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PREFACE

The field of medical informatics has grown rapidly over the past decade
due to the advances in biomedical computing, the abundance of biomedical
and genomic data, the ubiquity of the Internet, and the general acceptance of
computing in various aspects of medical, biological, and health care research
and practice. This book aims to be complementary to several other popular
introductory medical informatics textbooks. The focus of this book is on the
new concepts, technologies, and practices of biomedical knowledge
management, data mining, and text mining that are beginning to bring useful
“knowledge” to biomedical professionals and researchers. The book will
serve as a textbook or reference book for medical informatics, computer
science, information systems, information and library science, and
biomedical, nursing, and pharmaceutical researchers and students.
Biomedical professionals and consultants in the health care industry will also
find the book a good reference for understanding advanced and emerging
biomedical knowledge management, data mining, and text mining concepts
and practices.

Readers of this book will learn the new concepts, technologies, and
practices developed in biomedical informatics through the comprehensive
review and detailed case studies presented in each chapter. Students and
researchers will broaden their knowledge in these new rescarch topics.
Practitioners will be able to better evaluate new biomedical technologies in
their practices.

SCOPE AND ORGANIZATION

The book is grouped by three major topic units. Unit I focuses on the
critical foundational topics of relevance to information and knowledge
management including: bioinformatics challenges and standards, security
and privacy, ethical and social issues, and biomedical knowledge mapping.
Unit II presents research topics of relevance to information and knowledge
management including: representations of biomedical concepts and
relationships, creating and maintaining biomedical ontologies, genomic
information retrieval, public access to anatomic images, 3D medical
informatics, and infectious disease informatics. Unit III presents emerging
biomedical text mining and data mining research including: semantic parsing
and analysis for patient records, biological relationships, gene pathways and
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metabolic networks, exploratory genomic data analysis, and joint learning
using data and text mining.

We have compiled a list of interesting and exciting chapters from major
researchers, research groups, and centers in medical informatics, focusing on
emerging biomedical knowledge management, data mining, and text mining
research. In particular, the three topic units consist of the following chapters,
organized in a logical sequence:

Unit I: Foundational Topics in Medical Informatics

Knowledge Management, Data Mining, and Text Mining in Medical
Informatics: The chapter provides a literature review of various
knowledge management, data mining, and text mining techniques and
their applications in biomedicine.

Mapping Medical Informatics Research: The chapter presents an
overview of key medical informatics researchers and research topics
by applying knowledge mapping techniques to medical informatics
literature and author citation data between 1994 and 2003.
Bioinformatics Challenges and Opportunities: The chapter presents a
number of exciting biomedical challenges and opportunities for
biologists, computer scientists, information scientists, and
bioinformaticists.

Managing Information Security and Privacy in Health Care Data
Mining: The chapter explores issues in managing privacy and security
of health care information used to mine data by reviewing their
fundamentals, components, and principles, as well as relevant laws
and regulations.

Ethical and Social Challenges of Electronic Health Information: The
chapter explores ethical and social challenges of health care
information including implications from biomedical data mining.

Unit II: Information and Knowledge Management

Medical Concept Representation: The chapter presents an overview
of biomedical concept characteristics and collections.

Characterizing Biomedical Concept Relationships: The chapter
examines innovative approaches utilizing biomedical concept
identification and relationships for improved information retrieval
and analysis.

Biomedical Ontologies: The chapter discusses challenges in creating
and aligning biomedical ontologies and examines compatibility issues
among several major biomedical ontologies.

Information Retrieval and Digital Libraries: The chapter presents
information retrieval and digital library techniques of relevance to
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biomedical research.

Modeling Text Retrieval in Biomedicine: The chapter presents
current challenges and example document retrieval systems that help
improve biomedical information access.

Public Access to Anatomic Images: The chapter presents an overview
and case study of several systems that provide Internet access to high
resolution Visual Human images and other associated anatomic
documents and knowledge.

3D Medical Informatics: The chapter describes the emerging
discipline of 3D medical informatics and suggests some of the future
research challenges.

Infectious Disease Informatics and Qutbreak Detection: The chapter
provides an overview of the emerging infectious disease informatics
field and describes relevant system design and components for
information sharing and outbreak detection.

Unit III: Text Mining and Data Mining

Semantic Interpretation for the Biomedical Research Literature: The
chapter discusses several semantic interpretation systems being
developed in biomedicine and presents two applications that exploit
semantic information in MEDLINE citations.

Semantic Text Parsing for Patient Records: The chapter focuses on
semantic methods that map narrative patient information to a
structured coded form.

Identification of Biological Relationships from Text Documents: The
chapter describes computational problems and their solutions in
automated extraction of biomedical relationships from text
documents.

Creating, Modeling, and Visualizing Metabolic Networks: The
chapter presents the FCModeler and PathBinder systems for
metabolic network modeling, creation, and visualization.

Gene Pathway Text Mining and Visualization: The chapter describes
techniques that automatically extract gene pathway relationships from
biomedical text and presents two case studies.

The Genomic Data Mine: The chapter focuses on the genomic data
mine consisting of text data, map data, sequence data, and expression
data, and concludes with a case study.

Exploratory Genomic Data Analysis: The chapter describes
approaches to exploratory genomic data analysis, stressing cluster
analysis.

Joint Learning Using Multiple Types of Data and Knowledge: The
chapter discusses joint learning research in biomedical domains and
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presents two representative case studies in protein function
classification and regulatory network learning,

CHAPTER STRUCTURE

The book aims to present its chapters in a manner understandable and
useful to general IT and biomedical students and professionals. Each chapter
begins with an overview of the field to allow readers to get a quick grasp of
the research landscape. Selected case studies are then provided to allow
readers to get a closer look at the implementation challenges and
opportunities.

Each chapter follows a consistent structure to ensure uniformity:

o Title

¢ Authors and Affiliations

¢ Abstract and Key Words

¢ Introduction: Introduces the importance and significance of the topic.

e Literature Review/Overview of the Field: A coherent and systematic
review of related works in the topic area suitable for non-experts.

¢ Case Studies/Examples: One or two detailed case studies or examples
of selected techniques, systems, implementations, and evaluations.

s Conclusions and Discussion

s Acknowledgement and References

¢ Suggested Readings: A list of essential readings (books or articles)
for readers who wish to gain more in-depth knowledge in this topic
area.

» Online Resources: A list of online resources that are relevant to the
topic, e.g., web sites, open source software, datasets, testbeds, demos,
ontologies, benchmark results, (evaluation) golden standards, etc.

¢ Questions for Discussion: A list of questions that are important to the
topic and that would be suitable for classroom discussions or future
research,

AUDIENCE

Most medical informatics departments in the United States and
international universities will be able to use this book as a senior-level or
graduate-level textbook. Selected medical, nursing, and pharmaceutical
schools in the United States and internationally will be able to use our book
in related health computing courses. Selected computer science and
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information systems departments could use this book in biomedical
computing or data mining courses. Information and library science
departments can also use the book in graduate-level digital library,
information retrieval, or knowledge management courses.

The book could serve as a textbook or reference book for medical
informatics, computer science, information and library science, and
information systems students; medical, nursing, and pharmaceutical
researchers; and bioinformatics/biomedical practitioners in the health care
industries. Biomedical professionals and consultants in the health care
industry including biotech companies will find the book a good reference for
understanding advanced and emerging biomedical knowledge management,
data mining, and text mining concepts and practices. Most of the medical
libraries and/or science/engineering libraries in the United States and other
countries will find our book a must-have for their patrons.
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KNOWLEDGE MANAGEMENT, DATA
MINING, AND TEXT MINING IN
MEDICAL INFORMATICS

Hsinchun Chen', Sherrilynne S. Fuller®, Carol Friedman®, and William
Hersh*

!Management Information Systems Department, Eller College of Management, University of
Arizona, Tucson, Arizona 85721; *University of Washington, Biomedical and Health
Informatics, Seattle, Washington 98195-7155; >Columbia University, Department of
Biomedical Informatics New York, New York 10032; *Oregon Health and Science University,
Medical Informatics and Clinical Epidemiology, Portland, Oregon 97239-3098

Chapter Overview

In this chapter we provide a broad overview of selected knowledge
management, data mining, and text mining techniques and their use in
various emerging biomedical applications. It aims to set the context for
subsequent chapters. We first introduce five major paradigms for machine
learning and data analysis including: probabilistic and statistical models,
symbolic learning and rule induction, neural networks, evolution-based
algorithms, and analytic learning and fuzzy logic. We also discuss their
relevance and potential for biomedical research. Example applications of
relevant knowledge management, data mining, and text mining research are
then reviewed in order including: ontologies; knowledge management for
health care, biomedical literature, heterogeneous databases, information
visualization, and multimedia databases; and data and text mining for health
care, literature, and biological data. We conclude the paper with discussions
of privacy and confidentiality issues of relevance to biomedical data mining.

Keywords

knowledge management; data mining; text mining
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1. INTRODUCTION

The field of biomedical informatics has drawn increasing popularity and
attention, and has been growing rapidly over the past two decades. Due to
the advances in new molecular, genomic, and biomedical techniques and
applications such as genome sequencing, protein identification, medical
imaging, and patient medical records, tremendous amounts of biomedical
research data are generated every day. Originating from individual research
efforts and clinical practices, these biomedical data are available in hundreds
of public and private databases, which have been made possible by new
database technologies and the Internet. The digitization of critical medical
information such as lab reports, patient records, research papers, and
anatomic images has also resulted in large amounts of patient care data.
Biomedical researchers and practitioners are now facing the “info-glut”
problem. Currently, the rate of data accumulation is much faster than the rate
of data interpretation. These data need to be effectively organized and
analyzed in order to be useful.

New computational techniques and information technologies are needed
to manage these large repositories of biomedical data and to discover useful
patterns and knowledge from them. In particular, knowledge management,
data mining, and text mining techniques have been adopted in various
successful biomedical applications in recent years. Knowledge management
techniques and methodologies have been used to support the storing,
retrieving, sharing, and management of multimedia and mission-critical tacit
and explicit biomedical knowledge. Data mining techniques have been used
to discover various biological, drug discovery, and patient care knowledge
and patterns using selected statistical analyses, machine learning, and neural
networks methods. Text mining techniques have been used to analyze
research publications as well as electronic patient records. Biomedical
entitiecs such as drug names, proteins, genes, and diseases can be
automatically extracted from published documents and used to construct
gene pathways or to provide mapping into existing medical ontologies.

In the following sections, we first survey the background of knowledge
management, data mining, and text mining research. We then discuss the use
of these techniques in emerging biomedical applications.



6 MEDICAL INFORMATICS

2. KNOWLEDGE MANAGEMENT, DATA MINING,
AND TEXT MINING: AN OVERVIEW

Knowledge management, data mining, and text mining techniques have
been widely used in many important applications in both scientific and
business domains in recent years.

Knowledge management is the system and managerial approach to the
gathering, management, use, analysis, sharing, and discovery of knowledge
in an organization or a community in order to maximize performance (Chen,
2001). Although there is no universal definition of what constitutes
knowledge, it is generally agreed there is a continuum of data, information,
and knowledge. Data are mostly structured, factual, and oftentimes numeric,
and reside in database management systems. Information is factual, but
unstructured, and in many cases textual. Knowledge is inferential, abstract,
and is needed to support decision making or hypothesis generation. The
concept of knowledge has become prevalent in many disciplines and
business practices. For example, information scientists consider taxonomies,
subject headings, and classification schemes as representations of
knowledge. Consulting firms also have been actively promoting practices
and methodologies to capture corporate knowledge assets and organizational
memory. In the biomedical context, knowledge management practices often
need to leverage existing clinical decision support, information retrieval, and
digital library techniques to capture and deliver tacit and explicit biomedical
knowledge.

Data mining is often used during the knowledge discovery process and is
one of the most important subfields in knowledge management. Data mining
aims to analyze a set of given data or information in order to identify novel
and potentially useful patterns (Fayyad et al., 1996). These techniques, such
as Bayesian models, decision trees, artificial neural networks, associate rule
mining, and genetic algorithms, are often used to discover patterns or
knowledge that are previously unknown to the system and the users
(Dunham, 2002; Chen and Chau, 2004). Data mining has been used in many
applications such as marketing, customer relationship management,
engineering, medicine, crime analysis, expert prediction, Web mining, and
mobile computing, among others.

Text mining aims to extract useful knowledge from textual data or
documents (Hearst, 1999; Chen, 2001). Although text mining is often
considered a subfield of data mining, some text mining techniques have
originated from other disciplines, such as information retrieval, information
visualization, computational linguistics, and information science. Examples
of text mining applications include document classification, document
clustering, entity extraction, information extraction, and summarization.
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Most knowledge management, data mining, and text mining techniques
involve learning patterns from existing data or information, and are therefore
built upon the foundation of machine learning and artificial intelligence. In
the following, we review several major paradigms in machine learning,
important evaluation methodologies, and their applicability in biomedicine.

2.1 Machine Learning and Data Analysis Paradigms

Since the invention of the first computer in the 1940’s, researchers have
been attempting to create knowledgeable, learnable, and intelligent
computers. Many knowledge-based systems have been built for various
applications such as medical diagnosis, engineering troubleshooting, and
business decision-making (Hayes-Roth and Jacobstein, 1994). However,
most of these systems have been designed to acquire knowledge manually
from human experts, which can be a very time-consuming and labor-
intensive process. To address this problem, machine learning algorithms
have been developed to acquire knowledge automatically from examples or
source data. Simon (1983) defined machine learning as “any process by
which a system improves its performance.” Mitchell (1997) gives a similar
definition, which considers machine learning to be “the study of computer
algorithms that improve automatically through experience.” Although the
“machine learning” term has been widely adopted in the computer science
community, in the context of medical informatics, “data analysis” is more
commonly used to represent “the study of computer algorithms that improve
automatically through the analysis of data.” Statistical data analysis has long
been adopted in biomedical research.

In general, machine learning algorithms can be classified as supervised
learning or unsupervised learning. In supervised learning, training examples
consist of input/output pair patterns. Learning algorithms aim to predict
output values of new examples based on their input values. In unsupervised
learning, training examples contain only the input patterns and no explicit
target output is associated with each input. The unsupervised learning
algorithms need to use the input values to discover meaningful associations
or patterns.

Many successful machine learning systems have been developed over the
past three decades in the computer science and statistics communities. Chen
and Chau (2004) categorized five major paradigms of machine learning
research, namely probabilistic and statistical models, symbolic learning and
rule induction, neural networks, evolution-based models, and analytic
learning and fuzzy logic. We will briefly review research in each of these
areas and discuss their applicability in biomedicine.
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2.1.1 Probabilistic and Statistical Models

Probabilistic and statistical analysis techniques and models have the
longest history and strongest theoretical foundation for data analysis.
Although it is not rooted in artificial intelligence research, statistical analysis
achieves data analysis and knowledge discovery objectives similar to
machine learning. Popular statistical techniques, such as regression analysis,
discriminant analysis, time series analysis, principal component analysis,
and multi-dimensional scaling, are widely used in biomedical data analysis
and are often considered benchmarks for comparison with other newer
machine learning techniques.

One of the more advanced and popular probabilistic models in
biomedicine is the Bayesian model. Originating in pattern recognition
research (Duda and Hart, 1973), this method was often used to classify
different objects into predefined classes based on a set of features. A
Bayesian model stores the probability of each class, the probability of each
feature, and the probability of each feature given each class, based on the
training data. When a new instance is encountered, it can be classified
according to these probabilities (Langley et al., 1992). A variation of the
Bayesian model, called the Naive Bayesian model, assumes that all features
are mutually independent within each class. Because of its simplicity, the
Naive Bayesian model has been adopted in different domains (Fisher, 1987,
Kononenko, 1993). Due to its mathematical rigor and modeling elegance,
Bayesian learning has been widely used in biomedical data mining research,
in particular, genomic and microarray analysis.

A machine learning technique gaining increasing recognition and
popularity in recent years is the support vector machines (SVMs). SVM is
based on statistical learning theory that tries to find a hyperplane to best
separate two or multiple classes (Vapnik, 1998). This statistical learning
model has been applied in different applications and the results have been
encouraging. For example, it has been shown that SVM achieved the best
performance among several learning methods in document classification
(Joachims, 1998; Yang and Liu, 1999). SVM is also suitable for various
biomedical classification problems, such as disease state classification based
on genetic variables or medical diagnosis based on patient indicators.

