2.5 Gb/s), and OC12 (622 Mb/s) links.

This way, different traffic patterns at backbone links [48], national and regional
nodes, intercontinental links and exchange points, such as the AMPATH (that were
analyzed from a different viewpoint in chapters 3 and 4) are generated. One partic-
ular random instantiation of the topology described will be used throughout all the
tests described in this section.
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Fig. 5.2 Scheme of the Global Research and Education Network

Figure 5.3 shows a simplified scheme of the part of the GREN model
corresponding to the GÉANT2 pan-European R&E network. The topology
was defined based on the GÉANT Topology Map, 1st December 2004 (avail-
able on-line from http://www.geant.net/server/show/nav.159)
and the GÉANT2 Topology (available on-line from
http://www.geant2.net/server/show/nav.00d007009). Some
links and nodes are not shown for better readability. Also note that the new dark
fiber links and additional upgrades that are currently taking place in the GÉANT2
backbone are not taken into consideration in the model.

With the aim of generating a realistic simulation scenario with complex and
highly variable background traffic the following aspects are considered for generat-
ing tests and analyzing the performance of the proposals:

• Analyses are performed for varying degrees of traffic load, a key aspect for any
traffic control algorithm [40]. This way, we consider a wide range of traffic load
conditions and we look into how performance degrades for increasing load,

• Most of the metrics discussed in the RFC 5166 on metrics for the evaluation
of congestion control [47] are applied for evaluating performance: deployability,
throughput, delay, packet loss rates, response to sudden changes or to transient
events, minimizing oscillations in throughput or in delay, fairness and conver-
gence times, robustness for challenging environments, robustness to failures and
to misbehaving users.
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Fig. 5.3 Scheme of the GREN model part corresponding to the GÉANT network and its
connections to other NRENs

The procedure followed for generating the GREN scenario can be summarized
in the following steps:

1. End nodes in NRENs. Up to 50000 end nodes are generated for the NREN sub-
networks in the GREN. A 9% of them is allocated to each of the 11 NRENs. End
nodes are connected to access points chosen randomly. When adding end nodes
to the NRENs, two options are considered:

• In 1% of the cases, an independent node is directly connected to a node of an
NREN backbone.

• In the remaining 99% of the cases, an access node is added with a varying
number of nodes connected to it in a four-level tree structure where the access
node is the root. Nodes are added in sets of variable random size between 50
and 800.

2. Link capacities are uniformly distributed within the set of powers of two in the
range 1 Mb/s-1 Gb/s.

3. Link propagation delay is uniformly distributed within 0.25 ms-10 ms.
4. End nodes in commercial networks. Additionally, for each commercial ISP sub-

network, up to 5000 end nodes are generated. End nodes are connected in one of
the following two forms of subnetworks:

• Three-level tree structure with one root node in the first level (interconnection
node that is linked to a backbone node) and a number of leaves between 1 and
500 in the second and third level. The number of leaves for each level of each
tree is generated following an exponentially decaying distribution.
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• Ring with a random number of nodes between 3 and 10. A three-level struc-
ture with up to 400 end nodes is added to each node of the ring.

• Link capacities are uniformly distributed within the set of powers of two in
the range 64 Kb/s-1 Gb/s.

• Link propagation delay is uniformly distributed in the range of 0.25 ms-10ms.

5. Background traffic. In order to generate background traffic in the scenario, traffic
flows are established among end nodes of the NRENs and commercial ISPs.
These flows correspond to web, remote shell, file transfer, and constant bit rate
applications as well as on/off traffic sources. As many flows as end nodes are
generated at start time, with random selection of the end nodes for each flow.
Upon expiration of each flow, a new flow between two random end points is
started. The set of flows is generated so that the following constraints are met:

• The duration of each flow is generated following an exponential decaying
distribution with decay constant 1/2 · ln2, with restrictions such that 60% of
flows have very short duration (less than 2 seconds), 38.5% of flows have
short duration (up to 15 minutes) and 1.5% of flows are long-running (more
than 15 minutes). This distribution of very short, short and long-running flows
approximately reflects a number of measurement studies [15, 14].

• For non constant bit rate flows, flow sizes are generated following a Pareto
distribution [31, 30], with sizes ranging from 15 KB up to 4 GB. The bit rate
of constant bit rate flows is generated following a Zipfian distribution.

6. Simulation initialization. The first 30 seconds of simulation time are reserved for
initialization. Since the maximum propagation delay in the scenario is lower than
1 second, the initial transitory phase of TCP flows has ended after the initializa-
tion time. Measurements are made after the initialization stage during a period
that varies depending on the particular test. This guarantees that spurious effects,
such as synchronization between flows, that may take place at the beginning of
simulations are not included in the results.

7. Tailoring the scenario for a particular test. Once the scenario has been generated
following the previous steps, a final step is performed in order to test a particular
algorithm. The final step depends on the kind of algorithm to be evaluated:

• For end-to-end control schemes:
– A test flow using fuzzy end-to-end congestion control is added.
– A set of competing flows is added. These flows are generated in such a way

that they share a significant part of their end-to-end path with the test flow
with fuzzy control.

• For active queue management schemes:
– Fuzzy active queue management is implemented in a backbone or access

node.
– Traffic flows that traverse the chosen node are generated.

These last two steps are further detailed in the next sections for each case and
each particular test.
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The overall scale of the scenario was defined so that simulations could be run
with commodity computers and with reasonable memory requirements. As a conse-
quence of the procedure the following properties hold:

• The maximum path length between any two end hosts resulting from the topology
defined above is 22, which matches measurement studies of the Internet global
topology [29].

• Regarding the definition of the overall traffic matrix, traffic is generated among
randomly selected end nodes.

• The minimum RTT (excluding queuing delays) between two end hosts is 0.25 ms.
• On average, 25% of flows are UDP (and thus irresponsive to congestion) while

75% of flows are TCP.

Fig. 5.4 Partial scheme of the RedIRIS regional network, a subnetwork of the GÉANT pan-
European network. A 4-level tree structure is connected to the GÉANT network through the
NAC access node. In this case, the topology of the first level of the tree was fixed manually
in order to loosely resemble the RedIRIS network.

As an example of a set of end nodes in tree structure in an NREN, figure 5.4
shows an scheme of the tree connected to the ES node of the GÉANT backbone,
intended to loosely resemble the RedIRIS network1. In the scheme, NAC is the
access node connected to the GÉANT backbone, the AND router is in the first level
of the regional tree, the SEV router is in the second level. Some of the nodes of
the third level in this regional network are connected to the CAMPUS node. This

1 Note we consider here that the pan-European GÉANT network is an NREN and RedIRIS
is one of the regional networks connected to GÉANT.



200 5 Inference Systems for Network Traffic Control

regional network will be used for some of the simulation studies in the next sections,
where we will analyze the behavior of the link between the SEV and CAMPUS
nodes. Note that the set of nodes and the connections in the first level of the regional
tree were manually fixed in this case in order to resemble the RedIRIS network.
Only a few nodes of each level are shown for readability.

Note that generating a topology with properties that resemble those of the Inter-
net to a significant extent is still an open problem [62]. There is a trade-off between
dynamic, measurement based topologies and static topologies. On the one hand,
measurement derived topologies are constrained by the measurement method and
the observational conditions, being in general difficult to understand. On the other
hand, fixed topologies are easier to understand and can be generated in order to ana-
lyze specific issues. The former can be used as explanatory models whereas the latter
tend to be descriptive. Some proposals have been made for extracting relatively sim-
ple graphs that keep the properties of topologies inferred from measurement [63].

In this work, we have generated a static topology with a fixed core network mod-
eled after the GREN in order to analyze a number of issues that arise in current high
performance networks. Nonetheless, this particular fixed topology reflects to a con-
siderable degree of detail a set of real networks. In addition, components are added
to the topology in order to increase the range and variability of link and path prop-
erties in a random manner with a set of restrictions. These restrictions have been
defined in order to guarantee some overall topological properties found in measure-
ment studies performed on the Internet [67, 29, 62]. For the simulations performed
in both the dumbbell and the GREN scenario, the standard Open Shortest Path First
(OSPF) routing scheme as implemented in ns-2 is used.

5.3 Fuzzy End-To-End Rate Control for Internet Transport
Protocols

End-to-end Internet packet dynamics is a complex problem for which models avail-
able to date are at best incomplete [40]. A great deal of attention is being paid
by the research community to two issues in this area: protocols for high perfor-
mance networking, and solutions for new services and applications for which proper
congestion control schemes are sought. These issues have led to an interest in the
application of artificial intelligence techniques to end-to-end problems within the
End-to-End Research Group of the Internet Research Task Force.

As shown in figure 5.5, end-to-end traffic is subject to control actions not only at
the end points but also at every hop in the path, including access nodes, backbone
links and peering points, with a wide variety of technologies and conditions that
are unknown to the transport layer. Currently deployed schemes for traffic regula-
tion in Internet (as well as proposed alternatives) fit into one of the two following
approaches [93] (see also figure 6.10, on page 286):
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Fig. 5.5 End-to-end path between two nodes and the elements that may made up an end-to-
end path

• Distributed control, with functionality distributed among the end nodes in the net-
work and implemented by means of end-to-end transport protocols. End nodes
that transmit and receive packet flows cooperate so as to perform flow and con-
gestion control as well as fair distribution of network resources.

• Queue controlers in intermediate nodes (routers). These mechanisms may dis-
criminate packet flows and enforce resource distribution and reservation.

Thus, regulation of packet flows from sender to receivers can involve all the network
nodes in the end-to-end path and is performed on both an end-to-end and a per-hop
basis. Such a scheme leads to a system that comprises multiple feedback loops with
complex interactions.

End-to-end flows traversing routers span a wide range of user requirements and
dynamic characteristics, i.e., the number of hops in the path can typically range
from a few up to around 20, round-trip times can range from a few milliseconds up
to seconds, flows can last from a few milliseconds up to hours and each flow can
transfer from a few KBs up to several GBs.

In a network like the one depicted in figure 5.5, the end-to-end paths between
nodes A and B are very different to that between A and C, or A and D, or any other
two end nodes. Many diverse aspects have an impact on end-to-end performance.
These include, among many others, physical distances, methods and agreements of
interconnection between ISPs, provisioning and topologies of backbones, character-
istics and technologies of access links, the use of traffic shapers, and miscellaneous
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performance problems due to misconfigurations. Also, other higher scale factors,
such as routing protocols, both at an intra-network and an inter-network level, and
network upgrades can have an important impact on end-to-end performance that is
difficult to model.

Quality of service requirements as well as traffic patterns of emergent services
and applications are difficult to characterize and demand deep advances in current
rate control schemes. Because of the nature of these problems, complexity, no fea-
sible analytic solution, as well as incomplete and inaccurate information, one of the
alternatives for studying them is the employment of intelligent systems based on
fuzzy logic and possibly other soft computing techniques.

Both aforementioned approaches can be redefined in terms of fuzzy systems,
which does not only provide a deeply backgrounded engineering approach but also
a modeling and analysis framework for Internet traffic (which the current Internet
research community lacks [40]).

In this section we focus on end-to-end rate control [71]. More specifically, we an-
alyze TCP-like window based rate control. Traffic control in routers will be
addressed in section 5.4. With this work we aim at providing a reinterpretation of
end-to-end flow and congestion control mechanisms in terms of fuzzy systems. We
provide an initial set of results based on simulation and experimental implemen-
tation showing a number of advantages as for both performance and model inter-
pretability.

Section 5.3.1 provides an overview of related publications. Section 5.3.2 outlines
a fuzzy logic based extension to end-to-end window based rate control schemes.
In section 5.3.3 we detail the design of a fuzzy system for end-to-end rate control.
Section 5.3.4 gives an overview of the fuzzy systems development methodology and
tool chain employed. Simulation and experimental implementation results are then
presented in section 5.3.5 and section 5.3.6, respectively.

5.3.1 Related Work

Formal approaches that have been applied to end-to-end rate control include classic
control theory and fluid mechanics among others [93]. Fuzzy logic has been ap-
plied to related problems, such as active queue management in routers [26, 24] and
identification of security incidents [1, 35]. While a number of proposals of fuzzy
controlers for packet queues at Internet routers have been reported, see [26, 24]
among others, the only reference we are aware of that takes a fuzzy logic based ap-
proach to end-to-end rate control is [18], which outlines a preliminary study through
an off-line simulation based analysis of a nonlinear Takagi-Sugeno fuzzy controler
applied to some of the basic mechanisms of TCP congestion control.

In the area of wireless networks, there have been proposals of fuzzy systems
applied to intelligent discrimination of congestion induced packet loss and loss due
to physical channel errors and mobility [77, 22].
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5.3.2 End-To-End Window Based Rate Control and a Fuzzy
Generalization

A number of classes of rate control have been defined and applied in packet switch-
ing networks, such as window based and equation based [40]. The prevalent trans-
port protocol in the current Internet is Transmission Control Protocol (TCP), which
uses window based rate control mechanisms. In window based congestion control
schemes, the window sets a limit on the amount of unacknowledged packets in
flight, i.e., the number of packets that are in transit in the end-to-end path for which
no acknowledgement has been received.

TCP includes basic mechanisms for flow control since its original specification
was published [81]. After a series of congestion collapses in the network [57],
mechanisms for congestion control have been added throughout the years. The first
proposal of the now widely accepted congestion avoidance algorithm was intro-
duced [57, 75], standardized and further developed [4, 86] within a period of sev-
eral years. This process lead to the development, standardization and world-wide
deployment of congestion control mechanisms that together with the basic flow con-
trol mechanisms comprise the core rate control functional block of TCP.

TCP rate control comprises four intertwined algorithms: slow start, congestion
avoidance, fast retransmit and fast recovery.

Let us consider the simplified version in algorithm 1 (of historical [57] interest
only) for the sake of simplicity in explaining our approach. Wi is the congestion
window size and Wmax is the delay-bandwidth product of the network path. Details
of current standard algorithms and how congestion is detected (commonly based on
packet loss) propose to extend them are provided in the next section.

Algorithm 1. Basic additive increase multiplicative decrease (AIMD) algorithm.
if congestion then

Wi = dWi−1, (d < 1)
else

Wi = Wi−1 +u, (u � Wmax)
end if

The algorithm tries to react quickly to congestion conditions. When the network
is congested, the amount of traffic from competing flows must be large and the queue
lengths will start increasing exponentially. Under the assumption that the system
will stabilize if the traffic sources throttle back at least as quickly as the queues are
growing and considering that a source controls load in a window based protocol
by adjusting the size of the window (Wi), we end up with the sender policy Wi =
d Wi−1, i.e. a multiplicative decrease rate that under persistent congestion leads to
an exponential decrease of the sender window.

If there is no congestion, router queues must be near zero and the network load
approximately constant. The network announces, via a dropped packet, when de-
mand is excessive but does not notify if a connection is using less than its fair share
(since the network is stateless, this information is not available). Thus a connection
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has to increase its bandwidth utilization to find out the current upper limit. The first
thought is to use a multiplicative increase rate possibly with a longer time constant,
Wi = bWi−1,1 < b < 1/d. This is however a mistake. The result will show wild os-
cillations and poor average throughput. The analytic reason for this, well known in
queuing systems as the rush-hour effect, is due to the fact that it is easy to drive the
net into saturation but hard for the net to recover. An increase policy based on small,
constant changes was proposed for TCP [57]. This policy has proven to be effective.

However, the standard additive increase multiplicative decrease (AIMD) scheme
can be too cautious under some conditions, which has given rise to a great deal
of research towards protocols for high-performance networks. A number of impor-
tant limitations in TCP rate control have been identified throughout the last years.
Among these, two issues have received a great deal of attention recently. First, TCP
performs poorly in long-distance high-speed networks where applications require
high bandwidth utilization. Second, lossy links also challenge the TCP congestion
control scheme, which is specially relevant for wireless networks. Nevertheless,
TCP performance can be clearly suboptimal under a wide range of scenarios and
traffic conditions, but specially in networks with a considerable amount of back-
ground and/or competing traffic.

As a consequence, the Internet research community is developing protocols with
alternative rate control schemes, such as the TCP-Friendly Rate Control protocol
(TFRC) [52], which uses equation based congestion control mechanisms, and pro-
tocols with similar yet extended schemes for rate control, such as the Stream Control
Transmission Protocol (SCTP) [87]. A number of extensions and modifications to
TCP rate control are being developed as well. These range from minor updates of
the standard AIMD scheme of TCP to complete redesigns of the protocol. The aim
of these proposals is to define versions of TCP tuned for long-distance high-speed
networks, adding robust performance over paths with non-congestive packet loss,
intermittent connectivity, significant reordering and related issues.

HighSpeed TCP [38], scalable TCP [60] and H-TCP [64] introduce new response
functions integrated in the AIMD scheme. The Westwood [94] and Westwood+
TCP [50] proposals estimate the end-to-end bandwidth in order to set the thresh-
old between the slow start and congestion avoidance stages. Other alternatives de-
tect congestion by measuring the delay of individual packets. These include TCP
Vegas [13], Compound TCP [88], and FAST TCP [95]. The CUBIC [51] proposal
uses a search method in order to compute the congestion window size.

Nonetheless, to date no proposal has been found to be free of performance or
fairness issues. In essence, TCP/IP networks are not deterministic. One of the con-
sequences of this fact is that the available network capacity of an end-to-end path
is in principle unpredictable. Thus, TCP-like congestion control schemes have to
estimate the available capacity in order to accommodate concurrent or competing
traffic. This estimation process is hampered by uncertainty and lack of information.

As stated above, in addition to the complex dynamics that can arise from the
AIMD mechanism of TCP, interactions between network layers, end nodes and in-
termediate nodes lead to a complex nonlinear dynamics that makes it difficult to
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design, simulate, and test congestion control schemes. A great deal of theoretical
analyses are currently being performed and a number of experimental implementa-
tions have been proposed. In this work we address the problem by means of fuzzy
systems. In what follows we describe a fuzzy model for TCP-like rate control in an
incremental manner.

In the simplified algorithm above, we distinguish two window evolution stages.
Each stage corresponds to a clearly identified network state and leads to the ap-
plication of a specific window update policy. However, the actual state can be in
between these two crisp conditions. Additionally the knowledge about the current
network state is uncertain and delayed. We note here a binary logic problem: when
the network state for which the rate control stage has been defined is constant for
enough time, the system response is proper. However, when the network state does
not exactly match any of the stages but a combination of them, the response of the
system may be too aggressive or too conservative.

The starting point of the TCP innovations was to view a TCP connection as a
control loop and to ask what the correct behavior of the control loop was under
certain impulses. In this same line of development, we apply the fuzzy inference
control paradigm to TCP end-to-end window based rate and congestion control.
Similarly to the proposal in [18], a first generalization of the algorithm above could
be stated by means of a simple reformulation of the basic AIMD principle:

wi+1 = wi +αD fD(wi)+ αI fI(wi) (5.1)

Where fD and fI set the decrease and increase policies. αD and αI can be thought of
as degree of truth values that represent to what extent the system is on the congested
(window decrease) or uncongested (window increase) mode; these values can be
defined as mutually exclusive, αD,αI ∈ 0,1;αD = αI . This formulation suggests a
fuzzy approach for managing the window update process. Instead of considering the
network in one of a set of exclusive states, we will consider the network to be (to a
variable degree) in all defined states. The degree to what the network is considered
to be in a particular state will be identified by a fuzzy rule based inference system.
We however depart from the classical control theoretical approach followed in [18].
Instead, we will define a set of linguistic rules that generalize the behavior of the
standard TCP congestion control scheme [71].

