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A Model for Dynamic Integration of Data
Sources

Murat Obali and Bunyamin Dursun

Abstract Online and offline data is the key to Intelligence Agents, but these data
cannot be fully analyzed due to the wealth and complexity and non-integrated nature
of the information available. In the field of security and intelligence, there is a huge
number of data coming from heterogonous data sources in different formats. The
integration and the management of these data are very costly and time consuming.
The result is a great need for dynamic integration of these intelligent data. In this
paper, we propose a complete model that integrates different online and offline data
sources. This model takes part between the data sources and our applications.

Keywords Online data · Offline data · Data source · Infotype · Information ·
Fusion · Dynamic data integration · Schema matching · Fuzzy match

1 Introduction

Heterogonous databases are growing exponentially as in Moore’s law. Data integra-
tion importance is increasing as the volume of data and the need to share this data
increase.

As the years went by, most enterprise data fragmented in different data sources.
So, they have to combine these data and to view in a unified form.

Online and offline data is the key to Intelligence Agents, but we cannot fully
analyze this data due to the wealth and complexity and non-integrated nature of the
information available [2].

In the field of security and intelligence, there is a huge number of data coming
from heterogonous data sources in different formats. How to integrate and manage,
and finding relations between these data are crucial points for analysis. When a new
data source is added or an old data source is changed by means of data structure,

M. Obali (B) · B. Dursun
Tubitak Bilgem Bte, Ankara, Turkey
e-mail: murat.obali@tubitak.gov.tr

B. Dursun
e-mail: bunyamin.dursun@tubitak.gov.tr

T. Özyer et al. (eds.), Mining Social Networks and Security Informatics,
Lecture Notes in Social Networks, DOI 10.1007/978-94-007-6359-3_1,
© Springer Science+Business Media Dordrecht 2013

1

mailto:murat.obali@tubitak.gov.tr
mailto:bunyamin.dursun@tubitak.gov.tr
http://dx.doi.org/10.1007/978-94-007-6359-3_1


2 M. Obali and B. Dursun

Fig. 1 General model of the system

intelligence systems which use these data sources have to change; and sometimes
these changes must be made in source codes of the systems that mainly require
analyzing, designing, coding, testing and deploying phases. That is loss of time and
money. The result is a great need for dynamic integration of these intelligent data.

However, in many traditional approaches such as federated database systems and
data warehouses; there is a lack of integration because of changing nature of the
data sources [11]. In addition, continuing change and growth of data sources results
in expensive and hard successive software maintenance operations [7, 9].

We propose a new conceptual model for the integration of different online and
offline data sources. This model is shown in Fig. 1. Our model requires minimal
changes for adapting new data sources. Any data sources and data processing sys-
tems can be attached to our model and the model provides the communication be-
tween both systems. Our model proposes a new approach called “Info Type” for
matching and fetching needs.
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1.1 What Is Data Integration?

Data integration is basically combining data residing at different data sources, and
providing a unified view of these data [13]. This process is significant in a variety
of situations and sometimes is of primary importance.

Today, data integration is becoming important in many commercial/in-house ap-
plications and scientific research.

1.2 Is Data Integration a Hard Problem?

Yes, Data Integration is a hard problem and it’s not only IT people problem but also
IT users’ problem. First, the data in the world sometimes too complex and appli-
cations was not designed in a data integration friendly fashion. Also, application
fragmentation brings about data fragmentation. We use different database systems
and thus use different interfaces, different architectural designs and different file for-
mats etc. Furthermore, the data is dirty, not in a standard format. Same words may
not be same meaning and you cannot easily integrate them.

2 Data Sources

2.1 What Is Data Source?

Data Source, as the name implies provides data. Some known examples are a
database, a computer file and a data stream.

2.2 Data Source Types

In this study, we categorize data into online, offline, structured and unstructured by
means of their properties.

In general, “online” indicates a state of connectivity, while “offline” indicates a
disconnected state. Here, we mean that online is connected to a system, in operation,
functional and ready for service. In contrast, an offline data means no connection, in
a media such as CD, Hard Disk or sometimes on a paper. It’s important for security
and intelligence to integrate offline data to improve online relevancy [4].

As the name implies, structured means well-defined formatted data such as
database tables and excel spread sheets. In contrast, unstructured is not in well-
defined format, free text data such as web pages and text documents.
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2.3 Data Quality and Completeness

It is essential that a data source meets the data requirements of users for informa-
tion. Data completeness is an indication of whether or not all the data necessary are
available in the data resource.

Data quality refers to that correctness, completeness, accuracy, relevance and
validity of data that is required.

Acceptable data quality and data completeness is crucial for Intelligence Agents.
This is also important for the reliability of analysis and information.

3 Dynamic Integration of Data Sources

Intelligence and Warning which is identified in [5] is a mission-critical area which
reports that IT researchers can help build new information and intelligence gathering
and analysis capabilities to detect future illegal activities.

To consolidate data coming from different sources, data structures must match
corresponding data structure. There are many algorithms to solve it [6]. In many
cases, data structures must match acceptable structural items in reference tables.
For example, citizenship id, tax office, tax number fields in a sales table and in a
user’s table must match the pre-recorded names. So, most of the techniques found
in specific schema matching algorithms will be used in the system: name similarity,
thesauri, common schema structure, overlapping instances, common value distri-
bution, re-use of past mappings, constraints, similarity to standard schemas, and
common-sense reasoning [3].

A significant challenge in such a scenario is to implement an efficient and accu-
rate fuzzy match operation that can effectively clean an incoming structure item if
it fails to match exactly with any structure item in the reference relation [10] shown
in Fig. 2.

3.1 Data Structure Matching

Data Structure Matching Services will work on columns/attributes of structured data
by using fuzzy match operation as explained in Fig. 2. In order to use the related
data in the different data sources by integrating with the aim of analyzing, it is firstly
necessary to found logical relation between these data. For example, the columns of
the tables under the different schemas of the different databases may be related
to each other. It is essentially important to identify the table fields in the source
databases and to detect the related fields in the intelligence analysis and the data
warehouses established for reporting.

Certain data and metadata from the databases are periodically transferred to
Matching DB for Data Structure Matching. The flow of data and metadata from
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Fig. 2 Data Structure Matching

Fig. 3 Flow of the metadata
from source databases

a lot of databases to Matching DB is shown in Fig. 3. The information of Database,
Schema Name, Table Name and Column Name is seen in the data set transferred to
Matching DB from the databases. In addition to the column information to be used
for both Data Structure Matching and Data Matching, detailed information can also
be provided. The additional data transferred to Matching DB from the databases are
shown in Fig. 4. These additional data are discussed below:

• Data Type: The type of the data; numeric, character, date etc.
• Data Length: Maximum length that the numeric or string data fields that can take



6 M. Obali and B. Dursun

Fig. 4 The detail of the metadata coming from the source databases

• Primary Key: Primary keys of the tables
• Foreign Key: The foreign keys and reference table field information about the

foreign keys
• Column Comment: The explanation in natural language that is inserted related to

the table column by the designer of the database or developer who had created
the table

• Some Sample Data: It is used to control the table fields matched by using different
methods or to form a matching suggestion list based on the similarity of the values
in the columns that couldn’t be matched by using metadata.

In time, matched data sources structures may change. So we need Data Structure
Validation Services for detecting the changes and forward them to Data Structure
Matching Services.

Data Structure Validation Service connects to the source databases by way of
related adapters in order to read the changed metadata and the sample data about
the changed metadata and then writes these data to the Matching DB under the Data
Structure Matching Services. The change at the source databases is monitored in
here, so the new matching candidates and deletion of the old matching that became
invalid is managed here.

Data Matching Services will work on data of which their structures are matched
using Data Structure Services. In these services, 3 matching methods will be used:
(1) Exact matching, (2) lookup matching and (3) functional matching.

Exact Matching means the fact that two data values are same. Because of the fact
that the metadata is in uppercase in some databases such as Oracle and the meta-
data can be in uppercase or lowercase in some databases such as MS SQL Server,
the metadata strings (for example the name of the table columns) are converted to
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ASCII uppercase before the exact matching. In this way the variety caused by case
sensitiveness or natural language setting removed for the advanced matching oper-
ations.

Lookup Matching means that lookup data source contains data value such as
code-value pairs. Lookup Matching is used for the relations that are in the similar
form of foreign keys. A table field value that is stored as a code may be related with
another table field data stored not in code but in value form.

Functional Matching means comparing the data using pre-defined functions such
as string similarity functions. As the different databases may be structured by dif-
ferent people according to different standards, and different choices for naming
schema, table and column may be made, exact matching directly by metadata may
lead to lose many possible matches. Therefore, even if the names of table or col-
umn are different from each other more advanced approaches for more structure
matching are required. For example, matching may be made by using Edit Distance
Similarity or Regular Expressions. Certain example cases for structure matching of
different databases are listed below:

• Column Name Text Similarity: It is valid in case of the fact that there is a dif-
ference in one character of the names of two columns or the text similarity of
column names is bigger than 90 %.

• Column Name Numerator: It means that the columns match if there are numbers
as numerator at the end of the column names. For example, TELNO1, TELNO2
etc. As column names such as generic C1, C2, . . . ,Cn may be used instead
of the column names in certain data warehouse applications, for this kind of
matching it may be added as a condition that the length of the column name
is at least composed of two characters except for the numerator value at the
end.

• The matching of the column names such as X_ID and X_ NO: ID and NO expres-
sions at the end of column names may substitute each other while naming tables
and columns. For example, a column named as OGRENCI_ID may come as
OGRENCI_NO. The fact that it may be OGRENCIID and OGRENCINO with-
out underline “_” between the words for OGRENCI_ID or OGRENCI_NO may
be taken into the account in matching.

• The matching of the column names such as X# in place of X_NO: While naming
tables and columns, # character may be used in place of NO expression at the
end of the column names. For example, a column named as OGRENCI_NO may
come as OGRENCI#. NO expression at the end of the column name may have
been added to the previous word with or without underline.

• The matching of the column names such as X# in place of X_ID: While naming
tables and columns, # character may be used in place of ID expression at the
end of the column names. For example, a column named as OGRENCI_ID may
come as OGRENCI#. ID expression at the end of the column name may have
been added to the previous word with or without underline.

• Foreign Key Relations: As Data Structure Matching Services will be used for
matching the columns in different databases, the reference columns matching ac-
cording to Foreign Keys from the source databases should be included in column
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Table 1 Matching dictionary table

TERM_1 LANG_1 TERM_2 LANG_ 2 TYPE

OGRENCI TR STUDENT EN Turkish-English

OGRENCI TR TALEBE TR Turkish-Turkish Synonym/Homonym

CAR EN VEHICLE EN English-English Synonym/Homonym

matching in the system used for matching. So, column pair connected to each
other by foreign keys will be added to the matching as automatic query genera-
tion and auto-capture and etc. will be used in the analyses.

• The matching suitable for “Table 1 name + Column name = Column name 2”:
It means that column matching is performed in case of the fact that the text
composed of the combination of table name and column name is equal to an-
other column name. Table name and column name may have been combined
directly or with an underline “_” between the column name. Supposing that
there is ID column on OGRENCI table, and there is OGRENCI_ID column on
OGRENCI_DERS; when the table name OGRENCI is combined with the col-
umn name ID with an underline between them, the expression OGRENCI_ID is
formed. this expression is matched with the column OGRENCI_ID on the table
OGRENCI_DERS. This kind of matching is usually used in case of the fact that
foreign key is not performed on the database but used accordingly.

• Dictionary Matching: While matching the schemas the followings should be
taken into the account for the words of table or column names;

1. the choice of foreign words in naming. For example, Turkish or English word
choice. For example; MUSTERI – CUSTOMER, TARIH – DATE pairs etc.

2. using English synonym or homonym words in place of each other. For exam-
ple; CAR – VEHICLE etc.

For matching by using dictionary, word pairs formed for each three cases are united
on a matching dictionary table with 5 columns like in Table 1.

Matching for different languages can be carried out by this kind of table. Match-
ing for any two languages is possible by entering the related data pairs.

• Matching based on Table Column Comments: System view or tables that keep
the user’s comment information of table columns on the databases may be used
in column matching. The comments on the table columns are usually composed
of a few words entered in natural language by the users and related to the meaning
of the column and how it is used. According to this, the comment text the user
entered is divided into its tokens, and is matched with the other table columns
that have the similar names with the tokens in the text.

• Intervention of another word between the words of the column name: The fact
that one of the pieces of the column name composed of a few pieces divided by
an underline may be missing should be considered in matching. For example;
OGRENCI_DERS_NOT or OGRENCI_NOT.
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• Abbreviation of the words of the column name: The fact that one of the pieces of
the column name composed of a few pieces divided by an underline may be abbre-
viated should be considered in matching. For example; NUFUS_KAYIT_ILCE or
NUF_KAY_ILCE.

• Combination of the words of the column name by an underline or directly: the
column names composed of a lot of pieces can be combined by an underline or
directly. For example; OGRENCINOT or OGRENCI_NOT.

It is needed to run automatic and manual processes together in order to establish
logical relations of data. Automatic services present the user new matching sug-
gestions for approval. Some of these matching suggestions formed in background
especially by using Functional Matching are approved or rejected by using related
interfaces. While the approved matching is kept in a list as a definite relation, the
ones rejected are kept in a reject list and not brought to the user again.

Some sample data with metadata are read from the source databases. This sample
data is in the form of 1000 random value for each table field. For the tables that
include records less than 1000, readings as much as the records on the table are
made for code tables. For the pairs of table field investigated 1000 values from both
of the tables are chosen. It is regarded that there are common values among these
100 values or not on both of the tables. A data similarity point depending on the
numbers of common values is accounted. This data similarity point is presented to
the user as additional information for approval or rejection.

Data similarity point is accounted in order for the user to ease to decide about
the column pairs added to the matching candidate list by using the different match-
ing methods above. While Accounting the similarity point, 1000 pieces of column
value from the related and non empty tables are taken. This accounting is also a
measurement about the fact that how many of 1000 values of one column are seen
in another column. So, it is provided not to make a matching if there are outlier data
even if the column names are similar. In place of sqlin below, sql with IN or EXISTS
may be written. but, this is not preferred as sql will run long on big tables without
index.

3.2 Unstructured Data Categorization

Unstructured data constitutes about considerable amount of the data collected or
stored. Data categorization is converting the unstructured data in actionable form.
That is, uncertainty to certainty, an understanding of the data on hand. This is highly
necessary to manage the unstructured data [8].

Unstructured Data Categorization Services will use text mining and machine
learning algorithms to categorize the unstructured data. So, most of the techniques
found in specific text mining will be used in the system: text categorization, text
clustering, sentiment analysis, document summarization.
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3.3 Unstructured Data Feature Extraction

Transforming the unstructured data into small units (set of features) is called fea-
ture extraction. Feature extraction is an essential pre-processing step and it is often
decomposed into feature construction and feature selection. To detect features are
significantly important for data integration.

Unstructured Data Feature Extraction Services will work on categorized unstruc-
tured data and extract data features by using feature selection methods such as con-
cept/entity extraction.

3.4 Unstructured Data Matching

Unstructured Data Matching Services will work on selected features of unstructured
data by using fuzzy match operation as explained in Fig. 2. For fuzzy match oper-
ations, several text similarity algorithms both standard (such as Levenshtein edit
distance, Jaro-Winkler similarity) and novel will be tested in order to achieve the
best results.

3.5 Ontology

Ontology Services will work with ontologies recorded by user and user can search
data using these ontologies. By using predefined domain ontologies such as intel-
ligence ontologies or foaf (friend of a friend) format that contains human-relation
information are used for detecting the annotated texts and Named Entities, and for
retrieving usable data from free texts written in natural language [1, 12].

Ontologies can be used for Data Structure Matching and Data Matching. While
naming the tables or table columns, preferring the synonym of the same word, using
the homonym or preferring more specific or more general concepts as the column
name or a piece of the column name cause not to be able to match the table columns
that may be related to each other by Exact Matching or Fuzzy String Similarity
methods. The quality of Data Structure Matching can be increased by using domain
or global ontologies, especially by using “is a” and “has a” relations.

Ontologies can be used for matching the values in the fields that are considered to
be related to each other after Data Structure Matching for Data Matching processes.
For example, while one value in ROL field is “Manager” for one person in a human
sources application, value in the related ROL column on a different database may be
seen as “Director”. In the cases of the fact that this kind of synonyms or hierarchic
concepts can be used in place of each other, pre-defined domain ontologies should
be used for Data Matching. For the unstructured data to be classified annotation can
be used.
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3.6 Data Matching

Info Type Services will be used for defining info types and labeling the data items.
Data items coming from different data sources are mapped to these info types. Al-
though matching of data in the fields related to each other as metadata include cer-
tain concepts and approaches mentioned in Data Structure Matching, there should
be approaches special to data. String similarity, regular expressions and ontologies
can be used in Data Matching.

It is possible to present an approach that can be named as Info Type. Similar data
are kept in the databases of different applications. In many of the institutional appli-
cations similar fields such as “Employee Register Number”, “social security num-
ber”, “vehicle registration plate”, “Name”, “Surname”, “State”, “province”, “occu-
pation”. While naming of these fields differ according to application and database,
the data they include are similar or the same. We name this kind of common fields
as Info Type. For example, “Social Security Number” may have different names in
different databases such as “SSN”, “SOCIAL_SECURITY_NUMBER”, “SocialSe-
curityNumber”. However, they all keep data of the same Info Type ad they all have
common similarities (data type, length) and limitations.

One of the advantages of Info Type approach is the fact that identifying data
fields to be integrated in different data sources, if it belongs to a certain info type, as
the related info type is enough. Otherwise, it should be pointed that each pair of data
field is related. Automatic transfers can be provided via the same info type in the
data sources integrated. So, the relations between persons, objects and events will
be automatically provided by intelligent applications in the intelligence analyses,
and the analysis of huge amount of graph data will be eased.

3.7 Metadata

Metadata Services will hold all the services data such as matched structures, map-
ping and parameters. Identifying the data sources, periodically reading of metadata
such as schema, table, table field, column, comments, foreign keys in these source
databases, data that controls the operations and parameters related to monitoring
and managing the structural changes in source databases are generally called as
meta data in Metadata Services.

3.8 Data Fusion and Sharing

Data Fetching Services are used for fetching data by using Metadata Services and
Data Fusion/Sharing Connector. For data fetching, once a query requests data, we
will generate new queries (query re-writing) for each system and send it to the
system, later all sub-results will be consolidated. It will be also possible to query
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Fig. 5 Some data sources

Fig. 6 Info type example

unstructured data semantically such as “Get data if the person X is related to the
murdered person Y”.

In addition to these defined services, the Dynamic Integration Model can be ex-
tended by adding other plug-in services.

All the services mentioned above will use Data Fusion/Sharing Connector for
connecting to data sources.

4 A Sample Case

Here, we demonstrate a basic sample case. In our sample case, there are five different
online structured data sources which are shown in Fig. 5, mainly related to Turkish
national governmental systems.

In this model, firstly the user must define info types which relate corresponding
data. A basic Info Type definition is shown in Fig. 6. Some Info Types include a val-
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Fig. 7 TC_KIMLIK_NO validation

Fig. 8 Info type – data item mapping

idation rule such as TC_KIMLIK_NO (Turkish Citizenship Identification Number)
validation. In Turkish National Citizenship System, TC_KIMLIK_NO is validation
shown in Fig. 7.

From among the data areas to be integrated, the ones that have the same info type
are validated by using the same validation rules. So, both data quality is investigated
for Data Integration, and more clear analyses are performed by matching using the
values that are only validated before the step of Data Matching.

After Info Types are defined, the system connects the data sources, checks the
structures and calls Data Structure Matching Services. Data Structure Matching
Services maps the data items and shows user for approving. User may approve or
reject the mapping, and these approve-reject records return the system as a feedback.
Approved mappings are recorded to the system as shown in Fig. 8. After completing
these mappings and matching, user can call Data Fetching Services from his/her
application.

5 Conclusions and Future Work

In our sample model implementations, not only can the data be matched and get
efficiently but also new data sources can be added dynamically using minimal effort.
This model provides us a layer between different data sources and our applications.
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So the integration of the data sources is built and managed easily. Also, proposed
model is extensible and additional functions can be added.

The proposed model includes many techniques from different areas mainly ma-
chine learning, information retrieval, online-offline data sources. In future, many
details will be implemented in different techniques.
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Overlapping Community Structure
and Modular Overlaps in Complex Networks

Qinna Wang and Eric Fleury

Abstract In order to find overlapping community structure of complex networks,
many researchers make endeavours. Here, we first discuss some existing functions
proposed for measuring the quality of overlapping community structure. Second, we
propose a novel algorithm called fuzzy detection for overlapping community detec-
tion. Our new method benefits from an existing partition detection technique and
aims at identifying modular overlaps. A modular overlap is a group of overlapping
nodes. Therefore, the overlaps shared by several communities are possibly grouped
into several different modular overlaps. The results in synthetic networks and real
networks demonstrate that our method can uncover and characterize meaningful
overlapping nodes.

Keywords Modularity · Co-citation network · Complex networks

1 Introduction

The empirical information of networks can be used to study structural characteris-
tics, like heavy-tailed degree distributions [1], small-world property [3] and rumour
spreading. These characteristics are related to the property of community structure.
In the study of complex networks, a network is said to have community structure if
the nodes of the network can be easily grouped into sets of nodes such that each set
of nodes is densely connected internally, between which connections are sparse.

Communities may thus overlap with each other. For example, people may share
the same hobbies in social networks [28], some predator species have the same prey
species in food webs [13] and different sciences are connected by their interdisci-
plinary domain in co-citation networks [20]. However, most of heuristic algorithms
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are proposed for partition detection, whose results are disjoint communities or par-
titions. A partition is a division of a graph into disjoint communities, such that each
node belongs to a unique community. A division of a graph into overlapping (or
fuzzy) communities is called a cover. We devote this paper to the detection of over-
lapping community structure.

In order to provide the exhaustive information about overlapping community
structure of a graph, we introduce a novel quality function to measure the quality
of the overlapping community structure. This quality function is derived from Re-
ichardt and Bornholdt’s work [25] and explains the quality of community structure
through the energy of spin system.

Moreover, we propose a novel method called fuzzy detection for identifying over-
lapping nodes and detecting overlapping communities. It applies an existing and
very efficient partition detection technique called Louvain algorithm [6]. When run-
ning the Louvain algorithm in a graph, we observe that some nodes are grouped
together with different community members in distinct partitions. These oscillating
nodes are possible overlapping nodes.

This paper is organized as following: we introduce related work in Sect. 2; next,
we discuss the modified modularity for covers in Sect. 3; in Sect. 4, we describe
our fuzzy detection in details, and applied to networks in Sect. 5 for which the com-
munity structure is already known from other studies, our method appears to give
excellent agreement with the expected results; in Sect. 6, when applied to networks
for which we do not have other information about communities, it gives promis-
ing results which may help us to understand better the interplay between network
structure and function; finally, we give the conclusion and our future work in Sect. 7.

2 Related Work

2.1 Definition and Notation

Many real world problems (biological, social, web) can be effectively modeled as
networks or graphs where nodes represent entities of interest and edges mimic the
interactions or relationships among them. A graph G = (V ,E) consists of two sets
V and E, where V = {v1, v2, . . . , vn} are the nodes (or vertices, or points) of the
graph G and E ⊆ V × V are its links (or edges, or lines). The number of elements
in V and E are denoted by n and m, respectively.

In the context of graph theory, an adjacency (or connectivity) matrix A is often
used to describe a graph G. Specifically, the adjacency matrix of a finite graph G on
n vertices is the n × n matrix A = [Aij ]n×n, where an entry Aij of A is equal to 1 if
the link eij = (vi, vj ) ∈ E exists, and zero otherwise.

A partition is a division of a graph into disjoint communities, such that each node
belongs to a unique community. A division of a graph into overlapping (or fuzzy)
communities is called a cover. We use P = {C1, . . . ,Cnc } to denote the partition,
which is composed of nc communities. In P , the community to which the node v
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belongs to is denoted by σv . By definition we have V = ∪nc

1 Ci and ∀i �= j , Ci ∩
Cj = ∅. We denote a cover composed of nc communities by S = {S1, . . . , Snc }. In
S , we may find a pair of community Si and Sj such that Si ∩ Sj �= ∅.

Given a community C ⊆ V of a graph G = (V ,E), we define the internal degree
kint
v (respectively the external degree kext

v ) of a node v ∈ C , as the number of edges
connecting v to other nodes belonging to C (respectively to the rest of the graph).
If kext

v = 0, the node v has only neighbors within C : assigning v to the current
community C is likely to be a good choice. If kint

v = 0 instead, the node is disjoint
from C and it should better be assigned to a different community. Classically, we
note kv = kint

v +kext
v the degree of node v. The internal degree kint of C is the sum of

the internal degrees of its nodes. Likewise, the external degree kext of C is the sum
of the external degrees of its nodes. The total degree kC is the sum of the degrees of
the nodes of C . By definition: kC = kint

C + kext
C .

2.2 Current Work

We then review existing methods for detecting overlapping community structure
and discuss the shortcomings of these approaches.

Baumes et al. [4] proposed a density metric for clustering nodes. In their method,
nodes are added into clusters if and only if their fusion improves the cluster density.
Under this condition, the results really depend on seeds for network clustering. The
seed can be a random node or a disjoint community. As shown in their results, there
is a huge difference in the number of communities based on different types of seeds.

Lancichinetti et al. has made many efforts in cover detection including fitness-
based function [14] and OSLOM (Order Statistics Local Optimization Method) [16].
The former is based on the local optimization of a k-fitness function, whose result is
limited by the tunable parameter k, and the later uses the statistical significance [15]
of clusters with an expansive computational cost as it sweeps all nodes for each
“worst” node. For the optimization, Lancichinetti et al. [16] propose to detect sig-
nificant communities based on a partition. They detect a community by adding
nodes, between which the togetherness is high. This is one of popular techniques
for overlapping community detection. There are similar endeavours like greedy
clique expansion technique [17] and community strength-based overlapping com-
munity detection [29]. However, as they applied Lancichinetti et al. [14]’s k-fitness
function, the results are limited by the tunable parameter k.

Some cover detection approaches are based on other basis. For example, Re-
ichardt et al. [25] introduced the energy landscape survey method, and Sales Pardo
et al. [26] proposed the modularity-landscape survey method to construct a hier-
archical tree. They aim at detecting fuzzy community structure, whose communi-
ties consist of nodes having high probability together with each other. As indicated
in [26], they are limited by scales of networks.

Evans et al. [7] proposed to construct a line graph (a line graph is constructed by
using nodes to represent edges of the original graphs) which transforms the problem
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of node clustering to the link clustering and allows nodes shared by several commu-
nities. The main drawback is that, in their results, overlapping communities always
exist.

The problem of overlapping community detection remains.

3 Modularity Extensions

Modularity has been employed by a large number of community detection methods.
However, it only evaluates the quality of partitions. Here, we first introduce a novel
extension for covers, which is combined with the energy model Hamiltonian for the
spin system [25]. Second, we review some existing modularity extensions for covers
and discuss the cases which these existing extensions may fail to capture. Studies
show that our proposed modularity extension is able to avoid their shortcomings.

3.1 A Novel Modularity

Many scientists deal with the problems in the area of computer science based on
principles from statistical mechanics or analogies with physical models. When us-
ing spin models for clustering of multivariate data, the similarity measures are trans-
lated into coupling strengths and either dynamical properties such as spin-spin cor-
relations are measured or energies are interpreted as quality functions. A ferromag-
netic Potts model has been applied successfully by Blatt et al. [24]. Bengtsson and
Roivainen [5] have used an antiferromagnetic Potts model with the number of clus-
ters as input parameter and the assignment of spins in the ground state of the system
defines the clustering solution. These works have motivated Reichardt and Born-
holdt [25] to interpret the modularity of the community structure by an energy func-
tion of the spin glass with the spin states. The energy of the spin system is equivalent
to the quality function of the clustering with the spins states being the community
indices.

Let a community structure be represented by a spin configuration {σ } associated
to each node u of a graph G. Each spin state represents a community, and the num-
ber of spin states represents the number of communities of the graph. The quality
of a community structure can thus be represented through the energy of spin glass.
In [25], a function of community structure is proposed, whose expression is writ-
ten as:

H
({σ })= −

∑

i �=j

(Aij − γpij )δ(σi, σj ). (1)

This function (Eq. 1) can be written in the following two ways:

H
({σ })= −

∑

s

(
mss − γ [mss]pij

)= −
∑

s

cs (2)
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Fig. 1 Example of [·]pij
,

where the union of clusters n1
and n2 is nr such that
n1 ∪ n2 = nr and the cluster
ns belongs to the rest of the
graph

and

H
({σ })=

∑

s<r

(
msr − γ [msr ]pij

)=
∑

s

asr , (3)

where for each community Cs , we note mss the number of links within Cs , msr

represents the number of links between a community Cs and another community
Cr , [mss]pij

and [msr ]pij
are the expected number of links given a link distribu-

tion pij . The cohesion of Cs is noted cs and asr represents the adhesion between a
community Cs and another community Cr .

We can assume diverse expressions of [·]pij
, which is an expectation under the

link distribution pij . In case of Fig. 1 for disjoint clusters n1 and n2, the choice
should satisfy the following:

1. when ns is a cluster belonging to the rest of the graph, [m1s]pij
+ [m2s]pij

=
[m1+2,s]pij

;
2. when nr is an union cluster composed of n1 and n2, [mrr ]pij

= [m11]pij
+

[m22]pij
+ [m12]pij

.

Similarly, we give a relation for the cohesion of a community n3 (the whole
graph) and two sub-communities n1 and n2 with an empty intersection such as n1 ∪
n2 = n3 and n1 ∩ n2 = ∅ (see Fig. 2(a)). From Eqs. 2 and 3, we can easily prove:

c3 = c1 + c2 + a12 (4)

where c3 denotes the cohesion of n3 that is the union of n1 and n2 with an empty in-
tersection, a12 denotes the adhesion between n1 and n2, c1 and c2 are the cohesions
of sub-communities n1 and n2 respectively.

Furthermore, we can give the relations for the cohesion of n3 and two sub-
communities n1 and n2 in other cases (see Fig. 2).

In the subdivision (see Fig. 2(b)), there is an overlapping cluster n0 between n01
and n02. We write the cohesions for sub-communities n01 and n02 as:

{
c0

01 = c0
0 + c1 + a0

01,

c0
02 = c0

0 + c2 + a0
02,

where c0
01 and c0

02 denote the cohesion of the sub-communities n01 and n02

respectively, a0
01 and a0

02 denote the adhesion between n0 and n1, n2. Here, n0 is
shared by n01 and n02.
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Fig. 2 Let us denote the union of the clusters n0 and n1 by n01. Similarly, we denote the union
of the clusters n0 and n2 by n02, the union of the clusters nr and ns by nrs , the union of the
clusters n1, nr and ns by nrs1 and the union of the clusters n2, nr and ns by nrs2. Three different
subdivisions of the community n3: (a) two disjoint sub-communities n1, n2; (b) two overlapping
sub-communities n01, n02 sharing a cluster n0; and (c) two overlapping sub-communities nrs1, nrs2
sharing two clusters nr , ns , where nr , ns are disjoint sub-communities of n0 such as nr ∩ ns = ∅
and nr ∪ ns = n0

For the adhesion, we have:

a0
01,02 = a0

01 + a0
02 + a12

between n01 and n02.
For the union of n3 = n01 ∪ n02, we obtain

c3 = c0 + c1 + c2 + a01 + a02 + a12

= 2c0
0 + c1 + c2 + 2a0

01 + 2a0
02 + a12.

So we derive

c0
0 = 1

2
c0, a0

01 = 1

2
a01 and a0

02 = 1

2
a02. (5)

In the subdivision (see Fig. 2(c)) such as nr ∪ ns = n0, we replace c0 and c0
0 by

{
c0 = cr + cs + ars,

c0
0 = cr

r + cs
s + ars

rs ,
(6)

where cr
r and cs

s denote the cohesion of overlapping sub-communities nr and ns

respectively. ars
rs denotes the adhesion between overlapping sub-communities nr and

ns , which satisfies ars
rs = 1

2ars due to Eq. 5.
Therefore, we propose the contribution of ars for all communities {C1, . . . ,Ck}:

k∑

1

1

|dr ∪ ds |ars = |dr ∩ ds |
|dr ∪ ds |ars, (7)

where dr and ds denote the community memberships of nr and ns , respectively.
The widest used modularity [22] is given by:

Q = 1

2m

∑

i �=j

(
Aij − kikj

2m

)
δ(σi, σj ). (8)

We rewrite the modularity Q Eq. 8 as:

Q = − 1

m
H

({σ }). (9)
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Consequently, we can write the quality of an overlapping community structure in
the form of the modularity function:

Qov = 1

2m

∑

i �=j

(
Aij − kikj

2m

) |di ∩ dj |
|di ∪ dj | , (10)

where di and dj are memberships of nodes i and j , respectively. For a pair of nodes
i and j always belonging to the same community such as di ∩ dj = di ∪ dj , their

contribution to the modularity is (Aij − kikj

2m
). For a pair of nodes i and j never

belonging to the same community such as di ∩ dj = ∅, their contribution is 0. Oth-

erwise, their contribution is within the range of [0, (Aij − kikj

2m
)]. Furthermore, if the

found community structure is a strict partition, its quality Qov is equal to the initial
modularity Q defined by Eq. 8.

3.2 Existing Modularity for Covers

There are other extensions of modularity designed to evaluate the quality of overlap-
ping community structure. However, we are going to prove that they fail to satisfy
above necessary constraints.

In the case Fig. 2(c), we assume that nr is an overlapping node vi . Similarly
for ns , ns is an another overlapping node vj which connects to vi . The union of vi

and vj is n0 such that n0 = vi ∪ vj . The overlapping communities n01 and n02 are
denoted by Cx and Cy of a graph Gexample, respectively.

Let Ov be the number of communities to which node v belongs. Shen et al. [27]
have introduced an extended modularity:

Qshen = 1

2m

nc∑

i=1

∑

v∈Ci ,w∈Cj ,v �=w

1

OvOw

(
Avw − kvkw

2m

)
δ(σv, σw). (11)

From Eq. 9, it is easy to obtain a0
01shen

derived from Qshen (Eq. 11):

a0
01shen

= 1

2

∑

v∈n0,w∈Cx\n0

(
Avw − kvkw

2m

)
+ 1

2

(
Avivj

− kvi
kvj

2m

)
.

It fails to satisfy a0
01 = 1

2a0 (Eq. 5), where

a01shen =
∑

v∈n0,w∈Cx\n0

(
Avw − kvkw

2m

)
+ 2

(
Avivj

− kvi
kvj

2m

)
.

In other words, through the definition of Qshen, we obtain different values of the
quality in views of Figs. 2(b) and 2(c) although they represent the same cover.

In [21], Tamas Nepusz et al. haved proposed a variant of modularity measure,
which is defined by:

Qfuzzy = 1

2m

∑

i,j

(
Aij − kikj

2m

)
sij
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where sij =∑nc

k=1 ukiukj . The membership degree between node i and community
k, uki satisfies

∑nc

k=1 uik = 1.
As we did previously, for node vk ∈ n0 in Gexample, under the assumption:

uviCx
= uviCy

= uvjCx
= uvjCy

= 1
2 , it is easy to obtain

svkvw =
⎧
⎨

⎩

0 vw /∈ Cx ∪ Cy,

0.5 vw ∈ Cx ∪ Cy, vw /∈ n0,

0.25 vk �= vw.

(12)

We obtain that

a0
01fuzzy

= 1

2

∑

v∈n0,w∈Cx\n0

(
Avw − kvkw

2m

)
+ 1

2

(
Avivj

− kvi
kvj

2m

)
.

It also does not satisfy a0
01 = 1

2a0 (Eq. 5) with a01fuzzy = a01shen .
By using the novel proposed modified modularity (Eq. 10), we obtain

a0
01ov

= 1

2

∑

v∈n0,w∈Cx\n0

(
Avw − kvkw

2m

)
+
(

Avivj
− kvi

kvj

2m

)
.

It satisfies a0
01 = 1

2a0 (Eq. 5), therefore we consider that our novel modified mod-
ularity is more reasonable to evaluate the quality of overlapping community struc-
ture. However, we can not detect covers by optimizing it since overlapping nodes
may degenerate the modularity value. For example, in the case Fig. 2(b), the quality
can be represented by

Qcover
ov = − 1

m
H

({σ })= − 1

m

(
c0 + c1 + c2 + a0

01 + a0
02

)
,

where a0
01 = 1

2a01 and a0
02 = 1

2a02. And the quality of the partition is

Q
partition
ov =

{− 1
m

(c0 + c1 + c2 + a01) , when P = {n01, n2},
− 1

m
(c0 + c1 + c2 + a02) , when P = {n1, n02}.

We find Qcover
ov = Q

partition
ov when a01 = a02; otherwise, Qcover

ov < Q
partition
ov due

to min(a01, a02) < a0
01 + a0

02 = 1
2a01 + 1

2a02 < max(a01, a02). Thus, even in a toy
example where clearly there is a clear overlap (see Fig. 2(b)), if the number of links
between n0 and n1 differs from the number of links between n0 and n2 the quality
of the cover will be less than the quality of the partition once the difference between
the number of links is greater than 0.

To overcome this optimization issue, we propose the method named fuzzy detec-
tion not based on modularity like function.

4 Our Method

In this section, we will introduce our method for cover detection named fuzzy de-
tection. This novel cover detection heuristic aims at identifying modular overlaps.
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Each modular overlap is a group of nodes shared by communities. More precisely,
each modular overlap is a possible sub-community shared by several communities.
For better understanding, we give two definitions of overlapping nodes: granular
overlaps and modular overlaps. The traditional cover detection methods [4, 14, 16]
aims at identifying granular overlaps, which are fine grain scale approaches. Each
granular overlap is a node connected to distinct communities and it is highly con-
nected to each community. Roughly speaking, a granular overlap is shared by sev-
eral distinct communities while being intrinsically a member of each of them. As
opposed to granular overlaps, modular overlaps imply the hierarchical organization
of the graph: each modular overlap is a sub-community shared by several commu-
nities.

4.1 Motivation

Our fuzzy detection algorithm is based on the Louvain algorithm [6]. The Lou-
vain algorithm is an efficient partition detection algorithm that provides good par-
titions with high modularity. It consists of two phases that are iteratively repeated
until no more positive gain of modularity is obtained. Initially, all nodes are as-
signed into a single community. Then, for each node whose move improves the
modularity, it will be removed from its current community to the neighbor com-
munity which offers the largest gain of modularity. The first phase repeatedly and
sequentially sweeps all nodes until no further improvement of modularity can be
gained. The second phase builds a new meta graph based on communities found
in the first phase. It aggregates nodes of the same community and builds a new
network whose nodes are the communities. Once the second phase is completed,
the first phase is reapplied to the new network. The two phases are iteratively
applied until no more change in community structure or maximum modularity is
achieved. In the following, we use iteration to denote the combination of these
two phases. The partition found by this algorithm is hierarchical organized, the
hierarchy height is determined by the number of iterations. The Louvain algo-
rithm is extremely fast and provides highly optimized partitions with high modu-
larity.

When running several times the Louvain algorithm on the same given network,
we observe from a run to another that nodes may be grouped together with differ-
ent community members in distinct partitions. Since the Louvain algorithm sweeps
nodes in a non deterministic fashion (a random permutation of V ), it naturally in-
troduces instability which may be a weakness. It turns out that we can take benefit
of this instability. By detecting nodes that jump from one community to another be-
tween distinct runs, we are in fact able to uncover overlapping nodes. Therefore, we
propose a fuzzy detection algorithm which detects groups of nodes having strong
probability of appearing in several communities.
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4.2 Fuzzy Detection Algorithm

To have the benefit of the potential Louvain algorithm instability [2], we force the
algorithm to use a random seed at each run. The random seed makes the nodes be
swept in a random permutation during the modularity optimization. Thus, different
runs may produce different partitions. By repeating Louvain algorithm, we are able
to compute, a co-appearance matrix P = [pij ]n×n. For each pair of nodes (i, j), pij

of P represents the probability for the pair nodes i and j appearing in the same
community. Having pij = 1 implies that nodes i and j are always in the same com-
munity while edges e = (i, j) having a pij close to 0 implies that edge e connects
two different communities. The underlying idea of fuzzy detection approach is thus
to detect overlapping communities from a classical partition approach.

Detecting overlapping nodes also allows to detect more stable nodes that always
belong together in the same community. In this algorithm, we use the notion of
community cores to denote communities. Given a community, its core is a group
of nodes offering high stability against random perturbation. To detect community
cores, we’re going to remove edges in order to keep only core nodes. First we re-
move all external edges, i.e., all edges e = (i, j), having a connection probability
pij less than a threshold α∗. After this pruning phase, a set of disjoint robust clus-
ters is obtained. A robust cluster is a group of nodes connected by edges having
in-cluster probability larger than or equal to α∗. Note that a given community may
have several robust clusters. We choose the community core corresponding to the
robust cluster having the maximum size. The notion of external edges was used
in [8] where authors add a random noise over the weight of the edges of the network
(equally distributed between [−σ,σ ]). Once community cores are identified, we
continue iteratively, following the Louvain approach. Similarly, in our method, we
replace the robust clusters by supernodes and connect them through the connection
between robust clusters. In this case, the weight of the edge between the supernodes
is the sum of the weights of the edges between the identified robust clusters. We run
again the Louvain algorithm to compute the probability of robust clusters and com-
munity cores to appear in the same community. Finally, we add each robust cluster
to the community if they have a high community membership degree such as their
probability of appearing in the same community is high.

The global algorithm is shown in Algorithm 2. First, (lines 2–9) we compute
the co-appearance matrix P = [pij ]n×n by running the Louvain algorithm of Algo-
rithm 1 several times with a random seed. The number of runs is determined by the
convergence criteria (line 9):

∥∥Pk+1 − Pk
∥∥=

√√√√
1

m

∑

(i,j)∈E

(
pk+1

ij − pk
ij

)2
< ε, (13)

where Pk represents the result after kth run and pk
ij denotes the statistical probability

of nodes i and j to belong to the same community after kth runs (line 5) and ε is
a small threshold. Figure 3 illustrates the convergence of the norm when running



Overlapping Community Structure and Modular Overlaps in Complex Networks 25

Algorithm 1 Louvain algorithm
Require: G = (V ,E), l∗ a level threshold
Ensure: P a partition

1: l ← 0;G0 ← G

2: repeat
3: l ← l + 1
4: Initialize a partition Pl of Gl(Vl,El)

// First phase: Partition update
5: repeat
6: Nodes in a random permutation
7: for all Nodes: v ∈ Vl do
8: Move from σv to one selected σv′ (v′ is a neighbor of v)
9: end for

10: until no more change increases modularity
// Second phase: Construct a new meta graph

11: Replace each community by a node
12: Replace connections between a pair of communities by one weighted edge
13: until Pl is not updated or l = l∗.
14: Return P corresponding to the roots of the hierarchical tree.

fuzzy detection algorithm. We observe that ‖Pk+1 − Pk‖ decreases as the number k

of runs increases.
Then, we detect robust clusters {c1, c2, . . . , cs} = Psc (lines 10–13). Given a

partition Popt which has the maximum modularity among all computed partitions
obtained during the first phase, the robust clusters are detected by removing all edges
having a probability pij lower that a given threshold α∗ (typically α∗ = 0.9). A
simple illustration is given in Fig. 4.

Finally in the second phase, we identify modular overlaps which have high
community membership degrees with several communities. Given a community
Ci ∈ Popt, its core ĉi is the robust cluster cj ⊆ Ci having the maximum size, such
as:

ĉi = arg max
cj ⊆Ci

|cj |. (14)

We assign each robust cluster cj to the community Ci if and only if their com-
munity membership degree pcj ,ĉi

is larger than a threshold β∗ such as pcj ,ĉi
� β∗

(typically β∗ = 0.1). If one robust cluster is assigned to at least two communities,
we call it a modular overlap.

In cases where a community consists of several robuster clusters of comparable
size, one may tune and increase the value of α∗ in order to refine the core identifi-
cation.

Since fuzzy detection is used to identify modular overlaps, which are sub-
communities shared by several communities, we restrict the modular overlaps to
have a size greater than 3. We can now introduce the notion of unstable nodes, which
are nodes connecting communities with few links but are observed to have high co-



26 Q. Wang and E. Fleury

Algorithm 2 Fuzzy detection
Require: G = (V ,E), α∗, β∗
Ensure: S an overlapping community covering of V

// STEP 1: Detect robust clusters
1: P0 ← 0; k ← 0; modularitymax ← −∞
2: repeat
3: k ← k + 1
4: P ← Run the Louvain algorithm on G

5: Update Pk

6: if modularity of P greater than modularitymax then
7: Save the partition P in Popt and update modularitymax
8: end if
9: until ‖Pk − Pk−1‖ ≤ ε

10: Psc = Popt
11: for all edge e = (i, j) such that pij < α∗ do
12: Remove the external edge e from Psc
13: end for

// STEP 2: Adjust the membership of robust clusters
Require: G = (V ,E), Psc, S ← Popt
14: for all Ci ∈ Popt do
15: Identify community core: ĉi = arg maxcj ⊆Ci

|cj |
16: end for
17: Compute Pci ,cj

18: for all cj ∈ Psc and cj /∈ {ĉ1, . . . , } do
19: if pcj ,ĉi

≥ β∗ then
20: Si ← Si ∪ cj

21: end if
22: end for
23: Return S

Fig. 3 As the number of runs
increases, the shape of the
function value Eq. 13 gets
closer and closer to 0. The
figure shows results on
College football [9], Karate
club [30] and Word
adjacencies [23]
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Fig. 4 Illustration of our fuzzy detection on a toy graph which consists of two overlapping cliques.
After removing all edges in low probability pij = 50 % (which connect to the node v0), robust
clusters are obtained, concluding {v1, v2, v3, v4, v5}, {v6, v7, v8, v9, v10}, and a single v0

Fig. 5 An example graph
that contains a unstable
node 5. Node 5 has relatively
high membership degrees
with two communities
(p = 0.5). However, it is
connected to each community
with only 1 link

appearance probability with several communities. Figure 5 illustrates such case. Due
to unstable nodes, we only use fuzzy detection to identify modular overlaps.

The running time of fuzzy detection mainly depends on the co-appearance matrix
calculation. The complexity to find a partition by the Louvain algorithm is estimated
by authors in [6] to be in O(m), where m is the number of edges in the network (the
worst complexity is much higher, but in practice, on real network, Louvain algo-
rithm performs very well). Thus the computational complexity of fuzzy detection
is in O(Km), where K is the number of runs of Louvain algorithm needed before
reaching an acceptable convergence of P. Once more, in practice, we take bene-
fit of the efficient Louvain algorithm running time and our fuzzy detection is fast.
We experiment storage limitation due to the matrices Pk and Pk+1 more than time
computing one.

4.3 Discussion

Our fuzzy detection has applied β∗ to determine community memberships. If the
threshold β∗ increased, the number of modular overlaps decreased; otherwise, more
robust clusters are identified as modular overlaps. The criterion we used to fix the
optimal β∗ value should be based on finding a community structure having the good
quality. In the following, we apply our method to a real network and study the mod-
ularity by increasing the value of β∗.

Wikipedia is a free encyclopedia written collaboratively by volunteers around the
world. A small part of Wikipedia contributors are administrators, who are users with
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Fig. 6 Performance of fuzzy
detection in testing Wikipedia
vote network, where the value
of the modularity corresponds
to the community structure
obtained by the relevant β∗.
The critical point which
corresponds to the maximum
modularity is observed

access to additional technical features that aid in maintenance. In order for a user to
become an administrator a Request for adminship (RfA) is issued and the Wikipedia
community via a public discussion or a vote decides who to promote to adminship.
Using the dump of Wikipedia page edit history, 2,794 elections with 103,663 total
votes and 7,066 users participating in the elections (either casting a vote or being
voted on) are extracted. About half of the votes in the dataset are by existing admins,
while the other half comes from ordinary Wikipedia users.1

By applying our method to the Wikipedia vote network, we show the modularity
by increasing the value of β∗. We observe the critical point: β∗ = 18 % in Fig. 6,
which corresponds to the maximum modularity Eq. 10. In practice, we use the value
corresponding to the critical point to set β∗ which is approximate 10 %. Note that we
do not set a high value upon β∗ since the obtained membership degree is obtained
by modularity optimization. Such that the membership degree pcj ,ĉi

value must
be very high if the robust cluster cj obtains the highest modularity gain with the
community Ci than others. (Even if the modularity gain variance between Ci and
another community is very slight.)

5 Tests of the Method

In the following, we test the performances of fuzzy detection. We have considered
a set of synthetic networks and a real network for which the community structure
is known. The results show that our fuzzy detection algorithm extracts communities
while preserving the hierarchical organization and also providing overlaps.

A community structure can be hierarchically ordered when the graph offers sev-
eral levels of organization/structure at different scales. In this case, the community
structure is hierarchically constructed by small communities at each level, all nested

1http://snap.stanford.edu/data/wiki-Vote.html.

http://snap.stanford.edu/data/wiki-Vote.html
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Fig. 7 The co-appearance matrix of artificial networks containing hierarchical structure. The color
corresponds to the probability of nodes in the same community: the deep color represents the high
probability; the color is white if the probability is 0 %

within large communities at higher levels. As an example, one may consider in a so-
cial network the granularity of the living place (town), the working place (school)
and refine it toward the graduate or class level.

5.1 Synthetic Graphs Containing Hierarchical Structure

First, we apply the fuzzy detection algorithm to an artificial graph containing hier-
archical structure [14] and a modular overlap.

The result is shown in Fig. 7. We observe that fuzzy detection extracts com-
munities in hierarchical organization. The graph is composed of 512 nodes, which
belong to 16 groups, arranged into 4 supergroups and one group is shared by two
supergroups. Every node has an average of k1 = 30 links with nodes in the same
micro-community, k2 = 13 links with nodes in the same macro-community but dif-
ferent micro-community. In addition, each node has k3 = 5 links with the rest of
the networks. As the modular overlaps has macro-links with two communities, its
nodes have a total degree k = 61 while the other nodes only have a total degree
k = 48. This process constructs two hierarchical levels: one consisting of 16 small
groups, and the other one composed of 4 supergroups. Figure 7(a) illustrates the
co-appearance matrix by running the Louvain algorithm without fixing the level
threshold l∗ (see Algorithm 1), while Fig. 7(b) provides the result by running the
Louvain algorithm with l∗ = 1. In both figures, the nodes are sorted in the same
order corresponding to the robust clusters and the selected partition Popt. As the
distinction among robust clusters is not clear in Fig. 7(a), we use Fig. 7(b) for the
visualization. We observe 4 communities and 16 robust clusters, where one robust
cluster is shared by two communities. The result agrees with the ground truth.

Remark that, when running our fuzzy detection to identify modular overlaps,
we may need to increase the value of α∗ to obtain a reasonable community core
whose size is larger than the others within the same community. It occurs when one
community contains several large robust clusters having comparable size.
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Fig. 8 The co-appearance matrix of college football network by running our fuzzy detection. We
order the nodes corresponding to their conferences and mark the conference indices. The color
corresponds to the probability of nodes in the same community: the deep color represents the high
probability; the color is white if the probability is 0 %

5.2 College Football Network

We also run the fuzzy detection algorithm to real networks. A famous real but small
and tractable network is the US college football [9] . This network records the sched-
ule of Division I games for the 2000 season: 115 nodes represent teams (identified
by their college names) and 613 edges represent regular season games between the
two teams they connect. What makes this network interesting [9] is that it incor-
porates a known community structure. The teams are divided into “conferences”
containing around 8 to 12 teams each. Games are more frequent between mem-
bers of the same conference than between members of different conferences, with
teams playing an average of about 7 intra-conference games and 4 inter-conference
games fraction of vertices classified correctly in the 2000 season. Inter-conference
play is not uniformly distributed; teams that are geographically close to one another
but belong to different conferences are more likely to play one another than teams
separated by large geographic distances.

In Fig. 8, we illustrate the results: the community “Mountain West Sunbelt” is
split into “Mountain West” and “Sunbelt1”, the community “Sunbelt SEC” has a
possible subdivision into “Sunbelt2”2 and “SEC”, and a node “CentralFlorida” is
split from the community “Pac 10”. Among them, only “Sunbelt1” is identified

2We do not mark “Sunbelt2” due to the visualization, since its position is too close to “Cen-
tralFlorida” in the figure.
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Fig. 9 The community structure of Complex System Science, in which communities are identified
by complex systems fields

as a modular overlaps. “CentralFlorida” has high membership degree with differ-
ent communities, too. But it is a granular overlapping node rather than a modular
overlap. In reality, the team “CentralFlorida” did not belong to any conference, and
the teams in the “Sunbelt” conference played nearly as many games against West-
ern Athletic teams as they did within their own conference. Therefore, we consider
fuzzy detection has a good performance in detecting modular overlaps for this real
network.

6 Application to a Real Network: Complex System Science

In this section we consider the application of fuzzy detection to a real network called
Complex System Science. It is a co-citation network, whose dataset is composed of
articles extracted from the ISI Web of knowledge. Article were published between
2000 and 2009. The network is composed of 141,163 nodes and 19,603,888 links.
The nodes correspond to articles containing a set of keywords relevant to the field of
complex systems. The weight of the links between articles is calculated through their
common references (bibliographic coupling [12]). A link exists between two articles
if they share references, meaning that they cite common work which may implies
that they are dealing with a same scientific object/domain. More precisely, given two
articles (nodes) i and j , each one having a set of references Ri (respectively Rj ),
there exists a link e = (i, j) between i and j if i and j share at least one reference
and the weight is measured by: wij = |Ri∩Rj |√|Ri | |Rj | .
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Fig. 10 Results of fuzzy detection on Complex System Science. Robust clusters are marked by
the highest frequent topic keywords. Their colors correspond to the relevant communities as shown
in Fig. 9

For the visualization, we only show clusters which contain at least 100 nodes.3

The partition of the graph is shown in Fig. 9. Each community corresponds to a
unique color. Our obtained robust clusters are shown in Fig. 10. The color of each
robust cluster corresponds to the relevant community in the partition shown in Fig. 9.
Only robust clusters belonging to the same community in the partition share the
same color.

Figure 9 shows 12 communities (fields or disciplines). Through studies in topic
keywords,4 see Table 1, we observe nearly all important fields of complex systems
such as: complex networks, neural networks, self-organization criticality, dynami-
cal systems (chaos theory, dynamics turbulence) and so on [10]. It shows that the
community structure of this network reveals the complex systems fields. For more

3In [18], the community which has size roughly 100 nodes is good.
4We compute the frequency of topic keywords by aggregating the number of units (article), i.e., if
only one unite contains the topic keywords “Neurons”, the corresponding frequency is 1.
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Table 1 Results of communities in the partition. The shown high frequent topic keywords are
sorted in descending order and each topic keyword is contained in at least 20 articles

Community Highest
frequent topic
keywords

High frequent topic keywords

Neuroscience:
Biological Psychology

Brain Brain, Neurons, Long-Term Potentiation,
Association, Expression, Performance, Disease,
Model, Synaptic Plasticity, Activation, Complex,
Children, Central-Nervous-System, Rat

Chaos Theory Chaos Chaos, Dynamics, Systems, Model, Stability,
Complexity, Synchronization, Time-Series,
Bifurcation, Self-Organization

Chemistry:
Spectroscopy

Complexes Complexes, Self-Organization, Crystal-Structure,
Chemistry, Derivatives, Behavior, Films,
Polymers, Systems, Phase-Transition,
Spectroscopy, Dynamics, Thin-Films, Molecules,
Nonlinear-Optical Properties

Complex Networks Complex
Networks

Complex Networks, Dynamics, Small-World
Networks, Model, Internet, Evolution, Systems,
Organization, Topology, Scale-Free Networks,
Metabolic Networks, Web, Graphs

Ecosystems Ecology Ecology, Systems, Model, Complexity, Evolution,
Dynamics, Management, Growth, Behavior,
Self-Organization, Patterns, Simulation,
Biodiversity, Models

Molecular Biology Expression Expression, Complex, Gene-Expression, Protein,
In-Vivo, Activation, Saccharomyces-Cerevisiae,
Identification, Gene, Escherichia-Coli, Cells,
In-Vitro, Binding, Crystal-Structure,
Messenger-Rna, Phosphorylation, Proteins

Semiconductor
Superlattice Materials
and Growth Technology

Growth Growth, Gaas, Islands, Molecular-Beam Epitaxy,
Self-Organization, Quantum Dots, Surfaces,
Films, Photoluminescence, Silicon,
Nanostructures, Si(001)

Clinical Psychology Management Management, Therapy, Trauma, Experience,
Hemorrhage, Surgery, Inhibitors, Optimization,
Recombinant Factor Viia, Damage Control,
Mortality, Cancer

Neural Networks Neural
Networks

Neural Networks, Model, Systems, Classification,
Optimization, Algorithm, Identification, Design,
Prediction, Self-Organizing Maps

Soc Self-
Organized
Criticality

Self-Organized Criticality, Model, Dynamics,
Econophysics, Evolution, Systems, Fluctuations,
Behavior, Growth, Turbulence, Noise, Transport,
Avalanches, Earthquakes, Patterns, Time-Series

Computer Science:
Communication Systems

Systems Systems, Design, Performance, Channels,
Algorithm, Networks, Capacity, Ofdm, Stability,
Optimization, Fading Channels, Algorithms,
Model, Signals, Codes, Transmission

Dynamics Turbulence Turbulence Turbulence, Model, Flow, Simulation, Dynamics,
Behavior, Large-Eddy Simulation, Complex
Terrain, Plasticity, Flows, Boundary-Layer
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Table 2 Results of fuzzy detection: ten high frequent topic keywords contained by modular over-
laps between pairs of communities. These high frequent topic keywords are contained in at least
20 articles and are shown in order of descending frequency. The highest frequent topic keywords
are shown in bold font

Modular
overlaps

High frequent topic keywords Involving communities

Genetic
Association

Association, Susceptibility, Polymorphism, Linkage
Disequilibrium, Disease, Major Histocompatibility
Complex, Linkage, Complex Traits, Risk,
Population

Molecular Biology,
Neuroscience:
Biological Psychology

Discrete-event
Systems

Systems, Supervisory Control, Petri Nets,
Complexity, Discrete-Event Systems, Verification,
Design, Automata, Synchronization, Discrete Event
Systems

Computer Science:
Communication
Systems, Ecosystems

Computational
Complexity

Complexity, Algorithms, Computational
Complexity, Algorithm, Networks, Optimization,
Time, Systems, Search, Computational-Complexity

Computer Science:
Communication
Systems, Ecosystems

Astronomy-
ISM
(Interstellar
Medium)

Turbulence, Ism: Clouds, Star-Formation, Stars:
Formation, Molecular Clouds, Ism: Structure, Ism:
Kinematics And Dynamics, Evolution, Radio
Lines: Ism, Intergalactic Medium

Dynamics Turbulence,
Clinical Psychology

Multi-Agent
Systems

Systems, Multi-Agent Systems, Multiagent
Systems, Design, Agents, Architecture,
Multi-Agent System, Framework, Model,
Intelligent Agents

Computer Science:
Communication
Systems, Ecosystems

Visual Cortex Complex Cells, Lateral Geniculate-Nucleus, Cat
Striate Cortex, Primary Visual-Cortex, Striate
Cortex, Cortical-Neurons, Receptive-Fields,
Contrast, Orientation Selectivity, Simple Cells

Neuroscience:
Biological Psychology,
Neural Networks

details, we analyze robust clusters, which can be considered as sub-communities
(subfields or subdisciplines). The result is depicted on Fig. 10, whose description is
listed in Table 3. It is no surprise to observe the connection between subfields and
fields. For example, the community identified by neuroscience: biology psychology
is composed of several clusters, which are also characterized by research topics or
theoretical areas. Note that, the study in neuroplasticity supports the treatments of
brain damage, long-term potentiation concerns learning and memory, pre-Botzinger
complex is essential for respiratory rhythm, and the activities in prefrontal cortex
are considered to be orchestration of thoughts and actions in accordance with in-
ternal goals. All these subfields refer to the study in neuroscience and biological
psychology. It reveals that fuzzy detection extracts communities in hierarchical or-
ganization.