2.1.2 Symbolic Learning and Rule Induction

Symbolic learning can be classified according to its underlying learning
strategy such as rote learning, learning by being told, learning by analogy,
learning from examples, and learning from discovery (Cohen and
Feigenbaum, 1982; Carbonell et al., 1983). Among these, learning from
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examples appears to be the most promising symbolic learning approach for
knowledge discovery and data mining. It is implemented by applying an
algorithm that attempts to induce a general concept description that best
describes the different classes of the training examples. Numerous
algorithms have been developed, each using one or more different
techniques to identify patterns that are useful in generating a concept
description. Quinlan’s ID3 decision-tree building algorithm (Quinlan, 1983)
and its variations such as C4.5 (Quinlan, 1993) have become one of the most
widely used symbolic learning techniques. Given a set of objects, ID3
produces a decision tree that attempts to classify all the given objects
correctly. At each step, the algorithm finds the attribute that best divides the
objects into the different classes by minimizing entropy (information
uncertainty). After all objects have been classified or all attributes have been
used, the results can be represented by a decision tree or a set of production
rules.

Although not as powerful as SVM or neural networks (in terms of
classification accuracy), symbolic learning techniques are computationally
efficient and their results are easy to interpret. For many biomedical
applications, the ability to interpret the data mining results in a way
understandable to patients, physicians, and biologists is invaluable. Powerful
machine learning techniques such as SVM and neural networks often suffer
because they are treated as a “black-box.”

2.1.3 Neural Networks

Artificial neural networks attempt to achieve human-like performance by
modeling the human nervous system. A neural network is a graph of many
active nodes (neurons) that are connected with each other by weighted links
(synapses). While knowledge is represented by symbolic descriptions such
as decision trees and production rules in symbolic learning, knowledge is
learned and remembered by a network of interconnected neurons, weighted
synapses, and threshold logic units (Rumelhart et al., 1986a; Lippmann,
1987). Based on training examples, learning algorithms can be used to adjust
the connection weights in the network such that it can predict or classify
unknown examples correctly. Activation algorithms over the nodes can then
be used to retrieve concepts and knowledge from the network (Belew, 1989;
Kwok, 1989; Chen and Ng, 1995).

Many different types of neural networks have been developed, among
which the feedforward/backpropagation model is the most widely used.
Backpropagation networks are fully connected, layered, feed-forward
networks in which activations flow from the input layer through the hidden
layer and then to the output layer (Rumelhart et al., 1986b). The network
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usually starts with a set of random weights and adjusts its weights according
to each learning example. Each learning example is passed through the
network to activate the nodes. The network’s actual output is then compared
with the target output and the error estimates are then propagated back to the
hidden and input layers. The network updates its weights incrementally
according to these error estimates until the network stabilizes. Other popular
neural network models include Kohonen’s self-organizing map and the
Hopfield network. Self-organizing maps have been widely used in
unsupervised learning, clustering, and pattern recognition (Kohonen, 1995);
Hopfield networks have been used mostly in search and optimization
applications (Hopfield, 1982). Due to their performances (in terms of
predictive power and classification accuracy), neural networks have been
widely used in experiments and adopted for critical biomedical classification
and clustering problems.

2.14 Evolution-based Algorithms

Evolution-based algorithms rely on analogies to natural processes and
Darwinian survival of the fittest. Fogel (1994) identifies three categories of
evolution-based algorithms: genetic algorithms, evolution strategies, and
evolutionary programming. Among these, genetic algorithms are the most
popular and have been successfully applied to various optimization
problems. Genetic algorithms were developed based on the principle of
genetics (Holland, 1975; Goldberg, 1989; Michalewicz, 1992). A population
of individuals in which each individual represents a potential solution is first
initiated. This population undergoes a set of genetic operations known as
crossover and mutation. Crossover is a high-level process that aims at
exploitation while mutation is a unary process that aims at exploration.
Individuals strive for survival based on a selection scheme that is biased
toward selecting fitter individuals (individuals that represent better
solutions). The selected individuals form the next generation and the process
continues. After some number of generations the program converges and the
optimum solution is represented by the best individual. In medical
informatics research, genetic algorithms are among the most robust
techniques for feature selection problems (e.g., identifying a subset of genes
that are most relevant to a disease state) due to their stochastic, global-search
capability.

2.15 Analytic Learning and Fuzzy Logic

Analytic learning represents knowledge as logical rules and performs
reasoning on such rules to search for proofs. Proofs can be compiled into
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more complex rules to solve similar problems with a smaller number of
searches required. For example, Samuelson and Rayner (1991) used analytic
learning to represent grammatical rules that improve the speed of a parsing
system.

While traditional analytic learning systems depend on hard computing
rules, there is usually no clear distinction between values and classes in the
real world. To address this problem, fuzzy systems and fuzzy logic have been
proposed. Fuzzy systems allow the values of False or True to operate over
the range of real numbers from 0 to 1 (Zedah, 1965). Fuzziness has been
applied to allow for imprecision and approximate reasoning. In general, we
see little adoptation of such approaches in biomedicine.

2.1.6 Hybrid Approach

As Langley and Simon (1995) pointed out, the reasons for differentiating
the paradigms are “more historical than scientific.” The boundaries between
the different paradigms are usually unclear and many systems have been
built to combine different approaches. For example, fuzzy logic has been
applied to rule induction and genetic algorithms (e.g., Mendes et al., 2001),
genetic algorithms have been combined with neural network (e.g.,
Maniezzo, 1994; Chen and Kim, 1994), and because neural network has a
close resemblance to probabilistic model and fuzzy logic they can be easily
mixed (e.g., Paass, 1990). It is not surprising to find that many practical
biomedical knowledge management, data mining, and text mining systems
adopt such a hybrid approach.

2.2 Evaluation Methodologies

The accuracy of a learning system needs to be evaluated before it can
become useful. Limited availability of data often makes estimating accuracy
a difficult task (Kohavi, 1995). Choosing a good evaluation methodology is
very important for machine learning systems development.

There are several popular methods used for such evaluation, including
holdout sampling, cross validation, leave-one-out, and bootstrap sampling
(Stone, 1974; Efron and Tibshirani, 1993). In the holdout method, data are
divided into a training set and a testing set. Usually 2/3 of the data are
assigned to the training set and 1/3 to the testing set. After the system is
trained by the training set data, the system predicts the output value of each
instance in the testing set. These values are then compared with the real
output values to determine accuracy.

In cross-validation, a data set is randomly divided into a number of
subsets of roughly equal size. Ten-fold cross validation, in which the data set
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is divided into 10 subsets, is most commonly used. The system is trained and
tested for 10 iterations. In each iteration, 9 subsets of data are used as
training data and the remaining set is used as testing data. In rotation, each
subset of data serves as the testing set in exactly one iteration. The accuracy
of the system is the average accuracy over the 10 iterations. Leave-one-out is
the extreme case of cross-validation, where the original data are split into »
subsets, where n is the size of the original data. The system is trained and
tested for » iterations, in each of which n—1 instances are used for training
and the remaining instance is used for testing.

In the bootstrap method, » independent random samples are taken from
the original data set of size n. Because the samples are taken with
replacement, the number of unique instances will be less than n. These
samples are then used as the training set for the learning system, and the
remaining data that have not been sampled are used to test the system (Efron
and Tibshirani, 1993).

Each of these methods has its strengths and weaknesses. Several studies
have compared them in terms of their accuracies. Hold-out sampling is the
easiest to implement, but a major problem is that the training set and the
testing set are not independent. This method also does not make efficient use
of data since as much as 1/3 of the data are not used to train the system
(Kohavi, 1995). Leave-one-out provides the most unbiased estimate, but it is
computationally expensive and its estimations have very high variances,
especially for small data sets (Efron, 1983; Jain et al., 1987). Breiman and
Spector (1992) and Kohavi (1995) conducted independent experiments to
compare the performance of several different methods, and the results of
both experiments showed ten-fold cross validation to be the best method for
model selection.

In light of the significant medical and patient consequences associated
with many biomedical data mining applications, it is critical that a
systematic validation method be adopted. In addition, a detailed, qualitative
validation of the data mining or text mining results needs to be conducted
with the help of domain experts (e.g., physicians and biologists), and
therefore this is generally a time-consuming and costly process.

3. KNOWLEDGE MANAGEMENT, DATA MINING,
AND TEXT MINING APPLICATIONS IN
BIOMEDICINE

Knowledge management, data mining, and text mining techniques have
been applied to different areas of biomedicine, ranging from patient record
management to clinical diagnosis, from hypothesis generation to gene
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clustering, and from spike signal detection to protein structure prediction. In
this section, we briefly survey some of the relevant research in the field,
covering the applications of learning techniques in knowledge management,
and data mining and text mining in biomedicine. More exhaustive and
detailed reviews and discussions of selected knowledge management, data
mining, and text mining techniques and applications in biomedicine can be
found in the subsequent chapters in this book.

3.1 Ontologies

Before we examine different biomedical applications, it is important to
understand the role of ontologies in knowledge management and knowledge
discovery, especially for text mining applications. An ontology is a
specification of conceptualization. It describes the concepts and
relationships that can exist and formalizes the terminology in a domain
(Gruninger and Lee, 2002). Ontologies are often used to facilitate knowledge
sharing between people, information processing, data mining,
communication between software agents, or other knowledge processing
applications.

Many ontologies have been developed in the biomedical field. The
Unified Medical Language System (UMLS), supported by the National
Library of Medicine (NLM), is a major resource for facilitating computer
programs to process and manage biomedical documents (McCray et al.,
1993; Humphreys et al., 1993; Campbell et al., 1998; Humphreys et al.,
1998). The UMLS offers three knowledge sources: the Metathesaurus, the
Semantic Network, and the Specialist Lexicon. The Metathesaurus is a large
multilingual controlled vocabulary database for biomedicine that allows
users to map biomedical names and textual terms to concepts (i.e., controlled
vocabulary terms), or to identify a set of different terms that are associated
with a single concept. The Metathesaurus is formed by integrating about 100
different controlled vocabularies including the Medical Subject Headings
(MeSH), a controlled vocabulary, and SNOMED-CT, a controlled clinical
vocabulary established by the College of American Pathologists. The
Semantic Network provides the categorization of the concepts in the
Metathesaurus and also the relationships among the concepts. The Specialist
Lexicon, designed to facilitate natural language processing for biomedical
text, is a lexicon containing syntactic definitions for both biomedical terms
and general English terms. These resources provide a framework and
ontology for knowledge representation in biomedicine. UMLS resources
have been widely used in biomedical language processing (Baclawski et al.,
2000; Bodenreider and McCray, 2003; Perl and Geller, 2003; Rosse and
Mejino, 2003; Zhang et al., 2003; Caviedes and Cimino, 2004). Several
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studies have investigated the mapping of concepts from the Metathesaurus to
the Semantic Network (Cimino et al., 2003; Rindflesch and Fiszman, 2003).

Besides biomedical documents, it is also important for researchers and
computers to understand the different terminologies for genes and proteins.
The Gene Ontology (GO) project is an effort to address the need for
consistent descriptions of gene products in different databases (The Gene
Ontology Consortium, 2000). Aiming to produce a dynamic, controlled
vocabulary of genes that can be applied to all eukaryotes, the project
includes many databases, including FlyBase (Drosophila), the
Saccharomyces Genome Database (SGD), the Mouse Genome Database
(MGD), and several other major genome databases. GO consists of three
structured ontologies that describe genes and gene products. GO terms are
also cross-referenced with indexes from other databases. Similarly, the
Human Genome Nomenclature (HUGO) specifies the standard, approved
names and symbols for human genes (Wain et al., 2002). Most of this data
can be searched on the Web as text files. There are numerous public
databases specifying gene and gene products that are associated with
multiple organisms as well as with specific model organisms.

3.2 Knowledge Management

Artificial intelligence techniques have been used in knowledge
management in biomedicine as ecarly as the 1970s, when the MYCIN
program was developed to support consultation and decision making
(Shortliffe, 1976). In MYCIN, the knowledge obtained from experts was
represented as a set of IF-THEN production rules. Systems of this type
would be later known as expert systems and become very popular in the
1980s. Expert systems relied on expert knowledge that was engineered into
it, which was a time-consuming and labor-intensive process.

The performance of MYCIN was encouraging and it even outperformed
human experts in some cases (Yu et al., 1979). Despite its early success, it
was never used in actual clinical settings. Other medical diagnostic systems
were also seldom used clinically. The reasons were two-fold. First, people
were skeptical about computer technologies and system performances.
Computers were not popular at that time, and many physicians did not
believe that computers could perform better than humans. Second,
computers were big, expensive machines in the 1970s. It was not feasible to
support complex programs like MYCIN on an affordable computer to
provide fast responses (Shortliffe, 1987). However, with the improved
performance and lower cost of modern computers and medical knowledge-
based systems, we believe there is a great opportunity for adopting selected
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knowledge management systems and technologies in the biomedical context,
in particularly, not as a human replacement (i.e., expert systems) but as a
biomedical decision making aide.

3.21 Knowledge Management in Health Care

It has been generally recognized that patient record management systems
is highly desired in clinical settings (Heathfield and Louw, 1999; Jackson,
2000; Abidi, 2001). The major reasons include physicians’ significant
information needs (Dawes and Sampson, 2003) and clinical information
overload. Hersh (1996) classified textual health information into two main
categories: patient-specific clinical information and knowledge-based
information, which includes research reported in academic journals, books,
technical reports, and other sources. Both types of information are growing
at an overwhelming pace.

Although early clinical systems were mostly simple data storage systems,
knowledge management capabilities have been incorporated in many of
them since the 1980s. For example, the HELP system, developed at the
Latter Day Saints Hospital in Utah, provides a monitoring program on top of
a traditional medical record system. Decision logic was stored in the system
to allow it to respond to new data entered (Kuperman et al., 1991). The
SAPHIRE system performs automatic indexing of radiology reports by
utilizing the UMLS Metathesaurus (Hersh et al., 2002). The clinical data
repository at Columbia-Presbyterian Medical Center (Friedman et al., 1990)
is another example of a database that is used for decision support (Hripcsak,
1993) as well as well as physician review. The clinical data repository at the
University of Virginia Health System is another example (Schubart and
Einbinder, 2000). In their data warehouse system, clinical, administrative,
and other patient data are available to users through a Web browser. Case-
based reasoning also has been proposed to allow physicians to access both
operative knowledge and medical literature based on their medical
information needs (Montani and Bellazzi, 2002). Janetzki et al. (2004) use a
natural language processing approach to link electronic health records to
online information resources. Other advanced text mining techniques also
have been applied to knowledge management in health care and will be
discussed in more detail later in the chapter.

3.2.2 Knowledge Management for Biomedical Literature
Besides clinical information, knowledge management has been applied to

research articles and reports, mostly via selected information retrieval and
digital library techniques. The National Library of Medicine (NLM) offers
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the PubMed service, which includes over 13 million citations for biomedical
articles from MEDLINE and other relevant journals. Many search systems
have been built to help users retrieve relevant biomedical research papers
and reports in database systems and over the Web. Automatic indexing and
retrieval techniques are often applied. For example, the Telemakus system
offers researchers a framework for information retrieval, visualization, and
knowledge discovery (Fuller et al., 2002; Fuller et al., 2004; Revere et al.,
2004). Using information extraction and visualization techniques, the system
allows researchers to search the database of research articles for a
statistically significant finding. The HelpfulMed system allows users to
search for biomedical documents from several databases including
MEDLINE, CancerLit, PDQ, and other evidence-based medicine databases
(Chen et al., 2003). The HelpfulMed database includes high-quality health
care-related Web pages collected from reputable sites using a neural-
network-based spreading activation algorithm (Chau and Chen, 2003). The
system also provides a term-suggestion tool called Concept Mapper, which
allows users to consult a system-generated thesaurus and the NLM’s UMLS
to refine their search queries (Houston et al., 1999; Leroy and Chen, 2001).