5.3.3 Design of a Fuzzy End-To-End Window Based Rate
Controler

The aim of this section is to design a generalization of the TCP congestion control
algorithm in terms of fuzzy logic. As main design principles we consider simplic-
ity, keeping a certain degree of compatibility with traditional approaches and the
overall objective of obtaining a set of rules that can be interpreted with ease from
the perspective of protocol design. Thus, we avoid to use automatic learning tech-
niques. On the one hand, analytical approaches and stability analysis in particular is
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hard to apply in this context. On the other hand, using automatic tuning approaches
for neuro-fuzzy systems that can exhibit optimal or near-optimal performance for a
particular collection of simulated scenario does not seem a sound approach as the
requirements of different scenarios are commonly antagonistic.

A congestion control scheme intended to be applied in the Internet must be flex-
ible and adaptive to a wide range of conditions. This requires testing and thorough
analysis of a broad range of complex simulated and real scenarios. This is hard to
perform through automated simulation and tuning approaches. In fact, the definition
of a standard set of scenarios and tests for evaluating TCP congestion control is a
challenging task that is currently work in progress [6].

It is beyond the scope of this section to provide a complete description of the TCP
rate control and related algorithms. We will focus on those procedures that perform
a direct action on the window, i.e. those procedures that imply the definition of a
network state (and a stage in the rate control algorithm) as well as the associated
window update policy. For a full specification of TCP refer to the aforementioned
documents. Though our approach finds applications in general window based end-
to-end transport protocols, we analyze the case of TCP as a case of special interest.
In what follows we will describe in an incremental manner those mechanisms de-
fined for rate control in standard TCP implementations and how we have extended
them by means of fuzzy inference systems.

The four standard algorithms for controling the congestion window in standard
TCP systems (slow start, congestion avoidance, fast retransmit and fast recovery)
will be described. In what follows, definitions in table 5.1 are considered.

Table 5.1 TCP rate and congestion control parameters

Parameter Description

SMSS Sender Maximum Segment Size. Size of the largest segment that the sender can
transmit

rwnd The most recently advertised receiver window

cwnd Congestion window. A limit on the amount of data TCP can send. At any given
time, TCP does not send data with a sequence number higher than the sum of the
highest acknowledged sequence number and the minimum of cwnd and rwnd.

f lightSize The amount of data that has been sent but not yet acknowledged.

RT T Round-trip time

RTO Retransmission timeout (which depends on RT T )

IW Initial window value for cwnd

LW Loss window value

ssthresh Threshold between Slow start and Congestion avoidance stages
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5.3.3.1 Slow Start

Beginning transmission into a network with initial unknown conditions requires
TCP to cautiously probe the network to estimate the available capacity, in order
to avoid congesting the network with an inappropriately large burst of data. The
slow start algorithm is used for this purpose at the beginning of a transfer. The ini-
tial cwnd value is usually a few SMSS (the most common value is 2 ·SMSS, see [5]
for a complete discussion).

The initial value of ssthresh may be arbitrarily high (usually the size of the
receiver advertised window) though may be reduced in response to congestion.
ssthresh is used to select which window update policy should be applied. The selec-
tion procedure as specified in the standard is shown in algorithm 2:

Algorithm 2. Standard TCP AIMD.
if cwnd < ssthresh then

Perform slow start
else if cwnd > ssthresh then

Perform congestion avoidance
else

Perform either slow start or congestion avoidance
end if

In the standard TCP slow start stage, cwnd is incremented each time an acknowl-
edgement packet is received from the sender that acknowledges new data2. The
increment rate is defined as follows:

cwndi+1 = cwndi + inc, (inc ≤ SMSS) (5.2)

It is common for current implementations to choose inc = SMSS. The slow start
stage (with exponential growth with time in the window) ends when cwnd is greater
than (or greater or equal to) ssthresh or when congestion is observed.

As a fuzzy extension to the slow start algorithm we propose an inference system
(SlowStartConfidence) that produces as output the extent to which current network
conditions should be managed with the slow start algorithm. In other words, the
system infers an estimate of certainty about the network being in such a state that
should be handled by means of the slow start update policy. The system has the
following inputs: timeout (to which extent a timeout is expiring), ssthresh, cwnd,
the difference ssthresh − cwnd, and two inputs that provide information on overall
network conditions: the cumulative packet loss fraction, loss, and the round-trip
time, rtt.

Figure 5.6 shows the fuzzy types and linguistic terms for the timeout and cwnd
inputs (types Ttimeout and T cwnd). Figure 5.7 shows the types for the input loss
and the output, con f idence. In order to simplify definition and easing the use of

2 This point is currently under revision, as better performance can be achieved by counting
the number of octets (instead of the number of packets) acknowledged [3].
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efficient implementation techniques, only triangular membership functions are used.
In general, the fuzzy types are defined using a partition of the crisp input space and
triangular and trapezoidal membership functions. 5 linguistic terms are defined for
inputs, and 5 linguistic terms are defined for the output (for increasing degrees of
certainty from IMPOSSIBLE to CERTAIN).

Fuzzy inference is performed by a simplified Mamdani model were the output
membership functions are singletons (or equivalently a zero-order TSK model). and
the fuzzy mean defuzzification method is employed to compute the crisp output
value. Membership functions were adjusted considering typical performance values
considered in recent Internet measurement studies [82].

Fig. 5.6 Ttimeout (left) and T cwnd (right) membership functions

Fig. 5.7 T loss (left) and T con f idence (right) membership functions

Table 5.2 shows the rule base of the SlowStartConfidence system. Standard TCP
rate control activates slow start update policies when cwnd is lower than ssthresh. As
can be seen in the rule base, the fuzzy system yields a certainty degree that increases
with input ssthresh − cwnd (fourth column). This behavior can be thought of as a
generalization of the crisp “lower than” comparison used in standard TCP. The five
fuzzy rules triggered by input ssthresh − cwnd represent the informal expression
“the bigger ssthresh − cwnd, the more possibility of slow start being suitable for
current network conditions”.

However, additional rules can modify the certainty degree if other network con-
ditions suggest a different update policy. Rules that most directly reproduce the
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Table 5.2 SlowStartConfidence rule base

timeout cwnd ssthresh ss−cw loss rtt con f idence
Z x x x x x HI
S x x x x x HI
M x x x x x ME
H x x x x x ME

VH x x x x x IM
x IW x x x x CE
x S x x x x LO
x M x x x x LO
x H x x x x LO
x VH x x x x IM
x x VS x x x IM
x x S x x x LO
x x M x x x LO
x x H x x x LO
x x VH x x x ME
x x x VS x x IM
x x x S x x LO
x x x M x x ME
x x x H x x HI
x x x VH x x CE
x x x x VH VH IM
x x x x VH H LO
x x x x H VH LO
x x x x VS VS ME

non-fuzzy standard TCP behavior are those triggered by values of the ssthresh −
cwnd input. The degree of certainty given by these five rules is then adjusted by
additional rules that consider further information on current network conditions.
Four rules are at least fired at any given time. Exactly one of the first five rules
(first five rows) is always active (for input timeout), as well as exactly one of the
next four rules (for input cwnd). The same applies to ssthresh, and ssthresh−cwnd.
Rules depending on loss and rtt are triggered only under clear network saturation
conditions.

5.3.3.2 Congestion Avoidance

In the congestion avoidance stage, cwnd is incremented by SMSS per round-trip
time. In real implementations, it is common to increment cwnd for every non dupli-
cated acknowledgement packet received from the receiver as in:

cwndi+1 = cwndi +SMSS ·SMSS/cwndi (5.3)

Which is generally considered to be an acceptable approximation and leads to a
growth rate approximately linear with time. Congestion avoidance ends when con-
gestion is detected.
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In addition, in any stage ssthresh and cwnd are modified when a timeout is de-
tected according to:

ssthresh = max( f lightSize/2,2 ·SMSS) (5.4)

cwndi+1 = cwndTO ≤ LW (5.5)

Where cwndTO is the recommended congestion window value after a timeout, with
LW usually being set to 1 full-sized segment. As with the slow start algorithm, we
propose an extension to congestion avoidance. The extension consists of a fuzzy in-
ference system (CongestionAvoidanceConfidence) that produces as output the extent
to which current network state should be managed following the congestion avoid-
ance algorithm. The system inputs are the same as those of SlowStartConfidence.

Table 5.3 shows the rule base, which has a similar structure to that of SlowStart-
Confidence but employs what can broadly be seen as a complementary rule base.
Note however that the rules depending on loss and rtt are triggered under different
conditions. In this case, the five rules triggered by ssthresh−cwnd represent the fol-
lowing sentence: “the smaller ssthresh − cwnd, the more possibility of congestion
avoidance being a proper algorithm for current network conditions”.

5.3.3.3 Fast Retransmit and Fast Recovery

TCP receivers send an immediate duplicate acknowledgement (ACK) packet back
to the sender when an out-of-order segment arrives. The purpose of this ACK is
to inform the sender that a segment was received out-of-order and which sequence
number was expected instead. From the sender’s perspective, duplicate ACKs can be
caused by a number of network problems. They can be caused by dropped segments.
In this case, all segments after the dropped segment will trigger duplicate ACKs. In
addition, duplicate ACKs can be caused by the re-ordering of data segments by
the network. Finally, duplicate ACKs can be caused by replication of ACK or data
segments by the network.

TCP senders use the fast retransmit algorithm to detect and repair loss, based
on incoming duplicate ACKs. The fast retransmit algorithm uses the arrival of 3
duplicate ACKs. After receiving 3 duplicate ACKs, TCP senders perform a retrans-
mission of what appears to be the missing segment, without waiting for the retrans-
mission timer to expire. After the fast retransmit algorithm sends the apparently lost
segment, the fast recovery algorithm governs the transmission of new data until a
non-duplicate ACK arrives. These two algorithms are usually implemented together
as follows.

1. When the third duplicate ACK is received, the lost segment is retransmitted and
ssthresh and cwnd are set to

ssthresh = max( f lightSize/2,2 ·SMSS) (5.6)
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Table 5.3 CongestionAvoidanceConfidence rule base

timeout cwnd ssthresh ss−cw loss rtt con f idence
Z x x x x x IM
S x x x x x IM
M x x x x x IM
H x x x x x ME

VH x x x x x CE
x IW x x x x IM
x S x x x x LO
x M x x x x LO
x H x x x x LO
x VH x x x x HI
x x VS x x x CE
x x S x x x LO
x x M x x x LO
x x H x x x IM
x x VH x x x IM
x x x VS x x CE
x x x S x x HI
x x x M x x ME
x x x H x x LO
x x x VH x x IM
x x x x VH VH CE
x x x x VH H HI
x x x x H VH HI
x x x x H H ME
x x x x M VH ME
x x x x M H LO

cwndi+1 = cwndDUP3 = ssthresh +3 ·SMSS (5.7)

This artificially inflates the congestion window by the number of segments (three)
that have left the network and which the receiver has buffered.

2. For each additional duplicate ACK received, increment the congestion window.

cwndi+1 = cwndi + SMSS (5.8)

This artificially inflates the congestion window in order to reflect the additional
segment that has left the network.

3. Transmit a segment, if allowed by the new value of cwnd and the receiver’s ad-
vertised window.

4. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh
(the value set in step 1).

cwndi+1 = ssthresh (5.9)

As with the slow start and congestion avoidance algorithms, we propose an exten-
sion that consists of a fuzzy inference system (FRFRConfidence) that produces as
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output the extent to which the fast recovery/fast retransmit strategy is suitable for
current network conditions. The inputs to the system are timeout, ssthresh − cwnd,
loss and rtt . The rule base is shown in table 5.4. Exactly one of the first five rules
(first rows) will be triggered at any time for different values of timeout. The same
applies to the next five rules (for ssthresh − cwnd values). The last four rules are
triggered when network conditions suggest that the fast recovery, fast retransmit
update policies are suitable.

Table 5.4 FRFRConfidence rule base

timeout ssthresh− cwnd loss rtt con f idence
Z x x x IM
S x x x IM
M x x x IM
H x x x IM

VH x x x CE
x VS x x IM
x S x x LO
x M x x ME
x H x x HI
x VH x x CE
x x VH VH CE
x x VH H HI
x x H VH LO
x x M H HI

5.3.3.4 Putting All Pieces Together

In our extended approach, we define three inference systems with linguistic rules
that generalize the behavior of the standard TCP congestion control scheme. Three
fuzzy stages are defined for slow start, congestion avoidance and fast retransmit/fast
recovery. Since the actual network state is known with uncertainty, delay, etc.) all
network states are considered to occur at the same time with a varying degree of cer-
tainty. The extent to which the system is in one of these stages is evaluated by three
fuzzy inference systems whose outputs are regarded as a degree of certainty about
current network state. This way, we address the uncertainty and lack of information
about the actual network congestion state as well as the difficulties in identifying
congestion conditions.

Update policies of ssthresh and cwnd given in equations 5.2 to 5.9 are kept.
However, as the network state is in general uncertain, all policies are simultaneously
evaluated and applied to a varying degree given by the three fuzzy inference systems
described. Thus, the three inference systems identify complex network states on the
basis of linguistic rules.

Slow start and congestion avoidance equations are always evaluated as in stan-
dard TCP implementations (equations 5.2 to 5.5). Additionally, when duplicated
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ACKs are detected, fast retransmit and fast recovery (equations 5.6 to 5.9) are eval-
uated as well (and considered to the extent given by the FRFRConfidence fuzzy
inference system).

In the simplest case, the three sets of policies are combined as follows. If we
denote by μss, μca, and μFRFR the outputs of the three fuzzy inference systems, and
by fSS, fCA and fFRFR the values given by the standard update policies (which we
will generalize to μi and fi (1 ≤ i ≤ n) for a variable number n of network states
(or stages in the rate control algorithm, or sets of update policies)), we define the
certainty degree ci of a stage as:

ci =
μi

∑n
j=1 μ j

Where the rule sets of the fuzzy inference systems should verify ∑n
j=1 μ j > 0. The

final update policy for cwnd is computed as the weighted average of the update
policies associated to all possible stages (as in equation 5.1):

cwndi+1 = cwndi +
N

∑
i=1

ci fi(cwnd,ssthresh)

This way, in essence we have a rule based method of combining update policies that
have been shown to be effective under certain conditions. The rule sets can lead to
compromise solutions under complex conditions. For instance, policy 5.9 usually
implies a large decrease of the congestion window. When additional inputs indicate
network congestion, the policy may be adequate. However, when the network does
not appear to be congested, a more aggressive behavior could improve performance
in terms of throughput and responsiveness.

5.3.4 Development Methodology and Tool Chain

In order to develop fuzzy inference systems, we adhere to a design methodology [16]
for the whole development process that covers from initial high-level description to
implementation as software and hardware components. A complete tool chain for
the development stages [73, 74] has been employed.

Leveraging on the Xfuzzy [73] CAD suite of tools and a methodology [11, 16]
for the development of fuzzy controlers, we have defined a methodology and a tool
chain tailored for the development of fuzzy Internet rate controlers.

The design flow and tool chain employed to develop fuzzy inference modules will
be described in the next section and is partially depicted in figure 5.8. The whole
development process is covered, from initial description to final implementation
whether as software or hardware. In this section we use however a simplified flow
which is shown in figure 5.8. The first development stage (description) is performed
using a high level fuzzy systems specification language, XFL [72], which can be
automatically turned into C and VHDL code among other implementation options.
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Fig. 5.8 Fuzzy systems design flow and tool chain for end-to-end traffic control

The development stages after specification have been tailored for end-to-end rate
control as follows. For network simulation, we have used ns-2 [56]. ns-2 is an object
oriented discrete event driven simulator with support for a vast variety of transport
protocols, queuing systems, routing schemes and access media, thus enabling us to
evaluate the performance of traffic controlers under complex and realistic simulated
scenarios. Fuzzy controlers are integrated into ns-2 as components implemented in
C.

Verification can be performed over software and hardware implementations of
fuzzy controlers. Software verification is performed over a controler implementation
within a tool that implements the TCP protocol in user space (atou), which is further
described in section 5.3.6.

5.3.5 Simulation Results

Following on the limitations of simulation discussed in section 5.2, there is a need
for the definition of benchmarks for end-to-end protocols, which includes common
simulation topologies, traffic patterns, reference implementations and a number of
additional factors to consider in any simulation study. In this sense, there has been a
considerable deal of effort within the research community during the last years to-
wards defining common principles for new congestion control as well as specifying
practices for evaluating new end-to-end protocol proposals.

The development and deployment of new end-to-end congestion control algo-
rithms is currently an ill-defined problem and raises controversy. In fact, it has been
only very recently that a set of criteria to consider when evaluating new conges-
tion control algorithms has been agreed within the IETF (not representing all the
implied parties) [39]. Still, these very general principles do not represent hard and
fast requirements for an appropriate congestion control scheme and should rather
be considered and weighted in the context of each proposal. As far as deployment,
many factors impact the adoption of new mechanisms and the success of some pro-
posals often depends on unexpected conditions and apparent randomness [39].
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It is currently work in progress in early stage of development within the IETF
the definition of a best current practice request for comments on a common TCP
evaluation suite [6]. Nonetheless, this suite does not aim to result in an exhaus-
tive evaluation of proposed TCP modifications or new congestion control schemes.
Rather, it is being developed as an evaluation suite for the initial evaluation of proto-
cols. The final goal of this effort is to define a common evaluation suite so that quick
and easy evaluations can be performed in simulations and testbeds using a common
set of well-defined, standard test cases in order to compare and contrast proposals.

The simulation study that we describe in this section aims to consider the above
cautions and requirements as far as possible in order to perform an overall com-
parative evaluation of the proposal presented here. The simulation study also ad-
dressess concrete current issues such as the limitations of standard versions of TCP
so as to take full advantage of available bandwidth for paths with high bandwidth-
propagation delay products.

Simulations of fuzzy rate controlers have been performed by means of the ns-
2 [56] simulator. The methodology applied in order to integrate fuzzy inference sys-
tems into ns-2 simulations was described in section 5.3.4. A performance evaluation
study was conducted on traditional and fuzzy rate controlers so as to compare both
approaches. We will show results for a comparison of TCP using three alternative
congestion control algorithms:

• The Reno congestion control algorithm [4] with the NewReno modification [45]
and the SACK options [68, 43]. This variant will be called TCP SACK. TCP
NewReno has been the most commonly deployed algorithm for a few years on a
worldwide scale. The SACK extensions are very common as well [69]. However,
at the time of this writing it is very difficult to estimate the real-world deploy-
ment of the many TCP variants proposed to date, as some operating systems are
integrating new TCP variants in their later versions.

• HighSpeed TCP [38].
• The fuzzy rate controler proposed here.

In the simulation experiments that follow, we will use the standard implementa-
tions of TCP SACK and HighSpeed TCP in ns-2 as well as a C implementation
of the fuzzy TCP variant implemented using the xfc tool of the Xfuzzy environ-
ment [73]. Due to the AIMD nature of TCP-like window based congestion control,
the slow-start stage will condition the behavior of short-lived flows, whereas long-
lived flows will transition into congestion avoidance state and stay for a long time (if
no congestion is detected). Thus, the congestion avoidance stage conditions long-
lived flows. Consequently, by studying a long-lived flow, we can gain understanding
of the behavior of the proposed scheme for both short-lived and long-lived flows. In
particular, we will show the results of test flows established for 30 seconds.

First, we will analyze a set of experiments performed in the dumbbell scenario.
A test TCP flow is established between node 1-1 and node 2-1. Different tests are
performed using TCP SACK, High Speed TCP and fuzzy TCP, respectively. All the
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competing flows are generated by either UDP traffic sources or TCP SACK traffic
sources. Low, medium and high competing traffic load was defined in the following
form:

• Low competing traffic load corresponds to a CBR UDP flow between node 1-2
and node 2-2, with bit rate 5 Mb/s.