In terms of modular overlaps, our results are shown in Table 2. Except
astronomy-ISM (Interstellar medium) which acts like a unstable cluster, the rest has
a good agreement compared to the reality: discrete-event systems and multi-agents
are very common for modeling and analyzing general systems, computational com-
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Table 3 Results of fuzzy detection: ten high frequent topic keywords contained by robust clusters.
These high frequent topic keywords are contained in at least 20 articles and are shown in order of
descending frequency. The highest frequent topic keywords are shown in bold font

Community Cluster High frequent topic keywords

Dynamics
Turbulence

Flow Over Complex
Terrain

Turbulence, Model, Flow, Simulation,
Complex Terrain, Large-Eddy
Simulation, Flows, Behavior,
Boundary-Layer, Plasticity

Astronomy-Ism
(Interstellar Medium)

Turbulence, Ism: Clouds, Star-Formation,
Stars: Formation, Ism: Structure,
Molecular Clouds, Ism: Kinematics and
Dynamics, Evolution, Radio Lines: Ism,
Intergalactic Medium

Computer
Science:
Communication
Systems

Telecommunication
System

Systems, Performance, Channels,
Synchronization, Fading Channels,
Capacity, Ofdm, Equalization, Networks,
Multiuser Detection

Control Theory Systems, Stability, Design, Robust
Control, Optimization, Linear-Systems,
Model-Predictive Control, Stabilization,
H-Infinity Control, Model Predictive
Control

Wireless Network Ad Hoc Networks, Sensor Networks,
Wireless Sensor Networks,
Self-Organization, Networks, Wireless
Networks, Clustering

Cryptography Stream Ciphers, Cryptanalysis, Linear
Complexity, Stream Cipher, Sequences

Molecular
Biology

Expression Expression, Complex, Gene-Expression,
Protein, Saccharomyces-Cerevisiae,
Gene, Activation, In-Vivo, Identification,
In-Vitro

Dendritic Cells Dendritic Cells, In-Vivo, Expression,
T-Cells, Infection, Complex, Mice,
Activation, Major Histocompatibility
Complex, Antigen

Crystal structure of
Escherichia Coli

Crystal-Structure , Complex,
Escherichia-Coli, Binding, Protein,
Recognition, Mechanism, Proteins,
Molecular-Dynamics, Complexes

Gene Expression In
Escherichia Coli

Escherichia-Coli, Gene-Expression,
Systems, Expression, Model, Networks,
Systems Biology, Protein, Transcription,
Rhythms

Atherosclerosis Atherosclerosis, Inflammation,
Expression, Disease,
Myocardial-Infarction, In-Vivo,
C-Reactive Protein,
Smooth-Muscle-Cells, Activation,
Low-Density-Lipoprotein
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Table 3 (Continued)

Community Cluster High frequent topic keywords

Molecular
Biology

Membrane Fusion And
Exocytosis

Membrane-Fusion, Neurotransmitter
Release, Exocytosis, Syntaxin, Snare,
Complex, Protein, Snare Complex,
Transmitter Release

Proteomics Identification, Proteomics,
Mass-Spectrometry, Proteins, Peptides,
Protein Identification

Chaos Theory Chaotic Dynamics Chaos, Dynamics, Systems, Complexity,
Stability, Model, Time-Series,
Synchronization, Nonlinear Dynamics,
Bifurcation

Quantum Chaos And
Universality

Universality, Quantum Chaos, Systems,
Chaos, States, Model, Random- Matrix
Theory, Complex Systems, Fluctuations,
Spectra

Chaos In Population
dynamics

Chaos, Stability, Dynamics, Population,
Permanence, Models, Systems,
Bifurcation, Predator-Prey System, Birth
Pulses

Neuroscience:
Biological
Psychology

Neuroplasticity RAT, Neurons, Plasticity, Hippocampus,
Brain, Central-Nervous-System, Synaptic
Plasticity, Long-Term Potentiation,
Food-Intake, Memory

Long-Term Potentiation Long-Term Potentiation, Synaptic
Plasticity, Plasticity, Hippocampus,
Nmda Receptor, Glutamate Receptors,
Expression, Neurons, In-Vivo,
Hippocampal-Neurons

Genetic Association Association, Susceptibility,
Polymorphism, Linkage Disequilibrium,
Disease, Major Histocompatibility
Complex, Linkage, Complex Traits, Risk,
Population

Pre-Botzinger Complex Pre-Botzinger Complex, In-Vitro,
Pre-Botzinger Complex, Brain-Stem,
Respiratory Rhythm Generation, Rhythm
Generation, Rat, Control of Breathing,
Neurons, Pacemaker Neurons

Prefrontal Cortex Performance, Attention, Fmri, Children,
Prefrontal Cortex, Brain,
Working-Memory, Cortex, Memory,
Activation

Diabetes Mellitus Mellitus, Glycemic Control,
Complications, Hypertension,
Randomized Controlled-Trial, Diabetes,
Therapy, Risk, Diabetes Mellitus,
Management
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Table 3 (Continued)

Community Cluster High frequent topic keywords

Chemistry:
Spectroscopy

Crystal Structure Complexes, Self-Organization,
Crystal-Structure, Derivatives,
Chemistry, Polymers, Behavior, Films,
Nonlinear-Optical Properties,
Phase-Transition

Anodic Alumina Fabrication, Arrays, Films, Anodic
Alumina, Anodization,
Self-Organization, Growth,
Self-Organized Formation, Hexagonal
Pore Arrays, Titanium

Soc Soc Self-Organized Criticality, Model,
Dynamics, Econophysics, Evolution,
Systems, Fluctuations, Models, Behavior,
Turbulence

Ecosystems Innovation Management Management, Innovation, Economics,
Performance, Model, Complexity,
Systems, Technology, Firm, Knowledge

Discrete-Event Systems Systems, Supervisory Control, Petri Nets,
Complexity, Discrete-Event Systems,
Verification, Design, Automata, Discrete
Event Systems, Synchronization

Computational
Complexity

Complexity, Algorithms, Computational
Complexity, Algorithm, Networks,
Optimization, Time, Systems, Search,
Computational-Complexity

Ecosystems Ecology, Dynamics, Evolution,
Biodiversity, Patterns, Diversity, Growth,
Model, Management, Conservation

Absorption Adsorption, Sorption, Speciation,
Complexation, Humic Substances, Water,
Natural-Waters, Kinetics, Ph, Copper

Cellular Automaton Cellular Automata, Systems, Simulation,
Self-Organization, Model,
Cellular-Automata, Flow,
Cellular-Automaton Model, Traffic Flow,
Dynamics

Multi-agent Systems Systems, Multi-Agent Systems,
Multiagent Systems, Design, Agents,
Architecture, Multi-Agent System,
Framework, Model, Intelligent Agents

Division of Labor in
Insect Societies

Self-Organization, Behavior,
Division-Of-Labor, Hymenoptera, Ants,
Colonies, Formicidae, Social Insects,
Swarm Intelligence, Evolution

Complex Adaptive
Systems

Complexity, Self-Organization, Chaos,
Emergence, Science, Complex Adaptive
Systems, Complexity Theory
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Table 3 (Continued)

Community Cluster High frequent topic keywords

Ecosystems Malaria Malaria, Culicidae, Identification,
Transmission, Complex, Diptera, Africa,
Mosquitos, Anopheles-Gambiae
Complex, Gambiae Complex

Neural
Networks

Neural Networks Neural Networks, Classification,
Systems, Model, Self-Organizing Map,
Neural Network, Algorithm,
Identification, Artificial Neural
Networks, Prediction

Genetic Algorithm Optimization, Genetic Algorithms,
Genetic Algorithm, Design, Systems,
Neural Networks, Model, Algorithm,
Algorithms, Simulation

Simulated Annealing Optimization, Simulated Annealing,
Algorithm, Model

Gene Expression
Patterns

Patterns, Self-Organizing Maps,
Gene-Expression, Microarray,
Identification, Gene Expression,
Saccharomyces-Cerevisiae, Cancer,
Expression, Classification

Complex
Systems

Complex Systems Complex Networks, Dynamics,
Small-World Networks, Model, Internet,
Networks, Evolution, Scale-Free
Networks, Systems, Organization

plexity is a common property of complex systems, and genetic expression [11, 19]
studies are often used to determine whether a genetic variant is associated with a
disease or trait. Visual cortex is one part of visual systems, which receives visual
information for processing images. These results can be validated from the trivial.
This also suggests that the interdisciplinarity is important in studies of complex
systems.

7 Conclusion

In this paper, we introduce a new extension of modularity for covers and a new
method for overlapping community detection. Our definition of modularity is de-
rived from Reichardt and Bornholdt’s work [25] and explains the quality of com-
munity structure through the energy of spin system. The proposed fuzzy detection
benefits from the Louvain algorithm and detects modular overlaps. Modular over-
laps are groups of nodes shared by several communities. We have tested our fuzzy
detection on synthetic networks and observed its good performances by comparing
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to the ground truth. Its application to a real network also hints that our algorithm
provides insights in characterizing overlapping nodes.

We hope that our idea and method will provide useful information in the analysis
of other types of networks. Possible further applications to dynamic networks will
be done for studying effects of overlaps in community changes. We hope to see such
applications in the future.
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Constructing and Analyzing Uncertain Social
Networks from Unstructured Textual Data

Fredrik Johansson and Pontus Svenson

Abstract Social network analysis and link diagrams are popular tools among in-
telligence analysts for analyzing and understanding criminal and terrorist organi-
zations. A bottleneck in the use of such techniques is the manual effort needed to
create the network to analyze from available source information. We describe how
text mining techniques can be used for extraction of named entities and the relations
among them, in order to enable automatic construction of networks from unstruc-
tured text. Since the text mining techniques used, viz. algorithms for named entity
recognition and relation extraction, are not perfect, we also describe a method for
incorporating information about uncertainty when constructing the networks and
when doing the social network analysis. The presented approach is applied on text
documents describing terrorist activities in Indonesia.

Keywords NLP · Relation extraction · SNA · Social network analysis · Text
mining

1 Introduction

Visualization of network structures has long been an important tool for police and
intelligence analysts who are investigating criminal or terrorist networks (also re-
ferred to as dark networks [1, 2]). However, social network analysis (SNA) is a rich
research field that contains more than just visualization. It has in recent years also
become increasingly popular among analysts and investigators to use SNA-related
techniques such as node centrality measures and community detection algorithms.
An example of how such techniques can be applied is to use them when deciding
whom to bring in for questioning in criminal investigations [3]. In [4] it is discussed
how SNA metrics can be used to judge which members of terrorist networks that are
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most important to influence or remove in order to succeed with destabilization of the
network. Another example of the use of SNA for intelligence analysis is the capture
of Saddam Hussein, which according to [5, 6] was a result of a trace of tribal and
family linkages of Hussein, in which certain individuals who may have had close
ties to him were identified. The popularity of using SNA for this kind of tasks can
be illustrated by the incorporation of SNA functionality in the Analyst’s Notebook,
which is a tool developed by the company i2, often used by police and intelligence
analysts.

A bottleneck with the use of SNA techniques is the actual construction of the so-
cial network. In the case of access to structured database information such as phone
records, passenger lists, etc., it is rather straightforward to build the network from
data (although preprocessing such as record linkage/entity matching [7, 8] often
is needed). But how do we proceed when the needed data is not readily available
in structured form? Tremendous amounts of useful information can be hidden in
the ever-increasing flood of unstructured textual data, but it is usually not possible
for human intelligence analysts to read through all available text documents of the
phenomenon to be analyzed and manually structure the relevant information in a
database. To account for this problem, we suggest the use of natural language pro-
cessing (NLP) and text mining techniques to automatically extract entities and their
relations from massive amounts of unstructured textual data and make use of the ex-
tracted information to automatically create social networks. The resulting networks
will obviously rarely be of as high quality as if a skilled human analyst read through
all the unstructured text and created the network manually. However, as will be ar-
gued in this chapter, the networks obtained with the proposed method will be good
enough to give a first view of a network to be analyzed, and can easily be improved
upon through manual refinement of the results.

Most of the existing work on social networks assume networks with binary rela-
tionships, with links having either the value 1 (present) or 0 (absent). However, as
observed in [9], social network datasets are often incomplete and prone to observa-
tion error, e.g., due to inherent vagueness of human-informant reliability and bias.
Since the uncertainties can be expected to be even larger for networks constructed
automatically from unstructured text than for manually constructed networks (and
since information within the intelligence domain often is unreliable), the problem
of incorporating uncertainty can be argued to be even more important in this case.
For this reason, we suggest a method for incorporating uncertainty into our auto-
matically created social networks.

The rest of this article is structured as follows. Firstly, a brief presentation of
various SNA measures is provided in Sect. 2, illustrated within the context of in-
telligence analysis. In Sect. 3, research related to managing uncertainty in social
networks is presented. Furthermore, a definition of uncertain social networks suf-
ficient for the work presented in this article is given. Next, the problems of named
entity recognition and relation extraction from unstructured text are discussed in
Sect. 4, together with an overview of related work. In Sect. 5, we suggest a method
for constructing uncertain social networks from unstructured textual data, imple-
mented into the tool CACTUS. An experiment for illustrating and evaluating the
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suggested method is presented in Sect. 6, together with the acquired results. A dis-
cussion is provided in Sect. 7, where we also present ideas for future work. Finally,
the main conclusions are summarized in Sect. 8.

2 SNA in the Context of Intelligence Analysis

A social network is often represented as a graph G = (V ,E) consisting of a set
of nodes V and a set of edges E, where the nodes (vertices) typically are used to
represent actors in the networks (e.g., persons, teams, or organizations), while the
edges (sometimes referred to as ties in the terminology relevant to social networks)
represent relationships among actors (such as kinship, communication, business re-
lationship, etc.). The edges can be either directed or undirected, depending on the
type of network that is modeled. In this example, we will limit the discussion to an
undirected social network, where the nodes represent various criminals and where
the edges represent relationships among them. Once a graph has been constructed
in one way or another (e.g., through interviews, questionnaires, direct observation,
data from archival records, or automatic construction from unstructured text), there
are a number of node centrality measures that can be used to determine the im-
portance of a node in the network. Examples of such node centrality measures are
degree centrality, closeness centrality, and betweenness centrality [10]. The degree
centrality of a node is simply the number of edges that the node is part of. A strength
of this measure is that it is very simple to calculate; only the local structure around
the node has to be considered when calculating it. This is, however, also a disad-
vantage, since it does not take the global structure of the network into account. In
contrast, closeness centrality takes such global structure into consideration, as it is
defined as the inverse sum of shortest distances to all other nodes from a focal node.
In this way, it measures how “close” a node is to all other nodes, saying something
about how quickly the node can reach other nodes.1 Finally, the betweenness cen-
trality measures the proportion of geodesics [11], i.e., shortest paths between two
nodes in the network, that flow through the particular node. The more shortest paths
that pass through a node, the more central to the network it can be argued to be. Re-
moving nodes with maximum betweenness from the network will typically result in
large increases in minimum distances among the other nodes [12]. The nodes with
high betweenness are often referred to as information brokers or gatekeepers [11],
and are important to identify and remove if the aim is to disrupt the network.

In addition to measuring the impact of individual actors in the network, it can
be of importance to analyze properties of the network as a whole. Centralization is
one such property, measuring the relative difference between the highest and lowest
values for the betweenness centrality measure over all nodes in the graph. This mea-
sure gives an idea of the variability of centralities among nodes in the network [13].

1A downside with closeness centrality is that it is not applicable to networks with several dis-
connected components. A possible solution for this is to consider the inverse closeness centrality
instead.
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The most centralized network topology possible is the star topology, so centraliza-
tion results should be interpreted as the degree of inequality in the network as a
percentage of that of a perfect star network of the same size. Another widely used
social network analysis concept is that of density, defined as the ratio of the num-
ber of edges in the graph and the maximum possible number of edges in a graph
with the same number of nodes [11, 13]. Hence, the lowest possible density is 0 (no
edges present in the graph) and the highest possible density is 1 (a complete/fully
connected graph). In general, density is inversely related to the size of the network:
the larger the social network, the lower the density [14]. This is due to the fact that
the number of possible edges grow very rapidly with the size of the network, while
most nodes often have quite few relations.2

When analyzing social networks, it becomes obvious that they usually consist of
several smaller communities (also known as subgroups or clusters). These commu-
nities typically have more and stronger links within the subgroup, than to the nodes
outside the subgroup. The nodes connecting two or more communities are often the
gatekeepers, as discussed above. To find out how many subgroups a network con-
sists of and to which cluster a certain node belongs is an important problem often
referred to as community detection or subgroup identification. It must be mentioned
that the concept of community is not well-defined and depends on what kinds of
edges that are considered: depending on the type of relations that are used, different
community structures might be found, simply because each person belongs to sev-
eral different groups (e.g., a person is linked to both work colleagues and old school
friends, with different types of links). However, it is nevertheless meaningful to talk
about detecting clusters or communities, provided that it is clear that it is a specific
kind of community that one is interested in (e.g., one relating scientific authors).

To illustrate the SNA concepts and measures that have been introduced above,
we will use the social network shown in Fig. 1. Assume that this network repre-
sents known criminals and the known relations among these criminals (in reality,
the network is completely made-up). A quick look on this network reveals that the
node with highest degree centrality is Doris (with a value of 7), closely followed by
Niel (with a degree centrality of 6). A further analysis of the network with appro-
priate software (e.g., Gephi [16] or Pajek [17]) reveals that the situation is the same
also for closeness and betweenness centrality (i.e., Doris in top, closely followed
by Niel). Hence, it becomes quite obvious that these individuals are worth a closer
investigation in case of a planned disruption of the network.

Analyzing the properties of the network as a whole, the density is 0.138, meaning
that 13.8 % of all possible edges are present in the network. Likewise, the central-
ization of the network is 17.4 %. Finally, a community detection algorithm (the
Louvain method [18]) has been applied to the social network, resulting in the three
communities shown in Fig. 2 (each color represents a community, and the nodes’
size represent their degree centrality). Such information can e.g., be used for finding
out to which criminal group a specific individual belongs.

2Many real-world networks are scale-free, i.e., their number of edges follow a power law distribu-
tion [15].



Constructing and Analyzing Uncertain Social Networks 45

Fig. 1 Example of a social network

Fig. 2 Communities of the criminal network
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3 Uncertain Social Networks

An inherent property of many real-world social networks is that they are associated
with varying degrees of uncertainty. This is especially true for large-scale social
networks, as highlighted in [19]. For small-scale networks it is in general easier for
researchers to be deeply involved in the collection and construction process (e.g.,
by using interviews and other observational techniques), while one often has to rely
on other types of techniques when constructing larger-scale networks (e.g., by using
surveys or “snowballing” techniques). The problem with uncertain data becomes
evident when constructing social networks automatically from text, due to named
entity recognition (NER) and relation extraction techniques being far from perfect,
and that not all types of relations will be explicit in unstructured text. However, also
smaller-scale social networks are prone to errors and uncertainties due to the inher-
ent unreliability and bias of human informants [9] or factors such as non-response
in network surveys [20]. Dark networks and other types of networks of interest to
intelligence analysts are particularly vulnerable to uncertainty, due to the imperfect
nature of the sources relied upon for building the networks (human intelligence,
open source intelligence, signal intelligence, etc.).

A number of experiments have been conducted in recent years, where the robust-
ness of centrality measures under imperfect or missing data has been studied, e.g.,
[9, 21, 22]. In [22] it is investigated how sensitive various centrality measures are to
random errors (missing or extra nodes and edges) in observed networks. Although
their study is limited to random error in randomly generated networks, the results
suggest that measures of centrality are rather robust to small amounts of error. Simi-
lar results are obtained in [9], where it also is discovered that the degree of effect on
accuracy is dependent on the actual topology of the network (e.g., random, scale-
free, or cellular). The study presented in [21] differs from the others in that random
sampling is made based on “real” social networks (i.e., constructed from empirical
social studies rather than being artificially generated). Although no strong claims in
terms of generalizability of the results are made, the findings indicate that it can be
useful to apply centrality measures to networks even though there is some amount
of missing data.

Despite the interest of studying which effect “erroneous” edges and nodes will
have on the analysis of networks, not much research seems to have been devoted to
the incorporation of uncertainty into social networks and SNA, as noted in [23, 24].
An attempt to combine SNA and fuzzy set theory is presented in [25], where fuzzy
linguistic expressions such as “strong” or “weak” relationships among nodes are
modeled using fuzzy sets. This may be useful for statements such as:

“Anna is a close friend to Lisa”

but does not fit for all kind of situations. In [19] it is argued that probabilistic
databases may be useful for managing uncertainty in SNA data. To strengthen this
claim an uncertain diffusion network is presented as a motivating example, but very
few details are given in their paper. Some approaches to adding uncertainty handling
capabilities to network analysis (possibility theory, Dempster-Shafer theory, and
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random set theory) are outlined in [23], where it also is suggested that simulation-
based methods can be used to analyze networks containing uncertain data. That
kind of simulation-based methods are used in [24, 26], where the available (uncer-
tain or imperfect) information is used to create an ensemble of certain networks that
is consistent with the original uncertain network using Markov Chain Monte Carlo
(MCMC) sampling. Community detection algorithms are applied to each sampled
network in the ensemble, whereupon the set of detected community structures are
merged into a single community structure for the uncertain network. Additionally,
the idea to use Dempster-Shafer theory to handle uncertainty in networks is de-
scribed more thoroughly in [24]. The main advantage of using Dempster-Shafer
theory to represent uncertainty is that it is possible to quantify the degree of igno-
rance in the problem. The simplest way of understanding Dempster-Shafer theory
is to think of it as a generalization of probability theory where the basic concept
is called probability mass instead of probability, and an event X is described using
three numbers instead of two: we talk of the probability mass associated to:

• X,
• its complement ¬X, and
• the union of X ∪ ¬X (i.e., everything).

The probability mass assigned to the latter represents ignorance and it is required
that the three probability masses sum to 1. Compare this to normal probability the-
ory where we deal with the probabilities of X and ¬X which must sum to 1, and
where there is no room to express fundamental uncertainty. Dempster-Shafer proba-
bility masses for an event can also be represented by intervals giving the Belief (i.e.,
everything that explicitly favours the event) and Plausibility (everything that does
not explicitly contradict the event). There is a large literature on the interpretation
of Dempster-Shafer theory and its relations to probability theory.

Although not much research has been devoted to the incorporation of uncertainty
into social networks, it is more common to study and analyze various weighted net-
works. Usually, the weights take on integer values (e.g., for modeling the number
of direct flights between two cities or the number of papers co-authored by two sci-
entists), but a rather intuitive way to model an uncertain network is to instead use
weights that are restricted to taking on a value in the unit interval [0,1] for modeling
link uncertainty. This is not general enough for all purposes of uncertainty model-
ing for social networks since there for example also can be uncertainties regarding
the existence of nodes, or relationships in more complex structures such as triads
or other larger cliques. Nevertheless, for the purposes of this paper, the expressive-
ness offered by real-valued weights is enough. Therefore, we here use the following
definition of an uncertain network:

Definition 1 Let G = (V ,E,P ) be an uncertain network, with V and E denoting
the set of nodes and edges, and P representing an adjacency matrix of probabilities
associated with edges in the graph, so that Pij ∈ [0,1] denotes the probability that
there should be an edge Eij between the nodes Vi and Vj .
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Fig. 3 Example of an
uncertain network

An example of such an uncertain network is illustrated in Fig. 3.
An important question then becomes how we can analyze such an uncertain net-

work? Since we are essentially using a type of weighted network for representing
our uncertain networks, we can use metrics developed for weighted networks to an-
alyze our uncertain networks. As stated in [27], most social network measures are
defined solely for the binary case, and are thus unable to deal with weighted net-
works directly. However, as observed in [28], weighted networks are in many ways
behaving the same as unweighted multigraphs. This observation is the foundation
for many of the existing techniques for analysis of weighted graphs. As proposed in
[28] and [29], the degree of a node in a weighted network can be defined as the sum
of the weights attached to it. This weighted degree is sometimes also referred to as
node strength [27]. A direct mapping of this result suggests that we can calculate
the degree centrality di of a node Vi in an uncertain network G as:

di =
∑

j

Pij . (1)

In the same manner, many other useful generalizations of measures originally de-
veloped for unweighted networks have been made for weighted networks, such as
eigenvector centrality [28], betweenness centrality [12, 30], and closeness central-
ity [12]. Since the mappings of these measures from weighted networks to uncertain
networks (as we define them in this work) are trivial, we refer the interested read-
ers to the above mentioned papers for presentations of the weighted node centrality
measures. Recently, other generalizations of weighted versions of various node cen-
trality measures have been suggested in [27], allowing for taking the number of ties
(degree centrality) or the number of intermediary nodes (betweenness and closeness
centrality) into consideration by the inclusion of a tuning parameter α.

In addition to applying node centrality measures to uncertain networks, it can
also be of interest to detect community structures in the network. As a motivating
example, this is of importance for this work since we would like to be able to dis-
criminate between people actually being part of dark networks, and other people
co-occurring in texts by pure chance or for other legitimate reasons. A community
detection algorithm for weighted networks has been suggested in [28], which is a
generalization of the Girvan-Newman algorithm [31]. First, the betweenness cen-
trality of the graph is calculated (ignoring the weights). After that, the betweenness
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is divided by the weight of the corresponding edge, whereupon the edge with the
highest resulting score is removed. Then the betweenness for the new graph is cal-
culated, and so on, until a suitable number of communities have been created (the
best number of communities can be decided using the well-known modularity mea-
sure [32]). For community detection, however, it is not as straightforward to apply
the algorithms for weighted networks to uncertain networks. The reason for this has
to do with the effects of correlations between the uncertain edges in a network, that
will lead to simple algorithms based on weighted networks giving the wrong results,
see [26].

4 Extraction of Entities and Relations from Unstructured Text

In order to be able to create uncertain networks from unstructured text, it is nec-
essary to first be able to extract relevant entities and relations from the text. The
problem of extracting named entities from unstructured text is briefly presented in
Sect. 4.1, and the problem of identifying relations between extracted entities is dis-
cussed in Sect. 4.2. A few attempts in literature to create social networks from ex-
tracted information are presented in Sect. 4.3.

4.1 Extraction of Named Entities

Named entity recognition (NER) involves the task of processing text automatically
in order to discover mentions of proper nouns such as persons, organizations, and lo-
cations. In the seventh Message Understanding Conference (MUC-7), the following
types of named entities were defined [33]:

• People names, geographic locations, and organizations.
• Dates and times.
• Monetary amounts and percentages.

According to the survey on NER presented in [34], the very first research articles on
NER were published in the early 1990s. Early attempts for extracting named enti-
ties relied on heuristics and hand-crafted rules, but more recent approaches to NER
are mostly based on statistical models, trained using supervised or semi-supervised
learning algorithms. Examples of supervised learning techniques that have been
used for NER are hidden Markov models (HMMs), decision trees, support vector
machines (SVMs), and conditional random fields (CRFs) [34].

Many modern algorithms for NER obtain a high accuracy, where the best are able
to get as high as 95 percent precision and recall when trained on domain-specific
data [33]. However, these results greatly depend on the choice of domain, and the
results can be expected to be significantly lower if no suitable domain-specific train-
ing data are available.



50 F. Johansson and P. Svenson

4.2 Extraction of Relations

According to [35], the concept of relation extraction was first introduced in the
sixth Message Understanding Conference (MUC-6). More lately, it has also been
promoted by the Automatic Content Extraction (ACE) program [36]. Formally, the
goal of relation extraction can be specified as: “the task of recognizing the assertion
of a particular relationship between two or more entities in text.” [37]. Most ap-
proaches to relation extraction (sometimes also referred to as relation discovery) are
based on supervised machine learning algorithms searching for a small set of pre-
specified semantic relations, learned from manually labeled training examples (see
e.g., [38]). Since this kind of approaches require very many training examples, var-
ious bootstrapping algorithms have been suggested, reducing the number of train-
ing examples needed. All these kinds of extraction can be referred to as targeted
(or traditional) relation extraction [39]. This traditional sense of relation extraction
will throughout this work be referred to as TRE. In 2007, open relation extraction
(ORE), sometimes also referred to as open information extraction, was introduced
in [40]. A system for ORE extracts relations without requiring any relation-specific
human input, making it more suited for large corporas such as text harvested from
the Web [37]. For this kind of problem, the use of conditional random fields [37]
and Markov logic networks [41] have been suggested.

Some researchers are also making a distinction between explicit and implicit
relation extraction, where explicit relationships are explicitly stated in text, while
implicit relations should be evident from reading a text but are not necessarily ex-
plicitly stated [42].

An approach to relation discovery in large text corpora is presented in [35]. Their
idea is to extract named entities and collect all instances of entity pairs occurring
within a certain distance of each other, as well as the context words intervening the
named entities. In order to calculate the context similarities of a pair of entities, a bag
of words is formed from all intervening words from all co-occurrences of the two
entities, weighing the words in the vector using the popular tf-idf (term frequency-
inverse document frequency) measure and applying cosine similarity between the
resulting context vectors. This is used to cluster the extracted entity pairs, where-
upon the clusters are labeled with the most frequent common words. These common
words are also used for labeling the relations between the entities in that cluster.

4.3 Generating Social Networks

Once named entities and relations have been extracted one way or another, we want
to create a social network based on the extracted information. The idea to extract
social networks from textual data is not new. A technique referred to as “melting
pot” is tested in [43], where it is compared to a more traditional (manual) snow-
balling approach. In their “melting pot” approach, names are extracted from news
pages using a tool called DynaLink. For all pairs of actors identified at the same
news page, a link is created between the actors. This is not unexpectedly creat-
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ing a large network with a large amount of extraneous links, since it is common
that people are talked about at a web page without having any tight relationships
among each other. In [44], social networks are created from text documents such as
personal home pages and publications. The used method builds upon the use of a
vector space model where latent semantic indexing (LSI) is used to find similarities
between people. This approach is however not suitable for the kind of text docu-
ments of interest here. In [45], social networks from 19th century British novels and
serials are constructed, where the nodes in the network are extracted characters, and
where the edges in between them are created when bilateral conversations between
the characters are identified. Hence, their suggested approach relies on components
finding instances of quoted speech, identifying conversation among certain charac-
ters. Conversation among characters is a useful way to identify this very specific
type of relation, but is not useful for finding more general relationships among en-
tities in text. Mesquita et al. [39] extract information networks from blog posts us-
ing their system SONEX. Their approach is similar to ours in many aspects, with
the main difference that we incorporate uncertainty into our relations and the con-
structed social network, as further described in Sect. 5.

5 Suggested Approach for Creating Uncertain Social Networks
from Unstructured Text

We want to be able to automatically create social networks by extracting named en-
tities and relations from various unstructured text documents. This is indeed a hard
problem, associated with many subproblems. First of all, approaches for extracting
named entities from text are not perfect, resulting in that named entities present in
a text can be missed, or misclassification of non-entities as entities. Secondly, there
are very many ways to express various relations in unstructured text. Even though
the number of target relations of interest are restricted to one or a few, the extracted
information will not be perfect. Moreover, we do not want to restrict ourselves to a
few predetermined target relations, and hence, are here dealing with open relation
extraction (ORE). Once relations and named entities have been extracted, it should
be possible to fuse the results from several texts, and to generate a social network
that can be presented to the analyst (who can analyze it further using SNA). The
overall architecture for a system fulfilling such a process is shown in Fig. 4.

5.1 Module for Extraction of Named Entities and Uncertain
Relations

In our implemented prototype system CACTUS (Creative Analysis and Construc-
tion Tool for Uncertain Social networks), we have made use of Python’s Natural
Language Toolkit (NLTK) for the extraction of named entities and relations, al-
though many other alternative toolkits and packages for natural language processing
are available, open source as well as commercial.
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Fig. 4 Illustration of the overall process for generation of social networks from unstructured text

In the used method, we take one or more text document(s) as input. Each text
document is segmented into sentences, which then are tokenized through lexical
analysis. The resulting tokens are subject to part-of-speech (POS) tagging and noun
phrase (NP) chunking, which in its turn is used to extract the named entities from
the text. The extracted named entities are classified into the categories PERSON,
ORGANIZATION, and GPE, i.e., geo-political entity.3 Our implemented algorithm
goes through each sentence and checks whether it contains any named entities. A
list (hashmap) containing all the named entities discovered so far keeps track of how
many times each named entity have been discovered in the text. In case a discovered
named entity already is in the list, the value is incremented by one, otherwise the
entity is added to the list.

Once the named entities in a text document have been identified, next part is
to extract the relations between entities. Our algorithm goes through the sentences
one by one, searching for pairs of extracted named entities within the individual
sentences. If such a pair is discovered and the number of words in between them is
less than a specified threshold β , we add the pair to a relation list in a similar fashion
to the list of named entities described above. The argument for this is that entities
that are far apart are unlikely to be semantically associated [39, 47]. Moreover, we
store the strength of the relation. As a heuristic, we judge named entities that are
occurring close to each other as more likely to be related than entities with many
words in between them. For this reason we suggest using a ramp shaped membership
function (see Fig. 5) that weights the strength of the extracted relation between two
entities A and B as:

s(x) =
⎧
⎨

⎩

1 if x ≤ α,
0 if x ≥ β,
1 − ( x−α

β−α
) otherwise,

(2)

3A more complete description of the workings of the NER in NLTK can be found in [46].
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Fig. 5 Used function to
weight the strength of
extracted relations

where x is the number of words in between the two named entities, α and β are
thresholds specified by the user, and where β > α (in case of the user wanting to
have α = β , we suggest replacing the suggested ramp function with a step function
taking on the value 1 if x < β , and 0 otherwise).

5.2 The Fusion Module

Once the recognition of named entities and relations is done, next step is to fuse the
results from the extraction processes. Such fusion is needed internally within a sin-
gle document, and in case of several texts, also across several documents. One part
of the fusion process is entity matching. This is needed since a unique entity can be
referred to in many different ways in unstructured texts. When the entity matching is
completed, we have a list of (hopefully) unique entities present in the document(s).
Since the entity recognition is likely to generate a number of false positives, we
delete the named entities that after matching occurs less than τ times (also deleting
the relations of which the named entity is a part). As can be seen in Fig. 4, there
can be several extracted strengths for the relation between a pair of entities (both
within a single text document and among several text documents). Hence, we need
to aggregate these results in order to get a single weight for each relation, before
constructing the resulting uncertain social network. There are several alternative
ways to calculate the final weights, and there is probably not a single solution that
works best for all situations. One way is to simply take the average (or min or max)
of the estimated strengths of a relation as the resulting weight. A potential downside
with this is that the relation of a pair of entities A and B that occur together in a sin-
gle sentence is considered to be as certain as the relation of a pair of entities C and
D occurring together hundred times, given the same number of words in between
the entities. Since this does not make sense in general, an alternative can be to also
take the relation’s relative frequency into account, i.e., the number of extracted re-
lations of the particular type divided by the total number of extracted relations. In
our implementation we have instead chosen to use Dempster’s rule of combination
(see [48]) for fusing the relation strengths into a single weight for each relation,
since this allows for a behavior where several evidences of the same strength (mass)
result in a higher weight than a single piece of evidence with the same strength.
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In order to apply Dempster’s rule, we need to convert the strengths of the ex-
tracted relations into so-called probability mass functions. A probability mass func-
tion m is a function from the subsets 2Θ of some set Θ to the interval [0,1] such that
m(∅) = 0 and

∑
x⊆Θ m(x) = 1. In our case, Θ is very simple: Θ = {Link,¬Link,},

corresponding to the link either being present or not. Recall that we are now con-
sidering the problem of fusing all information regarding the relation between two
fixed entities (A and B above), and it is hence possible to use such a simple repre-
sentation. We define a probability mass function mi for each extracted strength to be
fused and let mi({Link}) = the strength s determined using the ramp function de-
scribed in Fig. 5, and mi(Θ) = 1 −mi({Link}). This corresponds to the assumption
that the strength of an extracted relation is the belief that there is a link present. The
reason for using a Dempster-Shafer representation is simply that we cannot take the
complement to this strength to represent evidence against there being such a link—
instead it simply represents uncertainty, which the Dempster-Shafer representation
allows us to represent using mi(Θ).

Fusion of mass functions is done using Dempster’s rule:

m1,2(A) = 1

1 − K

∑

x∩y=A

m1(x)m2(y), (3)

where K =∑
x∩y=∅ m1(x)m2(y) is a normalization constant.

For the simple case where Θ = {Link, ,¬Link,} and mi({¬Link,}) = 0 (i.e.,
we do not have any evidence that explicitly talks against there being links) we can
simplify the calculations and simply compute

m1,2(Θ) = m1(Θ)m2(Θ), (4)

and then use the normalization requirement

m
({Link})+ m

({¬Link})+ m(Θ) = 1 (5)

to determine m({Link}) for each link. Note that this computation is only valid in the
special case where mi({¬Link}) = 0 for all i!

The result from the fusion module is a social network consisting of the extracted
entities and their weighted relationships. The results are stored as a .graphML-file,
making it easy to load it into a suitable SNA-tool.

6 Experiment

To illustrate the potential use of the developed method for intelligence analysis, we
have tested it on a set of documents describing terrorist activities in Indonesia. The
documents are open reports downloaded from the non-governmental organization
International Crisis Group (ICG). The downloaded files are originally in pdf-format,
but have been converted to txt-format in order to be processable in our implemented
system.

In our experiment, we have used the parameter settings: α = 3, β = 10, and
τ = 5, where the latter has been chosen so as to minimize the number of non-entities
being classified as entities and at the same time avoid deleting important entities.
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Fig. 6 Illustration of the complete social network obtained in the experiment

When applying these parameter settings to one of the downloaded reports,4 we have
after the fusion process extracted 709 entities, and a total of 3141 relationships from
the unstructured text report. In Fig. 6, an overview of the full network is shown. As
can be seen, the full network is cluttered and quite hard to derive useful information
from, despite filtering out all entities occurring less than five times. However, by
using an interactive program such as Gephi, it becomes easy to zoom into interest-
ing parts of the network. As an example, we have from the large network in Fig. 6
selected a smaller part of the obtained social network (the ego network of the former
terrorist leader Abdul Aziz). This ego network consists of 57 nodes and 252 edges
and is shown in Fig. 7. The analyst can derive much useful information from such
an ego network that has been constructed automatically from unstructured text. As

4http://www.crisisgroup.org/en/regions/asia/south-east-asia/indonesia/043-indonesia-
backgrounder-how-the-jemaah-islamiyah-terrorist-network-operates.aspx

http://www.crisisgroup.org/en/regions/asia/south-east-asia/indonesia/043-indonesia-backgrounder-how-the-jemaah-islamiyah-terrorist-network-operates.aspx
http://www.crisisgroup.org/en/regions/asia/south-east-asia/indonesia/043-indonesia-backgrounder-how-the-jemaah-islamiyah-terrorist-network-operates.aspx
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Fig. 7 Illustration of the ego network for Abdul Aziz extracted from the larger Jemaah Islamiyah
terrorist network

an example, a quick view of the ego network reveals to an analyst that the entity
Abdul Aziz is closely related to Imam Samudra (since no entity matching was made
prior to the construction of the network, Samudra, SAMUDRA, and Imam Samudra
are treated as separate entities) and Abdul Rauf, and is related to e.g., West Java and
Bali. In reality, Abdul Aziz, also known as Imam Samudra, was an Indonesian who
was a recognized member of Jemaah Islamiyah and who was sentenced to death for
organizing the Bali bombings in 2002, where Abdul Rauf was one of his associates.

Once the network has been constructed, it is also straightforward for the analyst
to apply various SNA metrics of interest in order to learn more about the underly-
ing social network. In Fig. 8, we have chosen to filter out the nodes with highest
weighted node degree centrality (see Eq. 1). This gives the analyst a good idea of
which entities that are most central in the text document. Analyzing the created
social network, we can see that one of the most central nodes is Hambali, who is
the former military leader of the Jemaah Islamiyah. Another central node is Darul
Islam, which is another Indonesian Islamist group. A less successful result is the
inclusion of ICG, which is the organization that has published the text document
used as input to the experiment. Such problems can, however, easily be corrected by
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Fig. 8 Social network for the nodes with highest degree centrality

the analyst through manual refinement of the acquired social network (by removing
or combining nodes).

7 Discussion

The proposed method should be taken as a first attempt to take uncertainty into ac-
count when constructing social networks automatically from unstructured text, not
as the final solution to the problem. As demonstrated in Sect. 6, the current version
of the system can be of great value for a human analyst, but there is still room for
improvements. A potential limitation with the current approach is that relations can
only be extracted on a sentence-level, i.e., they must occur between entities within
a single sentence. Connected to this problem is the lack of coreference resolution in
the suggested method. These limitations hinder us from detecting relations such as
the following:

“Carl is very tall. He is the brother of Liz.”

To incorporate methods for coreference resolution is therefore a natural next step.
In the current approach, we have not taken the type of relationship among en-

tities into account. As future work, it could be of interest to also add likely labels
to the created networks, e.g., by using a clustering method similar to the one sug-
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gested in [35]. If a label of the extracted relations can be obtained, this would allow
for a better understanding of the created social network. However, an edge between
two entities can potentially consist of more than one type of relation, making it
far from trivial to extract suitable labels for the relations. The relation extraction
methodology as such can also be improved upon in future work. Interesting statis-
tical methods able to perform traditional TRE as well as ORE have been suggested
in recent literature (see e.g., [41]), so one potential road forward for improving the
implemented system’s performance could be to combine such a method with the
ideas that have been presented in this article. Another interesting area to investigate
further is the choice of function for estimating the relation strength. To assume that
words close to each other are likely to have some kind of relation is not unusual in
existing literature, but the idea that the strength should be linearly decreasing with
the number of words in between is not well-founded, and should rather be taken as
a heuristic that can be improved later on.

In order to say something more specific about how good the proposed method
is, a more quantitative evaluation would be beneficial. However, as stated in [44],
there exists no objective method for evaluating extracted social networks. The con-
structed social networks are, however, a result of the entity and relation extraction
processes, so one way to partially evaluate the overall system could be to evaluate
the quality of the extracted entities and relations on a MUC or ACE benchmark data
set. A potential problem with this is that such datasets are extracted from news sto-
ries, which is not necessarily representative for more general text corpora. It is also
common to manually evaluate the obtained relation extraction results on a few man-
ually selected and annotated sentences. However, as noticed by [39], such a manual
evaluation does not scale and easily becomes biased by choosing relations that the
system is likely to identify correctly.

Further research is needed on the interpretation of uncertainty in social networks.
Here we have used Dempster-Shafer theory since it allows us to represent both
the belief that there is a link and the uncertainty using probability mass functions.
We emphasize again the difference to standard probability assignments: Dempster-
Shafer theory allows us three parameters representing explicit evidence for and
against an event being true and ignorance, whereas probability requires us to con-
sider all evidence not explicitly for the event to contradict it. In both cases there
is a normalization requirement that reduces the number of parameters. We believe
that the Dempster-Shafer representation is very natural for relation extraction, since
we can get evidence for there being a link from analyzing, e.g., a web page or doc-
ument, but the absence of a link in the analyzed documents can not normally be
taken as evidence against the link. However, a statement such as “Anna does not
know Alan” can of course be used as evidence against the link between Anna and
Alan, which we in Dempster-Shafer theory represent by assigning some probability
mass to m({¬Link}).

We have in this chapter only touched upon the subject of uncertainty representa-
tion in social networks. For instance, we only considered one link at a time and con-
structed probability mass functions separately for each link. Dempster-Shafer theory
allows us to also consider the entire network at the same time. In these cases, it is
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similar to a random set formulation of the uncertainty in the network [23, 24, 26].
We plan to look into this in more detail in future work.

8 Conclusions

In conclusion, we have in this work presented a method for automatic construction
of social networks from unstructured text documents. In the suggested method, the
social network is created by extracting entities and relations from the text. This
is accomplished through the use of natural language processing techniques, where
named entity recognition is used for the entity extraction, and where the occurrence
of pairs of entities in a sentence is used as a simple form of open relation extraction.
Since natural language processing techniques are not perfect (and since information
within text documents typically are not totally reliable), our proposed method allows
for the creation of uncertain relations, through the incorporation of weighted edges.
To create such uncertain social networks from unstructured text is a novel research
contribution. We used Dempster-Shafer probability mass functions to represent the
evidence for links. This allowed us to represent also ignorance and to fuse evidence
for a link between two entities A and B from several sources.

To illustrate and test the proposed method, we have implemented it in a tool
called CACTUS and applied it on an unclassified text document describing the In-
donesian terrorist organization Jemaah Islamiyah. The full network created with the
proposed method is quite large (consisting of more than 700 nodes and 3000 rela-
tions), but simple filters can easily be applied to look into interesting subparts of
the network. By applying a filter for showing only the nodes with highest weighted
degree centrality, useful information regarding key players and key locations of the
network can be acquired. Likewise, filters can be applied to show ego networks for
interesting nodes in the network.

There is still room for improvement of the method, e.g., by also allowing for
extraction of more targeted relations from the text in addition to the basic open re-
lation extraction. Nevertheless, the method can already today be of great value for
extracting useful information from sources which the intelligence analysts have no
time for reading. Obviously, the method can also be applied outside the intelligence
domain. More advanced models for representing the uncertainty and for fusing un-
certain information could also be used.

Acknowledgements This work was supported by the R&D programme of the Swedish Armed
Forces. We would like to express our thanks to the other members of the FOI Information Fusion
and Data Mining group and the VIA project for fruitful discussions and valuable feedback.

References

1. Raab J, Milward HB (2003) Dark networks as problems. J Public Adm Res Theory 13:413–
439



60 F. Johansson and P. Svenson

2. Svenson P, Svensson P, Tullberg H (2006) Social network analysis and information fusion for
anti-terrorism. In: Proceedings of the conference on civil and military readiness 2006

3. Zhu B, Watts S, Chen H (2010) Visualizing social network concepts. Decis Support Syst
49:151–161

4. Geffre JL, Deckro RF, Knighton SA (2009) Determining critical members of layered opera-
tional terrorist networks. J Defense Model Simul, Appl Methodol Technol 6:97–109

5. Hougham V (2005) Sociological skills used in the capture of Saddam Hussein. http://www.
asanet.org/footnotes/julyaugust05/fn3.html

6. Koelle D, Pfautz J, Farry M, Cox Z, Catto G, Campolongo J (2006) Applications of Bayesian
belief networks in social network analysis. In: Proceedings of the 4th Bayesian modeling ap-
plications workshop during the 22nd annual conference on uncertainty in artificial intelligence

7. Fellegi IP, Sunter AB (1969) A theory for record linkage. J Am Stat Assoc 64(328):1183–
1210

8. Dahlin J (2011) Entity matching. Swedish Defence Research Agency, Tech Rep
9. Frantz TL, Cataldo M, Carley KM (2009) Robustness of centrality measures under uncer-

tainty: examining the role of network topology. Comput Math Organ Theory 303–328
10. Freeman LC (1979) Centrality in social networks: conceptual clarification. Soc Netw

1(3):215–239
11. Scott J (2000) Social network analysis, 2nd edn. Sage, Thousand Oaks
12. Newman MEJ (2001) Scientific collaboration networks. ii. Shortest paths, weighted networks,

and centrality. Phys Rev E 64:016132
13. Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge

University Press, Cambridge
14. de Nooy W, Mrvar A, Batagelj V (2005) Exploratory social network analysis with Pajek.

Structural analysis in the social sciences. Cambridge University Press, Cambridge
15. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science

286(5439):509–512
16. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and

manipulating networks. In: Adar E, Hurst M, Finin T, Glance NS, Nicolov N, Tseng BL (eds)
Proceedings of the 3rd international AAAI conference on weblogs and social media

17. Batagelj V, Mrvar A (2002) Pajek—analysis and visualization of large networks. In: Mutzel P,
Jünger M, Leipert S (eds) Graph drawing. Lecture Notes in Computer Science, vol 2265.
Springer, Berlin, pp 8–11

18. Blondel V, Guillaume J, Lambiotte R, Mech E (2008) Fast unfolding of communities in large
networks. J Stat Mech, Theory Exp P10008

19. Adar E, Ré C (2007) Managing uncertainty in social networks. IEEE Data Eng Bull 30(2):23–
31

20. Kossinets G (2006) Effects of missing data in social networks. Soc Netw 28:247–268
21. Costenbader E, Valente TW (2003) The stability of centrality measures when networks are

sampled. Soc Netw 25:283–307
22. Borgatti SP, Carley KM, Krackhardt D (2004) On the robustness of centrality measures under

conditions of imperfect data. Soc Netw 28(2):124–136
23. Svenson P (2008) Social network analysis of uncertain networks. In: Proceedings of the 2nd

Skövde workshop on information fusion topics
24. Dahlin J, Svenson P (2011) A method for community detection in uncertain networks. In:

Proceedings of the European intelligence and security informatics conference, EISIC 2011
25. Yager RR (2008) Intelligent social network analysis using granular computing. Int J Intell Syst

23:1196–1219
26. Dahlin J (2011) Community detection in imperfect networks. Master’s thesis, Umeå Univer-

sity
27. Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generaliz-

ing degree and shortest paths. Soc Netw 32(3):245–251
28. Newman MEJ (2004) Analysis of weighted networks. Phys Rev E 70:056131

http://www.asanet.org/footnotes/julyaugust05/fn3.html
http://www.asanet.org/footnotes/julyaugust05/fn3.html


Constructing and Analyzing Uncertain Social Networks 61

29. Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex
weighted networks. Proc Natl Acad Sci (PNAS) 101:3747

30. Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25:163–177
31. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc

Natl Acad Sci (PNAS) 99(12):7821–7826
32. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci

USA 103(23):8577–8582
33. Feldman R, Sanger J (2007) The text mining handbook—advanced approaches in analyzing

unstructured data. Cambridge University Press, Cambridge
34. Nadeau D, Sekine S (2007) A survey of named entity recognition and classification. Linguist

Investig 30(1):3–26
35. Hasegawa T, Sekine S, Grishman R (2004) Discovering relations among named entities from

large corpora. In: Proceedings of the 42nd annual meeting on association for computational
linguistics

36. Doddington G, Mitchell A, Przybock M, Ramshaw L, Strassel S, Weischedel R (2004) The
automatic content extraction (ACE) program: tasks, data, and evaluation. In: Proceedings of
LREC’04

37. Banko M, Etzioni O (2008) The tradeoffs between open and traditional relation extraction. In:
Proceedings of ACL-08: HLT, pp 28–36

38. Zelenko D, Aone C, Richardella A (2003) Kernel methods for relation extraction. J Mach
Learn Res 3:1083–1106

39. Mesquita F, Merhav Y, Barbosa D (2010) Extracting information networks from the blogo-
sphere: state-of-the-art and challenges. In: Proceedings of the fourth international conference
on weblogs and social media

40. Banko M, Cafarella MJ, Soderl S, Broadhead M, Etzioni O (2007) Open information ex-
traction from the web. In: Proceedings of the 20th international joint conference on artificial
intelligence, pp 2670–2676

41. Zhu J, Nie Z, Liu X, Zhang B, Wen J-R (2009) Statsnowball: a statistical approach to extract-
ing entity relationships. In: Proceedings of the 18th international conference on world wide
web, ser. WWW ’09, pp 101–110

42. GuoDong Z, Jian S, Jie Z, Min Z (2005) Exploring various knowledge in relation extrac-
tion. In: Proceedings of the 43rd annual meeting on association for computational linguistics,
pp 427–434

43. Morris JF, Anthony K, Kennedy KT, Deckro RF (2011) Extraction distractions: a compar-
ison of social network model construction methods. In: Proceedings of the 2011 European
intelligence and security informatics conference, EISIC2011

44. Makrehchi M, Kamel MS (2005) Building social networks from web documents: a text mining
approach. In: Proceedings of the 2nd LORNET scientific conference

45. Elson DK, Dames N, McKeown KR (2010) Extracting social networks from literary fiction.
In: Proceedings of the 48th annual meeting of the association for computational linguistics,
pp 138–147

46. Bird S, Klein E, Loper E (2009) Natural language processing with python: analyzing text with
the natural language toolkit. O’Reilly Media

47. Fang Y, Chang KC-C (2011) Searching patterns for relation extraction over the Web: rediscov-
ering the pattern-relation duality. In: Proceedings of the fourth ACM international conference
on Web search and data mining, ser. WSDM ’11, pp 825–834

48. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton



Privacy Breach Analysis in Social Networks

Frank Nagle

Abstract This chapter addresses various aspects of analyzing privacy breaches
in social networks. We first review literature that defines three types of privacy
breaches in social networks: interactive, active, and passive. We then survey the var-
ious network anonymization schemes that have been constructed to address these
privacy breaches. After exploring these breaches and anonymization schemes, we
evaluate a measure for determining the level of anonymity inherent in a network
graph based on its topological structure. Finally, we close by emphasizing the dif-
ficulty of anonymizing social network data while maintaining usability for research
purposes and offering areas for future work.

Keywords Social network · Privacy · Breach · Security · Anonymity

1 Introduction

Over the past 5–10 years, online social networks have rapidly expanded, and as
of March 2012 the largest online social network, Facebook, had over 901 million
active members.1 The wealth of information users post in their social network pro-
files, as well as the underlying structure of the network itself, are appealing datasets
for researchers and alluring targets for criminals. Due to the attractiveness of these
networks to both groups, researchers have recently begun to study methods for re-
leasing this data in a manner that maintains the privacy of the individuals in the
network. This chapter presents an overview of recent work in this field.

The data users disclose in their profiles is wide ranging, and includes everything
from email addresses and birthdays to political interests and physical address. Two
case studies of the information users reveal [1, 23] found that approximately 90 %
of users list a partial or full birthday as well as an email address. These pieces of

1Facebook Newsroom Key Facts, http://newsroom.fb.com/content/default.aspx?NewsAreaId=22,
accessed May 06, 2012.
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information can be used by an attacker to steal the user’s identity. To allow the
use of such networks for academic research, social network graph owners often
utilize a technique known as naïve anonymization where all identifying information
is removed from the graph and only a network graph of nodes and edges is released.
While this technique helps to prevent the release of private information, below we
detail a number of privacy breaches that can still occur with such network graphs.
To address these privacy breaches, a variety of new anonymization techniques have
arisen. However, these anonymization techniques require a tradeoff of the accuracy
of the representation of the original network for anonymity. This balance between
anonymity and usability of social network graph data can be difficult to maintain
and is an important aspect of the effectiveness of an anonymization technique. In
the following sections we explore the various privacy breaches that can occur in
online social networks, as well as a number of anonymization techniques that can
help to prevent such breaches. Finally, we discuss a method for analyzing the level
of anonymity inherent in a network graph, and consider areas for future work.

1.1 Graph Notation

To enable a complete discussion of social network graphs, we introduce a few graph
notation concepts. For a more complete description of social network graph analysis,
we refer the reader to [29]. A graph G, can be represented as a set of vertices, V ,
and a set of edges, E, where

G = (V ,E). (1)

We assume edges in G are undirected. The set V is a list of all of the vertices or
nodes within the graph,

V = {v1, v2, . . . , vn}. (2)

For our usage, we will not allow self edges. Therefore, the set E is a list of all of the
edges or connections within the graph,

E = {
eij = (vi, vj ) | vi ∈ V, and vj ∈ V, and i �= j

}
. (3)

A sub-graph contains a subset of V and the relevant edges from E, formally,

H = {(
V ′,E′) | V ′ ⊆ V, E′ ⊆ E, and

(
(vi, vj ) ∈ V ′ → eij ∈ E′)}. (4)

For the purpose of analyzing social network graphs, we can represent user i in the
social network as a vertex vi . All social networks have the concept of a relationship
between users, whether it be “friendship” on Facebook, “following” or “followers”
on Twitter, or “connections” on LinkedIn. These relationships are treated as edges.
For example, if user v1 and user v2 are friends on Facebook, then the edge e1,2
would exist within E. Directed social network graphs can be converted into undi-
rected graphs by removing the directionality of the relationship and stating that ei,j

implies ej,i . Our work in this chapter will focus on undirected graphs. Figure 1
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Fig. 1 A sample network
graph

shows a sample network graph with vertices, represented by circles, connected via
edges, represented by lines. The neighborhood of a vertex is the set of vertices it is
connected to. More formally,

N(vi) = {vj | eij ∈ E, vi �= vj }. (5)

In Fig. 1, the neighborhood of vertex C is vertices B and D. The degree of a vertex
is the size of the neighborhood. We define degree as follows,

degree(vi) = ∣∣N(vi)
∣∣. (6)

In Fig. 1, the degree of vertex A is 1, C and D is 2, and B is 3. The clustering
coefficient of a vertex shows how densely connected the vertex’s neighbors are. We
define a clustering coefficient CCi of the node i as follows:

CCi = 2S

degree(vi) ∗ (degree(vi) − 1)
, (7)

where degree(vi) ≥ 2, and S = |{ejk | ∀vj , vk ∈ N(vi), ejk ∈ E}|.
The clustering coefficient of a node will be 1 if all of its neighbors are connected

to each other, and 0 if none of its neighbors are connected to each other. In Fig. 1,
the clustering coefficient of B is 0.333, while the clustering coefficients of C and D
are 1. Because A only has one neighbor, it’s clustering coefficient is non-existent.

2 Privacy Breaches in Social Networks

At a high level, a privacy breach occurs when personal information is disclosed and
used in a manner that the owner did not intend, potentially leading to abuse. For
example, when a person provides personal and medical history to a doctor’s office,
if that information is not protected properly and it is revealed to other patients then,
according to our definition, a privacy breach has occurred. Even a person’s Internet
search history can be considered personal data, the aggregation and exposure of
which is considered a privacy breach. Such a breach occurred when the Internet-
service provider (ISP) America On-Line (AOL) disclosed 20 million searches by
650,000 users over a three month period. The person from AOL who disclosed the
information had intended it be used by academics to research the search patterns of
AOL customers. However, the data was not anonymized in such a way that would
prevent individual users from being identifiable by their search histories. The only
anonymization used was to replace individual usernames with a unique number.
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Although this prevented the direct association of a person’s search results with their
name, researchers were able to aggregate successive searches by the same person to
gain insight into who that person was, and in some cases, they were able to identify
the person in the real world. The most famously identified person from this data was
Thelma Arnold, who agreed to let the New York Times interview her and discuss
how they discovered who she was [6]. While this breach is not specifically related
to social networks, it does show that even if it data is anonymized, the connections
between various data points can often reveal sensitive information.

Social network privacy breaches can be broken into three types of privacy
breaches: interactive, active, and passive. These three levels reflect the degree of
interaction an attacker needs to have with the network to successfully exploit the
breach. An interactive privacy breach requires the attacker to create an account in
a social network and to use that account to directly interact with the accounts of
his targets. Such a breach allows the attacker to gain access to potentially sensitive
information within a user’s profile. An active privacy breach requires an attacker
to create an account in a social network and to structure his connections so that his
account is easily recognizable when the social network graph is naïvely anonymized
and released for research purposes. This type of breach allows an attacker to quickly
identify their location in the naïvely anonymized social network graph and to then
use their knowledge of their location in the real world network to de-anonymize
other nodes in the graph. Finally, a passive privacy breach allows an attacker to
identify sensitive information about a social network graph without requiring the at-
tacker to have an account on the social network. We discuss various manifestations
of these three breaches in the following sections.

An adversary attempting to cause one of the above breaches may have differing
levels of knowledge about the network. The least effective adversary has no knowl-
edge whatsoever of the network and is known as a zero-knowledge adversary. This
adversary starts with no knowledge of the underlying network structure and needs
to determine the network structure to cause any of the breaches. When consider-
ing most privacy breaches, it is assumed that the adversary at least has access to a
naïvely anonymized version of the network, and that is how they will conduct their
attack. We call such an adversary a structural-knowledge adversary. Here the ad-
versary knows the underlying structure of the network, but does not know any iden-
tifiers of the nodes in the network. When a network dataset is naïvely anonymized
and released to the public, anyone who downloads the dataset has the knowledge
of a structural-knowledge adversary. This is the level of knowledge we consider an
attacker to have to conduct passive privacy breaches. In some cases, an adversary
may have additional information about the individual they are targeting, such as in-
formation about the degree of that individual, or information about the connectivity
of the individual’s neighbors. We call an adversary with such knowledge a specific-
knowledge adversary. For our usage, we consider all specific-knowledge adversaries
as a subset of structural-knowledge adversaries. Specific-knowledge adversaries are
capable of conducting active and targeted passive breaches. Conducting an interac-
tive privacy breach often gives an attacker the ability to have this specific-knowledge
when they conduct an active or targeted passive breach.
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Fig. 2 A friendship privacy
breach

2.1 Interactive Privacy Breaches

Attackers who utilize interactive privacy breaches are attempting to gain knowledge
of sensitive information about users, potentially for the purpose of identity theft. Of
the three breach types, these particular breaches allow an attacker the most amount
of information about the target. They also require the attacker to interact with the
target directly and to trick the target into disclosing sensitive information to the at-
tacker. Nagle and Singh [23] use a case study with Facebook users to detail two such
breaches, a friendship privacy breach, and a trust privacy breach. When attempting
to exploit a friendship privacy breach, an attacker first initiates a request for a friend-
ship, link, following, or other type of connection request with the target. If the target
accepts the request, thereby giving the attacker access to sensitive information they
would not have otherwise had, then the friendship privacy breach is successful. In
Fig. 2, if the attacker, va , requests a connection with the victim, vi , and the vic-
tim accepts the request, then a friendship privacy breach has occurred. In their case
study, Nagle and Singh found that they were able to successfully conduct a friend-
ship privacy breach with 955 of 5063 target users, or about 19 % of their sample
population. The second breach Nagle and Singh discuss, a trust privacy breach, oc-
curs when the attacker is able to exploit the trusted relationship users have with their
connections in social networks. When attempting to exploit a trust privacy breach,
an attacker initiates a request for a linkage with the connections of someone they
are already connected with. Therefore, when the new victim receives the request,
they are told that they have a mutual connection with the attacker. If the new vic-
tim accepts the request, thereby giving the attacker access to sensitive information
they would not have otherwise had, due to the trusted relationship with this mutual
connection, then the trust privacy breach is successful. In Fig. 3, if the attacker, va ,
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Fig. 3 A trust privacy breach

already has a connection with vi , and then requests a connection with a second vic-
tim, vj , who accepts the request, then a trust privacy breach has occurred. In their
case study, Nagle and Singh found that they were able to successfully conduct a
trust privacy breach with 1963 of 3549 target users, or about 55 % of their second
sample population. After establishing the existence of these privacy breaches, Na-
gle and Singh summarize the potentially sensitive information their attacker profiles
were able to obtain.

2.2 Active Privacy Breaches

Active privacy breaches are attempts to de-anonymize nodes in a naïvely ano-
nymized social network graph. They rely on the attacker actively creating an account
in the social network before it is anonymized. The attacker structures his connec-
tions so that his account is easily recognizable when the social network graph is
naïvely anonymized and released for research purposes. The injection attack [4] is
a type of active privacy breach that requires an attacker to create a known distinct
subgraph structure within the graph before it is naïvely anonymized. If this sub-
graph is unique, then the attacker will be able to identify it within the anonymized
data. They also present an alternative type of injection attack that allows an attacker
to rely on forming a coalition of neighbors that fashion a semi-unique subgraph.
By obtaining this semi-unique subgraph, the coalition can greatly narrow the pos-
sible locations of their subgraph within the naïvely anonymized graph, and the list
of possible subgraphs diminishes with each new neighbor added to the coalition.
Backstrom, Dwork, and Kleinberg [4] found that there are so many distinctly pos-
sible subgraph formations in social networks that they could inject as small as a
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7-node subgraph into the 4.4 million node LiveJournal blogging social network,
and successfully identify their injected subgraph over 90 % of the time.

2.3 Passive Privacy Breaches

Passive privacy breaches have become the most studied of the three breaches due to
their direct impact on the ability of social networks to release anonymized graphs
to researchers for study. A passive privacy breach allows an attacker to identify
sensitive information about a social network graph without requiring the attacker to
have an account on the social network. Singh and Zhan [28] define a node identity
breach as having occurred if an attacker can successfully identify the label, usually
a person’s name or unique identifier, of a node in a graph that has been anonymized.
This type of breach, often considered the most damaging breach, is the main breach
considered by many of the other studies in this survey. Additionally, Singh and Zhan
define an edge inference breach which occurs if an attacker is able to determine
that an edge exists between two specific nodes. This type of breach is commonly
considered less damaging, but still reveals information about the network and was
the focus of inquiry for Zheleva and Getoor [32]. In this study, they found that an
adversary that is not part of a social network can ascertain information about private
user profiles by viewing friendship links and group membership of public profiles.
In a case study of users on Facebook, Zheleva and Getoor found that by analyzing
friendship links, they were able to determine the political preference attribute of a
private user with 61.8 % accuracy. Additionally, by analyzing group membership,
they were able to determine the gender of a private user with 73.4 % accuracy. Their
earlier work [31] introduced the concept of link re-identification, which occurs when
it is possible to infer specific sensitive relationships between nodes in a naïvely
anonymized network graph.

Zhou and Pei [33] identified unique subgraphs, similar to those discussed by
Backstrom, Dwork, and Kleinberg [4] that occur naturally in social network graphs
and therefore allow for neighborhood attacks that are similar to the injection attacks
above to be carried out in a passive manner. Neighborhood attacks allow for an
attacker to identify unique subgraphs in anonymized social network graphs which
can lead to node and edge inference breaches. Singh and Schramm [27] identify a
more efficient way for storing and searching for these unique subgraphs, that allows
for an increased effectiveness of a neighborhood attack.

While all of the breaches discussed above focus on privacy breaches in individual
social networks, it is possible for privacy breaches to occur due to the similarities of
network structures across multiple social network graphs. Acquisiti and Gross [2]
focus on the ability to combine data from numerous social networks in an attempt
to re-identify individuals who have accounts on multiple sites. They show that ag-
gregating an individual’s personal information from multiple social networks can
allow for the estimation of personal identifying information (PII), such as a social
security number. Additionally, Narayana and Shmatikov [25] discovered that neigh-
borhood privacy breaches can occur when there is overlap between an anonymized



70 F. Nagle

network and a public network, causing what they call an auxiliary network attack.
They used two large public networks, Twitter and Flickr, to demonstrate the results
of an attack in this manner by anonymizing the Twitter graph and attempting to re-
identify nodes based on the similarities in graph structure between the Twitter and
Flickr graphs. Narayana and Shmatikov argue that the identification of “important”
nodes is more damaging than nodes that are not important and therefore factor node
importance into their success measure, using the degree of the node as a proxy for
importance. Using this weighted measure, they were able to get a success rate of
30 %, indicating that the attack is a realized possibility.

3 Social Network Graph Anonymization

Due to the array of privacy breaches discussed in the previous section, a number
of new techniques that build upon naïve anonymization have been introduced to
better anonymize social network graphs. Many of these techniques are based on the
concept of k-anonymity, which we discuss below before presenting the techniques
themselves.

