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Preface

The data mining literature contains many excellent titles that address the needs of
users with a variety of interests ranging from decision making to pattern investi-
gation in biological data. However, these books do not deal with the mathematical
tools that are currently needed by data mining researchers and doctoral students
and we felt that it is timely to produce a new version of our book that integrates the
mathematics of data mining with its applications. We emphasize that this book is
about mathematical tools for data mining and not about data mining itself; despite
this, many substantial applications of mathematical concepts in data mining are
included. The book is intended as a reference for the working data miner.

We present several areas of mathematics that, in our opinion are vital for data
mining: set theory, including partially ordered sets and combinatorics; linear
algebra, with its many applications in linear algorithms; topology that is used in
understanding and structuring data, and graph theory that provides a powerful tool
for constructing data models.

Our set theory chapter begins with a study of functions and relations. Appli-
cations of these fundamental concepts to such issues as equivalences and partitions
are discussed. We have also included a précis of universal algebra that covers the
needs of subsequent chapters.

Partially ordered sets are important on their own and serve in the study of
certain algebraic structures, namely lattices, and Boolean algebras. This is con-
tinued with a combinatorics chapter that includes such topics as the inclusion–
exclusion principle, combinatorics of partitions, counting problems related to
collections of sets, and the Vapnik–Chervonenkis dimension of collections of sets.

An introduction to topology and measure theory is followed by a study of the
topology of metric spaces, and of various types of generalizations and special-
izations of the notion of metric. The dimension theory of metric spaces is essential
for recent preoccupations of data mining researchers with the applications of
fractal theory to data mining.

A variety of applications in data mining are discussed, such as the notion of
entropy, presented in a new algebraic framework related to partitions rather than
random distributions, level-wise algorithms that generalize the Apriori technique,
and generalized measures and their use in the study of frequent item sets.

Linear algebra is present in this new edition with three chapters that treat linear
spaces, norms and inner products, and spectral theory. The inclusion of these
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chapters allowed us to expand our treatment of graph theory and include many new
applications.

A final chapter is dedicated to clustering that includes basic types of clustering
algorithms, techniques for evaluating cluster quality, and spectral clustering.

The text of this second edition, which appears 7 years after the publication
of the first edition, was reorganized, corrected, and substantially amplified.
Each chapter ends with suggestions for further reading. Over 700 exercises and
supplements are included; they form an integral part of the material. Some of
the exercises are in reality supplemental material. For these, we include solutions.
The mathematics required for making the best use of our book is a typical
three-semester sequence in calculus.

Boston, January 2014 Dan A. Simovici
Villeneuve d’Ascq Chabane Djeraba
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Chapter 1
Sets, Relations, and Functions

1.1 Introduction

In this chapter, dedicated to set-theoretical bases of data mining, we assume that the
reader is familiar with the notion of a set, membership of an element in a set, and
elementary set theory. After a brief review of set-theoretical operations we discuss
collections of sets, ordered pairs, and set products.

Countable and uncountable sets are presented in Sect. 1.4. An introductory section
on elementary combinatorics is expanded in Chap. 3.

We present succinctly several algebraic structures to the extent that they are nec-
essary for the material presented in the subsequent chapters. We emphasize notions
like operations, morphisms, and congruences that are of interest for the study of any
algebraic structure. Finally, we discuss closure and interior systems, topics that have
multiple applications in topology, algebra, and data mining.

1.2 Sets and Collections

The membership of x in a set S is denoted by x ∈ S; if x is not a member of the set
S, we write x �∈ S.

Throughout this book, we use standardized notations for certain important sets of
numbers:

C the set of complex numbers R the set of real numbers
R�0 the set of nonnegative real numbers R>0 the set of positive real numbers
R̂�0 the set R�0 ∪ {+∞} R̂ the set R ∪ {−∞,+∞}
Q the set of rational numbers I the set of irrational numbers
Z the set of integers N the set of natural numbers

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 1
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_1,
© Springer-Verlag London 2014
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The usual order of real numbers is extended to the set R̂ by −∞ < x < +∞ for
every x ∈ R. In addition, we assume that

x + ∞ = ∞ + x = +∞, and x − ∞ = −∞ + x = −∞,

for every x ∈ R. Also,

x · ∞ = ∞ · x =
{

+∞ if x > 0

−∞ if x < 0,

and

x · (−∞) = (−∞) · x =
{

−∞ if x > 0

∞ if x < 0.

Note that the product of 0 with either +∞ or −∞ is not defined. Division is extended
by x/ + ∞ = x/ − ∞ = 0 for every x ∈ R.

If S is a finite set, we denote by |S| the number of elements of S.
Sets may contain other sets as elements. For example, the set

C = {∅, {0}, {0, 1}, {0, 2}, {1, 2, 3}}

contains the empty set ∅ and {0}, {0, 1},{0, 2},{1, 2, 3} as its elements. We refer to
such sets as collections of sets or simply collections. In general, we use calligraphic
letters C,D, . . . to denote collections of sets.

If C and D are two collections, we say that C is included in D, or that C is a
subcollection of D, if every member of C is a member of D. This is denoted by
C ⊆ D.

Two collections C and D are equal if we have both C ⊆ D and D ⊆ C. This is
denoted by C = D.

Definition 1.1 Let C be a collection of sets. The union of C, denoted by
⎜

C, is the
set defined by ⋃

C = {x | x ∈ S for some S ∈ C}.

If C is a nonempty collection, its intersection is the set
⋂

C given by

⎟
C = {x | x ∈ S for every S ∈ C}.

If C = {S, T}, we have x ∈ ⎜
C if and only if x ∈ S or x ∈ T and x ∈ ⎜

C if and
only if x ∈ S and y ∈ T . The union and the intersection of this two-set collection are
denoted by S ∪ T and S ∩ T and are referred to as the union and the intersection of
S and T , respectively.

We give, without proof, several properties of union and intersection of sets:
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1. S ∪ (T ∪ U) = (S ∪ T) ∪ U (associativity of union),
2. S ∪ T = T ∪ S (commutativity of union),
3. S ∪ S = S (idempotency of union),
4. S ∪ ∅ = S,
5. S ∩ (T ∩ U) = (S ∩ T) ∩ U (associativity of intersection),
6. S ∩ T = T ∩ S (commutativity of intersection),
7. S ∩ S = S (idempotency of intersection),
8. S ∩ ∅ = ∅,

for all sets S, T , U.
The associativity of union and intersection allows us to denote unambiguously

the union of three sets S, T , U by S ∪T ∪U and the intersection of three sets S, T , U
by S ∩ T ∩ U.

Definition 1.2 The sets S and T are disjoint if S ∩ T = ∅.
A collection of sets C is said to be a collection of pairwise disjoint sets if for every

distinct sets S and T in C, S and T are disjoint.

Definition 1.3 Let S and T be two sets. The difference of S and T is the set S − T
defined by S − T = {x ∈ S | x �∈ T}.

When the set S is understood from the context, we write T for S −T , and we refer
to the set T as the complement of T with respect to S or simply the complement of T .

The relationship between set difference and set union and intersection is given in
the following theorem.

Theorem 1.4 For every set S and nonempty collection C of sets, we have

S −
⋃

C =
⎟

{S − C | C ∈ C} and S −
⎟

C =
⋃

{S − C | C ∈ C}.

Proof We leave the proof of these equalities to the reader.

Corollary 1.5 For any sets S, T , U, we have

S − (T ∪ U) = (S − T) ∩ (S − U) and S − (T ∩ U) = (S − T) ∪ (S − U).

Proof Apply Theorem 1.4 to C = {T , U}.
With the notation previously introduced for the complement of a set, the equalities

of Corollary 1.5 become

T ∪ U = T ∩ U and T ∩ U = T ∪ U.

The link between union and intersection is given by the distributivity properties
contained in the following theorem.
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Theorem 1.6 For any collection of sets C and set T, we have

(⋃
C
)

∩ T =
⋃

{C ∩ T | C ∈ C} .

If C is nonempty, we also have

(⎟
C
)

∪ T =
⎟

{C ∪ T | C ∈ C} .

Proof We prove only the first equality; the proof of the second one is left as an
exercise for the reader.

Let x ∈ (
⎜

C) ∩ T . This means that x ∈ ⎜
C and x ∈ T . There is a set C ∈ C

such that x ∈ C; hence, x ∈ C ∩ T , which implies x ∈ ⎜ {C ∩ T | C ∈ C}.
Conversely, if x ∈ ⎜{C ∩ T | C ∈ C}, there exists a member C ∩ T of this

collection such that x ∈ C ∩ T , so x ∈ C and x ∈ T . It follows that x ∈ ⎜
C, and

this, in turn, gives x ∈ (
⎜

C) ∩ T .

Corollary 1.7 For any sets T, U, V , we have

(U ∪ V ) ∩ T = (U ∩ T) ∪ (V ∩ T) and (U ∩ V ) ∪ T = (U ∪ T) ∩ (V ∪ T).

Proof The corollary follows immediately by choosing C = {U, V } in Theorem 1.6.

Note that if C and D are two collections such that C ⊆ D, then⋃
C ⊆

⋃
D and

⎟
D ⊆

⎟
C.

We initially excluded the empty collection from the definition of the intersection of
a collection. However, within the framework of collections of subsets of a given set
S, we will extend the previous definition by taking

⋂ ∅ = S for the empty collection
of subsets of S. This is consistent with the fact that ∅ ⊆ C implies

⋂
C ⊆ S.

The symmetric difference of sets denoted by ⊕ is defined by U ⊕ V = (U − V )∪
(V − U) for all sets U, V .

Theorem 1.8 For all sets U, V, T, we have

(i) U ⊕ U = ∅;
(ii) U ⊕ V = V ⊕ T;
(iii) (U ⊕ V ) ⊕ T = U ⊕ (V ⊕ T).

Proof The first two parts of the theorem are direct applications of the definition of
⊕. We leave to the reader the proof of the third part (the associativity of ⊕).

The next theorem allows us to introduce a type of set collection of fundamental
importance.

Theorem 1.9 Let {{x, y}, {x}} and {{u, v}, {u}} be two collections such that {{x, y},
{x}} = {{u, v}, {u}}. Then, we have x = u and y = v.
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Proof Suppose that {{x, y}, {x}} = {{u, v}, {u}}.
If x = y, the collection {{x, y}, {x}} consists of a single set, {x}, so the collection

{{u, v}, {u}} will also consist of a single set. This means that {u, v} = {u}, which
implies u = v. Therefore, x = u, which gives the desired conclusion because we
also have y = v.

If x �= y, then neither (x, y) nor (u, v) are singletons. However, they both contain
exactly one singleton, namely {x} and {u}, respectively, so x = u. They also contain
the equal sets {x, y} and {u, v}, which must be equal. Since v ∈ {x, y} and v �= u = x,
we conclude that v = y.

Definition 1.10 An ordered pair is a collection of sets {{x, y}, {x}}.
Theorem 1.9 implies that for an ordered pair {{x, y}, {x}}, x and y are uniquely

determined. This justifies the following definition.

Definition 1.11 Let {{x, y}, {x}} be an ordered pair. Then x is the first component
of p and y is the second component of p.

From now on, an ordered pair {{x, y}, {x}} will be denoted by (x, y). If both
x, y ∈ S, we refer to (x, y) as an ordered pair on the set S.

Definition 1.12 Let C and D be two collections of sets such that
⎜

C = ⎜
D. D is

a refinement of C if, for every D ∈ D, there exists C ∈ C such that D ⊆ C.
This is denoted by C ⊥ D.

Example 1.13 Consider the collection C = {(a,∞) | a ∈ R} and D = {(a, b) |
a, b ∈ R, a < b}. It is clear that

⎜
C = ⎜

D = R.
Since we have (a, b) ⊆ (a,∞) for every a, b ∈ R such that a < b, it follows that

D is a refinement of C.

Definition 1.14 A collection of sets C is hereditary if U ∈ C and W ⊆ U implies
W ∈ C.

Example 1.15 Let S be a set. The collection of subsets of S, denoted by P(S), is a
hereditary collection of sets since a subset of a subset T of S is itself a subset of S.

The set of subsets of S that contain k elements is denoted by Pk(S). Clearly, for
every set S, we have P0(S) = {∅} because there is only one subset of S that contains
0 elements, namely the empty set. The set of all finite subsets of a set S is denoted
by Pfin(S). It is clear that Pfin(S) = ⎜

k∈N Pk(S).

Example 1.16 If S = {a, b, c}, then P(S) consists of the following eight sets:

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.

For the empty set, we have P(∅) = {∅}.
Definition 1.17 Let C be a collection of sets and let U be a set. The trace of the
collection C on the set U is the collection CU = {U ∩ C | C ∈ C}.
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We conclude this presentation of collections of sets with two more operations on
collections of sets.

Definition 1.18 LetC andD be two collections of sets. The collectionsC∨D,C∧D,
and C − D are given by

C ∨ D = {C ∪ D | C ∈ C and D ∈ D},
C ∧ D = {C ∩ D | C ∈ C and D ∈ D},
C − D = {C − D | C ∈ C and D ∈ D}.

Example 1.19 Let C and D be the collections of sets defined by

C = {{x}, {y, z}, {x, y}, {x, y, z}},
D = {{y}, {x, y}, {u, y, z}}.

We have

C ∨ D = {{x, y}, {y, z}, {x, y, z}, {u, y, z}, {u, x, y, z}},
C ∧ D = {∅, {x}, {y}, {x, y}, {y, z}},
C − D = {∅, {x}, {z}, {x, z}},
D − C = {∅, {u}, {x}, {y}, {u, z}, {u, y, z}}.

Unlike “∪” and “∩”, the operations “∨” and “∧” between collections of sets are
not idempotent. Indeed, we have, for example,

D ∨ D = {{y}, {x, y}, {u, y, z}, {u, x, y, z}} �= D.

The trace CK of a collection C on K can be written as CK = C ∧ {K}.

1.3 Relations and Functions

This section covers a number of topics that are derived from the notion of relation.

1.3.1 Cartesian Products of Sets

Definition 1.20 Let X and Y be two sets. The Cartesian product of X and Y is the
set X × Y, which consists of all pairs (x, y) such that x ∈ X and y ∈ Y.

If either X = ∅ or Y = ∅, then X × Y = ∅.
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Fig. 1.1 Cartesian
representation of the pair (x, y)

Example 1.21 Consider the sets X = {a, b, c} and Y = {0, 1}. Their Cartesian
product is the set X × Y = {(x, 0), (y, 0), (z, 0), (x, 1), (y, 1), (z, 1)}.
Example 1.22 The Cartesian product R × R consists of all ordered pairs of real
numbers (x, y). Geometrically, each such ordered pair corresponds to a point in a
plane equipped with a system of coordinates. Namely, the pair (u, v) ∈ R × R is
represented by the point P whose x-coordinate is u and y-coordinate is v (see Fig. 1.1)

The Cartesian product is distributive over union, intersection, and difference of
sets.

Theorem 1.23 If ν is one of ∪,∩, or −, then for any sets R, S, and T, we have

(R ν S) × T = (R × T) ν (S × T) and T × (R ν S) = (T × R) ν (T × S).

Proof We prove only that (R−S)×T = (R×T)−(S×T). Let (x, y) ∈ (R−S)×T .
We have x ∈ R − S and y ∈ T . Therefore, (x, y) ∈ R × T and (x, y) �∈ S × T , which
show that (x, y) ∈ (R × T) − (S × T).

Conversely, (x, y) ∈ (R × T) − (S × T) implies x ∈ R and y ∈ T and also
(x, y) �∈ S × T . Thus, we have x �∈ S, so (x, y) ∈ (R − S) × T .

It is not difficult to see that if R ⊆ R⇒ and S ⊆ S⇒, then R × S ⊆ R⇒ × S⇒. We
refer to this property as the monotonicity of the Cartesian product with respect to set
inclusion.

1.3.2 Relations

Definition 1.24 A relation is a set of ordered pairs.
If S and T are sets and ρ is a relation such that ρ ⊆ S × T, then we refer to ρ as

a relation from S to T.
A relation from S to S is called a relation on S.
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P(S × T) is the set of all relations from S to T .
Among the relations from S to T , we distinguish the empty relation ∅ and the full

relation S × T .
The identity relation of a set S is the relation ιS ⊆ S × S defined by ιS = {(x, x) |

x ∈ S}. The full relation on S is θS = S × S.
If (x, y) ∈ ρ, we sometimes denote this fact by x ρ y, and we write x � ρ y instead

of (x, y) �∈ ρ.

Example 1.25 Let S ⊆ R. The relation “less than” on S is given by

{(x, y) | x, y ∈ S and y = x + z for some z ∈ R�0}.

Example 1.26 Consider the relation ν ⊆ Z × Q given by

ν = {(n, q) | n ∈ Z, q ∈ Q, and n � q < n + 1}.

We have (−3,−2.3) ∈ ν and (2, 2.3) ∈ ν. Clearly, (n, q) ∈ ν if and only if n is
the integral part of the rational number q.

Example 1.27 The relation δ is defined by

δ = {(m, n) ∈ N × N | n = km for some k ∈ N}.

We have (m, n) ∈ δ if m divides n evenly.

Note that if S ⊆ T , then ιS ⊆ ιT and θS ⊆ θT .

Definition 1.28 The domain of a relation ρ from S to T is the set

Dom(ρ) = {x ∈ S | (x, y) ∈ ρ for some y ∈ T}.

The range of ρ from S to T is the set

Ran(ρ) = {y ∈ T | (x, y) ∈ ρ for some x ∈ S}.

If ρ is a relation and S and T are sets, then ρ is a relation from S to T if and only
if Dom(ρ) ⊆ S and Ran(ρ) ⊆ T . Clearly, ρ is always a relation from Dom(ρ) to
Ran(ρ).

If ρ and σ are relations and ρ ⊆ σ, then Dom(ρ) ⊆ Dom(σ) and Ran(ρ) ⊆
Ran(σ).

If ρ and σ are relations, then so are ρ ∪ σ, ρ ∩ σ, and ρ − σ, and in fact if ρ and σ
are both relations from S to T , then these relations are also relations from S to T .

Definition 1.29 Let ρ be a relation. The inverse of ρ is the relation ρ−1 given by

ρ−1 = {(y, x) | (x, y) ∈ ρ}.
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The proofs of the following simple properties are left to the reader:

(i) Dom(ρ−1) = Ran(ρ),
(ii) Ran(ρ−1) = Dom(ρ),

(iii) if ρ is a relation from A to B, then ρ−1 is a relation from B to A, and
(iv) (ρ−1)−1 = ρ

for every relation ρ. Furthermore, if ρ and σ are two relations such that ρ ⊆ σ, then
ρ−1 ⊆ σ−1 (monotonicity of the inverse).

Definition 1.30 Let ρ and σ be relations. The product of ρ and σ is the relation ρσ,
where ρσ = {(x, z) | for some y, (x, y) ∈ ρ, and (y, z) ∈ σ}.

It is easy to see that Dom(ρσ) ⊆ Dom(ρ) and Ran(ρσ) ⊆ Ran(σ). Further, if ρ
is a relation from A to B and σ is a relation from B to C, then ρσ is a relation from
A to C.

Several properties of the relation product are given in the following theorem.

Theorem 1.31 Let ρ1, ρ2, and ρ3 be relations. We have

(i) ρ1(ρ2ρ3) = (ρ1ρ2)ρ3 (associativity of relation product).
(ii) ρ1(ρ2∪ρ3) = (ρ1ρ2)∪(ρ1ρ3) and (ρ1∪ρ2)ρ3 = (ρ1ρ3)∪(ρ2ρ3) (distributivity

of relation product over union).
(iii) (ρ1ρ2)

−1 = ρ−1
2 ρ−1

1 .
(iv) If ρ2 ⊆ ρ3, then ρ1ρ2 ⊆ ρ1ρ3 and ρ2ρ1 ⊆ ρ3ρ1 (monotonicity of relation

product).
(v) If S and T are any sets, then ιSρ1 ⊆ ρ1 and ρ1ιT ⊆ ρ1. Further, ιSρ1 = ρ1

if and only if Dom(ρ1) ⊆ S, and ρ1ιT = ρ1 if and only if Ran(ρ1) ⊆ T. (Thus,
ρ1 is a relation from S to T if and only if ιSρ1 = ρ1 = ρ1ιT .)

Proof We prove (i), (ii), and (iv) and leave the other parts as exercises.
To prove Part (i), let (a, d) ∈ ρ1(ρ2ρ3). There is a b such that (a, b) ∈ ρ1 and

(b, d) ∈ ρ2ρ3. This means that there exists c such that (b, c) ∈ ρ2 and (c, d) ∈ ρ3.
Therefore, we have (a, c) ∈ ρ1ρ2, which implies (a, d) ∈ (ρ1ρ2)ρ3. This shows that
ρ1(ρ2ρ3) ⊆ (ρ1ρ2)ρ3.

Conversely, let (a, d) ∈ (ρ1ρ2)ρ3. There is a c such that (a, c) ∈ ρ1ρ2 and
(c, d) ∈ ρ3. This implies the existence of a b for which (a, b) ∈ ρ1 and (b, c) ∈ ρ3.
For this b, we have (b, d) ∈ ρ2ρ3, which gives (a, d) ∈ ρ1(ρ2ρ3). We have proven
the reverse inclusion, (ρ1ρ2)ρ3 ⊆ ρ1(ρ2ρ3), which gives the associativity of relation
product.

For Part (ii), let (a, c) ∈ ρ1(ρ2 ∪ ρ3). Then, there is a b such that (a, b) ∈ ρ1
and (b, c) ∈ ρ2 or (b, c) ∈ ρ3. In the first case, we have (a, c) ∈ ρ1ρ2; in the
second, (a, c) ∈ ρ1ρ3. Therefore, we have (a, c) ∈ (ρ1ρ2) ∪ (ρ1ρ3) in either case,
so ρ1(ρ2 ∪ ρ3) ⊆ (ρ1ρ2) ∪ (ρ1ρ3).

Let (a, c) ∈ (ρ1ρ2) ∪ (ρ1ρ3). We have either (a, c) ∈ ρ1ρ2 or (a, c) ∈ ρ1ρ3.
In the first case, there is a b such that (a, b) ∈ ρ1 and (b, c) ∈ ρ2 ⊆ ρ2 ∪ ρ3.
Therefore, (a, c) ∈ ρ1(ρ2∪ρ3). The second case is handled similarly. This establishes
(ρ1ρ2) ∪ (ρ1ρ3) ⊆ ρ1(ρ2 ∪ ρ3).
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The other distributivity property has a similar argument.
Finally, for Part (iv), let ρ2 and ρ3 be such that ρ2 ⊆ ρ3. Since ρ2 ∪ ρ3 = ρ3, we

obtain from (ii) that
ρ1ρ3 = (ρ1ρ2) ∪ (ρ1ρ3),

which shows that ρ1ρ2 ⊆ ρ1ρ3. The second inclusion is proven similarly.

Definition 1.32 The n-power of a relation ρ ⊆ S×S is defined inductively by ρ0 = ιS

and ρn+1 = ρnρ for n ∈ N.

Note that ρ1 = ρ0ρ = ιSρ = ρ for any relation ρ.

Example 1.33 Let ρ ⊆ R × R be the relation defined by

ρ = {(x, x + 1) | x ∈ R}.

The zero-th power of ρ is the relation ιR. The second power of ρ is

ρ2 = ρ · ρ = {(x, y) ∈ R × R | (x, z) ∈ ρ and (z, y) ∈ ρ for some z ∈ R}
= {(x, x + 2) | x ∈ R}.

In general, ρn = {(x, x + n) | x ∈ R}.
Definition 1.34 A relation ρ is a function if for all x, y, z, (x, y) ∈ ρ and (x, z) ∈ ρ
imply y = z; ρ is a one-to-one relation if, for all x, x⇒, and y, (x, y) ∈ ρ and (x⇒, y) ∈ ρ
imply x = x⇒.

Observe that ∅ is a function (referred to in this context as the empty function)
because ∅ satisfies vacuously the defining condition for being a function.

Example 1.35 Let S be a set. The relation ρ on S × P(S) given by ρ = {(x, {x}) |
x ∈ S} is a function.

Example 1.36 For every set S, the relation ιS is both a function and a one-to-one
relation. The relation ν from Example 1.26 is a one-to-one relation, but it is not a
function.

Theorem 1.37 For any relation ρ, ρ is a function if and only if ρ−1 is a one-to-one
relation.

Proof Let ρ be a function, and let (y1, x), (y2, x) ∈ ρ−1. Definition 1.29 implies that
(x, y1), (x, y2) ∈ ρ so y1 = y2, so ρ−1 is one-to-one.

Conversely, assume that ρ−1 is one-to-one and let (x, y1), (x, y2) ∈ ρ. Applying
Definition 1.29, we obtain (y1, x), (y2, x) ∈ ρ−1 and, since ρ−1 is one-to-one, we
have y1 = y2. This shows that ρ is a function.

Example 1.38 We observed that the relation ν introduced in Example 1.26 is one-
to-one. Therefore, its inverse ν−1 ⊆ Q × Z is a function. In fact, ν−1 associates to
each rational number q its integer part ↔q⊃.
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Definition 1.39 A relation ρ from S to T is total if Dom(ρ) = S and is onto if
Ran(ρ) = T.

Any relation ρ is a total and onto relation from Dom(ρ) to Ran(ρ). If both S and
T are nonempty, then S × T is a total and onto relation from S to T .

It is easy to prove that a relation ρ from S to T is a total relation from S to T if
and only if ρ−1 is an onto relation from T to S.

If ρ is a relation, then one can determine whether or not ρ is a function or is
one-to-one just by looking at the ordered pairs of ρ. Whether ρ is a total or onto
relation from A to B depends on what A and B are.

Theorem 1.40 Let ρ and σ be relations.

(i) if ρ and σ are functions, then ρσ is also a function;
(ii) if ρ and σ are one-to-one relations, then ρσ is also a one-to-one relation;
(iii) if ρ is a total relation from R to S and σ is a total relation from S to T, then ρσ

is a total relation from R to T;
(iv) if ρ is an onto relation from R to S and σ is an onto relation from S to T, then

ρσ is an onto relation from R to T;

Proof To show Part (i), suppose that ρ and σ are both functions and that (x, z1)

and (x, z2) both belong to ρσ. Then, there exists a y1 such that (x, y1) ∈ ρ and
(y1, z1) ∈ σ, and there exists a y2 such that (x, y2) ∈ ρ and (y2, z2) ∈ σ. Since ρ is a
function, y1 = y2, and hence, since σ is a function, z1 = z2, as desired.

Part (ii) follows easily from Part (i). Suppose that relations ρ and σ are one-to-one
(and hence that ρ−1 and σ−1 are both functions). To show that ρσ is one-to-one, it
suffices to show that (ρσ)−1 = σ−1ρ−1 is a function. This follows immediately from
Part (i).

We leave the proofs for the last two parts of the theorem to the reader.

The properties of relations defined next allow us to define important classes of
relations.

Definition 1.41 Let S be a set and let ρ ⊆ S × S be a relation. The relation ρ is:

(i) reflexive if (s, s) ∈ ρ for every s ∈ S;
(ii) irreflexive if (s, s) �∈ ρ for every s ∈ S;
(iii) symmetric if (s, s⇒) ∈ ρ implies (s⇒, s) ∈ ρ for s, s⇒ ∈ S;
(iv) antisymmetric if (s, s⇒), (s⇒, s) ∈ ρ implies s = s⇒ for s, s⇒ ∈ S;
(v) asymmetric if (s, s⇒) ∈ ρ implies (s⇒, s) �∈ ρ; and
(vi) transitive if (s, s⇒), (s⇒, s⇒⇒) ∈ ρ implies (s, s⇒⇒) ∈ ρ.

Example 1.42 The relation ιS is reflexive, symmetric, antisymmetric, and transitive
for any set S.

Example 1.43 The relation δ introduced in Example 1.27 is reflexive since n · 1 = n
for any n ∈ N.
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Suppose that (m, n), (n, m) ∈ δ. There are p, q ∈ N such that mp = n and nq = m.
If n = 0, then this also implies m = 0; hence, m = n. Let us assume that n �= 0. The
previous equalities imply nqp = n, and since n �= 0, we have qp = 1. In view of the
fact that both p and q belong to N, we have p = q = 1; hence, m = n, which proves
the antisymmetry of ρ.

Let (m, n), (n, r) ∈ δ. We can write n = mp and r = nq for some p, q ∈ N, which
gives r = mpq. This means that (m, r) ∈ δ, which shows that δ is also transitive.

Definition 1.44 Let S and T be two sets and let ρ ⊆ S × T be a relation.
The image of an element s ∈ S under the relation ρ is the set ρ(s) = {t ∈ T |

(s, t) ∈ ρ}.
The preimage of an element t ∈ T under ρ is the set {s ∈ S | (s, t) ∈ ρ}, which

equals ρ−1(t), using the previous notation.
The collection of images of S under ρ is

IMρ = {ρ(s) | s ∈ S},

while the collection of preimages of T is

PIMρ = IMρ−1 = {ρ−1(t) | t ∈ T}.

If C and C⇒ are two collections of subsets of S and T, respectively, and C⇒ = IMρ and
C = PIMρ for some relation ρ ⊆ S × T, we refer to C⇒ as the dual class relative to ρ
of C.

Example 1.45 Any collection D of subsets of S can be regarded as the collection
of images under a suitable relation. Indeed, let C be such a collection. Define the
relation ρ ⊆ S ×C as ρ = {(s, C) | s ∈ S, C ∈ C and c ∈ C}. Then, IMρ consists of
all subsets of P(C) of the form ρ(s) = {C ∈ C | s ∈ C} for s ∈ S. It is easy to see
that PIMρ(C) = C.

The collection IMρ defined in this example is referred to as the bi-dual
collection of C.

1.3.3 Functions

We saw that a function is a relation ρ such that, for every x in Dom(ρ), there is only
one y such that (x, y) ∈ ρ. In other words, a function assigns a unique value to each
member of its domain.

From now on, we will use the letters f , g, h, and k to denote functions, and we
will denote the identity relation ιS , which we have already remarked is a function,
by 1S .

If f is a function, then, for each x in Dom(f ), we let f (x) denote the unique y with
(x, y) ∈ f , and we refer to f (x) as the image of x under f.
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Definition 1.46 Let S and T be sets. A partial function from S to T is a relation from
S to T that is a function.

A total function from S to T (also called a function from S to T or a mapping
from S to T) is a partial function from S to T that is a total relation from S to T.

The set of all partial functions from S to T is denoted by S � T and the set of all
total functions from S to T by S −→ T . We have S −→ T ⊆ S � T for all sets S
and T .

The fact that f is a partial function from S to T is indicated by writing f : S � T
rather than f ∈ S � T . Similarly, instead of writing f ∈ S −→ T , we use the
notation f : S −→ T .

For any sets S and T , we have ∅ ∈ S � T . If either S or T is empty, then ∅ is
the only partial function from S to T . If S = ∅, then the empty function is a total
function from S to any T . Thus, for any sets S and T , we have

S � ∅ = {∅},∅ � T = {∅}, and ∅ −→ T = {∅}.

Furthermore, if S is nonempty, then there can be no (total) function from S to the
empty set, so we have S −→ ∅ = ∅ if S �= ∅.

Definition 1.47 A one-to-one function is called an injection.
A function f : S � T is called a surjection (from S to T) if f is an onto relation

from S to T, and it is called a bijection (from S to T) or a one-to-one correspondence
between S and T if it is total, an injection, and a surjection.

Using our notation for functions, we can restate the definition of injection as
follows: f is an injection if for all s, s⇒ ∈ Dom(f ), f (s) = f (s⇒) implies s = s⇒.
Likewise, f : S � T is a surjection if for every t ∈ T there is an s ∈ S with f (s) = t.

Example 1.48 Let S and T be two sets and assume that S ⊆ T . The containment
mapping c : S −→ T defined by c(s) = s for s ∈ S is an injection. We denote such
a containment by c : S φ→ T .

Example 1.49 Let m ∈ N be a natural number, m � 2. Consider the function
rm : N −→ {0, . . . , m − 1}, where rm(n) is the remainder when n is divided by m.
Obviously, rm is well-defined since the remainder p when a natural number is divided
by m satisfies 0 � p � m − 1. The function rm is onto because of the fact that, for
any p ∈ {0, . . . , m − 1}, we have rm(km + p) = p for any k ∈ N.

For instance, if m = 4, we have r4(0) = r4(4) = r4(8) = · · · = 0, r4(1) =
r4(5) = r4(9) = · · · = 1, r4(2) = r4(6) = r4(10) = · · · = 2 and r4(3) = r4(7) =
r4(11) = · · · = 3.

Example 1.50 Let Pfin(N) be the set of finite subsets of N. Define the function φ :
Pfin(N) −→ N as
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φ(K) =
{

0 if K = ∅,∑p
i=1 2ni if K = {n1, . . . , np}.

It is easy to see that φ is a bijection.

Since a function is a relation, the ideas introduced in the previous section for
relations in general can equally well be applied to functions. In particular, we can
consider the inverse of a function and the product of two functions.

If f is a function, then, by Theorem 1.37, f −1 is a one-to-one relation; however,
f −1 is not necessarily a function. In fact, by the same theorem, if f is a function, then
f −1 is a function if and only if f is an injection.

Suppose now that f : S � T is an injection. Then, f −1 : T � S is also an
injection. Further, f −1 : T � S is total if and only if f : S � T is a surjection, and
f −1 : T � S is a surjection if and only if f : S � T is total. It follows that f : S � T
is a bijection if and only if f −1 : T � S is a bijection.

If f and g are functions, then we will always use the alternative notation gf instead
of the notation f g used for the relation product. We will refer to gf as the composition
of f and g rather than the product.

By Theorem 1.40, the composition of two functions is a function. In fact, it follows
from the definition of composition that

Dom(gf ) = {s ∈ Dom(f ) | f (s) ∈ Dom(g)}

and, for all s ∈ Dom(gf ),
gf (s) = g(f (s)).

This explains why we use gf rather than f g. If we used the other notation, the previous
equation would become f g(s) = g(f (s)), which is rather confusing.

Definition 1.51 Let f : S −→ T. A left inverse (relative to S and T) for f is a
function g : T −→ S such that gf = 1S. A right inverse (relative to S and T) for f is
a function g : T −→ S such that f g = 1T .

Theorem 1.52 A function f : S −→ T is a surjection if and only if f has a right
inverse (relative to S and T).

If S is nonempty, then f is an injection if and only if f has a left inverse (relative
to S and T).

Proof Suppose that f : S −→ T is a surjection. Define a function g : T −→ S as
follows: For each y ∈ T , let g(y) be some arbitrarily chosen element x ∈ S such that
f (x) = y. (Such an x exists because f is surjective.) Then, by definition, f (g(y)) = y
for all y ∈ T , so g is a right inverse for f . Conversely, suppose that f has a right
inverse g. Let y ∈ T and let x = g(y). Then, we have f (x) = f (g(y)) = 1T (y) = y.
Thus, f is surjective.

To prove the second part, suppose that f : S −→ T is an injection and that S
is nonempty. Let x0 be some fixed element of S. Define a function g : T −→ S as



1.3 Relations and Functions 15

follows: If y ∈ Ran(f ), then, since f is an injection, there is a unique element x ∈ S
such that f (x) = y. Define g(y) to be this x. If y ∈ T − Ran(f ), define g(y) = x0.
Then, it is immediate from the definition of g that, for all x ∈ S, g(f (x)) = x, so g is a
left inverse for f . Conversely, suppose that f has a left inverse g. For all x1, x2 ∈ S, if
f (x1) = f (x2), we have x1 = 1S(x1) = g(f (x1)) = g(f (x2)) = 1S(x2) = x2. Hence,
f is an injection.

Theorem 1.53 Let f : S −→ T. Then, the following statements are equivalent:

(i) f is a bijection;
(ii) there is a function g : T −→ S that is both a left and a right inverse for f ;

(iii) f has both a left inverse and a right inverse.

Furthermore, if f is a bijection, then f −1 is the only left inverse that f has, and it
is the only right inverse that f has.

Proof (i) implies (ii): If f : S −→ B is a bijection, then f −1 : T −→ S is both a left
and a right inverse for f .

(ii) implies (iii): This implication is obvious.
(iii) implies (i): If f has both a left inverse and a right inverse and S �= ∅, then it

follows immediately from Theorem 1.52 that f is both injective and surjective, so f is
a bijection. If S = ∅, then the existence of a left inverse function from T to S implies
that T is also empty; this means that f is the empty function, which is a bijection
from the empty set to itself.

Finally, suppose that f : S −→ T is a bijection and that g : T −→ S is a left
inverse for f . Then, we have

f −1 = 1Sf −1 = (gf )f −1 = g(ff −1) = g1T = g.

Thus, f −1 is the unique left inverse for f . A similar proof shows that f −1 is the unique
right inverse for f .

To prove that f : S −→ T is a bijection one could prove directly that f is both
one-to-one and onto. Theorem 1.53 provides an alternative way. If we can define a
function g : T −→ S and show that g is both a left and a right inverse for f , then f
is a bijection and g = f −1.

The next definition provides another way of viewing a subset of a set S.

Definition 1.54 Let S be a set. An indicator function over S is a function
I : S −→ {0, 1}.

If P is a subset of S, then the indicator function of P (as a subset of S) is the
function IP : S −→ {0, 1} given by

IP(x) =
{

1 if x ∈ P

0 otherwise,

for every x ∈ S.
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It is easy to see that

IP∩Q(x) = IP(x) · IQ(x),

IP∪Q(x) = IP(x) + IQ(x) − IP(x) · IQ(x),

IP̄(x) = 1 − IP(x),

for every P, Q ⊆ S and x ∈ S.
The relationship between the subsets of a set and indicator functions defined on

that set is discussed next.

Theorem 1.55 There is a bijection Ψ : P(S) −→ (S −→ {0, 1}) between the set of
subsets of S and the set of indicator functions defined on S.

Proof For P ∈ P(S), define Ψ (P) = IP. The mapping Ψ is one-to-one. Indeed,
assume that IP = IQ, where P, Q ∈ P(S). We have x ∈ P if and only if IP(x) = 1,
which is equivalent to IQ(x) = 1. This happens if and only if x ∈ Q; hence, P = Q
so Ψ is one-to-one.

Let f : S −→ {0, 1} be an arbitrary function. Define the set Tf = {x ∈ S | f (x) =
1}. It is easy to see that f is the indicator function of the set Tf . Hence, Ψ (Tf ) = f ,
which shows that the mapping Ψ is also onto and hence it is a bijection.

Definition 1.56 A simple function on a set S is a function f : S −→ R that has a
finite range.

Simple functions are linear combinations of indicator functions, as we show next.

Theorem 1.57 Let f : S −→ R be a simple function such that Ran(f ) =
{y1, . . . , yn} ⊆ R. Then,

f =
n∑

i=1

yiIf −1(yi)
.

Proof Let x ∈ R. If f (x) = yj, then

If −1(yβ)
(x) =

{
1 if β = j,

0 otherwise.

Thus, (
n∑

i=1

yiIf −1(yi)

)
(x) = yj,

which shows that f (x) = (∑n
i=1 yiIf −1(yi)

)
(x).

Theorem 1.58 Let f1, . . . , fk be k simple functions defined on a set S. If g : Rk −→ R

is an arbitrary function, then g(f1, . . . , fk) is a simple function on S and we have
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g(f1, . . . , fk)(x) =
m1∑

p1=1

· · ·
mk∑

pk=1

g(y1p1, . . . , ykpk )If −1
1 (y1p1 )∩···∩f −1

k (ykpk )
(x)

for every x ∈ S, where Ran(fi) = {yi1, . . . , yimi } for 1 � i � k.

Proof It is clear that the function g(f1, . . . , fk) is a simple function because it has a
finite range. Moreover, if Ran(fi) = {yi1, . . . , yimi }, then the values of g(f1, . . . , fk)
have the form g(y1p1, . . . , ykpk ), and g(f1, . . . , fk) can be written as

g(f1, . . . , fk)(x)

=
m1∑

p1=1
· · ·

mk∑
pk=1

g(y1p1, . . . , ykpk )If −1
1 (y1p1 )

(x) · · · If −1
k (ykpk )

(x)

=
m1∑

p1=1
· · ·∑ pk = 1mk g(y1p1 , . . . , ykpk )If −1

1 (y1p1 )∩···∩f −1
k (ykpk )

(x)

for x ∈ S.

Theorem 1.58 justifies the following statement.

Theorem 1.59 If f1, . . . , fk are simple functions on a set S, then

max{f1(x), . . . , fk(x)},
min{f1(x), . . . , fk(x)},
f1(x) + · · · + fk(x),
f1(x) · · · · · fk(x)

are simple functions on S.

Proof The statement follows immediately from Theorem 1.58.

1.3.3.1 Functions and Sets

Let f : S −→ T be a function. If L ⊆ S, the the image of L under f is the set
f (L) = {f (s) | s ∈ L}.

If H ⊆ T , the inverse image of H under f is the set f −1(H) = {s ∈ S | f (s) ∈ H}.
It is easy to verify that L ⊆ L⇒ implies f (L) ⊆ f (L⇒) (monotonicity of set images)

and H ⊆ H ⇒ implies f −1(H) ⊆ f −1(H ⇒) for every L, L⇒ ∈ P(S) and H, H ⇒ ∈ P(T)

(monotonicity of set inverse images).
Next, we discuss the behavior of images and inverse images of sets with respect

to union and intersection.

Theorem 1.60 Let f : S −→ T be a function. If C is a collection of subsets of S,
then we have
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(i) f (
⎜

C) = ⎜{f (L) | L ∈ C} and
(ii) f (

⋂
C) ⊆ ⋂{f (L) | L ∈ C}.

Proof Note that L ⊆ ⎜
C for every L ∈ C. The monotonicity of set images implies

f (L) ⊆ f (
⎜

C). Therefore,
⎜{f (L) | L ∈ C} ⊆ f (

⎜
C).

Conversely, let t ∈ f (
⎜

C). There is s ∈ ⎜
C such that t = f (s). Further, since

s ∈ ⎜
C we have s ∈ L, for some L ∈ C, which shows that f ∈ f (L) ⊆ ⎜{f (L) |

L ∈ C}, which implies the reverse inclusion f (
⎜

C) ⊆ ⎜{f (L) | L ∈ C}.
We leave to the reader the second part of the theorem.

Theorem 1.61 Let f : S −→ T and g : T −→ U be two functions. We have
f −1(g−1(X)) = (gf )−1(X) for every subset X of U.

Proof We have s ∈ f −1(g−1(X)) if and only if f (s) ∈ g−1(X), which is equivalent
to g(f (s)) ∈ X, that is, with s ∈ (gf )−1(X). The equality of the theorem follows
immediately.

Theorem 1.62 If f : S −→ T is an injective function, then f (
⋂

C) = ⋂{f (L) |
L ∈ C} for every collection C of subsets of S.

Proof By Theorem 1.60, it suffices to show that for an injection f we have
⋂{f (L) |

L ∈ C} ⊆ f (
⋂

C).
Let y ∈ ⋂{f (L) | L ∈ C}. For each set L ∈ C there exists xL ∈ L such that

f (xL) = y. Since f is an injection, it follows that there exists x ∈ S such that xL = x
for every L ∈ C. Thus, x ∈ ⋂

C, which implies that y = f (x) ∈ f (
⋂

C). This allows
us to obtain the desired inclusion.

Theorem 1.63 Let f : S −→ T be a function. If D is a collection of subsets of T,
then we have

(i) f −1(
⎜

D) = ⎜{f −1(H) | H ∈ D} and
(ii) f −1(

⋂
D) = ⋂{f −1(H) | H ∈ D}.

Proof We prove only the second part of the theorem and leave the first part to the
reader.

Since
⋂

D ⊆ H for every H ∈ D, we have f −1(
⋂

D) ⊆ f −1(H) due to
the monotonicity of set inverse images. Therefore, f −1(

⋂
D) ⊆ ⋂{f −1(H) |

H ∈ D}.
To prove the reverse inclusion, let s ∈ ⋂{f −1(H) | H ∈ D}. This means that

s ∈ f −1(H) and therefore f (s) ∈ H for every H ∈ D. This implies f (s) ∈ ⋂
D,

so s ∈ f −1(
⋂

D), which yields the reverse inclusion
⋂{f −1(H) | H ∈ D} ⊆

f −1(
⋂

D).

Note that images and inverse images behave differently with respect to intersec-
tion. The inclusion contained by the second part of Theorem 1.60 may be strict, as
the following example shows.
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Example 1.64 Let S = {s0, s1, s2}, T = {t0, t1}, and f : S −→ T be the func-
tion defined by f (s0) = f (s1) = t0 and f (s2) = t1. Consider the collection
C = {{s0}, {s1, s2}}. Clearly,

⋂
C = ∅, so f (

⋂
C) = ∅. However, f ({s0}) = {t0}

and f ({s1, s2}) = {t0, t1}, which shows that
⋂{f (L) | L ∈ C} = {t0}.

Theorem 1.65 Let f : S −→ T be a function and let U and V be two subsets of T.
Then, f −1(U − V ) = f −1(U) − f −1(V ).

Proof Let s ∈ f −1(U − V ). We have f (s) ∈ U − V , so f (s) ∈ U and f (s) �∈ V .
This implies s ∈ f −1(U) and s �∈ f −1(V ), so s ∈ f −1(U) − f −1(V ), which yields
the inclusion

f −1(U − V ) ⊆ f −1(U) − f −1(V ).

Conversely, let s ∈ f −1(U) − f −1(V ). We have s ∈ f −1(U) and s �∈ f −1(V )

which amount to f (s) ∈ U and f (s) �∈ V , respectively. Therefore, f (s) ∈ U − V ,
which implies s ∈ f −1(U − V ). This proves the inclusion:

f −1(U) − f −1(V ) ⊆ f −1(U − V ),

which concludes the argument.

Corollary 1.66 Let f : S −→ T be a function and let V be a subset of T. We have
f −1(V̄ ) = f −1(V ).

Proof Note that f −1(T) = S for any function f : S −→ T . Therefore, by choosing
U = T in the equality of Theorem 1.65, we have

S − f −1(V ) = f −1(T − V ),

which is precisely the statement of this corollary.

1.3.4 Finite and Infinite Sets

Functions allow us to compare sizes of sets. This idea is formalized next.

Definition 1.67 Two sets S and T are equinumerous if there is a bijection
f : S −→ T.

The notion of equinumerous sets allows us to introduce formally the notions of
finite and infinite sets.

Definition 1.68 A set S is finite if there exists a natural number n ∈ N such that S is
equinumerous with the set {0, . . . , n − 1}. Otherwise, the set S is said to be infinite.

If S is an infinite set and T is a subset of S such that S − T is finite, then we refer
to T as a cofinite set.
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Theorem 1.69 If n ∈ N and f : {0, . . . , n − 1} −→ {0, . . . , n − 1} is an injection,
then f is also a surjection.

Proof Let f : {0, . . . , n − 1} −→ {0, . . . , n − 1} be an injection. Suppose that f is
not a surjection, that is, there is k such that 0 � k � n−1 and k �∈ Ran(f ). Since f is
injective, the elements f (0), f (1), f (n − 1) are distinct; this leads to a contradiction
because k is not one of them. Thus, f is a surjection.

Theorem 1.70 For any natural numbers m, n ∈ N, the following statements hold:

(i) there exists an injection from {0, . . . , n − 1} to {0, . . . , m − 1} if and only
if n � m;

(ii) there exists a surjection from {0, . . . , n − 1} to {0, . . . , m − 1} if and only
if n � m > 0 or if n = m = 0;

(iii) there exists a bijection between {0, . . . , n − 1} and {0, . . . , m − 1} if and only
if n = m.

Proof For the first part of the theorem, if n � m, then the mapping f : {0, . . . , n −
1} −→ {0, . . . , m − 1} given by f (k) = k is the desired injection. Conversely, if
f : {0, . . . , n − 1} −→ {0, . . . , m − 1} is an injection, the list (f (0), . . . , f (n − 1))

consists of n distinct elements and is a subset of the set {0, . . . , m − 1}. Therefore,
n � m.

For the second part, if n = m = 0, then the empty function is a surjection from
{0, . . . , n − 1} to {0, . . . , m − 1}. If n ≥ m > 0, then we can define a surjection
f : {0, . . . , n − 1} −→ {0, . . . , m − 1} by defining

f (r) =
{

r if 0 � r � m − 1,

0 if m � r � n − 1.

Conversely, suppose that f : {0, . . . , n−1} −→ {0, . . . , m−1} is a surjection. Define
g : {0, . . . , m − 1} −→ {0, . . . , n − 1} by defining g(r), for 0 � r � m − 1, to be
the least t, 0 � t � n − 1, for which f (t) = r. (Such t exists since f is a surjection.)
Then, g is an injection, and hence, by the first part, m � n. In addition, if m = 0,
then we must also have n = 0 or else the function f could not exist.

For Part (iii), if n = m, then the identity function is the desired bijection. Con-
versely, if there is a bijection from {0, . . . , n − 1} to {0, . . . , m − 1}, then by the first
part, n � m, while by the second part, n � m, so n = m.

Corollary 1.71 If S is a finite set, then there is a unique natural number n for which
there exists a bijection from {0, . . . , n − 1} to S.

Proof Suppose that f : {0, . . . , n − 1} −→ S and g : {0, . . . , m − 1} −→ S are both
bijections. Then, g−1f : {0, . . . , n − 1} −→ {0, . . . , m − 1} is a bijection, so n = m.

If S is a finite set, we denote by |S| the unique natural number that exists for S
according to Corollary 1.71. We refer to |S| as the cardinality of S.
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Corollary 1.72 Let S and T be finite sets.

(i) There is an injection from S to T if and only if |S| � |T |.
(ii) There is a surjection from S to T if and only if |S| � |T |.
(iii) There is a bijection from S to B if and only if |S| = |T |.
Proof Let |S| = n and |T | = m and let f : {0, . . . , n −1} −→ S and g : {0, . . . , m −
1} −→ T be bijections. If h : S −→ T is an injection, then g−1hf : {0, . . . , n −
1} −→ {0, . . . , m − 1} is an injection, so by Theorem 1.70, Part (i), n � m, i.e.,
|S| � |T |. Conversely, if n � m, then there is an injection k : {0, . . . , n − 1} −→
{0, . . . , m − 1}, namely the inclusion, and gkf −1 : S −→ T is an injection.

The other parts are proven similarly.

1.3.5 Generalized Set Products and Sequences

The Cartesian product of two sets was introduced as the set of ordered pairs of
elements of these sets. Here we present a definition of an equivalent notion that can
be generalized to an arbitrary family of sets.

Definition 1.73 Let S and T be two sets. The set product of S and T is the set of
functions of the form p : {0, 1} −→ S ∪ T such that f (0) ∈ S and f (1) ∈ T.

Note that the function Φ : P −→ S × T given by Φ(p) = (p(0), p(1)) is a
bijection between the set product P of the sets S and T and the Cartesian product
S × T . Thus, we can regard a function p in the set product of S and T as an alternate
representation of an ordered pair.

Definition 1.74 Let C = {Si | i ∈ I} be a collection of sets indexed by a set I. The
set product of C is the set

⎛
C of all functions f : I −→ ⎜

C such that f (i) ∈ Si for
every i ∈ I.

Example 1.75 Let C = {{0, . . . , i} | i ∈ N} be a family of sets indexed by the set of
natural numbers. Clearly, we have

⎜
C = N. The set

⎛
C consists of those functions

f such that f (i) ∈ {0, . . . , i} for i ∈ N, that is, of those functions such that f (i) � i
for every i ∈ I .

Definition 1.76 Let C = {Si | i ∈ I} be a collection of sets indexed by a set I and
let i be an element of I. The ith projection is the function pi : ⎛C −→ Si defined by
pi(f ) = f (i) for every f ∈ ⎛

C.

Theorem 1.77 Let C = {Si | i ∈ I} be a collection of sets indexed by a set I and
let T be a set such that, for every i ∈ I there exists a function gi : T −→ Si. Then,
there exists a unique function h : T −→ ⎛

C such that gi = pih for every i ∈ I.
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Proof For t ∈ T , define h(t) = f , where f (i) = gi(t) for every i ∈ I . We have
pi(h(t)) = pi(f ) = gi(t) for every t ∈ T , so h is a function that satisfies the conditions
of the statement.

Suppose now that h1 is another function, h1 : T −→ ⎛
C, such that gi = pih1

and h1(t) = f1. We have gi(t) = pi(h1(t)) = pi(f1) = pi(f ), so f (i) = f1(i) for every
i ∈ I . Thus, f = f1 and h(t) = h1(t) for every t ∈ T , which shows that h is unique
with the property of the statement.

Let C = {S0, . . . , Sn−1} be a collection of n sets indexed by the set {0, . . . , n−1}.
By Definition 1.74 the set product

⎛
C consists of those functions f : {0, . . . ,

n − 1} −→ ⎜n−1
i=0 Si such that f (i) ∈ Si for 0 � i � n − 1.

For set products of this type, we use the alternative notation S0 × · · · × Sn−1.
If S0 = · · · = Sn−1 = S, we denote the set product S0 × · · · × Sn−1 by Sn.

Definition 1.78 A sequence on S of length n is a member of this set product. If the
set S is clear from the context, then we refer to s as a sequence.

The set of finite sequences of length n on the set S is denoted by Seqn(S).

If s ∈ Seqn(S), we refer to the number n as the length of the sequence s and it is
denoted by |s|. The set of finite sequences on a set S is the set

⎜{Seqn(S) | n ∈ N},
which is denoted by Seq(S).

For a sequence s of length n on the set S such that s(i) = si for 0 � i � n − 1, we
denote s as

s = (s0, s1, . . . , sn−1).

The elements s0, . . . , sn−1 are referred to as the components of s.
For a sequence r ∈ Seq(S), we denote the set of elements of S that occur in s by

set(r).
In certain contexts, such as the study of formal languages, sequences over a

nonempty, finite set I are referred to as words. The set I itself is called an alphabet.
We use special notation for words. If I = {a0, . . . , an−1} is an alphabet and s =
(ai0 , ai1 , . . . , aip−1) is a word over the alphabet I , then we write s = ai0ai1 · · · aip−1 .

The notion of a relation can also be generalized.

Definition 1.79 Let C = {Ci | i ∈ I} be a collection of sets. A C-relation is a subset
ρ of the generalized Cartesian product

⎛
C. If I is a finite set and |I| = n, then we

say that ρ is an n-ary relation.
For small values of n, we use specific terms such as binary relation for n = 2 or

ternary relation for n = 3.
The number n is the arity of the relation ρ.

Example 1.80 Let I = {0, 1, 2} and C0 = C1 = C2 = R. Define the ternary relation
ρ on the collection {C0, C1, C2} by

ρ = {(x, y, z) ∈ R
3 | x < y < z}.

In other words, we have (x, y, z) ∈ ρ if and only if y ∈ (x, z).
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Definition 1.81 Let p and q be two finite sequences in Seq(S) such that |p| = m and
|q| = n. The concatenation or the product of p and q is the sequence r given by

r(i) =
{

p(i) if 0 � i � m − 1

q(i − m) if m � i � m + n − 1.

The concatenation of p and q is denoted by pq.

Example 1.82 Let S = {0, 1} and let p and q be the sequences

p = (0, 1, 0, 0, 1, 1), q = (1, 1, 1, 0).

By Definition 1.81, we have

pq = (0, 1, 0, 0, 1, 1, 1, 1, 1, 0),

qp = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1).

The example above shows that, in general, pq �= qp.
It follows immediately from Definition 1.81 that

λλλp = pλλλ = p

for every sequence p ∈ Seq(S).

Definition 1.83 Let x be a sequence, x ∈ Seq(S). A sequence y ∈ Seq(S) is:

(i) a prefix of x if x = yv for some v ∈ Seq(S);
(ii) a suffix of x if x = uy for some v ∈ Seq(S); and
(iii) an infix of x if x = uyv for some u, v ∈ Seq(S).

A sequence y is a proper prefix (a proper suffix, a proper infix) of x if y is a prefix
(suffix, infix) and y �∈ {λλλ, x}.
Example 1.84 Let S = {a, b, c, d} and x = (b, a, b, a, c, a). The sequence y =
(b, a, b, a) is a prefix of x, z = (a, c, a) is a suffix of x, and t = (b, a) is an infix of
the same sequence.

For a sequence x = (x0, . . . , xn−1), we denote by xij the infix (xi, . . . , xj) for
0 � i � j � n − 1. If j < i, xi,j = λλλ.

Definition 1.85 Let S be a set and let r, s ∈ Seq(S) such that |r| � |s|. The sequence
r is a subsequence of s, denoted r ⊥ s, if there is a function f : {0, . . . , m − 1} −→
{0, . . . , n − 1} such that f (0) < f (1) < · · · < f (m − 1) and r = sf .

Note that the mapping f mentioned above is necessarily injective.
If r ⊥ s, as in Definition 1.85, we have ri = sf (i) for 0 � i � m − 1. In other

words, we can write r = (si0 , . . . , sim−1), where ip = f (p) for 0 � p � m − 1.
The set of subsequences of a sequence s is denoted by SUBSEQ(s). There is only

one subsequence of s of length 0, namely λλλ.
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Example 1.86 For S = {a, b, c, d} and x = (b, a, b, a, c, a) we have y = (b, b, c) ⊥
x because y = xf , where f : {0, 1, 2} −→ {0, 1, 2, 3, 4} is defined by f (0) =
0, f (1) = 2, and f (2) = 4. Note that set(y) = {b, c} ⊆ set(x) = {a, b, c}.
Definition 1.87 Let T be a set. An infinite sequence on T is a function of the form
s : N −→ T.

The set of infinite sequences on T is denoted by Seq∞(T). If s ∈ Seq∞(T), we
write |s| = ∞.

For s ∈ Seq∞(T) such that s(n) = sn for n ∈ N, we also use the notation
s = (s0, . . . , sn, . . .).

The notion of a subsequence for infinite sequences has a definition that is similar
to the case of finite sequences. Let s ∈ Seq∞(T) and let r : D −→ T be a function,
where D is either a set of the form {0, . . . , m−1} or the setN. Then, r is a subsequence
of s if there exists a function f : D −→ N such that f (0) < f (1) < · · · < f (k −
1) < · · · such that r = sf . In other words, a subsequence of an infinite sequence
can be a finite sequence (when D is finite) or an infinite sequence. Observe that
r(k) = s(f (k)) = sf (k) for k ∈ D. Thus, as was the case for finite sequences, the
members of the sequence r are extracted among the members of the sequence s. We
denote this by r ⊥ s, as we did for the similar notion for finite sequences.

Example 1.88 Let s ∈ Seq∞(R) be the sequence defined by s(n) = (−1)n for
n ∈ N, s = (1,−1, 1,−1, . . .). If f : N −→ N is the function given by f (n) = 2n
for n ∈ N, then r = sf is defined by rk = r(k) = s(f (k)) = (−1)2k = 1 for k ∈ N.

1.3.5.1 Occurrences in Sequences

Let x, y ∈ Seq(S). An occurrence of y in x is a pair (y, i) such that 0 � i � |x| − |y|
and y(k) = x(i + k) for every k, 0 � k � |y| − 1.

The set of all occurrences of y in x is denoted by OCCy(x).
There is an occurrence (y, i) of y in x if and only if y is an infix of x. If |y| = 1,

then an occurrence of y in x is called an occurrence of the symbol y(0) in x.
|OCC(s)(x)| will be referred to as the number of occurrences of a symbol s in a

finite sequence x and be denoted by |x|s.
Observe that there are |x|+1 occurrences of the null sequenceλλλ in any sequence x.
Let x ∈ Seq(S) and let (y, i) and (y⇒, j) be occurrences of y and y⇒ in x. The

occurrence (y⇒, j) is a part of the occurrence (y, i) if 0 � j − i � |y| − |y⇒|.
Example 1.89 Let S = {a, b, c} and let x ∈ Seq(S) be defined by x = (a, a, b, a, b,

a, c). The occurrences ((a, b), 1), ((b, a), 2), and ((a, b), 3) are parts of the occur-
rence ((a, b, a, b), 1).

Theorem 1.90 If (y, j) ∈ OCCy(x) and (z, i) ∈ OCCz(y), then (z, i + j) ∈
OCCz(x).
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Proof The argument is left to the reader.

Definition 1.91 Let x be a finite sequence and let (y, i) be an occurrence of y in x.
If x = x0yx1, where |x0| = i, then the sequence which results from the replacement
of the occurrence (y, i) in x by the finite sequence y⇒ is the sequence x0y⇒x1, denoted
by replace(x(y, i)y⇒).

Example 1.92 For the occurrences ((a, b), 1), ((a, b), 3) of the sequence (a, b) in
the sequence x = (a, a, b, a, b, a, c), we have

replace (x, ((a, b), 1), (c, a, c)) = (a, c, a, c, a, b, a, c)

replace (x, ((a, b), 3), (c, a, c)) = (a, a, b, c, a, c, a, c).

1.3.5.2 Sequences of Sets

Next we examine sets defined by sequences of sets.
Let s be a sequence of sets. The intersection of s is denoted by

⋂n−1
i=0 Si if s is a

sequence of length n and by
⋂∞

i=0 Si if s is an infinite sequence. Similarly, the union
of s is denoted by

⎜n−1
i=0 Si if s is a sequence of length n and by

⎜∞
i=0 Si if s is an

infinite sequence.

Definition 1.93 A sequence of sets s = (S0, S1, . . .) is expanding if i < j implies
Si ⊆ Sj for every i, j in the domain of s.

If i < j implies Sj ⊆ Si for every i, j in the domain of s, then we say that s is a
contracting sequence of sets.

A sequence of sets is monotonic if it is expanding or contracting.

Definition 1.94 Let s be an infinite sequence of subsets of a set S, where s(i) = Si

for i ∈ N.
The set

⎜∞
i=0

⋂∞
j=i Sj is referred to as the lower limit of s; the set

⋂∞
i=0

⎜∞
j=i Sj

is the upper limit of s. These two sets will be denoted by lim inf s and lim sup s,
respectively.

If x ∈ lim inf s, then there exists i such that x ∈ ⋂∞
j=i Sj; in other words, x belongs

to almost all sets Si.
If x ∈ lim sup s, then for every i there exists j � i such that x ∈ Sj; in this case, x

belongs to infinitely many sets of the sequence.
Clearly, we have lim inf s ⊆ lim sup s.

Definition 1.95 A sequence of sets s is convergent if lim inf s = lim sup s. In this
case, the set L = lim inf s = lim sup s is said to be the limit of the sequence s.

The limit of s will be denoted by lim s.

Example 1.96 Every expanding sequence of sets is convergent. Indeed, since s is
expanding, we have

⋂∞
j=i Sj = Si. Therefore, lim inf s = ⎜∞

i=0 Si. On the other hand,
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⎜∞
j=i Sj ⊆ ⎜∞

i=0 Si and therefore lim sup s ⊆ lim inf s. This shows that lim inf s =
lim sup s, that is, s is convergent.

A similar argument can be used to show that s is convergent when s is contracting.

Let C be a collection of subsets of a set S. Denote by Cσ the collection of all unions
of subcollections of C indexed by N and by Cδ the collection of all intersections of
such subcollections of C,

Cσ =
⎧⎨
⎩
⋃
n�0

Cn | Cn ∈ C

⎫⎬
⎭ ,

Cδ =
⎧⎨
⎩
⎟
n�0

Cn | Cn ∈ C

⎫⎬
⎭ .

Observe that by taking Cn = C ∈ C for n � 0, it follows that C ⊆ Cσ and C ⊆ Cδ .

Theorem 1.97 For any collection of subsets C of a set S, we have (Cσ)σ = Cσ and
(Cδ)δ = Cδ .

Proof The argument is left to the reader.

The operations σ and δ can be applied iteratively. We denote sequences of appli-
cations of these operations by subscripts adorning the affected collection. The order
of application coincides with the order of these symbols in the subscript. For exam-
ple, (C)σδσ means ((Cσ)δ)σ . Thus, Theorem 1.97 can be restated as the equalities
Cσσ = Cσ and Cδδ = Cδ .

Observe that if c = (C0, C1, . . .) is a sequence of sets, then lim sup c =⋂∞
i=0

⎜∞
j=i Cj ∈ Cσδ and lim inf c = ⎜∞

i=0
⋂∞

j=i Cj belongs to Cδσ , where C =
{Cn | n ∈ N}.

1.3.6 Equivalence Relations

Equivalence relations occur in many data mining problems and are closely related
to the notion of partition, which we discuss in Sect.1.3.7.

Definition 1.98 An equivalence relation on a set S is a relation that is reflexive,
symmetric, and transitive.

The set of equivalences on A is denoted by EQ(S).
An important example of an equivalence relation is presented next.

Definition 1.99 Let U and V be two sets, and consider a function f : U −→ V .
The relation ker(f ) ⊆ U × U, called the kernel of f , is given by

ker(f ) = {(u, u⇒) ∈ U × U | f (u) = f (u⇒)}.
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In other words, (u, u⇒) ∈ ker(f ) if f maps both u and u⇒ into the same element of V .
It is easy to verify that the relation introduced above is an equivalence. Indeed, it

is clear that (u, u) ∈ ker(f ) for any u ∈ U, which shows that ιU ⊆ ker(f ).
The relation ker(f ) is symmetric since (u, u⇒) ∈ ker(f ) means that f (u) = f (u⇒);

hence, f (u⇒) = f (u), which implies (u⇒, u) ∈ ker(f ).
Suppose that (u, u⇒), (u⇒, u⇒⇒) ∈ ker(f ). Then, we have f (u) = f (u⇒) and f (u⇒) =

f (u⇒⇒), which gives f (u) = f (u⇒⇒). This shows that (u, u⇒⇒) ∈ ker(f ); hence, ker(f ) is
transitive.

Example 1.100 Let m ∈ N be a positive natural number. Define the function fm :
Z −→ N by fm(n) = r if r is the remainder of the division of n by m. The range of
the function fm is the set {0, . . . , m − 1}.

The relation ker(fm) is usually denoted by ≡m. We have (p, q) ∈≡m if and only
if p − q is divisible by m; if (p, q) ∈≡m, we also write p ≡ q(mod m).

Definition 1.101 Let ρ be an equivalence on a set U and let u ∈ U.
The equivalence class of u is the set [u]ρ, given by

[u]ρ = {y ∈ U | (u, y) ∈ ρ}.

When there is no risk of confusion, we write simply [u] instead of [u]ρ.
Note that an equivalence class [u] of an element u is never empty since u ∈ [u]

because of the reflexivity of ρ.

Theorem 1.102 Let ρ be an equivalence on a set U and let u, v ∈ U. The following
three statements are equivalent:

(i) (u, v) ∈ ρ;
(ii) [u] = [v];
(iii) [u] ∩ [v] �= ∅.

Proof The argument is immediate and we omit it.

Definition 1.103 Let S be a set and let ρ ∈ EQ(S). A subset U of S is ρ-saturated if
it equals a union of equivalence classes of ρ.

It is easy to see that U is a ρ-saturated set if and only if x ∈ U and (x, y) ∈ ρ
imply y ∈ U. It is clear that both ∅ and S are ρ-saturated sets.

The following statement is immediate.

Theorem 1.104 Let S be a set, ρ ∈ EQ(S), and C = {Ui | i ∈ I} be a collection of
ρ-saturated sets. Then, both

⎜
C and

⋂
C are ρ-saturated sets. Also, the complement

of every ρ-saturated set is a ρ-saturated set.

Proof We leave the argument to the reader.

A more general class of relations that generalizes equivalence relations is intro-
duced next.
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Definition 1.105 A tolerance relation (or, for short, a tolerance on a set S is a relation
that is reflexive and symmetric.

The set of tolerances on A is denoted by TOL(S).

Example 1.106 Let a be a nonnegative number and let ρa ⊆ R × R be the relation
defined by

ρa = {(x, y) ∈ S × S | |x − y| � a}.

It is clear that ρa is reflexive and symmetric; however, ρa is not transitive in general.
For example, we have (3, 5) ∈ ρ2 and (5, 6) ∈ ρ2, but (3, 6) �∈ ρ2. Thus, ρ2 is a
tolerance but is not an equivalence.

1.3.7 Partitions and Covers

Next, we introduce the notion of partition of a set, a special collection of subsets of
a set.

Definition 1.107 Let S be a nonempty set. A partition of S is a nonempty collection
π = {Bi | i ∈ I} of nonempty subsets of S, such that

⎜{Bi | i ∈ I} = S, and
Bi ∩ Bj = ∅ for every i, j ∈ I such that i �= j.

Each set Bi of π is a block of the partition π.
The set of partitions of a set S is denoted by PART(S). The partition of S that

consists of all singletons of the form {s} with s ∈ S will be denoted by αS; the
partition that consists of the set S itself will be denoted by ωS.

Example 1.108 For the two-element set S = {a, b}, there are two partitions: the
partition αS = {{a}, {b}} and the partition ωS = {{a, b}}.

For the one-element set T = {c}, there exists only one partition, αT = ωT = {{t}}.
Example 1.109 A complete list of partitions of a set S = {a, b, c} consists of

π0 = {{a}, {b}, {c}}, π1 = {{a, b}, {c}},
π2 = {{a}, {b, c}}, π3 = {{a, c}, {b}},
π4 = {{a, b, c}}.

Clearly, π0 = αS and π4 = ωS .

Definition 1.110 Let S be a set and let π,σ ∈ PART(S). The partition π is finer
than the partition σ if every block C of σ is a union of blocks of π. This is denoted
by π � σ.

Theorem 1.111 Let π = {Bi | i ∈ I} and σ = {Cj | j ∈ J} be two partitions of a
set S.

For π,σ ∈ PART(S), we have π � σ if and only if for every block Bi ∈ π there
exists a block Cj ∈ σ such that Bi ⊆ Cj.
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Proof If π � σ, then it is clear for every block Bi ∈ π there exists a block Cj ∈ σ
such that Bi ⊆ Cj.

Conversely, suppose that for every block Bi ∈ π there exists a block Cj ∈ σ such
that Bi ⊆ Cj. Since two distinct blocks of σ are disjoint, it follows that for any block
Bi of π, the block Cj of σ that contains Bi is unique. Therefore, if a block B of π
intersects a block C of σ, then B ⊆ C.

Let Q = ⎜{Bi ∈ π | Bi ⊆ Cj}. Clearly, Q ⊆ Cj. Suppose that there exists
x ∈ Cj − Q. Then, there is a block Bβ ∈ π such that x ∈ Bβ ∩ Cj, which implies that
Bβ ⊆ Cj. This means that x ∈ Bβ ⊆ C, which contradicts the assumption we made
about x. Consequently, Cj = Q, which concludes the argument.

Note that αS � π � ωS for every π ∈ PART(S).
Two equivalence classes either coincide or are disjoint. Therefore, starting from

an equivalence ρ ∈ EQ(U), we can build a partition of the set U.

Definition 1.112 The quotient set of the set U with respect to the equivalence ρ is
the partition U/ρ, where

U/ρ = {[u]ρ | u ∈ U}.

An alternative notation for the partition U/ρ is πρ.
Moreover, we can prove that any partition defines an equivalence.

Theorem 1.113 Let π = {Bi | i ∈ I} be a partition of the set U. Define the relation
ρπ by (x, y) ∈ ρπ if there is a set Bi ∈ π such that {x, y} ⊆ Bi. The relation ρπ is an
equivalence.

Proof Let Bi be the block of the partition that contains u. Since {u} ⊆ Bi, we have
(u, u) ∈ ρπ for any u ∈ U, which shows that ρπ is reflexive.

The relation ρπ is clearly symmetric. To prove the transitivity of ρπ , consider
(u, v), (v, w) ∈ ρπ . We have the blocks Bi and Bj such that {u, v} ⊆ Bi and {v, w} ⊆
Bj. Since v ∈ Bi ∩ Bj, we obtain Bi = Bj by the definition of partitions; hence,
(u, w) ∈ ρπ .

Corollary 1.114 For any equivalence ρ ∈ EQ(U), we have ρ = ρπρ . For any
partition π ∈ PART(U), we have π = πρπ .

Proof The argument is left to the reader.

The previous corollary amounts to the fact that there is a bijection φ : EQ(U) −→
PART(U), where φ(ρ) = πρ. The inverse of this mapping, Ψ : PART(U) −→
EQ(U), is given by ψ(π) = ρπ .

Also, note that, for π,π⇒ ∈ PART(S), we have π � π⇒ if and only if ρπ ⊆ ρπ⇒ .
We say that a subset T of a set S is π-saturated if it is a ρπ-saturated set.

Theorem 1.115 For any mapping f : U −→ V , there is a bijection
h : U/ker(f ) −→ f (U).
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Proof Consider the ker(f ) class [u] of an element u ∈ U, and define h([x]) = f (x).
The mapping h is well-defined for if u⇒ ∈ [u], then (u, u⇒) ∈ ker(f ), which gives
f (u) = f (u⇒).

Further, h is onto since if y ∈ f (U), then there is u ∈ U such that f (u) = y, and
this gives y = h([u]).

To prove the injectivity of h, assume that h([u]) = h([v]). This means that f (u) =
f (v); hence, (u, v) ∈ ker(f ), which means, of course, that [u] = [v].

An important consequence of the previous proposition is the following decompo-
sition theorem for mappings.

Theorem 1.116 Every mapping f : U −→ V can be decomposed as a composition
of three mappings: a surjection g : U −→ U/ker(f ), a bijection h : U/ker(f ) −→
f (U), and an injection k : f (U) −→ V .

Proof The mapping g : U −→ U/ker(f ) is defined by g(u) = [u] for u ∈ U,
while k : f (A) −→ B is the inclusion mapping given by k(v) = v for all v ∈ f (U).
Therefore, k(h(g(u))) = k(h([u])) = k(f (u)) = f (u) for all u ∈ U.

A generalization of the notion of partition is introduced next.

Definition 1.117 Let S be a set. A cover of S is a nonempty collection C of nonempty
subsets of S, C = {Bi | i ∈ I}, such that

⎜{Bi | i ∈ I} = S.
The set of covers of a set S is denoted by COVERS(S).

Example 1.118 Let S be a set. The collection Pk(S) of subsets of S that contain k
elements is a cover of S for every k � 1. For k = 1, P1(S) is actually the partition
αS .

The notion of collection refinement introduced in Definition 1.12 is clearly
applicable to covers and will be used in Sect. 15.5.

Definition 1.119 A Sperner collection of subsets of a set S is a collection C such
that C ⊆ P(S) and for any C, C⇒ ∈ C, C �= C⇒ implies that C �⊆ C⇒ and C⇒ �⊆ C.

The set of Sperner collections on S is denoted by SPER(S).

Let C and D be two Sperner covers of S. Define C � D if for every C ∈ C there
exists D ∈ D such that C ⊆ D.

The relation � is a partial order on the collection SPER(S). Indeed, the relation �
is clearly reflexive and transitive. So we need to verify only that it is antisymmetric.

Suppose that C,D ∈ SPER(S), C � D,and D � C. If C ∈ C, there exists D ∈ D

such that C ⊆ D. On the other hand, since D � C, there exists C⇒ ∈ C such that
D ⊆ C⇒, so C ⊆ C⇒. Since C is a Sperner collection this is possible only if C = C⇒, so
D = C, which implies C ⊆ D. Applying a similar argument to an arbitrary D ∈ D

yields the conclusion that D ⊆ C, so C = D, which allows us to conclude that “�”
is antisymmetric and, therefore, a partial order on SPER(S).

http://dx.doi.org/10.1007/978-1-4471-6407-4_15
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1.4 Countable Sets

A set is called countable if it is either empty or the range of a sequence. A set that is
not countable is called uncountable.

Note that if S is a countable set and f : S −→ T is a surjection, then T is also
countable.

Example 1.120 Every finite set is countable. Let S be a finite set. If S = ∅, then S
is countable. Otherwise, suppose that S = {a0, . . . , an−1}, where n � 1. Define the
sequence s as

s(i) =
{

ai if 0 � i � n − 1,

an−1 otherwise.

It is immediate that Ran(s) = S.

Example 1.121 The set N is countable because N = Rans, where s is the sequence
s(n) = n for n ∈ N. A similar argument can be used to show that the set Z is
countable. Indeed, let t be the sequence defined by

t(n) =
{

n−1
2 if n is odd

− n
2 if n is even.

Let m be an integer. If m > 0, then m = t(2m − 1); otherwise (that is, if m � 0),
m = t(−2m), so z = Ran(t).

Example 1.122 We prove now that the set N × N is countable. To this end, consider
the representation of pairs of natural numbers shown in Fig. 1.2. The pairs of the
set N × N are scanned in the order suggested by the dotted arrows. The 0th pair is
(0, 0), followed by (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), etc. We define the bijection
β : N×N −→ N as β(p, q) = n, where n is the place occupied by the pair (p, q) in
the previous list. Thus, β(0, 0) = 0, β(0, 1) = 1, β(2, 0) = 5, and so on.

In general, bijections of the form h : N × N −→ N are referred to as pairing
functions, so β is an example of a pairing function.

The existence of the inverse bijection β−1 : N −→ N × N shows that N × N is
indeed a countable set because N × N = Ran(β−1).

Another example of a bijection betweenN×N and P can be found in Exercise 22.

Starting from countable sets, it is possible to construct uncountable sets, as we
see in the next example.

Example 1.123 Let F be the set of all functions of the form f : N −→ {0, 1}. We
claim that F is not countable.

If F were countable, we could write F = {f0, f1, . . . , fn, . . .}. Define the function
g : N −→ {0, 1} by g(n) = fn(n) for n ∈ N, where 0̄ = 1 and 1̄ = 0. Note that
g �= fn for every fn in F because g(n) = fn(n) �= fn(n), that is, g is different from fn
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Fig. 1.2 Representation of N × N.

at least on n for every n ∈ N. But g is a function defined on N with values in {0, 1},
so it must equal some function fm from F. This contradiction implies that F is not
countable.

Theorem 1.124 A subset T of a finite set S is countable.

Proof If either S or T are empty, the statement is immediate. Suppose therefore that
neither S nor T are empty and that S = {a0, . . . , an−1}. Since T is a subset of S, we can
write T = {ai0 , . . . , aim−1}, so T is the range of the sequence t : {0, . . . , m−1} −→ S
given by t(j) = aij for 0 � j � m − 1. Thus, T is countable.

Theorem 1.125 Let C = {Ci | i ∈ I} be a collection of sets such that each set Ci is
countable and the indexing set is countable. Then,

⎜
C is a countable set.

Proof Without loss of generality, we can assume that none of the sets Ci is empty.
Also, if I = ∅, then

⎜
C is empty and therefore countable.

Suppose, therefore, that Ci is the range of the sequence si for i ∈ I and that I �= ∅.
Since I is a countable set, we can assume that I is the range of a sequence z.

Define the function f : N × N −→ ⎜
C by f (p, q) = sz(p)(q) for p, q ∈ N. It

is easy to verify that f is a surjection. Indeed, if c ∈ ⎜
C, there exists a set Ci such

that c ∈ Ci and, since Ci is the range of the sequence si, it follows that c = si(q) for
some q ∈ N.
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Suppose that i = z(p). Then, we can write c = sz(p)(q) = f (p, q), which allows us
to conclude that

⎜
C = Ran(f ). To obtain the enumerability of

⎜
C, observe that this

set can now be regarded as the range of the sequence u given by u(n) = f (β−1(n)),
where β is the pairing function introduced in Example 1.122.

Theorem 1.126 The set Q of rational numbers is countable.

Proof We show first that the set of positive rational numbers Q�0 is countable.
Indeed, note that the function f : N × N −→ Q�0 defined by f (m, n) = m

n+1 is
a surjection. A similar argument shows that the set of negative rational numbers is
countable. By Theorem 1.125, the countability of Q follows immediately.

1.5 Multisets

Multisets generalize the notion of a set by allowing multiple copies of an element.
Formally, we have the following definition.

Definition 1.127 A multiset on a set S is a function M : S −→ N. Its carrier is the
set carr(M) = {x ∈ S | M(x) > 0}. The multiplicity of an element x of S in the
multiset M is the number M(x).

The set of all multisets on S is denoted by M(S).

Example 1.128 Let PRIMES be the set of prime numbers:

PRIMES = {2, 3, 5, 7, 11, . . .}. (1.1)

A number is determined by the multiset of its prime divisors in the following sense.
If n ∈ N, n � 1, can be factored as a product of prime numbers, n = pk1

i1
· · · pkβ

iβ
, where

pi is the ith prime number and k1, . . . , kβ are positive numbers, then the multiset of
its prime divisors is the multiset Mn : PRIMES −→ N, where Mn(p) is the exponent
of the prime number p in the product (1.1).

For example, M1960 is given by

M1960(p) =

⎧⎪⎨
⎪⎩

3 if p = 2,

1 if p = 5,

2 if p = 7.

Thus, carr(M1960) = {2, 5, 7}.
Note that if m, n ∈ N, we have Mm = Mn if and only if m = n.

We denote a multiset by using square brackets instead of braces. If x has the mul-
tiplicity n in a multiset M, we write x a number of times n inside the square brackets.
For example, the multiset of Example 1.128 can be written as [2, 2, 2, 5, 7, 7].
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Note that while multiplicity counts in a multiset, order does not matter; there-
fore, the multiset [2, 2, 2, 5, 7, 7] could also be denoted by [5, 2, 7, 2, 2, 7] or
[7, 5, 2, 7, 2, 2]. We also use the abbreviation n ∗ x in a multiset to mean that x
has the multiplicity n in M. For example, the multiset M1960 can be written as
M1960 = [3 ∗ 2, 1 ∗ 5, 2 ∗ 7].

The multiset M on the set S defined by M(x) = 0 for x ∈ S is the empty multiset.
Multisets can be combined to construct new multisets. Common set-theoretical

operations such as union and intersection have natural generalizations to multisets.

Definition 1.129 Let M and N be two multisets on a set S.
The union of M and N is the multiset M ∪ N defined by

(M ∪ N)(x) = max{M(x), N(x)}

for x ∈ S.
The intersection of M and N is the multiset M ∩ N defined by

(M ∩ N)(x) = min{M(x), N(x)}

for x ∈ S.
The sum of M and N is the multiset M + N given by

(M + N)(x) = M(x) + N(x)

for x ∈ S.

Example 1.130 Let m, n ∈ N be two numbers that have the prime factorizations

m = pk1
i1

· · · pkr
ir

,

n = ph1
j1

· · · phs
hs

,

and let Mm, Mn be the multisets of their prime divisors, as defined in Example 1.128.
Denote by gcd(m, n) the greatest common divisor of m and n, and by lcm(m, n) the
least common multiple of these numbers.

We have

Mgcd(m,n) = Mm ∩ Mn,

Mlcm(m,n) = Mm ∪ Mn,

Mmn = Mm + Mn,

as the reader can easily verify.

A multiset on the set P(S) is referred to as a multicollection of sets on S.
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1.6 Operations and Algebras

The notion of operation on a set is needed for introducing various algebraic structures
on sets.

Definition 1.131 Let n ∈ N. An n-ary operation on a set S is a function f : Sn −→ S.
The number n is the arity of the operation f .

If n = 0, we have the special case of zero-ary operations. A zero-ary operation
is a function f : S0 = {∅} −→ S, which is essentially a constant element of S, f ().
Operations of arity 1 are referred to as unary operations.

Binary operations (of arity 2) are frequently used. For example, the union, inter-
section, and difference of subsets of a set S are binary operations on the set P(S).

If f is a binary operation on a set, we denote the result f (x, y) of the application
of f to x, y by xfy rather than f (x, y).

We now introduce certain important types of binary operations.

Definition 1.132 An operation f on a set S is

(i) associative if (xfy)fz = xf (yfz) for every x, y, z ∈ S,
(ii) commutative if xfy = yfx for every x, y,∈ S, and
(iii) idempotent if xfx = x for every x ∈ S.

Example 1.133 Set union and intersection are both associative, commutative, and
idempotent operations on every set of the form P(S).

The addition of real numbers “+” is an associative and commutative operation
on R; however, “+” is not idempotent.

The binary operation g : R2 −→ R given by g(x, y) = x+y
2 for x, y ∈ R is a

commutative and idempotent operation of R that is not associative. Indeed, we have
(xgy)gz = x+y+2z

4 and xg(ygz) = 2x+y+z
4 .

Example 1.134 The binary operations max{x, y} and min{x, y} are associative, com-
mutative, and idempotent operations on the set R.

Next, we introduce special elements relative to a binary operation on a set.

Definition 1.135 Let f be a binary operation on a set S.

(i) An element u is a unit for f if xfu = ufx = x for every x ∈ S.
(ii) An element z is a zero for f if zfu = ufz = z for every x ∈ S.

Note that if an operation f has a unit, then this unit is unique. Indeed, suppose
that u and u⇒ were two units of the operation f . According to Definition 1.135, we
would have ufx = xfu = x and, in particular, ufu⇒ = u⇒fu = u⇒. Applying the same
definition to u⇒ yields u⇒fx = xfu⇒ = x and, in particular, u⇒fu = ufu⇒ = u. Thus,
u = u⇒.

Similarly, if an operation f has a zero, then this zero is unique. Suppose that z and
z⇒ were two zeros for f . Since z is a zero, we have zfx = xfz = z for every x ∈ S;
in particular, for x = z⇒, we have zfz⇒ = z⇒fz = z. Since z⇒ is zero, we also have
z⇒fx = xfz⇒ = z⇒ for every x ∈ S; in particular, for x = z, we have z⇒fz = zfz⇒ = z⇒,
and this implies z = z⇒.
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Definition 1.136 Let f be a binary associative operation on S such that f has the
unit u. An element x has an inverse relative to f if there exists y ∈ S such that
xfy = yfx = u.

An element x of S has at most one inverse relative to f . Indeed, suppose that both
y and y⇒ are inverses of x. Then, we have

y = yfu = yf (xfy⇒) = (yfx)fy⇒ = ufy⇒ = y⇒,

which shows that y coincides with y⇒.
If the operation f is denoted by “+”, then we will refer to the inverse of x as the

additive inverse of x, or the opposite element of x; similarly, when f is denoted by
“·”, we refer to the inverse of x as the multiplicative inverse of x. The additive inverse
of x is usually denoted by −x, while the multiplicative inverse of x is denoted by
x−1.

Definition 1.137 Let I = {fi|i ∈ I} be a set of operations on a set S indexed by a set
I. An algebra type is a mapping θ : I −→ N.

An algebra of type θ is a pair A = (A, I) such that

(i) A is a set, and
(ii) the operation fi has arity θ(i) for every i ∈ I. If the type is clear from context

we refer to an algebra of type θ simply as an algebra.

The algebra A = (A, I) is finite if the set A is finite. The set A will be referred to
as the carrier of the algebra A.

If the indexing set I is finite, we say that the type θ is a finite type and refer to A

as an algebra of finite type.

If θ : I −→ N is a finite algebra type, we assume, in general, that the indexing
set I has the form (0, 1, . . . , n − 1). In this case, we denote θ by the sequence
(θ(0), θ(1), . . . , θ(n − 1)).

Next, we discuss several algebra types.

Definition 1.138 A groupoid is an algebra of type (2), A = (A, {f }). If f is an
associative operation, then we refer to this algebra as a semigroup.

In other words, a groupoid is a set equipped with a binary operation f .

Example 1.139 The algebra (R, {f }), where f (x, y) = x+y
2 is a groupoid. However,

it is not a semigroup because f is not an associative operation.

Example 1.140 Define the binary operation g onR by xgy = ln(ex+ey) for x, y ∈ R.
Since

(xgy)gz = ln(exgy+ez
) = ln(ex + ey + ez)

xg(ygz) = ln(x + eygz) = ln(ex + ey + ez),

for every x, y, z ∈ R it follows that g is an associative operation. Thus, (R, g) is a
semigroup. It is easy to verify that this semigroup has no unit element.
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Definition 1.141 A monoid is an algebra of type (0, 2), A = (A, {e, f }), where e is
a zero-ary operation, f is a binary operation, and e is the unit element for f .

Example 1.142 The algebras (N, {1, ·}) and (N, {0, gcd}) are monoids. In the first
case, the binary operation is the multiplication of natural numbers, the unit element
is 1, and the algebra is clearly a monoid. In the second case, the binary operation
gcd(m, n) yields the greatest common divisor of the numbers m and n and the unit
element is 0.

We claim that gcd is an associative operation. Let m, n, p ∈ N. We need to verify
that gcd(m, gcd(n, p)) = gcd(gcd(m, n), p).

Let k = gcd(m, gcd(n, p)). Then, (k, m) ∈ δ and (k, gcd(n, p)) ∈ δ, where δ is
the divisibility relation introduced in Example 1.27. Since gcd(n, p) divides evenly
both n and p, it follows that (k, n) ∈ δ and (k, p) ∈ δ. Thus, k divides gcd(m, n), and
therefore k divides h = gcd(gcd(m, n), p).

Conversely, h being gcd(gcd(m, n), p), it divides both gcd(m, n) and p. Since h
divides gcd(m, n), it follows that it divides both m and p. Consequently, h divides
gcd(n, p) and therefore divides k = gcd(m, gcd(n, p)). Since k and h are both natural
numbers that divide each other evenly, it follows that k = h, which allows us to
conclude that gcd is an associative operation. Since n divides 0 evenly, for any
n ∈ N, it follows that gcd(0, n) = gcd(n, 0) = n, which shows that 0 is the unit for
gcd.

Definition 1.143 A group is an algebra of type (0, 2, 1), A = (A, {e, f , h}), where
e is a zero-ary operation, f is a binary operation, and h is a unary operation such
that the following conditions are satisfied:

(i) e is the unit element for f ;
(ii) f (h(x), x) = f (x, h(x)) = e for every x ∈ A.

Note that if we have xfy = yfx = e, then y = h(x). Indeed, we can write

h(x) = h(x)fe = h(x)f (xfy) = (h(x)fx)fy = efy = y.

We refer to the unique element h(x) as the inverse of x. The usual notation for h(x)
is x−1.

A special class of groups are the Abelian groups, also known as commutative
groups. A group A = (A, {e, f , h}) is Abelian if xfy = yfx for all x, y ∈ A.

Example 1.144 The algebra (Z, {0,+,−}) is an Abelian group, where “+” is the
usual addition of integers, and the additive inverse of an integer n is −n.

Usually the binary operation of an Abelian group is denoted by “+”.

Definition 1.145 A ring is an algebra of type (0, 2, 1, 2), A = (A, {e, f , h, g}), such
that A = (A, {e, f , h}) is an Abelian group and g is a binary associative operation
such that
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xg(uf v) = (xgu)f (xgv),

(uf v)gx = (ugx)f (vgx),

for every x, u, v ∈ A. These equalities are known as left and right distributivity laws,
respectively.

The operation f is known as the ring addition, while · is known as the ring multi-
plication. Frequently, these operations are denoted by “+” and “·”, respectively.

Example 1.146 The algebra (Z, {0,+,−, ·}) is a ring. The distributivity laws amount
to the well-known distributivity properties

p · (q + r) = (p · q) + (p · r),

(q + r) · p = (q · p) + (r · p),

for p, q, r ∈ Z, of integer addition and multiplication.

Example 1.147 A more interesting type of ring can be defined on the set of numbers
of the form m + n

√
2, where m and n are integers. The ring operations are given by

(m + n
√

2) + (p + q
√

2) = m + p + (n + q)
√

2,

(m + n
√

2) · (p + q
√

2) = m · p + 2 · n · q + (m · q + n · p)
√

2.

If the multiplicative operation of a ring has a unit element 1, then we say that the
ring is a unitary ring. We consider a unitary ring as an algebra of type (0, 0, 2, 1, 2)

by regarding the multiplicative unit as another zero-ary operation.
Observe, for example, that the ring (Z, {0, 1,+,−, ·}) is a unitary ring. Also,

note that the set of even numbers also generates a ring ({2k | k ∈ Z}, {0,+,−, ·}).
However, no multiplicative unit exists in this ring.

Rings with commutative multiplicative operations are known as commutative
rings. All examples of rings considered so far are commutative rings. In Sect. 5.3,
we shall see an important example of a noncommutative ring.

Definition 1.148 A field is a pair F = (F, {e, f , h, g, u}) such that (F, {e, f , h, g})
is a commutative and unitary ring and u is a unit for the binary operation g such
that every element x �= e has an inverse relative to the operation g.

Example 1.149 The pair R = (R, {0,+,−, ·, 1}) is a field. Indeed, the multiplica-
tion “·” is a commutative operation and 1 is a multiplicative unit. In addition, each
element x �= 0 has the inverse 1

x .
Similarly, the algebra C = (C, {0,+,−, ·, 1}) is a field referred to as the

complex field.

If “·” is a binary operation on a set A, this operation can be extended to subsets
of A. Namely, if H, K ∈ P(A), the set H · K is

H · K = {x · y | x ∈ H, y ∈ K}.

http://dx.doi.org/10.1007/978-1-4471-6407-4_5
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1.7 Morphisms, Congruences, and Subalgebras

Morphisms are mappings between algebras of the same type that satisfy certain
compatibility conditions with the operations of the type.

Let θ : I −→ N be a type. To simplify notation, we denote the operations that
correspond to the same element i with the same symbol in every algebra of this type.

Definition 1.150 Let θ : I −→ N be a finite algebra type and let A = (A, I) and
B = (B, I) be two algebras of the type θ. A morphism is a function h : A −→ B
such that, for every operation fi ∈ I, we have

h(fi(x1, . . . , xni)) = fi(h(x1), . . . , h(xni))

for (x1, . . . , xni) ∈ Ani , where ni = θ(i).
If the algebras A and B are the same, then we refer to f as an endomorphism of

the algebra A.
The set of morphisms between A and B is denoted by MOR(A,B).

Example 1.151 A morphism between the groupoids A = (A, {f }) and B = (B, {f })
is a mapping h : A −→ B such that

h(f (x1, x2)) = f (h(x1), h(x2)) (1.2)

for every x1 and x2 in A. Exactly the same definition is valid for semigroup morphisms.
If A = (A, {e, f }) and B = (B, {e, f }}) are two monoids, where e is a zero-ary

operation and f is a binary operation, then a morphism of monoids must satisfy the
equalities h(e) = e and h(f (x1, x2)) = f (h(x1), h(x2)) for x1, x2 ∈ A.

Example 1.152 Let (N, {0, gcd}) be the monoid introduced in Example 1.142. The
function h : N −→ N defined by h(n) = n2 for n ∈ N is an endomorphism of this
monoid because gcd(p, q)2 = gcd(p2, q2) for p, q ∈ N.

Example 1.153 A morphism between two groups A = (A, {e, ·, −1}) and B =
(B, {e, ·, −1}) satisfies the conditions

(i) h(e) = e,
(ii) h(x1 · x2) = h(x1) · h(x2),

(iii) h(x−1
1 ) = (h(x1))

−1,

for x1, x2 ∈ A.
It is interesting to observe that, in the case of groups, the first and last conditions

are consequences of the second condition, so they are superfluous. Indeed, choose
x2 = e in the equality h(x1 · x2) = h(x1) · h(x2); this yields h(x1) = h(x1)h(e). By
multiplying both sides with h(x1)

−1 at the left and applying the associativity of the
binary operation, we obtain h(e) = e. On the other hand, by choosing x2 = x−1

1 , we
have e = h(e) = h(x1)h(x−1

1 ), which implies h(x−1
1 ) = (h(x1))

−1.
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Example 1.154 Let A = (A, {0,+, −1, ·}) and B = (B, {0,+, −1, ·}) be two rings.
Then, h : A −→ B is a ring morphism if h(0) = 0, h(x1 + x2) = h(x1) + h(x2), and
h(x1 · x2) = h(x1) · h(x2).

Definition 1.155 Let A = (A, I) be an algebra. An equivalence ρ ∈ EQ(A) is a
congruence if, for every operation f of the algebra, f : An −→ A, (xi, yi) ∈ ρ for
1 � i � n implies (f (x1, . . . , xn), f (y1, . . . , yn)) ∈ ρ for x1, . . . , xn, y1, . . . , yn ∈ A.

Recall that we introduce the kernel of a mapping in Definition 1.99. When the
mapping f is a morphism, we have further properties of ker(f ).

Theorem 1.156 Let A = (A, I) and B = (B, I) be two algebras of the type θ and
let h : A −→ B be a morphism. The relation ker(h) is a congruence of the algebra
A.

Proof Let x1, . . . , xn, y1, . . . , yn ∈ A such that (xi, yi) ∈ ker(h) for 1 � i � n; that
is, h(xi) = h(yi) for 1 � i � n. By applying the definition of morphism, we can
write for every n-ary operation in I

h(f (x1, . . . , xn)) = f (h(x1), . . . , h(xn))

= f (h(y1), . . . , h(yn))

= h(f (y1, . . . , yn)),

which means that (f (x1, . . . , xn), f (y1, . . . , yn)) ∈ ker(f ). Thus, ker(f ) is a congru-
ence.

If A = (A, I) is an algebra and ρ is a congruence of A, then the quotient set A/ρ
(see Definition 1.112) can be naturally equipped with operations derived from the
operations of A by

f ([x1]ρ, . . . , [xn]ρ) = [f (x1, . . . , xn)]ρ (1.3)

for x1, . . . , xn ∈ A. Observe first that the definition of the operation that acts on
the A/ρ is a correct one for if yi ∈ [xi]ρ for 1 � i � n, then [f (y1, . . . , yn)]ρ =
[f (x1, . . . , xn)]ρ.

Definition 1.157 The quotient algebra of an algebra A = (A, I) and a congruence
ρ is the algebra A/ρ = (A/ρ, I), where each operation in I is defined starting from
the corresponding operation f in A by Equality (1.3).

Example 1.158 LetA = (A, {e, ·, −1}) be a group. An equivalence ρ is a congruence
if (x1, x2), (y1, y2) ∈ ρ imply (x−1

1 , x−1
2 ) ∈ ρ and (x1 · y1, x2 · y2) ∈ ρ.

Definition 1.159 Let A = (A, I) be an algebra. A subset B of A is closed if for every
n-ary operation f ∈ I, x1, . . . , xn ∈ B implies f (x1, . . . , xn) ∈ B.
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Note that if the set B is closed, then for every zero-ary operation e of I we have
e ∈ B.

Let A = (A, I) be an algebra and let B be a closed subset of A. The pair (B, I⇒),
where I⇒ = {gi = fi �B | i ∈ I}, is an algebra of the same type as A. We refer to it
as a subalgebra of A. Often we will refer to the set B itself as a subalgebra of the
algebra A.

It is clear that the empty set is closed in an algebra A = (A, I) if and only if there
is no zero-ary operation in I.

We refer to subalgebras of particular algebras with more specific terms. For exam-
ple, subalgebras of monoids or groups are referred to as submonoids or subgroups,
respectively.

Theorem 1.160 Let A = (A, {e, ·, −1}) be a group. A nonempty subset B of A is a
subgroup if and only if x · y−1 ∈ B for every x, y ∈ B.

Proof The necessity of the condition is immediate. To prove that the condition is
sufficient, observe that since B �= ∅ there is x ∈ B, so x · x−1 = e ∈ B.

Next, let x ∈ B. Since e · x−1 = x−1 it follows that x−1 ∈ B. Finally, if x, y ∈ B,
then x · y = x · (y−1)−1 ∈ B, which shows that B is indeed a subgroup.

Example 1.161 Let A = (A, {e, ·, −1}) be a group. For u ∈ A, define the set Cu =
{x ∈ G | xu = ux}. If x ∈ Cu, then xu = ux, which implies xux−1 = u, so
ux−1 = x−1u. Thus, x−1 ∈ Cu. It is easy to see that e ∈ Cu and x, y ∈ Cu implies
xy ∈ Cu. Thus Cu is a subgroup.

Definition 1.162 Let A = (A, I) and B = (B, I) be two algebras of the type θ. An
isomorphism between A and B is a bijective morphism h : A −→ B between A and
B. An automorphism of A is an isomorphism between A and itself.

Definition 1.163 Let A = {Ai | i ∈ I} be a collection of algebras of the same type
indexed by the set I, where Ai = (Ai, I).

The product of the collection A is the algebra
⎛

i∈I Ai = (
⎛

i∈I Ai, I), whose
operations are defined componentwise, as follows. If f ∈ I is an n-ary operation
and t1, . . . , tn ∈ ⎛

i∈I Ai, where tk = (tki)i∈I for 1 � k � n, then f (t1, . . . , tn) = s,
where s = (si)i∈I and si = f (t1i, . . . , tni) for i ∈ I.

Example 1.164 Let (A1, {e1, ∗, −1}) and (A2, {e2, ∗, −1}) be two groups. Their prod-
uct is the group (A1 ×A2, (e1, e2), ∗, −1), where (x1, x2)∗(y1, y2) = (x1 ∗y1, x2 ∗y2)

and (x, y)−1 = (x−1, y−1).

Theorem 1.165 Let A = {Ai | i ∈ I} be a collection of algebras of the same type
θ indexed by the set I, where Ai = (Ai, I), and let A = ⎛

i∈I Ai be their product.
Each projection pj : ⎛i∈I Ai −→ Aj belongs to MOR(A,Aj) for j ∈ I. Further-

more, if B is an algebra of type θ and hi ∈ MOR(B,Ai) for every i ∈ I, then there
exists a morphism h ∈ MOR(B,A) such that hi = pih for every i ∈ I.
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Fig. 1.3 Morphisms involved
in the proof of Theorem 1.165

Proof To prove that each projection pj is a morphism we need to show that for every
n-ary operation f we have

pj(f (t1, . . . , tn)) = f (pj(t1), . . . , pj(tn))

for every t1, . . . , tn ∈ ⎛
i∈I Ai. If tk = (tki)i∈I for 1 � k � n, then pj(tk) = tkj and

the previous equality follows from the definition of the operation f of
⎛

i∈I .
For the second part of the theorem, let w ∈ P. Since ai = hi(w) ∈ Ai, we

have a ∈ ⎛
i∈I Ai, where pi(a) = ai for i ∈ I . For h(w) = a, we clearly have

hi(w) = pi(h(w)) for i ∈ I .

1.8 Closure and Interior Systems

The notions of closure system and interior system introduced in this section are
significant in algebra and topology and have applications in the study of frequent
item sets in data mining.

Definition 1.166 Let S be a set. A closure system on S is a collection C of subsets
of S that satisfies the following conditions:

(i) S ∈ C and
(ii) for every collection D ⊆ C, we have

⋂
D ∈ C.