MARVIN is an example of medical information retrieval systems that
applied selected machine learning techniques (Baujard et al., 1998). Built on
a multi-agent architecture, the system filters relevant documents from a set
of Web pages and follows links to retrieve new documents. While
MARVIN’s filtering was based on simple document similarity metrics, other
algorithms such as maximum-distance, artificial neural networks, and
support vector machines have been applied to filtering medical Web pages
(Palakal et al., 2001; Chau and Chen, 2004). A Bayesian model based on
term strength analysis also has been used in biomedical document retrieval
(Wilbur and Yang, 1996). Shatkay et al. (2000; 2002) use a probabilistic
similarity-based search to retrieve biomedical documents that share similar
themes.

Other text mining techniques also have been used to facilitate the
management and understanding of biomedical literature. For example,
natural language processing and noun phrasing techniques have been applied
to extract noun phrases from medical documents (Tolle and Chen, 2000).
Noun phrases often convey more precise meanings than single terms and are
often more useful in further analysis. Named-entity extraction also has been
widely applied to automatically identify from text documents the names of
entities of interest (Chau et al., 2002). While mostly tested on general
entities such as people names, locations, organizations, dates, times, number
expressions, and email addresses (Chinchor, 1998), named-entity extraction
has been used to extract specific biomedical entities such as gene names,
protein names, diseases, and symptoms with promising results (Fukuda et
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al., 1998; Leroy et al., 2003). The extracted entities and relations are useful
for information retrieval and knowledge management purposes. Both entity
and relation extraction techniques will be discussed in more detail in our
review of text mining later in the article.

3.2.3 Accessing Heterogeneous Databases

In the post-genome era, biomedical data are now being generated at a
speed much faster than researchers can handle using traditional methods
(National Research Council, 2000). The abundance of genomic and
biomedical data has created great potential for research and applications in
biomedicine, but the data are often distributed in diverse databases. As
biological phenomena are often complex, researchers are faced with the
challenge of information integration from heterogeneous data sources
(Barrera et al., 2004). Many techniques have been proposed to allow
researchers and the general public to share their data more effectively. For
example, Sujansky (2001) proposes a framework to integrate heterogeneous
databases in biomedicine by providing a uniform conceptual schema and
using selected query-translation techniques. The BLAST programs are widely
used to search protein and DNA databases for sequence similarities
(Altschul et al., 1997). The MedBlast system, making use of BLAST, allows
researchers to search for articles related to a given sequence (Tu et al,
2004). Sun (2004) uses automated algorithms to identify equivalent concepts
available in different databases in order to support information retrieval. A
software agent architecture also has been proposed to help users retrieve data
from distributed databases (Karasavvas et al., 2004).

3.24 Information Visualization and Multimedia Information Access

Information (and knowledge) visualization for biomedical informatics is
critical for understanding and sharing knowledge. With the rapid increase in
computer speed and reduction in cost, graphical visualization has become
increasingly popular in biomedical applications. Visualization techniques
support display of more meaningful information and facilitate user
understanding. Maps, trees, and networks are among some of the most
popular information visualization representations. In the HelpfulMed system
discussed earlier, documents retrieved from different databases are clustered
using a self-organizing map algorithm (Kohonen, 1995) and a two-
dimensional map is generated to display the document clusters (Chen et al.,
2003). Bodenreider and McCray (2003) apply radial diagrams and
correspondence analysis techniques to visualize semantic groups in the
UMLS semantic network. Han and Byun (2004) use a three-dimensional
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display to visualize protein interaction networks. Virtual reality also has
been applied in visualizing metabolic networks (Rojdestvenski, 2003).

Three-dimensional displays, interactive visualization, multimedia
displays, and other advanced visualization techniques have been applied
successfully in many biomedical applications. The most prominent example
is the NLM’s Visible Human Project (Ackerman, 1991), which produces
three-dimensional representations of the normal male and female human
bodies by obtaining transverse CT, MR, and cryosection images of
representative male and female cadavers. The data is complete and
anatomically detailed as the male was sectioned at one millimeter intervals
and the female at one-third of a millimeter intervals. The data provides a
good testbed for medical imaging and multimedia processing algorithms and
has been applied to various diagnostic, educational, and research uses.

Because text processing algorithms cannot be applied to multimedia data
directly, image processing and indexing techniques are often needed for
selected biomedical applications. These techniques enable users to visualize,
retrieve, and manage multimedia data such as X-ray and CAT-scan images
more effectively and efficiently. For example, Yoo and Chen (1994)
developed a system to provide a natural navigation of patient data using
three-dimensional images and surface rendering techniques. Antani et al.
(2004) study different shape representation methods to measure the
similarity between X-ray images in order to enable users to manage and
organize these images. Their system allows users to retrieve vertebra shapes
significant to the pathology indicated in the query. Due to the increasing
popularity and maturity of medical imaging systems, we foresee a pressing
need for advanced multimedia processing and knowledge management
capabilities in biomedicine.

33 Data Mining and Text Mining

Data mining techniques have been widely used to find new patterns and
knowledge from biomedical data. While Bayesian models were widely used
in the early days, more advanced machine learning methods, such as
artificial neural networks and support vector machines, have been applied in
recent years. These techniques are used in different areas of biomedicine,
including genomics, proteomics, and medical diagnosis, among others. In
the following, we review some of the major applications of data mining and
knowledge discovery techniques in the field.
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3.3.1 Data Mining for Health care

Because of their predictive power, data mining techniques have been
widely used in diagnostic and health care applications. Data mining
algorithms can learn from past examples in clinical data and model the
oftentimes non-linear relationships between the independent and dependent
variables. The resulting model represents formalized knowledge, which can
often provide a good diagnostic opinion.

Classification is the most widely used technique in medical data mining.
Dreiseit]l et al. (2001) compare five classification algorithms for the
diagnosis of pigmented skin lesions. Their results show that logistic
regression, artificial neural networks, and support vector machines
performed comparably, while k-nearest neighbors and decision trees
performed worse. This is more or less consistent with the performances of
these classification algorithms in other applications (e.g., Yang and Liu,
1999). Classification techniques are also applied to analyze various signals
and their relationships with particular diseases or symptoms. For example,
Acir and Guzelis (2004) apply support vector machines in automatic spike
signal detection in ElectroEncephaloGrams (EEG), which can be used in
diagnosing neurological disorders related to epilepsy. Kandaswamy et al.
(2004) use artificial neural network to classify lung sound signals into six
different categories (e.g., normal, wheeze, and rhonchus) to assist diagnosis.

Data mining is also used to extract rules from health care data. For
example, it has been used to extract diagnostic rules from breast cancer data
(Kovalerchuk et al., 2001). The rules generated are similar to those created
manually in expert systems and therefore can be easily validated by domain
experts. Data mining has also been applied to clinical databases to identify
new medical knowledge (Prather et al., 1997; Hripcsak et al., 2002).

3.3.2 Data Mining for Molecular Biology

New sequencing technologies and low computation cost have resulted in
an overwhelming abundance of biological data that can be accessed easily
by researchers. It is not feasible to analyze these data manually, and the gap
between the amount of submitted sequence data and related annotations,
structures, or expression profiles is rapidly growing.

Data mining has begun to play an important role in addressing this
problem. Clustering is probably the most widely used data mining technique
for biological data. For example, clustering analysis is often applied to
microarray gene expression data to identify groups of genes sharing similar
expression profiles. Eisen et al. (1998) applied hierarchical clustering on the
Saccharomyces cerevisiae gene expression data and achieved promising
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results. Various other clustering algorithms also have been tested on gene
expression data, including k-means clustering (Herwig et al.,, 1999),
backpropagation neural networks (Sawa and Ohno-Machado, 2003), self-
organizing maps (Tamayo et al., 1999; Herrero et al., 2001), fuzzy clustering
(Belacel et al., 2004), expectation maximization (Qu and Xu, 2004), and
support vector machines (Brown et al., 2000). Qin et al. (2003) used the idea
of kernel (as in support vector machines) and combined it with hierarchical
clustering. Gene expression analysis also has been applied in cancer class
discovery and prediction (Golub et al., 1999; Hsu et al., 2003).

Besides clustering, other predictive data mining techniques also have
been applied to biomedical data. For example, neural network models have
been widely used in predicting protein secondary structure (Qian and
Sejnowski, 1988; Hirst and Sternberg, 1992). Increasingly, data mining
algorithms also have been used for prediction in various biomedical
applications including protein backbone angle prediction (Kuang et al.,
2004), protein domains (Nagarajan and Yona, 2004), biological effects
(Krishnan and Westhead, 2004), and DNA binding (Ahmad et al., 2004).
These predictive methods are often based on classification (supervised
learning) algorithms such as neural networks or support vector machines.

333 Text Mining for Literature and Clinical Records

Text mining has been widely used to analyze biomedical literature.
Because of the large amount of research articles in public databases and the
diversity of biomedical research, it is not uncommon that researchers
encounter some sequences or new genes that they have no knowledge about.
It is quite likely that some important relationships between biological entities
remain unnoticed because relevant data are scattered and no researcher has
linked them together (Swanson, 1986; Smalheiser and Swanson, 1998).
Given the large amount of published literature and that many researchers
only specialize in a small sub-domain (e.g., several particular genes), text
mining techniques could be invaluable in discovering new knowledge
patterns or hypotheses from the large amount of existing and new literature
in biomedicine (Yandell and Majoros, 2002).

Text mining for biomedical literature often involves two major steps.
First, it must identify biomedical entities and concepts of interests from free
text using natural language processing techniques. For instance, if we want
to study the relationship between a gene (e.g., p53) and a disease (e.g., brain
tumors), the names of both entities need to be correctly identified from the
relevant textual documents. Many text mining algorithms have been applied
to this problem. For example, Fukuda et al. (1998) use simple morphological
clues to recognize the names of proteins and other materials with high
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accuracy. Support vector machines have been used in entity extraction by
classifying words into the 24 entity classes in the GENIA corpus (Kazama et
al., 2002). Tanabe and Wilbur (2002) use part-of-speech tagging and a
Bayesian model to identify genes and proteins in text. Hatzivassiloglou et al.
(2001) compared three machine learning techniques, namely Naive Bayesian
model, decision trees, and inductive rule learning, to resolve the
classification of a biological entity (e.g., protein, gene, and RNA) after it
was identified. Their results showed that the three learning models had
comparable performance. Other studies have investigated the mapping
between abbreviations and full names such that these names will not be
considered by the system as different entities (Yu et al., 2002).

After the entity names have been identified, further analyses are
performed to see whether these entities have any relationships, such as gene
regulations, metabolic pathways, or protein-protein interactions (Blaschke et
al., 1999; Dickerson et al., 2003). Shallow parsing is often used to focus on
specific parts of the text to analyze predefined words such as verbs and
nouns (Leroy et al., 2003). Sekimizu et al. (1998) identified the set of most
frequently used verbs in a collection of abstracts and developed a set of rules
to identify the subjects and objects of the verbs. Pustejovsky et al. (2002)
used relational parsing and finite state automata to identify inhibit
relationships from biomedical text. The GENIES system, based on the
MedLEE parser (Friedman and Hripcsak, 1998), also has been used to
extract molecular pathways from texts (Friedman et al.,, 2001). The
Telemakus system extracts information by analyzing the headings and
surrounding texts of tables and figures (Fuller et al., 2002; Revere et al.,
2004). The Genescene system utilizes an ontology-based approach to
relation extraction by integrating the Gene Ontology, the Human Genome
Nomenclature, and the UMLS (Leroy and Chen, forthcoming). The system
combines natural language processing and co-occurrence analysis techniques
to identify terms and gene pathway relations from biomedical abstracts. The
EDGAR system extracts drugs, genes, and relationships from text
(Rindflesch et al., 2000). Wren et al. (2004) developed a system that uses a
random network model to rank the relationships identified from text.
Machine learning techniques also have been used to automate the process of
annotation. For instance, Kretschmann et al. (2001) used a C4.5 algorithm to
generate rules for keyword annotation in the SWISS-PROT database.

Text mining also has been applied to patient records and other clinical
documents to facilitate knowledge management. It adopts a process similar
to that of text mining from literature. For example, the system reported by
Harris et al. (2003) extracts terms from clinical texts. Using natural language
processing techniques, the MedLEE system (Friedman and Hripcsak, 1998)
has been applied to free-text patient records. It extracts useful entities in
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order to identify patients having tuberculosis or breast cancer based on their
admission chest radiographs and mammogram reports, respectively (Knirsch
et al., 1999; Jain and Friedman, 1997). Chapman et al. (2004) use a similar
text mining approach for automated fever detection from clinical records to
detect possible infectious disease outbreaks.

3.4 Ethical and Legal Issues for Data Mining

Medical records and biological data generated from human subjects
contain private and confidential information. Patients’ and human subjects’
data must be handled with great caution in order to protect their privacy and
confidentiality. Researchers do not automatically acquire the rights to use
patient or subject data for data mining purposes unless they obtain the
patients’ or subjects’ consent (Berman, 2002). In the US, the 1996 Health
Insurance Portability and Accountability Act (HIPAA) set the standards for
using and handling patient data in electronic format. The “Common Rule”
also specifies how to protect human subjects in federally-funded research. In
Europe, the EU Data Protection Directive specifies rules on handling and
processing any information about individuals. Violations of these standards
could result in legal responsibilities and penalties including fine and
imprisonment. Data mining results that are relevant to patients and subjects
need to be interpreted in the proper medical context and with the help of the
biomedical professionals.

In biomedical data mining, under most conditions patient data should not
be individually identifiable, i.e., no record should provide sufficient data to
identify the individual related to the record. These include anonymous data
(data collected without patient-identification information), anonymized data
(data collected with patient-identification information which is removed
later), or de-identified data (data with patient-identification information
encoded or encrypted) (Cios and Moore, 2002).

4. SUMMARY

In this chapter we provide a broad overview of selected knowledge
management, data mining, and text mining techniques and their use in
various emerging biomedical applications. However powerful they may be,
these techniques need to be used with great care in the biomedical
applications. One concern, as discussed earlier, is that medical data are often
sensitive and involve private and confidential information. It is important
that patients’ confidentiality and privacy are not compromised due to the
introduction of advanced knowledge management, data mining, and text
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mining technologies. Another caveat is that findings generated from selected
machine learning techniques need to be interpreted carefully. Knowledge
and patterns discovered by computers need to be experimentally or clinically
validated in order to be considered rigorous, just like any knowledge
generated by human. Errors and incorrect associations could propagate
quickly through electronic media, especially when large databases and
powerful computational techniques are involved.

Nonetheless, these new knowledge management, data mining, and text
mining techniques are changing the way new knowledge is discovered,
organized, applied, and disseminated. With the increasing speed of
computers, the connectivity of the Internet, the abundance of biomedical
data, and the advances in medical informatics research, we believe we will
continue to generate, manage, and harvest biomedical knowledge effectively
and efficiently, allowing us to better understand the complex biological
processes of life and assist in addressing the well-being of human kind.
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This excellent introductory book provides a comprehensive overview of the applications of
computer and information technologies in health care and biomedicine.
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Press.
The book describes bioinformatics from a technical perspective and explains in detail the
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This introductory book includes useful reviews of various machine learning techniques and
their applications.

Chen, H., Lally, A. M., Zhu, B., and Chau, M. (2003). “HelpfulMed: Intelligent Searching for
Medical Information over the Internet,” Journal of the American Society for Information
Science and Technology, 54(7), 683-694, 2003.

This article provides an overview of medical information retrieval techniques on the
Internet, including Web crawling, co-occurrence analysis, and document visualization.

Eisen, M., Speliman, P., Brown, P., and Botstein, D. (1998). “Cluster Analysis and Display of
Genome-wide Expression Patterns,” in Proceedings of the National Academy of Sciences,
95, 14863-14868.

This article presents a study on performing clustering techniques on gene expression data.

Swanson, D. R. (1986). “Fish Oil, Raynaud’s Syndrome, and Undiscovered Public
Knowledge,” Perspectives in Biology and Medicine, 30(1), 7-18.
This article describes the interesting story of how public knowledge could remain
“undiscovered” as there were no researchers linking the literature in two separate fields,
and how the computer was used to discover such knowledge.