3.1 k-Anonymity

Samarati and Sweeney [26] proposed an anonymization technique that generalizes
quasi-identifiers so that at least some minimum number of people, k, have the same
quasi-identifier values. A quasi-identifier is a piece of information about a person
that does not uniquely identify him/her, but does identify a characteristic about
him/her, such as a birthday that can be used with other information to identify an
individual. The value k can be arbitrarily set depending on the data set, with higher
values of k indicating that the data set is more resistant to privacy breaches. Samarati
and Sweeney formally defined k-anonymity as follows:

Let T (A1, . . . ,An) be a table and Q|T be the quasi-identifiers associated with it. T is said
to satisfy k-anonymity iff for each quasi-identifier QI ∈ Q|T each sequence of values in
T [QI ] appears at least with k occurrences in T [QI ].

For example, in Table 1, the Hair Color variable would be considered k-anonymous
with k = 2 because there are at least 2 people with each value of Hair Color. How-
ever, the Eye Color variable would not be k-anonymous with k = 2 because not all
values, i.e. brown, are associated with at least 2 people.

There are a number of options for making a data set k-anonymous. In the example
above, one option would be to not publish either the Eye Color column or the user
Ted. Alternatively, we could change the non-k-anonymous attribute to match an-
other attribute that is k-anonymous, e.g. change Ted’s eye color to Green, or change
a different attribute to make all attributes k-anonymous, e.g. change Bill’s eye color
to brown. The example above applies k-anonymity to relational data, but we can
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Table 1 Hair and Eye Color
Name Hair Color Eye Color

James Brown Green

Amy Brown Green

Bill Blond Green

Ted Blond Brown

Fig. 4 A simple network
graph

also apply it to network data. In Fig. 4, there are five nodes connected to each other
in a variety of ways. We can apply k-anonymity by looking at the degree of each
node. Nodes B and C are each connected to only one other node, nodes D and E
are each connected to two other nodes, and node A is connected to all four other
nodes. Again assuming that k = 2, nodes B, C, D, and E are k-anonymous, but
node A is not since it is the only node that is connected to four nodes. k-anonymity
has been extended to consider the importance of non-identifying information via
l-diversity [20], t-closeness [18], and k-symmetry [30]. However, we will focus on
k-anonymity as the primary anonymity approach since it is the primary technique
used for social network anonymization.

3.2 Anonymization Techniques

Due to the privacy breaches discussed above, a number of new techniques for
anonymizing social network graph data emerged over the past few years. In one
of the earliest attempts at anonymization, Liu and Terzi [19] focused on anonymiz-
ing the degree of the nodes in the network. Liu and Terzi apply k-anonymity by
ensuring that the degree of all nodes is k-anonymous, manipulating the graph to
guarantee that there are at least k nodes for each degree existing within the full set
of degrees for the network. They do this by gathering the degrees of all nodes in the
graph, identifying which degrees do not have k nodes, and then changing the degree
of those nodes to match the closest degree that is k-anonymous, or creating a new
degree set that is k-anonymous from nodes that are not k-anonymous. After creating
the new degree set, if the sum of all of the degrees is even, they construct a graph
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based on it. However, if the sum of all degrees is odd, then a graph cannot be con-
structed, so they return to the original graph, add random noise, and re-anonymize
until the sum of all degrees is even and a graph can be constructed. Rather than
focusing on node degree, Zhou and Pei [33] directly address the neighborhood at-
tacks presented by Backstrom, Dwork, and Kleinberg [4] by manipulating graphs to
have k-anonymous subgraphs based on a measure of the local neighborhood graph
for all nodes. Their method relies on adding edges to the graph to make nodes that
have distinct neighborhoods similar to other nodes to improve the anonymity of the
graph. Similarly, Zou, Chen, and Ozsu [34] attempt to alter subgraphs in a way such
that all subgraphs are k-anonymous through a process entitled k-automorphism. k-
automorphism focuses on anonymizing subgraphs rather than node neighborhoods,
which allows this method to be dynamic as a graph changes. More recently, Cheng,
Fu, and Liu [9] developed the k-isomorphism method for anonymization of social
network data. k-isomorphism creates k isomorphic subgraphs to preserve privacy at
the subgraph level.

Hay, Miklau, Jensen, and Towsley [16] take a different approach to anonymiza-
tion they call graph generalization. Rather than attempt to keep the graph as close to
its original form as possible, as the methods above do, Hay et al. partition portions
of the graph and measure the topological properties of each partition. Additionally,
Hay et al. record the connections between these partitions. The result is a graph
that holds the properties of the original graph, but does not have the same granular-
ity. More so than with other anonymization algorithms, the generalization method,
while increasing anonymity, decreases the utility of the anonymized graph in many
cases. Capman and Truta [8] offer a similar approach they call masked social net-
works, although in additional to generalizing the graph itself, they also generalize
the profile information of users in an attempt to maintain maximum utility of the
anonymized social network graph. He, Vaidya, Shafiq, Adam and Atluri [17] uti-
lized a similar anonymization method that partitions the network in a manner that
preserves as much of the structure of the original social network as possible. They
do this by anonymizing the local structures of individual nodes such that all gen-
eralizations reflect actual structures of the original graph. Bhagat, Cormode, Krish-
namurthy, and Srivastava [7] built upon the graph generalization method but added
additional constraints on how the partitions occur in an effort to decrease the sus-
ceptibility to attack. They also introduce the concept of label lists as a potential
anonymity mechanism. They use label lists to obscure the identity of a particular
node by assigning it a number of labels, one of which is the real label. In this way,
an attacker could not be certain which node he/she is examining; however, this di-
minishes the utility of the perturbed graph at a rate that correlates with the number
of fake labels applied to each node. Singh and Schramm [27] take the generaliza-
tion concept further and create a generalized trie structure that contains information
about network subgraphs and neighborhoods. This information can be used to an-
swer questions about network centrality characteristics without revealing sensitive
information.

While most studies have focused on the attributes of the nodes and breaches of
node identity, an additional avenue of attack is to infer the existence of an edge be-
tween nodes. This represents a breach in privacy when a node is able to determine
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whether or not two nodes connected to it are connected. Zheleva and Getoor [31]
present a number of different strategies for preventing edge inference that increas-
ingly provide greater anonymity at the cost of decreased usability of the data. These
strategies include removing all sensitive edges, removing a percentage of all edges,
clustering nodes to hide true edges, clustering nodes in a constrained manner, and
removing all edges completely. More recently, Das, Egecioglu, and Abbadi [10] pre-
sented an additional method for anonymizing social network graphs which focuses
on the edges rather than the nodes in the graph. Their method utilizes a linear pro-
gramming model and weighted edges in an effort to preserve as much utility in the
anonymized graph as possible.

In addition to the graph modification and generalization methods mentioned
above, differential privacy [11] has become an important foundation for social net-
work anonymization methods. Differential privacy emphasizes that the structure of
allowable queries on a statistical database must be designed such that a malicious
attacker with the ability to query the database, but without direct access to the full
database, cannot determine the unique characteristics of a specific individual. Since
social network linkages can be considered a type of statistical information, differ-
ential privacy helps to prevent the de-anonymization of social network users while
allowing for useful information via queries to the database [12]. While surveys of
differential privacy literature are available [13, 14], we highlight three articles that
have specific implications for social networks. First, Mironov, Pandey, Reingold,
and Vadhan [22] show that the computational power of an adversary should be con-
sidered when designing differential privacy systems since this allows for a bounding
mechanism that results in systems more appropriate to real-world attacker resources.
Second, McSherry and Mironov [21] apply differential privacy methods to network
recommendation systems, specifically the Netflix Prize. Finally, Hay, Liu, Miklau,
Pei, and Terzi [15] provide a tutorial for applying differential privacy techniques to
real-world databases in a manner that can allow the owners to have provable security
for the results from queries to their database.

4 Measuring Graph Anonymity

All of the studies above have focused on social network graph anonymization
techniques and do not have a comprehensive method for measuring how much
anonymity is inherent in a network or how susceptible to privacy breaches an
anonymized network is. Due to a need to measure networks, rather than anonymiz-
ing them without being able to quantify the improvement of anonymity levels,
Singh and Zhan [28] developed a measure entitled topological anonymity. Topolog-
ical anonymity measures the susceptibility of a given network topology to privacy
breaches. Singh and Zhan focus on two specific types of privacy breaches, the node
identity breach and edge inference breach, discussed in Sect. 2. The topological
anonymity measure utilizes the network measures of degree and clustering coeffi-
cient to assess a network graph and determine the level of anonymity inherent in
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the topological structure of the graph. To do this, they define Da to be the set of
nodes with degree a. This is first used to determine if there are enough nodes with
the same degree so that the nodes are indistinguishable from at least some number ε

other nodes. Next, to ensure that all the nodes with the same degree set do not have
the same neighborhood structure, they introduce a Boolean measure called CC_dif
and calculate it as follows:

CC_dif a =
{

0 if var(CC(Da)) = 0
1 if var(CC(Da)) > 0

(8)

where var(CC(Da)) is the variance of the clustering coefficients for nodes of degree
a in degree set Da . Combining these two measures yields the following equation
representing the topological anonymity, ta, of a connected network:

ta =
∑max(deg(G))

i=1

[
(|Di | ∗ CC_dif i ) −

{
0 if |Di | ≥ ε

|Di | if |Di | < ε

]

n
(9)

where ε represents the required number of nodes in a degree set to ensure a given
level of anonymity in a graph. This number is chosen in advance, and a higher
value of ε represents a higher level of required anonymity, similar to k-anonymity
defined above. The resultant ta score is a simple number between −1 and 1 that
summarizes the anonymity inherent in the graph, with −1 indicating the graph is
highly susceptible to node identity and edge inference privacy breaches due to a
large amount of distinctness of nodes due to degree and clustering coefficient, and
1 indicating the nodes and edges in the graph are well anonymized and not distinct.

After presenting the ta measure, Singh and Zhan proceed to provide a number
of examples to demonstrate the usage of the measure. They utilize several small,
hand-crafted datasets to show the various ranges of the measure, and then run the
measure against one real-world dataset and two computer generated graphs. The
real-world dataset is a crawl of political blog sites [3] containing 1224 nodes and
an average degree of 27. Singh and Zhan randomly generated the two computer
generated graphs, but designed one to follow an Erdös-Rényi distribution where the
degree of the nodes follows a binomial distribution, and one to follow a scale-free
distribution. Finally, Singh and Zhan compare the ta score of each of the graphs
with various values of required anonymity, ε. This comparison shows that, as ex-
pected, the ta score is influenced heavily by the node degree distribution, and that
the random binomial graph has a higher ta score, indicating it is more anonymous,
than the political blog network graph and the scale-free graph. Since social networks
have been shown to follow a power-law degree distribution [5], the ta score tends to
be between approximately −0.2 and 0.8 when the standard value of ε = 3 is used,
although this varies as ε increases [24].

Not only can the topological anonymity measure be used for measuring the
anonymity inherent in naïvely anonymized social network graphs, but it can also be
used to compare the affects of applying the anonymization techniques above. The
topological anonymity measure can be applied to a social network graph before and
after an anonymization algorithm is applied. The positive change in the ta score can
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be used as a measure of the effectiveness of the anonymization algorithm and can
then be compared to other anonymization algorithms. Nagle, Singh, and Gkoulalas-
Divanis [24] show that topological anonymity is indeed a useful method for com-
paring different types of noise adding anonymization schemes. This process helps
those looking to release social network graph data understand which anonymization
algorithm will best anonymize their particular graph.

5 Conclusion

Social network graphs can provide a fascinating data set for researchers, but the
release of such data must be done in such a manner that the privacy of the indi-
viduals in the network is maintained. While many methods of maintaining privacy
have been presented above, they vary in their effectiveness of reflecting the proper-
ties of the original network graph, which is crucial for maintaining the usability of
these network graphs for research purposes. Utilizing measures such as topological
anonymity for assessing the levels of privacy and anonymity inherent in a network
graph will allow us to compare the effectiveness of new anonymization techniques
in preventing the various privacy breaches discussed above. Future research in this
young field must build upon the existing research to offer anonymization methods
that better maintain the usability of the network graph. Additionally, to stay ahead of
attackers, researchers should continue to search for additional privacy breaches that
bring to light new methods of obtaining sensitive information from social network
graphs. Finally, further understanding of measuring the actual level of anonymity
in social network graphs will allow for stronger and more efficient anonymization
techniques that will allow for the secure release of larger real-world social network
graphs for research purposes.
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Partitioning Breaks Communities
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Abstract Considering a clique as a conservative definition of community structure,
we examine how graph partitioning algorithms interact with cliques. Many pop-
ular community-finding algorithms partition the entire graph into non-overlapping
communities. We show that on a wide range of empirical networks, from different
domains, significant numbers of cliques are split across the separate partitions pro-
duced by these algorithms. We then examine the largest connected component of the
subgraph formed by retaining only edges in cliques, and apply partitioning strate-
gies that explicitly minimise the number of cliques split. We further examine several
modern overlapping community finding algorithms, in terms of the interaction be-
tween cliques and the communities they find, and in terms of the global overlap
of the sets of communities they find. We conclude that, due to the connectedness
of many networks, any community finding algorithm that produces partitions must
fail to find at least some significant structures. Moreover, contrary to traditional
intuition, in some empirical networks, strong ties and cliques frequently do cross
community boundaries; much community structure is fundamentally overlapping
and unpartitionable in nature.
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1 Introduction

Groups of interacting entities can be considered as a complex system. It is popular
to examine such systems in terms of the networks their component entities form, to
gain insight into properties of the system as a whole. For example, the speed with
which a contagion can spread through a system is partly determined by the topol-
ogy of its underlying network. The way subgroups of entities interconnect is also
important to investigate whether useful higher level abstractions—above the level
of individual entities—exist in the systems we study. To find such structures, an ex-
tensive variety of algorithms have been developed, which attempt to find groups of
nodes in the network that are structurally significant in some way; these groups are
referred to in the literature as ‘communities’. See Fortunato [11] for an extensive re-
view of these algorithms, which we will refer to as Community Finding Algorithms,
or CFAs.

CFAs have been put to a range of applications, across several domains. As CFAs
are applied ever more broadly, it is important that the structures they find, and the
consequences of the design choices that define them are well understood. Particular
CFAs should not be assumed to work across all complex networks, merely because
they have evaluated well on some. In this research, we argue that certain algorithms,
notably CFAs that produce partitions of the original network, return incomplete lists
of the significant community structure, for at least some empirical networks. We
perform an in-depth analysis of how several different CFAs interact with the cliques
present in empirical networks, and discuss the consequences of this analysis for our
intuition about community structure. We show that certain networks do not lend
themselves well to partitioning, and caution against using partitioning algorithms as
universal community finding tools.

1.1 Cliques as Lower Bound Communities

Each CFA finds structure that corresponds to a particular intuition of what a ‘com-
munity’ is; however there is little agreement on how exactly to define community.
One common idea is that a community should have a high density of edges among
its nodes, where density refers to the ratio of the number of actual edges between
the nodes in the community to the maximum possible number of edges between
these nodes. The bound of this definition is the graph theoretic structure known as
a ‘clique’—a fully connected subgraph, in which each node is connected to every
other. Cliques, as discussed by Luce and Perry [22], have long been considered as
community structure in human social networks. In the domain of social networks,
this is particularly intuitive; if a user is friends with several others on Facebook,
all of whom are also friends, then this is a significant structure of common friends.
In addition to this intuitive appeal, cliques are rare structures in the networks we
study; due to the strict requirement for each node to connect to every other, clique
structure is unlikely to arise by chance in a sparse network. Cliques are thus impor-
tant structures. However, to define communities solely as cliques is very strict and
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conservative, for if even one connection in the group is missing—perhaps due to
an incompletely observed network—then the found community will shrink. Many
CFAs thus try to find communities comprised of groups of nodes which are highly
connected, but less connected than perfect cliques. However, we posit that a clique
is a good conservative lower bound estimate of community structure, in so far as an
observed clique more than likely is wholly contained inside some real-world com-
munity. A maximally interconnected group of nodes, in a sparse network, always
represents an interesting structure.

1.2 Partitioning Community Finding Algorithms

Many leading CFAs assign communities by partitioning the network, that is, group-
ing the nodes into disjoint subsets, assigning each node to exactly one subset. This
partitioning approach to community finding has become popular, perhaps due to
the appeal of treating a complex network as a graph, and the body of literature on
graph partitioning problems. Early applications of graph partitioning, such as the
applications of the Kernighan-Lin algorithm [16] discuss problems that explicitly
require partitions, such as electronic component layout. However, in this work we
are concerned about the completeness of the lists of community structure found by
algorithms when used in other domains, such as social networks, and in complex
networks generally. Regarding cliques as underestimates of community structure,
we believe that regardless of what specific structures a given CFA finds, to be thor-
ough, it should find, for each clique, at least one structure which is a superset of that
clique. A CFA—considered as a tool that reveals structure in a complex network—
that returns no community in which a group of fully connected nodes are assigned
together, is neglecting to provide a complete list of the structures in the network.
This is especially true if the clique is large in size.

1.3 Related Work

We show that in many complex networks, partitioning CFAs split cliques occurring
within the network; and hence fail to find complete lists of the network structure.
We examine why this occurs, investigating the intuition underlying many partition-
ing CFAs, and their relationship with cliques. We show, using cliques as a tool, that
some traditional intuition describing communities as well connected sets of nodes,
separated by narrow bridges, is not always correct. Instead, many of the graphs
we study exhibit a structure that can be better explained as the ‘pervasive overlap’
discussed in [1, 9] than as independent, weakly-connected modules. We analyse
cliques, rather than any other community structure proposed in the ‘overlapping
community finding’ literature, because we require a definition of structure that is
a fundamental, conservative, and convincing underestimate of community; for ev-
ery community, we want to find a conservative subset of that community. We use
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Fig. 1 Motivating image of
network community structure
from Newman [24]

cliques, rather than structures such as the percolated k-cliques of Palla et al. [25],
because with percolated k-cliques, we find no universal k consistent across networks
with which to evaluate partitioning; this would make it difficult to be conservative
in our analysis. Rather than choosing a new definition of community and discussing
whether it is sufficiently conservative, we instead use the fundamental definition of
the clique and examine its implications in detail. We analyse some of the same data
as Leskovec et al. [21]. However, while that influential work sought to investigate
the quality of the best community structure, at each scale, by evaluating it in terms
of conductance, which penalises communities in proportion to their external edges,
we instead investigate network structure from a different angle, by using the socio-
logically grounded idea of the clique to conservatively estimate community cores.
We characterise to what level each and every clique is preserved after the network
is partitioned, thus considering structures globally across the network.

An illustration of the intuition behind many CFAs can be seen in Fig. 1, from the
influential paper by Newman [24], which shows separate and well-defined modules,
connected by only narrow bridges. This same intuition, conceptualising commu-
nities as connected by narrow bridges, can be traced back to the seminal work of
Granovetter [13]: “If the motivation to spread the rumor is dampened a bit on each
wave of retelling, then the rumor moving through strong ties is much more likely
to be limited to a few cliques than that going via weak ones; bridges will not be
crossed.”

Here, Granovetter is using ‘clique’ in the sociological sense, closer to the modern
idea of community, and the idea is that bridges—narrow connecting links—need to
be crossed to carry information between such cliques. This idea is further summed
up in the modern review of Fortunato [11] as: “If it were possible for a clique to
move on a graph, in some way, it would probably get trapped inside its original com-
munity, as it could not cross the bottleneck formed by the inter-community edges.”
However, this work, in keeping with research [28, 30] on a limited number of other
networks, finds evidence that structurally weak ties need not be crossed to traverse
the network, contrary to the intuition just described. In fact, we show that while
the traditional intuition may be appropriate in some cases, the structure of many
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empirical networks does indeed lead to cliques crossing the ‘bottleneck’ formed by
inter-community edges.

2 Experiments

We conducted experiments to investigate the extent to which commonly used par-
titioning methods split the cliques in empirical network datasets. To keep the num-
ber of cliques we consider tractable, and in keeping with the original sociological
definition of clique [22], we constrain our analysis to maximal cliques, which are
cliques fully contained within no larger clique. For convenience, we refer to max-
imal cliques as simply ‘cliques’ in this work. In our analysis, we first generate the
complete list of cliques present in each network using the fast Bron Kerbosch al-
gorithm [3]. We then use the partitioning method under evaluation to assign each
node to a community, and characterise how the cliques interact with the partitions
found. We examine each maximal clique in turn, checking whether it is fully con-
tained within a partition, or to what extent it has been split across partitions. We
quantify and present this metric for each network, initially using two distinct parti-
tioning methods; one popular and efficient modularity optimisation method [2] and
one normalised min-cut optimising method [6].

2.1 Network Datasets Examined

To analyse data from a wide variety of networks, we gathered data from several
different sources. We used several network datasets from the SNAP project1 [21].
We examined networks formed by patterns of communication: The Enron and EU
E-mail networks, and mobile telecoms data provided by an industrial partner,2 com-
prised of the voice call and SMS interactions on a mobile telecoms operator. We
examined relation networks formed in online social networks, consisting of sev-
eral Facebook university network datasets [29], samples taken from the full Twitter
follower network [17], and the Slashdot online network. For both Twitter and the
Mobile telecoms data, where we had access to very large networks, beyond reason-
able computational means to analyse, we generated 3 random snowball samples of
each network to produce tractable datasets. For the Facebook datasets, we chose to
run our experiments on the smaller networks, due to the computational cost of cal-
culating all maximal cliques. We also considered the SNAP academic publication
networks, the Web networks of Stanford and NotreDame, product recommendation
networks from Epinions and Amazon, and Wikipedia voting network. Finally, we
considered a Protein-Protein interaction (PPI) network [5], as an example of a bio-
logical network.

1http://snap.stanford.edu/data/
2Idiro Technologies.

http://snap.stanford.edu/data/
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2.2 Partition by Modularity Maximisation

Many of the most popular CFAs are based on the modularity maximisation approach
of Newman [24]. The modularity function measures community quality as a count
of internal edges, less the expected number in a random graph with the same node
degrees. Modularity maximisation algorithms, such as the fast ‘Louvain’ method of
Blondel et al. [2]—which we evaluate here—designed to have a low computational
cost on sparse graphs, and scale to large mobile call networks—optimise for the
number of partitions as well as the associated partitioning. While traditional intu-
ition holds that even triangles, or ‘strong ties’, should not cross community bound-
aries, we are interested in more significant cliques—so we initially restrict our anal-
ysis to cliques of size at least 4. We also use a conservative definition of when a
clique is ‘split’—we say a clique is “split at level α” if no partition contains more
than (100 × α) % of its nodes. We quantify the proportion of cliques that are split
by the partitioning of each network in two ways. First, we examine the proportion of
cliques of size at least 4 that are split at level α = 0.9. Table 1 shows the significant
proportions of cliques split at this level. We would have expected, based on the tra-
ditional intuition, that such structures would be contained in the centre of the found
communities—not spanning them, and not split by partitions that define found com-
munities. Figure 2 provides an example of this effect, showing a single 4-clique that
has been split across 4 separate partitions by the community finding algorithm.

As our metric is the proportion of maximal cliques that have been split, we might
be concerned that many of the maximal cliques will be small, such as 4-cliques,
and that if a 4-clique is split by partitions—while contrary to the intuition of struc-
turally strong ties being unable to cross community boundaries—this might not be
of particular concern. For a more conservative experiment, we consider only large
cliques of size at least 8, split at level α = 0.8. These parameters are arbitrary and
we do not seek to justify them other than to reiterate that we are considering conser-
vative structure, which would traditionally be expected only in the ‘cores’ of found
communities, not on their boundaries—structure that a comprehensive CFA should
return. Even with this conservative definition, the partitions break significant num-
bers of such structures, on many networks—see Table 1. For example, this shows
that the Louvain CFA, run on the Caltech Facebook network, will split over one
quarter of cliques of size 8 or more.

Our results show that the proportion of cliques split varies across the networks.
There is also a large variation in the number of maximal cliques present. We might
reason that this is due to some fundamental difference in the nature of the networks
being considered, and question whether such analysis can be meaningfully applied
across a range of networks. After all, the Amazon network is a network of frequently
co-purchased products, and the web datasets are explicitly constructed lists of hy-
perlinks; still other networks involve human communication or collaboration. These
networks are, however, frequently treated together as complex networks; we might
a priori expect the same CFAs to perform well across them, and assume that a CFA
proven in one domain will be automatically suitable and work well in other domains.
However, this modularity method seems to do poorly on some types of network, at
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Table 1 Proportion of maximal cliques split by the Louvain CFA, per network. We show the
proportion of maximal cliques, of size 4 or greater, that have more than 10 % of their nodes assigned
to different partitions (i.e. are split at level α = .9). ‘Prop large cliques split’ is the proportion of
maximal cliques, of size 8 or greater, that have more than 20 % of their nodes assigned to different
partitions (i.e. are split at level α = .8). ‘Cliques’ is the number of maximal cliques in the network,
‘Partitions’ is the number of partitions made by the Louvain method, and ‘Largest Clique’ is the
size of the largest clique in the network

Network Nodes Partitions
(as found
by Louvain
Method)

Maximal
cliques

Largest
clique

Prop.
Cliques
split

Prop.
Large
cliques
split

Email-Enron 36,692 1,363 205,712 20 0.61 0.47

Email-EuAll 265,009 15,743 93,267 16 0.82 0.67

Mobile1 10,001 182 1,550 10 0.97 0.00

Mobile2 10,001 124 3,538 10 0.90 0.00

Mobile3 10,001 86 951 9 0.88 0.00

Facebook-Caltech 769 10 31,745 20 0.68 0.27

Facebook-Princeton 6,596 21 1,286,678 34 0.44 0.22

Facebook-Georgetown 9,414 26 1,440,853 33 0.41 0.22

Twitter1 2,001 8 23,570 12 0.99 0.66

Twitter2 2,001 4 554,489 27 0.15 0.01

Twitter3 2,001 7 130,399 22 0.06 0.00

Slashdot0811 77,360 771 441,941 26 0.13 0.01

Collab-AstroPhysics 18,771 331 27,997 57 0.60 0.32

Collab-CondMat 23,133 626 8,824 26 0.42 0.15

Collab-HighEnergy 9,875 483 2,636 32 0.23 0.00

Cite-HighEnergy 27,769 172 419,942 23 0.30 0.06

Amazon0302 262,111 173 117,054 7 0.01 0.00

Epinions 75,879 1607 1,596,598 23 0.38 0.11

Web-NotreDame 325,729 693 130,965 155 0.04 0.00

Web-Stanford 281,903 1013 774,555 61 0.04 0.01

Wiki-Vote 7,115 30 436,629 17 0.65 0.37

Protein-Collins 1,622 212 4,310 33 0.16 0.08

least where finding complete lists of community is desired. Similar results hold if
we consider just the proportion of n-cliques split; as discussed in Sect. 3.2.

2.3 Relation of Modularity Found to Proportion Split

To investigate if the proportion of split cliques is in some way an artefact of low
inherent modularity within the networks, we create a scatter-plot of the modularity
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Fig. 2 Visualisation of one of the split 4-cliques from the Caltech Facebook dataset. Clique edges
are shown in red; modularity partitions, as found by the Louvain method, are shown by colour; as
can be seen, each node of this 4-clique has been assigned to a different community. This clique
will thus not show up in the list of found communities. Note the many paths of length 2 between
the clique’s nodes. (Color figure online)

Fig. 3 Scatter plot of
modularity of the partition vs
the proportion of maximal
cliques >10 % split (i.e.
α = .9), for each network

achieved, against the proportion of maximal cliques split. From Fig. 3 no obvious
relationship appears. Several of the network partitions have high modularity and
still display significant clique splitting; if there is a fundamental characteristic that
renders particular networks unsuitable for modularity based partitioning, in terms
of the proportion of cliques that will be split, then the modularity achieved does not
capture it.

2.4 Partition by Normalised Edge Cut

Another method that has previously been used for the purpose of community find-
ing, from a different family of algorithms, is the multilevel kernel k-means parti-
tioning method implemented in Graclus [6], that minimises a normalised min-cut
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Table 2 Proportion of cliques of size at least 4, split more than 10 % (i.e. α = .9), by Graclus [6],
and hMETIS [15], per network. Values shown for 4, 16 and 64 Partitions, with ufactor 50, and 16
Partitions with ufactor500. Also shown, proportion of the large connected component preserved,
for subgraphs of edges in at least 4-Cliques ‘4-Clique’, and edges in at least 5-Cliques ‘5-Clique’

Network Graclus hMETIS 16 4-Clique 5-Clique

4 16 64 4 16 64 uf 500

Email-Enron 0.38 0.74 0.92 0.10 0.54 0.67 0.38 0.55 0.39

Email-EuAll 0.53 0.86 0.98 0.20 0.58 0.76 0.42 0.04 0.02

Mobile1 0.75 0.88 0.99 0.47 0.81 0.93 0.80 0.17 0.07

Mobile2 0.66 0.93 0.97 0.47 0.77 0.92 0.64 0.20 0.09

Mobile3 0.83 0.93 0.96 0.48 0.82 0.95 0.77 0.06 0.01

Facebook-Caltech 0.62 0.86 1.00 0.56 0.89 0.99 0.57 0.89 0.84

Facebook-Princeton 0.33 0.69 0.89 0.32 0.58 0.89 0.36 0.92 0.89

Facebook-Georgetown 0.30 0.58 0.80 0.32 0.50 0.74 0.40 0.93 0.90

Twitter1 0.88 0.99 1.00 0.82 0.97 1.00 0.83 0.78 0.57

Twitter2 0.22 0.99 1.00 0.05 0.88 1.00 0.56 0.70 0.57

Twitter3 0.74 0.98 1.00 0.04 0.65 0.99 0.05 0.74 0.33

Slashdot0811 0.28 0.49 0.94 0.08 0.13 0.37 0.09 0.10 0.04

Collab-AstroPhysics 0.43 0.53 0.77 0.27 0.49 0.65 0.34 0.83 0.71

Collab-CondMat 0.28 0.40 0.50 0.17 0.30 0.39 0.30 0.71 0.52

Collab-HighEnergy 0.16 0.28 0.43 0.10 0.19 0.29 0.19 0.42 0.13

Cite-HighEnergy 0.13 0.35 0.55 0.15 0.31 0.47 0.30 0.75 0.62

Amazon0302 0.01 0.02 0.04 0.00 0.00 0.00 0.00 0.11 0.00

Epinions 0.46 0.88 0.81 0.24 0.51 0.63 0.30 0.18 0.12

Web-NotreDame 0.01 0.03 0.11 0.00 0.05 0.18 0.04 0.07 0.03

Web-Stanford 0.03 0.04 0.39 0.00 0.09 0.46 0.02 0.49 0.40

Wiki-Vote 0.48 0.96 1.00 0.51 0.88 0.99 0.51 0.43 0.35

Protein-Collins 0.00 0.16 0.93 0.00 0.79 0.95 0.01 0.59 0.36

objective. Like the modularity maximisation method of Blondel et al. this imple-
mentation is designed to scale to large networks, performing well on sparse data by
avoiding expensive eigenvector computation.

We examined this method on the same data as the modularity maximisation
method. Unlike the modularity method, which discovers the number of partitions
into which to break a graph, Graclus requires this to be specified. All other things
equal, we would expect a smaller number of partitions would result in a smaller
proportion of the maximal cliques being broken, and this effect is visible. How-
ever, even when asked to produce a relatively small number of partitions—relative
to the network sizes—min-cut partitioning results in large proportions of the cliques
greater than size 4 being split on many datasets, as shown in Table 2.
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3 Fundamental Partitionability of Networks

Some datasets have a higher proportion of cliques split by partitions than others.
This is largely uncorrelated with the mere number of cliques in the dataset, or the
number of cliques per node, or per edge, or a number of other simple graph mea-
sures, such as clustering coefficient. After investigating several popular CFAs, we
now consider whether any partition exists which would not split cliques. Perhaps
there were potential partitions that would confine cliques to the cores of the commu-
nities found, but these methods were not finding them? To answer this, we consider,
for each network, the subgraph induced by nodes that share cliques; i.e. the network
formed by discarding all edges from the network that are not part of cliques. The
connected components in this subgraph are the sets of nodes that cannot be placed
into separate partitions without splitting any cliques. We calculate the size of the
largest connected component of each network, and present this as the proportion of
nodes in the network, in Table 2.

We show results for the subgraph induced by nodes that share cliques of size 4 or
greater, and of size 5 or greater, under the headings ‘4-Clique’ and ‘5-Clique’. On
some networks, such as Facebook, Twitter, or collaboration networks, any partition-
ing scheme that is constrained to not split cliques of size five or greater has to leave
the majority of nodes in a single partition.

This is an important structural property of these datasets, and an important re-
sult for certain diffusion models of complex contagion [4] which can only spread
over structurally strong ties, as it shows these graphs are connected when using
solely strong ties—it is possible to walk the graph communities without using weak
ties. Further, on some of the larger datasets such as the Slashdot dataset, with 77,360
nodes, we find that over 30 per cent of those nodes (23,980 nodes) are in a connected
component of the subgraph containing only edges that are in triangles; further evi-
dence against the strict idea that strong ties do not cross community boundaries, and
that communities are well separated.

3.1 Partitions that Directly Minimise Clique Splits

Having established the limits of partitions that break no single clique, we consider
partitioning to directly optimise the number of cliques preserved, while producing
balanced partitions. Partitioning a network while splitting as few cliques as possible
is a hypergraph partitioning problem, where nodes in a clique together are connected
by a hyperedge. This simple observation enables us to use a balanced mincut hyper-
graph partitioning algorithm, such as implemented by hMETIS [15] to partition the
graph, while directly minimising clique splitting. hMETIS requires an important pa-
rameter to determine partition balance. Too high a value results in trivial partitions,
with the vast majority of nodes in a single partition; too low might force hMETIS to
make more aggressive hyperedge cuts than is reasonable. We initially set this ufactor
at 50 (meaning the largest partition may have 50 % larger weight than the average),
to allow some unbalance. We examine cuts into 4, 16, and 64 partitions—generally
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fewer partitions than the modularity maximisation approach finds on these graphs.
We also present results for 16 partitions with ufactor 500, allowing very large vari-
ation in partition size.

The results are shown in Table 2. Partitions directly minimising clique split in-
deed result in reduced proportions of the cliques split, compared to the balanced
mincut of Graclus. As the number of partitions, and balance between partitions,
constrain hMETIS more than the modularity maximisation method, the results are
not directly comparable. However, as this method is directly minimising clique cut,
it should approach a lower bound attainable by any partitioning CFA, for the given
number of partitions—and, with generous balance parameters, indeed does better
than modularity maximisation.

Even so, partitioning the network using this method, on a range of datasets—
notably the collaboration networks, the Wiki voting data, the telecoms data and
especially the Facebook social networks—still results in substantial proportions of
cliques being split, demonstrating the fundamental global unpartitionability of some
networks.

3.2 Detailed Analysis of Sample Networks

We now present some detailed statistics from three arbitrarily chosen sample net-
works: the Princeton Facebook network, which we will look at in detail as a case
study, and one of each of the mobile and twitter sample networks. This Princeton
Facebook network with over 6,500 nodes is large enough to allow us meaningfully
investigate medium and large scale community structure. Facebook network data is
also relatively dense, in that it captures many long term social relationships for each
user; this is in contrast to more fleeting, or partial, network information we might
obtain by extracting a network from a short term snapshot of a communications
network.

In Fig. 4 we show the number of cliques of each size in the network. We also
show, for each clique size n observed in the network, the number of split cliques
of that size. We plot this profile of cliques split, at each size, for each partitioning
method investigated (as well as for non-partitioning Overlapping Community Find-
ing Algorithms, which will be discussed in Sect. 4). We also show the proportion of
cliques of size n split, for each value of n. We present results for three definitions
of ‘split’—where we consider cliques split if (b) any of their nodes have been par-
titioned from them, (c) greater than 10 % of their nodes have been partitioned from
them, and (d) greater than 20 % of their nodes have been partitioned from them.

The Louvain method finds 21 partitions on this network; we use Graclus and
hMETIS to produce the same number of partitions as the Louvain method. While
the absolute number of cliques split tends to decrease as the metric becomes in-
creasingly conservative, we note that in all cases, non-trivial numbers of cliques
are split. As we would expect—as all partitioning algorithms try, in some sense, to
avoid cutting edges—often the larger a clique is in size, the smaller the probability
of the partitioning algorithms splitting it; however, cliques of all sizes are still split
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Fig. 4 Proportion cliques split at each size, for Princeton Facebook Network. (b) Considering a
clique split if a single node is partitioned from it. (c) Considering a clique split if >10 % of its
nodes are partitioned from it (i.e. α = .9). (d) Considering a clique split if >20 % of its nodes are
partitioned from it (i.e. α = .8)

by these methods, on some networks; it is not the case that only the smallest cliques
are split.

These figures emphasise the robustness of our findings—cliques of all sizes are
split by partitioning—and illustrate an interesting way of characterising the effects
of partitioning a network. Figures 5 and 6 show similar results for one of each of the
Twitter and Mobile networks.

3.3 ‘Distinct’ Cliques

A large clique, with some small portion of random edges deleted, will turn into
many very similar smaller cliques. In quantifying the ‘proportion’ of cliques split,
we might be concerned that mis-assignment of a small set of nodes, if they are
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Fig. 5 Proportion cliques split at each size, for one of the Twitter Networks. (b) Considering a
clique split if a single node is partitioned from it. (c) Considering a clique split if >10 % of its
nodes are partitioned from it (i.e. α = .9). (d) Considering a clique split if >20 % of its nodes are
partitioned from it (i.e. α = .8)

Table 3 Proportion of
cliques that are ‘distinct’,
beyond a given Jaccard
similarity, that are over 10 %
split (i.e. α = .9) by
Graclus [6], and
hMETIS [15]. Values shown
for Graclus and hMETIS for
16 partitions. hMETIS ufactor
is 500

Network Louvain Graclus hMETIS

Email-Enron 0.62 0.76 0.39

Mobile1 0.97 0.88 0.80

Facebook-Caltech 0.78 0.90 0.66

Twitter1 0.99 0.99 0.83

Collab-HighEnergy 0.23 0.28 0.19

Protein-Collins 0.34 0.33 0.02

contained within a large number of very similar overlapping cliques, might skew the
proportions. As an additional check on the robustness of these results, we present a
set of results in Table 3 which correct for this effect by running our analysis not on
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Fig. 6 Proportion cliques split at each size, for one of the Mobile Networks. (b) Considering a
clique split if a single node is partitioned from it. (c) Considering a clique split if >10 % of its
nodes are partitioned from it (i.e. α = .9). (d) Considering a clique split if >20 % of its nodes are
partitioned from it (i.e. α = .8)

the full set of maximal cliques, but instead on a set of maximal cliques, after a pre-
processing phase which removes any clique that has a high Jaccard similarity (>0.8)
to any other larger clique. This analysis is computationally expensive to compute on
the larger networks; however, on the networks we are able to perform it on, we find
that our results still hold: substantial proportions of cliques are split, even if the only
cliques we are looking at are cliques that are somewhat distinct from each other.

3.4 Random and Synthetic Models of Community

Broad categories of random community assignment model will produce net-
works where partitioning will fail to recover full communities. One source of
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Fig. 7 Number of
communities-per-node, as
specified in benchmark
parameters, vs proportion of
maximal cliques >10 % split
(i.e. α = .9), by the Louvain
and hypergraph partitioning
methods, on LFR benchmark
data. Each data point is the
mean of 5 LFR instances;
deviation is negligible

synthetic benchmark community data is the ‘LFR’ benchmark [18], in which
‘communities’—defined as sets of nodes with a high probability of edges between
them—are embedded into a generated network. We ran our experiments on LFR
graphs to test our method on synthetic data. We generated realisations of a 10,000
node network, altering the number of communities each node was assigned to—
from one to five, also increasing the corresponding number of edges, using the same
parameters as with benchmarks detailed in previous work [20]. The results detailing
the proportion of cliques split are shown in Fig. 7.

From these results, all methods partition the single-community-per-node net-
works without splitting cliques, but split significant numbers of cliques on net-
works with two or more communities-per-node. Even though the synthetic net-
work model isn’t directly embedding cliques—just increasing edge density within
communities—partitioning fails to find all structure, by our defined metrics, on syn-
thetic networks where nodes are overlapping. Further, large components exist in the
graph of edges in cliques in these generated networks. Not only are the individual
nodes and communities overlapping as designed by the model; it is a global prop-
erty of the network as a whole that no non-trivial partition exists which does not
split cliques.

4 Overlapping Community Finding Algorithms

A variety of algorithms exist which find overlapping communities within networks;
Fortunato [11] mentions several of these, but this is an active area of research, with
new algorithms frequently being developed [31]. Like with partitioning CFAs, many
of these algorithms find subtly different structures, as authors work from slightly
differing assumptions as to what constitutes a ‘good’ community. As such it is dif-
ficult to interpret what the output of a specific overlapping community finding algo-
rithm tells us about the fundamental structure present in a network; and so we have
avoided this in our analysis thus far. However, an advantage of overlapping CFAs is
that they generally find structures that are much less common than maximal cliques
are; typically a single overlapping community will contain many maximal cliques,
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many of which may differ only by a small number of nodes. As we have seen, a
great number of cliques exist in the networks we examine; and while we can inves-
tigate aspects of network structure by using these cliques, the fact that so many of
them exist brings some disadvantages; specifically, the ‘clique graph’—the graph of
cliques that overlap each other—is typically too large to work with.

In previous sections, we have considered the partitionability of networks, con-
centrating our analysis solely on cliques as the cores of community structure. The
notion of cliques as community cores can be explicitly encoded in a community
finding algorithm, both to produce communities that are disjoint, if disjoint cliques
are enforced [32] or overlapping, if this criterion is relaxed [14, 25, 27]. Indeed,
this is the approach of a family of overlapping CFAs, which use cliques as ‘seeds’
for communities, including the ‘Greedy Clique Expansion’ (GCE) algorithm [20],
to which the authors of this work have contributed. The GCE method starts with
maximal cliques as seeds and grows these seeds into communities using a local
community quality measure. Thus, it will trivially produce communities in which
there exists, for each maximal clique, at least one community that fully contains it.
However, many other overlapping CFAs have kept with an ‘edge density’ notion of
community quality, and find communities without any explicit modelling of cliques.
Given the large numbers of cliques present in empirical networks, approaches that
do not explicitly model cliques can have computational advantages over those that
do. It is thus interesting to apply our clique based analysis to such algorithms and
ask if density-driven community finding algorithms preserve clique cores, when
communities are allowed overlap.

In this section, we will make use of overlapping CFAs for two separate purposes.
First, we analyse two overlapping CFAs with the same procedure as the partitioning
CFAs, in order to ascertain the extent to which they split cliques in practice. Second,
we examine the community overlap graphs created by these CFAs, and use the re-
sults of these graphs to examine the effects of partitioning on these networks, given
the community structure as found by these particular overlapping CFAs.

4.1 Algorithms Examined

We concentrate our analysis on two recent overlapping CFAs: MOSES (Model-
based Overlapping Seed Expansion) which we proposed in [23] and OSLOM (Or-
der Statistics Local Optimisation Method) [19]. These statistically motivated algo-
rithms do not explicitly use cliques in their operation, and are finding recent appli-
cation in network analysis, for example the work of Grabowicz et al. [12]. While
the complexity of these algorithms is dependent on the structure present in the input
networks, like the previously discussed methods, both of these algorithms provide
implementations which use heuristic techniques to enable them to scale to large net-
works, this makes them suitable for our analysis. We first examine the outputs of
these algorithms. Figure 8 shows the community size distributions for each of the
CFAs we analyse, on the case study networks we presented in detail earlier. We
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Fig. 8 Size distribution of overlapping communities found by MOSES and OSLOM. We do not
show communities consisting of isolated nodes—OSLOM in particular finds a great many of these

present distributions, rather than average community sizes, as the distributions of
community sizes found vary widely by network, and tend to be heavily skewed. We
do not include ‘singleton’ communities, containing only single nodes; OSLOM in
particular reports many of these.
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4.2 Analysis in Terms of Split Cliques

We analysed the overlapping communities found by OSLOM and MOSES, in the
same manner as the partitioning algorithms—for each clique, we check to see if
there is any community in which it is fully contained; if there is not, we consider
the clique to be split.

A thorough comparison of the exact structures found by these algorithms, each
motivated by slightly differing models of community structure, is outside the scope
of this work. To be thorough, we would have to either deal in subtle differences in
the definition of ‘community’—for which many definitions exist—or analyse the
communities found by these methods against some ‘ground-truth’ data particular
to a specific application domain. To restrict our analysis solely to network struc-
ture, we do not consider the issue of whether the communities found by MOSES
and OSLOM are overall ‘good’ communities; instead we maintain our focus on
split cliques. We present the results of this analysis in Table 4. We also show de-
tailed results, for our case-study networks, on a per size-of-clique basis in Figs. 4, 5
and 6. These results show that MOSES produces a set of communities such that most
larger cliques, in most networks, are contained in at least one community found by
MOSES. This is an interesting result, considering that MOSES does not explicitly
find communities in terms of cliques. The benchmarking of OSLOM yields a differ-
ent result, however: for large numbers of cliques, OSLOM does not produce at least
one community containing the clique.

It is difficult to explain this. Unlike MOSES, OSLOM outputs a hierarchy of
levels of community, and we only consider the lowest level of that hierarchy; per-
haps, in practice, the lowest levels are very ‘fine grained’ for OSLOM, below the
level of an individual clique. Alternatively, in any community finding algorithm,
there must always be a tradeoff between the sensitivity required to find all com-
munities, and specificity to avoid finding ‘false positive’ communities. We can use
cliques as underestimates of community structure, to measure sensitivity—in that
every clique should be contained in a community—but not to measure specificity,
for as discussed earlier, it may be too strict to require that every community con-
tain a clique. Perhaps OSLOM is simply more specific in its output than MOSES;
the two algorithms find structures of different quantity and size, as Fig. 8 shows.
A detailed investigation of these issues would have to be undertaken in the context
of a specific application domain, with ground truth data. But what these results do
show is that at least some overlapping CFAs, which contain no explicit represen-
tation of cliques, find communities which split much fewer cliques than the parti-
tioning algorithms do. The results also show that while the use of an overlapping
CFA is necessary to avoid splitting cliques, as discussed in Sect. 3 and concretely
illustrated by the results of MOSES, it is not a sufficient condition in practice as
the OSLOM results show. Thus if a specific application domain requires high sen-
sitivity, and a full list of community structure to be found, then not only must an
overlapping CFA be used, but the CFA should also be evaluated for the specific
application.
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Table 4 Proportion of cliques that are not completely contained in at least one community—i.e.
are ‘split’—by the OSLOM and MOSES overlapping CFAs. Some networks present in previous
benchmarks are not shown, due to the algorithms taking too long to run

Network OSLOM
>10 % split

OSLOM
Size >8
>20 % split

MOSES
>10 % split

MOSES
Size >8
>20 % split

Email-Enron 0.96 0.98 0.16 0.01

Email-EuAll 0.93 0.00 0.06 0.00

Mobile1 0.99 0.00 0.00 0.00

Mobile2 0.94 0.00 0.03 0.00

Mobile3 0.99 0.00 0.03 0.00

Facebook-Caltech 0.76 0.37 0.41 0.04

Facebook-Princeton 0.93 0.76 0.21 0.01

Facebook-Georgetown 0.95 0.82 0.22 0.01

Twitter1 0.97 0.94 0.20 0.00

Twitter2 0.98 0.91 0.02 0.00

Twitter3 0.98 0.91 0.02 0.00

Collab-AstroPhysics 0.86 0.79 0.35 0.04

Collab-CondensedMatter 0.40 0.22 0.08 0.02

Collab-HighEnergy 0.33 0.00 0.08 0.00

Cite-HighEnergy 0.81 0.52 0.15 0.00

Amazon0302 0.09 0.00 0.01 0.00

Epinions 0.96 0.83 0.01 0.00

Wiki-Vote 0.79 0.67 0.04 0.00

Protein-Collins 0.13 0.06 0.06 0.01

4.3 Community Overlap Graphs

We have considered, in Sect. 3, the fundamental partitionability of networks, by ex-
amining the connected components which exist when we only consider subsets of
the networks connected by cliques. We have also considered whether a hypergraph
partitioning method, attempting to split as few cliques as possible, can partition
the network, and have seen that—assuming cliques at the core of communities—
communities overlap each other pervasively. We can develop our intuition about
these results further, by considering the possibilities for the structure present in the
‘Community Overlap Graph’ (COG); the graph formed by representing each com-
munity as a node, and connecting a pair of nodes (communities) by an edge, when
the two communities overlap by more than some threshold number of nodes i.e.
when they share more than some threshold number of nodes in common. When
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Fig. 9 Illustration of some possibilities for the Community Overlap Graph, for a network with 16
communities. Each node represents a community; edges connect pairs of overlapping communi-
ties. (a) Non-overlapping communities. (b) Overlapping communities, but clustered, with no path
through overlap. (c) Overlapping communities with unpartitionable overlap

considering individual cliques as our communities, this idea is identical to that of
the ‘clique graph’ discussed by Everett and Borgatti [10] and discussed further by
Evans [8].

However, the large numbers of maximal cliques present in the networks we study
make explicitly working with the clique graph difficult. The communities found by
overlapping CFAs however, are typically smaller in number (as shown in Tables 5
and 6). Different possibilities for what structure we might see in the community
overlap graph are shown in Fig. 9. We can see that Fig. 9(a) corresponds to a world
view of non overlapping communities, in which the partitioning of networks into
communities makes obvious sense. Figure 9(b) contains overlapping communities,
but, perhaps surprisingly, it still makes some sense to partition the network, with
partitions dividing clusters of overlapping communities together. We have shown,
from our analysis of paths through cliques, and attempting to partition the net-
work using hypergraph partitioning on the found cliques, that a world-view similar
to Fig. 9(c) is most appropriate. We will now discuss these ideas in more detail,
with reference to actual community overlap graphs, generated from the commu-
nities found by the two overlapping community finding algorithms, on empirical
data.
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4.4 Analysis of Community Overlap Graphs of Overlapping CFAs

In Fig. 10 we show visualisations of the Community Overlap Graph of the com-
munities found by the MOSES and OSLOM algorithms, in the Facebook Princeton
network. In order to show only the more significant overlaps, we draw an edge be-
tween two communities overlapping by at least 4 nodes. These visualisations show
that in this particular network, most of the larger communities found by these two
algorithms—and hence most of the nodes in the network—are part of a connected
component of overlapping communities. As such, the empirical visualisation corre-
sponds most closely to Fig. 9(c), and hence partitioning to find communities is not
suitable in networks like this. Visualising the community overlap graphs of these
networks shows clearly the extent to which communities overlap, and the struc-
ture that would be broken by partitioning these networks in order to find communi-
ties.

In addition to visualising these networks, we can attempt to quantify the degree to
which a set of overlapping communities is partitionable, similar to how we examined
the fundamental partitionability of networks in Sect. 3. We attempt to quantify this
by examining how many of the communities in the community overlap graph are
in the largest connected component of that graph, and what proportion of the nodes
in the source network they contain. If a large proportion of communities and nodes
are in a connected component, then this again would indicate quantitatively that the
community structure is closer to Fig. 9(c) than (a) or (b).

Our results for the MOSES method are presented in Table 5, and for OSLOM in
Table 6. As we can see, in line with our earlier results using cliques, the degree of
overlap varies across networks with the social networks—particularly the Facebook
networks—showing the least partitionable results.

In line with the results obtained by quantifying the proportion of cliques split,
MOSES finds structure that is more highly overlapping than OSLOM. These re-
sults show an interesting method of quantifying the degree of overlap of community
structure in a given network, and for a given overlapping CFA.

In Tables 5 and 6 we used an overlap of 4 nodes as a threshold for ‘significant’
overlap between two communities. It is interesting to examine how the threshold
used to analyse the community overlap graph effects the connectivity of that graph.
Figure 11 shows how the threshold effects the size of the largest connected compo-
nent in the community overlap graph, both in terms of the number of communities
in it, and the number of nodes of the underlying network that are in it, for both of
the overlapping CFAs we examined. It can be seen from this figure that OSLOM
has a sharp falloff in the size of the LCC as the threshold of overlap is increased.
MOSES exhibits a much more gradual falloff in the size of the LCC—even if we
require that communities have 10 nodes in common for them to be overlapping,
the graph is still largely unpartitionable, without breaking several community over-
laps. This difference between MOSES and OSLOM is perhaps not surprising, given
MOSES’s tendency to find larger communities than OSLOM, and is consistent with
the results in terms of the proportion of cliques split. This is further evidence that
the level of overlap in the structures found by varying overlapping CFAs can vary
widely.
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Fig. 10 Visualisation of COG of Facebook Princeton network. An edge is drawn whenever two
communities overlap by at least 4 nodes. Edge width is proportional to overlap, and node area is
proportional community size. Communities are labelled with the number of nodes they contain.
Nodes may be present in multiple communities; two communities with a high degree of overlap
contain fewer unique nodes than the sum of their labels. Shown here is the COG extracted from
running (a) MOSES and (b) OSLOM on the Facebook Princeton network. Networks visualised
with Graphviz [7] force directed layout
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Table 5 Results for the size of the largest connected component (LCC) of the community overlap
graph (COG), examining community structure found by MOSES

Network Nodes Number
communities

Comms
in LCC
of COG

Nodes
in LCC
of COG

Proportion
Nodes in
LCC COG

Email-Enron 36,692 2,471 587 14,573 0.4

Email-EuAll 265,009 473 257 24,919 0.09

Mobile1 10,001 437 38 1,159 0.12

Mobile2 10,001 323 219 8,609 0.86

Mobile3 10,001 171 120 8,478 0.85

Facebook-Caltech 769 81 71 666 0.87

Facebook-Princeton 6,596 797 710 6,162 0.93

Facebook-Georgetown 9,414 893 800 8,740 0.93

Twitter1 2,001 161 132 1,686 0.84

Twitter2 2,001 129 99 1,680 0.84

Twitter3 2,001 188 101 1,080 0.54

Collab-AstroPhysics 18,771 2,816 677 9,953 0.53

Collab-CondMat 23,133 3,458 175 3,760 0.16

Collab-HighEnergy 9,875 1,663 15 274 0.03

Cite-HighEnergy 27,769 1,625 998 21,445 0.77

Amazon0302 262,111 23,665 47 1,767 0.01

Epinions 75,879 795 249 19,889 0.26

Wiki-Vote 7,115 65 63 3,805 0.53

Protein-Collins 1,622 150 16 221 0.14

5 Conclusion

We have investigated a wide range of empirical networks, characterising them ac-
cording to the proportion of cliques in them that are split by various partitioning
methods. Our results show that the early intuition on how communities are embed-
ded in graphs does not hold across all networks and domains. On many complex
networks cliques do not exist solely in community cores connected only by nar-
row bridges and weak ties—instead they frequently overlap across the community
boundaries produced by partitioning algorithms.

If we accept cliques as conservative lower bounds for community structure, then,
on many networks, partitioning CFAs are fundamentally limited in the completeness
of the communities they can find, as shown by our results on the graph of edges in
cliques, and from using hypergraph partitioning algorithms to partition cliques. This
shows that communities are not easily separable from each other simply by remov-
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Table 6 Results for the size of the largest connected component (LCC) of the community overlap
graph (COG), examining community structure found by OSLOM

Network Nodes Number
communities

Comms
in LCC
of COG

Nodes
in LCC
of COG

Proportion
Nodes in
LCC COG

Email-Enron 36,692 10,620 46 2,722 0.07

Email-EuAll 265,009 131,143 – – –

Mobile1 10,001 8,435 1 3 0

Mobile2 10,001 8,119 4 235 0.02

Mobile3 10,001 9,195 2 157 0.02

Facebook-Caltech 769 137 2 100 0.13

Facebook-Princeton 6,596 920 11 404 0.06

Facebook-Georgetown 9,414 1,189 5 178 0.02

Twitter1 2,001 467 21 1,529 0.76

Twitter2 2,001 113 7 1,463 0.73

Twitter3 2,001 289 9 1,040 0.52

Collab-AstroPhysics 18,771 4,106 9 202 0.01

Collab-CondMat 23,133 5,911 6 159 0.01

Collab-HighEnergy 9,875 3,808 7 145 0.01

Cite-HighEnergy 27,769 4,393 12 358 0.01

Amazon0302 262,111 37,374 19 424 0

Epinions 75,879 46,260 57 3,739 0.05

Wiki-Vote 7,115 2,744 21 4,085 0.57

Protein-Collins 1,622 529 2 50 0.03

ing structurally weak ties; instead, communities overlap across each other, with pairs
of community frequently connected by strong ties, and other communities.

Our analysis of overlapping community finding algorithms has shown that some
overlapping CFAs produce sets of communities in which each individual clique is
fully contained. However, as we have shown, not all overlapping CFAs satisfy this
property. We have presented community overlap graphs as another tool—in addition
to cliques—with which to explore the output of overlapping CFAs. We have shown
that on some networks, the communities as output by overlapping CFAs reveal a
community structure that cannot be partitioned.

Thus, caution is warranted when using partitioning community finding algo-
rithms where there is a sensitivity requirement that all significant community struc-
ture be found. In agreement with recent research on pervasive overlap, conceptualis-
ing networks as overlapping meshes of strong ties, with denser community regions,
and using a CFA designed to find communities that overlap, will be more appropri-
ate in many application domains.
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Fig. 11 As the threshold of overlap is changed, the size of the largest connected component in the
community overlap graph changes. We investigate how the size of this component varies both in
terms of the number of communities in it, and the total number of nodes connected by communities
that overlap by at least that threshold. We display the size of the largest component, both in terms
of the proportion of communities that are in it, and in terms of the proportion of nodes in the
underlying graph which are in it, for both OSLOM and MOSES Overlapping CFAs

6 Further Work

Work on formal models of community generation that might explain whether a net-
work is suitable for partitioning, and attempt to characterise the generative processes
behind this global overlap would be interesting. That cliques frequently span com-
munities also has implications for the type of diffusion processes that can occur
on networks; data on the non-partitionable nature of communities may lead to an
enhanced understanding of diffusion on complex networks. We hope that studying
the nature of community overlap can lead to a better fundamental understanding of
structure in empirical networks, and help development of future community finding
algorithms.
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SAINT: Supervised Actor Identification
for Network Tuning

Michael Farrugia, Neil Hurley, and Aaron Quigley

Abstract Whenever the actors of a social network are not uniquely identifiable in
the data, then entity resolution in the form of actor identification becomes a critical
facet of a social network construction process. Here we develop SAINT, a pipeline
for supervised entity resolution that uses relational information to improve, or tune,
the quality of the constructed network. The first phase of SAINT uses attribute only
based entity resolution to create an initial social network. Relational information
between actors, actor network properties and other relational output of the first clas-
sification phase, are used in a second phase to improve the results of the original
entity resolution. When compared to single phased approaches, the results from this
two phased approach are consistently superior in both recall and precision measures.
Embedded within SAINT are a series of evaluation checkpoints designed to mea-
sure both the quality of the individual classifiers and their impact within the entire
pipeline. Our evaluation results provide insight on the potential propagation of error
and open research questions for further improvement of the individual classifiers
within the entire pipeline. As the main application of the process is to improve actor
identification in social networks, we characterise the impact that entity resolution
has on the final constructed network. We compare the network constructed using
SAINT with a ground truth network using perfect entity resolution and use global
and local network measures to study the differences.
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1 Introduction

The data mining of social networks typically begins with an explicit social network
collected by manual or automated means. Manual means include survey and inter-
view, and automated means include data collection from social networking services
such as LinkedIn with 100 m users or Facebook with 600 m users. In both cases,
the collection process faces certain problems including data validity, terms of use,
closed networks, privacy and security.

Researchers can also construct social network data sets from sources where the
network is rather more implicitly defined. Email systems or a collected email cor-
pus, such as the Enron Data set with 517,432 emails, can be analysed to determine
a network. Here an email address becomes an actor in the network, an edge repre-
sents communication and a weight may represent the number of communications
(direct, reply or CC) [31]. Likewise, personal geographic location data collected
from mobile phones, can be used to infer and socially connect people living in the
same area by matching on social events [32] or simple co-location. Alternatively,
online documents can be matched to determine social networks using text classifi-
cation [25]. Again, both the determination of actors and connections (edges) can be
easily skewed by arbitrary judgements in the definition process of what constitutes
an actor or connection.

More loosely defined social networks can be determined from the study of more
open systems, including Twitter, blogs and other forms of social media. Here the
notion of a “social connection” can be based on follower status, retweeting a tweet,
family membership or even use of the same hashtag or URL in a blog post. Clearly,
both manual, automatic and semi-automatic network formation methods all suffer
from inherent weakness both in their means of data collection and the often sub-
jective social concepts they are based around i.e. “what is a friend?” or “what is a
social connection?” in this type of network.

The increasing uptake of online social networking services has opened up a range
of business opportunities based on the successful extraction of social behaviours
from such data. When the underlying social network is a customer base, it is clear
that understanding the dynamics of this network in terms of how services are re-
ceived and adopted by customers is important. It has the potential to allow busi-
nesses to, for example, better develop targeted services or organise marketing cam-
paigns. The network of interest in this context, is one in which the nodes are the
actors, or individuals about which the data has been gathered, and the edges, or
links between actors, correspond to social relationships, such as friendship or fam-
ily ties.

The relationships that are explicitly available in the raw data, tend to be recorded
actions that link references to individuals. For example, in a dataset of email com-
munication, an email is the action that links two references in the form of email
addresses that relate to particular individuals. Now consider that a single social ac-
tor may use multiple email addresses and that the email communication may be
evidence of a strong social link between a pair of actors, or just a spurious commu-
nication. It then becomes clear that the construction of a reliable representation of
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the actual underlying social network, from the available raw data, presents a consid-
erable challenge.

The airline passenger data used in this study offers a feature rich, real world
example of an implicit network data set. The data set is built from airline book-
ing travel records containing passenger details, flight itinerary details and passenger
contact details. Often booking records do not contain details that allow a passenger
to be uniquely identified and passenger name strings are ambiguous and inconsis-
tent [10, 13]. Also, it is possible for the same passenger to have conflicting personal
identification details in different travel records. For instance the same passenger can
use a business email address when booking a business trip and a personal email ad-
dress when travelling with their family. These characteristics of the data set make
it a challenging problem both from an actor identification perspective and from a
relationship inference perspective.

In this paper, we develop SAINT, an approach to social network construction,
focusing in particular on the problem of actor identification, which is an instance
of the entity resolution problem. Unlike other approaches in this area, we use re-
lationships in the data records to assist in building an underlying social network.
Our method consists of a pipeline of classifiers that infer an initial set of social ac-
tors and their relationships and then refine that set using the inferred social network.
Our contribution in SAINT is to incorporate relational information into a supervised
classification methodology. In a two-phase pipeline, a classical supervised attribute-
based classification algorithm is used for initial actor identification and in the second
phase a classifier based on feature vectors extracted from the inferred social network
obtained in the first phase, is used to refine the identification. Crucially, our method-
ology provides several evaluation points at which the performance of the pipeline
can be obtained, which allows for the tuning of the different classification phases.
We evaluate our system using the traditional classification performance measures of
precision and recall. Moreover, we compute various network properties to compare
our extracted social network with the ground-truth network obtained using perfect
actor identification. This allows the impact of classification errors on the resulting
network to be investigated.

In the next section we present and review related work in entity resolution. Fol-
lowing this, Sect. 3 formally specifies the entity resolution problem that we are
attempting to solve. Section 4 describes our entity resolution pipeline and details
classification problems designed to improve the entity resolution process. Follow-
ing this we describe a series of experiments on real world data in Sect. 5, along with
proposed approaches for the previously described classification problems. Finally,
we present and discuss results and motivate future work in Sect. 6.

2 Background

The problem of identifying multiple records referring to the same single entity has
been studied since the seminal work of H.L. Dunn [14] and Fellegi and Sunter [18].
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A common data mining approach is to apply machine learning classification on
record attributes. Typically, the feature vectors that are input to the classifier cor-
respond to pairs of records and the classifier output indicates whether or not this
pair corresponds to the same underlying entity. This approach facilitates supervised
entity resolution, where the classifier is trained on a set of pairs for which the reso-
lution is known. More recently, the problem has been formulated as an unsupervised
clustering problem in which records pertaining to the same entity are grouped to-
gether [6]. In this recent work relational information is exploited in the clustering
algorithm.