Example 1.167 LetC be the collection of all intervals [a, b] = {x ∈ R | a � x � b}
with a, b ∈ R and a � b together with the empty set and the set R. Note that⎜

C = R ∈ C, so the first condition of Definition 1.166 is satisfied.
Let D be a nonempty subcollection of C. If ∅ ∈ D, then

⋂
D = ∅ ∈ C. If

D = {R}, then
⋂

D = R ∈ C. Therefore, we need to consider only the case
when D = {[ai, bi] | i ∈ I}. Then,

⋂
D = ∅ unless a = sup{ai | i ∈ I} and

b = inf{bi | i ∈ I} both exist and a � b, in which case
⋂

D = [a, b]. Thus, C is a
closure system.

Example 1.168 Let A = (A, I) be an algebra and let S(A) be the collection of
subalgebras of A, S(A) = {(Ai, I) | i ∈ I}. The collection S = {Ai | i ∈ I} is a
closure system. It is clear that we have S ∈ S. Also, if {Ai | i ∈ J} is a family of
subalgebras, then

⋂
i∈J Ai is a subalgebra of A.

Many classes of relations define useful closure systems.
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Theorem 1.169 Let S be a set and let REFL(S), SYMM(S) and TRAN(S) be the
sets of reflexive relations, the set of symmetric relations, and the set of transitive
relations on S, respectively. Then, REFL(S), SYMM(S) and TRAN(S) are closure
systems on S.

Proof Note that S × S is a reflexive, symmetric, and transitive relation on S. There-
fore,

⎜
REFL(S) = S × S ∈ REFL(S),

⎜
SYMM(S) = S × S ∈ SYMM(S), and⎜

TRAN(S) = S × S ∈ TRAN(S).
Now let C = {ρi | i ∈ I} be a collection of transitive relations and let ρ =⋂{ρi | i ∈ I}. Suppose that (x, y), (y, z) ∈ ρ. Then (x, y), (y, z) ∈ ρi for every

i ∈ I , so (x, z) ∈ ρi for i ∈ I because each of the relations ρi is transitive. Thus,
(x, z) ∈ ρ, which shows that

⋂
C ∈ TRAN(S). This allows us to conclude that

TRAN(S) is indeed a closure system. We leave it to the reader to prove that REFL(S)

and SYMM(S) are also closure systems.

Theorem 1.170 The set of equivalences on S, EQ(S), is a closure system.

Proof The relation θS = S × S, is clearly an equivalence relation as we have seen in
the proof of Theorem 1.169. Thus,

⎜
EQ(S) = θS ∈ EQ(S).

Now let C = {ρi | i ∈ I} be a collection of transitive relations and let ρ = ⋂{ρi |
i ∈ I}. It is immediate that ρ is an equivalence on S, so EQ(S) is a closure system.

Definition 1.171 A mapping K : P(S) −→ P(S) is a closure operator on a set S if
it satisfies the conditions

(i) U ⊆ K(U) (expansiveness),
(ii) U ⊆ V implies K(U) ⊆ K(V ) (monotonicity), and

(iii) K(K(U)) = K(U) (idempotency)

for U, V ∈ P(S).

Example 1.172 Let K : P(R) −→ P(R) be defined by

K(U) =

⎧⎪⎨
⎪⎩

∅ ifU = ∅,

[a, b] if both a = inf U and b = sup Uexist,

R otherwise,

for U ∈ P(R). We leave to the reader the verification that K is a closure operator.

Closure operators induce closure systems, as shown by the next lemma.

Lemma 1.173 Let K : P(S) −→ P(S) be a closure operator. Define the family of
sets CK = {H ∈ P(S) | H = K(H)}. Then, CK is a closure system on S.

Proof Since S ⊆ K(S) ⊆ S, we have S ∈ CK, so
⎜

CK = S ∈ CK.
Let D = {Di | i ∈ I} be a collection of subsets of S such that Di = K(Di) for

i ∈ I . Since
⋂

D ⊆ Di, we have K(
⋂

D) ⊆ K(Di) = Di for every i ∈ I . Therefore,
K(

⋂
D) ⊆ ⋂

D, which implies K(
⋂

D) = ⋂
D. This proves our claim.
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Note that CK, as defined in Lemma 1.173, equals the range of K. Indeed, if L ∈
Ran(K), then L = K(H) for some H ∈ P(S), so K(L) = K(K(H)) = K(H) = L,
which shows that L ∈ CK. The reverse inclusion is obvious.

We refer to the sets in CK as the K-closed subsets of S.
In the reverse direction from Lemma 1.173, we show that every closure system

generates a closure operator.

Lemma 1.174 Let C be a closure system on the set S. Define the mapping KC :
P(S) −→ P(S) by KC(H) = ⋂{L ∈ C | H ⊆ L}. Then, KC is a closure operator
on the set S.

Proof Note that the collection {L ∈ C | H ⊆ L} is not empty since it contains at
least S, so KC(H) is defined and is clearly the smallest element of C that contains H.
Also, by the definition of KC(H), it follows immediately that H ⊆ KC(H) for every
H ∈ P(S).

Suppose that H1, H2 ∈ P(S) are such that H1 ⊆ H2. Since

{L ∈ C | H2 ⊆ L} ⊆ {L ∈ C | H1 ⊆ L},

we have ⎟
{L ∈ C | H1 ⊆ L} ⊆

⎟
{L ∈ C | H2 ⊆ L},

so KC(H1) ⊆ KC(H2).
We have KC(H) ∈ C for every H ∈ P(S) becauseC is a closure system. Therefore,

KC(H) ∈ {L ∈ C | KC(H) ⊆ L}, so KC(KC(H)) ⊆ KC(H). Since the reverse
inclusion clearly holds, we obtain KC(KC(H)) = KC(H).

Definition 1.175 Let C be a closure system on a set S and let T be a subset of S. The
C -set generated by T is the set KC(T).

Note that KC(T) is the least set in C that includes T .

Theorem 1.176 Let S be a set. For every closure system C on S, we have C = CKC .
For every closure operator K on S, we have K = KCK .

Proof Let C be a closure system on S and let H ⊆ M. Then, we have the following
equivalent statements:

1. H ∈ CKC .
2. KC(H) = H.
3. H ∈ C.

The equivalence between (2) and (3) follows from the fact that KC(H) is the smallest
element of C that contains H.

Conversely, let K be a closure operator on S. To prove the equality of K and KCK ,
consider the following list of equal sets, where H ⊆ S:
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1. KCK(H).
2.

⋂{L ∈ CK | H ⊆ L}.
3.

⋂{L ∈ P(S) | H ⊆ L = K(L)}.
4. K(H).

We need to justify only the equality of the last two members of the list. Since H ⊆
K(H) = K(K(H)), we have K(H) ∈ {L ∈ P(S) | H ⊆ L = K(L)}. Thus,⋂{L ∈ P(S) | H ⊆ L = K(L)} ⊆ K(H). To prove the reverse inclusion, note that
for every L ∈ {L ∈ P(S) | H ⊆ L = K(L)}, we have H ⊆ L, so K(H) ⊆ K(L) = L.
Therefore, K(H) ⊆ ⋂{L ∈ P(S) | H ⊆ L = K(L)}.

Theorem 1.176 shows the existence of a natural bijection between the set of
closure operators on a set S and the set of closure systems on S.

Definition 1.177 Let C be a closure system on a set S and let T be a subset of S. The
C-closure of the set T is the set KC(T).

As we observed before, KC(T) is the smallest element of C that contains T .

Example 1.178 Let K be the closure operator given in Example 1.172. Since the
closure system CK equals the range of K, it follows that the members of CK, the
K-closed sets, are ∅, R, and all closed intervals [a, b] with a � b. Thus, CK is the
closure system C introduced in Example 1.167. Therefore, K and C correspond to
each other under the bijection of Theorem 1.176.

For a relation ρ, on S define ρ+ as KTRAN(S)(ρ). The relation ρ+ is called the
transitive closure of ρ and is the least transitive relation containing ρ.

Theorem 1.179 Let ρ be a relation on a set S. We have

ρ+ =
⋃

{ρn | n ∈ N and n � 1}.

Proof Let τ be the relation
⎜{ρn | n ∈ N and n � 1}. We claim that τ is transitive.

Indeed, let (x, z), (z, y) ∈ τ . There exist p, q ∈ N, p, q � 1 such that (x, z) ∈ ρp

and (z, y) ∈ ρq. Therefore, (x, y) ∈ ρpρq = ρp+q ⊆ ρ+, which shows that ρ+ is
transitive. The definition of ρ+ implies that if σ is a transitive relation such that
ρ ⊆ σ, then ρ+ ⊆ σ. Therefore, ρ+ ⊆ τ .

Conversely, since ρ ⊆ ρ+ we have ρn ⊆ (ρ+)n for every n ∈ N. The transitivity of
ρ+ implies that (ρ+)n ⊆ ρ+, which implies ρn ⊆ ρ+ for every n � 1. Consequently,
τ = ⎜{ρn | n ∈ N and n � 1} ⊆ ρ+. This proves the equality of the theorem.

It is easy to see that the set of all reflexive and transitive relations on a set S,
REFTRAN(S), is also a closure system on the set of relations on S.

For a relation ρ on S, define ρ∗ as KREFTRAN(S)(ρ). The relation ρ∗ is called
the transitive-reflexive closure of ρ and is the least transitive and reflexive relation
containing ρ. We have the following analog of Theorem 1.179.
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Theorem 1.180 Let ρ be a relation on a set S. We have

ρ∗ =
⋃

{ρn | n ∈ N}.

Proof The argument is very similar to the proof of Theorem 1.179; we leave it to
the reader.

Definition 1.181 Let S be a set and let F be a set of operations on S. A subset P of
S is closed under F, or F-closed, if P is closed under f for every f ∈ F; that is, for
every operation f ∈ F, if f is n-ary and p0, . . . , pn−1 ∈ P, then f (p0, . . . , pn−1) ∈ P.

Note that S itself is closed under F. Further, if C is a nonempty collection of
F-closed subsets of S, then

⋂
C is also F-closed.

Example 1.182 Let F be a set of operations on a set S. The collection of all F-closed
subsets of a set S is a closure system.

Definition 1.183 An interior operator on a set S is a mapping I : P(S) −→ P(S)

that satisfies the following conditions:

(i) U ⊇ I(U) (contraction),
(ii) U ⊇ V implies I(U) ⊇ I(V ) (monotonicity), and

(iii) I(I(U)) = I(U) (idempotency),
for U, V ∈ P(S). Such a mapping is known as an interior operator on the set S.

Interior operators define certain collections of sets.

Definition 1.184 An interior system on a set S is a collection I of subsets of S such
that

(i) ∅ ∈ I and,
(ii) for every subcollection D of I we have

⎜
D ∈ I.

Theorem 1.185 Let I : P(S) −→ P(S) be an interior operator. Define the family of
sets II = {U ∈ P(S) | U = I(U)}. Then, II is an interior system on S.

Conversely, if I is an interior system on the set S, define the mapping II : P(S) −→
P(S) by II(U) = ⎜{V ∈ I | V ⊆ U}. Then, II is an interior operator on the set S.

Moreover, for every interior system I on S, we have I = III . For every interior
operator I on S, we have I = III .

Proof This statement follows by duality from Lemmas 1.173 and 1.174 and from
Theorem 1.176.

We refer to the sets in II as the I-open subsets of S.

Theorem 1.186 Let K : P(S) −→ P(S) be a closure operator on the set S. Then,
the mapping L : P(S) −→ P(S) given by L(U) = S − K(S − U) for U ∈ P(S) is an
interior operator on S.
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Proof Since S − U ⊆ K(S − U), it follows that L(U) ⊆ S − (S − U) = U, which
proves property (i) of Definition 1.184.

Suppose that U ⊆ V , where U, V ∈ P(S). Then, we have S − V ⊆ S − U, so
K(S − V ) ⊆ K(S − U) by the monotonicity of closure operators. Therefore,

L(U) = S − K(S − U) ⊆ S − K(S − V ) = L(V ),

which proves the monotonicity of L.
Finally, observe that we have L(L(U)) ⊆ L(U) because of the contraction prop-

erty already proven for L. Thus, we need only show that L(U) ⊆ L(L(U)) to prove
the idempotency of L. This inclusion follows immediately from

L(L(U)) = L(S − K(S − U)) ⊇ L(S − (S − U)) = L(U).

We can prove that if L is an interior operator on a set S, then K : P(S) −→ P(S)

defined as K(U) = S − L(S − U) for U ∈ P(S) is a closure operator on the same
set.

In Chap. 4, we extensively use closure and interior operators.

1.9 Dissimilarities and Metrics

The notion of a metric was introduced in mathematics by the French mathematician
Maurice René Fréchet in [1] as an abstraction of the notion of distance between
two points. In this chapter, we explore the notion of metric and the related notion
of metric space, as well as a number of generalizations and specializations of these
notions.

Dissimilarities are functions that allow us to evaluate the extent to which data
objects are different.

Definition 1.187 A dissimilarity on a set S is a function d : S2 −→ R�0 satisfying
the following conditions:

(i) d(x, x) = 0 for all x ∈ S;
(ii) d(x, y) = d(y, x) for all x, y ∈ S.

The pair (S, d) is a dissimilarity space.

The set of dissimilarities defined on a set S is denoted by DS .
Let (S, d) be a dissimilarity space and let S(x, y) be the set of all nonnull sequences

s = (s1, . . . , sn) ∈ Seq(S) such that s1 = x and sn = y. The d-amplitude of s is the
number &d(s) = max{d(si, si+1) | 1 � i � n − 1}.

Next we introduce the notion of extended dissimilarity by allowing ∞ as a value
of a dissimilarity.

Definition 1.188 Let S be a set. An extended dissimilarity on S is a function d :
S2 −→ R̂�0 that satisfies the conditions (DISS1) and (DISS2) of Definition 1.187.
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The pair (S, d) is an extended dissimilarity space.

Additional properties may be satisfied by dissimilarities. A nonexhaustive list is
given next.

1. d(x, y) = 0 implies d(x, z) = d(y, z) for every x, y, z ∈ S (evenness).
2. d(x, y) = 0 implies x = y for every x, y (definiteness).
3. d(x, y) � d(x, z) + d(z, y) for every x, y, z (triangular inequality).
4. d(x, y) � max{d(x, z), d(z, y)} for every x, y, z (the ultrametric inequality).
5. d(x, y) + d(u, v) � max{d(x, u) + d(y, v), d(x, v) + d(y, u)} for every x, y, u, v

(Buneman’s inequality, also known as the four-point condition).

If d : S2 −→ R is a function that satisfies the properties of dissimilarities and
the triangular inequality, then the values of d are nonnegative numbers. Indeed, by
taking x = y in the triangular inequality, we have

0 = d(x, x) � d(x, z) + d(z, x) = 2d(x, z),

for every z ∈ S.
Various connections exist among these properties. As an example, we can show

the following statement.

Theorem 1.189 Both the triangular inequality and definiteness imply evenness.

Proof Suppose that d is a dissimilarity that satisfies the triangular inequality, and
let x, y ∈ S be such that d(x, y) = 0. By the triangular inequality, we have both
d(x, z) � d(x, y) + d(y, z) = d(y, z) and d(y, z) � d(y, x) + d(x, z) = d(x, z)
because d(y, x) = d(x, y) = 0. Thus, d(x, z) = d(y, z) for every z ∈ S.

We leave it to the reader to prove the second part of the statement.

We denote the set of definite dissimilarities on a set S by D⇒
S . Further notations

will be introduced shortly for other types of dissimilarities.

Definition 1.190 A dissimilarity d ∈ DS is

(i) a metric if it satisfies the definiteness property and the triangular inequality,
(ii) a tree metric if it satisfies the definiteness property and Buneman’s inequality,

and
(iii) an ultrametric if it satisfies the definiteness property and the ultrametric inequal-

ity.

The set of metrics on a set S is denoted by MS. The sets of tree metrics and
ultrametrics on a set S are denoted by TS and US, respectively.

If d is a metric or an ultrametric on a set S, then (S, d) is a metric space or an
ultrametric space, respectively.

If d is a metric defined on a set S and x, y ∈ S, we refer to the number d(x, y) as
the d-distance between x and y or simply the distance between x and y whenever d
is clearly understood from context.

Thus, a function d : S2 −→ R�0 is a metric if it has the following properties:



1.9 Dissimilarities and Metrics 49

(i) d(x, y) = 0 if and only if x = y for x, y ∈ S;
(ii) d(x, y) = d(y, x) for x, y ∈ S;

(iii) d(x, y) � d(x, z) + d(z, y) for x, y, z ∈ S.

If the first property is replaced by the weaker requirement that d(x, x) = 0 for
x ∈ S, then we refer to d as a semimetric on S. Thus, if d is a semimetric d(x, y) = 0
does not necessarily imply x = y and we can have for two distinct elements x, y of
S, d(x, y) = 0.

The notions of extended metric and extended ultrametric are defined starting from
the notion of extended dissimilarity using the same process as in the definitions of
metrics and ultrametrics.

A collection of semimetrics on a set S is said to be a gauge on S.

Example 1.191 Let S be a nonempty set. Define the mapping d : S2 −→ R�0 by

d(u, v) =
{

1 if u �= v,

0 otherwise,

for x, y ∈ S. It is clear that d satisfies the definiteness property. The triangular
inequality, d(x, y) � d(x, z) + d(z, y) is satisfied if x = y. Therefore, suppose that
x �= y, so d(x, y) = 1. Then, for every z ∈ S, we have at least one of the inequalities
x �= z or z �= y, so at least one of the numbers d(x, z) or d(z, y) equals 1. Thus d
satisfies the triangular inequality. The metric d introduced here is the discrete metric
on S.

Example 1.192 Consider the mapping dh : (Seqn(S))2 −→ R�0 defined by

dh(p, q) = |{i | 0 � i � n − 1 and p(i) �= q(i)}|

for all sequences p, q of length n on the set S.
Clearly, dh is a dissimilarity that is both even and definite. Moreover, it satisfies

the triangular inequality. Indeed, let p, q, r be three sequences of length n on the
set S. If p(i) �= q(i), then r(i) must be distinct from at least one of p(i) and q(i).
Therefore,

{i | 0 � i � n − 1 and p(i) �= q(i)}
⊆ {i | 0 � i � n − 1 and p(i) �= r(i)} ∪ {i | 0 � i � n − 1 and r(i) �= q(i)},

which implies the triangular inequality. This is a rather rudimentary distance known
as the Hamming distance on Seqn(S). If we need to compare sequences of unequal
length, we can use an extended metric d⇒

h defined by

d⇒
h(x, y) =

{
|{i | 0 � i � |x| − 1, xi �= yi} if |x| = |y|,
∞ if |x| �= |y|.
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We use frequently use the notions of closed sphere and open sphere.

Definition 1.193 Let (S, d) be a metric space. The closed sphere centered in x ∈ S
of radius r is the set

Bd(x, r) = {y ∈ S|d(x, y) � r}.

The open sphere centered in x ∈ S of radius r is the set

Cd(x, r) = {y ∈ S|d(x, y) < r}.

Definition 1.194 Let (S, d) be a metric space. The diameter of a subset U of S is the
number diamS,d(U) = sup{d(x, y) | x, y ∈ U}. The set U is bounded if diamS,d(U)

is finite.
The diameter of the metric space (S, d) is the number

diamS,d = sup{d(x, y) | x, y ∈ S}.

If the metric space is clear from the context, then we denote the diameter of a subset
U just by diam(U).

If (S, d) is a finite metric space, then diamS,d = max{d(x, y) | x, y ∈ S}.
A notion close to the notion of dissimilarity is given next.

Definition 1.195 A similarity on a set S is a function s : S2 −→ [0, 1] satisfying the
following conditions:

(i) s(x, x) = 1 for all x ∈ S;
(ii) s(x, y) = s(y, x) for all x, y ∈ S.

If s(x, y) = 1 implies x = y, then s is a definite similarity.

In other words, the similarity between an object x and itself is the largest; also, the
similarity is symmetric.

Example 1.196 Let d : S2 −→ R�0 be a dissimilarity on S. The function s : S2 −→
[0, 1] defined by s(x, y) = e− d2(x,y)

2σ2 for x, y ∈ S and σ ∈ R is easily seen to be a
similarity. Note that s is definite if and only if d is definite.

1.10 Rough Sets

Rough sets are approximative descriptions of sets that can be achieved using equiv-
alences (or partitions). This fertile idea was introduced by the Polish mathematician
Z. Pawlak and has generated a large research effort in mathematics and computer
science due to its applications.

Unless stated otherwise, all sets in this chapter are finite.
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Definition 1.197 Let S be a set. An approximation space on S is a pair (S, ρ), where
ρ is an equivalence relation defined on the set S.

If S is clear from the context, we will refer to (S, ρ) just as an approximation
space.

If (S, ρ) is an approximation space defined on S and U is a subset of S, then the
ρ-degree of membership of an element x of S in U is the number

mρ(x, U) = |U ∩ [xρ]|
|[x]ρ| .

Clearly, we have 0 � mρ(x, U) � 1.

Example 1.198 Let S be the set of natural numbers {0, 1, . . . , 12} and let ρ be the
equivalence ≡5 ∩(S × S). The equivalence classes of ρ are {0, 5, 10}, {1, 6, 11},
{2, 7, 12}, {3, 8}, and {4, 9}.

If E is the subset of even members of S, then we have mρ(2, E) = |E∩{2,7,12}|
|{2,7,12}| = 2

3

and mρ(4, E) = |E∩{4,9}|
|{4,9}| = 1

2 .

Definition 1.199 Let (S, ρ) be an approximation space and let U be a subset of
S. The ρ-lower approximation of U is the set obtained by taking the union of all
ρ-equivalence classes included in the set U:

lapρ(U) =
⋃

{[x]ρ ∈ S/ρ | [x]ρ ⊆ U}.

The ρ-upper approximation of U is the set obtained by taking the union of ρ-
equivalence classes that have a nonempty intersection with the set U:

uapρ(U) =
⋃

{[x]ρ ∈ S/ρ | [x]ρ ∩ U �= ∅}.

The ρ-boundary of U is the set

bdρ(U) = uapρ(U) − lapρ(U).

If x ∈ lapρ(U), then x ∈ U and mρ(x, U) = 1. Thus, lapρ(U) is a strong
approximation of the set U that consists of those objects of S that can be identified
as members of U. This set is also known as the ρ-positive region of U and denoted
alternatively by POSρ(U).

On the other hand, if x ∈ uapρ(U), then x may or may not belong to U. Thus,
uapρ(U) contains those objects of S that may be members of U and we have 0 �
mρ(x, U) � 1. For x ∈ S − uapρ(U) we have x �∈ U. This justifies naming the set
S − uapρ(U) the ρ-negative region of U.

Note that, in general, lapρ(U) ⊆ uapρ(U) for any set U.
The equivalence ρ is used interchangeably with the partition πρ in the notations

introduced in Definition 1.199. For example, we can write
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Fig. 1.4 Lower and upper
approximations of set U

lapρ(U) =
⋃

{B ∈ πρ | B ⊆ U}

and
uapρ(U) =

⋃
{B ∈ πρ | B ∩ U �= ∅}.

Definition 1.200 Let (S, ρ) be an approximation space. A set U, U ⊆ S is ρ-rough
if bdρ(U) �= ∅ and is ρ-crisp otherwise.

Example 1.201 Let S be a set and ρ be an equivalence such that the corresponding
partition π consists of 12 blocks, B1, . . . , B12 (see Fig. 1.4). For the set U shown in
this figure, we have

lapρ(U) = {B5, B12},
uapρ(U) = {B1, B2, B4, B5, B6, B7, B8, B9, B10, B12},
bdρ(U) = {B1, B2, B4, B6, B7, B8, B9, B10}.

Thus, U is a ρ-rough set.

The next statement links ρ-saturated sets to ρ-crisp sets.

Theorem 1.202 Let (S, ρ) be an approximation space. A subset U of S is ρ-crisp if
and only if ρ is a πρ-saturated set.

Proof Let U be a ρ-crisp set. Since bdρ(U) = uapρ(U) − lapρ(U) = ∅, it follows
that uapρ(U) = lapρ(U). Thus, [x]ρ ∩ U �= ∅ implies [x]ρ ⊆ U. Clearly, if u ∈ U,
then u ∈ [u]ρ ∩ U and therefore [u]ρ ⊆ U, which implies

⎜
u∈U [u]ρ ⊆ U. The

reverse inclusion is obvious, so
⎜

u∈U [u]ρ = U, which means that U is ρ-saturated.
Conversely, suppose that U is ρ-saturated; that is,

⎜
u∈U [u]ρ = U. If x ∈

uapρ(U), then [x]ρ ∩ U �= ∅, which means that [x]ρ ∩ [u]ρ �= ∅ for some u ∈ U.
Since two equivalence classes that have a nonempty intersection must be equal, it
follows that [x]ρ = [u]ρ ⊆ U, so x ∈ lapρ(U).
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Theorem 1.203 The following statements hold in an approximation space (S, ρ):

(i) lapρ(∅) = uapρ(∅) = ∅ and lapρ(S) = uapρ(S) = S,
(ii) lapρ(U ∩ V ) = lapρ(U) ∩ lapρ(V ),

(iii) uapρ(U ∪ V ) = uapρ(U) ∪ uapρ(V ),
(iv) lapρ(U ∪ V ) ⊇ lapρ(U) ∪ lapρ(V ),
(v) uapρ(U ∩ V ) ⊆ uapρ(U) ∩ uapρ(V ),

(vi) lapρ(U
c) = (

uapρ(U)
)c

and uapρ(U
c) = (

lapρ(U)
)c

,
(vii) lapρ(lapρ(U)) = uapρ(lapρ(U)) = lapρ(U), and
(viii) uapρ(uapρ(U)) = lapρ(uapρ(U)) = uapρ(U)

for every U, V ∈ P(S).

Proof We leave the verification of these statements to the reader. ��
Corollary 1.204 Let (S, ρ) be an approximation space and let U and V be two
subsets of S. If U ⊆ V , then lapρ(U) ⊆ lapρ(V ) and uapρ(U) ⊆ uapρ(V ).

Proof If U ⊆ V , we have U = U ∩ V , so by Part (iii) of Theorem 1.203, we have
lapρ(U) = lapρ(U)∩ lapρ(V ), which implies lapρ(U) ⊆ lapρ(V ). The second part
of this statement follows from Part (iv) of the same theorem.

Definition 1.205 Let (S, ρ)be an approximation space. A subset U of S isρ-definable
if lapρ(U) �= ∅ and uapρ(U) �= S.

If U is not ρ-definable, then we say that U is ρ-undefinable. In this case, three
cases may occur:

1. If lapρ(U) = ∅ and uapρ(U) �= S, then we say that U is internally ρ-undefinable.
2. If lapρ(U) �= ∅ and uapρ(U) = S, then U as an externally ρ-undefinable set.
3. If lapρ(U) = ∅ and uapρ(U) = S, then U is a totally ρ-undefinable set.

Definition 1.206 Let (S, ρ) be a finite approximation space on S. The accuracy of
the ρ-approximation of U is the number

accρ(U) = |lapρ(U)|
|uapρ(U)| .

It is clear that 0 � accρ(U) � 1. If accρ(U) = 1, U is a ρ-crisp set; otherwise (that
is, if accρ(U) < 1), U is ρ-rough.

Example 1.207 Let S be the set of natural numbers {0, 1, . . . , 12} and let ρ be the
equivalence ≡5 ∩(S×S) considered in Example 1.198. For the set E of even members
of S, we have uapρ(E) = ∅ and lapρ(E) = S, so the set E is a totally ρ-undefinable
set.
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On the other hand, for the subset of perfect squares in S, P = {1, 4, 9}, we have

lapρ(P) = {4, 9},
uapρ(P) = {1, 4, 9, 6, 11}.

Thus, the accuracy of the ρ-approximation of P is accρ(P) = 0.4.

The notion of a ρ-positive subset of a set is extended to equivalences as follows.

Definition 1.208 Let S be a set, ρ and ρ⇒ be two equivalences on S, and π =
{B1, . . . , Bm}, σ = {C1, . . . , Cn} the partitions that correspond to ρ and ρ⇒, respec-
tively. The positive set of ρ⇒ relative to ρ is the subset of S defined by

POSρ(ρ
⇒) =

n⋃
j=1

lapρ(Cj).

Theorem 1.209 Let S be a set, and ρ and ρ⇒ two equivalences on S. We have ρ � ρ⇒
if and only if POSρ(ρ

⇒) = S.

Proof Let π = {B1, . . . , Bm} and σ = {C1, . . . , Cn} be the partitions that correspond
to ρ and ρ⇒, respectively.

Suppose that ρ � ρ⇒. Then, each block Cj of σ is a union of blocks of π, so
lapρ(Cj) = Cj. Therefore, we have

POSρ(ρ
⇒) =

n⋃
j=1

lapρ(Cj) =
n⋃

j=1

Cj = S.

Conversely, suppose that POSρ(ρ
⇒) = S, that is,

⎜n
j=1 lapρ(Cj) = S. Since we

have lapρ(Cj) ⊆ Cj for 1 � j � n, we claim that we must have lapρ(Cj) = Cj for
every j, 1 � j � n. Indeed, if we have a strict inclusion lapρ(Cj0) ⊂ Cj0 for some
j0, this implies

⎜n
j=1 lapρ(Cj) ⊂ ⎜n

j=1 Cj = S, which would contradict the equality⎜n
j=1 lapρ(Cj) = S. Therefore, we have lapρ(Cj) = Cj for every j, which shows that

each block of σ is a union of blocks of π. Consequently, ρ � ρ⇒.

1.11 Closure Operators and Rough Sets

In Exercise 77, the reader is asked to prove that the lower approximation operator
lapρ defined by an equivalence on a set S is an interior operator on S and the upper
approximation operator uapρ is a closure operator on the same set. In addition, it is
easy to see (Exercise 75) that
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uapρ(∅) = ∅,

uapρ(U ∪ V ) = uapρ(U) ∪ uapρ(V ),

U ⊆ S − uapρ(S − uapρ(U)),

lapρ(S) = S,

lapρ(U ∩ V ) = lapρ(U) ∩ lapρ(V ),

U ⊇ S − lapρ(S − lapρ(U)),

for every U, V ∈ P(S).
It has been shown (see [2]) that approximation spaces can be defined starting from

certain closure operators or interior operators.

Theorem 1.210 Let S be a set and let K be a closure operator on S such that the
following conditions are satisfied:

(i) K(∅) = ∅,
(ii) K(U ∪ V ) = K(U) ∪ K(V ), and

(iii) U ⊆ S − K(S − K(U)),
for every U, V ∈ P(S). Then, the mapping I : P(S) −→ P(S) defined by I(U) = S−
K(S−U) for U ∈ P(S) is an interior operator on S and there exists an approximation
space (S, ρ) such that lapρ(U) = I(U) and uapρ(U) = K(U) for every U ∈ P(S).

Proof Define ρ as ρ = {(x, y) ∈ S × S | x ∈ K({y})} and let r(u) be the set
r(u) = {v ∈ S | u ∈ K({v})} for u ∈ S. Observe that K({y}) = {x ∈ S | y ∈ r(x)}
for x, y ∈ S. We begin the argument by proving that ρ is an equivalence.

The reflexivity of ρ follows from x ∈ K({x}) for x ∈ S.
We claim that y �∈ K(W) if and only if r(y)∩W = ∅. Since K(W) = ⎜{K({x}) |

x ∈ W}, it follows that the statements

(i) y �∈ K(W),
(ii) y �∈ K({x}) for every x ∈ W ,

(iii) x �∈ r(y) for every x ∈ W , and
(iv) r(y) ∩ W = ∅
are equivalent, which justifies our claim.

Property (iii) of Theorem 1.210 implies that {y} ⊆ S − K(S − K({y})); that is,
y �∈ K(S − K({y})). Therefore, by the argument of the previous paragraph, we have
r(y) ∩ (S − K({y})) = ∅, which implies r(y) ⊆ K({y}). Thus, if x ∈ r(y), it follows
that x ∈ K({y}); that is, y ∈ r(x). In terms of the relation ρ, this means that (y, x) ∈ ρ
implies (x, y) ∈ ρ, so ρ is a symmetric relation.

To prove the transitivity of ρ, suppose that (x, y), (y, z) ∈ ρ. We have x ∈ K({y})
and y ∈ K({z}). By the idempotency of K, we have K({y}) ⊆ K(K({z})) = K({z}),
so x ∈ K({z}). Consequently, (x, z) ∈ ρ. This allows us to conclude that ρ is indeed
an equivalence. Moreover, we realize now that r(x) is exacly the equivalence class
[x]ρ for x ∈ S.
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An immediate consequence of this fact is that we have x ∈ r(y) if and only if
y ∈ r(x). Therefore,

K({y}) = {x ∈ S | y ∈ r(x)} = {x ∈ S | x ∈ r(y)} = r(y),

and by the second property of K, we have

K(U) =
⋃

{r(u) | u ∈ U}

for U ∈ P(S). Consequently, we can write

uapρ(U) =
⋃

{r(x) | r(x) ∩ U �= ∅}
=
⋃

{r(u) | u ∈ U}
= K(U).

Also, we have K({z}) = r(z) for every z ∈ S.
The definition of I implies immediately that this function is an interior operator on

S that enjoys two additional properties, namely I(S) = S and I(U∩V ) = I(U)∩I(V ).
By applying the definition of I, we have

I(U) = S − K(S − U)

= S −
⋃

{K({z}) | z ∈ S − U}
= S −

⋃
{r(z) | z ∈ S − U}

=
⋃

{r(z) | z ∈ U}
= lapρ(U).

Exercises and Supplements

1. Prove that for any set S we have
⎜

P(S) = S.
2. A set is transitive if X ⊆ P(X). Prove that {∅, {∅}, {{∅}}} is transitive.
3. Let C andD be two collections of sets such that C ⊆ D. Prove that

⎜
C ⊆ ⎜

D;
also, if C �= ∅, then show that

⋂
C ⊇ ⋂

D.
4. Let {Ci | i ∈ I} be a family of hereditary collections of sets. Prove that

⋂
i∈I Ci

is also a hereditary collection of sets.
5. Let C be a nonempty collection of nonempty subsets of a set S. Prove that C is a

partition of S if and only if every element a ∈ S belongs to exactly one member
of the collection C.

6. Let S be a set and let U be a subset of S. For a ∈ {0, 1}, define the set
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Ua =
{

U if a = 1,

S − U if a = 0.

(a) Prove that if D = {D1, . . . , Dr} is a finite collection of subsets of S, then
the collection πD defined by

πD = {Da1
1 ∩ Da2

2 ∩ · · · ∩ Dar
r �= ∅ | (a1, a2, . . . , ar) ∈ {0, 1}r},

is a partition S.
(b) Prove that each set of D is a πD-saturated set.

7. Prove that if π,π⇒ ∈ PART(S) and π⇒ � π, then every π-saturated set is a
π⇒-saturated set.

8. Let C and D be two collections of subsets of a set S. Prove that if T is a subset
of S, then (C ∪ D)T = CT ∪ DT and (C ∩ D)T ⊆ CT ∩ DT .

9. Let S be a set and let C be a collection of subsets of S. The elements x and y of
S are separated by C if there exists C ∈ C such that either x ∈ C and y �∈ C or
x �∈ C and y ∈ C. Let ρ ⊆ S × C be the relation defined in Example 1.45.
Prove that x and y are separated by C if and only if ρ(x) �= ρ(y).

10. Prove that for all sets R, S, T we have

(a) (R ∪ S) ⊕ (R ∩ S) = R ⊕ S,
(b) R ∩ (S ⊕ T) = (R ∩ S) ⊕ (R ∩ T).

11. Let P and Q be two subsets of a set S.

(a) Prove that P ∪ Q = S if and only if S − P ⊆ Q.
(b) Prove that P ∩ Q = ∅ if and only if Q ⊆ S − P.

12. Let S be a nonempty set and let s0 be a fixed element of S. Define the collection
[x, y] = {{x, s0}, {y, {s0}}}. Prove that if [x, x⇒] = [y, y⇒], then x = y and x⇒ = y⇒.

13. Let S and T be two sets. Suppose that the function p : S × T −→ T given by
p(x, y) = y for x ∈ S and y ∈ T is a bijection. What can be said about the set S?

14. Let S and T be two sets. The functions p1 : S × T −→ S and p2 : S × T −→ T
defined by p1(x, y) = x and p2(x, y) = y for x ∈ S and y ∈ T are the projections
of the Cartesian product S × T on S and T , respectively. Let U be a set such that
f : U −→ S and g : U −→ T are two functions. Prove that there is a unique
function h : U −→ S × T such that p1h = f and p2h = g.

15. Let C be a collection of subsets of a set S and let ρC and σC be the relations
defined by

σC = {(x, y) ∈ S × S | | x ∈ C if and only if y ∈ C for every C ∈ C}

and

ρC = {(x, y) ∈ S × S | | x ∈ C implies y ∈ C for every C ∈ C}.
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Prove that, for every collection C, the relation σC is an equivalence and that ρC
is a reflexive and transitive relation.

16. Prove that a relation ρ is a function if and only if ρ−1ρ ⊆ ιRan(ρ).
17. Prove that ρ is a one-to-one relation if and only if ρρ−1 ⊆ ιDom(ρ).
18. Prove that ρ is a total relation from A to B if and only if ιA ⊆ ρρ−1.
19. Prove that ρ is an onto relation from A to B if and only if ιB ⊆ ρ−1ρ.
20. Prove that the composition of two injections (surjections, bijections) is an injec-

tion (a surjection, a bijection, respectively).
21. Let f : S1 −→ S2 be a function. Prove that, for every set L ∈ P(S2), we have

S1 − f −1(S2 − L) = f −1(L).

22. Prove that the function γ : N × N −→ P defined by γ(p, q) = 2p(2q + 1) for
p, q ∈ N is a bijection.

23. Let f : S −→ T be a function. Prove that f is an injection if and only if
f (U ∩ V ) = f (U) ∩ f (V ) for every U, V ∈ P(S).

24. Let T be a set and let fi : T −→ T be m injective mappings for 1 � i � m. For
s = (i1, i2, . . . , ik) ∈ Seq({1, . . . , m}) define fs as the injection fi1 fi2 · · · fik . Let
Ts be the set fi1(fi2(· · · (fik (T) · · · ))).
(a) Prove that if (i1, i2, . . .) ∈ Seq∞({1, . . . , m}), then T ⊇ Ti1 ⊇ Ti1i2 ⊇ · · · .
(b) Prove that if {Ti1 , Ti2 , . . . , Tim} is a partition of the set T , then {Tu | u ∈

Seqp({1, . . . , n})} is a partition of T for every p � 1.

25. Let f : S −→ T be a function. Prove that for every U ∈ P(S) we have U ⊆
f −1(f (U)) and for every V ∈ P(T) we have f (f −1(V )) = V .

26. Let S be a finite set and let C be a collection of subsets of S. For x ∈ S, define
the mapping φx : C −→ P(S) by

φx(C) =
{

C − {x} if x ∈ C and C − {x} �∈ C,

C otherwise,

for C ∈ C. Prove that |C| = |{φx(C) | C ∈ C}|.
27. Let S and T be two finite sets with the same cardinality. If h : S −→ T , prove

that the following statements are equivalent:

(a) h is an injection;
(b) h is a surjection;
(c) h is a bijection.

28. Let C = {Ci | i ∈ I} and D = {Di | i ∈ I} be two collections of sets indexed
by the same set I . Define the collections

C ∨I D = {Ci ∨ Di | i ∈ I},
C ∧I D = {Ci ∧ Di | i ∈ I}.
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Prove that (∏
C
)

∩
(∏

D
)

=
∏

(C ∧I D),(∏
C
)

∪
(∏

D
)

⊆
∏

(C ∨I D).

29. Prove that the relation ρ ⊆ S × S is

(a) reflexive if ιS ⊆ ρ,
(b) irreflexive if ιS ∩ ρ = ∅,
(c) symmetric if ρ−1 = ρ,
(d) antisymmetric if ρ ∩ ρ−1 ⊆ ιS ,
(e) asymmetric if ρ−1 ∩ ρ = ∅,
(f) transitive if ρ2 ⊆ ρ.

30. Let S be a set and let ρ be a relation on S. Prove that ρ is an equivalence on S if
and only if there exists a collection C of pairwise disjoint subsets of S such that
S = ⎜

C and ρ = ⎜{C × C | C ∈ C}.
31. Let ρ and ρ⇒ be two equivalence relations on the set S. Prove that ρ ∪ ρ⇒ is an

equivalence on S if and only if ρρ⇒ ∪ ρ⇒ρ ⊆ ρ ∪ ρ⇒.
32. Let E = {ρi | i ∈ I} be a collection of equivalence relations on a set S such

that, for ρi, ρj ∈ E, we have ρi ⊆ ρj or ρj ⊆ ρi, where i, j ∈ I . Prove that
⎜

E

is an equivalence on S.
33. Let ρ be a relation on a set S. Prove that the relation σ = ⎜

n∈N(ρ ∪ ρ−1 ∪ ιS)
n

is the least equivalence on S that includes ρ.
34. Let p1, p2, p3, . . . be the sequence of prime numbers 2, 3, 5, · · · . Define the

function f : Seq(N) −→ N by f (n1, . . . , nk) = pn1
1 · · · pnk

k . Prove that
f (n1, . . . , nk) = f (m1, . . . , mk) implies (n1, . . . , nk) = (m1, . . . , mk).

35. Let f : S −→ T be a function such that f −1(t) is a countable set for every t ∈ T .
Prove that the set S is countable.

36. Prove that P(N) is not countable.
37. Let S = (S0, S1, . . .) be a sequence of countable sets. Prove that lim inf S and

lim sup S are both countable sets.
38. Let S be a countable set. Prove that Seq(S) is countable. How about Seq∞(S)?
39. Let S and T be two finite sets such that |S| = m and |T | = n.

(a) Prove that the set of functions S −→ T contains nm elements.
(b) Prove that the set of partial functions S � T contains (n + 1)m elements.

40. Let I be a finite set. A system of distinct representatives for a collection of sets
C = {Ci | i ∈ I} is an injection r : I → ⎜

C such that r(i) ∈ Ci for i ∈ I .
Define the mapping ΦC : P(I) −→ P(

⎜
C) by ΦC(L) = ⎜

i∈L Ci for L ⊆ I .

(a) Show that if C has a system of distinct representatives, then |ΦC(L)| � |L|
for every L such that L ⊆ {1, . . . , n}.
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(b) A subset L of I is Φ-critical if |ΦC(L)| = |L|. Let x ∈ ⎜
C. Define Φ ⇒ :

P(I) −→ P(
⎜

C) by Φ ⇒(L) = ΦC(L) − {x}. Prove that if no nonempty set
L is Φ-critical, then |Φ ⇒(L)| � |L| for every L.

(c) Let L be a nonempty minimal ΦC-critical set such that L ⊂ I . Define the
collection D = {Ci − Φ(L) | i ∈ I − L}. Prove that |ΦD(H)| � |H| for
every H ⊆ I − L.

(d) Prove, by induction on the number n = |I|, the converse of the first statement:
If |ΦC(L)| � |L| for every L inP(I), then a system of distinct representatives
exists for the collection C (Hall’s matching theorem).

41. Let Mn and Mp be the multisets of prime divisors of the numbers n and p,
respectively, where n, p ∈ N. Prove that Mn + Mp = Mnp.

42. For two multisets M and P on a set S, denote by M � P the fact that M(x) � P(x)
for every x ∈ S. Prove that M � P implies M ∪ Q � P ∪ Q and M ∩ Q � P ∩ Q
for every multiset Q on S.

43. Let M and P be two multisets on a set S. Define the multiset difference M − P
by (M − P)(x) = max{0, M(x) − P(x)} for x ∈ S.

(a) Prove that P � Q implies M − P � M − Q and P − M � Q − M for all
multisets M, P, Q on S.

(b) Prove that

M − (P ∪ Q) = (M − P) ∩ (M − Q),

M − (P ∩ Q) = (M − P) ∪ (M − Q),

for all multisets M, P, Q on S.

44. Define the symmetric difference of two multisets M and P as (M ⊕ P) =
(M ∪ P) − (M ∩ P). Determine which properties of the symmetrical difference
of sets can be extended to the symmetric difference of multisets.

45. Let a, b, c, d be four real numbers and let f : R2 −→ R be the binary operation
on R defined by

f (x, y) = axy + bx + cy + d

for x, y ∈ R.

(a) Prove that f is a commutative operation if and only if b = c.
(b) Prove that f is an idempotent operation if and only if a = d = 0 and

b + c = 1.
(c) Prove that f is an associative operation if and only if b = c and b2−b−ad =

0.

46. Let ∗ be an operation defined on a set T and let f : S −→ T be a bijection.
Define the operation ◦ on S by x ◦ y = f −1(f (x) ∗ f (y)) for x, y ∈ T . Prove that:



Exercises and Supplements 61

(a) The operation ◦ is commutative (associative) if and only if ∗ is commutative
(associative).

(b) If u is a unit element for ∗, then v = f −1(u) is a unit element for ◦.

47. Prove that the algebra (R>0, {∗}), where ∗ is a binary operation defined by
x ∗ y = xlog y, is a commutative semigroup.

48. Define the binary operation ◦ on Z × Z by (x1, y1) ◦ (x2, y2) = (x1x2 +
2y1y2, x1y2+x2y1). Prove that the algebra (Z×Z, {◦}) is a commutative monoid.

49. Let A = (A, {e, ·, −1}) be a group and let ρ be a congruence of A. Prove that
the set {x ∈ A | (x, e) ∈ ρ} is a subalgebra of A, that is, a subgroup.

50. Let (G, {e, ·, −1}) be a finite group. Then, a nonempty subset H of G is a sub-
group of G if and only if x, y ∈ H implies x · y ∈ H.

Solution: The necessity of the condition is immediate. To prove that the con-
dition is sufficient let u ∈ H and let fu : G −→ G be the mapping defined by
fu(x) = xu. This mapping is injective for, if x1 = x2, we have x1u = x2u, and
a left multiplication by u−1 yields x1 = x2. If x ∈ H, then fu(x) ∈ H by the
condition of the theorem. Thus, the restriction of fu to H is also a surjection
because H is a finite set. Since u ∈ H, there exists x ∈ H such that fu(x) = u,
that is xu = u. This is possible only if x = e, so e ∈ H.
Since e ∈ H , there exists z ∈ H such that zu = fu(z) = e and therefore
z = u−1 ∈ H . This argument can be applied to every u ∈ H, which allows us to
reach the desired conclusion.

Let S be a set and let (G, {u, ·, −1}) be a group. A group action on S is a binary
function f : G × S −→ S that satisfies the following conditions:

(i) f (x · y, s) = f (x, f (y, s)) for all x, y ∈ G and s ∈ S;
(ii) f (u, s) = s for every s ∈ S.

The element f (x, s) is denoted by xs. If an action of a group on a set S is defined,
we say that the group is acting on the set S.

The orbit of an element s ∈ S is the subset Os of S defined by Os = {xs | x ∈ G}.
The stabilizer of s is the subset of G given by Tx = {x ∈ G | xs = s}.
51. Let (G, {u, ·, −1}) be a group acting on a set S. Prove that if Os ∩ Oz �= ∅, then

Os = Oz.
52. Let (G, {u, ·, −1}) be a group acting on a set S. Prove that:

(a) If Os ∩ Oz �= ∅, then Os = Oz for every s, z ∈ S.
(b) For every s ∈ S, the stabilizer of s is a subgroup of G.

53. Let B be a subgroup of a group A = (A, {e, ·, −1}). Prove that:

(a) The relations ρB and σB defined by

ρB = {(x, y) ∈ A × A | x · y−1 ∈ B},
σB = {(x, y) ∈ A × A | x−1 · y ∈ B},

are equivalence relations on A.
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(b) (x, y) ∈ ρB implies (x ·z, y ·z) ∈ ρB and (x, y) ∈ σB implies (z ·x, z ·y) ∈ σB

for every z ∈ A.
(c) If A is a finite set, then |[u]ρB | = |[u]σB = |B| for every u ∈ G.
(d) If A is finite and B is a subgroup of A, then |B| divides |A|.

54. If B is a subgroup of group A = (A, {e, ·, −1}), let xB = {x · y | y ∈ B} and
Bx = {y ·x | y ∈ B}. Prove that ρB = σB if and only if xB = Bx for every x ∈ A;
also, show that in this case ρB is a congruence of A.

55. Let A and B be two algebras of the same type. Prove that f : A −→ B belongs
to MOR(A,B) if and only if the set {(x, h(x)) | x ∈ A} is a subalgebra of the
product algebra A × B.

Let A = (A, I) be an algebra. The set Poln(A) of n-ary polynomials of the algebra
A consists of the following functions:

(i) Every projection pi : An −→ A is an n-ary polynomial.
(ii) If f is an m-ary operation and g1, . . . , gm are n-ary polynomials, then f (g1, . . . ,

gn) is an n-ary polynomial.
The set of polynomials of the algebra A is the set Pol(A) = ⎜

n∈N Poln(A).

A k-ary algebraic function of A is a function h : Ak −→ A for which there
exists a polynomial p ∈ Poln(A) and n − k elements ai1 , . . . , ain−k of A such that
h(x1, . . . , xk) = p(x1, . . . , ai1 , . . . , ain−k , . . . , xk) for x1, . . . , xk ∈ A.

56. Let ρ be a congruence of an algebra A = (A, I) and let f ∈ Poln(A). Prove that
if (xi, yi) ∈ ρ for 1 � i � n, then (f (x1, . . . , xn), f (y1, . . . , yn)) ∈ ρ.

57. Let A = (A, I) be an algebra and let S be a subset of A. Define the sequence
of sets S = (S0, S1, . . .) as S0 = S and Sn+1 = Sn ∪ {f (a1, . . . , am) |
f is an m-ary operation, a1, . . . , am ∈ Sn}.
(a) Prove that the least subalgebra of A that contains S is

⎜
n∈N Sn.

(b) Prove by induction on n that if a ∈ Sn, then there is a finite subset U of A
such that a belongs to the least subalgebra that contains U.

58. Let A = (A, I) be an algebra, S be a subset of A, and a be an element in the least
subalgebra of A that contains S. Prove that there is a finite subset T of S such
that a belongs to the least subalgebra of A that contains T .

59. Let K be a closure operator on a set S. Prove the following statements:

(a) if U ∈ CK and X ⊆ U ⊆ K(X), then K(X) = U;
(b) K(X) ∩ K(Y) ⊇ K(X ∩ Y);
(c) K(X) ∩ K(Y) ∈ CK,

for X, Y ∈ P(S).
60. Let S and T be two sets and let f : S −→ T be a function. Suppose that K and

L are two closure operators on S and T , respectively, such that if V ∈ CL, then
f −1(V ) ∈ CK. Prove that, for every W ∈ CL we have S − f −1(T − W) ∈ CK.

61. Let K be a closure operator on a set S. For U ∈ P(S), define the K-border of the
set U as ∂K(U) = K(U) ∩ K(S − U). Let S and T be two sets and let K, L be
two closure operators on S and T , respectively.
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(a) Prove that if f −1(K(V )) = L(f −1(V )) for every V ∈ P(T), then f −1(∂L(V )) =
∂K(f −1(V )).

(b) Now let f : S −→ T be a bijection such that both f −1(K(V )) = L(f −1(V ))

for every V ∈ P(T) and f (K(U)) = L(f (U)) for every U ∈ P(S). Prove
that ∂K(f −1(V )) = f −1(∂L(V )) and ∂L(f (U)) = f (∂K(U)) for U ∈ P(S)

and V ∈ P(T).

62. Let (S, d) be a metric space. Prove that d(x, y) � |d(x, z) − d(y, z)| for all
x, y, z ∈ S.

63. Let (S, d) be a metric space. Prove that diam({x}) = 0 for every x ∈ S.
64. Let B = {x1, . . . , xn} be a finite subset of a metric space (S, d). Prove that

(n − 1)

n∑
i=1

d(x, xi) �
∑

{d(xi, xj) | 1 � i < j � n}

for every x ∈ S.
Explain why this inequality can be seen as a generalization of the triangular
inequality.

65. Let (S, d) be a metric space and let T be a finite subset of S. Define the mapping
DT : S2 −→ R�0 by

DT (x, y) = max{|d(t, x) − d(t, y)| | t ∈ P}

for x, y ∈ S.

(a) Prove that DT is a semimetric on S and that d(x, y) ≥ DT (x, y) for x, y ∈ S.
b) Prove that if T ⊆ T ⇒, then DT (x, y) � DT ⇒(x, y) for every x, y ∈ S.

66. Let d be a semimetric on a set S. Prove that for x, y, u, v ∈ S we have |d(x, y) −
d(u, v)| � d(x, u) + d(y, v).

67. Let (S, d) be a metric space and let p, q, x ∈ S. Prove that d(p, x) > kd(p, q)

for some k > 1, then d(q, x) > (k − 1)d(p, q).
68. Let (S, d) be a metric space and let x, y ∈ S. Prove that if r is a positive number

and y ∈ Cd(x, r
2 ), then Cd(x, r

2 ) ⊆ Cd(y, r).
69. Let (S, d) be a metric space and p ∈ S. Define the function du : S2 −→ R�0 by

du(x, y) =
{

0 if x = y,

d(x, u) + d(u, y) otherwise,

for x, y ∈ S. Prove that d is a metric on S.
70. Let (S, d) be a metric space. Prove that

√
d and d

1+d are also metrics on S. What
can be said about d2?

71. Let (S1, d1) and (S2, d2) be two metric spaces. Define d, e : S1 × S2 −→ R�0
by d((x1, y1), (x2, y2)) = max{d1(x1, y1), d2(x2, y2)} and e((x1, y1), (x2, y2)) =
d1(x1, y1) + d2(x2, y2). Prove that both d and e are metrics on S1 × S2.
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For p, q ∈ N define the finite set Np,q = {p, p + 1, . . . , q}. Note that the binary
equivalent of a number n ∈ N0,2m−1 can be represented as a sequence of m bits,
(b1, . . . , bm). We denote this sequence by βm(n). For example, β4(6) = (0, 1, 1, 0)

and β4(13) = (1, 1, 0, 1).
Define dh,m(r, s) as dh(βm(r),βm(s)), where dh is the Hamming distance intro-

duced in Example 1.192.

72. Prove that dh,m is a metric on N0,2m−1.
73. Define the function dbin : N2 −→ N as dbin(p, q) = k if k is the least number

such that there exist 2k numbers i1, . . . , ik, j1, . . . , jk in N where p = q +∑k
r=1(−1)ir 2jr . For example, dbin(64, 6) = 3 because 58 = 26 − 22 − 21 and

we have i1 = 2, i2 = i3 = 1, and j1 = 6, j2 = 2, j3 = 1.
Prove that:

(a) dbin is a metric on N;
(b) for every numbers p, q ∈ N0,2m−1 we have dbin(p, q) � dh,m.

74. Let ρ1 and ρ2 be two equivalences on a set S such that ρ1 ⊆ ρ2. Prove that
lapρ1

(U) ⊇ lapρ2
(U) and lapρ1

(U) ⊆ lapρ2
(U). Conclude that bdρ1(U) ⊆

bdρ2(U) for every U ∈ P(S).
75. Let (S, ρ) be an approximation space. Prove that

(a) uapρ(∅) = ∅,
(b) uapρ(U ∪ V ) = uapρ(U) ∪ uapρ(V ),
(c) U ⊆ S − uapρ(S − uapρ(U)),
(d) lapρ(S) = S,
(e) lapρ(U ∩ V ) = lapρ(U) ∩ lapρ(V ), and
(f) U ⊇ S − lapρ(S − lapρ(U))

for every U, V ∈ P(S).
76. Let (S, ρ)be an approximation space. A lower (upper) sample of a subset U of S is

a subset Y of S such that Y ⊆ U and uapρ(Y) = lapρ(U) (uapρ(Y) = uapρ(U),
respectively). A lower (upper) sample of U is minimal if there no lower (upper)
sample of U with fewer elements.
Prove that every nonempty lower (upper) sample Y of a set U has a nonempty
intersection with each ρ-equivalence class included in lapρ(U) (lapρ(U), respec-
tively). Prove that if Y is a lower (upper) minimal sample, then its intersection
with each ρ-equivalence class included in lapρ(U) (lapρ(U), respectively) con-
sists of exactly one element.

77. Let S be a set and let ρ be an equivalence on S.

(a) Prove that lapρ is an interior operator on S.
(b) Prove that uapρ is a closure operator on S.
(c) Prove that the lapρ-open subsets of S coincide with the uapρ-closed subsets

of S.

A generalized approximation space is a pair (S, ρ), where ρ is an arbitrary
relation on S. Denote the set {y ∈ S | (x, y) ∈ ρ} by ρ(x). The lower and upper
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ρ-approximations of a set U ∈ P(S) generalize the corresponding notions from
approximation spaces and are defined by

lapρ(U) =
⋃

{ρ(x) | ρ(x) ⊆ U},
uapρ(U) =

⋃
{ρ(x) | ρ(x) ∩ U �= ∅},

for U ∈ P(S).

78. Let (S, ρ) be a generalized approximation space. Prove that

(a) lapρ(U) = S − uapρ(S − U),
(b) lapρ(S) = S,
(c) lapρ(U ∩ V ) = lapρ(U) ∩ lapρ(V ),
(d) lapρ(U ∪ V ) ⊇ lapρ(U) ∪ lapρ(V ),
(e) U ⊆ V implies lapρ(U) ⊆ lapρ(V ),
(f) uapρ(U) = S − lapρ(S − U),
(g) uapρ(∅) = ∅,
(h) uapρ(U ∩ V ) ⊆ uapρ(U) ∩ uapρ(V ),
(i) uapρ(U ∪ V ) = uapρ(U) ∪ uapρ(V ),
(j) U ⊆ V implies uapρ(U) ⊆ uapρ(V ),
(k) lapρ((S − U) ∪ V ) ⊆ (S − lapρ(U)) ∪ lapρ(V )

for U, V ∈ P(S).
79. Let (S, ρ) be a generalized approximation space, where ρ is a tolerance relation.

Prove that

(a) lapρ(∅) = ∅,
(b) lapρ(U) ⊆ U,
(c) U ⊆ lapρ(uapρ(U)),
(d) uapρ(S) = S,
(e) U ⊆ uapρ(U), and
(f) uapρ(lapρ(U)) ⊆ U

for U, V ∈ P(S).

Bibliographical Comments

Readers may find [3] a useful reference for a detailed presentation of many aspects
discussed in this chapter and especially for various variants of mathematical induc-
tion. Suggested introductory references to set theory are [4, 5]. For a deeper study of
algebras readers should consult the vast mathematical literature concerning general
and universal algebra [6–9].
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Rough sets were introduced by Z. Pawlak (see [10]). Excellent surveys supple-
mented by large bibliographies are [11] and [12]. The notions of lower and upper
samples discussed in Exercise 76 are introduced in [13]. Various generalizations of
the notion of approximation space are presented in [2].
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Chapter 2
Partially Ordered Sets

2.1 Introduction

We introduce the notion of a partially ordered set (poset) we and define several types
of special elements associated with partial orders. Two partially ordered sets receive
special attention: the poset of real numbers and the poset of partitions of a finite set.
Partially ordered sets serve as the starting point for the study of several algebraic
structures in Chap.11.

2.2 Partial Orders

The fundamental notion of this chapter is introduced next.

Definition 2.1 A partial order on a set S is a relation ρ ∈ S × S that is reflexive,
antisymmetric, and transitive. The pair (S, ρ) is referred to as a partially ordered set
or, for short, a poset.

When |S| is finite, we refer to poset (S, ρ) as a finite poset.
A strict partial order, or more simply, a strict order on S, is a relation ρ ∈ S × S

that is irreflexive and transitive.

Example 2.2 The identity relation on a set S, ιS , is a partial order; this is often
referred to as the discrete partial order on S. Also, the relation θS = S × S is a
partial order on S.

Example 2.3 The relation “�” on the set of partitions of a set PART(S) introduced
in Definition 1.110 is a partial order on the set PART(S).

Example 2.4 The divisibility relation ν introduced in Example 1.27 is a partial order
on N since, as we have shown in Example 1.43, ν is reflexive, antisymmetric, and
transitive.

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 67
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_2,
© Springer-Verlag London 2014
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For a poset (S, ρ), we prefer to use the infix notation; that is, write sρt instead of
(s, t) ∈ ρ. Moreover, various partial orders have their traditional notations, which
we favor. For example, the relation ν introduced in Example 1.27 is usually denoted
by | . Therefore, we write m | n to denote that (m, n) ∈ ν. Whenever practical, for
generic partially ordered sets, we denote their partial order relation by �. Generic
strict partial orders will be denoted by <.

Example 2.5 The inclusion relation ∈ is a partial order on the set of subsets P(S)
of a set S.

Example 2.6 For u, v ∈ Seq(S) define u �pref v if u is a prefix of v. Clearly,
u �pref v if and only if there exists t ∈ Seq(S) such that v = ut. It is immediate that
“�pref” is a reflexive relation.

If u �pref v and v �pref u there exist t, t∪ ∈ Seq(S) such that v = ut and u = vt∪.
This implies u = utt∪. Thus, tt∪ = λλλ, so t = t∪ = λλλ, which allows us to infer that
u = v. This shows that “�pref” is antisymmetric.

Finally, suppose that u �pref v and v �pref w. We have v = ut and w = vs
for some s, t ∈ Seq(S). This implies w = uts, which shows that u �pref w. Thus,
“�pref” is indeed a partial order on Seq(S).

In a similar manner, it is possible to show that the relations

�suff = {(u, v) ∈ (Seq(S))2 | v = tu for some t ∈ Seq(S)},
�infix = {(u, v) ∈ (Seq(S))2 | v = tut∪ for some t, t∪ ∈ Seq(S)},

are partial orders on Seq(S) (exercise!).

If (S,�) is a poset and T ∈ S, then (T,�T ) is also a poset, where
�T =� ∞(T × T ) is the trace of � on T .

Every strict partial order is also asymmetric. Indeed, let < be a strict partial order
on S and assume that x < y. If y < x , then x < x due to the transitivity of <, which
contradicts the irreflexivity of <. This shows that < is indeed asymmetric.

A strict partial order is not, in general, a partial order since strict partial orders
are irreflexive, while partial orders are reflexive. The link between partial orders and
strict partial orders is given next.

Theorem 2.7 Let � be a partial order on a set S and let < be the relation � − ιS.
The relation < is a strict partial order on S.

If < is a strict partial order on S, then the relation � defined as the union < ∅ ιS

is a partial order on S.

Proof Since ιS∞ <= ⊆, the relation < is irreflexive.
To prove the transitivity of <, let x, y, z ∈ S be such that x < y, y < z. Because

of the transitivity of �, we have x � z. On the other hand, we also have x ∩= z.
Indeed, if we assume that x = z, then we would have both z < y and y < z, which
is impossible by the asymmetry of <. Therefore, (x, z) ∈⊕ −ιS =<, which implies
the transitivity of <.
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Let < be a strict partial order and let � be the relation < ∅ ιS . The reflexivity of
� is immediate.

To show that � is antisymmetric, assume that x � y and y � x . Because of the
definition of �, we may have x < y or (x, y) ∈ ιS (that is, x = y). In the first case,
we have a contradiction. Indeed, if y < x , this contradicts the asymmetry of <; if
(y, x) ∈ ιS , we also have (x, y) ∈ ιS , and this contradicts the irreflexivity of <.
Consequently, we must have x = y.

Let x � y and y � x . We need to consider the following four cases.

(i) If x < y, y < z, we have x < z because of the transitivity of <. This implies
x � z.

(ii) If (x, y) ∈ ιS and y < z, we have x = y; hence, x < z and therefore x � z.
(iii) If x < y and (y, z) ∈ ιS , we follow an argument similar to the one used in the

previous case.
(iv) If (x, y), (y, z) ∈ ιS , we have (x, z) ∈ ιS because of the transitivity of ιS ; hence,

x � z.

We proved that � is also transitive, and this concludes our argument.

Example 2.8 Consider the relation “�” on R, which is a partial order. The strict
partial order attached to it by the previous proposition is the relation “<”.

A relation ρ ∈ S × S is acyclic if ρn ∞ ιS = ⊆ for every n � 1.

Theorem 2.9 Every strict partial order is acyclic.

Proof Let ρ be a strict partial order relation on S. Its transitivity implies the existence
of the descending sequence ρ ⊥ ρ2 ⊥ · · · ⊥ ρn ⊥ · · · . Since ρ is irreflexive, we
have ρ ∞ ιS = ⊆, and this implies ρn ∞ ιS = ⊆.

Next we introduce a graphical representation of partial orders.

Definition 2.10 Let (S,�) be a poset. The Hasse diagram of (S,�) is the digraph
of the relation < − (<)2, where “<” is the strict partial order corresponding to �.

In view of the properties of acyclic relations discussed above, it is clear that the
relation < − (<)2 is acyclic; therefore, the Hasse diagram is always an acyclic
directed graph. We will denote this relation by “∨”.

Observe that x ∨ y if x ∩= y, x � y, and there is no u ∈ S such that x � u and
u � y. In other words, if x ∨ y, then y covers x directly, without any intermediate
elements.

The use of Hasse diagrams in representing posets is justified by the following
statement.

Theorem 2.11 If � is a partial order on a finite set S, < is the strict partial order
corresponding to �, and θ =< −(<)2, then θ∧ =�.
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Proof Let x, y ∈ S such that x � y. If x = y, then we have (x, y) ∈ ιS ∈ θ∧.
Assume now that x � y and x ∩= y, which means that x < y. Consider the

collection Cxy of all sequences of elements of A that can be “interpolated” between
x and y:

Cxy = {(s(0), . . . , s(n − 1)) | x = s(0), s(n − 1) = y, and

s(i) < s(i + 1) for 0 � i � n − 2, n � 2}.

We haveCxy ∩= ⊆ since the sequence (x, y) belongs toCxy . Furthermore, no sequence
from Cxy may contain a repetition. Since S is finite, Cxy contains a finite number of
sequences.

Let (s(0), s(1), . . . , s(m − 1)) be a sequence of maximal length from Cxy , where
x = s(0) and y = s(m − 1).

Observe that for no pair (s(i), s(i + 1)) can we have s(i) < z < s(i + 1) because,
otherwise, the maximality of m would be contradicted. Therefore, (s(i), s(i + 1)) ∈
(< −(<)2) = θ, and this shows that (x, y) ∈ θm−1 ∈ θ∧.

Conversely, if (x, y) ∈ θ∧, there is k ∈ N such that (x, y) ∈ θk , which means that
there exists a sequence (z(0), . . . , z(k)) such that

x = z(0), (z(i), z(i + 1)) ∈ θ for 0 � i � k − 1 and y = z(k).

This implies z(i) � z(i + 1); hence, (x, y) ∈ (�)k ∈� because of the transitivity
of �.

The relation θ introduced in Theorem 2.11 is called the transitive reduction of the
partial order ρ.

Example 2.12 The Hasse diagram of the poset (P(S),∈), where S = {a, b, c}, is
given in Fig. 2.1a.

Example 2.13 Consider the poset ({1, 2, 3, 4, 5, 6, 7, 8}, ν), where ν is the divisibil-
ity relation introduced in Example 1.27. Its Hasse diagram is shown in Fig. 2.1b.

Definition 2.14 Let (S,�) be a poset and let K ∈ S. The set of upper bounds of
the set K is the set K s = {y ∈ S | x � y for every x ∈ K }.

The set of lower bounds of the set K is the set K i = {y ∈ S | y � x
for every x ∈ K }.

If K s ∩= ⊆, we say that the set K is bounded above. Similarly, if K i ∩= ⊆, we say
that K is bounded below. If K is both bounded above and bounded below we will
refer to K as a bounded set.

If K s = ⊆ (K i = ⊆), then K is said to be unbounded above (below).

Theorem 2.15 Let (S,�) be a poset and let U and V be two subsets of S. If U ∈ V ,
then we have V i ∈ Ui and V s ∈ U s.

Also, for every subset T of S, we have T ∈ (T s)i and T ∈ (T i )s .
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(b)(a)

Fig. 2.1 Hasse diagrams. a The poset (P(S),∈), and b The poset ({1, ..., 8}, ν)

Proof The argument for both statements of the theorem amounts to a direct application
of Definition 2.14.

Note that for every subset T of a poset S, we have both

T i = ((T i )s)i (2.1)

and

T s = ((T s)i )s . (2.2)

Indeed, since T ∈ (T i )s , by the first part of Theorem 2.15, we have ((T s)i )s ∈ T s .
By the second part of the same theorem applied to T s , we have the reverse inclusion
T s ∈ ((T s)i )s , which yields T s = ((T s)i )s .

Theorem 2.16 For any subset K of a poset (S, ρ), the sets K ∞ K s and K ∞ K i

contain at most one element.

Proof Suppose that y1, y2 ∈ K ∞ K s . Since y1 ∈ K and y2 ∈ K s , we have
(y1, y2) ∈ ρ. Reversing the roles of y1 and y2 (that is, considering now that y2 ∈ K
and y1 ∈ K s), we obtain (y2, y1) ∈ ρ. Therefore, we may conclude that y1 = y2
because of the antisymmetry of the relation ρ, which shows that K ∞ K s contains at
most one element.

A similar argument can be used for the second part of the proposition; we leave
it to the reader.
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Definition 2.17 Let (S,�) be a poset. The least (greatest) element of the subset K
of S is the unique element of the set K ∞ K i (K ∞ K s, respectively) if such an element
exists.

If K is unbounded above, then it is clear that K has no greatest element. Similarly,
if K is unbounded below, then K has no least element.

Applying Definition 2.17 to the set S, the least (greatest) element of the poset
(S,�) is an element a of S such that a � x (x � a, respectively) for all x ∈ S.

It is clear that if a poset has a least element u, then u is the unique minimal element
of that poset. A similar statement holds for the greatest and the maximal elements.

Definition 2.18 Let (S,�) be a poset that has 0 as its least element. An atom of
(S,�) is an element x of S such that 0 ∨ x.

If (S,�) is a poset that has 1 as its greatest element, then y is a co-atom of (S,�)

if y � 1.

Example 2.19 For the poset introduced in Example 2.12, the greatest element is
{a, b, c}, while the least element is ⊆.

The atoms of this poset are {a}, {b}, {c}; its co-atoms are {a, b}, {b, c}, and {a, c}.
Definition 2.20 The subset K of the poset (S,�) has a least upper bound u if
K s ∞ (K s)i = {u}.

K has the greatest lower bound v if K i ∞ (K i )s = {v}.
We note that a set can have at most one least upper bound and at most one greatest

lower bound. Indeed, we have seen above that for any set U the set U ∞ Ui may
contain an element or be empty. Applying this remark to the set K s , it follows that
the set K s ∞ (K s)i may contain at most one element, which shows that K may have
at most one least upper bound. A similar argument can be made for the greatest lower
bound.

If the set K has a least upper bound, we denote it by sup K . The greatest lower
bound of a set will be denoted by inf K . These notations come from the terms
supremum and infimum used alternatively for the least upper bound and the greatest
lower bound, respectively.

Example 2.21 A two-element subset {m, n} of (N, ν) has both an infimum and
a supremum. Indeed, let p be the least common multiple of m and n. Since
(n, p), (m, p) ∈ ν, it is clear that p is an upper bound of the set {m, n}. On the
other hand, if k is an upper bound of {m, n}, then k is a multiple of both m and n. In
this case, k must also be a multiple of p because otherwise we could write k = pq +r
with 0 < r < p by dividing k by p. This would imply r = k − pq; hence, r would
be a multiple of both m and n because both k and p have this property. However, this
would contradict the fact that p is the least multiple that m and n share! This shows
that the least common multiple of m and n coincides with the supremum of the set
{m, n}. Similarly, inf{m, n} equals the greatest common divisor m and n.
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Example 2.22 Consider a set M and the poset (P(M),∈). Let K and H be
two subsets of M . The set {K , H} has an infimum and a supremum. Indeed, let
L = K ∞ H . Clearly, L ∈ K and L ∈ H , so L is a lower bound of the set {K , H}.
Furthermore, if J ∈ K and J ∈ H , then J ∈ L by the definition of the intersection.
This proves that the infimum of {K , H} is the intersection K ∞ H . A similar argument
shows that K ∅ H is the supremum of {K , H}.

In the previous two examples, any two-element subset of the poset has both a
supremum and an infimum.

For a one-element subset {x} of a poset (S, ρ), we have sup{x} = inf{x} = x .

Definition 2.23 A minimal element of a poset (S,�) is an element x ∈ S such that
{x}i = {x}. A maximal element of (S,�) is an element y ∈ S such that {y}s = {y}.
In other words, x is a minimal element of the poset (S,�) if there is no element less
than or equal to x other than itself; similarly, x is maximal if there is no element
greater than or equal to x other than itself.

The set of minimal elements of a poset (S,�) is denoted by MIN(S,�); the set
of maximal elements of this poset is denoted by MAX(S,�).

Example 2.24 Not every subset of a poset has a least or a greatest element. Indeed,
let ({2, 3, 4, 5, 6, 7, 8, }, ν) be a poset whose Hasse diagram is shown in Fig.2.1b. It
is easy to see that

MIN({2, 3, 4, 5, 6, 7, 8, }, ν) = {2, 3, 5, 7},
MAX({2, 3, 4, 5, 6, 7, 8, }, ν) = {5, 6, 7, 8}.

There is no least element and there is no largest element in this poset.

Theorem 2.25 Every finite nonempty subset K of a poset (S,�) has a minimal
element and a maximal element.

Proof Suppose that K = {x0, . . . , xn−1} for n � 1. Define the element u0 = x0 and

uk =
{

xk if xk < uk−1,

uk−1 otherwise.

Then, un−1 is a minimal element. The proof of the existence of a maximal element
of K is similar.

Next, we discuss a simple property of partially ordered sets that will allow us to
obtain half of some of the arguments related to the properties of partial orders for
free.

Theorem 2.26 Let ρ be a partial order on a set S. The inverse ρ−1 is also a partial
order on the same set.
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Proof Since (x, x) ∈ ρ for every x ∈ S, it follows that (x, x) ∈ ρ−1 for every x ∈ S,
so ρ−1 is reflexive.

The antisymmetry of ρ−1 follows from (ρ−1)−1 = ρ and because of the antisym-
metry of ρ.

To prove the transitivity of ρ−1, assume that (x, y) ∈ ρ−1 and (y, z) ∈ ρ−1.
This means that (y, x), (z, y) ∈ ρ, and because of the transitivity of ρ, we obtain
(z, x) ∈ ρ, so (x, z) ∈ ρ−1, which proves that ρ−1 is transitive.

Definition 2.27 The dual of the poset (S, ρ) is the poset (S, ρ−1).

Concepts valid for a poset have a counterpart for their dual poset. For instance, x
is an upper bound for the set K in the poset (S, ρ) if and only if x is a lower bound for
K in the dual poset. Similarly, t = sup K in the poset (S, ρ) if and only if t = inf K
in the dual poset. Similar pairs are minimal element and maximal element, infimum
and supremum, etc.

If all concepts occurring in a statement about posets are replaced by their duals, we
obtain the dual statement; the method of proving statements about posets is known
as dualization. Furthermore, if a statement holds for a poset (S, ρ), its dual holds for
the dual poset (S, ρ−1). This allows us to formulate the following principle.

The Duality Principle for Posets: If a statement is true for all posets, then its
dual is also true for all posets.

The validity of this principle follows from the fact that any poset can be regarded
as the dual of some other poset. The duality principle allows us to simplify proofs
of certain statements that concern posets. For statements involving both a concept
and its dual we need to prove only half of the statement; the other half follows by
applying the duality principle. For instance, once we prove the statement “any subset
of a poset can have at most one least upper bound,” the dual statement “any subset
of a poset can have at most one greatest lower bound” follows.

2.3 The Poset of Real Numbers

For the poset (R,�), it is possible to give more specific descriptions of the supremum
and infimum of a subset when they exist.

Theorem 2.28 If T ∈ R, then u = sup T if and only if u is an upper bound of T
and, for every δ > 0, there is t ∈ T such that u − δ < t � u.

The number v is inf T if and only if v is a lower bound of T and, for every δ > 0,
there is t ∈ T such that v � t < v + δ.

Proof We prove only the first part of the theorem; the argument for the second part
is similar and is left to the reader.

Suppose that u = sup T ; that is, {u} = T s ∅ (T s)i . Since u ∈ T s , it is clear that u
is an upper bound for T . Suppose that there is δ > 0 such that no t ∈ T exists such
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that u − δ < t � u. This means that u − δ is also an upper bound for T , and in this
case u cannot be a lower bound for the set of upper bounds of T . Therefore, no such
δ may exist.

Conversely, suppose that u is an upper bound of T and for every δ > 0, there is
t ∈ T such that u − δ < t � u. Suppose that u does not belong to (K s)i . This means
that there is another upper bound u∪ of T such that u∪ < u. Choosing δ = u − u∪, we
would have no t ∈ T such that u − δ = u∪ < t � u because this would prevent u∪
from being an upper bound of T . This implies u ∈ (K s)i , so u = sup T .

A very important axiom for the set R is given next.

The Completeness Axiom for R: If T is a nonempty subset of R that is bounded above,
then T has a supremum.

A statement equivalent to the Completeness Axiom for R follows.

Theorem 2.29 If T is a nonempty subset of R that is bounded below, then T has an
infimum.

Proof Note that the set T i is not empty. If s ∈ T i and t ∈ T , we have s � t , so
the set T i is bounded above. By the Completeness axiom v = sup T i exists and
{v} = (T i )s ∞ ((T i )s)i = (T i )s ∞ T i by Equality (2.1). Thus, v = inf T .

We leave to the reader to prove that Theorem 2.29 implies the Completeness
Axiom for R.

Another statement equivalent to the Completeness Axiom is the following.

Theorem 2.30 (Dedekind’s Theorem) Let U and V be nonempty subsets ofR such
that U ∅ V = R and x ∈ U, y ∈ V imply x < y. Then, there exists a ∈ R such that
if x > a, then x ∈ V , and if x < a, then x ∈ U.

Proof Observe that U ∩= ⊆ and V ∈ U s . Since V ∩= ⊆, it means that U is bounded
above, so by the Completeness Axiom sup U exists. Let a = sup U . Clearly, u ⊕ a
for every u ∈ U . Since V ∈ U s , it also follows that a � v for every v ∈ V .

If x > a, then x ∈ V because otherwise we would have x ∈ U since U ∅ V = R

and this would imply x � a. Similarly, if x < a, then x ∈ U .

Using the previously introduced notations, Dedekind’s theorem can be stated as
follows: if U and V are nonempty subsets of R such that U ∅ V = R, U s ∈ V ,
V i ∈ U , then there exists a such that {a}s ∈ V and {a}i ∈ U .

One can prove that Dedekind’s theorem implies the Completeness Axiom. Indeed,
let T be a nonempty subset of R that is bounded above. Therefore V = T s ∩= ⊆.
Note that U = (T s)i ∩= ⊆ and U ∅ V = R. Moreover, U s = ((T s)i )s = T s = V
and V i = (T s)i = U . Therefore, by Dedekind’s theorem, there is a ∈ R such that
{a}s ∈ V = T s and {a}i ∈ U = (T s)i . Note that a ∈ {a}s ∞ {a}i ∈ T s ∞ (T s)i ,
which proves that a = sup T .

By adding the symbols +⇒ and −⇒ to the set R, one obtains the set R̂. The
partial order � defined on R can now be extended to R̂ by −⇒ � x and x � +⇒
for every x ∈ R.
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We also extend the addition and multiplication of reals to R̂ by

x + ⇒ = +⇒ + x = +⇒ for − ⇒ < x � +⇒,

x − ⇒ = −⇒ + x = −⇒ for − ⇒ � x < +⇒,

x · ⇒ = ⇒ · x =

⎜
⎟

−⇒ if − ⇒ � x < 0,

0 if x = 0

⇒ if 0 < x ⊕ +⇒
,

x · (−⇒) = −⇒ · x =

⎜
⎟

⇒ if − ⇒ � x < 0,

0 if x = 0,

−⇒ if 0 < x � +⇒
,

x
+⇒ = x

−⇒ = 0 for x ∈ R.

The operations +⇒ − ⇒ and −⇒ + ⇒ are undefined.
Note that, in the poset (R̂,�), the sets T i and T s are nonempty for every T ∈ P(R̂)

because −⇒ ∈ T i and +⇒ ∈ T s for any subset T of R̂.

Theorem 2.31 For every set T ∈ R̂, both sup T and inf T exist in the poset (R̂,�).

Proof We present the argument for sup T . If sup T exists in (R,�), then it is clear
that the same number is sup T in (R̂,�).

Assume now that sup T does not exist in (R,�). By the Completeness Axiom for
R, this means that the set T does not have an upper bound in (R,�). Therefore, the
set of upper bounds of T in (T̂ ,�) is T ŝ = {+⇒}. It follows immediately that in
this case sup T = +⇒ in (R̂,�).

2.4 Chains and Antichains

The main notions of this section are introduced next.

Definition 2.32 Let (S,�) be a poset. A chain of (S,�) is a subset T of S such that
for every x, y ∈ T such that x ∩= y we have either x < y or y < x. If the set S is a
chain, we say that (S,�) is a totally ordered set and the relation � is a total order.

If s ∈ Seq(S) (or s ∈ Seq⇒(S)) and for every i, j ∈ N we have s(i) < s( j) or
s( j) < s(i), we refer to the sequence s as a chain in S; if s(i) � s( j) or s( j) � s(i)
for every i, j ∈ N, then we say that s is a multichain in (S,�).

If S = {x1, . . . , xn}, the total order whose diagram is given in Fig. 2.2 is denoted
by TO(x1, . . . , xn).

Let (S,�) be a poset. The elements x, y of S are incomparable if we have neither
x � y nor y � x . This is denoted by x ↔ y. It is easy to see that “↔” is a symmetric
and irreflexive relation. The set of pairs of incomparable elements of a poset (S,�)

is
INC(S,�) = {(x, y) ∈ S × S | x ∩� y and y ∩� x}.



2.4 Chains and Antichains 77

Fig. 2.2 Hasse diagram
of a total order on
S = {x1, x2, . . . , xn}

Definition 2.33 An antichain of (S,�) is a subset U of S such that, for every two
distinct elements x, y ∈ U, we have x ↔ y.

Example 2.34 The set of real numbers equipped with the usual partial order (R,�)

is a chain since, for every x, y ∈ R, we have either x � y or y � x .

Example 2.35 In the poset (N, ν), the set of all prime numbers is an antichain since
if p and q are two distinct primes, we have neither (p, q) ∈ ν nor (q, p) ∈ ν.

Example 2.36 If S is a finite set such that |S| = n, the set of subsets of S that contain
k elements (for a fixed k, k � |S|) is an antichain in the poset (P(S),∈) that contains(n

k

)
elements.

Example 2.37 If (S,�) is a poset, then both MIN(S,�) and MAX(S,�) are maxi-
mal antichains of (S,�) (with respect to set inclusion).

Every finite chain of a poset has a least element and a greatest element. Indeed, by
Theorem 2.25, a finite chain has a minimal element and a maximal element. Since
the notions of minimal and maximal elements in a chain coincide with the notions
of least element and largest element, respectively, it statement follows.

Definition 2.38 Let u, v be two elements of a poset (S,�) such that u � v. The
interval determined by u and v is the set

[u, v] = {x ∈ S | u � x � v}.

Example 2.39 In the poset (N, ν) we have (3, 24) ∈ ν. The interval [3, 24] is

[3, 24] = {3, 6, 12, 24}.

Not every poset is a chain, as shown in the next example.

Example 2.40 The poset (P(S),∈) considered in Example 2.12 is not a chain; ele-
ments of P(S) such as {a, b} and {b, c} are incomparable.

The poset from Example 2.13 is not a chain since it contains incomparable ele-
ments (for instance, 4 ↔ 6). However, the subset {1, 2, 4, 8} is a chain, as can be easily
seen. Thus, a poset (S,�) that is not a chain itself may very well contain subsets
that are chains with respect to the trace of the partial order of the set itself.
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Denote by CHAINS(S) the set of chains of a poset (S,�). We use the poset
(CHAINS(S),∈), where the partial order relation is the set inclusion.

Theorem 2.41 If {Ui | i ∈ I } is a chain of the poset (CHAINS(S),∈) (that is, a
chain of chains of (S,�)), then

⋃{Ui | i ∈ I } is itself a chain of (S,�) (that is, a
member of (CHAINS(S),∈)).

Proof Let x, y ∈ ⋃{Ui | i ∈ I }. There are i, j ∈ I such that x ∈ Ui and y ∈ U j

and we have either Ui ∈ U j or U j ∈ Ui . In the first case, we have either xi � x j

or x j � xi because both x and y belong to the chain U j . The same conclusion can
be reached in the second case when both x and y belong to the chain Ui . So, in any
case, x and y are comparable, which proves that

⋃{Ui | i ∈ I } is a chain of (S,�).

Definition 2.42 A well-ordered poset is a poset for which every nonempty subset
has a least element.

A well-ordered set is necessarily a chain. Indeed, consider the well-ordered set
(S,�) and x, y ∈ S. Since the set {x, y} must have a least element, we have either
x � y or y � x .

Example 2.43 The set of natural numbers is well-ordered. This property of natural
numbers is known as the well-ordering principle.

(Well-Ordering Axiom) Given any set S, there is a binary relation ρ such that (S, ρ) is a
well-ordered set.

The set (R,�) is not well-ordered, despite the fact that it is a chain, since it
contains subsets such as (0, 1) = {x | x ∈ R, 0 < x < 1} that do not have a least
element.

Definition 2.44 Let “<” be the strict partial order of the poset (S,�). An infinite
descending sequence in a poset (S, ρ) is an infinite sequence s ∈ Seq⇒(S) such that
s(n + 1) < s(n) for all n ∈ N.

An infinite ascending sequence in a poset (S, ρ) is an infinite sequence s ∈
Seq⇒(S) such that s(n) < s(n + 1) for all n ∈ N.

A poset with no infinite descending sequences is called Artinian. A poset with no
infinite ascending sequences is called Noetherian.

Clearly, the range of every infinite ascending or descending sequence is a chain.

Example 2.45 The poset (N, ν) is Artinian. Indeed, suppose that s is an infinite
descending sequence of natural numbers. If s(0) ∩= 0, then the natural number
s(0) has an infinite set of divisors {s(0), s(1), . . .}. If s(0) = 0, in view of the fact
that any natural number is a divisor of 0, we obtain the impossibility of an infinite
descending sequence by applying the same argument to s(1). However, this poset is
not Noetherian. For instance, the sequence z : N −⊃ N defined by z(n) = 2n for
n ∈ N is an infinite ascending sequence.

A generalization of well-ordered posets is considered in the next definition.
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Definition 2.46 A well-founded poset is a partially ordered set where every
nonempty subset has a minimal element.

Since the least element of a subset is also a minimal element, it is clear that a
well-ordered set is also well-founded. However, the inverse is not true; for instance,
not every finite set is well-ordered.

Theorem 2.47 A poset (S, ρ) is well-founded if and only if it is Artinian.

Proof Let (S, ρ) be a well-founded poset, and suppose that s is an infinite descending
sequence in this poset. The set T = {s(n) | n ∈ N} has no minimal element since,
for every s(k) ∈ T , we have (s(k + 1), s(k)) ∈ ρ1, which contradicts the well-
foundedness of (S, ρ).

Conversely, assume that (S, ρ) is Artinian; that is, there is no infinite descending
sequence in (S, ρ). Suppose that K is a nonempty subset of S without minimal
elements. Let x0 be an arbitrary element of K . Such an element exists since K is
not empty. Since x0 is not minimal, there is x1 ∈ K such that (x1, x0) ∈ ρ. Since
x1 is not minimal, there is x2 ∈ K such that (x2, x1) ∈ ρ, etc., and this construction
can continue indefinitely. In this way, we can build an infinite descending sequence
s : N −⊃ S, where s(n) = xn for n ∈ N.

Theorem 2.47 implies immediately that any finite poset is well-founded.

Example 2.48 We will show that the poset (N × N,→) is well-founded.
If (m, n0) ≥ (m, n1) ≥ . . . is a descending chain of pairs having the same first

component, then n0 > n1 > . . . is a descending chain of natural numbers and such
a chain is finite. Therefore, (m, n0) ≥ (m, n1) ≥ . . . must be a finite chain.

Consider now an arbitrary descending chain,

(p0, q0) ≥ (p1, q1) ≥ . . . ,

in (N × N,→). We have p0 � p1 � . . ., and in this sequence we may have only
finite “constant” fragments pk = pk+1 = · · · = pk+l . Therefore, the chain of the
first components of the pairs of the sequence (p0, q0) ≥ (p1, q1) ≥ . . . is ultimately
decreasing, and this shows that the chain is finite. Thus, this poset is Artinian and
therefore, by Theorem 2.47, it is well-founded.

Definition 2.49 A graded poset is a triple (S,�, h), where (S,�) is a poset and
h : S −⊃ N is a function that satisfies the conditions:

(i) x < y implies h(x) < h(x) and
(ii) y covers x implies h(y) = h(x) + 1,

for every x, y ∈ S. The function h is referred to as the grading function.
The set Lk = {x ∈ S | h(x) = k} is called the k-th level of the poset (S,�, h).

Example 2.50 Define the function h : M5 −⊃ N by h(0) = 0, h(a) = h(b) =
h(c) = 1, and h(1) = 2. The triple (M5,�, h) is a graded poset. Its levels are
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Fig. 2.3 Hasse diagrams
of posets a (M5,�) and b
(N5,�)

(a) (b)

L0 = {0},
L1 = {a, b, c},
L2 = {1}.

Definition 2.51 Let (S,�) be a finite poset. The height of (S,�), denoted by
height(S,�), is the maximal number of elements of a chain.

The width of (S,�), width(S,�), is the maximal number of elements of an
antichain.

Example 2.52 Let S = {s1, . . . , sn} be a finite set such that |S| = n. The poset
(P(S),∈)has height n + 1 since a maximal chain has the form (⊆, {si1}, {si1 , si2}, . . . ,
S), where (si1, si2 , . . . , sin ) is a list of the elements of S. Its width is

( n
[n/2]

)
.

Definition 2.53 Let (S,�) be a poset that has a least element denoted by 0.
The height of an element x ∈ S (denoted by height(x)) is the least upper bound

of the lengths of the chains of the form 0 < x1 < · · · < xk = x.

If x is an atom of a poset that has the least element 0, then height(x) = 1.

Definition 2.54 A poset (S,�) satisfies the Jordan-Dedekind condition if all maxi-
mal chains between the same elements have the same finite length.

Example 2.55 The poset (M5,�) whose Hasse diagram is shown in Fig.2.3a satis-
fies the Jordan-Dedekind condition; the poset (N5,�) shown in Fig. 2.3b fails this
condition because it contains two maximal chains 0 < x < y < 1 and 0 < z < 1 of
different lengths between 0 and 1.

The next theorem shows that for a poset that has finite chains the Jordan-Dedekind
conditions is equivalent to the fact that the poset is graded by its height function.

Theorem 2.56 Let (S,�)be a poset that has finite chains and has the least element 0.
(S,�) satisfies the Jordan-Dedekind condition if and only if the following conditions
are satisfied:

(i) x < y implies height(x) < height(x), and
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(ii) y covers x implies height(y) = height(x) + 1
for every x, y ∈ S.

Proof If the height function satisfies the conditions of the theorem, then any maximal
chain between the elements x and y has length height(y)−height(x), so the Jordan-
Dedekind condition is satisfied. Conversely, if the Jordan-Dedekind condition holds,
then height(x) is the length of any maximal chain between 0 and x and the conditions
of the theorem follow immediately.

It is clear that if a finite poset (S,�) contains an antichain U such that |U | = m,
then S is the union of at least m chains since no two elements of an antichain may
belong to the same chain.

Theorem 2.57 (Dilworth’s Theorem) If (S,�) is a finite nonempty poset such that
width(S,�) = m, then there is a partition of S into m chains.

Proof The argument is by strong induction on n = |S|. If n = 1, then the statement
holds trivially.

Suppose that the statement holds for sets with fewer than n elements, and let
(S,�) be a poset with |S| = n.

Let C be a maximal chain in (S,�). Two cases may occur:

(i) If no antichain of (S − C,�) has m elements, then, by the induction hypothesis,
there exists a partition of S − C into m − 1 chains, so there is a partition of S
into m chains.

(ii) If S − C has an antichain U = {u1, . . . , um}, define the sets UPU and DOWNU

as

UPU = {x ∈ S|x � ui for some ui ∈ U },
DOWNU = {x ∈ S|x � ui for some ui ∈ U }.

Note that S = UPU ∅ DOWNU since otherwise S would contain an antichain with
more than m elements. Since (S,�) is a finite poset, the chain C has a largest
element t1 and a smallest element t0. We have the strict inclusions UPU ≡ S and
DOWNU ≡ S because t1 ∩∈ DOWNU and t0 ∩∈ UPU . Thus, both DOWNU and
UPU have fewer than n elements.

By the induction hypothesis, we can decompose both UPU and DOWNU as
partitions of chains, UPU = ⋃m

i=1 Ci∗ and DOWNU = ⋃m
i=1 Ci⊕, where ui ∈

Ci∗ ∞ Ci⊕. Note that ui is the least element of Ci∗ and the greatest element of Ci⊕.
Therefore, Ci∗ ∅ Ci⊕ is a chain, which gives the desired result.

Next, we state a related statement using antichains.

Theorem 2.58 If (S,�) is a finite nonempty poset such that height(S,�) = m,
then there is a partition of S into m antichains.
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Proof We construct a sequence of finite posets (Si ,�i ) for 0 � i � k − 1. The first
poset is (S0,�0) = (S,�).

Suppose that we defined the nonempty poset (Si ,�i ). Consider the antichain
Ui+1 = MAX(Si ,�i ) and the poset (Si+1,�i+1), where Si+1 = Si − Ui+1 and
�i+1= (�i )Si+1 . The process halts when Sk = Sk−1 − Uk = ⊆. It is clear that the
U1, . . . ,Uk are k pairwise disjoint antichains in (S,�) and that S = ⋃k

i=1 Ui .
Since no two members of an antichain may belong to the same chain and S contains

a chain having m elements, it follows that any partition of S into antichains requires
at least m antichains. Therefore, we have m � k, which means that we need to show
only that k � m.

To prove that k � m, we construct a chain x1 < x2 < · · · < xk in the poset
(S,�) beginning with xk . Choose xk to be an arbitrary element of Uk . If x j ∈ U j

for i � j � k, then choose xi−1 ∈ Ui−1 such that xi < xi−1. This choice is possible
because otherwise xi ∈ Ui−1 = MAX(Si−1,�i−1), which is contradictory because
xi ∈ Ui . This proves that {x1, . . . , xk} is a chain, so height(S,�) = m � k.

2.5 Poset Product

Let I be a set, and (S, ρ) be a poset. A partial order ρ is defined on the set of functions
I −⊃ S as ( f, g) ∈ ρ if ( f (i), g(i)) ∈ ρ for every i ∈ I for f, g : I −⊃ S.

The relation ρ on I −⊃ S. We verify only the antisymmetry and leave for the
reader the proofs of the reflexivity and transitivity. Assume that ( f, g), (g, f ) ∈ ρ
for f, g : I −⊃ S. We have ( f (i), g(i)) ∈ ρ and (g(i), f (i)) ∈ ρ for every i ∈ I .
Therefore, taking into account the antisymmetry of ρ, we obtain f (i) = g(i) for all
i ∈ I ; hence, f = g, which proves the antisymmetry of ρ.

For a set of functions F ∈ I −⊃ S, define the subset F(i) of S as S(i) = { f (i) |
f ∈ F} for i ∈ I .

Theorem 2.59 The subset F of the poset (I −⊃ S, ρ) has a supremum if and only
if sup F(i) exists for every i ∈ I in the poset (S, ρ).

Proof Suppose that sup F(i) exists for every i ∈ I in the poset (S, ρ). Define the
mapping g : I −⊃ S by g(i) = sup F(i) for every i ∈ I . We claim that g is sup F .

If f ∈ F , then ( f (i), g(i)) ∈ ρ for every i ∈ I because of the definition of g. This
shows that ( f, g) ∈ ρ; hence, g is an upper bound of F . Let h be an upper bound of
F . For every f ∈ F , we have ( f (i), h(i)) ∈ ρ for i ∈ I . The definition of g implies
(g(i), h(i)) ∈ ρ for i ∈ I ; hence, g = sup F .

Conversely, assume that k = sup F exists in the poset (I −⊃ S, ρ). We prove
that k(i) is sup F(i) for every i ∈ I in the poset (S, ρ).

The definition of k implies that, for every f ∈ F , we have ( f, k) ∈ ρ; that is,
( f (i), k(i)) ∈ ρ for every i ∈ I . Therefore, k(i) is an upper bound of the set F(i)
for every i ∈ I .

Let li be an upper bound for F(i) for i ∈ I . Define the function l : I −⊃ S as
l(i) = li for i ∈ I . Clearly, l is an upper bound of the set F in the poset (I −⊃ S, ρ),
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and therefore (k, l) ∈ ρ. This, in turn, means that (k(i), l(i)) = (k(i), li ) ∈ ρ, which
shows that sup F(i) exists and is equal to k(i).

Definition 2.60 The product of the posets {(Si ,�i ) | i ∈ I } is the poset (D,�),
where D = ∏

i∈I Si and “�” is the partial order introduced above on D. When
I = {1, . . . , n}, the product will be denoted by

(S1,�1) × · · · × (Sn,�n)

or by
∏

i∈I (Si ,�i ).

Theorem 2.61 Let {(Si ,�i ) | i ∈ I } be a family of partially ordered sets. If
H ∈ ∏

i∈I Si , then in the product poset, sup H (inf H) exists if and only if sup pi (H)

(inf pi (H), respectively) exists for every i ∈ I . Moreover, if y = sup H (y = inf H),
then pi (y) = sup pi (H) (pi (y) = inf pi (H)) for every i ∈ I .

Proof Assume that yi = sup pi (H) exists for every i ∈ I . We need to prove that the
element y of

∏
i∈I Si defined by pi (y) = yi is sup H .

Consider an arbitrary element z ∈ H . Since pi (z) ∈ pi (H), we have pi (z) �i yi ,
that is, pi (z) �i pi (y) for every i ∈ I . This means that z � y, which shows that y
is an upper bound of H .

Suppose now that v is an arbitrary upper bound of H . To show that y is sup H ,
we need to prove that y is the least upper bound of H ; that is, y � v or, equivalently,
pi (y) �i pi (v) for every i ∈ I .

If v is an upper bound of H , then pi (v) is an upper bound of pi (H). Since
pi (y) = yi = sup pi (H), we obtain immediately pi (y) �i pi (v) for every i ∈ I .

Conversely, suppose that sup H exists. Let y = sup H and let yi = pi (y) for
every i ∈ I . We have xi ∈ pi (H) if there is x ∈ H such that pi (x) = xi . Since
x � y, it follows that xi �i pi (y), which shows that pi (y) is an upper bound for
pi (H).

Letwi be an arbitrary upper bound of pi (H) for every i ∈ I . There isw ∈ ∏
i∈I Si

such that pi (w) = wi , and we have y � w because w is an upper bound for H .
Consequently, pi (y) �i pi (w), and this means that yi = sup pi (H) for every i ∈ I .

The statement for inf follows by dualization.

Another kind of partial order that can be introduced on S1 ×·× Sn is defined next.

Theorem 2.62 For f, g ∈ S1 × · · · × Sn, define f → g if f = g or if there is k,
1 � k � n, such that f (k) ∩= g(k), f (i) = g(i) for 1 � i < k and f (k) <k g(k).

The relation → is a partial order on S1 × · · · × Sn.

Proof The relation → is obviously reflexive. Suppose now that f → g and g → f and
that f ∩= g. There are k, h ∈ N such that f (i) = g(i) for 1 � i < k, f (k) <k g(k),
and f (i) = g(i) for 1 � i < h, f (h) <h g(h). If k < h, this leads to a contradiction
since we cannot have f (k) <k g(k) and f (k) = g(k). The case h < k also results
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Fig. 2.4 Hasse diagrams of a
({0, 1},�) and b ({0, 1}2,�)

(a) (b)

Fig. 2.5 Hasse diagram of
({0, 1}2,→)

in a contradiction. For k = h, the previous supposition implies f (k) <k g(k) and
g(k) <k f (k), which is contradictory because “<k” is a strict partial order.

Assume that f → g and g → l and that f ∩= g, g ∩= l. There are k, h ∈ N such
that f (i) = g(i) for 1 � i < k, f (k) <k g(k), and g(i) = l(i) for 1 � i < h,
g(h) <h l(h). Define p as being the least of the numbers k, h. For 1 � i < p, we
have f (i) = g(i) = l(i). In addition, we have f (p) �p l(p). Three cases may
occur:

1. f (p) = g(p) and g(p) <p l(p) (when k > h),
2. f (p) <p g(p) and g(p) = l(p) (when k < h), and
3. f (p) <p g(p) and g(p) <p l(p) (when k = h).

If f = l, then we have f → l. Therefore, we can assume that f ∩= l. In the first
two cases mentioned above, this would imply immediately f → l because of the fact
that f (p) <p l(p). The same conclusion can be reached in the third case because of
the transitivity of the strict partial order <p.

We refer to the partial order “→” as the lexicographic partial order on S1×· · ·×Sn .
Let {(Si ,�i ) | 1 � i � n}be a family of totally ordered posets. The product poset∏n

i=1(Si ,�i ) is not necessarily a total order; however, the lexicographic product
(S1 × · · · × Sn,→) is a total order (see Exercise 24).

Example 2.63 Consider the totally ordered set ({0, 1},�), whose Hasse diagram is
given in Fig. 2.4a. The Hasse diagram of the poset (S × S,�) is shown in Fig. 2.4b.

On the other hand, the Hasse diagram of the poset ({0, 1}2,→) given in Fig. 2.5
shows that “→” is a total order on {0, 1}2.

If S1 = · · · Sn = S, then we obtain the poset (Seqn(S),→).
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2.6 Functions and Posets

Let (S,�) and (T,�) be two posets.

Definition 2.64 A morphism between (S,�) and (T,�) or a monotonic mapping
between (S,�) and (T,�) is a mapping f : S −⊃ T such that u, v ∈ S and u � v

imply f (u) � f (v).
A mapping g : S −⊃ T is antimonotonic if u, v ∈ S and u � v imply g(u) �

g(v).
The mapping f is strictly monotonic if u < v implies f (u) < f (v), where “<”

is the strict partial order associated with the partial order “�”.

Note that g : S −⊃ T is antimonotonic if and only if g is a monotonic mapping
between the poset (S,�) and the dual (T,�) of the poset (T,�).