• For medium competing traffic load, low traffic load is increased by adding two
flows between node 1-1 and node 2-2 and two flows between nodes 1-2 and 2-2.

• High competing traffic load corresponds to medium traffic load and two flows
between nodes 2-2 and 2-1 and two flows between 2-1 and 1-1.

Figure 5.9 shows the evolution of the congestion window for TCP SACK, High
Speed TCP and Fuzzy TCP with low, medium and high competing traffic load in the
dumbbell scenario. Notice that in this and following figures the congestion window
size is measured in bytes. It should be noted that traditional variants of TCP change
the window size in units of segments (or sender maximum segment size), which has
some performance and fairness issues [3]. In contrast, in the fuzzy TCP proposal
analyzed here all computations concerning the congestion window size are made in
bytes.

As it could be expected, there is a large decrease in the amount of bytes in flight
allowed by the congestion window for the medium and high competing traffic load,
a consequence of the lower available bandwidth in the end-to-end path. Figure 5.10
shows the evolution of the throughput of the test flow for the fuzzy, SACK and
HighSpeed TCP variants in the dumbbell scenario. Low, medium and high compet-
ing traffic load are taken into consideration as well.

For the GREN scenario, The test flow is generated between an end node 2 hops
away from the LOSA node of the Internet2 backbone (west coast of the USA) and
a node 2 hops below the SEV node (South Western Europe) of the RedIRIS back-
bone, a regional subnetwork of the GÉANT network, shown in figure 5.4 (page 199).
These test flows traverse an end-to-end path with approximately 80 ms of minimum
propagation delay (or an equivalent 160 ms minimum RTT), a maximum link band-
width capacity of 10 Gb/s and a bottleneck bandwidth capacity of 100 Mb/s. Unless
explicitly stated, all competing flows are generated by either UDP traffic sources or
TCP SACK traffic sources.

In this scenario, we define low, medium and high competing traffic load as
follows:

• Low competing traffic load corresponds to background traffic in the scenario
with no additions. The generation of background traffic in the GREN scenario
was explained in section 5.2.

• For medium competing traffic, an additional TCP SACK flow is established be-
tween a node connected to one of the backbone nodes of the Internet2 back-
bone and a node of one of the subnetworks of the GÉANT backbone (excluding
RedIRIS). This competing flow has a bottleneck bandwidth of 1 Gb/s and shares
the central part of the end-to-end path with the test flow.

• High competing traffic load corresponds to 20 flows between nodes connected to
nodes of the Internet2 and GÉANT backbones plus 20 flows in the reverse way.
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(a) Low competing traffic load

(b) Medium competing traffic load

(c) High competing traffic load

Fig. 5.9 Congestion window evolution for a test end-to-end flow in the dumbbell scenario
with low, medium and high traffic load. Continuous line: fuzzy TCP; long dashed line: High-
Speed TCP; short dashed line: TCP SACK.
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(a) Low competing traffic load

(b) Medium competing traffic load

(c) High competing traffic load

Fig. 5.10 Throughput evolution for a test end-to-end flow in the dumbbell scenario with low,
medium and high traffic load. Continuous line: fuzzy TCP; long dashed line: HighSpeed TCP;
short dashed line: TCP SACK.
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This way, the variance of the RTTs of the competing flows (besides the basic back-
ground traffic of the GREN scenario) is sufficiently high and follows a pattern found
in measurement studies [84], with approximately 160 ms RTT between the West
Coast of the USA and South Western Europe.

Figure 5.11 shows a comparison of the evolution of the congestion window for
the three congestion control schemes being analyzed in the GREN scenario. Fig-
ure 5.12 compares the evolution of the throughput of the test flow for the three
alternatives considered, with low, medium and high competing traffic load in the
GREN scenario.

As overall conclusions we can draw that the fuzzy extended version of TCP rate
control shows higher robustness against competing, cross and reverse-path traf-
fic and the derived RTT variance and loss events. This translates into higher final
throughput (improved by approximately 15% and 11% as compared to TCP SACK
and HighSpeed TCP, respectively in the case of low competing traffic load). This
fact becomes more evident as the competing traffic load increases. These simula-
tions were run with TCP flows with different RTTs within a wide range. Additional
simulations performed on network scenarios under high congestion conditions con-
firm that the fuzzy rate controler still provides proper and quick reactions to con-
gestion. We note that the higher stability of the throughput of fuzzy TCP flows
contributes to reduce RTT variance.

Common fairness principles considered in the design of Internet end-to-end con-
gestion control schemes [93] are satisfied as well. In particular, the decrease in
throughput that can be observed for the tests with medium and high competing traf-
fic load as compared to the tests with low competing traffic load is a consequence
of the available bottleneck bandwidth being shared among competing flows rather
than high congestion. Also, it can be observed that the presence of traffic with com-
plex behavior (in particular, high bandwidth and RTT variability [2]) in the GREN
scenario has a considerable impact on the stability of the throughput for the cases
of TCP SACK and HighSpeed TCP. The higher robustness of the fuzzy variant pro-
posed here becomes more evident under such conditions.

5.3.6 Implementation Results

In order to make the results of our work available for the Internet research commu-
nity as a research tool, we have developed an experimental user space (instead of
kernel space) TCP implementation with fuzzy extensions. A user space implemen-
tation allows maximum experimentation flexibility for further refinement of fuzzy
rule bases and identification of new rules.

The tool is based on the “Almost TCP over UDP” (atou) [36] utility, developed
as part of the web100 project of the High-Performance Networks research pro-
gram of the U.S. Department of Energy. We introduced changes to atou in order
to integrate the fuzzy inference scheme presented in previous sections. The three
fuzzy inference systems were generated as C code using the xfc tool of the Xfuzzy
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(a) Low competing traffic load

(b) Medium competing traffic load

(c) High competing traffic load

Fig. 5.11 Congestion window evolution for a test end-to-end flow in the GREN scenario with
low, medium and high traffic load. Continuous line: fuzzy TCP; long dashed line: HighSpeed
TCP; short dashed line: TCP SACK.
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(a) Low competing traffic load

(b) Medium competing traffic load

(c) High competing traffic load

Fig. 5.12 Throughput evolution for a test end-to-end flow in the GREN scenario with low,
medium and high competing load. Continuous line: fuzzy TCP; long dashed line: HighSpeed
TCP; short dashed line: TCP SACK.
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environment. The modified atou tool generates detailed event logs and packet traces
with a configurable degree of detail.

This way, a flexible framework for experimenting with highly modified imple-
mentations of TCP rate control at the application level is available for testing
between any two Internet hosts. Among the options that can be configured, the mod-
ified version of atou supports a number of TCP rate control variants.

We show a comparison of the three variants of TCP rate controlers that were
compared through simulation. Figures 5.13 and 5.14 compare the evolution of the
congestion window, and throughput for three implementation tests. The network
scenario is the following: two hosts transfer a file for 30 seconds; the TCP-like
connection between the two hosts is established along a 5 hops long path. The max-
imum link capacity is 1 Gb/s and the path bottleneck capacity is 100 Mb/s. The
average RTT is 20 ms approximately. Several tests were run with similar results to
those shown in figures 5.13 and 5.14. Results from experimental implementation
confirm simulation results as for improvements in robustness and throughput. The
overall throughput improvement of the fuzzy TCP variant is approximately 16%
and 12% with respect to TCP SACK and HighSpeed TCP, respectively, for tests 1
and 2. Tests 1 and 2 were performed in an almost idle end-to-end path with a small
amount of background traffic. Thus, the available bandwidth is highly stable and
close to the bottleneck bandwidth capacity. For test 3, four competing TCP SACK
flows were established between the same end nodes as the test flow using the thru-
lay tool [85]. Two of the competing flows are generated in the same direction as
the test flow, while the other two flows are generated in the reverse direction. It
should be noted that all the links that make up the end-to-end path are full-duplex
and symmetrical. In this case (figures 5.13(c) and 5.14(c) ), it can be observed that
the presence of real background traffic with the addition of competing flows and
reverse flows can significantly degrade the performance of traditional variants of
TCP. In contrast, the fuzzy variant is able to keep the a higher overall throughput
and stability, with a final improvement of arount 50% with respect to the other two
alternatives.

5.3.7 Discussion

We have shown that the rate control mechanisms of TCP (the prevalent transport
protocol in the Internet), which is currently a major topic of research, can be rein-
terpreted and extended partially and as a whole in terms of fuzzy logic. The fuzzy
model described provides a rule based perspective of currently evolving rate con-
trol schemes, being the first reported result in the application of fuzzy systems to
intelligent network state inference at end nodes.

In summary, simulation experiments confirm that the fuzzy congestion control
scheme proposed here provides significant improvements by better handling the
trade-off between different network states, being more adaptive to variations in
network conditions. These results were confirmed through an experimental
implementation.
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(a) Test 1

(b) Test 2

(c) Test 3

Fig. 5.13 Congestion window evolution in a real scenario for three sample tests. Continuous
line: fuzzy TCP; long dashed line: HighSpeed TCP; short dashed: TCP SACK.
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(a) Test 1

(b) Test 2

(c) Test 3

Fig. 5.14 Throughput evolution in a real scenario for three sample tests. Continuous line:
fuzzy TCP; long dashed line: HighSpeed TCP; short dashed line: TCP SACK.
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Both simulation and implementation results show that the proposed fuzzy ex-
tension to TCP rate control can improve performance with regards to a number
of criteria, namely, faster convergence to achievable transference rate, higher
throughput and reduced oscillations around the stabilized rate for long transfers.
The proposed fuzzy system also eases finding compromise solutions for different
user requirements. By performing simulation tests, we have analyzed the behavior
of the proposal presented here in a realistic scenario in the presence of background
traffic with high RTT and bandwidth variability under controled conditions.

We note however that there is still a lot of work to do as extensions to the system
described in this section. In particular, regarding the identification of new rules, the
exploration of the whole set of possible rules has not been explored. The following
subjects are of special interest:

• Application of adjustment and learning techniques on particular scenarios to gain
further insight on the system dynamics in these cases.

• Experimentation with a number of extensions that are current topics of research,
such as the initial cwnd value, fuzzy extensions to RTT and retransmission time-
out computation3, and extensions for intelligent loss-congestion differentiation
[77, 22]. This work paves the way and provides tools for experimentation with a
number of these mechanisms.

In this work, we have performed tests using both simple and complex scenarios,
i.e., in a dumbbell topology as well as in a complex topology modeled after some
real networks with thousands of nodes and simultaneous flows. With the complex
scenario, we have attempted at generating background traffic with high variability
and realistic overall statistical properties.

Altough a fairly complex scenario has been defined, many fundamental aspects
in network simulation are still in early stages of development from our viewpoint.
In particular, there is the fundamental question of how large an scenario has to be
in order to be large enough. This requires further exploration of complex simulation
scenarios such as the one described here.

As discussed above, the definition of topologies, traffic patterns, metrics, and
evaluation criteria is currently an ongoing effort within the research community.
Generation of background traffic is an area of current research where a number of
important developments are sought. In particular, whether relative simple models
can account for the impact on traffic dynamics that emerges from complex topolo-
gies is still an open question [90]. Thus, a great deal of extensions can be considered
for further work, while these are mostly related to recent and future developments in
the areas of network simulation and emulation, such as measurement based traffic
generation methods that can reproduce statistical and application specific patterns
from traffic traces [89].

We should note that the end-to-end traffic control scheme proposed here has been
designed and studied in standard scenarios. Thus, an area worth to explore as future

3 Current standard retransmission timer computation employs interpolation techniques to
smooth variations in measurements through a simple low-pass filter and take into account
RTT variance.
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work is the application of the scheme proposal in two particular environments of
interest: a) high-speed long-distance networks with large available bandwidths, and
b) lossy links networks and in particular those with wireless connectivity.

A future research area worth to explore as a natural extension to the approach
presented here is the description of end-to-end window based rate control schemes
using fuzzy state machines and Markov chains.

Finally, we should mention that regardless of the performance of the proposal
for end-to-end traffic control presented here, the main contribution of this work lies
in the formulation of a linguistic rule based scheme for window based end-to-end
congestion control.

5.4 Active Queue Management by Means of Fuzzy Inference
Systems

A major research problem in Internet transport and network layers is the devel-
opment of traffic regulation mechanisms that can cope with the requirements of a
growing diversity of technologies, applications and services. More generally, Inter-
net traffic dynamics is an increasingly complex topic of research [40, 82].

Quality of service requirements as well as traffic patterns of emergent services
and applications are difficult to characterize and demand deep advances in current
flow and congestion control schemes. Because of the nature of these problems (com-
plexity, no feasible analytic solution as well as incomplete and inaccurate informa-
tion) the employment of intelligent systems based on fuzzy logic and other soft
computing techniques is an appealing alternative.

As discussed in the previous section, currently deployed schemes for traffic reg-
ulation in the Internet (as well as proposed alternatives) fit into one of the two fol-
lowing approaches [12]: distributed control and queue controlers in routers.

The complex dynamics that arises from convoluted interactions among end-to-
end mechanisms and router queue controlers is difficult to understand and poses
many challenges. New algorithms aimed at general deployment in the Internet re-
quire to careful consider a number of practical arguments [46], congestion control
principles [37] and metrics for the evaluation of congestion control schemes [47].

5.4.1 Approach and Related Work

Around the first half of the 1990s the surge of ATM technologies and proposals
for quality of service architectures triggered the interest of the research community
in intelligent scheduling architectures and mechanisms for network traffic control.
Short after the first applications of computational intelligence and fuzzy inference
systems in particular to traffic control appeared [79, 21, 25]. Many proposals have
followed on during the 1990s and the present decade [83, 49, 23] mainly focused
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on different ATM classes of service and related aspects. The core idea behind these
proposals is the use of a fuzzy inference system as a controler for packet queues.
Among these, we cite [55, 92, 34, 91, 28, 27, 32].

A number of proposals of fuzzy systems for specific areas of network traffic
control have been made. Among these, [96] describes fuzzy systems for balancing
priorities when considering multiple classes of service within the DiffServ architec-
ture [12]. Results in optimizing flow control in asynchronous transfer mode (ATM)
based B-ISDN networks by means of Takagi-Sugeno fuzzy controlers are reported
in [24]. In [26] limited simulation results for balancing service rates among clas-
sified queues have been reported. Genetic algorithms have been successfully em-
ployed for optimizing queue controlers in specific cases [33].

Additional works that deal with the application of fuzzy control to the area of
active queue management as well as traffic control can be found in the literature (see
for example [28]). Type-2 fuzzy logic systems have been proposed for admission
control in ATM networks [66]. Type-2 fuzzy systems have been also proposed for
modeling and classification of VBR video traffic [65]. In addition, a general theory
of fuzzy systems for queuing control [97, 80] has been developed.

Here we further elaborate on the same idea. First, we consider simplicity as the
main design principle. Second, the focus of our work is however on the evaluation
over a broad range of scenarios that resemble network nodes with highly aggregated
traffic and other key characteristics as closely as possible. Our work differs from
previous reported results regarding the following points:

• Simulation is performed through the ns-2 [56], a de facto standard within the In-
ternet research community. Realistic state-of-the-art models of Internet aggregate
traffic are taken into consideration.

• We use a design methodology [16] and tool chain [73] for the whole development
process that cover from initial high-level description to implementation as soft-
ware and hardware components. The methodology and tool chain are overviewed
in the next section.

• Practical implementation constraints are considered, (current protocols, imple-
mentations and technological constraints). In particular, the next chapter will deal
with efficient hardware implementations that can achieve the high inference rates
required by current and future high performance Internet links [53].

The dominant queue control scheme in the current Internet is the passive FIFO
queue without classes of service (known as drop-tail), that discards packets when
the storage space is full. Active schemes (known as Active Queue Management,
AQM) are however being developed and promoted [12, 96] since AQM mecha-
nisms are required to provide quality of service, differentiate services or penalize
misbehaving flows, among other demanded functionalities.

Current Internet routers at core networks process aggregate traffic [58] which
typically comprises millions of packets per second as well as millions of active
end points and simultaneous flows established by services and applications with an
increasing diversity of traffic patterns. Analytically modeling these aggregates at
core routers is a challenging task. Furthermore, those scheduling architectures that
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require state information for all active flows are eventually not deployable at global
scale because of its complexity. It is thus assumed that Internet routers schedulers
and traffic controlers must cope with a high degree of uncertainty.

Although a number of AQM schemes have been proposed [54], properties of
aggregate traffic [58] (such as self-similarity and burstiness at multiple time scales)
make it difficult to stabilize packet queues. There are a great deal of challenges in
tuning AQM schemes in real environments and no generally accepted solution has
been found.

Some works can be found in the literature that use advanced techniques in order
to optimize fuzzy inference systems for queue control in routers, including com-
putational intelligence techniques such as genetic algorithms and swarm optimiza-
tion [34, 76]. These proposals shed some light on to what extent the performance of
an active queue management system can be optimized by computational intelligence
methods. However, we argue that these optimization methods are applied for a spe-
cific network scenario and thus the results cannot be extrapolated to active queue
management in general. An optimized controler that shows better performance than
its non-optimized counterpart in a particular scenario may however perform poorly
in another scenario. In addition, most simulation scenarios widely used throughout
the literature are far from resembling real networks in terms of topology and traffic
patterns.

In order to define an optimization procedure that guarantees good results in gen-
eral, it would be necessary to: a) define a set of simulation scenarios representative
of the highest possible range of conditions that can be found in the real world and
b) define a set of optimization goals that includes all the relevant performance met-
rics, both link specific and end-to-end. Both a) and b) are complex issues for which
some proposals have been developed throughout the last years [42, 47, 39]. The
proposals, oriented towards the definition of more generic performance evaluation
principles, are however in early stages of development and adoption. In this context,
defining a complete and representative set of simulation scenarios and performance
metrics for proper optimization of active queue management mechanisms is an ill-
posed problem. Rather than off-line optimization methods, the evolving intelligent
systems approach [8, 59, 70] seems a better alternative for dynamically adapting
neuro-fuzzy systems for AQM in particular scenarios.

To cope with the aforementioned problems, we propose here the notion of FAQM
(fuzzy active queue management) and show the usefulness of a simple fuzzy infer-
ence based controler in a complex simulation scenario in terms of a set of perfor-
mance metrics. By means of FAQM we aim at defining a general class of traffic
controlers for aggregate traffic that can perform in a flexible and adaptive manner.
Given the current stage of development of generic performance evaluation princi-
ples for AQM, we leave the optimization of this class of controlers as future work.

Figure 5.15 shows an scheme of a fuzzy inference based controler in an output
queue of a typical Internet router. A fuzzy inference system regulates a variable
number of packet queues. The fuzzy inference system implements a real-time task
with hard deadline, whereas the queue controler periodically retrieves data from the
inference system within the hard deadline imposed on the latter. In the most basic
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Fig. 5.15 Fuzzy active queue management in Internet routers

scheme, inputs (linguistic variables of the rule base antecedents) are queue sizes as
well as their variation whereas the output variable is defined as a probability value
or reference to determine which packet should be sent next. This scheme eases the
integration of intelligent traffic analysis systems as inputs to the controler.

5.4.2 Development Methodology and Tool Chain

Leveraging on the Xfuzzy [73] CAD suite of tools and a methodology [11, 16] for
the development of fuzzy controlers, in this section we describe a methodology and
a tool chain tailored for the development of active queue management mechanisms
based on fuzzy inference.