Yandell, M. D. and Majoros, W. H. (2002). “Genomics and Natural Language Processing,”
Nature Reviews Genetics, 3(8), 601-610.
This article reviews research studies that apply natural language processing and text
mining techniques in genomics.

ONLINE RESOURCES

National Center for Biotechnology Information (NCBI)  http://www.ncbi.nlm.nih.gov/
NCB]I, a division of the National Library of Medicine, provides access to many excellent
molecular biology resources, including GenBank (an annotated collection of all publicly
available DNA sequences), Entrez (a cross-database search engine), and BLAST (a
sequence similarity search engine).

Unified Medical Language Systems (UMLS)
http://www.nlm.nih.gov/research/umls/
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Developed by the Lister Hill Center of the NLM, UMLS provides a large-scale and
widely-used medical ontology for information retrieval and text mining applications in
biomedicine. The three major components include the Metathesaurus, the Semantic
Network, and the Specialist Lexicon.

ExPASy Proteomics Server
http://us.expasy.org/
The ExPASy (Expert Protein Analysis System) proteomics server is hosted by the Swiss
Institute of Bioinformatics (SIB). It focuses on the analysis of protein sequences and
structures. It provides access to Swiss-PROP, TrEMBL, and other proteomics and
sequence analysis tools and resources.

Protein Data Bank
http://www.rcsb.org/pdb/
The Protein Data Bank is the single worldwide repository for 3-D biological
macromolecular structure data.

European Bioinformatics Institute (EBI)
http://www.ebi.ac.uk/
EBI is the European equivalent of NCBI and is part of the European Molecular Biology
Laboratory (EMBL). It manages several biological databases including: nucleic acid,
protein sequences, and macromolecular structures.

GenomeNet
http://www.genome.jp/
Developed in Japan, GenomeNet includes several databases for genome research and
molecular and cellular biology. Its services include the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and the DBGET Integrated Database Retrieval System, among others.

GenomeWeb
http://www.rfcgr.mre.ac.uk/GenomeWeb/
This site provides a comprehensive directory of genome-related Web sites and information.

Saccharomyces Genome Database (SGM)
http://www.yeastgenome.org
This database contains information about the molecular biology and genetics of the yeast
Saccharomyeces cerevisiae. Commonly known as the baker's or budding yeast, its genome
has been widely studied in bioinformatics.

The Visible Human Project
http://www.nlm.nih.gov/research/visible/
This site includes a detailed description of NLM’s Visible Human Project, instructions on
how to obtain the data, and some other related resources and conference information.

The UCI Machine Learning Repository
http://www.ics.uci.edu/~mlearn/MLRepository.html
This repository at the University of California, Irvine, contains data in many different
domains (including biomedicine) that have been widely used to test and compare machine
learning techniques.

WEKA
http://www.cs.waikato.ac.nz/ml/weka/
Developed at the University of Waikato in New Zealand, WEKA is an open-source
machine learning software written in Java, containing a wide range of useful algorithms.
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QUESTIONS FOR DISCUSSION

1.

What are the similarities and differences between bioinformatics and
medical informatics? How can research in the two areas be beneficial to
each other?

What is an intelligent system? Can an intelligent system be more
intelligent than humans? What are the important characteristics of an
intelligent system in biomedicine?

Discuss the characteristics of major machine learning paradigms and
their applicability in biomedicine.

Explain what knowledge management is and why it is useful for medical
informatics, What are some of the good examples of biomedical
knowledge management systems? How can a knowledge management
system be created and used in industry?

Please compare the knowledge discovery process by computers with that
in humans. Do you think that data mining and text mining techniques
have begun to change the way that research is done in biomedicine?

What are the social, ethical, and legal concerns for future biomedical
knowledge management, data mining, and text mining applications?
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Chapter Overview

The ability to create a big picture of a knowledge domain is valuable to both
experts and newcomers, who can use such a picture to orient themselves in
the field’s intellectual space, track the dynamics of the field, or discover
potential new areas of research. In this chapter we present an overview of
medical informatics research by applying domain visualization techniques to
literature and author citation data from the years 1994-2003. The data was
gathered from NLM’s MEDLINE database and the ISI Science Citation
Index, then analyzed using selected techniques including self-organizing
maps and citation networks. The results of our survey reveal the emergence
of dominant subtopics, prominent researchers, and the relationships among
these researchers and subtopics over the ten-year period.

Keywords
information visualization; domain analysis; self-organizing map; citation
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1. INTRODUCTION

The rapid evolution of medical informatics and its subdomains makes it
crucial for researchers to stay abreast of current developments and emerging
trends. This task is made difficult, however, not only by the large amounts
of available information, but by the interdisciplinary nature of the field.
Relevant information is spread across diverse disciplines, posing a particular
challenge for identifying relevant literature, prominent researchers, and
research topics (Sittig, 1996, Andrews, 2002, Vishwanatham, 1998). Any
attempt to understand the intellectual structure and development of the field
must furthermore consider all of the contributing disciplines; as Bérner et al.
(2003) point out, "researchers looking at the domain from a particular
discipline cannot possibly have an adequate understanding of the whole." In
this chapter we report the results of an analysis of the medical informatics
domain within an integrated knowledge mapping framework. We provide a
brief review of the literature on knowledge mapping, then describe in detail
the analysis design and results of our medical informatics literature mapping
with three types of analysis: basic analysis, content map analysis, and
citation network analysis.

2. KNOWLEDGE MAPPING: LITERATURE
REVIEW

Domain analysis is a subfield of information science that attempts to
reveal the intellectual structure of a particular knowledge domain by
synthesizing disparate information, such as literature and citation data, into a
coherent model (White and McCain 1997, Small 1999). Such a model
serves as an overview to newcomers to the field, and reveals the field's
dynamics and knowledge transfer patterns to experts.

A significant portion of domain analysis research has been focused on
citation analysis. Historically, a great deal of manual effort was needed to
gather citation data for this type of analysis by combining different literature
resources and tracing through the citations. A manual analysis approach,
however, is inherently subjective, and is impractical for the vast amounts of
time-sensitive information available for most domains today (Bémer et al.,
2003). Digital citation indexes such as Researchindex (formerly CiteSeer)
developed by NEC Research Institute (Lawrence et al. 1999) and IST's
Science Citation Index (SCI) eliminate the need for manual data collection,
but still lead to large amounts of citation data that are difficult to analyze
using traditional techniques. Recent developments in the field of domain
visualization attempt to alleviate this citation information overload problem
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by applying information visualization techniques to produce visual (and
often interactive) representations of the underlying intellectual structure of
the domain reflected in the large-scale citation data. A wide range of
techniques have been applied to citation visualization, including clustering
display based on co-citation (Small, 1999), the “Butterfly” display
(Mackinlay et al., 1999), Pathfinder network scaling (Chen and Paul, 2001),
and hyperbolic trees (Aureka, 2002).

Content, or “semantic,” analysis is another important branch of domain
analysis. This type of analysis relies on natural language processing
techniques to analyze large corpora of literature text. Techniques ranging
from simple lexical statistics to key phrase co-occurrence analysis to
semantic and linguistic relation parsing are applied to reveal topic
distribution and associations within the domain. To alleviate the similar
information overload problem as for the citation data, many visualization
techniques have been developed to produce content maps of large-scale text
collections. Prominent examples include ThemeScape and Galaxies (Wise et
al., 1995), the underlying techniques of which are multidimensional scaling
and principle component analysis, and WebSOM (Honkela et al., 1997) and
ET Map (Chen et al., 1996) which are based on the self-organizing map
algorithm.

The application of visualization techniques to both citation and content
analysis is consistent with the exploratory nature of domain analysis and
forms the foundation of knowledge (domain) mapping. These visualization
results provide valuable support for users’ visual exploration of a scientific
domain to identify visual patterns that may reflect influential researchers and
studies, emerging topics, hidden associations, and other findings regarding
the domain.

The effectiveness of domain analysis specifically in medical informatics
is demonstrated by surveys by Sittig (1996) and Vishwanathan (1998), who
used citation-based analyses to identify core medical informatics literature,
and by Andrews (2002), who uses author co-citation analysis (ACA) to
create multidimensional maps of the relationships between influential
authors. We have also seen large-scale content mapping of the general
medical literature (Chen et al., 2003), but not specifically of the medical
informatics field.

In this study, we adopt the knowledge mapping framework proposed by
Huang et al. (2003) that leverages large-scale visualization tools for
knowledge mapping in fast-evolving scientific domains. Under this
framework we perform three types of analysis -- basic analysis, content map
analysis, and citation network analysis -- to provide a multifaceted mapping
of the medical informatics literature. Through analyzing documents and
citation information we identify influential researchers in the field and the
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nature of their contributions, track knowledge transfer among the
researchers, and identify domain subtopics and their trends of development.
The results of our study present a comprehensive picture of medical
informatics over the past ten years.

3. RESEARCH DESIGN

The Huang et al. (2003) framework proposes a generic set of analytical
units, three analysis types, and various visualization technologies for
representing the results of patent analysis. The analytical units include
geographical regions, industries/research fields, sectors, institutions,
individuals, and cross-units. Our medical informatics analysis focuses on
individuals (authors), and research fields (subtopics) as units of analysis.
We rely on two visualization techniques: self-organizing maps (SOMs) for
revealing semantic grouping of topics, authors, and development trends; and
citation networks for exploring knowledge transfer patterns. The details of
our application of the Huang et al. three-pronged analysis are outlined
below.

3.1 Basic Analysis

This first type of analysis provides "performance evaluation,” namely, a
measure of the level of an analytical unit's contribution to the field. Two
types of measures are used for the contribution analysis, the productivity (or
quantity) measures and impact (or quality) measures. We perform basic
analysis at the author level to identify major researchers in medical
informatics. The most prolific authors are determined by the number of
publications attributed to them in our data set, with the highest-ranking
authors deemed the most productive. A simple and commonly-used author
impact measure is the number times an author is cited by others. The idea is
that citation implies an acknowledgement of authority on the part of the
citing author to the cited one, and that an author's citation level reflects the
community's perceived value of their contribution to the field. This idea is
supported by a substantial amount of academic literature on citation
indexing. Garfield's 1955 vision of an interdisciplinary science citation
index introduced the concept of citation as an impact factor indicator, and
the concept has since been applied by the Researchlndex in its citation
context tool (Lawrence et al. 1999), Liu et al. (2004) in their AuthorRank
indicator, and several domain analysis surveys (Andrews, 2002,
Vishwanatham, 1998, Sittig, 1996, White and McCain, 1997, Chen et al.,
2001, Noyons et al., 1999).
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We expand on simple citation count by assigning authors an Authority
score based on the HITS algorithm (Kleinberg, 1998), which was intended
for identifying important web pages based on hyperlink citation structure.
Following the formulation of the original HITS algorithm, two types of
scores are defined for each author in our author citation analysis: an
Authority score and a Hub score. An author with a high Authority score has
a significant impact/influence on other authors, meaning his/her work has
been extensively cited (directly and indirectly) by other authors. A high Hub
score, on the other hand, indicates that an author’s work has cited many
influential studies. The Authority and Hub scores mutually reinforce each
other: authors citing influential authors (with high Authority scores) tend to
have high Hub scores; authors cited by authors who have cited influential
authors (with high Hub scores) tend to be influential (with high Authority
scores). With an author citation data set, we initialize the Authority scores
as the number of times the authors are cited by others and the Hub scores as
the number of times the authors cite others. The two scores are then
computed following an iterative updating procedure:

Authority Score(p) = Z Hub Score(g)

q hascited p

Hub Score(q) = ) Authority Score(p)
¢ has cited p
The Authority score we use for our study is obtained with three iterations of
score updating. It essentially incorporates the number of citations received
by an author, the authors citing him/her, authors citing those citing authors,
and so on.

3.2 Content Map Analysis

Content analysis is used in the Huang et al. framework to identify and
track dominating themes in a field. Analyzing the content of the work
produced by a specific analytical unit also provides valuable information on
what subdisciplines that unit contributes to, and how the contribution
changes over time. This approach augments traditional citation-based
performance indicators (such as author co-citation) by operating directly on
literature content, instead of inferring content from relationships between
analytical units.

We use the self-organizing map (SOM) algorithm to perform content
mapping of the medical informatics literature. Initially proposed by Kohonen
(1990), the SOM algorithm analyzes similarities of entities with a large
number of attributes and produces a map of the entities, in which the
geographical distances correspond to the attribute-based similarities. In our
study, we perform content mapping of papers and authors.
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To generate the content maps, the text of each paper (a combination of
titles and abstracts, in our study) is analyzed using the Arizona Noun Phraser,
which identifies the key noun phrases based primarily on linguistic patterns
(Tolle and Chen, 2000). These noun phrases, representing key concepts, are
then used to represent the content of a paper by forming a binary vector,
each element of which represents the occurrence of a particular noun phrase.
The self-organizing map algorithm (SOM) typically produces a two-
dimensional map to represent the content distribution of a set of documents.
Each location in the map, that is, a node in a two-dimensional grid, is also
assigned a key phrase vector, like the papers. These map node vectors are
typically real-valued (for example, between 0 and 1) and initialized with
random values. For each input paper, the SOM algorithm identifies a
winning node that has the largest vector similarity measure to the input paper.
The vector values of this winning node and its close neighbors are then
updated to be more similar to the input paper vector. With all input papers
used to perform the node vector updating process, the final configuration of
the map, that is, the vector values of all map nodes, presents a content
distribution of the input papers. The papers then obtain their locations in the
map by finding the map nodes with the largest vector similarity measures. A
map of authors is similarly generated by forming a key phrase vector for
each author. The key phrase vector is created by combining the vectors for
an author’s papers, then used as input to the SOM algorithm in the same way
as paper vectors.

We applied the multilayer SOM algorithms developed by Chen et al.
(1995) to produce topic maps by adding a hierarchical topic region layer on
top of a map of papers. We also perform longitudinal mapping, that is, a
series of chronically sequential SOMs, to reveal the evolution of medical
informatics subdisciplines. From the maps, a researcher can observe what
disciplines exist at different points in time, when particular disciplines
emerge, and their rate of growth and decline. A domain expert can
potentially use such longitudinal maps to forecast emerging trends (Bérner et
al., 2003).

We also created an author map using the SOM algorithm. Based on the
positions of the authors in the map, we identify groups of authors that had
papers with similar contents.

3.3 Citation Analysis

Visualizing citation data as a network is a classic method for intuitively
displaying knowledge transfer patterns among analytical units. Citation
networks consist of nodes representing the analytical units, with directional
links representing citations between them. When the analytical unit is an
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author, such networks can be used to quickly identify strong communication
channels in the domain, and the structure of those channels. Since citation
between authors implies a human judgment that a work by the cited author is
relevant to one by the citing author, frequently-occurring citations can
indicate that two authors work in a similar field. Hence, citation networks
can be used to identify communities of researchers. For this study, we
gathered citation information from ISI's Science Citation Index for the years
1994-2003 for a core group of researchers identified by the basic analysis.
We then wuse the freely-available graphing program NetDraw
(http://www.analytictech.com/netdraw.htm) to visualize the result.

4. DATA DESCRIPTION

Andrews (2002) points out that an author co-citation analysis is only as
good as the analyst's choice of authors. The same can be said for domain
analysis in general. We used a number of measures to collect as
comprehensive a data set for our survey as possible. First, we used NLM's
expansive MEDLINE database of biomedical literature to provide source
documents for our analysis. We then used four criteria to locate documents
in MEDLINE relevant to medical informatics. For an article to be included
in our collection, at least one of the following had to be true:

1. The article was published in one of 22 prominent journals in the medical
informatics domain. These journals consist of the 18 identified by
Andrews (2002) and additionally two journals and two conference
proceedings that are frequently cited in (Shortliffe et al., 2000). The
complete list of journal titles is given in Table 2-1.

2. The article abstract or title contains one of the selected medical
informatics keywords listed in Table 2-2.

3. The article is indexed by MEDLINE under the MeSH term "Medical
Informatics." MeSH is widely acknowledged to be an authoritative
indexing system.

4. The article was authored by a fellow of the American College of Medical
Informatics (ACMI), a group of scholars who are determined by their
peers to have made “significant and sustained contributions to the field”
(http://www.amia.org/acmi/acmi.html).