Example 2.65 Consider a set M , the poset (P(M),∈), and the functions f, g :
(P(M))2 −⊃ P, defined by f (K , H) = K ∅ H and g(K , H) = K ∞ H , for
K , H ∈ P(M). If the Cartesian product is equipped with the product partial order,
then both f and g are monotonic. Indeed, if (K1, H1) ∈ (K2, H2), we have K1 ∈ K2
and H1 ∈ H2, which implies that

f (K1, H1) = K1 ∅ H1 ∈ K2 ∅ H2 = f (K2, H2).

The argument for g is similar, and it is left to the reader.

Example 2.66 Let {(Si , ρi ) | i ∈ I } be a collection of posets and let

(∏
i∈I

Si , ρ

)

be the product of these posets. The projections pi : ∏i∈I Si −⊃ Si are monotonic
mappings, as the reader will easily verify.

Example 2.67 Let (M, ρ) be an arbitrary poset. Any function f : S −⊃ M is
monotonic when considered between the posets (S, ιS) and (M, ρ).

Theorem 2.68 Let (P,�), (R,�), (S,�) be three posets and let f : P −⊃ R,
g : R −⊃ S be two monotonic mappings. The mapping g f : P −⊃ S is also
monotonic.

Proof Let x, y ∈ P be such that x � y. In view of the monotonicity of f , we have
f (x) � f (y), and this implies (g( f (x)) ⊕ g( f (y)) because of the monotonicity of
g. Therefore, g f is monotonic.

Let (P,�) and (R,�) be two posets. For a monotonic function f : P −⊃ R,
the quotient set, P/ker( f ) can also be organized as a poset. Indeed, if [x], [y] ∈
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P/ker( f ), then we define [x] � [y] if f (x) � f (y). This partial order o P/ker( f )
is well-defined because if x ∪ ∈ [x] and y∪ ∈ [y], we have ( f (x ∪), f (y∪)) =
( f (x), f (y)).

Theorem 2.69 The mapping g : P −⊃ P/ker( f ) defined by g(x) = [x] for x ∈ P
is a monotonic mapping between the posets (P,�) and (P/ker( f ),�).

Proof The argument is straightforward, and it is left to the reader as an exercise.

Let f : S −⊃ T be a monotonic bijection between the posets (S,�) and (T,�).
As we have seen in Chapter 1, the inverse f −1 is also a bijection. Nevertheless, the
inverse is not necessarily monotonic, as follows from the next example.

Example 2.70 Let (M5,�) and (N5,�) be the posets whose Hasse diagrams are
given in Fig. 2.3, and consider the mapping f : M5 −⊃ N5 defined by f (0) = 0,
f (a) = y, f (b) = x , f (c) = z, and f (1) = 1. The inverse bijection f −1 is not
monotonic because we have x � y in (N5,�) and ( f −1(x), f −1(y)) = (b, a) and
b ∩� a in (M5,�).

Let (R,�) and (S,�) be two posets. The previous considerations justify the
following definition.

Definition 2.71 A poset isomorphism between the posets (R,�) and (S,�) is a
monotonic bijective mapping f : R −⊃ S for which the inverse mapping f −1 is
also monotonic.

If a poset isomorphism exists between the posets (P,�) and (S,�), then we refer
to these posets as isomorphic.

Example 2.72 Let {p1, p2, . . . , pn} be the first n primes, p1 = 2, p2 = 3, p3 = 5,
etc. Let m = p1 · · · pn be their product and let Dm be the set of all divisors of m.
Consider an arbitrary set A = {a1, . . . , an} having n elements.

The posets (P(A),∈) and (Dm, ν) are isomorphic. Indeed, define the mapping
f : P(A) −⊃ Dm by f (⊆) = 1 and f ({ai1 , . . . , aik }) = pi1 · · · pik .

The mapping f is bijective. Indeed, for any divisor h of m, we have h = pi1 · · · pik

and therefore h = f ({ai1 , . . . , aik }), which shows that f is surjective.
If f ({ai1 , . . . , aik }) = f ({a j1, . . . , a jl }), then pi1 · · · pik = p j1 · · · p jl . This gives

k = l and i1 = j1, . . . , ik = jk ; hence, {ai1 , . . . , aik } = {a j1 , . . . , a jl }, which proves
that f is injective.

The mapping f is monotonic because if {ai1 , . . . , aik } ∈ {a j1, . . . , a jl },

{i1, . . . , ik} ∈ { j1, . . . , jl},

and this means that the number pi1 · · · pik divides p j1 · · · p jl .
The inverse mapping g : Dm −⊃ P(A) is also monotonic; we leave the argument

to the reader.

Monotonic functions map chains to chains, as we show next.
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Fig. 2.6 The Hasse diagram of (PART({1, 2, 3, 4}),�)

Theorem 2.73 Let (P,�) and (R,�) be two posets and f : P −⊃ R be a
monotonic function. If L ∈ P is a chain in (P,�), then f (L) is a chain in (R,�).

Proof Let u, v ∈ f (L) be two elements of f (L). There exist x, y ∈ L such that
f (x) = u and f (y) = v. Since L is a chain, we have either x � y or y � x . In the
former case, the monotonicity of f implies u � v; in the latter situation, we have
v � u.

2.7 The Poset of Equivalences and the Poset of Partitions

In Definition 1.110 we introduced the relation “�” on PART(S) and we examined
the relationships that exists between equivalences and partitions on a set. It is easy to
verify that this is a partial order relation on PART(S). Thus, the pair (PART(S),�)

is a poset.

Example 2.74 The Hasse diagram of (PART({1, 2, 3, 4}),�) is given in Fig. 2.6.
To simplify this figure, we represent each nonempty subset of {1, 2, 3, 4} as an

increasing set of its elements and omit the outer braces; for instance, instead of
{1, 2, 3}, we write 123.

The poset (PART(S),�) has σS as its first element and φS as its largest.

Theorem 2.75 Let λ,π ∈ PART(S) such that λ � π. The partition π covers the
partition λ if and only if there exists a block C of π that is the union of two blocks B
and B ∪ of λ and every block of π that is distinct of C is a block of λ.

Proof Suppose that π is a partition that covers the partition λ. Since λ � π, every
block of π is a union of blocks of λ. Suppose that there exists a block E of π that is
the union of more than two blocks of λ; that is, E = ⋃{Bi | i ∈ I }, where |I | � 3,
and let Bi1, Bi2 , Bi3 be three blocks of λ included in E . Consider the partitions
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π1 = {C ∈ π | C ∩= E} ∅ {Bi1, Bi2 , Bi3},
π2 = {C ∈ π | C ∩= E} ∅ {Bi1 ∅ Bi2 , Bi3}.

It is easy to see that λ � π1 < π2 < π, which contradicts the fact that π covers
λ. Thus, each block of π is the union of at most two blocks of λ.

Suppose that π contains two blocks C ∪ and C ∪∪ that are unions of two blocks of
λ, namely C ∪ = Bi0 ∅ Bi1 and C ∪∪ = Bi2 ∅ Bi3 . Define the partitions

π∪ = {C ∈ π | C ∩∈ {C ∪,C ∪∪}} ∅ {C ∪, Bi2 , Bi3},
π∪∪ = {C ∈ π | C ∩∈ {C ∪,C ∪∪}} ∅ {Bi1, Bi2 ,C ∪∪}.

Since λ < π∪,π∪∪ < π, this contradicts the fact that π covers λ. Thus, we obtain the
conclusion of the theorem.

We introduced the equivalence ρλ that can be built from a partition λ and the
partition λρ that consists of the equivalence classes of ρ. Furthermore, in Corollary
1.114 we noted that ρ = ρλρ and λ = λρλ . These observations can be strengthened
in the framework of posets.

Theorem 2.76 The posets (EQ(S),∈) and (PART(S),�) are isomorphic.

Proof Let f : EQ(S) −⊃ PART(S) be the mapping defined by f (ρ) = S/ρ. We
need to show that f is a monotonic bijective mapping and that its inverse mapping
f −1 is also monotonic.

The bijectivity of f follows immediately from the remarks that precede the
theorem. Let ρ0, ρ1 be two equivalences such that ρ0 ∈ ρ1 and let S/rho0 = {Bi |
i ∈ I }, S/rho1 = {C j | j ∈ J }. Let Bi be a block in S/rho0 and assume that
Bi = [x]ρ0 . We have y ∈ Bi if and only if (x, y) ∈ ρ0, so (x, y) ∈ ρ1. Therefore,
y ∈ [x]ρ1 , which shows that every block B ∈ S/rho0 is included in a block C ∈ ρ1.
This shows that f (ρ0) � f (ρ1), so f is indeed monotonic. We leave to the reader
the proof of monotonicity for f −1.

Theorem 2.77 Let {ρi | i ∈ I } ∈ EQ(S) be a collection of equivalences. Then,
inf{ρi | i ∈ I } = ⋂

i∈I ρi .

Proof By Theorem 1.170, ρ = ⋂
i∈I ρi is the closure of the family of equivalences

{ρi | i ∈ I }. It is clear that if α ∈ EQ(S) and ρi ∈ α for i ∈ I , then ρ ∈ α.

Definition 2.78 Let S be a set and let ρ, ω ∈ EQ(S). A (ρ, ω )-alternating sequence
that joins x to y is a sequence (s0, s1, . . . , sn) such that x = s0, y = sn, (si , si+1) ∈ ρ
for every even i and (si , si+1) ∈ ω for every odd i , where 0 � i � n − 1.

lemma 2.79 Let S be a set and let ρ, ω ∈ EQ(S). If s and z are two (ρ, ω )-alternating
sequences joining x to y and y to z, respectively, then there exists a (ρ, ω )-alternating
sequence that joins x to z.
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Proof Let (s0, . . . , sn) be a (ρ, ω )-alternating sequences joining x to y and (w0, . . . ,

wm) a (ρ, ω )-alternating sequences joining y to z, where x = s0, sn = w0 = y
and wm = z. If (sn−1, sn) ∈ ω , then the sequence (s0, . . . , sn, w1, . . . , wm) is a
(ρ, ω )-alternating sequence joining x to z. Otherwise, that is, if (sn−1, sn) ∈ ρ, then
taking into account the reflexivity of ω we have (sn, w0) = (sn, sn) ∈ ω . In this case,
(s0, . . . , sn, sn, w1, . . . , wm) is a (ρ, ω )-alternating sequence joining x to z.

Theorem 2.80 Let S be a set and let ρ, ω ∈ EQ(S). If α is the relation that consists
of all pairs (x, y) ∈ S × S that can be joined by a (ρ, ω )-alternating sequence, then
α = sup{ρ, ω }.
Proof It is easy to verify that α is indeed an equivalence relation. Note that we have
both ρ ∈ α and ω ∈ α. Indeed, if (x, y) ∈ ρ, then (x, y, y) is a (ρ, ω )-alternating
sequence joining x to y. If (x, y) ∈ ω , then (x, x, y) is the needed alternating
sequence.

Let ψ ∈ EQ(S) such that ρ ∈ ψ and ω ∈ ψ. If (x, y) ∈ α, and (s0, s1, . . . , sn)

is a (ρ, ω )-alternating sequence such that x = s0, y = sn , then each pair (si , si+1)

belongs to ψ. By the transitivity property, (x, y) ∈ ψ, so α ∈ ψ. This implies that
α = sup{ρ, ω }.

By Theorem 2.76, if λ,π ∈ PART(S) both the infimum and the supremum of the
set {λ,π} exist and their description follows from the corresponding results that refer
to the equivalence relations. Namely, if λ,π ∈ PART(S), where λ = {Bi | i ∈ I }
and π = {C j | j ∈ J }, the partition inf{λ,π} exists and is given by

inf{λ,π} = {Bi ∞ C j | i ∈ I, j ∈ J and Bi ∞ C j ∩= ⊆}.

The partition inf{λ,π} will be denoted by λ √ π.
A block of the partition sup{λ,π}, denoted by λ ⊇ π, is an equivalence class of

the equivalence θ = sup{ρλ √ ρπ}. We have y ∈ [x]θ if there exists a sequence
(s0, . . . , sn) ∈ Seq(S) such that x = s0, sn = y and successive sets {si , si+1} are
included, alternatively, in a block of λ or in a block of π. More intuitive descriptions
of sup{λ,π} and inf{λ,π} is given in Sect. 10.4 of Chap.10.

2.8 Posets and Zorn’s Lemma

A statement equivalent to a fundamental principle of set theory known as the Axiom
of Choice is Zorn’s lemma stated below.

Zorn’s Lemma: If every chain of a poset (S,�) has an upper bound, then S has a maximal
element.

Theorem 2.81 The following three statements are equivalent for a poset (S,�):

(i) If every chain of (S,�) has an upper bound, then S has a maximal element
(Zorn’s Lemma).

http://dx.doi.org/10.1007/978-1-4471-6407-4_10
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(ii) If every chain of (S,�) has a least upper bound, then S has a maximal element.
(iii) S contains a chain that is maximal with respect to set inclusion (Hausdorff

maximality principle).

Proof (i) implies (ii) is immediate.
(ii) implies (iii): Let (CHAINS(S),∈) be the poset of chains of S ordered by set

inclusion. By Theorem 2.41, every chain {Ui | i ∈ I } of the poset (CHAINS(S),∈)

has a least upper bound
⋃{Ui | i ∈ I } in the poset (CHAINS(S),∈). Therefore,

by (ii), (CHAINS(S),∈) has a maximal element that is a chain of (S,�) that is
maximal with respect to set inclusion.

(iii) implies (i): Suppose that S contains a chain W that is maximal with respect
to set inclusion and that every chain of (S,�) has an upper bound. Let w be an upper
bound of W .

If w ∈ W , then w is a maximal element of S. Indeed, if this were not the case,
then S would contain an element t such that w < t and W ∅ {t} would be a chain
that would strictly include W .

If w ∩∈ W , then W ∅ {w} would be a chain strictly including W , which, again,
would contradict the maximality of W . Thus, w is a maximal element of (S,�).

Denote by PORD(S) the collection of partial order relations on the set S.

Definition 2.82 Let ρ, ρ∪ ∈ PORD(S). The partial order ρ∪ is an extension of ρ if
(x, y) ∈ ρ implies (x, y) ∈ ρ∪. Equivalently, we shall say that ρ∪ extends ρ.

An important consequence of Zorn’s lemma is the next statement, which shows
that any partial order defined on a set can be extended to a total order on the same
set.

Theorem 2.83 (Szpilrajn’s Theorem) Let (S,�) be a poset. There is a total order
�∪ on S that is an extension of �.

Proof Let PORD(S,�) be the set of partial order relations that can be defined on
the set S and contain the relation “�”; clearly, the relation “�” itself is a member of
PORD(S,�). We will apply Zorn’s lemma to the poset (PORD(S,�),∈).

Let R = {ρi | i ∈ I } be a chain of (PORD(S,�),∈); that is, a chain of partial
orders ρi relative to set inclusion such that x � y implies (x, y) ∈ ρi for every i ∈ I
and all x, y ∈ S. We claim that the relation ρ = ⋃

R is a partial order on S.
Indeed, since ιS ∈ � ∈ ρi for i ∈ I we have ιS ∈ ρ, so ρ is a reflexive relation.

To prove that ρ is antisymmetric let x, y ∈ S be two elements such that (x, y) ∈ ρ
and (y, x) ∈ ρ. By the definition of ρ, there exist i, j ∈ I such that (x, y) ∈ ρi and
(y, x) ∈ ρ j . Since R is a chain, we have either ρi ∈ ρ j or ρ j ∈ ρi . In the first case,
both (x, y) and (y, x) belong to ρ j , so x = y because of the antisymmetry of ρ j ; in
the second case, the same conclusion follows because (x, y) and (y, x) belong to ρi .
Thus, ρ is indeed antisymmetric.

We leave it to the reader to prove the transitivity of ρ. Thus, ρ is a partial order
that includes “�”, and the arbitrary chain R has an upper bound. By Zorn’s lemma
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Fig. 2.7 Hasse diagrams of
three total orders on the set
{0, x, y, z, 1}

(a) (b) (c)

the poset (PORD(S,�),∈) has a maximal element �∪. We now prove that �∪ is a
total order.

Suppose that (u, v) and (v, u) are two distinct ordered pairs of elements of S such
that u ∩�∪ v and v ∩�∪ u. We show that this supposition leads to a contradiction.

Let �1 be the relation on S given by

�1 = {(x, y) ∈ S × S | x �∪ y} ∅ {(u, v)}
∅{(z, v) ∈ S × {v} | z �∪ v} ∅ {(u, t) ∈ {u} × S | u �∪ t}.

Since ιS ∈ �∪ ∈ �1, it follows that �1 is reflexive.
To prove the antisymmetry of �1, suppose that p �1 q and q �1 p. Since v ∩�∪ u,

it follows that (p, q) ∩= (u, v). Thus, the following cases may occur:

(i) If p �∪ q and q �∪ p, then p = q by the antisymmetry of �∪.
(ii) If p = u, we have u �1 q and q �1 u. By the definition of �1, this implies

u �∪ q and q �∪ u, respectively, so q = u = p.
(iii) If q = v, we have p �1 v and v �1 p, which imply p �∪ v and v �∪ p,

respectively. Thus, p = v = q .

We leave the proof of transitivity for “�1” to the reader.
Note that �∪ is strictly included in �1 because u ∩�∪ v. This contradicts the

maximality of the partial order �∪, so �∪ must be a total order.

Example 2.84 Consider the poset (N5,�) introduced in Example 2.55. The posets
(N5,�i ), where 1 ⊕ i � 3 whose Hasse diagrams are shown in Fig.2.7a–c are such
that � ≡ �i and �i is a total order for 1 � i � 3. Also, it is easy to see that we have
actually � = �1 ∞ �3.

Corollary 2.85 Let (S,�) be a poset and let x and y be two incomparable elements
in (S,�). There exists a total order �∪ on S that extends � such that x �∪ y and a
total order �∪∪ that extends � such that y �∪∪ x.

Proof This statement follows immediately from Szpilrajn’s theorem.
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Exercises and Supplements

1. Define the relation � on the set Nn by (p1, . . . , pn) ⊕ (q1, . . . , qn) if pi � qi

for 1 � i � n. Prove that (Nn,�) is a partially ordered set.
2. Prove that acyclicity is a hereditary property; this means that if a relation π ∈

S × S is acyclic and θ ∈ π, then θ is also acyclic.
3. Let f : R −⊃ R>0 and g : R>0 −⊃ R be the functions defined by f (x) = ex

for x ∈ R and g(x) = ln x for X ∈ R>0. Prove that f and g are mutually inverse
isomorphisms between the posets (R,�) and (R>0,�).

4. Let S and T be two sets and let � be the relation on S � T defined by f � g
if Dom( f ) ∈ Dom(g) and f (s) = g(s) for every s ∈ Dom( f ). Prove that � is
a partial order on S � T .

5. Prove that a binary relation ρ on a set S is a strict partial order on S if and only
if it is irreflexive, transitive, and antisymmetric.

6. Let (S,�) be a poset. An order ideal is a subset I of S such that x ∈ I and
y � x implies y ∈ I . If I(S,�) is the collection of order ideals of (S,�), prove
that K ∈ I(S,�) implies

⋂
K ∈ I(S,�). Further, argue that S ∈ I(S,�).

7. Let (S,�) be a poset. An order filter is a subset F of S such that x ∈ F and
y � x implies y ∈ F . If F(S,�) is the collection of order filters of (S,�), prove
that K ∈ F(S,�) implies

⋂
K ∈ F(S,�). Further, show that S ∈ I(S,�).

8. Let (S,�) be a finite poset. Prove that S contains at least one maximal and at
least one minimal element.

9. Let (S,�) be a finite poset, where S = {x1, . . . , xn}. Construct the sequence of
posets ((S1,�1), (S2,�2), . . .) as follows. Let (S1,�1) = (S,�). For 1 � i �
n, choose x pi to be the first element of Si in the sequence s = (x1, . . . , xn) that is
minimal in (Si ,�). Define Si+1 = Si − {x pi } and �i+1 =�i ∞ (Si+1 × Si+1).
Prove that the sequence (x p1 , . . . , x pn ) is a total order on S that extends the
partial order �.

10. Let S be an infinite set and let (C,∈) be the partially ordered set of its cofinite
sets. Prove that for every U, V ∈ C both sup{U, V } and inf{U, V } exist.

11. Does the poset of partial functions (S � T,�) introduced in Exercise 4 have a
least element?

12. Let (S,�) be a poset and let U and V be two subsets of S such that U ∈ V .
Prove that if both sup U and sup V exist, then sup U � sup V . Prove that if both
inf U and inf V exist, then inf V � inf U .

13. Prove that the Completeness Axiom of R implies that for any positive real num-
bers x, y there exists n ∈ N such that nx > y (Archimedes’ property of R).

14. Suppose that S and T are subsets of R that are bounded above. Prove that S ∅ T
is bounded above and sup S ∅ T = max{sup S, sup T }.

15. Let λ and π be two partitions of a finite set S. Prove that |λ| + |π| � |λ √ π| +
|λ ⊇ π|.

16. Prove that if λ is a partition of a set S and |λ| = k, then there are
(k
2

)
partitions

that cover λ.
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Fig. 2.8 The Hasse diagram
of the standard example

Fig. 2.9 Hasse diagram of
the poset Tm,p,q

17. Let (S,�) be a poset. Prove that if a chain in S has at most p elements and an
antichain has at most q elements, then |S| ⊕ pq.

18. Let (S,�) be a poset. Prove that (S,�) is a chain if and only if for every subset
T of S both sup T and inf T exist and {sup T, inf T } ∈ T .

Let (S,�) be a poset. A realizer of (S,�) is a family of total orders on S, R = {�i

| i ∈ I } such that
�=

⎛
{�i | i ∈ I }.

If (S,�) is a finite poset, the dimension of (S,�) is the smallest size d of a realizer
of (S,�). The dimension of a finite poset (S,�) is denoted by dim(S,�).

19. Let S = {x1, . . . , xn} be a finite set. Prove that the discrete partial order ιS on S
has dimension 2.

Solution: Consider the total order �1 = TO(x1, . . . , xn) and its dual �2 =
TO(xn, . . . , x2, x1). Note that (x, x ∪) ∈�1 ∞ �2 if and only if x = x ∪; that is,
if and only if (x, x ∪) ∈ ιS .

20. Let (Sn,�) be the poset whose Hasse diagram is given in Fig. 2.8, where Sn =
{x1, . . . , xn, y1, . . . , xn}. This poset was introduced in [1] and is known as the
standard example. Prove that dim(Sn,�) = n.

21. Consider the poset (Tp,m,q ,�), whose Hasse diagram is given in Fig. 2.9. The
set Tp,m,q consists of three sets of pairwise incomparable elements {z1, . . . , z p},
{u1, . . . , um}, and {w1, . . . , wq} such that zi < u j < wk for every 1 � i � p,
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1 � j � m, and 1 � k � q . Prove that if at least one of the numbers p,m, q is
greater than 1, then dim(Tp,m,q ,�) = 2.

22. Prove that the set of partial order relations on a set S is a closure system on the
set S × S.

23. Prove that the transitive closure of an acyclic relation is a strict partial order.
24. Prove that if {(Si ,�i ) | 1 � i � n} is a family of totally ordered posets, then

the lexicographic product (S1 × · · · × Sn,→) is a total order.
25. Let (S1,�1) and (S2,�2) be two posets and let f : S1 −⊃ S2 be a monotonic

mapping. Prove that if S2 has a least element 0, then f −1(0) is an order filter of
S1, and if S2 has a greatest element 1, then f −1(1) is an order ideal of S1.

26. Let (S,�) be a poset. Define the mapping f� : S −⊃ P(S) by f�(x) = {y ∈
S | x < y}.
(a) Prove that f� is an antimonotonic mapping between the posets (S,�) and

(P(S),∈).
(b) If C is a chain in (S,�), prove that f�(C) is a chain in (P(S),∈).
(c) Let (S,�) and (S,�∪) be two posets defined on the set S. Prove that

f�∞�∪(x) = f�(x) ∞ f�∪(x) for every x ∈ S.

27. In the proof of Szpilrajn’s theorem, we introduced the set of partial orders that
extend the partial order “�”. The inclusion between relations defines a partial
order on PORD(S,�). We saw that the maximal elements of PORD(S,�) are
total orders on S and that the least element of PORD(S,�) is the relation �
itself.
Let (S,�) be a poset. Prove that there exists a collection of total orders {�i |
i ∈ I } on S such that �= ⋂

i∈I �i .
Solution: If � is itself a total order, then the desired collection of total orders

consists of � itself. Suppose therefore that � is not total, and let INC(S,�) be
the set of all pairs of incomparable elements of (S,�).

For each pair (x, y) ∈ INC(S,�), consider the total orders �∪
xy and �∪∪

xy that
extend � such that x �∪

xy y and y �∪
xy x . Clearly,

� ∈
⎛

{�∪
xy ∞ �∪∪

xy | (x, y) ∈ INC(S,�)}.

Suppose that
⋂{�∪

xy ∞ �∪∪
xy | (x, y) ∈ INC(S,�)} contains a pair of elements

(r, s)INC(S,�). Then, we have both r �∪
rs s and r �∪∪

rs s. Since s �∪∪
rs r , this

would imply r = s by the antisymmetry of �∪∪
rs . This, however, contradicts the

incomparability of (r, s) in (S,�). Thus, for any pair (u, v) ∈ ⋂{�∪
xy ∞ �∪∪

xy |
(x, y) ∈ INC(S,�)}, we have u � v or v � u, which shows that

� =
⎛

{�∪
xy ∞ �∪∪

xy | (x, y) ∈ INC(S,�)}.

A poset (S,�) is locally finite if every interval [x, y] of S is a finite set.

28. Prove that the poset (N,�) is locally finite.
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29. Let S be a finite set. Prove that the poset (Seq(S),�in f ), where �in f is the
partial order introduced in Example 2.6, is locally finite.

Let (P,�), and (Q,�) be two posets. Their product is the poset (P × Q,�) where
(x, y) � (x ∪, y∪) if x � x ∪ and y � y∪.

30. Let (P,�), and (Q,�) be two posets. Prove that (P × Q,�) is locally finite if
and only if both (P,�) and (Q,�) are locally finite.

31. Prove that if (P,�) and (Q,�) are graded posets by the grading functions h
and g, respectively, then (P × Q,�) is graded by the function f defined by
f (p, q) = h(p)g(q) for (p, q) ∈ P × Q.

32. Let ψ : S × S −⊃ R be the Riemann function of a locally finite poset (S,�),
and let ψk be the product ψ ∧ ψ ∧ · · · ∧ ψ, which contains k ψ factors, where k ∈ N.
Prove that:

(a) ψ2(x, y) = |[x, y]| if x � y.
(b) ψk(x, y) gives the number of multichains of length k that can be interpolated

between x and y.

Bibliographical Comments

There is a vast body of literature dealing with posets and their applications and a
substantial number of references that focus on combinatorial study of posets. Among
these we mention [2–5].

Two very useful referrences are [6] and [7].
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Chapter 3
Combinatorics

3.1 Introduction

Combinatorics is the area of mathematics concerned with counting collections of
mathematical objects. We begin by discussing several elementary combinatorial
issues such as permutations, the power set of a finite sets, the inclusion-exclusion
principle, and continue with more involved combinatorial techniques that are relevant
for data mining, such as the combinatorics of locally finite posets, Ramsey’s Theorem,
various combinatorial properties of collection of sets. The chapter concludes with
two sections dedicated to the Vapnik-Chervonenkis dimension of a collection and to
the Sauer–Shelah theorem.

3.2 Permutations

Definition 3.1 A permutation of a set S is a bijection f : S −∈ S.

A permutation f of a finite set S = {s0, . . . , sn−1} is completely described by the
sequence ( f (s0), . . . , f (sn−1)). No two distinct components of such a sequence may
be equal because of the injectivity of f , and all elements of the set S appear in this
sequence because f is surjective. Therefore, the number of permutations equals the
number of such sequences, which allows us to conclude that there are n(n−1) · · · 2·1
permutations of a finite set S with |S| = n.

The number n(n − 1) · · · 2 · 1 is denoted by n!. This notation is extended by
defining 0! = 1 to capture the fact that there exists exactly one bijection of ∅, namely
the empty mapping.

The set of permutations of the set S = {1, . . . , n} is denoted by PERMn . If
f ∪ PERMn is such a permutation, we write

f :
(

1 · · · i · · · n
a1 · · · ai · · · an

⎜
,

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 97
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_3,
© Springer-Verlag London 2014
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where ai = f (i) for 1 ∞ i ∞ n. To simplify the notation, we specify f just by the
sequence (a1, . . . , ai , . . . , an).

Since {1, . . . , n} is a finite set, for every x ∪ {1, . . . , n} and f ∪ PERMn there
exists k ∪ N such that x = f k(x). If k is the least number with this property, the set
{x, f (x), . . . , f k−1(x)} is the cycle of x and is denoted by C f,x . The number |C f,x |
is the length of the cycle.

Cycles of length 1 are said to be trivial.
Note that each pair of elements f i (x) and f j (x) of C f,x are distinct for

0 ∞ i, j ∞ |C f,x | − 1.
If z ∪ C f,x and |C f,x | = k, then z = f j (x) for some j , 0 ∞ j ∞ k − 1. Since

x = f k(x), it follows that x = f k− j (z), which shows that x ∪ C f,z . Consequently,
C f,x = C f,z .

Thus, the cycles of a permutation f ∪ PERMn form a partition ρ f of {1, . . . , n}.
Definition 3.2 A k-cyclic permutation of {1, . . . , n} is a permutation such that ρ f

consists of a cycle of length k, ( j1, . . . , jk) and a number of n − k cycles of length 1.
A transposition of {1, . . . , n} is a 2-cyclic permutation.

Note that if f is a transposition of {1, . . . , n}, then f 2 = 1S .

Theorem 3.3 Let f be a permutation in PERMn, and ρ f = {C f,x1, . . . , C f,xm } be
the cycle partition associated to f . Define the cyclic permutations g1, . . . , gm of
{1, . . . , n} as

gp(t) =
{

f (t) if t ∪ C f,x p ,

t otherwise.

Then, gpgq = gqgp for every p, q such that 1 ∞ p, q ∞ m.

Proof Observe first that u ∪ C f,x if and only if f (u) ∪ C f,x for any cycle C f,x .
We can assume that p ∅= q . Then, the cycles C f,x p and C f,xq are disjoint. If

u ∅∪ C f,x p ⊆ C f,xq , then we can write gp(gq(u)) = gp(u) = u and gq(gp(u)) =
gq(u) = u.

Suppose now that u ∪ C f,x p − C f,xq . We have gp(gq(u)) = gp(u) = f (u).
On the other hand, gq(gp(u)) = gq( f (u)) = f (u) because f (u) ∅∪ C f,xq . Thus,
gp(gq(u)) = gq(gp(u)). The case where u ∪ C f,xq −C f,x p is treated similarly. Also,
note that C f,x p ∩ C f,xq = ∅, so, in all cases, we have gp(gq(x)) = gq(gp(u)).

The set of cycles {g1, . . . , gm} is the cyclic decomposition of the permutation f .

Definition 3.4 A standard transposition is a transposition that changes the places
of two adjacent elements.
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Example 3.5 The permutation f ∪ PERM5 given by

f :
(

1 2 3 4 5
1 3 2 4 5

⎜

is a standard transposition of the set {1, 2, 3, 4, 5}.
On the other hand, the permutation

g :
(

1 2 3 4 5
1 5 3 4 2

⎜

is a transposition but not a standard transposition of the same set because the pair of
elements involved is not consecutive.

If f ∪ PERMn is specified by the sequence (a1, . . . , an), we refer to each pair
(ai , a j ) such that i < j and ai > a j as an inversion of the permutation f . The set
of all such inversions is denoted by INV( f ). The number of elements of INV( f ) is
denoted by inv( f ).

A descent of a permutation f ∪ PERMn is a number j such that 1 ∞ j ∞ n − 1
and a j > a j+1. The set of descents of f is denoted by D( f ).

Example 3.6 Let f ∪ PERM6 be:

f :
(

1 2 3 4 5 6
4 2 5 1 6 3

⎜
.

We have INV( f ) = {(4, 2), (4, 1), (4, 3), (2, 1), (5, 1), (5, 3), (6, 3)} and inv( f )

= 7. Furthermore, D( f ) = {1, 3, 5}.
It is easy to see that the following conditions are equivalent for a permutation

f ∪ PERMn :

(i) f = 1S ;
(ii) inv( f ) = 0;

(iii) D( f ) = ∅.

Theorem 3.7 Every permutation f ∪ PERMn can be written as a composition of
transpositions.

Proof If D( f ) = ∅, then f = 1S and the statement is vacuous. Suppose therefore
that D( f ) ∅= ∅, and let j ∪ D( f ), which means that (a j , a j+1) is an inversion
f . Let g be the standard transposition that exchanges a j and a j+1. It is clear that
inv(g f ) = inv( f )−1. Thus, if gi are the transpositions that correspond to all standard
inversions of f for 1 ∞ i ∞ p = inv( f ), it follows that gp · · · g1 f has 0 inversions
and, as observed above, gp · · · g1 f = 1S . Since g2 = 1S for every transposition g,
we have f = gp · · · g1, which gives the desired conclusion.



100 3 Combinatorics

Theorem 3.8 If f ∪ PERMn, then inv( f ) equals the least number of standard
transpositions, and the number of standard transpositions involved in any other
factorization of f as a product of standard transposition differs from inv( f ) by an
even number.

Proof Let f = hq · · · h1 be a factorization of f as a product of standard trans-
positions. Then, h1 · · · hq f = 1S and we can define the sequence of permutations
fl = hl · · · h1 f for 1 ∞ l ∞ q . Since each hi is a standard transposition, we have
inv( fl+1) − inv( fl) = 1 or inv( fl+1) − inv( fl) = −1. If

|{l | 1 ∞ l ∞ q − 1 and inv( fl+1) − inv( fl) = 1}| = r,

then |{l | 1 ∞ l ∞ q − 1 and inv( fl+1) − inv( fl) = −1}| = q − r , so inv( f ) + r −
(q −r) = 0, which means that q = inv( f )+2r . This implies the desired conclusion.

An important characteristic of permutations is their parity. Namely, the permuta-
tion parity is defined as the parity of the number of their inversions: a permutation
f ∪ PERMn is even (odd) if inv( f ) is an even (odd) number.

Theorem 3.8 implies that any factorization of a permutation as a product m stan-
dard transpositions determines whether the permutation is odd or even.

Note that any transposition is an odd permutation. Indeed, if f ∪ PERMn is a
transposition of i and j , where i < j we have

f = (1, 2, . . . , i − 1, j, i + 1, . . . , j − 1, i, j + 1, . . . , n).

The number j generates j − i inversions, and each of the numbers i + 1, . . . , j − 1
generates one inversion because they are followed by i . Thus, the total number of
inversions is j − i + ( j − i − 1) = 2( j − i) − 1, which is obviously an odd number.

Theorem 3.9 A cyclic permutation f of length k is the composition of k − 1 trans-
positions.

Proof Let ( j1, . . . , jk) be the cycle of length k of f . It is immediate that f is the
product of the k − 1 transpositions ( j1, j2), ( j2, j3), . . . , ( jk−1, j1).

Thus, the parity of a cyclic permutation of even length is odd.

Corollary 3.10 Let f ∪ PERMn be a permutation that has cν cycles of length ν for
ν ⊕ 1. The parity of f is the parity of the number c2 + c4 + · · · ; in other words, the
parity of a permutation is given by the parity of the number of its even cycles.

Proof By Theorem 3.9 a cyclic transposition of length ν is the composition of
ν − 1 transpositions. Thus, if f has cν cycles of length ν, then f is a product
of

∑
ν�1 cν(ν − 1) transpositions. It is clear that t he parity of this sum is deter-

mined by those terms where ν−1 is impar. Thus the parity of f is given by the parity
of c2 + 3c4 + 5c6 + · · · and this equals the parity of c2 + c4 + c6 + · · · .
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3.3 The Power Set of a Finite Set

Theorem 3.11 The set of subsets of a set that contains n elements consists of 2n

subsets.

Proof Let S be a set that contains n elements. By Theorem 1.55 there is a bijection
φ : P(S) −∈ (S −∈ {0, 1}) between the set of subsets of S and the set of indicator
functions defined on S. Thus, by Theorem 1.70, the set of subsets of S has the same
number of elements as the set of indicator functions defined on S, that is, 2n .

Let S be a finite nonempty set, S = {s1, . . . , sn}. We seek to count the sequences
of S having length k without repetitions. Any such sequence can be regarded as
an injective function f : {1, . . . , k} −∈ S. This, by counding these sequences we
also determine the number of injective function between {1, . . . , k} and a set S with
|S| = n.

Suppose initially that k � 1. For the first place in a sequence s of length k, we
have n choices. Once an element of S has been chosen for the first place, we have
n −1 choices for the second place because the sequence may not contain repetitions,
etc. For the kth component of s, there are n − 1 + k choices. Thus, the number of
sequences of length k without repetitions is given by n(n − 1) · · · (n − k + 1). We
denote this number by A(n, k).

There exists only one sequence of length 0, namely the empty sequence, so we
extend the definition of A by A(n, 0) = 1 for every n ∪ N.

An important special case of this counting problem occurs when k = n. In this
case, a sequence of length n without repetitions is essentially a permutation of the
set S. Thus, the number of permutations of S is n!. We saw that when n = 0, n! = 1,
which is consistent with the fact that A(n, 0) = 1.

Theorem 3.12 Let S and T be two finite sets. We have

|S ⊆ T | = |S| + |T | − |S ∩ T |,
|S ⊥ T | = |S| + |T | − 2 · |S ∩ T |.

Proof If S ∩ T = ∅, then S ⊆ T = S ⊥ T and the equalities above are obvi-
ously true. Therefore, we may assume that S ∩ T = {z1, . . . , z p}, where p � 1.
Thus, the sets S and T can be written as S = {x0, . . . , xm−1, z1, . . . , z p} and
T = {y0, . . . , yn−1, z1, . . . , z p}. The symmetric difference S ⊥ T can be writ-
ten as S ⊥ T = {x0, . . . , xm−1, y0, . . . , yn−1}. Since |S| = m + p, T = n + p,
|S ⊆ T | = m + n + p, and |S ⊥ T | = m + p, the equalities of the theorem follow
immediately.

Let us now count the number of k-element subsets of a set that contains n elements.
Let S be a set such that |S| = n. Define the equivalence ∨ on the set Seq(S) by

s ∨ t if there exists a bijection f such that s = t f .
It is easy to verify that ∨ is an equivalence, and we leave it to the reader to perform

this verification. If s : {0, . . . , p − 1} −∈ S and t : {0, . . . , q − 1} −∈ S, s ∨ t,
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and f : {0, . . . , p − 1} −∈ {0, . . . , q − 1} is a bijection, then we have p = q, by
Theorem 1.70.

If T is a subset of S such that |T | = k, there exists a bijection t : {0, . . . , k −
1} −∈ T ; clearly, this is a sequence without repetitions and there exist A(n, k) such
sequences. If u is an equivalent sequence (that is, if t ∨ u), then the range of this
sequence is again the set T and there are k! such sequences (due to the existence
of the k! permutations f ) that correspond to the same set T . Therefore, we may
conclude that Pk(S) contains A(n,k)

k! elements. We denote this number by
⎟n

k

)
and we

refer to it as the (n, k)-binomial coefficient. We can write
⎟n

k

)
using factorials:

(
n

k

⎜
= A(n, k)

k! = n(n − 1) · · · (n − k + 1)

k!
= n(n − 1) · · · (n − k + 1)(n − k) · · · 2 · 1

k!(n − k)! = n!
k!(n − k)! .

Note that we have (
n

k

⎜
=
(

n

n − k

⎜
,

an equality known as the symmetry identity.
We mention the following useful identities:

k

(
n

k

⎜
= n

(
n − 1

k − 1

⎜
, (3.1)(

n

m

⎜
= n

m

(
n − 1

m − 1

⎜
. (3.2)

Equality (3.1) can be extended as

k(k − 1) · · · (k − ν)

(
n

k

⎜
= n(n − 1) · · · (n − ν)

(
n − ν − 1

k − ν − 1

⎜
(3.3)

for 0 ∞ ν ∞ k − 1.
Consider now the n-degree polynomial in x

p(x) = (x + a0) · · · (x + an−2)(x + an−1).

Observe that the coefficient of xn−k consists of the sum of all monomials of the
form ai0 · · · aik−1 , where the subscripts i0, . . . , ik−1 are distinct. Thus, the coeffi-
cient of xn−k contains

⎟n
k

)
terms corresponding to the k-element subsets of the set

{0, . . . , n − 1}. Consequently, the coefficient of xn−k in the power (x + a)n can be
obtained from the similar coefficient in p(x) by taking a0 = · · · = an−1 = a; thus,
the coefficient is

⎟n
k

)
ak . This allows us to write:
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(x + a)n =
n∑

k=0

(
n

k

⎜
xn−kak . (3.4)

This equality is known as Newton’s binomial formula and has numerous applications.

Example 3.13 If we take x = a = 1 in Formula (3.4) we obtain the identity

2n =
n∑

k=0

(
n

k

⎜
. (3.5)

Note that this equality can be obtained directly by observing that the right member
enumerates the subsets of a set having n elements by their cardinality k.

A similar interesting equality can be obtained by taking x = 1 and a = −1 in
Formula (3.4). This yields

0 =
n∑

k=0

(
n

k

⎜
(−1)k =

(
n

0

⎜
+
(

n

2

⎜
+
(

n

4

⎜
+ · · ·

−
(

n

0

⎜
−
(

n

2

⎜
−
(

n

4

⎜
− · · · .

This inequality shows that each set contains an equal number of subsets having an
even or odd number of elements.

Example 3.14 Consider the equality (x + a)n = (x + a)n−1(x + a). The coefficient
of xn−kak in the left member is

⎟n
k

)
. In the right member xn−kak has the coefficient(⎟n−1

k

) + ⎟n−1
k−1

))
, so we obtain the equality

(
n

k

⎜
=
(

n − 1

k

⎜
+
(

n − 1

k − 1

⎜
, (3.6)

for 0 ∞ k ∞ n − 1, known as the addition identity.

Multinomial coefficients are generalizations of binomial coefficients that can be
introduced as follows. The nth power of the sum x1 + · · · + xk can be written as

(x1 + · · · + xk)
n =

∑
(r1,...,rk )

c(n, r1, . . . , rk)xr1
1 · · · xrk

k ,

where the sum involves all (r1, . . . , rk) ∪ N
k such that

∑k
i=1 ri = n. By analogy

with the binomial coefficients, we denote c(n, r1, . . . , rk) by
⎟ n

r1,...,rn

)
. As we did with

binomial coefficients in Example 3.14, starting from the equality (x1 +· · ·+ xk)
n =

(x1 + · · · + xk)
n−1(x1 + · · · + xk), the coefficient of the monomial xr1

1 · · · xrk
k in the

right member is
⎟ n

r1,...,rn

)
. On the left member, the same coefficient is
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k∑
i=1

(
n − 1

r1, . . . , ri − 1, . . . , rn

⎜
,

so we obtain the identity

(
n

r1, . . . , rn

⎜
=

k∑
i=1

(
n − 1

r1, . . . , ri − 1, . . . , rn

⎜
, (3.7)

a generalization of the identity (3.6).

3.4 The Inclusion–Exclusion Principle

Let A and B be two finite sets. It is easy to verify that

|A ⊆ B| = |A| + |B| − |A ∩ B|. (3.8)

In this section we discuss a generalization of Equality (3.8) known as the inclusion-
exclusion principle.

Note that if U and V are two subsets of a finite set S such that V ∧ U , then the
function I defined by I (x) = IU (x) − IV (x) for x ∪ S is an indicator function,
namely the indicator function of the subset U − V of S.

Let a and b be two numbers that belong to the set {−1, 1} such that the function
Iab defined by

Iab(x) = aIU (x) + bIV (x)

for x ∪ S is the indicator function of a subset W of the set S. Since Iab(x) ∪ {0, 1},
the following cases are possible:

1. If a = b = 1, then we have U ∩ V = ∅; otherwise (that is, if x ∪ U ∩ V )
we would have aIU (x) + bIV (x) = 2 and this would prevent Iab from being an
indicator function. Clearly, in this case, W = U ⊆ V .

2. If a = 1 and b = −1, we must have IV (x) ∞ IU (x) for every x ∪ S, which
implies V ∧ U . Thus, W = U − V .

3. The case where a = −1 and b = 1 is similar to the previous case, and we have
W = V − U .

4. The case when a = −1 and b = −1 is possible only if U = V = ∅. In this case,
W = ∅.

Note that in all these cases we have |W | = a|U | + b|V |. This observation is gener-
alized by the following statement.
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Theorem 3.15 Let U0, . . . , Un−1 be n subsets of a finite set S, where n � 2, and let
(a0, . . . , an−1) ∪ Seqn({−1, 1}) be a sequence of n numbers such that the function
I : S −∈ {0, 1} defined by

I (x) = a0 IU0(x) + · · · + an−1 IUn−1(x)

for x ∪ S is the indicator function of a subset W of S. Then,

|W | = a0|U0| + · · · + an−1|Un−1|.

Proof If W is a subset of S, then
∑

x∪S IW (x) = |W | because for each x ∪ S its
contribution to the sum

∑
x∪S IW (x) is equal to 1 if and only if x ∪ W . Therefore,

if IW (x) = ∑n−1
i=0 ai IUi (x) for x ∪ S, we have

|W | =
∑
x∪S

IW (x) =
∑
x∪S

n−1∑
i=0

ai IUi (x) =
n−1∑
i=0

∑
x∪S

ai IUi (x)

=
n−1∑
i=0

ai

∑
x∪S

IUi (x) =
n−1∑
i=0

ai |Ui |.

Corollary 3.16 (Principle of Inclusion–Exclusion) Let A0, . . . , An−1 be n finite
sets, where n � 2. We have

∣∣∣∣∣
n−1⋃
i=0

Ai

∣∣∣∣∣ =
∑

0∞i∞n−1

|Ai | −
∑

0∞i1<i2∞n−1

|Ai1 ∩ Ai2 |

+
∑

0∞i1<i2<i3∞n−1

|Ai1 ∩ Ai2 ∩ Ai3 | − · · · + (−1)n+1|A0 ∩ · · · ∩ An−1|.

Proof Suppose that Ai ∧ S for 0 ∞ i ∞ n − 1, where S is a finite set. For x ∪ S, we
have x ∅∪ A = ⋃n−1

i=0 Ai if and only if x ∅∪ Ai for 0 ∞ i ∞ n − 1. This is equivalent
to writing

1 − IA(x) = (1 − IAi0
(x)) · · · (1 − IAin−1

(x))

for every x ∪ S. This equality is, in turn, equivalent to

IA(x) =
n−1∑
i=0

IAi (x) −
∑

0∞i1<i2∞n−1

IAi1
(x)IAi2

(x)

+
∑

0∞i1<i2<i3∞n−1

IAi1
(x)IAi2

(x)IAi3
(x) − · · · + (−1)n+1 IA0(x) · · · IAn−1(x)
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=
n−1∑
i=0

IAi (x) −
∑

0∞i1<i2∞n−1

IAi1 ∩Ai2
(x)

+
∑

0∞i1<i2<i3∞n−1

IAi1 ∩Ai2 ∩Ai3
(x) − · · · + (−1)n+1 IA0∩···∩An−1(x).

By applying Theorem 3.15, we obtain the equality of the corollary.

Corollary 3.17 Let A0, . . . , An−1 be n finite sets, where n � 2, and let S =⋃n−1
i=0 Ai . We have

∣∣∣∣∣
n−1⋂
i=0

Ai

∣∣∣∣∣ = |S| −
∑

0∞i∞n−1

|Ai | +
∑

0∞i1<i2∞n−1

|Ai1 ∩ Ai2 |

−
∑

0∞i1<i2<i3∞n−1

|Ai1 ∩ Ai2 ∩ Ai3 | + · · · + (−1)n|A0 ∩ · · · ∩ An−1|.

Proof This follows immediately from Corollary 3.16 by observing that

∣∣∣∣∣
n−1⋂
i=0

Ai

∣∣∣∣∣ = |S| −
∣∣∣∣∣
n−1⋃
i=0

Ai

∣∣∣∣∣ .

3.5 Locally Finite Posets and Möbius Functions

Definition 3.18 Let (S,∞) be a poset and let x, y ∪ S be such that x ∞ y. The
closed interval of (S,∞) defined by x, y is the set

[x, y] = {t ∪ S | x ∞ t ∞ y}.

In addition, we define the open interval (x, y) as

(x, y) = {t ∪ S | x < t < y}

and the semiclosed (or semiopen) intervals [x, y) and (x, y] by

[x, y) = {t ∪ S | x ∞ t < y},
(x, y] = {t ∪ S | x < t ∞ y},

respectively.

Note that if x = y, then [x, x] = {x}, while (x, x) = ∅.
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Definition 3.19 A poset (S,∞) is locally finite if every closed interval of (S,∞) is
finite.

Example 3.20 The poset (N,∞) is locally finite. Indeed, if [p, q] is a closed interval
of this poset, then [p, q] is a finite set that consists of q − p + 1 natural numbers.

Example 3.21 The poset (N, ι) introduced in Example 1.27 is locally finite. Indeed,
if p divides q, then [p, q] is a finite set that contain all multiples of p that divide q.
For example, the closed interval [2, 12] contains the numbers 2, 4, 6 and 12.

Let (S,∞) be a locally finite poset and let A(S,∞) be the set of all functions of
the form f : S × S −∈ R such that x ∅∞ y implies f (x, y) = 0 for x, y ∪ S. We
refer to A(S,∞) as the incidence algebra of the poset (S,∞).

Note that if f ∪ A(S,∞) and x > y or x ⇒ y, then f (x, y) = 0.

Definition 3.22 Let (S,∞) be a locally finite poset and let f, g ∪ A(S,∞) be two
functions. Their convolution product is the function h : S × S −∈ R defined by

h(x, y) =
{∑

z∪[x,y] f (x, z)g(z, y) if x ∞ y,

0 otherwise,

for x, y ∪ S. The function h is denoted by f ↔ g.

Lemma 3.23 The operation ↔ is well-defined on the set A(S,∞); further, “↔” is
associative on A(S,∞) and its unit element is the Kronecker function k defined by

k(x, y) =
{

1 if x = y

0 otherwise,

for x, y ∪ S.

Proof Suppose that h = f ↔ g, where f, g ∪ A(S,∞). If x ∅∞ y, then h(x, y) = 0,
so h ∪ A(S,∞).

Let e, f, g be three functions of A(S,∞). We claim that (e ↔ f ) ↔ g = e ↔ ( f ↔ g).
Suppose that x ∞ z. Then, we have

((e ↔ f ) ↔ g)(x, z) =
∑

y∪[x,z]
(e ↔ f )(x, y)g(y, z)

=
∑

y∪[x,z]

⎛
⎧ ∑

u∪[x,y]
e(x, u) f (u, y)

⎨
⎩ g(y, z)

=
∑

y∪[x,z]

∑
u∪[x,y]

e(x, u) f (u, y)g(y, z)

=
∑

y∪[x,z]

∑
u∪[x,z]

e(x, u) f (u, y)g(y, z)
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(because if u > y we have f (u, y) = 0)

=
∑

u∪[x,z]

∑
y∪[x,z]

e(x, u) f (u, y)g(y, z).

On the other hand, we can write

(e ↔ ( f ↔ g))(x, z) =
∑

u∪[x,z]
e(x, u)( f ↔ g)(u, z)

=
∑

u∪[x,z]
e(x, u)

∑
y∪[u,z]

f (u, y)g(y, z)

=
∑

u∪[x,z]
e(x, u)

∑
y∪[x,z]

f (u, y)g(y, z),

(because if u > y we have f (u, y) = 0)

for x, z ∪ S, which shows that ↔ is associative.
If f ∪ A(S,∞) and x ∞ y, then we can write

( f ↔ k)(x, y) =
∑

z∪[x,y]
f (x, z)k(z, y) = f (x, y)

for x, y ∪ S. Thus, f ↔ k = f . A similar argument shows that k ↔ f = f . This
allows us to conclude that k is indeed the unit with respect to the ↔ operation.

Let I(S,∞) = {[x, y] | x, y ∪ S and x ∞ y} ⊆ {∅} be the set of intervals of
the poset (S,∞) to which we add the empty set. A useful point of view (see [1]) is
to regard the incidence algebra of (S,∞) as consisting of formal sums of the form∑{ f (x, y) · [x, y] | [x, y] ∪ I(S,∞) − {∅}}. Define the product of two intervals as

[x, y][u, v] =
{

[x, v] if y = u,

∅ otherwise.

Further, we assume that the product of formal sums is distributive with respect to
addition of these sums. Let f, g ∪ A(S,∞) be two functions and let f̂ and ĝ be their
corresponding formal sums,

f̂ =
∑

{ f (x, y) · [x, y] | [x, y] ∪ I(S,∞)},
ĝ =

∑
{g(u, v) · [u, v] | [u, v] ∪ I(S,∞)}.
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Then, it is immediate that

f̂ ĝ(x, z) =
∑

x∞y∞z

f (x, y)g(y, z)[x, z],

so the usual product of the formal sums f̂ ĝ corresponds to the convolution product
of f and g.

Theorem 3.24 Let (S,∞) be a locally finite poset. A function f ∪ A(S,∞) has an
inverse relative to the operation ↔ if and only if f (x, x) ∅= 0 for every x ∪ S.

Proof Suppose that there exists an inverse f ⊃ of f (that is, f ↔ f ⊃ = f ⊃ ↔ f = k)
which yields ( f ↔ f ⊃)(x, x) = k(x, x) = 1 for every x . Since ( f ↔ f ⊃)(x, x) =∑

z∪[x,x] f (x, z) f ⊃(z, x) = f (x, x) f ⊃(x, x), it follows that f (x, x) ∅= 0.
To prove the converse implication, we first show the existence of a left inverse

of f ; that is, a function f ⊃ : S × S ∈ R such that f ⊃ ↔ f = k. For x ∞ y, we
must have

∑
z∪[x,y] f ⊃(x, z) f (z, y) = k(x, y). This implies f ⊃(x, x) f (x, x) = 1

and
∑

z∪[x,y] f ⊃(x, z) f (z, y) = 0 if x ∅= y. Thus, we must have

f ⊃(x, x) = 1

f (x, x)
, (3.9)

f ⊃(x, y) = − 1

f (y, y)

∑
z∪[x,y)

f ⊃(x, z) f (z, y), (3.10)

when x ∞ y and
f ⊃(x, y) = 0,

when x ∅∞ y. Equalities (3.9) and (3.10) give an inductive definition of f ⊃ because
the poset (S,∞) is locally finite.

To verify that f ⊃ is a left inverse of f , suppose that x < y. Then,

( f ⊃ ↔ f )(x, y) =
∑

z∪[x,y]
f ⊃(x, z) f (z, y)

=
∑

z∪[x,y)

f ⊃(x, z) f (z, y) + f ⊃(x, y) f (y, y) = 0.

If x = y, then ( f ⊃ ↔ f )(y, y) = 1 and x ∅∞ y implies ( f ⊃ ↔ f )(x, y) = 0. Therefore,
f ⊃ ↔ f = k.

The function f ⊃ is also a right inverse of f . Let h = f ↔ f ⊃. We have shown above
that every function of A(S,∞) has a left inverse, so let h⊃ be the left inverse of h.
Thus, we have f ↔ f ⊃ = h = k ↔ h = (h⊃ ↔ h) ↔ h = h⊃ ↔ ( f ↔ f ⊃) ↔ ( f ↔ f ⊃) =
h⊃ ↔ f ↔k ↔ f ⊃ = h⊃ ↔ f ↔ f ⊃ = h⊃ ↔h = k, which proves that f ⊃ is also a right inverse
of f . Thus, f ⊃ is the inverse of f .
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If the inverse of f ∪ A(S,∞) exists, we denote it by the common notation f −1.

Corollary 3.25 Let (S,∞) be a locally finite poset and let IA(S,∞) be the set of
invertible functions of A(S,∞). Then (IA(S,∞), {k, ↔, −1}) is a group.

Proof This is a mere restatement of Theorem 3.24.

Let (S,∞) be a locally finite poset and let θ : S × S −∈ R be the Riemann
function defined by

θ(x, y) =
{

1 if x ∞ y,

0 otherwise,

for x, y ∪ S. Clearly, θ ∪ A(S,∞), so the function θ−1 exists by Corollary 3.25.
This inverse, known as the Möbius function, is denoted by μ and its values can be
computed from Equalities (3.9) and (3.10) as

μ(x, x) = 1

θ(x, x)
= 1,

μ(x, y) = −
∑

z∪[x,y)

μ(x, z)θ(z, y) = −
∑

z∪[x,y)

μ(x, z),

for x < y; for x ∅∞ y, we have μ(x, y) = 0.

Example 3.26 For the poset ({1, 2, 3, 4, 5, 6, 7, 8}, ι) introduced in Example 2.13
the Möbius function is given by

μ(1, 1) = 1,

μ(1, 2) = μ(1, 3) = μ(1, 5) = μ(1, 7) = −1,

μ(1, 4) = −μ(1, 1) − μ(1, 2) = 0,

μ(1, 6) = −μ(1, 1) − μ(1, 2) − μ(1, 3) = −1 + 1 + 1 = 1,

μ(1, 8) = −μ(1, 1) − μ(1, 2) − μ(1, 4) = −1 + 1 + 0 = 0,

and
μ(2, 2) = 1,μ(2, 4) = −1,μ(2, 6) = −1,

μ(2, 8) = −μ(2, 2) − μ(2, 4) = −1 + 1 = 0,

μ(3, 3) = 1,μ(3, 6) = −1,

μ(4, 4) = μ(5, 5) = μ(6, 6) = μ(7, 7) = μ(8, 8) = 1.

For all other pairs (p, q) with (p, q) ∅∪ ι we have μ(p, q) = 0.

The special role played by μ is discussed next.

Theorem 3.27 (Möbius Inversion Theorem) Let (S,∞) be a locally finite poset
that has the least element 0. If f, g : S −∈ R are two real-valued functions such
that g(x) = ∑

0∞z∞x f (z), then f (x) = ∑
0∞z∞x g(z)μ(z, x) for x ∪ S.
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Proof Starting from the functions f, g : S −∈ R, define the functions F, G ∪
A(S,∞) by

F(0, x) = f (x), G(0, x) = g(x)

F(u, x) = G(u, x) = 0, if u > 0.

The equality g(x) = ∑
0∞z∞x f (z) can be written as

G(0, x) =
∑

0∞z∞x

F(0, z)θ(z, x),

where θ is Riemann’s function. We also have G(u, x) = ∑
u∞z∞x F(u, z)θ(z, x) for

u > 0 because in this case G(u, x) = 0 and F(u, z) = 0. Thus, G = F ↔ θ. Since μ
is the inverse of θ in IA(S,∞), it follows that F = G ↔ μ. Consequently,

f (x) = F(0, x) =
∑

0∞z∞x

G(0, z)μ(z, x)

=
∑

0∞z∞x

g(z)μ(z, x),

which is the desired equality.

Now let (S,∞) be a poset that has the greatest element 1. By applying the Möbius
inversion theorem to its dual (S,∞−1) = (S,�) we obtain the following dual form
of the theorem.

Theorem 3.28 (Möbius Dual Inversion Theorem) Let (S,∞) be a locally finite
poset that has the greatest element 1. If f, g : S −∈ R are two real-valued functions
such that

g(x) =
∑

x∞z∞1

f (z),

then
f (x) =

∑
x∞z∞1

g(z)μ(z, x)

for x ∪ S.

Proof This statement follows immediately from Theorem 3.27.

Example 3.29 Let M be a finite set and let (P(M),∧) be the poset of all its subsets.
The Möbius function of this poset is given by
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μ(A, B) =
{

(−1)|B|−|A| if A ∧ B,

0 otherwise,

for A, B ∪ P(M).
Let A, B ∪ P(M) be such that A ∧ B. We prove that μ(A, B) = (−1)|B|−|A| by

induction on n = |B| − |A|.
In the basis case n = 0, so A = B, which implies μ(A, B) = 1, thus verifying

the equality above. Suppose that the equality holds for sets that differ by fewer than
n elements and that |B| − |A| = n. Then, by the definition of the Möbius function,
we have

μ(A, B) = −
∑

C∪[A,B)

μ(A, C) = −
∑

C∪[A,B)

(−1)|C|−|A|.

Note that there are 2n − 1 sets C in [A, B). Namely, there are
⎟n

k

)
sets C such that

|C | − |A| = k. Therefore,

∑
C∪[A,B)

(−1)|C|−|A| =
n−1∑
k=0

(−1)k
(

n

k

⎜
.

Choosing x = −1 in the identity (x + 1)n = ∑n
k=0

⎟n
k

)
xk implies 0 = ∑n

k=0

⎟n
k

)
(−1)k , which yields the equality

∑n−1
k=0

⎟n
k

)
(−1)k = (−1)n+1. Thus, μ(A, B) =

(−1)n+2 = (−1)n = (−1)|B|−|A|.

It is interesting to observe that the principle of inclusion-exclusion can be obtained
also from the Möbius dual inversion theorem. Let A0, . . . , An−1 be n finite sets,
where n � 2, S = ⋃n−1

i=0 Ai , and I be a subset of the set {0, . . . , n − 1}. The
complement of I , {0, . . . , n − 1} − I is denoted by Ī .

Let BI be the subset of S that consists of those elements that belong to every one
of the sets Ai with i ∪ I and to no other sets. Clearly, we have

BI =
⎫⋂

i∪I

Ai

⎬
∩
⎛
⎧⋂

i∪ Ī

Ai

⎨
⎩ .

Note that if I ∅= I ⊃, then the sets BI and BI ⊃ are disjoint. We claim that

⋃
{BJ | I ∧ J ∧ {0, . . . , n − 1}} =

⋂
i∪I

Ai . (3.11)

If I ∧ J , then BJ ∧ ⎭
i∪I Ai . Therefore,

⋂
i∪I

Ai ∧
⋃

{BJ | I ∧ J ∧ {0, . . . , n − 1}}.
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Conversely, let x ∪ ⎭
i∪I Ai and let Jx = { j ∪ {0, . . . , n − 1} | x ∪ A j }. It is clear

that I ∧ Jx and that x ∪ BJx . Therefore, x ∪ ⋃{BJ | I ∧ J ∧ {0, . . . , n − 1}}
and we have the reverse inclusion⋂

i∪I

Ai ∧
⋃

{BJ | I ∧ J ∧ {0, . . . , n − 1}},

which proves Equality (3.11). This allows us to write∣∣∣∣∣
⋂
i∪I

Ai

∣∣∣∣∣ =
∑

{|BJ | | I ∧ J ∧ {0, . . . , n − 1}} .

Define f (J ) as |BJ |. The last equality can now be rewritten as

∣∣∣⋂
i∪I

Ai

∣∣∣ =
∑

{ f (J ) | I ∧ J ∧ {0, . . . , n − 1}}.

By the Möbius dual inversion theorem (Theorem 3.28) applied to the poset
(P({0, . . . , n − 1}),∧), we have

f (I ) =
∑
I∧J

(−1)|J |−|I |
∣∣∣∣∣
⋂
i∪J

Ai

∣∣∣∣∣ .

For the special case I = ∅, we have f (∅) =
∣∣∣S − ⋃

0∞i∞n−1 Ai

∣∣∣ because the

intersection of an empty collection of subsets of a set S equals S. Thus,

∣∣∣∣∣∣S −
⋃

0∞i∞n−1

Ai

∣∣∣∣∣∣ =
∑

J

(−1)|J |
∣∣∣∣∣
⋂
i∪J

Ai

∣∣∣∣∣ ,
which is equivalent to Corollary 3.17.

Example 3.30 Let n be a natural number such that n � 2. Using the inclusion-
exclusion principle we can compute the number ν(n) of positive integers that are
less than n and are relatively prime with n; that is, the number of integers r such that
1 ∞ r ∞ n such that gcd{n, r} = 1.

Suppose that n = pa1
1 pa2

2 · · · pam
m , where p1, . . . , pm are distinct prime numbers

and a1, . . . , am are positive integers. Let Mi = {r ∪ N | r < n and pi |r} for
1 ∞ i ∞ m.

It is clear that |Mi | = n
pi

for 1 ∞ i ∞ m and that

|Mi1 ∩ Mi2 ∩ · · · ∩ Mik | = n

pi1 pi2 · · · pik
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for 1 ∞ i1, . . . , ik ∞ m.
Note that r is relatively prime with r if and only if r ∅∪ ⋃m

i=1 Mi .
Thus, the number that we are seeking is n−∣∣⋃m

i=1 Mi
∣∣. By the inclusion-exclusion

principle, we have

ν(n) = n −
∣∣∣ m⋃

i=1

Mi

∣∣∣
= n −

∑
1∞i∞m

|Mi | +
∑

1∞i1<i2∞m

|Mi1 ∩ Mi2 |

+ · · · + (−1)m |M1 ∩ · · · ∩ Mm |
= n −

∑
1∞i∞m

n

pi
+

∑
1∞i1<i2∞m

n

pi1 pi2
+

+ · · · + (−1)m n

p1 p2 · · · pm

= n
m⎪

i=1

(
1 − 1

pi

⎜
.

The function ν is known as Euler’s function. It is easy to see that ν(2) = 1, ν(3) = 2,
ν(4) = 2, etc. Furthermore, for any prime number p, we have ν(p) = p − 1.

3.6 Ramsey’s Theorem

Data miners should be aware of what is known today as Ramsey theory because this
family of combinatorial results establishes that data sets that are sufficiently large
contain spurious patterns whose existence is caused by the sheer size of the data set
and do not represent “significant” structures from a data mining point of view.

We begin with a set of basic terms of Ramsey theory.

Definition 3.31 Let C = {c1, . . . , ck} be a finite set referred to as the set of colors.
A C-coloring of a set S is a mapping f : S −∈ C. The set f −1(c) is the set of
elements of S colored by c.

A subset T of S is monochromatic in the color ci if f (t) = ci for every t ∪ T . A
subset W of S is f -monochromatic if it is monochromatic in some color ci .

Clearly, every set of the form f −1(c) for a C-coloring of S is f -monochromatic.
Recall that the set of subsets of size q of a set S is denoted by Pq(S).

Theorem 3.32 Let S be a finite set, q a positive natural number, f : S −∈ {c1, c2}
a coloring of the set S such that every set in Pq(S) is f -monochromatic, and a1 and
a2 be two natural numbers not less than 2.
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There is a number denoted by R(a1, a2, q) such that if |S| � R(a1, a2, q), then
there is i ∪ {1, 2} and a subset T of S such that |T | = ai and every subset of Pq(T )

has the color ci .

Proof We begin by showing that R(a1, q, q) = a1 for a1 � q. Let S be a set of size
a1. One of the following two cases may occur:

Case 1: There is a subset T of S of size q that is colored by c2. In this case,
the statement holds since the T has only itself as a subset of size q.

Case 2: There is no subset T of S of size q that is colored by c2. Now all
subsets of size q of S have color c1, and if T is a subset of S of size a1, then all its
subsets of size q have the color c1 (since they are q-subsets of S).

This shows that R(a1, q, q) = a1 for a1 � q; similarly, R(q, a2, q) = a2 for
a2 � q.

The argument is by induction on q .
In the basis case, q = 1, and we color each element individually. If S is a set of

size a1 + a2 − 1, then we must have either a1 elements colored c1 or a2 elements
colored c2 since otherwise, the set S would have no more than a1 + a2 − 2 elements.

For the inductive step, suppose the theorem holds for q − 1. Now we act by
induction on p = a1 + a2. The basis case, where a1 = a2 = q, is included in the
previous discussion.

Suppose that the theorem holds for a1 + a2 − 1, and let b1 = R(a1 − 1, a2, q)

and b2 = R(a1, a2 − 1, q). Let S be a set whose size is at least R(b1, b2, q − 1) + 1,
and suppose that all its q-subsets are colored by c1 or c2. If s is a fixed element of
S, then any set U ∪ Pq(S) such that s ∪ U yields a subset U − {s} of size q − 1 of
the set S⊃, where S⊃ = S − {s} is colored in the same color as U . Thus, we obtain a
coloring of the q − 1 subsets of the set S −{s} that contains at least R(b1, b2, q − 1)

elements. By the inductive hypothesis, there is either a subset V of S⊃ such that
|V | = b1 = R(a1 − 1, a2, q) and all its q − 1 subsets have color c1 or there is an
subset W of S⊃ such that |W | = b2 = R(a1, a2 − 1, q) and all its q − 1 subsets have
color c2.

The first case yields a coloring of S in which the q-subsets of S obtained by adding
s to the (q − 1)-subsets of S⊃ are colored in c1. By the definition of R(a1 − 1, a2, q),
there exists either a subset T1 of S⊃ that has a1 − 1 elements whose q-subsets are
colored c1 or a a2-subset T2 of S whose q-subsets are colored c2. The statement
follows in the first situation by observing that T1 ⊆ {s} has a1 elements. The second
situation requires no further argument.

The second case is treated similarly.

Corollary 3.33 We have the inequality

R(a1, a2, q) ∞ R(R(a1 − 1, a2, q),R(a1, a2 − 1, q)) + 1

for every q � 1 and a1, a2 such that a1, a2 � q.

Proof The inequality follows immediately from the proof of Theorem 3.32.



116 3 Combinatorics

In the proof of Ramsey’s theorem, we use the preliminary result contained in
Theorem 3.32.

Theorem 3.34 (Ramsey’s Theorem) Let S be a finite set, q a positive natural
number, f : S −∈ {c1, . . . , ck} a coloring of the set S such that every set in Pq(S)

is f -monochromatic, and a = (a1, . . . , ak) a sequence of k positive natural numbers
such that ai � q for 1 ∞ i ∞ k.

There is a number denoted by Ramsey(a, q) such that if |S| ⊕ Ramsey(a, q),
then there exists a number i , 1 ∞ i ∞ k, and a set T with |T | = ai such that every
subset of Pq(T ) has the color ci .

Proof This time the proof is by induction on k, the number of colors. The basis
case, k = 2, was discussed in Theorem 3.32. We have Ramsey((a1, a2), q) =
R(a1, a2, q).

Suppose the statement holds for k − 1 colors.
Let S be a set such that |S| ⊕ Ramsey((Ramsey((a1, . . . , ak−1), q), ak), q)

and let f : S −∈ {c1, . . . , ck} be a coloring of S using k colors. Define the coloring
g : S −∈ {c0, ck} by

g(x) =
{

c0 if f (x) ∪ {c1, . . . , ck−1},
ck if f (x) = ck,

for x ∪ S. Using the coloring g, every q-subset of S that was colored c1, . . . , ck−1
will receive the color c0 and every q-subset of S colored ck will remain colored
by ck . By the two-color case of Theorem 3.32, either there is a subset T such that
|T | = Ramsey((a1, . . . , ak−1), q) whose q-subsets are colored c0 or a subset U
such that |U | = ak whose q-subsets are colored ck . Since f colors the q-subsets
of T in any of the colors c1, . . . , ck−1, the theorem follows immediately from the
inductive hypothesis.

Corollary 3.35 We have the inequality

Ramsey((a1, . . . , ak), q) ∞ Ramsey((Ramsey((a1, . . . , ak−1), q), ak), q)

for every q � 1 and ai such that ai � q for 1 ∞ i ∞ k.

Proof This result follows from the proof of Ramsey’s theorem.

Note that Ramsey((2, . . . , 2︸ ︷︷ ︸
k

), 1) = k + 1. Indeed, if we color the elements of a

set S using |S| + 1 colors, then there is a subset T of S that contains two elements
colored with the same color. This is a well known combinatorial fact known as the
pigeonhole principle.
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3.7 Combinatorics of Partitions

Let S be a set having n elements. We are interested in the number of partitions of S
that have m blocks.

We begin by counting the number of onto functions of the form f : A −∈ B,
where |A| = n, |B| = m, and n � m.

Lemma 3.36 Let A and B be two sets, where |A| = n, |B| = m, and n � m. The
number of surjective functions from A to B is given by

m−1∑
p=0

(−1)p
(

m

p

⎜
(m − p)n .

Proof There are mn functions of the form f : A −∈ B.
We begin by determining the number of functions that are not surjective. Suppose

that B = {b1, . . . , bm}, and let Fj = { f : A −∈ B | b j ∅∪ f (A)} for 1 ∞ j ∞ m. A
function is not surjective if it belongs to one of the sets Fj . Thus, we need to evaluate
|⋃m

j=1 Fj |. An application of the inclusion-exclusion principle yields

∣∣∣∣∣∣
m⋃

j=1

Fj

∣∣∣∣∣∣ =
m∑

j1=1

|Fj1 | −
m∑

j1, j2=1

|Fj1 ∩ Fj2 |

+
m∑

j1, j2, j3=1

|Fj1 ∩ Fj2 ∩ Fj3 | − · · · − +(−1)m |F1 ∩ F2 ∩ · · · ∩ Fm |.

Note that the set |Fj−1 ∩ Fj2 ∩· · ·∩ Fjp | is actually the set of functions defined on A
with values in the set B −{y j1 , y j2 , . . . , y jp }, and there are (m − p)n such functions.
Since there are

⎟m
p

)
choices for the set { j1, j2, . . . , jp}, it follows that there are

m−1∑
p=1

(−1)p−1
(

m

p

⎜
(m − p)n

functions that are not surjective.
Thus, we can conclude that there are

mn −
m−1∑
p=1

(−1)p−1
(

m

p

⎜
(m − p)n = mn +

m−1∑
p=1

(−1)p
(

m

p

⎜
(m − p)n

=
m−1∑
p=0

(−1)p
(

m

p

⎜
(m − p)n
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surjective functions from A to B.

Lemma 3.37 Let A, B be two finite sets such that |A| = n and |B| = m with m � n.
There are m! distinct surjective functions of the form f : A −∈ B that have the
same kernel partition ρ on A.

Proof Given a surjective function f : A −∈ B, one can obtain a function g that has
the same partition as f by defining g(a) = h( f (a)), where h is a permutation of the
set B. Since there are m! such permutations the conclusion follows.

Theorem 3.38 The number of partitions of a set S that have m blocks, where m ∞ n
is given by

1

m!
m−1∑
p=0

(−1)p
(

m

p

⎜
(m − p)n .

Proof This statement follows from Lemmas 3.36 and 3.37.

The numbers S(n, m) defined by

S(n, m) = 1

m!
m−1∑
j=0

(−1) j
(

m

j

⎜
(m − j)n

for m, n ∪ N and m ∞ n are known as the Stirling numbers!of the second kind. The
Stirling numbers of the first kind are introduced in Supplement 27.

Next we consider a notion related to set partitions, namely partitions of natural
numbers.

Definition 3.39 An integral partition of n is a nonincreasing sequence
k = (k1, . . . , kν) of positive integers such that

∑ν
i=1 ki = n.

The set of integral partitions of n is denoted by IPn; the set of integral partitions
of n that consist of ν components is denoted by IPn(ν).

Example 3.40 The sequence k = (5, 5, 3, 2, 2, 2, 1, 1) is an integral partition of 21.

We can regard an integral partition of n as a multiset P on the set {1, 2, . . . , n},
where P(k) is the number of entries in the sequence k of Definition 3.39 that
equal k.

Example 3.41 The integral partition (5, 5, 3, 2, 2, 2, 1, 1) ∪ IP21 defines the multi-
set P on the set {1, . . . , 21} given by

P(k) =

⎢⎢⎢⎣
⎢⎢⎢⎥

2 if k = 1 or k = 5,

3 if k = 2,

1 if k = 3,

0 in every other case.
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Fig. 3.1 Ferrers diagrams (a) (b)

An integral partition k can be represented graphically by a Ferrers diagram that
consists of a sequence of rows of squares such that each component k of k corresponds
to a row of k cells in the diagram.

Example 3.42 The Ferrers diagram of (5, 5, 3, 2, 2, 2, 1, 1) of integer 21 is shown
in Fig. 3.1a.

Starting from the Ferrers diagram of k ∪ IPn , we can derive a new integral
partition k⊃ ∪ IPn by exchanging the rows of the diagram with its columns. The
new integral partition k⊃ is called the conjugate integral partition of k. The Ferrers
diagram of the conjugate partition k⊃ of k (where k is the integral partition defined
in Example 3.42 is shown in Fig. 3.1b.

Theorem 3.43 The number of integral partitions in IPn where the largest component
is ν equals IPn(ν), the number of integral partitions on n with ν components.

Proof This statement follows immediately by observing that the function f :
IPn −∈ IPn that maps k into its conjugate k⊃ is a bijection and the image under f
of an integral partition that has ν components is an integral partition whose largest
component is ν.

3.8 Combinatorics of Collections of Sets

Recall that we defined a Sperner collection of sets in Sect. 1.3 as collection of sets C
such that X, Y ∪ C and X ∅= Y implies X ∅∧ Y .

If C is a Sperner system and C ∧ P(S), then we say that C is a Sperner system on
the set S.

The next theorem presents an inequality known as the LYM inequality, an acronym
of the names of the mathematicians whose work is related to it (Lubell, Yamamoto,
and Meshalkin [2–4]).

Theorem 3.44 (The LYM Inequality) Let C be a Sperner system on a finite set S
such that |S| = n. Define the function c : {0, 1, . . . , n} −∈ N by c(k) = |{X ∪ C |
|X | = k}| for 0 ∞ k ∞ n. We have

http://dx.doi.org/10.1007/978-1-4471-6407-4_1
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n∑
k=0

c(k)⎟n
k

) ∞ 1.

Proof Let (x1, . . . , xn) be one of the n! permutations of the set S. For U ∪ C define
the set PU as

PU = {(x1, . . . , xn) | {x1, . . . , xm} = U, where m = |U |}.

Since C is a Sperner system, we have PU ∩ PV = ∅ for U ∅= V and U, V ∪ C.
The number of permutations in PU is |U |!(n − |U |)!, so

∑
U∪C |U |!(n − |U |)! ∞ n!.

Using the definition of the function c, we have
∑n

k=0 c(k)|k|!(n − |k|)! ∞ n!, which
yields the desired inequality.

The next statement is known as Sperner’s theorem and was obtained in [5] using
a different approach (outlined in Supplement 42).

Corollary 3.45 Let S be a finite set such that |S| = n. If C is a Sperner system on
S, then

|C| ∞
(

n

→ n
2 ≥
⎜

.

Proof The largest value of the binomial coefficient
⎟n

k

)
is achieved when k = → n

2 ≥.
Therefore, we have

n∑
k=0

c(k)|k|!(n − |k|)! ⊕
∑n

i=0 c(k)⎟ n
→ n

2 ≥
) = |C|

→ n
2 ≥ .

By the LYM inequality we obtain |C| ∞ ⎟ n
→ n

2 ≥
)
.

The Ahlswede-Daykin inequality involves functions defined on sets and collec-
tions of sets. We use the operations “≡” and “∗” between collections of sets intro-
duced in Definition 1.18.

Let E be a collection of subsets of a set S and let ν : P(S) −∈ R be a function.
We define a new function (denoted by the same letter ν) on the set of all collections
of subsets of S (that is, on P(P(S))) as

ν(E) =
∑

{ν(E) | E ∪ E}.

This definition allows us to formulate a powerful combinatorial inequality.

Theorem 3.46 (The Ahlswede-Daykin Inequality) Let S be a set such that S ∅= ∅
and let

δ,σ, φ, ι : P(S) −∈ N

be four functions that satisfy the inequality
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δ(A)σ(B) ∞ φ(A ⊆ B)ι(A ∩ B)

for A, B ∪ P(S). For all collections A,B of subsets of S, we have

δ(A)σ(B) ∞ φ(A ≡ B)ι(A ∗ B).

Proof The argument is by induction on n = |S|, where n � 1. For the base case,
|S| = 1, we have P(S) = {∅, S}. Thus, we can write

δ(∅)σ(∅) ∞ φ(∅)ι(∅), (3.12)

δ(∅)σ(S) ∞ φ(S)ι(∅), (3.13)

δ(S)σ(∅) ∞ φ(S)ι(∅), (3.14)

δ(S)σ(S) ∞ φ(S)ι(S). (3.15)

Since C,B ∧ {∅, S}, we need to analyze the following cases.

Case A B A≡ B A∗ B

I {∅} {∅} {∅} {∅}
II {∅} {S} {S} {∅}
III {S} {∅} {S} {∅}
IV {S} {S} {S} {S}
V {∅} {∅, S} {∅, S} {∅}
VI {S} {∅, S} {S} {∅, S}
VII {∅, S} {∅} {∅, S} {∅}
VIII {∅, S} {S} {S} {∅, S}
IX {∅, S} {∅, S} {∅, S} {∅, S}

We discuss only case IX; the remaining cases are similar and are left to the reader.
The inequality that we need to prove,

(δ(∅) + δ(S))(σ(∅) + σ(S)) ∞ (φ(∅) + φ(S))(ι(∅) + ι(S))

follows immediately by adding Inequalities (3.12) to (3.15).
Suppose that the inequality holds for sets containing m elements, and let S =

{s0, . . . , sm−1, sm} be a set of size m +1. Define U = {s0, . . . , sm−1} and V = {sm}.
The mappings δ1,σ1, φ1, ι1 : P(U ) −∈ N are defined by

δ1(C) =
∑

{δ(A) | A ∪ A and A ∩ U = C},
σ1(C) =

∑
{δ(B) | B ∪ B and B ∩ U = C},

φ1(C) =
∑

{φ(E) | E ∪ A ≡ σ and E ∩ U = C},
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ι1(C) =
∑

{ι(F) | F ∪ A ∗ B and F ∩ U = C}.

Observe that

δ1(P(U )) =
∑

{δ1(C) | C ∪ P(U )}
=

∑
C∪P(U )

∑
{δ(A) | A ∪ A and A ∩ U = C}

=
∑

{δ(A) | A ∪ A}
= δ(A).

Similarly, σ1(P(U )) = σ(B), φ1(P(U )) = φ(A≡B), and ι1(P(U )) = φ(A∗B).
Let R ∪ P(V ). We have either R = ∅ or R = {sm}.
Let C, D ∪ P(U ) and let E = C ⊆ D and F = C ∩ D. Define the mappings

δC
2 ,σD

2 , φE
2 , ιF

2 : P(V ) −∈ N by

δC
2 (R) =

{
δ(R ⊆ C) if R ⊆ C ∪ A,

0 otherwise,

σD
2 (R) =

{
σ(R ⊆ D) if R ⊆ D ∪ B,

0 otherwise,

φE
2 (R) =

{
φ(R ⊆ E) if R ⊆ E ∪ A ≡ B,

0 otherwise,

ιF
2 (R) =

{
ι(R ⊆ F) if R ⊆ F ∪ A ∗ B,

0 otherwise.

We have δ1(C) = δC
2 (P(V )) for every C ∧ U . Indeed,

δC
2 (P(V )) = δC

2 (∅) + δC
2 ({sm})

=

⎢⎢⎢⎣
⎢⎢⎢⎥

δ(C) + δ(C ⊆ {sm}) if C ∪ A and C ⊆ {sm} ∪ A,

δ(C) if C ∪ A and C ⊆ {sm} ∅∪ A,

δ(C ⊆ {sm}) if C ∅∪ A and C ⊆ {sm} ∪ A,

0 otherwise.

= δ1(C).

Similar arguments show that σ1(D) = σD
2 (P(V )) for D ∪ P(U ), φ1(E) =

φE
2 (P(V )) for E ∪ P(U ), and ι1(F) = ιF

2 (P(V )) for F ∪ P(U ).
We claim that δC

2 (R)σD
2 (Q) ∞ φE

2 (R ⊆ Q)ιF
2 (R ∩ Q) for all R, Q ∪ P(V ).

If δC
2 (R)σD

2 (Q) = 0 the inequality obviously holds.
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Now suppose that δC
2 (R)σD

2 (Q) ∅= 0, that is, R ⊆ C ∪ A and Q ⊆ D ∪ B and
δC

2 (R)σD
2 (Q) = δ(R ⊆ C)σ(Q ⊆ D). Note that

(R ⊆ C) ⊆ (Q ⊆ D) = (R ⊆ Q) ⊆ (C ⊆ D) = (R ⊆ Q) ⊆ E ∪ A ≡ B

and

(R ⊆ C) ∩ (Q ⊆ D) = (R ∩ Q) ⊆ (R ∩ D) ⊆ (C ∩ Q) ⊆ (C ∩ D)

= (R ∩ Q) ⊆ (C ∩ D) = (R ∩ Q) ⊆ F ∪ A ∗ B

because R ∩ D = C ∩ Q = ∅ (since R, Q ∪ P(V ) and C, D ∪ P(U )). Thus,

φE
2 (R ⊆ Q)ιF

2 (R ∩ Q) = φ(R ⊆ Q ⊆ E)ι((R ∩ Q) ⊆ F).

By the defining property of δ,σ, φ, and ι, we have δ(R ⊆ C)σ(Q ⊆ D) ∞ φ(R ⊆
Q ⊆ E)ι((R ∩ Q) ⊆ F), which yields the inequality

δC
2 (R)σD

2 (Q) ∞ φE
2 (R ⊆ Q)ιF

2 (R ∩ Q)

for all R, Q ∪ P(V ).
The inductive hypothesis (for n = 1) implies

δ1(C)σ1(D)

= δC
2 (P(V ))σD

2 (P(V )) ∞ φE
2 (P(V ))ιF

2 (P(V ))

= φ1(C ⊆ D)ι1(C ∩ D).

Again applying the inductive hypothesis, we can write

δ(A)σ(B) = δ1(P(U ))σ1(P(U )) ∞ φ1(P(U ))ι1(P(U )) = φ(A ≡ B)ι(A ∗ B).

Corollary 3.47 Let A and B be two collections of subsets of S. In this case,

|A| · |B| ∞ |A ≡ B| · |A ∗ B|.

Proof In the Ahlswede-Daykin inequality, choose δ,σ, φ, ι : P(S) −∈ N such that
δ(C) = σ(C) = φ(C) = ι(C) = 1 for C ∪ P(S). The required inequality follows
immediately.

Definition 3.48 A hereditary collection of sets is a collection I such that C ∪ I and
D ∧ C implies D ∪ I.

A dually hereditary collection of sets is a collection of sets F such that C ∪ F and
C ∧ D implies D ∪ F.
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Note that if I is a hereditary family of subsets of a set S, then P(S)− I is a dually
hereditary family of subsets; similarly, if F is a dually hereditary family of subsets
of S, then P(S) − F is a hereditary family.

Theorem 3.49 Let I and I⊃ be two hereditary families of sets. Then,

I ≡ I⊃ = I ∩ I⊃.

Proof Let C ∪ I ≡ I⊃. Then, C = A ∩ B, where A ∪ I and B ∪ I⊃. Since C ∧ A
and C ∧ B, the hereditary character of I and I⊃ implies that C ∪ I and C ∪ I⊃, so
C ∪ I ∩ I⊃.

Theorem 3.50 Let F and F⊃ be two dual hereditary families of sets. Then,

F ∗ F⊃ = F ∩ F⊃.

Proof Let C ∪ F ∗ F⊃. Then, C = A ⊆ B, where A ∪ F and B ∪ F⊃. Since A ∧ C
and B ∧ C , the dual hereditary character ofF andF⊃ implies that C ∪ F and C ∪ F⊃,
so C ∪ F ∩ F⊃.

The inequality contained by the next corollary is known as Kleitman’s inequality.

Corollary 3.51 If I is a hereditary family andF is a dual hereditary family of subsets
of a finite set S, then |I| · |F| ⊕ 2|S| · |I ∩ F|.
Proof Note that I⊃ = P(S) − F is a hereditary family. By Corollary 3.47, we have

|I| · |I⊃| ∞ |I ≡ I⊃| · |I ∗ I⊃|
= |I ∩ I⊃| · |I ∗ I⊃|

(by Theorem 3.49)

Note that |I⊃| = 2|S| − |F|. Thus, we can write

|I| ·
(
2|S| − |F|

)
= |I − (I ∩ F)| · |I ∗ I⊃|
= (|I| − |I ∩ F|) · |I ∗ I⊃|
∞ 2|S| · (|I| − |I ∩ F|) ,

which gives the desired inequality.
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3.9 The Vapnik-Chervonenkis Dimension

The concept of the Vapnik-Chervonenkis dimension of a collection of sets was intro-
duced in [6] and independently in [7]. Its main interest for data mining is related
to one of the basic models of machine learning, the probably approximately correct
learning paradigm as was shown in [8]. The subject is of great interest to probability
theorists interested in empirical processes [9, 10].

Definition 3.52 LetC be a collection of sets. If the trace of C on K ,CK equalsP(K ),
then we say that K is shattered by C.

The Vapnik-Chervonenkis dimension of the collectionC (called the VC-dimension
for brevity) is the largest cardinality of a set K that is shattered by C and is denoted
by VCD(C).

If VCD(C) = d, then there exists a set K of size d such that for each subset L of K
there exists a set C ∪ C such that L = K ∩ C .

Note that a collection C shatters a set K if and only if CK shatters K . This allows
us to assume without loss of generality that both the sets of the collection C and a
set K shattered by C are subsets of a set U .

Let C be a collection of sets with VCD(C) = d and let K be a set shattered by C

with |K | = d. Since there exist 2d subsets of K , there are at least 2d subsets of C,
so 2d ∞ |C|. Consequently, VCD(C) ∞ log2 |C|. This shows that if C is finite, then
VCD(C) is finite. As we shall see, the converse is false: there exist infinite collections
C that have a finite V C-dimension.

If U is a finite set, then the trace of a collection C = {C1, . . . , C p} of subsets of
U on a subset K of U can be presented in an intuitive, tabular form. Suppose, for
example, that U = {u1, . . . , un}, and let λ = (TC, u1u2 · · · un, r) be a table, where
r = (t1, . . . , tp). The domain of each of the attributes ui is the set {0, 1}.

Each tuple tk corresponds to a set Ck of C and is defined by

tk[ui ] =
{

1 if ui ∪ Ck,

0 otherwise,

for 1 ∞ i ∞ n. Then, C shatters K if the content of the projection r[K ] consists of
2|K | distinct rows.

Example 3.53 Let U = {u1, u2, u3, u4} and let C be the collection of subsets of U
given by

C = {{u2, u3}, {u1, u3, u4}, {u2, u4}, {u1, u2}, {u2, u3, u4}} .

The tabular representation of C is
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TC

u1 u2 u3 u4

0 1 1 0
1 0 1 1
0 1 0 1
1 1 0 0
0 1 1 1

The set K = {u1, u3} is shattered by the collection C because

r[K ] = ((0, 1), (1, 1), (0, 0), (1, 0), (0, 1))

contains the all four necessary tuples (0, 1), (1, 1), (0, 0), and (1, 0). On the other
hand, it is clear that no subset K of U that contains at least three elements can be
shattered by C because this would require r[K ] to contain at least eight tuples. Thus,
VCD(C) = 2.

Every collection of sets shatters the empty set. Also, if C shatters a set of size n,
then it shatters a set of size p, where p ∞ n.

For a collection of sets C and for m ∪ N, let ΨC[m] be the largest number of
distinct subsets of a set having m elements that can be obtained as intersections of
the set with members of C, that is,

ΨC[m] = max{|CK | | |K | = m}.

We have ΨC[m] ∞ 2m ; however, if C shatters a set of size m, then ΨC[m] = 2m .

Definition 3.54 A Vapnik-Chervonenkis class (or a VC class) is a collection C of
sets such that VCD(C) is finite.

Example 3.55 Let R be the set of real numbers and let S be the collection of sets
{(−√, t) | t ∪ R}. We claim that any singleton is shattered by S. Indeed, if S = {x}
is a singleton, then P({x}) = {∅, {x}}. Thus, if t � x , we have (−√, t) ∩ S = {x};
also, if t < x , we have (−√, t) ∩ S = ∅, so SS = P(S).

There is no set S with |S| = 2 that can be shattered by S. Indeed, suppose that
S = {x, y}, where x < y. Then, any member of S that contains y includes the
entire set S, so SS = {∅, {x}, {x, y}} ∅= P(S). This shows that S is a VC class and
VCD(S) = 1.

Example 3.56 Consider the collection I = {[a, b] | a, b ∪ R, a ∞ b} of closed
intervals. We claim that VCD(I) = 2. To justify this claim, we need to show that
there exists a set S = {x, y} such that IS = P(S) and no three-element set can be
shattered by I.

For the first part of the statement, consider the intersections
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Fig. 3.2 Three-point sets can
be shattered by half-planes

[u, v] ∩ S = ∅, where v < x ,
[x − π, x+y

2 ] ∩ S = {x},
[ x+y

2 , y] ∩ S = {y},
[x − π, y + π] ∩ S = {x, y},

which show that IS = P(S).
For the second part of the statement, let T = {x, y, z} be a set that contains three

elements. Any interval that contains x and z also contains y, so it is impossible to
obtain the set {x, z} as an intersection between an interval in I and the set T .

Example 3.57 Let H be the collection of closed half-planes in R
2, that is, the col-

lection of sets of the form

{x = (x1, x2) ∪ R
2 | ax1 + bx2 − c � 0, a ∅= 0 or b ∅= 0}.

We claim that VCD(H) = 3.
Let P, Q, R be three points in R

2 such that they are not located on the same line.
Each line in Fig. 3.2 is marked with the sets it defines; thus, it is clear that the family
of half-planes shatters the set {P, Q, R}, so VCD(H) is at least 3.

To complete the justification of the claim we need to show that no set that contains
at least four points can be shattered by H.

Let {P, Q, R, S} be a set that contains four points such that no three points of this
set are collinear. If S is located inside the triangle P, Q, R, then every half-plane that
contains P, Q, R also contains S, so it is impossible to separate the subset {P, Q, R}.
Thus, we may assume that no point is inside the triangle formed by the remaining
three points (see Fig. 3.3). Observe that any half-plane that contains two diagonally
opposite points, for example, P and R, contains either Q or S, which shows that it
is impossible to separate the set {P, R}. Thus, no set that contains four points may
be shattered by H, so VCD(H) = 3.
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Fig. 3.3 A four-point set
cannot be shattered by
half-planes

Fig. 3.4 Rectangle that
separates the set {Pn, Ps , Pe}

Example 3.58 Let R2 be equipped with a system of coordinates and let R be the set
of rectangles whose sides are parallel with the axes x and y. Each such rectangle has
the form [x0, x1] × [y0, y1].

There is a set S with |S| = 4 that is shattered by R. Indeed, let S be a set of four
points inR2 that contains a unique “northernmost point” Pn , a unique “southernmost
point” Ps , a unique “easternmost point” Pe, and a unique “westernmost point” Pw.
If L ∧ S and L ∅= ∅, let RL be the smallest rectangle that contains L . For example,
we show the rectangle RL for the set {Pn, Ps, Pe} in Fig. 3.4.

On the other hand, this collection cannot shatter a set of points that contains at
least five points. Indeed, let S be a set of points such that |S| � 5 and, as before, let
Pn be the northernmost point, etc. If the set contains more than one “northernmost”
point, then we select exactly one to be Pn . Then, the rectangle that contains the set
K = {Pn, Pe, Ps, Pw} contains the entire set S, which shows the impossibility of
separating the set K.

3.10 The Sauer–Shelah Theorem

If a collection of sets C is not a VC class (that is, if the Vapnik-Chervonenkis dimen-
sion of C is infinite), then ΨC[m] = 2m for all m ∪ N. However, we shall prove
that if VCD(C) = d , then ΨC[m] is bounded asymptotically by a polynomial of
degree d.
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Definition 3.59 Let C be a collection of subsets of a finite set S, let s ∪ S, and let
C(s) be the collection CS−{s}.

C has a pair (A, B)ats if A, B ∪ C, B ∧ A, and A − B = {s}.
Note that if (A, B) is a pair of C at s, then B = A − {s}.

Define the subcollections P⊃(C, s) and P⊃⊃(C, s) of C as

P⊃(C, s) = {A ∪ C | (A, B) is a pair at s for some B ∪ C}
= {A ∪ C | s ∪ A, A − {s} ∪ C},

P⊃⊃(C, s) = {B ∪ C | (A, B) is a pair at s for some A ∪ C}
= {B ∪ C | s ∅∪ B, B ⊆ {s} ∪ C}.

Lemma 3.60 Let C be a collection of subsets of a finite set S, let s ∪ S, and let C(s)

be the collection CS−{s}.
The following statements hold:

(i) if (A1, B1), (A1, B2), (A2, B1), (A2, B2) are pairs at s of C, then A1 = A2 and
B1 = B2;

(ii) we have |P⊃(C, s)| = |P⊃⊃(C, s)|;
(iii) |C| − |C(s)| = |P⊃⊃(C, s)|;
(iv) C(s) = {C ∪ C | s ∅∪ C} ⊆ {C − {s} | C ∪ C and s ∪ C};
(v) |C(s)| = |C| − |P⊃⊃(C, s)|.

Proof For part (i), Definition 3.59 implies

B1 ∧ A1, B2 ∧ A1, B1 ∧ A2, B2 ∧ A2,

and A1 = B1 ⊆ {s}, A1 = B2 ⊆ {s}, A2 = B1 ⊆ {s}, and A2 = B2 ⊆ {s}. Therefore,
A1 = B1 ⊆ {s} = A2, which implies B1 = A1 − {s} = A2 − {s} = B2.

For part (ii), let f : P⊃(C, s) −∈ P⊃⊃(C, s) be the function f (A) = A − {s}. It is
easy to verify that f is a bijection and this implies |P⊃(C, s)| = |P⊃⊃(C, s)|.

To prove part (iii) let B ∪ P⊃⊃(C, s). By the definition of P⊃⊃(C, s) we have B ∪ C,
s ∅∪ B, and B ⊆ {s} ∪ C.

Define the mapping g : P⊃⊃(C, s) −∈ C − C(s) as g(B) = B ⊆ {s}. Note that
B ⊆ {s} ∪ C − CS−{s}, so g is a well-defined function. Moreover, g is one-to one
because B1 ⊆ {s} = B2 ⊆ {s}, s ∅∪ B1, and s ∅∪ B2 imply B1 = B2. Also, g is a
surjection because if D ∪ C − CS−{s}, then s ∪ D and D − {s} ∪ P⊃⊃(C, s). Thus, g
is a bijection, which implies |C| − |C(s)| = |C − C(s)| = |P⊃⊃(C, s).

To prove Part (iv) let C ∪ C(s). If s ∅∪ C , then C belongs to the first collection of
the union; otherwise, that is if s ∪ C, C − {s} belongs to the second collection and
the equality follows.

Finally, for Part (v), by applying Part (iv) we can write

|C(s)| = |{C ∪ C | s ∅∪ C}| + |{C − {s} | C ∪ C and s ∪ C}|
−|{C ∪ C | s ∅∪ C} ∩ {C − {s} | C ∪ C and s ∪ C}|
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= |{C ∪ C | s ∅∪ C}| + |{C − {s} | C ∪ C and s ∪ C}| − |P⊃⊃(C, s)|
= |C| − |P⊃⊃(C, s)|.

Lemma 3.61 Let C be a collection of sets of a non-empty finite set S and let s0 be
an element of S. If P⊃⊃(C, s0) shatters a subset T of S −{s0}, then C shatters T ⊆{s0}.
Proof Since P⊃⊃(C, s0) shatters T , for every subset U of T there is B ∪ P⊃⊃(C, s0)

such that U = T ∩ B. Let W be a subset of T ⊆ {s0}. If s0 ∅∪ W , then W ∧ T and by
the previous asumption, there exists B ∪ P⊃⊃(C, s0) such that W = (T ⊆ {s0}) ∩ B.
If s0 ∪ W , then there exists B1 ∪ P⊃⊃(C, s0) such that for W1 = W − {s0} we have
W1 = T ∩ B1. By the definition of P⊃⊃(C, s0), B1 ⊆ {s0} ∪ C and

(T ⊆ {s0}) ∩ (B1 ⊆ {s0}) = (T ∩ B) ⊆ {s0} = W1 ⊆ {s0} = W.

Thus, C shatters T ⊆ {s0}.
We saw that we have VCD(C) ∞ log2 |C|. For collections of subsets of finite sets

we have a stronger result.

Theorem 3.62 Let C be a collection of sets of a non-empty finite set S with
VCD(C) = d. We have

2d ∞ |C| ∞ (|S| + 1)d .

Proof The first inequality, reproduced here for completeness, was discussed earlier.
For the second inequality the argument is by induction on |S|. The basis case,

|S| = 1 is immediate.
Suppose that the inequality holds for collections of subsets with no more than n

elements and let S be a set containing n +1 elements. Let s0 be an arbitrary but fixed
element of S. By Part (iv) of Lemma 3.60 we have |C| = |Cs0 | + |P⊃⊃(C, s0)|.

The collection Cs0 consists of subsets of S − {s0}. Since VCD(C) = d, it is clear
that VCD(Cs0) ∞ d and, by inductive hypothesis |Cs0 | ∞ (|S − {s0}| + 1)d .

We claim that VCD(P⊃⊃(C, s0)) ∞ d − 1. Suppose that

P⊃⊃(C, s0) = {B ∪ C | s0 ∅∪ B, B ⊆ {s0} ∪ C}

shatters a set T , where T ∧ S and |T | � d . Then, by Lemma 3.61, C would
shatter T ⊆ {s0}; since |T ⊆ {s0}| ⊕ d + 1, this would lead to a contradiction.
Therefore, we have VCD(P⊃⊃(C, s0)) ∞ d − 1 and, by the inductive hypothesis,
|P⊃⊃(C, s0))| ∞ (|S − {s0}| + 1)d−1. These inequalities imply

|C| = |Cs0 | + |P⊃⊃(C, s0)|
∞ (|S − {s0}| + 1)d + (|S − {s0}| + 1)d−1

= (|S − {s0}| + 1)d−1(|S − {s0}| + 2)

∞ (|S| + 1)d ,
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which completes the proof.

Lemma 3.63 Let C be a collection of subsets of a finite set S, let s ∪ S, and let C(s)

be the collection CS−{s}. If VCD(P⊃⊃(C, s)) = n − 1 in S − {s}, then VCD(C) = n.

Proof Since VCD(P⊃⊃(C, s)) = n − 1 in S − {s}, there exists a set T ∧ S − {s} with
|T | = n −1 that is shattered by P⊃⊃(C, s). Let G be the subcollection of C defined by:

G = P⊃(C, s) ⊆ P⊃⊃(C, s)

= {A ∪ C | A − {s} ∪ C} ⊆ {B ∪ C | B ⊆ {s} ∪ C}.