Although the problem of entity resolution has been recognised for a long time,
it is still considered as one of data mining’s grand challenges [29]. In computer
science, the same problem spans many different research communities, often un-
der different names. The problem has been studied in databases as the merge/purge
problem [19], natural language processing as coreference resolution [20], and com-
puter vision as the correspondence problem [33]. In a social network context, entity
resolution or actor identification is required when a unique key to identify the ac-
tors is not available, such as when constructing co-authorship networks. Authors in
co-authorship data sets are not uniquely identified and sometimes an author’s name
is spelled differently, abbreviated, or there might be more than one author with the
same name. There is little previous work which considers the problem purely from
a social network perspective. A notable exception is the work of Newman [28],
in which he creates two separate networks with different rules for determining the
same authors. Bilgic et al. [7] describe a visual analytical system called D-dupe to
assist with the process of actor identification in co-authorship networks.

The traditional entity resolution workflow is divided in five stages [12]. The prin-
cipal steps in this workflow are; data cleaning, blocking to reduce the number of
comparisons [4, 18], field comparison [13, 27], classification and evaluation [26].
Elmagarmid et al. [15] document the progress and advancements in entity resolu-
tion in a comprehensive survey paper which describes the state of the art throughout
the various stages of entity resolution.

The traditional approach to entity resolution has been to use the record’s attribute
information to compare the similarity between the records. The same problem has
been formulated in different ways [5] some of which exploit the nature of the data
to infer more information than the attributes alone contain.

Availability of training data and advances in machine learning brought about the
use of machine learning techniques to tackle entity resolution. The current state of
the art in classification [11] uses Support Vector Machines (SVMs) for training mod-
els and classifying records, when training examples are available. SVMs have been
successfully applied to several classification domains such as handwriting recog-
nition, classifying facial expressions and text categorisation [9]. Originally, SVMs
were designed to classify binary class problems, which makes them a prime candi-
date for entity resolution tasks, where the goal is to divide record pairs into two sets
of matches and non-matches.

Recently relational information, such as child-parent relationships and co-
authorship links between paper authors, has been used to improve the accuracy of
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the classification process. The first relational entity resolution techniques treated re-
lational information as another attribute in the comparison vector. These approaches
still used a pairwise comparison process, but the additional relational information
improves accuracy as coreferential entities are more likely to share relationships. In
one such approach, Ananthakrishna et al. [2] describe a database centric approach
that exploits data hierarchies in the database as additional relational information
elements. This information is also used to reduce the number of comparisons in the
entity resolution process.

Bhattacharya and Getoor [6] describe a more complete relational model with
their collective entity resolution approach. They define entity resolution as a clus-
tering problem where each cluster represents a unique entity. Clusters are merged
based on their similarity which is calculated with a similarity measure that com-
bines relational similarities and attribute similarities. The authors have shown that
this approach improves both on attribute based entity resolution and on techniques
that treat relationships as additional attributes.

3 Problem Formulation

In entity resolution, we are given a set of references R = {ri} and the problem is to
recover a set of hidden entities E = {ej }, such that each reference r corresponds to
an entity in E and we write e(r) ∈ E , as the entity corresponding to reference r and
C(e) ⊆ R as the set of references mapped to the same entity e. In our application,
entities are individuals or social actors in the social network and a reference is a data
record pertaining to an individual. We use the terms node and entity interchangeably
in this text due to the social network application domain. From the data, we can
associate with each reference a set of attributes A(r) = {a1, . . . ak}. Moreover, one
can extract a graph over the references, G(R,LR), where LR is a set of links or
edges that connect pairs of references. For example, a possible link may be that
two references share a common attribute, such as a common phone number. Our
approach to entity resolution involves the inference of a social graph G(E ,LE ),
consisting of links LE connecting pairs of entities i.e. a network over the real social
actors.

Following [6], we may view entity resolution as a clustering problem in which
the goal is to group the references into the clusters that correspond to the same en-
tity. Thus the set of references may be partitioned into R = C1 ∪ . . . ∪ Ck , such that
Ci ∩ Cj = ∅ for i �= j and each cluster is associated with an entity in E . Rather
than clustering R, it is more common to take a classification approach to entity res-
olution. Considering pairs of references (ri , rj ) ∈ R × R, a binary classifier can
learn an output function which is 1 whenever e(ri) = e(rj ) and 0 otherwise. This
approach facilitates supervised resolution, in which the binary classifier is trained
given a set of training instances of corresponding reference pairs for which the res-
olution is known. Once binary classification is complete at the pairwise level, it is
necessary to resolve the pairs into clusters to give the final entity resolution solution.
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A common approach is to form the transitive closure of the classified pairs. That
is, whenever e(ri) = e(rj ) and e(rj ) = e(rk) for a triple (ri , rj , rk), then we infer
e(ri) = e(rk), through transitivity of the identity function. At the pairwise level, tran-
sitive closure involves the reclassification of negative pairs to a positive output, or
the merger of these pairs into a single entity. Note that the pairwise classification can
also contain inconsistencies (e.g. if the classifier decides e(ri) = e(rj ), e(ri) = e(rk)

but e(rk) �= e(rj ) for some triple of references (ri , rj , rk)), but transitive closure ig-
nores such inconsistencies.

4 Entity Resolution Pipeline

In SAINT we take a two-phased approach to improve the quality of entity resolution.
In the first phase we employ traditional supervised attributed based entity resolution.
After this phase is complete, a social graph G(E ,LE ) that links the resolved entities
is constructed. In the second phase, the original data set is partitioned according to
the output of the initial phase, with the initial negative instances processed differ-
ently to the positive instances. For the second phase we use two additional classifiers
augmented with the new relational information from the inferred graph, to attempt
to resolve errors introduced in the first phase. The result then represents a clear
performance improvement in quality over the original output.

Errors in an entity resolution classification problem can take the form of either
false negatives or false positives. False negatives translate into records that should be
merged together but are not merged together. Conversely, false positives are records
that should not be merged together but are merged together in entity resolution. In
this paper we refer to the first type of errors (the false negatives) as merge resolvable
errors and second type of errors (the false positives) as split resolvable errors. Men-
estrina et al. [26] refer to these types of errors as “broken errors” and “glued errors”.
For example, consider a set of references R = {r1, r2, r3, r4, r5, r6, r7, r8} that need
to be resolved. The set T = {{r1, r3, r5}, {r2, r4}, {r6, r7, r8}} is the ground truth and
E = {{r1}, {r3, r5}, {r2, r4, r6, r7, r8}} the output of the first entity resolution stage.
In E clusters {r1} and {r3, r5} are an example of a merge resolvable error and need
to be merged into a single set. The set {r2, r4, r6, r7, r8} is a split resolvable error and
needs to be split into two separate sets. It is clear that some situations may require a
combination of split and merge operations in order to attain the correct ground truth
from the initial partitioning.

Figure 1 illustrates the complete pipeline showing the interaction between the
different phases. The impact of the whole process is made transparent from an eval-
uation standpoint by measuring the performance at various points in the pipeline
and using these measurements to fine tune the process. In the diagram each circle is
an evaluation checkpoint and the letters next to the checkpoints are used for refer-
ence when reporting the results. The merge classifier and the split classifier can be
applied in sequence, for instance first applying split then merge, or vice versa. Alter-
natively the input of all the 4 classification stages in this process can be ensembled
to merge the results together.
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Fig. 1 Entity resolution pipeline

4.1 Merge Classifier Problem Definition

The merge classifier is applied to all negative instances from the initial attribute-
based classifier and its purpose is to distinguish the false-negative outputs of the
initial phase from among all its negative outputs. When evaluating one does not
know which instances are true negative and which are false negatives, therefore all
negative instances have to be considered. By looking only at the negative examples,
the number of records that are considered at this stage is reduced over the initial
phase. Entity resolution is a typical example of a classification task that tends to
suffer from the class imbalance problem [34], leading to the majority of records be-
ing negative instances and only a few positives. Since often the negative instances
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constitute the majority of record comparisons, if scalability is an important con-
cern, it is useful to look at possibilities to reduce the number of comparisons at this
stage. Since the very first approaches to entity resolution, starting with the Fellegi-
Sunter model, classifiers have split the resolution output into three classes; matches,
non-matches and a third class of possible matches that were intended for manual
review. If the first phase of entity resolution uses an approach that either produces
a ‘possible matches’ set, or alternatively outputs a confidence value on the accu-
racy of a match, then only these items can be considered during this second phase.
Alternatively, the importance of nodes to review in this phase can be calculated
based on the graph impact, by selecting only those merge operations that would
impact mostly on the structure of the final network. The output of the merge clas-
sifier is a list of pairs of nodes from the original network that should be merged
together.

4.2 Split Classifier Problem Definition

Each node of the network formed after the first phase of classification corresponds
to a cluster of references, C ⊆ R, that were combined into a single entity by the
attribute-based classifier and transitive closure. The split classifier consists of two
tasks. The first task is to identify candidate nodes that may contain references that
should be split. The second task is to apply a clustering or component identification
process to the candidate nodes to further refine its corresponding cluster of refer-
ences into sub-clusters i.e. to find a partitioning of C = C1 ∪ · · · ∪ Cl , thus splitting
the nodes into l separate entities for some appropriate number of clusters l.

Similarly to the merge classifier, a classification approach can be applied for
identification of candidate nodes, where the positive outputs of the first phase in-
cluding the transitive merge step, are input into a second classifier that tries to
identify the false positives from amongst these. In fact, from empirical tests, we
find that the nodes that need to be split are often the result of a naive transitive
merge step. The split classifier is essentially applying a more refined approach to
undo the coarse initial transitive merger where appropriate. We achieve this re-
finement using network information. In particular, consider the graph G(R,LR)

formed over the references where a link exists between a pair of references if the
attribute-based classifier of phase one has determined that these references map to
the same entity. Transitive closure is equivalent to identifying the connected com-
ponents of this graph as single entities. Instead, we build a feature vector to repre-
sent each component, consisting of attributes of its constituent references, as well
as graph properties of the connected component. A classifier is trained over the
resulting feature vectors to determine the candidate nodes that need to be split.
Finally, a clustering algorithm is applied to each candidate node to determine the
sub-clustering.
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Table 1 SAINT: Pipeline
process overview The steps of the process are the following:

Phase 1:

(a) Apply ‘traditional’ attribution based ER
(b) Apply transitive closure on the pairwise output
(c) Generate a network based on the initial ER results

Phase 2:

(d) Merge classifier: Using data from the extracted network,
reclassify all negative instances to identify missed merged
nodes

(e) Split classifier:
(i) Identify nodes that were incorrectly merged based on

their internal network and attribute structure
(ii) Split these nodes using a combination of community

finding graph classification and attributes

Evaluation:

(a) Each stage and each classifier can be evaluated separately
and in conjunction with the rest of the ER pipeline.

(b) The initial ER network and the improved network can be
compared with the ground truth network with perfect ER
to characterise the network difference.

5 Method

5.1 Data

Before describing in detail candidate solutions for the problems described in the
previous section, it is useful to discuss the data set that was employed in this re-
search. The data is extracted from a real life airline passenger database that contains
all the booking data for passengers travelling with one individual airline. For this
experiment the data can be used in this research as long as it remains held confi-
dential and unidentified. The booking data contains at a minimum the ‘name’ of the
passengers, the travel itinerary and the sale origin (e.g. web, travel agent etc). Ad-
ditionally bookings typically contain passenger contact information such as phone
number, email address and home address. In the general case, there is not an easy
way to uniquely and unambiguously identify an airline customer based on the infor-
mation contained in the booking alone. Passenger names are ambiguous and contact
information cannot be naively used to identify customers. The only uniquely distin-
guishing element in such data sets is a loyalty card number (credit card information
and passport information is not available for security and confidentiality reasons).

Airline loyalty numbers in the form of frequent flyer numbers provide a viable
training set and ground truth for training and testing algorithms. Depending on the
popularity of a particular airline’s frequent flyer program, between 7 %–30 % of
the passengers have a frequent flyer number. The application of this research is to
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uniquely identify passengers travelling multiple times, even when they are not mem-
bers of a frequent flyer program. This process effectively transforms simple passen-
ger numbers into a valuable business resource in the form of customer data [16].
This is possible by first training algorithms based on the known frequent flyers and
then applying the output on non frequent flyers. The data available for frequent fly-
ers is not different or biased from that of non-frequent flyers.

5.2 Attribute Classifier

For the attribute classifier 3 classification techniques traditional used for entity res-
olution are compared. The three methods include; a supervised SVM classifier, the
Fellegi-Sunter approach and a manually constructed rule based classifier, developed
based on domain expertise. Each classifier uses the same input vector that compares
the attribute similarity between the two full passenger records. These include simi-
larity between passenger names based on the Jaro-Winkler string measure [30] and
comparison between the other passenger information such as email, phone, address
and travel itinerary similarity.

Transitive closure is applied to the output of the pairwise attribute classifier. Con-
sistent with the findings in [11], the best classifier from those tested is the supervised
classifier, in this case an SVM classifier. The rest of the processes in the pipeline are
applied using the best attribute classifier, to attempt to improve the quality of the
output.

5.3 Creating the Network

After the first stage of entity recognition in SAINT, a social network is created to
link passengers together. Each node in the network is a uniquely identified passenger
output from the first attribute classifier. The edges are defined by a sequence of rules
as follows:

1. PNR: passengers who are booked on the same booking record,
2. MULTI: passengers who have travelled on the same flight multiple times,
3. ADDRESS: passengers who share the same home address,
4. PHONE: passengers who share the same phone number,
5. EMAIL: passengers who share the same email,
6. DOMAIN: passengers who share the same email domain address (filtered out for

common domain address such as common mail providers and internet service
providers).

The edges are weighted according to the respective importance of the links based
on previous studies [17] that manually collected passenger data to understand the
respective link importance. The final network consists of a combination of all the
edges created from these rules. This generated network is the input to the second
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phase of the pipeline. This network is also the baseline comparison to quantify the
improvement in the second phase of the entity resolution pipeline.

5.4 Merge Classifier

The purpose of the merge classifier is to identify nodes that should have been merged
during entity recognition but were not merged, most likely because the matching
attributes were either not available or included conflicting information. It is not un-
common for passengers to use, say, different email addresses or phone numbers,
particularly if they distinguish between business and leisure travel.

The intuition to use network information for this process is that identical nodes
that were not merged, are likely to travel with the same people, therefore share
common neighbours in the network. While in the case of different purposes for
travel, overlapping neighbours might not be the same, the network distance between
two identical passengers is still likely to be small.

One can also consider the merge classifier as a link prediction problem, where
each link between two nodes means that the nodes are identical. In fact, the list of
network measures used for this classifier was inspired by the work of [22] and [23].
Due to the large number of comparisons that need to be made, preference was given
to fast neighbourhood based measures to maintain scalability. Measures such as the
Katz measure [21] that were reported to be highly predictive in previous research
were considered separately due to their increased time complexity.

The final input vector used for the merge classifier included, amongst other basic
network measures; the number of common neighbours, Jacard similarity, Adamic-
Adar measure [1], and preferential attachment measure. We also incorporate path
length information in the form of basic path length, weighted path length and in a
separate example the Katz measure (using e = 0.05 with cutoff point at 4 degrees).
The network measures where selected amongst the list of measures in literature [22,
23] based on the highest information gain. We also include information of the types
of edges present between the two nodes based on the types of edges between the
nodes as described in Sect. 5.3. We also add two attributes measures between the
nodes; the name and surname Jaro-Winkler similarity measures.

For the merge classifier we employ 2 types of supervised classifiers, SVMs and
random forests. One of our primary interests is to understand the additional im-
pact of relational information to improve the entity resolution result. We therefore
compare models using relational measures with models that include only the two at-
tribute measures. We also conduct a separate comparison using expensive network
metrics, such as the Katz measure.

5.5 Identifying Nodes to Be Split

Entities that should be split are ones which contain multiple entities in the same
cluster. The aim is therefore to identify the dirty clusters that need to be split. In view
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Fig. 2 Splitting a node

of this, the vector information consists of measures that describe the references that
make up a cluster and the uniqueness of these references. For instance, one attribute
measurement is encoded by the proportion of unique names and surnames within
a node. Another measure is the global name and surname frequency measures over
the whole data set, since often initial misclassifications were related to the most
common names.

The relational information for split identification includes information on the
internal network structure of the node. This included the number of nodes and edges,
the average clustering coefficient, the density of the internal networks and the node
degree centrality of the particular node within the global network.

Two supervised classifiers, an SVM and a random forest classifier, are used to
identify the nodes that should be split. Each classifier was run twice, once with the
attribute only vector and once with the attribute and relational information.

5.6 Determine Sub-clustering

As discussed in Sect. 4.2, the internal network perspective of each entity provides
valuable insight on a potential splitting strategy for nodes that have been misclas-
sified. Figure 2 illustrates a real example of a node that was misclassified in the
first step. The colours of each node in the image represent the different individuals
that were incorrectly merged together into one node. As one can notice the internal
structure of the node and the organisation provides a good indication of how the
node should be split.

This problem can be framed as either a community finding problem where each
community is split into a different entities, or else it can also be seen as a graph clas-
sification problem. We consider 4 approaches to split nodes. The first approach is a
simple attribute only based approach that splits nodes internally on the unique name
and surname of each person, i.e. every record with the same unique name and sur-
name combination is grouped together. This does not include any relational informa-
tion but provides a good baseline to compare against. The second approach is to use
a simple relational neighbour classifier described by Macskassy and Provost [24]
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based on the neighbourhood of each node to label each node. The third approach
uses the Blondel fast community finding algorithm [8] based on modularity optimi-
sation to split the node, thus using only information related to the relational organi-
sation of the node. The final approach uses the collective graph clustering approach
described by Bhattacharya and Getoor [6].

6 Evaluation

6.1 Data

For the evaluation of SAINT in this study we extract 4 sample networks of different
sizes from the main 20 million record airline data set. The initial network sampling
seed includes all bookings that contain one randomly selected email address do-
main. Noise from the other passenger records in the original data was added to this
sample seed, to ensure that enough duplicate names existed in the data to ensure
that the solution is not trivial. To continue sampling the network, the neighbours of
the selected sample are then added to the network up to the 7th iteration considering
only the PNR relation, which is the strongest relation. The sizes of the networks are
outlined in Table 2. The table reports the total number of passenger records (ref-
erences), the number of unique entities, the ratio between the two, the number of
unique names and surnames and the proportion of unique names and surnames of
the total number of records.

Sample A was considered as the network model training data set and networks
B, C and D are the test sets. The reported results on network A are conducting using
10-fold cross validation.

6.2 Results

To evaluate the improvement of the proposed approach we use the traditional infor-
mation retrieval measure of precision, recall and a combined f-measure score [3].
The accuracy measure is omitted due to the predominance of true negative records
in the classification task that makes this measure less relevant. While the f-measure
metric attempts to combine the values of precision and recall into one measure, we
report precision and recall separately, to fully understand the impact that the differ-
ent improvement processes have on the quality performance. As entity resolution is
ultimately a clustering task, clustering measures, such as, variation of information,
were considered and reported in the final summary result in Table 7. We report this
result to illustrate the significance of improvement from a clustering perspective.

There is an inherent tradeoff between precision and recall. In a social network
context, sometimes a more precise network can be more important than a more com-
plete network and vice-versa. For example, if one is interested in the most central
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Table 2 Datasets size and
properties Network Recs Unq Ratio Names Ratio

A 54,010 20,277 2.664 23,251 0.430

B 38,227 13,411 2.850 16,138 0.422

C 94,852 24,447 3.880 25,890 0.273

D 53,949 16,989 3.176 22,445 0.416

nodes in a network and the network has a high recall but low precision, effectively
having more than one real entity merged together in a single entity, then the most
central nodes might be reported incorrectly because they are made up of a combi-
nation of several real entities. Our approach in SAINT empowers the researcher to
tune the resultant network and improve the network in the required direction.

Tables 3–6 show the evaluation of the entity resolution process pipeline through-
out the most critical stages. In each table the precision, recall and f-measure for
each respective classification approach is reported for the 4 different data sets (A–
D). Table 3 reports the output of the pairwise original classification result. This
corresponds to evaluation step A in Fig. 1. Table 4 shows the results after applying
transitive closure. This corresponds to step B in Fig. 1. Tables 5 and 6 report the
result of the merge and split classifiers applied to the best result obtained in evalua-
tion step B, i.e. the SVM model highlighted in Table 4. These two evaluation steps
correspond to steps D and G in Fig. 1.

Table 7 shows a summary of the improvement in the results from the original
attribute classifier, the two additional improvement classifiers and the final combi-
nation of the result. In this case the results were combined by first applying the
merge classifier then applying the split classifier on this output. We also tried to
apply the classifier in the reverse order with a very similar result.

As the focus of this work is predominantly on entity resolution for network con-
struction, it is important to consider the impact that errors in the actor identification
stage of network construction can have on the constructed network. Intuitively, net-
works with a high degree of merge errors tend to be sparser than the respective
ground truth network, because more nodes are present in the constructed network.
Conversely, split errors may lead to the creation of hubs which do not really exist.
From our tests we found no significant difference in the global network measures
between the different networks. We considered the measures of; number of nodes
and edges, size of the giant connected component, network density, diameter of the
giant connected component, average shortest path and average node degree.

To understand the impact on a local individual node level, the highest ranking
nodes based on degree centrality and betweenness centrality were calculated. Fig-
ure 3 shows the result of the degree centrality between the ground truth, original
network and the final improved network from network A. Cells with the same colour
refer to identical passengers in each network, whereas uncoloured cells are cells that
do not match between the two lists. The node names are abbreviated by initials to
retain anonymity. Upon inspection we found that a number of high ranking hubs
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Fig. 3 Degree centrality variation between the networks

were incorrectly identified in the original network but were corrected in the im-
proved network. For example, the first two passengers in the original network were
incorrectly resolved entities that had multiple (up to 20) unique names identified as
a single entity.

7 Discussion

At the heart of SAINT is a two phased approach to solving the entity resolution
problem. The approach starts by taking the output of a state of the art classifier that
is often used in entity resolution, and by adding relational information from a inter-
mediate constructed network, improves the quality of both the entity resolution and
the constructed network. Our results show that the approach developed in SAINT
consistently improves the quality of the original state of the art classifier used on
the same data. Unlike other approaches that use relational information in entity res-
olution, SAINT describes a method for first deriving the relational information and
then using this information for supervised classification.

A key observation in the process is the impact of applying transitive closure on
the quality of the results. Recall increases dramatically after applying transitive clo-
sure, heavily sacrificing the precision. In the worst case precision drops by around
59 %, due to the particular network sample containing low demographic information
about the passengers (i.e. phone, email, address details). Thus the attribute-based
classifier was able to make correct classifications linking the relatively few records
for which information was available but also created effectively random edges join-
ing these high-quality components into larger connected components. Transitive
closure then resulted in the creation of a large number of new positives, most of
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which were false. This provides evidence that naive transitive closure will deteri-
orate the overall classification in many cases and that a more refined method for
merging pairwise decisions into clusters is required. In effect, our split classifier
provides one means for which this can be achieved.

In general the merge classifier that was intended to improve recall did not im-
prove recall by a significant amount. There was a small improvement ranging be-
tween 1 % and 2 % across the 4 data sets. Despite this, the recall was already in the
90 % range before the application of the merge classifier. The difference between the
4 different classification approaches was also very slight, within 2 %. While the 3
classifiers that included relational information in general performed better than the
one with attribute information only, the difference was sometimes marginal. One
would argue that the importance of the merge classifier might need to be evaluated
better in a scenario where recall is not already so high, in order to assess the true
impact of the classifier.

Conversely, the split classifier had a high quality improvement on precision and
therefore the general quality of the resultant network. This impact is mostly pro-
nounced in network C were previously transitive closure heavily degraded the qual-
ity of the network. From the four attempted classifiers collective inference provided
the best improvement, although the other approaches also performed well. Unsur-
prisingly due to the similarity between the two approaches, the collective graph
clustering approach came close second. Both the relational only classifier (cluster-
ing split), and the attribute only classifier (name split), produced adequate results,
with the relational only classifier being slightly superior.

When performing entity resolution for the purpose of network construction the
overall goal is to derive a network that is as close to the ground truth network as
possible. We expected certain differences in terms of global network measures be-
tween the different stages in the network yet the difference between the measures
was insignificant. Perhaps one reason for this is that within the size of the networks
considered, the impact of smaller errors in entity resolution is lost within the con-
text of the network. On the other hand we noticed that entity resolution did effect the
identified most central nodes which is relevant in most social networking studies. In
this regard, one can attempt to incorporate the impact of entity resolution on the so-
cial network in the entity resolution process itself. For instance, merging peripheral
nodes in the network might not be as significant as merging or splitting the more
central nodes. Similarly, adding an edge to a network can have a huge impact on the
measures and the structure of the network, depending on where the edge is added.

This leads to the notion of the graph impact that a merge or split operation can
have on the network. The graph impact can be a measure of network change that
an operation has on the network, depending on the network research question. For
instance, the impact of a split or merge operation that results in two components
being merged or split, can be quantified to have an impact proportional to the size
of the two components. When training models to recognise the split and merge
operations one can also weight the training instances so that operations that have
a higher graph impact are given more importance in terms of both precision and
recall. Extending this, graph impact measures can be part of the model attribute
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information. Similarly, when evaluating the results, decisions with high impact can
be weighted to have a higher significance than operations that have marginal impact
on the network.

8 Conclusion

In this paper we show how the quality of the traditional entity resolution process can
be improved using relational information that is generated from the first step of the
SAINT process. We tailor our study particularly towards network construction to
focus on the most important aspects related to this problem. This also influences the
resultant evaluation of the entity resolution process and the impact it has on the net-
work. Future work will consider the inclusion of the notion of graph impact within
the entity resolution process, the application of this proposed model on the original
large scale data set of around 20 million records and the possibility of developing an
iterative step using multiple instances of merge and split classifiers and ensembling
their output together.
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Holder and Topic Based Analysis of Emotions
on Blog Texts: A Case Study for Bengali

Dipankar Das and Sivaji Bandyopadhyay

Abstract The paper presents an extended approach of analyzing emotions of the
blog users on different topics. The rule based techniques to identify emotion hold-
ers and topics with respect to their corresponding emotional expressions helps to de-
velop the baseline system. On the other hand, the Support Vector Machine (SVM)
based supervised framework identifies the holders, topics and emotional expres-
sions from the blog sentences by outperforming the baseline system. The existence
of many to many relations between the holders and the topics with respect to Ek-
man’s six different emotion classes has been examined using two way evaluation
techniques, one is with respect to holder and other is from the perspective of topic.
The results of the system were found satisfactory in comparison with the agreement
of the subjective annotation. The error analysis shows that the topic of a blog at doc-
ument level is not always conveyed at the sentence level. Moreover, the difficulty in
identifying topic from a blog document is due to the problem of identifying some
features like bigrams, Named Entities and sentiment. Thus, we employed a semantic
clustering approach along with these features to identify the similarity between doc-
ument level topic and sentential topic as well as to improve the results of identifying
the document level topic.

Keywords Emotion · Blog · Holder · Topic · SVM · NE · Discourse relation

1 Introduction

Emotion analysis is a recent sub discipline at the crossroads of information re-
trieval [1] and computational linguistics [2]. A wide range of Natural Language
Processing (NLP) tasks such as classification of newspaper articles [3], blogs [4],
question answering systems [5], modern information retrieval systems [6] are using
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emotional information. The research activities in the areas of emotion in natural lan-
guage texts and other media are gaining ground under the umbrella of subjectivity
analysis and affect computing. The reason may be the explosive growth of the social
media content on the Web in the past few years.

Emails, weblogs, chat rooms, online forums and even twitters are being consid-
ered as the affective communication substrates to analyze the reaction of emotional
catalysts. Blog is an important communicative and informative repository of text
based emotional contents in the Web 2.0 [4]. Especially, the blog posts contain in-
stant views, updated views or influenced views regarding single or multiple topics.
Many blogs act as an online diary of the bloggers for reporting the blogger’s daily
activities and surroundings. Sometimes, the blog posts are annotated by other blog-
gers. On the other hand, large collection of blog data is suitable for any machine
learning framework. But, the identification of emotions expressed on a topic in the
text with respect to a reader or writer is itself a challenging task [7]. Recently, the
identification of the temporal trends of sentiments and topics has also drawn atten-
tion of NLP communities [8]. The tracking of emotions over events [9] or about pol-
itics as expressed in online forums or news to customer relationship management,
the determination of emotion holder and topic is an important task. Extraction of
emotion holder is important to discriminate between emotions that are viewed from
different perspectives [10]. Among all concerns, emotions of people are important
because people’s emotions have great influence on our society. By grouping emotion
holders of different stance on diverse social and political issues, we can have a bet-
ter understanding of the relationships among countries or among organizations [11].
Thus, the perspectives of sociology, psychology and commerce along with the close
association among people, topic and emotions motivate us to investigate the insides
of emotional changes of people over topic and time.

The present task deals with the identification and analysis of users’ emotion on
different topics from an annotated Bengali blog corpus [12]. A simple rule based
baseline system is developed to identify the emotional expressions, holders and top-
ics. The expressions are identified from shallow parsed sentences using Bengali
WordNet Affect [13] whereas a simple part-of-speech (POS) based pattern matching
technique is employed to identify the emotion holders and topics with respect to the
emotional expressions. On the other hand, the Support Vector Machine (SVM) [14]
based supervised classifier is employed and the required feature vectors are pre-
pared based on the clues present in the sentences such as lexical, syntactic, seman-
tic, rhetoric and overlapping (word, part-of speech (POS), Named Entity (NE)). The
supervised system outperforms the baseline system by achieving the F-scores of
72.54 %, 61.02 % and 57.09 % for the emotional expression, holder and topic, re-
spectively, on 512 test sentences.

Topic identification is essential in connection within categorizing search applica-
tions [15]. The categorizing search has attracted much interest recently; its potential
has been realized by users and search engine developers in the same way. Catego-
rizing search means to apply text categorization facilities to retrieval tasks where
a large number of documents is returned. Consider for example the use of Internet
search engines like Google or Lycos: Given a query they deliver a bulky result list
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D of documents. Categorizing search means to return D as a set of priori unknown
categories such that thematically similar documents are grouped together.

But, in case of blog documents, it is observed that the topics discussed by the
bloggers in their comment sections especially at sentence level are not similar with
the topic of the blog document on which they are commenting. Sometimes, the sen-
tential topics in the comment sections of the bloggers are completely irrelevant with
the topic of the overall document. Thus, it is necessary to distinguishingly deter-
mine the sentential topics as well as the document topics. Thus, it is important to
find methods that can annotate and organize blog documents in meaningful ways so
that the topic identification can also be used for document ranking in Informational
Retrieval systems. In addition to the content of the blog document itself, other rele-
vant information about a document such as related comments with sentential topics
can often enable a faster and more effective search or classification. Hence, in the
present task, we have used the semantic clustering approach to identify whether the
sentential topics entails the document level topic or not. The semantic clustering
approach incorporates three types of similarity coefficients. The sentential emotion
topics with higher valued coefficients are only considered as the potential document
level topics. Additionally, the features like bigrams, Named Entities (NEs) and sen-
timents are incorporated to identify the document level topics and therefore improve
the results of the semantic clustering. The improvement has also been found during
the evaluation of holder-topic relations with respect to Ekman’s six emotion classes.
The evaluation of many-to-many relationships between ten bloggers and eight top-
ics achieves the average precision, recall and F-Score of 65.02 %, 76.23 % and
70.18 % for ten bloggers and 71.02 %, 78.47 % and 74.55 % with respect to eight
topics, respectively.

The remainder of the paper is organized as follows: in the next section, we review
the related works. The baseline and supervised system frameworks are elaborated in
Sect. 3 with experiments and error analysis. The document level topic identification
is discussed in Sect. 4. Section 5 proposes a brief description of semantic cluster-
ing approach for measuring similarity between sentence and document level topics.
Evaluation from the perspectives of the holders and topics are discussed in Sect. 6.
Finally, Sect. 7 concludes the paper.

2 Related Work

Human-machine interface technology has been investigated for several decades and
scientists have found that emotion technology can be an important component in
artificial intelligence [16]. In recent times, research activities in the areas of emotion
in natural language texts and other media are gaining ground under the umbrella of
subjectivity analysis and affect computing. The reason may be the explosive growth
of the social media content on the Web in the past few years.

In order to estimate affects in text, the model proposed in [17] processes symbolic
cues and employs natural language processing techniques for word/phrase/sentence
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level analysis by considering relations among words in a sentence. The current trend
in the emotion analysis area is exploring machine learning techniques that consider
the problem as text categorization or analogous to topic classification [18] and un-
derscores the difference between machine learning methods and human-produced
baseline models [19]. The affective text shared task on news headlines at SemEval
2007 for emotion level identification has drawn the focus to this field [20].

In case of emotion holder, the prior work has sometimes identified only a sin-
gle opinion per sentence and sometimes several [21]. The identification of opin-
ion holders for Question Answering with supporting annotation task was attempted
in [2]. Based on the traditional perspectives, another work discussed in [22] uses an
emotion knowledge base for extracting emotion holder. Kim and Hovy [11] iden-
tified opinion holder with topic from media text using semantic role labeling. The
model extracts opinion topics associated with specific argument position for subjec-
tive expressions signaled by verbs and adjectives. The syntactic models of identify-
ing emotion holder with respect to emotional verbs were developed in [23]. Simi-
larly, the verb based argument extraction and associated topic identification has been
considered for developing our present system of identifying emotion holders.

In the related area of opinion topic extraction, different researchers have con-
tributed their efforts. But, most of the works are based on lexicon look up approaches
and applied on the domain of product reviews. The topic annotation task on the
MPQA corpus is described in [24]. The authors mentioned that the opinion topics
are not necessarily spatially coherent as there may be two opinions in the same sen-
tence on different topics, as well as opinions that are on the same topic separated
by opinions that do not share that topic. In contrast, the building of fine-grained
topic knowledge based on rhetorical structure theory and segmentation of topics us-
ing different types of lexical, syntactic and overlapping features in our supervised
framework substantially reduces the problem of emotion topic distinction.

Moreover, all the above cited works have been attempted for English. Recent
study shows that non-native English speakers support the growing use of the Inter-
net.1 In addition to that, rapidly growing web users from multilingual communities
have focused the attention to improve the multilingual search engines on the basis
of sentiment or emotion. This raises the demand of emotion analysis for languages
other than English. The Bengali is the sixth popular language in the World,2 second
in India and the national language in Bangladesh but it is less computerized com-
pared to English. Works on emotion analysis in Bengali have started recently [25].
The comparative evaluation of the features on Bengali and English blog data can be
found in [26]. To the best of our knowledge, at present, no such task on user-topic
based emotion analysis has been conducted for Bengali or even for other Indian
languages. Thus, we believe that this topic focused emotion analysis systems along
with their associated holders would contribute in other social networking applica-
tions.

1http://www.internetworldstats.com/stats.htm.
2http://www.ethnologue.com/ethno_docs/distribution.asp?by=size.

http://www.internetworldstats.com/stats.htm
http://www.ethnologue.com/ethno_docs/distribution.asp?by=size
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Fig. 1 Example of a
preprocessed shallow parsed
result

3 System Framework

3.1 Baseline System

The baseline system assumes that emotional expression, holder and topic appear as
the neighboring chunks. The blog sentences are passed through an open source Ben-
gali shallow parser3 that gives different morphological information and clues (root,
lexical category of the root, gender, number, person, case, vibhakti, tam, suffixes
etc.) in identifying the lexical patterns of emotional expressions (e.g., the shallow
parsed emotional expression is shown in Fig. 1). We search each component word
of a chunk in the Bengali WordNet Affect [13]. If any word present in a chunk is an
emotion word (e.g. koutuk ‘comic’), all of the words present in that chunk
are then treated as the candidate seeds for an emotional expression. Each of the
emotional expressions is tagged with one of the Ekman’s six emotions based on the
type of the Bengali WordNet Affect lists in which its responsible component word
appears.

The baseline system considers the phrasal pattern containing similarity clues to
identify the emotion holders. The patterns are grouped according to the part-of-
speech (POS) categories. It is observed that the hints of grouping the lexical patterns
present mostly in the sentences of user comments. The Bengali blog structure4 is
well formed and each of the user comment sections starts with a corresponding
username that is assumed as a default hint in capturing the holder information. But, a
sentence may contain more than one emotion holder if we consider the nested source
hypothesis [2]. In such cases, the POS tags of the shallow parsed sentences contain
the similarity patterns at lexical level. In case of simple sentences, the similarity
pattern consists of two phrasal constituents, the subject and verb. The portion of a
sentence excluding the subject and verb contains only additional constituents that
are grouped to form a common portion (Common_Portion). As the Bengali is a free
phrase as well as word order language, the ordering between the subject, verb and
the Common_Portion is not fixed. The words that are tagged as Named Entities
(NEs), NNPC (Compound proper noun), NNP (Proper noun), NNC (Compound
common noun), NN (Common noun) or PRP (Pronoun) and occur in the beginning
of the sentences are considered as the emotion holders.

The general POS level pattern such as [<NNP/NNPC/NN/NNC/PRP>
{<VBZ/VM> <Common_Portion>}] has been considered for capturing the clue
of an emotion holder. The components of the Common_Portion are assembled after

3http://ltrc.iiit.ac.in/showfile.php?filename=downloads/shallow_parser.php.
4www.amarblog.com/.

http://ltrc.iiit.ac.in/showfile.php?filename=downloads/shallow_parser.php
http://www.amarblog.com/
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the first occurring POS tags of types NNP or NNC or PRP in the POS tagged sen-
tence. The process stops by reaching the verb POS, like VBZ or VM. The rest of
any component words that are present in a sentence are appended to form the Com-
mon_Portion. It has been observed that the similarity patterns are difficult to obtain
from complex or compound sentences using the baseline system. The system fails
to identify the nested emotion holders present in different clausal segments of a sen-
tence but identifies one or more potential emotion topics from the shallow chunks
by removing the emotional expressions and holders. The emotion topic is intended
by its emotion holder and it depends on the context in which its associated emo-
tional expression occurs [24]. Hence, the words of POS types such as NNP or NNC
that are present in the neighboring shallow chunks of the emotional expressions and
holders are tagged as the emotion topics.

3.2 SVM Based Supervised System

In order to improve the results of our baseline system, the Support Vector Machine
(SVM) [14] based supervised framework has been adopted to extract the emotional
expressions, holders and topics. Three separate modules have been developed for
identifying these three components. Feature plays a crucial rule in the SVM frame-
work. By manually reviewing the blog data and different language specific charac-
teristics, the following word level as well as context level features have been se-
lected heuristically. Training with 2225 sentences, the best features identified from
630 development sentences have been reused in test set. Some extra features that
were adopted for handling the error cases have also been used in training and test
phases.

A total of 3367 emotional sentences on eight different potential topics (Comics,
Politics, Sports, Movies, Music, Buzz, Short Stories and Miscellaneous) with re-
spect to 10 different blog users were considered for conducting the experiments.
The sentences were collected from an annotated corpus [13]. Each sentence of the
corpus is annotated with the emotional components such as emotional expression
(word/phrase), associated holder and topic(s). Ekman’s six emotion tags (anger,
disgust, fear, happy, sad and surprise) are annotated at sentence level.

Lexical Features Several lexical features like Parts-of-Speech (POS) [noun, ad-
jective, verb and adverb words], Negations (NEG) [annotated negative words (noy
‘not’, na ‘neither’ etc.)], Conjuncts (CONJ) [annotated conjuncts (e.g. ebong ‘and’,
athoba ‘or’, kintu ‘but’ etc.)], Punctuation Symbols (Sym) [single or multiple num-
bers of symbols like (,), (!), (?)], Named Entity (NE) [person or organization type
entities identified using Named Entity Recognizer [27] have been used as holder],
Emoticons (emot_icon) [( , , ) and their consecutive occurrence generally con-
tribute real sentiment to the words that precede or follow it].

Syntactic Features Specially, the subcategorization frames that are identified
from the shallow parsed Bengali sentences. A rule based phrasal-head extraction
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module is used to identify the phrase level argument structures with respect to the
verbs. The extracted head part of every phrase from a parsed sentence is considered
as a component of its sentential argument structure. The acquired argument struc-
ture for a Bengali emotional sentence is matched with any of the available extracted
frames of English VerbNet for the equivalent English verbs corresponding to that
Bengali verb. If any match is found, the thematic roles for holder (e.g. Experiencer,
Agent, Actor, Beneficiary etc.) and topic (e.g. Topic, Theme, Event etc.) associated
with the English frame syntax is mapped to the appropriate slot of the acquired Ben-
gali argument structure. Equivalent English verbs are identified using Bengali to En-
glish bilingual dictionary.5 The hypothesis that was considered in [28] has been used
in our present task. Instead of the ordering dissimilarity, the phrase level similarity
between English and Bengali languages helps in identifying the subcategorization
frames. The case markers in Bengali are required to identify the emotion holders as
the case markers give the useful hints to capture the selectional restrictions that play
a key role in distinguishing the emotion holders.

(Rashed) (anubhob) (korechilo) (je) (Ramer) (sukh) (antohin)
Rashed felt that Ram’s pleasure is endless.
Holder : < >

Acquired Argument Structure: [NNP VM DET-je S]
Equivalent English Verb: feel
Extracted VerbNet Frame Syntax: [< NP value = “Experiencer” >< /VERB >
< S-that (Sentential−that Complement) >]

Semantic Features One of the Semantic features is Emotion/Affect Word (EW)
present in the Bengali WordNet Affect lists [13]. The Bengali SentiWordNet is being
developed by replacing each word entry in the synonymous set of the English Senti-
WordNet [29] by its possible Bengali synsets using the English to Bengali bilingual
dictionary. The shallow chunks containing JJ (adjective) and RB (adverb) tagged
word elements are considered as intensifiers. If the intensifier is found in the Ben-
gali SentiWordNet, the positive and negative scores of the intensifier are retrieved.
The intensifier is classified into the list of positive (pos) (INTFpos) or negative (neg)
(INTFneg) for which the average retrieved score is higher. One of the important se-
mantic features is Multiword Expressions [Reduplication (sanda sanda [doubt with
fear]) and Idioms (taser ghar [weakly built], grrihadaho [family disturbance])].

Rhetoric Features Present task acquires the basic rhetorical components such as
locus, nucleus and satellite [30] from a sentence as these rhetoric clues help in iden-
tifying the individual topic spans. The part of the text span containing annotated
emotional expression is considered as locus. Primarily, the separation of nucleus
from satellite is done based on the punctuation markers (,) (!) (?). Frequently used
discourse markers (jehetu ‘as’, jemon ‘e.g.’, karon ‘because’, mane ‘means’ ) and

5http://home.uchicago.edu/~cbs2/banglainstruction.html.

http://home.uchicago.edu/~cbs2/banglainstruction.html
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Table 1 F-Scores of emotional expression, holder and topic for different features on development
set

Features Emotional
expression

Holder Topic

Baseline System 22.80 % 21.89 % 18.78 %

Supervised System

Lexical Features 41.88 % 30.78 % 21.56 %

Syntactic Features 44.67 % 20.09 % 32.99 %

Semantic Features 46.95 % 12.04 % 16.07 %

Rhetoric Features 33.05 % 21.80 % 31.02 %

Lexical + Semantic Features 63.87 % 25.67 % 45.21 %

Syntactic + Rhetoric Features 57.69 % 51.78 % 51.90 %

Lexical + Syntactic + Semantic Features 67.77 % 59.43 % 50.66 %

Lexical + Semantic + Rhetoric Features 63.86 % 57.27 % 52.89 %

Lexical + Syntactic + Semantic + Rhetoric Features 72.54 % 61.02 % 57.09 %

causal verbs (ghotay ‘caused’) also act as the useful clues if they are explicitly
specified in text. Stoyanov and Cardie mentioned in [29] that topic depends on the
context in which its associated emotional expression occurs. Based on this hypoth-
esis, we assumed that if any word of an emotional expression co-occurs with any
word element of the nucleus or satellite in the same shallow chunk, the feature is
considered as common rhetoric similarity. Otherwise, the feature is considered as
distinctive rhetoric similarity. This two features aim to separate emotion topics from
non-emotion topics as well as the individual topic from overlapped spans.

3.3 Experiments

It is found that the supervised system not only outperformed the baseline system
but the combination of multiple features in comparison with a single feature in the
supervised system also shows the reasonable performance enhancement of the clas-
sification system. The results have been shown in Table 1. Thus, the impact of differ-
ent features and their combinations were measured on the development set and the
results are shown in Table 1. We have added each feature into the active feature list
one at a time if the inclusion of the feature in the existing feature set improves the
F-Score of the system. The final active feature set has been applied on the test set.
Different unigram and bi-gram context features (word, POS tag, Intensifier, nega-
tion) and their combinations were generated from the training corpus. The emotion
word, POS, intensifier features have played an important role in extracting emo-
tional expressions. In SVM-based training phase, the current token word with three
previous and three next words and their corresponding POS along with negation or
intensifier were selected as context feature for that word. Specially, the syntactic and
rhetoric features help in identifying the holder and topic whereas semantic feature



Holder and Topic Based Analysis of Emotions on Blog Texts 135

contributes for identifying the emotional expressions. Overall, the average F-scores
of the supervised system are 72.54 %, 61.02 % and 57.09 % for emotional expres-
sion, holder and topic respectively on 512 test sentences. It has to be mentioned
that the results produced by the supervised system are satisfactory in comparison
with the agreement values of the subjective annotation for the above three emo-
tion components. The difficulty faced in case of satisfying few implicitly specified
components.

4 Document Level Topic Identification

The topic is a real world object, event or an abstract entity that is the primary subject
of the opinion/emotion as intended by the holder [24]. There has been extensive
research on automatic text analysis for affect [31, 32]. But, sometimes, the document
level emotion classification fails to detect emotion about individual aspects of the
topic. For example, though one could be generally happy about his car, he might be
dissatisfied by the engine noise. To the manufacturers, these individual weaknesses
and strengths are equally important to know, or even more valuable than the overall
satisfaction level of customers. On the other hand, the topic identification is also
essential in connection within categorizing search applications, where several sets
of documents are delivered and an expressive description for each category must be
constructed on the fly.

In the related previous tasks, several statistical methods have been used for topic
identification, such as topic datagram, TF-IDF, cache or weighted unigrams etc.
In contrast, we follow a combined approach consisting of bigram count, Named
Entity and sentiment words to identify the document level topics. Though these
features were already considered during sentence level emotion classification, their
utilization was highly noticed during document level emotion tagging. The diagram
of the combined module is shown in Fig. 2.

We have removed the stop words from the corpus using stop word list that con-
tains 320 stop words. Stop words are common “function words” such as ei ‘the’, ki
‘what’ etc. Some special symbols were also removed from the corpus like braces.

Separately, a knowledge base (as shown in Table 2) for the emoticons was also
prepared by experts after minutely analyzing the Bengali blog data. Each image link
of the emoticon in the raw corpus was mapped into its corresponding textual entity
in the tagged corpus according to their proper emotion types using this knowledge
base. The knowledge base has also been used during the emotion tagging of the
sentences by considering each of the emoticons as a separate word.

4.1 Bigram Count

In the fields of computational linguistics and probability, an n-gram is a contiguous
sequence of n items from a given sequence of text. An n-gram of size 1 is referred
to as a “unigram”; size 2 is a “bigram” (or, less commonly, a “digram”); size 3 is a
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Fig. 2 System diagram for
identifying document level
topics

Table 2 Knowledge base for
emoticons Emoticon Tags

, :-) <emo_icon_happy> happy

, :-S <emo_icon_sad> sad

:-@, :-a <emo_icon_ang> anger

:-$, :-D <emo_icon_dis> disgust

:’(, :-F <emo_icon_fear> fear

:-O, :-P <emo_icon_sur> surprise

, :-| <emo_icon_ntrl> neutral

“trigram” and so on. Primarily, it has been observed that the unigrams fail to produce
complete topic names and trigram adds extra noise in identified topic names whereas
the bigram count produces satisfactory results in identifying complete topic names
with less amount of noise.

4.2 Named Entity

We have used a Bengali Named Entity Recognizer (NER) [27] for identifying the
Named Entities related to topic names from the texts of a blog document. The
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NER labels sequences of words in a text such as person, location and organiza-
tion/company names. We have retrieved all the Named Entities from the blog docu-
ments and employed them in the combined module.

4.3 Sentiment and Emotion Words

We have used two resources for identifying sentiment words within a blog docu-
ment. The emotion words (EW) of the Bengali WordNet Affect lists [13] have been
used for identifying the sentiment words of a document. The Bengali SentiWordNet
is being developed by replacing each word entry in the synonymous set of the En-
glish SentiWordNet [33] by its possible Bengali synsets using the English to Bengali
bilingual dictionary that was developed as part of the EILMT project.6 We assumed
that the topic words present in the context where its associated sentiment or emo-
tional expression occurs [24]. Thus, we have identified the sentiment sentences and
employed them in the combined module.

4.4 Combined Module

We have measured the performance of each module separately and in combination
with other module(s). It has been observed that bigram count along with sentiment
words performs better in comparison with the combined module consisting of bi-
grams and Named Entity. The performance of each module and the combined per-
formances of the modules have been evaluated manually in terms of accuracy. The
total number of blog documents for testing was 82. Overall, the combination of all
the three modules achieves an accuracy of 67.34 % for document level topic identi-
fication. The results are shown in Table 3.

Table 3 Accuracies (in %)
of the individual module and
combined modules on the test
set

Module combinations Accuracy

Bigram Count 31.14 %

NER 24.22 %

Sentiment Words (SW) + Emotion Words (EW) 26.15 %

Bigram + NER 43.05 %

Bigram + SW + EW 53.90 %

NER + SW + EW 47.69 %

Bigram + NER + SW + EW 67.34 %

6English to Indian Languages Machine Translation (EILMT) is a TDIL project undertaken by the
consortium of different premier institutes and sponsored by MCIT, Govt. of India.
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5 Semantic Clustering for Identifying Topic Similarity
Between Document and Sentence Level Topics

Now, it is clear the structure of the blog documents. Each of the blog documents
contains a topic (document level) followed by different sections for the bloggers’
comments. It is observed that the topics discussed by the bloggers in their comment
sections especially at sentence level are not similar with the topic that is described
at the document level. Sometimes, the topics in the sentential comments of the blog-
gers are completely irrelevant with the topic of its corresponding document. Hence,
a semantic clustering approach has been adopted for clustering the semantically re-
lated topic words present in a document by incorporating the features of bigram, NE
and sentiment into account.

We have seen that these features are the important clues for identifying document
level topics. Thus, we have applied the document level topic identification module
for identifying the potential candidate word(s) or token from the topic sections of the
blog documents. The tokens which are tagged by any of the three modules, bigram,
NE or sentiment are termed as the candidate tokens and have been considered for se-
mantic clustering. Identifying semantically related words for a particular candidate
token is carried out by looking the surrounding tokens and finding the synonymous
words within a fixed context window. Higher value of the similarity coefficient be-
tween two synsets of the target words indicates more affinity of the words to each
other. For individual word, semantically related words of the documents are ex-
tracted by using a monolingual dictionary.7 Count of elements in an intersection of
two synsets indicates the commonality of the two sets and its absolute value stands
for the commonality measure. Considering the common elements as the dimensions
of the vector space, similarity based techniques are applied to measure the semantic
affection of two target words.

In the first phase, we have generated the synsets for all noun words present in the
corpus using the synset based dictionary whereas in the second phase, the task is to
identify the semantic distance between two nouns. The format of the dictionary is
as follows,

W 1 = n1
1, n

1
2, n

1
3, . . . =

{
n1

i

}

...

Wm = nm
1 , nm

2 , nm
3 , . . . = {

nm
p

}

where, W 1,W 2, . . . ,Wm are the dictionary word entries and nm
i (for all i) are the

elements of the synsets of Wm. Now, each noun entry identified by the shallow
parser in the document is searched in the dictionary. If N , a noun in the corpus is
present in the synsets of W 1, W 3 and W 5, the retrieved synset for N is as follows,

SynSet(N) = {
W 1,W 3,W 5}. (1)

7http://dsal.uchicago.edu/dictionaries/biswas-bangala/.

http://dsal.uchicago.edu/dictionaries/biswas-bangala/
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Table 4 Cut off and F-Scores (in %) for topic identification using three different measures

Cut-off F-Score (in %)

Cosine-similarity Euclidean distance WordNet similarity

0.6 67.68 66.14 67.58

0.5 67.74 65.12 68.06

0.4 64.08 63.71 61.63

To identify the semantic similarity between two nouns, we have applied simple
intersection rule. The number of common elements between the synsets of the two
noun words denotes the similarity between them. If Ni and Nj are the two noun
words in the document and Wi and Wj are their corresponding synsets, the similarity
of the two words can be defined as:

Similarity(Ni,Nj ) = |Wi ∩ Wj |. (2)

We have clustered all the nouns words present in the document for a particular
noun word and give a score using three similarity techniques. The results of the
similarity techniques based on cut-off values are shown in Table 4.

ALGORITHM: TOPIC CHECKING
INPUT: Two Word Tokens <M1 M2>
OUTPUT: Return true if Topic, or return false.

1. Extract semantic clusters of M1 and M2.
2. Intersection of the clusters of both M1 and M2 (Fig. 3 shows the common synset

entries of M1 and M2 using rectangle).
3. Measuring the semantic similarity between M1 and M2:

3.1. In an n-dimensional vector space (here n = 2), the common entries act as
the axes. Put M1 and M2 as two vectors and associated weights as their
co-ordinates.

3.2. Calculate cosine-similarity measurement and Euclidean distance (Fig. 3).
4. Final decision taken individually for two different measurements

4.1. If cosine-similarity > m, return false; Else return true;
4.2. If Euclidean distance > n, return false; Else return true;

(Where m and n are the pre-defined cut-off values).

In addition to the cosine-similarity and the similarity based on Euclidean dis-
tance, we have employed the English WordNet8 to measure the semantic similarity
between two Bengali words translated into English. WordNet::Similarity is an open-
source package for calculating the lexical similarity between word (or sense) pairs
based on variety of similarity measures. We have translated the root of the two com-
ponents of a Bengali candidate into their English equivalents.

8http://www.d.umn.edu/tpederse/similarity.html.

http://www.d.umn.edu/tpederse/similarity.html
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Fig. 3 Intersection of the clusters of the constituents and similarity between two constituents

In addition to the above issues, another contribution to the semantic clustering
was the application of the candidate tokens. We have identified the candidate tokens
from the topic section of the blog documents by applying the combined module of
bigram, NE and sentiment. It has been observed that the results of the semantic clus-
tering approach have been improved satisfactorily by choosing only the candidate
tokens rather than employing all of the words from the document level topic section
of the blogs.

6 Evaluation of Holder-Topic

The sentiment topics/targets should not be done alone without considering sentiment
holders. A single topic is referred by several users as well as multiple topics are
referred by a single user. The user-topic relations aim to generate many to many
correspondences. Hence, we have adopted two way evaluation process, one is from
the perspective of the users and another is from the perspectives of topics.

The emotional expression, holder and topic are identified and tagged accordingly
on 512 test sentences that include the equal distribution of ten blog users’ senten-
tial comments on eight different potential topics. The many-to-many relationships
between ten bloggers and eight topics have been analyzed with respect to Ekman’s
(1993) six emotion classes. The Ekman’s six different emotions are plotted for 8
different topics referred by each of the 10 bloggers. The topic based emotions of
the bloggers as shown in Fig. 5 signifies that the system achieves high F-Score
with respect to each of the topics. It was observed that the emotional views of the
bloggers and its dependence on the associated topics achieves significantly better
results in identifying user and topic specific emotions in a particular time period.
The charts in Figs. 4 and 5 show the F-Score values (in %) for Ekman’s six emo-
tions from the perspectives of users and topics. The system achieves the average
precision, recall and F-Score of 65.02 %, 76.23 % and 70.18 % for ten bloggers and
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Fig. 4 F-Scores (in %) for Ekman’s six emotions from the perspectives of users

Fig. 5 F-Scores (in %) for
Ekman’s six emotions from
the perspectives of topics

71.02 %, 78.47 % and 74.55 % with respect to eight topics, respectively on 512 test
sentences.

7 Conclusion

The present task identifies the emotions of the bloggers on different topics provided
in the Bengali blog documents using two prong approaches, a rule based system
followed by a supervised one. The contribution of the present task is to classify
the blog documents in a meaningful way by employing the features of bigram, NE
and sentiment and associate the document level topics with the sentential topics
using semantic clustering. The present research will help in categorizing of the blog
documents based on topics from the perspectives of relevancy as well as consistency
on the overall theme of the documents. The handling of metaphors and their impact
in detecting sentence level emotion is not considered. Future analysis concerning
the time based emotional change can be used for topic model representation. The
need of co reference entails that the presence of indirect affective clues can also be
traced with the due help of holder and topic.
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Predicting Number of Zombies in a DDoS
Attacks Using Isotonic Regression

B.B. Gupta and Nadeem Jamali

Abstract Anomaly based DDoS detection systems construct profile of the traffic
normally seen in the network, and identify anomalies whenever traffic deviate from
normal profile beyond a threshold. This deviation in traffic beyond threshold is used
in the past for DDoS detection but not for finding number of zombies. This chapter
presents an approach that utilizes this deviation in traffic to predict number of zom-
bies using isotonic regression model. A relationship is established between number
of zombies and observed deviation in sample entropy. Internet type topologies used
for simulation are generated using Transit-Stub model of GT-ITM topology gen-
erator. NS-2 network simulator on Linux platform is used as simulation test bed
for launching DDoS attacks with varied number of zombies. Various statistical per-
formance measures are used to measure the performance of the regression model.
The simulation results are promising as we are able to predict number of zombies
efficiently with very less error rate using isotonic regression model.

Keywords DDoS attack · Intrusion detection · Isotonic regression · Zombies ·
Entropy

1 Introduction

DDoS attacks are an impending threat to Internet related applications. It poses a
grave danger to users, organizations and infrastructures of the Internet. A DDoS
attacker attempts to disrupt a target, in most cases a web server, by flooding it
with illegitimate packets, usurping its bandwidth and overtaxing it to prevent le-
gitimate inquiries from getting through [1, 2]. In anomaly based DDoS detection
mechanisms, the profile of the traffic normally seen in the network is constructed
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and anomalies are identified whenever traffic deviates from normal profile beyond a
threshold [3]. Proposed approach utilizes this deviation in traffic beyond threshold
to predict number of zombies using isotonic regression [4, 5]. A real time estima-
tion of the number of zombies in DDoS scenario is helpful to suppress the effect
of attack by choosing predicted number of most suspicious attack sources for either
filtering or rate limiting. Moore et al. [6] have already made a similar kind of at-
tempt, in which they have used backscatter analysis to estimate number of spoofed
addresses involved in DDoS attack. This is an offline analysis based on unsolicited
responses.

Our objective is to find the relationship between number of zombies involved in
a flooding DDoS attack and deviation in sample entropy. In order to predict number
of zombies, isotonic regression model is used. To measure the performance of the
proposed approach, we have calculated various statistical performance measures
i.e. R2, CC, SSE, MSE, RMSE, NMSE, η, MAE and residual error. Internet type
topologies used for simulation are generated using Transit-Stub model of GT-ITM
topology generator [7]. NS-2 network simulator [8] on Linux platform is used as
simulation test bed for launching DDoS attacks with varied number of zombies. In
our simulation experiments, attack traffic rate is fixed to 25 Mbps in total; therefore,
mean attack rate per zombie is varied from 0.25 Mbps to 2.5 Mbps and total number
of zombie machines range between 10 and 100 to generate attack traffic.

The remainder of the chapter is organized as follows. Section 2 presents related
work. Section 3 contains overview of isotonic regression model. Section 4 presents
various statistical performance measures. Intended analytical model and detection
scheme are described in Sect. 5. Section 6 describes experimental setup in details.
Model development and performance analysis is presented in Sect. 7. Section 8
contains simulation results and discussion. Finally, Sect. 9 concludes the chapter.

2 Related Work

This section charts out the overview on a plethora of existing DDoS defense schemes
proposed in the literature. Exiting DDoS defense schemes are classified into four
broad categories: Prevention, Detection, Response, and Tolerance and Mitigation.
Attack prevention methods try to stop all well known signature based and broadcast
based DDoS attacks from being launched in the first place or edge routers, keeps
all the machines over Internet up to date with patches and fix security holes. The
approaches to stop IP spoofing [9], filtering malicious IP addresses based on expe-
rience [10], Remove unused services [11] and repairing security holes by patches
[12] fall under this category. Attack prevention schemes are not enough to stop
DDoS attacks because these are always vulnerable to novel and mixed attack types
for which signatures and patches do not exist in the databases. Attack detection
aims to detect an ongoing attack and to discriminate malicious traffic from legit-
imate traffic. Detection can be performed using database of known signatures, by
recognizing anomalies in system behaviors or using third party. Signature based
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approach employs a priori knowledge of attack signatures. The signatures are man-
ually constructed by security experts analyzing previous attacks and used to match
with incoming traffic to detect intrusions. SNORT [13] and Bro [14] are the two
widely used signature based detection approaches. Signature based techniques are
only effective in detecting traffic of known DDoS attacks whereas new attacks or
even slight variations of old attacks go unnoticed. Anomaly detection [15–21] re-
lies on detecting behaviors that are abnormal with respect to some normal stan-
dard.

Gil and Poletto [15] proposed a scheme called MULTOPS to detect denial of ser-
vice attacks by monitoring the packet rate in both the up and down links. MULTOPS
assumes that packet rates between two hosts are proportional during normal opera-
tion. A significant disproportion between the packet rate going to and from a host
or subnet is a strong indication of a DoS attack. Blazek et al. [16] proposed batch
detection to detect DoS attacks by monitoring statistical changes. Cheng et al. [17]
proposed to use spectral analysis to identify DoS attack flows. Lee and Stolfo [18]
used data mining techniques to discover patterns of system features that describe
program and user behavior and implement a classifier that can recognize anoma-
lies and intrusions. A mechanism called congestion triggered packet sampling and
filtering is proposed by Huang et al. [19]. According to this approach, a subset of
dropped packets due to congestion is selected for statistical analysis. If anomaly is
indicated by the statistical results, a signal is sent to the router to filter the malicious
packets. Mirkovic et al. [20] proposed D-WARD defense system that does DDoS
attack detection at source, based on the idea that DDoS attacks should be stopped
as close to the source as possible. Bencsath et al. [21] have given a traffic level
measurement based approach, in which incoming traffic is monitored continuously
and dangerous traffic intensity rises are detected. Chen et al. [22] used distributed
change-point detection (DCD) architecture using change aggregation trees (CAT)
to detect DDoS attack over multiple network domains. Feinstein et al. [23] focus
their detection efforts on activity level and source address distribution using en-
tropy. Anomaly based techniques can detect novel attacks; however, it may result
in higher false alarms. Mechanisms that deploy third-party detection do not handle
the detection process themselves, but rely on an external third-party that signals the
occurrence of the attack. Examples of mechanisms that use third-party detection are
easily found among traceback mechanisms [24, 25].

The goal of the attack response is to relieve the impact of the attack on the vic-
tim while imposing minimal collateral damage to legitimate clients. The approaches
to identify attack source/path or traceback [24, 25], filtering malicious traffic [26],
and rate throttling malicious traffic [20, 27] fall under this category. Attack toler-
ance and mitigation focuses on minimizing the attack impact and tries to provide
optimal level of service as per quality of its service requirement to legitimate users
while service provider is under attack. The tolerance and mitigation solution in-
cludes router’s queue management [28, 29], router’s traffic scheduling [30], and
target roaming [31].