The use of ACMI fellows as a test set on which to perform domain
analysis is supported by Andrews (2002), who also cites the use of ACMI by
Greenes and Siegel (1987).
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Using the above criteria, we identified 24,495 medical informatics
articles in MEDLINE, as of August 2004. Restricting our data set to articles
published during our ten-year test bed, 1994-2003, yielded 16, 964 articles.

Table 2-1. Prominent medical informatics journals included in our study.

Journal Name

Artificial Intelligence in Medicine

Biomedizinische Technik (Biomedical Engineering)

Computer Methods and Programs in Biomedicine

Computers, Informatics, Nursing: CIN

IEEE Engineering in Medicine and Biology Magazine

IEEE Transactions on Information Technology in Biomedicine

International Journal of Medical Informatics

International Journal of Technology Assessment in Health Care

Journal of Biomedical Informatics

Journal of Cancer Education: The Official Journal of the American Association for Cancer
Education

Journal of Evaluation in Clinical Practice

Journal of the American Medical Informatics Association (JAMIA)

M.D. Computing: Computers in Medical Practice

Medical and Biological Engineering and Computing

Medical Informatics and the Internet in Medicine

Medical Decision Making

Methods of Information in Medicine

Proceedings of the American Medical Informatics Association (AMIA) Annual Fall
Symposium

Proceedings of the Annual Symposium on Computer Applications in Medical Care

Statistical Methods in Medical Research

Statistics in Medicine

Table 2-2. Keywords used to identify MEDLINE
documents relevant to medical informatics.

Keyword

Medical informatics

Clinical informatics

Nursing informatics

Health informatics

Bioinformatics

Biomedical informatics

As White and McCain (1997) state, "we wished to let 'the field' dictate its
top authors rather than choosing them ourselves." This means that in
addition to using ACMI fellows for our analysis, we allowed our document
set to determine the remainder of our author set: anyone identified as an
author of an article in the medical informatics collection was included in our
collection of authors. A count of the most frequently-occurring names in the
collection determined the most prolific authors in the field, as listed in Table
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2-3. These authors comprise the “core” set used to gather citation data from
the Science Citation Index (SCI). As of this study, SCI is only searchable
through the online Web of Science. A "citation search" was manually
performed in the Web of Science for each author in our core set, to gather
information on who has cited them, and who they cite. This search yielded
some commonly-cited names that are not included in our core set, which can
be seen in Tables 2-4 and 2-5. Together the core set and frequently-cited
names list some of the most recognizable and influential researchers in the
field, and citation information for all of these authors was used for our
citation analysis.

S. RESULTS
=H | Basic Analysis

Our basic analysis focused on authors as the analytical unit, with the
results presented in Tables 2-3, 2-4, and 2-5. These tables offer different
perspectives - productivity and impact factor, respectively - on the most
highly contributing researchers in the domain. Table 2-3 lists the 96 most
prolific authors, that is, those with the most publications attributed to them in
our data set. James J. Cimino at Columbia University tops the list with 62
publications, followed closely by Arie Hasman at the University of
Maastricht in the Netherlands, Robert A. Greenes of Harvard Medical
School, and Perry L. Miller at Yale University. The citation search
described in Section 4 above yielded some frequently cited authors that do
not appear in the core set shown in Table 2-3. Citation counts were gathered
for these authors in addition to those in the core set, and the most frequently
cited of the combined list are shown in Table 2-4. Some authors of note in
the list that do not appear among the core authors in Table 2-3 are Lucian L.
Leape at the Harvard School of Public Health, Mor Peleg at Stanford
University, and Suzanne Bakken at Columbia University.

Table 2-5 ranks the authors in the combined list by their citation-based
Authority scores. James Cimino is again among the five highest scoring in
this table, along with Mark A. Musen at Stanford University, Edward H.
Shortliffe at Columbia University (formerly at Stanford), George Hripcsak at
Columbia, and Paul D. Clayton, who was at Columbia until 1998 and is
currently Chief Medical Informatics Officer at Intermountain Health Care in
Salt Lake City. The latter four authors are shown in Table 2-3 to have
approximately half the number of publications as the most prolific author,
yet their Authority scores indicate the significant impact of their
publications.
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Table 2-3. Publication counts for prolific authors.

Author name Number of Author name Number of
publications in publications in
collection collection

Cimino, James J. 62 Van der Lei, J. 22

Hasman, A. 52 Kahn, Michael G. 22

Greenes, Robert A. 45 Friedman, Carol 22

Miller, Perry L. 44 Rector, Alan L. 22

Haux, Reinhold 42 Whitehead, J. 21

Musen, Mark 39 Cerutti, S. 21

Patel, Vimla L. 38 Tierney, William M. 21

Safran, Charles 37 Warner, Homer R. 21

Barnett, Octo G. 35 Habbema, J. D. 20

Stefanelli, Mario 35 Friedman, Charles P. 20

Miller, Randolph A. 31 Beck, J. Robert 20

Shortliffe, Edward 31 Royston, P. 19

Van Bemmel, J. H. 30 Zhou, X. H. 19

Haug, Peter 29 McDonald, Clement 19

Hripesak, George 29 Wigton, Robert S. 19

Fagan, Larry 29 Shahar, Y. 18

Kohane, Issac 28 Fieschi, M. 18

Weinstein, M. C. 27 Lui, K. J. 18

Degoulet, Patrice 27 Haynes, R. Brian 18

Bates, David W. 27 Brinkley, James 18

Lenert, Leslie A. 27 Brennan, Patricia F. 18

Durand, L. G. 26 Kuperman, Gilad J. 18

Timpka, T. 26 Stead, William W. 18

Chute, Christopher 26 Tuttle, Mark S. 18

Clayton, Paul D. 26 Pinciroli, F. 17

Johnson, Stephen B. 26 Bolz, A. 17

Sittig, Dean F. 26 Spiegelhalter, D. J. 17

Greenland, S. 25 Simon, R. 17

Pfurtscheller, G. 25 Mitchell, Joyce A. 17

Hersh, William R. 25 Ohno-Machado, 17

Lucila

Donner, A. 24 Tang, Paul C. 17

Thompson, S. G. 24 Tu, Samson W, 17

Huff, Standley M. 24 Van Ginneken, AM. 16

Gardner, Reed M. 24 Déssel, O. 16

Dudeck, Joachim 24 Freedman, L. S. 16

Nadkarni, Prakash 24 Groth, T. 16

Teich, Jonathan M. 24 Meinzer, H. P. 16

Bellazzi, R. 23 Altman, Russ B. 16

Cooper, Greg 23 Reggia, James A. 16

Scherrer, Jean-Raoul 23 Slack, Warner V. 16

Wigertz, Ove 23
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Table 2-4. Citation counts for frequently cited authors.

Author name Times cited by Author name Times cited by
authors in medical authors in
informatics medical
collection informatics

collection

Bates, D. W, 989 Greenes, R. A. 142

Cimino, JI. J. 691 Lui, K. J. 137

McDonald, C. J. 359 Giuse, D. A. 135

Patel, V. L. 356 Neuper, C. 134

Hripesak, G. 331 McCray, A. T. 131

Pfurtscheller, G. 306 Hersh, W. R. 129

Friedman, C. 301 Rind, D. M. 128

Miller, R. A. 289 Riva, A. 127

Musen, M. A. 287 Montani, S. 123

Greenland, S. 280 Huff, S. M. 123

Bellazzi, R. 243 Kuhn, K. A. 123

Overhage, J. M. 225 Johannesson, M. 122

Leape, L. L. 219 Kaplan, B. 120

Peleg, M. 215 Baud, R. H. 119

Hasman, A. 206 Lenert, L. A. [19

Bakken, S. 196 Combi, C. 117

Campbell, K. E. 188 Fox, J. 117

Chute, C. G. 183 Zeng, Q. 114

Shahar, Y. 180 Das, A. K. 114

Haux, R. 175 Degoulet, P. 113

Kushniruk, A. W. 167 Perl, Y. 113

Elkin, P. L. 167 Spackman, K. A. 112

Zhou, X. H. 164 Johnston, M. E. 112

Kuperman, G. J. 162 Safran, C. 112

Boxwala, A. A. 157 Owens, D. K. 111

Simon, R. 155 Andreassen, S. 111

Evans, R. S. 152 Friedman, C. P. 111

Table 2-5. Authority score ranking for frequently cited authors.

Author name Authority score Author name Authority score

Clayton, P. D. 4.06 Tierney, W. M. 1.93

Cimino, J. J. 4.00 Tuttle, M. S. 1.89

Hripesak, G. 3.86 Johnston, M. E. 1.84

Musen, M. A. 3.66 Hasman, A. 1.80

Shortliffe, E. H. 3.58 Brennan, P. F. 1.77

Safran, C. 3.54 McDonald, C. J. 1.63

Barnett, G. O. 3.33 Miller, P. L. 1.58

Greenes, R. A. 3.31 Shea, S. 1.57

Campbell, K. E. 3.01 Stefanelli, M. 1.56

Hersh, W. R. 2.95 Overhage, J. M. 1.49

Stead, W. W. 2.90 Ohnomachado, L. 1.42

Gardner, R. M. 2.90 Haynes, R. B. 1.37

Bates, D. W, 2.87 Friedman, C. 1.36

continued
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Author name Authority score Author name Authority score
Chute, C. G. 2.82 Lobach, D. F. 1.38
Kuperman, G. J. 2.76 Humphreys, B. L. 1.34
Friedman, C. P. 2.73 Haux, R. 1.33
Rector, A. L. 2.68 Rind, D. M. 1.29
Teich, J. M. 2.67 Evans, R. S. 1.25
Sittig, D. F. 2.64 Zielstorff, R. D. 1.21
Shahar, Y. 2.47 Peleg, M. 1.20
Warner, H. R. 2.45 McCray, A. T. 1.18
Slack, W. V. 2.41 Kohane, I. S. 1.16
Haug, P. J. 2.23 Dolin, R. H. 1.11
Tang, P. C. 2.19 Leape, L. L. 1.10
Patel, V. L. 2.12 Tu, S. W. 1.09
Miller, R. A. 2.09 Owens, D. K. 1.02
Shiffman, R. N. 2.00 Spackman, K. A. 1.02
Huft, S. M. 1.98 Van Bemmel, J. H. 1.01

5.2 Content Map Analysis
5.2.1 Topic Map Analysis

The content map analysis uses time-series topic maps to present
development trends in medical informatics over the ten years. For this
temporal analysis we created topic maps of three periods, 1994-1997, 1998-
2000, and 2001-2003. By breaking the medical informatics papers published
over the past decade into three periods, we hope to glean the recent evolution
and topic changes of the field. To generate the maps, the abstracts and titles
of 5,837 papers in our collection were processed for 1994-1997, 5,755 for
1998-2000, and 5,375 for 2001-2003.

In these topic maps clusters of papers are represented by shaded regions
and labeled by representative noun phrases appearing in those papers. The
medical noun phrases were extracted using the Arizona Noun Phraser as
described previously. These noun phrases were extracted from the original
text and the capitalization varies. However, phrases with capitalization
variations were treated as the same phrases for the phrase vector
representation. Numbers of papers within each cluster are presented in
parentheses after the topic labels. As described previously in Section 3.2,
neighboring topic regions have high content similarities. Users can click on
the map regions to browse the papers.

The first topic map (Figure 2-1) displays an assortment of dominating
themes for the first time period. There are many prominent but general
medical information topics that occupy large regions, including: “Electronic
Medical Records,” “Computer-Based Patient Record,” “Health Care,”
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“Information Technologies,” “Computer Programs,” “Medical Students,”
etc. A few specific medical informatics applications also occupy large
regions, including: “Hospital Information Systems” and “Clinical
Information Systems.” In addition, we also notice several small but distinct
topic regions that are related to data analysis and mining, e.g., “Decision
Support Systems,” “Statistical Analysis,” “Regression Models,” “Artificial
Neural Networks,” and “Neural Networks.” It appears that data mining and
knowledge discovery research had already begun to emerge in 1994-1997,
the first era of our analysis.

Medical Informatics (144)

murassinnmuﬂa =
; (65) j

g

Hospital Informalio ; A
Systerns (67) |2 e - B compuler programs
3 neural networks (100} st

Cllnll: al Information Syslem (71)

Figure 2-1. Top level content map for 1994-1997.

The topic regions in the second and third time periods were colored to
reflect the growth rate of the topic compared with the previous time period
(not shown here due to production reasons), which is computed as the ratio
between the number of papers in the region for the current time period, and
the number of papers in the region of the same topic label in the previous
time period. The color legend of the growth rate is presented as well below
these two content maps. In Figure 2-2, regions such as “Human Genome”
and “Medical Imaging” correspond to the right end of the color legend,
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which represents newly emerged topic regions, while regions with lighter
colors such as “Hospital Information System” corresponds to color legends
close to the left end, which represent topic regions that had a slow or average
growth rate.

 clinical,
L practices
Q9

- WMedical Research (124)

health care (59)
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Figure 2-2, Top level content map for 1998-2000.

In the second map (Figure 2-2), we see the continued presence of several
important, but general medical informatics topic regions, including: “Health
Care,” “Information Technologies,” “Electronic Medical Records,”
“Hospital Information Systems,” etc. Several data analysis and mining topics
began to occupy larger regions than in 1994-1997, e.g., “Decision Support
Systems” and ‘“Neural Networks.” In addition, “Protein Sequence” and
“Human Genome” topics emerged the first time, increasing the scope of
biomedical data. There is also an increased diversity of applications and
methodologies such as: “Nursing Informatics,” Medical Imaging,”
“Economic Evaluation,” and “Health Technology Assessment.”
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Figure 2-3. Top level content map for 2001-2003.

In addition to some of the general medical informatics topics (“Health
Care,” “Medical Informatics,” etc.), the third map (Figure 2-3) shows a
strong presence of data mining and knowledge discovery topics in 2001-
2003 including: “Neural Networks,” “Artificial Neural Networks,”
“Bayesian Approach,” “Data Mining,” “Markov Models,” etc. Most
interestingly, we see an explosion of biological and genomic data types and
applications, including: “DNA Microarrays,” “DNA Sequences,” “Gene
Expression,” “Mass Spectrometry,” “Protein-Protein  Interactions,”
“Functional Genomics,” etc.

The pattern of mixed topics observed between maps is consistent with
the observation that medical informatics is a fast-growing, multidisciplinary
field (Andrews, 2002). Sittig (1996) and Greenes and Siegel (1987) recount
the difficulty of defining the boundaries of the medical informatics domain,
and the resulting diversity of subfields attributed to it. Despite such
challenges, we observed a consistent focus on health care, electronic medical
records, and information technologies topics in general in the three eras of
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analysis. In addition, we also see overwhelming evidence of the presence of
many emerging and exciting data mining and knowledge discovery research
applications, especially those which leverage the opportunities presented by
a wide spectrum of new, diverse, and large-scale biological and genomic
data and problems.

5.2.2 Author Map Analysis

The author map in Figure 2-4 attempts to group individual researchers in
the domain space, based on their common research interests. For this
analysis we used the core author set from Table 2-3 as the input data. The
result presents five major clusters of authors who had papers with similar
contents. Each resulting cluster has been assigned a label indicating the
common concept(s) that the cluster represents. The labels were manually
selected from the keywords extracted by the SOM algorithm, a process
which requires human judgment, but as Andrews (2002) points out,
consistent with other cluster analysis methods. The keywords used to
determine each label are listed in Table 2-6, and the individual groups are
shown in detail in Figures 2-5 through 2-8 (with the exception of Group 3,
which was decided not to be dense enough to require a zoomed in view).

Table 2-6. Top keywords generated from authors’ texts and used to label author map groups.