We claim that G shatters T ⊆ {s}. Two cases may occur for a subset W of T ⊆ {s}:
(i) If s ∅∪ W , then W ∧ T and, since T is shattered by by P⊃⊃(C, s) it follows that

there exists G ∪ G such that W = G ∩ (T ⊆ {s}).
(ii) If s ∪ W , let G ⊃ ∪ P⊃⊃(C, s) be set such that W − {s} = T ∩ G ⊃, which exists

by the previous argument. Then, we have G ⊃ ∪ P⊃⊃(C, s), so G ⊃ ⊆ {s} ∪ P⊃(C, s)
and (G ⊃ ∩ {s}) ∩ (T ⊆ {s}) = W .

Thus, G shatters T ⊆ {s} and so does C.

For n, k ∪ N and 0 ∞ k ∞ n define the number
⎟ n
∞k

)
as

(
n

∞ k

⎜
=

k∑
i=0

(
n

i

⎜
.

Clearly,
⎟ n
∞0

) = 1 and
⎟n

n

) = 2n .

Theorem 3.64 Let ν : N2 −∈ N be the function defined by

ν(d, m) =
{

1 if m = 0 or d = 0

ν(d, m − 1) + ν(d − 1, m − 1) otherwise.

We have

ν(d, m) =
(

m

∞ d

⎜

for d, m ∪ N.

Proof The argument is by strong induction on s = i + m. The base case, s = 0,
implies m = 0 and d = 0, and the equality is immediate. Suppose that the equality
holds for ν(d ⊃, m⊃), where d ⊃ + m⊃ < d + m. We have
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ν(d, m) = ν(d, m − 1) + ν(d − 1, m − 1)

(by definition)
= ∑d

i=0

⎟m−1
i

) + ∑d−1
i=0

⎟m−1
i

)
(by inductive hypothesis)

= ∑d
i=0

⎟m−1
i

) + ∑d
i=0

⎟m−1
i−1

)
(since

⎟m−1
−1

) = 0)

= ∑d
i=0

(⎟m−1
i

) + ⎟m−1
i−1

))
= ∑d

i=0

⎟m
i

) = ⎟ m
∞d

)
,

which gives the desired conclusion.

Theorem 3.65 (Sauer–Shelah Theorem) Let C be a collection of sets such that
VCD(C) = d. If m ∪ N is a number such that d ∞ m, then ΨC[m] ∞ ν(d, m).

Proof The argument is by strong induction on s = d + m. For the base case, s = 0
we have d = m = 0 and this means that the collection C shatters only the empty set.
Thus, ΨC[0] = |C∅| = 1, and this implies ΨC[0] = 1 = ν(0, 0).

Suppose that the statement holds for pairs (d ⊃, m⊃) such that d ⊃ +m⊃ < s, and let C
be a collection of subsets of S such that VCD(C) = d and K be a set with |K | = m.

Let k0 be a fixed (but, otherwise, arbitrary) element of K . Since |K −{k0}| = m−1,
by inductive hypothesis, we have |CK−{k0}| ∞ ν(d, m − 1).

Define

D = P⊃⊃(CK , k0) = {B ∪ CK | k0 ∅∪ B and B ⊆ {k0} ∪ CK }.

By Lemma 3.63, VCD(D) ∞ d − 1, so |D| ∞ ν(d − 1, m − 1).
By Part (ii) of Lemma 3.60,

|CK | = |CK−{k0}| + |D| ∞ ν(d, m − 1) + ν(d − 1, m − 1) = ν(d, m).

Lemma 3.66 For d ∪ N and d � 2 we have

2d−1 ∞ dd

d! .

Proof The argument is by induction on d . In the basis step, d = 2 both members are
equal to 2.

Suppose the inequality holds for d . We have

(d + 1)d+1

(d + 1)! = (d + 1)d

d! = dd

d! · (d + 1)d

dd

= dd

d! ·
(

1 + 1

d

⎜d

� 2d ·
(

1 + 1

d

⎜d

� 2d

(by inductive hypothesis)



3.10 The Sauer–Shelah Theorem 133

because

(
1 + 1

d

⎜d

� 1 + d
1

d
= 2.

This concludes the proof of the inequality.

Lemma 3.67 We have ν(d, m) ∞ 2 md

d! for every m � d and d � 1.

Proof The argument is by induction on d and n. If d = 1, thenν(1, m) = m+1 ∞ 2m
for m � 1, so the inequality holds for every m � 1, when d = 1.

If m = d � 2, then ν(d, m) = ν(d, d) = 2d and the desired inequality follows
immediately from Lemma 3.66.

Suppose that the inequality holds for m > d � 1. We have

ν(d, m + 1) = ν(d, m) + ν(d − 1, m)

(by the definition of ν)

∞ 2
md

d! + 2
md−1

(d − 1)!
(by inductive hypothesis)

= 2
md−1

(d − 1)!
(
1 + m

d

)
.

It is easy to see that the inequality

2
md−1

(d − 1)!
(
1 + m

d

)
∞ 2

(m + 1)d

d!
is equivalent to

d

m
+ 1 ∞

(
1 + 1

m

⎜d

and, therefore, is valid. This yields immediately the inequality of the lemma.

The next theorem discusses the asymptotic behavior of the function ν:

Theorem 3.68 The function ν satisfies the inequality:

ν(d, m) <
(em

d

)d

for every m � d and d � 1.

Proof By Lemma 3.67 ν(d, m) ∞ 2 md

d! . Therefore, we need to show only that

2

(
d

e

⎜d

< d!.
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The argument is by induction on d � 1. The basis case, d = 1 is immediate. Suppose

that 2
⎟ d

e

)d
< d!. We have

2

(
d + 1

e

⎜d+1

= 2

(
d

e

⎜d (d + 1

d

⎜d d + 1

e

=
(

1 + 1

d

⎜d 1

e
· 2

(
d

e

⎜d

(d + 1) < 2

(
d

e

⎜d

(d + 1),

because (
1 + 1

d

⎜d

< e.

The last inequality holds because the sequence
(⎟

1 + 1
d

)d
)

d∪N

is an increasing

sequence whose limit is e. Since 2
⎟ d+1

e

)d+1
< 2

⎟ d
e

)d
(d +1), by inductive hypoth-

esis we obtain:

2

(
d + 1

e

⎜d+1

< (d + 1)!.

This proves the inequality of the theorem.

Corollary 3.69 If m is sufficiently large we have ν(d, m) = O(md).

Proof The statement is a direct consequence of Theorem 3.68.

Let u : Bk
2 −∈ B2 be a Boolean function of k arguments and let C1, . . . , Ck

be k subsets of a set U . Define the set u(C1, . . . , Ck) as the subset C of U whose
indicator function is IC = u(IC1 , . . . , ICk ).

Example 3.70 If u : B2
2 −∈ B2 is the Boolean function u(a1, a2) = a1 ≡ a2,

then u(C1, C2) is C1 ⊆ C2; similarly, if u(x1, x2) = x1 ⊥ x2, then u(C1, C2) is the
symmetric difference C1 ⊥ C2 for every C1, C2 ∪ P(U ).

Let u : Bk
2 −∈ B2 and C1, . . . ,Ck are k family of subsets of U , the family of

sets u(C1, . . . ,Ck) is

u(C1, . . . ,Ck) = {u(C1, . . . , Ck) | C1 ∪ C1, . . . , Ck ∪ Ck}.

Theorem 3.71 Let δ(k) be the least integer a such that a
log(ea)

> k.
IfC1, . . . ,Ck are k collections of subsets of the set U such that d = max{VCD(Ci )

| 1 ∞ i ∞ k} and u : B2
2 −∈ B2 is a Boolean function, then

VCD(u(C1, . . . ,Ck)) ∞ δ(k) · d.
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Proof Let S be a subset of U that consists of m elements. The collection (Ci )S is not
larger than ν(d, m). For a set in the collection W ∪ u(C1, . . . ,Ck)S we can write
W = S ∩ u(C1, . . . , Ck), or, equivalently, 1W = 1S · u(1C1 , . . . , 1Ck ). By Exercise
25 of Chap. 11, there exists a Boolean function gS such that

1S · u(1C1 , . . . , 1Ck ) = gS(1S · 1C1 , . . . , 1S · 1Ck ) = gS(1S∩C1 , . . . , 1S∩Ck ).

Since there are at most ν(d, m) distinct sets of the form S∩Ci for every i , 1 ∞ i ∞ k, it
follows that there are at most (ν(d, m))k distinct sets W , hence u(C1, . . . ,Ck)[m] ∞
(ν(d, m))k .

Theorem 3.68 implies

u(C1, . . . ,Ck)[m] ∞
(em

d

)kd
.

We observed that if ΨC[m] < 2m , then VCD(C) < m. Therefore, to limit the Vapnik-
Chervonenkis dimension of the collection u(C1, . . . ,Ck) it suffices to require that⎟ em

d

)kd
< 2m .

Let a = m
d . The last inequality can be written as (ea)kd < 2ad ; equivalently, we

have (ea)k < 2a , which yields k < a
log(ea)

. If δ(k) is the least integer a such that
k < a

log(ea)
, then m ∞ δ(k)d , which gives our conclusion.

Example 3.72 If k = 2, the least integer a such that a
log(ea)

> 2 is k = 10, as it can
be seen by graphing this function; thus, if C1,C2 are two collection of concepts with
VCD(C1) = VCD(C2) = d , the Vapnik-Chervonenkis dimension of the collections
C1 ≡ C2 or C1 ∗ C2 is not larger than 10d .

Lemma 3.73 Let S, T be two sets and let f : S −∈ T be a function. If D is a
collection of subsets of T , U is a finite subset of S and C = f −1(D) is the collection
{ f −1(D) | D ∪ D}, then |CU | ∞ |D f (U )|.
Proof Let V = f (U ) and denote f �U by g. For D, D⊃ ∪ D we have

(U ∩ f −1(D)) ⊥ (U ∩ f −1(D⊃))
= U ∩ ( f −1(D) ⊥ f −1(D⊃)) = U ∩ ( f −1(D ⊥ D⊃))
= g−1(V ∩ (D ⊥ D⊃)) = g−1(V ∩ D) ⊥ g−1(V ⊥ D⊃).

Thus, C = U ∩ f −1(D) and C ⊃ = U ∩ f −1(D⊃) are two distinct members ofCU , then
V ∩ D and V ∩ D⊃ are two distinct members of D f (U ). This implies |CU | ∞ |D f (U )|.
Theorem 3.74 Let S, T be two sets and let f : S −∈ T be a function. If D is a
collection of subsets of T and C = f −1(D) is the collection { f −1(D) | D ∪ D},
then VCD(C) ∞ VCD(D). Moreover, if f is a surjection, then VCD(C) = VCD(D).

Proof Suppose thatC shatters an n-element subset K = {x1, . . . , xn} of S, so |CK | =
2n By Lemma 3.73 we have |CK | ∞ |D f (U )|, so |D f (U )| � 2n , which implies

http://dx.doi.org/10.1007/978-1-4471-6407-4_11
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| f (U )| = n and |D f (U )| = 2n , because f (U ) cannot have more than n elements.
Thus, D shatters f (U ), so VCD(C) ∞ VCD(C).

Suppose now that f is surjective and H = {t1, . . . , tm} is an m element set that
is shattered by D. Consider the set L = {u1, . . . , um} such that ui ∪ f −1(ti ) for
1 ∞ i ∞ m. Let U be a subset of L . Since H is shattered by D, there is a set D ∪ D

such that f (U ) = H ∩ D, which implies U = L ∩ f −1(D). Thus, L is shattered by
C and this means that VCD(C) = VCD(D).

Definition 3.75 The density of C is the number

dens(C) = inf{s ∪ R>0 | ΨC[m] ∞ c · ms for every m ∪ N},

for some positive constant c.

Theorem 3.76 Let S, T be two sets and let f : S −∈ T be a function. If D is a
collection of subsets of T and C = f −1(D) is the collection { f −1(D) | D ∪ D},
then dens(C) ∞ dens(D). Moreover, if f is a surjection, then dens(C) = dens(D).

Proof Let L be a subset of S such that |L| = m. Then, |CL | ∞ |D f (L)|. In general,
we have | f (L)| ∞ m, so |D f (L)| ∞ D[m] ∞ cms . Therefore, by Lemma 3.73, we
have |CL | ∞ |D f (L)| ∞ D[m] ∞ cms , which implies dens(C) ∞ dens(D).

If f is a surjection, then, for every finite subset M of T such that |M | = m there
is a subset L of S such that |L| = |M | and f (L) = M . Therefore, D[m] ∞ ΨC[m]
and this implies dens(C) = dens(D).

If C,D are two collections of sets such that C ∧ D, then VCD(C) ∞ VCD(D)

and dens(C) ∞ dens(D).

Theorem 3.77 Let C be a collection of subsets of a set S and let C⊃ = {S − C |
C ∪ C}. Then, for every K ∪ P(S) we have |CK | = |C⊃

K |.
Proof We prove the statement by showing the existence of a bijection f : CK −∈
C⊃

K . If U ∪ CK , then U = K ∩ C , where C ∪ C. Then S − C ∪ C⊃ and we define
f (U ) = K ∩ (S − C) = K − C ∪ C⊃

K . The function f is well-defined because if
K ∩ C1 = K ∩ C2, then K − C1 = K − (K ∩ C1) = K − (K ∩ C2) = K − C2.

It is clear that if f (U ) = f (V ) for U, V ∪ CK , U = K ∩ C1, and V = K ∩ C2,
then K − C1 = K − C2, so K ∩ C1 = K ∩ C2 and this means that U = V . Thus, f
is injective. If W ∪ C⊃

K , then W = K ∩ C ⊃ for some C ⊃ ∪ C. Since C ⊃ = S − C for
some C ∪ C, it follows that W = K − C , so W = f (U ), where U = K ∩ C .

Corollary 3.78 Let C be a collection of subsets of a set S and let C⊃ = {S − C |
C ∪ C}. We have dens(C) = dens(C⊃) and VCD(C) = VCD(C⊃).

Proof This statement follows immediately from Theorem 3.77.

Theorem 3.79 For every collection of sets we have dens(C) ∞ VCD(C). Further-
more, if dens(C) is finite, then C is a VC-class.
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Proof If C is not a VC-class the inequality dens(C) ∞ VCD(C) is clearly satisfied.
Suppose now that C is a VC-class and VCD(C) = d. By Sauer–Shelah Theorem
(Theorem 3.65) we have ΨC[m] ∞ ν(d, m); then, by Theorem 3.68, we obtain
ΨC[m] ∞ ⎟ em

d

)d , so dens(C) ∞ d .
Suppose now that dens(C) is finite. Since ΨC[m] ∞ cms ∞ 2m for m sufficiently

large, it follows that VCD(C) is finite, so C is a VC-class.

Let D be a finite collection of subsets of a set S. In Supplement 6 of Chap. 1
the partition ρD was defined as consisting of the nonempty sets of the form {Da1

1 ∩
Da2

2 ∩ · · · ∩ Dar
r , where (a1, a2, . . . , ar ) ∪ {0, 1}r .

Definition 3.80 A collection D = {D1, . . . , Dr } of subsets of a set S is independent
if the partition ρD has the maximum numbers of blocks, that is, it consists of 2r

blocks.

If D is independent, then the Boolean subalgebra generated by D in the Boolean
algebra (P(S), {∩,⊆, ¯ ,∅, S}) contains 22r

sets, because this subalgebra has 2r

atoms. Thus, if D shatters a subset T with |T | = p, then the collection DT contains
2p sets, which implies 2p ∞ 22r

, or p ∞ 2r .
Let C be a collection of subsets of a set S. The independence number of C, I (C)

is:

I (C) = sup{r | {C1, . . . , Cr }
is independent for some finite {C1, . . . , Cr } ∧ C}.

The next theorem is an analog of Theorem 3.74 for the independence number of
a collection.

Theorem 3.81 Let S, T be two sets and let f : S −∈ T be a function. If D is a
collection of subsets of T and C = f −1(D) is the collection { f −1(D) | D ∪ D},
then I (C) ∞ I (D). Moreover, if f is a surjection, then I (C) = I (D).

Proof Let E = {D1, . . . , Dp} be an independent finite subcollection of D. The
partition ρE contains 2r blocks. By Supplement 30 of Chap. 11, the number of atoms
of the subalgebra generated by { f −1(D1), . . . , f −1(Dp)} is not greater than 2r .
Therefore, I (C) ∞ I (D); from the same supplement it follows that if f is surjective,
then I (C) = I (D).

Theorem 3.82 If C is a collection of subsets of a set S such that VCD(C) � 2n,
then I (C) � n.

Proof Suppose that VCD(C) � 2n , that is, there exists a subset T of S that is shattered
by C and has at least 2n elements. Then, the collection CT contains at least 22n

sets,
which means that the Boolean subalgebra of P(T ) generated by TC contains at least
2n atoms. This implies that the subalgebra of P(S) generated by C contains at least
this number of atoms, so I (C) � n.

http://dx.doi.org/10.1007/978-1-4471-6407-4_1
http://dx.doi.org/10.1007/978-1-4471-6407-4_11
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1. Prove by induction on n that for a finite set S with |S| = n, we have |P(S)| = 2n .
2. Prove that if S is a finite set such that |S| = n, then there are 2n2

binary relations
on S.

3. Prove that there are 2n(n−1) binary reflexive relations on a finite set S that has n
elements.

4. Prove that the number of antisymmetric relations on a finite set that has n elements

is 2n · 3
n(n−1)

2 .
5. Let x = (x0, . . . , xn−1) be a sequence in Seq(R), where n � 2. The sequence is

said to be unimodal if there exists j , 0 ∞ j ∞ n−1 such that x0 ∞ x1 ∞ · · · ∞ x j

and x j � x j+1 � · · · ⊕ xn .
Prove that if x ∪ Seq(R>0) and x p−1x p+1 ∞ x2

p for 1 ∞ p ∞ n − 2, then x is a
unimodal sequence.

6. Let f and g be two transpositions on a set S. Prove that there is i ∪ {1, 2, 3} such
that ( f g)i = 1S .

7. Let x ∪ R and let m ∪ N. Prove that if x � 0 and m � 1, then

xm−1

(m − 1)! + xm

m! ∞ (x + 1)m

m! .

8. Let S be subset of N such that S ∧ {1, 2, . . . , 2n} and |S| = n + 1. Prove that S
contains two numbers p and q such that (p, q) ∪ ι.
Solution: Any number m ∪ S can be written as m = 2kr , where 1 ∞ r ∞ 2n −1
and r is odd. We refer to r as the odd part of m. Note that there are n odd numbers
between 1 and 2n−1. Since |S| = n+1, and there are only n odd parts, it follows,
by the pidgeonhole principle, that there are two numbers p, q ∪ S that have the
same odd part. The smaller such number divides the larger one.

9. Starting from Newton’s binomial formula, prove the following identities:

n∑
k=0

(n − k)

(
n

k

⎜
= n2n−1,

n∑
k=0

⎟n
k

)
n − k + 1

= 2n+1 − 1

n + 1
.

10. Prove that (
m + n

k

⎜
=

k∑
i=0

(
m

i

⎜(
n

k − i

⎜

for m, n, k ∪ N and k ∞ m + n.
11. Prove that
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(
m + n + p

q1 + q2 + q3

⎜
�
(

m

q1

⎜(
n

q2

⎜(
p

q3

⎜

for m, n, p, q1, q2, q3 ∪ N, where m � q1, n � q2, and p � q3.
12. Prove that max{⎟n

k

) | 0 ∞ k ∞ n} = ⎟ n
→ n

2 ≥
) = ⎟ n

⊇ n
2 �
)
.

13. Prove that
22n

2n + 1
∞
(

2n

n

⎜
∞ 22n

for n � 0.
14. Prove the inequality (

n

i − 1

⎜(
n

i + 1

⎜
∞
((

n

i

⎜⎜2

for 1 ∞ i ∞ n − 1.
15. Let Tn = ∑n

i=0(−1)i
⎟n−i

i

)
for n � 0. Prove that Tn = Tn−1 − Tn−2 for n � 2.

16. Prove that
n∑

i=0

(
n

i

⎜2

=
(

2n

n

⎜
.

17. Let C be a collection of subsets of a finite set S.

(a) Prove that if C ∩ D ∅= ∅ for every pair (C, D) of members of C, then
|C| ∞ 2|S|−1.

(b) Prove that if C ⊆ D ⊂ S for every pair (C, D) of members of C, then
|C| ∞ 2|S|−1.

18. Let C be a collection of subsets of a finite set S such that C ∧ Pk(S) for some
k < |S|. The shadow of C is the collection βC = {D ∪ Pk−1(S) | D ∧
C for some C ∪ C}. The shade of C is the collection ⊂C = {D ∪ Pk+1(S) |
C ∧ T for some C ∪ C}. Prove that:

(a) |βC| � k
n−k+1 |C| for k > 0;

(b) |⊂C| � n−k
k+1 |C| for k < n;

(c) |βC|
( n

k−1)
� |C|

(n
k)

for k > 0;

(d) |⊂C|
( n

k+1)
⊕ |C|

(n
k)

for k < n;

(e) if k ∞ n−1
2 , then |⊂C| � |C|;

(f) if k � n+1
2 , then |βC| � |C|.

19. A derangement is a permutation f : {1, . . . , n} −∈ {1, . . . , n} such that f (i) ∅=
i for 1 ∞ i ∞ n. Denote by E{i1···ik } the set of permutations f of PERMn such
that f (i p) = i p for 1 ∞ p ∞ k.

(a) Prove that |E{i1···ik }| = (n − k)!.
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(b) By applying the inclusion-exclusion principle, prove that the number of
derangements is

Dn = n!
(

1 − 1

1! + 1

2! + · · · + (−1)n 1

n!
⎜

.

(c) Use a combinatorial argument to prove that

n! =
n∑

j=0

(
n

j

⎜
Dn− j .

20. Let S be a set, C be a collection of subsets of S and T be a subset of S. Denote by
d(C, T ) the collection of sets in C that are disjoint from T , {C ∪ C | C ∩T = ∅}.
If ck is the number of ways to choose a subcollection D of C such that |D| = k
and

⋃
S = S, then prove that ck = ∑

T ∧S(−1)|T ||d(C, T )|k .
Solution: Note that there are |d(C, T )|k ways to pick k sets C1, . . . , Ck of C
that are disjoint from T . If

⋃
Ci = S, then at least one of these sets must

intersect T , which implies T = ∅. Thus, every cover contributes only to the
term (−1)0|d(C,∅)|k . If

⋃
Ci = V ⊂ S, then the Ci contribute to every

term corresponding to T = S − V , so the total contribution of C1, . . . , Ck

is
∑

T ∧S−V (−1)T , and this sum equals 0 because every nonempty set has an
equal number of even and odd-sized subsets. Thus, only the collection of sets
that cover the entire set S contributes to ck .

21. Let P be a subset of {1, . . . , 2n} such that |P| = n + 1. Prove that there exists a
pair of numbers in P × P whose components are relatively prime numbers.

22. Prove that R(m, p, q) ∞
(
m + p − 2

m − 1

⎜
for m � 2 and p � 2.

23. Let n = (n0, n1, . . .) ∪ Seq√(N) be a sequence of natural numbers. Prove that
n contains a subsequence that is either strictly increasing, strictly decreasing, or
constant. Extend this result to countable, totally ordered sets.
Hint: Consider the complete graph on the set {n0, n1, . . .}, and color each edge
(ni , n j ) with i < j with red if ni < n j , blue if ni > n j , and white if ni = n j .

24. Let a = (a1, . . . , an) be a sequence in Seqn(N) such that r ∞ min ai and
let p = maxai . If p = (p, . . . , p) ∪ Seqn(N), prove that Ramsey(p, r) �
Ramsey(a, r).

25. The left shift and the right shift on PERMn are the mappings lshift, rshift :
PERMn −∈ PERMn defined by

lshift(a1, a2, . . . , an) = (a2, . . . , an, a1),

rshift(a1, a2, . . . , an) = (an, a1 . . . , an−1),

for every (a1, . . . , an) ∪ PERMn , respectively.

(a) Prove that lshift and rshift are inverse to each other.
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(b) Two permutations f, g ∪ PERMn are equivalent, f ◦ g, if there exists an
integer k such that lshift(k)( f ) = g. Here h(k) denotes the kth iteration of h.
Prove that “◦” is an equivalence on PERMn .

26. Prove that if 0 ∞ p ∞ (n + 1)! − 1, then there exists a unique sequence a =
(a1, . . . , an) ∪ Seq(nn) such that 0 ∞ ai ∞ i and p = a1 ·1!+a2 ·2!+· · ·+an ·n!.

27. Consider the polynomial [x]n = x(x − 1) · · · (x − n + 1) called the factorial
power of x with exponent n. The coefficients of this polynomial

[x]n = s(n, n)xn + s(n, n − 1)xn−1 + · · · + s(n, i)xi + · · · + s(n, 0)

are known as the Stirling numbers of the first kind. Prove that

[x]n = (−1)n[n − x − 1]n;
s(n, 0) = 0;
s(n, n) = 1;

s(n + 1, k) = s(n, k − 1) − ns(n, k).

Hint: To prove the last equality, observe that [x]n+1 = [x]n(x − n) and seek the
coefficient of xk in both sides.

28. Prove that for p, n ∪ N we have

[p]n =
{

0 if 0 ∞ p ∞ n − 1,
p!

(p−n)! if p � n.

Furthermore, prove that

e =
√∑

p=0

[p]n

p!

for any non-negative integer n.
29. Let S, U be two finite sets with |U | = n. Prove that the number of functions of

the form f : S −∈ U that have the same kernel partition ρ = {H1, . . . , Hk} ∪
PART(S) with k ∞ n equals the number of injective functions from a set with k
elements into U , and therefore this number is [n]k = n(n − 1) · · · (n − k + 1).

30. Let α(ρ) the number of blocks of a partition ρ ∪ PART(S), where |S| = m.
Prove that for every u ∪ N we have

∑{[u]α(ρ) | ρ ∪ PART(S)} = um .
Solution: Let U be a finite set such that |U | = u. There are um functions of the
form f : S −∈ U and each such function has a kernel partition with k blocks
with k ∞ n. As observed before, there exist [u]k such parttions, which yields the
above equality.

31. Prove that every polynomial xn can be written as
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xn =
n∑

i=1

S(n, i)[x]i ,

where S(n, i) are the Stirling numbers of the second kind.
32. Prove that the Stirling numbers of the second kind satisfy the equalities:

(a) S(n, 2) = 2n−1 − 1 and S(n, n − 1) = ⎟n
2

)
;

(b) S(n, i) = i S(n − 1, i) + S(n − 1, i − 1).
Solution:We discuss only the equality (b). A partition of a set A =
{a1, . . . , an} into i blocks can be obtained from a partition of A − {an}
into i blocks and adding an to one of these blocks or by placing an in a block
by itself. The first term of the second member of the equality counts parti-
tions obtained by the first construction, while the second term corresponds
to the second construction.

33. The total number of partitions of a set having n elements is denoted by Bn and
is known as the nth Bell number. Clearly, Bn = ∑n

m=0 S(n, m). Prove that:

Bn =
n−1∑
m=0

(
n − 1

m

⎜
Bm .

34. Prove the inequality

S(n, i − 1)S(n, i + 1) ∞ (S(n, i))2

for 1 ∞ i ∞ n − 1.
35. Consider the equation x1 + · · · + x p = n, where n � 1. Prove that:

(a) the number of solutions in natural numbers is
⎟n+p−1

p−1

)
;

(b) the number of solutions in positive integers is
⎟n−1

p−1

)
.

Solution:Let S = {a, b} be a two-element set and let a = (a, . . . , a) ∪
Seqn(S) be a sequence of length n. Let a⊃ ∪ Seqn+p−1 be the sequence
obtained from a by inserting p − 1 elements b. The number of a symbols
between any two consecutive bs yields a solution in natural numbers if
adjacent b symbols are allowed and there are

⎟n+p−1
p−1

)
configurations of a⊃,

each corresponding to a choice of p − 1 positions out of a total of n + p − 1
possible places. Further, any solution of the equation can be obtained in this
manner. The second part follows immediately from the first part.

36. Prove that |IPn(ν)| equals the number of solutions of the equation y1+· · ·+ yν =
n − ν such that y1 � y2 � · · · � yν � 0. Infer that |IPn(ν)| = ∑ν

k=1 |IPn−ν(k)|.
37. Let f : {1, . . . , n} −∈ {1, . . . , n} be a function and D f be the set D f =

{ f (i + 1) − f (i) | 1 ∞ i ∞ n − 1} ⊆ { f (1) − 1, n − f (n)}.
Prove that f is monotonic if and only if D f is a non-negative solution of the
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equation x1 + x2 + · · · + xn + xn+1 = n. Infer the number of monotonic trans-
formations of the set {1, . . . , n}.

38. Prove that the number of Ferrers diagrams that can be placed in an m×n rectangle
is
⎟m+n

n

)
.

39. The definition of binomial coefficients can be extended to pairs of the form (x, k),
where x ∪ C and k ∪ Z by writing

(
z

k

⎜
=
{ [z]k

k! if k � 0,

0 if k < 0,

where [z]k is the polynomial introduced in Exercise 27. Show that the equality⎟n
k

) = ⎟ n
n−k

)
fails when n < 0; however, the addition identity (3.6)

(
z

k

⎜
=
(

z − 1

k

⎜
+
(

z − 1

k − 1

⎜
,

holds for every complex number z and every integer k.
40. A partition k ∪ IPn is self-conjugate if k⊃ = k. Using Ferrers diagrams prove that

the number of self-conjugate partitions in IPn equals the number of partitions of
n into distinct odd numbers.

41. Let S be a set having n elements.

(a) A collection A of subsets of S has the intersecting property if A, B ∪ A

implies A ∩ B ∅= ∅. Prove that if A has the intersecting property, then
|A| ∞ 2n−1.

(b) Prove that there are collections of subsets of S that have the intersecting
property and contain 2n−1 subsets.
Solution: For Part 1, note that, for any subset B, at most one of the sets B,
S − B may belong to A. Therefore, A may not contain more than half of the
members of P(S), so |A| ∞ 2n−1. A collection of sets that answers Part (b)
is the set of subsets of S that contain a fixed element a of S. Clearly, there
are 2n−1 such sets.

42. Prove Sperner’s theorem using Supplement 8 of Chap. 1.
Solution: Let C be a Sperner system on a finite set S such that |S| = n and
let c : {0, 1, . . . , n} −∈ N be defined by c(k) = |{X ∪ C | |X | = k} for
0 ∞ k ∞ n. Suppose that i0 = min{i | 1 ∞ i ∞ n | c(i) > 0} < n−1

2 . By
Part (e) of Supplement 18 in Chap. 1, for each of the sets X in C with |X | = i0,
there exists a set X ⊃ in the shade of {X ∪ C | |X | = i0} such that |X ⊃| = i0 + 1
and X ⊃ ∅∪ C. By replacing each X with the corresponding X ⊃, we obtain a new
Sperner system with the same number of sets as C. The process is repeated until a
Sperner system C⊃ that contains no sets with fewer than n−1

2 elements is obtained
and C⊃ = |C|. Thus each set in C⊃ has at least n+1

2 elements. Now the process is
reversed using the βC⊃ by replacing every set of C⊃ of size n+1

2 by a set of size

http://dx.doi.org/10.1007/978-1-4471-6407-4_1
http://dx.doi.org/10.1007/978-1-4471-6407-4_1
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→ n
2 ≥. The Sperner system C⊃⊃ has the same size as C and consists of sets of size

n+1
2 , so |C| ∞ ⎟ n

→ n
2 ≥
)
.

43. Let C and D be two collections of subsets of a set S. In Definition 1.18, we
introduced the collection D − C as C − D = {U − V | U ∪ C, V ∪ D}. Prove
that |C − C| � |C|.

Solution:Let D be a collection of subsets of a set S and let D⊃ = {S − D | D ∪
D}. Observe that |D| = |D⊃|.

If C and D are two collections of subsets of S, we have |C≡D⊃| = |(C≡D⊃)⊃| =
|C⊃ ∗ D|. By the previous observation and by Corollary 3.47, we can write

|C| · |D| = |C| · |D⊃| ∞ |C ≡ D⊃| · |C ∗ D⊃|
= |C⊃ ∗ D| · |C ∗ D⊃| = |D − C| · |C − D|.

If we now choose D = C, the previous inequality yields |C|2 ∞ |C− C|2, which
gives the desired inequality.

44. Prove that if C and D are hereditary or dually hereditary families of subsets of a
finite set S, then |C| · |D| ∞ 2n · |C ∩ D|.

45. Prove that for the Möbius function of the poset (N, ι) we have:

μ(1, n) =

⎢⎣
⎢⎥

1 if n is a product of an even number of distinct primes,

−1 if n is a product of an odd number of distinct primes,

0 otherwise,

for n ∪ N.
46. If μ is the Möbius function of the poset (N, ι) prove that

∑
{μ(1, m) | (m, n) ∪ ι} =

{
1 if n = 1,

0 otherwise.

Solution: For n = 1, the equality is immediate. Suppose that n > 1. Only
numbers m that are products of distinct prime numbers contribute to the
sum

∑{μ(1, m) | (m, n) ∪ ι}. If n = pa1
1 · · · pr

r , then this sum equals∑r
i=0

⎟r
i

)
(−1)i = 0.

47. Compute the Möbius function of the poset (PART(1, 2, 3, 4),∞) considered in
Example 2.74 of Chap. 2.

48. Prove that for a collection C of subsets of a set U we have VCD(C) = 0 only if
|C| ∞ 1.

49. Let C be a collection of sets such that VCD(C) ⊕ 2. Prove that:

(a) C contains two sets A, B such that |A ⊥ B| = 1;
(b) both P⊃(C, s) and P⊃⊃(C, s) are non-empty for some s ∪ S.

http://dx.doi.org/10.1007/978-1-4471-6407-4_2
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50. Let C,D be two collections of subsets of a set S. Prove that for every m ∪ N we
have ΨC⊆D[m] = max{ΨC[m],ΨD[m]}.

51. Let S be a nonempty set and let C = {{x} | x ∪ S}. Prove that VCD(C) = 1.
52. Let S be a nonempty set. Prove that if C is a collection of subsets of S such that

|C| � 2, then VCD(C) � 1.
53. Let U be a finite set and let C be a collection of subsets of U such that |C| � 2.

Prove that VCD(C) >
ln |C|

1+ln |U | .
Solution: Observe that ΨC[|U |] = |C|. Therefore, by Sauer–Shelah Theorem
(Theorem 3.65) and by Theorem 3.68, we have

|C| ∞
(

e|U |
d

⎜d

,

where d is the VC dimension of the collection C. The last inequality implies

ln |C| ∞ d(1 + ln |U | − ln d),

so ln |C| ∞ d(1 + ln |U |), which gives the desired inequality.
54. Prove that if C is a chain of subsets of a set S, then VCD(C) = 1.
55. Let C be a collection of subsets of S. Prove that if T is a subset of S, then

VCD(CT ) ∞ VCD(C).
56. Let C be a collection of sets such that C, C ⊃ ∪ C and C ∅= C ⊃ implies C ∩C ⊃ = ∅.

Prove that VCD(C) = 1.
57. Let S be a set and let C1, . . . ,Cn be n chains in the poset (P(S),∧). Define the

collection C as C = {⎭n
i=1 Ci | Ci ∪ Ci , 1 ∞ i ∞ n}. Prove that VCD(C) ∞ n.

Solution: Let T be a subset of S such that |T | = n + 1. Clearly, T has n + 1
subsets that have n elements.
For each i at most one n-element subset of T is the intersection of the form
T ∩ C , where C ∪ Ci . Indeed, if we would have two distinct n-element sets of
the form T ∩ C ⊃ and T ∩ C ⊃⊃, where C ⊃, C ⊃⊃ ∪ C this would imply the existence
of x ⊃ ∪ (T ∩ C ⊃) − (T ∩ C ⊃⊃) and of x ⊃⊃ ∪ (T ∩ C ⊃⊃) − (T ∩ C ⊃), which would
mean that x ⊃ ∪ C ⊃ − C ⊃⊃ and x ⊃⊃ ∪ C ⊃⊃ − C ⊃, thus contradicting the Ci is a chain
of sets. Let Ui be this n-element when it exists.
Let W be an n-element subset of T such that W = T ∩ C for some C =⎭n

i=1 Ci ∪ C. Then, either C j ∩ T = W or Ci ∩ T = T for 1 ∞ j ∞ n and
Ci ∩ T = W for at least one i , 1 ∞ i ∞ n. Therefore, W = Ui for some i ,
1 ∞ i ∞ n, which shows that at most n subsets of T that contain n elements can
be obtained as intersections of T with the elements of C. Thus, T is not shattered
by C and VCD(C) ∞ n.

58. For 1 ∞ i ∞ n and a ∪ R let Ci,a = {x ∪ R
n | x = (x1, . . . , xn), xi ∞ a}. The

chain of sets Ci is defined by {Ci,a | a ∪ R} for 1 ∞ i ∞ n. Prove that C =⎭n
i=1 Ci shatters the set B = {e1, . . . , en}, where ei = (0, . . . , 0, 1, 0, . . . , 0)

has 1 as its i th component for 1 ∞ i ∞ n, so VCD(C) = n.
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59. The statement included here is a generalization of Example 3.58. Prove that the
Vapnik-Chervonenkis dimension of the collection of rectangular subsets of R

n

given by

C =
{

n⎪
i=1

[ai , bi ] | ai , bi ∪ R̂, ai ∞ bi , for 1 ∞ i ∞ n

⎦

is 2n. If ai = −√ for all ai , 1 ∞ i ∞ n, then VCD(C) = n.
60. Let S be a set that contains at least two elements and let C be a collection of

subsets S. Suppose that for every two-element subset of S, T = {t1, t2}, there
exist U, V ∪ C such that T ∧ U and T ∩ V = ∅. Then VCD(C) = 1 if and only
if C is a chain.
Solution: Suppose that VCD(C) = 1 but C is not a chain. Then, C contains two
sets C ⊃, C ⊃⊃ such that neither C ⊃ ∧ C ⊃⊃ nor C ⊃⊃ ∧ C ⊃. Let c⊃ ∪ C ⊃ − C ⊃⊃ and
c⊃⊃ ∪ C ⊃⊃ − C ⊃. Then, the two element set T = {c⊃, c⊃⊃} is shattered by C, which
implies VCD(C) � 2. The reverse implication follows from Supplement 54.

61. Prove that if C is a collection of subsets of a set S such that {∅, S} ∧ C, then
VCD(C) = 1 if and only if C is a chain.

62. Let S be a finite set and let C be a collection of subsets of S. Prove that |C| =
|{K ∪ P(S) | C shatters K }|.
Solution:Let x be an element of S and let νx : C −∈ P be the injective mapping
introduced in Supplement 26 of Chap. 1. We claim that if νx (C) = {νx (C) |
C ∪ C} shatters K , then C shatters K . If x ∅∪ K , then CK = νx (C)K , so the
statement obviously holds. If x ∪ K and L ∧ K − {x}, then there is F ∪ νx (C)

such that F ∩ K = L ⊆ {x} and T = νx (C) for some C ∪ C. Since x ∪ F , both
F and F − {x} belong to C, so C shatters K .
Define w(C) = ∑{|C | | C ∪ C}. Let C⊃ be a collection of sets obtained from C

by applying transforms of the form νx , such that w(C⊃) is minimal. For C ∪ C⊃
and x ∪ K we must have C − {x} ∪ C⊃ because otherwise w(νx (C

⊃)) < w(C⊃),
contradicting the minimality of C⊃. Thus, C⊃ is hereditary, so it shatters any set it
contains. Since |C⊃| = |C| (by Supplement 26 of Chap. 1, and C shatters at least
as many sets as C we obtain the desired equality.

63. Let (P,∞) and (Q,∞) be two locally finite posets having the Möbius function
μP and μQ , respectively. In Exercise 30 of Chap. 1 we saw that (P × Q,∞) is a
locally finite poset. Prove that its Möbius function μP×P is given by

μP×P ((x, y), (x ⊃, y⊃)) = μP (x, x ⊃)μ(y, y⊃),

where x ∞ x ⊃ and y ∞ y⊃.

http://dx.doi.org/10.1007/978-1-4471-6407-4_1
http://dx.doi.org/10.1007/978-1-4471-6407-4_1
http://dx.doi.org/10.1007/978-1-4471-6407-4_1
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Bibliographical Comments

Supplement 20 was obtained in [11]. The inequality from Supplement 43 was
obtained in [12]. Exercise 12 contains a result of T. Calders [13].

There are several well-known and comprehensive references on combinatorics
that contain rich collections of ideas [1, 14, 15].

Theorem 3.71 appears in [16]. Supplements 53–61 contain results obtained in [17].
Note that in [17] the Vapnik-Chervonenkis dimension of a collection of set is defined
as the smallest n such that no n-element set is shattered by C, so values of VCD(C)

in [17] are obtained by increasing by one the value of the VCD adopted here (and in
the vast majority of publications).

The notion of density of a collection of sets was introduced by Assouad in [18].
Supplement 62 originates in [19].

Exercise 30 is a result of Rota (see [20]).
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Chapter 4
Topologies and Measures

4.1 Introduction

Topology is an area of mathematics that investigates both the local and the global
structure of space. The term “topology” is derived from the Greek words ρ óιoθ
(topos, place) and νóδoθ (logos, reason) and was introduced in [1]. We present in
this chapter an introduction to point-set topology that is important for a subsequent
discussion of various notions of dimensions of sets. Data mining makes use of topol-
ogy in formulating searching algorithms that take into account the local properties
of data sets.

4.2 Topologies

The term “topology” is used both to designate a mathematical discipline and to name
the fundamental notion of this discipline, which is introduced next.

Definition 4.1 A topology on a set S is a family O of subsets of S that satisfies the
following conditions:

(i) ∈ ∈ O and S ∈ O;
(ii) for every collection C such that C ∪ O,

⋃
C ∈ O;

(iii) if D is a finite collection and D ∪ O, then
⎜

D ∈ O.

The sets that belong to O are referred to as the open sets of the topology O. The
pair (S,O) is referred to as a topological space.

It is easy to see that Part (iii) of Definition 4.1 is equivalent to

(iii∞) if U, U ∞ ∈ O, then U ∅ U ∞ ∈ O.

Actually, the first condition of Definition 4.1 is superfluous. Indeed, since we deal
here with collections of subsets of S, by Part (iii) of the definition, the intersection of

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 149
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_4,
© Springer-Verlag London 2014
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the empty collection of subsets of S belongs to O, and this intersection is S. On the
other hand, by Part (ii), the union of the empty collection (which is the empty set)
belongs to O, so Part (i) is a consequence of the remaining parts of the definition.

Example 4.2 The pair (S,P(S)) is a topological space. The topology P(S) is known
as the discrete topology.

The collection {∈, S} is the indiscrete topology.

Example 4.3 The pair (∈, {∈}) is a topological space as the reader can easily verify.
We refer to (∈, {∈}) as the empty topological space.

Example 4.4 Let O be the collection of subsets of R defined by L ∈ O if for every
x ∈ L there exists σ ∈ R>0 such that |u − x | < σ implies u ∈ L . We claim that O is
a topology on R.

Indeed, it is immediate that ∈ and R belong to O.
Let C be such that C ∪ O and let x ∈ ⋃

C. There exists L ∈ C such that x ∈ L
and, therefore, by the definition of O, there is σ > 0 such that |u − x | < σ implies
u ∈ L . Thus, u ∈ ⋃

C, so
⋃

C ∈ O.
Suppose now that D is a finite subcollection of O, D = {D1, . . . , Dn}, and

let x ∈ ⎜
D. Since x ∈ Di for 1 � i � n, there exists σ1, . . . , σn such that

|u − x | < σi implies u ∈ Di for every i , 1 � i � n. Therefore, by defining
σ = min{σi | 1 � i � n}, it follows that |x −u| � σ implies u ∈ ⎜

D, which proves
that

⎜
D ∈ O. We conclude that O is a topology on R. This topology is called the

usual topology on R. Unless stated otherwise, we assume that the set of real numbers
is equipped with the usual topology.

Example 4.5 Example 4.4 can be extended to R
n by defining the O as consisting of

subsets L ofRn such that for every x ∈ L there exists σ ∈ R>0 such that d2(u, x) < σ
implies u ∈ L . It is easy to verify that (Rn,O) is a topological space.

For each topology O on a set S, we define

Definition 4.6 The collection of closed sets of a topologyO is closed(O) = {S−X |
X ∈ O}; the collection of neighborhoods of an element x of S is

neighx (O) = {U ∈ P(S)| there is W ∈ O such that x ∈ W ∪ U }.

Theorem 4.7 The following statements hold for any topological space (S,O):

(i) ∈ and S are closed sets;
(ii) for every collection C of closed sets,

⎜
C is a closed set;

(iii) for every finite collection D of closed sets,
⋃

D is a closed set.

Proof This is an immediate consequence of Definition 4.1.
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4.3 Closure and Interior Operators in Topological Spaces

Theorem 4.7 implies that for every topological space (S,O) the collection closed(O)

of closed sets is a closure system on S. For the closure operator attached to this closure
system denoted by KS,O, we have the supplementary property:

KS,O(H ⊆ L) = KS,O(H) ⊆ KS,O(L) (4.1)

for all subsets H, L of S.
Since H, L ∪ H ⊆ L , we have KS,O(H) ∪ KS,O(H ⊆ L) and KS,O(L) ∪

KS,O(H ⊆ L) due to the monotonicity of KS,O. Therefore,

KS,O(H) ⊆ KS,O(L) ∪ KS,O(H ⊆ L).

To prove the reverse inclusion, note that the set KS,O(H) ⊆ KS,O(L) is a closed set
by the third part of Theorem 4.7 and H ⊆ L ∪ KS,O(H) ⊆ KS,O(L). Therefore,
the closure of H ⊆ L is a subset of KS,O(H) ⊆ KS,O(L), so KS,O(H ⊆ L) ∪
KS,O(H) ⊆ KS,O(L), which implies Equality (4.1).

Also, note that KS,O(∈) = ∈ because the empty set itself is closed.
If there is no risk of confusion, we denote the closure operator KS,O simply

by K.
Note that Equality (4.1) is satisfied for every H, L ∈ P(S) if and only if the union

of two K-closed sets is K-closed. Indeed, suppose that Equality (4.1) is satisfied, and
let U and V be two K-closed sets. Since U = K(U ) and V = K(V ), it follows that
U⊆V = K(U )⊆K(V ) = K(U⊆V ), which shows thatU⊆V is K-closed. Conversely,
suppose that the union of two K-closed sets is K-closed. Then, K(U ) ⊆ K(V ) is K-
closed and contains U ⊆ V . Therefore, K(U ⊆ V ) ∪ K(U ) ⊆ K(V ). The reverse
equality follows from the monotonicity of K.

Theorem 4.8 Let S be a set and let K : P(S) −∩ P(S) be a closure operator
that satisfies Equality (4.1) for every H, L ∈ P(S) and K(∈) = ∈. The collection
OK = {S − U | U ∈ CK} is a topology on S.

Proof We have K(S) = S, so both ∈ and S are K-closed sets, which implies ∈, S ∈
OK.

Suppose that C = {Li | i ∈ I } ∪ OK. Since S − Li ∈ CK, it follows that⎜{S − Li | i ∈ I } = S − ⋃
i∈I Li ∈ CK. Thus,

⋃
i∈I Li ∈ OK.

Finally, suppose that D = {D1, . . . , Dn} is a finite collection of subsets such that
D ∪ OK. Since S − Di ∈ CK we have S −⋃n

i=1 Di = ⎜n
i=1(S − Di ) ∈ CK, hence⋃n

i=1 Di ∈ OK. This proves that OK is indeed a topology.

Theorem 4.9 Let (S,O) be a topological space and let U and W be two subsets of
S. If U is open and U ∅ W = ∈, then U ∅ K(W ) = ∈.

Proof U ∅ W = ∈ implies W ∪ S − U . Since U is open, the set S − U is closed,
so K(W ) ∪ K(S − U ) = S − U . Therefore, U ∅ K(W ) = ∈.
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Often, we use the contrapositive of this statement: if U is an open set such that
U ∅ K(W ) ⊕= ∈ for some set W , then U ∅ W ⊕= ∈.

Example 4.10 In the topological space (R,O), every open interval (a, b) with a < b
is an open set. Indeed, if x ∈ (a, b) and |x−u| < σ, where σ = 1

2 min{|x−a|, |x−b|},
then u ∈ (a, b). A similar argument shows that the half-lines (b,+⊥) and (−⊥, a)

are open sets for a, b ∈ R. Therefore, (−⊥, a) ⊆ (b,+⊥) is an open set which
implies that its complement, the interval [a, b], is closed. Also, (−⊥, b] and [a,⊥)

are closed sets (as complements of the open sets (b,⊥) and (a,⊥), respectively).

Open sets of the topological space (R,O), where O is the usual topology on the
set of real numbers have the following useful characterization.

Theorem 4.11 A subset U of R is open in the topological space (R,O) if and only
if it equals the union of a countable collection of disjoint open intervals.

Proof Since every open interval (finite or not) is an open set, it follows that the union
of a countable collection of disjoint open intervals is open.

To prove the converse, let U be an open set. Note that U can be written as a union of
open intervals since for each x ∈ U there exists σ > 0 such that x ∈ (x−σ, x+σ) ∪ U .

Define the relation φU on the set U by xφU y if there exist a, b ∈ R such that
{x, y} ∪ (a, b) ∪ U , where (a, b) is the open interval determined by a, b. We claim
that φU is an equivalence relation on U .

Since U is open, x ∈ U implies the existence of a positive number σ such that
{x} ∪ (x − σ, x + σ) ∪ U for every x ∈ U , so φU is reflexive. The symmetry of φU

is immediate. To prove its transitivity, let x, y, z ∈ U be such that xφU z and zφU y.
There are a, b, c, d ∈ R such that {x, z} ∪ (a, b) ∪ U and {z, y} ∪ (c, d) ∪ U .
Since z ∈ (a, b) ∅ (c, d), it follows that (a, b) ⊆ (c, d) is an interval (e, e∞) such that
{x, y} ∪ (e, e∞) ∪ U , which shows that xφU y. Thus, φU is an equivalence on U .

We claim that each equivalence class [x]φU is an open interval or a set of the form
(a,+⊥) or a set of the form (−⊥, b). Indeed, suppose that u, v ∈ [x]φU (that is,
uφU x and vφU x) and that t ∈ (u, v). We now prove that tφU x .

There are two open intervals (a, b) and (c, d) such that {u, x} ∪ (a, b) ∪ U and
{x, v} ∪ (c, d) ∪ U . Again, (a, b) ⊆ (c, d) is an open interval (e, e∞) and we have
(u, v) ∪ (e, e∞) ∪ U . Thus, if [x]φU contains two numbers u and v, it also contains
the interval (u, v) determined by these numbers.

To prove that [x]φU has the desired form, we shall prove that this set has no least
element and no greatest element. Suppose that [x]φU has a least element y. Then,
there exist a and b such that a < y < x < b and (a, b) ∪ U . Since y is supposed
to be the least element of [x]φU , if a < z < y, we have z ⊕∈ [x]φU . This contradicts
yφU z and yφU x . In a similar manner, it is possible to show that [x]φU has no largest
element.

Finally, we prove that the partition that corresponds to φU is countable. Select a
rational number rx ∈ [x]φU ∅ Q. Since the equivalence classes [x]φU are pairwise
disjoint, it follows that [x]φU ⊕= [y]φU implies rx ⊕= ry . Thus, we have an injection
r : U/φU −∩ Q given by r([x]φU ) = rx for x ∈ U . By Theorem 1.126, the set
U/φU is countable.
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Example 4.12 Let S be an infinite set. The family of sets

O = {∈} ⊆ {L ∈ P(S) | S − U is finite}

is a topology on S. We refer to O as the cofinite topology on S.
Note that both ∈ and S belong to O. Further, if C is a subcollection of O, then

S −⋃
C = ⎜{(S − L) | L ∈ C}, which is a finite set because it is a subset of every

finite set S − L , where L ∈ C.
Also, if U, V ∈ O, then S − (U ∅ V ) = (S − U ) ⊆ (S − V ), which shows that

S − (U ∅ V ) is a finite set. Thus, U ∅ V ∈ O.

Example 4.13 Let (S,�) be a partially ordered set. A subset T of S is upward closed
if x ∈ T and x � y implies y ∈ T . The collection of upwards closed sets O∨ is a
topology on S.

It is clear that both ∈ and S belong to O∨. Further, if {Li | i ∈ I } is a family
of upwards closed sets, then

⋃{Li | i ∈ I } is also an upwards closed set. Indeed,
suppose that x ∈ ⋃{Li | i ∈ I } and x � y. There exists Li such that x ∈ Li and
therefore y ∈ Li , which implies y ∈ ⋃{Li | i ∈ I }. Moreover, it is easy to see that
any intersection of sets from O∨ belongs to O∨, not just a finite intersection (which
would suffice for O∨ to be a topology). This topology is known as the Alexandrov
topology on the poset (S,�).

Definition 4.14 A topology O is finer than a topology O∞ or, equivalently, O∞ is a
coarser than O, if O∞ ∪ O.

Every topology on a set S is finer than the indiscrete topology on S; the discrete
topologyP(S) (which has the largest collection of open sets) is finer than any topology
on S.

Theorem 4.15 Let (S,O) be a topological space and let T be a subset of S. The
collection O �T defined by O �T = {L ∅ T | L ∈ O} is a topology on the set T .

Proof We leave the proof of this theorem to the reader as an exercise.

Definition 4.16 If U is a subset of S, where (S,O) is a topological space, then we
refer to the topological space (U,O �U ) as a subspace of the topological space
(S,O).

To simplify notation, we denote the subspace (U,O �U ) just by U .

Theorem 4.17 Let (S,O) be a topological space and let (T,O �T ) be a subspace
of this space. Then, a set H is closed in (T,O �T ) if and only if there exists a closed
set H0 in (S,O) such that H = T ∅ H0.

Proof Suppose that H is closed in (T,O �T ). Then, the set T − H is open in this
space and therefore there exists an open set L0 in (S,O) such that T − H = T ∅ L0.
This is equivalent to H = T − (T ∅ L0) = T ∅ (S − L0). We define H0 as the closed
set S − L0.



154 4 Topologies and Measures

Conversely, suppose that H = T ∅ H0, where H0 is a closed set in S. Since
T − H = T ∅ (S − H0) and S − H0 is an open set in (S,O), it follows that T − H
is open in the subspace and therefore H is closed.

Corollary 4.18 Let (S,O) be a topological space and let T ∪ S. Denote by KS and
KT the closure operators of (S,O) and (T,O �T ), respectively. For every subset W
of T , we have KT (W ) = KS(W ) ∅ T .

Proof The set KS(W ) is closed in S, so KS(W )∅ T is closed in T by Theorem 4.17.
Since W ∪ KS(W ) ∅ T , it follows that KT (W ) ∪ KS(W ) ∅ T .

To prove the converse inclusion, observe that we can write KT (W ) = T ∅ H ,
where H is a closed set in S because KT (W ) is a closed set in T . Since W ∪ H , it
follows that KS(W ) ∪ H , so KS(W ) ∅ T ∪ H ∅ T = KT (W ).

Corollary 4.19 Let (S,O) be a topological space and let T ∪ S. If U ∪ S, then
KT (U ∅ T ) ∪ KS(U ) ∅ T .

Proof By applying Corollary 4.18 to the subset U ∅ T of T we have KT (U ∅ T ) =
KS(U ∅ T ) ∅ T . The needed inclusion follows from the monotonicity of KS .

Definition 4.20 A set U is dense in a topological space (S,O) if K(U ) = S. A
topological space is separable if there exists a countable set U that is dense in
(S,O).

Theorem 4.21 If T is a subspace of a separable topological space (S,O), then T
itself is separable.

Proof Since S is separable, there exists a countable set U such that KS(U ) = S. On
the other hand, KT (U ∅ T ) = KS(U ∅ T ) ∅ T ∪ KS(U ) ∅ T = S ∅ T = T , which
implies that the countable set U ∅ T is dense in T . Thus, T is separable.

Theorem 4.22 If T is a separable subspace of a topological space (S,O), then so
is KS(T ).

Proof Let U be a countable subset of T that is dense in T , that is, KT (U ) = T . We
need to prove that KKS(T )(U ) = KS(T ) to prove that U is dense in KS(T ) also.

By Corollary 4.18, we have

KKS(T )(U ) = KS(U ) ∅ KS(T ) = KS(U )

due to the monotonicity of KS .
Note that T = KT (U ) = KS(U ) ∅ T , so T ∪ KS(U ), which implies KS(T ) ∪

KS(U ). Since KS is monotonic, we have the reverse inclusion KS(U ) ∪ KS(T ), so
KS(U ) = KS(T ). This allows us to conclude that KKS(T )(U ) = KS(T ), so U is
dense in KS(T ).

Theorem 4.23 Let (S,O) be a topological space. The set U is dense in (S,O) if
and only if U ∅ L ⊕= ∈ for every non-empty open set L.
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Proof Suppose that U is dense, so K(U ) = S. Since K(U ∅ L) = K(U ) ∅ K(L) =
S ∅ K(L) = K(L), U ∅ L = ∈ would imply K(L) = K(∈) = ∈, which is a
contradiction because ∈ ⊕= L ∪ K(L).

Conversely, suppose that U has a non-empty intersection with every non-empty
open set L . Since K(U ) is closed, S−K(U ) is open. Observe thatU∅(S−K(U )) = ∈,
so the open set S − K(U ) must be empty. Therefore, we have K(U ) = S.

Theorem 4.24 The following statements hold for any topological space (S,O) and
x ∈ S:

(i) if U, V ∈ neighx (O), then U ∅ V ∈ neighx (O);
(ii) if U ∈ neighx (O) and U ∪ W ∪ S, then W ∈ neighx (O);
(iii) a set L is open if and only if L is a neighborhood of all its points.

Proof The first two parts follow immediately from Definition 4.7. We discuss here
only the third statement.

If L is open, it is immediate that L is a neighborhood of all its points. Conversely,
suppose that L is a neighborhood of all its members. Then, for each x ∈ L there
exists Wx ∈ O such that x ∈ Wx ∪ L . Therefore,

L =
⋃
x∈L

{x} ∪
⋃
x∈L

Wx ∪ L ,

which implies L = ⋃
x∈L Wx . This in turn implies L ∈ O.

In Chap.2, we discussed the notion of an interior system of sets on a set S and the
notion of an interior operator. Since ∈ is an open set in any topological space (S,O)

and any union of open sets is an open set, it follows that the topology itself is an
interior system on S. In addition, an interior system of open sets is closed to finite
intersection. Definition 4.25 which follows is a restatement of the definition of the
interior operator associated to an interior system contained by Theorem 1.185.

Definition 4.25 Let (S,O) be a topological space. The interior of a set U, U ∪ S,
is the set I(U ) = ⋃{L ∈ O | L ∪ U }.

The interior I(U ) of a set U is the largest open set included in U , because the
union of any collection of open sets is an open set. Furthermore, a set is open in a
topological space if and only if it equals its interior.

Theorem 4.26 Let (S,O) be a topological space and let U be a subset of S. The
closure K(S − U ) of the set S − U equals S − I(U ).

Proof Since I(U ) is an open set, the set S − I(U ) is closed. Note that S − U ∪
S − I(U ). Therefore, K(S − U ) ∪ S − I(U ).

Conversely, the inclusion S −U ∪ K(S −U ) implies S − K(S −U ) ∪ U . Since
S −K(S −U ) is an open set included in U and I(U ) is the largest such set, it follows
that S − K(S − U ) ∪ I(U ), which implies S − I(U ) ∪ K(S − U ).
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Corollary 4.27 For every subset U of a topological space (S,O), we have I(U ) =
S − K(S − U ) and K(U ) = S − I(S − U ).

Proof The first equality is immediate; the second follows from Theorem 4.26 by
replacing U by S − U .

Theorem 4.28 The following statements are equivalent for a topological space
(S,O):

(i) every countable intersection of dense open sets is a dense set;
(ii) every countable union of closed sets that have an empty interior has an empty

interior.

Proof (i) implies (ii): Let H1, . . . , Hn, . . . be a sequence of closed sets with I(Hi ) =
∈ for n � 1. Then, for the open sets Li given by Li = S−Hi , we have K(Li ) = K(S−
Hi ) = S − I(Hi ) = S, so every set Li is dense. By (i), we have K(

⎜
i�1 Li ) = S,

so

I


⎟⋃

i�1

Hi


 = S − K


⎟S −

⋃
i�1

Hi




= S − K


⎟⋂

i�1

(S − Hi )


 = S − K


⎟⋂

i�1

Li


 = ∈,

which shows that (ii) holds.
(ii) implies (i): this argument is similar to the preceding one and we omit it.

A topological space that satisfies one of the equivalent conditions of this theorem
is called a Baire space. As we shall see in Chap.8 (Theorem 8.55), a very important
category of topological spaces, the complete topological metric spaces, are Baire
spaces.

Definition 4.29 Let (S,O) be a topological space. The border of a set U, where
U ∈ P(S), is the set λS K = K(U ) ∅ K(S − U ).

If S is clear from the context, then we omit the subscript and denote the border of
U just by λU.

The border itself is obviously a closed set, as it is an intersection of two closed sets.
Note that, by using Corollary 4.27, the border of a set can be expressed also in

term of interiors:

λU = (S − I(S − U )) ∅ (S − I(U )) = S − (I(S − U ) ⊆ I(U )). (4.2)

Theorem 4.30 The border of a subset U of a topological space (S,O) consists of
those elements s of S such that for every open set L that contains s we have both
L ∅ U ⊕= ∈ and L ∅ (S − U ) ⊕= ∈.
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Proof Let x ∈ λU and let L be an open set such that x ∈ L . By Equality (4.2), we
have both x ⊕∈ I(S − U ) and x ⊕∈ I(U ). Therefore, L ⊕∪ S − U and L ⊕∪ U , which
imply L ∅ U ⊕= ∈ and L ∅ (S − U ) ⊕= ∈.

Conversely, suppose that, for every open set L that contains s, we have both
L ∅ U ⊕= ∈ and L ∅ (S − U ) ⊕= ∈. This implies x ⊕∈ I(U ) and s ⊕∈ I(S − U ), so
x ∈ λU by Equality (4.2).

Theorem 4.31 Let (S,O) be a topological space, (T,O �T ) be a subspace, and W
be a subset of S. The border λT (W ∅ T ) of W ∅ T in the subspace T is a subset of
the intersection λS(W ) ∅ T , where λS(W ) is the border of W in S.

Proof By Definition 4.29, we have

λT (W ∅ T ) =KT (W ∅ T ) ∅ KT (T − (W ∅ T ))

=KT (W ∅ T ) ∅ KT (T − W )

∪(KS(W ) ∅ T ) ∅ KT (T − W )

(by Corollary 4.18).

Again, by Corollary 4.18, we have KT (T − W ) = KT (T ∅ (S − W )) ∪ KS(S −
W ) ∅ T , and this allows us to write

λT (W ∅ T ) ∪ (KS(W ) ∅ T ) ∅ KS(S − W ) ∅ T = λS(W ) ∅ T,

which is the desired conclusion.

The next statement relates three important sets that we defined for each subset U
of a topological space (S,O).

Theorem 4.32 Let (S,O) be a topological space. For every subset U of S, we have
K(U ) = I(U ) ⊆ λU.

Proof By Equality (4.2), we have λU = (S − I(S − U )) ∅ (S − I(U )). Therefore,

λU ⊆ I(U ) =(S − I(S − U )) ∅ I(U )

(by Corollary 4.27)

=K(U ) ∅ I(U )

(because I(U ) ∪ K(U ))

=K(U ).

Corollary 4.33 Let (S,O) be a topological space and let (T,O �T ) be a subspace
of (S,O). For any subset U of S, we have λT (U ∅ T ) ∪ λS(U ).

Proof Let t ∈ λT (U ∅ T ). By Theorem 4.30, for every open set L ∈ O �T such that
t ∈ L we have both L ∅ (U ∅ T ) ⊕= ∈ and L ∅ (T − (U ∅ T )) ⊕= ∈.
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If L1 is an open set of (S,O) that contains S, then L1 ∅ T is an open set of
(T,O �T ) that contains t , so for L1 we have both (L1 ∅ T ) ∅ (U ∅ T ) ⊕= ∈ and
(L1 ∅ T ) ∅ (T − (U ∅ T )) ⊕= ∈. This immediately implies L1 ∅ U ⊕= ∈ and
L1 ∅ (S − U ) ⊕= ∈, that is, t ∈ λS(U ).

Definition 4.34 Let (S,O) be a topological space. A subset U of S is clopen if it is
both open and closed.

Clearly, in every topological space (S,O), both ∈ and S are clopen sets.

Theorem 4.35 Let (S,O) be a topological space. A set U is clopen if and only if
λU = ∈.

Proof Suppose that U is clopen. Then U = K(U ); moreover, S − U is also closed
(because U is open) and therefore S − U = K(S − U ). Thus, K(U ) ∅ K(S − U ) =
U ∅ (S − U ) = ∈, so λU = ∈.

Conversely, suppose that λU = ∈. Then, since K(U )∅ K(S −U ) = ∈, it follows
that K(U ) ∪ S − K(S − U ). Therefore, K(U ) ∪ S − (S − U ) = U , which
implies K(U ) = U . Thus, U is closed. Furthermore, by Equality (4.2), λU = ∈ also
implies I(S − L) ⊆ I(L) = S, so S − I(S − L) ∪ I(L). By Corollary 4.27, we have
K(L) ∪ I(L), so L ∪ I(L). Thus, L = I(L), so L is also an open set.

Definition 4.36 Let (S,O) be a topological space and let U be a subset of S. An
element t of S is an accumulation point or a cluster point of the set U if, for every
open set L such that t ∈ L, the set U ∅ (L − {t}) is not empty.

The set of all accumulation points of a set U is the derived set of U and is denoted
by U ∞.

Lemma 4.37 Let (S,O) be a topological space and let U be a subset of S. We have
λU ∪ U ⊆ U ∞.

Proof By Theorem 4.30, if x ∈ λU , then for every open set L such that x ∈ L , we
have both L ∅ U ⊕= ∈ and L ∅ (S − U ) ⊕= ∈.

If U ∅ (L − {x}) ⊕= ∈ for every open set L , then x ∈ U ∞. Otherwise, there is an
open set L0 such that x0 ∈ L and U ∅ (L0 − {x}) = ∈. This can happen only if
x ∈ U . Therefore, in either case, x ∈ U ⊆ U ∞, which gives the desired inclusion.

Theorem 4.38 Let (S,O) be a topological space and let U be a subset of S. We
have K(U ) = U ⊆ U ∞ for every subset U of S.

Proof By Theorem 4.32 and Lemma 4.37, we have K(U ) = I(U ) ⊆ λU ∪ I(U ) ⊆
U ⊆ U ∞ = U ⊆ U ∞ because I(U ) ∪ U .

Let x be an accumulation point of U . If x ∈ U , then clearly x ∈ K(U ). Otherwise,
x ⊕∈ U and we claim that in this case x ∈ K(U ). Indeed, if x were not an element
of K(U ), it would belong to the open set S − K(U ). This would imply that the set
U ∅ (S − K(U )−{x}) is not empty, which is a contradiction. This yields the reverse
inclusion, U ⊆ U ∞ ∪ K(U ).
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4.4 Bases

Let O = {Oi | i ∈ I } be a family of topologies defined on a set S that contains
the discrete topology P(S). We claim that O is a closure system on P(S). The first
condition of Definition 1.166 is satisfied due to the definition of O. It is easy to
verify that for every subfamily O∞ of O,

⎜
O∞ is a topology, so O is indeed a closure

system.
Thus, if S is a family of subsets of S, there exists the smallest topology that

includes S.

Theorem 4.39 The topology TOP(S) generated by a familyS of subsets of S consists
of unions of finite intersections of the members of S.

Proof Let E be the collection of all unions of finite intersections of the members of
S. It is clear that S ∪ E. We claim that E is a topology that contains S.

Note that the intersection of the empty collection of sets in S is S, so S ∈ E; also,
the union of an empty collection of finite intersections is ∈, so ∈ ∈ E.

Every U ∈ E can be written as U = ⋃{Vj | j ∈ JU }, where the sets Vj are
finite intersections of sets of S. Therefore, it is immediate that any union of sets of
this form belongs to E.

Suppose that {Ui | i ∈ I } is a finite collection of parts of S, where Ui = ⋃{Vj ∈
S | j ∈ Ji } and that each Vj can be written as Vj = ⎜{W jh ∈ S | h ∈ Hj }, where
each set Hj is finite. One can prove by induction on p = |I | that

⎜{Ui | i ∈ I } ∈ E.
To simplify the presentation, we discuss here only the case where |I | = 2. So, if
Ui = ⋃{Vj ∈ S | j ∈ Ji } for i = 1, 2, we have

U1 ∅ U2 =
⋃

{Vj1 ∈ S | j1 ∈ J1} ∅
⋃

{Vj2 ∈ S | j2 ∈ J2}
=

⋂
j1, j2

(Vj1 ∅ Vj2).

Since each intersection Vj1 ∅ Vj2 is in turn a finite intersection of sets of S, it follows
that U1 ∅ U2 ∈ S.

Thus, TOP(S) is contained in E because TOP(S) is the coarsest topology that
contains S. This gives the desired conclusion.

Corollary 4.40 Let B be a collection of subsets of the set S such that for every
finite subcollection D of B, x ∈ ⎜

D implies the existence of a set B ∈ B such that
x ∈ B ∪ ⎜

D. Then, TOP(B), the topology generated by B, consists of sets that
are unions of subcollections of B.

Proof By Theorem 4.39, TOP(B) consists of unions of finite intersections of the
members of B. Therefore, unions of sets of B belong to TOP(B).

Conversely, let U ∈ B, that is, U = ⋃{Vi | i ∈ I }, where each Vi is a finite
intersection of members of B. For every x ∈ Vi , there exists a set Bx,i ∈ B such
that x ∈ Bx,i ∪ Vi . Therefore, Vi = ⋃

x∈Vi
Bx,i , and this implies that U is indeed a

union of sets from B.
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Definition 4.41 Let S be a set. A collection S is a subbasis for a topology O if
O = TOP(S).

A collection B of subsets is a basis for a topology if, for every finite subcollection
D of B, if x ∈ ⎜

D, then there exists a set B ∈ B such that x ∈ B ∪ ⎜
D.

Corollary 4.40 implies that, for a basisB, we have
⋃

B = S. Indeed, consider the
intersection of the empty collection of parts of B, which equals S. Then, for every
x ∈ S, there is a set B ∈ B such that x ∈ B ∪ S, which of course implies

⋃
B = S.

Clearly, every set of B is an open set in the topological space (S, TOP(B).
Starting from a topology, we find a basis using the following theorem.

Theorem 4.42 Let (S,O) be a topological space. IfB is a collection of open subsets
of S such that for every x ∈ S and every open set L ∈ O there exists a set B ∈ B

such that x ∈ B ∪ L, then B is a basis for (S,O).

Proof This statement is an immediate consequence of Definition 4.41.

Theorem 4.43 Let (S,O)be a topological space. The following statements involving
a family B of subsets of S are equivalent:

(i) B is a basis for (S,O);
(ii) for every x ∈ S and U ∈ neighx (O), there exists B ∈ B such that x ∈ B ∪ U;

(iii) for every open set L, there is a subcollection C of B such that L = ⋃
C.

Proof (i) implies (ii): Let B be a basis for (S,O) and let U ∈ neighx (O). There
exists an open set L such that x ∈ L ∪ U . Since B is a basis, there exists a set B ∈ B

such that x ∈ B ∪ L ∪ U , which is what we aimed to prove.
(ii) implies (iii): Suppose that the second statement holds, and let L be an open set.

Since L is a neighborhood for all its elements, for every x ∈ L there exists Bx ∈ B

such that {x} ∪ Bx ∪ L . Therefore, L = ⋃{Bx | x ∈ L}.
(iii) implies (i): Part (iii) implies Part (i) immediately.

Corollary 4.44 Let U be a subspace of a topological space (S,O). If B is a basis
of (S,O), then BU = {U ∅ B | B ∈ B} is a basis of the subspace U.

Proof Let K be an open subset in the subspace U . There is an open set L in (S,O)

such that K = U ∅ L . SinceB is a basis for (S,O), by the third part of Theorem 4.43,
there is a subcollection C of B such that L = ⋃

C, which implies K = ⋃{U ∅ C |
C ∈ C}. Thus, BU is a basis for U .

Example 4.45 The collection of open intervals {(a, b) | a, b ∈ R and a < b}
is a basis for the topological space (R,O) by Theorem 4.11. Further, the collection
S = {(a,+⊥) | a ∈ R}⊆{(−⊥, b) | b ∈ R} is a subbasis of this topology because
every member (a, b) of the basis can be written as (a, b) = (−⊥, b) ∅ (a,+⊥).
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Definition 4.46 A topological space satisfies the first axiom of countability if for
every x ∈ S there is a countable family of open sets Lx = {Ln | n ∈ N} such that
x ∈ ⎜{Ln | n ∈ N} and for every open set L that contains x there is a set Ln ∈ Lx

such that Ln ∪ L.
A topological space satisfies the second axiom of countability if it has a countable

basis.

It is clear that the second axiom of countability implies the first, and we will deal
mostly with this second axiom. Furthermore, by Corollary 4.44, every subspace of a
topological space that satisfies the second axiom of countability satisfies this axiom
itself.

Theorem 4.47 Let (S,O) be a topological space. If (S,O) has a countable basis,
then (S,O) is separable.

Proof Let {Bn | n ∈ N} be a countable basis for (S,O) and let xn be an element
of Bn for n ∈ N. We claim that S = K({xn | n ∈ N}), which is equivalent to
S − K({xn | n ∈ N}) = ∈.

Indeed, observe that S − K({xn | n ∈ N}) is a non-empty open set; therefore,
there exists m ∈ N such that Bm ∪ S − K({xn | n ∈ N}), so xm ∈ S − K({xn |
n ∈ N}) ∪ S − {xn | n ∈ N}, which is a contradiction. Therefore, the countable set
{xn | n ∈ N} is dense in (S,O).

The notion of an open cover of a topological space is introduced next.

Definition 4.48 A cover of a topological space (S,O) is a collection of sets C such
that

⋃
C = S.

If C is a cover of (S,O) and every set C ∈ C is open (closed), then we refer to C

as an open cover (a closed cover, respectively).
A subcover of an open cover C is a collection D such that D ∪ C and

⋃
D = S.

Theorem 4.49 If a topological space (S,O) satisfies the second axiom of count-
ability, then every basis B for (S,O) contains a countable collection B0 that is a
basis for (S,O).

Proof Let B∞ = {Li | i ∈ N} be a countable basis for (S,O) and let Ci be the
subcollection of B defined by Ci = {V ∈ B | V ∪ Li } for i ∈ N. Since B is a
basis for (S,O), it is clear that Ci is an open cover for Li ; that is,

⋃
Ci = Li for

every i ∈ N. Since each subspace Li has a countable basis, Ci contains a countable
subcover C∞

i of Li . The collection B0 = ⋃{C∞
i | i ∈ N} is countable and is a basis

for (S,O) that is included in B.

Corollary 4.50 If a topological space (S,O) has a countable basis, then every open
cover of (S,O) contains a countable subcover.

Proof This fact follows directly from Theorem 4.49.
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4.5 Compactness

Definition 4.51 A topological space (S,O) is compact if every open cover C of this
space contains a finite subcover.

Another useful concept is the notion of a family of sets with the finite intersection
property.

Definition 4.52 A collectionCof subsets of a set S has the finite intersection property
(f.i.p.) if

⎜
D ⊕= ∈ for every finite subcollection D of C.

Theorem 4.53 The following three statements concerning a topological space
(S,O) are equivalent:

(i) (S,O) is compact;
(ii) if D is a family of closed subsets of S such that

⎜
D = ∈, then there exists a

finite subfamily D0 of D such that
⎜

D0 = ∈;
(iii) if E is a family of closed sets having the f.i.p., then

⎜
E ⊕= ∈.

Proof The argument is left to the reader.

Another characterization of compactness that is just a variant of Part (iii) of
Theorem 4.53 that applies to an arbitrary family of sets (not necessarily closed) is
given next.

Theorem 4.54 A topological space (S,O) is compact if and only if for every family
of subsets C that has the f.i.p.,

⎜{K(C) | C ∈ C} ⊕= ∈.

Proof If for every family of subsetsC that has the f.i.p. we have
⎜{K(C) | C ∈ C} ⊕=

∈, then, in particular, if C consists of closed sets, it follows that
⎜{C | C ∈ C} ⊕= ∈,

which amounts to Part (iii) of Theorem 4.53, so (S,O) is compact.
Conversely, suppose that the space (S,O) is compact, which means that the

property of Part (iii) of Theorem 4.53 holds. Suppose that C is an arbitrary col-
lection of subsets of S that has the f.i.p. Then, the collection of closed subsets
{K(C) | C ∈ C} also has the f.i.p. because C ∈ K(C) for every C ∈ C. There-
fore,

⎜{K(C) | C ∈ C} ⊕= ∈.

Example 4.55 Let U1 ∧ U2 ∧ · · · be a descending sequence of non-empty closed
subsets of a compact space (S,O). Its intersection

⎜
n�1 Un is non-empty because

(S,O) is compact and
⎜k

p=1 Ui p = Ul ⊕= ∈, where l = min{i1, . . . , ik} for every
k � 1.

This implies that the topological space (R,O) introduced in Example 4.4 is not
compact because

⎜
n�1[n,⊥) = ∈.

The notion of cover refinement can be used to characterize compact topological
spaces. Recall that we introduced this notion in Definition 1.12.
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Theorem 4.56 A topological space (S,O) is compact if and only if every open cover
C is refined by some finite open cover of the space.

Proof Suppose that (S,O) is compact. Then, every open cover C contains a finite
subcover C∞. Since every C ∞ ∈ C∞ is a member of C, it follows that C is refined by C∞.

Conversely, suppose that every open cover C is refined by some finite open cover
D = {D1, . . . , Dp}. Then, for every Di ∈ D there exists a set Ci ∈ C such that
Di ∪ Ci for 1 � i � p. Since

⋃n
i=1 Di = S, it follows that

⋃n
i=1 Ci = S, so

{C1, . . . , Cn} is a finite subcover of C, which means that (S,O) is compact.

If (T,O �T ) is a compact topological space, then we say that T is a compact set.

Example 4.57 Every closed interval [x, y] of R is a compact set. Indeed, if C is an
open cover of [x, y] we can assume without loss of generality that C consists of open
intervals C = {(ai , bi ) | i ∈ I }.

Let

K =

c

∣∣∣c ∈ [x, y] and [x, c] ∪
⋃
j∈J

(a j , b j ) for some finite J ∪ I

⎛
⎧ .

Observe that K ⊕= ∈ because x ∈ K . Indeed, we have [x, x] = {x} and therefore
[x, x] ∪ (ai , bi ) for some i ∈ I .

We claim that y � w = sup K . It is clear that w � y because y is an upper bound
of [x, y] and therefore an upper bound of K . Suppose that w < y. Note that in this
case there exists an open interval (ap, bp) for some p ∈ I such that w ∈ (ap, bp). By
Theorem 2.28, for every σ > 0, there is z ∈ K such that sup K −σ < z. Choose σ such
that σ < w − ap. Since the closed interval [x, z] is covered by a finite collection of
open intervals [x, z] ∪ (a j1, b j1) ⊆ · · · ⊆ (a jr , b jr ), it follows that the interval [x, w]
is covered by (a j1 , b j1) ⊆ · · · ⊆ (a jr , b jr ) ⊆ (ap, bp). This leads to a contradiction
because the open interval (ap, bp) contains numbers in K that are greater than w. So
we have w = y, which shows that [x, y] can be covered by a finite family of open
intervals extracted from C.

Example 4.58 The open interval (0, 1) is not compact. Indeed, it is easy to see that
the collection of open sets

⎨⎩ 1
n , 1 − 1

n

⎫⎬
is an open cover of (0, 1). However, no finite

sub-collection of this collection of sets is an open cover of (0, 1).

Example 4.58 suggests the interest of the following definition.

Definition 4.59 A subset T of a topological space is relatively compact if its closure
K(T ) is compact.

Example 4.60 The set (0, 1) is a relatively compact subset of R but not a compact
one.
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Theorem 4.61 If (S,O) is a compact topological space, any closed subset T of S
is compact.

Proof Let T be a closed subset of (S,O). We need to show that the subspace (T,O �T )

is compact. LetC be an open cover of the space (T,O �T ). Then,C⊆{S−T } is a open
cover of (S,O). The compactness of (S,O) means that there exists a finite subcover
D of (S,O) such that D ∪ C ⊆ {S − T }. It follows immediately that D − {S − T }
is a finite subcover of C for (T,O �T ).

A topological space (S,O) is locally compact if for every x ∈ S there exists an
open set L ∈ O such that x ∈ L and K(L) is a compact set.

Theorem 4.62 If (S,O) is a compact topological space, then, for every infinite
subset U of S we have U ∞ ⊕= ∈ (the Bolzano-Weierstrass property).

Proof Let U = {xi | i ∈ I } be an infinite subset of S. Suppose that U has no
accumulation point. For every s ∈ S, there is an open set Ls such that s ∈ Ls and
U ∅ (Ls − {s}) = ∈. Clearly the collection {Ls | s ∈ S} is an open cover of S, so it
contains a finite subcover {Ls1, . . . , Lsp }. Thus, S = Ls1 ⊆ · · · ⊆ Lsp . Note that each
Lsi contains at most one element of U (which happens when si ∈ U ), which implies
that U is finite. This contradiction means that U ∞ ⊕= ∈.

4.6 Continuous Functions

The notion of continuous function which is central to topology is introduced next.

Definition 4.63 Let (S1,O1) and (S2,O2) be two topological spaces. A function
f : S1 −∩ S2 is continuous if, for every open set V ∈ O2, we have f −1(V ) ∈ O1.

If f : S1 −∩ S2 is a continuous function between the topological spaces (S1,O1)

and (S2,O2) and O∞
1 and O∞

2 are topologies on S1 and S2, respectively, such that
O∞

2 ∪ O2 and O1 ∪ O∞
1, then f is also a continuous function between the topological

spaces (S1,O
∞
1) and (S2,O

∞
2). Therefore, any function defined on the topological

space (S,P(S)) (equipped with the discrete topology) with values in an arbitrary
topological space (S∞,O∞) is continuous; similarly, any function f : S −∩ S∞
between a topological space (S,O) and (S∞, {∈, S∞}) (equipped with the discrete
topology) is continuous.

Theorem 4.64 Let (S,O), (T,O∞), and (U,O∞∞) be three topological spaces and let
f : S −∩ T and g : T −∩ U be two continuous functions. Then, the function
g f : S −∩ T is continuous.

Proof This statement is an immediate consequence of Definition 4.63 and Theorem
1.61.

Several equivalent characterizations of continuous functions are given next.
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Theorem 4.65 Let (S,O) and (T,O∞) be two topological spaces and let f : S −∩
T be a function. The following statements are equivalent:

(i) f is continuous;
(ii) for every closed set L, L ∪ T , the set f −1(L) is a closed set in (S,O);

(iii) f (K1(H)) ∪ K2( f (H)) for every H ∪ S, where K1 and K2 are the closure
operators of the topological spaces (S,O) and (T,O∞), respectively;

(iv) for every x ∈ S and V ∈ neigh f (x)(O
∞), there exists U ∈ neighx (O) such that

f (U ) ∪ V .

Proof To prove that (i) implies (ii), let f be a continuous function and let C be
the open set given by C = T − L . By (i), f −1(C) is open in (S,O) and therefore
S − f −1(C) is closed in (S,O). Since

S − f −1(C) = S − f −1(T − L) = f −1(L)

(see Exercise 21), we have shown the desired implication.
To prove that (ii) implies (iii), we start from the fact that H ∪ f −1( f (H)).

Therefore, H ∪ f −1(K2( f (H))). Since K2( f (H)) is closed, it follows that
f −1(K2( f (H))) is also closed. Thus, K1(H) ∪ f −1(K2( f (H))).

We now show that (iii) implies (iv). Let V be a neighborhood of f (x) in (T,O∞)
and let W be an open set such that f (x) ∈ W ∪ V . Define the set U ∪ S as
U = S − f −1(T − W ). Since f (x) ∈ W , f (x) ⊕∈ T − W , x ⊕∈ f −1(T − W ) and
therefore x ∈ U .

By (iii), we have

f
⎭

K1( f −1(T − W ))
⎪

∪ K2( f ( f −1(T − W ))) ∪ K2(T − W ) = T − W,

because T − W is a closed set. Consequently, K1( f −1(T − W )) ∪ f −1(T − W ),
so K1( f −1(T − W )) = f −1(T − W ), which implies that f −1(T − W ) is a closed
set. This means that U is an open set, and hence it is a neighborhood of x . Then,
f (U ) = f

⎩
S − f −1(T − W )

⎫ = f ( f −1(W )) ∪ W .
Finally, to show that (iv) implies (i), let V be an open set in (T,O∞) and x ∈

f −1(V ), so f (x) ∈ V . Since V is open, it is a neighborhood of f (x), so by (iv)
there exists U ∈ neighx (O) such that f (U ) ∪ V , which implies U ∪ f −1(V )

and f −1(V ) is a neighborhood of x . By Theorem 4.24, f −1(V ) is open so f is
continuous.

Definition 4.66 Let (S,O) and (T,O∞) be two topological spaces. A bijection f :
S −∩ T is a homeomorphism if both f and its inverse f −1 are continuous functions.

If a homeomorphism exists between the topological spaces (S,O) and (S,O∞), we
say that these spaces are homeomorphic.

Theorem 4.67 A bijection f : S −∩ T between two topological spaces (S,O) and
(T,O∞) is a homeomorphism if and only if U ∈ O is equivalent to f (U ) ∈ O∞.
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Proof Suppose that f is a homeomorphism between (S,O) and (T,O∞). If U ∈ O

the continuity of f −1 implies that ( f −1)−1(U ) = f (U ) ∈ O∞; on the other hand, if
f (U ) ∈ O∞, then, since U = f −1( f (U )), the continuity of f yields U ∈ O.

Conversely, suppose that for the bijection f : S −∩ T , U ∈ O if and only if
f (U ) ∈ O∞. Suppose that V ∈ O∞; since f is a bijection, there is W ∪ S such
that V = f (W ) and W ∈ O by hypothesis. Observe that f −1(V ) = W , so f
is continuous. To prove that f −1 is continuous, note that we need to verify that
( f −1)−1(Z) is an open set in (S,O) for any set Z ∈ O∞, which is effectively the case
because ( f −1)−1(Z) = f (Z).

Any property of (S,O) that can be expressed using the open sets of this topological
space is preserved in topological spaces (T,O∞) that are homeomorphic to (S,O).
Therefore, such a property is said to be topological.

The collection of all pairs of topological spaces that are homeomorphic is an
equivalence relation on the class of topological spaces as can be easily shown.

Example 4.68 We prove that all open intervals of R, bounded or not, are homeo-
morphic.

Let (a, b) and (c, d) be two bounded intervals of R and let f : (a, b) −∩ (c, d)

be the linear function defined by f (x) = px + q , where p = d−c
b−a and q = bc−ad

b−a .
It is easy to verify that f is a homeomorphism, so any two bounded intervals of R
are homeomorphic; in particular, any bounded interval (a, b) is homeomorphic with
(0, 1).

Any two unbounded intervals (a,⊥) and (b,⊥) are homeomorphic; the mapping
g(x) = b

a x is a homeomorphism between these sets. Similarly, any two unbounded
intervals of the form (−⊥, a) and (−⊥, b) are homeomorphic, and so are (a,⊥)

and (−⊥, b).
The function h : (0, 1) −∩ (0,⊥) defined by h(x) = tan ιx

2 is a homeo-
morphism, whose inverse mapping is h−1(x) = 2

ι arctan x so (0, 1) is homeomor-
phic with (0,⊥). Finally, (−1, 1) is homeomorphic to (−⊥,⊥) since the mapping
h1 : (−1, 1) −∩ (−⊥,⊥) defined by h(x) = tan ιx

2 for x ∈ (−1, 1) is a homeo-
morphism.

Compactness is preserved by continuous functions as we show next.

Theorem 4.69 Let (S,O) and (T,O∞) be two topological spaces and let f : S −∩
T be a continuous function. If (S,O) is compact, then f (S) is compact in (T,O∞).

Proof Let D = {Di | i ∈ I } be an open cover of f (S). Then f −1(Di ) is an open
set in (S,O) because f is continuous and the collection C = { f −1(Di ) | i ∈ I }
is an open cover of S. Since (S,O) is compact, there exists a finite subcover C1 =
{ f −1(Di ) | i ∈ I1} of S (I1 is a finite subset of I ). Since S = ⋃{ f −1(Di ) | i ∈ I1},
we have

f (S) = f
⎭⋃

{ f −1(Di ) | i ∈ I1}
⎪

=
⋃

{ f ( f −1(Di )) | i ∈ I1} =
⋃

{Di | i ∈ I1},
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which shows that D contains a finite subcover of f (S).

Using the notion of the neighborhood of an element, it is possible to localize the
notion of continuity.

Definition 4.70 Let (S,O) and (T,O∞) be two topological spaces. A function f :
S −∩ T is continuous at s, where s ∈ S, if for every neighborhood V of f (s) there
exists a neighborhood U of s such that f (U ) ∪ V .

Theorem 4.71 Let (S,O) and (T,O∞) be two topological spaces. A function f :
S −∩ T is continuous if and only if it is continuous at every element s of S.

Proof This statement follows immediately from Definition 4.71 and from the last
part of Theorem 4.65.

4.7 Connected Topological Spaces

We now discuss a formalization of the notion of a “one-piece” topological space.

Theorem 4.72 Let (S,O) be a topological space. The following statements are
equivalent:

(i) there exists a clopen subset K of S such that K ⊕∈ {∈, S};
(ii) there exist two non-empty open subsets L , L ∞ of S that are complementary;
(iii) there exist two non-empty closed subsets H, H ∞ of S that are complementary.

Proof (i) implies (ii): If K is clopen and K ⊕∈ {∈, S}, then both K and K̄ are non-
empty open sets.

(ii) implies (iii): Suppose that L and L ∞ are two non-empty complementary open
subsets of S. Then, L and L ∞ are in the same time closed because the complements
of each set is open.

(iii) implies (i): If H and H ∞ are complementary closed sets, then each of them is
also open because the complements of each set is closed. Thus, both sets are clopen.

Definition 4.73 A topological space (S,O) is disconnected if it satisfies any of the
equivalent conditions of Theorem 4.72. Otherwise, (S,O) is said to be connected.

A subset T of a connected topological space is connected if the subspace T is
connected.

Theorem 4.74 Let T be a subset of S, where (S,O) is a topological space. The
following statements are equivalent:

(i) T is connected;
(ii) there are no open sets L1, L2 in (S,O) such that T ∪ L1 ⊆ L2, and T ∅ L1,

and T ∅ L2 are non-empty and disjoint;
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(iii) there are no closed sets H1, H2 in (S,O) such that T ∪ H1 ⊆ H2, and T ∅ H1
and T ∅ H2 are non-empty and disjoint;

(iv) there is no clopen set in (S,O) that has a non-empty intersection with T .

Proof The equivalence of the statements follows immediately from the definition of
the subspace topology.

Theorem 4.75 Let C = {Ci | i ∈ I } be a family of connected subsets of a topo-
logical space (S,O). If Ci ∅ C j ⊕= ∈ for every i, j ∈ I such that i ⊕= j , then

⋃
C is

connected.

Proof Suppose that C = ⋃
C is not connected. Then C contains two complementary

open subsets L ∞ and L ∞∞. For every i ∈ I , the sets Ci ∅ L ∞ and Ci ∅ L ∞∞ are comple-
mentary and open in Ci . Since each Ci is connected, we have either Ci ∅ L ∞ = ∈ or
Ci ∅ L ∞∞ = ∈ for every i ∈ I . In the first case, Ci ∪ L ∞∞, while in the second, Ci ∪ L ∞.
Thus, the collection C can be partitioned into two subcollections, C = C∞ ⊆C∞∞, where
C∞ = {Ci ∈ C | Ci ∪ L ∞} and C∞∞ = {Ci ∈ C | Ci ∪ L ∞∞}. Clearly, two sets Ci ∈ C∞
and C j ∈ C∞∞ are disjoint because the sets L ∞ and L ∞∞ are disjoint, and this contradicts
the hypothesis.

Corollary 4.76 Let (S,O) be a topological space and let x ∈ S. The collection Cx

of connected subsets of S that contain x has Kx = ⋃
Cx as its largest element.

Proof This follows immediately from Theorem 4.75.

We refer to Kx as the connected component of x .

Theorem 4.77 Let T be a connected subset of a topological space (S,O), and
suppose that W is a subset of S such that T ∪ W ∪ K(T ). Then W is connected.

Proof Suppose that W is not connected (that is, W = U ⊆ U ∞, where U and U ∞ are
two nonempty, disjoint, and open sets in W ). There exist two open sets L , L ∞ in S
such that U = W ∅ L and U ∞ = W ∅ L ∞. Since T ∪ W , the sets T ∅ U and T ∅ U ∞
are open in T , disjoint, and their union equals T . Thus, we have either T ∅ U = ∈
or T ∅ U ∞ = ∈ because T is connected.

If T ∅ U = ∈, then T ∅ L = (T ∅ W ) ∅ L = T ∅ (W ∅ L) = T ∅ U = ∈,
so T ∪ L̄ . Since L̄ is closed, K(T ) ∪ L̄ , which implies W ∪ L̄ , which implies
U = W ∅ L = ∈. This contradicts the assumption made earlier about U . A similar
contradiction follows from T ∅ U ∞ = ∈. Thus, W is connected.

Corollary 4.78 If T is a connected subset of a topological space (S,O), then K(T )

is also connected.

Proof This statement is a special case of Theorem 4.76.
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Theorem 4.79 Let (S,O) be a topological space. The collection of all connected
components of S is a partition of S that consists of closed sets.

Proof Corollary 4.78 implies that each connected component Kx is closed. Suppose
that Kx and Ky are two connected components that are not disjoint. Then, by Theo-
rem 4.75, Kx ⊆ Ky is connected. Since x ∈ Kx ⊆ Ky , it follows that Kx ⊆ Ky ∪ Kx

because Kx is the maximal connected set that contains x , so Ky ∪ Kx . Similarly,
Kx ∪ Ky , so Kx = Ky .

Example 4.80 The topological space (R,O) is connected. Suppose that K is a clopen
set in R distinct from R and ∈, and let x ∈ R − K .

Suppose that the set K ∅[x,⊥) is nonempty. Then, this set is closed and bounded
below and therefore has a least element u. Since K ∅ [x,⊥) = K ∅ (x,⊥) is also
open, there exists σ > 0 such that (u − σ, u + σ) ∪ K ∅ [x,⊥), which contradicts
the fact that u is the least element of K ∅ [x,⊥). A similar contradiction is obtained
if we assume that K ∅ (−⊥, x] ⊕= ∈, so R cannot contain a clopen set distinct from
R or ∈.

Theorem 4.81 The image of a connected topological space through a continuous
function is a connected set.

Proof Let (S1,O1) and (S2,O2) be two topological spaces and let f : S1 −∩ S2
be a continuous function, where S1 is connected. If f (S1) were not connected, we
would have two nonempty open subsets L and L ∞ of f (S1) that are complementary.
Then, f −1(L) and f −1(L ∞) would be two nonempty, open sets in S1 which are
complementary, which contradicts the fact that S1 is connected.

A characterization of connected spaces is given next.

Theorem 4.82 Let (S,O) be a topological space and let ({0, 1}),P({0, 1}) be a
two-element topological space equipped with the non-discrete topology. Then, S is
connected if and only if every continuous application f : S −∩ {0, 1} is constant.

Proof Suppose that S is connected. Both f −1(0) and f −1(1) are clopen sets in S
because both {0} and {1} are clopen in the discrete topology. Thus, we have either
f −1(0) = ∈ and f −1(1) = S, or f −1(0) = S and f −1(1) = ∈. In the first case, f is
the constant function f (x) = 1; in the second, it is the constant function f (x) = 0.

Conversely, suppose that the condition is satisfied for every continuous function
f : S −∩ {0, 1} and suppose (S,O) is not connected. Then, there exist two non-
empty disjoint open subsets L and L ∞ that are complementary. Let f = 1L be the
indicator function of L , which is continuous because both L and L ∞ are open. Thus,
f is constant and this implies either L = ∈ and L ∞ = S or L = S and L ∞ = ∈, so S
is connected.

Example 4.83 Theorem 4.82 allows us to prove that the connected subsets of R are
exactly the intervals.

Suppose that T is a connected subset of S but is not an interval. Then, there are
three numbers x, y, z such that x < y < z, x, z ∈ T but y ⊕∈ T . Define the function
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f : T −∩ {0, 1} by f (u) = 0 if u < y and f (u) = 1 if y < u. Clearly, f is
continuous but is not constant, and this contradicts Theorem 4.82. Thus, T must be
an interval.

Suppose now that T is an open interval of R. We saw that T is homeomorphic
to R (see Example 4.68), so T is indeed connected. If T is an arbitrary interval, its
interior I(T ) is an open interval and, since I(T ) ∪ T ∪ K(I(T )), it follows that T
is connected.

Definition 4.84 A topological space (S,O) is totally disconnected if, for every x ∈
S, the connected component of x is Kx = {x}.
Example 4.85 Any topological space equipped with the discrete topology is totally
disconnected.

Theorem 4.86 Let (S,O) be a topological space and let T be a subset of S.
If for every pair of distinct points x, y ∈ T there exist two disjoint closed sets Hx

and Hy such that T ∪ Hx ⊆ Hy , x ∈ Hx , and y ∈ Hy , then T is totally disconnected.

Proof Let Kx be the connected component of x , and suppose that y ∈ Kx and y ⊕= x ,
that is, Kx = Ky = K . Then, K ∅ Hx and K ∅ Hy are nonempty disjoint closed
sets and K = (K ∅ Hx ) ⊆ (K ∅ Hy), which contradicts the connectedness of K .
Therefore, Kx = {x} for every x ∈ T and T is totally disconnected.

4.8 Separation Hierarchy of Topological Spaces

We introduce a hierarchy of topological spaces that is based on separation properties
of these spaces.

Definition 4.87 Let (S,O) be a topological space and let x and y be two arbitrary,
distinct elements of S. This topological space is:

(i) a T0 space if there exists U ∈ O such that one member of the set {x, y} belongs
to U and the other to S − U;

(ii) a T1 space if there exist U, V ∈ O such that x ∈ U − V and y ∈ V − U;
(iii) a T2 space or a Hausdorff space if there exist U, V ∈ O such that x ∈ U and

y ∈ V and U ∅ V = ∈;
(iv) a T3 space if for every closed set H and x ∈ S − H there exist U, V ∈ O such

that x ∈ U and H ∪ V and U ∅ V = ∈;
(v) a T4 space if for all disjoint closed sets H, L there exist U, V ∈ O such that

H ∪ U, L ∪ V , and U ∅ V = ∈.

Theorem 4.88 A topological space (S,O) is a T1 space if and only if every singleton
{x} is a closed set.
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Proof Suppose that (S,O) is a T1, space and for every y ∈ S − {x} let Uy and Vy

be two open sets such as x ∈ Uy − Vy and y ∈ Vy − Uy . Then, x ∈ ⋃
y ⊕=x Uy and

x ⊕∈ ⋃
y ⊕=x Vy , so y ∈ ⋃

y ⊕=x Vy ∪ S − {x}. Thus, S − {x} is an open set, so {x} is
closed.

Conversely, suppose that each singleton {u} is closed. Let x, y ∈ S be two distinct
elements of S. Note that the sets S − {x} and S − {y} are open and x ∈ (S − {y}) −
(S − {x}) and y ∈ (S − {x}) − (S − {y}), which shows that (S,O) is a T1-space.

Theorem 4.89 Let (S,O) be a T4-separated topological space. If H is a closed set
and L is an open set such that H ∪ L, then there exists an open set U such that
H ∪ U ∪ K(U ) ∪ L.

Proof Observe that H and S−L are two disjoint closed sets under the assumptions of
the theorem. Since (S,O) is a T4-separated topological space, there exist U, V ∈ O

such that H ∪ U , S − L ∪ V and U ∅ V = ∈. This implies U ∪ S − V ∪ L . Since
S − V is closed, we have

H ∪ U ∪ K(U ) ∪ K(S − V ) = S − V ∪ L ,

which proves that U satisfies the conditions of the theorem.

The next theorem is in some sense a reciprocal result of Theorem 4.61, which
holds in the realm of Hausdorff spaces.

Theorem 4.90 Each compact subset of a Hausdorff space (S,O) is closed.

Proof Let H be a compact subset of (S,O) and let y be an element of the set S − H .
It suffices to show that the set S − H is open. For every x ∈ H , we have two
open subsets Ux and Vx such that x ∈ Ux , y ∈ Vx and Ux ∅ Vx = ∈. The collection
{Ux | x ∈ H} is an open cover of H and the compactness of H implies the existence
of a finite subcover Ux1, . . . , Uxn of H . Consider the open set V = ⎜n

i=1 Vxi , which
is disjoint from each of the sets Ux1 , . . . , Uxn and, therefore, it is disjoint from H .
Thus, for every y ∈ S − H there exists an open set V such that y ∈ V ∪ S − H ,
which implies that S − H is open.

Corollary 4.91 In a Hausdorff space (S,O), each finite subset is a closed set.

Proof Since every finite subset of S is compact, the statement follows immediately
from Theorem 4.90.

It is clear that every T2 space is a T1 space and each T1 space is a T0 space.
However, this hierarchy does not hold beyond T2. This requires the introduction of
two further classes of topological spaces.

Definition 4.92 A topological space (S,O) is regular if it is both a T1 and a T3
space; (S,O) is normal if it is both a T1 and a T4 space.
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Theorem 4.93 Every regular topological space is a T2 space and every normal
topological space is a regular one.

Proof Let (S,O) be a topological space that is regular and let x and y be two distinct
points in S. By Theorem 4.88, the singleton {y} is a closed set. Since (S,O) is a T3,
space, two open sets U and V exist such that x ∈ U , {y} ∪ V , and U ∅ V = ∈, so
(S,O) is a T2 space. We leave the second part of the theorem to the reader.

4.9 Products of Topological Spaces

Theorem 4.94 Let {(Si ,Oi ) | i ∈ I } be a family of topological spaces indexed by
the set I . Define on the set S = ∏

i∈I Si the collection of sets B = {⎜ j∈J p−1
j (L j ) |

L j ∈ O j and J finite}. Then, B is a basis.