In [32], authors have used linear regression and correlation analysis to predict
number of zombies. But due to the nonlinear nature of DDoS attack traffic, this
method is unable to predict the number of zombies accurately.
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3 Isotonic Regression Model

Regression analysis [33, 34] is a statistical tool for the investigation of relationships
between variables. Usually, the investigator seeks to ascertain the causal effect of
one variable upon another. More specifically, regression analysis helps us to under-
stand how the typical value of the dependent variable changes when any one of the
independent variables is varied, while the other independent variables are held con-
stant. Variables which are used to ‘explain’, other variables are called explanatory
variables. Variable which is explained is called response variable. A response vari-
able is also called a dependent variable, and an explanatory variable is sometime
called an independent variable, or a predictor, or repressor. When there is only one
explanatory variable the regression model is called a simple regression, whereas if
there are more than one explanatory variable the regression model is called multiple
regression.

Isotonic regression [4, 5] is also sometimes referred to as monotonic regression.
Isotonic regression is used when the direction of the trend is strictly increasing,
while monotonic could imply a trend that is either strictly increasing or strictly
decreasing.

Isotonic regression (IR) involves finding a weighted least-squares fit x ∈ �n to
a vector a ∈ �n with weights vector w ∈ �n subject to a set of monotonicity con-
straints giving a simple or partial order over the variables. The monotonicity con-
straints define a directed acyclic graph G = (N,E) over the nodes N = 1,2, . . . , n

corresponding to the variables x = x1, x2, . . . , xn. Thus, the isotonic regression
problem where a simple order is defined corresponds to the following quadratic
program (QP):

min
n∑

i=1

wi(xi − ai)
2 subject to xi ≥ xj ∀(i, j) ∈ E (1)

Isotonic regression has applications in statistical inference, for example, comput-
ing the cost at the minimum of the above goal function, gives the stress of the fit of
an isotonic curve to mean experimental results when an order is expected. Isotonic
Regression under the Lp for p > 0 is defined as follows:

min
n∑

i=1

wi |xi − ai |p subject to xi ≥ xj ∀(i, j) ∈ E (2)

Input and Output To predict number of zombies, we established relationship be-
tween number of zombies Y (output) and observed deviation in entropy X (input).
For different given (known) zombies, deviation in sample entropy X is calculated
as (Hc–Hn), where Hc and Hn are entropy values at the time of attack detection
and for normal profile, respectively. Regression equations are then determined by
the process of curve fitting. These equations are used for predicting number of zom-
bies.
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4 Statistical Performance Measures

Various statistical performance measures, such as Coefficient of Determination
(R2), Coefficient of Correlation (CC), Standard Error of Estimate (SSE), Mean
Square Error (MSE), Root Mean Square Error (RMSE), Normalized Mean square
Error (NMSE), Nash–Sutcliffe Efficiency Index (η) and Mean Absolute Error
(MAE) are used to evaluate the performance of the proposed regression model.
These measures are defined below. In the definitions, N represents the number of
feature vectors prepared, and denote the actual and the predicted values of depen-
dent variable, respectively, and are the mean and the standard deviation of the actual
dependent variable, respectively.

(i) Coefficient of Determination (R2): Coefficient of determination (R2) is a de-
scriptive measure of the strength of the regression relationship, a measure
how well the regression line fit to the data. R2 is the proportion of variance
in dependent variable which can be predicted from independent variable. The
coefficient of determination (R2) can be defined as:

R2 = (
∑N

i=1(Yo − Yo)(Yc − Y c))
2

[∑N
i=1(Yo − Yo)2 ·∑N

i=1(Yc − Y c)2] (3)

(ii) Coefficient of Correlation (CC): The Coefficient of Correlation (CC) can be
defined as:

CC =
∑N

i=1(Yo − Yo)(Yc − Y c)

[∑N
i=1(Yo − Yo)2 ·∑N

i=1(Yc − Y c)2]1/2
(4)

(iii) Sum of Squared Errors (SSE): The Sum of Squared Errors (SSE) can be de-
fined as:

SSE =
N∑

i=1

(Yo − Yc)
2 (5)

(iv) Mean Square Error (MSE): The Mean Square Error (MSE) between observed
and computed outputs can be defined as:

MSE =
∑N

i=1(Yc − Yo)
2

N
(6)

(v) Root Mean Square Error (RMSE): The Root Mean Square Error (RMSE)
between observed and computed outputs can be defined as:

RMSE =
√∑N

i=1(Yc − Yo)2

N
(7)

(vi) Normalized Mean Square Error (NMSE): The Normalized Mean Square Error
(NMSE) between observed and computed outputs can be defined as:

NMSE =
1
N

∑N
i=1(Yc − Yo)

2

σ 2
obs

(8)
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(vii) Nash–Sutcliffe efficiency index (η): The Nash–Sutcliffe efficiency index (η)
can be defined as:

η = 1 −
∑N

i=1(Yc − Yo)
2

∑N
i=1(Yo − Yo)2

(9)

(viii) Mean absolute error (MAE): Mean absolute error (MAE) can be defined as
follows:

MAE = 1 −
∑N

i=1 |Yc − Yo|
∑N

i=1 |Yo − Yo|
(10)

5 Detection of Attacks

5.1 Analytical Model

This section describes an analytical model which is constructed to detect a wide
range of flooding attacks. Our approach detects flooding DDoS attacks by the con-
stant monitoring of the propagation of abrupt traffic changes inside the ISP net-
work. Various statistical measures e.g. volume, flow, entropy, ratio etc are avail-
able for profile generation. Let M and F be the random vectors compose of m

measures m1,m2, . . . ,mm used for attacks detection and n flows f1, f2, . . . , fn

containing the incoming traffic to the server, respectively: M = (m1,m2, . . . ,mm),
F = (f1, f2, . . . , fn), where fi = (mi

1,m
i
2, . . . ,m

i
m) is ith flow. Consider a random

process {mi
j (t), t = ωΔ, ω ∈ N}, where Δ is a constant time interval, N is the

set of positive integers, and for each t , mi
j (t) is a random variables. 1 ≤ ω ≤ l, l

is the number of time intervals. Here mi
j (t)represents the value of mj in flow i in

{t − Δ, t} time duration. These relations can be written in matrix form as follows:

Z(t) =

⎛

⎜⎜⎜⎜
⎝

m1
1(t) mi

1(t) · · · mn
1

m1
j (t) mi

j (t) · · · mn
j

...
...

...

m1
m(t) mi

m(t) · · · mn
m(t)

⎞

⎟⎟⎟⎟
⎠

(11)

where, Z(t) contains values of different measures used in {t −Δ, t}. mj(t) represent
total value of j th measure during {t −Δ, t} time. mj(t) can be calculated as follows:

mj(t) = m1
j (t) + m2

j (t) + · · · + mi
j (t) + · · · + mn

j (t) (12)

where 1 ≤ i ≤ n, n is the number of flows. 1 ≤ j ≤ m, m is the number of measures.
Normal traffic value of j th measures can be calculated using following equation:

∗
mj(t) = 1

l

l∑

ω=1

mj(t) (13)

where t = ωΔ. Vector A can be used to represent normal traffic measures value:

A = (
∗

m1(t),
∗

m2(t), . . . ,
∗

mm(t)). To detect the attack, the value of j th traffic measure
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mj(t) is calculated in time window Δ continuously; whenever there is appreciable

deviation from
∗

mj(t), anomalous behaviors could be determined. Depending on
the measures selected to use or network conditions, following events are defined to
determine anomalous system behaviors:

mj(t) − ∗
mj(t) > ξ

upper
j (14)

mj(t) − ∗
mj(t) < ξ lower

j (15)

where ξ
upper
j and ξ lower

j represent value of upper and lower bound of the threshold

for j th measure, respectively. ξ
upper
j and ξ lower

j can be set as follows:

ξ
upper
j = r

upper
j ∗ σj (16)

ξ lower
j = r lower

j ∗ σj (17)

where σj represent value of standard deviation for j th measure. r
upper
j and r lower

j
represent value of tolerance factor to calculate upper and lower bound of the thresh-
old for j th measure, respectively. Effectiveness of an anomaly based detection sys-
tem highly depends on accuracy of threshold value settings. Inaccurate threshold
values cause a large number of false positives and false negatives. Therefore, vari-
ous simulations are performed using different value of tolerance factors. The choice
of tolerance factors varies for different network conditions. Values of tolerance fac-
tors also depend on the composition of the normal traffic and the desired degree of
the ability to control a DDoS attack. Then, trade-off between detection and false
positive rate provides guidelines for selecting value of tolerance factor rj for j th
traffic measure for a particular simulation environment.

5.2 Entropy Based DDoS Detection

Here, we will discuss propose detection system that is part of access router or can
belong to separate unit that interact with access router to detect attack traffic. It
makes use of analytical model given in the previous section. Entropy based DDoS
scheme [35] is used to construct profile of the traffic normally seen in the network,
and identify anomalies whenever traffic goes out of profile. A metric that captures
the degree of dispersal or concentration of a distribution is sample entropy. Sample
entropy H(X) is

H(X) = −
N∑

i=1

pi log2(pi) (18)

where pi is ni/S. Here ni represent total number of bytes arrivals for a flow i in
{t −Δ, t} and S =∑

N

i=1 ni , i = 1,2, . . . ,N . The value of sample entropy lies in the
range 0–log2 N . To detect the attack, the value of Hc(X) is calculated in time win-
dow Δ continuously; whenever there is appreciable deviation from Xn(X), various
types of DDoS attacks are detected. Hc(X), and Xn(X) gives Entropy at the time of
detection of attack and Entropy value for normal profile respectively.
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6 Experimental Setup

In this section, we evaluate our proposed scheme using simulations. The simulations
are carried out using NS2 network simulator. We show that false positives and false
negatives (or various error rates) triggered by our scheme are very less. This implies
that profiles built are reasonably stable and are able to predict number of zombies
correctly.

6.1 Simulation Environment

Real-world Internet type topologies generated using Transit-Stub model of GT-ITM
topology generator are used to test our proposed scheme, where transit domains are
treated as different Internet Service Provider (ISP) networks i.e. Autonomous Sys-
tems (AS). For simulations, we use ISP level topology, which contains four transit
domains with each domain containing twelve transit nodes i.e. transit routers. All
the four transit domains have two peer links at transit nodes with adjacent transit
domains. Remaining ten transit nodes are connected to ten stub domain, one stub
domain per transit node. Stub domains are used to connect transit domains with
customer domains, as each stub domain contains a customer domain with ten le-
gitimate client machines. Total 400 legitimate client machines are used to generate
background traffic. One FTP server is used to provide service to the clients. All FTP
requests are originated randomly from different nodes. Total machines generating
attack traffic range between 10 to 100. Transit domain four contains the server ma-
chine to be attacked by zombie machines. The legitimate clients are TCP agents that
request files of size 1 Mbps with request inter-arrival times drawn from a Poisson
distribution. The attackers are modeled by UDP agents. A UDP connection is used
instead of a TCP one because in a practical attack flow, the attacker would normally
never follow the basic rules of TCP, i.e. waiting for ACK packets before the next
window of outstanding packets can be sent, etc. In our simulation experiments, at-
tack traffic rate is fixed to 25 Mbps in total; and, mean attack rate per zombie varies
from 0.25 Mbps to 2.5 Mbps as total number of zombie machines range between 10
and 100 to generate attack traffic. The simulations are repeated and different attack
scenarios are generated by varying total number of zombie machines and at fixed
attack strength. In our experiments, the monitoring time window was set to 200 ms.
Total false positive alarms are minimum with high detection rate using this value of
monitoring window.

7 Model Development and Performance Analysis

In this section, we describe our experiments to study the strength of various regres-
sion models for predicting number of zombies involved in a DDoS attack using iso-
tonic regression. In order to predict number of zombies from deviation (Hc–Hn) in
entropy value, simulation experiments are done at the same attack strength 25 Mbps
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Fig. 1 Entropy variation with varied number of zombies

Table 1 Deviation in entropy
with actual number of
zombies

Actual number of
zombies (Y )

Deviation in entropy (X)
(Hc–Hn)

10 0.045
15 0.046
20 0.048
25 0.050
30 0.068
35 0.087
40 0.099
45 0.111
50 0.121
55 0.130
60 0.139
65 0.148
70 0.157
75 0.163
80 0.170

in total and varying number of zombies from 10–100 with increment of 5 zombies
i.e. mean attack rate per zombie from 0.25 Mbps–2.5 Mbps.

Figure 1 shows entropy variation with 10–100 numbers of zombies at same at-
tack strength in total of 25 Mbps. Table 1 represents deviation in entropy with actual
number of zombies. Isotonic regression model is developed using number of zom-
bies (Y ) and deviation (Hc–Hn) in entropy value as discussed in Table 1 to fit the
regression equation. Coefficients of regression equations are determined through a
process of curve fitting. The main objective in the process of the curve fitting is to
minimize the error between the actual number of zombies and the predicted number
of zombies.
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Fig. 2 Comparison between actual number of zombies and predicted number of zombies using
isotonic regression model

8 Result and Discussion

We have developed isotonic regression model as discussed in Sect. 7. Various perfor-
mance measures are used to check the accuracy of this model. Number of zombies
can be computed and compared with actual number of zombies using proposed re-
gression model. The comparison between actual number of zombies and predicted
number of zombies using isotonic regression model is depicted in Fig. 2.

To represent false positive (falsely predicted normal clients as zombies) and false
negative (zombies are identified as normal client) we plot residual error. Positive cy-
cle of residual error curve represents false positive, while negative cycle represents
false negative. As our model predicts number of zombies 100 % correctly, value of
residual error is zero. Table 2 shows residual error for isotonic regression model.
Table 3 shows values of various performance measures.

It can be inferred from Table 3 that for isotonic regression model values of R2,
CC, SSE, MSE, RMSE, NMSE, η, MAE are 1, 1, 0, 0, 0, 0, 1 and 1 respectively.
Hence number of zombies predicted by this model is 100 % similar to the observed
number of the zombies.

8.1 Comparison Between Isotonic Regression and Other
Regression Models

Here performance between Isotonic and other regression models i.e. linear, polyno-
mial, logarithmic, exponential, power etc. is compared to predict number of zombies
involve in a DDoS attack. Figure 3 shows comparison between predicted number of
zombies using Isotonic and other regression models. Similarly, Tables 4 and 5 rep-
resent comparison of residual errors and various performance measures for isotonic
and other regression models.
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Table 2 Summary of
residual error for isotonic
regression model

(X) Entropy
variation

(Y ) Number of
zombies

Residual error

0.045 10 0.0

0.046 15 0.0

0.048 20 0.0

0.050 25 0.0

0.068 30 0.0

0.087 35 0.0

0.099 40 0.0

0.111 45 0.0

0.121 50 0.0

0.130 55 0.0

0.139 60 0.0

0.148 65 0.0

0.157 70 0.0

0.163 75 0.0

0.170 80 0.0

0.176 85 0.0

0.182 90 0.0

0.189 95 0.0

0.192 100 0.0

Table 3 Values of various
performance measures R2 1

CC 1

SSE 0

MSE 0

RMSE 0

NMSE 0

η 1

MAE 1

As described in Sect. 4, coefficient of determination (R2) is a descriptive mea-
sure of the strength of the regression relationship, a measure how well the regres-
sion line fit to the data. R2 is the proportion of variance in dependent variable which
can be predicted from independent variable and CC is its square root. The Nash–
Sutcliffe efficiency index is a widely used and potentially reliable statistic for as-
sessing the goodness of fit of models. Essentially, the closer the model efficiency is
to 1, the more accurate the model is. On the other hand, values of SSE, MSE and
NMSE quantify the error in the prediction using various regression models. There-
fore, when comparing various regression models, model is selected with highest
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Fig. 3 Comparison between predicted number of zombies using Isotonic and other regression
models

Table 4 Comparison of residual errors for isotonic and other regression models

(X)
Entropy
variation

(Y )
Number of
zombies

Residual error

Linear
regression

Polynomial
regression

Logarithmic
regression

Power
regression

Exponential
regression

Isotonic
regression

0.045 10 4.07 7.69 −0.53 5.62 8.27 0.0

0.046 15 −0.31 3.06 −4.22 1.12 3.53 0.0

0.048 20 −4.46 −1.43 −7.45 −3.19 −1.10 0.0

0.050 25 −8.39 −5.78 −10.33 −7.31 −5.64 0.0

0.068 30 −3.91 −4.46 0.43 −4.22 −5.97 0.0

0.087 35 1.14 −1.68 8.11 −0.08 −4.80 0.0

0.099 40 2.53 −1.15 9.81 0.99 −5.06 0.0

0.111 45 4.17 0.08 10.96 2.49 −4.36 0.0

0.121 50 4.51 0.45 10.42 2.84 −4.10 0.0

0.130 55 4.22 0.43 9.05 2.63 −3.91 0.0

0.139 60 4.12 0.88 7.58 2.71 −2.88 0.0

0.148 65 3.51 1.00 5.55 2.33 −1.87 0.0

0.157 70 3.75 2.37 3.88 2.91 1.13 0.0

0.163 75 1.94 1.40 0.81 1.35 1.49 0.0

0.170 80 0.23 0.67 −2.27 −0.07 2.43 0.0

0.176 85 −1.17 0.50 −5.25 −1.11 4.50 0.0

0.182 90 −3.40 −0.70 −8.75 −3.05 5.31 0.0

0.189 95 −4.75 −0.56 −11.84 −3.98 8.57 0.0

0.192 100 −7.80 −2.76 −15.85 −6.79 8.27 0.0
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Table 5 Comparison of various performance measures for Isotonic and other regression models

Isotonic Linear Polynomial Logarithmic Power Exponential

R2 1 0.98 0.99 0.91 0.95 0.92

CC 1 0.99 0.99 0.95 0.99 0.99

SSE 0 328.88 146.88 1257.90 231.85 460.81

MSE 0 17.31 7.73 66.21 12.20 24.25

RMSE 0 4.16 2.78 8.14 3.49 4.92

NMSE 0 0.62 0.27 2.35 0.43 0.86

η 1 0.98 0.99 0.91 0.98 0.97

MAE 1 0.85 0.92 0.70 0.88 0.82

value of coefficient of determination, coefficient of correlation and Nash–Sutcliffe
efficiency index and lowest values of SSE, MSE and NMSE. Accordingly, it can
be seen from Table 5 that isotonic regression model has highest value of coefficient
of determination, coefficient of correlation and Nash–Sutcliffe efficiency index and
lowest values of SSE, MSE and NMSE. Thus, it can be concluded that it performs
better than other models. Figure 3 and Table 4 also show supremacy of isotonic
regression model in predicting number of zombies in a DDoS attack.

9 Conclusion and Future Work

This chapter investigates suitability of isotonic regression model to predict number
of zombies involved in a flooding DDoS attack from deviation in sample entropy.
For evaluating performance of isotonic regression model, we have calculated vari-
ous statistical performance measures. Based on the statistical measures, we found
that isotonic regression based model performs better than any other model, as it
can predict number of zombies in a DDoS attack with 100 % efficiency. However,
simulation results are promising, experimental study using a real time test bed can
strongly validate our claim.
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Developing a Hybrid Framework
for a Web-Page Recommender System

Vasileios Anastopoulos, Panagiotis Karampelas, and Reda Alhajj

Abstract Recommender systems nowadays tend to become a necessity against in-
formation and product overloading. They aim to facilitate users browsing the World
Wide Web by suggesting relevant products, websites or services according to users’
preferences. In this paper we present a hybrid framework that analyzes Web logs
using social network analysis and data mining techniques, to extract useful infor-
mation about users browsing patterns. Based on the identified results the framework
builds a recommendation engine that is integrated in the Web browser of the user.
A case study based on real data from an organization of 250 employees is finally
presented using the system prototype which was constructed based on the proposed
framework.

Keywords Recommender system · Social network · Data mining · Association
rules · System prototype · Hybrid framework

1 Introduction

It is widely accepted nowadays that the World Wide Web has become the main
source of information for practically any information someone would like to get.
The Web is developing into the main source for everything that could come to mind
and the user group is growing exponentially increasing to include mostly users with
limited background and capabilities. This abundance of information, together with
the advertisements and in combination with the various hyperlinks inherent to the
Web pages, has increased cognitive load of a user with information that most of
the times is irrelevant to his/her interest on a topic. Thus, finding information has
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Fig. 1 Proposed framework block diagram

changed into a time consuming, effort demanding and sometimes disturbing task
for both novice and experienced users. To facilitate users in this quest, recommen-
dation systems are implemented as an intermediate service between the user and the
provider of the information, aiming to recommend items of his/her interest based on
the user’s preferences. This approach increases user satisfaction and provides them a
browsing experience adjusted to their own preferences and needs. Recommendation
systems usually draw data from the existing users of a website or service. These data
are commonly recorded into the log files of Web and proxy servers resulting into
data sources that contain record entries that store the time and the URL of the Web
pages accessed by each user of the network. From these data, valuable information
can be extracted about each user’s preferences, increasing the accuracy and quality
of the recommendations presented. This paper proposes a hybrid framework that
analyzes Web logs using social network analysis with data mining techniques, to in-
crease the accuracy and the quality of Web page recommender systems. Fortunately,
users could be classified into groups such that each group has similar preferences.
Thus, identifying the most appropriate group that best matches a given user would
lead to more accurate recommendation. The work presented in this paper is divided
into the following four main phases, a) data collection, b) social network analysis,
c) data mining, and d) implementation of the recommender system, as depicted in
Fig. 1.

Data is collected from various sources which may be open or proprietary and
can provide information about the time and the URL of the Web pages a user has
requested. A proxy server can be used for the collection of this information, espe-
cially within the boundaries of an organization, since all user requests are satisfied
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through it. Web servers can also provide this data, with the drawback of logging
only the requests of Web pages hosted on those specific servers. If no privacy and
security issues are raised, network traffic monitor packages (ethereal, SNMP proto-
col, etc.) can collect the necessary data, monitoring specific servers or intermediary
devices. The output of the data collection process is log files, possibly from different
sources and in various formats. Depending on the data source they can be stored in
flat files of database tables and will probably contain redundant data, due to auto-
matic Web browser requests and the stateless HTTP protocol. These Web logs re-
quire pre-processing to remove unnecessary or private data and integrate them into
one data set that contains only the necessary information in the appropriate format
for the social network analysis. It is important to avoid the loss of useful data and
retain the quality of the data set at the same time. This is accomplished by applying
techniques [6] that preserve the requests that are necessary to form the picture of the
user’s usage, i.e., HTML files explicitly requested, thus, remove the implicit ones
(graphics and scripts requested by the Web browser), that are irrelevant to the user’s
browsing behavior.

The data set is then represented as a social network of users and Web pages
and various measurements are performed and analyzed to conclude on the network
stability and cohesion, as well as on the importance of certain actors. The analysis is
initially performed on a small data set, but in order to have an overall picture of the
network dynamics it needs to be extended to include larger time periods that will
include characteristic time periods e.g., a full work day or a work week. The process
followed so far, is repeated until a sufficient amount of data has been analyzed and
the conclusions on the network stability, the actors importance and patterns of usage
are concrete.

The framework continues with the data mining process that again pre-processes
the Web logs to transform them to the appropriate format for the application of
data mining algorithms. The frequent item-sets mining results into frequent patterns
of Web pages access and are used as input for the association rules mining; this
consequently results in a set of associations between Web pages, based on which
recommendations will be made by the recommender system. The construction of
the recommender system starts with the preparation of the grouping of rules and
the selection of the more accurate ones. Finally, the recommender system is imple-
mented focusing on the recommendation engine which is a system prototype that
runs completely on the client’s browser, differentiating from the usual approach
that places the recommendation engine at a Web or proxy server. The proposed
framework benefits from the available Web log analysis methods to prepare the data
for social network analysis and data mining. Social network analysis facilitates the
identification of important Web pages and users, representing the usage of the pages
from the users as a network of interaction between the users and the Web pages.
For the generation of recommendations the memory-based approach of association
rules mining is employed, as it can be applied efficiently on large data sets and the
quality of the recommendations can be easily evaluated. The combination of differ-
ent methods or approaches increases the complexity of the construction process, but
significantly benefits from the advantages of each method applied which is the main
objective of the proposed framework.
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Social network analysis is usually performed on networks where people are the
actors and by finding friends, communities or similarities among them, enhances the
quality of the recommendations. The proposed framework differentiates from this
approach, choosing Web pages as actors of the social network. These Web pages are
used to construct social networks and then are analyzed in terms of importance, con-
nectivity and “socialization” over the time. The users are also part of the approach as
through their usage behavior the Web pages are implicitly connected forming social
networks. The users influence Web page networks by adding the dynamic and evo-
lutionary features to these networks. The information extracted from the analysis of
both users and Web pages social networks leads to useful conclusions that are used
to increase the quality of the recommendation engine.

The remainder of the paper is organized as follows. Section 2 provides a brief
overview of related work on Web log pre-process approaches of mining Web page
navigational patterns and the types of recommender systems that are common in
literature. Section 3 describes in detail the proposed framework, the problems and
methods of the data pre-process, the measurements and algorithms that are applied,
as well as the process of constructing the recommendation engine. Following, in
Sect. 4 the framework is applied on real usage data from an organization of 250
employees and results in a system prototype that is implemented as an extension of
the Google Chrome Web browser. The framework is evaluated in Sect. 5, and the
paper concludes in Sect. 6 with the conclusion and future work that could improve
the performance and accuracy of the recommender system.

2 Related Work

The most important problem in collecting reliable usage data is caching, either from
the users’ browsers or proxy servers. This process is necessary when the objective is
to minimize the traffic over the network and increase performance. As a result, Web
server logs do not include requests that were satisfied by locally cached Web pages,
or in the case of proxy server intermediation, all requests have the same identifier
even though they correspond to various users. Cooley, Mobasher and Srivastava
[6] confronted this problem with preprocessing of the logs, user identification and
session identification.

Preprocessing of the logged data is necessary to remove records that are not
actually relevant to the user browsing behavior. These records are HTTP requests
that are implicitly made from the browser in order to complete the display of the
Web page. As the HTTP protocol requires each request to be a separate session, a
record log is created for each one. A common solution to this problem which was
also employed in the proposed framework is to remove requests based on a list of
suffixes, i.e. jpg, jpeg, gif, cgi, etc., or list of irrelevant file names. Depending on the
type of data collected, the list of suffixes to be removed can vary.

User identification is another important task since requests of different users are
logged in the proxy server as being made from the same IP address. This task is more
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complicated and the proposed methods in the literature rely on the cooperation of
the user or on heuristics [6]. The user’s cooperation is usually achieved by requiring
login first to a Web site that tracks the usage. Accepting cookies from a server is
another form of user cooperation, as the user’s browser will send the cookie with
each new request, and thus by identifying the cookie the Web server actually can
identify the user. There are however serious drawbacks in this approach since the
user may delete stored cookies or be negative to login prior to Web browsing, as
privacy is in most cases of primary concern. Heuristics are mostly based on the
assumption that different operating systems or Web browsers at the same IP address
indicate different users, but two users with the same IP address that use the same
browser on the same operating system can be easily be considered as a single user.
Another heuristic method is to combine the Web log with the site topology. A Web
page that is not reachable through the links of the Web pages already accessed by
the user can be assumed that was requested by another user having the same IP.

Session identification is usually applied in usage logs that cover long periods of
time, since a user may visit the same Web page more than once during this period.
Each time the user accesses the Web site it is considered a new session and the
aim of the method, is to divide the Web pages the user has accessed to separate
sessions. A common approach is to define a timeout, which in literature varies from
ten minutes to two hours, after which it is assumed that the user starts a new session.

Coming to the construction of collaborative recommender systems, the most
well-known approaches in literature are the use of memory-based and model-based
algorithms [14]. Memory-based algorithms use the entire data set that corresponds
to the items each user accessed and is represented as a user-item matrix. In order
to generate recommendations the k-nearest-neighborhood or association rules algo-
rithms can be applied. In k-nearest-neighborhood, the similarity between users in
item rating or accessed Web pages is calculated in the user-item matrix and similar
users form a proximity-based neighborhood. It is assumed that the items accessed by
the user’s neighbors will probably interest him/her and thus they are recommended.

Association rules are usually applied to “market basket” data, meaning that each
user transaction has an ID and the items accessed. Usually they are mined using the
Apriori or FP-growth algorithms. These algorithms initially generate frequent item-
sets, which are patterns that appear often in the transactions and then associations
between these sets of items are derived [7]. Association rules are interpreting as if
a user accessed items A, then he/she will probably access items B (A ⇒ B). The
strength of these rules is evaluated by their support and confidence. Association
rules are used in the proposed framework to create recommendation, and they are
presented in detail to the following sections.

The model-based collaborative filtering approach, aims to derive a model from
the rating data that will be used in continuance to generate recommendations. This
is achieved by applying machine learning algorithms, such as neural networks,
Bayesian networks, clustering and latent semantic analysis [16]. Each of these meth-
ods is covered in detail in data mining literature and they are not discussed in this
work since they are not related to the proposed framework. In recent literature, so-
cial network analysis algorithms are also combined with data mining, representing
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the collaborative relationships as social networks. These networks are analyzed in
order to understand the relationships, between users and items of their interest, the
collaboration among users, how they change in time and their reflections on their
preferences [16]. In [1], the authors propose a recommendation system that applies
social network analysis to classify the users based on their ratings and their brows-
ing behavior. Users that visited the same Web pages are considered similar and they
are linked to create social networks, which are then analyzed to detect their habits.
A new user entering the system is provided with recommendations according to
the ratings collected by similar users. In a recommender system [13] that aims to
understand the collaboration among users, its users are represented as social net-
works. The users are linked based on their exchange of information and then social
network analysis measurements are applied to interpret the creation of those con-
nections between them. Another recommender system for links in a social network
is presented in [9]. The authors investigate the problem of link recommendation in
Web log based social networks and describe an annotated graph-based representa-
tion for such networks. Structural features of individual vertices and joint features
of the start and end points of a candidate link are analyzed to create recommenda-
tions for new links. Another recommender system for products in [17] benefits from
link analysis. The data obtained, from the users past acquisitions, are projected into
a bipartite network, where a connection between the two layers is created whenever
a user buys a certain item. After a diffusion process, the system outputs a value for
each item, indicating how close is that item to the target user and, thus recommends
the higher valued ones. The role of explicit social relations in recommender systems,
i.e., how user preferences or ratings correlate with those of their friends and how to
use these correlations to increase the quality of recommendations, is presented in
[8]. The authors propose an algorithmic framework that bases recommendations on
the user’s own preferences, the general acceptance of the target item and the opin-
ions from his/her friends in the social network. Social networks analysis leads to
better understanding of user behaviors and ratings, and under the assumption that
friendship between users indicates common interests and preferences, alleviates the
cold-start problem.

Based on social network analysis, new friends or new professional contacts can
be recommended. Merging social network analysis and data mining has proved to
increase the quality of the data and as a result the efficiency of the recommender
systems.

3 Proposed Framework

3.1 Data Collection and Pre-process

The required data to work with the proposed framework are the Web pages that
have been accessed by each user. These pages can be collected using the SNMP
protocol, with applications that monitor the traffic on a network such as tcpdump,
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Table 1 Sample data from the ISA proxy server logs

#Fields: c-ip Date Time r-host r-ip GMT time

192.168.1.61 09/28/2010 10:22:22 static-0.farmville.com 192.168.8.10 09/28/10 10:22 AM

192.168.1.66 09/28/2010 10:22:22 www.google.gr 192.168.8.10 09/28/10 10:22 AM

192.168.1.66 09/28/2010 10:22:23 www.google.gr 66.249.92.104 09/28/10 10:22 AM

192.168.1.66 09/28/2010 10:22:23 clients1.google.gr 192.168.8.10 09/28/10 10:22 AM

192.168.1.66 09/28/2010 10:22:23 www.google.gr 66.249.92.104 09/28/10 10:22 AM

192.168.1.66 09/28/2010 10:22:23 clients1.google.gr 209.85.229.100 09/28/10 10:22 AM

192.168.1.59 09/28/2010 10:22:23 swupmf.adobe.com 192.168.8.10 09/28/10 10:22 AM

192.168.1.61 09/28/2010 10:22:25 fb-tc-2.farmville.com 204.236.227.41 09/28/10 10:22 AM

192.168.0.95 09/28/2010 10:22:25 live24.gr 192.168.8.10 09/28/10 10:22 AM

192.168.0.95 09/28/2010 10:22:25 live24.gr 192.168.8.10 09/28/10 10:22 AM

192.168.0.95 09/28/2010 10:22:26 live24.gr 70.84.186.50 09/28/10 10:22 AM

argus, mrtg, ethereal and other packages or logged information from Web and proxy
servers. Initially, a data set is collected covering a small period of time, e.g., a few
hours, and consequently this data set is extended to several days of network traffic.

Data pre-process is a necessary process to improve the quality of the data and
as a consequence the results of link analysis and data mining [7]. The input in this
stage is the previously mentioned data while the output is data sets containing only
the necessary data for the link and data analysis processes to follow. The different
steps of the data pre-process stage can be summarized to data cleaning, data in-
tegration, data transformation and data reduction. Data cleaning attempts to correct
incomplete, noisy and inconsistent data. Data integration then merges data from var-
ious sources, since network traffic can be recorded into flat files and database tables,
while transformation brings them to the appropriate format for analysis and min-
ing to be performed by the software tools. The data is then reduced, replacing each
Web page with a numeric value, making it is easier to handle and less demanding in
storage.

The format of the data contained in Web logs is shown in Table 1, where a sample
of real usage data is listed, captured by a proxy server; no pre-processing techniques
have been applied yet. Whenever an HTTP request is made, either implicit or ex-
plicit, a new row is added. The columns that are necessary for the proposed frame-
work are c-ip, the IP address of the requesting client, r-host, the Web page that was
requested, and the dimension of time that is contained in GMT-Time, the time stamp
of the request. The remaining columns are redundant and they are removed during
the data integration and reduction, while the final step, data transformation, replaces
each URL with a number resulting to the format shown on Table 2.

The main problem with the Web logs is that both proxy servers and browsers
cache Web pages and that the Web browsers automatically request new content in
order to complete the display of a Web page. This results in difficulties to identify
the user and its behavior, in addition to the HTTP protocol that requires a separate

http://static-0.farmville.com
http://www.google.gr
http://www.google.gr
http://clients1.google.gr
http://www.google.gr
http://clients1.google.gr
http://swupmf.adobe.com
http://fb-tc-2.farmville.com
http://live24.gr
http://live24.gr
http://live24.gr
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Table 2 Sample data from
the r-host column Web page ID

www.farmville.com 1

www.google.gr 2

news.google.gr 3

swupmf.adobe.com 4

facebook.farmville.com 5

live24.gr 6

www.logitech.com 7

pmetrics.performancing.com 9

www.bbc.co.uk 11

www.contra.gr 12

lt.andomedia.com 13

english.aljazeera.net 14

www.adman.gr 1

connection for every requested file. There are processes available to overcome these
problems presented at [6] aiming to user and session identification and including
user path completion and formatting. The pre-processing to be performed depends
on the actual data that are considered adequate in order to identify the user’s be-
havior. If, for example, a user is accessing paintings on a Web site, the jpg or gif
requests should not be removed but in all other cases they would be removed as
automatic requests of the browser to complete the display of the Web page.

3.2 Social Network Construction and Analysis

The next stage of the proposed method is to construct the social networks of the
Web pages and then their analysis is following. The social networks are composed
of nodes and links. These nodes relate with other nodes through their links. The links
can have a direction; the link from node A to B is different from node B to A. A
2-mode network is represented with an incidence matrix, where a value indicates the
presence of a link. The value is a number if the link is weighted or 1 otherwise. This
2-mode network can then be folded to create two 1-mode networks, one for each
dimension. To fold a network, it is first transposed to the desired dimension and
then multiplied with the initial incidence matrix, resulting to the adjacency matrix.

In our framework, the construction of the 2-mode network begins with a small
data set, a few hours of network traffic. These relational data are used to create the
incidence matrix, which is a |V | by |E| array. The |V | array is the host IP addresses
and the |E| array the Web pages requested, when a host i requests a Web page j the
weight of the link is added to cell ij.

The two-dimension incidence matrices will be folded into both dimensions to
form two 1-mode networks, with the respective adjacency matrices. The result of

http://www.farmville.com
http://www.google.gr
http://news.google.gr
http://swupmf.adobe.com
http://facebook.farmville.com
http://live24.gr
http://www.logitech.com
http://pmetrics.performancing.com
http://www.bbc.co.uk
http://www.contra.gr
http://lt.andomedia.com
http://english.aljazeera.net
http://www.adman.gr
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the |V | × |E| folding will be the |V | × |V | and |E| × |E| arrays, where each cell
contains the weight between vi and vj , ei and ej , respectively.

The analysis of the two 1-mode networks aims to the identification of impor-
tant nodes in each network, meaning important users and Web sites. To measure
importance the degree, closeness, eigenvector and betweenness centrality will be
measured.

The degree centrality is the number of links that a node has and is distinguished
into in an out degree, when the links are directed to or from the node, respectively. In
our case, the constructed network is undirected, so there is no need to distinguish the
in from the out degree; the total degree centrality of the nodes will be measured. Let
G = (V ,E) be the graph representation of a square network and a node v. The Total
Degree Centrality of node v = deg/2 ∗ (|V | − 1), where deg = card{v ∈ V |(v,u) ∈
E ∨ (u, y) ∈ E} [15]. A node with high degree centrality is well connected node and
can potentially directly influence many other nodes [3].

Closeness centrality is the average geodesic distance of a node from all other
nodes in the network, where geodesic distance is the length of the shortest path
between two nodes. Let G = (V ,E) be the graph representation of a square network,
then the closeness centrality of a node v ∈ V is v = (|V | − 1)/dist, where dist =∑

dG(v, i), i ∈ V , if every node is reachable from v and v = |V | if some node is
not reachable from v ([11] as cited in [5]). The closest a node is to others, the fastest
its access to information and influence to others [10].

Another measurement that is used to identify important nodes is betweenness
centrality, which is defined for a node v, as the percentage of shortest paths, be-
tween node pairs, that pass through v. Let G = (V ,E) be the graph representa-
tion of a symmetric network. Let n = |V | and a node v ∈ V . For (u,w) ∈ V × V ,
let nG(u,w) be the number of geodesics in G from u to w. If (u,w) ∈ E, then
set nG(u,w) = 1. Now, let S = (u,w)V × V |dG(u,w) = d(u, y) + d(v,w) and let
between = ∑

(nG(u, v) × nG(v,w))/nG(u,w), (u,w ∈ S), then the betweenness
centrality of node v = between/((n − 1)(n − 2)/2) ([11], as cited in [5]). A node
with high betweenness is important because it connects many nodes and a possible
removal would affect the network.

The last node level measurement that is applied is the eigenvector centrality. It is
a measure of the node’s connections with other highly connected nodes. It calculates
the eigenvector of the largest positive eigenvalue of the adjacency matrix representa-
tion of the square network. To compute the eigenvalues and vectors a Jacobi method
is used ([2], as cited in [5]). The nodes with high eigenvector centrality can mobilize
other important nodes [10].

Apart from the node level measurements it is important to analyze the networks,
from a network level perspective. The measurements that are applied in the pro-
posed framework are density, fragmentation, component count, isolate count. These
measurements are very useful as they describe the network as a whole [5], which in
combination with the node level measurements provide us comprehensive informa-
tion about the networks’ cohesion.

Fragmentation measures the proportion of the network’s nodes that are dis-
connected. Let an undirected network, G = (V ,E) with n = |V | and sk be the
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Fig. 2 Visualization of the host IP address 1-mode network

number of nodes in the kth component of G, 1 ≤ k ≤ n, then Fragmentation =
1 − (

∑
sk(sk − 1))/n(n − 1) ([3], as cited in [5]).

Density is the ration of the number of links, existing on a network, versus the
maximum possible ones. For a network with adjacency matrix M and dimensions
m × n, the density is calculated by the form Density = sum(M)/(m ∗ (m − 1)), if
the network is unimodal and Density = sum(M)/(m ∗ n), if the network is bimodal
the Density = sum(M)/(m ∗ n) ([15], as cited in [5]).

In addition to the above-mentioned measurements, visualization of the social net-
works can also assist in the identification of important actors. In Fig. 2 an 1-mode
network is presented, where the nodes are the host IP addresses and the links be-
tween them indicate how they are connected to each other. Even though the number
of links and actors is rather big, and thus the network very complex, nodes with high
centrality can be identified, as well observations on the networks structure can be
drawn. Most social network analysis tools support isolating part of the network or
zooming into it, facilitating their detailed analysis.

Following the identification of important nodes in the networks, the proposed
framework continues with the removal of the top valued ones. The nodes are sorted
with descending order and we start removing the top nodes one-by-one, repeating
the measurements after each removal. This process is repeated for each measure-
ment and it aims to observe how the network is affected from the removal of each
node. The removal of a node is an exogenous impact, a shock for the network,
whose results to the network’s dynamics and cohesion are observed. A network
may remain stable, which means that the links between the nodes do not change, or
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Fig. 3 Total degree centrality of host IP 1-mode network, 24 hours

mutate, meaning that an evolutionary process is initiated [12], or its cohesion may
change by increasing the network’s fragmentation and components [4].

The next phase in the proposed framework is to extend the data collection to
the period of one day. This data set is divided to characteristic time periods and is
further analyzed, repeating the measurements previously presented.

The data set is divided to twenty-four subsets, one for each hour of the day.
The node and network level measurements are calculated for each network and the
results are compared in the dimension of time to identify its dynamics, whether
it is stable or not, whether it remains coherent or not. Drastic changes are ob-
vious in social networks, whilst small are difficult to detect. This makes Cumu-
lative Sum (CUSUM) Control charts suitable for social networks, as they per-
form well in detecting small changes over time and also provide detection of the
point the change occurred [12]. The CUSUM control chart compares sequentially
the statistic Ct against a decision interval until Ct > A′. Since one is not inter-
ested in concluding that the network process is unchanged, the cumulative statis-
tic is C+

t = max{0,Zt − k + C+
t−1}. The Exponentially-weighted Moving Average

(EWMA) control chart and moving window analysis are also applicable, but in the
proposed framework only CUSUM control charts are generated.

The analysis of a network on the time domain, may lead to erroneous conclusions
because of periodicity. For example, a company meeting scheduled to take place at
a specific day and time, every week, could mislead the analysis to identify a shock
at that network. In the proposed framework the process to identify and handle pe-
riodicity analyzed in [12], is used, applying spectral analysis to the network’s data
on the dimension of time. For example, in Fig. 3 the measurements performed on
the host IP 1-mode network for the time period of one day are presented. The x-axis
shows the time domain and the y-axis the total degree centrality measured. Each date
series corresponds to one node (host IP address). Some nodes’ measurement oscil-
lates during the day, though most of them remain stable. An interesting observation
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is that the curve identified between 10:00 and 11:00 could possibly be interpreted as
a shock of the network. Spectral analysis could possibly reveal that this is a periodic
event e.g., a meeting or systems maintenance, and thus avoid erroneous conclusions.

In continuance, the same data set is divided into two subsets, working hours
and not-working hours, and the same analysis is applied. Finally, the same process
is followed after dividing the data into four subsets, the working hours split into
two and the non-working hours split into two other subsets. To conclude, the data
collected are extended to six days and the same procedure is repeated. The output
of this analysis helps us determine the cohesion and stability of the data. Patterns
or specific time periods might need to be taken into account while mining for the
association rules.

3.3 Data Mining

In this section the data mining techniques that are applied to the dataset are de-
scribed. Depending on the results of the social network analysis, on the network’s
stability or patterns of usage, the logs can be divided by day or by specific time pe-
riods and the data mining process can be repeated to each one of these subsets. The
process starts with the preprocessing of the data, continues with the identification of
the frequent item sets and then the association rules mining algorithms are applied.

The transactional data, as previously prepared and used so far are in a multi-
instance format as shown in Table 3(a). In order to apply the data mining algorithms
they need to be transformed to the single-instance format of Table 3(a). The multi-
instance data set is the output of the pre-processing phase in the previous stage
and is appropriate for the construction of the social networks. For the data mining
algorithms the data should be transformed to single-instance transactional data. In
this form, each row has an ID which in this case is the requesting host IP address, in
the left column, and in the right column the Web pages accessed from this host are
listed. This format is common in “market basket analysis” where products or items
that are frequently purchased together are mined.

An itemset in this case is a set of Web pages. An itemset containing k items is a
k-itemset, which has a support count that equals to the number of its occurrences in
the transactions data set. When an itemset satisfies a minimum support count thresh-
old, it is a frequent itemset, denoted by Lk. The mining of the frequent itemsets can
be performed applying Apriori or FP-Growth algorithms. Apriori is a seminal al-
gorithm that scans the data set to find frequent 1-itemsets and then joins them to
generate candidate 2-itemsets. These candidate itemsets are evaluated by scanning
again the data set and the iterations continue finding (k + 1)-itemsets from previ-
ously known k-itemsets. The drawbacks of this process are that a huge amount of
candidate sets may be generated and the cost in terms of the repeated transactions
while scanning the database [7, 16].

In the proposed framework, the FP-Growth algorithm was selected, as it is faster
than Apriori and is more appropriate for large data sets. The algorithm applies a
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Table 3 Instances and transactional data

(a) Multi-instance vs. single-instance

IP Web page

IP B 40

IP C 138

IP C 139

IP C 140

IP D 138

IP D 139

IP D 145

(b) Transactional data

IP Web page

IP B 40

IP C 138,139,140

IP D 138,139,145

divide-and-conquer approach which consists of two steps, the FP-tree construction
and the mining of the frequent itemset. To construct the FP- tree, a “null” root node
is created and then the data set is scanned to obtain a list of frequent items. These
are ordered in descending order based on their support. Using this order, the items in
each transaction of the data set are reordered, while each node n in the FP-tree rep-
resents a unique itemset X. All the nodes have a counter indicating the transactions
that share the node, except for the root node. The algorithm scans the items in each
transaction, it searches the already existing nodes in FP-tree and if a representative
node exists the counter of the node is incremented by 1, else, a new node is created.
The support of each item is stored in a header table, while the same table is used
for each item to point to its occurrences in the tree. This way the problem of min-
ing large data sets for frequent patterns, has transformed to the mining of the FP-
tree. The FP-tree mining starts from each frequent pattern of length-1 (initial suffix),
constructing its conditional pattern base (the set of prefix paths in the FP-tree co-
occurring with the suffix pattern), then constructs its conditional FP-tree and mines
recursively this tree. The pattern growth is achieved concatenating the suffix pattern
with the frequent patterns generated from the conditional FP-tree [7]. In Table 4, a
sample of frequent itemsets as the result of the application of FP-Growth algorithm
is presented. Interpreting these data we conclude that Web pages 2 and 20 are both
requested by users, with a frequency of 6.7 %, in the mined data set.

The above-mentioned algorithms provide us with a set of frequent itemsets,
which will be used as input for the association rules mining algorithm. An asso-
ciation rule is an expression A ⇒ B , where A and B are itemsets of Web pages.
This rule is translated in if a host requested the Web pages of A, then he/she will
also request the Web pages of B itemset. The support of rule is represented by
support(A ⇒ B) = support(A ∪ B) and it is defined as the percentage of the trans-
actions in which this association rule appears, while the confidence of the associa-
tion rule, confidence(A ⇒ B) = support(A ∪ B)/support(A), is again a percentage
that indicates the conditional probability that a transaction containing A will also
contain B . The higher the support value and confidence is, the stronger the rule is.
Both measurements have to satisfy the thresholds that are set previously from the
analyst [16].
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Table 4 Sample frequent
itemsets Size Support count Items

2 0.280 2 3

2 0.082 2 15

2 0.056 2 31

2 0.067 2 20

2 0.086 139 110

2 0.082 140 110

2 0.052 20 23

3 0.082 2 3 15

3 0.052 2 3 31

3 0.082 139 140 110

4 0.082 138 139 140 110

The association rules are then subject to correlation analysis, since rules with
high support and confidence values may sometimes be misleading. In the proposed
framework the lift correlation measure is calculated for each of the resulting as-
sociation rules. Let an association rule A ⇒ B , the lift corresponds to lift(A ⇒
B) = P(B|A)/P (B), or lift(A ⇒ B) = confidence(A ⇒ B)/sup(B). The numera-
tor is the likelihood of a host requesting both, while the denominator is what the
likelihood would have been if the two visits were completely independent. Values
greater than one indicate positive correlation between the two itemsets, values less
than one indicate negative correlation and values equal to one indicate independence
of A and B [7]. Correlation analysis will output A ⇒ B [support, confidence. Lift]
strong association rules to be used for the recommendation engine.

A sample of association rules is presented in Table 5, after the application of the
measurements previously analyzed. The second row, for example, is interpreted as
if a user requested Web page 140, he will also request Web page 139. This browsing
behavior appears in 13 % of the data set transactions, i.e. user requests and the con-
ditional probability that a user having requested 140 will also request 139, is 97 %.
In addition, the lift value indicates positive correlation between the two itemsets as
its value is greater than 1.

Table 5 Sample association rules

Antecedent Consequent Support Confidence Lift

2 3 0,280 0,940 3,350

140 139 0,130 0,970 7,660

140 139 138 0,130 0,970 7,660

3 20 2 15 0,070 0,084 8,370

138 110 0,090 0,840 8,470
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Table 6 Sample association rules grouping

No Antecedent Consequent

1 2 ⇒ 3

2 15 ⇒ 2 15 23

3 15 ⇒ 2 20

4 15 ⇒ 2 23

5 15 ⇒ 2 110

6 20 ⇒ 2 164

7 20 ⇒ 2 110 164

8 2 15 ⇒ 3

9 2 15 ⇒ 3 20

10 2 15 ⇒ 3 20 23

11 2 15 ⇒ 3 23

12 2 3 15 ⇒ 20

13 2 3 15 ⇒ 20 23

4 Prototype

In this section the preparation of the system prototype is presented. The association
rules produced from the data mining process are used for the construction of the
recommender system. The association rules whose lift is less than 1 or 1, are dis-
carded as these values indicate negative correlation or independence of the itemsets,
respectively. From those with lift value greater than 1, some will be selected based
on their support or confidence. High support indicates that the rule appears often in
the transactions data set, and high confidence indicates increased probability for the
consequent of the rule to appear together with the antecedent. All association rules
that satisfy the support and confidence thresholds that were set during the mining
process, they can be used for the recommendation system, but depending on their
values and their total number, the rules may be further filtered to reduce their multi-
tude and keep the strongest ones. For example, if all the rules have high confidence,
then they can be sorted based on their support, to choose the highest valued ones
and discard the others. In this framework we selected the rules with high confidence
since the aim is to provide accurate recommendations to the user. The set of associ-
ation rules that will be finally used for the recommendation engine is then grouped
based on the number of items in their antecedent. The result is a group of rules with
one item in the antecedent, a group with two items and so on. Table 6 illustrates
a sample of grouped association rules ready to be used for the construction of the
recommender system. The one-rule groups are listed first, with their corresponding
consequent, following the two-rule groups and so on.

The recommendation system captures the user’s request, searches the one-item
antecedent for a match and, if found, recommends the items in the consequent col-
umn. When two Web pages accessed by the user are known, it searches the one-item
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Fig. 4 Recommendation algorithm activity diagram

group for the second Web page and in continuance searches the two-items group
for both consequent requests. When no match is found the system erases the user’s
browsing history and starts tracking it again when a match is found. The recommen-
dation algorithm for the proposed framework is illustrated in the activity diagram
of Fig. 4.

Following, the recommender system can be implemented either to run on a Web
or proxy server, or on the client. In the first approach, a database server is also
needed to store the user IP and the respective Web pages accessed as well as the as-
sociation rules. In the second approach which was chosen for the system prototype,
there is no need to track the different users, but the recommendation engine and the
association rules need to be installed on each host.

The proposed framework was applied to real data collected through the log of a
Microsoft ISA server used for Internet access from an organization of 250 employ-
ees.

The recommender system was implemented as an extension for the Google
Chrome Web browser, using JavaScript and the Chrome API. The extension’s ar-
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Fig. 5 System prototype
architecture

chitecture is depicted in Fig. 5 and has four main components:

1. manifest.json: contains the necessary information for the installation of the ex-
tension.

2. contentscript.js: gets loaded when a new browser window or tab opens and gets
executed each time a request is performed.

3. backgroundpage.html: runs in the background and implements the recommenda-
tion engine.

4. popup.html: pops up when the user clicks on the extension’s icon and displays
the recommendations.

The above components can be installed in a single directory and then a browser
action icon is displayed. When a user opens the Web browser the contentscript.js is
loaded and executed each time a URL is requested. It sends a message to the back-
ground.html page calling a Chrome API function. The background.html page has a
listener that waits for messages from the content script. When the message is re-
ceived the listener calls a JavaScript function that implements the recommendation
algorithm. It then captures the requested URL and searches in the antecedent of the
rule, and if the URL is found then it recommends the consequent of the association
rule. This process runs in the background and when the user wants to present the rec-
ommendations, he/she just clicks on the browser action icon causing the popup.html
to pop up and present the recommended URLs. At the top-right of Fig. 6, two rec-
ommended URLs are presented in the popup window and by choosing one of them
the referencing Web page opens in a new tab. The popup.html is an HTML page, so
it is easy to be extended or further formatted, adding CSS, JavaScript, etc.

The application runs only in the user’s browser and monitors only the user’s
usage data, so there is no need to distinguish between different users as in most
recommender systems. It also has the advantage that the user can explicitly enable
or disable the extension, through his Web browser extensions manager and inspect
the underlying code, assuming he/she wishes to. The recommender system captures
only the current requests made by the user and tracks them, stores them, only while
they are found to the association rules antecedent. In any other case they are deleted
and no data are stored locally. The Web browser history also is not accessed at all.
This approach is not expected to raise any privacy issues, as no code is executed in
the foreground or the background, unless the user wishes to. In addition, although
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Fig. 6 Snapshot of the pop-up page

the engine generates recommendations, they are presented to the user only after the
extensions icon, the browser action icon, is clicked.

The association rules are stored in a JavaScript file, rules.js, which can be easily
replaced with an updated one. In this file, two JavaScript arrays are used to store
the antecedent, (left] and consequent (right[]) of the association rules. The recom-
mendation engine searches the left[] array for a match and if found, recommends
the corresponding value of the right[] array. The whole application is of small size,
consumes the minimum resources and can be easily distributed and managed.

5 Discussion

In the proposed framework for developing a recommender system, social network
analysis and data mining algorithms were applied on Web logs, aiming to improve
the quality of Web page recommendations. The Web logs used, provided large
amounts of Web usage data and their preprocessing was based on the techniques
analyzed in [6], overcoming the problems related to proxy server and Web browsers
caching. When the Web browser displayed a cached Web page, e.g., when the user
probably revisited a page or tried to navigate back to a previous page by click-
ing the “Back” button, these pages were not considered relevant. Only the new re-
quests made explicitly by the user were considered relevant, otherwise Web browser
caching was ignored. In addition, a list of suffixes was used for the removal of the
files that were implicitly requested by the browser and did not contribute to the
format of the user browsing usage. Due to proxy server caching, requests possibly
made by different users had the same identifier. The use of cookies or user log-in
[6], were not applicable to the proposed framework, and since these records corre-
sponded to a small portion of the data set, they were finally removed focusing on
the dynamic explicit requests.
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The next stage of the application of social network analysis algorithms revealed
various peculiarities. Centrality measurements were efficient in identifying key
nodes and their behavior, after the networks were exogenously affected. In combina-
tion with network level measurements they provided useful results on the networks
cohesion and dynamics, benefiting the data mining process that followed. This phase
was time demanding, as it included the construction of various social networks, of
both users and Web pages, and their analysis in the time domain. The associations
rules mining algorithms were applied to the data set, based on the results of the
social network analysis, providing strong rules for the recommendation engine.

Related work on hybrid recommender systems, that merges social network anal-
ysis and data mining, constructs social networks of users linking them with the items
of their interest, which are further analyzed to identify groups of people with similar
behavior or interests. Friendship between users is assumed that indicates common
interests, recommending items to a new user based on the items his/her friends have
accessed [1, 8, 9, 13, 17]. The proposed framework differentiates from these ap-
proaches and introduces the novel approach of analyzing the social networks of
users, in conjunction to the social networks of the Web pages. The key Web pages
are identified and the way these networks are formed and evolve is analyzed, aiming
to understand how they relate and affect each other.

In recommender systems up to now there is a common need to create user pro-
files, access the user’s browsing history and store these personal data, in order to
create recommendations. Privacy and security in this way is often affected, while
the problem of effective user identification remains. In this paper, the resulting sys-
tem prototype is a light-weight Web browser extension that implements the recom-
mendation engine. Most popular Web browsers support extensions, so it could be
easily ported to the majority of them. It alleviates privacy issues, since it is enabled
explicitly on user demand and it does not search the Web browsers history but in-
stead captures the Web page requests while enabled. Changing its architecture i.e.,
moving the recommendation engine on a server, could improve scalability and the
performance of the system, as well as add new features as they are presented in the
next section.

6 Conclusions and Future Work

A hybrid method for the construction of a Web page recommender system was pre-
sented that combines social network analysis and data mining to Web usage data
which resulted in the development of a recommender system prototype. The process
starts with the collection of the necessary data from the log files of the Web servers
that host the requested Web pages, or the proxy servers which act as the interme-
diate between the users and the hosting servers or other data sources i.e., network
traffic software that can capture and record the HTTP requests. This process could
be performed either in the boundaries of an organization or in the Internet, having
as output the corresponding log files.
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The framework continues with the phase of data pre-preprocessing, which is crit-
ical for the quality of the data and consequently the results of the social network
analysis and data mining algorithms. The exploitation of various data sources re-
quires their integration, while data reduction and transformation are necessary due
to the logs’ format and the redundancy of data recorded in them.

The data set that results from the previous phase is in the form of multi-instance
transactional data, where each transaction corresponds to a Web request made by a
user either implicitly or explicitly. The specific dataset is used for the construction
of the social networks of hosts and Web pages which are then analyzed calculating
node and network level measurements. The analysis of the networks leads to the
identification of the critical users and Web pages. This is achieved by separating
the data to specific time periods and by analyzing and comparing various combina-
tions of these data sets in the dimension of time. To measure importance, the anal-
ysis emphasizes on centrality measurements, and is combined with network level
measurements, providing the complete description of the networks’ structure and
dynamics. The changes in the networks are detected using Statistical Process Moni-
toring (SPM) control charts e.g., CUSUM charts, and spectral analysis is applied to
avoid erroneous conclusions caused by periodic events of the real world that affect
and are reflected on the social networks.

Based on the results of the previous phase, the data set is divided and data mining
algorithms are applied to mine for association rules. Data pre-processing transforms
the multi-instance transactional data into single-instance, being the appropriate for-
mat for the data mining algorithms. FP-growth algorithm is then applied because of
its performance on large data sets and the output is association rules which indicate
patterns in the users browning behavior. The strongest rules are selected, based on
their support and confidence, followed by correlation analysis to verify the strength
of the rules. These association rules are further processed, by grouping them accord-
ing to the number of items, i.e., Web pages, in their antecedent, and a system proto-
type uses them to create Web page recommendations for the users, to the prototype
respects user’s privacy, has limited non-functional requirements and its maintenance
and extension is very easy. Future work may include the extension of the framework
to include content-based filtering, explicit ratings from the users and classification
of the users according to their usage behavior and preferences. The content-based
filtering techniques can be used to correlate the Web pages already accessed by the
user, with the ones recommended by the system, thus increase the quality of the
recommendation. Additional functionality could be added to the system, enabling
the user to explicitly rate a Web page, benefiting from the advantages of collabora-
tive filtering. A weighted average [14] could be the result of the combination of the
above techniques, enhancing also the quality of the recommendations. The Chrome
extension could also be distributed, through the Google Web Store, gaining users’
feedback from a human computer interaction perspective. The social networks con-
structed by the users and by the Web sites could also be further analyzed to identify
how they influence and affect each other. A step further at the association rules
preparation could be taken, clustering the rules and ranking them based on the con-
fidence of the recommendation and correlating the groups of association rules. The
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rules’ clustering increases the search performance, which could be further exam-
ined in combination with the systems scalability. Software components could also
be added to the system prototype, to support the features proposed above, in addi-
tion with changes in its architecture e.g., by placing the recommendation engine on
a server, in order for the extension to remain light-weighted.

References

1. Baraglia R, Lucchese C, Orlando S, Serrano M, Silvestri F (2006) A privacy preserving web
recommender system. In: Proc. of the 2006 ACM symposium on applied computing

2. Bonacich P (1987) Power and centrality: a family of measures. Am J Sociol 92:1170–1182
3. Borgatti SP (2003) The key player problem. In: Breiger R, Carley K, Pattison P (eds) Dynamic

social network modeling and analysis. National Academy of Sciences Press
4. Borgatti SP (2006) Identifying sets of key players in a network. Comput Math Organ Theory

12(1):21–34
5. Carley KM, Reminga J, Storrick J, Columbus D. ORA user’s guide CMU-ISR-10-120
6. Cooley R, Mobasher B, Srivastava J (1999) Data preparation for mining World Wide Web

browsing patterns. Knowl Inf Syst 1:1
7. Han J, Kamber M (2007) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann,

San Mateo
8. He J, Chu WW (2010) A social network-based recommender system (SNRS). Computer Sci-

ence Department University of California, Los Angeles
9. Hsu WH, King AL, Paradesi MSR, Pydimarri T, Weninger T (2006) Collaborative and struc-

tural recommendation of friends using weblog-based social network analysis. AAAI Spring
Symposium

10. Frantz TL (2008) Annual tools/computational approaches/methods conference, Carnegie Mel-
lon University, March 19

11. Freeman LC (1979) Centrality in social networks I: conceptual clarification. Soc Netw 1:215–
239

12. McCulloh I (2009) Detecting changes in a dynamic social network, March 31 CMU-ISR-09-
104

13. Palau J, Montaner M, Lopez B, Lluis de la Rosa Jo (2004) Collaboration analysis in rec-
ommender systems using social networks. In: Proc. cooperative information agents VIII 8th
international workshop, CIA 2004, Erfurt, Germany, 27–29 September

14. Vozalis E, Margaritis K (2003) Analysis of recommender systems’ algorithms. In: Proc. of the
6th hellenic European conference on computer mathematics & its applications (HERCMA),
Athens, Greece

15. Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge
University Press, Cambridge

16. Xu G, Zhang Y, Li L (2010) Web mining and social networking: techniques and applications,
1st edn. Springer, New York

17. Zanin M, Cano P, Buldu JM, Celma O (2008) Information spread in recommendation systems.
In: Proc. of the workshop Net-Works 2008, Pamplona, 9–11 June, pp 1–4



Evaluation and Development of Data Mining
Tools for Social Network Analysis

Dhiraj Murthy, Alexander Gross, Alexander Takata, and Stephanie Bond

Abstract This chapter reviews existing data mining tools for scraping data from
heterogeneous online social networks. It introduces not only the complexities of
scraping data from these sources (which include diverse data forms), but also
presents currently available tools including their strengths and weaknesses. The
chapter introduces our solution to effectively mining online social networks through
the development of VoyeurServer, a tool we designed which builds upon the open-
source Web-Harvest framework. We have shared details of how VoyeurServer was
developed and how it works so that data mining developers can develop their own
customized data mining solutions built upon the Web-Harvest framework. We con-
clude the chapter with future directions of our data mining project so that developers
can incorporate relevant features into their data mining applications.