Group 1 Group 2 Group 3
Decision support system Clinical trials Clinical applications
Decision support Breast cancer Clinical information
Expert system Risk factors system
Knowledge-based system Cardiovascular disease
Coronary heart disease
Group 4 Group 5
Patient care Clinical trials
Medical record Cohort study
Electronic medical record Confidence intervals
Unified medical language system Multivariate analysis

The largest group in the center of the author map, Group 1, is labeled
"Decision support and knowledge-based systems." This group contains 37
of the 96 authors, including W.R. Hersh, C.G. Chute, and M.A. Musen.
Author proximity on the map indicates a degree of similarity between the
rescarch interests. Group 2, "Clinical trials for diseases,” contains 15
authors, including R.A. Miller, Y. Shahar, and M. Stefanelli. Group 3,
"Clinical applications and information systems," contains 6 authors, among
them D.W. Bates and P.D. Clayton. Group 4, labeled "Patient care and
electronic medical records," is comprised of such prolific authors as J.J.
Cimino, D.F. Sittig, R.A. Greenes, C. Friedman, and E.H. Shortliffe.



52 MEDICAL INFORMATICS

Finally, Group 5, "Clinical trials and analysis," contains 8 authors, among
them A. Donner and K.J. Lui. Authors in our original 96 that are not
included in a group can be seen in the overall map in Figure 2-4.
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Figure 2-4. Overall author similarity map.
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Figure 2-8. Author map - Group 3.
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53 Citation Network Analysis

Using the data gathered from SCI, we created two citation networks of
the most prominent researchers in medical informatics, as identified by our
basic analysis. Both networks present views of the same data with different
levels of filtering. A link from author A to author B indicates that A
frequently cites B. In the visualization results, triangles indicate "core"
authors (presented in Table 2-3) and circles represent "non-core" authors. In
order to reveal only the strongest communication patterns, links associated
with a small number of citations are filtered from the networks. Figure 2-9
is filtered by a link threshold of 10, that is, only links associated with 10 or
more citations are shown. The result is a rather dense cluster, but hubs can
still be observed around the major players from our basic analysis results:
Edward H. Shortliffe, Paul D. Clayton, George Hripcsak, David W. Bates,
James J. Cimino, and William R. Hersh, to name a few. These authors are
not only frequently published and cited, they are cited repeatedly by
consistent sets of other authors. Figure 2-10 is a view of the same citation
data, filtered by a threshold of 20. In this view, clearer subgroups of
citations emerge. One distinct subgroup of eight authors is disconnected
from the larger graph. This group appears in the upper right-hand part and
consists of four "core" authors from Table 2-3, and four "non-core" authors
from Table 2-4. In the larger graph itself, hubs from Figure 2-9 begin to pull
apart into subgroups. The most distinct group clusters around David Bates
and William M. Tierney, and includes high-ranking authors from the basic
analysis, such as Dean F. Sitting and Jonathan M. Teich. Other subgroups of
the larger graph can be observed but are much less distinct. Obvious hubs
are James Cimino, George Hripcsak, and Edward Shortliffe. Tightly
connecting these are Carol Friedman, Vimla L. Patel, and Robert A.
Greenes.

It should be noted that as a result of filtering by link strength, the citation
networks do not reflect an overall qualitative performance measure of the
authors, but rather the nature of their communication channels. That is, the
graphs do not show who is the most cited, but who most frequently cites
whom. It can be observed, for example, that there are no links to William
Hersh in the 20-threshold network; however, our basic analysis indicates that
Hersh is highly influential in the field, and is cited by numerous other
authors. According to Figure 2-10, he is simply not cited more than 19 times
by the same author. In contrast, there are two incoming links to Christopher
G. Chute (from James Cimino and Peter L. Elkin). Chute is only slightly
below Hersh in Authority ranking, but frequently cites and is cited by two
specific authors, so is connected to the main graph.
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Figure 2-9. Author citation network (minimum cites per link: 10).
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Figure 2-10. Author citation network (minimum cites per link: 20).

6. CONCLUSION AND DISCUSSION

For a fast-growing, interdisciplinary knowledge domain such as medical
informatics, it is valuable to be able to create a picture of the state of the
research from a variety of perspectives. Such a picture helps organize the
vast amounts of information available in order to determine past and current
(and possibly future) directions of the field, as well as prominent
researchers, their relationships to each other, and the parts of the domain to
which they contribute. Automatic information visualization techniques can
perform these knowledge tasks efficiently and systematically. In this study
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we augment classic domain analysis techniques with visualization tools to
create a variety of views of medical informatics over the past ten years. The
results of our study present development trends of subtopics of the field, a
performance evaluation of the prominent researchers, and graphs of
knowledge transfer among researchers.

This study was designed in the context of the analysis framework
developed by Huang et al. (2003), and implements the three types of analysis
presented in that work: basic analysis, content maps, and citation networks.
Based on the data set extracted from widely-used data sources such as the
MEDLINE database and SCI, we believe our analysis helps reveal the
coverage and evolution of the field. It would be interesting to compare the
particular findings from our analysis with the pictures of the field in the
minds of the domain experts. Such evaluation would help determine how
accurate our analysis results are and reveal interesting discrepancies between
automatic analysis results and expert knowledge that might enhance our
understanding of the state of the field.
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between the fifty most-cited ACMI fellows for the years 1994 to 1998,

Cronin, B. (Ed). (2003). Annual Review of Information Science and Technology, Vol 37.
Medford, NJ: Information Today, Inc./American Society for Information Science and
Technology.

Number 37 in a series that offers a comprehensive overview of information science and
technology. This volume contains chapters on indexing and retrieval for the web, and
visualizing knowledge domains in general.

Chen, C. (2003). Mapping Scientific Frontiers: The Quest for Knowledge
Visualization. Secaucus, NJ: Springer-Verlag.
A thorough investigation of the effectiveness of using visualization tools to reveal shifts in
scientific paradigms, and of the need for interdisciplinary research in information
visualization and information science.

Chen, C., Paul, R. J. (2001). Visualizing a knowledge domain's intellectual structure. JEEE
Computer. 34(3), 65-71.
Introduces Pathfinder network scaling to produce a 3D knowledge landscape from science
citation patterns. The authors propose a four-step approach to “extends and transform”
traditional author citation and co-citation analysis.

Garfield, E. (1979). Citation Indexing: Its theory and application in science, technology and
humanities. John Wiley, New York.
Garfield’s influential review of the creation and usefulness of citation indexes for
understanding knowledge domains, especially since his seminal 1955 paper on the subject
(Science, 122, 108-111).

Honkela, T., Kaski, S., Lagus, K., Kohonen, T. (1997). WebSom - Self-Organizing Maps of
Document Collections. Proceedings of the Workshop on Self-Organizing Maps. 310-315,
Introduces WEBSOM, a well-known application of the SOM algorithm to organize high
dimensional text documents according to similarity, and to present the results in an
intuitive user interface.
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Kohonen, T. (1990) The Self-Organizing Map, Proceedings of the IEEE. 78(9), 1464-1480.
Influential review and demonstration of various applications of the SOM algorithm.

. Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society
Jor Information Science. 50(9), 799-812.

Demonstrates the use of associative trails and virtual reality software to create and
navigate spatial representations of a sample of multidisciplinary science citation data. The
author also provides a nice overview discussion and justification for applying information
visualization techniques to science.

White, H. D., McCain, K. (1998). Visualizing a discipline: An author co-citation analysis of
information science, 1972 - 1995. Journal of the American Society for Information
Science. 49(4), 327 - 355.

The authors use author co-citation data to map the field of information science.

ONLINE RESOURCES

ISI Science Citation Index, through the Web of Science
ISI Journal Citation Reports
http://isi6.isiknowledge.com/portal.cgi

ResearchIndex (also known as CiteSeer)
http://citeseer.ist.psu.edu/
http://www.neci.nec.com/~lawrence/researchindex.html

Entrez PubMed, from NLM
Access to NCBI’s MeSH, MEDLINE, and journal databases:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi

American College of Medical Informatics
http://www.amia.org/acmi/facmi.html

NetDraw, network visualization tool
http://www.analytictech.com/netdraw.htm

Information analysis and visualization demos
SOM and GIS: http://ai.bpa.arizona.edu/go/viz/index.html
SOM: http://www.cis.hut.fi/research/som_pak/
CiteSpace: http://www.pages.drexel.edu/~cc345/citespace/
SPIRE and Themescape: http://nd.loopback.org/hyperd/zb/spire/spire.html

QUESTIONS FOR DISCUSSION

1. What analytical units in addition to authors and documents can be used to
examine the state of medical informatics research? What kind of
perspectives on the field would these analytical units provide?
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2. What is the relationship between citation data and the topology of a
knowledge domain? What is the motivation for using such data for
domain analysis?

3. What are the advantages of using content analysis over citation analysis
for identifying domain subtopics? What are the advantages of using
citation analysis over content analysis?

4. How effective are the results of visualization technologies (such as
citation networks and self-organizing maps) at presenting domain
knowledge in an intuitive way? Are the results informative, easy to
understand?
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Chapter Overview

As biomedical research and healthcare continue to progress in the
genomic/post genomic era a number of important challenges and
opportunities exist in the broad area of biomedical informatics. In the
context of this chapter we define bioinformatics as the field that focuses on
information, data, and knowledge in the context of biological and biomedical
research. The key challenges to bioinformatics essentially all relate to the
current flood of raw data, aggregate information, and evolving knowledge
arising from the study of the genome and its manifestation. In this chapter
we first briefly review the source of this data. We then provide some
informatics frameworks for organizing and thinking about challenges and
opportunities in bioinformatics. We use then use one informatics framework
to illustrate specific challenges from the informatics perspective. As a
contrast we provide also an alternate perspective of the challenges and
opportunities from the biological point of view. Both perspectives are then
illustrated with case studies related to identifying and addressing challenges
for bioinformatics in the real world.
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1. INTRODUCTION

As biomedical research and healthcare continue to progress in the
genomic/post genomic era, a number of important challenges and
opportunities exist in the broad area of biomedical informatics. Biomedical
informatics can be defined “as the scientific field that deals with biomedical
information, data, and knowledge — their storage, retrieval, and optimal use
for problem-solving and decision making” (Shortliffe et al.., 2001). To
understand the challenges and opportunities for informatics within the field
of bioinformatics (defined most broadly as informatics in the domains of
biology and biomedical research) it helps to understand the broader context
in which they exist.

In the broader context, the key challenges to bioinformatics essentially all
relate to the current flood of raw data, aggregate information, and evolving
knowledge arising from the study of the genome and its manifestation. The
genome can be thought of as the machine code or raw instructions for
creation and operation of biological organisms (its manifestation). The
information encoded in DNA results in the creation of proteins which serve
as the key building blocks for biological function (a protein on the surface of
one cell (neuron) in the brain can recognize a chemical signal sent by a
neighboring neuron). Proteins physically aggregate to create more complex
units of biological function termed protein complexes (the protein that
recognizes the signal from a neuron might be part of a protein complex that
translates that signal into an action such as turning on another protein that
was in “standby mode”). Proteins and protein complexes interact with one
another in networks or pathways to carry out higher level biological
processes (such as the neuronal signaling pathway). These pathways include
regulatory mechanisms whereby the function of the pathway overall is
controlled by relevant input parameters (such as frequency and intensity of
input from the part of the nervous system related to sensing pain). This
regulation is complex and can include feedback and interaction among the
proteins and protein complexes of the pathway, as well as regulation and
interaction of other pathways. Interestingly, mechanisms include also the
regulation of the conversion (translation) of the raw information encoded in
the DNA into the intermediate messages (mRNA) and regulation of the
conversion of the mRNA into proteins, as well as modification of the
proteins themselves. The pathways in turn are assembled into more complex
systems of multiple interacting pathways (pathways involved in evasive
response to painful stimuli). In multi-cellular animals these complex systems
in turn interact to control the function of their basic building blocks, namely
the cells (for example, a brain cell or neuron). The cells in turn interact with
one another and form higher order structures termed organs (the brain, for
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example). These organs interact with one another to form systems (such as
the nervous system, which includes the brain as well as the input from
sensory organs and the output to muscles and other organs). These systems
interact to carry out higher order functions such as seeking out food sources
(thus for example the nervous system guides the organism to seek food, the
digestive system breaks down food, the metabolic system helps control the
conversion of food to sugars, and the circulatory system helps deliver this
energy to cells). Expanding beyond this level one can think of organisms
interacting to form ecosystems in turn resulting in the Earth’s biosphere.
This hierarchical progression is illustrated in Figure 3-1. This cursory
overview of the modern view of biological systems begins to shed light on
the challenges faced by the fields of modern biology and biomedical
research and the roles that bioinformatics might play.

Ecosystems Earth

Populations Ecosystem

Population Humans

Organism Human
Organ Brain
Cell . Neuron

Vg 4
Molecule i,“ DNA

Figure 3-1. Hierarchy of biological systems.

In the broader context, to understand the opportunities for both
biomedical research and bioinformatics, it helps to understand the genesis of
this flood of information and more importantly the vision of how this
information might be used. The roots of both the large quantity of
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information and the guiding vision can be traced to the start of the modern
era of biomedical research, which is felt to be the discovery by Watson and
Crick in 1953 of DNA as the information storage mechanism for cells.
Research into the genome continued at a relatively linear pace until the
establishment in 1989 of the National Center for Human Genome Research
(NCHGR) to carry out the role of the National Institutes of Health (NIH) in
the International Human Genome Project (HGP: see Online Resources). The
HGP served to accelerate the pace of data generation from a linear to an
exponential growth pattern as shown in Figure 3-2.
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Figure 3-2. Growth in genes sequenced.

The seed of the vision for the HGP and the investment that has been
made can be found in the mission of the National Institutes of Health (NIH)
which is “science in pursuit of fundamental knowledge about the nature and
behavior of living systems and the application of that knowledge to extend
healthy life and reduce the burdens of illness and disability.” The
relationship of this mission to the grand vision of the HGP was published in
1990 as part of the first five year plan for the HGP: “The information
generated by the human genome project is expected to be the source book
for biomedical science in the 21st century and will be of immense benefit to
the field of medicine. It will help us to understand and eventually treat many
of the more than 4000 genetic diseases that afflict mankind, as well as the
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many multifactorial diseases in which genetic predisposition plays an
important role.” (See Online Resources). The flood of data, information, and
knowledge we face today in biology and biomedical research can be traced
directly to the coordinated international investment of large amounts of
funding to sequence the human genome as a first step in arriving at a deeper
understanding of the basis of human health and disease (Collins and
McKusick, 2001). Research into the genomics and basic biology of diverse
other organisms was galvanized by this effort as well and has been
proceeding in parallel over the last decade and a half. With the completion of
the sequencing of the DNA of humans and other organisms we have
however only begun to explore the hierarchy discussed above and shown in
Figure 3-1.

A guiding vision for the next phases of the HGP was articulated in a
paper published in Nature on the 50" anniversary of Watson and Crick’s
discovery (Collins et al., 2003). This paper outlines fifteen grand challenges
clustered into three broad areas: Genomics to Biology (improving our
understanding of complex biological systems), Genomics to Health
(developing and applying our understanding of the genomic basis for health
and disease), and the sometimes underappreciated Genomics to Society
(broadly, the ethical, legal, and social implications of our understanding).

These challenges, of course, present opportunities as well. As an example
of a grand challenge presenting opportunities for biologists and informatics
researchers in the Genomics to Biology area, consider, “Grand Challenge I-
2: FElucidate the organization of genetic networks and protein pathways and
establish how they contribute to cellular and organismal phenotypes.” An
example from the Genomics to Health arca is, “Grand Challenge II-3:
Develop genome-based approaches to prediction of disease susceptibility
and drug response, early detection of illness, and molecular taxonomy of
disease states.” In response to the challenges posed by a post-genome
sequencing era of biomedical research the NIH has identified the intersection
of the computing and biological and biomedical fields as a key opportunity
for future research based on the challenges and potentials outlined above. A
critical articulation of this was provided by the report that led to the creation
of the National Institutes of Health Biomedical Information Science and
Technology Initiative (BISTI). (See Online Resources for the URL.) This
introduction provides a high level overview of the opportunities and
challenges for the field of bioinformatics. In the following sections we
outline from an informatics perspective some more specific challenges and
illustrate this with case studies/examples.
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2. OVERVIEW OF THE FIELD
2.1 Definition of Bioinformatics

The definition of bioinformatics used in this chapter is the broadest
possible definition of the field, namely all informatics research and
application in support of the biological research endeavor. In the context of
the definition of biomedical informatics given in the introduction “as the
scientific field that deals with biomedical information, data, and knowledge
— their storage, retrieval, and optimal use for problem-solving and decision
making” (Shortliffe et al., 2001), we define bioinformatics as the subset of
the field that focuses on information, data, and knowledge in the context of
biological and biomedical research. By our definition the culture and
environment (context) in which bioinformatics is studied and applied are that
of the researcher in the laboratory seeking new knowledge. This includes a
broad range of research ranging from a) basic molecular and cellular level
research seeking to understand the way cancer results in unregulated growth
of cells to, b) whole animal applied research looking at ways to block the
spread of cancers, to c) clinical research involving patients looking at genetic
factors influencing susceptibility to cancer. It is distinct from clinical
informatics which focuses on the culture and environment of clinical care
involving patients and healthcare providers in settings ranging from one's
own home, to outpatient (clinic) and inpatient (hospital) care. This definition
is similar to the one used by the BISTI website: “Research, development, or
application of computational tools and approaches for expanding the use of
biological, medical, behavioral or health data, including those to acquire,
store, organize, archive, analyze, or visualize such data” (see Online
Resources).