Proof Note that every set
⎜

j∈J p−1
j (L j ) has the form

∏
i∈I−J ×∏

j∈J L j . We need
to observe only that a finite intersection of sets in B is again a set in B. Therefore,
B is a basis.

Definition 4.95 The topology TOP(B) generated on the set S by B is called the
product of the topologies Oi and is denoted by

∏
i∈I Oi .

The topological space {(Si ,Oi ) | i ∈ I } is the product of the collection of
topological spaces {(Si ,Oi ) | i ∈ I }.

The product of the topologies {Oi | i ∈ I } can be generated starting from the
subbasis S that consists of sets of the form D j,L = {t | t ∈ ∏

i∈I | t ( j) ∈ L},
where j ∈ I and L is an open set in (S j ,O j ). It is easy to see that any set in the basis
B is a finite intersection of sets of the form D j,L .

Example 4.96 Let Rn = R × · · · × R, where the product involves n copies of R
and n � 1. In Example 4.45, we saw that the collection of open intervals {(a, b) |
a, b ∈ R and a < b} is a basis for the topological space (R,O). Therefore, a basis
of the topological space (Rn,O × · · ·O) consists of parallelepipeds of the form
(a1, b1) × · · · × (an, bn), where ai < bi for 1 � i � n.

Theorem 4.97 Let {(Si ,Oi ) | i ∈ I } be a collection of topological spaces. Each
projection pν : ∏i∈I Si −∩ Sν is a continuous function for ν ∈ I . Moreover, the
product topology is the coarsest topology on S such that projections are continuous.

Proof Let L be an open set in (Sν,Oν). We have

p−1
ν (L) =

{
t ∈

∏
i∈I

Si | t (ν) ∈ L

}
,
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which has the form
∏

i∈I Ki , where each set Ki is open because

Ki =
{

Si if i ⊕= ν,

L if i = ν,

for i ∈ I . Thus, p−1
ν (L) is open and pν is continuous.

The proof of the second part of the theorem is left to the reader.

A preliminary result to a theorem that refers to the compactness of products of
topological spaces is shown next.

Lemma 4.98 Let C be a collection of subsets of S = ∏
i∈I Si such that C has the

f.i.p. and C is maximal with this property.
We have

⎜
D ∈ C for every finite subcollectionD ofC. Furthermore, if T ∅C ⊕= ∈

for every C ∈ C, then T ∈ C.

Proof Let D = {D1, . . . , Dn} be a finite subcollection of C and let D = ⎜
D ⊕= ∈.

Note that the intersection of every finite subcollection of C ⊆ {D} is also nonempty.
The maximality of C implies D ∈ C, which proves the first part of the lemma.

For the second part of the lemma, observe that the intersection of any finite
subcollection of D ⊆ {T } is not empty. Therefore, as above, T ∈ C.

Theorem 4.99 (Tychonoff’s Theorem) Let {(Si ,Oi ) | i ∈ I } be a collection of
topological spaces such that Si ⊕= ∈ for every i ∈ I . Then, (

∏
i∈I Si ,

∏
i∈I Oi ) is

compact if and only if each topological space (Si ,Oi ) is compact for i ∈ I .

Proof If (
∏

i∈I Si ,O) is compact, then, by Theorem 4.69, it is clear that each of the
topological spaces (Si ,Oi ) is compact because each projection pi is continuous.

Conversely, suppose that each of the topological spaces (Si ,Oi ) is compact.
Let E be a family of sets in S = ∏

i∈I Si that has the f.i.p. and let (C,∪) be the
partially ordered set whose elements are collections of subsets of S that have the
f.i.p. and contain the family E.

Let {Ci | i ∈ I } be a chain in (C,∪). It is easy to verify that
⋃{Ci | i ∈ I } has the

f.i.p., so every chain in (C,∪) has an upper bound. Therefore, by Zorn’s Lemma (see
Theorem 2.81), the poset (C,∪) contains a maximal collectionC that has the f.i.p.and
containsE. We aim to find an element t ∈ ∏

i∈I Si that belongs to
⎜{K(C) | C ∈ C}

because, in this case, the same element belongs to
⎜{K(C) | C ∈ E} and this would

imply, by Theorem 4.54, that (S,O) is compact.
Let Ci be the collection of closed subsets of Si defined by

Ci = {Ki (pi (C)) | C ∈ C}

for i ∈ I , where Ki is the closure of the topological space (Si ,Oi ).
It is clear that each collection Ci has the f.i.p. in Si . Indeed, since C has the f.i.p.,

if {C1, . . . , Cn} ∪ C and x ∈ ⎜n
k=1 Ck , then pi (x) ∈ ⎜n

k=1 K(pi (Ck)), so Ci has
the f.i.p. Since (Si ,Oi ) is compact, we have

⎜
Ci ⊕= ∈, by Part (iii) of Theorem 4.53.
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Let ti ∈ ⎜
Ci = ⎜{Ki (pi (C)) | C ∈ C} and let t ∈ S be defined by t (i) = ti for

i ∈ I .
Let D j,L = {u | u ∈ ∏

i∈I | u( j) ∈ L}, a set of the subbasis of the product
topology that contains t , defined earlier, where L is an open set in (S j ,O j ). Since
g( j) ∈ L , the set L has a nonempty intersection with every set Ki (pi (C)), where
C ∈ C. On the other hand, since pi (D j,L) = Si for i ⊕= j , it follows that for
every i ∈ I we have pi (D j,L) ∅ ⎜

C∈CKi (pi (C)) ⊕= ∈. Therefore, pi (D j,L) has
a nonempty intersection with every set of the form Ki (pi (C)), where C ∈ C. By
the contrapositive of Theorem 4.9, this means that pi (D j,L) ⊆ pi (C) ⊕= ∈ for every
i ∈ I and C ∈ C. This in turn means that D j,L ⊆ C ⊕= ∈ for every C ∈ C. By
Lemma 4.98, it follows that D j,L ∈ C. Since every set that belongs to the basis
of the product topology is a finite intersection of sets of the form D j,L , it follows
that any member of the basis has a nonempty intersection with every set of C. This
implies that g belongs to

⋃{K(C) | C ∈ C}, which implies the compactness of
(
∏

i∈I Si ,
∏

i∈I Oi ).

Example 4.100 In Example 4.57, we have shown that every closed interval [x, y]
of R where x < y is compact. By Theorem 4.99, any subset of R

n of the form
[x1, y1] × · · · × [xn, yn] is compact.

4.10 Fields of Sets

In this section, we introduce collections of sets that play an important role in measure
and probability theory.

Definition 4.101 Let S be a set. A field of sets on S is a family of subsets E of S that
satisfies the following conditions:

(i) S ∈ E;
(ii) if U ∈ E, then Ū = S − U ∈ E;

(iii) if U0, . . . , Un−1 belong to E, then
⋃

0�i�n−1 Ui belongs to E.

A π-field of sets on S is a family of subsets E of S that satisfies conditions (i) and
(ii) and, in addition, satisfies the following condition:

(iii∞) if {Ui | i ∈ N} is a countable family of sets included in E, then
⋃

i∈N Ui belongs to E.

Clearly, every π-field is also a field on S.
If E is a π-field of sets on S, we refer to the pair (S,E) as a measurable space.

Example 4.102 The collection E0 = {∈, S} is a π-field on S; moreover, for every
π-field E on S, we have E0 ∪ E.

The set P(S) of all subsets of a set S is a π-field on S.
If T is a subset of S, then the collection {∈, T, S − T, S} is a π-field on S.
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Theorem 4.103 The class of all fields (π-fields) of sets on S is a closure system on
P(S).

Proof Let E = {Ei | i ∈ I } be a collection of fields of sets on S. Since S ∈ Ei for
every i ∈ I , it follows that S ∈ ⎜{Ei | i ∈ I }.

Suppose that A ∈ ⎜
E. Since A ∈ Ei for every i ∈ I , it follows that Ā ∈ Ei for

every i ∈ I , which implies that Ā ∈ ⎜{Ei | i ∈ I }.
Finally, if {Ai | 1 � i � n} ∈ ⎜{Ei | i ∈ I }, it is easy to see that

⋃n
i=1 Ai ∈⎜{Ei | i ∈ I }.

A similar argument proves that the class of all π-fields of sets is also a closure
system on P(S).

Example 4.104 Let A be a subset of the set S. The π-field generated by the collection
{A} is {∈, A, Ā, S}.
Definition 4.105 Let (S,O) be a topological space. A subset T of S is said to be a
Borel set if it belongs to the π-field generated by the topology O.

The π-field of Borel sets of (S,O) is denoted by BO.

It is clear that all open sets are Borel sets. Also, every closed set, as a complement
of an open set, is a Borel set.

Example 4.106 We identify several families of Borel subsets of the topological space
(R,O).

It is clear that every open interval (a, b) and every set (a,⊥) or (−⊥, a) is a
Borel set for a, b ∈ R because they are open sets. The closed intervals of the form
[a, b] are Borel sets because they are closed sets in the topological space.

Since [a, b) = (−⊥, b)− (−⊥, a), it follows that the half-open intervals of this
form are also Borel sets.

For every a ∈ R, we have {a} ∈ BO because {a} = [a, b) − (a, b) for every
b ∈ R such that b > a. Therefore, every countable subset {an | n ∈ N} of R is a
Borel set.

Example 4.107 Let ι = {Bi | i ∈ I } be a countable partition of a set S. The π-field
generated by ι is

Eι =
{⋃

i∈J

Bi | J ∪ I

}
.

Clearly, every block Bi belongs to Eι , so ι ∪ Eι .
To verify that Eι is a π-field, note first that we have S ∈ Eι since S = ⋃

i∈I Bi .
If A ∈ Epi , then A = ⋃

i∈J Bi for some subset J of I , so Ā = ⋃
i∈I−J Bi , which

shows that Ā ∈ Eι . Let {Aν | ν ∈ L} be a family of sets included in Eι . For each
set Aν, there exists a set Jν such that Aν = ⋃{Bi | i ∈ Jν}. Therefore,

⋃
ν∈L

Aν =
⋃{

Bi | i ∈
⋃
ν∈L

Jν

}
,
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which shows that
⋃

ν∈L Aν ∈ Eι . This proves that Eι is a π-field. Moreover, any
π-field on S that includes ι also includes Eι , which concludes the argument.

Theorem 4.108 Let (S,E) be a measurable space. The following statements hold:

(i) ∈ ∈ E;
(ii) if {Ai | i ∈ N} ∪ E, then

⎜
i∈N Ai ∈ E;

(iii) if A, B ∈ E, then A − B and A ⇒ B belong to E.

Proof The first statement follows from the fact that ∈ = S̄.
Let {Ai | i ∈ N} be a family of subsets of S such that Ai ∈ E for i ∈ N. Since

Ai ∈ E, we have
⋃{Ai | i ∈ N} ∈ E. Thus,

⋃
{Ai | i ∈ N} =

⋂
{Ai | i ∈ N} ∈ E,

which yields the second part of the theorem.
The third statement of the theorem is immediate.

Corollary 4.109 Let (S,E) be a measurable space and let {Un | n ∈ E} be a
sequence of members ofE. Then, both lim inf{Un | n ∈ N} and lim sup{Un | n ∈ N}
belong to E.

Proof This statement follows immediately from Definition 4.101 and from Theo-
rem 4.108.

Note that if (S,E) is a measurable space (that is, if E is a π-field on S), then
condition (iii∞) of Definition 101 amounts to Eπ ∪ E. Moreover, by Part (ii) of
Theorem 108, we also have Eα ∪ E.

Example 4.110 Let S be an arbitrary set and let B be the family of sets that consists
of sets that are either countable or complements of countable sets. We claim that
(S,B) is a measurable space.

Note that S ∈ B because S is the complement of ∈, which is countable. Next, if
A ∈ B is countable, Ā is a complement of a countable set, so Ā ∈ B; otherwise, if
A is not countable, then it is the complement of a countable set, which means that Ā
is countable, so Ā ∈ B.

Let A and B be two sets of B. If both are countable, then A ⊆ B ∈ B. If Ā and
B̄ are countable, then A ⊆ B = A ∅ B, so A ⊆ B ∈ B because it has a countable
complement. If A is countable and B is countable, then A ∅ B is countable because
it is a subset of B. Therefore, A ⊆ B ∈ B as a complement of a countable set. The
case where A and B are countable is treated similarly. Thus, in any case, the union
of two sets of B belongs to B.

Finally, we have to prove that if {Ai | i ∈ N} is a family of sets included in B,
then the set A = ⋃

i∈N Ai belongs to B. Indeed, let us split the set I into I ∞ and I ∞∞,
where i ∈ I ∞ if the set Ai is countable and i ∈ I ∞∞ if the complement Ai = S − Ai

is countable. Note that both A∞ = ⋃
i∈I ∞ Ai and A∞∞ = ⎜

i∈I ∞∞ Ai are countable sets
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(by Theorem 1.125 and by the fact that every subset of a countable set is countable,
respectively), and that A = A∞ ⊆ A∞∞. Since both A∞ and A∞∞ belong to B, it follows
that A ∈ B.

Definition 4.111 Let (S,D) and (T,E) be two measurable spaces. A function f :
S −∩ T is said to be measurable if f −1(V ) ∈ D for every V ∈ E.

It is easy to verify that if (Si ,Ei ) are measurable spaces for 1 � i � 3 and
f : S1 −∩ S2, g : S2 −∩ S3 are measurable functions, then their composition g f
is also a measurable function.

Theorem 4.112 Let S and T be two sets and let f : S −∩ T be a function. If E is
a π-field on T , then the collection f −1(E) defined by f −1(E) = { f −1(V ) | V ∈ E}
is a π-field on S.

Proof Since T ∈ E, it is clear that S = f −1(T ) belongs to f −1(E).
Suppose that U ∈ f −1(E); that is, U = f −1(W ) for some W ∈ E. Since

S − U = f −1(T ) − f −1(W ) = f −1(T − W ) (by Theorem 1.65), it follows that
S − U ∈ f −1(E). Similarly, if {Wi | i ∈ N} is a countable family of sets included
in E, then { f −1(Wi ) | i ∈ N} is a countable family of sets included in f −1(E)

and
⋃{ f −1(Wi ) | i ∈ N} belongs to f −1(E) by Theorem 1.63. Thus, f −1(E) is a

π-field on S.

Corollary 4.113 Let f : S −∩ T be a function, where (T,E) is a measurable
space. Then, f −1(E) is the least π-field of subsets of S such that f is is a measurable
function between S and (T,E).

Proof Suppose thatD is a π-field on S such that f is measurable. Then, f −1(E) ∈ D

for every E ∈ E, so f −1(E) ∪ D. The statement follows immediately since f −1(E)

is a π-field of sets.

Theorem 4.114 Let S and T be two sets and let f : S −∩ T be a function. If E is
a π-field on S, then the collection E∞ = {W ∈ P(T ) | f −1(W ) ∈ E} is a π-field on
T .

Proof The proof is straightforward and is left to the reader as an exercise.

Theorem 4.115 Let (S,O) and (T,O∞) be two topological spaces and let f : S −∩
T be a continuous function. Then, f is measurable relative to the measurable spaces
(S,BO) and (T,BO∞), where BO and BO∞ are the collections of Borel sets in (S,O)

and (T,O∞), respectively.

Proof The collection of sets E∞ = {W ∈ P(T ) | f −1(W ) ∈ BO} is a π-field on T .
Since f is continuous, it is clear that E∞ contains every open set in O∞, so the π-field
of Borel sets BO∞ that is generated by O∞ is contained in E∞. Thus, for every Borel set
U in T , f −1(U ) ∈ BO, which allows us to conclude that f is indeed measurable.

Next, we describe the π-field generated by a countable partition of a set.
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Theorem 4.116 Let ι = {Bi | i ∈ I } be a countable partition of a set S. In other
words, we assume that the set of indices I of the blocks of ι is countable.

The π-field generated by ι is the collection of sets:

{⋃
i∈J

Bi | J ∪ I

}
.

Proof Let Eι be the π-field generated by ι. Clearly, we have

ι ∪
{⋃

i∈J

Bi | J ∪ I

}
∪ Eι.

The collection {⋃i∈J Bi | J ∪ I } is a π-field. Indeed, we have S = ⋃{B | B ∈ ι},
so S ∈ {⋃i∈J Bi | J ∪ I }.

Suppose that A = ⋃{Bi | i ∈ J }. Then Ā = {Bi | i ∈ I − J }, which shows
that Ā ∈ {⋃i∈J Bi | J ∪ I }.

Suppose that A0, . . . , An, . . . belong to E, so Ak = ⋃{Bi | i ∈ Jk}, where
Jk ∪ I for k ∈ N. Then,

⋃
k�0 Ak = ⋃{Bi | i ∈ ⋃

k�0 Jk}, which implies that⋃
k�0 Ak ∈ {⋃i∈J Bi | J ∪ I }.
This implies that Eι = {⋃i∈J Bi | J ∪ I }.
We now give a technical result that concerns π-fields.

Theorem 4.117 Let (S,E) be a measurable space and let {Ui ∈ E | i ∈ N} be a
family of sets from E. There exists a family of sets {Vi ∈ E | i ∈ N} that satisfies the
following conditions:

(i) if i, j ∈ N and i ⊕= j , then Vi ∅ Vj = ∈;
(ii) Vi ∪ Ui for i ∈ N;
(iii)

⋃{Vi | i ∈ N} = ⋃{Ui | i ∈ N}.
Proof The sets Vn are defined inductively by

V0 = U0,

Vi = Ui −
⋃

{U j | 0 � j � i − 1}.

It is clear that the first two conditions of the theorem are satisfied; we prove the last
part of the theorem.

For x ∈ ⋃{Ui | i ∈ N}, let ix be the least i such that x ∈ Ui ; clearly, x ⊕∈ U j for
j < i , so x ∈ Vi . Thus,

⋃{Ui | i ∈ N} ∪ ⋃{Vi | i ∈ N}. The reverse inclusion
follows immediately from the fact that Vi ∪ Ui for every i ∈ N.
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4.11 Measures

Measurable spaces provide the natural framework for introducing the notion of mea-
sure.

Definition 4.118 Let (S,E) be a measurable space. A measure is a function m :
E −∩ R̂�0 that satisfies the following conditions:

(i) m(∈) = 0;
(ii) for every countable collection U0, U1, . . . of sets in E that are pairwise disjoint,

we have

m

(⋃
n∈N

Un

⎢
=
⎣
n∈N

m(Un).

The second property of the definition is the additivity of measures.
The triple (S,E, m) is a measure space.

In particular, if the collection U0, U1, . . . consists of two disjoint sets U and V ,
then

m(U ⊆ V ) = m(U ) + m(V ). (4.3)

Observe that if U, V ∈ E and U ∪ V , then V = U ⊆ (V − U ), so by the additivity
property, m(V ) = m(U ) + m(V − U ) � m(U ). This shows that U ∪ V implies
m(U ) � m(V ) (the monotonicity of measures).

Let X and Y be two subsets of E. Since X ⊆ Y = X ⊆ (Y − X), Y = (Y − X) ⊆
(Y ∅ X), and the pairs of sets X, (Y − X) and (Y − X), (Y ∅ X) are disjoint, we can
write

m(X ⊆ Y ) = m(X) + m(Y − X)

= m(X) + m(Y ) − m(X ∅ Y ). (4.4)

The resulting equality

m(X ⊆ Y ) + m(X ∅ Y ) = m(X) + m(Y ) (4.5)

for X, Y ∈ E is known as the modularity property of measures.

Example 4.119 Let S be a finite set and letE = P(S). The mapping m : P(S) −∩ R

given by m(U ) = |U | is a measure on P(S), as can be verified immediately.

Example 4.120 Let S be a set and let s be a fixed element of S. Define the mapping
ms : P(S) −∩ R̂�0 by

ms(U ) =
{

1 if s ∈ U,

0 otherwise.
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It is easy to verify that ms is a measure defined on P(S). Indeed, we have
ms(∈) = 0. If U0, U1, . . . is a countable collection of pairwise disjoint sets, then
s may belong to at most one of these sets. If there is a set Ui such that s ∈ Ui ,
s ∈ ⋃

n∈N Ui , so ms
⎩⋃

n∈N Un
⎫ = ⎥

n∈N ms(Un) = 1. If no such set Ui exists,
then ms

⎩⋃
n∈N Un

⎫ = ⎥
n∈N ms(Un) = 0. In either case, the second condition of

Definition 4.118 is satisfied.

The behavior of measures with respect to limits of sequences of sets is discussed
next.

Theorem 4.121 Let (S,E, m) be a measure space. If (U0, U1, . . .) is an increasing
or a decreasing sequence of sets from E, then m(lim Un) = lim m(Un).

Proof Suppose that U0 ↔ U1 ↔ · · · is an increasing sequence of sets, so
m(lim Un) = m(

⋃
n Un). By Theorem 4.117, there exists a sequence V0 ↔ V1 ↔ · · ·

of disjoint sets in E such that
⋃

Un = ⋃
Vn and V0 = U0, and Vn = Un − Vn−1 for

n � 1. Then,

m(lim Un) = m

(⋃
n

Vn

⎢
= m(V0) +

⎣
n�1

m(Vn)

= lim
n∩⊥

(
m(V0) +

n⎣
i=1

m(Vi )

⎢

= lim
n∩⊥ m


⎟V0 ⊆

⋃
n�1

Vi


 = lim

n∩⊥ m(Ui ).

Suppose now that U0 ⊃ U1 ⊃ · · · is a decreasing sequence of sets, so
m(lim Un) = m(

⎜
n Un).

Define the sequence of sets W0, W1, . . . by Wn = U0 − Un for n ∈ N. Since this
sequence is increasing, we have m(

⋃
n∈N Wn) = lim m(Wn) by the first part of the

theorem. Thus, we can write

m

(⋃
n∈N

Wn

⎢
= lim m(Wn) = m(U0) − lim m(Un).

Since

m

(⋃
n∈N

Wn

⎢
= m

(⋃
n∈N

(U0 − Un)

⎢

= m

(
U0 −

⋂
n∈N

Un

⎢
= m(U0) − m

(⋂
n∈N

Un

⎢
,

it follows that m(lim Un) = m
⎩⎜

n∈N Un
⎫ = lim m(Un).
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Definition 4.122 An outer measure on a set S is a function μ : P(S) −∩ R̂�0 that
satisfies the following properties:

(i) μ(∈) = 0.
(ii) μ is countably subadditive; that is,

μ

(⋃
n∈N

En

⎢
�
⎣

{μ(En) | n ∈ N}

for every countable family {En ∈ P(S) | n ∈ N} of subsets of S.
(iii) μ is monotonic.

A subset T of S is μ-measurable if μ(H) = μ(H ∅ T ) + μ(H ∅ T ) for every set
H ∈ P(S).

Lemma 4.123 Let S be a set and let μ be an outer measure on a set S. A set T is
μ-measurable if and only if μ(H) � μ(H ∅ T ) + μ(H ∅ T ) for every H ∈ P(S)

such that μ(H) < ⊥.

Proof The necessity of the condition is obvious. Suppose therefore that the condition
is satisfied. Since μ is subadditive, we have

μ(H) � μ(H ∅ T ) + μ(H ∅ T ),

which implies μ(H) = μ(H ∅ T ) + μ(H ∅ T ).

Theorem 4.124 Let μ be an outer measure on a set S. The collection of μ-
measurable sets is a π-field Eμ on S.

Proof It is immediate that ∈ ∈ Eμ. Suppose that T0, T1, . . . is a sequence of μ-
measurable sets. Then, μ(H) = μ(H ∅ T0) + μ(H ∅ T 0) for every subset H of
S.

By substituting H ∅ T0 and H ∅ T 0 for H , we obtain

μ(H ∅ T0) = μ(H ∅ T0 ∅ T1) + μ(H ∅ T0 ∅ T 1),

μ(H ∅ T 0) = μ(H ∅ T 0 ∅ T1) + μ(H ∅ T 0 ∅ T 1),

which yields

μ(H) =μ(H ∅ T0 ∅ T1) + μ(H ∅ T0 ∅ T 1)

+ μ(H ∅ T 0 ∅ T1) + μ(H ∅ T 0 ∅ T 1). (4.6)

Replacing H by H ∅ (T0 ⊆ T1), we obtain the equality

μ(H ∅ (T0 ⊆ T1)) = μ(H ∅ T0 ∅ T1) + μ(H ∅ T0 ∅ T 1) + μ(H ∅ T 0 ∅ T1). (4.7)
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Therefore,
μ(H) = μ(H ∅ (T0 ⊆ T1)) + μ(H ∅ T0 ⊆ T1),

which shows that T0 ⊆ T1 is μ-measurable. An easy argument by induction shows
that

⋃n
i=0 Ti is μ-measurable for every n ∈ N.

By replacing H in Equality (4.6) by H ∅ T0 − T1 = H ∅ (T 0 ⊆ T1), we have

μ(H ∅ (T 0 ⊆ T1)) = μ(H ∅ T0 ∅ T1) + μ(H ∅ T 0 ∅ T1) + μ(H ∅ T 0 ∅ T 1),

which allows us to write μ(H) = μ(H ∅ T0 − T1) + μ(H ∅ (T0 ∅ −T1)). Thus,
T0 − T1 is μ-measurable.

If U0 and U1 are two disjoint μ-measurable sets, then Equality (4.7) implies

μ(H ∅ (U0 ⊆ U1)) = μ(H ∅ U0) + μ(H ∅ U1)

for every H . Again, an inductive argument allows us to show that if T0, . . . , Tn are
pairwise disjoint, μ-measurable sets, then

μ

(
H ∅

n⋃
i=0

Ui

⎢
=

n⎣
i=0

μ(H ∅ Ui ). (4.8)

Define Wn = ⋃n
i=0 Ti . We have seen that Wn is μ-measurable for every n ∈ N.

Thus, we have

μ(H) = μ(H ∅ Wn) + μ(H ∅ W n)

= μ

(
H ∅

(
n⋃

i=0

Ti

⎢⎢
+ μ(H ∅ W n)

� μ

(
H ∅

(
n⋃

i=0

Ti

⎢⎢
+ μ(H ∅ W ),

where W = ⋃
i�0 Ti . By Equality (4.8), we have

μ(H) �
n⎣

i�0

μ(H ∅ Ti ) + μ(H ∅ W ) (4.9)

for every n ∈ N. Therefore,

μ(H) �
⊥⎣

i�0

μ(H ∅ Ti ) + μ(H ∅ W ),
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hence μ(H) � μ(H ∅W ) + μ(H ∅W ). By Lemma 4.123, the set W is μ-measurable.
Note also that we have shown that

μ(H) =
n⎣

i�0

μ(H ∅ Ti ) + μ(H ∅ W ) = μ(H ∅ W ) + μ(H ∅ W ). (4.10)

Suppose now that the sets T0, T1, . . . are not disjoint. Consider the sequence of
pairwise disjoint sets V0, V1, . . . defined by

V0 = T0,

Vn = Tn −
n−1⋃
i=0

Ti ,

for n � 1. The measurability of each set Vn is immediate and, by the previous
argument,

⋃
n∈N Vn is μ-measurable. Since

⋃
n∈N Vn = ⋃

n∈N Tn , it follows that⋃
n∈N Tn is μ-measurable. We conclude that the collection of μ-measurable sets is a

π-field.

Corollary 4.125 Let S be a set and let μ : P(S) −∩ R̂�0 be an outer measure on
S. The restriction μ �Eμ

to the π-field Eμ is a measure.

Proof Let T0, T1, . . . be a sequence of sets in Eμ that are pairwise disjoint. Choosing
H = W in Equality (4.10), we have μ(W ) = ⎥n

i�0 μ(Ti ), which proves that μ �Eμ

is indeed a measure.

Corollary 4.126 Let μ be an outer measure and let U0, U1, . . . be a sequence of
μ-measurable sets. Then, both lim inf Un and lim sup Un are μ-measurable sets.

Proof This statement follows immediately from Theorem 4.124 and from Corol-
lary 4.109.

Theorem 4.128, which follows gives a technique for constructing outer measures
known as Munroe’s Method I or simply as Method I (see [2–4]).

First, we need the following definition.

Definition 4.127 A sequential cover of a set S is a collection C of subsets of S
such that ∈ ∈ C, and for every subset T of S there is a countable subcollection
D = {D0, D1, . . .} of C such that T ∪ ⋃⊥

n=0 Dn.
The family of all countable collections of sets from C that are covers of a set

W ∈ P(S) is denoted by DC,W . If the collection C is clear from the context, the
subscript C is omitted.

Theorem 4.128 Let S be a set, C a sequential cover of the set S, and f : C −∩ R̂�0
a nonnegative function defined on C such that f (∈) = 0.

The function μ f : P(S) −∩ R̂�0 given by
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μ f (T ) = inf



⎣

U∈D
f (U ) | D ∈ DC,T

⎛
⎧

for T ∈ P(S) is an outer measure on S.

Proof Since ∈ is covered by the empty collection, and an empty sum has the value
0, it follows that μ f (∈) = 0.

If T, T ∞ ∈ P(S) and T ∪ T ∞, then any cover of T ∞ is also a cover of T ; that is,
DC,T ∞ ∪ DC,T . Therefore, μ f (T ) � μ f (T ∞).

Let {Tn | n ∈ N} be a countable collection of subsets of S. If μ f (Tn) = +⊥ for
one of the members of this collection, then the subadditivity of μ f ,

μ f

(⋃
n∈N

Un

⎢
�
⎣
n∈N

μ f (Un),

is satisfied. Therefore, we assume now that the value μ f (Tn) is finite for each n ∈ N.
The definition of μ f (Tn) as an infimum allows us to assume the existence of a

collection of sets Dn ∈ DUn such that

⎣
U∈Dn

f (U ) � μ f (Tn) + σ

2n
.

Consider the collection D = ⋃
n∈NDn . D is a cover for

⋃
n∈N Tn . Therefore, by

the definition of μ f , we have

μ f

(⋃
n∈N

Tn

⎢
�
⎣

{ f (U ) | U ∈ D}

�
⎣
n∈N

⎣
U∈Dn

f (U )

�
⎣
n∈N

μ f (Tn) + σ
⎣
n∈N

1

2n

=
⎣
n∈N

μ f (Tn) + 2σ.

Since this inequality holds for every σ, it follows that

μ f

(⋃
n∈N

Tn

⎢
�
⎣

{μ f (Tn) | n ∈ N},

which proves that μ f is subadditive. We conclude that μ f is an outer measure.
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Corollary 4.129 Let S be a set,C a sequential cover of the set S, and f : C −∩ R̂�0
a function such that f (∈) = 0. The outer measure μ f is the unique outer measure
on S that satisfies the following properties:

(i) μ f (U ) � f (U ) for every U ∈ C, and
(ii) if μ∞ is an outer measure such that μ∞(U ) � f (U ) for every U ∈ C then

μ∞(T ) � μ f (T ) for every T ∈ P(S).

Proof Since {∈, U } is a cover for U , the inequality μ f (U ) � f (U ) is immediate for
every U ∈ C.

Let μ∞ be an outer measure such that μ∞(U ) � f (U ) for every U ∈ C and let D
be a sequential cover of a set T ∈ P(S). Then, we have

μ∞(T ) � μ∞ ⎭⋃D
⎪

� {μ∞(U ) | U ∈ D} �
⎣

{ f (U ) | U ∈ D}

so μ∞(T ) � μ f (T ). The uniqueness of μ f follows by changing the roles of μ f and
μ∞.

Corollary 4.130 Let S be a set, C∞ and C two sequential covers of S such that
C∞ ∪ C, and f : C −∩ R̂�0 a function such that f (∈) = 0. If μ∞

f and μ f are
the outer measures that correspond to the collections C∞ and C, respectively, then
μ f (T ) � μ∞

f (T ) for T ∈ P(S).

Proof Observe that if D∞
T ∪ DT , where D∞

T and DT are the families of countable
collections of sets fromC∞ andC, respectively, that are covers of T , then the definitions
of μ∞

f and μ f immediately imply the desired inequality.

Example 4.131 Theorem 4.128 allows us to introduce a very important outer mea-
sure on R. Let C be the collection of open intervals of R to which the empty set is
added.

Define the function f : C −∩ R by f (a, b) = b − a for every open interval
(a, b) ∈ C and f (∈) = 0. For a subset T of R, the value of the outer measure
μ(T ) = m f (T ) is

μ(T ) = inf

{⎣
n∈N

(bn − an) ∈ C | T ∪
⋃

n

(an, bn)

}
,

where the infimum is considered over all countable collections of open intervals
(an, bn) that cover the set T . This is the Lebesgue outer measure of the set T .

Let μ be the Lebesgue outer measure on R. We have μ([a, b]) = b − a. Since
[a, b] ∪ (a−σ, b+σ) for every σ > 0, it follows that μ([a, b]) < b−a+2σ for every
σ > 0, so μ([a, b]) � b−a. On the other hand, (a, b) ∪ [a, b], so μ([a, b]) � b−a,
which yields μ([a, b]) = b − a.

This type of measure can be generalized to R
n by defining C as the collection of

n-dimensional intervals of the form I = (a1, b1) × · · · × (an, bn) to which we add
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the empty set and letting f (I ) be the volume vol(I ) = ∏n
i=1 |bi − ai | of I . Thus,

the Lebesgue measure of a set T ∪ R
n is

μ(T ) = inf
⎦⎣

vol(I ) | I ∈ C, T ∪
⋃

I
}

, (4.11)

Definition 4.132 An outer measure μ on a set S is regular if for every T ∈ P(S)

there exists a μ-measurable set U such that T ∪ U and μ(T ) = μ(U ).

Example 4.133 Let μ be the Lebesgue outer measure on R
n and let T be a subset of

R
n . For every m ∈ N there exists a countable collection of intervals {I k

m | k ∈ N}
such that

μ(T ) �
⎣
k∈N

μ(I k
m) < μ(T ) + 1

m
< μ

(⋃
k∈N

I k
m

⎢
+ 1

m
.

Let U = ⎜
m∈N

⎜
k∈N I k

m . Clearly, U is μ-measurable and T ∪ U , so μ(T ) � μ(U ).
Since U ∪ ⎜

k∈N I k
m , we have

μ(U ) � μ

(⋂
k∈N

I k
m

⎢
�
⎣
k∈N

μ

(⋂
k∈N

I k
m

⎢
� μ(T ) + 1

m
,

so μ(U ) � μ(T ). Consequently, μ(U ) = μ(T ), which proves that the Lebesgue
outer measure on R

n is regular.

Theorem 4.134 Let S be a set and let (S0, S1, . . .) be a sequence of subsets of S. If
μ is a regular outer measure on S, then μ(lim infn Sn) � lim infn μ(Sn).

Proof Since μ is regular, for each n ∈ N there exists a μ-measurable set Un such
that Sn ∪ Un and μ(Sn) = μ(Un). Then, lim infn μ(Sn) lim infn μ(Un). Since
lim infn μ(Un) is measurable (by Corollary 4.126), we have

μ(lim inf
n

Sn) � μ(lim inf
n

Un) � lim inf
n

μ(Un) = lim inf
n

μ(Sn).

Corollary 4.135 Let μ be an outer measure on a set S. If S = (S0, S1, . . .) is an
expanding sequence of subsets of S, then μ(limn Sn) = limn μ(Sn).

Proof Since S is an expanding sequence limn Sn = ⋃
n Sn , then μ(limn Sn) � μ(Sn)

for n ∈ N, so μ(limn Sn) � limn μ(Sn). On the other hand, Theorem 4.134 implies
μ(lim Sn) � lim μ(Sn), which gives the desired equality.

For finite regular outer measures, the measurability condition can be simplified,
as shown next.
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Theorem 4.136 Let μ be a regular outer measure on a set S such that μ(S) is finite.
A subset T of S is measurable if and only if μ(S) = μ(T )+μ(T ), where T = S − T .

Proof The condition is clearly necessary. To prove its sufficiency, let T be a subset of
S such that μ(S) = μ(T )+μ(T ). By Lemma 4.123, to prove that T is measurable, it
suffices to show that if H is a set withμ(H) < ⊥, thenμ(H) � μ(H∅T )+μ(H∅T ).

The regularity of μ implies the existence of a μ-measurable set K such that H ∪ K
and μ(H) = μ(K ). Since K is measurable, we have

μ(H) = μ(H ∅ K ) + μ(H ∅ K ),

μ(H) = μ(H ∅ K ) + μ(H ∅ K ).

This implies

μ(S) = μ(T ) + μ(T )

= μ(T ∅ K ) + μ(T ∅ K ) + μ(T ∅ K ) + μ(T ∅ K )

� μ(K ) + μ(K ) = μ(S).

Thus,

μ(T ∅ K ) + μ(T ∅ K ) + μ(T ∅ K ) + μ(T ∅ K ) = μ(K ) + μ(K ) = μ(S).

Since μ(K ) � μ(T ∅ K )+μ(T ∅ K ), it follows that μ(K ∅T )+μ(K ∅T ) � μ(K ).
Since H ∅ T ∪ K ∅ T and H ∅ T ∪ K ∅ T , we have μ(H ∅ T ) + μ(H ∅ T ) �
μ(K ) = μ(H), which shows that T is indeed μ-measurable.

Exercises and Supplements

1. Prove that the family of subsets {(−n, n) | n ∈ N}⊆ {∈,R} is a topology on R.
2. Let S be a set and let s0 be an element of S. Prove that the family of subsets

Os0 = {L ∈ P(S) | s0 ∈ L} ⊆ {∈} is a topology on S.
3. Let (S,O) be a topological space, L be an open set in (S,O), and H be a closed

set.

(a) Prove that a set V is open in the subspace (L ,O �L) if and only if V is open
in (S,O) and V ∪ L .

(b) Prove that a set W is closed in the subspace (H,O �H ) if and only if W is
closed in (S,O) and W ∪ H .

4. Let (S,O) be a topological space where O = {∈, U, V, S}, where U and V are
two subsets of S. Prove that either {U, V } is a partition of S or one of the sets
{U, V } is included in the other.
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5. Let (S,O) be a topological space and let I be its interior operator. Prove that
the poset of open sets (O,∪) is a complete lattice, where supL = ⋃

L and
inf L = I

⎩⎜
L
⎫

for every family of open sets L.
6. Let (S,O) be a topological space, let K be its interior operator and let K be

its collection of closed sets. Prove that (K,∪) is a complete lattice, where
supL = K

⎩⋃
L
⎫

and inf L = ⎜
L for every family of closed sets.

7. Prove that ifU, V are two subsets of a topological space (S,O), then K(U∅V ) ∪
K(U ) ∅ K(V ). Formulate an example where this inclusion is strict.

8. Let T be a subspace of the topological space (S,O). Let KS, IS , and λS be the
closure, interior and border operators associated to S and KT , IT and λT the
corresponding operators associated to T . Prove that

(a) KT (U ) = KS(U ) ∅ T ,
(b) IS(U ) ∪ IT (U ), and
(c) λT U ∪ λSU

for every subset U of T .
9. Let (S,O) be a topological space and let K and I be its associated closure and

interior operator, respectively. Define the mappings ω,ψ : P(S) −∩ P(S) by
ω(U ) = I(K(U )) and ψ(U ) = K(I(U )) for U ∈ P(S).

(a) Prove that ω(U ) is an open set and ψ(U ) is a closed set for every set U ∈
P(S).

(b) Prove that ψ(H) ∪ H for every closed set H and L ∪ ω(L) for every open
set L .

(c) Prove that ω(ω(U )) = ω(U ) and ψ(ψ(U )) = ψ(U ) for every U ∈ P(S).
(d) Let (J1, . . . , Jn) be a sequence such that Ji ∈ {K, I}. Prove that there are

at most seven distinct sets of the form Jn(· · · (J1(U )) · · · ) for every set
U ∈ P(S), and give an example of a topological space (S,O) and a subset
U of S such that these seven sets are pairwise distinct.

10. Let S be the set of subsets of R such that, for every U ∈ S, x ∈ U implies
−x ∈ U . Prove that {∈} ⊆ S is a topology on R.

11. Let (S,O) be a topological space, and U and U ∞ be two subsets of S.

(a) Prove that λ(U ⊆ V ) ∪ λU ⊆ λV .
(b) Prove that λU = λ(S − U ).

12. Let (S,O) be a topological space. The subsets X and Y are said to be separated
if X ∅ K(Y ) = K(X) ∅ Y = ∈.

(a) Prove that X and Y are separated sets in (S,O) if and only if they are disjoint
and clopen in the subspace X ⊆ Y .

(b) Prove that two disjoint open sets or two disjoint closed sets in (S,O) are
separated.

13. Let B be a base for a topological space (S,O). Prove that if B∞ is a collection
of subsets of S such that B ∪ B∞ ∪ O, then B∞ is a basis for O.
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14. Let (S,O) be a topological space, U and U ∞ two subsets of S, and B and B∞
two bases in the subspaces (U,O �U ) and (U ∞,O �U ∞), respectively. Prove that
B → B∞ is a basis in the subspace U ⊆ U ∞.

Solution: Let M be an open set in the subspaceU⊆V . By the definition of the
subspace topology, there exists an open set L ∈ O such that M = L∅(U ⊆V ) =
(L ∅ U ) ⊆ (L ∅ V ), so L is the union of two open sets, L ∅ U and L ∅ U ∞, in
the subspaces U and U ∞. Since B is a basis in U , there is a subcollection B1
such that L ∅ U = ⋃

B1. Similarly, B∞ contains a subcollection B∞
1 such that

L ∅ U = ⋃
B∞

1. Therefore, M = ⋃
B1 ⊆ ⋃

B∞
1 = ⋃

B1 → B∞
1.

15. Let S be an uncountable set and let (S,O) be the cofinite topology on S.

(a) Prove that every nonfinite set is dense.
(b) Prove that there is no countable basis for this topological space. What does

this say about Theorem 4.47?

16. Let C be the family of open intervals C = {(a, b) | a, b ∈ R and ab > 0}.
Prove that:

(a) Every open set L of (R,O) contains a member of C.
(b) C is not a basis for the topology O.

17. Let C be a chain of subsets of a set S such that
⋃

C = S. Prove that C is the
basis of a topology.

18. Prove that if (S,O) is a topological space such that O is finite, then (S,O) is
compact.

19. Prove that the topological space (R,O) introduced in Example 4.4 is not com-
pact.

20. Let (S,O) be a compact space and let H = (H0, H1, . . .) be a non-increasing
sequence of nonempty and closed subsets of S. Prove that

⎜
i∈N Hi is nonempty.

21. Let (S1,O1) and (S2,O2) be two topological spaces and let f : S1 −∩ S2 be a
continuous surjective function. Prove that if (S2,O2) is compact, then (S1,O1)

is compact.
22. Let f : R −∩ R be a continuous function defined on the topological space

(R,O). Prove that if f (q) = 0 for every q ∈ Q, then f (x) = 0 for every x ∈ R.
23. Let f : R −∩ R be a continuous function in x0. Prove that if f (x0) > 0, then

there exists an open interval (a, b) such that x0 ∈ (a, b) and f (x) > 0 for every
x ∈ (a, b).

24. Let (S,Os0) be the topological space defined in Exercise 2, where s0 ∈ S. Prove
that any continuous function f : S −∩ R is a constant function.

25. Let (S,O) and (T,O∞) be two topological spaces and letB∞ be a basis of (T,O∞).
Prove that f : S −∩ T is continuous if and only if f −1(B) ∈ O for every
B ∈ B∞.

Let (S1,O1) and (S2,O2) be two topological spaces and let f : S1 −∩ S2 be a
function. Then f is an open function if f (L) is open for every open set L , where
L ∈ O1; the function f is a closed function if f (H) is closed for every closed set H
in S1.
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26. Let (S1,O1) and (S2,O2) be two topological spaces and let Ki and Ii be the
closure and interior operators of the space Si for i = 1, 2.

(a) Prove that f : S1 −∩ S2 is an open function if and only if f (I1(U )) ∪
I2( f (U )) for every U ∈ P(S1).

(b) Prove that f : S1 −∩ S2 is a closed function if and only if K2( f (U )) ∪
f (K1(U )) for every U ∈ P(S1).

(c) Prove that a bijection f : S1 −∩ S2 is open if and only if it is closed.

27. Prove that the function f : R −∩ R defined by f (x) = x2 for x ∈ R is
continuous but not open.

28. Prove that if a < b and c < d , then the subspaces [a, b] and [c, d] are homeo-
morphic.

29. Let (S,O) be a connected topological space and f : S −∩ R be a continuous
function. Prove that if x, y ∈ S, then for every r ∈ [ f (x), f (y)] there is z ∈ S
such that f (z) = r .

30. Let a and b be two real numbers such that a � b. Prove that if f : [a, b] −∩
[a, b] is a continuous function, then there is c ∈ [a, b] such that f (c) = c.

31. Prove that a topological space (S,O) is connected if and only if λT = ∈ implies
T ∈ {∈, S} for every T ∈ P(S).

Let (S,O) be a topological space and let x and y be two elements of S. A continuous
path between x and y is a continuous function f : [0, 1] −∩ S such that f (0) = x
and f (1) = y. We refer to x as the origin and to y as the destination of f .

(S,O) is said to be arcwise connected if any two points x and y are the origin and
destination of a continuous path.

32. Prove that any arcwise connected topological space is connected.
33. Let (S,O) be a T0 topological space. Define the relation “�” on S by x � y if

x ∈ K({y}). Prove that � is a partial order.
34. Let (S,O) be a T4 topological space.

(a) Let H and H ∞ be two closed sets and L be an open set such that H ∅ H ∞ ∪ L .
Prove that there exists two open sets U and U ∞ such that H ∪ U , H ∞ ∪ U ∞,
and L = U ∅ U ∞.

(b) If {H1, . . . , Hp} is a collection of closed sets such that p � 2 and⎜p
i=1 Hi = ∈, prove that there exists a family of open sets {U1, . . . , Up}

such that
⎜p

i=1 Ui = ∈ and Hi ∪ Ui for 1 � i � p.
Solution: Observe that the sets H − L and H ∞ − L are closed and disjoint

sets. Since (S,O) is T4, there are two disjoint open sets V and V ∞ such that
H − L ∪ V and H ∞ − L ∪ V ∞. Define the open sets U and U ∞ as U = V ⊆ L
and U ∞ = V ∞ ⊆ L . It is clear that U and U ∞ satisfy the requirements of the
statement.

The second part is an extension of Definition 4.87. The argument is by
induction on p. The base case, p = 2, follows immediately from the defin-
ition of T4 spaces.
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Suppose that the statement holds for p, and let {H1, . . . , Hp+1} be a

collection of closed sets such that
⎜p+1

i=1 Hi = ∈.
By applying the inductive hypothesis to the collection of p closed sets

{H1, . . . , Hp−1, Hp ∅ Hp+1}, we obtain the existence of the open sets
U1, . . . , Up−1, U such that Hi ∪ Ui for 1 � i � p − 1, Hp ∅ Hp+1 ∪ U ,

and
⎭⎜p−1

j=1 U j

⎪
∅U = ∈. By the first part of this supplement, we obtain the

existence of two open sets Up and Up+1 such that Hp ∪ Up, Hp+1 ∪ Up+1,
and U = Up ∅ Up+1. Note that

⎜
j=1 U j = ∈, which concludes the argu-

ment.

35. Let (S,O) be a T4 topological space and let L = {L1, . . . , L p} be an open cover
of S.

(a) Prove that for every k, 1 � k � p there exist k open sets V1, . . . , Vk such
that the collection {S − K(V1), . . . , S − K(Vk), Lk+1, . . . , L p} is an open
cover of S and for the closed sets Hj = S − Vj we have Hj ∪ L j for
1 � j � k.

(b) Conclude that for every open cover L = {L1, . . . , L p} of S there is a closed
cover H = {H1, . . . , Hp} of S such that Hi ∪ Li for 1 � i � p.

Solution: The proof of the first part is by induction on k, 1 � k � p. For
the base case, k = 1, observe that S − L1 ∪ ⋃p

j=2 L j because L is a
cover. Since (S,O) is a T4 space, there exists an open set V1 such that
S − L1 ∪ V1 ∪ K(V1) ∪ ⋃p

j=2 L j . For H1 = S − V1, it is clear that
H1 ∪ L1 and {S − K(V1), L2, . . . , L p} is an open cover of S.

Suppose that the statement holds for k. This implies

S − Lk+1 ∪
k⋃

j=1

(S − K(Vj )) ⊆
p⋃

j=k+2

L j .

Again, by the property of T4 spaces, there is an open set Vk+1 such that

S − Lk+1 ∪ Vk+1 ∪ K(Vk+1)

k⋃
j=1

(S − K(Vj )) ⊆
p⋃

j=k+2

L j .

Thus, {S−K(V1), . . . , S−K(Vk), S−K(VK+1), Lk+2, . . . , L p} is an open
cover of S and Hk+1 = S − Vk+1 ∪ Lk+1, which concludes the inductive
step.

The second part follows immediately from the first by taking k = p.
Indeed, since {S−K(V1), . . . , S−K(Vp)} is a cover of S and S−K(Vi ) ∪ Hi

for 1 � i � p, it follows immediately that H is a cover of S.

36. Let (S,O) be a T4 topological space, L = {L1, . . . , L p} be an open cover of S,
and H = {H1, . . . , Hp} be a closed cover of S such that Hi ∪ Li for 1 � i � p
and

⎜
H = ∈.
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(a) Prove that for every k, 1 � k � p there exist k open sets M1, . . . , Mk such
that:
(i) Hj ∪ M j and K(M j ) ∪ L j for 1 � j � k,

(ii) the collection {M1, . . . , Mk, Lk+1, . . . , L p} is an open cover of S, and
(iii)

⎜k
i=1 K(Mi ) ∅ ⎜p

i=k+1 Hi = ∈.
(b) Prove that there exists an open cover M = {M1, . . . , Mp} of S such that

Mi ∪ Li for 1 � i � p and
⎜

M = ∈.
Solution: The proof of the first part is by induction on k, 1 � k � p.

For the base case, k = 1, observe that H1 ∅ ⎜p
i=2 Hi = ∈ implies H1 ∪

S − ⎜p
i=2 Hi , so H1 ∪ L1 ∅ ⎩

S − ⎜p
i=2 Hi

⎫
. This implies the existence of

an open set M1 such that

H1 ∪ M1 ∪ K(M1) ∪ L1 ∅
(

S −
p⋂

i=2

Hi

⎢
,

which implies K(M1) ∪ L1 and K(M1) ∅ ⎜p
i=2 Hi = ∈.

Suppose that the statement holds for k. We have Hk+1 ∪ Lk+1 and, by the

inductive hypothesis, Hk+1 ∪ S −
⎭⎜k

i=1 K(Mi ) ∅ ⎜p
i=k+2 Hi

⎪
. Thus,

Hk+1 ∪ Lk+1 ∅
(

S −
(

k⋂
i=1

K(Mi ) ∅
p⋂

i=k+2

Hi

⎢⎢
.

By the T4 separation property, there exists an open set Mk+1 such that

Hk+1 ∪ Mk+1 ∪ K(Mk+1) ∪ Lk+1∅
(

S −
(

k⋂
i=1

K(Mi ) ∅
p⋂

i=k+2

Hi

⎢⎢
,

which implies K(Mk+1) ∪ Lk+1 and
⎜k+1

i=1 K(Mi ) ∅ ⎜p
i=k+2 Hi = ∈.

The second part of the supplement follows directly from the first part.

37. Prove that if (S,P(S)) and (S∞,P(S∞)) are two discrete topological spaces, then
their product is a discrete topological space.

38. Let (S,O), (S,O∞) be two topological spaces. Prove that the collection

{S × L ∞ | L ∞ ∈ O∞} ⊆ {L × S∞ | L ∈ O}

is a subbase for the product topology O × O∞.
39. Let (S,O), (S,O∞) be two topological spaces and let (S × S∞,O × O∞) be their

product.
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(a) Prove that for all sets T, T ∞ such that T ∪ S and T ∞ ∪ S∞, K(T × T ∞) =
K(T ) × K(T ∞) and I(T × T ∞) = I(T ) × I(T ∞).

(b) Prove that λ(T × T ∞) = (λ(T ) × k(T ∞)) ⊆ (k(T ) × λT ∞).

40. Prove that the following classes of topological spaces are closed with respect to
the product of topological spaces:

(a) the class of spaces that satisfy the first axiom of countability;
(b) the class of spaces that satisfy the second axiom of countability;
(c) the class of separable spaces.

41. Prove that, for a topological space (S,O), the following statements are equiva-
lent:

(a) (S,O) is connected.
(b) If S = L1 ⊆ L2 and L1 ∅ L2 = ∈, where L1 and L2 are open, then L1 = ∈

or L2 = ∈.
(c) If S = H1 ⊆ H2 and H1 ∅ H2 = ∈, where H1 and H2 are closed, then H1 = ∈

or H2 = ∈.
(d) If K is a clopen set, then K = ∈ or K = S.

42. Prove that any subspace of a totally disconnected topological space is totally
disconnected, and prove that a product of totally disconnected topological spaces
is totally disconnected.

43. Let S be a set and let C be a collection of subsets of S. Define the collections of
sets

C∞ = C ⊆ {S − T | T ∈ C},
C∞∞ =

⎦⋂
D | D ∪ C∞},

C∞∞∞ =
⎦⋃

D | D ∪ C∞∞}.
Prove that C∞∞∞ equals the π-field generated by C.

44. Let S and T be two sets and let f : S −∩ T be a function. Prove that if E∞ is a
π-field on T , then { f −1(V ) | V ∈ E∞} is a π-field on A.

45. Prove that any π-field E contains the empty set; further, prove that if s =
(S0, S1, . . .) is a sequence of sets of E, then both lim inf s and lim sup s belong
to E.

46. Let S be an infinite set and let E be the collection E = {E ∈ P(S) |
E is finite or cofinite}. Prove that E is a field of sets on X but not a π-field.

47. Let S be a set and let E be a π-field. Define the function m : E −∩ R̂�0 by

m(U ) =
{

|U | if U is finite,

⊥ otherwise,

for U ∈ P(S). Prove that m is a measure.
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48. Let x, y, a1, b1, . . . , an, bn be n real numbers such that x � y and ai � bi

for 1 � i � n. Prove, by induction on n, that if [x, y] ∪ ⋃n
i=1(ai , bi ), then

y − x �
⎥n

i=1(bi − ai ).
49. Let (S,E, m) be a measure space. Prove that if s = (S0, S1, . . .) is a sequence

of sets such that
⎥

i m(Si ) < ⊥, then m(lim inf s) = 0 (the Borel-Cantelli
lemma).

Solution: Let Tp = ⋃⊥
i=p Si for p ∈ N. By the subadditivity of m, we have

m(Tp) �
⎥⊥

i=p m(Si ), and therefore lim p∩⊥ m(Tp) = 0 because of the con-
vergence of the series

⎥
i m(Si ). Since lim inf s = ⎜⊥

p=0
⋃⊥

i=p Si = ⎜⊥
p=0 Tp,

it follows that m(lim inf s) � m(Tp) for every p ∈ N, so m(lim inf s) �
inf p m(Tp) = 0, which implies m(lim inf s) = 0.

50. Let I be a bounded interval of R. Prove that if K is a compact subset of R such
that K ∪ I , then μ(I ) = μ(K ) + μ(I − K ), where μ is the Lebesgue outer
measure.

51. Let {(Si ,Ei , mi ) | i ∈ I } be a collection of measure spaces such that SiS| = ∈
if i ⊕= j for i, j ∈ I . Define the triplet (

⋃
i∈I Si ,E, m), where

E =
{

U | U ∪
⋃
i∈I

Si , U ∅ Si ∈ E for i ∈ I

}
,

and m : E −∩ R̂�0 is given by m(U ) = ⎥
i∈I mi (U ∅ Si ) for U ∈ E. Prove

that (
⋃

i∈I Si ,E, m) is a measure space and that m(U ) is finite if and only if
there exists a countable subset J of I such that if j ∈ J , then μ j is finite and
μi = 0 if i ∈ I − J .

52. The measure space (S,E, m) is complete if for every W ∈ E such that m(W ) = 0,
U ∪ W implies U ∈ E. In Corollary 4.125 we saw that for every outer measure
μ : P(S) −∩ R̂�0 the triple (S,Eμ,μ) is a measure space. Prove that this space
is complete.

53. Let (S,E, m) be a measure space. Define E∞ = {U ⊆ T | U ∈ E, T ∪ W ∈
E and m(W ) = 0}, and m∞ : E∞ −∩ R�0 by m∞(U ⊆ T ) = m(U ) for every set
T such that T ∪ W ∈ E and m(W ) = 0.

(a) Prove that E∞ is a π-field that contains E.
(b) Prove that m∞ is a measure. The measure m∞ is known as the completion of m.
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Chapter 5
Linear Spaces

5.1 Introduction

Linear spaces are among the most important and widely used mathematical struc-
tures. Linear spaces consist of elements called vectors and are associated with a
field (in most cases, the real field R or the complex field C). The elements of this
field are referred to as scalars. Two fundamental operations: vector addition and
multiplication with scalars are defined such that certain axioms given are satisfied.

Linear spaces were introduced in their modern form by the Italian mathematician
G. Peano in the second part of the 19th century; precursor ideas can be traced to
more than two centuries before in connection with analytic geometry problems.

Definition 5.1 Let L be a nonempty set and let F = (F, {0,+,−, ·, }) be a field
whose carrier is a set F. An F-linear space is a triple (L ,+, ·) such that (L , {0,+,−})
is an Abelian group and · : F × L −∈ L is an operation such that the following
conditions are satisfied

(i) a · (b · x) = (a · b) · x,
(ii) 1 · x = x,
(iii) a · (x + y) = a · x + a · y, and
(iv) (a + b) · x = a · x + b · x

for every a, b ∈ F and x, y ∈ L.

If F is the field of real numbers (the field of complex numbers), then we will refer
to any F-linear space as a real linear space (complex linear space).

The commutative binary operation of L is denoted by the same symbol “+”
as the corresponding operation of the field F . The multiplication by a scalar, · :
F × L −∈ L is also referred to as an external operation since its two arguments
belong to two different sets, F and L . Again, this operation is denoted by the same
symbol used for denoting the multiplication on F ; if there is no risk of confusion,
we shall write ax instead of a · x.

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 197
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_5,
© Springer-Verlag London 2014
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The elements of the set L will be denoted using bold letters x, y, z, etc. The mem-
bers of the field will be denoted by small letters from the beginning of the alphabet.

The additive element 0 is a special element called the zero element; every F-linear
space must contain at least this element.

Example 5.2 The set R
n of n-tuples of real numbers is a real linear space under the

definitions

x + y =

⎜

x1 + y1
...

xn + yn


⎟ and a · x =


⎜

a · x1
...

a · xn


⎟

of the operations + and ·, where

x =

⎜

x1
...

xn


⎟ and y =


⎜

y1
...

yn


⎟ .

In this linear space, the zero of the Abelian group is the n-tuple

0n =

⎜

0
...

0


⎟.

Similarly, the set C
n of n-tuples of complex numbers is a complex linear space under

the same formal definitions of vector sum and scalar multiplication as R
n , where

a ∈ C in this case.

Example 5.3 The set of infinite sequences of complex numbers Seq∪(C) can be
organized as a linear space by defining the addition of two sequences

x = (x0, x1, . . .) and y = (y0, y1, . . .)

asx + y = (x0+y0, x1+y1, . . .), and the multiplication by cx as cx = (cx0, cx1, . . .)

for c ∈ C.

Example 5.4 The set of complex-valued functions defined on a set S is a complex
linear space. The addition of functions is given by ( f +g)(s) = f (s)+g(s), and the
multiplication of a function with a complex number is defined by (a f )(s) = a f (s)
for s ∈ S and a ∈ C.

Example 5.5 Let C be the set of real-valued continuous functions defined on R,

C = { f : R −∈ R | f is continuous}.

Define f + g by ( f + g)(x) = f (x) + g(x) and (a · f )(x) = a · f (x) for x ∈ R.
The triple (C,+, ·) is a real linear space.
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Definition 5.6 Let L be an F-linear space. A linear combination of K (where
K ∞ L) is a member of L of the form c1x1 + · · · + cn xn, where c1, . . . , cn ∈ F.

A subset K = {x1, . . . , xn} of L is linearly independent if c1x1 +· · ·+ cn xn = 0
implies c1 = · · · = cn = 0. If K is not linearly independent, we refer to K as a
linearly dependent set.

If x ∅= 0, then the set {x} is linearly independent. Of course, the set {0} is not
linearly independent because 10 = 0. If K is a linearly independent subset of a linear
space, then any subset of K is linearly independent.

Example 5.7 Let

ei =


⎜⎜⎜⎜⎜⎜

0
...

1
...

0


⎟⎟⎟⎟⎟⎟

be a vector that has a unique nonzero component equal to 1 in place i , where 1 �
i � n. The set E = {e1, . . . , en} is linearly independent. Indeed, suppose that
c1e1 + · · · + cnen = 0. This is equivalent to


⎜

c1
...

cn


⎟ =


⎜

0
...

0


⎟

that is, with c1 = · · · = cn = 0. Thus, E is linearly independent.

Theorem 5.8 Let L be an F-linear space. A subset K of L is linearly independent
if and only if for every x ∈ L there exists a linear combination of K , x = ∑

i ci xi

such that the coefficients ci are uniquely determined.

Proof Suppose that x = c1x1 + · · · + cnxn = c1
⊆x1 + · · · + cn

⊆xn and there exists i
such that ci ∅= ci

⊆. This implies
∑n

i=1(ci − ci
⊆)xi = 0, which contradicts the linear

independence of K .

Definition 5.9 A subset S of a linear space (L ,+, ·) spans the space L (or S gen-
erates the linear space) if every x ∈ L is a linear combination of S.

A basis of the linear space (L ,+, ·) is a linearly independent subset that spans
the linear space.

In view of Theorem 5.8, a set B is a basis if every x ∈ L can be written uniquely
as a linear combination of elements of B.

Definition 5.10 A subspace of a F-linear space (L ,+, ·) is a nonempty subset U
of L such that x, y ∈ U implies x + y ∈ U and a · x ∈ U for every a ∈ F.
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If U is a subspace of an F-linear space, then U can be regarded as an F-linear
space and various notions introduced for linear spaces are applicable to U .

The set {0} is a subspace of any F-linear space (L ,+, ·) included in every subspace
of L .

Example 5.11 We saw in Example 5.5 that the set of real-valued continuous func-
tions C defined on R is a real linear space.

The set of even real-valued continuous functions defined on R given by E = { f ∈
C | f (x) = f (−x)} is a subspace of C . Indeed, note that for f, g ∈ E we have

( f + g)(−x) = f (−x) + g(−x) = f (x) + g(x) = ( f + g)(x)

and (a f )(−x) = a f (−x) = a f (x) = (a f )(x), so f, g ∈ E implies f + g ∈ E and
a f ∈ E . Similarly, it is possible to show that the set of odd real-valued continuous
functions defined on R D = { f ∈ C | f (−x) = − f (x)} is a subspace of C .

Example 5.12 In Example 5.2 we saw that R
n can be regarded as an R-linear space,

while C
n is a C-linear space. Even though R

n ∞ C
n , R

n is not a subspace of C
n

because for a ∈ C and x ∈ R
n we do not have ax ∈ R

n .

If {Ki | i ∈ I } is a nonempty collection of subspaces of a linear space, then⋂{Ki | i ∈ I } is also a linear subspace. Thus, the family of subspaces of a linear
space is a closure system. If U is a subset of a linear space (L ,+, ·) and K is the
corresponding closure operator for the closure system of linear spaces, then we say
that U is spanning the subspace K(U ) of L . The subspace K(U ) is said to be spanned
by U . We denote this subspace by ∩U ⊕.
Theorem 5.13 Let L = (L ,+, ·) be an F-linear space. The following statements
are equivalent:

(i) The finite set K = {x1, . . . , xn} is spanning the linear space (L ,+, ·) and K
is minimal with this property.

(ii) K is a finite basis for (L ,+, ·).
(iii) The finite set K is linearly independent, and K is maximal with this property.

Proof (i) implies (ii): We need to prove that K is linearly independent. Suppose that
this is not the case. Then, there exist c1, . . . , cn ∈ F such that c1x1 +· · ·+ cnxn = 0
and at least one of c1, . . . , cn , say ci , is nonzero. Then, xi = − c1

ci
x1 − · · · − cn

ci
xn ,

and this implies that K − {xi } also spans the linear space, thus contradicting the
minimality of K .

(ii) implies (i): Let K be a finite basis. Suppose that K ⊆ is a proper subset of K
that spans L . Then, if z ∈ K − K ⊆, z⊆ is a linear combination of elements of K ⊆,
which contradicts the fact that K is a basis.

We leave to the reader the proof of the equivalence between (ii) and (iii).

Corollary 5.14 Every linear space that is spanned by a finite subset has a finite
basis. Further, if B is a finite basis for an F-linear space (L ,+, ·), then each finite
subset U of L such that |U | = |B| + 1 is linearly dependent.
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Proof This statement follows directly from Theorem 5.13.

Corollary 5.15 If B and B ⊆ are two finite bases for a linear space (L ,+, ·), then
|B| = |B ⊆|.
Proof If B is a finite basis, then |B| is the maximum number of linearly independent
elements in L . Thus, |B ⊆| � |B|. Reversing the roles of B and B ⊆, we obtain |B| �
|B ⊆|, so |B| = |B ⊆|.

Thus, the number of elements of a finite basis of L is a characteristic of L and
does not depend on any particular basis.

Definition 5.16 A linear space (L ,+, ·) is n-dimensional if there exists a basis of
L such that |B| = n. The number n is the dimension of L and is denoted by dim(L).

Theorem 5.17 Let L be a finite-dimensional F-linear space and let
U = {u1, . . . , uk} be a linearly independent subset of L. There exists an extension
of U that is a basis of L.

Proof If ∩U ⊕ = L , then U is a basis of L . If this is not the case, let w1 ∈ L − ∩U ⊕.
The set U ⊥ {w1} is linearly independent and we have the strict inclusion ∩U ⊕ ∨
∩U ⊥ {w1}⊕. The subspace ∩U ⊥ {w}⊕ is (k + 1)-dimensional. This argument can be
repeated no more than n − k times, where n = dim(L). Thus, U ⊥ {w1, . . . , wn−k}
is a basis for L that extends U .

Definition 5.18 Let L be an F-linear space and let U, V be subspaces of L. The
sum of the subspaces U and V is the set U + V defined by

U + V = {u + v | u ∈ U and v ∈ V }.

It is easy to verify that U + V is also a subspace of L .

Theorem 5.19 Let U, V be two subspaces of the finite-dimensional F-linear space
L. We have dim(U + V ) + dim(U ∧ V ) = dim(U ) + dim(V ).

Proof Suppose that {w1, . . . , wk} is a basis for U ∧ V , where k = dim(U ∧ V ). This
basis can be extended to a basis {w1, . . . , wk, uk+1, . . . , u p} for U and to a basis
{w1, . . . , wk, vk+1, . . . , vq} for V .

Define B = {w1, . . . , wk, uk+1, . . . , u p, vk+1, . . . , vq}. It is clear that ∩B⊕ =
U + V . Suppose that there exist c1, . . . , cp+q−k such that

c1w1 + · · · + ckwk + ck+1uk+1 + · · · + cpu p + cp+1vk+1 + · · · + cp+q−kvq = 0.

The last equality implies

c1w1 + · · · + ckwk + ck+1uk+1 + · · · + cpu p = −cp+1vk+1 − · · · − cp+q−kvq .

Therefore, c1w1 + · · · + ckwk + ck+1uk+1 + · · · + cpu p belongs to U ∧ V , which
implies ck+1 = · · · = cp = 0. Since
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c1w1 + · · · + ckwk + cp+1vk+1 + · · · + cp+q−kvq = 0,

and {w1, . . . , wk, vk+1, . . . , vq} is a basis for V , it follows that c1 = · · · = ck =
cp+1 = · · · = cp+q−k = 0.

This allows to conclude that dim(U +V ) = p+q −k and this implies the equality
of the theorem.

5.2 Linear Mappings

Linear mappings between linear spaces are functions that are compatible with the
algebraic operations of linear spaces.

Definition 5.20 Let L and K be two F-linear spaces. A linear mapping is a function
h : L −∈ K such that h(ax+by) = ah(x)+bh(y) for every a, b ∈ F and x, y ∈ L.

An affine mapping is a function f : L −∈ K such that there exists a linear
mapping h : L −∈ K and b ∈ K such that f (x) = h(x) + b for x ∈ L.

Linear mappings are also referred to as homomorphisms, as morphisms, or linear
operators and it is the latter term that we usually use. The set of morphisms between
two F-linear spaces L and K is denoted by Hom(L , K ). The set of affine mappings
between two F-linear spaces L and K is denoted by Aff(L , K ).

A linear mapping h : L −∈ K is a morphism between the Abelian additive
groups of the linear spaces; therefore, h(0L) = 0K and h(−x) = −h(x) for x ∈ L .

Theorem 5.21 Let L and K be two F-linear spaces having 0L and 0K as their
zero elements, respectively. A morphism h ∈ Hom(L , K ) is injective if and only if
h(x) = 0K implies x = 0L .

Proof Let h be a morphism such that h(x) = 0K implies x = 0L . If h(x) = h(y), by
the linearity of h we have h(x − y) = 0K , which implies x − y = 0L , that is, x = y.
Thus, h is injective.

Conversely, suppose that h is injective. If x ∅= 0L , then h(x) ∅= h(0L) = 0K .
Thus, h(x) = 0K implies x = 0L .

An endomorphism of an F-linear space L is a morphism h : L −∈ L . The set of
endomorphisms of L is denoted by Endo(L). Often, we refer to endomorphisms of
L as linear operators on L .

The term linear form is reserved for linear mappings between an F-linear space
and the field F itself, where F is considered as an F-linear space.

Example 5.22 For a ∈ R define the mapping ha : R
n −∈ R

n by ha(x) = ax for
x ∈ R

n . It is easy to verify that ha is a linear operator on R
n . This mapping is known

as a homotety on R
n .

If a = 1, then h1 is given by h1(x) = x for x ∈ R
n ; this is the identity morphism

of R
n , which is usually denoted by 1Rn .

For a = 0 we obtain the zero morphism of R
n given by h0(x) = 0 for x ∈ R

n .
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Example 5.23 The translation generated by z ∈ R
n is the mapping tz : R

n −∈ R
n

defined by tz(x) = x + z is a bijection but not a morphism unless z = 0. Its inverse
is t−z.

Definition 5.24 Let U and V be two subsets of R
n. We define the subset U + V of

R
n as

U + V = {u + v | u ∈ U and v ∈ V }.

For a ∈ R, the set aU is
aU = {au | u ∈ U }.

If L , K are two linear spaces, then the set Hom(L , K ) is never empty because the
zero morphism h0 : L −∈ K given by h0(x) = 0L for x ∈ K is always an element
of Hom(L , K ).

Definition 5.25 Let L and K be two F-linear spaces. If f, g ∈ Hom(L , K ), the
sum f + g is defined by ( f + g)(x) = f (x) + g(x) for x ∈ L.

The sum of two linear mappings is also a linear mapping because

( f + g)(ax + by) = f (ax + by) + g(ax + by)

= a f (x) + b f (y) + ag(x) + bg(y)

= f (ax + by) + g(ax + by),

for all a, b ∈ F and x, y ∈ L .

Theorem 5.26 Let M, P, Q be three F-linear spaces. The following properties of
compositions of linear mappings hold:

(i) If f ∈ Hom(M, P) and g ∈ Hom(P, Q), then g f ∈ Hom(M, Q).
(ii) If f ∈ Hom(M, P) and g0, g1 ∈ Hom(P, Q), then

f (g0 + g1) = f g0 + f g1.

(iii) If f0, f1 ∈ Hom(M, P) and g ∈ Hom(P, Q), then

( f0 + f1)g = f0g + f1g.

Proof We prove only the second part of the theorem and leave the proofs of the
remaining parts to the reader.

Let x ∈ M . Then, f (g0 + g1)(x) = f ((g0 + g1)(x)) = f (g0(x) + g1(x)) =
f (g0(x)) + f (g1(x)) for x ∈ M , which yields the desired equality.

We leave to the reader to verify that for any F-linear spaces M and P the algebra
(Hom(M, P), {h0,+,−}) is an Abelian group that has the zero morphism h0 as its
zero-ary operations and the addition of linear mappings as its binary operation; the
opposite of a linear mapping h is the mapping −h.



204 5 Linear Spaces

Moreover, (Endo(M), {h0, 1M ,+,−, ·}) is a unitary ring, where the multiplica-
tion is defined as the composition of linear mappings.

If M and P are F-linear spaces, Hom(M, P) is itself an linear space, where
the multiplication of a morphism h by a scalar c is the morphism ch defined by
(ch)(x) = c · h(x). Indeed, the mapping ch is linear because

(ch)(ax + by) = c(ah(x) + bh(y)) = cah(x) + cbh(y))

= ach(x) + bch(y)) = a(ch)(x) + b(ch)(y)),

for every a, b, c ∈ F and x, y ∈ M .

Definition 5.27 Let h be an endomorphism of a linear space M. The mth iteration
of h (for m ∈ N) is defined as

(i) h0 = 1M ;
(ii) hm+1(x) = h(hm(x)) for m ∈ N.

For every m � 1, hm is an endomorphism of M ; this can be shown by a straight-
forward proof by induction on m.

Theorem 5.28 Let L , M be two F-linear spaces and let h : L −∈ M be a mor-
phism. Then, the sets

Ker(h) = {x ∈ L | h(x) = 0M },
Img(h) = {y ∈ M | y = h(x) for some x ∈ L}

are subspaces of L and M, respectively.

Proof Let u, v ∈ Ker(h). Since h(u) = h(v) = 0M it follows that

h(au + bv) = ah(u) + bh(v) = 0M ,

for a, b ∈ F , so au + bv ∈ Ker(h). This shows that Ker(h) is indeed a subspace of
L .

Let now s, t ∈ Img(h). There exist x, y ∈ L such that s = h(x) and t = h(y).
Therefore, as + bt = ah(x) + bh(y) = h(ax + by), hence as + bt ∈ Img(h). This
implies that Img(h) is a subspace of M .

Definition 5.29 Let L be a F-linear space and let M1, . . . , Mp be p linear sub-
spaces of L. L is the direct sum of M1, . . . , Mp if for every x of L there exists a
unique sequence (y1, . . . , yp) such that yi ∈ Mi for 1 � i � p and x = y1+· · ·+yp.
This is denoted by L = M1 � M2 � · · · � Mp.

Observe that if L = M1 � M2 � · · ·� Mp, then the function hi : L −∈ Mi given
by hi (x) = yi is well-defined due to the uniqueness of the sequence (y1, . . . , yp) for
1 � i � p.
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It is easy to verify that each hi is a linear mapping. Indeed, if a, b ∈ F and
u, v ∈ L can be uniquely written as u = y1 +· · ·+ yp and v = z1 +· · ·+ zp, where
yi , zi ∈ Mi for 1 � i � p, then au + bv = (ay1 + bx1) + · · · + (ayp + bzp). Since
each Mi is a subspace, ayi + bzi ∈ Mi for 1 � i � p and the uniqueness of the
decomposition implies that hi (au + bv) = ahi (u) + bhi (v).

Each morphism hi is idempotent, that is, hi (hi (x)) = hi (x) for x ∈ L . Indeed,
hi (x) ∈ M and applying the uniqueness of the decomposition to hi (x) we obtain
hi (hi (x)) = hi (x).

Theorem 5.30 Let L be a linear space that is the direct sum L = M1 � M2 � · · ·�
Mp. Then Mi ∧ M j = {0} for every i, j such that i ∅= j and 1 � i, j � p.

Proof Suppose that t ∅= 0 belongs to Mi ∧ M j for some i, j such that i ∅= j and
1 � i, j � p. Let x = y1 + · · ·+ yp be the unique decomposition of x ∈ L as a sum
of vectors from the subspaces Mi . Since t ∅= 0 and t ∈ Mi ∧ M j , we would have the
distinct decompositions

x = y1 + · · · + (yi + t) + · · · + (y j − t) + · · · + yp

x = y1 + · · · + (yi − t) + · · · + (y j + t) + · · · + yp,

contradicting the uniqueness of the decomposition of x.

Theorem 5.31 Let L be a linear space. If B1, . . . , Bp be bases in the subspaces
M1, . . . , Mp, then L = M1 � M2 � · · · � Mp if and only if B = ⋃p

i=1 is a basis for
L.

Proof Suppose that L = M1 � M2 � · · ·� Mp. Each x ∈ L can be uniquely written
as a sum x = y1 + · · · + yp, where yi ∈ Mi for 1 � i � p. It is clear that B spans
L , so we need to show only that B is linearly independent.

Let Bi = {yi
1, . . . , yi

ki
} for 1 � i � p. Suppose that

p∑
i=1

ki∑
j=1

ci
j yi

j = 0.

Since 0 can be regarded as a sum of p copies of itself (where each copy is in Mi for
1 � i � p, we have

∑ki
j=1 ci

j yi
j = 0, so ci

j = 0 for 1 � j � ki and for 1 � i � p.
Thus, B is linearly independent and, therefore, it is a basis.

We leave to the reader the proof of the reverse implication.

If U, V are subspaces of L such that L = U � V , then U, V are said to be
complementary subspaces of L .

Theorem 5.32 Let h : L −∈ L be an idempotent endomorphism of the F-linear
space L. Then, L = Ker(h) � Img(h).



206 5 Linear Spaces

Proof If t ∈ Ker(h) ∧ Img(h), we have h(t) = 0 and t = h(z) for some z ∈ L .
Thus, t = h(z) = h(h(z)) = h(t) = 0, which implies Ker(h) ∧ Img(h) = {0}.

Since h(x) = h(h(x)) for every x ∈ L , it follows that h(x − h(x)) = 0, so
y = x−h(x) ∈ Ker(h). This allows us to write x = y+z, where z = h(x) ∈ Img(h),
which shows that every element x of L can be written as a sum of an element in Ker(h)

and an element in Img(h).
Suppose now that x = ỹ + z̃, where ỹ ∈ Ker(h) and z̃ ∈ Img(h). Since y − ỹ =

z̃ − z = 0, it follows that the expression of t as a sum of two vectors in Ker(h) and
Img(h) is unique, so L = Ker(h) � Img(h).

Theorem 5.33 Let U and V be two subspaces of an F-linear space L. If L = U �V ,
then there exists an idempotent endomorphism h of L such that U = Ker(h) and
V = Img(h).

Proof Let x be a vector in L and let x = u + v be the decomposition of x, where
u ∈ U and v ∈ V . Define the mapping h : L −∈ L as h(x) = v. The uniqueness of
the decomposition of h implies that h is well-defined.

Note that a vector u ∈ U has the decomposition u = u + 0, so h(u) = 0.
Thus, U = Ker(h). Since h(h(x)) = h(v) = h(u + v) = h(x), it follows that h is
idempotent.

If w ∈ W , its decomposition is w = 0+w, so h(w) = w. Therefore, W = Img(h).

5.3 Matrices

Definition 5.34 Let F be a field. A matrix on F is a function

A : {1, . . . , m} × {1, . . . , n} −∈ F.

The pair (m, n) is the format of the matrix A.
If A : {1, . . . , m} × {1, . . . , n} −∈ F is a matrix on F, we say that A is an

(m × n)-matrix on F. The set of all such matrices will be denoted by Fm×n.

A matrix A ∈ Fm×n can be written as
⎜⎜⎜

A(1, 1) A(1, 2) . . . A(1, n)

A(2, 1) A(2, 2) . . . A(2, n)
...

... . . .
...

A(m, 1) A(m, 2) . . . A(m, n)


⎟⎟⎟ .

Alternatively, a matrix A ∈ Fm×n can be regarded as consisting of m rows, where
each row is a sequence of the form

(A(i, 1), A(i, 2), . . . , A(i, n)),
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for 1 � i � n, or as a collection of n columns of the form


⎜⎜⎜

A(1, j)
A(2, j)

...

A(m, j)


⎟⎟⎟ ,

where 1 � j � m.

Example 5.35 Let F = {0, 1}. The matrix

(
1 0 1
0 1 1

)
,

is a (3 × 2)-matrix on the set F .

The element A(i, j) of the matrix A will be denoted by ai j or by Ai j and the
matrix itself will be writen as A = (ai j ).

Definition 5.36 A square matrix on F is an (n × n)-matrix on F for some n � 1.

Let A ∈ Fn×n . The main diagonal of the matrix A is the sequence (a11, . . . , ann).
The set {ai j | 1 � i, j � n and i − j = k} consists of elements located on the kth
diagonal above the main diagonal, while {ai j | j − i = k} consists of elements
located on the kth diagonal blow the main diagonal for 1 � k � n − 1.

A square matrix A ∈ Fn×n is diagonal if i ∅= j implies ai j = 0 for 1 � i, j � n.
A diagonal matrix A ∈ Fn×n having the diagonal elements d1, . . . , dn is be denoted
as A = diag(d1, . . . , dn).

A matrix A ∈ Fn×n is upper triangular (lower triangular) if i > j implies
ai j = 0 ( j > i implies ai j = 0).

Example 5.37 The matrices A, B ∈ F4×4 defined by

A =


⎜⎜

a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44


⎟⎟ and B =


⎜⎜

b11 0 0 0
b21 b22 0 0
b31 b32 b33 0
b41 b42 b43 a44


⎟⎟

are upper triangular and lower triangular, respectively.

Definition 5.38 Let A = (ai j ) ∈ R
m×n be a matrix on the set of real numbers. Its

transpose is the matrix A⊆ ∈ R
n×m defined by (A⊆)i j = a ji for 1 � i � n and

1 � j � m.
If A⊆ = A, we say that A is a symmetric matrix.
A matrix A is skew-symmetric if A⊆ = −A.

It is easy to verify that (A⊆)⊆ = A.
A similar notion exists for complex matrices.
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Definition 5.39 Let A = (ai j ) ∈ C
m×n. Its Hermitian conjugate is the matrix

AH ∈ C
n×m defined by (AH)i j = a ji for 1 � i � n and 1 � j � m.

If AH = A, we say that A is a Hermitian matrix.
A is skew-Hermitian if AH = −A.

Example 5.40 The transpose of the matrix

A =
(

1 0 2
0 −1 3

)
∈ R

2×3

is the matrix

A⊆ =

1 0

0 −1
2 3


 ∈ R

3×2.

The Hermitian conjugate of the matrix

L =
(

1 + i 0 2 − 3i
2 1 − i i

)
∈ C

2×3

is the matrix

LH =

 1 − i 2

0 1 + i
2 + 3i −i


 ∈ C

3×2.

A complex matrix having real entries is symmetric if and only if it is Hermitian.
Dissimilarities defined on finite sets can be represented by matrices. If S =

{x1, . . . , xn} is a finite set and d : S × S −∈ R�0 is a dissimilarity, let
Md ∈ (R�0)

n×n be the matrix defined by Mi j = d(xi , x j ) for 1 � i, j � n.
Clearly, all main diagonal elements of Md are 0 and the matrix M is symmetric.

Example 5.41 Let S be the set {x1, x2, x3, x4}. The discrete metric on S is represented
by the 4 × 4-matrix

Md =


⎜⎜

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


⎟⎟ .

If x1, x2, x3 ∈ R are three real numbers the matrix that represents the distance
e(xi , x j ) = |xi − x j | measured on the real line is

Me =

 0 |x1 − x2| |x1 − x3|

|x1 − x2| 0 |x2 − x3|
|x1 − x3| |x2 − x3| 0


 .
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Definition 5.42 The (n × n)-unit matrix on the field F = (F, {0,+,−, ·}) is the
square matrix In ∈ Fn×n given by

In =


⎜⎜⎜⎜⎜

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1


⎟⎟⎟⎟⎟ ,

whose entries located outside its main diagonal are 0s.
The (m × n)-zero matrix is the (m × n)-matrix Om,n ∈ Fn×n given by

Om,n =


⎜⎜⎜⎜⎜

0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0


⎟⎟⎟⎟⎟ .

Definition 5.43 Let A, B ∈ Fm×n be two matrices that have the same format. The
sum of the matrices A and B is the matrix A + B having the same format and
defined by

(A + B)i j = ai j + bi j

for 1 � i � m and 1 � j � n.

Example 5.44 The sum of the matrices A, B ∈ R
2×3 given by

A =
(

1 −2 3
0 2 −1

)
and B =

(−1 2 3
1 4 2

)

is the matrix

A + B =
(

0 0 6
1 6 1

)
.

It is easy to verify that the matrix sum is an associative and commutative operation
on Fm×n ; that is,

A + (B + C) = (A + B) + C,

A + B = B + A,

for all A, B, C ∈ Fm×n .
The zero matrix Om,n acts as an additive unit on the set Fm×n ; that is,

A + Om,n = Om,n + A
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for every A ∈ Sm×n .
The additive inverse, or the opposite of a matrix A ∈ Fm×n , is the matrix −A

given by (−A)i j = −Ai j for 1 � i � m and 1 � j � n.

Example 5.45 The opposite of A ∈ R
2×3, given by

A =
(

1 −2 3
0 2 −1

)

is the matrix

−A =
(−1 2 −3

0 −2 1

)
.

It is immediate that A + (−A) = O2,3.

The set of matrices Fm×n is an F-linear space. Furthermore, it is easy to see that
the sets of symmetric matrices and skew-symmetric matrices are subspaces of the
linear space of square matrices R

n×n and the sets of Hermitian and skew-Hermitian
matrices are subspaces of C

n×n .

Definition 5.46 Let A ∈ Fm×n and B ∈ Fn×p be two matrices. The product of
the matrices A, B is the matrix C ∈ Fm×p defined by cik = ∑n

j=1 ai j b jk , where
1 � i � m and 1 � k � p. The product of the matrices A, B will be denoted by
AB.

The matrix product is a partial operation because in order to multiply two matrices
A and B, they must have the formats m × n and n × p, respectively. In other words,
the number of columns of the first matrix must equal the number of rows of the
second matrix.

Theorem 5.47 Matrix multiplication is associative.

Proof Let A ∈ Fm×n , B ∈ Fn×p, and C ∈ F p×r be three matrices. We prove that
(AB)C = A(BC).

By applying the definition of the matrix product, we have

((AB)C)iν =
p∑

k=1

(AB)ikCkν =
p∑

k=1


 n∑

j=1

Ai j B jk


Ckν

=
n∑

j=1

Ai j

p∑
k=1

B jkCkν =
n∑

j=1

Ai j (BC) jν = (A(BC))iν

for 1 � i � m and 1 � ν � r , which shows that matrix multiplication is indeed
associative.

Theorem 5.48 If A ∈ Fm×n, then Im A = AIn = A.
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Proof The statement follows immediately from the definition of a matrix product.

Note that if A ∈ Fn×n , then In A = AIn = A, so In is a unit relative to matrix
multiplication considered as an operation on the set of square matrices Fn×n .

The product of matrices is not commutative. Indeed, consider the matrices A, B ∈
R

2×2 defined by

A =
(

0 1
2 3

)
and B =

(−1 1
1 0

)
.

We have

AB =
(

1 0
1 2

)
and B A =

(
2 2
0 1

)
,

so AB ∅= B A.
For A ∈ C

n×n the power An , where n ∈ N is defined inductively by A0 = In and
An+1 = An A. It is immediate that A1 = A. This allows us to define the matrix f (A),
where f is a polynomial with complex coefficients, f (x) = an xn + an−1xn−1 +
· · · + a0, as

f (A) = an An + an−1 An−1 + · · · + a0 In .

The product of two lower (upper) triangular matrices lower (upper) triangular
matrix. Therefore, any power of a lower (upper) triangular matrix is a triangular
matrix.

Theorem 5.49 If T ∈ C
m×m is an upper (a lower) triangular matrix and f is a

polynomial, then f (T ) is an upper (a lower) triangular matrix. Furthermore, if the
diagonal elements of T are t11, t22, . . . , tmm, then the diagonal elements of f (T ) are
f (t11), f (t22), . . . , f (tmm), respectively.

Proof Since every power T k of T is an upper (a lower) triangular matrix, and the
sum of upper (lower) triangular matrices is upper (lower) triangular, if follows that
f (T ) is an upper triangular (a lower triangular) matrix.

An easy argument by induction on k (left to the reader) shows that if the diag-
onal elements of T are t11, t22, . . . , tmm , then the diagonal elements of T k are
tk
11, tk

22, . . . , tk
mm . The second part of the theorem follows immediately.

Definition 5.50 Let A = (ai j ) ∈ C
n×n be a square matrix. The trace of A is the

number trace(A) given by

trace(A) = a11 + a22 + · · · + ann .

Theorem 5.51 Let A and B be two square matrices in C
n×n. We have:

(i) trace(a A) = a trace(A);
(ii) trace(A + B) = trace(A) + trace(B), and

(iii) trace(AB) = trace(B A).
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Proof The first two parts are direct consequences of the definition of the trace. For
the last part we can write:

trace(AB) =
n∑

i=1

(AB)i i =
n∑

i=1

n∑
j=1

ai j b ji .

Exchanging the subscripts i and j and, then the order of the summations, we have

n∑
i=1

n∑
j=1

ai j b ji =
n∑

j=1

n∑
i=1

a ji bi j =
n∑

i=1

n∑
j=1

bi j a ji =
n∑

i=1

(B A)i i ,

which proves the desired equality.

Let A, B, C be three matrices in C
n×n . We have

trace(ABC) = trace((AB)C) = trace(C(AB)) = trace(C AB),

and

trace(ABC) = trace(A(BC)) = trace((BC)A) = trace(BC A).

However, it is important to notice that the third part of Theorem 5.51 cannot be
extended to arbitary permutations of a product of matrices. Consider, for example
the matrices

A =
(

1 0
1 1

)
, B =

(
1 1
1 0

)
, and C =

(
1 1
0 1

)
.

We have

ABC =
(

1 2
2 3

)
and AC B =

(
2 1
3 1

)
,

so trace(ABC) = 4 and trace(AC B) = 3.

Definition 5.52 A matrix A ∈ C
m×n is non-negative if all its entries ai j are real

numbers and ai j � 0 for 1 � i � m and 1 � j � n. This is denoted by A � Om,n.
A is positive if all its entries are real numbers, and ai j > 0 for 1 � i � m and

1 � j � n. This is denoted by A > 0m,n.

If B, C ∈ R
m×n we write B � C (B > C) if B − C ⇒ Om,n (B − C > Om,n ,

respectively).
The sets of non-negative (non-positive, positive, negative) m × n-matrices is

denoted by R
m×n
�0

(
R

m×n
�0 , R

m×n
>0 , R

m×n
<0 , respectively

⎛
.

Example 5.53 The diagonal matrix In is non-negative but not positive.
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Definition 5.54 A matrix A ∈ Sn×n is nilpotent if there is m ∈ N such that Am =
On,n. The nilpotency of A is the number nilp(A) = min{m ∈ N | Am = On,n}.
In other words, if A ∈ Sn×n is a nilpotent matrix, we have nilp(A) = m if and only
if Am = On,n but Am−1 ∅= On,n .

Example 5.55 Let a and b be two positive numbers in R. The matrix A ∈ R
3×3

given by

A =

0 a 0

0 0 b
0 0 0




is nilpotent because

A2 =

0 0 ab

0 0 0
0 0 0


 and A3 =


0 0 0

0 0 0
0 0 0




Thus, nilp(A) = 3.

Definition 5.56 A matrix A ∈ Sn×n is idempotent if A2 = A.

Example 5.57 The matrix

A =
(

0.5 1
0.25 0.5

)

is idempotent, as the reader can easily verify.

Let A ∈ Fm×n be a matrix and suppose that m = m1 + · · · + m p and n =
n1 + · · · + nq , where F is the real or the complex field. A partitioning of A is a
collection of matrices Ahk ∈ Fmh×nk such that Ahk is the contiguous submatrix

A

⎧
m1 + · · · + mh−1 + 1, . . . , m1 + · · · + mh−1 + mh

n1 + · · · + nk−1 + 1, . . . , n1 + · · · + nk

⎨
,

for 1 � h � p and 1 � k � q .
If {Ahk | 1 � h � p and 1 � k � q} is a partitioning of A, A is written as

A =


⎜⎜⎜

A11 A12 · · · A1q

A21 A22 · · · A2q
...

... · · · ...

Ap1 Ap2 · · · Apq


⎟⎟⎟ .

The matrices Ahk are referred to as the blocks of the partitioning. All blocks located
in a column must have the number of columns; all blocks located in a row must have
the same number of rows.
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Example 5.58 The matrix A ∈ F5×6 given by

A =


⎜⎜⎜⎜

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56


⎟⎟⎟⎟

can be partitioned as 
⎜⎜⎜⎜

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56


⎟⎟⎟⎟

Thus, if we introduce the matrices

A11 =

a11 a12 a13

a21 a22 a23
a31 a32 a33


 , A12 =


a14

a24
a34


 , A13 =


a15 a16

a25 a26
a35 a36


 ,

A21 =
(

a41 a42 a43
a51 a52 a53

)
, A22 =

(
a45
a55

)
, A23 =

(
a45 a46
a55 a56

)
,

the matrix A can be written as

A =
(

A11 A12 A13
A21 A22 A23

)
.

Definition 5.59 A matrix is A ∈ C
n×n is normal if AH A = AAH and is unitary if

AH A = AAH = In. Every unitary matrix is normal.

Theorem 5.60 A matrix A ∈ C
n×n is normal and upper triangular (or lower trian-

gular) if and only if A is a diagonal matrix.

Proof Suppose that A is both normal and upper triangular. The normality of A
implies (AH A)pp = (AAH)pp for 1 � p � n. We show, by induction on p that all
non-diagonal elements of A are 0.

For the base step p = 1 we have ā11a11 = ∑n
j=1 a1 j ā j1 = a11ā11+∑n

j=2 a1 j ā j1.

Since ā11a11 = a11ā11 = |a11|2, it follows that
∑n

j=2 a1 j ā j1 = ∑n
j=2 |a1 j |2 = 0,

so a1 j = 0 for 2 � j � n, which implies that all non-diagonal elements of the first
line of A are 0.

For the inductive step suppose that all non-diagonal elements of the first p − 1
rows are 0. Then

(AH A)pp =
n∑

i=1

āi paip =
n∑

i=p

āipaip = āppapp,
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by the inductive hypothesis and the fact that A is upper diagonal. Therefore,

āppapp =
n∑

j=p

apj āpj = appāpp +
n∑

j=p+1

apj āpj ,

which implies
∑n

j=p+1 apj āpj = ∑n
j=p+1 |apj |2 = 0. This, in turn, yields ap p+1 =

· · · = apn = 0.
The argument is similar for the lower diagonal case.
Clearly, any diagonal matrix is normal and both upper triangular and lower trian-

gular.

Let A ∈ C
m×n be a matrix. The matrix of the absolute values of A is the matrix

abs(A) ∈ R
m×n defined by

(abs(A))i j = |ai j |

for 1 � i � m and 1 � j � n. In particular, if x ∈ C
n , we have (abs(x)) j = |x j |.

Theorem 5.61 Let A ∈ C
m×n and B ∈ C

n×p be two matrices. We have abs(AB) �
abs(A)abs(B).

Proof Since (AB)ik = ∑n
j=1 ai j b jk , it follows that

|(AB)ik | =
⎩⎩⎩ n∑

j=1

ai j b jk

⎩⎩⎩ �
n∑

j=1

|ai j b jk | =
n∑

j=1

|ai j | |b jk |,

for 1 � i � m and 1 � k � p. This amounts to abs(AB) � abs(A)abs(B).

Theorem 5.62 For A ∈ C
n×n we have abs(Ak) � (abs(A))k for every k ∈ N.

Proof The proof is by induction on k. The base case, k = 0, is immediate. Suppose
that the inequality holds for k. We have

abs(Ak+1) = abs(Ak A)

� abs(Ak)abs(A)

(by Theorem 5.61)

� (abs(A))kabs(A)

(by the inductive hypothesis)

= (abs(A))k+1,

which completes the induction case.

Partitioning matrices is useful because matrix operations can be performed on
block submatrices in a manner similar to scalar operations as we show next.
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Theorem 5.63 Let A ∈ Fm×n and B ∈ Fn×p be two matrices. Suppose that the
matrices A, B are partitioned as

A =

⎜

A11 · · · A1k
... · · · ...

Ah1 · · · Ahk


⎟ and B =


⎜

B11 · · · B1ν

... · · · ...

Bk1 · · · Bkν


⎟ ,

where Ars ∈ Fmr ×ns , Bst ∈ Fns×pt for 1 � r � h, 1 � s � k and 1 � t � ν. Then,
the product C = AB can be partitioned as

C =

⎜

C11 . . . C1ν

... · · · ...

Ch1 · · · Chl


⎟ ,

where Cuv = ∑k
t=1 Aut Btv , 1 � u � h, and 1 � v � ν.

Proof Note that m1 + · · · + mh = m and p1 + · · · + pν = p. For a pair (i, j) such
that 1 � i � m and 1 � j � n let u be the least number such that i � m1 +· · ·+mu

and let v be the least number such that j � p1 + · · · + pv . The definition of u and
v implies m1 + · · · + mu−1 + 1 � i � m1 + · · · + mu and p1 + · · · + pv−1 + 1 �
j � p1 + · · · + pv . This implies that the ci j element of the product is located in
the submatrix Cuv = ∑k

t=1 Aut Btv of C . By the definition of the matrix product
we have

ci j =
n∑

g=1

aigbg j

=
n1∑
g=1

aigbg j +
n1+n2∑
g=n1+1

aigbg j + · · · +
n1+···+ns∑

g=n1+···+nk−1+1

aigbg j

Observe that the vectors (ai1, . . . , ain1) and (b1 j , . . . , bn1 j )
⊆ represent the line num-

ber i − (m1 + · · · + mu−1 + 1) and the column number j − (p1 + · · · + pv−1 + 1)

of the matrix Au1 and B1v , etc. Similarly,

(ai,n1+···+nk−1+1, . . . , ai,n1+···+ns )

and

(bn1+···+nk−1+1, j , . . . , bn1+···+ns , j )
⊆

represent the line number i − (m1 + · · · + mu−1 + 1) and the column number
j − (p1 + · · · + pv−1 + 1) of the matrix Auk and Bkv , which shows that ci j is
computed correctly as an element of the block Cuv .
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Next, we explore the relationship between linear mappings and matrices. Let
h ∈ Hom(Cm, C

n) be a linear transformation between the linear spaces C
m and C

n ,
let R = {r1, . . . , rm} be a basis in C

m , and let S = {s1, . . . , sn} be a basis in C
n .

Since h(r j ) ∈ C
n we can write:

h(r j ) = a1 j s1 + a2 j s2 + · · · + anj sn .

Definition 5.64 The matrix Ah ∈ C
n×m associated to the linear mapping h :

C
m −∈ C

n is the matrix that has

h(r j ) =


⎜⎜⎜

a1 j

a2 j
...

anj


⎟⎟⎟

as its jth column for 1 � j � m.

Let v ∈ C
m be a vector such that v = v1r1 + · · · + vmrm . Then, the image of v

under h is

h(v) = h


 m∑

j=1

v j r j


 =

m∑
j=1

v j h(r j )

=
m∑

j=1

v j


⎜⎜⎜

a1 j

a2 j
...

anj


⎟⎟⎟ =


⎜⎜⎜
∑m

j=1 a1 jv j∑m
j=1 a2 jv j

...∑m
j=1 anjv j


⎟⎟⎟ ,

which is easily seen to equal Ahv.
As we saw above, the matrix Ah attached to h : C

m −∈ C
n depends on the bases

chosen for the linear spaces C
m and C

n .
Let AR

h and AS
h be the matrices associated to h that correspond to the bases R and

S, respectively. We have AR
h = (h(r1) · · · h(rn)) and AS

h = (h(s1) · · · h(sn)). The
Equalities (5.3) can be written succinctly as

AR
h = P AS

h , (5.1)

where P is the matrix

P =

⎜

p11 · · · p1n
... · · · ...

pn1 · · · pnn


⎟ ,
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whose entries have been introduced in Equalities (5.2).
Let h : C

n −∈ C
n be an endomorphism of C

n and let R = {r1, . . . , rn} and
S = {s1, . . . , sn} be two bases of C

n . The vectors si can be expressed as linear
combinations of the vectors r1, . . . , rn :

si = pi1r1 + · · · + pinrn, (5.2)

for 1 � i � n, which implies

h(si ) = pi1h(r1) + · · · + pinh(rn). (5.3)

for 1 � i � n.
Matrix multiplication corresponds to the composition of linear mappings, as we

show next.

Theorem 5.65 Let h ∈ Hom(Cm, C
n) and g ∈ Hom(Cn, C

p). Then,

Agh = Ag Ah .

Proof If p1, . . . , pm is a basis for C
m , then Agh(pi ) = gh(pi ) = g(h(pi )) =

g(Ahpi ) = Ag(Ah(pi )) for every i , where 1 � i � n. This proves that Agh = Ag Ah .

Thus, if h is an idempotent endomorphism of a linear space the matrix Ah is
idempotent.

Starting from a matrix A ∈ C
n×m we can define a linear operator associated to

A, h A : C
m −∈ C

n as h A(x) = Ax for x ∈ C
m . If p1, . . . , pm is a basis for C

m ,
then h A(pi ) is the ith column of the matrix A.

It is immediate that Ah A = A and h Ah = h.
Attributes of a matrix A are transferred to the linear operator h A. For example, if

A is Hermitian we say that h A is Hermitian.
The association of matrices in C

n×m with linear operators, described in Defini-
tion 5.64, suggests the association of certain subspaces of the linear spaces C

n and
C

m to A.

Definition 5.66 Let A ∈ C
n×m be a matrix. The range of A is the subspace Img(h A)

of C
n. The null space of A is the subspace Ker(h A).

The range of A and the null space of A are denoted by Ran(A) and NullSp(A),
respectively.

Clearly, CA,n = Ran(A). The null space of A ∈ C
m×n consists of those x ∈ C

n

such that Ax = 0.
Let {p1, . . . , pm} be a basis of C

m . Since Ran(A) = Img(h A) it follows that this
subspace is generated by the set {h A(p1), . . . , h A(pm)}, that is, by the columns of
the matrix A. For this reason the subspace Ran(A) is also known as the column
subspace of A.
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Several important facts concerning idempotent endomorphisms that were previ-
ously presented can now be formulated in terms of matrices. For example, The-
orem 5.32 applied to C

n states that if A is an idempotent matrix, then C
n =

NullSp(A) � Ran(A). Conversely, by Theorem 5.33 if U and W are two subspaces
of C

n such that C
n = U � W , then there exists an idempotent matrix A ∈ C

n×n

such that U = NullSp(A) and W = Ran(A).
Let A ∈ C

n×n be a square matrix. Suppose that there exist two matrices U and
V such that AU = In and V A = In . This implies

V = V In = V (AU ) = (V A)U = InU = U.