Keywords Data mining · Online social networks · Web content extraction ·
Web-Harvest · Network analysis

1 Introduction

The practice of data mining and web-content extraction is an important and grow-
ing field. Many disciplines are looking at ‘big data’ and ways to mine and analyze
this data as the key to solving everything from technical problems to better under-
standing social interactions. For example, large sets of tweets mined from Twitter
have been analyzed to detect natural disasters [3, 8], predict the stock market [1],
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and track the time of our daily rituals [5]. As our use of blogs, social networks,
and social media continues to increase, so does our creation of more web-based hy-
perlinked data. The successful extraction of this web-based data is of considerable
research and commercial value.

Data mining often goes beyond information retrieval, towards a meta-discovery
of structures and entities hidden in seas of data. As our social interactions be-
come increasingly mediated by Internet-based technologies, the potential to use
web-based data for understanding social structures and interactions will continue
to increase.

Online social networks are defined as

web-based services that allow individuals to (1) construct a public or semi-public profile
within a bounded system, (2) articulate a list of other users with whom they share a connec-
tion, and (3) view and traverse their list of connections and those made by others within the
system [2].

Individuals interact within online social networks through portals such as Facebook,
which create social experiences for the user by creating a personalized environment
and interaction space by combining knowledge of one users’ online activity and re-
lationships with information about other networked individuals. It is through data
mining algorithms that Twitter, for example, determines recommendations for users
to follow or topics which may be of potential interest. One way to study social
networks is by examining relationships between users and the attributes of these re-
lationships. However, data on a blog, Facebook, or Twitter is not inherently translat-
able into network-based data. This is where data mining becomes useful. Social net-
works typically only provide individual portal access to one’s egocentric network.
Put in the language of social network analysis (SNA), the visible network is con-
structed in relation to ego (the individual being studied) and relations of ego, known
as ‘alters’, are seen (e.g. Facebook friends). However, in a restricted profile environ-
ment, the alters’ relationships are not revealed. In order to understand network struc-
ture (which is key to a systems perspective), the researcher must use methods like
data mining in order to gather information about all users and interactions by iterat-
ing over the data. A variety of different types of tools have been developed to collect
this web-based information. These tools were created for a wide array of purposes.
The majority of these tools have been commercially released. Some of these tools
can be used to construct profiles of individuals based on data from multiple sources.
Given issues of privacy, ethical uses of these tools should be strictly employed [15].

Despite the existence of a variety of tools, the simplicity and robustness of them
varies widely. There are many types of networks and online communities that could
qualify as a subject of network-based research. Many of these virtual organizations
and networks often share key elements and structures that are common across online
social networks. These could include users, groups, communications, and relation-
ship networks between these entities. Also unlike the simple data that is subject of
most data mining projects, SNA is not merely focused on generating lists of entities
and information. Social networks are more organic in their growth and place em-
phasis on relational attributes. SNA seeks to understand how individuals and groups
within networks (termed ‘cliques’) are connected together.
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The Social Network Innovation Lab (SNIL) is an interdisciplinary research lab
dedicated to understanding online social networks, social media, and cyberinfras-
tructure for virtual organizations. Research at the SNIL often involves the need for
tools that are able to extract social network-based data for analysis from varied on-
line social communities. The SNIL currently has projects which require data mining
of popular microblogging services, shared interest forums and traditional social net-
works. We found that many currently available data mining tools were insufficient
or poorly suited toward applications in social network research. This led us to begin
to investigate the development of our own custom data mining tools. As part of this
project, we researched existing tools, developed a conceptual framework for gen-
eral data mining of online social networks, and tested prototype implementations of
these ideas while acquiring data for use in current ongoing projects.

In this chapter, we will consider a variety of common methodologies and tech-
nologies for generic data mining and web content extraction. We will highlight a
number of features and functionalities we see as key to effective data mining for
social network analysis. We will then review several current data mining software
tools and their fitness for data mining online social networks. The remainder of the
chapter discusses our development of a data-mining framework for online social
networks. Specifically, we introduce our work in extending the Web-Harvest 2.0
framework to data mine online social networks. This is followed by a case study of
some of our initial results to acquire data from an online virtual community orga-
nized around social network technologies. The remaining sections summarize what
we have learned through this process and maps out a course of action for future
developments in this area.

2 Web-Content Extraction Technologies

In online social networking sites, the information and data that constitutes the net-
work and its entities are, by necessity, distributed over a vast array of unique and
dynamically generated page instances. Even when only a basic set of common SNS
features (user profiles, friend lists, discussion boards) are considered, it is easy to
see how the number of pages required to encounter and capture all the activity of the
social network could quickly grow exponentially. In order to study the structure and
operation of virtual communities within social networks, researchers need to parse
and capture this sea of distributed data into formats more appropriate for research
and analysis. In the absence of direct access to the database systems that drive social
networks or a site-provided API, one must utilize other means to capture SNS data
for research.

The majority of information on the Internet is circulated in the form of HTML
content, which wraps information in a nested set of tags that specify how data needs
to be visually rendered in the browser. This is suitable for making data easily read
and understood from the screen or through printing, but not as useful when clean
organized machine-readable datasets are desired. Most online data extraction tools
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take advantage of the fact that the HTML is itself a structured data interchange for-
mat and leverage the HTML format to create parsers, which can extract the simple
content of the page in an organized way while discarding the irrelevant material.
Generally, most online data extraction technologies can be classified into several
categories.

2.1 Formats, Conventions, Utilities, and Languages

Technologies in this class are low-level constructs that often derive from some sort
of published standard grammar. This grammar may then be implemented in whole
or in part by other higher-level technologies. They often simply define a way in
which data can be ordered, searched, manipulated, or transformed. For instance,
the XPath standard defines a format for finding and isolating pieces of information
from a structured XML document. Similarly, regular expressions are a structured
format, which are useful for performing advanced searches and manipulation on
unstructured strings of characters. XSLT is a language defined to assist in the trans-
formation of one type of structured XML document into another (e.g. transforming
an HTML document into a simpler RSS feed or vice-versa). Without well-defined
standards for interacting with various types of data, extraction becomes more dif-
ficult. However, because of the low level nature of these structures, they present
challenges in isolation to when used in advanced extraction projects (without con-
structing a broader framework for their application to a set of data).

2.2 Libraries

Data extraction libraries often perform the job of wrapping one or more lower
level data manipulation/extraction constructs into an organized framework within
the context of a specific programming language. These libraries then manage the
implementation of a given construct within a framework useful for further devel-
opment within a programming language. Development libraries leave the end goals
completely open to the developer. Depending on the time, investment, and goals
of the developer, development libraries can be used to create anything from simple
one-off scripts to high-level applications with many advanced features.

2.3 Web-Based APIs and CLUI

Web-based API and command line user interfaces (CLUI) provide a standardized
abstraction layer to certain sets of web content. These typically wrap development
libraries (with their exact nature dependent on the hosting server and application).
Furthermore, they will generally apply and be structured around the content avail-
able from one data source (e.g. a particular website, web-enabled technology, or ap-
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plication). A prominent example is Google’s OpenSocial API framework [7]. The
OpenSocial API is an open standard for a set of API features specific to social net-
working. Code developed against such frameworks would be potentially adaptable
to any social network using the open standard. Other examples include closed APIs
provided by popular social networking sites including Twitter and Facebook.

2.4 Applications

The vast majority of data extraction solutions take the form of applications. Appli-
cations make use of a large set of extraction technologies and development libraries
and bundle them into an interface designed around a set of desired functionality.
Depending on that set of functionality and the level of expertise expected of the user
by the developer, there can be a wide range of different types of data extraction ap-
plications. These applications range from self-adapting, learning, fully GUI based
extractors for non-technical users to applications for advance data extraction that
require some in-depth knowledge of programming or data extraction utilities. Many
applications fall into this latter category. Some of the most common are Helium
Scraper, Djuggler, Newprosoft, Deixto, and Web Harvest.

2.5 Enterprise Suites

This class of data extraction solutions is characterized by providing very high level,
multi-featured, and advanced software solutions. They are often delivered as a suite
of highly specialized applications. The implementations of these software packages
are usually not open-source (as the code is often developed from proprietary devel-
opment libraries). Like many enterprise solutions, these software products are often
intricately complex and necessitate special training and/or ongoing technical sup-
port from the company itself to effectively use these tools. This support and training
usually is an additional cost beyond the original software license. Though costly,
this support may allow the client to obtain custom solutions to their specific needs
which would be developed for them by corporate developers in response to exact
client needs. Pentaho (http://www.pentaho.com) and QL2 (http://www.ql2.com) are
two examples of enterprise level data extraction and mining solutions.

2.6 Outsourcing, Contracting, and Crowdsourcing

Alternative paradigms that merit mention are outsourcing, crowdsourcing, and free-
lance contracting. In these models, researchers with data needs simply ask one or
many people to help, (usually in exchange for a one-time fee based on delivery of

http://www.pentaho.com
http://www.ql2.com
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the desired data sets). In outsourcing and freelance work, the researcher partners
with a company or individual and explains the data extraction project and agrees
upon a price and timeline for the delivery of the data. Crowdsourcing uses a slightly
different model where a large data mining task might be divided into a large number
of small tasks and a small fee may be offered for the delivery of each incremental
piece of data delivered. Amazon’s Mechanical Turk is a popular platform for stream-
lining this process and has been successfully deployed [13]. Individual micro-tasks
are constructed such as asking someone to record the tags on an online article or
to classify a given webpage. Mechanical Turkers are often offered between 0.01¢
and 0.20¢ for the completion of each microtask. For some researchers, outsourc-
ing works well because the tasks are cost-effectively completed in a short time-
frame [13]. For researchers who do not regularly need to acquire new data, this one-
time fee structure may work well. Crowdsourcing may also be cost- and resource-
effective. This method can bring additional concerns of uncertainty of when the
task will be completed and, more importantly, quality control of data as contribu-
tors usually very highly in terms of quality of work [14]. These approaches do not
represent new technologies for data mining per se, but to illustrate new solutions for
researchers in the absence of tools and expertise for acquiring their own data sets.

3 Considerations for Data Mining of Online Social Networks

The utility of data mining applications for social network research is dependent
on what functionalities are most appropriate to the domain. This section explores
what functionalities are most valuable in social network research. This discussion is
guided and informed by experiences and needs identified through our own research
in the study of life science virtual communities of practice as well as work exploring
health related communication networks on Twitter.

3.1 Input and Output

Data extraction is ultimately about acquiring formatted information from a data
source and then translating, manipulating or filtering this information into other
formats as appropriate to one’s research objectives. In basic online content extrac-
tion, the initial input is often a simple web address of the location of the information
one seeks to capture. The distributed organization of most social networks means
the information you need could be dispersed over a large number of pages. The
URLs for these pages may need to be dynamically generated from one or more lists
of attributes. Furthermore, one will most likely need to extract information from
one location and use the results to identify and locate other pieces of information.
This paradigm is best served by tools which allow for the most possible types of
automated data extraction and manipulations. Data mining tools should be able to
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both read from and output to as many potential data formats as possible. Common
formats most useful within a data mining tool kit include various kinds of struc-
tured text files like HTML/XML, delimited text, spreadsheets, or JSON. Data min-
ing tools can be even more powerful when they include the ability to read and write
to database systems, APIs, or even to have the ability execute local system com-
mands to generate input variables. The power and usability of a tool increases as it
is able to take input and give output in diverse formats.

3.2 Dynamic Query Specification

An important feature to consider when evaluating the utility of a data extraction tool
to one’s research needs is to understand the ways in which the tool allows you to
request and gather information. Many basic data mining applications use a GUI to
allow one to specify the desired extractions. This will always have certain limita-
tions. Other tools use a command-based query language like SQL to scrape data. In
our work with social networks we often need to traverse a list of forum locations,
record all the user names encountered, collect information from each user’s unique
profile page, and then conditionally acquire extra information about certain users (if
they are found in the previous step to have some specific attribute). Queries of this
complexity often cannot be defined as a single request without resorting to multiple
individual queries managed by a researcher. A query of this sort requires grammar
for conditional branching, looping structures, and benefits from the ability to define
functions (as well as local and global variables). Tools that implement full program-
ming logic allow complex, dynamic, and context-aware queries to be defined. All
the entities from a social network could conceivably be acquired via one request.
This frees the researcher from having to micromanage many aspects of a complex
data mining project.

3.3 Social Network Interfacing

Online social networks often recognize the importance of allowing access to their
data. Site developers often provide a programming interface for third parties devel-
opers to create value-added applications leveraging this social data (the use of which
might further enhance participation in the network by its users). These application
programming interfaces (APIs) often provide alternate methods for requesting infor-
mation from a site beyond simply observing the information in situ. For example,
Twitter and Facebook both have well-developed APIs to access vast stores of data.
As opposed to simply requesting a page and extracting data from it, APIs allow de-
velopers to make a special kind of request to the API and return just the raw data one
is looking for. APIs can greatly ease the process of gaining access the information
on a social network. Some of the smaller, less well-known, networks we are study-
ing include API-like features. Data mining tools for the analysis of social networks
benefit greatly if they allow content extraction from common APIs.
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3.4 Job Scheduling

In contrast to many common data mining tasks, social network researchers are more
likely to be interested in near real-time data. Using the methods already described,
one could create a data mining specification which would capture a snapshot of
the activity on a social network at the time the extraction was run. But, what about
the next day or a month later? The constant use and modification of networks by
their user base can cause networks to change greatly in short periods of time. One
could simply capture a snapshot once a month, but these snapshots could contain
large amounts of redundant information. A more robust solution might involve using
programming logic coupled with automated time aware functionality to develop a
data extraction request with the power to detect changes within the source network
and incrementally update itself over time. In addition, a system of this type would
likely require a perpetual extraction process which is able to detect and log changes
periodically, and then call appropriate update scripts autonomously as needed. There
are several key types of job scheduling attributes which could be associated with
data extraction scripts:

Now This option would immediately execute a job. This is the most basic
type of scheduling operation.

Later This option allows a user to schedule jobs at specific times. This could
be useful to extract data from a site during low traffic hours, or for a
situation where it is known that new information will be posted or made
available at a specified times.

Chain The ability to chain tasks would allow one job to be scheduled to start
once another has completed. This is very useful when one data extrac-
tion task is dependent upon the completion of one or more other tasks.
With this option, the whole extraction flow for a complex and self updat-
ing extraction job could be specified in advance and sent to the mining
application as a single project.

Recurring Recurring jobs are valuable in data mining of online social networks.
Social network data presents challenges due to the fact that social net-
works are often in continuous flux. Most research of online social net-
works begins by capturing a snapshot of data as it exists at a specified
point in time. A robust function for recurring data extraction allows re-
searchers greater control over when to update their data and at what
intervals to poll the site for new information.

3.5 Concurrency

Most web-content extraction tools acquire data by creating a virtual agent to make
automated requests from a web host. This is the same way a web browser works.
A browser requests a web site and the host sends a file containing information (i.e. in
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HTML) needed to display the web page. In data mining, this data is simply grabbed
and parsed in a variety of methods to obtain data. Most tools and extraction work-
flow simply utilize one agent to fetch each required page in sequence. For non-
dependent extraction tasks, this process could be streamlined by creating multiple
agents to make multiple concurrent requests to the same web host (for different
information). For large jobs, this feature places a key role in speeding up the ac-
quisition of data, (as these requests are rarely taxing on local hardware or network
speed). Concurrency should be considered a key component of any data mining tool
designed for online social networks.

3.6 Progress Management

Many of the features we have discussed focus on ways to allow for some level of
automation in a data extraction task to be specified in advance (so the researcher is
not required to micromanage the numerous aspects of large and complex extraction
jobs). Usually, the analysis of social networks requires collecting large amounts of
data from a network. In data mining tasks, data extraction is often limited by the
speed that the hosting server allows clients to access data. Aside from concurrency,
there is often little that can be done if the social network you are mining is slow
at returning requested information or is very large. If the network is both, it could
take hours or perhaps days to complete certain data extraction tasks. Our research
often involved extracting information from numerous user profiles and forum pages.
We noticed that although we could not predict when a job would complete, we
could often determine the number of entities that needed to be captured before the
process took place. This helped us realize that if we could also keep track of the
number of completed entity extractions, we would be able to implement a progress
monitor and estimate completion time for all our extraction tasks. We feel this type
of progress tracking and management are important features for the data mining of
online social networks. Wherever possible, extraction tools should attempt to keep
track of the progress of data extraction tasks as well as expected time to completion.
This feature will be of great value to researchers responsible for managing one or
more large data extraction projects by giving them the information they need to
maximize their own productivity and to be prepared in advance as to when data will
be ready for post-hoc processing.

3.7 Extraction Meta-behavior

A natural instinct in the design of data extraction tools for large social networks is
to find ways to acquire the desired data as quickly as possible. Further consideration
reveals an important counter argument to this instinct. The operator of an extrac-
tion process tool might be tempted to create large numbers of page request agents,
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which in turn might generate large amounts of traffic on the hosting site. This not
only is considered bad ‘netiquette’ [11], but has ethical and legal considerations.
If one’s data mining project is part of academic research, the relevant Institutional
Review Board (IRB) should be consulted to confirm ethical compliance with hu-
man subjects. A large volume of page requests with a web host could degrade the
quality of the experience of other users of the site. Also it could result in the web
host banning all requests from your IP address if the host believes your requests
are malicious. Furthermore, many social networking sites have specific policies or
Terms of Service (TOS) in place that would dictate how much data can be requested
per agent. Whenever possible, it is recommend that permission and guidelines be
obtained from the administrators of any site one wishes to extract information from.
It is in the best interest of the data extractor to be responsible and follow any appro-
priate rate-limiting conventions whether explicit, or implicit when extracting data
from a host. Having one’s IP banned from a site could be potentially catastrophic to
a research project. Any data mining toolkit for online social networks should imple-
ment some standard to protect the user, but also provide the ability to create custom
guidelines depending on the known TOS of a web host or for when the user knows
it is acceptable to request large volumes of data. These limits should be able to be
defined in multiple ways by the number of requests per time unit or staying below
some defined throughput or bandwidth measure. The idea is to be able to maximize
program efficiency to acquire data as fast as possible, but not so fast that you may
be garnering ill-will from a network and its users. In other words, data mining so-
cial networks should be—if possible—an open and collaborative process. Often, the
social network being studied will also be interested in research results gained from
the data which was mined.

3.8 Client-Server Paradigm

Extracting data from the web can require significant processing power as well
as bandwidth. Many types of data extraction projects may be ongoing and most
users do not want their computer constantly running potentially resource expensive
scripts. We feel an ideal solution involves tools that use a client server paradigm
(where each user simply submits their jobs to a server for handling). That way, the
designated server can handle all the heavy processing and high data load while the
clients’ machine remains free for use. With robust scheduling, concurrency, and
progress management in place, the server application just needs to notify the client
when the final collected data is available. The use of a client side application gives
a lot of flexibility to the user requesting certain extraction jobs. They can use the
client to log onto the main server and manage all their running jobs regardless of
where they are physically located. The server should provide the client with options
such as checking job progress, creating new jobs, aborting running jobs, changing
scheduling, and changing the extraction specification. Also, this provides the abil-
ity for multiple users with different data extraction needs to utilize one centralized
server.
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4 Review of Existing Data-Mining Tools to Mine Online Social
Networks

Our ultimate goal in this research was to begin development of a custom data mining
solution optimized for extracting information from online social networks. Though
we began the process with the aim of developing a custom built-from-scratch data
extraction toolkit, we decided to first evaluate existing tools. As discussed in the
previous section, we were interested in whether we could incorporate these existing
tools into a hybrid data extraction toolkit which implemented our of functionalities.
In this section, we present this evaluation of common online data extraction tools.
These reviews speak both to a tool’s usefulness in social network research and in
regard to their ability to be used as the basis for a prototype extraction tool. After
the evaluation of several commonly available tools and technologies for online data
extraction, we determined that Web-Harvest 2.0 was an ideal choice for the needs of
our project goals. Among the tools considered were Helium Scraper, Newprosoft,
Happy Harvester, Djuggler, Rapid Miner, Deixto, and Web-Harvest.

4.1 Common Data-Mining Tools

Based on our evaluation it was determined that Helium Scraper, Newprosoft, Happy
Harvester, and Djuggler were all powerful GUI-based scraping applications. How-
ever, these tools also shared the same limitations. All four tools were single operat-
ing system applications that only allow scraper configurations to be defined within
the context of the application. They also have no ability to be controlled or con-
figured from the command-line. Their source code is not open-source and scripts
could not be written against their various executables. When taken in consideration
with our project goals (which would require software modifications for large social
network scrapes to be conducted with minimal impact on the host), it became clear
that these tools could not be leveraged to achieve our desired functionality.

4.2 Rapid Miner

Rapid Miner is one of the leading open-source applications for data mining and ana-
lytics and has been successfully used in data extraction projects [4, 6]. Rapid Miner
was evaluated as a potential fit for our project’s needs. It is open-source, cross-
platform, uses XML-based configuration files, which can be developed through the
interface or written directly, and the code base can be scripted against both in appli-
cation wrapper interfaces as well as from the command line. Though Rapid Miner is
a powerful tool, it has a steep learning curve and includes a large number of features
which would not be needed for our project’s needs. Using Rapid Miner would pre-
vent us from being able to develop a fast lightweight utility in a reasonable amount
of time.
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4.3 DEiXTo

DEiXTo (also known as ΔEiXTo) is another web extraction technology that was
evaluated for our project’s needs [10]. DEiXTo is a single platform GUI-based
web extraction application built on top of an open source Perl-based scraper util-
ity. DEiXTo also uses an XML based configuration language that potentially allows
configurations to be defined outside of the GUI. The Perl module that forms the
backbone of DEiXTo’s extraction technology could also be scripted against on any
operating system or code framework which supports the Perl scripting language.
The DEiXTo file format (.wpf) is obtuse and the documentation is not particularly
accessible. This means that most .wpf files must be developed within the GUI ap-
plication, which is single platform and is not open-source. DEiXTo is also limited
in the ways output can be written only to specific file formats and in specific ways.
While the features and options available in DEiXTo would allow us to accomplish
our project goals, it was determined that tools which were more configurable and
more open (in terms of input and output capabilities) would be better suited to our
project.

4.4 Web-Harvest

Web-Harvest 2.0 is a Java-based open source data extraction tool, which has been
successfully used in the data mining literature [16]. It is a hybrid tool that consists
of a GUI based application wrapped around an open-source Java development li-
brary. This library, in turn, implements several of the most common and powerful
extraction utility formats such as XPath and regular expressions. The Web-Harvest
2.0 platform also defines syntax for defining custom data extraction workflows. This
was ideal for several reasons. First, quick start-up of development was possible us-
ing the features of the graphical user interface to easily debug, learn, and understand
how to develop complex workflows in the Web-Harvest scraper configuration for-
mat. In many ways, defining workflows via this format is better than coding library
solutions that require workflows to be defined in the context of that code base. This
is because the configuration syntax is just a simple standard which can be written
with any text editor. This frees the developer from the additional nuances of any
high-level programming language. Furthermore, once tested, these workflows could
be easily shared with others and passed to the development package, which could
execute the scraper configurations through code. The fact that at the core of Web-
Harvest is an open-source data extraction engine, allowed for our project to wrap
this engine in our own lightweight code. Web-Harvest 2.0 was a good fit because of
its hybrid nature. Most pure application based scrapers are not extendable, and few
define a configuration format (forcing the developer to work within the confines of
what the application allows). Pure development package based extraction tools can
have a steep learning curve and are often difficult to debug. Relying purely on data
extraction utilities and standards like XPath and regular expressions requires that an
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entire framework be built around them in order to execute complex dynamic extrac-
tion workflows. This can be time-consuming and resource intensive. Given the remit
of our project, Web-Harvest served as an ideal solution in terms of features and the
ability to separate between code and UI (which allowed us to quickly develop our
own tools using the Web-Harvest engine). Other tools were not found to efficiently
allow us to work in this way.

5 Extension of Web-Harvest for Data Mining of Online Social
Networks

After a review of existing data mining tools and a consideration of the desired fea-
tures of data mining for online social networks, we decided to develop extensions
and an application wrapper for the open-source Web-Harvest 2.0 data extraction en-
gine to serve as a prototype of a full-fledged social network-centric data extraction
engine. As discussed previously, Web-Harvest features a robust query specification
language with capabilities to import and export data to a number of important for-
mats including MySQL database integration. We sought to add features important
to data extraction for social networks including time-based and repeating jobs, run-
ning multiple jobs simultaneously, client-based process and progress management,
and server-based execution. Our tool adds all of these features by building on top of
the open-source Web-Harvest source code.

5.1 Related Work

As discussed in the previous section, Web-Harvest has been used successfully in
various studies as a basic scraper. One example is Nagel and Duval’s [12] work,
which used Web-Harvest in order to collect large amounts of publication data. For
their study, they required a simple web scraper and used Web-Harvest in its original
form to mine publication data from Springer, an academic publisher. They used the
software to collect data including titles, authors, affiliations, and postal addresses.

Katzdobler and Filho use Web-Harvest extensively [9]. They combined Web-
Harvest with JENA, a tool used to build semantic web applications, as well as an
ontology which described what type of information they wanted to extract. The
JENA API then accesses the ontology and Web-Harvest extracts the information
from the site. However, manual creation of the configuration file and manual startup
of Web-Harvest is needed.

TagCrawler is a program written using Web-Harvest and is one of the few cases
of Web-Harvest being directly extended [17]. The creators of TagCrawler required
a web crawling tool which would be able to retrieve information from tagging com-
munities. While the end goal of the project was not related to our project, their use
of Web-Harvest as a base and building from it illustrates that this can be a successful
model.
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5.2 Voyeur Server Project

Our project, ‘VoyeurServer’, uses Web-Harvest’s existing functionality, but adds
several layers of additional features. The features we identified in Sect. 3 served as
a guide to our development efforts. By extending the Web-Harvest core framework,
we were afforded the opportunity to discard the overhead of a GUI in favor of a
lightweight command-line interface implemented with a client-server pattern. We
were also freed from the limitations placed on the extraction engine by the GUI. We
were also able to take advantage of the Java programming language to develop our
own features not present in the GUI or the engine itself.

5.2.1 Structure

The implementation of this project using the client-server paradigm required that we
split the functionality for extraction into two applications: the VoyeurServer and the
VoyeurClient. The latter was developed as a lightweight command line interface to
provide users a way to submit and control their individual data extraction projects.
It is through the VoyeurClient that users can submit their extraction jobs, manage
the job’s behavior, as well as monitor the progress of all their running jobs. The
VoyeurServer application was designed to run continuously on a special server and
to respond to requests from VoyeurClient instances. When the server receives a job
from a client, the server creates an instance of the Web-Harvest 2.0 extraction engine
in its own thread, and manages the execution of the job as directed by users’ inter-
action with the client. Figure 1 shows the relationships and flow of communication
between these program entities.

5.2.2 Functionality

In addition to the ability to submit and manage multiple simultaneous extractions,
we also sought to develop a set to features to allow for the smart management of
extraction behavior and management of job progress (important functions outlined
in Sect. 3). The ability to control and manage this behavior was incorporated into
the VoyeurClient and VoyeurServer applications.

5.2.3 Temporal Control

The ability to control the temporal execution of job and recurrent behavior is one of
the key features we identified for social network-aware data-extraction. This control
allows users to create self-updating scripts as well as control how and when indi-
vidual jobs will be run. Taking a cue from modern calendar systems, VoyeurServer
was designed to allow jobs to defined as a single event or as a repeating process to
be executed in an ongoing manner.
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Fig. 1 Schematic of data flow in VoyeurServer

5.2.4 Process Management

VoyeurServer users retain full control over their running and completed jobs. There
is some danger that clients might feel they have lost control once their jobs were
submitted to the server. In order to combat this, the VoyeurClient provides users
with complete control over their running jobs at all times. This functionality includes
the ability of users to start, stop, or pause as job at any point during its execution.
Additionally users are given the ability to alter or remove a jobs repeating behavior
at any time.

5.2.5 Progress Management

The ability to view and manage the progress of ongoing scrapes is an important fea-
ture for users managing large and complex data extraction jobs within online social
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networks. In order to add this functionality to the existing Web-Harvest extraction
framework, we developed an extraction specification template for progress aware
content extraction jobs. This template adds two requirements to any extraction file.
The first requirement is the initial definition of some measure of progress, which is
stored in a special progress management database. The second involves having the
extraction specification itself update this database regularly (based on its ongoing
progress). The addition of these structures to any Web-Harvest extraction speci-
fication file is sufficient to make the job progress-aware within the VoyeurServer
framework. At the user’s request, the VoyeurClient application will request and re-
port this information to the user about their progress-aware jobs. Additionally, this
feature will report on the start time, current running time, and any important log
messages of any running job (regardless of whether it implements the progress-
aware framework).

5.3 Project Summary

There already exist valuable tools which can be modified for many data mining
projects. In our case, we found that Web-Harvest 2.0 already incorporates many of
the basic functionalities identified as important in mining online social networks.
Because the code is open source, we saw Web-Harvest as an ideal place to begin
testing and developing a social network-centric data mining tool. Our development
plan centered on taking the core framework of Web-Harvest 2.0 and wrapping the
code base to extend the application to serve as a multithreaded data extraction engine
(implemented using a client-server interaction paradigm). Once the base extraction
modules were wrapped in this way, we could focus on adding additional manage-
ment features to the wrapper like task scheduling and process/progress management.
Further work to develop and refine these ideas will be important to make this tool
available to the broader data mining community.

6 Experimental Results: A Case Study

We engaged in this exploration of developing data extraction tools better suited to-
wards collecting data for online social networks as part of a NSF funded research
project on Virtual Organization Breeding Environments (NSF grant #1025428). A
key aspect of this project required us to gather large amounts of data from online life
science communities of practice in order to explore the organization and cyberin-
frastructure of virtual communities within these networks. As we collected this data,
we realized there were ways in which the functionality of existing data extraction
tools could be enhanced to streamline our extraction workflows.

The online network we studied had several key features we were interested in
capturing. Specifically, we needed to collect over 200,000 user profiles, over 9,000
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forums, a blogging ecosystem, and a friendship-based social network. This section
details how we were able to use our tool to acquire the information we needed for
our research.

Our needs included capturing information about the users within this community
and their communications with one another. Our eventual goal is to use this data
to study patterns of trust development and of online scientific collaboration. The
community we studied did have an API for requesting information about each user’s
egocentric peer network. However, for all other data we had to rely on traditional
web content extraction methodologies.

We were able to use the Web-Harvest query specification language to develop
separate workflows to collect each type of information (user data including pro-
file information, forum posts, friend networks). Using the features developed in our
VoyeurServer application, we were able to develop a broad automated workflow
to simultaneously collect data from these three key areas (while at the same time
respecting the bandwidth consumption limits agreed upon by communication with
site administrators). Using the workflows and the VoyeurServer tool, we were able
to successfully collect user and post information over the course of a week while
limiting any daily micromanagement of the process. In this regard, our time aware
processes, progress management features, and concurrent extraction jobs were able
to prove themselves successful in application. The flexibility of Web-Harvest’s I/O
framework allowed us to capture data to structured XML as well as directly to a
database simultaneously. In our research, we had previously developed an applica-
tion to assist in the qualitative coding and classification of the community’s data in
this database. Our VoyeurServer content extraction workflows allowed the data to
be integrated directly with our existing downstream research applications. This real-
ized potential represents an extremely powerful and desirable workflow for network
analysis. This experiment also helped identify issues that were not addressed by the
current version of VoyeurServer. Some of these limitations and potential solutions
are discussed in the next section.

7 Future Work

Despite initial success in using Voyeur Server for mining data from online social
networks, there remain further capabilities of Voyeur Server that require further de-
velopment. In Sect. 3, we outlined key features for data mining of online social
networks. Currently, the VoyeurServer extension of Web-Harvest implements these
features at a basic level. Further testing and development would help determine
whether this extension has a future as a general research tool or whether it suggests
that extending Web-Harvest 2.0 is perhaps less preferable than starting from scratch
to develop a data mining toolkit for online social networks. We consider further
work in robust data-extraction tools for social networks to be of the utmost impor-
tance. We are willing to share more details as well as our code upon request to help
further these goals.
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For those considering developing their own custom wrappers for the Web-
Harvest 2.0 extraction engine, we suggest considering these suggestions of extended
functionality:

• Utilize Web-Harvest’s plugin architecture to develop integrated modules for com-
mon social network APIs to ease the process of developing extraction specifica-
tions for complex APIs (especially those requiring authenticated requests).

• Develop custom plugins for common database tasks. VoyeurServer and Web-
Harvest database features rely on raw SQL statements and thus increases the level
of expertise required to develop and implement database functionality.

• Develop a specification file for projects as opposed to per file scrapes. Incorporate
time-aware functions, extraction meta-behavior, and progress monitoring options
into this project specification format. This would allow for integrated individual
workflows for large projects.

• Explore automated concurrency as opposed to having to design your individual
jobs or projects for concurrency. This would help basic users take maximum ad-
vantage of parallel processing possibilities.

Our continued research seeks to address some of the issues and limitations dis-
covered in developing this tool. We seek to further develop VoyeurServer in the
following ways:

• Develop further functionality that allows for higher levels of concurrency.
• Investigate the feasibility of a broad-based public research server providing

network-structured extraction as a service.
• Investigate high per-thread resources. Experience suggests that VoyeurServer is

memory intensive. Our goal would be to reduce the memory overhead to a min-
imum for each running job. This will make running large numbers of jobs for
various projects more efficient.

• Improve the interface for this Web-Harvest extension. Specifically, develop a GUI
for the VoyeurServer client application

We have shared these improvements so that data mining developers can be aware
of issues we currently face and some possible solutions. This will enable designers
and developers to learn from the development challenges we have faced.

8 Conclusion

This chapter has reviewed various data mining tools for scraping data from on-
line social networks. It has highlighted not only the complexities of scraping data
from these sources (which include diverse data forms), but also introduces currently
available tools and the ways in which we have sought to overcome these limita-
tions through extensions to existing software. After reviewing data scraping tools
currently on the market, we developed a tool of our own, VoyeurServer, which
builds upon the Web-Harvest framework. In this chapter, we outlined the challenges
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we faced and our solutions. We also included future directions of our data mining
project. Concrete methods for developers to develop data mining solutions of online
social networks using the Web-Harvest framework are provided.

Although this research is preliminary and its remit has not been to test all the
features we have identified as being important to data mining online social net-
works, our experience in developing the VoyeurServer tools has been positive and
represents what we believe to be an important step towards the further development
of this and/or other data mining tools specifically for online social networks. It is
important to begin developing these domain specific solutions so that good open
source options are available to researchers. Current tools tend to be focused around
the domains of marketing and business knowledge. These types of solutions will
usually fall short for use in academic research. As social networks continue to be-
come increasingly part of our online interactions, methods for data extraction from
these networks will continue to remain important.
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Abstract A challenge facing user generated content systems is vandalism, i.e. edits
that damage content quality. The high visibility and easy access to social networks
makes them popular targets for vandals. Detecting and removing vandalism is crit-
ical for these user generated content systems. Because vandalism can take many
forms, there are many different kinds of features that are potentially useful for de-
tecting it. The complex nature of vandalism, and the large number of potential fea-
tures, make vandalism detection difficult and time consuming for human editors.
Machine learning techniques hold promise for developing accurate, tunable, and
maintainable models that can be incorporated into vandalism detection tools. We
describe a method for training classifiers for vandalism detection that yields classi-
fiers that are more accurate on the PAN 2010 corpus than others previously devel-
oped. Because of the high turnaround in social network systems, it is important for
vandalism detection tools to run in real-time. To this aim, we use feature selection to
find the minimal set of features consistent with high accuracy. In addition, because
some features are more costly to compute than others, we use cost-sensitive feature
selection to reduce the total computational cost of executing our models. In addition
to the features previously used for spam detection, we introduce new features based
on user action histories. The user history features contribute significantly to classi-
fier performance. The approach we use is general and can easily be applied to other
user generated content systems.
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1 Introduction

Wikipedia is an open, collaboratively edited encyclopedia that is a heavily used ref-
erence source on the Internet. High visibility and the simplicity of editing almost any
article have made Wikipedia a popular target for vandals. Maintaining the quality
of information in Wikipedia as well as many other User Generated Content (UGC)
systems requires identifying and removing vandalism.

In general, vandalism is any deliberate attempt to compromise the integrity of
an online source. This covers a broad range of destructive actions such as advertis-
ing, attacks on public figures, contributing misinformation, subtle distortion through
equivocation or exaggeration, phishing, altering the destination of apparently le-
gitimate links, misleading comments on a change, faulty application of markup
text—among many other forms; the range of types of vandalism is quite astonishing
[19, 29].

Many UGC systems, like Wikipedia, rely on extensive manual efforts to com-
bat vandalism. Some automated vandal fighting tools, often in the form of semi-
automated bots, are being used to alleviate this laborious task. More recently,
machine learning based approaches have been proposed [28]. However, a highly
accurate vandalism detection approach that can be applied on the large-scale of
Wikipedia is still missing. A successful approach needs to scale well, be robust in
the face of widely varying levels of user participation and high user turnover—and
should be able to detect vandalism in real-time.

This paper describes a low-cost and highly accurate vandalism detection model
that is practical for real-time applications. This work builds on previous work on
vandalism detection in Wikipedia [21]. While our more general focus is on UGC
systems, we develop the model based on a Wikipedia corpus from the “Uncovering
Plagiarism, Authorship, and Social Software Misuse (PAN)” workshop. This work-
shop has been developing corpora and testing algorithms head-to-head since 2007
and thus provides data and benchmarks for comparing our results. In this work, we
consider all the features used in the PAN competition by the participating teams and
we introduce some new features, mainly user features which account for past user
activity and thereby represent something of the user reputation. We build a classifier
using these features and show that it performs better than prior results in the PAN
competition.

Further, we try to compress the model by learning from the smallest number of
features possible. First, we decrease the feature set by eliminating redundant fea-
tures. Then, we take into account cost of acquisition of features relative to their
individual contribution to the overall performance of the classifier. All the experi-
ments are done based on a MapReduce paradigm, which makes our approach both
efficient and scalable.
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This work makes two important contributions. First, while our specific applica-
tion domain is Wikipedia, the machine learning techniques are focused on lever-
aging low-cost features that can be generally applied to many forms of UGC. The
overall approach is therefore very general and could provide a basis for a wide range
of semi-automated vandalism detection tools. Second, we show the importance of
a valuable set of features related to the ‘reputation’ of the user. By recognizing the
specific value of a reputation function for vandalism detection, we provide a gen-
eral approach for understanding the cost/benefit trade-off of determining reputation.
Further, by illustrating the specific value of these reputation features we raise a crit-
ical challenge for large-scale networked data; What are less expensive techniques
can be devised for determining user reputation from large complex networked data?

This paper is structured in the following way. We begin with a review of the rel-
evant work on vandalism mitigation from both a user and a technical perspective.
Through this we identify a number of persistent challenges for users as well as sets
of features that are commonly used to develop technical solutions for vandalism de-
tection. In subsequent sections we elaborate a relevant set of features, and use those
features to train a classifier that is effective at predicting vandalism. We then apply
lasso to learn a sparse low-cost model whose accuracy is comparable to the original
classification model. We close the paper by considering some applications of the
resulting model and the more general implications of our approach and findings.

2 Background

Vandalism detection has been a concern for Wikipedia since its inception. Van-
dalism in Wikipedia is defined as any addition, removal, or change of content in
a deliberate attempt to compromise the integrity of Wikipedia. According to this
broad definition, vandalism can include spamming, lobbying and destroying the ed-
its of others. Wikipedia relies mostly on its human editors and administrators to
fight vandalism; identifying instances of potential vandalism by reading a diff of
the change and reverting changes that look to be a form of vandalism. But the scale
of Wikipedia makes locating all vandalism very labor intensive. Tools such as Van-
dal Fighter, Huggle, and Twinkle are used to monitor recent changes to articles in
real-time and revert those changes deemed vandalism [14].

In the following we describe two broad approaches to vandal fighting; (a) the
user approach which relies mostly on tools to assist user detection, and (b) more
automated approaches that generally rely on bot or other algorithms.

Viegas et al. [35] conducted some early work on the types of vandalism found
in Wikipedia. They used a visualization technique called “History Flow” to see the
various ways pages were edited and changed over time. In considering these changes
they identified five types of vandalism: Mass Deletion, Offensive Copy, Phony Copy,
Phony Redirection, and Idiosyncratic Copy. They also analyzed the time for repair of
vandalism, which they termed “survival time”. They found that the median survival
time for some vandalism is quite short, on the order of minutes. However, they noted
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that the mean time is skewed long, on the order of days or weeks, depending on the
type of vandalism. This means there is some vandalism that goes undetected for
long periods of time.

In some follow-up work, Priedhorsky et al. [29], considered the impact of a piece
of vandalism. That is, if some vandalism lasts on a site for days, how likely is it
that a user might stumble across that and be misinformed or otherwise get a wrong
impression about the quality of the entire content based on a vandalized page. They
developed a model based on page viewing behaviors and vandalism persistence.
Their model correlates closely with the empirical results from Viegas et al. [35] and
further illustrates that about 11 % of vandalism would last beyond 100 page views,
with a small fraction of a percent lasting beyond 1000 page views.

Priedhorsky et al. [29] also considered the types of vandalism and how likely
users were to agree on the types of vandalism. They began with the vandalism types
from [35] making some small refinements and identified two additional types: Mis-
information, and Partial Delete. They identified the most frequent categories of van-
dalism as Nonsense (Phony Copy) 53 %, Offensive 28 %, Misinformation 20 % and
Partial Delete 14 %. However, they also noted that the rate of agreement among their
users for some categories is somewhat low with Misinformation having the lowest
level of agreement for these top four categories. This means that some of the most
subtle vandalism, in the form of Misinformation, is even hard for users to agree
upon.

In recent work, Geiger & Ribes [14] studied the process of editors who partic-
ipate in “Recent Changes Patrolling” using Huggle. Their study raises some nice
issues about the work to remove vandalism and how it is performed, illustrating
how Wikipedians consider the activities of others when considering a change as po-
tential vandalism. The study is a case study considering when an individual should
be banned from the site for contributing too much content that has been deemed
vandalism. In the case of the decision to ban a vandal, the effort is to understand
whether the activities are intentionally designed to corrupt content and wreak havoc
on the community itself. This work illustrates that there is a fair amount of van-
dalism which is somewhat ‘routine’ but that some is still difficult to detect even
by people who are practiced at looking for vandalism. Another interesting insight
is that most tools that support vandalism rollback do not yet categorize or provide
a prediction rating for the edit being viewed. Most tools simply show the edit, the
prior version, and the IP or username of the editor who made it.

A second set of approaches rely on automated bots and algorithms. This approach
has generated lots of research activity, so we focus on the prior work that is most
related to how we have approached the problem.

Since 2007 automated bots have been widely used to fight vandalism in
Wikipedia. The most prominent of them are ClueBot and VoABotII. Like many van-
dalism detection tools, they use lists of regular expressions and consult databases
with blocked users or IP addresses. The major drawback of these approaches is that
most bots utilize static lists of obscenities and grammatical rules that are hard to
maintain and, with some creativity, can be easily thwarted. A study on performance
analysis of these bots in Wikipedia shows that they can detect about 30 % of the
instances of vandalism [33].
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Several machine learning approaches have recently been proposed that would
improve vandalism detection [10, 18, 27, 33]. Comparing the performance of these
approaches is difficult because of several shortcomings in early vandalism detection
corpora. These early corpora were too small, they failed to account for the true
distribution of vandalism among all edits, and the hand labeling of the examples had
not been double-checked by different annotators. These shortcomings were resolved
by the creation of a large-scale corpus for the PAN 2010 competition consisting of
a week’s worth of Wikipedia edits (PAN-WVC-10) [26].

The PAN 2010 corpus is comprised of 32,452 edits on 28,468 different articles.
It was annotated by 753 annotators recruited from Amazon’s Mechanical Turk, who
cast more than 190,000 votes. Each edit in the corpus was reviewed by a minimum
of three annotators. The annotator agreement was analyzed in order to determine
whether each edit is a regular edit or vandalism, with 2,391 edits deemed to be
vandalism. The corpus is split into a training set and a test set, which have 15,000
and 18,000 edits, respectively [28].

A survey of detecting approaches [28] shows that about 50 features were used by
the 12 different teams. Features are categorized into two broad groups: (1) edit tex-
tual features; (2) edit meta information features. Edit textual features are extracted
based on the text of the edit. Some features in this category are adopted from pre-
vious work on spam detection in emails or blogs. For example, “Longest character
sequence” and “upper case to low case char ratio” are known to be important fea-
tures for spam detection in emails [17].

Traditional spam detection systems for emails mainly rely on textual features
based on the content. Most features show existence of particular words or phrases
[6, 25, 31, 32]. In some cases non-textual features are extracted from meta data. For
example, whether or not a message contains attachments [6].

Edit meta information mainly contains two types of features: user features and
comment features. In Wikipedia when an individual makes an edit, there is the op-
portunity to provide a short comment on the change. As a convention, many editors
will use the comment to briefly explain the rationale for the change or what type
of change is being made. Comment features are extracted based on the comment
related to an edit. Most teams used comment features, but two teams extensively
relied on user features. User features are extracted based on the editing pattern of
the user.

Identifying an editing pattern requires that some amount of state, or history, be
maintained. Some forms of UGC do not maintain history as a function of the sys-
tem design, but in the case of wikis user history is a given. Two teams in the PAN
competition relied on user reputation features extracted from the edit revision his-
tory. Those teams placed second and third in the competition. Other approaches rely
more heavily on a model of user reputation. Adler et al. [4] used WikiTrust to es-
timate user reputation. In their system, users gain reputation when their edits are
preserved and they lose reputation when their edits are reverted or undone [3].

Javanmardi et al. [20] used user reputation features based on the reputation man-
agement system they developed earlier. Compared to [3], the model is simpler and
more efficient. One reason is that it is only based on the stability of inserts. In [3],
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stability of deletes and reverts are also considered. A detailed comparison between
these two approaches are presented in [20].

Potthast et al. [28] combined the predictions submitted by the top 8 teams and
developed a meta classifier based on the predictions. To learn the meta classifier,
they used random forest. This improved the classification performance (ROC-AUC)
of the top team significantly, from 0.91580 to 0.9569. Using a similar approach,
Adler et al. [5] developed a meta classifier based on the predictions of three different
classifiers. To evaluate the meta classifier, they merged train set and test set and
reported ROC-AUC based on 10-fold cross validation. Hence, their results are not
comparable with PAN competition results and our results.

In general, meta classifiers work at a macro level by aggregating results from
different classifiers. However, this makes them even more complex and less practical
for real-time applications. In contrast, in this study we work at the level of individual
features and focus on building accurate classifiers with a minimum set of features.
We show that the classification performance of the compact classifier is comparable
to the meta classifier developed in [28].

3 Feature Extraction

Our feature extraction is based on the complete Wikipedia history dump, released on
Jan, 2010. It turns out that 41 edits in the PAN corpus are missing from the “com-
plete” Wikipedia dump. We use crawler4j [1] to extract the data of these missing
edits. We also used additional Wikipedia SQL dumps to extract users with special
access rights such as administrators and bureaucrats.

Using all these data, we extract 66 features. This feature set includes most of
the features used in the PAN competition by different teams [28]. In addition, we
introduce new features. Table 1 shows the features along with their definitions (note:
each row might represent more than one feature).

We categorize the features into four groups. Similar to [28] we separate edit tex-
tual features and edit meta data features. Since the edit meta data features contains
both user and comment features, we consider them as different groups. In addition,
we add language model features as a new group. These features capture topical
relevance of the inserted or deleted content and are estimated based the language
model of the newly submitted revision and the background. The effectiveness of
using these features for vandalism detection has been studied in [10, 24].

• User Features: We introduce 12 features for each user including statistical and
aggregate features. We calculate these features by mining history revisions up to
time T . For the purpose of this study, we consider T as 2009-11-18 which is the
time-stamp of the earliest edit log in the PAN corpus. Hence, all features in this
category are based solely on history data.

• Textual Features: We have 30 features in this category. Unlike previous work
[28], in this work textual features are calculated not only based on the inserted
content but also based on the deleted content. To distinguish these features we
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Table 1 Feature set descriptions. Features marked with star also are extracted based on insertions
and deletions
Feature Description

User features:
DSR, DDSR, Rep Aggregated features representing a user’s reputation
Ins Words Total number of words inserted by a user
Del Words Total number of words deleted by a user
Lost Words Total number of deleted words from a user
Ins Revision Total number of revisions a user has done insertion in
Del Revision Total number of revisions a user has done deletion in
Ins Page Total number of pages a user has done insertion in
Del Page Total number of pages a user has done deletion in
User Type User has some special rights, such an admin, a bot, or a bureaucrat
User Page User has a user page in Wikipedia

Textual features:
Ins Size Number of inserted words
Del Size Number of deleted words
Revision Size Size difference ratio between the old and the new revision.
Blanking The whole article has been deleted
Internal Links Number of links added to Wikipedia articles
External Links Number of added external links
Word Repetitions Length of the longest word
Char Repetitions Length of the longest repeated char sequence
Compressibility Compression rate of the edit differences
Capitalization∗ Ratio of upper case chars to lower case chars
Capitalization All∗ Ratio of upper case chars to all chars
Digits∗ Ratio of digits to all letters
Special Chars∗ Ratio of non-alphanumeric chars to all chars
Diversity∗ Length of all inserted lines to the (1/number of different chars)
Inserted Words∗ Average term frequency of inserted words
Vulgarism∗ Frequency of vulgar words
Bias∗ Frequency (impact) of biased words
Sex∗ Frequency (impact) of sex related words
Spam∗ Frequency (impact) of spam related words
Pronouns∗ Frequency (impact) of personal pronouns
WP∗ Frequency (impact) of mark up related words
Special Words∗ Aggregation of vulgarism, bias, sex, spam, pronouns, and WP ratios

Meta data features:
Time Diff Time interval between the submission of the old and the new revision
Category If the automatic comment contains “category”
Early Years If the automatic comment contains “early years”
Copyedit If the automatic comment contains “copyedit”
Personal Life If the automatic comment contains “personal life”
Revert If the automatic comment contains “revert”
Revision Ordinal Ordinal of the submitted revision
Length Length of the comment
Reverted If the MD5 digest of new revisions is the same as one of the old ones in

window size of 10

Language model features:
KL Distance Kullback–Leibler distance between the old revision and the new revision
KL Distance Ins Kullback–Leibler distance between the inserted words and the new revision
KL Distance Del Kullback–Leibler distance between the deleted words and the new revision
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use “Ins” and “Del” prefix throughout this paper. For example, Vulgarism shows
the frequency of vulgar words. We expect insertion of vulgar words to be a signal
for vandalism. Conversely, we expect deletion of such words to be a signal for
legitimate edits aiming at removing vandalism.

• Meta Data Features: We have 22 features in this category. Most features are ex-
tracted from the comments associated with the edits. For example, we have simi-
lar textual features as in the previous category but here we extract them based on
the comment. Because of descriptions we do not define them in Table 1. These
features are specified by ∗.

In addition to these, we introduce some new features that we extract from the
automatic comments generated by Wikipedia. These comments specify which
section of the article has been edited. We extract unigram, bigrams, and trigrams
from these types of comments. We use feature selection on PAN train set to extract
the important ones. For example, the short time interval between old and new
revision might be a signal for detecting vandalism.

• Language Model Features: In this category we have 3 features which calculate
the Kullback–Leibler distance (KLD) between two unigram language models.
We calculate KLD between the previous and the new revision [10]. We intro-
duce two more features: the KLD between the inserted content and the previous
revision. Similarly, we calculate the KLD between the deleted content and the
previous revision. Our intuition behind KLD features is that sometimes vandal-
ism comes with some unexpected words so we expect to see sharp changes in the
distance. Conversely, deleting unexpected words can be a signal for legitimate
edits.

4 Learning Vandalism Detection Model

We consider vandalism detection as a binary classification problem. We map each
edit in PAN corpus into a feature vector and learn the labels by mapping feature
vectors onto {0,1}, where 0 denotes legitimate edit, and 1 vandalistic edit. To learn
a classifier and tune its free parameters, we use PAN train set and keep the test set
untouched for final evaluation.

We use different binary classification algorithms which have been widely applied
to spam detection such as Naive Bayes [32], Logistic Regression [9], and SVM [31].
We also use random forests which has been shown to be a very effective binary clas-
sifier [8]. Table 2 shows the classification performance for 3-fold cross validation on
the train set and also on a test set. We use the Java implementation of these binary
classifiers from Weka [16] and tune the free parameters based on cross validation.
Because we use the train set to learn some of the features, and to make our results
comparable to the PAN results, we do not use the test set in any way during train-
ing. The test set is only used to measure classification performance. Here we report
classification performance in terms of area under the ROC curve (ROC-AUC). (The
ROC-AUC metric was used in the PAN 2010 evaluation. Results for area under the
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Table 2 Classification performance for the binary classifiers

Algorithm ROC-AUC (CV) ROC-AUC (Test)

Naive Bayes 0.9482 ± 0.0057 0.9068

Logistic Regression 0.9494 ± 0.0070 0.9128

SVM (LibSVM, RBF Kernel, Gamma = 0.15, c = 11) 0.9537 ± 0.0007 0.9202

Random Forest (1000 trees) 0.9739 ± 0.0024 0.9553

precision-recall curve are similar.) In all our experiments random forests outper-
formed the other classifiers.

4.1 Vandalism Detection Using Random Forest

Random forest is not widely used for spam detection because it is known to be
expensive in terms of time and space [34]. In this section we explain how we can
train random forest classifiers efficiently and gain high classification performance at
the same time.

Statistical analysis of Wikipedia edits show that roughly 7 % of edits are vandal-
istic [20], which is consistent with the vandalism ratio in PAN corpus. Given this,
we need to use machine learning algorithms which are robust to imbalanced data,
such as random forests. In addition, random forests are a suitable option for datasets
with missing data [7]. The PAN data set is an imbalanced dataset and some features
such as the user group features are sometimes missing; For 4 % of users we do not
have any user group information at all. This suggests that a random forest model
could have benefits over other techniques that may not deal as well with imbalanced
data or missing features. One advantage of the ROC-AUC metric is that it is fairly
insensitive to imbalanced data.

To learn a random forest classifier, we need to tune two free parameters: the
number of trees in the model and the random number of features considered in each
split. Our experiments show that classification performance is sensitive to the former
but not to the latter. This result is consistent with Breiman’s observation [7] on the
insensitivity of random forests to the number of features considered in each split.

To tune the number of trees, we partition the train set into three folds and use
3-fold cross validation. Using three folds allowed us to keep a reasonably large
number of vandalized cases in each training set (around 600). To find the optimal
value for the number of trees, we need to sweep a large range of values. Hence, we
need to design an efficient process for this purpose.

For each fold, we create a pool of N = 10,000 trees, each trained on a random
sample of the training data in that fold. Then we use this pool for creating random
forests of different sizes. For example, to create a random forest with 20 trees, we
randomly select 20 trees from this pool of N trees. However, since this random
selection can be done in C(N,20) different ways, each combination may result in
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Fig. 1 The effect of number
of trees on AUC mean and
standard deviation

a different AUC. We repeat the random selection of trees r = 50 times in order to
calculate the mean and variance of the F × r results (where F is the number of
folds).

The advantage of this approach is that we can calculate the mean and variance of
AUC very efficiently for forests with different sizes without the need to train a huge
number of trees. Otherwise, to report the mean and variance of AUC for random
forests of size k = 1 → T , we would need to train r + 2 × r + 3 × r +· · ·+T × r =
r ∗ T (T + 1)/2 trees for each fold, which is 108 trees. Using our approach we only
need to train N trees per fold (in our experiments we used N = 5 × T ).

Figure 1 shows the mean of AUC as a function of number of trees in the model.
As more trees are added to the model, mean of AUC increases and the variance
decreases. The mean of AUC does not improve significantly after more than about
500 trees in the random forest but the variance continues decreasing. It should be
emphasized that models with smaller variance are more stable and therefore more
predictable in test environments. Although more trees may result in slightly better
AUC values, we decide to set the number of trees at 1000 to have a balance between
classification performance and model complexity. More complex models with more
trees would require more time for prediction in a real-time application. Given this,
the AUC on for 3-fold cross validation on the train set is 0.9739±0.0024. The AUC
value on PAN test set is 0.9553. This result is significantly higher than the best AUC
reported to the PAN competition which was 0.9218 [28].

5 Feature Selection

The classifier mentioned in the previous section makes its decision based on 66
features which fall into four logically different groups. However, computing and
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Table 3 The drop in mean
AUC when we eliminate a
feature group. Results on
train set are for 3-fold cross
validation

Dropped group Train set Test set

User −3.8 % −6.6 %

Textual −1.8 % −1.5 %

Meta data −0.4 % −0.3 %

Language model −0.2 % −0.3 %

updating each of these features imposes significant off-line cost at run-time. For
example, computing and updating features in the user group requires the tracking
of all edits done by each individual. Maintaining a system that updates data for
computing these features would come at a cost for the wiki. Some other features
like textual features are computed after submission of a new edit and the vandalism
detection system should be able to compute them in real-time.

In this section, we report the results of our experiments in finding a minimum set
of features whose classification performance is almost as good as the one with all
66 features. In other words, we try to detect and eliminate redundant or unnecessary
features. We consider two types of redundant or unnecessary features: (a) features
that are not informative and do not help in discriminating legitimate and vandalistic
content; (b) features correlated with some other features so that once one of them is
selected, adding others does not add any new discriminating power to the model.

In order to detect and eliminate redundant features, we perform two sets of ex-
periments. First, in Sect. 5.1 we study the contribution of groups of features as a
whole unit to examine if any of the four groups can be eliminated without a sig-
nificant drop in AUC. Then in Sect. 5.2 we study the contribution of each feature
individually and use the results of this analysis to eliminate redundant features.

Given the large number of experiments needed for this study, we use the Amazon
MapReduce cluster to run them in parallel. In our implementation, each mapper
receives specific config information and trains a classifier for that configuration.
Then reducers aggregate the AUC results for different folds and report the mean
AUC for the different configs.

5.1 Eliminating Groups of Features

For each group of features, we train a classifier without the features in that group.
This will show us the drop in AUC when this group is ignored. Table 3 shows the
results. These results indicate that removing features in user group and textual group
results in large drops in AUC, while the drop in AUC for the meta data and the
language model groups is much less.

Based on these results we can not infer that features in the Meta data and LM
group are not informative. The only conclusion is that once we have both user and
textual features in our feature set, adding meta data and language model features
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Table 4 The mean AUC
when we only use features in
one group

Selected group Train set Test set

User 0.9399 0.9225

Textual 0.9001 0.8400

Meta data 0.7019 0.6924

LM 0.7271 0.6986

Baseline (all groups) 0.9739 0.9553

does not add substantial additional discriminating power to the model. Table 4 sup-
ports this interpretation: when we only use meta data or language model features
the AUC value is much higher that of a random classifier (0.50). The single group
of features that results in the highest AUC (0.9399) is the user group.

5.2 Eliminating Individual Features

In Sect. 5.1 we showed that all the four groups contain informative features. In this
section, we attempt to find the smallest feature set whose AUC is comparable to the
AUC of a classifier with 66 features. To this aim we do feature selection.

There are three different approaches for performing feature selection, univariate
feature analysis, wrapper-based methods, and proxy methods [15, 22]. Univariate
feature analysis methods such as Information Gain or Chi-Square evaluate features
independently in order to estimate their importance. Because these methods evaluate
the utility of each feature in isolation, they are unable to detect and benefit from
correlations among the features and often yield unnecessarily large feature sets.

In wrapper-based methods one wraps a feature selection process such as forward
stepwise selection or backwards stepwise elimination around the learning algorithm
that will be used to train the final model so that the feature selection process can find
a small set of features that works well with that learning method. Because the con-
tribution of each feature is evaluated in the context of the other features used in the
model, wrapper-based methods are very effective at eliminating features whose con-
tribution to the model is redundant with other features already in the model, and thus
often yield the smallest feature sets. The main difficulty with the wrapper approach
is that it can be prohibitively expensive to wrap feature selection around expensive
learning methods such as random forests. For this reason, proxy feature selection
methods are often used. In proxy methods, feature selection is performed for a sim-
pler, more computationally tractable model class such as linear or logistic regression
models, and the features found to be most important for the simpler model class is
then used in the more complex, more expensive model class (in this paper random
forests). Because proxy methods do not take the specific learning algorithm into
account, they do not always find as compact a set of features as wrapper methods.
However, in practice there usually is strong overlap between the features that are
best for a simpler model and those that are effective in more complex models, so
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proxy methods often yield feature sets that are almost as small as those returned by
wrapper methods.

Because the model class that appears to perform best on vandalism detection is
computationally expensive (random forests), in this paper we consider only proxy
feature selection methods. We need a feature selection algorithm that is efficient
and which considers correlations between features and is able to detect and elim-
inate redundant features effectively. We use Lasso Logistic Regression (Least Ab-
solute Shrinkage and Selection Operator for Logistic Regression) [13] for this pur-
pose. This fits a regularized logistic regression model to features in such a way that
the final model has a sparse solution in the feature space. Thus, the weight of re-
dundant features in the final model would be zero. It means that we can remove
these features from the model with no significant change in the classification per-
formance. For this, we use the Logistic Regression Lasso implemented in glmnet
package in R [13].

Lasso for logistic regression has a regularization parameter, λ, that is a trade off
between sparsity of the model and its classification performance. Lower values for λ

result in more relaxation of the regularization constraint which allows more features
to have non-zero weights. The R package, glmnet [13], uses regularized maximum
(binomial) likelihood to fit this regularized logistic regression model to the data. The
problem can be formalized by the following:

max
(β0,β)∈Rp+1

[
l(β0, β) − λ‖β‖1

]
(1)

where

l(β0, β) = 1

N

N∑

i=1

yi log
(
p(xi)

)+ (1 − yi) log
(
1 − p(xi)

)
(2)

and

p(xi) = 1

1 + exp(β0 + xT
i β)

(3)

Table 5 shows the features selected for different values of λ. For λ = 0.0716 only
one feature is selected. This means that according to lasso if we want to make the
classification model based on only one feature, “Ins Special Words” would be our
best choice. As we decrease the value of λ, more features are selected according to
their importance. The second most important feature is “DDSR”. The last column in
Table 5 shows the value of the AUC on the PAN test set for classifiers trained on the
selected features. As the number of selected features increases, we see a higher value
for AUC but the cost of computing and updating the features would also increase.1

We use 3-fold cross validation on the PAN train set to pick the largest value for
λ, where the drop in AUC is not statistically significant. The result was λ = 0.0030

1The LASSO method does not necessarily yield a monotonically increasing set of features; it is
possible that as λ is decreased some features that were in the set for larger λs might be removed
from the set as other feature replace them.
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Table 5 Feature selection using lasso. Parameter λ determines a trade off between number of
selected features and AUC of the classifier. Smaller values of λ allow more features be selected
and result in models with higher performance

λ Selected features AUC on PAN test set

0.0716 Ins Special Words 0.5974

0.0594 DDSR, Ins Special Words 0.8614

0.0373 DDSR, Rep, Ins Special Words 0.8965

0.0340 DDSR, Rep, User Page, Ins Digits, Ins Special Words 0.9074

0.0310 DDSR, Rep, User Page, Ins Digits, Ins Vulgarism, Ins Special
Words

0.9090

0.0257 DDSR, User Page, KLDNew2OLD, Ins Digits, Ins Vulgarism,
Ins Special Words

0.9197

.

.

.
.
.
.

.

.

.

0.0030 DDSR, Del Words, User Type, User Page, Copyedit, Personal
Life, Revision Ordinal, Comment Length, KLDNew2OLD,
Blanking, Ins Internal Link, Ins External Link, Longest Inserted
Word, Ins Longest Char Repetitions, Ins Compressibility, Ins
Capitalization, Ins Digits, Ins Special Chars, Ins Vulgarism, Ins
Bias, Ins Sex, Ins Pronouns, Ins WP, Ins Special Words, Del
Bias, Ins Digits, Comment Special Chars Comment Spam

0.9505

.