There are a number of other definitions of the term “bioinformatics” and
in reading the literature it is important to be sure one is clear on the meaning
being used. For some, the term is fairly narrow and refers primarily to
developing and validating and applying algorithms for processing and
analyzing sequences of DNA (the phrase “computational biology” is also
being used for this area). Others expand the definition of bioinformatics to
include any algorithmic or statistical approach to the analysis of biological
data. Some make a distinction between mathematical modeling in biology
and bioinformatics, whereas others view the former a subset of the later. For
some, bioinformatics refers to the basic research in the area, whereas the
applied side of deploying systems is termed biocomputational infrastructure.
For others, bioinformatics refers to the set of computational tools used by
biologists to carry out their research. A very interesting alternate broad
definition is, “The study of how information is represented and transmitted
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in biological systems, starting at the molecular level" (Bergeron, 2002). For
the remainder of this chapter, we will use this last broader, more inclusive
definition of the term.

2.2 Opportunities and Challenges — Informatics
Perspective

221 Frameworks for Describing Informatics Research

The field of biomedical informatics is relatively young and there are a
number of ways to organize important research questions and areas (and in
turn to discuss challenges and opportunities).

The American Medical Informatics Association developed the following
framework, shown in Tables 3-1 and 3-2, categorizing research papers in the
discipline submitted for review at the 2003 annual meeting (Scientific
Program Committee Chair: Mark A. Musen, Foundations Track Chair:
Charles P. Friedman, Applications Track Chair: Jonathan M. Teich, see
http://www.amia.org/meetings/archive/f03/call.html#categorizing).

The Foundations Track, shown in Table 3-1, focuses on theories, models,
and methods relevant to biomedical informatics broadly (applicable to
clinical informatics, bioinformatics, and public health informatics). Bold
faced categories are foundational approaches often referred to in
publications in the bioinformatics arena. Each of these represents ongoing
arecas of inquiry and thus potential challenges and opportunitiecs for
bioinformatics, both in terms of research and in terms of application. As will
be discussed later in this chapter, some foundational areas are not currently
active areas of research in bioinformatics and may represent important
opportunities for future research (in particular many of the areas in C).

Table 3-1. Categories of Informatics Research*
I. Foundations of Informatics Building Models and Methods for Biomedical Information
Systems
A. Modeling Data, Ontologies, and Knowledge
1. Controlled terminologies and vocabularies, ontologies, and knowledge bases
2. Data models and knowledge representations
3. Knowledge acquisition and knowledge management
B. Methods for Information and Knowledge Processing
1. Information retrieval
2. Natural-language processing, information extraction, and text generation
3. Methods of simulation of complex systems
4. Computational organization theory and computational economics
5. Uncertain reasoning and decision theory
6. Statistical data analysis
7. Automated learning, discovery, and data mining methods

continued
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1. Foundations of Informatics Building Models and Methods for Biomedical Information
Systems
B. Methods for Information and Knowledge Processing (continued)
8. Software agents, distributed systems
9. Cryptography, database security, and anonymization
10. Image representation, processing, and analysis
11. Advanced algorithms, languages, and computational methods
C. Human Information Processing and Organizational Behavior
1. Cognitive models of reasoning and problem solving
2. Visualization of data and knowledge
3. Models for social and organizational behavior and change
4. Legal issues, policy issues, history, ethics
*Used with permission from the American Medical Informatics Association

The Applications Track, shown in Table 3-2, focuses on real world
systems: their design, implementation, deployment, and evaluation. Bold
faced categories are applications often referred to in publications in the
bioinformatics arena. Each category represents ongoing areas of inquiry and
thus potential challenges and opportunities for bioinformatics, both in terms
of research and in terms of application. As will be discussed later in this
chapter, some application areas, similar to the theoretical track, are not
currently active and may represent important opportunities for future
research: for example, B, or the intersection of bioinformatics with C1.

Table 3-2. Categories of Informatics Research*
11. Applied Informatics - Real World Solutions for Real World Problems
A. Advanced Technology and Application Infrastructure
1. Data standards and enterprise data exchange
2. System security and assurance of privacy
3. Human factors, usability, and human-computer interaction
4. Wireless applications and handheld devices
5. High-performance and large-scale computing
6. Applications of new devices and emerging hardware technologies
B. Evaluation, Outcomes, and Management Issues
1. Organizational issues and enterprise integration
2. System implementation and management issues
3. Health services research: health care outcomes and quality
C. Information, Systems and Knowledge Resources for Defined Application Areas
1. Care of the patient
a. Electronic medical records
b. Computer-based order entry
c. Clinical decision support, reference information, decision rules, and
guidelines
d. Workflow and process improvement systems
e. Nursing care systems

continued
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I1. Applied Informatics - Real World Solutions for Real World Problems

C. Information, Systems and Knowledge Resources for Defined Application Areas

1. Care of the patient (continued)
f. Ambulatory care and emergency medicine
g. Telemedicine and clinical communication
h. Patient self-care, and patient-provider interaction
i. Disease management

2. Care of populations
a. Disease surveillance
b. Regional databases and registries
c. Bioterrorism surveillance and emergency response
d. Data warehouses and enterprise databases

3. Enhancements for education and science
a. Consumer health information
b. Education, research, and administrative support systems
c. Library applications

4. Bioinformatics and Computational Biology
a. Genomics
b. Proteomics
c. Studies linking the genotype and phenotype
d. Determination of biomolecular structure
e. Biological structure and morphology
f. Neuroinformatics
g. Simulation of biological systems

*Used with permission from the American Medical Informatics Association

The University of Washington Biomedical and Health Informatics
Graduate Program has taken a less granular approach to categorizing the
broad field of biomedical informatics with three application domains and
four foundational areas. The three application domains are: a) Biomedical
Research, b) Clinical Care, and c) Public Health. The four foundational areas
are: a) Biomedical Data and Knowledge, b) Biomedical Information Access
and Retrieval, ¢) Biomedical Decision Making, and d) Socio-Technical
Dimensions of Biomedical Systems. In addition to the application domains
and the foundational areas the University of Washington requires grounding
in methodologies including programming, statistics, research design and
evaluation. The need for evaluation methodologies is especially important as
is discussed below. The next sections will use these foundational areas to
illustrate challenges and opportunities in the bioinformatics domain.

222 Opportunities and Challenges — Biomedical Data and
Knowledge
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The volume and diversity of biomedical data is growing rapidly,
presenting a number of challenges and opportunities ranging from data
capture, data management, data analysis, and data mining. The analysis of
this data is generating new knowledge that needs to be captured. As the
volume of this knowledge grows, so does the need to develop formal ways
of representing this knowledge. Knowledge bases and formal approaches
including ontologies arc potential solutions. This particular area of
biomedical data and knowledge will be explored in more depth than the
other areas given the emphasis of this book.

Analysis of gene expression (microarray) experiments illustrates diverse
aspects of the problem with modern biological data. In a gene expression
experiment the biologist measures the level of expression of all genes in a
particular tissue under a given condition, and then frequently compares
expression levels to those in the same tissue under a different condition (a
process known as differential gene expression). Thus, for example, one
might measure the level of gene expression (the degree to which certain
genes are turned on or off) by comparing cancer cells that have received a
cancer drug to ones that have not.

The first challenge is management of the experimental data since a single
gene expression measurement results in thousands of data points. In turn
typically one repeats each experimental condition and control condition
multiple times. Frequently, the measurements are repeated at multiple time
points (for example, before treatment with a drug, one hour after, four hours
after, eight hours after, twenty-four hours after). A number of open source
and commercial packages help researchers collect and manage gene
expression data.

The next challenge is data analysis and data mining. There are a number
of commercial expression array analysis packages but they often do not
implement the latest algorithms and methods for data analysis. Important
open source collaborations aim to develop tools to assist researchers in
developing and using new tools for array analysis. This collaboration is the
BioConductor project (http://www.bioconductor.org) and is built on top of
the R programming environment (Thaka and Gentleman, 1996).

Finally, there is the need to mine large data sets of gene expression data.
A number of studies have been published using a variety of data mining
techniques from computer science and this is still a rapidly evolving area.
An example of this class of problems is trying to predict the outcome of
cancer patients based on analyses of the gene expression in their cancerous
tissue (e.g. gene expression in a piece of breast cancer removed by the
surgeon). A classic study used DNA microanalysis and a supervised
classifier to predict outcome of breast cancer far better than any other
classifiers (van 't Veer et al., 2002).
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The data capture and data management problem is compounded by the
fact that modern biological experiments frequently involve diverse types of
data ranging from analysis of mutations (changes in the DNA sequence) to
gene expression to protein expression to biochemical measurements to
measurements of other properties of organisms (frequently termed
phenotype). In order to make sense out of these diverse experimental results
and to incorporate data, information, and knowledge from public domain
databases (such as databases of protein function) data integration is needed.
A number of data integration systems for biomedical data have been
developed. These data integration approaches are reviewed in a number of
articles (Sujansky, 2001). The BioMediator system (formerly GeneSeek)
(Donelson et al., 2004; Mork et al., 2001; Mork et al., 2002; Shaker et al.,
2002, and Shaker et al., 2004) is one such system for data integration. It is
designed to allow biologists to develop their own views of the way in which
diverse private (experimental data) and public databases and knowledge
bases relate to one another and to map this view (the mediated schema) onto
the specific sources they are interested in querying. The interfaces, or
wrappers, to these diverse sources are written in a general purpose fashion to
permit the same wrappers to be reused by diverse biologists. The custom
views (mediated schemata) are captured in a frames based knowledge base
(implemented in Protégé) (Stanford, 2002). The system architecture permits
in a single environment both the integration of data from diverse sources and
the analysis of this data (Mei et al., 2003). The system works well but an
important set of challenges surrounds the need to develop tools that permit
the biologists to manipulate the mediated schema in a more intuitive fashion.
Another challenge is to incorporate such systems into the workflow of the
typical biological lab.

Ultimately all this data generates new knowledge which needs to be
captured and shared. The volume of this knowledge is growing only linearly
as shown in Figure 3-3 in contrast to the growth of the data.

An important challenge to knowledge creation is developing ways to
increase the rate of knowledge generation to keep up with the rapid growth
of data. Even with the linear growth of knowledge the volume of it is such
that it is becoming difficult for one person to keep up with it all
systematically. In order to access and use this knowledge it is becoming
more and more important that the knowledge be captured in computable
form using formalisms from the computer science community such as
ontologies. These topics are discussed in more detail in other chapters.
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Figure 3-3. Growth rate of Genes with known function

The power and the challenges of these approaches can be illustrated by
three important bioinformatics related knowledge bases. The first is the
Foundational Model of Anatomy (FMA) (Rosse and Mejino, 2003) which is
a centrally curated knowledge base capturing anatomic knowledge about the
body from levels of granularity ranging from the whole body down to cells,
sub cellular compartments and molecules (proteins). The FMA is becoming
widely adopted as a reference standard for describing a variety of biologic
processes in terms of where they occur and what they impact (serving as the
anatomic component of the Unified Medical Language System (Tuttle, 1994,
Bodenreider et al., 2002, among others). Some important challenges remain,
though, in that: a) the FMA describes only human anatomy yet much work is
being done on other species; b) the centralized curation process ensures
internal consistency and quality control yet does not scale well to match the
expansion of the FMA; c) the FMA describes normal physical structures but
needs to be extended to describe abnormal (or disease related) structures;
and d) the FMA needs to be extended to describe processes and functions of
the physical structures.
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The Gene Ontology (GO) Consortium (Gene Ontology Consortium,
2000) takes a different approach to describing the current state of knowledge
about proteins and their functions. Given the evolving nature of the field a
centralized top down approach such as that taken by the FMA was not
possible. The GO is thus created and curated in a distributed fashion by a
consortium of experts in molecular biology. The strength of this approach is
that it scales well and adapts well to the rapidly changing state of our
knowledge. Challenges to the GO approach include a) difficulty in
maintaining internal consistency of the knowledge base; b) capturing in
computable form from biologists subtle aspects of function; and c)
maintaining referential integrity as the knowledge base evolves.

The third example of a bioinformatics knowledge base is the PharmGKB
project (Klein et al., 2001, and PharmGKB, n.d.) which is a sophisticated
pharmacogenomics knowledge base. The strength of this knowledge base is
that it was centrally designed with distributed input to capture in a
computable form a large amount of knowledge relevant to the field of
pharmacogenomics - the interaction between an individual’s genes, the
medicines taken and the variability in response to these medicines. The
challenges with this approach, however, are: a) it is dependent up on human
curation (this is a shared challenge with FMA and GO as well); and b)
extending the knowledge base to other areas of biology will be a challenge
since unlike GO and FMA, the scope of PharmGKB was designed to be deep
and narrow (pharmacogenomics) rather than broad and comprehensive
(anatomy or molecular function).

2.2.3 Opportunities and Challenges — Biomedical Information
Access and Retrieval

As the volume of data and knowledge grows it is becoming critical to
biologists that they be able to access and retrieve the relevant pieces when
they need it. The older paradigm of keeping up with the contents of the
handful of top journals relevant to one’s biological research area no longer
works.

There are three key factors contributing to this. The first factor is that the
sheer volume of new information is such that systematically keeping up is no
longer a viable option. The second and related factor is that with the growth
in new information has come a growth in the number of places in which
information is published. Related to the dispersion of information across
diverse sources is the fact that interdisciplinary and interprofessional
research is becoming the norm, thus important research findings are
published in a wider range of journals. The third factor is that information is
becoming more and more available in electronic form and no longer just in
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condensed form in journals, resulting in a proliferation of biological
databases, knowledge bases, and tools.

The University of Washington BioResearcher Toolkit (see Online
Resources) illustrates the opportunity and the challenge this presents for
biologists and for bioinformatics researchers and developers. Simply trying
to find the right resource for a particular task from among hundreds is a
challenge to say nothing of finding the right information within that
resource. Given the volume of data and the fact that it exists as a
combination of data in databases and free text, an important part of
information access and retrieval has been both data integration and data
mining, as discussed above. Intelligent parsing of queries, frequently
involving natural language processing of both queries and sources, is
becoming a key component of information access and retrieval. The
challenges, opportunities, and state of the art of information retrieval (and
data mining) in bioinformatics is covered in more depth in other chapters.