The design flow and tool chain employed to develop fuzzy inference modules
is depicted in figure 5.16. The whole development process is covered, from ini-
tial description to final implementation whether as software or hardware. The first
development stage (description) is performed using a high level fuzzy systems spec-
ification language, XFL [72], which can be automatically turned into a C soft-
ware implementation and synthesizable VHDL code, among other implementation
options.

The development stages after specification have been tailored for Internet traffic
control as follows. For network simulation, we have used ns-2 [56]. ns-2 is an object
oriented discrete event driven simulator with support for a vast variety of transport
protocols, queuing systems, routing schemes and access media, thus enabling us to
evaluate the performance of traffic controlers under complex and realistic simulated
scenarios. Fuzzy controlers are integrated into ns-2 as components implemented in
C.
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Fig. 5.16 Fuzzy systems design flow and tool chain for active queue control

Verification can be performed over software and hardware implementations of
fuzzy controlers. Verification of software implementations is performed over a con-
troler implemented within the networking stack of the kernel of the general purpose
operating system of a commodity PC. The steps required for the realization and
validation of hardware implementations are discussed in detail in chapter 6. In this
section we will analyze the performance of software implementations.

5.4.3 Fuzzy Internet Traffic Control of Aggregate Traffic

Fuzzy Internet traffic controlers can be developed as replacements for traditional
traffic controlers proposed for Internet routers. These employ three non-exclusive
mechanisms in order to regulate traffic [54, 12]:

• Basic AQM, which attempt to prevent congestion by discarding packets when
queues grow.

• Explicit congestion notification (ECN), whereby the controler sends notification
packets back to senders and/or intermediate routers in case of congestion.

• Admission control, i.e., filtering of packets that match an admission criteria (such
as flow rate and source/destination subnetwork).

Any of these mechanisms imply that some packets are selected to trigger a certain
action. Those packets which are selected are said to be marked by the controler.
Depending on the protocols and architectures involved, marking can correlate to
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one or more of the following actions: modify packet headers, discard packet (do not
forward to next node in the network), send ECN notifications, and activate filtering
rules.

Among the different traffic controlers proposed for Internet routers, the most
widely accepted is RED [54], an AQM controler which discards packets so as to
enforce end-to-end traffic regulation. Though a number of variants and specializa-
tions of RED have been defined, they are generally based on the definition of a
queue length threshold and a discard probability value that is proportional to the
packet queue length. According to figure 5.15, we propose a fuzzy controler that
marks packets the same way as RED controlers, i.e., discarding them. We distin-
guish buffer size and queue length values following recent developments on the
subject [9].

This kind of fuzzy controlers show some similarities to classic real time regula-
tors, such as PD controlers. In a basic setup, the inputs to the fuzzy system are two:
the current size of the packet queue and its variation. The fuzzy inference system
must produce as output the forwarding decision to apply to the next packet in the
queue.

5.4.4 Fuzzy Controler of Best-Effort Aggregate Traffic

This section describes the design of the FAQMBestEffort fuzzy system, which has
been developed as a controler for best-effort traffic according to the AQM paradigm.
FAQMBestEffort implements a traffic controler for congestion control on routers
with no support for classes of service.

In order to keep the system simple a number of restrictions will be applied. These
have a twofold implication. First, the system is easy to interpret. Second, it can be
realized using optimized hardware implementation techniques, as will be discussed
in chapter 6.

Two inputs and one output are defined. An scheme of membership functions for
both inputs is shown in figure 5.17, which depicts the fuzzy variable types Tei and
Tei−1. Input ei is the deviation between the number of currently queued packets and
a desired value reference, normalized between 0 and 1. Input ei−1 is the deviation at
the last time interval, normalized betwen 0 and 1. For both variables, seven linguis-
tic terms are defined ranging from Z to H for increasing queue sizes. The linguistic
terms are arranged so that a uniform partition of the input space is performed. Tri-
angular membership functions were chosen for simplicity.

The output of the system, pi, is defined as a probability value for marking the next
packet to be forwarded. In this case, as in AQM schemes currently most accepted
within the Internet research community, marking is defined as dropping the packet.
An scheme of membership functions for the fuzzy type T pi is shown in figure 5.18.
7 linguistic terms are defined ranging from P1 to P7 for increasing levels of prob-
ability, uniformly distributed through the output space. For simplicity, the output
linguistic terms are defined as singleton fuzzy sets. The rule base is presented in
table 5.5 whereas the resulting control surface is depicted in figure 5.19.
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Fig. 5.17 Tei (left) and Tei−1 (right) membership functions

Fig. 5.18 T pi membership functions

Table 5.5 FAQMBestEffort rule base

pi ei−1

Z VS S M B VB H

ei

Z P1 P1 P1 P1 P1 P1 P1
VS P2 P2 P1 P1 P1 P1 P1
S P3 P3 P3 P2 P1 P1 P1
M P5 P4 P4 P4 P3 P2 P1
B P6 P5 P5 P5 P5 P4 P3

VB P7 P6 P6 P6 P6 P6 P5
H P7 P7 P7 P7 P7 P7 P7

In order to simplify the definition task and easing the employment of efficient
implementation techniques, only triangular and singleton membership functions are
used. Fuzzy inference follows a TSK order 0 model, and the fuzzy mean defuzzifi-
cation method is employed to compute crisp output values.

The choice of the number of linguistic terms for the inputs and the output was
performed as follows. Equivalent FAQMBestEffort systems were designed for an
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Fig. 5.19 FAQMBestEffort control surface

increasing number of linguistic terms starting from 3. Simulations were run for these
systems and the overall application level throughput, was considered as criterion for
selecting the best option. We define the application level throughput as the transport
level goodput (amount of data transferred minus the amount of data in packets that
never reach their destination). Simulations were run in both the dumbbell and GREN
scenario for low, medium and high competing load. The definition of these load lev-
els is further described in the next section. Figure 5.20 shows the performance of the
FAQMBestEffort as a function of the number of linguistic terms for the inputs and
output. The performance is normalized against that of the system with 7 linguistic
terms. The system with 7 linguistic terms was chosen as the simplest system that
provides almost the best performance observed.

5.4.5 Simulation Results

The objective of this section is to explore by means of simulation the behavior of
the proposed active queue management scheme under a wide set of realistic network
scenarios and conditions. Our proposal will be compared against the RED algorithm
and in particular its Adaptive RED variant as specified in [44] and implemented in
the ns-2 simulator.
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(a) Dumbbell scenario

(b) GREN scenario

Fig. 5.20 Performance of the FAQMBestEffort scheme with different numbers of linguistic
terms for the two inputs and the output. The performance index is the overall application level
throughput. Three different degrees of competing traffic load are considered. Continuous line:
low load, long dashed line: medium load, short dashed line: high load. For each traffic load
level, performance is normalized against that of the system with 7 linguistic terms.

A performance evaluation study was conducted on the Adaptive RED and
FAQMBestEffort schemes so as to assess the latter and compare both approaches.
What follows is a summary of results from the FAQMBestEffort controler as com-
pared to the results from an Adaptive RED system in the two simulation scenarios
described in section 5.2: dumbbell and GREN. In the case of the dumbbell scenario,
we analyze the queue controler in router 1 for the intermediate link. In the case of
the GREN scenario, we analyze a queue controler in the SEV node of the RedIRIS
regional network, belonging to the GÉANT pan-European network.

Three different levels of traffic load will be distinguished in the simulations
below. Traffic load is generated using UDP traffic sources or TCP SACK traf-
fic sources. All TCP flows implement the TCP Reno congestion control scheme,
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with the NewReno extension and TCP SACK options. As in the simulation study
performed for end-to-end congestion control in the previous section, this variant will
be called TCP SACK. For the dumbbell scenario, the three levels of traffic load are
defined as follows:

• Low traffic load corresponds to

– two CBR UDP flows at 10 Mb/s, established between node 1-1 and 2-2 and
1-1 and 2-1, respectively.

– 4 TCP flows established between nodes 1-1 and 2-2, 1-2 and 2-1, 2-1 and 1-1,
and 2-2 and 2-2, respectively.

• Medium competing traffic is generated by duplicating each flow considered in the
low traffic load case. In addition, two CBR UDP flows at 10 Mb/s are established
between node 2-1 and 1-2, and 2-2 and 1-1, respectively.

• High traffic load is generated following the same scheme as in the medium load
case. However, in this case, the load is multiplied by 3. Thus, 12 UDP flows and
24 TCP flows are generated.

An scheme of the interconnections of the SEV node was shown in figure 5.4
(page 199). We analyze the queue for the link between the SEV node and the CAM-
PUS node, with 622 Mb/s of bandwidth capacity. This particular part of the GREN
scenario resembles a campus access node, a typical network configuration where
traffic controlers can have a direct impact on overall network performance as expe-
rienced by end users [17].

The procedure followed to tailor the generic GREN scenario to evaluating the
FAQMBestEffort scheme is as follows:

• TCP flows are generated for low, medium and high traffic load, between end
nodes of the Internet2 network of the GREN scenario and nodes in the 4th level of
the network being analyzed (these nodes are directly connected to the CAMPUS
node).

• For low competing traffic, 10 flows are generated between end nodes belonging
to Internet2 and end nodes connected to the CAMPUS node. These flows traverse
the SEV-CAMPUS link in addition to the background traffic, i.e., traffic resulting
from the random initialization of the GREN scenario. For medium competing
traffic load, 50 competing flows are generated. Finally, 100 competing flows are
generated for high competing traffic load.

A performance comparison of both Adaptive RED and FAQMBestEffort controlers
is presented in what follows in terms of a number of metrics. In particular we look
at the packet queue sizes and the application level throughput, or goodput.
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Table 5.6 Queue length statistics for the dumbbell scenario

Load Controler Mean Stdv Max. Min. 5 pc 95 pc

Low
RED 23.73 9.26 50 0 8.93 39.56
FAQM 34.36 4.39 46 21 26.81 41.39

Medium
RED 23.72 9.26 50 0 8.92 39.56
FAQM 34.49 4.67 48 20 26.89 42.06

High
RED 20.75 11.99 50 0 1.00 41.68
FAQM 34.27 5.78 50 16 24.84 43.50

Table 5.7 Queue length statistics for the GREN scenario

Load Controler Mean Stdv Max. Min. 5 pc 95 pc

Low
RED 23.83 10.51 50 0 6.96 41.60
FAQM 34.27 5.26 50 17 25.69 42.67

Medium
RED 23.95 12.66 50 0 1.01 45.55
FAQM 34.43 7.03 50 11 22.66 46.16

High
RED 24.15 15.03 50 0 0.25 47.84
FAQM 34.06 8.61 50 0 19.84 47.79

Figures 5.21 and 5.22 show the evolution of queue length for a period of 30
seconds for the Adaptive RED and the FAQMBestEffort controlers, respectively, in
the dumbbell scenario. For all the traffic load conditions considered, queue length
oscillations are significantly lower for the FAQMBestEffort controler which also
manages to keep a higher mean queue length. Overall statistical properties of the
oscillations of both cases are summarized in tables 5.6 and 5.7, which shows mean
queue length, standard deviation, maximum peak value, minimum peak value, and
5% and 95% percentiles. It can be seen that the performance improvement provided
by the FAQMBestEffort scheme increases with the traffic load.

Figures 5.23 and 5.24 show the evolution of the queue length of the Adaptive
RED and FAQMBestEffort schemes for 30 seconds in the GREN scenario. In this
case, the differences between Adaptive RED and FAQMBestEffort are higher than
in the dumbbell scenario.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.21 RED control in the dumbbell scenario with low, medium and high traffic load.
Queue length evolution for 30 seconds.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.22 FAQMBestEffort control in the dumbbell scenario with low, medium and high
traffic load. Queue length evolution for 30 seconds.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.23 RED control in the GREN scenario with low, medium and high traffic load. Queue
length evolution for 30 seconds.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.24 FAQMBestEffort control in the GREN scenario with low, medium and high traffic
load. Queue length evolution for 30 seconds.



5.4 Active Queue Management by Means of Fuzzy Inference Systems 241

The higher stability of FAQMBestEffort can also be seen in figures 5.25 and 5.26,
which show the evolution of the output (marking value) for both AQM schemes in
the dumbbell scenarios. The same applies to the simulations performed in the GREN
scenario (figures 5.27 and 5.28).

(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.25 RED controler output. Dumbbell scenario with low, medium and high traffic load.
Marking probability evolution with time for 30 seconds.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.26 FAQMBestEffort controler output. Dumbbell scenario with low, medium and high
traffic load. Marking probability evolution with time for 30 seconds.

Application level throughput (goodput) resulting from both AQM schemes is
compared in figures 5.29 and 5.30 for the dumbbell scenario, and 5.31 and 5.32
for the GREN scenario. As expected, the higher stability and mean queue length in
the FAQMBestEffort case lead to higher goodput.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.27 RED controler output. GREN scenario with low, medium and high traffic load.
Marking probability evolution with time for 30 seconds.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.28 FAQMBestEffort controler output. GREN scenario with low, medium and high
traffic load. Marking probability evolution with time for 30 seconds.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.29 Application level throughput with RED control. Dumbbell scenario with low,
medium and high traffic load.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.30 Application level throughput with FAQMBestEffort control. Dumbbell scenario
with low, medium and high traffic load.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.31 Application level throughput with RED control. GREN scenario with low, medium
and high traffic load.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.32 Application level throughput with FAQMBestEffort control. GREN scenario with
low, medium and high traffic load.
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Overall statistics of the simulations are summarized in tables 5.8 and 5.9 for
the dumbbell and GREN scenarios, respectively. The tables show the following
statistics for the application level throughput: average, standard deviation, maxi-
mum peak value, minimum peak value, and 5% and 95% percentiles.

Table 5.8 Application level throughput statistics for the dumbbell scenario

Load Controler Mean Stdv Max. Min. 5 pc 95 pc

Low
RED 850.4 43.16 960.9 670.6 775.0 916.5
FAQM 926.1 38.59 999.9 774.5 859.5 985.1

Medium
RED 803.3 46.10 942.9 600.9 724.3 870.0
FAQM 907.8 39.26 982.9 757.5 838.4 966.9

High
RED 454.0 139.1 631.7 2.109 99.65 578.1
FAQM 709.8 83.82 815.2 446.2 498.0 785.5

Table 5.9 Application level throughput statistics for the GREN scenario

Load Controler Mean Stdv Max. Min. 5 pc 95 pc

Low
RED 459.6 42.31 582.5 274.3 383.6 521.7
FAQM 534.0 39.0 607.9 382.5 463.3 592.3

Medium
RED 428.9 41.21 531.2 228.1 353.3 485.3
FAQM 518.3 40.43 584.8 342.7 441.8 573.9

High
RED 273.7 109.7 417.6 0.0 23.1 370.7
FAQM 397.0 77.26 501.4 154.6 203.7 467.6
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5.4.6 Implementation Results

The objective of this section is to analyze the behavior of implementations of RED
and FAQMBestEffort in an emulated scenario. In particular, we will analyze the
dumbbell scenario. The tests were performed using the NIST Net router [20] in
order to emulate the dumbbell topology described before. Traffic load was generated
using the thrulay tool [85]. Three levels of traffic load, low, medium and high, were
defined in the same manner as in the simulation tests.

Here we show tests performed with software implementations of the FAQMBest-
Effort and Adaptive RED integrated in a network emulator, namely the NIST Net
software router and network emulation package [19, 20] running on the GNU/Linux
operating system in a commodity PC. The problem of performing emulation tests
with hardware implementations of fuzzy controlers will be addressed in chapter 6.

FAQMBestEffort was integrated into the NIST Net routing system by applying a
table look-up procedure on a table of previously generated values of the output of
the FAQMBestEffort inference system. This way, at the expense of higher memory
usage, it is possible to emulate queues for bandwidth capacities of the order of the
Gb/s, which would not be feasible with a functional software implementation as
provided by the xfc tool of the Xfuzzy environment.

Figures 5.33 and 5.34 show the evolution of the packet queue length for a pe-
riod of 30 seconds for the Adaptive RED and the FAQMBestEffort active queue
management schemes, respectively, in the emulated dumbbell network. Despite the
differences as compared to the simulation tests, the overall same behavior can be
observed for both schemes. Again, the packet queue length oscillates less with the
FAQMBestEffort scheme and the advantages of FAQMBestEffort as compared to
Adaptive RED become more evident as the global traffic load increases.

Application level throughput (goodput) resulting from both schemes is compared
in figures 5.35 and 5.36. As in the simulation tests, the higher stability and average
queue length in the FAQMBestEffort case lead to a performance improvement that
increases with overall load.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.33 Queue length evolution for 30 seconds. RED Controler. Emulated dumbbell sce-
nario with low, medium and high traffic load.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.34 Queue length evolution for 30 seconds. FAQMBestEffort Controler. Emulated
dumbbell scenario with low, medium and high traffic load.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.35 Application level throughput with RED Controler. Emulated dumbbell scenario
with low, medium and high traffic load.
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(a) Low traffic load

(b) Medium traffic load

(c) High traffic load

Fig. 5.36 Application level throughput with FAQMBestEffort . Emulated dumbbell scenario
with low, medium and high traffic load.
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5.4.7 Discussion

We have shown the results of a comparative evaluation of the proposed FAQMBest-
Effort controler considering a number of characteristics of real traffic patterns as
well as a complex topology. It has been argued that defining a complete and rep-
resentative set of simulation scenarios and performance evaluation metrics for op-
timizing an AQM scheme is currently an ill-posed problem. Thus, the optimization
of the FAQMBestEffort controler for specific conditions has been left as subject of
future research.

The focus of this section has been on the evaluation of a simple controler that
can be regarded as a basic and general from of a class of fuzzy inference systems
for active queue management. It is suggested that rather than off-line optimization
methods, on-line methods such as evolving neuro-fuzzy systems should be explored.
However, this would require an in depth analysis of how to use available informa-
tion in routers to evolve the active queue control system in such a way that the
performance in terms of measurements not directly known is optimized.

We explored the performance of FAQMBestEffort and RED through simulation
experiments and then confirmed the correct behavior of the fuzzy inference based
proposal on a real emulated scenario. Results from emulation tests matched those
obtained from simulation tests except for small numeric variations due to implemen-
tation details. As overall conclusion, FAQMBestEffort shows a higher robustness in
the presence of bursty traffic and outperforms RED for both bulk transfer and real-
time traffic, showing better performance in terms of queue length and stability, link
utilization, as well as impact on end-to-end delay and jitter.

The results summarized above imply that end users will experience a higher mean
delay in the FAQMBestEffort. The delay increase is nevertheless negligible for cur-
rent network technologies and indeed generally lower than 5% of the overall end-to-
end delay in our simulation scenario. On the other hand, FAQMBestEffort improves
peak delay values as compared to those of the RED controler by approximately 50%,
which implies a significant improvement in end-to-end jitter. Thus, FAQMBestEf-
fort performance is better for best effort traffic while the benefits it introduces for
real-time traffic clearly outperforms the hardly noticeable mean delay increase.

We note that, although developed for bulk transfer traffic with no time con-
straints, the higher degree of robustness and responsiveness to packet bursts shown
by FAQMBestEffort leads to an improvement in end-to-end performance as expe-
rienced by time constrained services and applications. FAQMBestEffort is thus a
practical compromise solution for currently deployed routers.

We also note that small variations of the fuzzy controler (mostly through mem-
bership functions shifts) can provide results suited for specialized traffic. It is thus
feasible to develop controlers tailored for particular applications and traffic patterns.
These controlers can be combined in an intelligent manner within class of service
enabled infrastructures.