Thus, if AU = V A = In , the two matrices involved, U and V , must be equal.

Definition 5.67 A matrix A ∈ C
n×n is invertible if there exists a matrix B ∈ C

n×n

such that AB = B A = In.

Suppose that C is another matrix such that AC = C A = In . By the associativity of
the matrix product we have C = C In = C(AB) = (C A)B = In B = B. Therefore,
if A is invertible there is exactly one matrix B such that AB = B A = In . We denote
the matrix B by A−1 and we refer to it as the inverse of the matrix A.

Note that A ∈ C
n×n is a unitary matrix if and only if A−1 = AH.

Theorem 5.68 If A, B ∈ C
n×n are two invertible matrices, then the product AB is

invertible and (AB)−1 = B−1 A−1.

Proof Applying the definition of the inverse of a matrix we obtain

(AB)(B−1 A−1) = A(B B−1)A−1 = AIn A−1 = AA−1 = In,

which implies (AB)−1 = B−1 A−1.

Theorem 5.69 If A ∈ C
n×n is invertible, then AH is invertible and (AH)−1 =

(A−1)H.

Proof Since AA−1 = In , we have (A−1)H AH = In , which shows that (A−1)H is the
inverse of AH and (AH)−1 = (A−1)H.

Example 5.70 Let

A =
(

a11 a12
a21 a22

)

be a matrix in R
2×2. We seek to determine conditions under which A is invertible.

Suppose that

X =
(

x11 x12
x21 x22

)
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is a matrix in R
2×2 such that AX = I2. This matrix equality amounts to four scalar

equalities:
a11x11 + a12x21 = 1, a11x12 + a12x22 = 0,

a21x11 + a22x21 = 1, a21x12 + a22x22 = 0,

which, under certain conditions, can be solved with respect to x11, x12, x21, x22.
By multiplying the first equality by a22 and the third by −a12 and adding the

resulting equalities we obtain (a11a22 − a12a21)x11 = −a22. Thus, if a11a22 −
a12a21 ∅= 0, we have x11 = − a22

a11a22−a12a21
. The same condition, a11a22 − a12a21 ∅=

0, suffices to allow us to obtain the value of the remaining components of X , as
the reader can easily verify. Thus, A is an invertible matrix if and only if a11a22 −
a12a21 ∅= 0.

Definition 5.71 A stochastic matrix is a matrix A ∈ R
n×n such that ai j � 0 for

1 � i, j � n and
∑n

j=1 ai j = 1 for every i , 1 � i � n.
A doubly stochastic matrix is a matrix A ∈ R

n×n such that both A and A⊆ are
stochastic.

The rows of a stochastic matrix can be regarded as discrete probability distributions.

Example 5.72 The matrix A ∈ R
3×3 defined by

A =

⎜

1
2 0 1

2
1
3

1
2

1
6

0 2
3

1
3


⎟

is a stochastic matrix.

Example 5.73 Let

φ :
(

1 · · · k · · · n
a1 · · · ak · · · an

)
,

be a permutation of the set {1, . . . , n}, where ak = φ(k) for 1 � k � n.
The matrix of this permutation is the square matrix Pφ = (pi j ) ∈ {0, 1}n×n ,

where

pi j =
⎫

1 if j = φ(i),

0 otherwise,
(5.4)

for 1 � i, j � n.
Note that the matrix of the permutation 11,...,n is the matrix In .
Also, if φ,Ψ are two permutations of the set {1, . . . , n}, then PΨφ = Pφ PΨ .

Indeed, since (Pφ PΨ)i j = ∑n
k=1(Pφ)ik(PΨ)k j , observe that only the term

(Pφ)ik(PΨ)k j in which k = φ(i) and j = Ψ(k) is different from 0. Thus,
(Pφ PΨ)i j ∅= 0 if and only if j = Ψ(φ(i)), which means that PΨφ = Pφ PΨ .

Thus, ifφ andφ−1 are two inverse permutations in PERMn , we have Pφ Pφ−1 = In ,

so Pφ is invertible and P−1
φ = Pφ−1 .
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For instance, if φ ∈ PERM4 is

φ :
(

1 2 3 4
3 1 4 2

)
,

then

Pφ =


⎜⎜

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


⎟⎟

Its inverse is

P−1
φ = Pφ−1 =


⎜⎜

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


⎟⎟ .

It is easy to verify that the inverse of a permutation matrix Pφ coincides with its
transpose (Pφ)⊆.

Observe that if A ∈ R
n×n having the rows r1, . . . , rn and Pφ is a permutation

matrix, then Pφ A is the matrix whose rows are rφ(1), rφ(2), . . . , rφ(n). Similarly, if
the columns of A are c1, . . . , cn , the columns of the matrix APφ are cφ(1), . . . , cφ(n).
In other words, Pφ A is obtained from A be permuting its rows according to the
permutation φ and APφ is obtained from A by permuting the columns according to
the same permutation.

Since every column and row of a permutation matrix contains exactly one 1, it
follows that each such matrix is also a doubly-stochastic matrix.

Theorem 5.74 Let A ∈ R
n×n be a lower (upper) triangular matrix such that aii ∅= 0

for 1 � i � n. The matrix A is invertible and its inverse is a lower (upper) triangular
matrix having diagonal elements equal to the reciprocal of the diagonal elements of
A.

Proof Let A be a lower triangular matrix

A =


⎜⎜⎜

a11 0 0 · · · 0
a21 a22 0 · · · 0
...

...
... · · · ...

an1 an2 an3 · · · ann


⎟⎟⎟ ,

where aii ∅= 0 for 1 � i � n. The proof is by induction on n � 1.

The base case, n = 1 is immediate, since the inverse of the matrix (a11) is
⎬

1
a11

⎭
.

Suppose that the statement holds for matrices in R
(n−1)×(n−1). Then A can be

written as
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A =
(

B 0n−1

an1 an2 · · · an n−1 ann

)
,

where B ∈ R
(n−1)×(n−1) is a lower triangular matrix. By the inductive hypothesis,

this matrix is invertible, its inverse B−1 is also lower triangular and the diagonal
elements of B−1 are the reciprocal elements of the corresponding diagonal elements
of B. The matrix

(
B−1 0n−1

v 1
ann

)

is the inverse of A, where v = − 1
ann

a⊆ B−1, and a⊆ = (an1, an2, . . . , an n−1), as the
reader can easily verify.

A similar argument can be used for upper triangular matrices.

Theorem 5.75 Let A ∈ R
n×n be an invertible matrix. Then, its transpose A⊆ is

invertible and (A⊆)−1 = (A−1)⊆.
Proof Observe that A⊆(A−1)⊆ = (A−1 A)⊆ = I ⊆

n = In . Therefore, (A⊆)−1 = (A−1)⊆.
If A ∈ R

n×n is invertible we have AA−1 = In , so trace(A)trace(A−1) =
trace(In) = n. This implies

trace(A−1) = n

trace(A)
. (5.5)

Theorem 5.76 Let {r1, . . . , rn} be a basis in C
n. A matrix A ∈ C

n×n is invertible if
and only if the set of vectors {Ar1, . . . , Arn} is a basis in C

n.

Proof Suppose that A is an invertible matrix. Note that Axi = Ax j implies xi = x j ,
so {Ar1, . . . , Arn} consists on n distinct vectors. We claim that the set {Ar1, . . . , Arn}
is linearly independent. Indeed, suppose that c1 Ar1 + · · · + cn Arn = 0n such that
not all coefficients ci equal 0. Then, by multiplying by A−1 to the left we obtain
c1r1 + · · · + cnrn = 0n , which contradicts the fact that {r1, . . . , rn} is a basis. Thus,
{Ar1, . . . , Arn} is a linearly independent that consists of n vectors, which means that
this set is a basis in C

n .
Conversely, suppose that for any basis {r1, . . . , rn} of C

n , {Ar1, . . . , Arn} is a
basis in C

n . Each of the vectors ri can be uniquely expressed as a linear combi-
nation of Ar1, . . . , Arn . In particular, for the standard basis {e1, . . . , en}, each of
the vectors ei can be uniquely expressed as a linear combination of the vectors
Ae1 = a1, . . . , Aen = an , where a1, . . . , an are the columns of the matrix A. In
other words, we have the equalities

ei = bi1a1 + · · · + binan

for 1 � i � n. In a succinct form, these equalities can be written as In = B A, where
B is the matrix of the coefficient bi j , which shows that A is an invertible matrix.
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Theorem 5.77 Let u1, . . . , un and w1, . . . , wn be two bases of C
n. There exists an

invertible matrix P ∈ C
n×n such that

(u1 · · · un) = (w1 · · · wn)P.

Proof Since w1, . . . , wn is a basis of C
n each vector ui is a unique linear combination

of the vectors w1, . . . , wn , that is

ui = p1i w1 + · · · + pni wn = (w1 · · · wn)


⎜

p1i
...

pni


⎟ ,

for 1 � i � n, so the equality of the theorem holds for the matrix P = (pi j ). We
have to show that P is an invertible matrix.

Assume that Pt = 0n . The equality of the theorem implies

(u1 · · · un)


⎜

t1
...

tn


⎟ = (w1 · · · wn)Pt = 0n .

which implies t1u1 + · · · + tnun = 0n . Since u1, . . . , un is a basis we obtain t1 =
· · · = tn = 0, so t = 0n , which implies that P is an invertible matrix.

Corollary 5.78 Let z ∈ C
n and assume that z ∈ C

n can be expressed relatively
to the bases u1, . . . , un and w1, . . . , wn as z = ∑n

i=1 xi ui and as z = ∑n
i=1 yi wi ,

respectively. If (u1 · · · un) = (w1 · · · wn)P, then

P


⎜

y1
...

yn


⎟ =


⎜

x1
...

xn


⎟ .

Proof We have

z = (u1 · · · un)


⎜

x1
...

xn


⎟ = (w1 · · · wn)P


⎜

y1
...

yn


⎟ .

The linear independence of w1, . . . , wn implies the desired equality.
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5.4 Rank

The subspace Ran(A) of a matrix A is generated by the columns of this matrix. An
analogous space is rows(A), the linear space spanned by the rows of A.

Definition 5.79 Let A ∈ C
m×n be a matrix. Its column rank is the number

c-rank(A) = dim(Ran(A)).

The row rank of A is the number r-rank(A) equal to the dimension of the row space
of A.

Theorem 5.80 Let A ∈ C
m×n be a matrix. We have r-rank(A) = c-rank(A).

Proof Let r1, . . . , rm be the rows of A and let c1, . . . , cn be the columns of the
same, so

A =

⎜

r1
...

rm


⎟ = (c1 · · · cn).

Suppose that r-rank(A) = r . There exists a basis b1, . . . , br of the subspace rows(A)

such that every row ri of A can be written as a linear combination: ri = ui B, where
ui = (ui1 · · · uir ) for 1 � i � m and

B =

⎜

b1
...

br


⎟ ∈ C

r×n .

Since ai j = ri e j , we can write ai j = ri e j = ui Be j .
Let U ∈ C

m×r be the matrix whose rows are u1, . . . , um and let d1, . . . , dr be
the columns of this matrix. The jth column of A can be written as


⎜

a1 j
...

amj


⎟ =


⎜

u1 Be j
...

um Be j


⎟ = U Be j = (d1 · · · dr )Be j

= (d1 · · · dr )


⎜

b1 j
...

br j


⎟ = b1 j d1 + · · · + br j dr .

This shows that the column space of A is generated by the set {d1, . . . , dr }, so
c-rank(A) � r . The same argument applied to A⊆ implies that the r = c-rank(A⊆) �
r-rank(A⊆) = c-rank(A), so c-rank(A) = r , which concludes the argument.
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Definition 5.81 The rank of a matrix A is the number denoted by rank(A) given by
rank(A) = dim(Ran(A)) = dim(Img(h A)).

In other words, the rank of A is the maximal size of a set of linearly independent
columns of A. By Theorem 5.80, the rank of A equals the maximal size of a set of
linearly independent rows of A.

Consider the matrices T i↔ j
n , T i

+⊃ j
n and T (a)

n,i in R
n×n defined by:

T i↔ j
n = (e1 · · · ei−1 e j ei+1 · · · e j−1 ei e j+1 · · · en)

T i
+⊃ j

n = (e1 · · · ei−1 ei + e j ei · · · en),

and
T (a)

n,i = diag(1, 1, . . . , 1, a, 1, . . . , 1),

where a occupies the ith diagonal position.
By multiplying a matrix A ∈ C

m×n at the right with any of these matrices, certain
transformations on the set of columns of A take place. Namely, the matrix AT i↔ j

n is

obtained from A by permuting the ith and the jth column. The matrix AT i
+⊃ j

n results
by adding the jth column to the ith column. Finally, AT (a)

n,i is obtained from A by
multiplying the ith column by a, where a ∅= 0.

Similar effects are obtained on the rows of A by multiplying A at the left with

T i↔ j
m , (T i

+⊃ j
m )⊆ and T (a)

m,i .

Example 5.82 Let

A =

a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34


 .

We have

T 2↔3
3 A =


1 0 0

0 0 1
0 1 0




a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34


 =


a11 a12 a13 a14

a31 a32 a33 a34
a21 a22 a23 a24


 ,

and

AT 2↔3
4 =


a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34




⎜⎜

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


⎟⎟ =


a11 a13 a12 a14

a21 a23 a22 a24
a31 a33 a32 a34


 .

For A ∈ C
m×n the column space of the matrices AT i↔ j

n , AT i
+⊃ j

n and AT (a)
n,i is the

same as the column space of A and the row space of T i↔ j
m A, (T i

+⊃ j
m )⊆ A and T (a)

m,i A
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is the same as the row space of A. Therefore, any of the matrices

AT i↔ j
n , AT i

+⊃ j
n , AT (a)

n,i , T i↔ j
m,i A, (T i

+⊃ j
m )⊆ A, T (a)

m,i A

has the same rank as A.

Theorem 5.83 If A ∈ C
m×n we have

dim(NullSp(A)) + rank(A) = n. (5.6)

Proof Suppose that dim(NullSp(A)) = q , {v1, . . . , vq} is a basis of NullSp(A), and
that B = {v1, . . . , vq , vq+1, . . . , vn} is its extension to a basis B of C

m .
If y ∈ Ran(A), then y = Ax for some x ∈ C

n . Since x is a linear combination of
the basis {v1, . . . , vn} we can write

x = a1v1 + · · · + aqvq + aq+1vq+1 + · · · + anvn,

so

y = a1 Av1 + · · · + aq Avq + aq+1 Avq+1 + · · · + an Avn

= aq+1 Avq+1 + · · · + an Avn .

Therefore, {Avq+1, . . . , Avn} spans Ran(A). We claim that this set of vectors is
linearly independent. Suppose this is not the case. Then, there exist n − q numbers
dq+1, . . . , dn such that

dq+1 Avq+1 + · · · + dn Avn = 0,

so A(dq+1vq+1 +· · ·+ dnvn) = 0, which means that w = dq+1vq+1 +· · ·+ dnvn ∈
NullSp(A). Therefore, w is a linear combination of {v1, . . . , vq}, which implies the
existence of d1, . . . , dq such that

dq+1vq+1 + · · · + dnvn = d1v1 + · · · + dqvq .

This contradicts the fact that B is a basis, so the set {Avq+1, . . . , Avn} is linearly
independent and, therefore, is a basis of Ran(A). This implies that rank(A) = n −q,
which is the desired equality.

Example 5.84 For the matrix

A =


⎜⎜

1 0 2
1 −1 1
2 1 5
1 2 4


⎟⎟
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we have rank(A) = 2. Indeed, if c1, c2, c3 are its columns, then it is easy to see that
{c1, c2} is a linearly independent set, and c3 = 2c1 + c2. Thus, the maximal size of
a set of linearly independent columns of A is 2.

Example 5.85 Let A ∈ C
n×m and B ∈ C

p×q . For the matrix C ∈ C
(n+p)×(m+q)

defined by

C =
(

A On,q

Op,m B

)

we have rank(C) = rank(A) + rank(B).
Suppose that rank(C) = ν and let c1, . . . , cν be a maximal set of linearly inde-

pendent columns of C . Without loss of generality we may assume that the first k
columns are among the first m columns of A and the remaining ν − k columns are
among the last q columns of C . The first k columns of C correspond to k linearly
independent columns of A, while the last ν− k columns correspond to ν− k linearly
independent columns of B. Thus, rank(C) = k � rank(A) + rank(B).

Conversely, suppose that rank(A) = s and rank(B) = t and let ai1 , . . . , ais be a
maximal set of linearly independent columns of A and let b j1, . . . , b jt be a maximal
set of linearly independent columns of B. Then, it is easy to see that the vectors

(
ai1
0n

)
, · · · ,

(
ais

0n

)
, . . . ,

(
0n

b j1

)
, . . . ,

(
0n

b jt

)

constitute a linearly independent set of columns of C , so rank(A) + rank(B) �
rank(C). Thus, rank(C) = rank(A) + rank(B).

Example 5.86 Let x and y be two vectors in C
n − {0}. The matrix xyH has rank 1.

Indeed, if yH = (y1, y2, . . . , yn), then xyH = (y1x y2x · · · ynx), which implies that
the maximum number of linearly independent columns of xyH is 1.

The above discussion also shows that if A ∈ C
n×m , then rank(A) � min{m, n}.

Theorem 5.87 Let A ∈ C
m×n be a matrix. We have rank(A) = rank(A).

Proof Suppose that A = (a1, . . . , an) and that the set {ai1 , . . . , ai p } is a set of
linearly independent columns of A. Then, the set {ai1, . . . , ai p } is a set of linearly
independent columns of A. This implies rank(A) = rank(A).

Corollary 5.88 We have rank(A) = rank(AH) for every matrix A ∈ C
m×n.

Proof Since AH = A⊆, the statement follows immediately.

Definition 5.89 A matrix A ∈ C
n×m is a full-rank matrix if rank(A) = min{m, n}.

If A ∈ C
m×n is a full-rank matrix and m � n, then the n columns of the matrix

are linearly independent; similarly, if n � m, the m rows of the matrix are linearly
independent.

A matrix that is not a full-rank is said to be degenerate. A degenerate square
matrix is said to be singular. A non-singular matrix A ∈ C

n×n is a matrix that is not
singular and, therefore has rank(A) = n.
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Theorem 5.90 A matrix A ∈ C
n×n is non-singular if and only if it is invertible.

Proof Suppose that A is non-singular, that is, rank(A) = n. In other words the set
of columns {c1, . . . , cn} of A is linearly independent, and therefore, is a basis of C

n .
Then, each of the vectors ei can be expressed as a unique combination of the columns
of A, that is

ei = b1i c1 + b2i c2 + · · · + bni cn,

for 1 � i � n. These equalities can be written as

(c1 · · · cn)


⎜⎜⎜

b11 · · · b1n

b21 · · · b2n
... · · · ...

bn1 · · · bnn


⎟⎟⎟ = In .

Consequently, the matrix A is invertible and

A−1 =


⎜⎜⎜

b11 · · · b1n

b21 · · · b2n
... · · · ...

bn1 · · · bnn


⎟⎟⎟

Suppose now that A is invertible and that

d1c1 + · · · + dncn = 0.

This is equivalent to

A


⎜

d1
...

dn


⎟ = 0.

Multiplying both sides by A−1 implies
⎜

d1
...

dn


⎟ = 0,

so d1 = · · · = dn = 0, which means that the set of columns of A is linearly
independent, so rank(A) = n.

Corollary 5.91 A matrix A ∈ C
n×n is non-singular if and only if Ax = 0 implies

x = 0 for x ∈ C
n.
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Proof If A is non-singular then, by Theorem 5.90, A is invertible. Therefore, Ax = 0
implies A−1(Ax) = A−10, so x = 0.

Conversely, suppose that Ax = 0 implies x = 0. If A = (c1 · · · cn) and x =
(x1, . . . , xn)⊆, the previous implication means that x1c1 + · · · + xncn = 0 implies
x1 = · · · = xn = 0, so {c1, . . . , cn} is linearly independent. Therefore, rank(A) = n,
so A is non-singular.

Let A ∈ C
n×m be a matrix. It is easy to see that the square matrix B = AH A ∈

C
m×m is Hermitian.

Theorem 5.92 Let A ∈ C
n×m be a matrix and let B = AH A. The matrices A and

B have the same rank.

Proof We prove that NullSp(A) = NullSp(B). If Au = 0, then Bu = AH(Au) = 0,
so NullSp(A) ∞ NullSp(B). If v ∈ NullSp(B), then AH Av = 0, which implies
that vH AH Av = 0. This, in turn can be written as (Av)H(Av) = 0, so, by a previous
observation, we have Av = 0, which means that v ∈ NullSp(A). We conclude that
NullSp(A) = NullSp(AH A). The equalities

dim(NullSp(A)) + rank(A) = m,

dim(NullSp(A)) + rank(AH A) = m,

imply that rank(AH A) = m.

Corollary 5.93 Let A ∈ C
n×m be a matrix of full-rank. If m � n, then the matrix

AH A is non-singular; if n � m, then AAH is non-singular.

Proof Suppose that m � n. Then, rank(AH A) = rank(A) = m because A is a full-
rank matrix. Thus, AH A ∈ C

m×m is non-singular. The argument for the second part
of the corollary is similar.

Example 5.94 Let A = (a1 · · · am) ∈ C
n×m . Since AAH = a1aH

1 + · · · + amaH
m it

follows that the rank of the matrix a1aH
1 + · · · + amaH

m equals the rank of the matrix
A and, therefore, it cannot exceed m.

Theorem 5.95 (Sylvester’s Rank Theorem) Let A ∈ C
m×n and B ∈ C

n×p be two
matrices. We have

rank(AB) = rank(B) − dim(NullSp(A) ∧ Ran(B)).

Proof Both NullSp(A) and Ran(B) are subspaces of C
n , so NullSp(A) ∧ Ran(B)

is a subspace of C
n . If u1, . . . , uk is a basis of the subspace NullSp(A) ∧ Ran(B),

then exists a basis u1, . . . , uk, uk+1, . . . , ul of the subspace Ran(B).
The set {Auk+1, . . . , Aul} is linearly independent. Indeed, suppose that there

exists a linear combination

a1 Auk+1 + · · · + al−k Aul = 0.
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Then, A(a1uk+1 + · · · + al−kul) = 0, so a1uk+1 + · · · + al−kul ∈ NullSp(A).
Since uk+1, . . . , ul ∈ Ran(B), it follows that a1uk+1 +· · ·+al−kul ∈ NullSp(A)∧
Ran(B). Since u1, . . . , uk is a basis of the subspace NullSp(A)∧ Ran(B), we have

a1uk+1 + · · · + al−kul = d1u1 + · · · + dkuk

for some d1, . . . , dk ∈ C, which implies

a1uk+1 + · · · + al−kul − d1u1 − · · · − dkuk = 0.

Since u1, . . . , uk, uk+1, . . . , ul is a basis of Ran(B), it follows that a1 = · · · =
al−k = d1 = · · · = dk = 0, so Auk+1, . . . , Aul is indeed linear independent.

Next, we show that Auk+1, . . . , Aul spans the subspace Ran(AB). Since u j ∈
Ran(B) it is clear that Au j ∈ Ran(AB) for k + 1 � j � l. If w ∈ Ran(AB), then
w = ABx for some x ∈ C

p. Since Bx ∈ Ran(B) we can write Bx = b1u1 + · · · +
bkuk + bk+1uk+1 + · · · + blul , which implies

w = ABx = bk+1 Auk+1 + · · · + bl Aul ,

because Au1 = · · · = Auk = 0, as u1, . . . , uk belong to NullSp(A). Thus,
Auk+1, . . . , Aul spans the subspace Ran(AB), which allows us to conclude that
this linearly independent set is a basis for this subspace that contains l − k elements.
This allows us to conclude that rank(AB) = dim(Ran(AB)) = rank(B) −
dim(NullSp(A) ∧ Ran(B)).

Corollary 5.96 Let A ∈ C
m×n. If R ∈ C

m×m and Q ∈ C
n×n are invertible matrices

then

rank(A) = rank(R A) = rank(AQ) = rank(R AQ).

Proof Note that rank(R) = m and rank(Q) = n. Thus, NullSp(R) = {0m} and
NullSp(Q) = {0n}. By Sylvester’s Rank Theorem we have

rank(R A) = rank(A) − dim(NullSp(R) ∧ Ran(A))

= rank(A) − dim({0}) = rank(A).

On the other hand, we have

rank(AQ) = rank(Q) − dim(NullSp(A) ∧ Ran(Q))

= n − dim(NullSp(A)) = rank(A),

because Ran(Q) = C
n .

The last equality of the theorem follows from the first two.
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Corollary 5.97 Let A ∈ C
m×n and B ∈ C

n×p be two matrices. We have

dim(NullSp(AB)) = dim(NullSp(B)) + dim(NullSp(A) ∧ Ran(B)).

Proof By Equality (5.6) we have:

dim(NullSp(AB)) + rank(AB) = p,

dim(NullSp(B)) + rank(B) = p.

An application of Sylvester’s Rank Theorem implies

dim(NullSp(AB)) = dim(NullSp(B)) + dim(NullSp(A) ∧ Ran(B)).

Corollary 5.98 Let A ∈ C
m×n and B ∈ C

n×p be two matrices. We have

rank(A) + rank(B) − n � rank(AB) � min{rank(A), rank(B)},

and

max{dim(NullSp(A)), dim(NullSp(B))} � dim(NullSp(AB))

� dim(NullSp(A)) + dim(NullSp(B)).

Proof Since dim(NullSp(A) ∧ rank(B)) � dim(NullSp(A)) = n − rank(A) it
follows that rank(AB) � rank(B) − (n − rank(A)) = rank(A) + rank(B) − n.

For the second inequality, observe that Sylvester’s Rank Theorem implies imme-
diately rank(AB) � rank(B). Also, rank(AB) = rank((AB)⊆) = rank(B ⊆ A⊆) �
rank(A⊆) = rank(A), so rank(AB) � min{rank(A), rank(B)}.

The second part of the Corollary follows from the first part.

Corollary 5.99 If A ∈ C
m×n is a full-rank matrix with m � n, then rank(AB) =

rank(B) for any B ∈ C
n×p.

Proof Since m � n, we have rank(A) = n; therefore, the n columns of A are
linearly independent so NullSp(A) = {0}. By Sylvester’s Rank Theorem we have
rank(AB) = rank(B).

Theorem 5.100 (The Full-Rank Factorization Theorem) Let A ∈ C
m×n be a

matrix with rank(A) = r > 0. There exists B ∈ C
m×r and C ∈ C

r×n such that
A = BC.

Furthermore, if A = DE, where D ∈ C
m×r , E ∈ C

r×n, then both D and E are
full-rank matrices, that is, we have rank(D) = rank(E) = r .

Proof Let {b1, . . . , br } ∞ C
m be a basis for the Ran(A). Define B = (b1 · · · br ) ∈

C
m×r . The columns of A, a1, . . . , an can be written as ai = c1i b1 + · · · cri br for

1 � i � n, which amounts to
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A = (a1 · · · an) = (b1 · · · br )


⎜

c11 · · · c1r
... · · · ...

cr1 · · · cr


⎟ .

Thus, A = BC , where

C =

⎜

c11 · · · c1r
... · · · ...

cr1 · · · cr


⎟ .

Suppose now that A = DE , where D ∈ C
m×r , E ∈ C

r×n . It is clear that we
have both rank(D) � r and rank(E) � r . On another hand, by Corollary 5.98,
r = rank(A) = rank(DE) � min{rank(D), rank(E)} implies r � rank(D) and
r � rank(E), so rank(D) = rank(E) = r .

Corollary 5.101 Let A ∈ C
m×n be a matrix such that rank(A) = r > 0, and let

A = BC be a full-rank factorization of A.
If the columns of B constitute a basis of the column space of A then C is uniquely

determined. Furthermore, if the rows of C constitute a basis of the row space of A
and, then B is uniquely determined.

Proof This statement is an immediate consequence of the full-rank factorization
theorem.

Corollary 5.102 If A ∈ C
m×n is a matrix with rank(A) = r > 0, then A can be

written as
A = b1c⊆

1 + · · · + br c⊆
r ,

where {b1, . . . , br } ∞ C
m and {c1, . . . , cr } ∞ C

n are linearly independent sets.

Proof The corollary follows from Theorem 5.100 by adopting the set of columns of
B as {b1, . . . , br } and the transposed rows of C as {c1, . . . , cr }.
Theorem 5.103 Let A ∈ C

m×n be a full-rank matrix. If m � n, then there exists a
matrix D ∈ C

n×m such that D A = In. If n � m, then there exists a matrix E ∈ C
n×m

such that AE = Im.

Proof Suppose that A = (a1 · · · an) ∈ C
m×n is a full-rank matrix and m � n. Then,

the n columns of A are linearly independent and we can extend the set of columns to a
basis of C

m , {a1, . . . , an, d1, . . . , dm−n}. The matrix T = (a1 · · · an d1 · · · dm−n)

is invertible, so there exists

T −1 =


⎜⎜⎜⎜⎜⎜

t1
...

tn

tn+1
...

tm


⎟⎟⎟⎟⎟⎟
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such that T −1T = Im . If we define

D =

⎜

t1
...

tn


⎟

it is immediate that D A = In .
The argument for the second part is similar.

Definition 5.104 Let A ∈ C
m×n. A left inverse of A is a matrix D ∈ C

n×m such
that D A = In. A right inverse of A is a matrix E ∈ C

n×m such that AE = Im.

Theorem 5.103 can now be restated as follows. Let A ∈ C
m×n be a full-rank

matrix. If m � n, then A has a left inverse; if n � m, then A has a right inverse.

Corollary 5.105 Let A ∈ C
n×n be a square matrix. The following statements are

equivalent.

(i) A has a left inverse;
(ii) A has a right inverse;

(iii) A has an inverse.

Proof It is clear that (iii) implies both (i) and (ii). Suppose now that A has a left
inverse, so D A = In . Then, the columns of A, c1, . . . , cn are linearly independent,
for if a1c1 + · · · ancn = 0, we have a1 Dc1 + · · ·+ an Dcn = a1e1 + · · ·+ ancn = 0,
which implies a1 = · · · = an = 0. Thus, rank(A) = n, so A has an inverse.

In a similar manner (using the rows of A) we can show that (ii) implies (iii).

Theorem 5.106 Let A ∈ C
m×n be a matrix with rank(A) = r > 0. There exists a

non-singular matrix G ∈ C
m×m and a non-singular matrix H ∈ C

n×n such that

A = G

(
Ir Or,n−r

Om−r,r Om−r,n−r

)
H.

Proof By the Full-Rank Factorization Theorem (Theorem 5.100) there are two full-
rank matrices B ∈ C

m×r and C ∈ C
r×n such that A = BC . Let {b1, . . . , br } be the

columns of B and let c⊆
1, . . . , c⊆

r be the rows of C . It is clear that both sets of vectors
are linearly independent and, therefore, for the first set there exist br+1, . . . , bm such
that {b1, . . . , bm} is a basis of C

m ; for the second set we have the vectors c⊆
r+1, . . . , cn

⊆
such that {c⊆

1, . . . , c⊆
n} is a basis for R

n . Define G = (b1, · · · , bm) and

H =

⎜

c⊆
1
...

c⊆
n


⎟ .

Clearly, both G and H are non-singular and
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A = G

(
Ir Or,n−r

Om−r,r Om−r,n−r

)
H.

Lemma 5.107 If A ∈ C
m×n is a matrix and x ∈ C

m, y ∈ C
n are two vectors such

that xH Ay ∅= 0, then rank(AyxH A) = 1.

Proof By the associative property of matrix product we have AyxH A = A(yxH)A,
so rank(AyxH A) � min{rank(yxH, rank(A)} = 1, by Corollary 5.98.

We claim that AyxH A ∅= Om,n . Suppose that AyxH A = Om,n . This implies
xH AyxH Ay = 0. If z = xH Ay, the previous equality amounts to z2 = 0, which yields
z = xH Ay = 0. This contradicts the hypothesis of the lemma, so AyxH A ∅= Om,n ,
which implies rank(AyxH A) � 1. This allows us to conclude that rank(AyxH A) = 1.

The rank-1 matrix AyxH A discussed in Lemma 5.107 plays a central role in the
next statement.

Theorem 5.108 (Wedderburn’s Theorem) Let A ∈ C
m×n be a matrix. If x ∈ C

m

and y ∈ C
n are two vectors such that xH Ay ∅= 0 and B is the matrix

B = A − 1

xH Ay
AyxH A,

then rank(B) = rank(A) − 1.

Proof Observe that if z ∈ NullSp(A), then Az = 0. Therefore, we have

Bz = − 1

xH Ay
AyxH Az = 0,

so NullSp(A) ∞ NullSp(B). Conversely, if z ∈ NullSp(B), we have

Az − 1

xH Ay
AyxH Az = 0,

which can be written as

Az = 1

xH Ay
Ay(xH Az) = xH Az

xH Ay
Ay.

Thus, we obtain A(z−ky) = 0, where k = xH Az
xH Ay . Since Ay ∅= 0, this shows that a

basis of NullSp(B) can be obtained by adding y to a basis of NullSp(A). Therefore,
dim(NullSp(B)) = dim(NullSp(A)) + 1, so rank(B) = rank(A) − 1.

Theorem 5.109 A square matrix A ∈ C
n×n generates an increasing sequence of

null spaces

{0} = NullSp(A0) ∞ NullSp(A1) ∞ · · · ∞ NullSp(Ak) ∞ · · ·
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and a decreasing sequence of subspaces

C
n = Ran(A0) → Ran(A1) → · · · → Ran(Ak) → · · ·

Furthermore, there exists a number ν such that

NullSp(A0) ∨ NullSp(A1) ∨ · · · ∨ NullSp(Aν) = NullSp(Aν+1) = · · ·

and
Ran(A0) ≥ Ran(A1) ≥ · · · ≥ Ran(Aν) = Ran(Aν+1) = · · ·

Proof The proof of the existence of the increasing sequence of null subspaces
and the decreasing sequence of ranges is immediate. Since NullSp(Ak) ∞ C

n for
every k there exists a least number p such that Ran(Ap) = Ran(Ap+1). There-
fore, Ran(Ap+i ) = Ai Ran(Ap) = Ai Ran(Ap+1) = Ran(Ap+i+1) for every
i ∈ N. Thus, once two consecutive subspaces Ran(Aν) and Ran(Aν+1) are equal
the sequence of range subspaces stops growing.

By Equality (5.6), we have dim(Ran(Ak)) + dim(NullSp(Ak)) = n, so the
sequence of null spaces stabilizes at the same number ν.

Definition 5.110 The index of a square matrix A ∈ C
n×n is the number ν defined

in Theorem 5.109.
We denote the index of a matrix A ∈ C

n×n by index(A).

Observe that if A ∈ C
n×n is a non-singular matrix, then index(A) = 0 because

in this case C
n = Ran(A0) = Ran(A).

Theorem 5.111 Let A ∈ C
n×n be a square matrix. The following statements are

equivalent:

(i) Ran(Ak) ∧ NullSp(Ak) = {0};
(ii) C

n = Ran(Ak) � NullSp(Ak);
(iii) k � index(A).

Proof We prove this theorem by showing that (i) and (ii) are equivalent, (i) implies
(iii), and (iii) implies (ii).

Suppose that the first statement holds. The set

T = {t ∈ V | t = u + v, u ∈ Ran(Ak), v ∈ NullSp(Ak)}

is a subspace of C
n and dim(T ) = dim(Ran(Ak)) + dim(NullSp(Ak)) = n.

Therefore, T = C
n , so C

n = Ran(Ak)�NullSp(Ak). The second statement clearly
implies the first.

Suppose now that C
n = Ran(Ak) � NullSp(Ak). Then,

Ran(Ak) = Ak
C

n = ARan(Ak) = Ran(Ak+1)
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so k � index(A).
Conversely, if k � index(A) and x ∈ Ran(Ak)∧NullSp(Ak), then x = Aky and

Akx = 0, so A2ky = 0. Thus, y ∈ NullSp(A2k) = NullSp(Ak), which means that
x = Aky = 0. Thus, the first statement holds.

5.5 Multilinear Forms

The notion of linear mapping can be extended as follows.

Definition 5.112 Let F be a field and let {M1, . . . , Mn} be a family of n F-linear
spaces.

An F-multilinear mapping is a mapping f : M1 × · · · × Mn −∈ M, where M is
an F-linear space that is linear in each of its arguments. In other words, f satisfies
the conditions

f (x1, . . . , xi−1,
k∑

j=1
a j x

j
i , xi+1, . . . , xn)

=
k∑

j=1
a j f (x1, . . . , xi−1, x j

i , xi+1, . . . , xn),

for every xi , x j
i ∈ Mi and a1, . . . , ak ∈ F.

If M is the field F itself, then we refer to f as an n-linear form. For the special
case n = 2 we use the terms bilinear mapping or bilinear form.

We introduce next a class of multilinear forms that plays a central role in this
chapter.

Definition 5.113 Let F = (F, {0, 1,+,−, ·}) be a field and let M be an F-linear
space. An F-multilinear form f : Mn −∈ F is skew-symmetric if xi = x j for
1 � i ∅= j � n implies f (x1, . . . , xi , . . . , x j , . . . , xn) = 0.

The next statement shows that when two arguments of f are interchanged, then
the value of f is multiplied by −1.

Theorem 5.114 Let L be an F-linear space and let f : Ln −∈ F be a skew-
symmetric F-multilinear form. We have

f (x1, . . . , xi , . . . , x j , . . . , xn) = − f (x1, . . . , x j , . . . , xi , . . . , xn),

for x1, . . . , xn ∈ L.

Proof Since f is a multilinear form we have:
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f (x1, . . . , xi + x j , . . . , xi + x j , . . . , xn)

= f (x1, . . . , xi , . . . , xi , . . . , xn) + f (x1, . . . , xi , . . . , x j , . . . , xn)

+ f (x1, . . . , x j , . . . , xi , . . . , xn) + f (x1, . . . , x j , . . . , x j , . . . , xn)

= f (x1, . . . , xi , . . . , x j , . . . , xn) + f (x1, . . . , x j , . . . , x j , . . . , xn).

By the defining property of skew-symmetry we have the equalities

f (x1, . . . , xi + x j , . . . , xi + x j , . . . , xn) = 0,

f (x1, . . . , xi , . . . , xi , . . . , xn) = 0,

f (x1, . . . , x j , . . . , x j , . . . , xn) = 0,

which yield

f (x1, . . . , xi , . . . , x j , . . . , xn) = − f (x1, . . . , x j , . . . , xi , . . . , xn),

for x1, . . . , xn ∈ L .

Corollary 5.115 Let F be a field, L be an F-linear space and let f : Ln −∈ F be
a skew-symmetric F-multilinear form.

If xi = x j for i ∅= j , then f (x1, . . . , xi , . . . , x j , . . . , xn) = 0.

Proof This follows immediately from Theorem 5.114.

Theorem 5.114 has the following useful extension.

Theorem 5.116 Let L be an F-linear space and let f : Ln −∈ F be a skew-
symmetric F-multilinear form.

If φ ∈ PERMn is a permutation given by

φ :
(

1 · · · i · · · n
j1 · · · ji · · · jn

)
,

then f (x j1, . . . , x jn ) = (−1)inv(φ) f (x1, . . . , xn) for x1, . . . , xn ∈ M.

Proof The argument is by induction on p = inv(φ). The basis case, p = 0 is
immediate because in this case, φ is the identity mapping.

Suppose that the argument holds for permutations that have no more than p
inversions and let φ be a permutation that has p + 1 inversions. Then, as we saw in
the proof of Theorem 3.8, there exists a standard transposition Ψ such that for the
permutation φ⊆ defined as φ⊆ = Ψφ we have inv(φ⊆) = inv(φ) − 1. Suppose that φ⊆
is the permutation

φ⊆ :
(

1 2 · · · ν ν + 1 · · · n
j1 j2 · · · jν jν+1 · · · jn

)
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and Ψ is the standard transposition that exchanges jν and jν+1, so

φ :
(

1 2 · · · ν ν + 1 · · · n
j1 j2 · · · jν+1 jν · · · jn

)

By the inductive hypothesis,

f (x j1, . . . , x jν , x jν+1 , . . . , x jn ) = (−1)inv(φ⊆) f (x1, . . . , xn)

and

f (x j1, . . . , x jν+1 , x jν , . . . , x jn )

= − f (x j1 , . . . , x jν , x jν+1 , . . . , x jn )

= −(−1)inv(φ⊆) f (x1, . . . , xn) = (−1)inv(φ) f (x1, . . . , xn),

which concludes the argument.

Theorem 5.117 Let F be a field, L be an F-linear space, f : Ln −∈ F be a
skew-symmetric F-multilinear form, and let a ∈ F.

If i ∅= j and x1, . . . , xn ∈ Mn, then

f (x1, . . . , xn) = f (x1, . . . , xi + ax j , . . . , xn).

Proof Suppose that i < j . Then, by the linearity of f we have

f (x1, . . . , xi + ax j , . . . , xn)

= f (x1, . . . , xi , . . . , xn) + a f (x1, . . . , x j , . . . , x j , . . . , xn)

= f (x1, . . . , xi , . . . , xn),

by Corollary 5.115.

Theorem 5.118 Let L be an F-linear space and let f : Ln −∈ R be a skew-
symmetric linear form on L. If {x1, . . . , xn} is a linearly dependent subset of L, then
f (x1, . . . , xn) = 0.

Proof Suppose that {x1, . . . , xn} is linearly dependent set, that is, one of the vectors
can be expressed as a linear combination of the remaining vectors, say xn = a1x1 +
· · · + an−1xn−1. Then,

f (x1, . . . , xn−1, xn) = f (x1, . . . , xn−1, a1x1 + · · · + an−1xn−1)

=
n−1∑
i=1

ai f (x1, . . . , xi , . . . , xn−1, xi ) = 0,

by Corollary 5.115.
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Theorem 5.119 Let L be an n-dimensional linear space and let {u1, . . . , un} be a
basis of L. There exists a unique, skew-symmetric multilinear form dn : Ln −∈ R

such that dn(u1, . . . , un) = 1.

Proof Let x1, . . . , xn be n vectors such that

xi = ai1u1 + ai2u2 + · · · + ainun

for 1 � i � n. If dn is a skew symmetric multilinear form, dn : Ln −∈ R, then

dn(x1, x2, . . . , xn)

= dn

⎪
n∑

j1=1
a1 j1u j1 ,

n∑
j2=1

a2 j2u j2 , . . . ,
n∑

jn=1
anjn u jn

)

=
n∑

j1=1

n∑
j2=1

· · ·
n∑

jn=1
a1 j1a2 j2 · · · anjn dn(u j1 , u j2 , . . . , u jn )

We need to retain only the terms of this sum in which the arguments of
dn(x j1 , x j2 , . . . , x jn ) are pairwise distinct (because term where jp = jq for p ∅= q
is zero, by Corollary 5.115). In other words, only the terms in which the list
( j1, . . . , jn) is a permutation of (1, . . . , n) have a non-zero contribution to the sum.
By Theorem 5.116, we can write

dn(x1, x2, . . . , xn)

= dn(u1, u2, . . . , un)
∑

j1,..., jn (−1)inv( j1,..., jn)a1 j1a2 j2 · · · anjn .

where the sum extends to all n! permutations ( j1, . . . , jn) of (1, . . . , n). Since
dn(u1, . . . , un) = 1, it follows that

dn(x1, x2, . . . , xn) =
∑

j1,..., jn

(−1)inv( j1,..., jn)a1 j1a2 j2 · · · anjn .

Note that dn(x1, x2, . . . , xn) is expressed using the elements of the matrix A,
where

A =


⎜⎜⎜

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...

an1 an2 · · · ann


⎟⎟⎟ .
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5.6 Linear Systems

Consider the following set of linear equalities

a11x1 + . . . + a1n xn = b1,

a21x1 + . . . + a2n xn = b2,

...
...

am1x1 + . . . + amn xn = bm,

where ai j and bi belong to a field F . This set constitutes a system of linear equations
and solving it means finding x1, . . . , xn that satisfy all equalities.

The system can be written succinctly in a matrix form as Ax = b, where

A =


⎜⎜⎜

a11 · · · a1n

a21 · · · a2n
... · · · ...

am1 · · · amn


⎟⎟⎟ , b =


⎜⎜⎜

b1
b2
...

bm


⎟⎟⎟ , and x =


⎜⎜⎜

x1
x2
...

xn


⎟⎟⎟ .

In terms of linear transformations, solving this linear system amounts to determining
those vectors x such that h A(x) = b.

If the set of solutions of a system Ax = b is not empty we say that the system is
consistent. Note that Ax = b is consistent if and only if b ∈ Ran(A).

Let Ax = b be a linear system in matrix form, where A ∈ C
m×n . The matrix

(A b) ∈ C
m×(n+1) is the augmented matrix of the system Ax = b.

Theorem 5.120 Let A ∈ C
m×n be a matrix and let b ∈ C

n×1. The linear system
Ax = b is consistent if and only if rank(A b) = rank(A).

Proof If Ax = b is consistent and x is a solution of this system, then b = x1c1+· · ·+
xncn , where c1, . . . , cn are the columns of A. This implies rank(A b) = rank(A).

Conversely, if rank(A b) = rank(A), the vector b is a linear combination of the
columns of A, which means that Ax = b is a consistent system.

Definition 5.121 An homogeneous linear system is a linear system of the form Ax =
0m, where A ∈ C

m×n, x ∈ C
n,1 and 0 ∈ C

m×1.

Clearly, any homogeneous system Ax = 0m is consistent and has the solution
x = 0n . This solution is referred to as the trivial solution. The set of solutions of
such a system is NullSp(A), the null space of the matrix A.

Let u and v be two solutions of the system Ax = b. Then A(u − v) = 0m , so
z = u − v is a solution of the homogeneous system Ax = 0m , so z ∈ NullSp(A).
Thus, the set of solutions of Ax = b can be obtained as a translation of the null
space of A by any particular solution of Ax = b. In other words the set of solution
of Ax = b is {x + z | z ∈ NullSp(A)}.
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Thus, for A ∈ C
m×n , the system Ax = b has a unique solution if and only if

NullSp(A) = {0n}, that is, according to Equality (5.6), if rank(A) = n.

Theorem 5.122 Let A ∈ C
n×n. Then, A is invertible (which is to say that rank(A) =

n) if and only if the system Ax = b has a unique solution for every b ∈ C
n.

Proof If A is invertible, then x = A−1b, so the system Ax = b has a unique solution.
Conversely, if the system Ax = b has a unique solution for every b ∈ C

n , let
c1, . . . , cn be the solution of the systems Ax = e1, . . . , Ax = en , respectively. Then,
we have

A(c1 · · · cn) = In,

which shows that A is invertible and A−1 = (c1| · · · |cn).

Corollary 5.123 An homogeneous linear system Ax = 0, where A ∈ C
n×n has a

non-trivial solution if and only if A is a singular matrix.

Proof This statement follows from Theorem 5.112.

Thus, by calculating the inverse of A we can solve any linear system of the form
Ax = b.

Definition 5.124 A matrix A ∈ C
n×n is diagonally dominant if |aii | >

∑{|aik | |
1 � k � n and k ∅= i}.
Theorem 5.125 A diagonally dominant matrix is non-singular.

Proof Suppose that A ∈ C
n×n is a diagonally dominant matrix that is singular. By

Corollary 5.123, the homogeneous system Ax = 0 has a non-trivial solution x ∅= 0.
Let xk be a component of x that has the largest absolute value. Since x ∅= 0, we have
|xk | > 0. We can write

akk xk = −
∑

{akj x j | 1 � j � n and j ∅= k},

which implies

|akk | |xk | =
⎩⎩⎩∑{akj x j | 1 � j � n and j ∅= k}

⎩⎩⎩
�
∑

{|akj | |x j | | 1 � j � n and j ∅= k}
⎩⎩⎩

� |xk |
∑

{|akj | | 1 � j � n and j ∅= k}.

Thus, we obtain
|akk | �

∑
{|akj | | 1 � j � n and j ∅= k},

which contradicts the fact that A is diagonally dominant.
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5.7 Determinants

Determinants are a class of numerical multilinear functions defined on the set of
square matrices. They play an important role in theoretical considerations of linear
algebra and are useful for symbolic computations. As we shall see, determinants can
be used to solve certain small and well-behaved linear system; however, they are of
limited use for large or numerically difficult linear systems.1

Definition 5.126 Let A = (ai j ) ∈ C
n×n be a square matrix. The determinant of A

is the number
∑

j1,..., jn (−1)inv( j1,..., jn)a1 j1a2 j2 · · · anjn .
The determinant of A is denoted either by det(A) or by:

⎩⎩⎩⎩⎩⎩⎩⎩⎩

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...

an1 an2 · · · ann

⎩⎩⎩⎩⎩⎩⎩⎩⎩
.

Example 5.127 We have det(In) = 1 since (In)i j = 1 if j = i and (In)i j = 0
otherwise. Thus, there exists only one non-zero term in the sam

det(In) =
∑

j1,..., jn

(−1)inv( j1,..., jn)(In)1 j1(In)2 j2 · · · (In)njn ,

which is obtained when ji = i for 1 � i � n, and this unique term is 1.

Example 5.128 Let A ∈ R
3×3 be the matrix

A =

a11 a12 a13

a21 a22 a23
a31 a32 a33


 .

The number det(A) is the sum of six terms corresponding to the six permutations of
the set {1, 2, 3}, as shown below.
Thus, we have

det(A) = a11a22a33 + a13a21a32 + a12a23a31

= −a12a21a33 − a13a22a31 − a11a23a32.

1 Historically, determinants appeared long before matrices related to solving linear systems. In
modern times, determinants were introduced by Leibniz at the end of the 17th century and Cramer
formula appeared in 1750. The term “determinant” was introduced by Gauss in 1801. The term
“matrix”, the Latin word for womb, was introduced in 1848 by James Joseph Sylvester (1814–
1897), a British mathematician whose name is linked to many fundamental results in linear algebra.
The term was suggested by the role of matrices as generators of determinants.
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Permutation φ inv(φ) Term

(1, 2, 3) 0 a11a22a33
(3, 1, 2) 2 a13a21a32
(2, 3, 1) 2 a12a23a31
(2, 1, 3) 1 −a12a21a33
(3, 2, 1) 3 −a13a22a31
(1, 3, 2) 1 −a11a23a32

The number of terms of a determinant of order n is n!; this number grows very
fast with n. For instance, for n = 10, we have 10! = 3, 682, 800 terms. Thus, direct
computations of determinants are very expensive.

Theorem 5.129 Let A ∈ C
n×n be a matrix. We have det(A⊆) = det(A).

Proof The definition of A⊆ allows us to write

det(A⊆) =
∑

j1,..., jn

(−1)inv( j1,..., jn)a j11a j22 · · · a jnn,

where the sum extends to all permutations of (1, . . . , n). Due to the commu-
tativity of numeric multiplication we can rearrange the term a j11a j22 · · · a jnn as
a1k1a2k2 · · · ankn , where

φ :
(

1 2 · · · n
j1 j2 · · · jn

)
and Ψ :

(
1 2 · · · n
k1 k2 · · · kn

)

are inverse permutations. Since both φ and Ψ have the same parity, it follows that

(−1)inv( j1,..., jn)a j11a j22 · · · a jnn = (−1)inv(k1,...,kn)a1k1a2k2 · · · anjn ,

which implies det(A⊆) = det(A).

Corollary 5.130 If A ∈ C
n×n, then det(AH) = det(A). Furthermore, if A is a

Hermitian matrix, det(A) is a real number.

Proof Let Ā be the matrix obtained from A by replacing each ai j by its conjugate.
Since conjugation of complex numbers permutes with both the sum and product of
complex numbers it follows that det( Ā) = det(A). Thus, det(AH) = det( Ā)⊆ =
det( Ā) = det(A).

The second part of the corollary follows from the equality det(A) = det(A).

Corollary 5.131 If A ∈ C
n×n is a unitary matrix, then | det(A)| = 1.

Proof Since A is unitary we have AH A = AAH = In . By Theorem 5.133,
det(AAH) = det(A) det(AH) = det(A)det(A) = | det(A)|2 = 1. Thus,
| det(A)| = 1.
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Theorem 5.132 The following properties of det(A) hold for any A ∈ C
n×n:

(i) det(A) is a linear function of the rows of A (of the columns of A);
(ii) if two rows (columns) are permuted, then det(A) is changing signs;

(iii) if A has two equal rows (columns), then det(A) = 0;
(iv) if a row of of a matrix, multiplied by a constant, is added to another row,

then det(A) remains unchanged; the same holds if instead of rows we consider
columns;

(v) if a row (column) equals 0n, then det(A) = 0.

Proof We begin with the above statements that involve columns of A.
To prove Part (i) let

A =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

a1
...

ak−1
βbk + Φ ck

ak+1
...

an


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

, B =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

a1
...

ak−1
bk

ak+1
...

an


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

and C =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

a1
...

ak−1
ck

ak+1
...

an


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

,

where b j , c j are row vectors and β, Φ ∈ R. By the definition of det(A) we have

det(A) =
∑

j1,..., jn

(−1)inv( j1,..., jn)a1 j1 · · · (βbkjk + Φ ck jk ) · · · anjn

= β
∑

j1,..., jn

(−1)inv( j1,..., jn)a1 j1 · · · bkjk · · · anjn

+Φ
∑

j1,..., jn

(−1)inv( j1,..., jn)a1 j1 · · · ck jk · · · anjn

= β det(B) + Φ det(C),

which proves that det(·) is linear.
Let now

A =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

a1
...

ap
...

aq
...

an


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

and let Ã =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

a1
...

aq
...

ap
...

an


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

be the matrix obtained by swaping the pth and the qth row of A.
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By the definition of determinants,

det( Ã) =
∑

j1,..., jn

(−1)inv( j1,..., jp,..., jq ,..., jn)a1 j1 · · · aq jq · · · apjp · · · anjn .

Note that the permutation ( j1, . . . , jp, . . . , jq , . . . , jn) is obtained by the compo-
sition of ( j1, . . . , jq , . . . , jp, . . . , jn) with the transposition that swaps jp with jq .
Therefore, det(A) = − det((̃A)), which proves Part (ii).

If two rows of A are equal, then by swapping these rows we get det(A) =
− det(A), so det(A) = 0, which proves Part (iii).

Part (iv) follows from the first three parts; the last part is a direct consequence of
the definition of det(A).

The corresponding statements concerning rows of A follow from Theorem 5.129
because the rows of A are the transposed columns of A⊆.

Theorem 5.133 Let A, B ∈ C
n×n be two matrices. We have det(AB) = det(A)

det(B).

Proof Let a1, . . . , an and b1, . . . , bn be the rows of the matrices A and B respectively,
where ai = (ai1, . . . , ain) for 1 � i � n. Then, the rows c1, . . . , cn of the matrix
C = AB are given by ci = ai1b1 + · · · + ainbn , as it can be easily seen.

If dn : (Cn)n −∈ C is the skew-symmetric multilinear that defines the determi-
nant whose existence and uniqueness was shown in Theorem 5.119, then we have

det(AB) = dn(c1, . . . , ci , . . . , cn)

= dn


 n∑

j1=1

a1 j1b j1 , . . . ,

n∑
j=1

ai ji b ji , . . . ,

n∑
jn=1

anjn b jn




=
n∑

j1=1

· · ·
n∑

j1=1

· · ·
n∑

j1=1

a1 j1 · · · ai ji · · · anjn dn(b j1 , . . . , b ji , . . . , b jn ),

due to the linearity of dn . Observe now that only the sequences ( j1, . . . , jn) that
represent permutations of the set {1, . . . , n} contribute to the sum because dn
is skew-symmetric. Furthermore, if ( j1, . . . , jn) represents a permutation φ, then
dn(b j1 , . . . , b ji , . . . , b jn ) = (−1)inv(φ)dn(b1, . . . , bn). Thus, we can write

det(AB)

= ∑n
j1=1 · · ·∑n

j1=1 · · ·∑n
j1=1 a1 j1 · · · ai ji · · · anjn dn(b j1 , . . . , b ji , . . . , b jn )

=
⎬∑n

j1=1 · · ·∑n
j1=1 · · ·∑n

j1=1(−1)inv( j1,..., jn)a1 j1 · · · ai ji · · · anjn

⎭
dn(b1, . . . , bn)

= det(A) det(B).

Corollary 5.134 Let A ∈ R
n×n. We have
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det(AT i↔ j
n ) = − det(A), det(AT i

+⊃ j
n ) = det(A), det(AT (a)

n,i ) = a det(A).

det(T i↔ j
n A) = − det(A), det((T i

+⊃ j
n )⊆ A) = det(A), det(T (a)

n,i A) = a det(A).

Proof Note that det(T i↔ j
n = −1, det(T i

+⊃ j
n ) = 1 and det(T (a)

n,i = a. The statement
follows immediately from Theorem 5.133.

Lemma 5.135 Let B ∈ R
(n+1)×(n+1) be

B =


⎜⎜⎜

1 0 0 · · · 0
0 a11 a12 · · · a1n
...

...
... · · · ...

0 an1 an2 · · · ann


⎟⎟⎟ .

We have det(B) = det(A), where

A =

⎜

a11 a12 · · · a1n
...

... · · · ...

an1 an2 · · · ann


⎟

Proof If B = (bi j ), then

b1 j =
⎫

1 if j = 1

0 otherwise,
and bi1 =

⎫
1 if i = 1

0 otherwise.

Also, if i > 1 and j > 1, then bi j = ai−1, j−1 for 2 � i, j � n +1. By the definition
of the determinant, each term of the sum that defines det(B) must include an element
of the first row. However, only the first element of this row is non-zero, so

det(B) =
∑

( j1, j2,..., jn+1)

(−1)inv( j1, j2,..., jn+1)b1 j1b2 j2 . . . bn+1, jn+1 ,

=
∑

( j2,..., jn+1)

(−1)inv(1, j2,..., jn+1)a1, j2−1 · · · an−1, jn−1an, jn+1−1,

where ( j2, . . . , jn+1) is a permutation of the set {2, . . . , n + 1}. Since

inv(1, j2, . . . , jn+1) = inv( j2, . . . , jn+1),

it follows that

det(B) =
∑

( j2,..., jn+1)

(−1)inv( j2,..., jn+1)a1, j2−1a2, j3−1 . . . an, jn+1−1.
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Observe now that if ( j2, . . . , jn+1) is a permutation of the set {2, . . . , n + 1}, then
(k1, . . . , kn), where ki = ji+1 − 1 for 1 � i � n is a permutation of (1, . . . , n) that
has the same number of inversions as ( j2, . . . , jn+1). Therefore,

det(B) =
∑

(k1,...,kn)

(−1)inv(k1,...,kn)a1k1a2k2 . . . ankn = det(A).

Lemma 5.136 Let A ∈ R
n×n be a matrix partitioned as:

A =


⎜⎜⎜⎜⎜⎜⎜⎜

a11 · · · a1q a1,q+1 · · · a1n
... · · · ...

... · · · ...

ap1 · · · apq ap,q+1 · · · apn

ap+1,1 · · · ap+1,q ap+1,q+1 · · · ap+1,n
... · · · ...

... · · · ...

an1 · · · anq an,q+1 · · · ann


⎟⎟⎟⎟⎟⎟⎟⎟

and let B ∈ R
(n+1)×(n+1) be defined by

B =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

a11 · · · a1q 0 a1,q+1 · · · a1n
... · · · ...

...
... · · · ...

ap1 · · · apq 0 ap,q+1 · · · apn

0 · · · 0 1 0 · · · 0
ap+1,1 · · · ap+1,q 0 ap+1,q+1 · · · ap+1,n

... · · · ...
...

... · · · ...

an1 · · · anq 0 an,q+1 · · · ann


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

.

Then, det(B) = (−1)p+q det(A).

Proof By permuting the (p + 1)st row of B with each of the p rows preceding it
in the matrix B and, then, by permuting the (q + 1)st column with each of the q
columns preceding it we obtain the matrix C given by

C =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

1 0 0 0 0 0 0
0 a11 · · · a1q a1,q+1 · · · a1n
...

... · · · ...
... · · · ...

0 ap1 · · · apq ap,q+1 · · · apn

0 ap+1,1 · · · ap+1,q ap+1,q+1 · · · ap+1,n
...

... · · · ...
... · · · ...

0 an1 · · · anq an,q+1 · · · ann


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

.



248 5 Linear Spaces

By the third part of Theorem 5.132, each of these row or column permutations
multiplies det(B) by −1, so det(C) = (−1)p+q det(B) By Lemma 5.135 we have
det(C) = det(A), so det(B) = (−1)p+q det(A).

Definition 5.137 Let A ∈ C
m×n. A minor of order k of A is a determinant of the

form

det

(
A

⎧
i1 · · · ik

j1 · · · jk

⎨)
.

A principal minor of order k of A is a determinant of the form:

det

(
A

⎧
i1 · · · ik

i1 · · · ik

⎨)

The leading principal minor of order k is the determinant

det

(
A

⎧
1 · · · k
1 · · · k

⎨)
.

For A ∈ C
n×n , det(A) is the unique principal minor of order n, and that the

principal minors of order 1 of A are just the diagonal entries of A: a11, . . . , ann .

Theorem 5.138 Let A ∈ C
n×n. Define the matrix Ai j ∈ C

(n−1)×(n−1) as

Ai j = A

⎧
1 · · · i − 1 i + 1 · · · n
1 · · · j − 1 j + 1 · · · h

⎨
,

that is, the matrix obtained from A by removing the ith row and the jth column. Then,
we have

n∑
j=1

(−1)i+ j ai j det(Aνj ) =
⎫

det(A) if i = ν,

0 otherwise,

for every i, ν, 1 � i, ν � n.

Proof Let xi be the ith row of A, which can be expressed as

xi =
n∑

j=1

ai j e j ,

where e1, . . . , en is a basis of R
n such that dn(e1, . . . , en) = 1.

By the linearity of dn we have
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dn(A) = dn(x1, . . . , xn)

= dn(x1, . . . , xi−1,

n∑
j=1

ai j e j , xi+1, . . . , xn)

=
n∑

j=1

ai j dn(x1, . . . , xi−1, e j , xi+1, . . . , xn)

The determinant dn(x1, . . . , xi−1, e j , xi+1, . . . , xn) corresponds to a matrix D(i, j)

obtained from A by replacing the ith row by the sequence

(0, . . . , 0, 1, 0, . . . , 0),

whose unique non-zero component is on the jth position. Next, by multiplying the ith
row by −akj and adding the result to the kth row for 1 � k � i −1 and i +1 � k � n
yields a matrix E (i, j) that coincides with the matrix A with the following exceptions:

(i) the elements of row i are 0 with the exception of the jth element of this row that
equals 1, and

(ii) the elements of column j are 0 with the exception of the element mentioned
above.

Clearly, det(D(i, j)) = det(E (i, j)). By applying Lemma 5.136 we obtain det(E (i, j)) =
(−1)i+ j det(Ai j ), so

dn(A) =
n∑

j=1

ai j dn(E (i, j)) =
n∑

j=1

(−1)i+ j ai j det(Ai j ),

which is the first case of the desired formula.
Suppose now that i ∅= ν. The same determinant could be computed by using an

expansion on the νth row:

dn(A) =
n∑

j=1

(−1)i+ j aνj det(Aνj ).

Then,
∑n

j=1(−1)i+ j ai j det(Aνj ) is the determinant of a matrix obtained from A by
replacing the νth row by the ith row and such a determinant is 0 because the new
matrix has two identical rows. This proves the second case of the equality of the
theorem.

The equality of the theorem is known as the Laplace expansion of det(A) by row
i .

Since the determinant of a matrix A equals the determinant of A⊆, det(A) can be
expanded by the jth row as
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det(A) =
n∑

i=1

(−1)i+ j ai j det(Ai j )

for every 1 � j � n. Thus, we have

n∑
i=1

(−1)i+ j ai j det(Aνj ) =
⎫

det(A) if i = ν,

0 if i ∅= ν.

This formula is Laplace expansion of det(A) by column j .
The number cof(ai j ) = (−1)i+ j det(Ai j ) is the cofactor of ai j in either kind of

Laplace expansion. Thus, the both types of Laplace expansions can be succinctly
expressed by the equalities

det(A) =
n∑

j=1

ai j cof(ai j ) =
n∑

i=1

ai j cof(ai j ), (5.7)

for all i, j ∈ {1, . . . , n}.
Cofactors of the form cof(aii ) are known as principal cofactors of A.

Example 5.139 Let a = (a1, . . . , an) be a sequence of n real numbers. The Vander-
monde determinant Va is defined by

Va =

⎩⎩⎩⎩⎩⎩⎩⎩⎩

1 a1 a2
1 · · · an−1

1
1 a2 a2

2 · · · an−1
2

...
... · · · ...

1 an a2
n · · · an−1

n

⎩⎩⎩⎩⎩⎩⎩⎩⎩
By subtracting the first line from the remaining lines we have

Va =

⎩⎩⎩⎩⎩⎩⎩⎩⎩

1 a1 a2
1 · · · an−1

1
0 a2 − a1 a2

2 − a2
1 · · · an−1

2 − an−1
1

...
... · · · ...

0 an − a1 a2
n − a2

1 · · · an−1
n − an−1

1

⎩⎩⎩⎩⎩⎩⎩⎩⎩
=

⎩⎩⎩⎩⎩⎩⎩
a2 − a1 a2

2 − a2
1 · · · an−1

2 − an−1
1

...
... · · · ...

an − a1 a2
n − a2

1 · · · an−1
n − an−1

1

⎩⎩⎩⎩⎩⎩⎩ .

Factoring now ai+1 − a1 from the ith line of the new determinant for 1 � i � n
yields

Va = (a2 − a1) · · · (an − a1)

⎩⎩⎩⎩⎩⎩⎩
1 a2 + a1 · · · ∑n−2

i=0 an−2−i
2 ai

1
...

... · · · ...

1 an + a1 · · · ∑n−2
i=0 an−2−i

n ai
1

⎩⎩⎩⎩⎩⎩⎩
Consider two successive columns of this determinant:
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ck =

⎜
∑k−1

i=0 ak−1−i
2 ai

1
...∑k−1

i=0 ak−1−i
n ai

1


⎟ and ck+1 =


⎜
∑k

i=0 ak−i
2 ai

1
...∑k

i=0 ak−i
n ai

1


⎟

Observe that

ck+1 =

⎜

ak
2
...

ak
n


⎟+ a1ck,

it follows that my subtracting from each column ck+1 be the previous column mul-
tiplied by a1 (from right to left) we obtain

Va = (a2 − a1) · · · (an − a1)

⎩⎩⎩⎩⎩⎩⎩
1 a2 · · · an−2

2
...

... · · · ...

1 an · · · an−2
n

⎩⎩⎩⎩⎩⎩⎩
= (a2 − a1) · · · (an − a1)V(a2,...,an).

By applying repeatedly this formula, it follows that Va = ∏
p>q(ap − aq), where

1 � p, q � n.

Theorem 5.133 can be extended to products of rectangular matrices.

Theorem 5.140 Let A ∈ C
m×n and B ∈ C

n×m be two matrices, where m � n. We
have

det(AB) =
∑{

det

(
A

⎧
1 · · · m

k1 · · · km

⎨)
det

(
B

⎧
k1 · · · km

1 · · · m

⎨)
⎩⎩⎩1 � k1 < k2 < · · · < km � n

}
.

This equality is known as the Cauchy-Binet formula.

Proof Let a1, . . . , an be the rows of the matrix A and let C = AB. The first column
of the matrix AB equals

∑n
k1=1 ak1bk11 Since det(C) is linear we can write

det(C) =
n∑

k1=1

bk11

⎩⎩⎩⎩⎩⎩⎩⎩⎩

ak11 c12 · · · c1n

ak12 c22 · · · c2n
...

... · · · ...

ak1m cm2 · · · cmn

⎩⎩⎩⎩⎩⎩⎩⎩⎩
Similarly, the second row of C equals

∑n
k2=1 ak2bk21. A further decomposition yields

the sum
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det(C) =
n∑

k1=1

n∑
k2=1

bk11bk22

⎩⎩⎩⎩⎩⎩⎩⎩⎩

ak11 ak21 · · · c1n

ak12 ak22 · · · c2n
...

... · · · ...

ak1m ak22 · · · cmn

⎩⎩⎩⎩⎩⎩⎩⎩⎩
,

and so on. Eventually, we can write

det(C) =
n∑

k1=1

· · ·
n∑

km=1

bk11 · · · bkm m

⎩⎩⎩⎩⎩⎩⎩
a1k1 · · · a1km

...
...

...

amk1 · · · amkm

⎩⎩⎩⎩⎩⎩⎩ .

due to the multilinearity of the determinants. Only terms involving distinct numbers
k1, . . . , km can be retained in this sum because any such term with kp = kq equals
0. Suppose that {k1, . . . , km} = {h1, . . . , hm}, where h1 < · · · < hm and φ is the
bijection defined by ki = φ(hi ) for 1 � i � m. Then,

⎩⎩⎩⎩⎩⎩⎩
a1k1 · · · a1km

...
...

...

amk1 · · · amkm

⎩⎩⎩⎩⎩⎩⎩ = (−1)inv(k1,...,km )

⎩⎩⎩⎩⎩⎩⎩
a1h1 · · · a1hm

...
...

...

amh1 · · · amhm

⎩⎩⎩⎩⎩⎩⎩ ,

which allows us to write

det(C) =
∑

h1<···<hm

⎩⎩⎩⎩⎩⎩⎩
a1h1 · · · a1hm

...
...

...

amh1 · · · amhm

⎩⎩⎩⎩⎩⎩⎩
∑
φ

(−1)inv(φ)bφ(h1)1 · · · bφ(hm )m,

where φ is a permutation of the set {h1, . . . , hm}. The last equality is equivalent to
the Cauchy-Binet formula.

Example 5.141 Let A ∈ C
2×n and B ∈ C

n×2 be the matrices

A =
(

a1 · · · an

b1 · · · bn

)
and B =


⎜

c1 d1
...

...

cn dn


⎟ .

Note that

AB =
(∑n

i=1 ai ci
∑n

i=1 ai di∑n
i=1 bi ci

∑n
i=1 bi di

)
.

By applying Binet-Cauchy formula we obtain:
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(
n∑

i=1
ai ci

)(
n∑

i=1
bi di

)
−
(

n∑
i=1

ai di

)(
n∑

i=1
bi ci

)
= ∑

1�i< j�n
(ai b j − a j bi )(ci d j − di c j ).

This equality is known as Lagrange’s Identity.

Let C ∈ C
n×n be a square matrix and let b be a vector in C

n . Denote by (C
i⊃ b)

the matrix obtained from C by replacing the ith column by b.

Example 5.142 Let A ∈ C
n×n be a matrix. Then, (A

q⊃ ep) is the (p, q)-minor of

A and (−1)p+q det(A
q⊃ ep) is the cofactor of apq .

Theorem 5.143 Let {gi j : R −∈ R | 1 � i, j � n} be a collection of n2

differentiable functions and let G(x) the matrix defined by

G(x) =

⎜
g11(x) · · · g1n(x)

... · · · ...

gn1(x) · · · gnn(x)


⎟

for x ∈ R. The derivative of the function det(G(x)) is given by

(det(G(x))⊆ =
n∑

i=1

det(G(x)
i⊃ gi (x)⊆),

where

gi (x)⊆ =

⎜
g⊆

1i
...

g⊆
ni


⎟

is the column of the derivatives of the functions positioned in column i of the matrix
G(x), for 1 � i � n.

Proof By the definition of determinants we have:

det(G(x)) =
∑

j1,..., jn

(−1)inv( j1,..., jn)g1 j1(x)g2 j2(x) · · · gnjn (x)

Therefore, we can write

det(G(x))⊆ =
∑

j1,..., jn

(−1)inv( j1,..., jn)g⊆
1 j1(x)g2 j2(x) · · · gnjn (x)

+
∑

j1,..., jn

(−1)inv( j1,..., jn)g1 j1(x)g2 j2(x)⊆ · · · gnjn (x)
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+
∑

j1,..., jn

(−1)inv( j1,..., jn)g1 j1(x)g2 j2(x) · · · gnjn (x)⊆

=
n∑

i=1

det(G(x)
i⊃ gi (x)⊆),

which concludes the argument.

Example 5.144 Let A = (ai j ) ∈ R
3×3 and let G(x) = det(A − x I3). We have

(det(G(x))⊆

= det(G(x)
1⊃ (−e1)) + det(G(x)

2⊃ (−e2) + det(G(x)
3⊃ (−e3))

=
⎩⎩⎩⎩⎩⎩
−1 a12 a13
0 a22 − x a23
0 a32 a33 − x

⎩⎩⎩⎩⎩⎩+
⎩⎩⎩⎩⎩⎩
a11 − x 0 a13

a21 −1 a23
a31 0 a33 − x

⎩⎩⎩⎩⎩⎩+
⎩⎩⎩⎩⎩⎩
a11 − x a12 0

a21 a22 − x 0
a31 a32 −1

⎩⎩⎩⎩⎩⎩
= −

⎩⎩⎩⎩a22 − x a23
a32 a33 − x

⎩⎩⎩⎩−
⎩⎩⎩⎩a11 − x a13

a31 a33 − x

⎩⎩⎩⎩−
⎩⎩⎩⎩a11 − x a12

a21 a22 − x

⎩⎩⎩⎩ .
The same technique is applied to compute the second derivative

(det(G(x))⊆⊆ = −
⎩⎩⎩⎩−1 a23

0 a33 − x

⎩⎩⎩⎩−
⎩⎩⎩⎩a22 − x 0

a32 −1

⎩⎩⎩⎩
−
⎩⎩⎩⎩−1 a13

0 a33 − x

⎩⎩⎩⎩−
⎩⎩⎩⎩a11 − x 0

a31 −1

⎩⎩⎩⎩
−
⎩⎩⎩⎩−1 a12

0 a22 − x

⎩⎩⎩⎩−
⎩⎩⎩⎩a11 − x 0

a21 −1

⎩⎩⎩⎩
= 2(a11 + a22 + a33 − 3x).

Note that G(0) = det(A), −G ⊆(0) equals the sum of order 2 principal minors of A,
while G ⊆⊆(0) is twice the sum of order 1 principal minors of A.

This observation can be generalized to square matrices of any size: if A ∈ R
n×n ,

then for the kth derivative of the function G(x) = det(A − x In) we have

G(k)(0) = (−1)kk!Sn−k(A),

where Sp(A) is the sum of all order-p principal minors of A (see Exercise 52).

Example 5.145 Let Qn(a, b) be the determinant of order n:

Qn(a, b) =

⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩

a 1 1 1 · · · 1
1 b 1 0 · · · 0
1 0 b 0 · · · 0
...

...
...

... · · · ...

1 0 0 0 · · · b

⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩
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We have Q2(a, b) = ab−1. To compute the value of Qn(a, b)note that, by expanding
this determinant by its last column we have:

Qn(a, b) = (−1)n+1

⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩

1 b 0 0 · · · 0
1 0 b 0 · · · 0
...

...
...

... · · · ...

1 0 0 0 · · · b
1 0 0 0 · · · 0

⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩
+ bQn−1(a, b) = −bn−2 + bQn−1(a, b).

It is easy to verify that Qn(a, b) = bn−1a − (n − 1)bn−2 for n � 2.

Theorem 5.146 Let A, B ∈ C
n×n. Then det(A + B) is equal to the sum of the

determinants of the 2n matrices obtained by replacing each subset of the columns of
A by the corresponding subset of columns of B.

Proof Let A = (a1 · · · an) and B = (b1 · · · bn). Since det(A + B) = det(a1 +
b1 · · · an + bn), by the linearity of determinants, we can write

det(a1 + b1 · · · an + bn)

= det(a1 a2 + b2 · · · , an + bn) + det(b1 a2 + b2 · · · , an + bn)

= det(a1 a2 · · · , an + bn) + det(a1 b2 . . . , an + bn)

+ det(b1 a2 · · · , an + bn) + det(b1 b2 . . . , an + bn)

= · · ·
= det(a1 a2 · · · an) + det(a1 b2 · · · an) + · · · + det(b1 b2 · · · bn).

In principle, determinants can be used for solving linear systems of equation and
we discuss a formula that allows us to do just that. Let A ∈ C

n×n , b ∈ C
n and

consider the linear system Ax = b. The columns of the matrix A are denoted by
a1, . . . , an , that is, A = (a1 · · · an). Note that

A(In
i⊃ x) = A(e1 e2 · · · ei−1 x ei+1 · · · en)

= (a1 a2 · · · ai−1 b ai+1 · · · an)

= (A
i⊃ b). (5.8)

By expanding the determinant

det(In
i⊃ x) =

⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩

1 0 · · · x1 · · · 0
0 1 · · · x2 · · · 0
...

... · · · ... · · · ...

0 0 · · · xi · · · 0
...

... · · · ... · · · ...

0 0 · · · xn · · · 1

⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩
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by its ith row we obtain det(In
i⊃ x) = xi . Thus, computing the determinants on

both sides of Equality (5.8) we have

det(A)xi = det(A
i⊃ b),

for 1 � i � n. This method for computing the components of the solution of the
system Ax = b is known as Cramer’s formula.

Definition 5.147 Let A ∈ R
n×n be a square matrix. The adjoint matrix of A is the

matrix

adj(A) =

⎜

cof(a11) · · · cof(an1)
... · · · ...

cof(a1n) · · · cof(ann)


⎟ ,

that is, the transposed matrix of the matrix whose entries are the cofactors of the
elements of A.

Example 5.148 For the matrix

A =

1 0 2

0 −1 1
1 2 1




the matrix of cofactors is

C =

−3 1 1

4 −1 −2
2 −1 −1


 ,

so the adjoint matrix is

adj(A) =

−3 4 2

1 −1 −1
1 −2 −1


 .

Theorem 5.149 If A ∈ R
n×n, then A adj(A) = det(A)In.

Proof Equalities (5.7) allow us to write:

(A adj(A))i j =
n∑

k=1

aik(adj(A))k j =
n∑

k=1

aikcof(a jk) =
⎫

det(A) if i = j

0 otherwise.

Therefore, A adj(A) = det(A)In .

This allows us to give an explicit formula for computing the inverse of a non-
singular matrix A as

A−1 = 1

det(A)
adj(A). (5.9)
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By Theorem 5.133, if A is a non-singular matrix, we have det(A) det(A−1) = 1.

Corollary 5.150 If A ∈ R
n×n then det(A) ∅= 0 if and only rank(A) = n.

Proof By Theorem 5.112 rank(A) = n if and only if A is invertible; A is invertible
if and only if det(A) ∅= 0.

Example 5.151 For the matrix A ∈ R
3×3 introduced in Example 5.148 we have

det (A) = −1 and

A−1 = 1

det(A)
adj(A) =


 3 −4 −2

−1 1 1
−1 2 1


 .

5.8 Partitioned Matrices and Determinants

Lemma 5.152 Let A ∈ C
n×n, B ∈ C

m×m be two square matrices and let D ∈
C

(m+n)×(m+n) be the matrix

D =
(

A Om,n

C B

)
,

where C ∈ C
m×n. Then, we have det(D) = det(A) det(B).

If the matrix F ∈ C
(m+n)×(m+n) is

F =
(

A E
Om,n B

)
,

where E ∈ C
n×m, then det(F) = det(A) det(B).

Proof Suppose that D = (di j ). The definition of det(D) implies that

det(D) =
∑

j1,..., jn , jn+1,..., jn+m

(−1)inv( j1,..., jn+m )d1 j1 · · · dn+m jn+m .

Each term of this sum involves factors chosen from each row (specified by the first
subscript of di j ). Note that any term

d1 j1 · · · dnjn dn+1 jn+1 · · · dn+m jn+m

in which any of the first n subscripts j1, . . . , jn is at least equal to n + 1 equals
0. Therefore, non-zero terms are those in which ( j1, . . . , jn) is a permutation of
(1, . . . , n). In such terms ( jn+1, . . . , jn+m) is a permutation of (n + 1, . . . , n + m).
By the definition of the matrix D the product d1 j1 · · · dnjn is actually a1 j1 · · · anjn ; the
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product dn+1 jn+1 · · · dn+m jn+m equals b1k1 · · · bmkm , where k1 = jn+1−n, . . . , km =
jn+m − n and

inv( j1, . . . , jn, jn+1, . . . , jn+m) = inv( j1, . . . , jn) + inv(k1, . . . , km).

This allows us to write

det(D) =

∑

j1··· jn

a1 j1 · · · anjn


 ·


 ∑

k1···km

b1k1 · · · bmkm


 = det(A) det(B).

The proof of the second part of the lemma is similar.

Theorem 5.153 Let A be an block upper (or lower) triangular partitioned matrix
given by

A =


⎜⎜⎜

A11 A12 · · · A1m

O A22 · · · A2m
...

... · · · ...

O O · · · Amm


⎟⎟⎟ ,

where Aii ∈ R
pi ×pi for 1 � i � m. Then,

det(A) = det(A11) det(A22) · · · det(Amm).

If A is a block lower triangular matrix

A =


⎜⎜⎜

A11 O · · · O
A21 A22 · · · O
...

... · · · ...

Am1 Am2 · · · Amm


⎟⎟⎟ ,

the same equality holds.

Proof The argument is by induction on m, where m � 2. The base case, m = 2
was shown in Lemma 5.152. Suppose that the statement holds for partitioned upper
diagonal matrices having m − 1 diagonal blocks. Note that if

A =


⎜⎜⎜

A11 A12 · · · A1m

O A22 · · · A2m
...

... · · · ...

O O · · · Amm


⎟⎟⎟ ,

we can also regard A as a partitioned matrix
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A =
(

B C
O Amm

)
,

where B is a partitioned upper diagonal matrices having m − 1 diagonal blocks.
Then, by the base case and by the inductive hypothesis we have

det(A) = det(B) det(Amm) = det(A1) · · · det(Am−1) det(Amm).

Theorem 5.154 Let A ∈ C
m×m, D ∈ C

n×n be two square matrices and let E ∈
C

(m+n)×(m+n) be the matrix

E =
(

A B
C D

)
,

where B ∈ C
m×n and C ∈ C

n×m. If the matrix A is invertible, then det(E) =
det(A) det(D − C A−1 B).

Proof If A is invertible, then

(
Im O

−C A−1 In

)(
A B
C D

)
=
(

A B
0 D − C A−1 B

)
,

which implies

det(E) = det

(
A B
0 D − C A−1 B

)
.

Theorem 5.153 implies the desired equality.

Theorem 5.155 Let A, B, C, D ∈ C
m×m be four square matrices such that AC =

C A and let E ∈ C
2m×2m be the matrix

E =
(

A B
C D

)
.

We have det(E) = det (AD − C B).

Proof Suppose initially that A is invertible, so det(E) = det(A−1) det(D−C A−1 B)

by Theorem 5.154. Then,

det(E) = det(A) det(D − C A−1 B) = det(AD − AC A−1 B)

= det(AD − C AA−1 B) = det(AD − C B).

If A is not invertible, that is, if A is singular consider the continuous function
f : R −∈ R defined by f (x) = det(A+x I ) for x ∈ R. There exists δ > 0 such that
if x ∈ (0, δ), then f (x) ∅= 0, which means that det(A + x I ) ∅= 0, which implies that
A+x I is an invertible matrix. Note that if AC = C A, then (A+x I )C = C(A+x I ),
so the first part of the argument can be applied to the matrix
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Ex =
(

A + x I B
C D

)
.

This implies det(Ex ) = det((A + x I )D − C B) if x ∈ (0, δ). If x tends towards 0,
by the continuity of f (x) it follows that

det(E) = lim
x∈0

det((A + x I )D − C B) = det(AD − BC),

which concludes our argument.

The argument presented in the second part of the proof of Theorem 5.155 is known
as a continuity argument.

Theorem 5.156 Let A ∈ C
n×n be a square matrix. The rank of A equals the largest

size of a non-zero minor of A.

Proof Let r = rank(A) and let s be the largest size of a non-zero minor of A that is

the determinant of the submatrix S = A

⎧
i1 · · · is

j1 · · · js

⎨
. By permuting the rows and the

columns of A we obtain a matrix B of the same rank as A such that B

⎧
1 · · · s
1 · · · s

⎨
= S.

Since any permutation of rows or columns preserves the non-nullity of a determinant
we have

det

(
B

⎧
1 · · · s
1 · · · s

⎨)
∅= 0.

Thus, the rows of S are linearly independent and, therefore, the first s rows of B are
linearly independent, so s � r .

Since rank(A) = r , A has r linearly independent rows. By permuting the rows
of A, these rows can be brought in the first r position in a matrix B which has the
same rank r as A. Then, r linearly independent columns of B are brought on the first

r position to result into a matrix C . Let P = C

⎧
1, . . . , r
1, . . . , r

⎨
. Since P is of rank r it

follows that det(P) ∅= 0, so r � s.

5.9 The Kronecker and Hadamard products

Definition 5.157 Let A ∈ C
m×n and B ∈ C

p×q be two matrices. The Kronecker
product of these matrices is the matrix A ≡ B ∈ C

mp×nq defined by

A ≡ B =


⎜⎜⎜

a11 B a12 B · · · a1n B
a21 B a22 B · · · a2n B

...
...

. . .
...

am1 B am2 B · · · amn B


⎟⎟⎟ .
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Example 5.158 Consider the matrices

A =
(

a11 a12
a21 a22

)
and B =


b11 b12 b13

b21 b22 b23
b31 b32 b33




Their Kronecker product is

A ≡ B =


⎜⎜⎜⎜⎜⎜

a11b11 a11b12 a11b13 a12b11 a12b12 a12b13
a11b21 a11b22 a11b23 a12b21 a12b22 a12b23
a11b31 a11b32 a11b33 a12b31 a12b32 a12b33

a21b11 a21b12 a21b13 a22b11 a22b12 a22b13
a21b21 a21b22 a21b23 a22b21 a22b22 a22b23
a21b31 a21b32 a21b33 a22b31 a22b32 a22b33


⎟⎟⎟⎟⎟⎟

.

The next theorem contains a few elementary properties of Kronecker’s product.

Theorem 5.159 For any matrices A, B, C, D we have:

(i) (A ≡ B)⊆ = A⊆ ≡ B ⊆,
(ii) (A ≡ B) ≡ C = A ≡ (B ≡ C),

(iii) (A ≡ B)(C ≡ D) = (AC ≡ B D),
(iv) A ≡ B + A ≡ C = A ≡ (B + C),
(v) A ≡ D + B ≡ D = (A + B) ≡ D,

(vi) (A ≡ B)⊆ = A⊆ ≡ B ⊆,
(vii) (A ≡ B)H = AH ≡ BH,

when the usual matrix sum and multiplication are well-defined in each of the above
equalities.

Proof The proof is straightforward and is left to the reader.

Example 5.160 Let x ∈ C
n and y ∈ C

m . We have

x ≡ y =

⎜

x1y
...

xny


⎟ =


⎜

y1x
...

ymx


⎟ ∈ C

mn .

Theorem 5.161 If A ∈ C
n×n and B ∈ C

m×m are two invertible matrices, then
A ≡ B is invertible and (A ≡ B)−1 = A−1 ≡ B−1.

Proof Since

(A ≡ B)(A−1 ≡ B−1) = (AA−1 ≡ B B−1) = In ≡ Im,

the theorem follows by noting that In ≡ Im = Inm .
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Theorem 5.162 The Kronecker product A ≡ B of two normal (unitary) matrices
A, B is a normal (a unitary) matrix.

Proof By Theorem 5.159 we can write

(A ≡ B)⊆(A ≡ B) = (A⊆ ≡ B ⊆)(A ≡ B)

= (A⊆ A ≡ B ⊆ B)

= (AA⊆ ≡ B B ⊆)
(because both A and B are normal)

= (A ≡ B)(A ≡ B)⊆,

which implies that A ≡ B is normal.

Definition 5.163 Let A ∈ C
m×m and B ∈ C

n×n be two square matrices. Their
Kronecker sum is the matrix A ∗ B ∈ C

mn×mn defined by

A ∗ B = (A ≡ In) + (Im ≡ B).

The Kronecker difference is the matrix A √ B ∈ C
mn×mn defined by

A √ B = (A ≡ In) − (Im ≡ B).

Definition 5.164 Let A, B ∈ C
m×n. The Hadamard product of A and B is the matrix

A ⊇ B ∈ C
m×n defined by

A ⊇ B =


⎜⎜⎜

a11b11 a12b12 · · · a1nb1n

a21b21 a22b22 · · · a2nb2n
...

...
. . .

...

am1bm1 am2bm2 · · · amnbmn


⎟⎟⎟ .

The Hadamard quotient A � B is defined only if bi j ∅= 0 for 1 � i � m and
1 � j � n. In this case

A � B =


⎜⎜⎜

a11
b11

a12
b12

· · · a1n
b1na21

b21

a22
b22

· · · a2n
b2n

...
...

. . .
...

am1
bm1

am2
bm2

· · · amn
bmn


⎟⎟⎟ .

Theorem 5.165 If A, B, C ∈ C
m×n and c ∈ C we have

(i) A ⊇ B = B ⊇ A;
(ii) A ⊇ Jm,n = Jm,n ⊇ A = A;
(iii) A ⊇ (B + C) = A ⊇ B + A ⊇ C;
(iv) A ⊇ (cB) = c(A ⊇ B).
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Proof The proof is straightforward and is left to the reader.

Note that the Hadamard product of two matrices A, B ∈ C
m×n is a submatrix of

the Kronecker product A ≡ B.

Example 5.166 Let A, B ∈ C
2×3 be the matrices

A =
(

a11 a12 a13
a21 a22 a23

)
and B =

(
b11 b12 b13
b21 b22 b23

)
.

The Kronecker product of these matrices is A ≡ B ∈ C
4×9 given by:

A ≡ B =


⎜⎜

a11b11 a11b12 a11b13 a12b11 a12b12 a12b13 a13b11 a13b12 a13b13
a11b21 a11b22 a11b23 a12b21 a12b22 a12b23 a13b21 a13b22 a13b23
a21b11 a21b12 a21b13 a22b11 a22b12 a22b13 a23b11 a23b12 a23b13
a21b21 a21b22 a21b23 a22b21 a22b22 a22b23 a23b21 a23b22 a23b23


⎟⎟ .

The Hadamard product of the same matrices is

A ⊇ B =
(

a11b11 a12b12 a13b13
a21b21 a22b22 a23b23

)
,

and we can regard the Hadamard product as a submatrix of the Kronecker product
A ≡ B,

A ⊇ B = (A ≡ B)

⎧
1, 5, 9
4, 4, 4

⎨
.

5.10 Topological Linear Spaces

We are examining now the interaction between the algebraic structure of linear spaces
and topologies that can be defined on linear spaces that are compatible in a certain
sense with the algebraic structure. Compatibility, in this case, is defined as the con-
tinuity of addition and scalar multiplication.

Definition 5.167 Let F be the real field R or complex field C. An F-topological
linear space is a topological space (V,O) such that

(i) V is an F-linear space;
(ii) the vector addition is a continuous function between V 2 and V ;
(iii) the scalar multiplication is a continuous function between F × V and V .

Unless stated otherwise, we assume that the field F is either the real or the complex
field.

Theorem 5.168 Let (V,O) be an F-topological linear space and let z ∈ V . The
translation mapping tz : V −∈ V is a homeomorphism.
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Proof It is immediate that tz is a bijection whose inverse is t−z. The continuity of
both tz and t−z follows from the continuity of the vector addition of V .

Example 5.169 If a ∅= 0, then each homotety ha of a topological linear space (V,O)

is a homeomorphism. Indeed, the inverse of ha is ha−1 . The continuity of both ha

and ha−1 follows from the continuity of the scalar multiplication of V .

Theorem 5.170 Let (V,O) be a topological linear space. If W is a neighborhood
of 0, then tx(W ) is a neighborhood of x. Moreover, every neighborhood of x can be
obtained by a translation of a neighborhood of 0.

Proof Since W is a neighborhood of the origin, there exists an open subset L of
V such that 0 ∈ L ∞ W . This implies x = tx(0) ∈ tx(L) ∞ tx(W ). Since every
translation is a homeomorphism of (V,O) it follows that tx(L) is an open set and
this, in turn, implies that tx(W ) is a neighborhood of x.

Conversely, let U be a neighborhood of x and let K be an open set such that
x ∈ K ∞ U . Then, we have 0 = t−x(x) ∈ t−x(K ) ∞ t−x(U ). Since t−x(K ) is an
open set, it follows that t−x(K ) is a neighborhood of 0 and the desired conclusion
follows from the fact that U = tx(t−x(U )).

Theorem 5.170 shows that in a topological linear space the neighborhoods of any
point are obtained by translating the neighborhoods of 0.

Corollary 5.171 IfFx is a fundamental system of neighborhoods of x in the topolog-
ical linear space (V,O), then Fx can be obtained by a translation of a fundamental
system of neighborhoods F0 of 0.

Proof This statement follows immediately from Theorem 5.170.

The next theorem shows that a linear function between two topological linear
spaces is continuous if and only if it is continuous in the zero element of the first
space.

Theorem 5.172 Let (V1,O1) and (V2,O2) be two topological F-linear spaces hav-
ing 01 and 02 as zero elements, respectively. A linear operator f ∈ Hom(V1, V2) is
continuous in x ∈ V1 if and only if it is continuous in 01 ∈ V1.

Proof Let f be a function that is continuous in a point x ∈ V1. If U ∈ neigh02
(O2),

then f (x) + U is a neighborhood of f (x). Since f is continuous, there exists a
neighborhood W of x such that f (W ) ∞ f (x) + U .

Observe that the set −x+W is a neighborhood of 01. Moreover, any neighborhood
of 01 has this form. If t ∈ −x + W , then t + x ∈ W and, therefore, f (t) + f (x) =
f (t + x) ∈ f (x) + U . This shows that f (t) ∈ U , which proves that f is continuous
in 01.

Conversely, suppose that f is continuous in 01. Let x ∈ V1 and let Z ∈
neigh f (x)(O2). The set − f (x)+ Z is a neighborhood of 02 in V2. The continuity of f
in 01 implies the existence of a neighborhood T of 01 such that f (T ) ∞ − f (x)+ Z .
Note that x + T is a neighborhood of x in V1 and every neighborhood of x in V1 has
this form. Since f (x + T ) ∞ Z , it follows that f is continuous in x.
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Corollary 5.173 Let (V1,O1) and (V2,O2) be two topological F-linear spaces. A
linear operator f ∈ Hom(V1, V2) is either continuous on V1 or is discontinuous in
every point of V1.

Proof This statement is a direct consequence of Theorem 5.172.

Theorem 5.174 Let C and D be two subsets of R
n such that C is compact and D

is closed. Then the set C + D = {x + y | x ∈ C, y ∈ D} is closed.

Proof Let x ∈ K(C + D). There exists a sequence (x0, x1, . . .) such that xi ∈
C + D and limn∈∪ xn = x. The definition of C + D means that there is a sequence
(u0, u1, . . .) ∈ Seq∪(C) and a sequence (v0, v1, . . .) ∈ Seq∪(D) such that xi =
ui + vi for i ∈ N.

Since C is compact, the sequence (v0, v1, . . .) contains a convergent subsequence
(ui0 , ui1 , . . .). Let u = limm∈∪ uim . Clearly, limm∈∪ xim = x. Since D is a closed
set, limm∈∪ vim = x−u ∈ D. Therefore, x = u+v ∈ C+D, so K(C+D) = C+D,
which means that C + D is closed.

Exercises and Supplements

1. Let L be an F-linear space. Prove that 0x = 0 and a0 = 0 for every a ∈ F and
x ∈ L .

2. Prove that a subset K of a linear space is linearly dependent if and only of there
is x ∈ K that can be expressed as a linear combination of K − {x}.

3. Let L , M be two F-linear spaces, h : L −∈ M be a linear mapping, and let
X = {x1, . . . , xm} be a subset of L . Prove that if {h(x1), . . . , h(xm)} is a linearly
independent set in M , then X is linearly independent in L .

4. Let U, V be two subspaces of the finite-dimensional F-linear space L . Prove that
there exists a vector w ∅= 0 in both U and V only if dim(U )+dim(V ) > dim(L).

5. Let L be a finite-dimensional F-linear space and let U, V be two subspaces of
L . Show that U + V = U � V if and only if dim(U + V ) = dim(U )+ dim(V ).

6. Let U, V, W be subspaces of a finite-dimensional F-linear space L . Prove that

dim(U ∧ V ∧ W ) � dim(U ) + dim(V ) − 2 dim(L).

7. Let w be a vector in R
n . Prove that the set

Pw = {x ∈ R
n | w⊆x = 0}

is a subspace of R
n .

8. Let POL be the real linear space of all polynomials in the variable x and let
POLn be the set of all polynomials of degree at most n. Prove that

(a) any sequence of polynomials of degrees 0, 1, 2, · · · is a basis for POL;
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(b) POLn is a subspace of dimension n + 1 of POL.

9. Prove that there exists a unique linear function L : POL −∈ R such that L(1) =
1 and L([x]k) = 1 for k � 1, where the polynomial [x]k = x(x−1) · · · (x−k+1)

was introduced in Exercise 27 of Chap. 3.
10. Prove that

Bn+1 = 1

e

(
1n + 2n

1! + 3n

2! + · · ·
)

(Dobinski’s Formula), where Bn is the nth Bell number introduced in Exercise 33
of Chap. 3.

Solution: As observed in Exercise 28 of Chap. 3, we have e = ∑∪
k=0

[k]n
k! . By

applying L (defined in Exercise 9) to both members of the equality of Exercise 30
of Chap. 3 we have

∑
{L([u]k) | k = |π |,π ∈ PART(A)} = L(um),

which implies Bn = L(um).

If p(u) is a polynomial, taking into account that L is linear and that the polynomi-
als of the form [u]n constitute a basis for POL, we can write p(u) = ∑

n an[u]n .
Therefore,

L(p(u)) =
∑

n

an L([u]n) =
∑

n

an
1

e

∑
k

[k]n

k!

= 1

e

∑
n

∑
k

an
[k]n

k! = 1

e

∑
k

∑
n

an
[k]n

k!

= 1

e

∑
k

p(k)

k!

for any polynomial p. Choosing p(u) = un yields Dobinski’s formula.

An affine subspace of a F-linear space (L ,+, ·) is a nonempty subset U of L
such that there exists u ∈ L such that the set U − {u} = {x − u | x ∈ U } is a linear
subspace.

11. Let x0, a ∈ R
n . The line that passes through x0 and has the direction a is the set

Lx0,a = {x ∈ R
n | x = x0 + ta for some t ∈ R}.

Prove that Lx0,a is an affine subspace of R
n .

12. Let x0 and w be two vectors in R
n . Prove that the set
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Hx0,w = {x ∈ R
n | w⊆(x − x0) = 0}

is an affine subset of R
n .

13. Let e1, . . . , em be the vectors of the standard basis ofC
m . Prove that

∑m
k=1 eke⊆

k =
Im .

14. Let A, B, C be three matrices such that A = BC . Prove that

(a) Ran(A) ∞ Ran(B); also, if C is a square invertible matrix, show that
Ran(A) = Ran(B);

(b) NullSp(C) ∞ NullSp(A); also, if B is a square invertible matrix,
NullSp(C) = NullSp(A).

15. Let A ∈ R
n×n . Prove that:

(a) the matrices

B = 1

2
(A + A⊆) and C = 1

2
(A − A⊆)

are symmetric and skew-symmetric, respectively;
(b) any square real matrix A ∈ R

n×n can be uniquelly written as the sum of a
symmetric and a skew-symmetric matrix.

Conclude that R
n×n is the direct sum of the subspace of symmetric matrices and

the subspace of skew-symmetric matrices.
16. Prove that there exist 2n2

matrices in {0, 1}n×n .
17. Let A, B ∈ R

n×n such that there exists a non-singular matrix X ∈ C
n×n such

that AX = X B. Prove that there exists a non-singular matrix Y ∈ R
n×n such

that AY = Y B.
18. Let A ∈ Cn×n . Prove that:

(a) the matrices

B = 1

2
(A + A⊆) and C = 1

2
(A − A⊆)

are Hermitian and skew-Hermitian, respectively;
(b) any square complex matrix A ∈ Cn×n can be uniquelly written as the sum

of a Hermitian and a skew-Hermitian matrix.

Conclude that Cn×n is the direct sum of the subspace of Hermitian matrices and
the subspace of skew-Hermitian matrices.

19. Let K be a finite set that spans the F-linear space (L ,+, ·) and let H be a subset
of L that is linearly independent. There exists a basis B such that H ∞ B ∞ K .

20. Let C, D ∈ Cn×m and let {t1, . . . , tm} be a basis in Cm . Prove that if Cti = Dti

for 1 � i � m, then C = D.
21. Let A ∈ Cn×n be the matrix
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A =


⎜⎜⎜⎜⎜

0⊆
n−1 −a0

1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

... · · · ...
...

0 0 · · · 1 −an−1


⎟⎟⎟⎟⎟

Prove that

(a) Aek = ek+1 for 1 � k � n − 1 and Aen = a, where a is the last column of
A.

(b) if p(t) = tn + an−1tn−1 + · · · + a1t + a0 we have p(A)ei = 0n for
1 � i � n, and therefore, p(A) = On,n ;

(c) there is no polynomial q of degree less than n such that q(A) = On,n .

The matrix A is referred as the companion matrix of the polynomial p.
22. Let S be a finite set S = {x1, . . . , xn} and let ∗ be a binary operation on S. For t

in S, define the matrices Lt , Mt ∈ Sn×n as (Lt )i j = u if (xi ∗ t) ∗ x j = u and
(Rt )i j = v if xi ∗ (t ∗ x j ) = u.

Prove that “∗” is an associative operation on S if and only if for every t ∈ S we
have Lt = Rt .

23. Let A = (ai j ) be an (m × n)-matrix of real numbers. Prove that

max
j

min
i

ai j � min
i

max
j

ai j

(the minimax inequality).
Solution: Note that ai j0 � max j ai j for every i and j0, so mini ai j0 �

mini max j ai j , again for every j0. Thus, max j mini ai j � mini max j ai j .
24. Let A ∈ Cn×n be a matrix and let x, y ∈ Cn be two vectors such that Ax = ax

and A⊆y = ay for some a ∈ C , and x⊆y = 1. Let L be the rank-1 matrix L = xy⊆.
Prove that:

(a) Lx = x and y⊆L = y⊆;
(b) L is an idemponent matrix;
(c) Am L = L Am = am L for m � 1;
(d) L(A − aL) = On,n ;
(e) (A − aL)m = Am − am L for m � 1.