224 Opportunities and Challenges — Biomedical Decision Making

Thus far the field of bioinformatics has done little explicit research into
the area of decision making. Within clinical or medical informatics there is a
rich history of research into systems designed to help care providers and
patients (healthcare consumers) make optimal decisions surrounding
diagnosis (what disease or illness is it that a patient has) and management
(which of the options for treatment are best factoring in details of the
circumstances and the values of the patient). Approaches and methods used
have included Bayesian belief networks, decision analytic models, and rule-
based expert systems, among others. An important area on the clinical side
for decision support systems has been genetic testing which has obvious ties
(though one step removed) to bioinformatics research. Though this area of
decision making is outside the primary scope of this book, it is worth noting
that there appears to be a great potential opportunity to explore the
development of tools for biologists to explicitly assist them in their decision
making processes. The challenge is the paucity of literature and study in this
potential arena. The first steps likely would be needs assessments and
development and validation of models of decision making for biologists to
see if in fact there is a niche for decision making tools in biomedical
research.
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2.2.5 Opportunities and Challenges — Evaluation and Socio
Technical Dimensions of Biomedical Systems

The bioinformatics literature has a large number of papers published on
theoretical frameworks for bioinformatics systems and a large number of
papers on specific bioinformatics applications. There is, however, a relative
lack of formal evaluations of bioinformatics systems and models. There is
also a relatively sparse literature that formally and systematically examines
the needs of biologists for specific tools (for example, Yarfitz and Ketchell,
2000). In part this is due to the relatively young nature of the field. A related
factor is that to date much tool development has been driven by experienced
biologists solving recurring problems they face through computational tools
and sharing these tools with others. Though evaluation per se is outside the
scope of this book it is important to learn from the experience of the clinical
(medical) informatics community. Careful assessment and evaluation of the
needs of users of the system is an important factor in guiding future
development both on the theoretical (foundational) front as well as the
applied front. Equally importantly formal evaluations and comparisons of
alternate solutions (both applied and theoretical) are needed in order to guide
development as well. An excellent resource on evaluation of systems in the
clinical (medical) informatics arena is FEvaluation Methods in Medical
Informatics (Friedman and Wyatt, 1997); to date there is no similar book for
bioinformatics evaluation.

The socio-technical environment in which informatics research and
application development occur is becoming increasingly important on the
clinical (medical) informatics front. It appears likely this will be true on the
bioinformatics front as well. There are a number of ways of looking at this
contextualization of informatics. The AMIA community has coalesced
interests and activities in this area around the "People and Organizational
Issues" working group. Their mission as quoted from their website is “a) To
apply the knowledge of human behaviors toward the use of information
technology within a health care environment; b) To effectively describe the
benefits and impacts of information technology before paradigm shifts fully
occur; ¢) To incorporate organizational change management and human
concerns into information technology projects; and d) To distinguish
between the human and technology issues when system successes or failures
occur.” As the field of bioinformatics grows and matures many of these
challenges and opportunities will arise and need to be addressed. Already
there are anecdotal reports of the purchase and deployment of complex
expensive bioinformatics software packages that are unused despite apparent
demand - a finding not unlike what has been seen with the development and
deployment of unsuccessful clinical information systems.
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Another perspective is provided by the description of the core graduate
program courses at the University of Washington, "Sociotechnical Issues in
Biomedical Informatics"; quoting from the course description: "Essentially
all informatics work - whether purely theoretical or purely applied - is
conceived, designed, built, tested, and implemented in organizations.
Organizations are comprised of individuals and individuals are human
beings, complete with philosophies, ideas, biases, hopes and fears. To build
effective and valued informatics systems, the informaticist must understand
how and why people behave as individuals, in groups, in organizations, and
in society, and then build tools and systems that consider these human
factors. The premise of this course is that the thoughtful consideration and
application of the management sciences offers the opportunity to mitigate
these risks." As bioinformatics projects are smaller in scope, these issues
have not risen to the forefront, but as larger scale bioinformatics endeavors
are undertaken it is almost certain they will.

2.3 Opportunities and Challenges — Biological
Perspective

The exponential growth in basic biological data and the incorporation of
that raw information into highly integrated databases on the Internet, along
with the relatively linear but nonetheless rapid changes in our understanding
of biological systems present several opportunities and challenges. These
challenges faced by biologists and biomedical researchers present a
complementary view to the perspective of the bioinformatics researcher. As
noted in the section on Socio-technical Dimensions, understanding and
addressing the challenges of the biologists in the trenches are critical to
successful deployment of bioinformatics applications. We now discuss some
of the challenges and opportunities viewed from the biological perspective.

2.3.1 Data Storage, Standardization, Interoperability and Retrieval

The huge growth in biological information being acquired at every level
of the biological organization, from simple DNA sequences on up to the
global ecosystem, has created serious challenges in data storage, retrieval
and display. These challenges are being met by new developments in
nanotechnology, search algorithms, and virtual/augmented reality tools as
well as more conventional approaches.
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2.3.2 Data Publication and Knowledge Sharing

NIH now requires all data generated by research it funds to be published
in easily accessible and sharable electronic format, creating overwhelming
challenges for current approaches such as journals and websites. New
technologies such as wikis (see http://wiki.org/ and http://en.wikipedia.org/)
and bibliomics tools (such as Telemakus: http://www.telemakus.net/ and
PubGene: http://www.pubgene.org/) will need to be applied to these
challenges in publication. The very meaning of “publication” has already
started to evolve, and libraries in particular are becoming directly involved
in providing for the distribution and archiving of raw data from scientific
experiments (see DSpace: http://www.dspace.org/). Additionally, increased
use of “telepresence” tools such as the Access Grid
(http://www.accessgrid.org/) and online collaboration/knowledge sharing
tools such as AskMe (http://www.askmecorp.com/) provide new and novel
infrastructure in support of the basic biology research effort.

2.3.3 Analysis/annotation Tool Development and Distribution/access

The intense development of Open Source bioinformatics tools within
different departments/groups at Universities and other institutions has
created a need to develop the means of making these “home brew” tools
available to the general bioresearch community. At present there is no
integrated package analogous to Microsoft Office or an electronic medical
record for biomedical researchers. The BioResearcher Toolkit
(http://healthlinks. washington.edu/bioresearcher) provides a mechanism for
the dissemination and sharing of such tools via its “UW HSL Bioinformatics
Tools” section. There, tools developed by national biomedical researchers
as well as local biomedical researcher (such as the web based protein
structure prediction tool developed by Dr. Robert Baker of the UW
Biochemistry Department, Robetta (http://robetta.bakerlab.org/), are made
available to users. Other networked software tools, such as Vector NTI and
PubGene are also available through the BioResearcher Toolkit site.

234 Hardware Development and Availability

Many bioinformatics applications require tremendous computational
power. This challenge is being met by the availability of clusters
constructed from readily available desktop computers (http://www.bio-
itworld.com/news/083004_report5927.html) as well as specially constructed
supercomputing devices such as IBM’s BlueGene
(http://www.research.ibm.com/bluegene/). Furthermore, the evolution of a
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new class of “BiolT” specialists such as “The BioTeam”
(http://www.bioteam.net/) has increased the availability and utility of
hardware needed to meet developments in bioinformatics. Though this may
not per se be a challenge for bioinformatics researchers, it does present a
challenge to biomedical researchers seeking to use powerful tools; thus, it is
a challenge for the discipline of bioinformatics.

2.3.5 Training and Education

The constantly changing nature of bioinformatics tools and the rapid
growth in biological information has created a need for the development of
better and more effective training and education programs in bioinformation
data retrieval and analysis. The EDUCOLLAB Group at the National Center
for Biotechnology Information (NCBI) has developed a series of
introductory and advanced training programs for bioinformatics tool use, and
the University of Washington Health Sciences Library has developed a 3-
Day intensive training program to train students, faculty and staff in the use
of NCBI online resources, commercial software and new developments in
biology such as RNAi. These training sessions have been successfully given
using telepresence tools such as the Access Grid. Additionally, commercial
training companies such as OpenHelix (http://www.openhelix.com/) are now
developing to meet the challenge and opportunity presented by the need for
such training and education. There has also been a growing realization that a
new type of profession, that of “bioinformationist”, may be necessary to
contend with the vast amount of data and analysis requirements resulting
from what is essentially the digital imaging of Earth’s biosphere (Lyon et al.,
2004; and Florance et al., 2002 ].

2.3.6 Networking and Communications Tools

The highly dispersed nature of the modern biological research enterprise
has from its inception required a very high degree of networking and
communications among individual researchers and organizations—the
Human Genome Project itself would not have been possible without the use
of the Internet to promote and facilitate the distributed approach to
sequencing and annotating the human genome. This had led to more
extensive use of telecommunications tools such as WebEx and also to the
development  of  so-called  “virtual”  organizations such as
VirtualGenomics.org (http://www.virtualgenomics.org/). NIH Director Elias
A. Zerhouni has specifically described the need for the development of
research teams spread out over large distances and many disciplines as a
critical part of the NIH Roadmap, and the particular challenge provides the
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opportunity to develop new organizational structures and networking and
communications tools. The Cornell University Life Sciences Initiative
VIVO website (http://vivo.library.cornell.edu) provides a prototype for such
a tool in a University context, while the Community of Science (COS-
http://www.cos.com/) is a commercial enterprise tool for promoting
collaborative research.

2.3.7 Publication/comprehension of Biological Information

Novel means of publication of data—wikis with their potential for rapid
and constant peer review, data posting on websites such as the Gene
Expression Omnibus (GEO: http://www.ncbi.nlm.nih.gov/geo/), modeling
efforts such as the e-cell Project (http://www.e-cell.org/) and virtual disease
models such as the Entelos Diabetes  virtual  patients
(http://www .entelos.com/) and  computer  generated  animations
(http://www.wehi.edu.au/education/wehi-tv/dna/index.html) to help
understand biological systems—are becoming essential to making efficient
use of digital biological information for both clinicians and basic biology
researchers. Additionally, new paradigms such as Systems Biology are
providing new and important intellectual frameworks for comprehending
biological information.

2.3.8 Physical Infrastructure and Culture

Conferencing facilities at university libraries for virtual meetings,
computer laboratories for training, and architectural designs to promote
contact among researchers can further promote collaboration and sharing of
data, knowledge and expertise. Bio-X (http://biox.stanford.edu/) at Stanford
University is an example of one such effort.

2.3.9 Research Center Coordination

Many of the resources for biological research are extremely expensive
and mechanisms for sharing such resources must be developed. One
example of the use of high speed Internet systems to allow the sharing and
operation for advanced tools remotely is the Telescience Portal at the
University of California, San Diego (https:/telescience.ucsd.edu/), which
provides for a collaborative environment for telemicroscopy and remote
science. As high-speed connectivity and real-time videoconferencing tools
become the norm, “Portals” allowing the use of complex and expensive
scientific instruments such as high voltage electron microscopes remotely
will allow researchers all over the world to perform experiments remotely
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and to form collaborative research teams driven by research needs rather
than location.

2.3.10  Public Outreach

As the stem cell research issue and sometimes emotional debates
concerning biodefense, genetics, nanotechnology, and robotics (GNR)
developments show (Joy, 2000) it is critical to educate the public as to the
science behind such fields as bioinformatics. Public understanding of the
Human Genome Project, for example, will greatly enhance decision making
as to how the results of that project will be used in the delivery of genomics
based health care and technologies. High School Education projects such as
the Seattle Biomedical Research Institute’s BioQuest
(http://www.sbri.org/sci-ed/index.asp) as well as direct connection with
public media such as the Sci-Fi Channel (which has recently elected to
produce science fiction classics such as the “Andromeda Strain” and Greg
Bear’s “Darwin’s Radio and Darwin’s Children”) and other organizations
with influence in the public understanding of science and its roles and effects
on society are critically important.

3. CASE STUDY

3.1 Informatics Perspective — The BIOINFOMED Study
‘ and Genomic Medicine

The BIOINFOMED study funded by the European Commission (Martin-
Sanchez et al., 2004) is an excellent case study at multiple levels. First it is a
study focusing on formally developing a list of challenges and opportunities
within bioinformatics and thus provides yet another perspective on
opportunities and challenges. Secondly, it explicitly identifies these
challenges in a particular sociotechnical context providing a first hand
example of the issues identified under evaluation and sociotechnical
dimensions. Finally, it articulates the fact that in order to achieve the
promise of the Human Genome Project it is critical that work be done at the
intersection of bioinformatics and clinical (medical) informatics.

The broad context of the BIOINFOMED study is that of the promise of
the Human Genome Project as articulated in the beginning of this chapter.
The specific focus is captured by the title of the resulting paper, "Synergy
between medical informatics and bioinformatics: facilitating genomic
medicine for future health care." The methods used were a prospective
study of the relationships and potential synergies between bioinformatics
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and medical informatics. The starting point for the study was a written
survey developed by the lead institute (Institute of Health Carlos III in
Spain) that addresses a number of questions related to research directions
and the future of both bioinformatics and medical informatics with an
emphasis on opportunities to exchange knowledge across the two
subdisciplines. A group of thirty professionals with expertise in medical
informatics, bioinformatics, genomics, public health, clinical medicine and
bioengineering met twice to analyze and synthesize the results of the survey.

The sociotechnical perspective was the articulation of the various
stakeholders’ interests and the resultant opportunities and challenges. For the
focus of their paper (informatics in support of genomic medicine) they
identified the following stakeholders: a) scientists/researchers; b) those
executing clinical trials; c) health care professionals; d) health care
consumers; ¢) systems providing healthcare; f) policy decision makers; g)
industry; and h) society at large. For each stakeholder they identified
different challenges and opportunities for biomedical informatics overall.
From an evaluative point of view the study identified a number of gaps and
synergies between the fields of bioinformatics and medical informatics.

The result of the study was a list of research priorities proposed by the
BIOINFOMED study. Each item on the list included a description of the
barrier(s) (e.g. the challenges), a proposed solution (e.g. the opportunities), a
priority rating and a risk rating. The prioritization was High vs. Medium.
The risk was defined as the probability that focusing on the research priority
would fail to deliver results and given a rating of High, Medium, or Low
risk. The items were grouped into four areas. The first area was enabling
technologies. An example of one item is, “Barrier: Need to expand current
interoperability standards for new genetic data infrastructure, Proposed
Solution: Data Communication Standards, Priority: High, Risk: Medium.”
The second area was medical informatics in support of functional genomics.
An example of one item is, “Barrier: Patient care data have not been
systematically used in genomic research, Proposed Solution: phenotype
databases suitable for genomic research, Priority: High, Risk: Low.” The
third area was bioinformatics in support of individualized healthcare. An
example of one item is, “Barrier: Unavailability of models for including
genetic data into electronic health records, Proposed Solution - Genetics data
model for the EHR, Priority: Medium, Risk: Medium.” The fourth area was
the unified field of biomedical informatics in support of genomic medicine.
An example of one item is, “Barrier: Linking environmental and lifestyle
information to genetic and clinical data, Proposed Solution: Population
based repositories, Priority: High, Risk: Low.”
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3.2 Biological Perspective — The BioResearch Liaison
Program at the University of Washington

The University of Washington Health Sciences Library BioResearcher
Liaison  (http://healthlinks.washington.edu/hsl/liaisons/minie/)  provides
direct access to bioinformation consulting tools and training, and is a model
program for contending with the issues discussed in Section 2.3. The
BioResearcher Liaison program evolved out of an earlier effort called the
BioCommons, and has been fully integrated into the Library’s
“informationists” infrastructure. The most visible part of this program is the
BioResearcher Toolkit (http://healthlinks.washington.edu/bioresearcher) as
shown in Figure 3-4, which provides a “portal” to biological information
links, laboratory services, bioinformatics tools and consulting through the
Library’s Liaisons program (http://healthlinks.washington.edu/hsl/liaisons/).
The contrast between the BIOINFOMED study and the BioResearcher
toolkit is that the former lays out a research agenda for the future at the
intersection of bioinformatics and medical informatics whereas the later is
designed to address problems here and now. It is informative to compare and
contrast the two case studies looking at the difference between grand
challenges and on the ground realities.

The BioResearcher Toolkit is the second most visited part of the
HealthLink’s website (http://healthlinks.washington.edu/) after the more
clinically oriented Care Provider Toolkit (see website at:
http://healthlinks.washington.edu/care_provider/) with over 3,000 unique
hits per month.

Since the consolidation of the BioCommons into the Library in 2002, the
networked software and webware offerings have been the most used part of
the BioResearcher Toolkit part of the website, with over 800 registered users
of the various software packages available from the site and over 1,200
downloads over the past two years. These users are from that total pool of
faculty, staff and students at the University of Washington, and come from
large variety of departments as shown in Figure 3-5.

In addition to the BioResearcher Toolkit, the BioResearcher Liaison also
provides a 3-day course given every quarter, the BioResearcher Tune-Up.
The BioResearcher Tune-Up is a 3-Day intensive class with three modules—
Module I: NCBI Online, Module II: Bioinformatics Software Workshop and
Module III: Advanced Topics. Module I is a highly interactive tutorial
which is taught in a computer lab using a web based PowerPoint template
that allows students to directly