The FAQM scheme for controling aggregate traffic in Internet routers has been
described. Within the FAQM scheme, results from FAQMBestEffort show a higher
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robustness than traditional traffic controlers in the presence of self-similar bursty
traffic and outperforms RED results for both bulk transfer and real-time traffic,
showing better performance in terms of queue length, stability, utilization, and delay
variability, among other parameters.

5.5 Conclusions

Here we have presented two proposals for performing end-to-end flow and con-
gestion control as well as active queue management in routers by means of fuzzy
inference systems.

We first defined complex network scenarios in order to simulate network control
mechanisms under realistic conditions. These scenarios have been shown to be sub-
stantially different to those commonly used throughout the literature to design and
optimize computational intelligence based traffic control methods.

Then, we designed and tested a new paradigm for performing end-to-end flow
and congestion control in a TCP-compatible manner by means of fuzzy rule based
systems. This new approach was tested and compared against TCP Reno and High-
Speed TCP. Simulation and implementation results showed that our proposal can
improve overall performance under a wide set of conditions.

In addition, an scheme for active queue management in routers using fuzzy logic
control was presented. As opposed to previously proposed controlers, the focus here
was on the testability and performance on realistic and varied scenarios. This control
scheme was tested and compared against RED and drop-tail schemes. Simulations
showed that that the proposed controler has better performance in common condi-
tions and can achieve satisfactory performance under a wider set of conditions than
the alternatives compared. An implementation on emulated scenarios confirmed the
simulation results.

The design of the rule based schemes developed for both end-to-end congestion
control and active queue management in this chapter enables tailoring these mecha-
nisms to meet specific application requirements in a linguistic manner. This makes
it possible, for instance, to gradually adapt congestion control functions for services
with varying degrees of end-to-end elasticity.
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Chapter 6
Open FPGA-Based Development Platform for
Fuzzy Inference Systems

Abstract. This chapter looks into the practical implementation of some of the fuzzy
inference systems proposed in previous chapters. Both architectural and operational
constraints are considered. The focus is on an open FPGA-based hardware platform
for the implementation of efficient fuzzy inference systems for solving problems
in high-performance packet switched networks. A feasibility study is conducted in
order to show that the techniques developed can be deployed in current and future
network scenarios with satisfactory performance.

6.1 Fuzzy Inference Systems for High-Performance Networks

Computational intelligence techniques are gaining momentum as tools for network
traffic modeling, analysis and control. Efficient hardware implementations of these
techniques that can achieve real-time operation in high-speed communications equip-
ment as well as many other demanding application fields is however an open prob-
lem. Current routing architectures pose two major challenges in the design of new
mechanisms: scalability and flexibility of implementations. Here we introduce a
platform and a companion development methodology for developing fuzzy systems
that does not only fulfill operational requirements but also addresses the challenges
posed by current routing architectures.

An FPGA development board with PCI/PCI-E interface is employed to support
an open platform that comprises open CAD tools as well as IP cores. For the de-
velopment process, we set up a methodology and a set of tools that cover from
initial specification in a high-level language to implementation on FPGA devices.
PCI compatible fuzzy inference modules are implemented as SoPC based on the
open WISHBONE interconnection architecture. Results from the design and imple-
mentation of fuzzy analyzers and controlers for network traffic are analyzed. These
systems are shown to satisfy operational and architectural requirements of current
and future high-performance routing equipment.

F.M. Pouzols et al.: Mining & Control of Network Traffic by Computational Intelligence, pp. 263–304.
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In section 6.2 we overview current practices and trends in routing architectures
and design. We discuss how these practices and trends constrain the integration of
fuzzy mechanisms in routers. Architectures and platforms for research in the net-
working field are overviewed as well. This serves for us to introduce the challenges
and constraints in this field and motivate the development of the platform that is the
main subject of this chapter. Section 6.4 outlines the architectures and technologies
proposed for efficient hardware implementations of fuzzy systems, with the focus
on the digital architecture used here. Section 6.5 describes an FPGA-based platform
for fast development of prototypes of fuzzy inference systems with applications to
networking, namely network traffic analysis and control. The platform is applied to
implement some of the fuzzy inference systems described in previous chapters.

6.2 Routing Architectures

A major research problem in Internet transport and network layers is the devel-
opment of traffic regulation mechanisms that can cope with the requirements of a
growing diversity of technologies, applications and services. More generally, Inter-
net traffic dynamics is an increasingly complex topic of research [67]. In the previ-
ous chapter we dealt with fuzzy inference systems for traffic control tasks that are
to be implemented in Internet routers. In what follows we analyze how these fuzzy
inference blocks would fit in current and next generation router architectures.

Technological trends in Internet core routers and high-end communications hard-
ware in general (see figure 6.1) lead to hard constraints specially regarding packet
processing rates. During the last years total Internet traffic has grown at over 80
percent per year, which directly translates into a similar or even higher increase of
traffic volume in backbone routers. Overall, network traffic volume increases at a
rate that outpaces advances in VLSI technology. Within this context, two main con-
straints arise: scalability (processing units must be able to process up to millions of
packets per second (Mpps or Mp/s)), and flexibility and reconfigurability of imple-
mentations (a requirement imposed by the fast increasing diversity of protocols and
technologies involved) [38, 72].

Both academia and major vendors are currently pushing for distributed and mod-
ular router designs, where routers are composed of modules that can be mapped
onto different processing elements and communicate through open well-defined
interfaces over an internal network [38]. Hardware for high-end communications
systems has been traditionally developed in a custom and unstructured manner. Nev-
ertheless, reconfigurable architectures are employed in practice by most vendors and
design methodologies for easing the development process are sought.

Routers can be classified into three classes depending on the level they are de-
ployed within the Internet. These classes correspond to access routers, campus or
enterprise routers and core routers. We will focus on core or high-end routers, those
designed for network backbones. In many aspects, today high-performance routers
resemble supercomputers and have the hardest operational constraints.
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Fig. 6.1 High-end routers technological trends [38, 39, 48]

By tying together networks of the global Internet, routers made up a unified
whole. While the main function of a router is to forward packets from a set of input
links to a set of output links, they must also implement complex distributed routing
algorithms, deal with diverse link technologies and provide support for traffic engi-
neering tasks, differentiated services as well as quickly evolving quality of service
schemes.

The architecture of Internet routers has evolved at a fast rate since the first imple-
mentations appeared [34, 69, 18, 47]. This evolution has been driven by a number of
technological trends and functional requirements. On the one hand, the divergence
in performance increase seen by the diverse components of a router (such as mem-
ory elements, interconnection links, programmable devices and processors) chal-
lenges router design. On the other hand, new functional requirements have arised as
new applications, services and technologies are being deployed. As a consequence,
a great deal of research efforts are ongoing to address these challenges in router
design.

The architecture of network systems in general has dramatically changed
during the past two decades [21, 23, 50, 5]. From a historical perspective, archi-
tectures can be broadly classified into three generations depending on the degree of
centralization:

• First generation (late 1980s and early 1990s): software running on a standard
processor (for example, an IP router built by adding software to a standard mini-
computer).

• Second generation (mid 1990s): classification and a few other functions offloaded
from the CPU with special-purpose hardware, and a higher-speed switching fab-
ric replacing a shared bus.
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Fig. 6.2 Overall scheme of a router: control and switching plane

• Third generation (late 1990s): completely decentralized design with Application
Specific Integrated Circuit (ASIC) hardware plus a dedicated processor on each
network interface offloading the CPU and handling the fast data path.

In addition, since more than a decade high performance routers are designed fol-
lowing a conceptual partition that separates two major functional blocks: the control
and the switching or interconnection planes [39] (see figure 6.2). A detailed descrip-
tion of switching fabrics architectures is outside the scope of this monograph, for
an extensive review see [38, 15, 48]. These partitions do not necessarily match the
physical structure of hardware implementations.

Figure 6.3 shows the overall physical structure and components of the control
and switching planes for routers of the second and third generation [5, 22, 38]. First
generation equipment uses a shared bus as interconnection element and packets are
transmitted twice over the bus (from the input line card to the central processor and
from the processor to the output line card). In second generation equipment, line
cards incorporate the necessary buffers so that packets have to be transmitted just
once from the input to the output line card.

Third generation routers introduced switched backplanes as interconnection el-
ements, which allow for simultaneous packet transfers thus increasing the global
bandwidth capacity. In general, line cards are not mere medium access control sys-
tems to the physical connection means. With the introduction of second and third
generation architectures, the main functions of the line cards of a core router in-
clude route lookup, packet classification and traffic management for quality of ser-
vice control among many others. As a consequence, line cards typically include the
following elements as well:

• Packet processing devices that perform functions belonging to the data plane,
such as classification (see chapter 1) and routing decisions [73]. Consequently,
these devices integrate the routing database in whole or part.

• Memory elements that perform as buffers for different connection rates.
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Fig. 6.3 Overall architecture and components of a second/third generation router

On the other hand, the control plane broadly consists of a specialized CPU, memory
elements and a system for managing the routing database. Although we do not get
into details about the routing database, usually referred to as the routing information
base (RIB), it is one of the most complex and critical components of a router as a
whole [22, 38].

The interconnection block usually takes the form of a switching matrix [22]. It
is currently implemented as a switching system with complex estructures that aim
at providing a balance among its switching speed, its scalability, the combinatorial
direct interconnection possibilities among the maximum number of boards as well
as its cost in terms of area and consumption [45].

The performance as for bandwidth that the switching system can attain are lim-
ited not only by its design but also by the organization of the memories that are
used for buffering packet queues. The function of these queues is to adapt different
bandwidths available in input and output ports, with the aim to reduce losses due
to incoming packet bursts. These buffers can be implemented in the input or output
boards.

In the first case (where packet queues are implemented in the input boards, see
figure 6.4(a)) outgoing traffic may be unnecessary blocked at some output ports
due to the lower bandwidth of other output ports. It has been shown that in the
case of uniform traffic patterns this issue can reduce the overall performance of the
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(a) Packet queues in input ports

(b) Packet queues in output ports

Fig. 6.4 Packet queues in a router switching subsystem

interconnection system down to 59%. It should be noted also that these configura-
tions require the bandwidth of the memory elements be equal to that of the physical
links.

An alternative configuration can be defined by including packet queues in output
ports (see figure 6.4(b)). In this case, since incoming packets in different input ports
can be simultaneously transmitted to the same output port, the bandwidth of the
memory elements is required to be the same as that of the switching system in order
to avoid a performance degradation.

Given that the bandwidth of memory elements is the hardest technological con-
straint on routers performance, many current architectures use a hybrid scheme for
input queues known as VOQ (Virtual Output Queueing), depicted in figure 6.5. Un-
der this scheme, each and every input port integrates a complex packet queue imple-
mented as a set of parallel queues, as many as output ports are enabled. These virtual
output queues prevent that packets routed to available output ports be blocked. This
way, the bandwidth required on memory elements is the same as that of the in-
put queue case while overall performance can attain 100% of the switching system
nominal capacity.

For some conditions and configurations of the switching matrix, packets arriv-
ing at input ports can be directly routed to the proper output port (through a direct
connection in the switching matrix between both ports) without any participation
of the control processor. The routing time in these cases is remarkably lower than
in those cases where the control processor participates in the routing process [70].
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Fig. 6.5 Virtual Output Queuing (VOQ) scheme

Thus, there is a partition between two paths: the fast and slow paths, conditioning
the design of current routers where the aim is to keep most of the traffic in the fast
path.

The slow path provides poorer performance and is generally implemented as
software running on a microprocessor. On the contrary, the fast path is generally
implemented as a set of ASIC, is not flexible and hard to extend and update be-
sides being costly to implement. The partition between the fast and slow paths is
of a great importance in current architectures due to the technological trends shown
in figure 6.1 [54], as the gap between links and memory elements keeps increasing.
However, taking full advantage of the fast path is increasingly difficult as new proto-
cols and services are being supported which require a great deal of flexibility in the
packet processing task. Thus, in conclusion three major design issues are currently
posed in this context:

• New architectural developments are sought in order to keep the capacity of routers
increasing.

• Transmission rates increase faster than packet processing rates.
• More flexibility is needed for packet processing, including those packets in the

fast path.

6.2.1 High-End Routing Hardware

A number of approaches and architectures have been proposed throughout the last
years for implementing high-end Internet routers. In this section we analyze the
compatibility of fuzzy modules with some of these architectures as well as their
feasibility considering speed, area and power consumption constraints. Our analysis
focuses on the applicability to architectures used for high-end routers from major
vendors [34]: Cisco series 7600, 12000 and CRS [18, 70] and Juniper T-series [69].

Currently, the major problems in the design of high-end routers derive from the
difficulties in designing processors for the control plane. Processors being imple-
mented, Network Processing Units (NPU), aim at providing the speed of an ASIC
and the programmability of a CPU, i.e., providing high performance and also the
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necessary flexibility that an ASIC cannot provide. An NPU must perform packet
processing in a very specialized and optimized manner but also provide a degree of
flexibility that enables supporting an increasing number of services [35, 22].

The way the NPU of a router series is implemented has an impact on the imple-
mentation of the interconnection cards and constrains the overall characteristics of
the series [39, 21], such as performance range, functionality, programmability and
configurability.

As noted by Aweya [5], high throughput IP routers are possible only if critical
tasks are identified and isolated, and special purpose modules are tailored to perform
them. In general, the basic principle in routing hardware design and NPU based
systems [22, 25, 24, 23] is to exploit parallelism against the main limiting factor
imposed on overall performance: the memory access speed. This implies extensive
use of pipelining techniques and distribution of tasks among many processing ele-
ments. In addition, a major design objective is keeping overall performance stable
and predictable. There are two main alternatives for the hardware implementation
of an NPU:

• Architectures based on general purpose processors (such as the NPUs from
AMCC®, Intel®, IBM®, Motorola®, Vitesse®, Agere® and other vendors [39]).

• Specific architectures, with better performance but lower flexibility. In this case,
the development time is usually too long as compared to the fast evolution of
services. These architectures can be implemented as ASIC or high-capacity pro-
grammable logic devices, specially FPGA devices. The latter case provides a
convenient balance between performance and design flexibility and programma-
bility at the expense of a higher cost per unit and power consumption.

In practice, current flexibility requirements lead to a hybrid approach where high-
end routers use general purpose units together with co-processing and acceleration
elements (processing engines) implemented as ASIC or on specific FPGA devices.
In this context, FPGA devices are not only used for developing prototypes but also
for final products. The functions of an NPU are usually splitted into two blocks that
can be implemented either on a chip or on separate chips:

• A block that carries out the essential and traditional functions of a network pro-
cessor (NP), such as error correction, classification, address lookup, fragmenta-
tion and reassembly of packets.

• An additional block for functions of a higher level generally refered to as traffic
management (TM). This block is being more and more developed as quality of
service provisioning functions are deployed. TM includes among other functions
measurement procedures, network management policies, congestion control and
quality of service schemes, queue management and bandwidth allocation.

In order to manage millions of traffic flows in links with bandwidths of the order of
10 Gb/s current NPUs are usually composed of a number of blocks with different
degrees of programmability and generality [22, 35]. This way, different options for
executing functions on both software and hardware are available, ranging from spe-
cific engines implemented as ASIC to general purpose processors, with operating
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Fig. 6.6 Example NPU architecture (Intel® IXP Series)

systems such as Unix variants and VxWorks that can be programmed in languages
such as C, C++ or Java for functions of the control plane and slow path. Thus,
NPUs are in general a component of development platforms that include tools such
as compilers, debuggers and simulators. Since NPUs employ parallelism and con-
current processes to achieve high performance, the software can be complex and
difficult to analyze and debug. This difficulties are particularly severe in general be-
cause of the parallel execution of multiple threads and, more specifically, because
of unexpected interactions among unrelated software components under heavy load
conditions.

Figure 6.6 shows as an example the scheme of an NPU of the IXP (Internet
Exchange Processor) series [42, 22] from Intel®. This series support links of up to
10Gb/s and implements an architecture similar to that of other vendors such as the
Motorola® C-Port, AMCC® nP and Agere® APP.

As in most NPUs, data processing is distributed over a core processor and a set of
specialized processing units. The central processor in this architecture is an Xscale
unit [43], that can run operating systems such as embedded versions of GNU/Linux
and VxWorks. These units are programmed in C and C++, have a heavily con-
strained memory access model and have specific interfaces for accessing a set of
up to 16 specific processing engines. These engines or processing units [20, 25] are
32 bits RISC processors that work in parallel sharing internal buses. They lack a
full operating system, have a fix number of execution threads and are programmed
in restricted C or microcode but have full access to the memory blocks and other
co-processing and acceleration subsystems.

This way, NPUs are in between flexible specific systems and general purpose pro-
cessors with a high degree of parallelism and specialization. Specific programming
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languages have been proposed such as NCL (Network Classification Language)
from Intel. However, there are no standards and mature development tools, which
can make designing NPU based systems almost as complex as designing a fully
custom ASIC solution.

Let us consider timing constraints and expected performance for high-end NPUs.
As an example, series 12000 Cisco routers have an overall switching bandwidth
of 1.28 Tb/s or 375 Mp/s (millions of packets per second), with a distribution
of 25 Mp/s per line card. Cisco CRS routers support standalone configurations of
320 Gb/s, 640 Gb/s and 1.2 Tb/s aggregated switching bandwidth, with a distribution
of up to 40 Mp/s per line. Series T320 and T640 Juniper routers attain a total switch-
ing bandwidth of 320 and 640 Gb/s, respectively, which is equivalent to 385 Mp/s
and 770 Mp/s, respectively, with a distribution of up to 24 Mp/s in both cases. Se-
ries T1600 Juniper routers attain a total bandwidth of 1.6 Tb/s (or 1920 Mp/s) with
100 Gb/s per line card and a packet processing speed of up to 60 Mp/s.

As for power consumption, current NPUs range between 7 and 30 W approxi-
mately. Just one of the systems that usually performs the address lookup function,
TCAM (Ternary Content-Addressable Memory), normally implemented as ASIC,
reaches a mean power consumption between 10 and 15 W. For estimating the im-
pact on the overall consumption of a router, one has to consider that in high-end
routers NPUs may be replicated up to hundreds of times. For the case of the Cisco
12816 [19] (that incorporates around 200 ports) overall consumption is 4.7 kW,
whereas for the Juniper M160 (that incorporates up to 128 ports), T320, T640 and
T1600 overall consumption is 2.6 kW, 2.8 kW, 6.3 kW and 8.3 kW.

6.2.2 Expected Evolution

Current router architectures are ongoing an evolution process that is expected to
lead to what is known as the fourth generation of routers. The following changes are
expected for the near future to cope with current challenges:

• Links based on opto-electronic technology are increasing available bandwidths at
a pace higher than that of the processing speed of elements required to forward,
process and store packets.

• Requirements derived from new services such as IPv6, MPLS, Voice over IP
and improved security imply modifications in the packet processing path and a
dramatical complexity increase of the control plane [39]. This current trend is
expected to eventually lead to a convergence between the slow and fast paths
since the fast path cannot be kept as simple and monolithic as today.

Current trends clearly discard the overall monolithic design that has characterized
routers where all the software runs on a central control block. Instead, new ar-
chitectures follow a distributed approach where routers are splitted into subsys-
tems [54], making it possible to implement more complex systems and combining
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subsystems from different vendors by means of standard interfaces [44]. These
changes are however not only subject to technological factors as they imply a change
in the business model of vendors.

In particular, more and more control functions are being encapsulated as mod-
ules and physically distributed among input/output cards [35]. This way, central
switching systems must be more open and flexible as they transition into physically
independent systems connected to other modules through optical links.