25. Let A ∈ R
n×n be a matrix such that A > On,n and let x ∈ R

n be a non-negative
vector such that x ∅= 0n . Prove that Ax > 0.

Solution: It is clear that Ax � 0n . Suppose that there exists i , 1 � i � n
such that (Ax)i = ∑n

j=1 ai j x j = 0. Since A is positive and x is non-negative,
it follows that ai j x j = 0 for 1 � j � n; this is possible only if x j = 0 for
1 � j � n, that is, if x = 0n . This contradiction shows that Ax > 0.

26. Prove that the product of two doubly-stochastic matrices is a doubly-stochastic
matrix.
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27. Let A ∈ R
n×n be a matrix such that for every doubly-stochastic matrix B ∈ R

n×n

we have AB = B A. Prove that there exist a, b ∈ R such that A = aIn + bJn .
28. Let S = {x1, . . . , xn} be a finite set. If π = {B1, . . . , Bm} and σ = {C1, . . . , C p}

are two partitions on S, prove that for the matrix Q = M ⊆
π Mσ ∈ N

m×p we have
qhk = |Bh ∧ Ck | for 1 � h � m and 1 � k � p.

29. Let φ ∈ PERMn be

φ :
(

1 · · · i · · · n
a1 · · · ai · · · an

)
,

and let vp(φ) = |{(ik, il) | il = p, k < l, ik > il} be the number of inversions
of φ that have p as their second component, for 1 � p � n. Prove that

(a) vp � n − p for 1 � p � n;
(b) for every sequence of numbers (v1, . . . , vn) ∈ N

n such that vp � n − p for
1 � p � n there exists a unique permutation φ that has (v1, . . . , vn) ∈ N

n

as its sequence of inversions.

30. Let p be the polynomial p(x1, . . . , xn) = ∏
i< j (xi − x j ). For a permutation

φ ∈ PERMn ,

φ :
(

1 · · · i · · · n
a1 · · · ai · · · an

)
,

define the number pφ as pφ = p(a1, . . . , an). Prove that

(a) (−1)inv(φ) = pφ

pιn
for any permutation φ;

(b) (−1)inv(Ψφ) = (−1)inv(Ψ)(−1)inv(φ).

31. exer:nov1413a Let A ∈ C
n×n be a matrix. Prove that for every permutation

matrix Pφ , A is a symmetric matrix if and only if P−1
φ APφ is a symmetric

matrix.
32. Let A ∈ R

n×n be a symmetric matrix. Prove that if trace(A) = 0 and the sum
of principal minors of order 2 equals 0, then A = On,n .

Solution: A principal minor of order 2 has the form mi j = aii a j j − a2
i j for

1 � i < j � n (because A is a symmetric matrix) and there are
(n
2

⎛
such minors.

Therefore, the sum of these minors is M = ∑
i< j aii a j j −∑

i< j a2
i j = 0. Since

trace(A) = 0 we have trace(A)2 = ∑n
i=1 a2

i i + 2
∑

i< j aii a j j = 0. These
equalities imply

0 =
n∑

i=1

a2
i i + 2

∑
i< j

aii a j j =
n∑

i=1

a2
i i + 2

∑
i< j

a2
i j

which yields a11 = · · · = ann = a12 = · · · = an−1 n = 0. Thus, A = On,n .
33. Let Dn be the determinant having n rows, defined by
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Dn =

⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩

1 0 0 · · · 0 0
a 1 0 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 0
0 0 0 · · · a 1

⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩
,

where n � 2. Prove that Dn = 1 for every n � 2.
34. Using elementary properties of determinants prove that

⎩⎩⎩⎩⎩⎩
a2 + x2 ab + xy ac + xz
ab + xy b2 + y2 bc + yz
ac + xz bc + yz c2 + z2

⎩⎩⎩⎩⎩⎩ = 0.

35. Let Tn(a) be the tri-diagonal determinant

Tn(a) =

⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩

a 1 0 0 · · · 0 0
1 a 1 0 · · · 0 0
0 1 a 1 · · · 0 0
...

...
...

...
... 0 0

0 0 0 0 · · · 1 a

⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩
having n rows, where n � 2.

Prove that T2(a) = a2 − 1 and that Tn+2(a) = aTn+1(a) − Tn(a) for n � 2.
36. Let A ∈ R

n×n and c ∈ R. Prove that det(cA) = cn det(A).

A matrix A ∈ Cn×n is unimodular if | det(A)| = 1.
37 Let A ∈ R

n×n be a matrix such that ai j ∈ Z. Prove that A is nonsingular and
the matrix A−1 has integer entries if and only if A is unimodular.

Solution: Since A−1 = 1
det(A)

adj(A), it is clear that for a unimodular matrix

whose elements are integers, the entries of A−1 are integers.

Conversely, if A−1 exists and its entries are integers, A−1 A = In implies
det(A) det(A−1) = 1, which, in turn implies det(A) ∈ {−1, 1}.

38. Let A ∈ Z
m×n be a matrix having integer entries. Prove that there exist uni-

modular matrices C ∈ R
m×m, D ∈ R

n×n such that C AD = diag(z1, . . . , zr , 0,

. . . , 0), where r � min{m, n} and z1, . . . , zr are positive integers such that
zi |zi+1 for 1 � i � r − 1. This decomposition of A is known as the Smith
normal form of A.

Solution: Let a = mini, j {|ai j | | ai j ∅= 0, 1 � i � m, 1 � j � n}. Using
row and column transpositions (which can be achieved by multiplications at left
and at right by matrices of the form T i↔ j

n place a in the top leftmost position
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of the matrix T1 AT2, where T1 and T2 are products of matrices of the form T i↔ j
n .

Suppose initially that a divides all entries of the matrix A. Then, by multipli-

cations at left and right with matrices of the form T i
+⊃ j

n and T (a)
n,i we can place

0s everywhere in the first row and the first column except in the position (1, 1)

yielding a matrix of the form

(
1 0⊆

n−1
0n−1 Ã

)
.

Applying the same argument to Ã, we reach the desired conclusion.

Suppose that a1 j is not divisible by a11. Then, we have a1 j = a11q + r
with 0 < |r | < |a11|. After subtracting the first column multiplied by q
from the jth column, we obtain r in position (1, j). Then, we apply the
argument used in the previous case. Since |r | < |a11| the process must
end. The case, when a j1 is not divisible by a11 can be treated similarly.
Thus, we have shown that there exist invertible matrices T1, . . . , Tp, S1, . . . , Sq

such that Tp · · · T1 AS1 · · · Sq = diag(z1, . . . , zr , 0, . . . , 0). By choosing C =
(Tp · · · T1)

−1 and D = (S1 · · · Sq)−1 we reach the desired conclusion.
39. Prove that if a matrix A ∈ Cn×n is skew-Hermitian and n is an odd number, then

⊂(det(A)) = 0.
40. Prove that trace(Jn,n AJn,n B) = trace(Jn,n A)trace(Jn,n B), where A, B ∈

Cn×n .
41. Prove that det(aIn + bJn,n) = an + nan−1b for n � 1.
42. Let A ∈ Cn×n and let x, y ∈ C . Prove that

(x In − A)−1 − (y In − A)−1 = (y − x)(x In − A)−1(y In − A)−1.

43. Let A ∈ R
n×n be a skew-symmetric matrix and let B = A+bJn,n , where b ∈ R.

Prove that if n is even, then det(A) = det (B).
44. Let U, V ∈ Cn×m be two matrices. Prove that det(In +U V H) = det(Im + V HU )

(Sylvester’s Identity).
Solution: Starting from the matrix equalities

(
In −U
V H Im

)
=
(

In On,m

V H Im

)
·
(

In −U
Om,n Im + V HU

)

=
(

In −U
Om,n Im

)
·
(

In + U V H On,m

V H Im

)
,

which are immediate, and taking the determinants of both sides the Sylvester’s
Identity follows immediately taking into account that
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det

(
In U

Om,n Im + V HU

)
= det(Im + V HU )

and

det

(
In + U V H On,m

V H Im

)
= det(In + U V H).

We used the fact that the determinant of a block upper triangular matrix equals
the product of the determinants of matrices situated on the diagonal.

45. Let x, y ∈ Cn . Prove that:

(a) det(In + xyH) = 1 + yHx and det(In − xyH) = 1 − yHx;
(b) if A ∈ Cn×n is an invertible matrix, then det(A + xyH) = det(A)(1 +

yH A−1x).
Solution: The first part is a direct consequence of Supplement 44 by

taking m = 1.
For the second part we have A + xyH = A(In + A−1xyH), which yields the
desired inequality.

46. Let A ∈ R
m×n , where m � n. Prove that

det(AA⊆) =
∑{

det

(
A

⎧
1 · · · m

k1 · · · km

⎨)2 ⎩⎩⎩1 � k1 < k2 < · · · < km � n
}
.

Solution: This equality follows from Cauchy-Binet formula.
47. Let v1, . . . , vn be n complex numbers such that

∑n
k=1 |vk |2 = 2. Prove that

⎩⎩⎩⎩⎩⎩⎩⎩⎩

1 − v1v̄1 v1v̄2 v1v̄3 · · · v1v̄n

v2v̄1 1 − v2v̄2 v2v̄3 · · · v2v̄n
...

...
... · · · ...

vn v̄1 vn v̄2 vn v̄3 · · · 1 − vn v̄n

⎩⎩⎩⎩⎩⎩⎩⎩⎩
= −1.

Solution: Note that the matrix whose determinant is to be computed equals
In − vvH. Thus, by Supplement 45, we have det(In − vvH) = 1 + vHv = −1.

48. Let D = diag(a1, . . . , an) and let A = D + 1n1⊆
n . Prove that

det(A) =
n∏

i=1

ai

⎪
1 +

n∑
i=1

1

ai

)
.

Solution: By Part (b) of Supplement 45, we have

det(A) = det(D + 1n1H
n) = det(D)(1 + 1H

n D−11n),

which amounts to the formula we need to prove.
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49. Let Z ∈ Cn×n , W ∈ Cm×m and let U, V ∈ Cn×m be four matrices such that
each of the matrices W , Z , Z + U W V ⊆, and W −1 + U W V ⊆ have an inverse.

Prove that

(Z + U W V ⊆)−1 = Z−1 − Z−1U (W −1 + V ⊆Z−1U )−1V ⊆Z−1

(the Woodbury–Sherman–Morrison identity).
Solution: Consider the system of matrix equations:

Z X + UY = In, V ⊆ X − W −1Y = Om,n,

where X ∈ R
n×n and Y ∈ R

m×n

The second equation implies V ⊆ X = W −1Y , so U W V ⊆ X = UY . Substituting
UY in the first equation yields Z X + U W V ⊆ X = I , so (Z + U W V ⊆)X = I ,
which implies

X = (Z + U W V ⊆)−1. (5.10)

On the other hand, we have X = Z−1(I − UY ) from the first equation. Sub-
stituting X in the second equation yields V ⊆Z−1(I − UY ) = W −1Y , which is
equivalent to

V ⊆Z−1 = +W −1Y + V ⊆Z−1UY

= (W −1 + V ⊆Z−1U )Y.

Thus, we have Y = (W −1 + V ⊆Z−1U )−1V ⊆Z−1. Substituting the values of X
and Y in the first equality implies

Z X + U (W −1 + V ⊆Z−1U )−1V ⊆Z−1 = I.

Therefore, Z X = I − U (W −1 + V ⊆Z−1U )−1V ⊆Z−1, which implies

X = Z−1 − Z−1U (W −1 + V ⊆Z−1U )−1V ⊆Z−1. (5.11)

The Woodbury–Sherman–Morrison identity follows immediately from Equali-
ties (5.10) and (5.11).

50. Using the notations introduced in the previous Supplement prove the Woodbury–
Sherman–Morrison identity for determinants:

det(Z + U W V ⊆) = det(Z) det(W ) det(W −1 + V ⊆Z−1U ).

Solution: We can write:
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det(In − U (W −1 + V ⊆Z−1U )−1V ⊆Z−1)

= det(In − V ⊆Z−1U (W −1 + V ⊆Z−1U )−1)

(by Sylvester’s identity)

= det((W −1 + V ⊆Z−1U )(W −1 + V ⊆Z−1U )−1

− V ⊆Z−1U (W −1 + V ⊆Z−1U )−1)

= det((W −1 + V ⊆Z−1U − V ⊆Z−1U ) det(W −1 + V ⊆Z−1U )−1

= det(W −1) det(W −1 + V ⊆Z−1U )−1.

This allows us to write det(Z) det(X) = det(In−U (W −1+V ⊆Z−1U )−1V ⊆Z−1).
Since X = (Z + U W V ⊆)−1, it follows that

det (Z)

det(Z + U W V ⊆)
= 1

det(W −1 + V ⊆Z−1U ) det(W )
,

which is the desired equality.
51. Prove that if U, V ∈ Cn×m are two matrices such that In + U V ⊆ and Im + V ⊆U

are invertible matrices, then det(In + U V ⊆) = det(Im + V ⊆U ).
52. Let A ∈ R

n×n . Prove that for the kth derivative of the function G(x) = det(A −
x In) we have

G(k)(0) = (−1)kk!Sn−k(A),

where Sp(A) is the sum of all order-p principal minors of A.
53. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two sequences of real numbers

such that xi + y j ∅= 0 for 1 � i, j � n and n � 2. The Cauchy matrix of these
sequences is the matrix Cx,y given by

(Cx,y)i j = 1

xi + y j

for 1 � i, j � n. Prove that

det(Cx,y) =
∏

1� j<i�n(xi − x j )
∏

1� j<i�n(yi − y j )∏
1�i, j�n(xi + y j )

.

54. The n-Hilbert matrix Hn is a special Cauchy matrix, where xi = yi = i − 1
2 for

1 � i � n. Let hn = 1!2! · · · (n − 1)! for n ∈ N and n � 1. Prove that:

(a) the determinant of the Hilbert matrix Hn is det(Hn) = h4
n

h2n
;

(b) the number 1
det(Hn)

is an integer.

55. Let A ∈ R
n×n be defined by ai j = i + j for 1 � i, j � n. Prove that if n � 3,

det(A) = 0.
56. Let A ∈ Cn×n . Prove that rank(A) = n if and only if rank(As H ) = n.
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57. Let A ∈ Cm×n be a matrix, x ∈ Cn and y ∈ Cm . Prove that if rank(A −
a AxyH A) = rank(A) − 1, then yH Ax ∅= 0 and a = 1

yH Ax .

58. Let A ∈ Cm×n , B ∈ Cn×p, and C ∈ C p×q be three matrices. Prove the following
inequality

rank(AB) + rank(BC) � rank(B) + rank(ABC),

known as Frobenius’ Inequality.
59. Let A ∈ Cm×n be a matrix, u ∈ Cm and v ∈ Cn be two vectors, a ∈ C − {0},

and let B = A − 1
a uvH. We have rank(B) < rank(A), if and only if there are

vectors x ∈ Cm and y ∈ Cn such that u = Ay, v = AHx, and a = xH Ay, in
which case rank(B) = rank(A) − 1.

60. Let dn be the determinant defined by

dn =

⎩⎩⎩⎩⎩⎩⎩⎩⎩

cos α cos 2α . . . cos nα

cos(n + 1)α cos(n + 2)α . . . cos 2nα
...

... . . .
...

cos(n2 − n + 1)α cos(n2 − n + 2)α . . . cos n2α

⎩⎩⎩⎩⎩⎩⎩⎩⎩
Prove that for n � 3 we have dn = 0.

Hint: add the third column to the first column.

Let A ∈ Cm×n be a partitioned matrix given by

A =
(

A11 A12
A21 A22

)
,

where A11 is an invertible square matrix, A11 ∈ C p×p. Note that A21 ∈
C (m−p)×p, A12 ∈ C p×(n−p, and A22 ∈ C (m−p)×(n−p). Therefore, the matrix
B = A22 − A21 A−1

11 A12 ∈ C (m−p)×(n−p) is well-defined. We refer to B as the
Schur’s complement of A11 relative to A and is denoted by A/A11.

61. Let A ∈ Cn×n be a square partitioned matrix given by

A =
(

A11 A12
A21 A22

)
,

where A11 is an invertible matrix. Prove that

(a) we have det(A/A11) = det(A)
det(A11)

;
(b) we have the equalities:

A =
(

I O
A21 A−1

11 I

)(
A11 O
O A22 − A21 A−1

11 A12

)(
I A−1

11 A12
O I

)
.

and
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det(A) = det(A11) det(A22 − A21 A−1
11 A12).

62. Let

A =

⎜

A11 · · · A1m
...

...
...

Am1 · · · Amm


⎟

be a partitioned matrix such that each matrix

Bp =

⎜

A11 · · · A1p
...

...
...

Ap1 · · · App


⎟

is invertible for 1 � p � m − 1.

Prove that A can be uniquely written as a product A = L DU such that the
following conditions are satisfied:

(a) L is a lower block triangular matrix whose diagonal blocks are unit matri-
ces;

(b) D is a block diagonal matrix, D = diag(D1, . . . , Dm) whose diagonal
blocks are invertible matrices such that D1 = A11 = B1, and D j =
B j/B j−1 for 1 � p � m;

(c) U is an upper block diagonal matrix whose diagonal blocks are unit matri-
ces.

63. A matrix A ∈ Cn×n is strongly non-singular if all its principal matrices are
non-singular. Prove that if A ∈ Cn×n is strongly non-singular, then there exists a
unique factorization A = L DU such that the following conditions are satisfied:

(a) L is a lower block triangular matrix whose diagonal elements are equal to 1;
(b) D is a diagonal matrix, D = diag(d1, . . . , dn) such that d1 = a11 and

dk = Ak
Ak−1

, where Ak = A

⎧
1 · · · k
1 · · · k

⎨
;

(c) U is an upper diagonal matrix whose diagonal elements are equal to 1.
Hint: This follows immediately from Supplement 62.

64. Prove that if H ∈ R
n×n is a Hadamard matrix, then | det(H)| = n

n
2 .

65. Prove that if H ∈ R
n×n is a Hadamard matrix and n > 2, then n is a multiple of

4.
66. Let a1, . . . , an be n numbers and let bi j = |ai − a j | for 1 � i, j � n. Compute

the determinant of the matrix B = (bi j ).
67 Let S = {(xi , yi ) ∈ C2 | 1 � i � n} be a set of n pairs of complex numbers

such that i ∅= j implies xi ∅= x j and and let p(x) = c0 + c1x + · · · + cn−1xn−1

be a polynomial such that p(xi ) = yi for 1 � i � n. Prove that
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(a) the coefficients ci of p are given by the formula

ci = Vx
i⊃ y

Vx
,

where Vx
i⊃ y is the determinant obtained from Vx by replacing the ith

column by y;
(b) the polynomial p(x) can be written as

p(x) =
n∑

j=1

y j p j (x),

where p j (x) = ∏{ x−xk
x j −xk

| k ∈ {1, . . . , n} − { j}}}. The polynomial p is
known as the Lagrange interpolation polynomial for S.

68. Let A ∈ Cn×n be a matrix such that A1n = A⊆1n = 0n . Prove that all cofactors
cof(ai j ) of A are equal.

69. Prove that if H ∈ R
n×n is a Hadamard matrix, then

(
H H
H −H

)
∈ R

2n×2n

is also a Hadamard matrix.
70. Let

M =
(

A B
C D

)

be a partitioned matrix, where A ∈ R
m×m , B ∈ R

m×p, C ∈ R
p×m , and D ∈

R
p×p. Prove that if U ∈ R

m×m and V ∈ R
p×p are orthogonal matrices, then

det(M) = det

(
U A U B
C D

)
= det

(
A BV
C DV

)

= det

(
AU B
CU D

)
= det

(
A B

V C V D

)
.

71. Let A ∈ R
n×n be a skew-symmetric matrix. If n is an odd number, prove that

det(A) = 0.
72. A generalized inverse (or a g-inverse) of a matrix A ∈ Cm×n is a matrix B ∈

Cn×m such that AB A = A. Prove that if B is a g-inverse and Ax = b has a
solution, then x = Gb is one of these solutions.

73. Let A ∈ Cm×n be a matrix such that A =
(

A11 A12
A21 A22

)
, where A11 ∈ Cr×r and

rank(A11) = rank(A) = r . Prove that:
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(a) there exists a matrix S ∈ Cr×n−r such that A12 = A11S and A22 = A21S;

(b) the matrix B =
(

A−1
11 Or,m−r

On−r,r 0n−r,m−r

)
is a g-inverse of A.

74. Let A ∈ R
n×n be a matrix such that aii > 0 for 1 � i � n, such that aii >∑{|aik | | 1 � k � n and k ∅= i} and 1 � i � n. Prove that det(A) > 0.

75. Prove that for A ∈ Cm×n , there exists at most one matrix M ∈ Cn×m such that
the matrices M A and AM are Hermitian, AM A = A, and M AM = M .

The matrix M introduced above is a special g-inverse referred to as the Moore-Penrose
pseudoinverse of A and is denoted by A†.

76. Let A ∈ Cn×n . Prove that if A is invertible, then A† exists and equals A−1.
77. Give an example of a matrix that is not invertible but has a Moore-Penrose

pseudoinverse.
Hint:Consider the matrix Om,n .

78. Prove that if A† exists then (A†)† = A.
79. Let GL(n, C) be the set of invertible matrices in Cn×n . Prove that

(a) the algebra (GL(n, C), {In, ·,−1 }, where · is the usual matrix multiplication
is a group (this is known as the linear group);

(b) the mapping φ : GL(2, C) −∈ GL(3, C) given by

φ

(
a11 a12
a21 a22

)
=

 a2

11 2a11a12 a2
12

a11a21 a11a22 + a12a22 a12a22

a2
21 2a21a22 a2

22




is a group mprphism.

80. Let A ∈ Cm×n be a matrix with rank(A) = r > 0 and let A = BC be a full-rank
factorization of A, where B ∈ Cm×r and C ∈ Cr×n are full-rank matrices. Prove
that

(a) the matrices BH B ∈ Cr×r and CCH ∈ Cr×r are non-singular;
(b) the matrix BH ACH is non-singular;
(c) the Moore-Penrose pseudoinverse of A is given by

A† = CH(CCH)−1(BH B)−1 BH.

A data matrix is a matrix D ∈ R
m×n . The columns of D, v1, . . . , vn are the

features of the data; its rows u⊆
1, . . . , u⊆

m are the observations.

The mean of D is the vector D̃ = 1
m D⊆1m ∈ R

n . D is centered if D̃ = 0n .

81. Let D ∈ R
m×n be a data matrix and let Hm = Im − 1

m 1m1⊆
m . Prove that Hm D

is a centered data matrix.
Solution: We have
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˜(Hm D) = 1

m
D⊆H ⊆

m1m = 1

m
D⊆
(

Im − 1

m
1m1⊆

m

)⊆
1m

= 1

m
D⊆
(

Im − 1

m
1m1⊆

m

)
1m = 1

m
D⊆
(

1m − 1

m
1m1⊆

m1m

)
= 0n .

82. Prove that the centering matrix Hm = Im − 1
m 1m1⊆

m is both symmetric and
idempotent; further, prove that Hm1m = 0m .

Bibliographical Comments
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and [6].

Exercise 9 is a result of Rota (see [7]). The Russian literature has produced several
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Chapter 6
Norms and Inner Products

6.1 Introduction

The notion of norm is introduced for evaluating the magnitude of vectors and, in
turn, allows the definition of certain metrics on linear spaces equipped with norms.

After presenting some useful inequalities on linear spaces, we introduce norms
and the topologies they induce on linear spaces. Then, we discuss inner products,
angles between vectors, and the orthogonality of vectors.

We study unitary, orthogonal, positive definite and positive semidefinite matrices
that describe important classes of linear transformations. The notion of orthogonality
leads to the study of projection on subspaces and the Gram-Schmidt orthogonaliza-
tion algorithm.

6.2 Inequalities on Linear Spaces

We begin with a technical result.

Lemma 6.1 Let p, q ∈ R−{0, 1} be two numbers such that 1
p + 1

q = 1 and p > 1.
Then, for every a, b ∈ R�0, we have

ab � a p

p
+ bq

q
,

where the equality holds if and only if a = b− 1
1−p .

Proof Let f : [0,∞) −∪ R be the function defined by f (x) = x p − px + p − 1.
Note that f (1) = 0 and that f ∞(x) = p(x p − 1). This implies that f has a minimum

in x = 1 and, therefore, x p − px + p − 1 � 0 for x ∈ [0,∞). Substituting ab− 1
p−1

for x yields the desired inequality.

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 281
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_6,
© Springer-Verlag London 2014
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Theorem 6.2 (The Hölder Inequality) Let a1, . . . , an and b1, . . . , bn be 2n non-
negative numbers, and let p and q be two numbers such that 1

p + 1
q = 1 and p > 1.

We have
n∑

i=1

ai bi �
⎜

n∑
i=1

a p
i

) 1
p

·
⎜

n∑
i=1

bq
i

) 1
q

.

Proof Define the numbers

xi = ai(⎟n
i=1 a p

i

) 1
p

and yi = bi(⎟n
i=1 bq

i

) 1
q

for 1 � i � n. Lemma 6.1 applied to xi , yi yields

ai bi(⎟n
i=1 a p

i

) 1
p
(⎟n

i=1 bq
i

) 1
q

� 1

p

a p
i⎟n

i=1 a p
i

+ 1

q

bp
i⎟n

i=1 bp
i

.

Adding these inequalities, we obtain

n∑
i=1

ai bi �
⎜

n∑
i=1

a p
i

) 1
p
⎜

n∑
i=1

bq
i

) 1
q

.

Theorem 6.3 Let a1, . . . , an and b1, . . . , bn be 2n real numbers and let p and q be
two numbers such that 1

p + 1
q = 1 and p > 1. We have

∣∣∣∣∣
n∑

i=1

ai bi

∣∣∣∣∣ �
⎜

n∑
i=1

|ai |p

) 1
p

·
⎜

n∑
i=1

|bi |q
) 1

q

.

Proof By Theorem 6.2, we have

n∑
i=1

|ai ||bi | �
⎜

n∑
i=1

|ai |p

) 1
p

·
⎜

n∑
i=1

|bi |q
) 1

q

.

The needed equality follows from the fact that

∣∣∣∣∣
n∑

i=1

ai bi

∣∣∣∣∣ �
n∑

i=1

|ai ||bi |.
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Corollary 6.4 (The Cauchy Inequality) Let a1, . . . , an and b1, . . . , bn be 2n real
numbers. We have ∣∣∣∣∣

n∑
i=1

ai bi

∣∣∣∣∣ �
√√√√ n∑

i=1

|ai |2 ·
√√√√ n∑

i=1

|bi |2.

Proof The inequality follows immediately from Theorem 6.3 by taking p = q = 2.

Theorem 6.5 (Minkowski’s Inequality) Let a1, . . . , an and b1, . . . , bn be 2n
nonnegative numbers. If p � 1, we have

⎜
n∑

i=1

(ai + bi )
p

) 1
p

�
⎜

n∑
i=1

a p
i

) 1
p

+
⎜

n∑
i=1

bp
i

) 1
p

.

If p < 1, the inequality sign is reversed.

Proof For p = 1, the inequality is immediate. Therefore, we can assume that p > 1.
Note that

n∑
i=1

(ai + bi )
p =

n∑
i=1

ai (ai + bi )
p−1 +

n∑
i=1

bi (ai + bi )
p−1.

By Hölder’s inequality for p, q such that p > 1 and 1
p + 1

q = 1, we have

n∑
i=1

ai (ai + bi )
p−1 �

⎜
n∑

i=1

a p
i

) 1
p
⎜

n∑
i=1

(ai + bi )
(p−1)q

) 1
q

=
⎜

n∑
i=1

a p
i

) 1
p
⎜

n∑
i=1

(ai + bi )
p

) 1
q

.

Similarly, we can write

n∑
i=1

bi (ai + bi )
p−1 �

⎜
n∑

i=1

bp
i

) 1
p
⎜

n∑
i=1

(ai + bi )
p

) 1
q

.

Adding the last two inequalities yields

n∑
i=1

(ai + bi )
p �


⎜ n∑

i=1

a p
i

) 1
p

+
⎜

n∑
i=1

bp
i

) 1
p

⎛⎜ n∑

i=1

(ai + bi )
p

) 1
q

,
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which is equivalent to the desired inequality

⎜
n∑

i=1

(ai + bi )
p

) 1
p

�
⎜

n∑
i=1

a p
i

) 1
p

+
⎜

n∑
i=1

bp
i

) 1
p

.

6.3 Norms on Linear Spaces

Definition 6.6 Let L be a linear space (real or complex). A seminorm on L is a
mapping ν : L −∪ R that satisfies the following conditions:

(i) ν(x + y) � ν(x) + ν(y) (subadditivity), and
(ii) ν(ax) = |a|ν(x) (positive homogeneity),

for x, y ∈ L and every scalar a.

By taking a = 0 in the second condition of the definition we have ν(0) = 0 for every
seminorm on a real or complex space.

A seminorm can be defined on every linear space L . Indeed, if B is a basis of L ,
B = {vi | i ∈ I }, J is a finite subset of I , and x =⎟i∈I xi vi , define νJ (x) as

νJ (x) =
⎧

0 if x = 0,⎟
j∈J |a j | otherwise

for x ∈ L . We leave to the reader the verification of the fact that νJ is indeed a
seminorm.

Theorem 6.7 If L is a real or complex linear space and ν : L −∪ R is a seminorm
on L, then ν(x − y) � |ν(x) − ν(y)| for x, y ∈ L.

Proof We have ν(x) � ν(x − y) + ν(y), so ν(x) − ν(y) � ν(x − y). Since
ν(x − y) = | − 1|ν(y − x) � ν(y) − ν(x), we have −(ν(x) − ν(y)) � ν(x) − ν(y).

Corollary 6.8 If ν : L −∪ R is a seminorm on the linear space L, then
ν(x) � 0 for x ∈ L.

Proof By choosing y = 0 in the inequality of Theorem 6.7 we have ν(x) �
|ν(x)| � 0.

Definition 6.9 Let L be a real or complex linear space. A norm on L is a seminorm
ν : L −∪ R such that ν(x) = 0 implies x = 0 for x ∈ L.

The pair (L , ν) is referred to as a normed linear space.

Example 6.10 The set of real-valued continuous functions defined on the interval
[−1, 1] is a real linear space. The addition of two such functions f, g, is defined by
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( f +g)(x) = f (x)+g(x) for x ∈ [−1, 1]; the multiplication of f by a scalar a ∈ R

is (a f )(x) = a f (x) for x ∈ [−1, 1].
Define ν( f ) = sup{| f (x)| | x ∈ [−1, 1]}. Since | f (x)| � ν( f ) and |g(x)| �

ν(g) for x ∈ [−1, 1], it follows that |( f + g)(x)| � | f (x)| + |g(x)| � ν( f ) + ν(g).
Thus, ν( f +g) � ν( f )+ν(g). We leave to the reader the verification of the remaining
properties of Definition 6.6.

We denote ν( f ) by ∅ f ∅.

Corollary 6.11 For p � 1, the function νp : Cn −∪ R�0 defined by

νp(x) =
⎜

n∑
i=1

|xi |p

) 1
p

,

is a norm on the linear space (Cn,+, ·).
Proof Let x, y ∈ C

n . Minkowski’s inequality applied to the nonnegative numbers
ai = |xi | and bi = |yi | amounts to

⎜
n∑

i=1

(|xi | + |yi |)p

) 1
p

�
⎜

n∑
i=1

|xi |p

) 1
p

+
⎜

n∑
i=1

|yi |p

) 1
p

.

Since |xi + yi | � |xi | + |yi | for every i , we have

⎜
n∑

i=1

(|xi + yi |)p

) 1
p

�
⎜

n∑
i=1

|xi |p

) 1
p

+
⎜

n∑
i=1

|yi |p

) 1
p

,

that is, νp(x + y) � νp(x) + νp(y). Thus, νp is a norm on C
n .

We refer to νp as a Minkowski norm on C
n .

The normed linear space (Cn, νp) is denoted by φn
p.

Example 6.12 Consider the mappings ν1, ν∞ : Cn −∪ R given by

ν1(x) = |x1| + |x2| + · · · + |xn| and ν∞(x) = max{|x1|, |x2|, . . . , |xn|},

for every x ∈ C
n . Both ν1 and ν∞ are norms on C

n ; the corresponding linear spaces
are denoted by φn

1 and φn∞.
To verify that ν∞ is a norm we start from the inequality |xi + yi | � |xi | + |yi | �

ν∞(x) + ν∞(y) for 1 � i � n. This in turn implies

ν∞(x + y) = max{|xi + yi | | 1 � i � n} � ν∞(x) + ν∞(y),

which gives the desired inequality.
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This norm can be regarded as a limit case of the norms νp. Indeed, let x ∈ C
n and

let M = max{|xi | | 1 � i � n} = |xl1 | = · · · = |xlk | for some l1, . . . , lk , where
1 � l1, . . . , lk � n. Here xl1 , . . . , xlk are the components of x that have the maximal
absolute value and k � 1. We can write

lim
p∪∞ νp(x) = lim

p∪∞ M

⎜
n∑

i=1

⎨ |xi |
M

⎩p
) 1

p

= lim
p∪∞ M(k)

1
p = M,

which justifies the notation ν∞.

We will frequently use the alternative notation ∅ x ∅p for νp(x). We refer to the
norm ν2 as the Euclidean norm.

Example 6.13 Let x =
⎨

x1
x2

⎩
∈ C

2 be a unit vector in the sense of the Euclidean

norm. We have |x1|2 +|x2|2 = 1. Since x1 and x2 are complex numbers we can write
x1 = r1eiΨ1 and x2 = r2eiΨ2 , where r2

1 + r2
2 = 1. Thus, there exists β ∈ (0, Φ/2)

such that r1 = cos β and r2 = sin β , which allows us to write

x =
⎨

eiΨ1 cos β

eiΨ2 sin β

⎩
.

Theorem 6.14 Each norm ν : L −∪ R�0 on a real or complex linear space
(L ,+, ·) generates a metric on the set L defined by dν(x, y) =∅ x− y ∅ for x, y ∈ L.

Proof Note that if dν(x, y) =∅ x − y ∅= 0, it follows that x − y = 0, so x = y.
The symmetry of dν is obvious and so we need to verify only the triangular axiom.

Let x, y, z ∈ L . We have

ν(x − z) = ν(x − y + y − z) � ν(x − y) + ν(y − z)

or, equivalently, dν(x, z) � dν(x, y) + dν(y, z), for every x, y, z ∈ L , which con-
cludes the argument.

We refer to dν as the metric induced by the norm ν on the linear space (L ,+, ·).
For p � 1, then dp denotes the metric dνp induced by the norm νp on the linear

space (Cn,+, ·) known as the Minkowski metric on R
n .

The metrics d1, d2 and d∞ defined on R
n are given by

d1(x, y) =
n∑

i=1

|xi − yi |, (6.1)

d2(x, y) =
√√√√ n∑

i=1

|xi − yi |2, (6.2)

d∞(x, y) = max{|xi − yi | | 1 � i � n}, (6.3)
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Fig. 6.1 The distances
d1(x, y) and d2(x, y)

for x, y ∈ R
n .

These metrics are visualized in Fig. 6.1 for the special case of R2. If x = (x0, x1)

and y = (y0, y1), then d1(x, y) is the sum of the lengths of the two legs of the
triangle, d2(x, y) is the length of the hypotenuse of the right triangle and d∞(x, y) is
the largest of the lengths of the legs.

Theorem 6.16 to follow allows us to compare the norms νp (and the metrics of
the form dp) that were introduced on R

n . We begin with a preliminary result.

Lemma 6.15 Let a1, . . . , an be n positive numbers. If p and q are two positive

numbers such that p � q, then
(
a p

1 + · · · + a p
n
) 1

p �
(
aq

1 + · · · + aq
n
) 1

q .

Proof Let f : R>0 −∪ R be the function defined by f (r) = (ar
1 + · · · + ar

n

) 1
r .

Since

ln f (r) = ln
(
ar

1 + · · · + ar
n

)
r

,

it follows that

f ∞(r)

f (r)
= − 1

r2

(
ar

1 + · · · + ar
n

)+ 1

r
· ar

1 ln a1 + · · · + ar
n ln ar

ar
1 + · · · + ar

n
.

To prove that f ∞(r) < 0, it suffices to show that

ar
1 ln a1 + · · · + ar

n ln ar

ar
1 + · · · + ar

n
�

ln
(
ar

1 + · · · + ar
n

)
r

.

This last inequality is easily seen to be equivalent to

n∑
i=1

ar
i

ar
1 + · · · + ar

n
ln

ar
i

ar
1 + · · · + ar

n
� 0,

which holds because
ar

i

ar
1 + · · · + ar

n
� 1

for 1 � i � n.
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Theorem 6.16 Let p and q be two positive numbers such that p � q. We have
∅ u ∅p�∅ u ∅q for u ∈ C

n.

Proof This statement follows immediately from Lemma 6.15.

Corollary 6.17 Let p, q be two positive numbers such that p � q. For every x, y ∈
C

n, we have dp(x, y) � dq(x, y).

Proof This statement follows immediately from Theorem 6.16.

Theorem 6.18 Let p � 1. We have ∅ x ∅∞ � ∅ x ∅p � n ∅ x ∅∞ for x ∈ C
n.

Proof The first inequality is an immediate consequence of Theorem 6.16. The second
inequality follows by observing that

∅ x ∅p =
⎜

n∑
i=1

|xi |p

) 1
p

� n max
1�i�n

|xi | = n ∅ x ∅∞ .

Corollary 6.19 Let p and q be two numbers such that p, q � 1. For x ∈ C
n

we have:
1

n
∅ x ∅q � ∅ x ∅p � n ∅ x ∅q .

Proof Since ∅ x ∅∞ � ∅ x ∅p and ∅ x ∅q � n ∅ x ∅∞, it follows that ∅ x ∅q � n ∅
x ∅p. Exchanging the roles of p and q , we have ∅ x ∅p � n ∅ x ∅q , so

1

n
∅ x ∅q � ∅ x ∅p � n ∅ x ∅q

for every x ∈ C
n .

For p = 1 and q = 2 and x ∈ R
n we have the inequalities

1

n

√√√√ n∑
i=1

x2
i �

n∑
i=1

|xi | � n

√√√√ n∑
i=1

x2
i . (6.4)

Corollary 6.20 For every x, y ∈ C
n and p � 1, we have d∞(x, y) � dp(x, y) �

nd∞(x, y). Further, for p, q > 1, there exist c, d ∈ R>0 such that

c dq(x, y) � dp(x, y) � c dq(x, y)

for x, y ∈ C
n.

Proof This follows from Theorem 6.18 and from Corollary 6.20.
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Fig. 6.2 Spheres Bdp (0, 1)

for p = 1, 2,∞ (a) (b) (c)

Corollary 6.17 implies that if p � q , then the closed sphere Bdp (x, r) is included
in the closed sphere Bdq (x, r). For example, we have

Bd1(0, 1) ⊆ Bd2(0, 1) ⊆ Bd∞(0, 1).

In Fig. 6.2 (a–c) we represent the closed spheres Bd1(0, 1), Bd2(0, 1), and Bd∞(0, 1).
An useful consequence of Theorem 6.2 is the following statement:

Theorem 6.21 Let x1, . . . , xm and y1, . . . , ym be 2m nonnegative numbers such
that
⎟m

i=1 xi = ⎟m
i=1 yi = 1 and let p and q be two positive numbers such that

1
p + 1

q = 1. We have
m∑

j=1

x
1
p
j y

1
q
j � 1.

Proof The Hölder inequality applied to x
1
p

1 , . . . , x
1
p

m and y
1
q
1 , . . . , y

1
q
m yields the

needed inequality
m∑

j=1

x
1
p
j y

1
q
j �

m∑
j=1

x j

m∑
j=1

y j = 1

The linear space Seq∞(C) discussed in Example 5.3 can be equipped with norms
similar to the {νp | p > 1} family.

For x = (x0, x1, . . .) is a sequence of complex numbers define

νp(x) =
⎜ ∞∑

i=0

|xi |p

) 1
p

.

Theorem 6.22 The set of sequences x ∈ Seq∞(C) such that νp(x) is finite is a
normed linear space.

Proof In Example 5.3 we saw that Seq∞(C) can be organized as a linear space.
Let x, y ∈ Seq∞(C) be two sequences such that νp(x) and νp(y) are finite. By
Minkowski’s inequality, if p � 1 we have
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⎜
n∑

i=1

|xi + yi |p

) 1
p

�
⎜

n∑
i=1

(|xi | + |yi |)p

) 1
p

�
⎜

n∑
i=1

|xi |p

) 1
p

+
⎜

n∑
i=1

|yi |p

) 1
p

.

When n tends to ∞ we have νp(x + y) � νp(x) + νp(y), so νp is a norm.

The normed linear space (Seq∞(C), νp) is denoted by φp.

6.4 Inner Products

Inner product spaces are linear spaces equipped with an additional operation that
associates to a pair of vectors a scalar called their inner product.

Definition 6.23 Let L be a C-linear space. An inner product on L is a function
f : L × L −∪ C that has the following properties:

(i) f (ax + by, z) = a f (x, z) + b f (y, z) (linearity in the first argument);
(ii) f (x, y) = f (y, x) for y, x ∈ L (conjugate symmetry);
(iii) if x ∩= 0, then f (x, x) is a positive real number (positivity),
(iv) f (x, x) = 0 if and only if x = 0 (definiteness),

for every x, y, z ∈ L and a, b ∈ C.
The pair (L , f ) is called an inner product space.

For the second argument of a scalar product we have the property of conjugate
linearity, that is,

f (z, ax + by) = ā f (z, x) + b̄ f (z, y)

for every x, y, z ∈ L and a, b ∈ C. Indeed, by the conjugate symmetry property we
can write

f (z, ax + by) = f (ax + by, z) = a f (x, z) + b f (y, z)

= ā f (x, z) + b̄ f (y, z) = ā f (z, x) + b̄ f (z, y).

Observe that conjugate symmetry property on inner products implies that for
x ∈ L , f (x, x) is a real number because f (x, x) = f (x, x).

When L is a real linear space the definition of the inner product becomes simpler
because the conjugate of a real number a is a itself. Thus, for real linear spaces, the
conjugate symmetry is replaced by the plain symmetry property, f (x, y) = f (y, x),
for x, y ∈ L and f is linear in both arguments.

Example 6.24 Let C
n be the linear space of n-tuples of complex numbers. If

a1, . . . , an are n real, positive numbers, then the function f : C
n × C

n −∪ C

defined by f (x, y) = a1x1 ȳ1 + a2x2 ȳ2 + · · · + an xn ȳn is an inner product on C
n , as

the reader can easily verify.
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If a1 = · · · = an = 1, we have the Euclidean inner product:

f (x, y) = x1 ȳ1 + · · · + xn ȳn = yHx.

For the linear space Rn , the Euclidean inner product is

f (x, y) = x1y1 + · · · + xn yn = y∞x = x∞y,

where x, y ∈ R
n .

To simplify notations we denote an inner product f (x, y) by (x, y) when there is
no risk of confusion.

A fundamental property of the inner product defined on C
n in Example 6.24 is

the equality

(Ax, y) = (x, AHy), (6.5)

which holds for every A ∈ C
n×n and x, y ∈ C

n . Indeed, we have

(Ax, y) =
n∑

i=1

(Ax)i ȳi =
n∑

i=1

n∑
j=1

ai j x j ȳi =
n∑

j=1

x j

n∑
i=1

ai j ȳi

=
n∑

j=1

x j

n∑
i=1

āi j yi = (x, AHy).

More generally we have the following definition.

Definition 6.25 A matrix B ∈ C
n×n is the adjoint of a matrix A ∈ C

n×n relative to
the inner product (·, ·) if (Ax, y) = (x, By) for every x, y ∈ C

n.

A matrix is self-adjoint if it equals its own adjoint, that is if (Ax, y) = (x, Ay)

for every x, y ∈ C
n . Thus, a Hermitian matrix is self-adjoint relative to the inner

product (x, y) = xHy for x, y ∈ C
n . If we use the Euclidean inner product we omit

the reference to this product and refer to the adjoint of A relative to this product
simply as the adjoint of A.

Example 6.26 An inner product on C
n×n , the linear space of matrices of format

n × n, can be defined as (X, Y ) = trace(XY H) for X, Y ∈ C
n×n .

A linear form on R
n can be expressed using the Euclidean inner product. Let f

be a linear form defined on R
n and let x ∈ R

n . If u1, . . . , un is a basis in R
n and

x = x1u1 + · · · + xnun , then f (x) = x1 f (u1) + · · · + xn f (un) and f (x) can be
written as f (x) = (x, a), where ai = f (ui ) for 1 � i � n. The vector a is uniquely
determined for a linear form. Indeed, suppose that there exists b ∈ R

n such that
f (x) = (x, b) for x ∈ R

n . Since (x, a) = (x, b) for every x ∈ R
n , it follows that

(x, a − b) = 0. Choosing x = a − b, it follows that ∅ a − b ∅2= 0, so a = b.
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Theorem 6.27 Any inner product on a linear space L generates a norm on that
space defined by ∅ x ∅= ⊕

(x, x) for x ∈ L.

Proof We need to verify that the norm satisfies the conditions of Definition 6.6.
Applying the properties of the inner product we have

∅ x + y ∅2 = (x + y, x + y) = (x, x) + 2(x, y) + (y, y)

= ∅ x ∅2 + 2(x, y)+ ∅ y ∅2 � ∅ x ∅2 + 2 ∅ x ∅∅ y ∅ + ∅ y ∅2

= (∅ x ∅ + ∅ y ∅)2.

Because ∅ x ∅ � 0 it follows that ∅ x + y ∅ � ∅ x ∅ + ∅ y ∅, which is the
subadditivity property.

If a ∈ C, then ∅ ax ∅= ⊕
(ax, ax) = ⊕

aā(x, x) = ⎫|a|2(x, x) = |a|⊕(x, x) =
|a| ∅ x ∅.

Finally, from the definiteness property of the inner product it follows that ∅ x ∅= 0
if and only if x = 0, which allows us to conclude that ∅ · ∅ is indeed a norm.

Observe that if the inner product (x, y) of the vectors x ∈ C
n and y ∈ C

n is
defined as in Example 6.24 with a1 = · · · = an = 1, then

∅ x ∅2= (x, x) = x1 x̄1 + x2 x̄2 + · · · + xn x̄n =
2∑

i=1

|xi |2,

which shows that the norm induced by the inner product is precisely ∅ x ∅2.
Not every norm can be induced by an inner product. A characterization of this

type of norms in linear spaces is presented next.
This equality shown in the next theorem is known as the parallelogram equality.

Theorem 6.28 Let L be a real linear space. A norm ∅ · ∅ is induced by an inner
product if and only if

∅ x + y ∅2 + ∅ x − y ∅2 = 2(∅ x ∅2 + ∅ y ∅2),

for every x, y ∈ L.

Proof Suppose that the norm is induced by an inner product. In this case we can
write for every x and y:

(x + y, x + y) = (x, x) + 2(x, y) + (y, y),

(x − y, x − y) = (x, x) − 2(x, y) + (y, y).

Thus,
(x + y, x + y) + (x − y, x − y) = 2(x, x) + 2(y, y),

which can be written in terms of the norm generated as the inner product as
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∅ x + y ∅2 + ∅ x − y ∅2 = 2(∅ x ∅2 + ∅ y ∅2).

Conversely, suppose that the condition of the theorem is satisfied by the norm
∅ · ∅. Consider the function f : V × V −∪ R defined by

f (x, y) = 1

4

⎬
∅ x + y ∅2 − ∅ x − y ∅2

⎭
, (6.6)

for x, y ∈ L . The symmetry of f is immediate, that is, f (x, y) = f (y, x) for x, y ∈ L .
The definition of f implies

f (0, y) = 1

4

⎬
∅ y ∅2 − ∅ −y ∅2

⎭
= 0. (6.7)

We prove that f is a bilinear form that satisfies the conditions of Definition 6.23.
Starting from the parallelogram equality we can write

∅ u + v + y ∅2 + ∅ u + v − y ∅2 = 2(∅ u + v ∅2 + ∅ y ∅2),

∅ u − v + y ∅2 + ∅ u − v − y ∅2 = 2(∅ u − v ∅2 + ∅ y ∅2).

Subtracting these equality yields:

∅ u + v + y ∅2 + ∅ u + v − y ∅2 − ∅ u − v + y ∅2 − ∅ u − v − y ∅2

= 2(∅ u + v ∅2 − ∅ u − v ∅2).

This equality can be written as

f (u + y, v) + f (u − y, v) = 2 f (u, v).

Choosing y = u implies
f (2u, v) = 2 f (u, v), (6.8)

due to Equality (6.7).
Let t = u + y and s = u − y. Since u = 1

2 (t + s) and y = 1
2 (t − s) we have

f (t, v) + f (s, v) = 2 f

⎨
1

2
(t + s), v

⎩
= f (t + s, v),

by Equality (6.8).
Next, we show that f (ax, y) = a f (x, y) for a ∈ R and x, y ∈ L . Consider the

function δ : R −∪ R defined by δ(a) = f (ax + y).
The basic properties of norms imply that

∣∣∣ ∅ ax + y ∅ − ∅ bx + y ∅
∣∣∣ � ∅ (a − b)x ∅
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for every a, b ∈ R and x, y ∈ L . Therefore, the function δ,π : R −∪ R given by
δ(a) =∅ ax + y ∅ and π(a) =∅ ax − y ∅ for a ∈ R are continuous. The continuity
of these functions implies that the function f defined by Equality (6.6) is continuous
relative to a.

Define the set:
S = {a ∈ R | f (ax, y) = a f (x, y)}.

Clearly, we have 1 ∈ S. Further, if a, b ∈ S, then a + b ∈ S and a − b ∈ S, which
implies Z ⊆ S.

If b ∩= 0 and b ∈ S, then, by substituting x by 1
b x in the equality f (bx, y) =

b f (x, y) we have f (x, y) = b f ( 1
b x, y), so 1

b f (x, y) = f ( 1
b x, y). Thus, if a, b ∈ S

and b ∩= 0, we have f ( a
b x, y) = a

b f (x, y), so Q ⊆ S. Consequently, S = R. This
allows us to conclude that f is linear in its first argument. The symmetry of f implies
the linearity in its second argument, so f is bilinear.

Observe that f (x, x) =∅ x ∅2. The definition of norms implies that f (x, x) = 0
if and only if x = 0 and if x ∩= 0, then f (x, x) > 0. Thus, f is indeed an inner
product and ∅ x ∅= ⊕

f (x, x).

Theorem 6.29 Let x, y ∈ R
n be two vectors such that x1 � x1 � · · · � xn,

y1 � y2 � · · · � yn. For every permutation matrix P we have x∞y � x∞(Py).
If x1 � x1 � · · · � xn and y1 � y2 � · · · � yn, then for every permutation

matrix P we have x∞y � x∞(Py).

Proof Let δ be the permutation that corresponds to the permutation matrix P and
suppose that δ = πp . . . π1, where p = inv(δ) and π1, . . . , πp are standard trans-
positions that correspond to all standard inversions of δ.

Let π be a standard transposition of {1, . . . , n},

π :
⎨

1 · · · i i + 1 · · · n
1 · · · i + 1 i · · · n

⎩
.

We have

x∞(Py) = x1y1 + · · · + xi−1yi−1 + xi yi+1 + xi+1yi + · · · + xn yn,

so the inequality x∞y � x∞(Py) is equivalent to

xi yi + xi+1 yi+1 � xi yi+1 + xi+1yi .

This, in turn is equivalent to (xi+1 − xi )(yi+1 − yi ) � 0, which obviously holds in
view of the hypothesis.

As we observed previously, Pδ = Pπ1 · · · Pπp , so

x∞y � x∞(Pπp y) � x∞(Pπp−1 Pπp y) � · · · � x∞(Pπ1 · · · Pπp y) = x(Py),

which concludes the proof of the first part of the theorem.
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To prove the second part of the theorem apply the first part to the vectors x and
−y.

Corollary 6.30 Let x, y ∈ R
n be two vectors such that x1 � x1 � · · · � xn,

y1 � y2 � · · · � yn. For every permutation matrix P we have

∅ x − y ∅F � ∅ x − Py ∅F .

If x1 � x1 � · · · � xn and y1 � y2 � · · · � yn, then for every permutation
matrix P we have

∅ x − y ∅F � ∅ x − Py ∅F .

Proof Note that

∅ x − y ∅2
F = ∅ x ∅2

F + ∅ y ∅2
F −2x∞y,

∅ x − Py ∅2
F = ∅ x ∅2

F + ∅ Py ∅2
F −2x∞(Py)

= ∅ x ∅2
F + ∅ y ∅2

F −2x∞(Py)

because ∅ Py ∅2
F=∅ y ∅2

F . Then, by Theorem 6.29, ∅ x − y ∅F � ∅ x − Py ∅F .
The argument for the second part of the corollary is similar.

6.5 Orthogonality

The Cauchy-Schwarz Inequality implies that |(x, y)| � ∅ x ∅2∅ y ∅2. Equivalently,
this means that

−1 � (x, y)

∅ x ∅2∅ y ∅2
� 1.

This double inequality allows us to introduce the notion of angle between two vectors
x, y of a real linear space L .

Definition 6.31 The angle between the vectors x and y is the number Ψ ∈ [0, Φ ]
defined by

cos Ψ = (x, y)
∅ x ∅2∅ y ∅2

.

This angle will be denoted by ∠(x, y).

Example 6.32 Let u = (u1, u2) ∈ R
2 be a unit vector. Since u2

1 + u2
2 = 1, there

exists Ψ ∈ [0, 2Φ ] such that u1 = cos Ψ and u2 = sin Ψ. Thus, for any two unit vectors
in R

2, u = (cos Ψ, sin Ψ) and v = (cos σ, sin σ) we have (u, v) = cos Ψ cos σ +
sin Ψ sin σ = cos(Ψ − σ), where Ψ, σ ∈ [0, 2Φ ]. Consequently, ∠(u, v) is the angle
in the interval [0, Φ ] that has the same cosine as Ψ − σ.
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Theorem 6.33 (The Cosine Theorem) Let x and y be two vectors in R
n equipped

with the Euclidean inner product. We have:

∅ x − y ∅2 =∅ x ∅2 + ∅ y ∅2 − 2 ∅ x ∅∅ y ∅ cos Ψ,

where Ψ = ∠(x, y).

Proof Since the norm is induced by the inner product we have

∅ x − y ∅2 = (x − y, x − y)

= (x, x) − 2(x, y) + (y, y)

= ∅ x ∅2 − 2 ∅ x ∅∅ y ∅ cos Ψ + ∅ y ∅2,

which is the desired equality.

The notion of angle between two vectors allows the introduction of the notion of
orthogonality.

Definition 6.34 Let L be an inner product space. Two vectors x and y of L are
orthogonal if (x, y) = 0.

A pair of orthogonal vectors (x, y) is denoted by x ⊥ y. If T ⊆ V , then the set
T ⊥ is defined by

T ⊥ = {v ∈ L | v ⊥ t for every t ∈ T }

Note that T ⊆ U implies U⊥ ⊆ T ⊥.
If S, T are two subspaces of an inner product space, then S and T are orthogonal

if s ⊥ t for every s ∈ S and every t ∈ T . This is denoted as S ⊥ T .

Theorem 6.35 Let L be an inner product space and let T be a subset of L. The set
T ⊥ is a subspace of L. Furthermore, ∨T ∧⊥ = T ⊥.

Proof Let x and y be two members of T . We have (x, t) = (y, t) = 0 for every
t ∈ T . Therefore, for every a, b ∈ F , by the linearity of the inner product we have
(ax + by, t) = a(x, t) + b(y, t) = 0, for t ∈ T , so ax + bt ∈ T ⊥. Thus, T ⊥ is a
subspace of L .

By a previous observation, since T ⊆ ∨T ∧, we have ∨T ∧⊥ ⊆ T ⊥. To prove the
converse inclusion, let z ∈ T ⊥.

If y ∈ ∨T ∧, y is a linear combination of vectors of T , y = a1t1 + · · · + amtm , so
(y, z) = a1(t1, z)+· · ·+ am(tm, z) = 0. Therefore, z ⊥ y, which implies z ∈ ∨T ∧⊥.
This allows us to conclude that ∨T ∧⊥ = T ⊥.

We refer to T ⊥ as the orthogonal complement of T .
Note that T ⇒ T ⊥ ⊆ {0}. If T is a subspace, then this inclusion becomes an

equality, that is, T ⇒ T ⊥ = {0}.
Theorem 6.36 Let T be a subspace of the finite-dimensional linear space L. We
have dim(T ) + dim(T ⊥) = dim(L).
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Proof This statement follows directly from Theorem 5.19.

If x and y are orthogonal, by Theorem 6.33 we have

∅ x − y ∅2 =∅ x ∅2 + ∅ y ∅2,

which is the well-known Pythagora’s Theorem.

Theorem 6.37 Let T be a subspace of Cn. We have (T ⊥)⊥ = T .

Proof Observe that T ⊆ (T ⊥)⊥. Indeed, if t ∈ T , then (t, z) = 0 for every z ∈ T ⊥,
so t ∈ (T ⊥)⊥.

To prove the reverse inclusion, let x ∈ (T ⊥)⊥. Theorem 6.39 implies that we can
write x = u + v, where u ∈ T and v ∈ T ⊥, so x − u = v ∈ T ⊥.

Since T ⊆ (T ⊥)⊥, we have u ∈ (T ⊥)⊥, so x − u ∈ (T ⊥)⊥. Consequently,
x − u ∈ T ⊥ ⇒ (T ⊥)⊥ = {0}, so x = u ∈ T . Thus, (T ⊥)⊥ ⊆ T , which concludes
the argument.

Corollary 6.38 Let Z be a subset of Cn. We have (Z⊥)⊥ = ∨Z∧.
Proof Let Z be a subset of Cn . Since Z ⊆ ∨Z∧ it follows that ∨Z∧⊥ ⊆ Z⊥. Let now
y ∈ Z⊥ and let z = a1z1 + · · · + apzp ∈ ∨Z∧, where z1, . . . , zp ∈ Z . Since

(y, z) = a1(y, z1) + · · · + ap(y, zp) = 0,

it follows that y ∈ ∨Z∧⊥. Thus, we have Z⊥ = ∨Z∧⊥.
This allows us to write (Z⊥)⊥ = (∨Z∧⊥)⊥. Since ∨Z∧ is a subspace of Cn , by

Theorem 6.37, we have (∨Z∧⊥)⊥ = ∨Z∧, so (Z⊥)⊥ = ∨Z∧.
Theorem 6.39 Let U be a subspace of Cn. Then, Cn = U � U⊥.

Proof If U = {0}, then U⊥ = C
n and the statement is immediate. Therefore, we

can assume that U ∩= {0}.
In Theorem 6.35 we saw that U⊥ is a subspace of Cn . Thus, we need to show that

C
n is the direct sum of the subspaces U and U⊥. We need to verify only that every

x ∈ C
n can be uniquely written as a sum x = u + v, where u ∈ U and v ∈ U⊥.

Let u1, . . . , um be an orthonormal basis of U , that is, a basis such that

(ui , u j ) =
⎧

1 if i = j,

0 otherwise,

for 1 � i, j � m. Define u = (x, u1)u1 + · · · + (x, um)um and v = x − u.
The vector v is orthogonal to every vector ui because

(v, ui ) = (x − u, ui ) = (x, ui ) − (u, ui ) = 0.
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Therefore v ∈ U⊥ and x has the necessary decomposition. To prove that the decom-
position is unique suppose that x = s + t, where s ∈ U and t ∈ U⊥. Since
s + t = u + v we have s − u = v − t ∈ U ⇒ U⊥ = {0}, which implies s = u and
t = v.

Let W = {w1, . . . , wn} be a basis in the real n-dimensional inner product space
L . If x = x1w1 + · · · + xnwn and y = y1w1 + · · · + ynwn , then

(x, y) =
n∑

i=1

n∑
j=1

xi y j (wi , w j ),

due to the bilinearity of the inner product.
Let A = (ai j ) ∈ R

n×n be the matrix defined by ai j = (wi , w j ) for 1 � i, j � n.
The symmetry of the inner product implies that the matrix A itself is symmetric.
Now, the inner product can be expressed as

(x, y) = (x1, . . . , xn)A


⎪

y1
...

yn


⎛ .

We refer to A as the matrix associated with W .

Definition 6.40 An orthogonal set of vectors in an inner product space (V, (·, ·)) is
a subset W of L such that for every u, v ∈ W we have u ⊥ v.

If, in addition, ∅ u ∅= 1 for every u ∈ W , then we say that W is orthonormal.

Theorem 6.41 If W is a set of non-zero orthogonal vectors, then W is linearly
independent.

Proof Let a1w1 + · · · + anwn = 0 for a linear combination of elements of W . This
implies ai ∅ wi ∅2= 0, so ai = 0 because ∅ wi ∅2 ∩= 0, and this holds for every i ,
where 1 � i � n. Thus, W is linearly independent.

Corollary 6.42 Let L be an n-dimensional linear space. If W is an orthogonal
(orthonormal) set and |W | = n, then W is an orthogonal (orthonormal) basis of L.

Proof This statement is an immediate consequence of Theorem 6.41.

Theorem 6.43 Let S be a subspace of Cn such that dim(S) = k. There exists a
matrix A ∈ C

n×k having orthonormal columns such that S = Ran(A).

Proof Let v1, . . . , vk be an orthonormal basis of S. Define the matrix A as A =
(v1, . . . , vk). We have x ∈ S, if and only if x = a1v1 + · · · + akvk , which is
equivalent to x = Aa. This amounts to x ∈ Ran(A), so S = Ran(A).



6.5 Orthogonality 299

For an orthonormal basis in an n-dimensional space, the associated matrix is the
diagonal matrix In . In this case, we have

(x, y) = x1y1 + x2 y2 + · · · + xn yn

for x, y ∈ L .
Observe that if W = {w1, . . . , wn} is an orthonormal set and x ∈ ∨W ∧, which

means that x = a1w1 + · · · + anwn , then ai = (x, wi ) for 1 � i � n.

Definition 6.44 Let W = {w1, . . . , wn} be an orthonormal set and let x ∈ ∨W ∧.
The equality

x = (x, w1)w1 + · · · + (x, wn)wn (6.9)

is the Fourier expansion of x with respect to the orthonormal set W .

Furthermore, we have Parseval’s equality:

∅ x ∅2= (x, x) =
n∑

i=1

(x, wi )
2. (6.10)

Thus, if 1 � q � n we have

q∑
i=1

(x, wi )
2 � ∅ x ∅2 . (6.11)

It is easy to see that a square matrix C ∈ C
n×n is unitary if and only if its set of

columns is an orthonormal set in C
n .

Example 6.45 Let

C =
⎨

x1 + i x2 y1 + iy2
u1 + iu2 v1 + iv2

⎩
∈ C

2

be a unitary matrix, where xi , yi , ui , vi ∈ R for i ∈ {1, 2}. We have

CHC =
⎨

x1 − i x2 u1 − iu2
y1 − iy2 v1 − iv2

⎩⎨
x1 + i x2 y1 + iy2
u1 + iu2 v1 + iv2

⎩
=
⎨

1 0
0 1

⎩
.

This equality implies the equalities

x2
1 + x2

2 + u2
1 + u2

2 = 1,

y2
1 + y2

2 + v2
1 + v2

2 = 1,

x1y1 + x2 y2 + u1v1 + u2v2 = 0,

x1y2 − x2 y1 + u1v2 − u2v1 = 0.
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It is easy to verify that the matrices

X =
⎨

0 1
1 0

⎩
, Y =

⎨
0 −i
i 0

⎩
, Z =

⎨
1 0
0 −1

⎩
,

known as the Pauli matrices are both Hermitian and unitary.

Definition 6.46 Let w ∈ R
n − {0} and let a ∈ R. The hyperplane determined by w

and a is the set Hw,a = {x ∈ R
n | w∞x = a}.

If x0 ∈ Hw,a , then w∞x0 = a, so Hw,a is also described by the equality

Hw,a = {x ∈ R
n | w∞(x − x0) = 0}.

Any hyperplane Hw,a partitions Rn into three sets:

H>
w,a = {x ∈ R

n | w∞x > a},
H0

w,a = Hw,a,

H<
w,a = {x ∈ R

n | w∞x < a}.

The sets H>
w,a and H<

w,a are the positive and negative open half-spaces determined
by Hw,a , respectively. The sets

H�
w,a = {x ∈ R

n | w∞x � a},
H�

w,a = {x ∈ R
n | w∞x � a}.

are the positive and negative closed half-spaces determined by Hw,a , respectively.
If x1, x2 ∈ Hw,a , then w ⊥ x1 − x2. This justifies referring to w as the normal

to the hyperplane Hw,a . Observe that a hyperplane is fully determined by a vector
x0 ∈ Hw,a and by w.

Let x0 ∈ R
n and let Hw,a be a hyperplane. We seek x ∈ Hw,a such that ∅ x−x0 ∅2

is minimal. Finding x amounts to minimizing the function f (x) =∅ x − x0 ∅2
2 =⎟n

i=1(xi − x0i )
2 subjected to the constraint w1x1 + · · · + wnxn − a = 0. Using

the Lagrangean ι(x) = f (x) + α(w∞x − a) and the multiplier α we impose the
conditions

∂ι

∂xi
= 0 for 1 � i � n

which amount to
∂ f

∂xi
+ αwi = 0
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for 1 � i � n. These equalities yield 2(xi − x0i ) + αwi = 0, so we have
xi = x0i − 1

2αwi . Consequently, we have x = x0 − 1
2αw. Since x ∈ Hw,a this

implies

w∞x = w∞x0 − 1

2
αw∞w = a.

Thus,

α = 2
w∞x0 − a

w∞w
= 2

w∞x0 − a

∅ w ∅2
2

.

We conclude that the closest point in Hw,a to x0 is

x = x0 − w∞x0 − a

∅ w ∅2
2

w.

The smallest distance between x0 and a point in the hyperplane Hw,a is given by

∅ x0 − x ∅= w∞x0 − a

∅ w ∅2
.

If we define the distance d(Hw,a, x0) between x0 and Hw,a as this smallest distance
we have

d(Hw,a, x0) = w∞x0 − a

∅ w ∅2
. (6.12)

6.6 Unitary and Orthogonal Matrices

Lemma 6.47 Let A ∈ C
n×n. If xH Ax = 0 for every x ∈ C

n, then A = On,n.

Proof If x = ek , then xH Ax = akk for every k, 1 � k � n, so all diagonal entries of
A equal 0. Choose now x = ek + e j . Then,

(ek + e j )
H A(ek + e j ) = eH

k Aek + eH
k Ae j + eH

j Aek + eH
j Ae j

= eH
k Ae j + eH

j Aek = akj + a jk = 0.

Similarly, if we choose x = ek + ie j we obtain:

(ek + ie j )
H A(ek + ie j ) = (eH

k − ieH
j )A(ek + ie j )

= eH
k Aek − ieH

j Aek + ieH
k Ae j + eH

j Ae j

= −ia jk + iak j = 0.
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The equalities akj + a jk = 0 and −a jk + akj = 0 imply akj = a jk = 0. Thus, all
off-diagonal elements of A are also 0, hence A = On,n .

Theorem 6.48 A matrix U ∈ C
n×n is unitary if and only if ∅ Ux ∅2 =∅ x ∅2 for

every x ∈ C
n.

Proof If U is unitary we have ∅ Ux ∅2
2 = (Ux)HUx = xHU HUx =∅ x ∅2

2 because
U HU = In . Thus, ∅ Ux ∅2 =∅ x ∅2.

Conversely, let U be a matrix such that ∅ Ux ∅2 =∅ x ∅2 for every x ∈ C
n . This

implies xHU HUx = xHx, hence xH(U HU − In)x = 0 for x ∈ C
n . By Lemma 6.47

this implies U HU = In , so U is a unitary matrix.

Corollary 6.49 The following statements that concern a matrix U ∈ C
n×n are

equivalent:

(i) U is unitary;
(ii) ∅ Ux − Uy ∅2 =∅ x − y ∅2 for x, y ∈ C

n;
(iii) (Ux, Uy) = (x, y) for x, y ∈ C

n.

Proof This statement is a direct consequence of Theorem 6.48.

The counterpart of unitary matrices in the set of real matrices are introduced next.

Definition 6.50 A matrix A ∈ R
n×n is orthogonal if it is unitary.

In other words, A ∈ R
n×n is orthogonal if and only if A∞ A = AA∞ = In . Clearly, A

is orthogonal if and only if A∞ is orthogonal.

Theorem 6.51 If A ∈ R
n×n is an orthogonal matrix, then det(A) ∈ {−1, 1}.

Proof By Corollary 5.131, | det(A)| = 1. Since det(A) is a real number, it follows
that det(A) ∈ {−1, 1}.
Corollary 6.52 Let A be a matrix inRn×n. The following statements are equivalent:

(i) A is orthogonal;
(ii) A is invertible and A−1 = A∞;
(iii) A∞ is invertible and (A∞)−1 = A;
(iv) A∞ is orthogonal.

Proof The equivalence between these statements is an immediate consequence of
definitions.

Corollary 6.52 implies that the columns of a square matrix form an orthonormal
set of vectors if and only if the set of rows of the matrix is an orthonormal set.

Theorem 6.48 specialized to orthogonal matrices shows that a matrix A is orthog-
onal if and only if it preserves the length of vectors.
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Theorem 6.53 Let S be an r-dimensional subspace of Rn and let {u1, . . . , ur },
{v1, . . . , vr } be two orthonormal bases of the space S. The orthogonal matrices
B = (u1 · · · ur ) ∈ R

n×r and C = (v1 · · · vr ) ∈ R
n×r of the any two such bases

are related by the equality B = CT , where T = C ∞ B ∈ C
r×r is an orthogonal

matrix.

Proof Since the columns of B form a basis for S, each vector vi can be written as

vi = v1t1i + · · · + vr tri

for 1 � i � r . Thus, B = CT . Since B and C are orthogonal, we have

BH B = T HCHCT = T HT = Ir ,

so T is an orthogonal matrix and because it is a square matrix, it is also a unitary
matrix. Furthermore, we have CH B = CHCT = T , which concludes the argument.

Definition 6.54 A rotation matrix is an orthogonal matrix R ∈ R
n×n such that

det(R) = 1. A reflexion matrix is an orthogonal matrix R ∈ R
n×n such that det(R) =

−1.

Example 6.55 In the two dimensional case, n = 2, a rotation is a matrix R ∈ R
2×2,

R =
⎨

r11 r12
r21 r22

⎩

such that
r2
11 + r2

21 = 1, r2
12 + r2

22 = 1,

r11r12 + r21r22 = 0, r11r22 − r12r21 = 1.

These equalities implies

r22(r11r12 + r21r22) − r12(r11r22 − r12r21) = −r12,

or
r21(r

2
22 + r2

12) = −r12,

so r21 = −r12.
If r21 = −r21 = 0, the above equalities imply that either r11 = r22 = 1 or

r11 = r22 = −1. Otherwise, the equality r11r12 + r21r22 = 0 implies r11 = r22.
Since r2

11 � 1 it follows that there exits β such that r11 = cos β . This shows that
R has the form

R =
⎨

cos β sin β

− sin β cos β

⎩
.

The vector y = Rx, where
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y =
⎨

x1 cos β + x2 sin β

−x1 sin β + x2 cos β

⎩
,

is obtained from x by a clockwise rotation through an angle β . It is easy to see that
det(R) = 1, so the term “rotation matrix” is clearly justified for R. To mark the
dependency of R on β we will use the notation

R(β) =
⎨

cos β sin β

− sin β cos β

⎩
.

A extension of this example is the Givens matrix G(p, q, β) ∈ R
n×n defined as


⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

1 · · · · · · · · · · · · · · · 0
... · · · ... · · · ... · · · ...

0 · · · cos β · · · sin β · · · 0
... · · · ... · · · ... · · · ...

0 · · · − sin β · · · cos β · · · 0
... · · · ... · · · ... · · · ...

0 · · · · · · · · · · · · · · · 1


⎛

p

q

p q

.

We can write

G(p, q, β) = (e1 · · · cos βep − sin βeq · · · sin βep + cos β eq · · · en).

It is easy to verify that G(p, q, β) is a rotation matrix since it is orthogonal and
det(G(p, q, β)) = 1.

Since

G(p, q, β)


⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

v1
...

vp
...

vq
...

vn


⎛

=


⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

v1
...

cos βvp + sin βvq
...

− sin βvp + cos βvq
...

vn


⎛

,

the the multiplication of a vector v be a Givens matrix amounts to a clockwise rotation
by β in the plane of the coordinates (vp, vq).

If vp ∩= 0, then the rotation described by the Givens matrix can be used to zero
the qth component of the resulting vector by taking β such that tan β = vq

vp
.

It is easy to see that R(β)−1 = R(−β) and that R(β2)R(β1) = R(β1 + β2).
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Example 6.56 Let v ∈ C
n − {0n} be a unit vector. The Householder matrix Hv ∈

C
n×n is defined by Hv = In − 2vvH.
The matrix Hv is clearly Hermitian. Moreover, we have

H H H = H H = (In − 2vvH
)2 = In − 4vvH + 4v(vHv)vH = In,

so Hv is unitary and involutive. Since det(Hv) = −1, Hv is a reflexion. For a unit
vector v ∈ R

n , Hv is an orthogonal and involutive matrix.
The vector Hvw is a reflexion of the vector w relative to the hyperplane Hv,0

defined by vHx = 0, because the vector

w − Hvw = (In − Hv)w = 2v(vHw)

is orthogonal to the hyperplane v∞x = 0. Furthermore, the vector Hvw has the same
norm as w.

Theorem 6.57 Let A ∈ C
n×n and B ∈ C

k×k be two matrices. If there exists U ∈
C

n×k having an orthonormal set of columns such that AU = U B, then there exists
V ∈ C

n×(n−k) such that (U V ) ∈ C
n×n is a unitary matrix and

(U V )H A(U V ) =
⎨

B U H AV
On−k,k V H AV

⎩
.

Proof Since U has an orthonormal set of columns, there exists V ∈ C
n×(n−k) such

that (U V ) is a unitary matrix. We have

U H AU = U HU B = B and V H AU = V HU B = On−k,k B = On−k,k .

The equality of the theorem follows immediately.

6.7 The Topology of Normed Linear Spaces

A normed space can be equipped with the topology of a metric space, using the metric
defined by the norm. Since this topology is induced by a metric, any normed space is a
Hausdorff space. Further, if v ∈ L , then the collection of subsets {Cd(v, r) | r > 0}
is a fundamental system of neighborhoods for v.

By specializing the definition of local continuity of functions between metric
spaces, a function f : L −∪ M between two normed spaces (L , ν) and (M, ν∞) is
continuous in x0 ∈ L if for every ξ > 0 there exists δ > 0 such that ν(x − x0) < δ

implies ν∞( f (x) − f (x0)) < ξ.
A sequence (x0, x1, . . .) of elements of L converges to x if for every ξ > 0 there

exists nξ ∈ N such that n � nξ implies ν(xn − x) < ξ.
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Theorem 6.58 In a normed linear space (L , ν), the norm, the multiplication by
scalars and the vector addition are continuous functions.

Proof Let (x0, x1, . . .) be a sequence in L such that limn∪∞ xn = x. By Theorem 6.7
we have ν(xn − x) � |ν(xn) − ν(x)|, which implies limn∪∞ ν(xn) = ν(x). Thus,
the norm is continuous.

Suppose now that limn∪∞ an = a and limn∪∞ xn = x, where (an) is a sequence
of scalars. Since the sequence (xn) is bounded, we have

ν(ax − anxn) � ν(ax − anx) + ν(anx − anxn)

� |a − an|ν(x) + anν(x − xn),

which implies that limn∪∞ anxn = ax. This shows that the multiplication by scalars
is a continuous function.

To prove that the vector addition is continuous, let (xn) and (yn) be two sequences
in L such that limn∪∞ xn = x and limn∪∞ yn = y. Note that

ν
(
(x + y) − (xn + yn)

)
� ν(x − xn) + ν(y − yn),

which implies that limn∪∞(xn+yn) = x+y. Thus, the vector addition is continuous.

Definition 6.59 Two norms ν and ν∞ on a linear space L are equivalent if they
generate the same topology.

Theorem 6.60 Let L be a linear space and let ν : L −∪ R�0 and ν∞ : L −∪ R�0
be two norms on L that generate the topologies O and O∞ on L, respectively.

The topology O∞ is finer than the topology O (that is, O ⊆ O∞) if and only if there
exists c ∈ R>0 such that ν(v) � cν∞(v) for every v ∈ L.

Proof Suppose that O ⊆ O∞. Then, any open sphere Cν(0, r0) = {x ∈ L | ν(x) <

r0} (in O) must be an open set in O∞. Therefore, there exists an open sphere Cν∞(0, r1)

such that Cν∞(0, r1) ⊆ Cν(0, r0). This means that for r0 ∈ R�0 and v ∈ L there
exists r1 ∈ R�0 such that ν∞(v) < r1 implies ν(v) < r0 for every u ∈ L . In particular,
for r0 = 1, there is k > 0 such that ν∞(v) < k implies ν(v) < 1, which is equivalent
to cν∞(v) < 1 implies ν(v) < 1, for every v ∈ L and c = 1

k .
For w = 1

c + ξ
v

ν∞(v)
, where ξ > 0 it follows that

cν∞(w) = cν∞
⎨

1

c + ξ

v
ν∞(v)

⎩
= c

c + ξ
< 1,

so

ν(w) = ν

⎨
1

c + ξ

v
ν∞(v)

⎩
= 1

c + ξ

ν(v)

ν∞(v)
< 1.

Since this inequality holds for every ξ > 0 it follows that ν(v) � cν∞(v).
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Conversely, suppose that there exists c ∈ R>0 such that ν(v) � cν∞(v) for every
v ∈ L . Since {

v | ν∞(v) � r

c

}
⊆ {v | ν(v) � r},

for v ∈ L and r > 0 it follows that O ⊆ O∞.

Corollary 6.61 Let ν and ν∞ be two norms on a linear space L. Then, ν and ν∞ are
equivalent if and only if there exist a, b ∈ R>0 such that aν(v) � ν∞(v) � bν(v) for
v ∈ V .

Proof This statement follows directly from Theorem 6.60.

Example 6.62 By Corollary 6.19 any two norms νp and νq , on R
n (with p, q � 1)

are equivalent.

Continuous linear operators between normed spaces have a simple characteriza-
tion.

Theorem 6.63 Let (L , ν) and (L ∞, ν∞) be two normed F-linear spaces where F is
either R or C. A linear operator f : L −∪ L ∞ is continuous if and only if there
exists M ∈ R>0 such that ν∞( f (x)) � Mν(x) for every x ∈ L.

Proof Suppose that f : L −∪ L ∞ satisfies the condition of the theorem. Then,

f
⎬

Cν

⎬
0,

r

M

⎭⎭
⊆ Cν∞(0, r),

for every r > 0, which means that f is continuous in 0 and, therefore, it is continuous
everywhere (by Theorem 5.172).

Conversely, suppose that f is continuous. Then, there exists δ > 0 such that
f (Cν(0, δ)) ⊆ Cν∞( f (x), 1), which is equivalent to ν(x) < δ implies ν∞( f (x)) < 1.
Let ξ > 0 and let z ∈ L be defined by

z = δ

ν(x) + ξ
x.

We have ν(z) = δν(x)
ν(x) + ξ

< δ. This implies ν∞( f (z)) < 1, which is equivalent to

δ

ν(x) + ξ
ν∞( f (x)) < 1

because of the linearity of f . This means that

ν∞( f (x)) <
ν(x) + ξ

δ

for every ξ > 0, so ν∞( f (x)) � 1
δ
ν(x).
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Lemma 6.64 Let (L , ν) and (L ∞, ν∞) be two normed F-linear spaces where F is
either R or C. A linear function f : L −∪ L ∞ is not injective if and only if there
exists u ∈ L − {0} such that f (u) = 0.

Proof It is clear that the condition of the lemma is sufficient for failing injectivity.
Conversely, suppose that f is not injective. There exist t, v ∈ L such that t ∩= v and
f (t) = f (v). The linearity of f implies f (t − v) = 0. By defining u = t − v ∩= 0,
we have the desired element u.

Theorem 6.65 Let (L , ν) and (L ∞, ν∞) be two normed F-linear spaces where F is
either R or C. A linear function f : L −∪ L ∞ is injective if and only if there exists
m ∈ R>0 such that ν∞( f (x)) � mν(x) for every x ∈ V1.

Proof Suppose that f is not injective. By Lemma 6.64, there exists u ∈ L − {0}
such that f (u) = 0, so ν∞( f (u)) < mν(u) for any m > 0. Thus, the condition of the
theorem is sufficient for injectivity.

Suppose that f is injective, so the inverse function f −1 : L ∞ −∪ L is a linear
function. By Theorem 6.63, there exists M > 0 such that

ν( f −1(y)) � Mν∞(y)

for every y ∈ L ∞. Choosing y = f (x) yields ν(x) � Mν∞( f (x), so ν∞( f (x)) � mν(x)

for m = 1
M , which concludes the argument.

Corollary 6.66 Every linear function f : Cm −∪ C
n is continuous.

Proof Suppose that both C
m and C

n are equipped with the norm ν1. If x ∈ C
m we

can write x = x1e1 + · · · + xmxm and the linearity of f implies

ν1( f (x)) = ν1

⎜
f

⎜
m∑

i=1

xi ei

))
= ν1

⎜
m∑

i=1

xi f (ei )

)

�
m∑

i=1

|xi |ν1( f (ei )) � M
m∑

i=1

|xi | = Mν1(x),

where M =⎟m
i=1 ν1( f (ei )). By Theorem 6.63, the continuity of f follows.

Next, we introduce a norm on the linear space Hom(Cm,Cn) of linear functions
from C

m to C
n . Recall that if f : Cm −∪ C

n is a linear function and ν, ν∞ are norms
on C

m and C
n respectively, then there exists a non-negative constant m such that

ν∞( f (x)) � Mν(x) for every x ∈ C
m . Define the norm of f , μ( f ), as

μ( f ) = inf{M ∈ R�0 | ν∞( f (x)) � Mν(x) for every x ∈ C
m}. (6.13)

Theorem 6.67 The mapping μ defined by Equality (6.13) is a norm on the linear
space of linear functions Hom(Cm,Cn).
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Proof Let f, g be two functions in Hom(Cm,Cn). There exist M f and Mg in R�0
such that ν∞( f (x)) � M f ν(x) and ν∞(g(x)) � Mgν(x) for every x ∈ V . Thus,

ν∞(( f + g)(x)) = ν∞( f (x) + g(x)) � ν∞( f (x)) + ν∞(g(x)) � (M f + Mg)ν(x),

so
M f + Mg ∈ {M ∈ R�0 | ν∞(( f + g)(x)) � Mν(x) for every x ∈ V }.

Therefore,
μ( f + g) � μ( f ) + μ(g).

We leave to the reader the verification of the remaining norm properties of μ.

Since the norm μ defined by Equality (6.13) depends on the norms ν and ν∞ we
denote it by N (ν, ν∞).

Theorem 6.68 Let f : Cm −∪ C
n and g : Cn −∪ C

p and let μ = N (ν, ν∞),
μ∞ = N (ν∞, ν∞∞) and μ∞∞ = N (μ,μ∞∞), where ν, ν∞, ν∞∞ are norms on C

m, Cn, and C
p,

respectively. We have μ∞∞(g f ) � μ( f )μ∞(g).

Proof Let x ∈ C
m . We have ν∞( f (x)) � (μ( f )+ξ∞)ν(x) for every ξ∞ > 0. Similarly,

for y ∈ C
n , ν∞∞(g(y)) � (μ∞(g)+ξ∞∞)ν∞(y) for every ξ∞∞ > 0. These inequalities imply

ν∞∞(g( f (x)) � (μ∞(g) + ξ∞∞)ν∞( f (x)) � (μ∞(g) + ξ∞∞)μ( f ) + ξ∞)ν(x).

Thus, we have μ∞∞(g f ) � (μ∞(g) + ξ∞∞)μ( f ) + ξ∞), for every ξ∞ and ξ∞∞. This allows
us to conclude that μ∞∞( f g) � μ( f )μ∞(g).

Equivalent definitions of the norm μ = N (ν, ν∞) are given next.

Theorem 6.69 Let f : Cm −∪ C
n and let ν and ν∞ be two norms defined on C

m

and C
n, respectively. If μ = N (ν, ν∞), we have

(i) μ( f ) = inf{M ∈ R�0 | ν∞( f (x)) � Mν(x) for every x ∈ C
m};

(ii) μ( f ) = sup{ν∞( f (x)) | ν(x) � 1};
(iii) μ( f ) = max{ν∞( f (x)) | ν(x) � 1};
(iv) μ( f ) = max{ν∞( f (x)) | ν(x) = 1};
(v) μ( f ) = sup

{
ν∞( f (x))

ν(x)
| x ∈ C

m − {0m}
}

.

Proof The first equality is the definition of μ( f ).
Let ξ be a positive number. By the definition of the infimum, there exists M such

that ν∞( f (x)) � Mν(x) for every x ∈ C
m and M � μ( f ) + ξ. Thus, for any x such

that ν(x) � 1, we have ν∞( f (x)) � M � μ( f ) + ξ. Since this inequality holds for
every ξ, it follows that ν∞( f (x)) � μ( f ) for every x ∈ C

m with ν(x) � 1.
Furthermore, if ξ∞ is a positive number, we claim that there exists x0 ∈ C

m such
that ν(x0) � 1 and μ( f )−ξ∞ � ν∞( f (x0)) � μ( f ). Suppose that this is not the case.
Then, for every z ∈ C

n with ν(z) � 1 we have ν∞( f (z)) � μ( f ) − ξ∞. If x ∈ C
n ,
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then ν
⎬

1
ν(x)

x
⎭

= 1, so ν∞( f (x)) � (μ( f )−ξ∞)ν(x), which contradicts the definition

of μ( f ). This allows us to conclude that μ( f ) = sup{ν∞( f (x)) | ν(x) � 1}, which
proves the second equality.

Observe that the third equality (where we replaced sup by max) holds because
the closed sphere B(0, 1) is a compact set in R

n . Thus, we have

μ(A) = max{ν∞( f (x)) | ν(x) � 1}. (6.14)

For the fourth equality, since {x | ν(x) = 1} ⊆ {x | ν(x) � 1}, it follows that

max{ν∞( f (x)) | ν(x) = 1} � max{ν∞( f (x)) | ν(x) � 1} = μ( f ).

By the third equality there exists a vector z ∈ R
n − {0} such that ν(z) � 1 and

ν∞( f (z)) = μ( f ). Thus, we have

μ( f ) = ν(z)ν
⎨

f

⎨
z

ν(z)

⎩⎩
� ν

⎨
f

⎨
z

ν(z)

⎩⎩
.

Since ν
⎬

z
ν(z)

⎭
= 1, it follows that μ(A) � max{ν∞( f (x)) | ν(x) = 1}. This yields

the desired conclusion.
Finally, to prove the last equality observe that for every x ∈ C

m −{0m}, 1
ν(x)

x is a

unit vector. Thus, ν∞( f ( 1
ν(x)

x) � μ( f ), by the fourth equality. On the other hand, by
the third equality, there exists x0 such that ν(x0) = 1 and ν∞( f (x0)) = μ( f ). This
concludes the argument.

Definition 6.70 A normed linear space is complete if it is complete as a metric
space, that is, if every Cauchy sequence is convergent. A Banach space is a complete
normed space.

By Theorem 8.52, if T is a closed subspace of a a Banach space S, then T is
complete; the reverse implication is immediate, so a subspace of a Banach space is
closed if and only if it is complete.

Let (x0, x1, . . .) be a sequence in a normed linear space (L , ν). A series in (L , ν)

is a sequence (s0, s1, . . .) such that sn =⎟n
i=0 xi for n ∈ N. We refer to the elements

xi as the terms of the series and to sn as the nth partial sum of the series. The series
will be often be denoted by

⎟∞
i=0 xi .

If limn∪∞ si = s we say that s is the sum of the series
⎟∞

i=0 xi .
A series

⎟∞
i=0 xi in a linear normed space (V, ν) is absolutely convergent if the

numerical series
⎟∞

i=0 ν(xi ) is convergent.

Theorem 6.71 In a Banach space (L , ν) every absolutely convergent series is con-
vergent.

Proof Let
⎟∞

i=0 xi be an absolutely convergent series in (V, ν). We show that the
sequence of its partial sums (s0, s1, . . .) is a Cauchy sequence. Let ξ > 0 and let n0
be a number such that

⎟∞
n=n0

ν(xi ) < ξ. Then, if m > n � n0 we can write
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ν(sm − sn) = ν

⎜
m∑

i=n+1

xi

)
�

m∑
i=n+1

ν(xi ) < ξ,

which proves that the sequence of partial sum is a Cauchy sequence, which implies
its convergence.

Theorem 6.72 Let (L , ν) be a linear normed space. If every absolutely convergent
series is convergent, then (L , ν) is a Banach space.

Proof Let (x0, x1, . . .) be a Cauchy sequence in L .For every k ∈ N, there exists pk

such that if m, n � pk , we have ν(xm − xn) < 2−k .
Define yn = xn − xn−1 for n � 1 and y0 = x0. Then xn is the partial sum of the

sequence (y0, y1, . . .), xn = y0+y1+· · ·+yn . If n � pk , ν(yn+1) = ν(xn+1−xn) <

2−k , which implies that the series
⎟∞

i=0 yn is absolutely convergent, so the sequence
(x0, x1, . . .) is convergent. This shows that (V, ν) is a Banach space.

6.8 Norms for Matrices

In Sect. 5.3 we saw that the set Cm×n is a linear space. The introduction of norms
for matrices can be done by treating matrices as vectors, or by regarding matrices as
representations of linear operators.

The mapping vectm introduced next allows us to treat matrices as vectors.

Definition 6.73 The (m × n)-vectorization mapping is the mapping vectm : Cm×n

CR
mn defined by

vectm(A) =


⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

a11
...

am1
...

a1n
...

amn


⎛

,

obtained by reading A column-wise.

Using vector norms on C
mn we can define vectorial norms of matrices.

Definition 6.74 Let ν be a vector norm on the spaceCmn. The vectorial matrix norm
μ(m,n) on C

m×n is the mapping μ(m,n) : Cm×n −∪ R�0 defined by μ(m,n)(A) =
ν(vectm(A)), for A ∈ C

m×n.

http://dx.doi.org/10.1007/978-1-4471-6407-4_5


312 6 Norms and Inner Products

Vectorial norms of matrices are defined without regard for matrix products. The
link between linear transformations of finite-dimensional linear spaces and matrices
suggest the introduction of an additional condition. Since every matrix A ∈ C

m×n

corresponds to a linear transformation h A : Cm −∪ C
n , if ν and ν∞ are norms on

C
m and C

n , respectively, it is normal to define a norm on C
m×n as μ(A) = μ(h A),

where μ = N (ν, ν∞) is a norm on space of linear transformations between C
m and

C
n .
Suppose that ν, ν∞ and ν∞∞ are vector norms defined on C

m,Cn and C
p, respec-

tively. In Theorem 6.68 we saw that μ∞∞(g f ) � μ( f )μ∞(g), where μ = N (ν, ν∞),
μ∞ = N (ν∞, ν∞∞) and μ∞∞ = N (μ,μ∞∞), so μ∞∞(AB) � μ(A)μ∞(B). This leads us the
following definition.

Definition 6.75 A consistent family of matrix norms is a family of functions μ(m,n) :
C

m×n −∪ R�0, where m, n ∈ P that satisfies the following conditions:

(i) μ(m,n) is a norm on C
(m,n) for m, n ∈ P, and

(ii) μ(m,p)(AB) � μ(m,n)(A)μ(n,p)(B) for every matrix A ∈ C
m×n and B ∈ C

n×p

(the submultiplicative property).

If the format of the matrix A is clear from context or is irrelevant, then we shall write
μ(A) instead of μ(m,n)(A).

Example 6.76 Let P ∈ C
n×n be an idempotent matrix. If μ is a matrix norm, then

either μ(P) = 0 or μ(P) � 1.
Indeed, since P is idempotent we have μ(P) = μ(P2). By the submultiplicative

property, μ(P2) � (μ(P))2, so μ(P) � (μ(P))2. Consequently, if μ(P) ∩= 0, then
μ(P) � 1.

Some vectorial matrix norms turn out to be actual matrix norms; others fail to be
matrix norms. This point is illustrated by the next two examples.

Example 6.77 Consider the vectorial matrix norm μ1 induced by the vector norm
ν1. We have μ1(A) = ⎟n

i=1
⎟m

j=1 |ai j | for A ∈ C
m×n . Actually, this is a matrix

norm.
Indeed, for A ∈ C

m×p and B ∈ C
p×n we have:

μ1(AB) =
m∑

i=1

n∑
j=1

∣∣∣∣∣
p∑

k=1

aikbk j

∣∣∣∣∣ �
m∑

i=1

n∑
j=1

p∑
k=1

|aikbk j |

�
m∑

i=1

n∑
j=1

p∑
k∞=1

p∑
k∞∞=1

|aik∞ ||bk∞∞ j |

(because we added extra non-negative terms to the sums)

=
⎜

m∑
i=1

p∑
k∞=1

|aik∞ |
)

·

 n∑

j=1

p∑
k∞∞=1

|bk∞∞ j |

⎛ = μ1(A)μ1(B).
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We denote this vectorial matrix norm by the same notation as the corresponding
vector norm, that is, by ∅ A ∅1.

The vectorial matrix norm μ2 induced by the vector norm ν2 is also a matrix
norm. Indeed, using the same notations we have:

(μ2(AB))2 =
m∑

i=1

n∑
j=1

∣∣∣∣∣
p∑

k=1

aikbk j

∣∣∣∣∣
2

�
m∑

i=1

n∑
j=1

⎜ p∑
k=1

|aik |2
)⎜ p∑

l=1

|bl j |2
)

(by Cauchy-Schwarz inequality)

� (μ2(A))2(μ2(B))2.

The vectorial norm of A ∈ C
m×n μ2(A) =

⎬⎟n
i=1
⎟m

j=1 |ai j |2
⎭ 1

2
, denoted also

by ∅ A ∅F , is known as the Frobenius norm.
It is easy to see that for real matrices we have

∅ A ∅2
F = trace(AA∞) = trace(A∞ A) (6.15)

and for complex matrices the corresponding equality is

∅ A ∅2
F = trace(AAH) = trace(AH A). (6.16)

Note that ∅ AH ∅2
F =∅ A ∅2

F for every A.

Example 6.78 The vectorial norm μ∞ induced by the vector norm ν∞ is denoted
by ∅ A ∅∞ and is given by ∅ A ∅∞= maxi, j |ai j | for A ∈ C

n×n . This is not a matrix
norm. Indeed, let a, b be two positive numbers and consider the matrices

A =
⎨

a a
a a

⎩
and B =

⎨
b b
b b

⎩
.

We have ∅ A ∅∞ = a and ∅ B ∅∞ = b. However, since

AB =
⎨

2ab 2ab
2ab 2ab

⎩
,

we have ∅ AB ∅∞ = 2ab and the submultiplicative property of matrix norms is
violated.

By regarding matrices as transformations between linear spaces, we can define
norms for matrices that turn out to be matrix norms.

Definition 6.79 Let νm be a norm on C
m and νn be a norm on C

n and let A ∈ C
n×m

be a matrix. The operator norm of A is the number μ(n,m)(A) = μ(n,m)(h A), where
μ(n,m) = N (νm, νn).
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Theorem 6.80 Let {νn | n � 1} be a family of vector norms, where νn is a vector
norm on C

n. The family of norms {μ(n,m) | n, m � 1} is consistent.

Proof It is easy to see that the family of norms {μ(n,m) | n, m � 1} satisfies the first
three conditions of Definition 6.75. For the fourth condition of Definition 6.75 and
A ∈ C

n×m and B ∈ C
m×p, we can write:

μ(n,p)(AB) = sup{νn((AB)x) | νp(x) � 1}
= sup{νn(A(Bx)) | νp(x) � 1}
= sup

{
νn

⎨
A

Bx
νm(Bx)

⎩
νm(Bx)

∣∣∣νp(x) � 1

}

� μ(n,m)(A) sup{νm(Bx)

∣∣∣νp(x) � 1}
(because νm

⎬
Bx

ν(Bx)

⎭
= 1)

= μ(n,m)(A)μ(m,p)(B).

Theorem 6.69 implies the following equivalent definitions of μ(n,m)(A).

Theorem 6.81 Let νn be a norm on C
n for n � 1. The following equalities hold for

μ(n,m)(A), where A ∈ C
(n,m).

μ(n,m)(A) = inf{M ∈ R�0 | νn(Ax) � Mνm(x) for every x ∈ C
m}

= sup{νn(Ax) | νm(x) � 1} = max{νn(Ax) | νm(x) � 1}
= max{ν∞( f (x)) | ν(x) = 1} = sup

{
ν∞( f (x))

ν(x)
| x ∈ C

m − {0m}
}

.

Proof The theorem is simply a reformulation of Theorem 6.69.

Corollary 6.82 Let μ be the matrix norm on C
n×n induced by the vector norm ν.

We have ν(Au) � μ(A)ν(u) for every u ∈ C
n.

Proof The inequality is obviously satisfied when u = 0n . Therefore, we may assume
that u ∩= 0n and let x = 1

ν(u)
u. Clearly, ν(x) = 1 and Equality (6.14) implies that

ν

⎨
A

1

ν(u)
u
⎩

� μ(A)

for every u ∈ C
n − {0n}. This implies immediately the desired inequality.

If μ is a matrix norm induced by a vector norm on R
n , then μ(In) = sup{ν(Inx) |

ν(x) � 1} = 1.
The operator matrix norm induced by the vector norm ∅ · ∅p is denoted by ||| · |||p.

Example 6.83 To compute |||A|||1 = sup{∅ Ax ∅1 | ∅ x ∅1 � 1}, where A ∈ R
n×n ,

suppose that the columns of A are the vectors a1, . . . , an , that is
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a j =


⎪⎪⎪

a1 j

a2 j
...

anj


⎛ .

Let x ∈ R
n be a vector whose components are x1, . . . , xn . Then, Ax = x1a1 + · · ·+

xnan , so

∅ Ax ∅1 = ∅ x1a1 + · · · + xnan ∅1 �
n∑

j=1

|x j | ∅ a j ∅1

� max
j

∅ a j ∅1

n∑
j=1

|x j | = max
j

∅ a j ∅1 · ∅ x ∅1 .

Thus, |||A|||1 � max j ∅ a j ∅1.
Let e j be the vector whose components are 0 with the exception of its j th

component that is equal to 1. Clearly, we have ∅ e j ∅1 = 1 and a j = Ae j .
This, in turn implies ∅ a j ∅1 =∅ Ae j ∅1 � |||A|||1 for 1 � j � n. Therefore,
max j ∅ a j ∅1 � |||A|||1, so

|||A|||1 = max
j

∅ a j ∅1 = max
j

n∑
i=1

|ai j |.

In other words, |||A|||1 equals the maximum column sum of the absolute values.

Example 6.84 Let A ∈ R
n×n . We have

∅ Ax ∅∞ = max
1�i�n

∣∣∣∣∣∣
n∑

j=1

ai j x j

∣∣∣∣∣∣ � max
1�i�n

n∑
j=1

|ai j x j |

� max
1�i�n

∅ x ∅∞
n∑

j=1

|ai j |.

Consequently, if ∅ x ∅∞� 1 we have ∅ Ax ∅∞� max1�i�n
⎟n

j=1 |ai j |. Thus,
|||A|||∞ � max1�i�n

⎟n
j=1 |ai j |.

The converse inequality is immediate if A = On,n . Therefore, assume that A ∩=
On×n , and let (ap1, . . . , apn) be any row of A that has at least one element distinct
from 0. Define the vector z ∈ R

n by

z j =
⎧ |apj |

apj
if apj ∩= 0,

1 otherwise,
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for 1 � j � n. It is clear that z j ∈ {−1, 1} for every j , 1 � j � n and, therefore,
∅ z ∅∞= 1. Moreover, we have |apj | = apj z j for 1 � j � n. Therefore, we can
write:

n∑
j=1

|apj | =
n∑

j=1

apj z j �

∣∣∣∣∣∣
n∑

j=1

apj z j

∣∣∣∣∣∣ � max
1�i�n

∣∣∣∣∣∣
n∑

j=1

ai j z j

∣∣∣∣∣∣
= ∅ Az ∅∞ � max{∅ Ax ∅∞ | ∅ x ∅∞ � 1} = |||A|||∞.

Since this holds for every row of A, it follows that max1�i�n
⎟n

j=1 |ai j | � |||A|||∞,
which proves that |||A|||∞ = max1�i�n

⎟n
j=1 |ai j |. In other words, |||A|||∞ equals the

maximum row sum of the absolute values.

Example 6.85 Let D = diag(d1, . . . , dn) ∈ C
n×n be a diagonal matrix. If x ∈ C

n

we have

Dx =

⎪

d1x1
...

dn xn


⎛ ,

so

|||D|||2 = max{∅ Dx ∅2 | ∅ x ∅2= 1}
= max{

⎫
(d1x1)2 + · · · + (dn xn)2 | x2

1 + · · · + x2
n = 1}

= max{|di | | 1 � 1 � n}.

Norms that are invariant with respect to multiplication by unitary matrices are
known as unitarily invariant norms.

Theorem 6.86 Let U ∈ C
n×n be a unitary matrix. The following statements hold:

(i) ∅ Ux ∅2 =∅ x ∅2 for every x ∈ C
n;

(ii) |||U A|||2 = |||A|||2 for every A ∈ C
n×p;

(iii) ∅ U A ∅F =∅ A ∅F for every A ∈ C
n×p.

Proof For the first part of the theorem note that ∅ Ux ∅2
2 = (Ux)HUx = xHU HUx =

xHx =∅ x ∅2
2, because U H A = In .

The proof of the second part is shown next:

|||U A|||2 = max{∅ (U A)x ∅2 | ∅ x ∅2 = 1} = max{∅ U (Ax) ∅2 | ∅ x ∅2= 1}
= max{∅ Ax ∅2 | ∅ x ∅2 = 1} = |||A|||2.