.

.
.
.
.

.

.

.

which leads to selection of 28 features. Table 5 shows a list of the selected features.
The AUC for this feature set on PAN test set is 0.9505. This feature set only includes
less than half of the original features but the drop in AUC is only 0.005.

In this sparse feature set we have features from all groups. For example, “DDSR”,
“Del Words”, “User Type”, and “User Page” are selected from the user group. If we
follow the Lasso path, features get added and eliminated as λ decreases. For exam-
ple, “Rep” is selected as the third important feature, but because of its correlation
with other selected features it is eliminated from the feature set later. Interestingly,
“Rep” is computationally more expensive than “DDSR”.

We have 17 features from the textual group. These features are also widely used
for spam detection in other domains such as emails or blogs [17]. For example, “Ins
Longest Char Repetitions” shows whether a user has inserted a long sequence of the
same character which can be a good indicator of vandalism. There are also some
textual features which are unique to Wikipedia. For example, “Del Bias” shows that
the user has deleted words which represent bias and therefore is a good indicator of
legitimate edit.

We have 6 features selected from the meta data group. For example, “Comment
Length” or “Comment Special Chars” are selected as important features. “Personal
Life” is another important feature. It shows whether the edit is made in the “Personal
Life” section of a biography article. We have observed that this section of biogra-
phy articles is more often vandalized and therefore this feature can be an important
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signal. This observation is consistent with Wikipedia statistics which shows high
vandalism ratio in biography articles [2]. Given that Wikipedia automatically adds
the name of an edited section to the comment associated to each edit, we can extract
this feature from comments.

The only feature that is selected from the Language Model group is “KLD-
New2OLD”. The goal of this feature is to detect sharp linguistic distance between
the new and the previous revision which can be an important signal for vandalism
detection.

6 Cost Sensitive Feature Selection

In Sect. 5 we focused on features selection in order to find a small subset of avail-
able features that would encapsulate all useful information for the task at hand. This
was useful to eliminate redundant features and increase the interpretability of the se-
lected features. However, in many applications, it is also useful to take into account
the amount of effort required to compute the features. The importance of feature
cost is ignored by many machine learning methods [12].

The general setting of cost sensitive learning is consists of designing classifi-
cation models while taking into account the cost involved in the entire decision
process. This includes the cost of data acquisition, the cost of labeling the train-
ing samples and the cost of making different decision errors [30]. In this work we
focus on the first case where there are different costs to acquire different features.
For example, to calculate value of the feature “Rep” we need to process all history
revisions and track contributions of each individual user; we also need to track how
other users have edited their contributions [20]. Some other features like “Comment
Length” are easier to compute and only need a little light text processing.

To address this issue here we try to take into account the cost of acquiring dif-
ferent groups of features during the learning process. We are interested in cases
where well-performing cheap features are preferred over expensive ones with slight
difference in overall classification results. For this purpose, we study two different
scenarios. In the first scenario features are selected based on their corresponding
costs.

6.1 Cost Sensitive Lasso

In this section we use regularized logistic regression based on lasso to implement
cost sensitive feature selection. Unlike in Sect. 5.2 where we considered a fixed
penalty λ for all features, here we assign higher penalties to the computationally
more expensive features. We use glmnet package in R [13] which allows different
penalties λj for each of the variables via a penalty scaling parameter γj ≥ 0. If
γj > 0, then the penalty applied to βj is λj = λγj . If γj = 0, that variable does not
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Fig. 2 Histogram of cost of acquisition of features

get penalized, and enters the model unrestricted at the first step and remains in the
model. Here we set the values of each γj relative to the cost of acquisition of the
feature; in the previous scenario γj was set to 1 for all the features.

Here the costs assigned to features vary between 1 and 5; 1 is for the least com-
putationally expensive feature and 5 is for the most computationally expensive one.
Figure 2 shows the histogram of cost values in our feature set along with some
examples in each category.

Considering these features’ costs we run lasso for logistic regression. Table 6
shows how features are selected in the lasso path along with the value of AUC. “User
Page” whose cost is 1 is the first feature that is selected. As features are added to
the feature set AUC tends to increase. Seven features were not contributing to AUC
for any value of λ and are left out from Table 6. Note that there is a significant
jump in AUC when “DDSR” is added to the feature set, from 0.8245 to 0.9065.
This feature is among the most computationally expensive features but because of
its importance it has been selected in the first steps of feature selection. This result
is consistent with the results in Table 5 where “DDSR” was selected as the second
most important feature. In that case we assumed similar cost for all the features
while here we assigned high cost to this feature. The fact that this feature is selected
in early in the cost-sensitive feature selection process despite it’s high cost, and the
large gain in AUC, suggests the importance of this user feature.
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Table 6 Cost sensitive feature selection using lasso. Column 4 shows the features selected via
cost-sensitive lasso on the training set and column 5 shows AUC of random forest classifier on the
test data

λ Feature set size Cost Newly selected features AUC on PAN test set

0.0882 1 1 User Page 0.7129

0.0882 2 2 Ins Special Words 0.7581

0.0476 3 1 Revision Ordinal 0.6832

0.0447 4 2 Ins Character Repetition 0.7087

0.0396 5 1 User Type 0.7266

0.0291 6 2 Ins Vulgarism 0.7235

0.0282 7 2 Ins Digits 0.8245

0.0265 8 4 DDSR 0.9065

0.0257 9 2 KL Distance 0.9299

0.0242 10 2 Ins Bias 0.9305
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0.0021 32 2 Del Special Words 0.9486

0.0019 33 3 Ins Revision 0.9516
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0.0014 58 4 Del Words 0.9543

0.0001 59 2 KL Distance Ins 0.9553

After selecting 33 features, AUC is comparable to the AUC of a classifier with
66 features. This means that having about half of the features in the feature set the
classification performance is roughly the same. However, in contrast to Sect. 5.2,
here we are training classifiers using a similar number of features but they are less
computationally expensive features.

6.2 Cost Sensitive Group Lasso

In this section we do cost sensitive feature selection but also take into account the
data sources the features are extracted from. We categorize the features into five
groups; where features in one group are captured in the same way and based on the
same data source. For example, when we process text of history revisions and ex-
tract word ownerships, we have the data to calculate features like “DSR”, “DDSR”,
and “Rep”. In other words, when we pay the cost of processing text of history re-
visions to calculate a feature like “Rep” then the cost of calculating a new feature
like “DSR” will be zero. Group Lasso [23] captures this notion and provides a way
for cost sensitive feature selection. When a feature from a group is selected, other
features of that group will be selected automatically.
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Table 7 Cost sensitive
feature selection using group
lasso

λ Feature set size Selected group AUC

350 1 Group 5 0.7129

330 2 Group 5 + 4 0.7581

300 13 Group 5 + 4 + 1 0.9230

50 45 Group 5 + 4 + 1 + 2 0.9519

10 66 Group 5 + 4 + 1 + 2 + 3 0.9555

We acquire features in five different ways: (1) processing text of all history revi-
sions of articles; (2) processing the text of current revision of articles; (3) processing
meta data of current revision of articles; (4) processing sql dumps; and (5) crawling
Wikipedia user pages. We process the text of history revisions to track contribu-
tions of users in order to acquire some features like “DSR”,“DDSR”, and “Rep”.
For some other features like “Time Diff”, “Category”, or “Comment Length” we
do not need to process the entire history dump and processing the meta data of the
current revisions is enough. We use Wikipedia sql dumps to acquire features like
“User Type”. We also crawl Wikipedia user pages in order to calculate the value of
features like “User Page”.

To be able to incorporate group information into our feature selection process,
we use group lasso as implemented in the package “grplasso” [23] in R. “grplasso”
estimates the weights of a logistic function, considering the group information for
different features. Logistic group lasso estimator β can be computed by the maxi-
mizing the following convex function:

max
(β0,β)∈Rp+1

[

l(β0, β) − λ

G∑

g=1

s(dfg)‖βg‖2

]

(4)

Here, the loss function l is defined as in (2) and βg is the parameter vector corre-
sponding to the gth group of the predictors. The function s(.) is used to rescale the
penalty with respect to the dimensionality of the parameter vector βg , the default

value of which is set to s(dfg) = df
1/2
g to ensure that the penalty term is of the

order of the number of parameters dfg .
Table 7 shows the result. The first group selected is Group 5 which has one fea-

ture “User Page”. Then Group 4 is added which has one feature, “User Type”.
Group 1 is added in the third step which has 10 features. All these three groups
contain user related features. When Group 3 is added we see a significant jump in
the value of AUC, about 16 %. It shows the importance of user group features.

The next group which is selected is group 2 which mostly consists of textual
features. Adding this group, we see some improvements in the AUC. The last se-
lected group is Group 3 which contains meta data features. The small increase in
the value of AUC shows that adding this group of features does not improve AUC
significantly.

According to group lasso, user features are the most important features, confirm-
ing the results of feature selection experiments from the previous sections. Although
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these features are computationally expensive to acquire compared to other features,
they are selected in early steps of the lasso path because of their significant contri-
bution to classification performance. This is very interesting because in traditional
spam detection systems for web content or emails there are generally no user related
features. Maintaining a history of user activity in UGC systems is becoming more
common. Many wikis maintain history which makes computing user features pos-
sible. But that still opens the question of how to maintain user history in a way that
computing user level features is fast and incremental.

7 Discussion and Conclusion

In this paper we described a machine learning approach to detect vandalism in User
Generated Content (UGC) systems. Our corpus is Wikipedia, but the approach is
general and can be applied to many forms of UGC.

Based on the validated corpus of Wikipedia edits from the PAN competition we
trained and tested several binary classifiers using learning methods that have been
widely used for spam detection: Naive Bayes, Logistic Regression, and SVMs. We
also trained models using random forests which have not been widely used for spam
detection. Interestingly the results show that the random forests significantly out-
perform the other three types of classifiers on this problem. An additional benefit
of random forests is that they are robust to missing and unbalanced data which is a
common characteristic of vandalism/spam data sets.

The common practice when training models for spam detection has been to train
the models using all available features. Because our goal is to develop models that
are small and fast enough to be used in a real-time vandalism detection tool, we used
feature selection to eliminate redundant features so that the computational complex-
ity of the final model is as small as possible while retaining high accuracy. Some of
the features that proved to be most informative require mining user action histories.
Computing the value of these features can be expensive. Because of this, we con-
sidered both traditional feature selection, as well as cost sensitive feature selection
that takes into account the cost of acquisition of each feature. We compressed the
learned model by estimating the contribution of different features and feature groups
to the random forest model. Across the four groups of features we found that each
group contained some important features, but the user features representing the his-
tory of user contributions are most important, so we could not ignore this group of
features. This motivated a focus on individual features to determine which specific
features (instead of groups of features) contributed most significantly to the model.
Using lasso, we found a minimum set of features whose classification performance
is almost as good as the one with all 66 features. Furthermore, we did cost sensi-
tive feature selection to force learning to prefer well-performing cheap features over
more expensive features that yield only slight advantage in classification results. In
combination, these techniques help us train a compact, sparse vandalism detection
model that scales well and executes in real-time.
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Using feature selection (lasso), we showed that the compressed model with 28
features has accuracy of 0.9505; which is comparable to the accuracy of the model
with 66 features. Using cost sensitive feature selection (cost sensitive lasso), the ac-
curacy is 0.9493 for a model with 28 features. These features are less expensive to
be acquired compared to the features selected in lasso. Using group lasso we cate-
gorized features based on the source of the acquisition and showed the importance
of each group of features. In one of our recent work, we studied the importance
of each group of features in detecting various type of vandalism. For example, we
showed that for vandalism with the type of misinformation or spam, user features
are the most important features, while for detecting mass delete textual features are
the best features [19].

The methods we use are not specific to wikis and can be applied to other UGC
systems such as blogs, twitter, or social bookmarking systems. The new features we
created such as the user reputation features in form of DDSR and usage of special
characters in the text were some of the most important features in the random forest
model and can be easily extracted in other UGCs. Usage of special characters has
been widely used for spam detection in emails or blog comments, but user features
such as DDSR which measure the survivability of the content contributed by a user,
generally have not been used. This notion of survivability can be translated to other
domains as well. For example, for Twitter we can see how often and how fast a
tweet gets re-tweeted. Similarly, in Facebook, we can look at patterns of sharing
and propagation to measure survivability.

One of the main applications of the methods we develop is for end-user tools
that support vandalism detection and reversion. Few of the tools currently in use
predict which of the viewed edits is (or is not) vandalism. This is because most
predictive models have either been not accurate enough, or have been too slow to
use in real-time. The models developed in this paper are more accurate and faster
than previously developed models for this task.

Another possible application of this work is as part of a change awareness tool.
Most wikis support a watch list. When a user puts a specific wiki page on their per-
sonal watch list they are indicating interest in changes that are made to that page.
When another user changes the page, email is sent to notify everyone who is watch-
ing that page. The amount of email might not be a problem if a user is interested in
only a few pages. However, when a user is interested in many pages this can result
in an unmanageable flood of email. Our model could be incorporated into the watch
list mechanism to allow users to specify a vandalism threshold. That is, a user might
want to set different vandalism thresholds for different pages so that they are alerted
only when the prediction for a change exceeds the specific threshold they set for
that page. This would allow a user to monitor a broader span of pages with reduced
workload.

One open issue in our approach is the initial generation of features. In our specific
application, we were aided by prior work on Wikipedia. We also identified user
features based on user reputation as particularly important for detecting vandalism
and suggested modifications of these for application in blog spam detection and for
detecting interestingness in systems like Twitter [11]. The importance of user history
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features is perhaps not surprising, but raises some challenges for UGC systems. User
level features require the compilation of user action histories. In some systems this is
not kept by default. One impact of our results suggest that systems which currently
do not store user history should reconsider this design decision.

The value of these user level features points out a critical challenge for creating,
managing, and analyzing large-scale networked data. First, social and web networks
provide a broader range of user level features not considered in our model. These
relational features can be considered either individually or in aggregate form. As
participation in a UGC system grows the size and cost of computing those repu-
tation (relational) features will grow. This suggests that low-cost, ego-centric and
incremental approaches to calculating reputation will be valuable. Our approach
provides a technique for analyzing the cost/value trade-off of maintaining user level
features.

Vandalism will continue to be a challenge for all UGC systems. What constitutes
vandalism will always be something that is in the eye of the beholder. As such, the
community of users contributing to UGC systems will always be the final arbiters
of what should stay and what should go. Machine learning-based tools provide a
promising approach that is accurate, tunable, and maintainable for assessing edits in
UGC systems.
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Perspective on Measurement Metrics
for Community Detection Algorithms

Yang Yang, Yizhou Sun, Saurav Pandit, Nitesh V. Chawla, and Jiawei Han

Abstract Community detection or cluster detection in networks is often at the core
of mining network data. Whereas the problem is well-studied, given the scale and
complexity of modern day social networks, detecting “reasonable” communities is
often a hard problem. Since the first use of k-means algorithm in 1960s, many com-
munity detection algorithms have been presented—most of which are developed
with specific goals in mind and the idea of detecting meaningful communities varies
widely from one algorithm to another.

As the number of clustering algorithms grows, so does the number of metrics
on how to measure them. Algorithms are often reduced to optimizing the value of
an objective function such as modularity and internal density. Some of these metrics
rely on ground-truth, some do not. In this chapter we study these algorithms and aim
to find whether these optimization based measurements are consistent with the real
performance of community detection algorithm. Seven representative algorithms
are compared under various performance metrics, and on various real world social
networks.

The difficulties of measuring community detection algorithms are mostly due to
the unavailability of ground-truth information, and then objective functions, such
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as modularity, are used as substitutes. The benchmark networks that simulate real
world networks with planted community structure are introduced to tackle the un-
availability of ground-truth information, however whether the simulation is precise
and useful has not been verified. In this chapter we present the performance of com-
munity detection algorithms on real world networks and their corresponding bench-
mark networks, which are designed to demonstrate the differences between real
world networks and benchmark networks.

Keywords Social network · Community detection · Objective functions ·
Benchmark network · Measurements

1 Introduction

Community detection algorithms attract a great deal of attention from researchers
in computer science [17, 18], especially in the area of data mining, and becoming
more and more important due to the rapid proliferation of social networks, such
as Facebook, the “blogosphere” or even cellular phone communication networks.
However, how to effectively measure the performance of community detection al-
gorithms remains a problem without consensus. Currently many objective functions
are used to evaluate the quality of detected communities, but whether these objective
functions are good approximations of performance are not yet clear. We propose to
compare community detection algorithms under various performance metrics, and
on several social networks to explore whether current objective functions are consis-
tent with the “ground-truth” of social network datasets. Another important purpose
of our survey is to take a closer look at whether a consensus can at all be reached
or whether different community detection algorithms are effective on different net-
works.

In order to conduct appropriate experiments, we divide the community detection
algorithms into two categories based on whether the social network is heterogeneous
or homogeneous. Additionally considering the heuristics or philosophy employed
by community detection algorithms, some of the heuristics could be formalized into
objective functions, e.g. modularity [16, 22] and partition density [1]. Then the clus-
tering problem virtually reduces to by maximizing or minimizing these objective
functions. However in some other algorithms, heuristics are hard to be abstracted by
objective functions, such as RankClus [21].

As for performance metrics, they can also be classified into two categories ac-
cording to whether their evaluations rely on ground-truth or not. We are using the
metrics listed in Table 1, which are used frequently as performance metrics.

Besides those performance metrics we discussed above, Andrea Lancichinetti
et al. [10] proposed to use benchmark networks with built-in communities to evalu-
ate the performance of community detection algorithms, this method is also involved
in our comparisons. Our objective of experiments on benchmark networks is to an-
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Table 1 Performance metrics of community detection algorithms

Metrics Based on ground-
truth

Not based on ground-truth

Rand index Internal density Conductance Cut ratio Modularity

Equation SS+DD
SS+SD+DS+DD

2mk

nk(nk−1)
1 − lk

(2mk+lk )
1 − lk

nk(nk−1)

K∑

k=1
modk /2M

Comments The first character
of each variable
states whether two
nodes are from the
same ground-truth
class, and simi-
larly the second
character of each
variable represents
whether they are
classified together
by the algorithm.

This is the in-
ternal density
of links within
the community
Ck [11].

This is the
fraction of to-
tal edge num-
ber pointing
outside the
community
[11].

This is the
fraction of all
possible edges
leaving the
community
structure [11].

This states the
quality of com-
munities [11].

For all these metrics, high score indicates better quality

swer the question that whether these simulated benchmark networks are reliable to
measure the performance of community detection algorithms.

The remainder of the chapter is organized as follows. We introduce the prelimi-
nary information and related work in Sect. 2. Section 3 discusses our observations
on experimental results collected from small networks. The discussion of large-
scale networks results are presented in Sect. 4. We provide analysis of benchmark
networks in topological perspective, and present associated experimental results in
Sect. 5. The conclusion of our study is drawn in Sect. 6.

2 Related Work

Here we survey related work and discuss preliminary information for our work.

2.1 Community Detection Algorithms

A great deal of work has been devoted to finding communities in networks, and
much of this has been designed to formalizing heuristic that a community is a set of
nodes that has more intra connections than inter connections. The algorithms used in
our survey are selected according to categories described in Sect. 1. We try to select
a set of community detection algorithms, which are comprehensive and representa-
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Table 2 Community detection algorithms

Algorithm RankClus [21] LinkCommunity [1] LineGraph [6]

Formalization Heter Homo Formalization Heter Homo Formalization Heter Homo

Properties No Yes N/A Yes Yes Yes Depends Yes Yes

Algorithm Walktrap [16] SPICi [9] Betweenness [8]

Formalization Heter Homo Formalization Heter Homo Formalization Heter Homo

Properties Yes N/A Yes Yes N/A Yes No Yes Yes

Algorithm K-means [4]

Formalization Heter Homo

Properties Yes No Yes

tive. In our work there are algorithms which can work in heterogeneous networks
(RankClus [21]) and algorithms which are applicable in homogeneous networks
(Betweenness [8]); we also include algorithms that employ objective functions to
guide their clustering (Walktrap [16]) and algorithms that do not use objective func-
tions (RankClus [21]). Some of algorithms are agglomerative (Walktrap), and some
of them are divisive (Betweenness); some of algorithms can give overlapping com-
munity partition (LinkCommunity [1] and LineGraph [6]), and some of them can
only give non-overlapping results (SPICi [9]).

2.2 Social Network Datasets

The social networks datasets are listed in Table 3. Due to the obstacle of collecting
community ground-truth information, in our work we can only provide 9 datasets
listed in Table 3. Our efforts are made to ensure that these datasets are represen-
tative. In order to observe the behaviors of algorithms in different sized networks,
we make the networks sizes range from 34 nodes to 80,513 nodes. Besides ho-
mogeneous networks, we also include heterogeneous networks, such as Cities and
Services [24].

The network datasets (or their sources) used for experimentation are: Zachary
Karate Club [25], Mexican Political Power [7], Sawmill [12], Cities and Services
[24], MIT Reality Mining [5], Flickr [23], Youtube [13], and LiveJournal [13].
These real world networks are selected as our datasets because they have well de-
fined communities ground-truth information. The first five of them are small social
networks and are valuable at the startup stage of our survey, by using which we can
have a more intuitive and clear view of social networks and community detection
algorithms. The last three are large-scale social networks, they are used to verify
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Table 3 Social network datasets

Datasets Size Ground-truth communities Is heterogeneous

Karate Club 34 nodes 2 No

Mexican 35 nodes 2 No

Sawmill 36 nodes 3 No

Reality Mining 79 nodes 2 No

Cities&Services 101 nodes 4 Yes

Benchmark 45 nodes 3 No

Flickr 80,513 nodes 195 No

LiveJournal 3,986 nodes 113 No

Youtube 8,202 nodes 168 No

Fig. 1 Methodology

whether the conclusions made in small social networks still hold for large-scale so-
cial networks.

2.3 Methodology

The methodology (Fig. 1) employed in our paper is something like ”black box”
approach by measuring algorithms under different objective functions, because
whether these objective functions are reliable or not is unknown to us, by employing
this methodology we can simplify our work of experiments and achieve more con-
cise comparisons of these performance metrics for community detection algorithms.
In the first step only small size social networks with ground-truth information are
chosen, which is easy for us to conclude the initial observations. With these find-
ings we can increase the social networks size and see whether these conclusions still
hold with the increment of social network size. The last three networks (Table 3) are
selected to verify our conclusions when community detection algorithms work on
large-scale datasets. Using this methodology we can explore more precise conclu-
sions and unveil the relationship between network sizes and performance metrics.
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3 Community Detection on Small Networks

Among our selected datasets there are heterogeneous networks and homogeneous
networks, while in the set of chosen clustering algorithms there are algorithms de-
signed for heterogeneous networks, homogeneous networks or both (Table 2). Such
that if an algorithm is designed for homogeneous networks and we apply it on het-
erogeneous networks, it may have unreasonable results. However there is possibility
that it still has high scores in some objective functions, in this way bias between ob-
jective function and ground-truth information could be identified.

3.1 Experiments on Small Networks

We firstly apply six selected community detection algorithms on the first six datasets
listed in Table 3 which have small sizes. The communities detected are evaluated by
performance metrics presented in Table 1.

We study these data according to two dimensions: algorithm dimension and ob-
jective function dimension. Algorithm dimension means we only study related be-
haviors of one specified algorithm, while objective function dimension refers that
we analyze information related to specific objective function. Generally speaking
the ground-truth based rand index is much more precise to differentiate qualities of
algorithms on networks, we will compare the rand index scores with other metrics
to unfold the bias between them.

If we focus on the RankClus algorithm we can see that metrics, such as internal
density, conductance, cut ratio and modularity, to some extent can reveal the algo-
rithm’s performance over different datasets. For example RankClus has the worst
performance on Mexican Political dataset when comparing with its performance on
other networks in terms of rand index; similarly internal density, modularity and
conductance also suggest that the detected communities are of poor quality. How-
ever there is also bias, for instance RankClus has the best performance on cities
and services dataset when comparing with other algorithms in terms of rand index;
however its related conductance, cut ratio and modularity are very low. Another ex-
ample is, RankClus correctly clustered all nodes in the Karate Club dataset, however
the internal density has a lower score when comparing with other algorithms.

Another interesting observation is that Walktrap algorithm and LinkCommunity
algorithm have the worst performance on the same social networks (they cluster
nodes of Mexican dataset and cities dataset into one single community). And more
interesting thing is that while they have the worst performance (fail to partition the
network) their conductance and cut ratio scores are perfect, which gives diametri-
cally opposed evaluations. The reason for this is that Walktrap and LinkCommunity
are both designed to optimizing modularity objective functions, Mexican dataset and
cities dataset happen to have larger modularity than any partitions of themselves.
In contrast optimization of criteria does not always lead to qualified communities.
Additionally we can see that although RankClus is designed for heterogeneous net-
works, it also has surprisingly high scores on specific homogeneous networks. This
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Table 4 Small networks experiment results

Dataset GT RankClus Walktrap

RI ID C CR M Co RI ID C CR M Co

Karate 2 1.000 0.275 0.875 0.965 0.211 2 0.745 0.308 0.810 0.953 0.188 2

Mexican 2 0.489 0.168 0.434 0.778 0.003 2 0.536 0.197 1.000 1.000 0.018 1

Sawmill 3 0.530 0.048 0.138 0.877 0.003 3 0.560 0.307 0.845 0.981 0.178 2

Cities 4 0.668 0.988 0.168 0.018 0.004 4 0.348 0.266 1.000 1.000 0.006 1

Reality 2 0.575 1.000 0.987 0.988 0.099 2 0.561 1.000 0.968 0.969 0.100 2

Bench 3 0.718 0.208 0.625 0.937 0.107 3 1.0 0.310 0.874 0.981 0.289 3

Dataset GT K-means LinkCommunity

RI ID C CR M Co RI ID C CR M Co

Karate 2 0.941 0.168 0.503 0.897 0.057 2 0.743 0.499 0.468 0.907 0.284 8

Mexican 2 0.536 0.218 0.606 0.847 0.066 2 0.536 0.197 1.000 1.000 0.018 1

Sawmill 3 0.527 0.309 0.761 0.961 0.232 3 0.560 0.328 0.731 0.902 0.314 5

Cities 4 0.604 0.310 0.282 0.807 0.032 4 0.348 0.266 1.000 1.000 0.006 1

Reality 2 0.523 0.433 0.742 0.944 0.189 2 0.574 0.964 0.898 0.828 0.109 3

Bench 3 1.000 0.143 0.411 0.888 0.015 3 0.826 0.397 0.598 0.931 0.406 11

Dataset GT SPICi Betweenness

RI ID C CR M Co RI ID C CR M Co

Karate 2 0.586 0.729 0.524 0.898 0.136 5 0.913 0.210 0.630 0.933 0.199 3

Mexican 2 0.553 0.600 0.648 0.903 0.155 3 0.605 0.079 0.100 0.790 0.036 7

Sawmill 3 0.629 0.633 0.547 0.947 0.192 7 0.570 0.028 0.110 0.908 0.022 6

Cities 4 0.636 0.513 0.110 0.799 0.022 12 0.267 0.000 0.000 0.729 0.007 12

Reality 2 0.573 0.88 0.844 0.900 0.098 2 0.563 0.000 0.110 0.322 0.079 9

Bench 3 0.865 0.521 0.731 0.965 0.260 5 0.943 0.399 0.721 0.964 0.284 4

In these tables GT states the number of classes of ground-truth, RI is the rand index score, ID is
the internal density, C is the conductance, CR is the cut ratio, M represents the modularity, and Co
is the number of communities detected by corresponding algorithms. As for these metrics, higher
score indicates higher quality

is an interesting phenomenon we need to look deep into for our future work. From
Table 1 we can observe that the behaviors of community detection algorithms vary
in different networks.

When we concentrate on a single objective function, for instance, internal den-
sity, trivially we can find that SPICi algorithm has the best internal density on Karate
dataset; however RankClus has the best performance (in terms of rand index) on
Karate dataset. Another example is, LinkCommunity has the best modularity on
Sawmill dataset while SPICi has the best performance (in terms of rand index) on
Sawmill dataset. Among the data in Table 4 there are a lot of such examples, based
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on current experiments results and observations, we can see that the correlation be-
tween the rand index and objective functions that are not based on ground-truth, is
not strong.

Here we conclude our findings as below:

1. Heuristics are native reasons for behavioral differences or similarities of algo-
rithms, similar heuristics lead to similar performance. A good example is Walk-
trap and LinkCommunity, although one of them generates overlapping commu-
nities while another does not, they have very similar behaviors in our selected
datasets.

2. Different heuristics fit in different circumstances, inappropriate heuristics lead
to damages on performance. RankClus’ heuristic is applicable for most of social
networks (Ranking and Clustering mutually enhance each other), however it has
worst performance on the benchmark network in terms of rand index because
the benchmark network is significantly different from social networks in most
topological properties.

3. Community structure of networks depends on many factors, topological proper-
ties of networks are only parts of them. In some circumstances when topologies
do not prevail, use of objective functions (highly related to topological proper-
ties) may lead to inappropriate evaluations of communities. This is the reason
that rand index does not always agree with other metrics in our work.

3.2 Correlations Between Objective Function and Ground-Truth
Measurement

Actually we can take a closer look at the bias between ground-truth measure-
ment and objective functions by presenting their correlations quantitatively. Assume
there are a set of datasets D = {D1,D2,D3, . . . ,DM}, a set of algorithms A =
{A1,A2,A3, . . . ,AN } and a set of objective functions F = {F1,F2,F3, . . . ,FK},
we apply algorithms on the given datasets and calculate corresponding objective
functions scores; in this way for each pair of dataset Di and objective function Fk

there is a vector vDi,Fk
= (Fk(A1,Di),Fk(A2,Di),Fk(A3,Di), . . . ,Fk(AM,Di)),

and for each dataset there is also a vector for ground-truth vDi,G = (G(A1,Di),

G(A2,Di),G(A3,Di), . . . ,G(AM,Di)).
By computing the correlation coefficient between vDi,Fk

and vDi,G, we can quan-
titatively identify whether an objective function is a good measurement of com-
munity detection algorithm. In Fig. 2 we can observe most of objective functions
on most of datasets have little correlation with ground-truth scores and some of
them even have negative correlationship, such as internal density on karate dataset
and modularity on reality dataset. And additionally we can see internal density is
much more correlated with ground-truth measurement than other objective func-
tions. From this plot we can conclude that these objective functions are not reliable
enough to determine whether a community detection algorithm performs well or
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Fig. 2 Correlation
coefficients between objective
functions and ground-truth,
small networks

not on a given network. An interesting observation is that cut ratio and conductance
share the same behavior in Fig. 2. This is intuitive because both metrics are designed
to capture the inter-cluster interactions.

Andrea Lancichinetti et al. proposed to use generated benchmark networks to
measure the performance of community detection algorithms. However in Table 4
we can see that these six algorithms listed above all have very high rand index
scores; however the performance on other datasets is not so promising. There are
two possible reasons, the first one is that these generated benchmark networks are
easy to be “mined”, another one is that the generated benchmark networks are not
good simulations of “real world” networks. In order to know which reason con-
tributes to this phenomenon, we conducted more experiments and present the re-
sults in Sect. 4.1. We would like to note that, the quality of communities detected
by algorithms is hard to evaluate, for example, in Fig. 3 even with ground-truth in-
formation it is still difficult for us to tell which method performs better on Karate
dataset (LinkCommunity and Line Graph give almost the same rand index scores).
Performance metrics can help our evaluations but cannot completely define the qual-
ity.

Fig. 3 LinkCommunity (left) and line graph (right) clustering on the Karate Club dataset
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Table 5 Large-scale networks experiment results

Dataset GT RankClus Walktrap

RI ID C CR M Co RI ID C CR M Co

Flickr 195 0.950 0.967 0.108 0.998 0.079 195 0.680 0.298 0.286 0.999 0.287 344

Youtube 168 0.979 0.984 0.131 0.998 0.141 168 0.801 0.416 0.710 0.999 0.354 152

LiveJournal 113 0.977 0.953 0.434 0.990 0.275 114 0.981 0.487 0.780 0.990 0.365 216

Dataset GT K-means LinkCommunity

RI ID C CR M Co RI ID C CR M Co

Flickr 195 0.950 0.910 0.213 0.998 0.100 195 * * * * * *

Youtube 168 0.979 0.931 0.396 0.990 0.128 168 0.983 0.415 0.152 0.996 0.710 6,701

LiveJournal 113 0.983 0.908 0.802 0.990 0.366 114 0.988 0.364 0.563 0.999 0.780 1,430

Dataset GT SPICi Betweenness

RI ID C CR M Co RI ID C CR M Co

Flickr 195 0.960 0.437 0.045 0.998 0.065 10,267 * * * * * *

Youtube 168 0.984 0.297 0.380 0.900 0.122 816 * * * * * *

LiveJournal 113 0.988 0.212 0.678 0.999 0.250 746 * * * * * *

In these tables GT states the number of classes of ground-truth, RI is the rand index score, ID is the
internal density, C is the conductance, CR is the cut ratio, M represents the modularity, and Co is the
number of communities detected by corresponding algorithms. As for these metrics, higher score
indicates higher quality. Results for Betweenness algorithm and partial results of LinkCommu-
nity are not available due to their expensive computational cost and memory requirement (marked
with *)

4 Community Detection on Large-Scale Networks

4.1 Experiments on Large-Scale Networks

In the above section we apply six representative community detection algorithms
on six small “real world” datasets and unfold several interesting phenomenons of
objective functions. In this section we increase sizes of networks and perform the
same algorithms on these large-scale networks to verify whether the experimental
results will be different from those on small networks.

The experimental results will also be analyzed in two dimensions. Due to com-
putation complexity and memory requirement, results for Betweenness algorithm
and part of results for LinkCommunity are not available. In Table 5 we still can see
bias between ground-truth information and objective functions; for example con-
ductance, cut ratio and modularity all suggest that Walktrap algorithm works better
than other algorithms on Flickr dataset, however the truth is Walktrap algorithm has
the lowest rand index score. In our observation the reliability of objective functions
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Fig. 4 Correlation
coefficients between objective
functions and ground-truth,
large-scale networks

does not improve when the network size is increased, the bias between rand in-
dex and other metrics is still apparent as discussed in small size networks results.
However some of them have consistent measurements with ground-truth informa-
tion of some datasets, for example, cut ratio and rand index both suggest SPICi and
LinkCommunity work best in LiveJournal dataset. In the same way we compute the
correlation coefficients between ground-truth measurement and objective functions
and plot them to verify the reliability of objective functions on large-scale networks.

In Fig. 4 we can see that our conclusions on small size networks still hold for
large-scale networks, most of objective functions on most datasets have none sig-
nificant correlation or even have anti-correlation. Interestingly internal density still
performs better than other objective functions on large-scale networks.

5 Benchmark Networks

The benchmark network generator [10] can take the parameters such as, node num-
ber, average degree, and mixing parameter (Table 6) to simulate an existing “real
world” network, and ground-truth information for communities is also generated.
Its objective is to simulate an existing “real world” network and provide an esti-
mated information of communities structure for this network, in this way commu-
nity detection algorithms’ performance can be trivially evaluated using the gener-
ated ground-truth information.

5.1 Network Model Discussion

In the work of benchmark network [10] nodes of network are partitioned into l

(given by input) groups, the sizes of groups can follow some distribution specified
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Table 6 Parameters for
benchmark network
generator [10]

Parameter Description

n nodes number

k average degree

maxk max degree

μt mixing parameter

minc minimum community size

maxc maximum community size

in the input. Nodes of the same group are linked with a probability pin, whereas
nodes from different groups are connected with a probability pout. Each subgraph
corresponding to a group is then a random Erdős Rényi graph with connection prob-
ability p = pin. If pin > pout the intra-cluster density exceeds the inter-cluster den-
sity, and then the community structure of the simulated network is formed. However
the Erdős Rényi graph is different from real world networks in many aspects, which
are presented in Table 7.

From Table 7 we can see the Erdős Rényi network differs from real world net-
works in two important properties: degree distribution and clustering coefficient.
The Erdős Rényi network is not a good simulation of the real world network, thus
the benchmark network (based on Erdős Rényi model) discussed in [10] is unlikely
to precisely simulate the real world community structures. From the network model
perspective the performance of algorithms on benchmark networks cannot lead to
an accurate estimation of the performance of algorithms on real world networks.
We conduct several experiments in Sect. 5.2 to demonstrate the correctness of our
opinion.

5.2 Experimental Results

Our experiment is to verify whether these generated networks can simulate the
“real world” network precisely. For the first four datasets listed in Table 3 there are
ground-truth information for communities, thus we can compare the performance of
algorithm on these networks and their corresponding simulated networks to identify
whether benchmark networks generator is feasible to evaluate community detec-
tion algorithms’ performance. Most of the parameters requires by the benchmark
network generator can be calculated trivially, such as degree, minimum community
size and maximum community size; however the mixing parameter μt , which is
set to define the proportion of each nodes links which link outside its community,
is hard to computed when the community structure is not available. Leto Peel [15]
proposed a novel method to estimate the mixing parameter μt by network struc-
ture information. In our experiments we employ Leto Peel’s method to calculate the
mixing parameter and use the value as the input for benchmark network generator.
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Table 7 Comparison between Erdős Rényi networks and real world networks

Properties Degree distribution Clustering coefficient Average diameter

Real World Networks Power Law High Small

Erdős Rényi Networks Poison Low Small

Table 8 Benchmark networks

Dataset GT RankClus Walktrap K-means LinkCom SPICi Betweenness

RI Co RI Co RI Co RI Co RI Co RI Co

Karate 2 1.000 2 0.745 2 0.941 2 0.743 8 0.586 5 0.913 3

Mexican 2 0.489 2 0.536 1 0.536 2 0.536 1 0.553 3 0.605 7

Sawmill 3 0.530 3 0.560 2 0.527 3 0.560 5 0.629 7 0.570 6

Reality 2 0.575 2 0.561 2 0.523 2 0.574 3 0.573 2 0.563 9

Dataset GT RankClus Walktrap K-means LinkCom SPICi Betweenness

RI Co RI Co RI Co RI Co RI Co RI Co

sim-Karate 2 0.510 2 0.520 4 0.510 2 0.520 28 0.500 6 0.510 3

sim-Mexican 2 0.510 2 0.510 8 0.510 2 0.500 1 0.510 3 0.500 6

sim-Sawmill 3 0.630 3 0.610 7 0.610 3 0.630 1 0.630 9 0.630 2

sim-Reality 2 0.490 2 0.500 2 0.490 2 0.500 1 0.500 2 0.490 2

In these tables GT states the number of classes of ground-truth, RI is the rand index score, and Co
is the number of communities detected by corresponding algorithms. As for these metrics, higher
score indicates higher quality

By the information listed in Table 8 we simulate 100 networks for first four
datasets listed in Table 3, cities and services dataset can not be simulated because
benchmark network generator is not able to simulate heterogeneous network. We
apply selected algorithms on these 100 networks for each dataset, compute the rand
index scores and then calculate the average rand index score for each algorithm on
100 simulated networks. The results are listed in Table 8. The top phase of the table
shows the rand index scores of each algorithm on each dataset, the bottom phase
presents the performance of each algorithm on each dataset’s simulated network.
Trivially we can see the “real world” dataset can easily differentiate algorithms
based on their performance, for example, RankClus outperforms others on karate
dataset and SPICi performs much better than others on sawmill dataset, while for
the simulated networks algorithms almost have the same scores on the same dataset.
In conclusion, 1) it is hard to differentiate the performance of community detection
algorithms on benchmark networks; 2) the behaviors of community detection algo-
rithms on real world networks are different from their behaviors on corresponding
benchmark networks; 3) benchmark networks are not promising substitutes of real
world datasets for algorithms measurements.
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6 Conclusion

Seven representative algorithms were compared under various performance metrics,
and on various “real world” social networks, from small size networks to large-
scale networks. Based on our current observations of experiments results, we can
conclude that performance metrics based on the ground-truth information are more
reliable than objective functions that are not based on ground-truth, such as inter-
nal density and modularity. And the reliability of non ground-truth based objective
functions does not improve with the increment of network size. Characteristics of
different algorithms are unfold in our experiments, RankClus has best or compara-
ble performance on most datasets due to the reason that it employs a more general
heuristic instead of using objective functions to guide clustering process.

In our work we also discuss the benchmark networks with built-in communities
structures. We analyzed the differences between benchmark networks and real world
networks, such as degree distribution and clustering coefficient. These differences
lead to the invulnerability of benchmark networks as they are used to measure the
performance of community detection algorithms designed for real world networks.
By experiments we conclude that the networks created by the benchmark network
generator [10] are not qualified enough to differentiate the performance of commu-
nity detection algorithms; algorithms tend to have similar scores in given simulated
networks.

7 Future Work

Our current work has included the experiments on small networks, large-scale net-
works and benchmark networks and draw several conclusions. For example objec-
tive functions not based on ground-truth information are not reliable to accurately
reveal the performance of algorithms on social networks we have studied. In the
future work more performance metrics are to be involved, and more algorithms and
datasets will be selected to reinforce the robustness of our conclusions. With the
gradual increment of dataset size the relation between social network volume and
objective functions is estimated to be unfolded. Next, the networks studied will be
expanded into other genres than social networks, such as biological networks and
telecommunication networks, and algorithms and performance metrics will be com-
pared independently in each category of networks. Much more objective functions
will be included into our future study, which is designed to conduct an empirical
comparison of algorithms for network community detection. In this way we can
expand our work into other areas than social networks, the different behaviors of
objective functions in different types of networks may be unfold in such experi-
ments.

Acknowledgements This research was sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-09-2-0053. The views and conclu-
sions contained in this document are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the Army Research Laboratory or



Perspective on Measurement Metrics for Community Detection Algorithms 241

the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation here on.

References

1. Ahn Y, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in
networks. arXiv:0903.3178v3 [physics.soc-ph]

2. Chen J, Zaïane OR, Goebel R (2009) Detecting communities in social networks using max-
min modularity. In: International conference on data mining (SDM 09)

3. de Nooy W, Mrvar A, Batagelj V (2004) Exploratory social network analysis with Pajek,
Chapter 12. Cambridge University Press, Cambridge

4. Dhillon I, Guan Y, Kulis B (2005) A fast kernel-based multilevel algorithm for graph cluster-
ing. In: Proceedings of the 11th ACM SIGKDD, Chicago, IL, August 21–24

5. Eagle N, Pentland A (2006) Reality mining: sensing complex social systems. Pers Ubiquitous
Comput 10(4):255–268

6. Evans TS, Lambiotte R (2009) Line graphs, link partitions, and overlapping communities.
Phys Rev E 80(1):016105

7. Gil-Mendieta J, Schmidt S (1996) The political network in Mexico. Soc Netw 18(4): 355–381
8. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc

Natl Acad Sci USA 99(12):7821–7826
9. Jiang P, Singh M (2010) SPICi: a fast clustering algorithm for large biological networks.

Bioinformatics 26(8):1105–1111
10. Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlapping and hierarchical

community structure in complex networks. New J Phys 11(3):033015
11. Leskovec J, Lang KJ, Mahoney MW (2010) Empirical comparison of algorithms for network

community detection. In: WWW 2010, April 26–30, Raleigh, North Carolina, USA
12. Michael JH, Massey JG (1997) Modeling the communication network in a sawmill. For Prod J

47:25–30
13. Mislove A (2009) Online social networks: measurement, analysis, and applications to dis-

tributed information systems. Ph.D Thesis, Rice University, Department of Computer Science
14. Pandit S, Kawadia V, Yang Y, Chawla NV, Sreenivasan S (2011) Detecting communities in

time-evolving proximity networks. In: IEEE first international workshop on network science
(submitted)

15. Peel L (2010) Estimating network parameters for selecting community detection algorithms.
In: 13th international conference on information fusion

16. Pons P, Latapy M (2006) Computing communities in large networks using random walks.
J Graph Algorithms Appl 10(2):191–218

17. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying
communities in networks. Proc Natl Acad Sci USA 101(9):2658–2663

18. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal
Mach Intell 22(8):888–905

19. Steinhaeuser K, Chawla NV (2010) Identifying and evaluating community structure in com-
plex networks. Pattern Recognit Lett 31(5):413–421

20. Steinhaeuser K, Chawla NV Is modularity the answer to evaluating community structure in
networks? In: International conference on network science (NetSci), Norwich, UK

21. Sun Y, Han J, Zhao P, Yin Z, Cheng H, Wu T RankClus: integrating clustering with ranking
for heterogeneous information network analysis. In: EDBT 2009, March 24–26, 2009, Saint
Petersburg, Russia

22. Sun Y, Han J (2010) Integrating clustering and ranking for heterogeneous information net-
work analysis. In: Yu PS, Han J, Faloutsos C (eds) Link mining: models, algorithms and
applications. Springer, New York, pp 439–474

http://arxiv.org/abs/arXiv:0903.3178v3


242 Y. Yang et al.

23. Tang L, Liu H (2009) Scalable learning of collective behavior based on sparse social dimen-
sions. In: Proceedings of the 18th ACM conference on information and knowledge manage-
ment (CIKM’09)

24. World Cities and Global Firms dataset was created by Taylor PJ, Walker DRF as part of their
project “World city network: data matrix construction and analysis” and is based on primary
data collected by Beaverstock JV, Smith RG, Taylor PJ (ESRC project “The geographical
scope of London as a world city” (R000222050))

25. Zachary WW (1977) An information flow model for conflict and fission in small groups.
J Anthropol Res 33:452–473



A Study of Malware Propagation via Online
Social Networking

Mohammad Reza Faghani and Uyen Trang Nguyen

Abstract The popularity of online social networks (OSNs) have attracted malware
creators who would use OSNs as a platform to propagate automated worms from
one user’s computer to another’s. On the other hand, the topic of malware propaga-
tion in OSNs has only been investigated recently. In this chapter, we discuss recent
advances on the topic of malware propagation by way of online social networking.
In particular, we present three malware propagation techniques in OSNs, namely
cross site scripting (XSS), Trojan and clickjacking types, and their characteristics
via analytical models and simulations.

Keywords Malware propagation · Online social networks · XSS worm

1 Introduction

Online social networks (OSNs) such as Facebook, Twitter and MySpace have pro-
vided hundreds of millions of people worldwide with a means to connect and com-
municate with their friends, family and colleagues geographically distributed all
around the world. The popularity and wide spread usage of OSNs have also attracted
attackers and hackers who would use OSNs as a platform to propagate automated
worms from one user’s computer to another’s.

The population of potential victims of web-based malware is much larger than
that of other types of worms due to the popularity of the world wide web. In ad-
dition, web-based worms are not banned through web proxies and network address
translation (NAT) processes. Research has shown that web-based malware can prop-
agate much faster than traditional malware [13]. As a matter of fact, the first OSN
worm that hit MySpace in 2005 by exploiting a cross site scripting vulnerability in a
MySpace web application infected about one million victims within 24 hours [13].
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Fig. 1 Total number of infections caused by different computer worms in 20 hours

As Fig. 1 shows, this worm, which was named Samy, propagated much faster other
traditional computer worms.

The topic of malware propagation in OSNs has only been investigated recently
[8, 10, 11, 23, 28, 29]. The objective of this chapter is to discuss recent advances on
this topic. In particular, we present three malware propagation techniques in OSNs,
namely XSS, Trojan and clickjacking types, and their characteristics via analytical
models and simulations.

The remainder of this chapter is organized as follows. In Sect. 2, we briefly de-
scribe three types of malware propagating via online social networking. In Sect. 3,
we discuss the characteristics of OSNs and algorithms used for generating sim-
ulated OSN graphs. A simulation-based study of malware propagation in OSNs is
presented in Sect. 4. In Sect. 5, we review analytical models characterizing the prop-
agation of malware in OSNs. We discuss OSN malware countermeasures in Sect. 6
and related work in Sect. 7. We then summarize the chapter in Sect. 8.

2 Different Types of Malware

In this section, we briefly discuss the main characteristics of different types of mal-
ware propagating through OSNs. There exist currently three different types of OSN
malware: cross site scripting, Trojan and clickjacking worms.

2.1 Cross Site Scripting Worms

Cross site scripting (XSS) is a security flaw to which many web applications are
vulnerable [13, 20]. The graph in Fig. 2(a) shows the distribution of web applica-
tion vulnerabilities, among which XSS is the most common threat. While XSS is a
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Fig. 2 Cross site scripting can be used to create self propagating worms

common vulnerability in web applications, its threat becomes more noticeable due
to the combination of HTML and Asynchronous JavaScript and XML (AJAX) tech-
nologies. AJAX allows a browser to issue HTTP requests on behalf of the user. Thus
there is no need for an attacker to trick the user into clicking a malicious link. This
technique provides facility for malware writers to create XSS worms.
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There are two types of XSS attacks: persistent and non-persistent [20]. In persis-
tent attacks (also known as stored attacks), the injected code is permanently stored
on a target server as HTML text in a database, a comment field, or messages posted
on online forums. A victim’s computer then accesses the malicious code on the
server when it retrieves the stored information via the web browser. Non-persistent
attacks (also known as reflective attacks) are the more common type of XSS at-
tacks. In this case, the injected code is sent back to the visitor by the server in an
error message, a search result, or any other type of response that reflects some or all
of the user’s input in the result (Fig. 2(b)). Since the reflected response contains the
malicious code, the visitor’s browser will interpret the code, execute the malware,
and infect his/her computer.

An XSS worm, also known as a cross site scripting virus, is a malicious code
that propagates itself automatically among visitors of a website in an attempt to
progressively infect other visitors. XSS worms can be considered as a hybrid of
stored and reflected XSS attack. This type of worms has the ability to copy itself
from a source to another part of the Internet using existing XSS vulnerabilities of
web applications.

An XSS worms infect members of a social network in two steps. The worm
creator first adds the malicious payload to his profile, e.g., in the form of a link.
Subsequently, any person who visits this profile will get infected and the malicious
payload will be added to the visitor’s profile due to an AJAX technique and an XSS
flaw. The visitor’s profile then becomes an infectious profile, which allows the worm
to propagate as a new infection source [10, 11].

2.2 Trojan Malware

The best known OSN Trojan worm is Koobface [15], which was first detected in
2008. It spread itself in both MySpace and Facebook by sending messages with in-
teresting topics using social engineering techniques to deceive people into opening
the messages. Such a message directed the recipients to a third-party website unaf-
filiated with Facebook where they were prompted to download what was claimed
to be an update of the Flash player. If they downloaded and executed the file, they
would infect their computers with Koobface. The infected machine turned into a
zombie or a bot. Moreover, the owner of the infected profile unknowingly sent out
messages to all people on his/her friend list, allowing the worm to propagate further
in the network.

2.3 Clickjacking Malware

Clickjacking worms are also known as “likejacking” or “user interface (UI) redress-
ing”. A clickjacking attacker creates a website that shows a counterfeit YouTube
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Fig. 3 Clickjacking technique used to spread spam messages that may lead to malicious software

video player, or other graphical icons, and invites the victim to click on a play but-
ton to view the video. What really happens is that the victim is clicking a Facebook
“Like” button that has been hidden beneath the images using a method of coding
called UI redressing. What the victim has just “Liked” is then displayed on his
wall, which in turn may attract his/her friends to click on that link and become
new sources of infection (Fig. 3). Since Trojan and clickjacking worms operate and
propagate in a similar manner, we consider them as one type in this chapter.

Clickjacking worms could be combined with Trojan malware to create a new
hybrid type but, to the best of our knowledge, no such malware has been created or
deployed yet.

3 Characteristics of Online Social Networks

An OSN can be represented by an equivalent graph in which each vertex (or node)
represents a person and a link between two vertices indicates the existence of a re-
lationship between the two respective persons. To simplify the discussions in this
chapter, we generalize relationships between OSN users as friendship. (In some
OSNs such as LinkedIn, relationships can be colleagues or business contacts). Stud-
ies have shown that real-world social networks are highly clustered small-world
networks [26] with a degree distribution often following a power law distribu-
tion. The characteristics of online social networks can be summarized as follows
[7, 14, 30]:

1. An OSN typically has a low average network distance, approximately equal to
log(s)/ log(d), where s is the number of vertices (people), and d is the average
vertex degree of the equivalent graph.

2. Online social networks typically show a high clustering property, or high local
transitivity. That is, if person A knows B and C, then B and C are likely to know
each other. Thus A, B and C form a friendship triangle. Let k denote the degree
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of a vertex v. Then the number of all possible triangles originated from vertex v

is k(k − 1)/2. Let f denote the number of friendship triangles of a vertex v in a
social network graph. Then the clustering coefficient C(v) of vertex v is defined
as C(v) = 2f/(k(k − 1)). The clustering coefficient of a graph is the average
of the clustering coefficients of all of its vertices. In a real OSN, the average
clustering coefficient is about 0.1 to 0.7.

3. Node degrees of a social network graph tend to be, or at least approximately,
power-law distributed. The node degree of a power-law topology is a right-
skewed distribution with a power-law Complementary Cumulative Density Func-
tion (CCDF) of F(k) ∝ k−α , which is linear on a logarithmic scale. The power
law distribution states that the probability for a node v to have a degree k is
P(k) ∝ k−α , where α is the power-law exponent.

There exist few algorithms that can generate social network graphs with the
above characteristics [6, 7, 14]. For the simulations reported in this chapter, we
used the algorithm proposed by Holme and Beom [14], due to the fact that it can be
fine tuned to generate a social network graph with a desired clustering coefficient
and power law distribution of node degrees.

In one of our experiments, we evaluated the speed of malware propagation as
a function of clustering coefficients. For this experiment, we would need to vary
the clustering coefficient while keeping other parameters of the network graph such
as the maximum and average node degrees constant. To create such similar graphs
with different clustering coefficients, we would need random graph generation al-
gorithms such as random rewiring or the algorithm by Viger and Latapy [25]. In
this section, we discuss the algorithm by Holme and Beom along with these random
graph generation algorithms. We call a random graph generated based on an OSN
graph an equivalent random graph (ERG).

3.1 Holme’s Social Network Graph Generation Algorithm

This algorithm is based on the algorithm proposed by Barabasi and Albert [2], which
we term the BA algorithm. The objective of the BA algorithm is to create graphs
with node degrees following power law distributions. These graphs have short av-
erage network distances typical of OSNs, but they may not have high clustering
coefficients, between 0.1 to 0.7, to faithfully model social network graphs [14]. This
motivated Holme and Beom to modify the BA algorithm to generate graphs having
high clustering coefficients typical of OSNs.

The BA algorithm works as follows:

1. The initial condition: A graph consists of m0 vertices and no edges.
2. The growth step: One new vertex v with m edges is added to the above graph at

every time step. Time t is identified as the number of time steps.
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Table 1 Parameters of the simulated OSN and its ERG

Parameter Graphs

OSN graph (Holme and Beom) ERG (Viger and Latapy)

Value Value

Number of vertex (people) 10000 10000

Number of edges 29990 29990

Average clustering coefficient 0.14 0.0035

Average shortest path length 5.13 4.4

Network diameter 10 8

Maximum node degree 190 190

Average node degree d 5.99 5.99

log(n)/ log(d) 5.14 5.14

3. The preferential attachment (PA) step: Each of the m edges incident on v is then
attached to an existing vertex u with the probability Pu defined as follows:

ku∑
i∈v ki

(1)

In the above equation, ki represents the degree of node i, and V is the set of vertices
of the current graph. The growth step is iterated N times, where N is the total
number of vertices (users) in the final OSN graph. Every time a vertex v with m

edges is added to the network, the PA step is performed m times, once for each of
the m edges incident on v. After t time steps, the BA network graph will contain
m0 + t vertices.

To increase the clustering coefficient, Holme and Beom suggested a new step
called triad formation (TF). If, in a PA step, an edge between u and v is formed,
then a TF step will attempt to add another edge between v and an arbitrary neighbor
w of u. If all neighbors of u have already been connected to v, the TF step is skipped
and a new PA step will start.

In each iteration, a PA step is first performed: a vertex v with m edges is added
to the existing network. Then a TF step is executed with probability Pt . The average
number of the TF trials per added vertex is given by mt = (m − 1) × Pt which is a
control parameter in Holme’s algorithm. It has been shown that the degree distribu-
tion of any graph generated by Holme’s algorithm will have node degrees following
a power law distribution with α = 3.

We used Holme’s algorithm to generate a graph that has the characteristics of a
social network and the following parameters: α = 3, N = 10000, m0 = 3, m = 3
and mt = 1.8. The parameters of the resulting social network graph are listed in
Table 1.

As Table 1 shows, the synthesized OSN graph satisfies all the three required char-
acteristics of an OSN. The average shortest path length of the graph is 5.13, which
is less than logn

logd
= 5.14. The clustering coefficient is moderate, approximately 0.14.

The degrees of the vertices follow a power law distribution, as shown in Fig. 4.
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Fig. 4 The degrees of the
vertices of the resulting graph
follow a power law
distribution

Fig. 5 Random rewiring
technique to generate
equivalent random graphs

3.2 Random Graph Generation Algorithms

To evaluate the impacts of clustering coefficients on worm propagation, we would
need to keep the other parameters of a graph such as the maximum and average node
degrees constant while varying the clustering coefficient. Such graphs with different
clustering coefficients can be generated as equivalent random graphs (ERG). Given
a network graph, an ERG with the same node degree distribution can be generated
using random rewiring or the algorithm proposed by Viger and Latapy [25].

In the random rewiring scheme, we randomly select a pair of edges and “substi-
tute” the edges as shown in Fig. 5. The random selection and substitution are done
until we obtain the desired clustering coefficient.

The random rewiring algorithm generates ERGs that have strong correlations to
the original graph. We would want random graphs that are as versatile as possible
while maintaining the same node degree distribution of the original graph. There-
fore, we chose the algorithm proposed by Viger and Latapy [25] to generate equiv-
alent random graphs for our simulations. Such a random graph has the same degree
distribution as the original network graph, but different characteristics such as a dif-
ferent clustering coefficient, average shortest path length or network diameter. The
parameters of the OSN created earlier and its ERG are listed in Table 1.

Following are some observations obtained from comparing the ERG and the cor-
responding OSN graph (Table 1). The average clustering coefficient of the original
OSN graph is about 40 times higher than that of the similar random graph, 0.14 vs.
0.0035. This reflects the high clustering characteristic of OSNs. Also, the average
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shortest path length of the original OSN graph is longer than that of the ERG, 5.13
vs. 4.4. The network diameter of the OSN is 10 hops compared to eight hops in
the ERG. These differences are due to the small-world phenomenon described by
Watts [26].

4 Simulation of Malware Propagation in Online Social Networks

In this section, we present our simulation results on malware propagation in OSNs.
The simulation software is implemented in MATLAB. The simulation is of discrete-
event type, consisting of discrete time slots. In each time slot, a user (node) is chosen
randomly and the user will perform an action such as visiting a profile (for XSS
malware), or executing the malware (for Trojan/clickjacking malware). In all the
simulations presented below, we use the synthesized OSN created using Holme’s
algorithm [14] and its ERG created using the algorithm by Viger and Latapy [25]
whose parameters are listed in Table 1, unless otherwise stated. The performance
metric is the total number of infected profiles (users) over time, assuming an initial
number of infected profiles of one, unless otherwise stated. Each data point in the
result graphs is the average of 100 runs, each with a different random seed. We
measure the total number of infected profiles over time as functions of the following
parameters:

• Visiting-friends probability q . The probability that a user visits his/her friends’
profiles versus strangers’ profiles. A friendship exists between two users u and v
if there is an edge connecting nodes u and v in the network graph.

• Graph structure. A graph can be an original social network graph created using
Holme’s algorithm, or an equivalent random graph generated based on an original
social network graph using the algorithm by Viger and Latapy [25].

• Probability p of executing the malware by a user. For Trojan or clickjacking
worms, this is the probability that a user will click on a malicious link and execute
the malware.

• Node degree threshold for visiting friends vs. strangers. Let M be the maximum
node degree in the network, and Kc be a threshold factor (0 ≤ Kc ≤ 1). Nodes
with degrees less (more) than the threshold KcM will visit their friends less
(more) frequently than strangers. That is, users whose numbers of friends (node
degrees) are lower than the threshold KcM will visit their friends with probability
q ≤ 0.5 and visit strangers with probability 1 − q .

• Initial number of infected profiles (users).

We first present the simulation results on XSS worm propagation, followed by
the results on Trojan and clickjacking worms. As mentioned earlier, Trojan and
clickjacking worms spread in a similar fashion since both send the malware globally
to all friends of a user. They are thus treated as one type in our simulations.
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Fig. 6 XSS worm
propagation for different
values of probability q

4.1 Simulation of XSS Worm Propagation

In order for an XSS worm to propagate, a vulnerable user has to visit an infectious
profile (user) to get infected. The user’s vulnerability is determined by whether or
not the user’s web browser is able to execute the malicious script. (A browser may
not be able to execute the script because there is an Anti-Virus active or the user has
disabled JavaScript using special add-ons such as NoScript for a Firefox browser.)

In the simulation of XSS worm propagation, an event is defined as a single visit to
the social network website. If the visitor is vulnerable and visits an infected profile,
then the visitor will get infected.

4.1.1 Effects of Visiting-Friends Probability q

In each time unit, an uninfected user is chosen randomly using a uniform distribu-
tion. The user then visits one of his/her friends with probability q , or picks randomly
a stranger to visit with probability of 1 − q . We assume that all users have the same
visiting-friends probability q . Figure 6 shows the trend of XSS worm propagation
for different values of q from 0.1 to 1. The simulation results show that if people
visit their friends more often than strangers, the propagation speed will be slower.
This confirms the analytical model proposed by Faghani and Saidi in [11], which
will be described in Sect. 5.2.

4.1.2 Effects of the Network Graph Structure

In this experiment, we examine the effects of the clustering coefficient on the speed
of XSS worm propagation using simulations. We use the social network graph and
its ERG whose parameters are listed in Table 1. We assume a visiting-friends prob-
ability q = 0.9 on both network graphs. Figure 7 shows the trends of XSS worm
propagation for both graphs. Although both networks share the same visiting-friends
probability and other parameters (e.g., maximum and average node degrees), their
results are different. The propagation is slower in the original OSN graph (i.e., the
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Fig. 7 XSS worm
propagation in the OSN vs.
its ERG with q = 0.9

Fig. 8 XSS worm
propagation in the OSN vs.
its ERG with q = 0.1

small-world graph) thanks to its highly clustered structure, which makes the mal-
ware circulate within a cluster for a while before making its way to other parts of
the network. In short, the high clustering characteristic of OSNs helps slow down
the propagation of malware. (However, this fact has not been considered in existing
analytical models of malware propagation in OSNs.)

We repeated the above experiment, but changed the visiting-friends probability
to q = 0.1. The results in Fig. 8 show that both networks experienced the same
XSS worm propagation speed in this case. This implies that the network topology
is meaningful only with high probabilities of visiting friends. A low visiting-friends
probability means that a malware is distributed from one community to another in
the network more often than being contained within that community. Therefore, the
highly clustered structure of the OSN does not help in this case, and the XSS worm
propagation speed is similar to that in the ERG network.