Two important factors enable the design of new routing architectures with over-
all performance several orders of magnitude above current units. On the one hand,
new highly parallel interconnection architectures developed for the switching sys-
tem [45] increase the overall nominal bandwidth of routing equipment. On the other
hand, the surge of opto-electronic technology and the widespread availability of
optical links make possible very high link speeds. However, current router architec-
tures can hardly scale up to the speeds possible with technologies available today.
A fourth generation of routers is thus sought.

With the aim of easing the design of these complex systems still in an early
planning stage, several international consortiums1 as well as the Forwarding and
Control Element Separation (ForCES) working group of the IETF [44] are carrying
out the definition of functional blocks and standard interfaces that fourth generation
routers should support [54].

6.2.3 Architectures and Platforms for Research

Specific hardware architectures play a key role in supporting passive measurement
systems, platforms for experimental network systems design, and virtualization of
networks.

Specific hardware for passive network measurement is required in order to record
traffic traces at rates of the order of the Gigabit and above, specially in fast back-
bone links. To the best of our knowledge, packet-level trace recording and precision
timestamping matching modern router speeds is available only with Dag cards from
Endace [29] and the family of COMBO cards, in particular the COMBO-Precise
Timestamp Module (COMBO-PTM) card [51] developed in the framework of the
liberouter project. The latest Dag models (4.xx) can reach sub-microsecond accu-
racy when synchronized to GPS or CDMA [37]. In addition, reconfigurable hard-
ware platforms for real-time monitoring of high-speed networks through flow level
measurement have been developed recently [78].

The platform that will be described in section 6.5 has been developed with the
aim of enabling the development of fuzzy inference systems applied to networking
problems in high-performance equipment.

There exist a number of software platforms with specific hardware support
for general education and research projects, such as the Click modular
router (http://read.cs.ucla.edu/click/) and the Open Network Lab-
oratory (http://onl.arl.wustl.edu) . These platforms allow for flexible

1 Such as the Multiservice Switching Forum (http://www.msforum.org).
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experimentation with a number of aspects dealt with in this monograph, such as
queue management schemes, QoS provisioning, network flow measurement, as well
as a many other aspects related to traffic management, routing and protocols.

More closely related to the platform described in this monograph, the NetF-
PGA project (http://netfpga.org) makes it possible to build prototypes of
hardware-accelerated high-speed networking systems. It can be used to build Gi-
gabit Ethernet switches and IP routers that use hardware acceleration for packet
forwarding tasks. Originally introduced in 2001, it was intended as an education
platform for network systems design. Current versions, introduced in January 2007,
rely on a Xilinx® Virtex II-Pro 50 FPGA in order to provide full Gigabit-Ethernet
rates for 4 physical interfaces. In a similar way to the platform that is described in
this monograph, a PC is used as host to the NetFPGA system through standard PCI
interfaces. The user can implement specific packet processing logic in the FPGA
and define software networking applications in the host PC.

On a final note, network virtualization techniques allow for the simultaneous op-
eration of multiple and independent logical networks or overlays on a single physical
platform. The emergence of these techniques in routing hardware and networking
equipment in general opens new ways for experimenting. Recent high performance
routing architectures from major vendors have supported virtualization techniques
for some years. It is expected that network virtualization will become one of the ma-
jor paradigms of the future Internet. The deployment of this relatively new technolo-
gies in academic networks will enable flexible research in areas where innovation
is currently encumbered by the lack of possibilities for disruptive experimentation
with networking hardware.

6.3 Inference Rate of Software Implementations

Here it is performed an approximate estimation of the inference rate that software
implementations of fuzzy inference systems can attain. This analysis focuses on the
maximum inference rate attainable by software running on a dedicated core of a
multicore general purpose CPU. This study is by no means intended to be a sys-
tematic analysis of the inference rate that can be achieved by software implemen-
tations of fuzzy systems, not even with the software synthesis tools included in the
Xfuzzy environment. A more thorough analysis of the speed attainable using soft-
ware implementations generated with the version 3.0 of the Xfuzzy environment for
different inference systems can be found in [60].

Table 6.1 shows the maximum inference rate for the fuzzy inference systems
described in chapter 6. The overall characteristics of these systems are shown in ta-
ble 6.5.2 (page 288). In particular, the fuzzy mean defuzzification method was used.
Results are shown for C implementations on two system configurations: system A
and system B. The C implementations of these systems were generated using the
xfsw tool in the Xfuzzy 3.2 environment. The same implementation options as for
the hardware systems described in chapter 6 were set.
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Table 6.1 Maximuminference rateof software implementations (MFLIPS,C implementation)

Fuzzy System System A System B
FAQMBestEffort 1.21 1.70
TCPSS 1.79 2.34
DSSelect 5.47 6.76
AQMDSAF 9.85 10.09
RxBufferSize 2.36 3.41
RTperf 2.06 2.90

System A is based on an Intel© Xeon™ CPU with 4 cores at 3.20 GHz with 2 MB
of L1 cache per core, whereas system B is based on a AMD© Opteron™ Processor
248 at 2.2 Ghz with 1 MB of L1 cache. In both cases, the GNU GCC compiler was
used on GNU/Linux operating systems. For system A, the version 4.1.2 20071124
(Red Hat 4.1.2-42) of GCC was employed, whereas GCC 4.1.0 (SUSE Linux) was
used on system B. The whole range of compiler optimization options was explored.
10 repetitions of 10 million consecutive inferences were performed for each op-
timization case while there was no significant competing load. The best case for
each system is shown in the table. The worst case for the best optimization options
set was consistently within a band of 0-6% below the best performance. Compiler
optimization options were found to boost performance by up to 300%.

C implementations were found to be consistently faster than C++ and Java im-
plementations. This can be due to several factors, such as the compilers used and
the specific implementation scheme that the Xfuzzy software synthesis tools apply
for each language.

As conclusion, the inference rate attainable by software implementations running
on current general purpose processors is at least one order of magnitude below that
of the hardware implementations that will be described later on in this chapter. It
should be noted though that it is possible to generate further optimized software im-
plementations that can perform up to approximately two times faster. For instance,
using the code optimization techniques implemented in the version 2.1 of xfc, a C
implementation of AQMDSAF can achieve an inference rate of 19.67 MFLIPS on
system B. These inference rates are however possible with software implementa-
tions only at the cost of a fully dedicated core of current high performance general
purpose processors.

6.4 Hardware Implementation of Fuzzy Inference Systems

A number of approaches have been proposed to date for implementing fuzzy infer-
ence systems on hardware. Different hardware architectures and technologies have
been proposed and applied to implementing fuzzy inference systems in an efficient
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manner [7, 46], optimizing both performance and consumption of resources. These
developments have been instrumental to the spread of fuzzy logic based control-
ers in many industrial fields and a number of innovative applications in consumer
electronics and signal processing.

In this section we outline several alternatives and argue which option appears to
be the most plausible from our viewpoint for the kind of networking systems this
monograph deals with. For a more in depth discussion of the different strategies that
can be followed for the hardware realization of fuzzy inference systems we refer
refer the interested reader to the chapter 6 of [7].

As discussed above in this chapter, networking applications may require very
short inference periods, of the order of the microsecond and lower, and the imple-
mentation of tens or even hundreds of parallel fuzzy inference systems for handling
packet queues associated to different network interfaces. This can be achieved to
a limited extent by software implementations running on current high-performance
general purpose CPUs (see previous section). The implied cost is however extremely
high and resources are used very inefficiently. Optimization of speed, area and
consumption for generic and complex fuzzy systems can only be achieved through
dedicated hardware realizations. Both analog and digital approaches have been
proposed.

A number of digital approaches have been proposed for different applications,
including the use of programmable logic controlers (PLC) and programmable au-
tomata in industrial automation, the implementation as optimized code or microcode
running on microcontrollers for the field of embedded systems, the so-called hard-
ware expansion of general purpose processors (by extending a generic ALU or
adding specific ALUs, fuzzy functional blocks or fuzzy coprocessors), and imple-
mentations on digital signal processors (DSP) [9].

Analog implementations can achieve high speed as well as low area and power
consumption when implementing multivalued systems such as fuzzy inference sys-
tems. Thus, analog VLSI implementation of fuzzy logic controlers in CMOS tech-
nologies can fulfill the constraints of fuzzy inference systems in the networking
field [28]. We note however that the interest in analog circuits for implementing
fuzzy systems is mainly motivated by two factors: the affinity between most fuzzy
algorithms and analog circuits as well as to avoid the use of A/D and D/A converters
to interface sensors and actuators. Mixed-signal analog computation circuits have
been used for the implementation of artificial neural networks and fuzzy systems as
well [8, 28].

However, the field of traffic analysis and control in networking does not require
analog interfacing. In addition, no analog circuitry is used to implement the pro-
cessing units in routing equipment. In fact, the limited flexibility and extensibility
of analog design schemes as compared to digital ones encumbers the use of ana-
log circuitry in networking equipment. These facts render analog and mixed-signal
implementations unpractical for the problems addressed here.

On the other hand, digital implementations of fuzzy inference systems are pos-
sible using both sequential and parallel architectures. In particular, in this work
we leverage on a specific architecture for implementing fuzzy inference systems



6.5 Development Platform for Fuzzy Inference Systems 277

[68, 49, 9, 6]. This architecture has three main characteristics: it uses an active rule-
driven inference mechanism, some restrictions are defined on the form of member-
ship functions, and simplified defuzzification methods are used. This architecture
can achieve inference rates of the order of the MFLIPS and above, and is suitable
for both ASIC and gate arrays-based implementation techniques.

The fuzzy inference systems for traffic control and analysis presented in chap-
ter 5 were designed with these constraints in mind, i.e., only triangular, trapezoidal
and singleton membership functions are used, the degree of overlapping between
membership functions is limited to 2 and the fuzzy mean method is used for de-
fuzzification. Thus, the fuzzy systems discussed in chapter 5 can be implemented
on hardware using the aforementioned architecture without modifications.

6.5 Development Platform for Fuzzy Inference Systems with
Applications to Networking

As stated above, diverse research results show that fuzzy systems can help solve
current problems in Internet traffic control. Soft computing techniques, and fuzzy
systems in particular, are gaining momentum as tools for network traffic modeling,
analysis and control. Fuzzy systems find applications in a number of areas such as
traffic control in routers [26, 80], admission control [52], support for differentiated
services within the DiffServ architecture [77], policy and quality of service evalua-
tion [66], real-time traffic measurement, analysis and monitoring [58], power saving
for wireless networks, as well as end-to-end traffic control [56] and end-to-end con-
trol for wireless networks [63].

However, while many industrial applications of fuzzy systems in a variety of
fields have been reported, fuzzy systems for traffic control have not yet found their
way into real-world applications. In particular, despite the good performance of the
aforementioned fuzzy logic based mechanisms for traffic analysis and control, there
is a lack of architectures and design procedures for implementing them in a sys-
tematic manner yet addressing current challenges in high-performance networking
systems. As a consequence, although significant results in diverse applications of
fuzzy systems in communications and networking have been reported since more
than a decade [33], the deployment of these systems in the real world is still a
challenge.

In the current Internet, link speeds and thus packet processing rates requirements
imposed on routers are quickly increasing. The pace at which the speed of memory
elements as well as other components of the router processing units increases is
significantly slower. That is, the rates at which two key technological factors evolve
have been increasingly diverging, and it is expected that this trend will continue. As
a consequence, many data storage and processing elements (or processing engines)
in current routers are implemented by means of specialized processing engines using
specific hardware architectures [23, 24, 25, 38, 22].
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Regarding traffic measurement, analysis and control, specific hardware archi-
tectures are sought in order to cope with the increasing packet processing rates.
Specific hardware architectures have been proposed for measurement [29], anal-
ysis of network flows [78] and implementing a number of common processing
engines [23, 24, 25]. In particular, when implementing active queue management
schemes, the packet queue control rate must be very close to the maximum packet
processing speed attainable by a router. This is a strong requirement that is further
aggravated by two coincidental factors:

• Traffic in packet switched networks is inherently bursty. Bursts of several pack-
ets at the highest link speed are fairly common in a broad spectrum of network
scenarios [65].

• Queue lengths are commonly small, around a few tens of packets [2].

Thus, controlers must have a fine packet processing granularity in order to cope with
packet bursts and properly control small packet queues.

Let us now consider the implementation of fuzzy inference systems applied to
traffic analysis and control in routers. Though a fully software solution would be
obviously more flexible than a hardware solution, it is very straightforward to show
that software implementations cannot currently attain inference rates of the order
of MFLIPS, tens of MFLIPS and higher even running on high performance general
purpose CPUs. Also, considering the trends in several technological factors outlined
above, this is unlikely to change in the foreseeable future. In fact, the required infer-
ence speeds are expected to keep on growing at a faster pace than that of software
based processing units.

In addition, even though software implementations were fast enough, using a ded-
icated general purpose CPU for implementing active queue management in routers
does not seem to be a feasible option. In current routing architectures functional
blocks for traffic analysis and control need to be replicated in every input port for
each virtual output queue (VOQ), i.e., they need to be replicated in every input port
as many times as output ports are enabled (see section 6.2 for an explanation of
VOQs). As a result, the number of VOQs and associated queue analysis and control
blocks can be around a few tens or hundreds.

This fact imposes hard consumption and cost constraints on the implementations
of traffic analysis and control mechanisms. It is very unlikely that vendors will af-
ford the inclusion of tens or hundreds of high performance CPUs (with the implied
cost and consumption) for each unit.

Rather than using software implementations running on general purpose hard-
ware (that would imply higher cost and insufficient performance in most cases),
in current routing architectures computationally intensive and critical processes are
run on hardware processing engines that use specialized architectures. This is the
case for instance of TCAM memories for storing and querying routing information
bases. Though in the past pure-ASIC implementations have been used, currently
many of these engines are often implemented on one or several FPGA devices per
interface card for better programmability and design flexibility. Specific tasks are
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implemented by specialized subsystems whereas general purpose processing units
realize various coordination functions as well as high level management tasks.

Thus, efficient hardware implementations of fuzzy inference systems are required
to fulfill common operational requirements in traffic analysis and control mecha-
nisms to be implemented in routers. Although fuzzy inference systems are usually
computationally intensive, its performance can be boosted by means of hardware
implementations based on optimized architectures that exploit the inherent paral-
lelism of fuzzy inference or otherwise simplify the inference process. As detailed
in the previous section, the hardware implementation of fuzzy systems is a well
established field of microelectronics [9], thus making them a feasible solution for
processing massive traffic volumes in real-time.

Here we introduce an open FPGA-based platform for the development of modu-
lar fuzzy components of complex systems [57, 55]. The platform has been applied
to networking and communications systems. In particular, it has been successfully
employed in order to develop intelligent traffic analyzers and regulators that can
achieve real-time operation within current high-performance Internet routers. The
platform has been developed with a twofold objective in mind:

• Enabling the automated and efficient (in terms of performance and development
effort) implementation of a number of fuzzy systems proposed throughout the
last years.

• Fostering the research on fuzzy logic based solutions to Internet traffic analysis
and control. This is a consequence of the availability of a platform for validat-
ing hardware prototypes using inexpensive equipment, which eases testing in
experimental facilities in support of disruptive experiments through network vir-
tualization. The widespread availability of such facilities, expected for the near
future is further discussed below.

Throughout more than a decade, strategies and methodologies for developing fuzzy
logic based controlers have been proposed and applied. To date, most work on this
topic has been focused on industrial applications [12] and, more recently, on areas
such as signal processing, image processing and switching power control, among
others.

Let us consider the task of evaluating a traffic analysis and control system whose
performance depends on the nature of traffic. Ideally, one should be able to deploy
the system and study its performance in the real world. Of course, this is most often
intractable, specially in the case of active queue management schemes. Therefore,
the availability of flexible means for evaluating such systems with different traffic
patterns (be it through simulation, emulation or implementation) is a key aspect of
design.

Considering the specific requirements as well as the high cost and complexity of
high performance routers deployed on the Internet today, we have defined a flexible
development platform for prototyping network traffic analysis and control systems.
The platform is defined so that fuzzy systems are integrated as independent modules
into complex networking systems.
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Fig. 6.7 Prototyping platform scheme

Additional requirements taken into consideration are: seamless integration into
current router architectures [48], flexibility, and performance scalability up to higher
requirements in current and foreseeable network technologies. The platform pro-
vides a complete set of tools and an environment for easing the development of
fuzzy systems for networking prototypes as well as performing its validation.

The architecture of the platform, outlined in figure 6.7, is based on a commodity
PC equipped with an FPGA development board with PCI interface, thus making
a flexible and cheap solution with no specific hardware requirements yet able to
emulate the behavior of complex and expensive routing equipment. This makes it
possible to perform experimental validation by means of prototypes using affordable
hardware.

Obviously, these prototypes will suffer from performance limitations and will
probably not attain for real traffic a total throughput close to or beyond the Gb/s. This
is however a consequence of the limitations in total switching bandwidth currently
attainable by a common PC architecture and does not exclude the validation of fuzzy
inference modules at higher rates.

When implementing fuzzy systems, two main function blocks are distinguished:
those directly related to fuzzy inference and those that can be classified as auxiliary
functions, such as initialization, timing, pre- and post-processing, etc. [12]. For the
implementation of prototypes of fuzzy systems for analysis and control of Internet
traffic the following model is used:

• As fuzzy inference modules (FIM) are the potential system bottlenecks, they are
implemented on FPGA devices and described by means of VHDL according to
an specific processing architecture [9] tailored for efficient and fast fuzzy infer-
ence. The methodology and tools employed for the development of the FIM is
described in the next section.

• In the basic configuration of the platform, all auxiliary functions are implemented
as software. Software can run on the PC operating system as well as on optional
components implemented on the FPGA of the development board.
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Fig. 6.8 Fuzzy SoPC as a PCI device

A flexible and open architecture for implementing fuzzy systems on the FPGA
has been defined. Within this architecture, depicted in figure 6.8, FIM modules are
integrated as subsystems of a potentially complex and reconfigurable fuzzy logic
based digital system.

Interconnection between the host PC and the fuzzy inference module (FIM) is
done through a standard PCI/PCI-E bus. The internal bus of the fuzzy digital system
conforms to the WISHBONE logic bus [36] public domain standard. WISHBONE
is a SoC interconnection architecture for portable IP cores, that connects a variable
number of components.

All top level interfaces are designed to be WISHBONE compatible. Both the
WISHBONE bus controler and the PCI-WISHBONE bridge [27] IP cores have been
developed under free distribution licenses by the OpenCores [64] organization as
well as other entities. An alternative option is a direct mapping between On-Chip
Peripheral Bus (OPB) [40] and WISHBONE signals, as most of them map one-to-
one. While the WISHBONE-PCI bridge (with PCI 2.2 support) and WISHBONE
controler (Conbus [16]) are implemented in Verilog as provided by OpenCores, the
FIM module is implemented using VHDL.

WISHBONE systems can easily interface with other SoC bus standards, includ-
ing OPB through the WISHBONE-OPB bridge [71]. In its basic configuration, the
system comprises three cores: a fuzzy inference module (FIM) (as a slave WISH-
BONE device), the WISHBONE controler and the PCI-WISHBONE bridge (as a
master WISHBONE device). The WISHBONE controler IP module employed sup-
ports up to 8 master and 8 slave devices.

This way, software tasks can be defined using common programming languages
and can be run on the generic purpose processing units of the PC as well as on
specific processing units implemented on the FPGA. For instance, a fuzzy logic
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based traffic analysis application can be implemented incorporating an OpenRisc
Core for which the GNU/Linux operating system is available.

The PCI interface of the prototypes eases integration with routing architectures
by major vendors [48, 34]. Within routing architectures currently deployed in the In-
ternet [39, 48], fuzzy traffic analyzers and controlers could be seamlessly integrated
as processing engines whether at the NPU and/or the output/input cards depending
on the quality of service architecture implemented on the router. In addition, when
the development board employed includes a network interface card, as is the case for
the board employed for our implementation, a whole fuzzy logic based traffic analy-
sis application can be implemented as a standalone system-on-a-programmable-chip
(SoPC) on the FPGA.

As we will describe in section 6.5.2, the configuration presented so far allows
for the implementation of fuzzy processing units that can be generally applied to
network traffic analysis and control. Additional IP cores (such as network interface
card control, DMA devices and CPUs) can be incorporated in order to develop ex-
tended fuzzy processing units or complementing them with extensions for other soft
computing techniques.

Within the prototyping platform presented, a fully automated design flow has
been employed. The fuzzy systems design flow, described in the next section, covers
from an initial high level fuzzy system description to an FPGA-based implementa-
tion of FIMs.

6.5.1 Development Methodology and Design Flow

A methodology and design flow tailored for the development of fuzzy inference
systems applied to Internet traffic analysis and control have been defined. The design
flow we have defined and applied for designing fuzzy inference modules is depicted
in figure 6.9. The whole development process is covered, from initial specification
to final implementation whether as software or digital hardware.

The design flow spans from initial specification in a high-level language to an
FPGA implementation of FIMs by means of the tools included in the Xfuzzy de-
velopment environment as well as tools in the Xilinx® ISE environment [76]. We
leverage on the Xfuzzy [62, 61] CAD suite of tools and a methodology [12] for the
development of fuzzy controlers to define a methodology and design flow tailored
for the development of fuzzy systems applied to Internet traffic analysis and control.
The Xfuzzy environment eases the specification, verification and synthesis of fuzzy
inference systems. The whole set of tools included in the environment are based on
a common high level specification language: XFL3 [59].

The first development stage (description) is performed using the XFL language
(or alternatively, using visual interfaces that rely on the XFL language), which can
later be turned into C and VHDL code among other implementation options. The
tool chain includes:
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Fig. 6.9 Design flow of fuzzy systems for networking

• The xfc and xfcpp tools (included in Xfuzzy), which turns an XFL specification
into C and C++ code that can be employed in both user and kernel space.

• The xfvhdl tool (included in Xfuzzy), which turns an XFL specification into syn-
thesizable VHDL code generated for a specific processing architecture for the
efficient implementation of fuzzy systems with a good cost-performance ratio
and an extremely short development cycle [61, 6]. xfvhdl applies an active-rule
driven architecture for fuzzy inference, using simplified defuzzification methods
and parallelization in order to provide high inference rates. The output of xfvhdl
can be feeded to a number of synthesis tools, such as those from Xilinx® and
Synopsys. As it will be show in section 6.5.2, this architecture can provide ef-
ficient implementations of fuzzy systems even with a high number of variables,
linguistic terms and rules.

• ns-2 [41], an open network simulator widely spread within the Internet research
community.

• Operating system kernel (currently GNU/Linux and FreeBSD).

The development stages after specification have been tailored for Internet traffic
controler development as follows.

• For network simulation, we have used ns-2. ns-2 is an object oriented discrete
event driven simulator with support for a vast variety of transport protocols,
queueing systems, routing schemes and access media, thus enabling us to eval-
uate the performance of traffic controlers under complex and realistic simulated
scenarios. Fuzzy controlers are integrated into ns-2 as components implemented
in C. This makes it easy to evaluate the influence of various factors, such as the
precision of fuzzy modules, in a convenient manner.
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• Verification is considered for both software and hardware implementations of
fuzzy controlers. Software verification is performed over a controler implemen-
tation within the kernel of the general purpose operating system running on the
PC. Three different yet complementary approaches can be followed for verifying
hardware prototypes of FIMs:

– Verification by means of network simulators. To this end, code and drivers to
access the FIM in the FPGA development card from ns-2 has been developed.

– Verification through emulated scenarios where a router is emulated by means
of the prototyping platform. Validation in real or emulated scenarios is also
possible with our prototyping architecture by using the prototyping PC as a
router. This accomplished by replacing queue control functionality in the op-
erating system network layer with functionality provided by the FIM in the
development board. To this end, kernel drivers have been developed to make
it possible to access the fuzzy controler in the FPGA development card from
networking modules in the operating system kernel. Drivers have been de-
veloped for FreeBSD 6.x and Linux 2.6.x kernels. Alternatively, emulated
scenarios can be constructed by means of software packages for network em-
ulation, as was illustrated in chapter 5, where the NIST Net software router
was used to emulate a dumbbell network and test different active queue man-
agement schemes.

– Verification in the Internet. This case is hardly feasible in practice. In fact,
disruptive experiments are currently not possible in real networks. Besides
the lack of control on the network conditions (derived from the current lack
of measurement infrastructures for intra- and inter-domain paths), most often
there is no possibility to inject significant traffic loads or implement novel
mechanisms in real networks.

• We have defined as general hardware-software partition the implementation on
hardware of the FIM module and its interfacing logic whereas all other tasks are
implemented as software.

The fact that disruptive experiments are not currently possible in real networks has
hampered research on novel protocols and architectures during the last years. Al-
though a number of projects and infrastructures concerning virtual networks and
novel network architectures, mostly based on overlays, have been running for the
last years, these still face the same constraints. Lately, a great deal of interest in
infrastructures for network virtualization has raised within researchers, institutions
and agencies. It has been recognized a need for supporting clean slate design for
the Internet as well as realistic experiments in network science and engineering.
A number of related initiatives for developing experimental facilities in support
of disruptive experiments through network virtualization are in planning stage or
early stages of development at the time of this writing, such as the Global Envi-
ronment for Network Innovations (GENI, http://www.geni.net), the Feder-
ated E-infrastructure Dedicated to European Researchers Innovating in Computing
network Architectures (FEDERICA, http://www.fp7-federica.eu)
and “Plataforma de prueba de servicios de comunicationes” (PASITO,
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https://proyectos.rediris.es/pasito/). However, several years of
development are required to address the complexity of such infrastructures. We en-
tertain the hope that these initiatives will shortly pave the way for testing in real
scenarios techniques such as the hardware implementations of AQM schemes pro-
posed in this monograph.

In addition, the implementation of novel hardware components and experimental
deployment on high-end equipment poses major practical problems. Deployment
on high-end (around and above 1 million euro cost per unit) routing equipment
requires the adoption of a new technology by vendors of routing hardware (a market
with high inertia), which is a long term objective of our research. Nonetheless, by
means of our prototype architecture, validation can be performed the same way as
verification through emulated scenarios as described above.

By following a well defined development methodology, we provide a more effi-
cient and formal approach that those currently used for the development of Internet
routers from major vendors [48, 39].

6.5.2 Application to Internet Traffic Analysis and Control

As shown in figure 6.10, currently deployed schemes for traffic control in the In-
ternet, as well as most proposed alternatives, fall into one of the two following
approaches [74]:

• Distributed control, with functionality distributed among the end nodes in the
network and implemented by means of end-to-end transport protocols. Transmit-
ter and receiver end nodes of packet flows cooperate so as to perform flow and
congestion control as well as fair distribution of network resources.

• Queue controlers in intermediate nodes or routers. These mechanisms may dis-
criminate packet flows and enforce resource distribution and reservation in some
cases.

Thus, regulation of packet flows from sender to receivers can involve all the network
nodes in the end-to-end path and is performed on both an end-to-end and a per-hop
basis. Such a scheme leads to a system that comprises multiple feedback loops with
complex interactions.

Both aforementioned approaches can be redefined in terms of fuzzy systems.
This approach does not only provide a deeply backgrounded engineering approach
but also a modeling and analysis framework for Internet traffic, which the current
Internet research community lacks [31].

This section provides results, in terms of inference rate, occupation and power
consumption, for a set of example applications of the described platform to the
area of Internet traffic analysis and control. A summary of implementation results is
presented in what follows.

We will summarize the results of the microelectronic implementation of a set
of fuzzy systems on FPGAs. The focus is on the implementation results for FIM
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Fig. 6.10 Feedback loops in Internet traffic control systems

modules as they are the key components with higher operational requirements. The
systems we will deal with in this section have been implemented on two different
Xilinx® FPGA devices, part of two development boards. Both are shown in fig-
ure 6.11. The first device is a a Xilinx® Spartan-3 FPGA, xc3s1500-fg456-5 device
(1.5 million equivalent gates) included in an AvNet® ADS-XLX-SP3-EVL1500 de-
velopment board with standard PCI 2.0 interface. It is a very low cost device for
our target application. This device has been selected with the aim of evaluating the
feasibility of the approach proposed here with constrained resources. The second
device, with performance closer to that of the programmable logic devices used
in current routing hardware, is a Xilinx® Virtex-5 FPGA, XC5VLX50T-1FF1136-
1C-ES device, included in a Xilinx® LXT FPGA ML505 development board with
PCI-E interface.

The tool xfvhdl was used to generate VHDL descriptions from XFL specifi-
cations as described in section 6.5. xfvhdl provides several FIM implementation
options. In particular, we set ROM based storage for the rule base and member-
ship functions. An scheme of the design flow for generating hardware implementa-
tions of fuzzy inference systems is shown in figure 6.12. In the synthesis stage, the
xfvhdl tool generates a VHDL description from an XFL specification. xfvhdl uses
a cell library that contains parameterized VHDL descriptions for the basic build-
ing blocks of the specific architecture followed. Two kinds of blocks are included
in this cell library: data path blocks, which implement the fuzzy inference, and
control blocks, which control memory read and write operations and the operation
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(a) AvNet® ADS-XLX-SP3-EVL1500
board

(b) Xilinx® ML505 board

Fig. 6.11 FPGA development boards used

Fig. 6.12 Design flow for hardware fuzzy inference systems

scheduling control signals. These cells are defined in a way compatible with the
VHDL restrictions of synthesis tools by major vendors.

The validation stage of the VHDL description generated by xfvhdl, whether be-
havioral or post-route is performed by means of simulation tools. Several options
are available from different vendors for this stage as well as for synthesis, place and
routing [75]. In our case, we have used simulators such as ISim from Xilinx and
ModelSim from Mentor Graphics, as well as the tools included in the Xilinx® ISE
environment [75, 76]. A performance evaluation of the FIM architecture in terms
of inference speed, area and power consumption was conducted. Synthesis as well
as place and routing were performed by means of the tools included in the Xilinx®

ISE environment [76], namely xst and par. ISE 9.2i (more specifically, updated to
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9.2.04i), xst J.40, map J.40 and par J.40 were employed for the reported
prototypes. Default options were selected for all these tools.

We will focus on the fuzzy systems listed in table 6.2, which implement different
intelligent Internet traffic control and analysis mechanisms. In the table, FAQMBest-
Effort is a fuzzy inference system for active queue management, as described in
chapter 5. TCPSS implements a fuzzy inference system for the slow start update
policy in TCP-like end-to-end congestion control, also analyzed in chapter 5. DS-
Select and AQMDSAF are traffic controlers for QoS enabled networks within the
DiffServ architecture. RxBufferSize is a fuzzy system for inferring dynamic buffer
size depending on network conditions (one-way delay and packet loss percentage).
RTperf is a fuzzy inference system for performance evaluation targeted at real-time
network applications and services.

Table 6.2 Fuzzy inference systems implemented and their complexity in terms of inputs,
linguistic terms and rules

System Inputs Linguistic terms Rules
FAQMBestEffort 2 7,7,7 37
TCPSS 6 5,5,5,5,5,5,5 24
DSSelect 2 5,5,2 17
AQMDSAF 2 3,3,4 7
RxBufferSize 2 5,5,5 25
RTperf 4 5,5,5,5,5 27

As outlined in chapter 1, several classes of service have been specified to date
within the standard differentiated services architecture [10], such as expedited for-
warding and assured forwarding. These classes are usually referred to as per hop
behavior (PHB) groups. For instance, the assured forwarding (AF) PHB group de-
fines several drop precedences for data packets. Also, packets within data flows
belonging to an AF class are not reordered.

When implemented, quality of service constraints are commonly enforced at the
network edges. Routing hardware for network edges [39] usually integrates support
for quality of service (QoS) based on queuing disciplines, using separated packet
queues for different classes of service. With regards to active queue management,
these systems comprise components belonging to two main categories: queuing dis-
ciplines (or schedulers) that select among eligible packets from a set of queues, and
traffic regulators (or policers).

Common queuing disciplines include weighted priority based scheduling and
weighted round robin (WRR), among many others. Common regulators include first
in-first out (FIFO), token bucket filter (TBF) and RED, among others. This way, a
wide range of service disciplines can be implemented by selecting a set of disci-
plines and regulators.

Fuzzy inference systems can be designed for implementing both queuing disci-
plines and schedulers. For classification purposes, DSSelect has been defined as a
fuzzy classifier for class of service enabled networks. DSSelect balances priorities
between two different classes of service within the DiffServ architecture, outlined
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in chapter 1. The inference system has two inputs, defined as the number of packets
in two separated packet queues: a queue for expedited non-assured (EF) flows and a
queue for non-expedited assured (AF) flows, respectively. The rule base of the sys-
tem balances priorities depending on current queue lengths following the approach
proposed in [79]. The output of the system selects the next packet to be forwarded
from one of the two queues.

Table 6.3 show the DSSelect rulebase. For the inputs, qEF and qAF , representing
the length of the queues of EF packets and AF packets respectively, 5 linguistic
terms are defined: ZO, S, M, B, VB, meaning “zero,” “small,” “medium,” “big,” and
“very big,” respectively. Two linguistic terms for the output, C, are defined, one for
each class of service: “EF” and “AF”. The membership functions for these terms
are triangular and uniformly distributed in the input space. The “EF” output value
indicates that a packet from the EF queue is selected for forwarding, while the “AF”
output value indicates that the next packet to be forwarded should be selected from
the AF queue.

The rationale proposed in [79] is applied to define the rule base. When the length
of qEF is large and the length of qAF is small, EF packets are selected in order to
avoid high delays. In the opposite case, AF packets are selected. When both queues
have similar lengths, two possibilities arise. If both queues are short, priority is given
to real-time traffic and thus EF packets are selected. If both queues are large, AF
packets are forwarded as the drop probabilities increase and thus the drop priority
of AF packets becomes more important than the delay priority of EF packets.

Table 6.3 DSSelect Rule Base

C qEF
Z S M B VB

qAF

Z EF EF EF EF EF
S AF EF EF EF EF
M AF AF EF EF EF
B AF AF AF EF EF

VB AF AF AF AF AF

In an analogous manner to the FAQMBestEffort system described in the revious
chapter, we have defined a controler for the assured forwarding PHB within the dif-
ferentiated services architecture. This system, AQMDSAF, has the same two inputs
and one output as FAQMBestEffort. The rule base of AQMDSAF is also similar to
that of FAQMBestEffort. However, the number of linguistic labels is lower and the
rule base is defined so that a higher guarantee of delivery is provided, i.e., higher
forwarding probabilities are considered. Both DSSelect and AQMDSAF were de-
fined as initially proposed in [79, 80]. These systems were evaluated in the same
scenario used in chapter 5 in order to evaluate FAQMBestEffort. Results confirmed
satisfactory performance and the ability to solve open problems in the differentiated
services architecture [80].
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RTperf is a fuzzy inference system for overall network performance evaluation
targeted at real-time network applications and services. Many approaches to net-
work performance evaluation have been proposed to date [13, 67]. Besides their
direct application to analysis, monitoring, traffic engineering and capacity planning,
among many other applications, the results of a performance evaluation system can
be used as additional inputs to advanced traffic control systems, both centralized and
end-to-end.

The RTperf fuzzy inference system provides a measure of the adequacy of current
network conditions for time constrained traffic or real-time network applications.
Based on four scalar numerical measures of current network performance (one-way
delay, round-trip delay, packet loss percentage and inter-packet delay variation),
RTperf provides as output a fuzzy degree of certainty about the adequacy of current
conditions for this class of applications. RTperf has been defined on the basis of
prior accepted linguistic knowledge about network performance. Figure 6.13 shows
a few sample rules (in XFL3 format) from the rulebase of the RTperf inference
system.

r u l e b a s e RTperf ( Towd owd , T r t t r t t , T j i t t e r j i t t e r , T l o s s l o s s : Tpe r f p e r f )
{

i f ( owd == ZO & r t t == ZO & j i t t e r == ZO & l o s s == ZO ) −> p e r f = OPTIMUM;
i f ( owd == S & r t t == S & j i t t e r == S & l o s s == S ) −> p e r f = GOOD;
i f ( owd == M & r t t == ZO & j i t t e r == ZO & l o s s == ZO ) −> p e r f = POOR;

.

.

.
i f ( owd == VB) −> p e r f = BAD;
i f ( r t t == VB) −> p e r f = BAD;
i f ( j i t t e r == VB) −> p e r f = BAD;
i f ( l o s s == VB) −> p e r f = BAD;

}

Fig. 6.13 Sample rules (in XFL language) from the rulebase of the RTperf fuzzy inference
system

Figure 6.14 shows a summary of implementation results for the above listed sys-
tems. A precision of 8 bits is used for inputs, outputs and membership functions.
An 8 bits configuration was found to satisfy overall precision requirements with no
practical difference as compared to a 16 bits configuration. These systems perform
dynamic adjustment of reception buffers, active queue management in best-effort
and differentiated services schemes, and analysis of the network performance from
a real-time application viewpoint.

Tables 6.4 and 6.5 show post-synthesis and post-implementation area and esti-
mations. Tables 6.5 and 6.7 show post-synthesis and post-implementation timing
estimations, respectively. The equivalent gate count shown excludes the equivalent
gate count for the input-output blocks, i.e., only the equivalent gates for the fuzzy
inference system design are accounted. The timing parameters considered for post-
synthesis are defined as follows:
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Fig. 6.14 FPGA implementation results summary for the Spartan-3 device. Complexity of
systems is given in terms of the number of inputs, linguistic terms and rules. Complexity of
the implementations is given in terms of equivalent gates and maximum inference rate.

• Tmin: minimum period.
• νmax: maximum frequency.
• tinput clk: minimum input arrival time before clock.
• tout put clk: maximum output required time after clock.

The timing parameters included in the place and route reports below are defined as
follows:

• cdavg: average connection delay.
• pdmax: average pin delay.
• cd10

avg: average connection delay on the 10 worst nets.

• tsetup−clk
max : maximum setup time to the edges of the clock signal in the inputs.

Hold times in inputs are in general significantly lower (around 60 or 70%) than
setup times.

• tclk−pad
,max : maximum delay after clock edges to output pads.

Table 6.4 Post-synthesis area estimations (Spartan-3). Inputs: 8 bits, outputs: 8 bits, MFs:
8 bits.

Area (total/%)
System Slices Slice Flip Flops LUTs Bonded IOBs
FAQMBestEffort 187 (1%) 147 (0%) 339 (1%) 28 (8%)
TCPSS 847 (6%) 154 (0%) 1550 (5%) 60 (18%)
DSSelect 320 (2%) 144 (0%) 586 (2%) 28 (8%)
AQMDSAF 213 (1%) 145 (0%) 387 (1%) 27 (8%)
RxBufferSize 267 (2%) 148 (0%) 488 (1%) 28 (8%)
RTperf 542 (4%) 152 (0%) 990 (3%) 44 (13%)
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Table 6.5 Post-synthesis timing estimations (Spartan-3). Inputs: 8 bits, outputs: 8 bits, MFs:
8 bits.