4.1.3 Effects of Node Degree Threshold for Visiting Friends vs. Strangers

Initially when users join an online social network, they start looking for friends
by visiting different profiles. Hence, they visit strangers more frequently than their
friends. After establishing friendships with a set of people, a user tends to socialize
with his/her friends and thus visit their profiles more often than strangers’.
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Fig. 9 XSS worm
propagation given Kc = 0.1
and Kc = 0.5

In this simulation, we assume that a fraction of people with low numbers of con-
nections will visit strangers more frequently than their friends. Let M be the maxi-
mum node degree in the network, and Kc be a threshold factor (0 ≤ Kc ≤ 1). Nodes
with degrees less (more) than the threshold KcM will visit their friends less (more)
frequently than strangers. In this experiment, users whose numbers of friends (node
degrees) are lower than the threshold KcM will visit their friends with probability
q1, where q1 has a normal distribution with μ = 0.25 and σ = 0.05. The other users
(i.e., those whose node degrees are higher than the threshold KcM) will visit their
friends with probability q2, where q2 has a normal distribution with μ = 0.75 and
σ = 0.05. The trends of worm propagation for are Kc = 0.1 and Kc = 0.5 (equiv-
alent to a threshold of 19 friends and 95 friends, respectively, given the network in
Table 1 which has a maximum node degree of 190) are shown in Fig. 9.

The results show that the propagation is slower when Kc = 0.1. The reason is
that when Kc = 0.1 there are 281 users that have more than 19 friends in contrast to
12 users having more than 95 friends when Kc = 0.5. When Kc = 0.1, more users
visit their friends more frequently than when Kc = 0.5, which leads to slower worm
propagation.

4.2 Simulation of Trojan and Clickjacking Malware Propagation

In each time step, a user is randomly selected, who will check his/her messages
sent via the OSN messaging system. This action is also called a visit or an event.
With probability p, the user follows the malicious link in the message and executes
the malware. Once the user gets infected, the Trojan code sends a similar message
containing the malicious link to all of the user’s friends (or posts a message on
his/her wall as done by a Facebook clickjacking worm).

4.2.1 Effects of the Probability p of Executing the Malware by a User

The trend of Trojan malware propagation is shown in Fig. 10 for different distribu-
tions of probability p listed in Table 2. The graphs demonstrate that the higher the



A Study of Malware Propagation via Online Social Networking 255

Fig. 10 Trojan worm
propagation given different
distributions of p

Fig. 11 Propagation speed
increases exponentially with
probability p [8]

Table 2 Probabilities p in
Trojan worm propagation Distribution Value

Constant p = 0.5

p = 0.7

Normal distribution μ = 0.5 and σ = 0.12

μ = 0.7 and σ = 0.075

Uniform distribution Range [0,1] with μ = 0.5

Range [0.4,1] with μ = 0.7

probability of executing the malware, the faster the worm propagates. Given p with
a uniform distribution having μ = 0.5 from p = 0 to p = 1, the propagation is very
slow because very few people open the messages and follow the malicious links.

Faghani et al. [8] show that increasing the value of p will speed up the propaga-
tion exponentially. The authors used a synthesized OSN with 10000 nodes, 29991
edges, and a clustering coefficient of 0.16. They then measured the number of visits
(events) needed to get all the users infected as a function of probability p, starting
with one infected user. Their result, shown in Fig. 11, indicates that the propagation
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Fig. 12 Trojan worm
propagation in the OSN vs.
its ERG with p = 0.9

speed increases exponentially with higher probability of p. The result highlights the
importance of raising awareness of malware threats among OSN users.

4.2.2 Effects of the Clustering Coefficient on Trojan Propagation

Like XSS worm propagation, Trojan worm propagation is also affected by the highly
clustered structure of OSNs. We examine this effect using the OSN and its ERG
listed in Table 1 and assuming a malware execution probability p = 0.9. The re-
sult in Fig. 12 show that the malware propagates more slowly in the OSN than in
the ERG network. This is consistent with the observation from the XSS malware
experiment presented in Sect. 4.1.2.

4.2.3 Trojan vs. XSS Propagation

In this experiment, we compare the propagation speed of Trojan and XSS worms un-
der the same network conditions and parameters. We assume that people visit other
users (profiles) following a Poisson process with an average of k times per minute.
Thus the interval between visits follows an exponential distribution with an average
of 1

k
. For the XSS malware, we assume a visiting-friends probability q = 0.9. For

the Trojan (Koobface) worm, we consider two malware executing probabilities of
p = 0.5 and p = 0.7. Given k = 10, Fig. 13 shows the results of propagation speeds
of Trojan and XSS worms in the 10000-node OSN defined in Table 1. The results
demonstrate that the propagation speed of Trojan worms is faster than that of XSS
worm in OSNs.

To explain the above result intuitively, we consider a tiny social network having
five users as depicted in Fig. 14. Initially user A is infected while the others are not.
If user A is infected with a Trojan malware and she has already sent the malicious
message to all her friends, B , C, D and E, then in the next visit (event) an uninfected
user will be selected with a probability of 4

5 . Assuming that this user will open the
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Fig. 13 Propagation speed of
Trojan vs. XSS malware

Fig. 14 A tiny social
network in which user A is
initially infected while the
others are not

message and follow the malicious link, this means that one of the uninfected users
will get infected with probability of 4

5 .
However, if user A is infected with an XSS worm, then in the next visit, an

uninfected user will be selected with a probability of 4
5 and this user will visit the

infected user A with a probability of 1
4 . Therefore, one of the uninfected users will

get infected with probability of 4
5 × 1

4 = 1
5 . This explains why the Trojan worm

propagated much faster than the XSS worm in the above simulation.
In other words, Trojan worms are more proactive than XSS worms. They present

themselves to users (in the form of messages) so as to be activated and propagated,
while an XSS worm sits on an infected profile waiting for users to select and visit
the profile.

4.2.4 Effects of the Initial Number of Infected Profiles

Another important parameter that should be considered in the propagation speed of
Trojan and XSS worms is the initial number of infected profiles (users) i0. Using the
OSN graph listed in Table 1, we varied the initial number of infected profiles from
50 to 500, and measured the number of visits (events) required to get 90 % of the
population (i.e., 9000 users) infected. The obtained results were then normalized to
the maximum number of visits measured for each type of worm. Figure 15 shows
the results of this experiment. We can see that the effect of increasing the initial
number of infected profiles for a Trojan worm such as Koobface is not noticeable.
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Fig. 15 XSS versus Trojan
worm propagation for
different values of the number
of initial infected profiles

However, increasing the initial number of infected profiles for XSS leads to faster
propagation.

In Trojan malware propagation, assume that each person follows the malicious
link and executes the malware code with a probability of 1. Suppose that there are
initially n infected profiles. Thus, on average, there are n × deg(n) potential targets
for infection, where deg(n) is the average degree of the n infected nodes. There-
fore by choosing a large value for the initial number of profiles infected by a Trojan
malware i0, it is possible to make almost all members become potential targets for
infection. Thus if we keep increasing i0 after that, the increase does not have signif-
icant effects on the propagation speed.

XSS malware, in contrast, requires a user to visit an infected profile to get in-
fected. Therefore, if we increase the initial number of infected profiles, we practi-
cally speed up the propagation of the malware in the network.

In Sect. 5.1, we will explain why the initial number of infected profiles affects
the speed of propagation logarithmically using the susceptible infected (SI) model.

5 Modeling Malware Propagation in Online Social Networks

OSN worms, like other computer worms, behave in a similar manner to biological
viruses in terms of infectious disease propagation. Therefore, mathematical analyses
on propagation behaviors of biological viruses can be adapted to studies of computer
worms [31, 32].

In the area of epidemiology, infectious disease propagation can be modeled us-
ing either stochastic or deterministic models [1]. Stochastic models are suitable for
a small-scale population, while deterministic models can be used for a large-scale
population. Deterministic models should thus be used for modeling OSN worm
propagation because of large sizes of OSNs. (As of December 2011, Facebook has
approximately 800 million registered users around the world.)

One of the most popular differential equation models for biological worm prop-
agation is the susceptible infected (SI) model. This model has used in several com-
puter worm propagation models such as those in [11, 22, 32]. In this section, we
discuss the SI model and existing models proposed for OSN worms.
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5.1 The SI Model

The SI model is defined as follows:
dI (t)

dt
= η

Ω
I (t)

[
N − I (t)

]
(2)

In this model, N is total number of people in the population; I (t) is the number of
infected hosts at time t ; η is the worm infectious activity rate; and Ω is the number
of possible targets that can be reached by the worm. All hosts are assumed to be
either vulnerable (susceptible) or infected according to the SI model. In the field of
epidemiology, susceptible hosts are defined as those vulnerable to infection by the
virus. Infectious hosts are those that have been infected and can infect others. A host
is considered infected at time t if it had been infected before time t . Assuming that
η is not a time variant variable and the initial condition is I (t) = i0, the solution
to (2) is as follows:

I (t) = i0N

i0 + (N − i0)e
−η N

Ω
t

(3)

The SI model has been used to model XSS worm propagation in OSNs by
Faghani and Saidi [11]. Figure 16(a) shows the numerical results of the SI model
from (3). Figure 16(b) shows the propagation trend of a real XSS worm, Samy,
which attacked the MySpace network in 2005. These two graphs demonstrate that
XSS worm propagation can be modeled using the SI model [11].

The simulation results in Sect. 4.2.4 show that the initial number of infected pro-
files i0 affects the speed of propagation logarithmically. We can explain those results
using the SI model, as follows. Given (3), to infect k per cent of the population, or
kN people, we need:

I (t) = i0N

i0 + (N − i0)e
−η N

Ω
t
≥ kN (4)

t ≥ ln

(
N − i0

i0
1−k
k

)
× Ω

ηN
(5)

Inequality (5) suggests that the time required to infect k per cent of the popula-
tion is logarithmically proportional to the initial number of infected people i0. The
simulation results presented in Sect. 4.2.4 are consistent with this suggestion: in-
creasing the initial number of infections will decrease the time required to infect
90 % of the OSN population logarithmically.

5.2 Modeling XSS Worms

Faghani and Saidi propose the following model for characterizing XS worm propa-
gation in OSNs [11]:

dI (t)

dt
= β(q)

I (t)

N

(
N − I (t)

)K(q) (6)
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Fig. 16 Samy worm

In (6), β(q) is the rate of visiting friends in an OSN, which is a function of the
visiting-friends probability q . K(q) represents the sensitivity of the susceptible pop-
ulation to q . In general, K(q) is proportional to q [11]. As q increases, members
will visit their friends more often than strangers. If the number of infected friends
is small, a large value of q will delay the propagation of worm in their community.
Therefore, uninfected users are also sensitive to (affected by) the value of q , which
K(q) takes into account.

The model represented by (6) is based on the following two facts.

• First, when the visiting-friends probability q increases, the infection is more con-
tained among friends. Less strangers would be affected by infected users. There-
fore, the delay for the infection to reach other parts of the network will be longer.
In other words, the rate of infection is inversely proportional to probability q .

• Second, after most of the users are being infected, the infection rate will slow
down since the total number of susceptible hosts has also been decreased.
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5.3 Modeling Trojan and Clickjacking Worms

Let P(k) be the probability that a node in the network graph has degree k. The
average degree of the network is thus E[k] =∑

k kP (k). Suppose that the fraction
of infected users having degree k is ik(t). Let λ be the infection rate, which is the
probability of getting infected by an infectious neighbor in a time unit. The differ-
ential equation model characterizing the infection rate of a node with degree k is as
follows [18]:

dik(t)

dt
= λk

[
1 − ik(t)

]
Θ(t) (7)

Θ(t) =
∑

n nP (n)in(t)∑
n nP (n)

=
∑

n nP (n)in(t)

E[k] (8)

The factor Θ(t) is the probability that a user (node) is connected by an edge to an
infected user (friend) in the OSN graph. To compute Θ(t), we rely on the fact that
the probability of a user having a friend with degree k is kP (k) [18].

The above model is later improved in another model proposed by Boguna et al.
[4], which considers the fact that the originator of an infection will not be infected
again (by its children in the spanning tree of the network graph). The revised model
is as follows:

dik(t)

dt
= λk

[
1 − ik(t)

]
Θ(t) (9)

Θ(t) =
∑

n(n − 1)P (n)in(t)∑
n nP (n)

=
∑

n nP (n)in(t)

E[k] (10)

The total number of infected nodes I (t) would be:

I (t) =
∑

k

ik(t)P (k)N (11)

In a recent research by Faghani et al. [8], the authors suggest an adjustment to (9)
that takes into account the effects of the clustering coefficient and user behaviors as
follows:

dik(t)

dt
= λk

[
1 − ik(t)

]
Θ(t)f (c)g(p) (12)

Functions f (c) and g(p) reflect the effects of the clustering coefficient and user
behaviors, respectively, where c is the clustering coefficient and p is the probability
that a user will click on a malicious web link. The authors leave the solutions to
f (c) and g(p) to future work.

6 OSN Malware Countermeasures

Several malware detection and containment mechanisms for OSNs have been pro-
posed recently. Nguyen et al. [19] propose a centralized patch distribution algorithm
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which monitors the number of infected users. When the fraction of infected users
reaches a pre-determined threshold, the detection system raises the alarm and sends
out “treatment” patches to influential users. Influential users of a community are
those having large numbers of relationships (connections) with other communities.
They are thus the best candidates to distribute the “treatment” patches efficiently
throughout the whole network. After receiving “treatment” patches, a user will ap-
ply them to eliminate the worm and forward them to his/her friends.

Xu et al. [28] suggest a scheme in which by monitoring a small fraction of users,
the entire network can be under surveillance. An early detection will allow for ef-
fective worm containment and elimination measures.

Stein et al. describe the Facebook immune system in [23]. Their immune sys-
tem performs real-time checks on every incoming and outgoing query to network.
To defend against malware, their classifier identifies infected users when they send
many messages flagged by the classifier or other users.

Yan et al. [29] suggest three different approaches for malware detection in OSNs.
In the first approach, nodes with the highest degrees are selected and monitored for
unusual messages or activities. In the second approach, the most active nodes (in
terms of number of messages read and posted) in the network are monitored. In the
third approach, the OSN is divided into small islands and every message exchanged
between these islands is inspected.

The models and simulation results presented in Sects. 4 and 5 suggest that one
of the most resource-efficient ways to defend against malware in OSNs is to de-
tect it early within communities. The reason is that a malware will circulate among
members of a community for a while before it gets a chance to move to another
community, due to the high clustering property of OSNs. This approach of malware
detection and containment is still an open issue for future research.

Another optimized defending mechanism is to take into account portions of the
network graph which are built based on active relationships among OSN users, since
active users are more likely to visit friends and execute malware code. Wilson et al.
[27] show that the graph of interactions among active users is different from the
graph of relationships (friendships) in an OSN.

7 Related Work

There exists research in the field of epidemiology that models the behavior of con-
tagious diseases [4, 12, 17, 18, 21, 24]. These models can be and have been used to
study the propagation of malware in online social networks [11].

Malware propagation in specific types of computer networks such as e-mail, in-
stant messaging and mobile networks has also been well studied [5, 9, 16, 32].

Among the first works studying malware propagation in OSNs are those by
Faghani and Saidi [10, 11], Yan et al. [29], and Xu et al. [28]. Faghani and Saidi
[11] model the propagation of XSS worms using the SI model, and investigate mal-
ware propagation in OSNs using synthesized OSNs and based on user activities.
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Yan et al. [29] use realistic network graphs in addition to realistic user activities to
confirm that user activities play an important role in malware propagation in OSNs.
Xu et al. [28] propose a correlation-based scheme to slow down worm propagation
in OSNs. Their scheme was designed and evaluated using a real OSN graph, the
Flickr network.

There exists also research on human activities in OSNs. Benevenuto et al. [3]
analyze user activities on four popular OSNs (Orkut, Hi5, MySpace and LinkedIn)
and provided useful information on how users behave in OSNs.

8 Chapter Summary

We discuss the characteristics of malware propagation in online social networks us-
ing analytical models and simulation results. In general, the propagation of XSS
worms depends largely on users’ behaviors: If OSN users visit mostly their friends
rather than strangers, the worms will propagate more slowly. The highly clustered
feature of social networks also helps to slow down the propagation. Increasing the
initial number of infected profiles in the early stages of XSS worm propagation
leads to an impressively faster propagation. Trojan worms propagate faster than XSS
worms in social networks because of their inherent aggressive propagation method.
Increasing the initial number of infected profiles in the early stages of Trojan worm
propagation does not have considerable effects on the propagation speed. We also
identify open issues for future research. First, current analytical models do not con-
sider the network graph structure in the propagation of malware in OSNs. Second,
we should exploit the high clustering structure of OSNs to detect the propagation of
XSS worms early within a community, e.g., using a honeypot detection mechanism.
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Abstract While criminals may start their activities at individual level, the same is in
general not true for terrorists who are mostly organized in well established networks.
The effectiveness of a terror network could be realized by watching many factors,
including the volume of activities accomplished by its members, the capabilities of
its members to hide, and the ability of the network to grow and to maintain its in-
fluence even after the loss of some members, even leaders. Social network analysis,
data mining and machine learning techniques could play important role in measur-
ing the effectiveness of a network in general and in particular a terror network in
support of the work presented in this chapter. We present a framework that employs
clustering, frequent pattern mining and some social network analysis measures to
determine the effectiveness of a network. The clustering and frequent pattern min-
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ing techniques start with the adjacency matrix of the network. For clustering, we
utilize entries in the table by considering each row as an object and each column
as a feature. Thus features of a network member are his/her direct neighbors. We
maintain the weight of links in case of weighted network links. For frequent pattern
mining, we consider each row of the adjacency matrix as a transaction and each
column as an item. Further, we map entries into a 0/1 scale such that every entry
whose value is greater than zero is assigned the value one; entries keep the value
zero otherwise. This way we can apply frequent pattern mining algorithms to deter-
mine the most influential members in a network as well as the effect of removing
some members or even links between members of a network. We also investigate the
effect of adding some links between members. The target is to study how the various
members in the network change role as the network evolves. This is measured by
applying some social network analysis measures on the network at each stage dur-
ing the development. We report some interesting results related to two benchmark
networks: the first is 9/11 and the second is Madrid bombing.

Keywords Social network analysis · Terror network · Data mining ·
Data analysis · Knowledge discovery · Machine learning

1 Introduction

Terror is a global problem which has been severely affecting the humanity. In fact
terror is mostly viewed from two perspectives. The first perspective classifies as
terror all activities which are committed with the main goal of killing people, de-
stroying the infrastructure, the economy, etc. Some activities target specific persons
and others are committed without any specific target and hence are more dangerous
leading to more casualties and destruction. Persons who commit such activities are
known as terrorists. They are dangerous people who are the main source of threat to
the whole society locally and to the humanity at large.

Terrorists are not working as individuals in isolation. They rather work in well
organized groups forming networks in a way that will allow them to maximize their
opportunity to hide and escape all traps which target to capture them. They try to
hide because they are the target of intelligence services and law enforcement agen-
cies. In fact, intelligence services are investing huge resources and effort to identify,
capture and destroy terror networks. The fight against terror networks has been go-
ing on for long time and the success is very limited compared to the amount of re-
sources and effort invested. Actually the interest in fighting terrorism has increased
considerably after terror activities expanded from the Middle and Far East to cover
the developed western countries, e.g., East Europe and USA, especially after the
9/11 attacks in USA. Research on the analysis of terror networks has concentrated
on developing scientific methodologies that could help in systematically fighting
terrorism, e.g., [22, 23, 25, 27].

The partial failure in the fight against terror is mostly due to two facts. The first
fact is due to the second perspective where persons who are committing the killing
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and destruction activities are seen as freedom fighters by some normal people who
are neither joining the activities nor the fight against terrorism. The second fact is
the existence of governments and countries who support these terror networks by
providing all kinds of support including financial, logistic, opening training camps,
etc. Even some governments try to misuse terror networks in their conflict with other
governments ruling other neighboring or far away countries. Thus terror networks
will continue to exist and will be anticipated to grow as long as there are conflicts
between governments, nations, ethnic groups, religious groups, etc. Unfortunately,
terror networks increased their effectiveness and benefit greatly from the develop-
ment in technology which makes it easier for them to communicate and hide.

Internal factors include the existence of highly influential members within the
network. These charismatic persons mostly take the leadership role. They try to im-
press and motivate other members of the network who are committing the actual
terror activities. Thus, the network generally consists of two groups of members
those who plan and motivate and those who execute and spread the terror and hor-
ror. Accordingly to diminish the effectiveness of a terror network it is important to
consider all sources which provide strength to the network. Monitoring the usage of
technology will help in identifying the identity of various members of the network.
For instance, mobile communication maximizes the availability and connectivity of
parties connected by the mobile technology but at the same time logs are maintained
to keep track of the ongoing communication. Logs are maintained by the server and
form a valuable source which could be analyzed for effective knowledge discovery.
Various incidents around the world were enlightened by analyzing mobile phone
logs or by utilizing advanced technology to identify the location of a suspect by
tracing his/her mobile phone. Thus, the more the technology is monitored the less it
is to be used by terror networks and the more they will deviate back to more difficult
traditional methods to communicate and hide.

Facilitating the change of governments who support terror groups will reduce and
diminish over time the effectiveness of terror networks after they lose the sources for
their resources. Educating people and raising their standard of living will contribute
a lot to diminish the effectiveness of terror networks. For instance, other than the
leaders who put forward the ideology, AlQaeda finds more supporters in rural areas
in Asia, the Middle East and North Africa. As most of the terror these days has
religious or ethnic basis, the widespread of schools of thought which base their
ideology on own religious interpretation should be closely controlled. Ideological
leaders try to play on the emotions of the normal people and this could be avoided
by the right education. Identifying these ideological leaders and eliminating them
will highly contribute to decrease and may be diminish the effectiveness of a terror
network.

There are various approaches to tackle the problem of terror network analysis
to understand the importance of its individuals and the effectiveness of the groups
within the network. Many researchers use graph and network analysis methods as
measures to analyze how members of a terrorist network interact with each other
and how they split into groups to plan for a terror activity, e.g., [14, 16, 22, 25, 27].
Farley [5] argues that a terror network should be viewed as a hierarchy in order
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to understand the role of the various individuals within the network and the flow
of information. Carley et al. [2, 3] discussed that terror networks can be dynamic
and they are always changing; thus it is important to study their evolution over
time and this leads to the need to investigate how the importance of individuals and
groups within the network changes over time. Sparrow [23] suggested that instead of
looking at the presence or absence of ties, it may be more informative to look at their
strength based on task and timing. This is true because the role of individuals within
the network changes dynamically and their effectiveness is affected accordingly.

The work described in this chapter tries to identify effective groups and indi-
viduals within a network in general and we concentrate on terror networks for the
testing conducted. We employ social network analysis (SNA), data mining and ma-
chine learning techniques to identify the target groups and individuals. Network
structure is a natural phenomenon which well represents a set of entities and their
interactions. In other words, a network can be seen as a perfect match for represent-
ing various systems in diverse fields wherever it is possible to realize entities which
could be connected by certain type of relationship. A network is a data structure
which consists of sets of nodes (interchangeably called vertices) linked together
in pairs by edges (interchangeably called links) with nontrivial topological struc-
tures [24]. A network may be visualized as a graph and may be represented for
processing using a matrix or list structure. The adjacency matrix is the most com-
monly used representation. Various techniques in graph theory and linear algebra
are valuable for network analysis and manipulation leading to a set of measures for
effective network analysis. However, a network should be treated within a context
in order to be analyzed for knowledge discovery within the specified context. The
context is terror networks for the work described in this chapter.

The proposed framework starts with the adjacency matrix of the network and em-
ploys various SNA measures, clustering and frequent pattern mining. For clustering,
every row is considered as an object and columns are the features of the objects.
Each object has as values for its features the weights of the links connecting the ob-
ject to its direct neighbors. In case of an unweighted network, the features will get
values as either zero or one. We apply multi-objective genetic algorithm based clus-
tering [18] to find alternative clustering solutions along the Pareto-Optimal front.
Then we analyze how various individuals and groups are co-located in the same
cluster across the various alternative solutions. This will lead to identifying the most
influential individuals and groups within the network. Removing such individuals or
groups will be investigated to study their effectiveness on the rest of the network.

The adjacency matrix will be also used as the input to Apriori [1] which is the
first algorithm developed for association rules mining. By utilizing Apriori, we want
to find all frequent patterns of individuals. For this purpose, each row is considered
as a transaction and each column is considered as an item. Thus individuals play
double role as transactions and items and this allows for smooth mining to find
groups of individuals that are connected to more common other individuals. In case
of a weighted network, entries in the adjacency matrix are normalized into the zero-
one domain by changing into one each weight greater than zero. The groups of
individuals to be returned as frequent patterns do overlap. This way, individuals
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who are members of more groups will be identified as key individuals who should
be eliminated to reduce or diminish the effectiveness of the network. Eliminating
the latter individuals will be tested to identify potential replacements in the network;
these are the next potential popular individuals.

We will apply SNA measures on the network before and after eliminating the key
individuals and groups identified by clustering and/or frequent pattern mining. Ac-
tually, influential individuals and groups identified by both clustering and frequent
pattern mining will receive special consideration. We will also study the effect of
introducing new links on the evolution of the network to identify who could change
role in the future in case new connection links are added. We will test the proposed
framework by using two benchmark networks, namely the 9/11 network and Madrid
bombing network.

The remaining part of this chapter is organized as follows. Section 2 describes
the method that employs multi-objective genetic algorithm based clustering in order
to identify effective individuals and groups within the network. Section 3 presents
the frequent pattern mining based method for identifying effective individuals and
groups in a network. Section 4 includes the SNA measures utilized in this study.
Section 5 investigates the usefulness of eliminating individuals and groups which
were identified effective. Section 6 is discussion, conclusions and future work.

2 Identifying Effective Individuals and Groups by Clustering

Clustering is the process of splitting a set of objects into groups (which may be
disjoint or may overlap) such that objects in every group share high degree of sim-
ilarity and objects across the groups are highly dissimilar. Thus the process starts
by specifying the clustering algorithm to employ and the similarity measure to use.
Various clustering algorithms are described in the literature. Each algorithm has its
own advantages and disadvantages. However, most algorithms require the user to
specify either the number of clusters or some parameters that will lead to the num-
ber of clusters. These need some expert knowledge and good understanding of the
objects to be clustered. Further, this somehow contradicts with the basic definition
of clustering as unsupervised learning technique. Thus, it is more attractive and nat-
ural to employ a technique that will need less input parameters and will decide on
the number of clusters based on the input data. In other words, inspiring the number
of clusters and their characteristics from the data should be the target of a compre-
hensive clustering algorithm.

Various similarity measures are described in the literature including both Eu-
clidean and non-Euclidean distance measures. The choice of the similarity measure
to employ in the clustering depends on characteristics of the data to be clustered. For
the particular application handled in this study we decided to use the Hamming dis-
tance because all objects have characteristics with binary values and the Hamming
distance is easier to compute that other sophisticated distance measures. In case of
Weighted networks, Euclidean distance could be a better choice.
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Fig. 1 Alternative solutions
along the Pareto-Optimal
front

For the clustering technique required for the work described in this chapter, we
decided to benefit from the achievements of our research group as reported in the
literature; see [12, 18, 19] for more details. The multi-objective genetic algorithm
based clustering approach described in [12, 18, 19] satisfies the target by producing
alternative appropriate clustering solutions. These solutions will be utilized to esti-
mate the effectiveness of the network under investigation. In the rest of this section
we first give an overview of the multi-objective genetic algorithm based clustering
approach and then we will describe how the result is to be utilized to estimate the
effectiveness of the network.

The multi-objective genetic algorithm based clustering approach benefits from
the power of genetic algorithms to tackle large search spaces seeking appropriate
solutions that fit certain predefined criteria. The basic steps of the genetic algorithm
process are applied in sequence until the convergence criteria is satisfied.

The genetic algorithm based process involves a number of steps including de-
ciding on the encoding scheme for the chromosomes (interchangeably called in-
dividuals), initialization of the chromosomes, applying cross-over and mutation to
produce new chromosomes that would lead to better convergence towards the final
solution, and selection based on fitness which is achieved as a combination of three
objectives. The three objectives employed in the process are maximizing homogene-
ity within clusters, maximizing heterogeneity between clusters and minimizing the
number of clusters. These objectives do conflict because for instance having every
object in a separate cluster will lead to the best within cluster homogeneity but will
conflict with the target of producing the minimum number of clusters. Thus, at the
end of the iterative application of the steps constituting the genetic algorithm process
we will get a set of alternative solutions such that none of the solutions is dominated
by any of the other solutions in the set. These solutions form what is called Pareto-
Optimal front as shown in Fig. 1. The number of clusters in each solution is different
and objects will be differently distributed into clusters in each solution.

The encoding scheme used in this work is integer based. Every chromosome
is of length N , where N is the number of objects to be clustered. And every al-
lele (alternatively called gene) in the chromosome is assigned an integer value that
represents the cluster to which the corresponding object is to be assigned. Based
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on this encoding scheme, we randomly distribute objects to clusters and produce a
number of initial chromosomes to be used for starting the genetic algorithm itera-
tive process. For the work described in this chapter, we decided arbitrarily on using
50 initial chromosomes. In each chromosomes objects are randomly distributed into
clusters and the homogeneity of each cluster could be determined by considering its
objects to compute the total within cluster variation (TWCV), which calculates the
intra-cluster distance of the cluster by the following formula:

TWCV =
N∑

n=1

D∑

d=1

X2
nd−

K∑

k=1

1

Zk

D∑

d=1

SF2
kd (1)

where X1, X2, . . . ,XN are N objects, Xnd denotes feature d of pattern Xn (n =
1 to N ); K is the number of clusters; SFkd is the sum of the d th features of all
the patterns in cluster k(Gk); Zk denotes the number of patterns in cluster k(Gk).
Actually, SFkd is computed as:

SFkd =
∑

−→xn∈Gk

Xnd (d = 1,2, . . . ,D) (2)

For separateness, we used the average to centroid linkage based inter-cluster sep-
arability formula described next, where P and R denote clusters and |P | and |R| are
the cardinalities of the aforementioned clusters; d(x, y) is the similarity (distance)
metric where x ∈ P , y ∈ R, and P �= R.

Average to centroid linkage is the distance between the members of one cluster
to the other cluster’s representative member, i.e., the centroid. It is computed as:

D(P,R) = 1

|P | + |R|
[∑

x∈P

d(x, vR) +
∑

y∈R

d(y, vP )

]
(3)

Based on the computed linkage value D, the total inter-cluster distance (TICD) is
computed as:

TICD =
K∑

k=1

K∑

l=k+1

D(k, l) (4)

Cross-over is an operation that leads to the evolution of the population towards
the final stable state. It is supported by mutation to help in quick convergence. There
are several cross-over operators in use. They mostly take two of the existing chro-
mosomes and produce one or more new chromosomes that may have better fitness
than their parents. We apply a variation of arithmetic cross-over in order to produce
the number of clusters as a by-product of the process without requiring it as an in-
put parameter. This leads to more natural clustering with less input parameters. The
arithmetic crossover method used in the testing works as follows [10, 12, 17].

Consider two chromosomes each of length N :

C1 = (
c1

1, . . . , c
1
N

)
and C2 = (

c2
1, . . . c

2
N

)

where N is the number of objects to be clustered.
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Applying the crossover operator on C1 and C2 generates two offspring:

H1 = (
h1

1, . . . , h
1
i , . . . , h

1
N

)
and H2 = (

h2
1, . . . , h

2
i , . . . , h

2
N

)

where for i=1 to N , h1
i = (Int(λc1

i + (1 − λ)c2
i )modK) + 1 and h2

i = (Int(λc2
i +

(1 − λ)c1
i )modK) + 1; here Int() is a function that produces the integer value of

the argument; the modulus function is applied to guarantee that the produced cluster
number is always mapped into the range [1,K]. In the process, λ varies with respect
to the produced number of generations, as non-uniform arithmetical crossover. Fur-
ther, clusters’ numbers are readjusted in case any of the values in the range [1,K]
is skipped. For instance, if the new chromosome includes clusters numbered 1, 2,
3, 5, and 7, where 4 and 6 are skipped then the clusters are renumbers such that 5
becomes 4 and 7 become 5 to reflect the fact that there are only 5 clusters in the
chromosome.

After completing the cross-over operation which started with 50 chromosomes
and considered them as 25 pairs, the number of chromosomes increases to 75. Then
the fitness of each chromosome is measured as the sum of three values, namely
the average homogeneity of its clusters and the average separateness between the
clusters (both computed using the formulas given earlier in this section) as well as
the average size of the clusters. Finally, the 75 chromosomes are ranked based on
their fitness in descending order and the best 50 chromosomes are kept for the next
iteration. The process continues until one of two stopping conditions is satisfied,
either we reach 500 iterations or the improvement between consecutive iterations is
very small compared to the average improvement during the previous iterations.

The final set of chromosomes are ranked based on their fitness and the best five
chromosomes are considered as the final clustering solution to be used in the analy-
sis that targets estimating the importance of the various individuals and groups with
the input network. However, to validate the latter selection process, we apply cluster
validity indexes on the top 10 individuals from the final solution produced by the
genetic algorithm process. The outcome from the validity analysis will confirm the
appropriateness of the selected solutions, which are the five solutions favored by the
majority of the validity indexes [18].

The best five solutions will be analyzed further by applying the following pro-
cess. Each clustering solution is analyzed separately first and then all the solutions
are analyzed collectively. Within each solution, terrorists are individually checked
to find how each terrorist is close to the centroid of his/her cluster. We build a hi-
erarchy from each cluster where the level of each terrorist is determined based on
his/her distance from the centroid. Terrorists at distance i from the centroid are
placed at level i in the hierarchy. The child parent relationship is determined as fol-
lows: each terrorist at level i ≥ 1 is connected to the closest terrorist at level i − 1.
This way terrorists closer to the centroid are placed towards the root and terrorists
at the boundary of the cluster form the leaves of the hierarchy. The relevance of
terrorists increases as they are closer to the centroid and hence to the root of the
constructed hierarchy.

We build the hierarchies for all the clusters in the five alternative solutions se-
lected above. Then the hierarchies are processed to determine a rank for each ter-
rorist based on his/her level in each of the constructed hierarchies. For this purpose
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we use a simple ranking function which is inversely proportional to the level of the
terrorist in each hierarchy in which he/she exists.

Rank(r) =
∑m

1 ( 1
i
)

p
(5)

where m is the number of hierarchies in which terrorist r exists and p is the total
number of hierarchies. We divide by the total number of hierarchies to avoid giving
higher rank to terrorists who exist in less number of hierarchies.

By considering all the produced hierarchies we are also able to find effective
groups of terrorists. For this purpose, we identify groups of terrorists forming a sub-
hierarchy which repeats in a majority of the hierarchies. We rank subhierarchies
based on the number of hierarchies in which they repeat and then we select the
subhierarchies that repeat in more than the average as the ones to be considered as
constituting more effective groups of terrorists.

3 Study Effectiveness by Frequent Pattern Mining

Given a set of transactions each contains a set of items, frequent pattern mining
is a technique that determines non-empty sets of items such that each considered
set is subset from at least a prespecified number of transactions. The importance
and effectiveness of a given set of items is directly proportional to the number of
transactions that include the set. An important set of items in a supermarket setting
is the set of items purchases by most of the customers because each transaction
reflects the purchase pattern of one customer. For a terror network, on the other
hand, a set of members is important if they are directly connected to the same large
set of members in the network. The larger the latter set is the more effective will be
the former set. Therefore, we want to employ a systematic way that will lead to all
frequent sets of members from a given terror network. The approach described here
is not specific for terror network, it is general enough such that it could be applied
to any network.

Several frequent pattern mining algorithms are described in the literature, e.g. [1,
9]. They take the same input and produce the same result. But, they only differ in
the way they process the data and hence in their performance. The input to any fre-
quent pattern mining algorithm is a set of transactions such that each transaction
consists of a set of items. The transactions and items terminology was inspired from
the first application of the methodology which is market basket analysis. However,
the methodology is general enough to successfully serve any application domain
which contains two sets of entities that are correlated by a many to many kind of
relationship. Accordingly, the frequent pattern mining methodology has been suc-
cessfully applied to a wide range of domains from document analysis (documents
are transactions and words are items) to the study of drug-protein interactions (drugs
are transactions and the proteins they handle are items), etc.
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Fig. 2 Illustrating the frequent pattern mining steps of Apriori

The basic step to be accomplished before applying the frequent pattern mining
methodology to a new application domain is to decide on the items and the trans-
actions. Then the process becomes straightforward by applying any of the available
frequent pattern mining algorithms. For the application domain studied in the work
described in this chapter, we map the network into transactions and items by con-
sidering the adjacency matrix. Every row corresponds to one transaction and every
column is one item. That is, terrorists play the role of transactions and items. One
terrorist is considered to correspond to a transaction and all terrorists directly linked
to him/her are said to be the items constituting the transaction. From the model, we
will be interested in frequent sets of terrorists.

A set of terrorists is said to be frequent if it includes terrorists who are linked di-
rectly and concurrently to the same other terrorists such that the number of the latter
terrorists is larger than a predefined minimum threshold. The threshold is mostly
specified by an expert or may be determined from the data by applying machine
learning techniques like hill-climbing. To determine frequent sets of terrorists we
apply the Apriori algorithm. The main reason for using Apriori algorithm is its sim-
plicity and because the networks we are going to process are relatively small. Hence
the performance is not an issue to worry about.

The basic steps of the Apriori algorithm are illustrated in Fig. 2 on a small exam-
ple database of terrorists. The algorithm starts with the database where there are six
terrorists but only five of them have links to other terrorists leading to five transac-
tions. The first step determines the frequency of each terrorist in the given database
by counting, to how many other terrorists the given terrorist is linked. At each iter-
ation, Apriori first finds the candidate sets of terrorists which should be checked to
determine whether they are frequent. Each candidate set is denoted as Ci and each
frequent set is denoted as Li for step i. A candidate set contains all possible sets of
a particular size and they are derived from the frequent sets which were determined
in the previous iteration. Then the support of each candidate set is determined as
the number of transactions that contain all the members in the set. Only candidate



Estimating the Importance of Terrorists in a Terror Network 277

sets that satisfy a predefined minimum support threshold are kept as frequent sets;
all other sets are eliminated. The process continues until either one frequent set is
obtained as in the example shown in Fig. 2 or no more frequent sets could be found.
One database scan is needed each time it is required to find the frequencies of newly
generated candidate frequent sets.

Frequent sets of terrorists are determined with minimum support set to a value
to be determined based on the sparseness of the network. For sparse networks, we
set the support threshold to lower value closer to one to be able to analyze all cases
starting with terrorists linked to only one other terrorist. However, for dense net-
works we target more connected groups and hence we set the support threshold to
a higher value. Terrorists linked to less number of other terrorists may also reveal
important information regarding the whole terror network and may be regarding the
strategy implemented by the terror organization behind the network.

Frequent sets of terrorists are ranked by their frequency in descending order. It
is anticipated that smaller sets will rank higher in general because all subsets of a
frequent set are also frequent and the frequency is a non-increasing function as the
size of the set increases. In other words, all subsets of a given set s will have at least
same frequency as s.

The ranked sets are utilized to estimate the importance of individual terrorists as
well as the effectiveness of groups of terrorists as follows. The importance of an
individual terrorist is directly proportional to the number of frequent sets in which
he/she exists. Further, an individual is expected to be more effective on others with
whom he/she coexist in more sets with higher frequency. In other words, we first find
the most influential terrorists. Next, we determine who they could influence. Here,
the same methodology is applied as group effectiveness is concerned. Thus, subsets
of terrorists who coexist together in more frequent sets are determined. Such a group
should be considered more effective than others. The importance of an individual
or a group could be quantified as the average frequency of all the sets in which
the terrorist or the group exists. Further, a terrorist or a group is considered more
influential if both the clustering and the frequent pattern mining techniques agree
on the level of effectiveness. Eliminating such terrorists or groups from the network
may lead to quicker collapse of the whole network.

4 Social Network Analysis Measures

The structure of a network is a set of nodes and a set of links connecting part or most
of the nodes. This property allows for effective analysis of the two sets separately
or jointly, in order to discover some valuable information. Benefitting from the fun-
damentals of graph theory, statistics and linear algebra researchers have defined a
set of measure that could be employed to determine the importance of individual
nodes/links as well as the effectiveness of a group of nodes/links. Most of the mea-
sures concentrate on the connectivity of the network and its completeness. For in-
stance, nodes with high degree are more effective. In addition they contribute more
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to the completeness of a network. Other nodes or links may bridge two or more parts
of a network. Hence, their removal may lead to network partitioning. We apply SNA
measures to the original terror network in order to identify effective individuals and
groups [4, 8, 15, 21]. The outcome will help in validating the discoveries reported
by the two techniques described in Sects. 2 and 5.

One of the simple node based SNA measures is degree centrality which is roughly
defined as the number of links directly connected to a node [6, 7, 11, 26]. The
importance of a node is directly proportional to its degree centrality. A leader is
expected to be connected to almost every other node. As links in a network may
be either directed or undirected, it is possible to differentiate between two ways for
computing degree centrality. For an undirected network the degree centrality is the
total number of links connected to the node. However, for a directed network, it is
possible to have two types of links connected to each node leading to in-degree and
out-degree. In-degree of a node a is the number of links that start at node a and end
at another node in the network. Out-degree of node a is the number of links that start
at any other node and end at node a. As a result the degree of node a will be the sum
of its in-degree and out-degree. For an undirected network the maximum degree is
N − 1, where N is the number of nodes. On the other hand, a directed network has
the upper bound for both in-degree and out-degree as N − 1. A network member
with a high degree centrality value could be the leader or “hub” in a network.

Degree based analysis may lead to identify network members who play the role
of authority or hub. The former represent members who have high in-degree and
the latter refer to members who have high out-degree connecting them to author-
ities [8, 26]. In other words, an authority is a receiver and a hub is a distributor
to authorities. A network member is said to be authority central if its in-degree is
from other members with high out-degree [13]. Kleinberg [13] proposed an iterative
algorithm for measuring authority and hub degrees of each member in a network.

The importance of members of a network may be also determined by measuring
the eigenvector centrality which is another node based SNA measure. A member is
considered more effective when it is connected to other effective members in the
network [7, 26]. Eigenvector centrality is computed based on the adjacency matrix
of the network under investigation. The centrality score of each member is computed
based on the sum of the scores of all other members as shown in Eq. 6.

Xi = 1

λ

∑

j∈M(i)

xj = 1

λ

n∑

j=1

Ai,j xj (6)

where A is the adjacency matrix of the network, xi is the score of member i, M(i) is
set of members connected to member i, N is the total number of members in the net-
work, and λ is a constant value known as the eigenvalue. A given adjacency matrix
may lead to a number of eigenvalues. Each eigenvalue may have a corresponding
eigenvector. For eigenvector centrality, we are interested in the eigenvector that cor-
responds to the largest positive eigenvalue. Actually, eigenvector centrality is an im-
portant measure for showing the importance of individual members in a network. A
member with high eigenvector centrality can spread information much faster com-
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pared to other members as he/she is well-connected to other well-connected mem-
bers in the network.

Clustering coefficient is another important measure that reveals network structure
related information by considering the links between adjacent members in the net-
work. For a given member in a network, clustering coefficient measures how close
his/her neighbors are to being a clique (complete subgraph). Direct neighbors based
clustering coefficient (CC) is computed as follows.

CC(a) = 2|E|
d(a) × (d(a) − 1)

(7)

where |E| is the number of links connecting members who are direct neighbors of
a, and d(a) is the number of links directly connected to a.

While degree, eigenvector, clustering coefficient, authority and hub are node
based measures, other SNA measures depend on the links. For instance, closeness
and betweenness are two measures that depend on the shortest path between nodes.
A shortest path is a sequence of links that satisfy the following criteria: (1) it starts
at a node and ends at another node, (2) no link is considered more than once in the
path, (3) no node is considered more than once in the path, and (4) it is the sequence
that contains the least number of links. Every path has a length which is the total
number of links constituting the path in case of unweighted network; and it is the
sum of weights of the links forming the path in case of a weighted network.

The shortest path concept (which is sometimes called the geodesic distance) can
be used to define closeness centrality of node a based on the sum of the lengths of
the shortest paths that connect a to every other node in the network. The latter sum is
divided by the number of nodes minus one to get the normalized closeness centrality
measure. The importance of members in a network is inversely proportional to the
closeness centrality. The most effective members in a network have their normalized
closeness centrality close to one.

All the shortest paths in a network can serve another SNA measure, which is the
betweenness centrality. The relevance and importance of any member in a network
may be measured by considering the number of shortest paths, in which the mem-
ber appears. Effective members appear in more shortest paths compared to other
members in the network. It is also possible to consider links in connection with
shortest paths. A link is said to be more important when it belongs to more shortest
paths in the network. A member with high betweenness centrality value may act as
a gatekeeper or “broker” for communication or information passing in the network.
Another variation of betweenness is group betweenness centrality [20]. Each group
member is tested for shortest path in that case.

5 Testing the Effectiveness of Terror Networks

To demonstrate the effectiveness and applicability of the framework described in
this chapter, we conducted experiments using data related to two terror networks,
namely 9/11 and Madrid bombing. The 9/11 data set consists of 63 members of the
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terror network who were involved in 9/11 attacks. There are 153 links in the 9/11
network; these links connect members in the network and they were constructed
based on various relationships, including whether the suspects have communicated,
they are relatives, they share the place of origin, or they are roommates. The Madrid
Bombing data set consists of 67 nodes and 89 links. The links were constructed by
applying the same measures enumerated above for the 9/11 data set.

We derived the adjacency matrix of the 9/11 terror network. Each of the 63
members gets as its features the links to his direct neighbors in the network. We
utilized the 63 members with their features as input to the multi-objective genetic
algorithm based clustering technique. We utilized the Manhattan distance measure
to compute the similarity between objects. It is interesting to discover that Mohamed
Atta is the closest to the centroid of every cluster he belongs to in all the five top
solutions returned by the clustering technique. In addition, Saeed Alghamdi, Essid
Sami Ben Khemais, Hani Hunjor, Djamal Beghal, Nawaf Al hazmi and Marvan Al-
Shehhi are strong examples of terrorists who were reported as effective members of
the 9/11 network. As another evidence of their effectiveness these terrorists were
closer to the root of the hierarchies derived from their clusters.

We further run the Apriori algorithm using the adjacency matrix of the 9/11
terror network. We discovered all frequent sets of terrorists and investigated their
effectiveness. Because the network is not dense we kept minimum support value
arbitrarily at 3, which means a set of terrorists is considered frequent if its members
are concurrently related (direct neighbors of) to at least three terrorists. The reported
results for the 9/11 terror network revealed high overlap with the results reported by
the clustering approach. This confirms the importance of the members listed above.

We applied the clustering technique and the frequent pattern mining approach on
the Madrid bombing data set. The most effective terrorists reported by the frame-
work are Jamal Zougam, Jamal Ahmidan, Serhane ben Abdelmajid Fakhet, Redouan
Al-Issar, Mohamed Bekkali and Abdennabi Kounjaa.

The above results for both networks are well supported by the SNA measures
described in Sect. 3. For instance, in the 9/11 network Mohamed Atta, Hani Hun-
jor, Essid Sami Ben Khemais, Marvan Al-Shehhi and Nawaf Al-Hazmi are the top
five based on degree centrality; Mohamed Atta, Essid Sami Ben Khemais, Dja-
mal Beghal, Zaoarias Moussaoui and Hani Hunjor ranked the top five with high
betweenness values; Raed Hijazi, Hamza Alghamdi, Saeed Alghamdi, Nabil Al-
Marabh and Amed Alnami have the best closeness values.

To further realize the effectiveness of the most influential terrorists in the net-
work, we removed Mohamed Atta from the network by eliminating the row and
column that represent his node in the adjacency matrix. We repeated the above anal-
ysis and determined that the effectiveness of Ziad Jarrah increased. The elimination
of Mohamed Atta also affected the structure of the network as another evidence of
his importance as a key member of the 9/11 network. To further investigate effective
members in the network we removed both Marvan Al-Shehhi and Ziad Jarrah. We
realized that the network got more distorted and the importance of Nawaf Al-Hazmi
increased. More detailed investigation will be conducted in the future to closely ana-
lyze the importance of each member and each group. Groups will be utilized directly
from the sub hierarchies in the clusters and from the frequent sets of terrorists.
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6 Discussion, Conclusions and Future Work

Estimating the effectiveness of a network is an essential task that once accomplished
successfully could reveal variety of facts to be utilized in studying the network.
Terror networks need special treatment when it comes to study their effectiveness
because there are various factors that could play important role in shaping the ef-
fectiveness of the network. Some factors are internal to the model and could be
analyzed and studied by developing a scientific methodology as we did in this chap-
ter. However, external factors are very volatile and are hard to control and eliminate.
While scientific techniques like the one described in this chapter can help in analyz-
ing a terror network, the external factors may lead to a dynamic and uncontrollable
network. For instance, terror organizations use global changes in their propaganda
to hire new members based on ethnicity, religion, poverty, discrimination, etc. So,
it is not an easy task to produce a complete analysis of the effectiveness of a terror
network especially in this era where terror networks are growing into international
organizations; they are spreading like cancer. The effectiveness of terror networks
are alleviating as the conflicts are spreading between various ethnic and religious
groups, especially in the Middle East. Misunderstandings of religion have always
created problems and conflicts. It is important to watch out for unknowledgeable
scholars who play with the emotions of the youth and motivate them to turn into
terrorist candidates.

The framework described in this chapter provides a systematic approach to study
the importance of individuals and groups within a network. The two techniques
constitute the core of the proposed framework. They clearly highlight the most in-
fluential individuals and groups by considering alternative clustering solutions and
frequent patterns produced by analyzing the adjacency matrix of the given network.
Building hierarchies from the clusters based on distance from the centroid helps a
lot in determining the potential influence of every member in a network as well as
the influence of small and large groups within the network. Further, studying the
overlap between frequent sets of terrorists allowed us to determine the most effec-
tive individuals and groups. The two results complement each other and turn the
whole framework into a robust system for estimating the effectiveness of a network.

The discoveries reported in this chapter are very encouraging and need to be fur-
ther emphasized and supported by more extensive testing. We will utilize other ter-
ror networks which have been published in the literature, including Bali Bombing,
World Trade Center, London Bombing, etc. We will employ group betweenness cen-
trality [20]. We will also test the applicability of the proposed framework to normal
networks from various applications including gene regulatory networks, gene-gene,
protein-protein interaction networks, protein-disease, protein-drug and disease drug
networks. We want to complete comprehensive testing by analyzing the importance
of every individual in the network. We want also to benefit from the hierarchies pro-
duced from the outcome of the clustering approach to study the influence of every
sub hierarchy. We will emphasize more on sub hierarchies common to most of the
alternative clustering solutions. In the study described in this chapter, we used only
the top five alternative clustering solutions; we want to extend the set of alternative
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solutions to be considered to include more of the solutions along the Pareto-Optimal
front. Considering all alternative solutions needs more computing power and more
effort. We are working on acquiring a powerful machine that will facilitate the more
comprehensive and detailed testing. We will also build a classifier framework to de-
termine the importance of individuals and groups based on their characteristics to
be captured by the classifier framework by considering some training data. Finally,
we will work on tools and techniques that will allow us to watch the effectiveness
of a terror network by benefitting from the Web technology and social media. We
will utilize open source intelligence in the process.

References

1. Agarwal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in
large databases. In: ACM SIGMOD international conference on management of data

2. Carley KM (2003) Dynamic network analysis. In: Breiger R, Carely KM (eds) The summary
of the NRC workshop on social network modeling and analysis. National research council

3. Carley KM, Reminga J, Kamneva N (2003) Destabilizing terrorist networks. In: NAACSOS
conference proceedings, Pittsburgh, PA

4. Carrington PJ, Scott J, Wasserman S (2005) Models and methods in social network analysis.
Cambridge University Press, Cambridge

5. Farely DJ (2003) Breaking Al Qaeda cells: a mathematical analysis of counterterrorism oper-
ations. Stud Confl Terror 26:399–411

6. Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–
41

7. Freeman LC (1980) The gatekeeper, pair-dependency and structural centrality. Qual Quant
14(4):585–592

8. Freeman LC, White DR, Romney AK (1992) Research methods in social network analysis.
Transaction Publishers, New Brunswick

9. Han J, Pei J, Yin Y (2000) Mining Frequent patterns without candidate generation. In: ACM
SIGMOD international conference on management of data

10. Herrera F, Lozano M, Verdegay JL (1998) Tackling real-coded genetic algorithms: operators
and tools for behavioural analysis. Artif Intell Rev 12(4):265–319

11. Jialun Q, Xu JJ, Daning H, Sageman M, Chen H (2005) Analyzing terrorist networks: a case
study of the global Salafi Jihad network. In: Proceedings of IEEE international conference on
intelligence and security informatics, Atlanta GA, pp 287–304

12. Kaya M, Alhajj R (2008) Multi-objective genetic algorithms based automated clustering for
fuzzy association rules mining. J Intell Inf Syst 31(3):243–264

13. Kleinberg JM (1998) Authoritative sources in a hyperlinked environment. In: Proceedings of
the ninth annual ACM-SIAM symposium on discrete algorithms, pp 668–677

14. Klerks P (2001) The network paradigm applied to criminal organizations. Connections 24(3)
15. Knoke D, Yang S (2008) Social network analysis, series: quantitative applications in social

sciences. Sage, Thousand Oaks
16. Krebs V (2002) Mapping networks of terrorist cells. Connections 24(3):43–52
17. Michalewicz Z (1992) Genetic algorithms + data structures = evolution programs. Springer,

Berlin
18. Özyer T, Alhajj R (2006) Achieving natural clustering by validating results of iterative evolu-

tionary clustering approach. In: Proc. of IEEE international conference on intelligent systems,
pp 488–493

19. Peng P Nagi M et al (2011) From alternative clustering to robust clustering and its application
to gene expression data. In: Proc. of IDEAL, LNCS. Springer, Norwich



Estimating the Importance of Terrorists in a Terror Network 283

20. Puzis R, Elovici Y, Dolev S (2007) Finding the most prominent group in complex networks.
AI Commun 20(4):287–296. 2007

21. Scott J (1998) Trend report: social network analysis. Sociology 109–127
22. Shaikh MA, Wang J (2006) Discovering hierarchical structure in terrorist networks. In: Pro-

ceedings of the international conference on emerging technologies, pp 238–244
23. Sparrow MK (1991) The application of network analysis to criminal intelligence: an assess-

ment of the prospects. Soc Netw 13(3):251–274
24. Strogatz SH (2002) Exploring complex networks. Nature 410:268–276
25. Tsvetovat M, Carley KM (2005) Structural knowledge and success of anti-terrorist activity:

the downside of structural equivalence. J Soc Struct 6(2)
26. Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge

University Press, Cambridge
27. Xu J, Chen H (2005) CrimeNet explorer: a framework for criminal network knowledge dis-

covery. ACM Trans Inf Syst 23(2):201–226


	Mining Social Networks and Security Informatics
	Contents

	A Model for Dynamic Integration of Data Sources
	1 Introduction
	1.1 What Is Data Integration?
	1.2 Is Data Integration a Hard Problem?

	2 Data Sources
	2.1 What Is Data Source?
	2.2 Data Source Types
	2.3 Data Quality and Completeness

	3 Dynamic Integration of Data Sources
	3.1 Data Structure Matching
	3.2 Unstructured Data Categorization
	3.3 Unstructured Data Feature Extraction
	3.4 Unstructured Data Matching
	3.5 Ontology
	3.6 Data Matching
	3.7 Metadata
	3.8 Data Fusion and Sharing

	4 A Sample Case
	5 Conclusions and Future Work
	References

	Overlapping Community Structure and Modular Overlaps in Complex Networks
	1 Introduction
	2 Related Work
	2.1 Deﬁnition and Notation
	2.2 Current Work

	3 Modularity Extensions
	3.1 A Novel Modularity
	3.2 Existing Modularity for Covers

	4 Our Method
	4.1 Motivation
	4.2 Fuzzy Detection Algorithm
	4.3 Discussion

	5 Tests of the Method
	5.1 Synthetic Graphs Containing Hierarchical Structure
	5.2 College Football Network

	6 Application to a Real Network: Complex System Science
	7 Conclusion
	References

	Constructing and Analyzing Uncertain Social Networks from Unstructured Textual Data
	1 Introduction
	2 SNA in the Context of Intelligence Analysis
	3 Uncertain Social Networks
	4 Extraction of Entities and Relations from Unstructured Text
	4.1 Extraction of Named Entities
	4.2 Extraction of Relations
	4.3 Generating Social Networks

	5 Suggested Approach for Creating Uncertain Social Networks from Unstructured Text
	5.1 Module for Extraction of Named Entities and Uncertain Relations
	5.2 The Fusion Module

	6 Experiment
	7 Discussion
	8 Conclusions
	References

	Privacy Breach Analysis in Social Networks
	1 Introduction
	1.1 Graph Notation

	2 Privacy Breaches in Social Networks
	2.1 Interactive Privacy Breaches
	2.2 Active Privacy Breaches
	2.3 Passive Privacy Breaches

	3 Social Network Graph Anonymization
	3.1 k-Anonymity
	3.2 Anonymization Techniques

	4 Measuring Graph Anonymity
	5 Conclusion
	References

	Partitioning Breaks Communities
	1 Introduction
	1.1 Cliques as Lower Bound Communities
	1.2 Partitioning Community Finding Algorithms
	1.3 Related Work

	2 Experiments
	2.1 Network Datasets Examined
	2.2 Partition by Modularity Maximisation
	2.3 Relation of Modularity Found to Proportion Split
	2.4 Partition by Normalised Edge Cut

	3 Fundamental Partitionability of Networks
	3.1 Partitions that Directly Minimise Clique Splits
	3.2 Detailed Analysis of Sample Networks
	3.3 `Distinct' Cliques
	3.4 Random and Synthetic Models of Community

	4 Overlapping Community Finding Algorithms
	4.1 Algorithms Examined
	4.2 Analysis in Terms of Split Cliques
	4.3 Community Overlap Graphs
	4.4 Analysis of Community Overlap Graphs of Overlapping CFAs

	5 Conclusion
	6 Further Work
	References

	SAINT: Supervised Actor Identiﬁcation for Network Tuning
	1 Introduction
	2 Background
	3 Problem Formulation
	4 Entity Resolution Pipeline
	4.1 Merge Classiﬁer Problem Deﬁnition
	4.2 Split Classiﬁer Problem Deﬁnition

	5 Method
	5.1 Data
	5.2 Attribute Classiﬁer
	5.3 Creating the Network
	5.4 Merge Classiﬁer
	5.5 Identifying Nodes to Be Split
	5.6 Determine Sub-clustering

	6 Evaluation
	6.1 Data
	6.2 Results

	7 Discussion
	8 Conclusion
	References

	Holder and Topic Based Analysis of Emotions on Blog Texts: A Case Study for Bengali
	1 Introduction
	2 Related Work
	3 System Framework
	3.1 Baseline System
	3.2 SVM Based Supervised System
	Lexical Features
	Syntactic Features
	Semantic Features
	Rhetoric Features

	3.3 Experiments

	4 Document Level Topic Identiﬁcation
	4.1 Bigram Count
	4.2 Named Entity
	4.3 Sentiment and Emotion Words
	4.4 Combined Module

	5 Semantic Clustering for Identifying Topic Similarity Between Document and Sentence Level Topics
	6 Evaluation of Holder-Topic
	7 Conclusion
	References

	Predicting Number of Zombies in a DDoS Attacks Using Isotonic Regression
	1 Introduction
	2 Related Work
	3 Isotonic Regression Model
	Input and Output

	4 Statistical Performance Measures
	5 Detection of Attacks
	5.1 Analytical Model
	5.2 Entropy Based DDoS Detection

	6 Experimental Setup
	6.1 Simulation Environment

	7 Model Development and Performance Analysis
	8 Result and Discussion
	8.1 Comparison Between Isotonic Regression and Other Regression Models

	9 Conclusion and Future Work
	References

	Developing a Hybrid Framework for a Web-Page Recommender System
	1 Introduction
	2 Related Work
	3 Proposed Framework
	3.1 Data Collection and Pre-process
	3.2 Social Network Construction and Analysis
	3.3 Data Mining

	4 Prototype
	5 Discussion
	6 Conclusions and Future Work
	References

	Evaluation and Development of Data Mining Tools for Social Network Analysis
	1 Introduction
	2 Web-Content Extraction Technologies
	2.1 Formats, Conventions, Utilities, and Languages
	2.2 Libraries
	2.3 Web-Based APIs and CLUI
	2.4 Applications
	2.5 Enterprise Suites
	2.6 Outsourcing, Contracting, and Crowdsourcing

	3 Considerations for Data Mining of Online Social Networks
	3.1 Input and Output
	3.2 Dynamic Query Speciﬁcation
	3.3 Social Network Interfacing
	3.4 Job Scheduling
	3.5 Concurrency
	3.6 Progress Management
	3.7 Extraction Meta-behavior
	3.8 Client-Server Paradigm

	4 Review of Existing Data-Mining Tools to Mine Online Social Networks
	4.1 Common Data-Mining Tools
	4.2 Rapid Miner
	4.3 DEiXTo
	4.4 Web-Harvest

	5 Extension of Web-Harvest for Data Mining of Online Social Networks
	5.1 Related Work
	5.2 Voyeur Server Project
	5.2.1 Structure
	5.2.2 Functionality
	5.2.3 Temporal Control
	5.2.4 Process Management
	5.2.5 Progress Management

	5.3 Project Summary

	6 Experimental Results: A Case Study
	7 Future Work
	8 Conclusion
	References

	Learning to Detect Vandalism in Social Content Systems: A Study on Wikipedia
	1 Introduction
	2 Background
	3 Feature Extraction
	4 Learning Vandalism Detection Model
	4.1 Vandalism Detection Using Random Forest

	5 Feature Selection
	5.1 Eliminating Groups of Features
	5.2 Eliminating Individual Features

	6 Cost Sensitive Feature Selection
	6.1 Cost Sensitive Lasso
	6.2 Cost Sensitive Group Lasso

	7 Discussion and Conclusion
	References

	Perspective on Measurement Metrics for Community Detection Algorithms
	1 Introduction
	2 Related Work
	2.1 Community Detection Algorithms
	2.2 Social Network Datasets
	2.3 Methodology

	3 Community Detection on Small Networks
	3.1 Experiments on Small Networks
	3.2 Correlations Between Objective Function and Ground-Truth Measurement

	4 Community Detection on Large-Scale Networks
	4.1 Experiments on Large-Scale Networks

	5 Benchmark Networks
	5.1 Network Model Discussion
	5.2 Experimental Results

	6 Conclusion
	7 Future Work
	References

	A Study of Malware Propagation via Online Social Networking
	1 Introduction
	2 Different Types of Malware
	2.1 Cross Site Scripting Worms
	2.2 Trojan Malware
	2.3 Clickjacking Malware

	3 Characteristics of Online Social Networks
	3.1 Holme's Social Network Graph Generation Algorithm
	3.2 Random Graph Generation Algorithms

	4 Simulation of Malware Propagation in Online Social Networks
	4.1 Simulation of XSS Worm Propagation
	4.1.1 Effects of Visiting-Friends Probability q
	4.1.2 Effects of the Network Graph Structure
	4.1.3 Effects of Node Degree Threshold for Visiting Friends vs. Strangers

	4.2 Simulation of Trojan and Clickjacking Malware Propagation
	4.2.1 Effects of the Probability p of Executing the Malware by a User
	4.2.2 Effects of the Clustering Coefﬁcient on Trojan Propagation
	4.2.3 Trojan vs. XSS Propagation
	4.2.4 Effects of the Initial Number of Infected Proﬁles


	5 Modeling Malware Propagation in Online Social Networks
	5.1 The SI Model
	5.2 Modeling XSS Worms
	5.3 Modeling Trojan and Clickjacking Worms

	6 OSN Malware Countermeasures
	7 Related Work
	8 Chapter Summary
	References

	Estimating the Importance of Terrorists in a Terror Network
	1 Introduction
	2 Identifying Effective Individuals and Groups by Clustering
	3 Study Effectiveness by Frequent Pattern Mining
	4 Social Network Analysis Measures
	5 Testing the Effectiveness of Terror Networks
	6 Discussion, Conclusions and Future Work
	References