System Tmin (ns) νmax (Mhz) tinput clk (ns) tout put clk (ns)
FAQMBestEffort 16.048 62.312 18.174 6.216
TCPSS 23.742 42.119 30.368 6.212
DSSelect 15.918 62.822 19.784 6.216
AQMDSAF 15.665 63.838 19.353 6.216
RxBufferSize 15.648 63.908 20.007 6.216
RTperf 18.347 54.503 25.824 6.216

Table 6.6 Post-implementation area results (Spartan-3). Inputs: 8 bits, Outputs: 8 bits, MFs:
8 bits.

Area (total/%)
System E.G. Slices Slice Flip-Flops LUTs Bonded IOBs
FAQMBestEffort 7676 202 (1%) 139 (1%) 314 (1%) 28 (8%)
TCPSS 16228 813 (6%) 146 (1%) 1558 (1%) 60 (18%)
DSSelect 9365 360 (2%) 136 (1%) 588 (2%) 28 (8%)
AQMDSAF 8014 226 (1%) 137 (1%) 390 (1%) 28 (8%)
RxBufferSize 8800 278 (2%) 140 (1%) 467 (1%) 28 (8%)
RTperf 12111 577 (4%) 144 (1%) 970 (3%) 44 (13%)

Table 6.7 Post-implementation timing results (Spartan-3). Inputs: 8 bits, Outputs: 8 bits,
MFs: 8 bits. Times are expressed in ns.

System cdavg pdmax cd10
avg tsetup−clk

max tclk−pad
max

FAQMBestEffort 1.412 6.043 4.428 20.888 6.421
TCPSS 1.928 6.317 5.605 35.560 6.473
DSSelect 1.769 6.149 4.903 22.378 6.415
AQMDSAF 1.560 8.663 5.330 23.898 6.444
RxBufferSize 1.708 6.545 5.209 24.269 6.421
RTperf 1.846 6.444 5.811 29.513 6.421

Figure 6.15 shows a summary of implementation results for the above listed sys-
tems using the Virtex-5 device. As before, a precision of 8 bits is used for inputs,
outputs and membership functions.

Tables 6.8 and 6.9 show post-synthesis and post-implementation area and esti-
mations. Tables 6.9 and 6.11 show post-synthesis and post-implementation timing
estimations, respectively.

Table 6.8 Post-synthesis area estimations (Virtex-5). Inputs: 8 bits, outputs: 8 bits, MFs: 8 bits.

Area (total/%)
System Slice Registers Slice LUTs Bonded IOBs
FAQMBestEffort 120 (0%) 263 (0%) 28 (5%)
TCPSS 130 (0%) 879 (3%) 60 (12%)
DSSelect 117 (0%) 282 (0%) 28 (5%)
AQMDSAF 118 (0%) 257 (0%) 28 (5%)
RxBufferSize 120 (2%) 271 (0%) 28 (5%)
RTperf 126 (0%) 497 (1%) 44 (9%)
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Fig. 6.15 FPGA implementation results summary for the Virtex-5 device. Complexity of
systems is given in terms of the number of inputs, linguistic terms and rules. Complexity of
the implementations is given in terms of equivalent gates and maximum inference rate.

Table 6.9 Post-synthesis timing estimations (Virtex-5). Inputs: 8 bits, outputs: 8 bits, MFs: 8
bits.

System Tmin(ns) νmax(Mhz) tinput clk(ns) tout put clk(ns)
FAQMBestEffort 8.126 123.062 10.333 3.391
TCPSS 12.012 83.250 15.643 3.393
DSSelect 8.170 122.399 10.634 3.391
AQMDSAF 8.136 122.911 10.631 3.391
RxBufferSize 8.126 123.062 10.442 3.391
RTperf 10.031 99.691 13.811 3.392

Table 6.10 Post-implementation area results (Virtex-5). Inputs: 8 bits, Outputs: 8 bits, MFs:
8 bits.

Area (total/%)
System E.G. Slice Registers Slice LUTs Bonded IOBs
FAQMBestEffort 3077 120 (1%) 264 (1%) 28 (5%)
TCPSS 7721 130 (1%) 896 (1%) 60 (12%)
DSSelect 3229 117 (1%) 297 (1%) 28 (5%)
AQMDSAF 3031 118 (1%) 264 (1%) 28 (8%)
RxBufferSize 3165 120 (1%) 309 (1%) 28 (5%)
RTperf 4764 126 (1%) 501 (3%) 44 (13%)

Table 6.11 Post-implementation timing results (Virtex-5). Inputs: 8 bits, Outputs: 8 bits,
MFs: 8 bits. Times are expressed in ns.

System cdavg pdmax cd10
avg tsetup−clk

max tclk−pad
max

FAQMBestEffort 1.066 2.869 2.441 9.353 9.930
TCPSS 1.167 2.642 2.446 16.054 8.875
DSSelect 1.356 3.149 2.839 10.013 8.972
AQMDSAF 1.135 2.827 2.489 9.378 9.401
RxBufferSize 1.206 3.010 2.659 11.417 8.861
RTperf 1.166 2.702 2.395 13.849 8.895
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From the results shown in the tables we can draw the conclusion that the speed
variability with regards to the fuzzy system complexity (measured as number of in-
puts, rules, membership functions and accuracy) that characterizes the architecture
and implementation technology used are within the required bounds. This makes it
possible to achieve high inference rates even for the most complex systems devel-
oped here.

As detailed in section 6.2, in current router architectures traffic analysis and regu-
lation subsystems are integrated into output interface cards together with the virtual
output queue processing logic. In general, these subsystems can be thought of as
queue schedulers that run, at most, at frequencies around the maximum per inter-
face packet processing speed.

As for inference rate, prototypes implemented on a Xilinx® Spartan-3 FPGA
could achieve above 60 MFLIPS. As discussed at the beginning of this section,
packet queue controlers must have a fine packet processing granularity in order to
cope with packet bursts and properly control small packet queues. The finest pro-
cessing granularity is only possible if the maximum packet processing rate is equal
to or greater than the maximum number of packets per second accepted by packet
queues. Routers from the Cisco 12000, Cisco CRS series as well as Juniper M and T
series process up to 25 Mp/s, 40 Mp/s, 24 Mp/s and 60 Mp/s, respectively, per inter-
face output queue [19, 17, 32]. Thus, even a prototype implementation using a low
cost FPGA can provide the required inference speed for the finest packet processing
granularity in current high performance router families.

The tool Xilinx® XPower Analyzer 10.1.03, version K.39 was used in order to
study the power consumption of the implementations described above. The tool uses
so-called production characterization data for both the Spartan-3 and the Virtex-5
devices. That is, enough production silicon of these devices have been character-
ized to provide full power correlation over numerous production lots. Also, char-
acterization data for all blocks in the device fabric are included. The power analy-
sis was performed for an ambient temperature of 25°C and voltage sources set to
VCCINT = 1.2V , VCCAUX = 2.5V , VCCO25 = 2.5V , for the case of the Spartan-3 de-
vice, and VCCINT = 1V , VCCAUX = 2.5V , VCCO25 = 2.5V , for the case of the Virtex-5
device.

Quiescent power consumption, around 150 and 443mW , for the Spartan-3 and
Virtex-5 devices, respectively, are negligible for current high performance routers
as it is more than three orders of magnitude below the overall consumption of an
output interface card.

Regarding dynamic power of the fuzzy inference modules, two cases, shown in
figures 6.16(a) and 6.16(b), respectively, are considered. In both cases, dynamic
power is analyzed for frequencies ranging from 16 Mhz through 150 Mhz. Fig-
ure 6.16(a) shows the power consumption results when input stimuli are generated
using the standard test bench generated by the xfvhdl tool. Figure 6.16(b) shows the
results for a pessimistic power analysis where the toggle rates for inputs and outputs
as well as flip-flops are set to 100% of the clock frequency.

In the xfvhdl test bench simulation, the values of the inputs are progressively
increased starting from all inputs set to 0 and ending when all input signals are set
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(a) xfvhdl test bench

(b) Pessimistic case

Fig. 6.16 Power analysis of the FAQMBestEffort system for different frequencies. Two stim-
uli are used: xfvhdl test bench and a pessimistic case. Spartan-3 device: +, continuous line;
Virtex-5 device: ×, dashed line.

to their maximum value. This way, all the possible combinations of values for the
inputs are explored in 2i·n cycles, where i is the number of inputs to the system and
n the bit precision of the inputs, assuming the same precision is used for every input.

As expected [1], dynamic power consumption depends linearly on the system
clock frequency and the number of toggling nodes. Besides, it can be observed that
the power consumption of the fuzzy inference modules is negligible as compared
to the overall power requirements of the systems they are aimed to be integrated in.
Junction temperature ranges from 29.6°C through 29.8°C for the Spartan-3 device,
and from 27.8°C through 28.0°C for the Virtex-5 device.

A number of hardware implementations of fuzzy systems for tasks belonging to
the physical and link layers of communications systems (such as signal filtering)
have been reported in the literature. Some of them are based on FPGAs. However,
we are not aware of proposals of FPGA based implementations of fuzzy systems
applied to network traffic control and network layer tasks in general.

The most closely related work we are aware of [3] reports an VLSI implementa-
tion that attains an inference rate of 3.3 MFLIPS for a 60 Mhz clock, which would
not fulfill current requirements. However, this work dates back more than 10 years.
Also, we note though there are major differences between our proposal and the
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aforementioned work. Thus, a direct comparison cannot be done. In the latter case,
the target application is traffic control for ATM networks. Additionally, it is based
on a substantially different architecture (using the concept of fuzzy processor) and
the system is implemented as an ASIC. The fuzzy processor employed requires 18
cycles for a fuzzy inference. We note though that in a more general context, digi-
tal realizations achieving inference rates of the order of the MFLIPS were reported
during the 1990s [46]. In particular, the authors of [4] report an inference rate of the
order of the MFLIPS for an architecture able to implement complex fuzzy systems.
More recently, the potential to achieve inference rates of the order of 50 MFLIPS
with digital realizations and FPGA based systems in particular has been widely re-
ported in the literature [53, 14].

In addition, our solution provides a development methodology and a tool chain
that fulfill an important gap in current custom, unscalable and inefficient design
schemes [39]. The complexity introduced into a routing system is negligible as com-
pared to the complexity increment that is taking place at present and is expected to
take place in foreseeable future high performance routers.

In fact, an FPGA approach to the implementation of router components is in line
with the current trend towards FPGA based development router design of major
vendors [48, 34]. In particular, providing a PCI/PCI-E compliant interface eases
integration of fuzzy inference modules as processing units within current network
processing architectures.

6.6 Computational Intelligence Based Processing Subsystems in
Routing Architectures

There are a number of implementation options for incorporating computational in-
telligence systems and fuzzy inference systems in particular as components of In-
ternet routers. In the context of the development platform described above, here we
discuss these options with the focus on controls systems of the kind described in
chapter 5 .

As a first general option, the software implementations (in C, C++ or Java) that
can be generated with the tools included in the Xfuzzy environment can be used in
those routers with processing units supporting these programming languages. This
is the case of the units currently used by most vendors, such as the Xscale systems
of the Intel® NPUs [43].

Nonetheless, software implementations running on high level processing units
can be practical for some high level control functions, functions of the slow path, or
functions with a low execution rate. However, they cannot attain the high execution
rates (above millions of inference per second for current technologies) needed for
low level processing of high bandwidth network links.

The aforementioned architecture for hardware implementation of fuzzy inference
modules [11] is a simplified architecture where the degree of overlapping is limited
and simplified defuzzification methods are used. This fact has been shown to solve



6.6 Computational Intelligence Based Processing Subsystems in Routing Architectures 297

the general challenge currently posed in the design of packet processing components
for high performance routers: developing sufficiently fast implementation schemes.
In this aspect, the FIM implementation architecture used here fits in general in cur-
rent and future generation routing architectures.

This way, it is possible to integrate FIMs in Internet routers as additional pro-
cessing units in current NPUs. In addition, using a PCI/PCI-E interface for the
whole fuzzy inference system eases its incorporation into current and next gener-
ation NPUs that are in many cases based in the PCI standard, such as the general
architecture of the Intel® NPUs [43].

A related issue we take into consideration here is the physical implementation and
distribution of hardware FIMs. Current routers usually include hardware modules
for implementing queue management schemes in the circuitry of each connection
port in input/output cards which in most cases utilize specific high performance
FPGA devices as implementation option.

The fuzzy systems described in this monograph can be implemented as follows:

• Performance measurement and analysis such as RTperf can be implemented fol-
lowing two alternatives:

– Direct processing of traffic. In this case FIM must be integrated into input
cards.

– High level processing and analysis. In this case FIMs can be implemented as
processing units physically located in the NPU.

• Queuing control systems, including FAQMBestEffort, DSSelect, AQMDSAF and
AQMDSBE, can be integrated into two components depending on the level of
operation.

– For processing packet queues, a processing module has to be integrated for
each and every output queue, i.e., into the enabled output cards. However, in
those systems implementing virtual output queuing these modules would be
physically located in the input cards.

– For high level processing within the DiffServ architecture, fuzzy systems must
be implemented as control modules of the NPU.

Following this scheme it is possible to define processing units for other applica-
tions of computational intelligence techniques such as traffic analysis and packet
classification.

By comparing the performance of the FPGA-based prototypes described in sec-
tion 6.5.2 against operational requirements of current high-end routers the following
conclusions can be drawn:

• Power consumption is negligible in the case of the prototypes described, being
more than three orders of magnitude below the overall consumption of the sys-
tem.

• Regarding the inference rate, the prototypes developed on FPGAs belonging to
the Spartan-3 family can attain inference rates around 50 MFLIPS. Routers of the
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Cisco 12000 and CRS series as well as Juniper M and T series can attain process-
ing rates of around 25 Mp/s and up to 60 Mp/s [18, 69]. Under these conditions,
it is clear that even prototypes implemented on medium-low cost FPGA devices
can attain the inference rates currently required.

• By incorporating fuzzy inference processing units the complexity increase of
the overall routing system is small as compared to the increase that is currently
taking place as well as the anticipated complexity growth derived from further
developments in routing architectures for high performance [54]. In addition, the
availability of specific languages, methodologies and CAD tools for fuzzy sys-
tems is an significant advantage over common custom design procedures, highly
inefficient and lacking scalability, currently applied to the development of router
components [54].

This considerations lead us to remark that the described hardware prototypes of
fuzzy inference systems are also suitable for medium performance routers and com-
munications equipment, such as the Catalyst series from Cisco [30] where incor-
porating intelligent systems for active queue management and class based queuing
(CBQ) is specially relevant.

We remark finally that developing computational intelligence based mechanisms
for high level decision making in routers is becoming more and more an attractive
venue for research and development, with increasing potential to be eventually im-
plemented in commercial products. In fact, considering the evolution that is taking
place in router design as well as research and vendors plans for the future expert sys-
tems for supporting traffic engineering will become an important area of research.
Thus, a possible approach to the design of computational intelligence techniques
applied to networking is to differentiate layers for intelligent measuring, analysis
and processing of network traffic.

6.7 Conclusions

Here we have described the major issues to be considered when implementing fuzzy
systems for network traffic analysis, modeling and control in routers. Current tech-
nological constraints and trends as well as architectural factors have been addressed.
A platform that satisfies these constraints has been proposed for the development of
FPGA-based implementations of fuzzy systems for traffic analysis and control.

We have first described the architectural aspects constraining the implementa-
tion of fuzzy methods. With this in mind, we have defined a PCI/PCI-E compatible
modular architecture for the integration of fuzzy subsystems into current router ar-
chitectures. We have then described a generic and open platform that eases the devel-
opment of fuzzy systems and its implementation as SoPC on FPGAs. The platform
integrates both open tools and open IP cores. In addition, a systematic development
methodology and design flow is followed. The Xfuzzy environment automates de-
velopment from initial high-level specifications to synthesizable VHDL. Fuzzy in-
ference modules are integrated into a SoPC architecture made of open IP cores that
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is suitable for developing fuzzy systems applied to networking among many other
possible areas. Those SoPC developed using the outlined architecture can be inte-
grated in current router architectures as processing units.

Then, we have looked at the inference speed and resource consumption aspects,
with the focus on inference speed. The fuzzy inference systems analyzed have been
shown to satisfy operational requirements of current and future high performance
routing hardware in terms of both inference speed and resource consumption. Even
prototype implementations using low cost FPGAs can provide the required infer-
ence speed in current high performance routers with a very low cost in terms of area
and consumption. In addition, the prototypes have been designed for easy integra-
tion with routing architectures currently deployed in the Internet.

The open development platform presented paves the way for further development
of efficient intelligent traffic controlers. We also entertain the hope that the availabil-
ity of such a platform will foster the development of fuzzy systems for a number of
areas where intelligent analysis systems are sought, such as packet and flow identi-
fication, classification and filtering, among many others. The natural continuation of
the work presented in this chapter is the application of the platform in experimental
network infrastructures for clean-slate design of network protocols and mechanisms,
which are expected to be generally available in the near future.

References

[1] Abusaidi, P., Klein, M., Philofsky, B.: Virtex-5 FPGA system power design considera-
tions. Tech. Rep. WP285 (v1.0), Xilinx Inc. (2008),
http://www.xilinx.com/support/documentation/
white papers/wp285.pdf

[2] Appenzeller, G., Keslassy, I., McKeown, N.: Sizing Router Buffers. In: ACM Spe-
cial Interest Group on Data Communications (SIGCOMM) Conference, Portland, OR,
USA, pp. 281–292 (2004)

[3] Ascia, G., Catania, V., Ficili, G., Palazzo, S., Panno, D.: A VLSI Fuzzy Expert System
for Real-Time Traffic Control in ATM Networks. IEEE Transactions in Fuzzy Sys-
tems 5(1), 20–31 (1997)

[4] Ascia, G., Catania, V., Russo, M.: VLSI hardware architecture for complex fuzzy sys-
tems. IEEE Transactions in Fuzzy Systems 7(5), 553–570 (1999)

[5] Aweya, J.: IP router architectures: an overview. International Journal of Communication
Systems 14(5), 447–475 (2001)

[6] Barriga, A., Sánchez-Solano, S., Brox, P., Cabrera, A., Baturone, I.: Modelling and im-
plementation of fuzzy systems based on VHDL. International Journal of Approximate
Reasoning 41(2), 164–178 (2006)

[7] Baturone, I., Sanchez-Solano, S.: Microelectronic Design of Universal Fuzzy Con-
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San José, Costa Rica, pp. 34–41 (2006)

[56] Montesino-Pouzols, F., Lopez, D.R., Barriga, A., Sánchez-Solano, S.: Fuzzy End-to-
End Rate Control for Internet Transport Protocols. In: 15th IEEE International Confer-
ence on Fuzzy Systems (FUZZ-IEEE 2006), Vancouver, Canada, pp. 1347–1354 (2006)

[57] Montesino-Pouzols, F., Barriga, A., Lopez, D.R., Sánchez-Solano, S.: Open FPGA-
Based Development Platform for Fuzzy Systems with Applications to Communica-
tions. In: XXII Conference on Design of Circuits and Integrated Systems (DCIS 2007),
Seville, Spain, pp. 323–328 (2007)

[58] Montesino-Pouzols, F., Barriga, A., Lopez, D.R., Sánchez-Solano, S.: Linguistic Sum-
marization of Network Traffic Flows. In: 17th IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE 2008), IEEE World Congress on Computational Intelligence,
Hong Kong, China, pp. 619–624 (2008)

[59] Moreno-Velo, F., Sánchez-Solano, S., Barriga, A., Baturone, I., López, D.: XFL3:
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