For the Frobenius norm note that

∅ U A ∅F = ⎫trace((U A)HU A) = ⎫trace(AHU HU A) = ⎫trace(AH A) =∅ A ∅F ,

by Equality (6.15).
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Corollary 6.87 If U ∈ C
n×n is a unitary matrix, then |||U |||2 = 1.

Proof Since |||U |||2 = sup{∅ Ux ∅2 | ∅ x ∅2 � 1}, by Part (ii) of Theorem 6.86,

|||U |||2 = sup{∅ x ∅2 | ∅ x ∅2 � 1} = 1.

Corollary 6.88 Let A, U ∈ C
n×n. If U is an unitary matrix, then

∅ U H AU ∅F =∅ A ∅F .

Proof Since U is a unitary matrix, so is U H. By Part (iii) of Theorem 6.86,

∅ U H AU ∅F =∅ AU ∅F =∅ U H AH ∅2
F =∅ AH ∅2

F=∅ A ∅2
F ,

which proves the corollary.

Example 6.89 Let S = {x ∈ R
n | ∅ x ∅2= 1} be the surface of the sphere inRn . The

image of S under the linear transformation hU that corresponds to the unitary matrix
U is S itself. Indeed, by Theorem 6.86, ∅ hU (x) ∅2=∅ x ∅2= 1, so hU (x) ∈ S for
every x ∈ S. Also, note that hU restricted to S is a bijection because hU H(hU (x)) = x
for every x ∈ R

n .

Theorem 6.90 Let A ∈ R
n×n. We have |||A|||2 � ∅ A ∅F .

Proof Let x ∈ R
n . We have

Ax =

⎪

r1x
...

rnx


⎛ ,

where r1, . . . , rn are the rows of the matrix A. Thus,

∅ Ax ∅2

∅ x ∅2
=
⎢⎟n

i=1(ri x)2

∅ x ∅2
.

By Cauchy-Schwarz inequality we have (ri x)2 � ∅ ri ∅2
2∅ x ∅2

2, so

∅ Ax ∅2

∅ x ∅2
�

√√√√ n∑
i=1

∅ ri ∅2
2 =∅ A ∅F .

This implies |||A|||2 � ∅ A ∅F .
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6.9 Projection on Subspaces

If U, W are two complementary subspaces of Cn , then there exist idempotent endo-
morphisms g and h of Cn such that W = Ker(g), U = Img(g) and U = Ker(h)

and W = Img(h). The vector g(x) is the oblique projection of x on U along the
subspace W and h(x) is the oblique projection of x on W along the subspace U .

If g and h are represented by the matrices BU and BW , respectively, it follows
that these matrices are idempotent, g(x) = BU x ∈ U , and h(x) = BW x ∈ W for
x ∈ C

n . Also, BU BW = BW BU = On,n .
Let U and W be two complementary subspaces of C

n , {u1, . . . , up} be a
basis for U , and let {w1, . . . , wq} be a basis for W , where p + q = n. Clearly,
{u1, . . . , up, w1, . . . , wq} is a basis for Cn and every x ∈ C

n can be written as

x = x1u1 + · · · + x pup + x p+1w1 + · · · + x p+qwq .

Let B ∈ C
n×n be the matrix B = (u1 · · · up w1 · · · wq), which is clearly

invertible. Note that

BU ui = ui , BU w j = 0n, BW ui = 0n, BW w j = w j ,

for 1 � i � p and 1 � j � q . Therefore, we have

BU B = (u1 · · · up 0n · · · 0n) = B

⎨
Ip Op,n−p

On−p,p On−p,n−p

⎩
,

so

BU = B

⎨
Ip Op,n−p

On−p,p On−p,n−p

⎩
B−1.

Similarly, we can show that

BW = B

⎨
On−q,n−q On−q,q

Oq,n−q Iq

⎩
B−1.

Note that BU + BW = B In B−1 = In . Thus, the oblique projection on U along W is
given by

g(x) = BU x = B

⎨
Ip Op,n−p

On−p,p On−p,n−p

⎩
B−1x.

The similar oblique projection on W along U is

h(x) = BU x = B

⎨
On−q,n−q On−q,q

Oq,n−q Iq

⎩
B−1x,
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for x ∈ C
n . Observe that g(x) + h(x) = x, so the projection on W along U is

h(x) = x − g(x) = (In − BU )x.
A special important type of projections involves pairs of orthogonal subspaces.

Let U be a subspace of C
n with dim U = p and let BU = {u1, . . . , up} be an

orthonormal basis of U . Taking into account that (U⊥)⊥ = U , by Theorem 5.33
there exists an idempotent endomorphism g of Cn such that U = Img(g) and U⊥ =
Ker(g). The proof of Theorem 6.39 shows that this endomorphism is defined by
g(x) = (x, u1)u1 + · · · + (x, um)um .

Definition 6.91 Let {u1, . . . , um} be an orthonormal basis of an m-dimensional
subspace of U of Cn. The orthogonal projection of the vector x ∈ C

n on the subspace
U is the vector projU (x) = (x, u1)u1 + · · · + (x, um)um.

If {z1, . . . , zm} is an orthogonal basis of the space U , then an orthonormal basis
of the same subspace is { 1

∅z1∅z1, . . . ,
1

∅zm∅zm}. Thus, if ui = 1
∅zi ∅zi for 1 � i � m,

we have (x, ui )ui = (x,zi )

∅zi ∅2 zi for 1 � i � m, and the orthogonal projection projU (x)

can be written as

projU (x) = (x, z1)

∅ z1 ∅2 z1 + · · · + (x, zm)

∅ zm ∅2 zm . (6.17)

In particular, the projection of x on the 1-dimensional subspace generated by z is
denoted by projz(x) and is given by

projz(x) = (x, z)
∅ z ∅2 z = xHz

zHz
z. (6.18)

Theorem 6.92 Let U be an m-dimensional subspace of Rn and let x ∈ R
n. The

vector y = x − projU (x) belongs to the subspace U⊥.

Proof Let BU = {u1, . . . , um} be an orthonormal basis of U . Note that

(y, u j ) = (x, u j ) −
⎜

m∑
i=1

(x, ui )ui , u j

)

= (x, u j ) −
m∑

i=1

(x, ui )(ui , u j ) = 0,

due to the orthogonality of the basis BU . Therefore, y is orthogonal on every linear
combination of BU , that is on the subspace U .

Theorem 6.93 Let U be an m-dimensional subspace of Cn having the orthonormal
basis {u1, . . . , um}. The orthogonal projection projU is given by projU (x) = BU BH

U x
for x ∈ C

n, where BU ∈ R
n×m is the matrix BU = (u1 · · · um) ∈ C

n×m.

Proof We can write
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projU (x) =
m∑

i=1

ui (uH
i x) = (u1 · · · um)


⎪

uH
1
...

uH
m


⎛ x = BU BH

U x.

Since the basis {u1, . . . , um} is orthonormal, we have BH
U BU = Im . Observe that

the matrix BU BH
U ∈ C

n×n is symmetric and idempotent because

(BU BH
U )(BU BH

U ) = BU (BH
U BU )BH

U = BU BH
U .

Corollary 6.94 Let U be an m-dimensional subspace ofCn having the orthonormal
basis {u1, . . . , um}. We have

projU (x) =
m∑

i=1

projui
(x).

Proof This statement follows directly from Theorem 6.93.

For an m-dimensional subspace U of Cn we denote by PU = BU BH
U ∈ C

n×n ,
where BU is a matrix of an orthonormal basis of U as defined before. PU is the
projection matrix of the subspace U .

Corollary 6.95 For every non-zero subspace U, the matrix PU is a Hermitian
matrix, and therefore, a self-adjoint matrix.

Proof Since PU = BU BH
U where BU is a matrix of an orthonormal basis of the

subspace S, it is immediate that PH
U = PU .

The self-adjointness of PU means that (x, PU y) = (PU x, y) for every x, y ∈ C
n .

Corollary 6.96 Let U be an m-dimensional subspace ofCn having the orthonormal
basis {u1, . . . , um}.

If BU = (u1 · · · um) ∈ C
n×m, then for every x ∈ C we have the decomposition

x = PU x + PU⊥x, where PU = BU BH
U and PU⊥ = In − PU = In − BU BU⊥ .

Proof This statement follows immediately from Theorem 6.93.

It is possible to give a direct argument for the independence of the projection
matrix PU relative to the choice of orthonormal basis in U .

Theorem 6.97 Let U be an m-dimensional subspace of Cn having the orthonormal
bases {u1, . . . , um} and {v1, . . . , vm} and let BU = (u1 · · · um) ∈ C

n×m and B̃U =
(v1 · · · vm) ∈ C

n×m. The matrix BH
U B̃U ∈ C

m×m is unitary and B̃U B̃H
U = BU BH

U .

Proof Since the both sets of columns of BU and B̃U are bases for U , there
exists a unique square matrix Q ∈ C

m×m such that BU = B̃U Q. The ortho-
normality of BU and B̃U implies BH

U BU = B̃H
U B̃U = Im . Thus, we can write

Im = BH
U BU = QH B̃H

U B̃U Q = QH Q, which shows that Q is unitary. Furthermore,
BH

U B̃U = QH B̃H
U B̃U = QH is unitary and BU BH

U = B̃U Q QH B̃H
U = B̃U B̃H

U .
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In Example 6.76 we have shown that if P is an idempotent matrix, then for every
matrix norm μ we have μ(P) = 0 or μ(P) � 1. For orthogonal projection matrices
of the form PU , where U is a non-zero subspace we have |||PU |||2 = 1. Indeed, we
can write x = (x − projU (x)) + projU (x), so

∅ x ∅2
2 =∅ x − projU (x) ∅2

2 + ∅ projU (x) ∅2
2 � ∅ projU (x) ∅2

2 .

Thus, ∅ x ∅2 � ∅ PU (x) ∅ for any x ∈ C
n , which implies

|||PU |||2 = sup

{∅ PU x ∅2

∅ x ∅2

∣∣∣x ∈ C
n − {0}}

}
� 1.

This implies |||PU |||2 = 1.
The next theorem shows that the best approximation of a vector x is a subspace

U (in the sense of Euclidean distance) is the orthogonal projection on x on U .

Theorem 6.98 Let U be an m-dimensional subspace of Cn and let x ∈ C
n. The

minimal value of d2(x, u), the Euclidean distance between x and an element u of the
subspace U is achieved when u = projU (x).

Proof We saw that x can be uniquely written as x = y + projU (x), where y ∈ U⊥.
Let now u be an arbitrary member of U . We have

d2(x, u)2 =∅ x − u ∅2
2=∅ (x − projU (x)) + (projU (x) − u) ∅2

2 .

Since x − projU (x) ∈ U⊥ and projU (x) − u ∈ U , it follows that these vectors are
orthogonal. Thus, we can write

d2(x, u)2 =∅ (x − projU (x)) ∅2
2 + ∅ (projU (x) − u) ∅2

2,

which implies that d2(x, u) � d2(x − projU (x)).

The orthogonal projections associated with subspaces allow us to define a metric
on the collection of subspaces of Cn . Indeed, if S and T are two subspaces of Cn we
define dF (S, T ) =∅ PS − PT ∅F . When using the vector norm ∅ · ∅2 and the metric
induced by this norm on C

n we denote the corresponding metric on subspaces by d2.

Example 6.99 Let u, w be two distinct unit vectors in the linear space L . The orthog-
onal projection matrices of ∨u∧ and ∨w∧ are uu∞ and ww∞, respectively. Thus,

dF (∨u∧, ∨w∧) =∅ uu∞ − vv∞ ∅F .

Suppose now that L = R
2. Since u and w are unit vectors in R

2 there exist Ψ, σ ∈
[0, 2Φ ] such that

u =
⎨

cos Ψ

sin Ψ

⎩
and w =

⎨
cos σ

sin σ

⎩
.
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Thus, we can write

uu∞ − vv∞ =
⎨

cos2 Ψ − cos2 σ cos Ψ sin Ψ − cos σ sin σ

cos Ψ sin Ψ − cos σ sin σ sin2 Ψ − sin2 σ

⎩
.

and dF (∨u∧, ∨w∧) = ⊕
2| sin(Ψ − σ)|.

We could use any matrix norm in the definition of the distance between subspaces.
For example, we could replace the Frobenius norm by ||| · |||1 or by ||| · |||2.

Let S be a subspace of Cn and let x ∈ C
n . The distance between x and S defined

by the norm ∅ · ∅ is

d(x, S) =∅ x − projS(x) ∅=∅ x − PSx ∅=∅ (I − PS)x ∅ .

Theorem 6.100 Let S and T be two non-zero subspaces of Cn and let

δS = max{d2(x, T ) | x ∈ S, ∅ x ∅2 = 1},
δT = max{d2(x, S) | x ∈ T, ∅ x ∅2 = 1}.

We have d2(S, T ) = max{δS, δT }.
Proof If x ∈ S and ∅ x ∅2 = 1 we have

d2(x, T ) = ∅ x − PT x ∅2 =∅ PSx − PT x ∅2

= ∅ (PS − PT )x ∅2 � |||PS − PT |||2.

Therefore, δS � |||PS − PT |||2. Similarly, δT � |||PS − PT |||2, so max{δS, δT } �
d2(S, T ).

Note that

δS = max{∅ (I − PT )x ∅2 | x ∈ S, ∅ x ∅2 = 1},
δT = max{∅ (I − PS)x ∅2 | x ∈ T, ∅ x ∅2 = 1},

so, taking into account that PSx ∈ S and PT x ∈ T for every x ∈ C
n we have

∅ (I − PS)PT x ∅2 � δS ∅ PT x ∅2, ∅ (I − PT )PSx ∅2 � δT ∅ PSx ∅2 .

We have
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∅ PT (I − PS)x ∅2
2 = (PT (I − PS)x, PT (I − PS)x)

= ((PT )2(I − PS)x, (I − PS)x)

= (PT (I − PS)x, (I − PS)x)

= (PT (I − PS)x, (I − PS)2x)

= ((I − PS)PT (I − PS)x, (I − PS)x)

because both PS and I − PS are idempotent and self-adjoint. Therefore,

∅ PT (I − PS)x ∅2
2 � ∅ (I − PS)PT (I − PS)x ∅2∅ (I − PS)x ∅2

� δT ∅ PT (I − PS)x ∅2∅ (I − PS)x ∅2 .

This allows us to infer that

∅ PT (I − PS)x ∅2 � δT ∅ (I − PS)x ∅2 .

We discuss now four fundamental subspaces associated to a matrix A ∈ C
m×n .

The range and the null space of A, Ran(A) ⊆ C
m and NullSp(A) ⊆ C

n have
been already discussed. We add now two new subspaces: Ran(AH) ⊆ C

n and
NullSp(AH) ⊆ C

m .

Theorem 6.101 For every matrix A ∈ C
m×n we have (Ran(A))⊥ = NullSp(AH).

Proof The statement follows from the equivalence of the following statements:

(i) x ∈ (Ran(A))⊥;
(ii) (x, Ay) = 0 for all y ∈ C

n ;
(iii) xH Ay = 0 for all y ∈ R

n ;
(iv) yH AHx = 0 for all y ∈ R

n ;
(v) AHx = 0;
(vi) x ∈ NullSp(AH).

Corollary 6.102 For every matrix A ∈ C
m×n we have (Ran(AH))⊥ = NullSp(A).

Proof This statement follows from Theorem 6.101 by replacing A by AH.

Corollary 6.103 For every matrix A ∈ C
m×n we have

C
m = Ran(A) � NullSp(AH)

C
n = NullSp(A) � Ran(AH).

Proof By Theorem 6.39 we haveCm = Ran(A)� Ran(A)⊥ andCn = NullSp(A)�
NullSp(A)⊥. Taking into account Theorem 6.101 and Corollary 6.103 we obtain the
desired equalities.
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6.10 Positive Definite and Positive Semidefinite Matrices

Definition 6.104 A matrix A ∈ C
n×n is positive definite if xH Ax is a real positive

number for every x ∈ C
n − {0}.

Theorem 6.105 If A ∈ C
n×n is positive definite, then A is Hermitian.

Proof Let A ∈ C
n×n be a matrix. Since xH Ax is a real number it follows that it

equals its conjugate, so xH Ax = xH AHx for every x ∈ C
n . There exists a unique

pair of Hermitian matrices H1 and H2 such that A = H1 + i H2, which implies
AH = H H

1 − i H H
2 . Thus, we have

xH(H1 + i H2)x = xH(H H
1 − i H H

2 )x = xH(H1 − i H2)x,

because H1 and H2 are Hermitian. This implies xH H2x = 0 for every x ∈ C
n , which,

in turn, implies H2 = On,n . Consequently, A = H1, so A is indeed Hermitian.

Definition 6.106 A matrix A ∈ C
n×n is positive semidefinite if xH Ax is a non-

negative real number for every x ∈ C
n − {0}.

Positive definiteness (positive semidefiniteness) is denoted by A ↔ 0 (A ⊃ 0,
respectively).

The definition of positive definite (semidefinite) matrix can be specialized for real
matrices as follows.

Definition 6.107 A symmetric matrix A ∈ R
n×n is positive definite if x∞ Ax > 0 for

every x ∈ R
n − {0}.

If A satisfies the weaker inequality x∞ Ax � 0 for every x ∈ R
n − {0}, then we say

that A is positive semidefinite.
A ↔ 0 denotes that A is positive definite and A ⊃ 0 means that A is positive

semidefinite.

Note that in the case of real-valued matrices we need to require explicitely the
symmetry of the matrix because, unlike the complex case, the inequality x∞ Ax > 0
for x ∈ R

n − {0n} does not imply the symmetry of A. For example, consider the
matrix

A =
⎨

a b
−b a

⎩
,

where a, b ∈ R and a > 0. We have

x∞ Ax = (x1 x2)

⎨
a b

−b a

⎩⎨
x1
x2

⎩
= a(x2

1 + x2
2 ) > 0

if x ∩= 02.
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Example 6.108 The symmetric real matrix

A =
⎨

a b
b c

⎩

is positive definite if and only if a > 0 and b2 − ac < 0. Indeed, we have x∞ Ax > 0
for every x ∈ R

2 − {0} if and only if ax2
1 + 2bx1x2 + cx2

2 > 0, where x∞ = (x1 x2);
elementary algebra considerations lead to a > 0 and b2 − ac < 0.

A positive definite matrix is non-singular. Indeed, if Ax = 0, where A ∈ R
n×n is

positive definite, then xH Ax = 0, so x = 0. By Corollary 5.91, A is non-singular.

Example 6.109 If A ∈ C
m×n , then the matrices AH A ∈ C

n×n and AAH ∈ C
m×m

are positive semidefinite. For x ∈ C
n we have

xH(AH A)x = (xH AH)(Ax) = (Ax)H(Ax) =∅ Ax ∅2
2 � 0.

The argument for AAH is similar.
If rank(A) = n, then the matrix AH A is positive definite because xH(AH A)x = 0

implies Ax = 0, which, in turn, implies x = 0.

Theorem 6.110 If A ∈ C
n×n is a positive definite matrix, then any principal sub-

matrix B = A

⎣
i1 · · · ik

i1 · · · ik

⎥
is a positive definite matrix.

Proof Let x ∈ C
n−{0}be a vector such that all components located on positions other

than i1, . . . , ik equal 0 and let y = x
⎣

i1 · · · ik

1

⎥
∈ C

k be the vector obtained from

x by retaining only the components located on positions i1, . . . , ik . Since yH By =
xH Ax > 0 it follows that B ↔ 0.

Corollary 6.111 If A ∈ C
n×n is a positive definite matrix, then any diagonal element

aii is a real positive number for 1 � i � n.

Proof This statement follows immediately from Theorem 6.110 by observing that
every diagonal element of A is an 1 × 1 principal submatrix of A.

Theorem 6.112 If A, B ∈ C
n×n are two positive semidefinite matrices and a, b are

two non-negative numbers, then a A + bB ⊃ 0.

Proof The statement holds because xH(a A + bB)x = axH Ax + bxH Bx � 0, due to
the fact that A and B are positive semidefinite.

Theorem 6.113 Let A ∈ C
n×n be a positive definite matrix and let S ∈ C

n×m.
The matrix SH AS is positive semidefinite and has the same rank as S. Moreover, if
rank(S) = m, then SH AS is positive definite.
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Proof Since A is positive definite, it is Hermitian and (SH AS)H = SH AS implies that
SH AS is a Hermitian matrix.

Let x ∈ C
m . We have xH SH ASx = (Sx)H A(Sx) � 0 because A is positive definite.

Thus, the matrix SH AS is positive semidefinite.
If Sx = 0, then SH ASx = 0; conversely, if SH ASx = 0, then xH SH ASx = 0, so

Sx = 0. This allows us to conclude that NullSp(S) = NullSp(SH AS). Therefore, by
Equality (5.6), we have rank(S) = rank(SH AS).

Suppose now that rank(S) = m and that xH SH ASx = 0. Since A is positive
definite we have Sx = 0 and this implies x = 0, because of the assumption made
relative to rank(S). Consequently, SH AS is positive definite.

Corollary 6.114 Let A ∈ C
n×n be a positive definite matrix and let S ∈ C

n×n. If S
is non-singular, then so is SH AS.

Proof This is an immediate consequence of Theorem 6.113.

Theorem 6.115 A Hermitian matrix B ∈ C
n×n is positive definite if and only if the

mapping f : Cn × C
n −∪ C given by f (x, y) = xH By for x, y ∈ C

n defines an
inner product on C

n.

Proof Suppose that B defines an inner product on C
n . Then, by Property (iii) of

Definition 6.22 we have f (x, x) > 0 for x ∩= 0, which amounts to the positive
definiteness of B.

Conversely, if B is positive definite, then f satisfies the condition from Defini-
tion 6.22. We show here only that f has the conjugate symmetry property.

We can write f (y, x) = yH Bx = y∞Bx, for x, y ∈ C
n . Since B is Hermitian,

B = BH = B ∞, so f (y, x) = y∞ B ∞x. Observe that y∞ B ∞x is a number (that is, an 1 × 1
matrix), so (y∞ B ∞x)∞ = xH By = f (x, y).

Corollary 6.116 A symmetric matrix B ∈ R
n×n is positive definite if and only if

the mapping f : Rn × R
n −∪ R given by f (x, y) = x∞ By for x, y ∈ R

n defines an
inner product on R

n.

Proof This follows immediately from Theorem 6.115.

Definition 6.117 Let L = (v1, . . . , vm) be a sequence of vectors in R
n. The Gram

matrix of L is the matrix GL = (gi j ) ∈ R
m×m defined by gi j = v∞

i v j for 1 � i, j � m.

Note that if AL = (v1 · · · vm) ∈ R
n×m , then GL = A∞

L AL . Also, note that GL is a
symmetric matrix.

Theorem 6.118 Let L = (v1, . . . , vm) be a sequence of m vectors in R
n, where

m � n. If L is linearly independent, then the Gram matrix GL is positive definite.

Proof Suppose that L is linearly independent. Let x ∈ R
m . We have x∞GLx =

x∞ A∞
L ALx = (ALx)∞ ALx =∅ ALx ∅2

2. Therefore, if x∞GLx = 0, we have ALx =
0, which is equivalent to x1v1 + · · · + xnvn = 0. Since {v1, . . . , vm} is linearly
independent it follows that x1 = · · · = xm = 0, so x = 0. Thus, A is indeed, positive
definite.

http://dx.doi.org/10.1007/978-1-4471-6407-4_5
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The Gram matrix of an arbitrary sequence of vectors is positive semidefinite, as
the reader can easily verify.

Definition 6.119 Let L = (v1, . . . , vm) be a sequence of m vectors in R
n, where

m � n. The Gramian of L is the number det(GL).

Theorem 6.120 If L = (v1, . . . , vm) is a sequence of m vectors in R
n. Then, L is

linearly independent if and only if det(GL) ∩= 0.

Proof Suppose that det(GL) ∩= 0 and that L is not linearly independent. In other
words, the numbers a1, . . . , am exist such that at least one of them is not 0 and
a1x1 + · · · + amxm = 0. This implies the equalities

a1(x1, x j ) + · · · + am(xm, x j ) = 0,

for 1 � j � m, so the system GLa = 0 has a non-trivial solution in a1, . . . , am .
This implies det(GL) = 0, which contradicts the initial assumption.

Conversely, suppose that L is linearly independent and det(GL) = 0. Then, the
linear system

a1(x1, x j ) + · · · + am(xm, x j ) = 0,

for 1 � j � m, has a non-trivial solution in a1, . . . , am . If w = a1x1 + · · · amxm ,
this amounts to (w, xi ) = 0 for 1 � i � n. This implies (w, w) =∅ w ∅2

2= 0, so
w = 0, which contradicts the linear independence of L .

Theorem 6.121 (Cholesky’s Decomposition Theorem) Let A ∈ C
n×n be a Her-

mitian positive definite matrix. There exists a unique upper triangular matrix R with
real, positive diagonal elements such that A = RH R.

Proof The argument is by induction on n � 1. The base step, n = 1, is immediate.
Suppose that a decomposition exists for all Hermitian positive matrices of order

n, and let A ∈ C
(n+1)×(n+1) be a symmetric and positive definite matrix. We can

write

A =
⎨

a11 aH

a B

⎩
,

where B ∈ C
n×n . By Theorem 6.110, a11 > 0 and B ∈ C

n×n is a Hermitian positive
definite matrix. It is easy to verify the identity:

A =
⎜⊕

a11 0
1⊕
a11

a In

)⎨
1 0∞
0 B − 1

a11
aaH

⎩⎜⊕
a11

1⊕
a11

aH

0 In

)
. (6.19)

Let R1 ∈ C
n×n be the upper triangular non-singular matrix

R1 =
⎜⊕

a11
1⊕
a11

aH

0 In

)
.
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This allows us to write

A = RH
1

⎨
1 0∞
0 A1

⎩
R1,

where A1 = B − 1
a11

aaH. Since

⎨
1 0∞
0 A1

⎩
= (R−1

1 )H AR−1
1 ,

by Theorem 6.113, the matrix ⎨
1 0∞
0 A1

⎩

is positive definite, which allows us to conclude that the matrix A1 = B − 1
a11

aaH ∈
C

n×n is a Hermitian positive definite matrix.
By the inductive hypothesis, A1 can be factored as

A1 = PH P,

where P is an upper triangular matrix. This allows us to write

⎨
1 0∞
0 A1

⎩
=
⎨

1 0∞
0 PH

⎩⎨
1 0∞
0 P

⎩

Thus,

A = RH
1

⎨
1 0∞
0 PH

⎩⎨
1 0∞
0 P

⎩
R1

If R is defined as

R =
⎨

1 0∞
0 P

⎩
R1 =

⎨
1 0∞
0 P

⎩⎜⊕
a11

1⊕
a11

aH

0 In

)
=
⎜⊕

a11
1⊕
a11

aH

0 P

)
,

then A = RH R and R is clearly an upper triangular matrix.

We refer to the matrix R as the Cholesky factor of A.

Corollary 6.122 If A ∈ C
n×n is a Hermitian positive definite matrix, then det(A) >

0.

Proof By Corollary 5.130, det(A) is a real number. By Theorem 6.121, A = RH R,
where R is an upper triangular matrix with real, positive diagonal elements, so
det(A) = det(RH) det(R) = (det(R))2. Since det(R) is the product of its diago-
nal elements, det(R) is a real, positive number, which implies det(A) > 0.

Example 6.123 Let A be the symmetric matrix
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A =

3 0 2

0 2 1
2 1 2


⎛ .

We leave to the reader to verify that this matrix is indeed positive definite starting
from Definition 6.104.

By Equality (6.19), the matrix A can be written as

A =

⎪

⊕
3 0 0

0 1 0
2⊕
3

0 1


⎛

1 0 0

0 2 1
0 1 2

3


⎛



⊕
3 0 2⊕

3
0 1 0
0 0 1


⎛ ,

because

A1 =
⎨

2 1
1 2

⎩
− 1

3

⎨
0
2

⎩ (
0 2
) =
⎨

2 1
1 2

3

⎩
.

Applying the same equality to A1 we have

A1 =
⎜⊕

2 0
1⊕
2

1

)⎨
1 0
0 1

6

⎩⎜⊕
2 1⊕

2
0 1

)
.

Since the matrix ( 1
6 ) can be factored directly we have

A1 =
⎜⊕

2 0
1⊕
2

1

)⎜
1 0
0 1⊕

6

)⎜
1 0
0 1⊕

6

)⎜⊕
2 1⊕

2
0 1

)

=
⎜⊕

2 0
1⊕
2

1⊕
6

)⎜⊕
2 1⊕

2
0 1⊕

6

)
.

In turn, this implies


1 0 0

0 2 1
0 1 2

3


⎛ =


⎪

1 0 0
0

⊕
2 0

0 1⊕
2

1⊕
6


⎛

⎪

1 0 0
0

⊕
2 1⊕

2
0 0 1⊕

6


⎛ ,

which produces the Cholesky final decomposition of A:
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A =

⎪

⊕
3 0 0

0 1 0
2⊕
3

0 1


⎛

⎪

1 0 0
0

⊕
2 0

0 1⊕
2

1⊕
6


⎛

⎪

1 0 0
0

⊕
2 1⊕

2
0 0 1⊕

6


⎛



⊕
3 0 2⊕

3
0 1 0
0 0 1


⎛

=

⎪

⊕
3 0 0

0
⊕

2 0
2⊕
3

1⊕
2

1⊕
6


⎛

⎪

⊕
3 0 2⊕

3
0

⊕
2 1⊕

2
0 0 1⊕

6


⎛ .

Cholesky’s Decomposition Theorem can be extended to positive semi-definite
matrices.

Theorem 6.124 (Cholesky’s Decomposition Theorem for Positive Semidefinite
Matrices) Let A ∈ C

n×n be a Hermitian positive semidefinite matrix. There exists
an upper triangular matrix R with real, non-negative diagonal elements such that
A = RH R.

Proof The argument is similar to the one used for Theorem 6.121 and is omitted.

Observe that for positive semidefinite matrices, the diagonal elements of R are
non-negative numbers and the uniqueness of R does not longer hold.

Example 6.125 Let A =
⎨

1 −1
−1 1

⎩
. Since x∞ Ax = (x1 − x2) it is clear that A is a

positive semidefinite but not a positive definite matrix. Let R be a matrix of the form

R =
⎨

r1 r
0 r2

⎩

such that A = R∞ R. It is easy to see that the last equality is equivalent to r2
1 = r2

2 = 1
and rr1 = −1. Thus, we have for distinct Cholesky factors: matrices

⎨
1 −1
0 1

⎩
,

⎨
1 −1
0 −1

⎩
,

⎨−1 1
0 1

⎩
,

⎨−1 1
0 −1

⎩
.

Theorem 6.126 A Hermitian matrix A ∈ C
n×n is positive definite if and only if all

its leading principal minors are positive.

Proof By Theorem 6.110, if A is positive definite, then every principal submatrix is
positive definite, so by Corollary 6.122, each principal minor of A is positive.

Conversely, suppose that A ∈ C
n×n is an Hermitian matrix having positive leading

principal minors. We prove by induction on n that A is positive definite.
The base case, n = 1 is immediate. Suppose that the statement holds for matrices

in C
(n−1)×(n−1). Note that A can be written as

A =
⎨

B b
bH a

⎩
,
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where B ∈ C
(n−1)×(n−1) is a Hermitian matrix. Since the leading minors of B are

the first n − 1 leading minors of A it follows, by the inductive hypothesis, that B
is positive definite. Thus, there exists a Cholesky decomposition B = RH R, where
R is an upper triangular matrix with real, positive diagonal elements. Since R is
invertible, let w = (RH)−1b.

The matrix B is invertible. By Theorem 5.154, we have det(A) = det(B)(a −
bH B−1b) > 0. Since det(B) > 0 it follows that a � bH B−1b. We observed that if B
is positive definite, then so is B−1. Therefore, a � 0 is and we can write a = c2 for
some positive c. This allows us to write

A =
⎨

RH 0
ws H c

⎩⎨
R w
0H c

⎩
= CHC,

where C is the upper triangular matrix with positive e

C =
⎨

R w
0H c

⎩

This implies immediately the positive definiteness of A.

Let A, B ∈ C
n×n . We write A ↔ B if A − B ↔ 0, that is, if A − B is a positive

definite matrix. Similarly, we write A ⊃ B if A − B ⊃ O , that is, if A − B is positive
semidefinite.

Theorem 6.127 Let A0, A1, . . . , Am be m + 1 matrices in C
n×n such that A0 is

positive definite and all matrices are Hermitian. There exists a > 0 such that for any
t ∈ [−a, a] the matrix Bm(t) = A0 + A1t + · · · + Amtm is positive definite.

Proof Since all matrices A0, . . . , Am are Hermitian, note that xH Ai x are real numbers
for 0 � i � m. Therefore, pm(t) = xH Bm(t)x is a polynomial in t with real
coefficients and pm(0) = xH A0x is a positive number if x ∩= 0. Since pm is a
continuous function there exists an interval [−a, a] such that t ∈ [−a, a] implies
pm(t) > 0 if x ∩= 0. This shows that Bm(t) is positive definite.

6.11 The Gram-Schmidt Orthogonalization Algorithm

The Gram-Schmidt algorithm starts with a basis {u1, . . . , um} of an m-dimensional
spaceU ofCn and generates an orthonormal basis {q1, . . . , qm}of the same subspace.
Clearly, we have m � n.

The algorithm starts with the sequence of vectors (u1, . . . , um) and constructs the
sequence of orthonormal vectors (q1, . . . , qm) such that

∨u1, . . . , uk∧ = ∨q1, . . . , qk∧
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for 1 � k � m as follows:

z1 = u1, q1 = 1
∅z1∅z1,

z2 = u2 − projz1
(u2), q2 = 1

∅z2∅z2,

z3 = u3 − projz1
(u3) − projz2

(u3), q3 = 1
∅z3∅z3,

...
...

zm = um − projz1
(um) − · · · − projzm−1

(um), qm = 1
∅zm∅zm .

The algorithm can be written in pseudo-code as shown in Algorithm 6.11.1.

Lemma 6.128 The sequence (z1, . . . , zm) constructed by the Gram-Schmidt algo-
rithm consists of pairwise orthogonal vectors; furthermore, the sequence
(q1, . . . , qm) consists of pairwise orthonormal vectors.

Proof Note that

zk = uk −
k−1∑
j=1

proj∨z1,...,zk−1∧(uk)

This implies that zk is orthogonal on the subspace ∨z1, . . . , zk−1∧, that is, on all its
predecessors in the sequence. The second part of the lemma follows immediately.

Lemma 6.129 We have ∨q1, . . . , qk∧ = ∨u1, . . . , uk∧ for 1 � k � m.

Proof The proof is by induction on k. The base step, k = 1, is immediate.
Suppose that the equality holds for k. Since q j and z j determine the same one-

dimensional subspace, we have projz j
(uk) = projq j

(uk), Thus,

qk+1 = 1

∅ zk+1 ∅


uk+1 −

k∑
j=1

projq j
(uk+1)


⎛

= 1

∅ zk+1 ∅
⎬

uk+1 − proj∨q1,...,qk∧(uk+1)
⎭

.

By the inductive hypothesis,

qk+1 = 1

∅ zk+1 ∅
⎬

uk+1 − proj∨u1,...,uk∧(uk+1)
⎭

,

which implies qk+1 ∈ ∨u1, . . . , uk+1∧. Thus, ∨q1, . . . , qk+1∧ ⊆ ∨u1, . . . , uk+1∧.
For the reverse inclusion, note that
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uk+1 = zk+1 +
k∑

j=1

projz j
(uk+1)

= zk+1 + proj∨z1,...,zk∧(uk+1)

= ∅ zk+1 ∅ qk+1 + proj∨q1,...,qk∧(uk+1),

which implies that uk+1 ∈ ∨q1, . . . , qk+1∧. Therefore,

∨u1, . . . , uk+1∧ ⊆ ∨q1, . . . , qk+1∧,

which concludes the argument.

Algorithm 6.11.1: Gram-Schmidt Orthogonalization Algorithm
Data: A basis {u1, . . . , um} for a subspace U of Cn

Result: An orthonormal basis {q1, . . . , qm} for U
z1 = u1; q1 = 1

∅z1∅ z1;1

for k = 2 to m do2

zk = uk −⎟k−1
j=1 projz j

(uk);3

qk = 1
∅zk∅ zk ;4

end5
return Q = (q1 · · · qm);6

Theorem 6.130 Let (q1, . . . , qm) be the sequence of vectors constructed by the
Gram-Schmidt algorithm starting from the basis {u1, . . . , um} of an m-dimensional
subspace U of C

n. The set {q1, . . . , qm} is an orthogonal basis of U and
∨q1, . . . , qk∧ = ∨u1, . . . uk∧ for 1 � k � m.

Proof This statement follows immediately from Lemmas 6.128 and 6.129.

Example 6.131 Let A ∈ R
3×2 be the matrix

A =

1 1

0 0
1 3


⎛ .

It is easy to see that rank(A) = 2. We have {u1, u2} ⊆ R
3 and we construct an

orthogonal basis for the subspace generated by these columns. The matrix W is
intialized to O3,2.

By Algorithm 6.11.1, we begin by defining z1 = u1 and

q1 = 1

∅ z1 ∅z1 =

⎪

⊕
2

2
0⊕
2

2


⎛
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because ∅ z1 ∅= ⊕
2. Next, we have

z2 = u2 − projz1
(u2) = u2 − 2z1

=

−1

0
1


⎛ ,

which implies

q2 =

⎪−

⊕
2

2
0⊕
2

2


⎛ .

Thus, the orthonormal basis we are seeking consists of the vectors


⎪

⊕
2

2
0⊕
2

2


⎛ and


⎪−

⊕
2

2
0⊕
2

2


⎛ .

Using the Gram-Schmidt algorithm we can factor a matrix as a product of a
matrix having orthogonal columns and an upper triangular matrix. This useful matrix
decomposition (described in the next theorem) is known as the Q R-decomposition.

Theorem 6.132 (Reduced QR Decomposition) Let U ∈ C
n×m be a full-rank

matrix, where m � n. There exists a matrix Q ∈ C
n×m having a set of ortho-

normal columns and an upper triangular matrix R ∈ C
m×m such that U = Q R.

Furthermore, the diagonal entries of R are non-zero.

Proof Let U = (u1 · · · um). We use the same notations as above. Since uk ∈
∨q1, . . . , qk∧ for 1 � k � m, it follows that we can write the equalities

u1 = q1r11,

u2 = q1r12 + q2r22,

u3 = q1r13 + q2r23 + q3r33,

...

um = q1r1m + q2r2m + q3r3m + · · · + qmrmm .

In matrix form these equalities are



6.11 The Gram-Schmidt Orthogonalization Algorithm 335

(u1, . . . , um) = (q1, . . . , qm)


⎪⎪⎪⎪⎪

r11 r12 · · · r1m

0 r22 · · · r2m

0 0 · · · r3m
...

...
...

...

0 0 · · · rmm


⎛ .

Thus, we have Q = (q1 · · · qm) and

R =


⎪⎪⎪⎪⎪

r11 r12 · · · r1m

0 r22 · · · r2m

0 0 · · · r3m
...

...
...

...

0 0 · · · rmm


⎛ .

Note that rkk ∩= 0 for 1 � k � m. Indeed, if we were to have rkk = 0 this would
imply uk = q1r1k + q2r2k + q3r3k + · · · + qk−1rk−1 k−1, which would contradict
the equality ∨q1, . . . , qk∧ = ∨u1, . . . , uk∧.
Theorem 6.133 (Full QR Decomposition) Let U ∈ C

n×m be a full-rank matrix,
where m � n. There exists a unitary matrix Q ∈ C

m×m and an upper triangular
matrix R ∈ C

n×m such that U = Q R.

Proof Let U = Q1 R1 be the reduced QR decomposition of U , where Q1 =
(q1 · · · qm) is a matrix having an orthonormal set of columns. This set can
be extended to an orthonormal basis {q1, . . . , qm, qm+1, . . . , qn}. of Cn . If Q =
(q1; · · · qm qm+1 · · · qn) and R is the matrix obtained from R by adding n − m
rows equal to 0, then U = Q R is the desired full decomposition of U .

Corollary 6.134 Let U ∈ C
n×n be a non-singular square matrix. There exists a

unitary matrix Q ∈ C
n×n and an upper triangular matrix R ∈ C

n×n such that
U = Q R.

Proof The corollary is a direct consequence of Theorem 6.133.

Theorem 6.135 If L = (v1, . . . , vm) is a sequence of m vectors in R
n. We have

det(GL) �
m⎦

j=1

∅ v j ∅2
2 .

The equality takes place only if the vectors of L are pairwise orthogonal.

Proof Suppose that L is linearly independent and construct the orthonormal set
{y1, . . . , ym}, where y j = b j1v1 + · · · + b j j v j for 1 � j � m, using the Gram-
Schmidt algorithm. Since b j j ∩= 0 it follows that we can write

v j = c j1y1 + · · · + c j j y j
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for 1 � j � m so that (v j , yp) = 0 if j < p and (v j , yp) = c jp if p � j . Thus, we
have

(v1, . . . , vm) = (y1, . . . , ym)


⎪⎪⎪⎪⎪

(v1, y1) (v2, y1) · · · (vm, y1)

0 (v2, y2) · · · (vm, y2)

0 0 · · · (vm, y3)
...

...
...

...

0 0 · · · (vm, ym)


⎛ .

This implies


⎪

(v1, v1) · · · (v1, vm)

.

.

. · · · .
.
.

(vm , v1) · · · (vm , vm)


⎛ =


⎪

v∞
1
.
.
.

v∞
m


⎛ (v1, . . . , vm)

=


⎪⎪⎪

(v1, y1) 0 0
(v2, y1) (v2, y2) 0

.

.

.
.
.
.

.

.

.

(vm , y1) (vm , y2) (vm , ym)


⎛

⎪⎪⎪

(v1, y1) (v2, y1) · · · (vm , y1)

0 (v2, y2) · · · (vm , y2)

.

.

.
.
.
.

.

.

.
.
.
.

0 0 · · · (vm , ym)


⎛ .

Therefore, we have

det(GL) =
m⎦

i=1

(vi , yi )
2 �

m⎦
i=1

(vi , vi )
2,

because (vi , yi )
2 � (vi , vi )

2(yi , yi )
2 and (yi , yi ) = 1 for 1 � i � m.

To have det(GL) =∏m
i=1(vi , vi )

2 we must have vi = ki yi , that is, the vectors vi

must be pairwise orthogonal.

Definition 6.136 A Hadamard matrix is a matrix H ∈ R
nn such that hi j ∈ {1,−1}

for 1 � i, j � n and H H ∞ = nIn.

Example 6.137 The matrices

A =
⎨

1 1
1 −1

⎩
and B =


⎪⎪

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1


⎛

are Hadamard matrices in R
2×2 and R

4×4, respectively.

Corollary 6.138 Let A ∈ R
n×n be a matrix such that |ai j | � 1 for 1 � i, j � n.

Then, | det(A)| � n
n
2 and the equality holds only if A is a Hadamard matrix.

Proof Let ai = (ai1, . . . , ain) be the i th row of A. We have ∅ ai ∅2 � ⊕
n, so

|(ai , a j )| � n by Cauchy-Schwartz inequality, for 1 � i, j � n.
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Note that GL = A∞ A, where L is the set of rows of A. Consequently, det(A)2 =
det(GL) �

∏n
j=1 ∅ v j ∅2

2, so

| det(A)| �
n⎦

j=1

∅ v j ∅2� n
n
2 .

To have the equality we must have ∅ v j ∅= ⊕
n. This is possible only if v jk ∈

{−1, 1}. This fact together with orthogonality of the vectors v1, . . . , vn implies that
A is a Hadamard matrix.

We saw that orthonormal sets of vectors are linearly independent. This allows us
to extend orthonormal set of vectors to orthonormal bases.

Theorem 6.139 Let L be a finite-dimensional linear space. If U is an orthonormal
set of vectors, then there exists a basis T of L that consists of orthonormal vectors
such that U ⊆ T .

Proof Let U = {u1, . . . , um} be an orthonormal set of vectors in L . There is an
extension of U , Z = {u1, . . . , um, um+1, . . . , un} to a basis of L , where n = dim(V ),
by Theorem 5.17. Now, apply the Gram-Schmidt algorithm to the set U to produce
an orthonormal basis W = {w1, . . . , wn} for the entire space L . It is easy to see that
wi = ui for 1 � i � m, so U ⊆ W and W is the orthonormal basis of L that extends
the set U .

Corollary 6.140 If A is an (m × n)-matrix with m � n having orthonormal set
of columns, then there exists an (m × (m − n))-matrix B such that (A B) is an
orthogonal (unitary) square matrix.

Proof This follows directly from Theorem 6.139.

Corollary 6.141 Let U be a subspace of an n-dimensional linear space L such that
dim(U ) = m, where m < n. Then dim(U⊥) = n − m.

Proof Let u1, . . . , um be an orthonormal basis of U , and let

u1, . . . , um, um+1, . . . , un

be its completion to an orthonormal basis for L , which exists by Theorem 6.139. Then,
um+1, . . . , un is a basis of the orthogonal complement U⊥, so dim(U⊥) = n − m.

Theorem 6.142 A subspace U of Rn is m-dimensional if and only if is the set of
solution of an homogeneous linear system Ax = 0, where A ∈ R

(n−m)×n is a full-
rank matrix.

Proof Suppose that U is an m-dimensional subspace ofRn . If v1, . . . , vn−m is a basis
of the orthogonal complement of U , then v∞

i x = 0 for every x ∈ U and 1 � i � n−m.
These conditions are equivalent to the equality
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(v∞
1 v∞

2 · · · v∞
n−m)x = 0,

which shows that U is the set of solution of an homogeneous linear Ax = 0, where
A = (v∞

1 v∞
2 · · · v∞

n−m).
Conversely, if A ∈ R

(n−m)×n is a full-rank matrix, then the set of solutions of
the homogeneous system Ax = b is the null subspace of A and, therefore is an
m-dimensional subspace.

Exercises and Supplements

1. Let ν be a norm on C
n . Prove that there exists a number k ∈ R such that for any

vector x ∈ C
n we have ν(x) � k

⎟n
i=1 |xi |.

2. Prove that ν(x + y)2 + ν(x − y)2 � 4(ν(x)2 + ν(y)2) for every vector norm ν

on R
n and x, y ∈ R

n .
3. Let a ∈ R

n be a vector such that a � 0n . Prove that

⎜
n∑

i=1

ai

)2

� n
n∑

i=1

a2
i .

4. Let (S, d) be a dissimilarity space, where d is a definite dissimilarity. Define the
set

P(x, y, z) = {p ∈ R�0 | d(x, y)p � d(x, z)p + d(z, y)p}

for x, y, z ∈ S. Prove that

(a) P(x, y, z) ∩= → for x, y, z ∈ S;
(b) if p ∈ P(x, y, z) and q � p, then q ∈ P(x, y, z);
(c) if sup P(x, y, z) � 1 for all x, y, z ∈ S, then d is a metric on S;
(d) if sup P(x, y, z) = ∞ for all x, y, z ∈ S, then d is an ultrametric on S.

5. Let u, v ∈ C. Prove that:

(a) |ūv − uv̄|2 = 2|u|2|v|2 − ū2v2 − u2v̄2;
(b) if x ∈ C, ∅ x ∅= 1, and s =⎟n

i=1 x2
i , we have

⎟n
i=1
⎟n

j=1 |x̄i x j −x j x̄i |2 �
2 − 2|s|2.

6. Let {q1, . . . , qn} ⊆ C
n be an orthonormal set of n vectors. If {I, J } is a partition

of {1, . . . , n}, I = {i1, . . . , i p} and J = { j1, . . . , jq}, prove that the subspaces
S = ∨qi1 , . . . , qi p

∧ and T = ∨q j1, . . . , q jq ∧ are complementary.

7. Let Q = (q1 · · · qk) ∈ C
n×k be a matrix having a set of orthonormal columns.

Prove that In − Q QH =∏k
j=1(In − q j q

H
j ).
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Solution: The equality to be shown amounts to In −⎟k
j=1 q j q

H
j =∏k

j=1(In −
q j q

H
j ), and the argument is by induction on k. The base case, k = 1 is immediate.

Suppose that the equality holds for k and let {q1, . . . , qk, qk+1} be a set of
othonormal vectors. We have

k+1⎦
j=1

(In − q j q
H
j ) =

k⎦
j=1

(In − q j q
H
j )(In − qk+1qH

k+1)

=

In −

k∑
j=1

q j q
H
j


⎛ (In − qk+1qH

k+1)

(by the inductive hypothesis)

= In −
k∑

j=1

q j q
H
j − qk+1qH

k+1 +

 k∑

j=1

q j q
H
j


⎛ qk+1qH

k+1.

Since qH
j qk+1 = 0 for 1 � j � k, the inductive step is concluded.

8. Let X = {x1, . . . , xm} be a set and let S be a subset of X . The characteristic
vector of S is cS ∈ {0, 1}m whose components c1, . . . , cm are defined by ci = 1
if xi ∈ S and ci = 0, otherwise. Prove that

(a) ∅ cS ∅2 = |S|;
(b) if S, T ⊆ X , then c∞

ScT = |S ⇒ T |;
(c) if S ⊆ X , then

∑
{(ci − c j )

2 | 1 � i < j � m} = |S| · |X − S|.

Solution: We solve only the third part. Without loss of generality assume that
S = {x1, . . . , x p}. Then, ci = 1 for 1 � i � p and ci = 0 for p +1 � i � m.
The contribution of the terms of the form (ci − c j )

2, where 1 � i � p equals
m − p and there are p such terms. Thus,

⎟{(ci − c j )
2 | 1 � i < j � m} =

p(m − p) = |S| · |X − S|.
9. Let x, y ∈ C

n . Prove that trace(xyH) = xHy.
10. Let x, y ∈ C

n and let M, P be the matrices M = xxH and P = yyH. Prove that for
the inner product on C

n×n , defined in Example 6.26, we have (M, P) = |xHy|2.
11. Let x ∈ R

n . Prove that for every ξ > 0 there exists y ∈ R
n such that the

components of the vector x + y are distinct and ∅ y ∅2 < ξ.

Solution: Partition the set {1, . . . , n} into the blocks B1, . . . , Bk such that all
components of x that have an index in B j have a common value c j . Suppose
that |B j | = p j . Then,

⎟k
j=1 p j = n and the numbers {c1, c2, . . . , ck} are

pairwise distinct. Let d = mini, j |ci − c j |. The vector y can be defined as
follows. If B j = {i1, . . . , i p j }, then
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yi1 = η · 2−1, yi2 = η · 2−2, . . . , yi p j
= η · 2−p,

where η > 0, which makes the numbers c j + yi1 , c j + yi2 , . . . , c j + yi p j

pairwise distinct. It suffices to take η < d to ensure that the components of

x + y are pairwise distinct. Also, note that ∅ y ∅2
2 �
⎟k

j=1 p j
η2

4 = nη2

4 . It

suffices to choose η such that η < min{d, 2ξ
n } to ensure that ∅ y ∅2 < ξ.

12. Prove that the norms ν1 and ν∞ on R
n are not generated by an inner product.

13. Prove that if 0 < p < 1, νp is not a norm on R
n .

14. The number ζ(x), defined as the number of non-zero components of the vector
x ∈ R

n , is refered to as the zero-norm of x (even though it is not a norm in the sense
of Definition 6.9) and is used in the study of linear models in machine learning

(see [1]). Prove that ζ(x) = lim p∪0(νp(x))p and that lim p∪0 n− 1
p νp(x) equals

the geometric mean of the absolute values of the components of x.
15. Let ν be a norm on R

n that satisfies the parallelogram equality. Prove that the
function p : Rn × R

n −∪ R given by

p(x, y) = 1

4

⎬
ν(x + y)2 − ν(x − y)2

⎭

is an inner product on R
n .

16. Let {w1, . . . , wk} ⊆ C
n be a set of unit vectors such that wi ⊥ w j for i ∩= j and

1 � i, j � k. If Wk = (w1 · · · wk) ∈ C
n×k , prove that

In − Wk W H
k = (In − wkwH

k) · · · (In − w1wH
1).

17. Let μ(m,n) : Cm×n −∪ R�0 be a vectorial matrix norm. Prove that for every A ∈
C

m×n there exists a constant k ∈ R such that μ(m,n)(A) � k
⎟m

i=1
⎟n

j=1 |ai j |.
18. We use here the notations introduced in Theorem 6.57. Prove that if A ∈ C

n×n

is a Hermitian matrix such that AU = U B for some U ∈ C
n×k having an

orthonormal set of columns, then we can write:

(U V )H A(U V ) =
⎨

B Ok,n−k

On−k,k V H AV

⎩

for some matrix V ∈ C
n×(n−k) such that (U V ) ∈ C

n×n is a unitary matrix.

19. Prove that a matrix A ∈ C
n×n is normal if and only if ∅ Ax ∅2 =∅ AHx ∅2 for

every x ∈ C
n .

20. Prove that for every matrix A ∈ C
n×n we have |||A|||2 = |||AH|||2.

21. Let A ∈ R
m×n . Prove that there exists i , 1 � i � n such that ∅ Aei ∅2

2 � 1
n ∅

A ∅2
F .

22. Let U ∈ C
n×n be a matrix whose set of columns is orthonormal and let V ∈ C

n×n

be a matrix whose set of rows is orthonormal. Prove that |||U AV |||F = |||A|||F .
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23. Let M ∈ R
n×n be a positive definite matrix. Prove that x∞Mx+y∞My � x∞My+

y∞Mx for x, y ∈ R
n .

24. Let H ∈ C
n×n be a non-singular matrix. Prove that the function f : Cn×n −∪

R�0 defined by f (X) =∅ H X H−1 ∅2 for X ∈ C
n×n is a matrix norm.

25. Let A ∈ C
m×n and B ∈ C

p×q be two matrices. Prove that ∅ A ≥ B ∅2
F=

trace(A∞ A ≥ B ∞ B).
26. Let x0, x, y ∈ R

n . Prove that if t ∈ [0, 1] and u = tx+ (1− t)y, then ∅ x0 −u ∅2
� max{∅ x0 − x ∅2, ∅ x0 − y ∅2}.

27. Let u1, . . . , um be m unit vectors in R
2, such that ∅ ui − u j ∅= 1. Prove that

m � 6.
28. Prove that if A ∈ C

n×n is an invertible matrix, then μ(A) � 1
μ(A−1)

for any
matrix norm μ.

29. Let ∅ · ∅ be an unitarily invariant norm. Prove that ∅ A − In ∅� ∅ A − U ∅� ∅
A + In ∅ for every Hermitian matrix A ∈ C

n×n and every unitary matrix U .
30. Let A ∈ C

n×n be an invertible matrix and let ∅ · ∅ be a norm on C
n . Prove that

|||A−1||| = 1

min{∅ Ax ∅ | ∅ x ∅= 1} ,

where ||| · ||| is the matrix norm generated by ∅ · ∅.

31. Let Y ∈ C
n×p be a matrix that has an orthonormal set of columns, that is,

Y HY = Ip. Prove that:

(a) ∅ Y ∅F= p;
(b) for every matrix R ∈ C

p×q we have ∅ Y R ∅F=∅ R ∅F .

32. Let D ∈ R
n×n be a diagonal matrix such that dii � 0 for 1 � i � n. Prove that

if X is an orthogonal matrix, then trace(X D) � trace (D).

33. Let

X =
⎨

0 1
1 0

⎩
, Y =

⎨
0 −i
i 0

⎩
, Z =

⎨
1 0
0 −1

⎩
,

be the Pauli matrices defined in Example 6.45 Prove that

(a) the Pauli matrices are pairwise orthogonal;
(b) we have the equalities XY = i Z , Y Z = i X , and Z X = iY ;
(c) if W is a Hermitian matrix in C

2×2 such that traceW = 0, then W is a
linear combination of the Pauli matrices.

34. Prove that if x, y ∈ C
n are such that ∅ x ∅2 =∅ y ∅2, then x + y ⊥ x − y.

35. If S is a subspace of Cn , prove that (S⊥)⊥ = S.
36. Prove that every permutation matrix Pδ is orthogonal.
37. Let A ∈ R

n×n be a symmetric matrix. Prove that

(x, Ax) − (y, Ay) = (A(x − y), x + y)
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for every x, y ∈ R
n .

38. Let x, y ∈ R
n be two unit vectors. Prove that

| sin ∠(x, y)| = ∅ x + y ∅2∅ x − y ∅2

2
.

39. Let u and v be two unit vectors in R
n . Prove that

(a) if Ψ = ∠(u, v), then ∅ u − v cos Ψ ∅2 = sin Ψ;
(b) v cos Ψ is the closest vector in ∨v∧ to u.

40. Let {v1, . . . , vp} ⊆ R
n be a collection of p unit vectors such that ∠(vi , v j ) = β ,

where 0 < β � Φ
2 for every pair (vi , v j ) such that 1 � i, j � p and i ∩= j .

Prove that p � n(n+1)
2 .

41. Let Cn×n be the linear space of complex matrices. Prove that:

(a) the set of Hermitian matrices H and the set of skew-Hermitian matrices K
in C

n×n are subspaces of Cn×n ;
(b) if Cn×n is equipped with the inner product defined in Example 6.26, then

K = H⊥.

42. Give an example of a matrix that has positive elements but is not positive definite.
43. Let M ∈ R

n×n be a positive definite matrix. Prove that x∞Mx+y∞My � x∞My+
y∞Mx for x, y ∈ R

n .
44. Prove that if A ∈ R

n×n is a positive definite matrix, then A is invertible and A−1

is also positive definite.
45. Let A ∈ C

n×n be a positive definite Hermitian matrix. If A = B + iC , where
B, C ∈ R

n×n , prove that the real matrix

D =
⎨

B −C
C B

⎩

is positive definite.

46. Let L be a real linear space and let ∅ · ∅ be a norm generated by an inner product
defined on L . L is said to be symmetric relative to the norm if ∅ ax − y ∅=∅
x − ay ∅ for a ∈ R and x, y ∈ V such that ∅ x ∅=∅ y ∅= 1.

(a) Prove that if a norm on a linear vector space L is induced by an inner product,
then L is symmetric relative to that norm.

(b) Prove that L satisfies the Ptolemy inequality ∅ x − y ∅∅ z ∅� ∅ y − z ∅∅
x ∅ + ∅ z − x ∅∅ y ∅, for x, y, z ∈ V if and only if L is symmetric.

47. Let Hu be the Householder matrix corresponding to the unit vector u ∈ R
n . If

x ∈ R
n is written as x = y + z, where y = au and z ⊥ u, then Hux is obtained

by a reflection of x relative to the hyperplane that is perpendicular on u, that is,
Hux = −u + v.
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48. Let Y ∈ R
n×k be a matrix such that Y ∞Y = Ik , where k � n. Prove that the

matrix In − Y Y ∞ is positive semidefinite.
49. Prove that if A, B ∈ R

2×2 are two rotation matrices, then AB = B A.
50. Let u ∈ R

n be a unit vector. A rotation with axis u is an orthogonal matrix A
such that Au = u. Prove that if v ⊥ u, then Av ⊥ u and A∞v ⊥ u.

51. Let u, v and w be three unit vectors in R
2 −{0}. Prove that ∠(u, v) � ∠(u, w)+

∠(w, v).
52. Let A ∈ R

m×n be a matrix such that rank(A) = n. Prove that the R-factor of
the QR-decomposition of A = Q R has positive diagonal elements, it equals the
Cholesky factor of A∞ A, and therefore is uniquely determined.

53. Let A ∈ C
n×m be a full-rank matrix such that m � n. Prove that A can be

factored as A = L Q, where L ∈ C
n×n and Q ∈ C

n×m , such that the columns
of Q constitute an orthonormal basis for Ran(AH), and L = (φi j ) is an lower
triangular invertible matrix such that its diagonal elements are real non-negative
numbers, that is, φi i � 0 for 1 � i � n.

Let

D =

⎪

u∞
1
...

u∞
m


⎛ = (v1 · · · vn) ∈ R

m×n

be a data matrix and let z ∈ R
n . The inertia of D relative to z is the number

Iz(D) =⎟m
j=1 ∅ u j − z ∅2

2.

54. Let

D =

⎪

u∞
1
...

u∞
m


⎛

be a data matrix. Prove that

Iz(D) − ID̃(D) = m ∅ D̃ − z ∅2
2,

for every z ∈ R
n . Conclude that the minimal value of the inertia Iz(D) is achieved

for z = D̃.

The standard deviation of a vector v ∈ R
m is the number

sv =
√√√√ 1

m − 1

m∑
i=1

(vi − ṽ)2,

where ṽ = 1
m

⎟m
i=1 vi is the mean of the components of v. The variance is var(v) =

s2
v .

The standard deviation of a data matrix D ∈ R
m×n , where D = (v1 · · · vn) is

the row s = (sv1 , . . . , svn ) ∈ R
n .
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Let u and w be two vectors in R
m , where m > 1, having the means ũ and w̃, and

the standard deviations su and sv , respectively. The covariance coefficient of u and
w is the number

cov(u, w) = 1

m − 1

m−1∑
i=1

(ui − ũ)(wi − w̃).

The correlation coefficient of u and w is the number

ρ(u, w) = cov(u, w)

susw

.

The covariance matrix is of a data matrix D ∈ R
m×n is

cov(D) = 1

m − 1
D̂∞ D̂ ∈ R

n×n .

55. Prove that for v ∈ R
m we have

var(v) = 1

m − 1

⎬
∅ v ∅2 −mṽ2

⎭
.

56. Let D ∈ R
m×n be a data matrix, where

D =

⎪

u∞
1
...

u∞
m


⎛ = (v1 · · · vn).

Prove that the mean square distance between column vectors v1, . . . , vn is equal
to twice the sum of row variances,

⎟m
i=1 var(ui ).

Solution: The mean square distance between the columns of D is

2

n(n − 1)

∑
i< j

∅ vi − v j ∅2 = 2

n(n − 1)


 n∑

j=1

∅ v j ∅2 − 2
∑
i< j

v∞
i v j


⎛

= 2

n(n − 1)

(
(n − 1) ∅ D ∅2

F + ∅ D ∅2
F − 1∞

n DD∞1n
)

= 2

n(n − 1)

(
n ∅ D ∅2

F − 1∞
n DD∞1n

)
.

Since each vector uk belongs to R
n , the the sum of row variances is

m∑
k=1

var(uk) =
m∑

k=1

1

n − 1

⎬
∅ uk ∅2 − nũ2

k

⎭
= 1

n − 1
∅ D ∅2

F − n

n − 1

n∑
k=1

ũ2
k .
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Taking into account that

sũk = 1

n
1∞

n D∞ek = 1

n
e∞

k D1n,

we have ũ2
k = 1

n2 1∞
n D∞eke∞

k D1n , which implies

n∑
k=1

ũ2
k = 1

n2 1∞
n D∞
⎜

n∑
k=1

eke∞
k

)
D1n = 1

n2 1∞
n D∞D1n,

because
⎟n

k=1 eke∞
k = Im . The desired equality follows immediately.

57. Prove that −1 ≡ ρ(u, w) ≡ 1 for any vectors u, w ∈ R
m .

58. Prove that the covariance matrix of a data matrix D ∈ R
m×n can be written as

cov(D) = 1
m−1 D∞Hm D; if D is centered, then cov(D) = 1

m−1 D∞ D.
59. Let D ∈ R

m×n be a centered data matrix and let R ∈ R
n×n be an orthogonal

matrix. Prove that cov(DR) = R∞cov(X)R.

Bibliographical Comments

The notion of vector inner product, which is fundamental for linear algebra, functional
analysis and other mathematical disciplines was introduced by Hermann Günther
Grassmann (1809–1877) is his fundamental work “Die Lineale Ausdehnungslehre,
ein neuer Zweig der Mathematik”.

Almost every advanced linear algebra reference deals with inner products and
norms and their applications at the level that we need. We recommend especially [2]
and the two volumes [3] and [4].
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Chapter 7
Spectral Properties of Matrices

7.1 Introduction

The existence of directions that are preserved by linear transformations (which are
referred to as eigenvectors) has been discovered by L. Euler in his study of movements
of rigid bodies. This work was continued by Lagrange, Cauchy, Fourier, and Hermite.
The study of eigenvectors and eigenvalues acquired increasing significance through
its applications in heat propagation and stability theory. Later, Hilbert initiated the
study of eigenvalue in functional analysis (in the theory of integral operators). He
introduced the terms of eigenvalue and eigenvector. The term eigenvalue is a German-
English hybrid formed from the German word eigen which means “own” and the
English word “value”. It is interesting that Cauchy referred to the same concept as
characteristic value and the term characteristic polynomial of a matrix (which we
introduce in Definition 7.1) was derived from this naming.

We present the notions of geometric and algebraic multiplicities of eigenvalues,
examine properties of spectra of special matrices, discuss variational characteriza-
tions of spectra and the relationships between matrix norms and eigenvalues. We
conclude this chapter with a section dedicated to singular values of matrices.

7.2 Eigenvalues and Eigenvectors

Let A ∈ C
n×n be a square matrix. An eigenpair of A is a pair (ρ, x) ∈ C×(Cn −{0})

such that Ax = ρx. We refer to ρ is an eigenvalue and to x is an eigenvector. The set
of eigenvalues of A is the spectrum of A and will be denoted by spec(A).

If (ρ, x) is an eigenpair of A, the linear system Ax = ρx has a non-trivial solution
in x. An equivalent homogeneous system is (ρIn − A)x = 0 and this system has a
non-trivial solution only if det(ρIn − A) = 0.

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 347
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_7,
© Springer-Verlag London 2014
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Definition 7.1 The characteristic polynomial of the matrix A is the polynomial pA

defined by pA(ρ) = det(ρIn − A) for ρ ∈ C.

Thus, the eigenvalues of A are the roots of the characteristic polynomial of A.

Lemma 7.2 Let A = (a1 · · · an) ∈ C
n and let B be the matrix obtained from A by

replacing the column a j by e j . Then, we have

det(B) = det

(
A

⎜
1 · · · j − 1 j + 1 · · · n
1 · · · j − 1 j + 1 · · · n

])
.

Proof The result follows immediately by expanding B on the jth column.

The result obtained in Lemma 7.2 can be easily extended as follows. If B is the
matrix obtained from A by replacing the columns a j1 , . . . , a jk by e j1 , . . . , e jk and
{i1, . . . , i p} = {1, . . . , n} − { j1, . . . , jk}, then

det(B) = det

(
A

⎜
i1 · · · i p

i1 · · · i p

])
. (7.1)

In other words, det(B) equals a principal p-minor of A.

Theorem 7.3 Let A ∈ C
n×n be a matrix. Its characteristic polynomial pA can be

written as

pA(ρ) =
n⎟

k=0

(−1)kakρ
n−k,

where ak is the sum of the principal minors of order k of A.

Proof By Theorem 5.146 the determinant

pA(ρ) = det(ρIn − A) = (−1)n det(A − ρIn)

can be written as a sum of 2n determinants of matrices obtained by replacing each
subset of the columns of A by the corresponding subset of columns of −ρIn . If the
subset of columns of −ρIn involved are −ρe j1 , . . . ,−ρe jk the result of the substitu-

tion is (−1)kρk det

(
A

⎜
i1 · · · i p

i1 · · · i p

])
, where {i1, . . . , i p} = {1, . . . , n}−{ j1, . . . , jk}.

The total contribution of sets of k columns of −ρIn is (−1)kρkan−k . Therefore,

pA(ρ) = (−1)n
n⎟

k=0

(−1)kρkan−k .

Replacing k by n − k as the summation index yields

pA(ρ) = (−1)n
n⎟

k=0

(−1)n−kρn−kak =
n⎟

k=0

(−1)kakρ
n−k .
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Definition 7.4 Two matrices A, B ∈ C
n×n are similar if there exists an invertible

matrix P ∈ C
n×n such that B = P AP−1. This is denoted by A ∼ B.

If there exists a unitary matrix U such that B = U AU−1, then A is unitarily
similar to B. This is denoted by A ∼u B.

The matrices A, B are congruent if B = S ASH for some non-singular matrix
S. This is denoted by A ∪ B. If A, B ∈ R

n×n, we say that they are t-congruent if
B = S AS∞ for some invertible matrix S; this is denoted by A ∪t B.

For real matrices the notions of t-congruence and congruence are identical.
It is easy to verify that ∼,∼u and ∪ are equivalence relations on C

n×n and ∪t is
an equivalence on R

n×n .
Similar matrices have the same characteristic polynomial. Indeed, suppose that

B = P AP−1. We have

pB(ρ) = det(ρIn − B) = det(ρIn − P AP−1)

= det(ρP In P−1 − P AP−1) = det(P(ρIn − A)P−1)

= det(P) det(ρIn − A) det(P−1) = det(ρIn − A) = pA(ρ),

because det(P) det(P−1) = 1. Thus, similar matrices have the same eigenvalues.

Example 7.5 Let A be the matrix

A =
(

cos ι − sin ι
sin ι cos ι

)
.

We have

pA = det(ρI2 − A) = (ρ − cos ι)2 + sin2 ι = ρ2 − 2ρ cos ι + 1.

The roots of this polynomial are ρ1 = cos ι + i sin ι and ρ2 = cos ι − i sin ι, so
they are complex numbers.

We regard A as a complex matrix with real entries. If we were to consider A as a
real matrix, we would not be able to find real eigenvalues for A unless ι were equal to
0.

Definition 7.6 The algebraic multiplicity of the eigenvalue ρ of a matrix A ∈ C
n×n

is the multiplicity of ρ as a root of the characteristic polynomial pA of A.
The algebraic multiplicity of ρ is denoted by algm(A,ρ). If algm(A,ρ) = 1 we

say that ρ is a simple eigenvalue.

Example 7.7 Let A ∈ R
2×2 be the matrix

A =
(

0 −1
1 2

)

The characteristic polynomial of A is
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pA(ρ) =
∣∣∣∣ ρ 1
−1 ρ − 2

∣∣∣∣ = ρ2 − 2ρ + 1.

Therefore, A has the eigenvalue 1 with algm(A, 1) = 2.

Example 7.8 Let P(a) ∈ C
n×n be the matrix P(a) = (a − 1)In + Jn . To find the

eigenvalues of P(a) we need to solve the equation

∣∣∣∣∣∣∣∣∣

ρ − a −1 · · · −1
−1 ρ − a · · · −1
...

... · · · ...

−1 −1 · · · ρ − a

∣∣∣∣∣∣∣∣∣
= 0.

By adding the first n − 1 columns to the last and factoring out ρ − (a + n − 1), we
obtain the equivalent equation

(ρ − (a + n − 1))

∣∣∣∣∣∣∣∣∣

ρ − a −1 · · · 1
−1 ρ − a · · · 1
...

... · · · ...

−1 −1 · · · 1

∣∣∣∣∣∣∣∣∣
= 0.

Adding the last column to the first n − 1 columns and expanding the determinant
yields the equation (ρ − (a + n − 1))(ρ − a + 1)n−1 = 0, which shows that P(a)

has the eigenvalue a + n − 1 with algm(P(a), a + n − 1) = 1 and the eigenvalue
a − 1 with algm(P(a), a − 1) = n − 1.

In the special case when a = 1 we have P(1) = Jn,n . Thus, Jn,n has the eigenvalue
ρ1 = n with algebraic multiplicity 1 and the eigenvalue 0 with algebraic multiplicity
n − 1.

Theorem 7.9 The eigenvalues of Hermitian complex matrices are real numbers.

Proof Let A ∈ C
n×n be a Hermitian matrix and let ρ be an eigenvalue of A. We

have Ax = ρx for some x ∈ C
n − {0n}, so xH AH = ρxH. Since AH = A, we have

ρxHx = xH Ax = xH AHx = ρxHx.

Since x ∅= 0 implies xHx ∅= 0, it follows that ρ = ρ. Thus, ρ is a real number.

Corollary 7.10 The eigenvalues of symmetric real matrices are real numbers.

Proof This is a direct consequence of Theorem 7.9.

Theorem 7.11 The eigenvectors of a complex Hermitian matrix corresponding to
distinct eigenvalues are orthogonal to each other.
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Proof Let (ρ,u) and (μ,v) be two eigenpairs of the Hermitian matrix A ∈ C
n×n ,

where ρ ∅= μ. Since A is Hermitian, ρ,μ ∈ R. Since Au = ρu we have vH Au =
ρvHu. The last equality can be written as (Av)Hu = ρvHu, or as μvHu = ρvHu.
Since μ ∅= ρ, vHu = 0, so u and v are orthogonal.

The statement clearly holds if we replace complex Hermitian matrices by real
symmetric matrices.

Corollary 7.12 The eigenvectors of a Hermitian matrix corresponding to distinct
eigenvalues form a linearly independent set.

Proof This statement follows from Theorems 6.41 and 7.11.

The next statement is a result of Issai Schur (1875–1941), a mathematician born
in Russia, who studied and worked in Germany.

Theorem 7.13 (Schur’s Triangularization Theorem) Let A ∈ C
n×n be a square

matrix. There exists an upper-triangular matrix T ∈ C
n×n such that A ∼u T .

The diagonal elements of T are the eigenvalues of A; moreover, each eigenvalue
ρ of A occurs in the sequence of diagonal elements of T a number of algm(A,ρ)

times. The columns of U are unit eigenvectors of A.

Proof The argument is by induction on n. The base case, n = 1, is immediate.
Suppose that the statement holds for matrices in C

(n−1)×(n−1) and let A ∈ C
n×n .

If (ρ, x) is an eigenpair of A with ⊆ x ⊆2= 1, let Hv be a Householder matrix that
transforms x into e1. Since we also have Hve1 = x, x is the first column of Hv and
we can write Hv = (x K ), where K ∈ C

n×(n−1). Consequently,

Hv AHv = Hv A(x K ) = Hv(ρx Hv AK ) = (ρe1 Hv AK ).

Since Hv is Hermitian and Hv = (x K ), it follows that

H H
v =

(
xH

K H

)
= Hv.

Therefore,

Hv AHv =
(

ρ xH AK
0n−1 K H AK

)
.

Since K H AK ∈ C
(n−1)×(n−1), by the inductive hypothesis, there exists a unitary

matrix W and an upper triangular matrix S such that W H(K H AK )W = S. Note that
the matrix

U = Hv

(
1 0∞

n−1
0n−1 W

)

is unitary and
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U H AU H =
(

ρ xH AK W
0n−1 W H K H AK W

)
=

(
ρ xH AK W

0n−1 S

)
.

The last matrix is clearly upper triangular.
Since A ∼u T , A and T have the same characteristic polynomials and, therefore,

the same eigenvalues, with identical multiplicities. Note that the factorization of A
can be written as A = U DU H because U−1 = U H. Since AU = U D, each column
ui of U is an eigenvector of A that corresponds to the eigenvalue ρi for 1 � i � n.

Corollary 7.14 If A ∈ R
n×n is a matrix such that spec(A) = {0}, then A is

nilpotent.

Proof By Schur’s Triangularization Theorem, A is unitarily similar to a strictly upper
triangular matrix, A = U T U H, so An = U T nU H. Since spec(T ) = {0}, we have
T n = O , so An = O .

Corollary 7.15 Let A ∈ C
n×n and let f be a polynomial. If spec(A) = {ρ1, . . . ,ρn}

(including multiplicities), then spec( f (A)) = { f (ρ1), . . . , f (ρn)}.
Proof By Schur’s Triangularization Theorem there exists a unitary matrix U ∈ C

n×n

and an upper-triangular matrix T ∈ C
n×n such that A = U T U H and the diagonal

elements of T are the eigenvalues of A, ρ1, . . . ,ρn . Therefore f (A) = U f (T )U H,
and by Theorem 5.49, the diagonal elements of f (T ) are f (ρ1), . . . , f (ρm). Since
f (A) ∼u f (T ), we obtain the desired conclusion because two similar matrices have
the same eigenvalues with the same algebraic multiplicities.

Definition 7.16 A matrix A ∈ C
n×n is diagonalizable (unitarily diagonalizable) if

there exists a diagonal matrix D = diag(d1, . . . , dn) such that A ∼ D (A ∼u D).

Theorem 7.17 A matrix A ∈ C
n×n is diagonalizable if and only if there exists a

linearly independent set {v1, . . . ,vn} of n eigenvectors of A.

Proof Let A ∈ C
n×n such that there exists a set {v1, . . . ,vn} of n eigenvectors of A

that is linearly independent and let P be the matrix (v1 v2 · · · vn) that is clearly
invertible. We have:

P−1 AP = P−1(Av1 Av2 · · · Avn) = P−1(ρ1v1 ρ2v2 · · · ρnvn)

= P−1 P




ρ1 0 · · · 0
0 ρ2 · · · 0
...

... · · · ...

0 0 · · · ρn


 =




ρ1 0 · · · 0
0 ρ2 · · · 0
...

... · · · ...

0 0 · · · ρn


.

Therefore, we have A = P D P−1, where

D =




ρ1 0 · · · 0
0 ρ2 · · · 0
...

... · · · ...

0 0 · · · ρn


,
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so A ∼ D.
Conversely, suppose that A is diagonalizable, so AP = P D, where D is a diagonal

matrix and P is an invertible matrix, and let v1, . . . ,vn be the columns of the matrix
P . We have Avi = diivi for 1 � i � n, so each vi is an eigenvector of A. Since P
is invertible, its columns are linear independent.

Corollary 7.18 If A ∈ C
n×n is diagonalizable then the columns of any matrix P

such that D = P−1 AP is a diagonal matrix are eigenvectors of A. Furthermore,
the diagonal entries of D are the eigenvalues that correspond to the columns of P.

Proof This statement follows from the proof of Theorem 7.17.

Corollary 7.19 A matrix A ∈ C
n×n is unitarily diagonalizable if and only if there

exists a set {v1, . . . ,vn} of n orthonormal eigenvectors of A.

Proof This statement follows from the proof of Theorem 7.17 by observing that if
{v1, . . . ,vn} is a set n orthonormal eigenvectors of A, then P = (v1, . . . ,vn) is
a unitary matrix that gives a unitary diagonalization of A. Conversely, if P is an
unitary matrix such that A = P D P−1 its set of columns consists of orthogonal
unitary eigenvectors of A.

Corollary 7.20 Let A ∈ R
n×n be a symmetric matrix. There exists a orthonormal

matrix U and a diagonal matrix T such that A = U T U−1. The diagonal elements of
T are the eigenvalues of A; moreover, each eigenvalue ρ of A occurs in the sequence
of diagonal elements of T a number of algm(A,ρ) times.

Proof As the previous corollary, this follows from the proof of Theorem 7.17.

Theorem 7.21 Let A ∈ C
n×n be a block diagonal matrix,

A =




A11 O · · · O
O A22 · · · O
...

... · · · ...

O O · · · Amm


.

A is diagonalizable if and only if every matrix Aii is diagonalizable for 1 � i � m.

Proof Suppose that A is a block diagonal matrix which is diagonalizable. Fur-
thermore, suppose that Aii ∈ C

ni ×ni for 1 � i � n and
∑m

i=1 ni = n. There
exists an invertible matrix P ∈ C

n×n such that P−1 AP is a diagonal matrix
D = diag(ρ1, . . . ,ρn). Let p1, . . . , pn be the columns of P , which are eigenvectors
of A. Each vector pi is divided into m blocks p j

i with 1 � j � m, where p j
i ∈ C

n j .
Thus, P can be written as

P =




p1
1 p1

2 · · · p1
n

p2
1 p2

2 · · · p2
n

...
... · · · ...

pm
1 pm

2 · · · pm
n


.
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The equality Api = ρi pi can be expressed as




A11 O · · · O
O A22 · · · O
...

... · · · ...

O O · · · Amm







p1
i

p2
i
...

pm
i


 = ρi




p1
i

p2
i
...

pm
i


,

which shows that A j j p
j
i = ρi p

j
i for 1 � j � m. Let M j = (p j

1 p j
2 · · · p j

n) ∈
C

n j ×n . We claim that rank(M j ) = n j . Indeed if rank(M j ) were less than n j , we
would have fewer that n independent rows M j for 1 � j � m. This, however, would
imply that the rank of P is less then n, which contradicts the invertibility of P . Since
there are n j linearly independent eigenvectors of A j j , it follows that each block A j j

is diagonalizable.
Conversely, suppose that each A j j is diagonalizable, that is, there exists a invert-

ible matrix Q j such that Q−1
j A j j Q j is a diagonal matrix. Then, it is immediate to

verify that the block diagonal matrix

Q =




Q1 O · · · O
O Q2 · · · O
...

... · · · ...

O O · · · Qm




is invertible and Q−1 AQ is a diagonal matrix.

Theorem 7.22 Let A ∈ C
n×n be a matrix and let (ρ1,v1), . . . , (ρk,vk) be k eigen-

pairs of A, where ρ1, . . . ,ρk are pairwise distinct. Then, {v1, . . . ,vk} is a linearly
independent set.

Proof Suppose that {v1, . . . ,vk} is not linearly independent. Then, there exists a
linear combination of this set that equals 0, that is

c1vi1 + · · · + crvir = 0n, (7.2)

at least one coefficient is not 0, and r > 1. Choose this linear combination to involve
the minimal number of terms. We have

A(c1vi1 + c2vi2 + · · · + crvir ) = c1ρi1v1 + c2ρi2vi2 + · · · + crρirvir = 0n .

By multiplying Equality (7.2) by ρi1 we have

c1ρi1vi1 + c2ρi1vi2 + · · · + crρi1vir = 0n .

It follows that c2(ρi2 − ρi1)vi2 + · · · + cr (ρir − ρi1)vir = 0n . Since there exists a
coefficient ρi p − ρi1 that is non-zero, this contradicts the minimality of r .
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Corollary 7.23 If A ∈ C
n×n has n distinct eigenvalues, then A is diagonalizable.

Proof If spec(A) = {ρ1, . . . ,ρn} consists of n complex numbers and v1, . . . ,vn

are corresponding eigenvectors, then, by Theorem 7.22, {v1, . . . ,vn} is linearly
independent. The statement follows immediately from Theorem 7.17.

7.3 Geometric and Algebraic Multiplicities of Eigenvalues

For a matrix A ∈ C
n×n let SA,ρ be the subspace NullSp(ρIn − A). We refer to SA,ρ

as invariant subspace of A and ρ or as the eigenspace of ρ.

Definition 7.24 Let A ∈ C
n×n and let ρ ∈ spec(A). The geometric multiplicity of

ρ is the dimension geomm(A,ρ) of SA,ρ.

Example 7.25 The geometric multiplicity of 1 as an eigenvalue of the matrix

A =
(

0 −1
1 2

)
,

considered in Example 7.7, is 1. Indeed if x is an eigenvector that corresponds to this
value we have −x2 = x1 and x1 + 2x2 = x2, which means that any such eigenvector
has the form a12. Thus, dim(SA,1) = 1.

The definition of the geometric multiplicity of ρ ∈ spec(A) implies

geomm(A,ρ) = dim(NullSp(A − ρIn)) = n − rank(A − ρIn). (7.3)

Theorem 7.26 Let A ∈ R
n×n. We have 0 ∈ spec(A) if and only if A is a singular

matrix. Moreover, in this case, geomm(A, 0) = n − rank(A) = dim(NullSp(A)).
If algm(A, 0) = 1, then rank(A) = n − 1.

Proof The statement is an immediate consequence of Equality (7.3).

Theorem 7.27 Let A ∈ C
n×n be a square matrix and let ρ ∈ spec(A). We have

geomm(A,ρ) � algm(A,ρ).

Proof By the definition of geomm(A,ρ) we have

geomm(A,ρ) = dim(NullSp(ρIn − A)) = n − rank(ρIn − A).

Let u1, . . . ,um be an orthonormal basis of SA,ρ, where m = geomm(A,ρ) and let
U = (u1 · · · um). We have (ρIn − A)U = On,n , so AU = ρU = U (ρIm). Thus,
by Theorem 6.57 there exists a matrix V such that we have

A ∼
(

ρIm U H AV
O V H AV

)
,
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where U ∈ C
n×m and V ∈ C

n×(n−m). Therefore, A has the same characteristic
polynomial as

B =
(

ρIm U H AV
O V H AV

)
,

which implies algm(A,ρ) = algm(B,ρ). Since the algebraic multiplicity of ρ in
B is at least equal to m it follows that algm(A,ρ) � m = geomm(A,ρ).

Definition 7.28 An eigenvalue ρ of a matrix A is simple if algm(A,ρ) = 1. If
geomm(A,ρ) = algm(A,ρ), then we refer to ρ as a semisimple eigenvalue.

The matrix A is defective if there exists at least one eigenvalue that is not semi-
simple. Otherwise, A is said to be non-defective.

A is a non-derogatory matrix if geomm(A,ρ) = 1 for every eigenvalue ρ.

Note that if ρ is a simple eigenvalue of A, then geomm(A,ρ) = algm(A,ρ) = 1,
so ρ is semi-simple.

Theorem 7.29 Each eigenvalue of a symmetric matrix A ∈ R
n×n is semi-simple.

Proof We saw that each symmetric matrix has real eigenvalues and is orthonormally
diagonalizable (by Corollary 7.20). Starting from the real Schur factorization A =
U T U−1, where U is an orthonormal matrix and T = diag(t11, . . . , tnn) is a diagonal
matrix we can write AU = U T . If we denote the columns of U by u1, . . . ,un , then
we can write

(Au1, . . . , Aun) = (t11u1, . . . , tnnun),

so Aui = tiiui for 1 � i � n. Thus, the diagonal elements of T are the eigenvalues
of A and the columns of U are corresponding eigenvectors. Since these eigenvectors
are pairwise orthogonal, the dimension of the invariant subspace that corresponds to
an eigenvalue equals the algebraic multiplicity of the eigenvalue, so each eigenvalue
is semi-simple.

Example 7.30 Let A ∈ R
2×2 be the matrix

A =
(

a b
0 a

)
,

where a, b ∈ R are such that ab ∅= 0. The characteristic polynomial of A is pA(ρ) =
(a − ρ)2, so spec(A) = {a} and algm(A, a) = 2.

Let x be a characteristic vector of A that corresponds to a. We have ax1 + bx2 =
ax1 and ax2 = x2, which implies x2 = 0. Thus, the invariant subspace is

⎛(
x1
x2

)
∈ R

2
∣∣∣x2 = 0

⎧
,

which is one-dimensional, so geomm(A, a) = 1. Thus, a is not semi-simple.



7.4 Spectra of Special Matrices 357

7.4 Spectra of Special Matrices

Theorem 7.31 Let A be an block upper triangular partitioned matrix given by

A =




A11 A12 · · · A1m

O A22 · · · A2m
...

... · · · ...

O O · · · Amm


,

where Aii ∈ R
pi ×pi for 1 � i � m. Then, spec(A) = ⎨m

i=1 spec(Aii ).
If A is a block lower triangular matrix

A =




A11 O · · · O
A21 A22 · · · O
...

... · · · ...

Am1 Am2 · · · Amm


,

the same equality holds.

Proof Let A be a block upper triangular matrix. Its characteristic equation is
det(ρIn − A) = 0. Observe that the matrix ρIn − A is also an block upper tri-
angular matrix:

ρIn − A =




ρIp1 − A11 O · · · O
−A21 ρIp2 − A22 · · · O

...
... · · · ...

−Am1 −Am2 · · · ρIpm − Amm


.

By Theorem 5.153 the characteristic polynomial of A can be written as

pA(ρ) =
m⎩

i=1

det(ρIpi − Aii ) =
m⎩

i=1

pAii (ρ).

Therefore, spec(A) = ⎨m
i=1 spec(Aii ).

The argument for block lower triangular matrices is similar.

Corollary 7.32 Let A ∈ R
n×n be a block diagonal matrix given by

A =




A11 O · · · O
O A22 · · · O
...

... · · · ...

O O · · · Amm


 ,
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where Aii ∈ R
ni ×ni for 1 � i � m. We have spec(A) = ⎨m

i=1 spec(Aii ) and
algm(A,ρ) = ∑m

i=1 algm(Ai ,ρ). Moreover, v ∅= 0n is an eigenvector of A if and
only if we can write

v =


v1
...

vm


 ,

where each vector vi is either an eigenvector of Ai or 0ni for 1 � i � m and there
exists i such that vi ∅= 0ni .

Proof This statement follows immediately from Theorem 7.31.

Theorem 7.33 Let A = (ai j ) ∈ C
n×n be an upper (lower) triangular matrix. Then,

spec(A) = {aii | 1 � i � n}.
Proof It is easy to see that the the characteristic polynomial of A is pA(ρ) = (ρ −
a11) · · · (ρ − ann), which implies immediately the theorem.

Corollary 7.34 If A ∈ C
n×n is an upper triangular matrix and ρ is an eigenvalue

such that the diagonal entries of A that equal ρ occur in ai1i1, . . . , ai pi p , then SA,ρ

is a p-dimensional subspace of Cn generated by ei1 , . . . ei p .

Proof This statement is immediate.

Corollary 7.35 We have

spec(diag(d1, . . . , dn)) = {d1, . . . , dn}.

Proof This statement is a direct consequence of Theorem 7.33.

Note that if ρ ∈ spec(A) we have Ax = ρx, A2x = ρ2x and, in general,
Akx = ρkx for k � 1. Thus, ρ ∈ spec(A) implies ρk ∈ spec(Ak) for k � 1.

Theorem 7.36 If A ∈ C
n×n is a nilpotent matrix, then spec(A) = {0}.

Proof Let A ∈ C
n×n be a nilpotent matrix such that nilp(A) = k. By a previous

observation if ρ ∈ spec(A), then ρk ∈ spec(Ak) = spec(On,n) = {0}. Thus,
ρ = 0.

Theorem 7.37 If A ∈ C
n×n is an idempotent matrix, then spec(A) ∩ {0, 1}.

Proof Let A ∈ C
n×n be an idempotent matrix, ρ be an eigenvalue of A, and let x be

an eigenvector of ρ. We have P2x = Px = ρx; on another hand, P2x = P(Px) =
P(ρx) = ρP(x) = ρ2x, so ρ2 = ρ, which means that ρ ∈ {0, 1}.
Theorem 7.38 At least one eigenvalue of a stochastic matrix is equal to 1 and all
eigenvalues lie on or inside the unit circle.
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Proof Let A ∈ R
n×n be a stochastic matrix. Then, 1 ∈ spec(A) and 1 is an eigen-

vector that corresponds to the eigenvalue 1 as the reader can easily verify.
If ρ is an eigenvalue of A and Ax = ρx, then ρxi = ∑n

i=1 ai j x j for 1 � n � n,
which implies

|ρ||xi | �
n⎟

i=1

ai j |x j |.

Since x ∅= 0, let x p be a component of x such that |x p| = max{|xi | | 1 � i � n}.
Choosing i = p we have

|ρ| �
n⎟

i=1

ai j
|x j |
|x p

�
n⎟

i=1

ai j = 1,

which shows that all eigenvalues of A lie on or inside the unit circle.

Theorem 7.39 All eigenvalues of a unitary matrix are located on the unit circle.

Proof Let A ∈ R
n×n be an unitary matrix and let ρ be an eigenvalue of A. By

Theorem 6.86, if x is an eigenvector that corresponds to ρ we have

⊆ x ⊆=⊆ Ax ⊆=⊆ ρx ⊆= |ρ| ⊆ x ⊆,

which implies |ρ| = 1.

Next, we show that unitary diagonalizability is a characteristic property of normal
matrices.

Theorem 7.40 (Spectral Theorem for Normal Matrices) A matrix A ∈ C
n×n is

normal if and only if there exists a unitary matrix U and a diagonal matrix D such
that

A = U DU H, (7.4)

the columns of U are unit eigenvectors and the diagonal elements of D are the
eigenvalues of A that correspond to these eigenvectors.

Proof Suppose that A is a normal matrix. By Schur’s Triangularization Theorem
there exists a unitary matrix U ∈ C

n×n and an upper-triangular matrix T ∈ C
n×n

such that A = U T U−1. Thus, T = U−1 AU = U H AU and T H = U H AHU . There-
fore,

T HT = U H AHUU H AU = U H AH AU

(because U is unitary)

= U H AAHU

(because A is normal)

= U H AUU H AHU = T T H,
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so T is a normal matrix. By Theorem 5.60, T is a diagonal matrix, so D’s role is
played by T .

We leave the proof of the converse implication to the reader.
Let U = (u1 · · ·un). Since

A = U DU H = (u1 · · · un)




ρ1 0 · · · 0
0 ρ2 · · · 0
...

... · · · ...

0 0 · · · ρn






uH

1
...

uH
n




= ρ1u1u
H
1 + · · · + ρnunu

H
n, (7.5)

it follows that Aui = ρiui for 1 � i � n, which proves the statement.

The equivalent Equalities (7.4) or (7.5) are referred to as spectral decompositions
of the normal matrix A.

Theorem 7.41 (Spectral Theorem for Hermitian Matrices) If the matrix A ∈
C

n×n is Hermitian or skew-Hermitian, A can be written as A = U DU H, where U
is a unitary matrix and D is a diagonal matrix having the eigenvalues of A as its
diagonal elements.

Proof This statement follows from Theorem 7.40 because any Hermitian or skew-
Hermitian matrix is normal.

Corollary 7.42 The rank of a Hermitian matrix is equal to the number of non-zero
eigenvalues.

Proof The statement of the corollary obviously holds for any diagonal matrix. If A
is a Hermitian matrix, by Theorem 7.41, we have rank(A) = rank(D), where D is
a diagonal matrix having the eigenvalues of A as its diagonal elements. This implies
the statement of the corollary.

Let A ∈ C
n×n be a Hermitian matrix of rank p. By Theorem 7.41 A can be written

as A = U DU H, where U is a unitary matrix, D = diag(ρ1, . . . ,ρp, 0, . . . , 0) having
as non-zero diagonal elements ρ1, . . . ,ρp the eigenvalues of A and ρ1 � · · · � ρp >

0. Thus, if W ∈ C
n×p is a matrix that consists of the first p columns of U we can

write

A = W




ρ1 0 · · · 0
0 ρ2 · · · 0
...

...
...

...

0 0 · · · ρp


W ∞

= (u1 · · · up)




ρ1 0 · · · 0
0 ρ2 · · · 0
...

...
...

...

0 0 · · · ρp






uH

1
...

uH
p
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= ρ1u1u
H
1 + · · · + ρpupu

H
p.

If A is not Hermitian, rank(A)may differ from the number of non-zero-eigenvalues.
For example, the matrix

A =
(

0 1
0 0

)

has no non-zero eigenvalues. However, its rank is 1.
The spectral decomposition (7.5) of Hermitian matrices,

A = ρ1u1u
H
1 + · · · + ρnunu

H
n

allows us to extend functions of the form f : R −⊕ R to Hermitian matrices. Since
the eigenvalues of a Hermitian matrix are real numbers, it makes sense to define
f (A) as

f (A) = f (ρ1)u1u
H
1 + · · · + f (ρn)unu

H
n .

In particular, if A is positive semi-definite, we have ρi � 0 for 1 � i � n and we
can define

⊥
A =

⎫
ρ1u1u

H
1 + · · · + ⎫

ρnunu
H
n .

Definition 7.43 Let A ∈ C
n×n be a Hermitian matrix. The triple I(A) = (n+(A),

n−(A), n0(A)), where n+(A) is the number of positive eigenvalues, n−(A) is the
number of negative eigenvalues, and n0(A) is the number of zero eigenvalues is the
inertia of the matrix A.

The number sig(A) = n+(A) − n−(A) is the signature of A.

Example 7.44 If A = diag(4,−1, 0, 0, 1), then I(A) = (2, 1, 2) and sig(A) = 1.

Let A ∈ C
n×n be a Hermitian matrix. By Theorem 7.41 A can be written as

A = U H DU , where U is a unitary matrix and D = diag(ρ1, . . . ,ρn) is a diagonal
matrix having the eigenvalues of A (which are real numbers) as its diagonal ele-
ments. Without loss of generality we may assume that the positive eigenvalues of A
are ρ1, . . . ,ρn+ , followed by the negative values ρn++1, . . . ,ρn++n− , and the zero
eigenvalues ρn++n−+1, . . . ,ρn .

Let ι j be the numbers defined by

ι j =

⎬⎭⎪
⎭
⎫

ρ j if 1 � j � n+,⎫−ρ j if n+ + 1 � j � n+ + n−,

1 if n+ + n− + 1 � j � n
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for 1 � j � n. If T = diag(ι1, . . . , ιn), then we can write D = T HGT , where G is
a diagonal matrix, G = (g1, . . . , gn) defined by

g j =

⎬⎭⎪
⎭

1 if ρ j > 0,

−1 if ρ j < 0,

0 if ρ j = 0,

for 1 � j � n. This allows us to write A = U H DU = U HT HGT U = (T U )HG(T U ).
The matrix T U is nonsingular, so A ∪ G. The matrix G defined above is the inertia
matrix of A and these definitions show that any Hermitian matrix is congruent to its
inertia matrix.

For a Hermitian matrix A ∈ C
n×n let S+(A) be the subspace of Cn generated by

n+(A) orthonormal eigenvectors that correspond to the positive eigenvalues of A.
Clearly, we have dim(S+(A)) = n+(A). This notation is used in the proof of the
next theorem.

Theorem 7.45 (Sylvester’s Inertia Theorem) Let A, B be two Hermitian matrices,
A, B ∈ C

n×n. We A ∪ B if and only if I(A) = I(B).

Proof If I(A) = I(B), then we have A = SHGS and B = T HGT , where both S and
T are nonsingular matrices. Since A ∪ G and B ∪ G, we have A ∪ B.

Conversely, suppose that A ∪ B, that is, A = SH BS, where S is a nonsingular
matrix. We have rank(A) = rank(B), so n0(A) = n0(B). To prove that I(A) = I(B)

it suffices to show that n+(A) = n+(B).
Let m = n+(A) and let v1, . . . ,vm be m orthonormal eigenvectors of A

that correspond to the m positive eigenvalues of this matrix, and let S+(A) be
the subspace generated by these vectors. If v ∈ S+(A) − {0}, then we have
v = a1v1 + · · · + amvm , so

vH Av =

 m⎟

j=1

a jv j




H

A


 m⎟

j=1

a jv j


 =

m⎟
j=1

|a j |2 > 0.

Therefore, xH SH BSx > 0, so if y = Sx, then yH By > 0, which means that y ∈
S+(B). This shows that S+(A) is isomorphic to a subspace of S+(B), so n+(A) �
n+(B). The reverse inequality can be shown in the same manner, so n+(A) = n+(B).

We can add an interesting detail to the full-rank decomposition of a matrix.

Corollary 7.46 If A ∈ C
m×n and A = C R is the full-rank decomposition of A with

rank(A) = k, C ∈ C
m×k , and R ∈ C

k×n, then C may be chosen to have orthogonal
columns and R to have orthogonal rows.

Proof Since the matrix AH A ∈ C
n×n is Hermitian, by Theorem 7.41, there exists

an unitary matrix U ∈ C
n×k such that AH A = U H DU , where D ∈ C

k×k is a non-
negative diagonal matrix. Let C = AU H ∈ Cn×k and R = U . Clearly, C R = A, and
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R has orthogonal rows because U is unitary. Let cp, cq be two columns of C , where
1 � p, q � k and p ∅= q . Since cp = Aup and cq = Auq , where up,uq are the
corresponding columns of U , we have

cH
pcq = uH

p AH Auq = uH
pU H DUuq = eH

p Deq = 0,

because p ∅= q.

7.5 Variational Characterizations of Spectra

Let A ∈ C
n×n be a Hermitian matrix. By the Spectral Theorem for Hermitian

Matrices (Theorem 7.41) A can be factored as A = U DU H, where U is a unitary
matrix and D = diag(ρ1, . . . ,ρn). We assume that ρ1 � · · · � ρn . The columns
of U constitute a family of orthonormal vectors {u1, . . . ,un} and (ρk,uk) are the
eigenpairs of A.

Theorem 7.47 Let A be a Hermitian matrix, ρ1 � · · · � ρn be its eigenvalues
having the orthonormal eigenvectors u1, . . . ,un, respectively.

Define the subspace M = ∨up, . . . ,uq∧, where 1 � p � q � n. If x ∈ M and
⊆ x ⊆2= 1, we have ρq � xH Ax � ρp.

Proof If x is a unit vector in M , then x = apup + · · · + aquq , so xHui = ai for
p � i � q. Since ⊆ x ⊆2= 1, we have |ap|2 + · · · + |aq |2 = 1. This allows us
to write:

xH Ax = xH(ap Aup + · · · + aq Auq)

= xH(apρpup + · · · + aqρquq)

= xH(|ap|2ρp + · · · + |aq |2ρq).

Since |ap|2 + · · · + |aq |2 = 1, the desired inequalities follow immediately.

Corollary 7.48 Let A be a Hermitian matrix, ρ1 � · · · � ρn be its eigenvalues hav-
ing the orthonormal eigenvectorsu1, . . . ,un, respectively. The following statements
hold for a unit vector x:

(i) if x ∈ ∨u1, . . . ,ui ∧, then xH Ax � ρi ;
(ii) if x ∈ ∨u1, . . . ,ui−1∧⇒, then xH Ax � ρi .

Proof The first statement follows directly from Theorem 7.47.
For the second statement observe that x ∈ ∨u1, . . . ,ui−1∧⇒ is equivalent to

x ∈ ∨ui , . . . ,un∧; again, the second inequality follows from Theorem 7.47.

Theorem 7.49 (Rayleigh-Ritz Theorem) Let A be a Hermitian matrix and let
(ρ1,u1), . . . , (ρn,un) be the eigenpairs of A, where ρ1 � · · · � ρn. If x is a
unit vector, we have ρn � xH Ax � ρ1.
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Proof This statement follows from Theorem 7.47 by observing that the subspace
generated by u1, . . . ,un is the entire space C

n .

Next we discuss an important generalization of Rayleigh-Ritz Theorem.
Let Sn

p be the collection of p-dimensional subspaces of Cn . Note that Sn
0 = {{0n}}

and Sn
n = {Cn}.

Theorem 7.50 (Courant-Fisher Theorem) Let A ∈ C
n×n be a Hermitian matrix

having the eigenvalues ρ1 � · · · � ρn. We have

ρk = max
U∈Sn

k

min{xH Ax | x ∈ Uand ⊆ x ⊆2= 1}
= min

U∈Sn
n−k+1

max{xH Ax | x ∈ Uand ⊆ x ⊆2= 1}.

Proof Let A = U Hdiag(ρ1, . . . ,ρn)U be the factorization of A provided by Theo-
rem 7.41), where U = (u1 · · · un).

If U ∈ Sn
k and W = ∨uk, . . . ,un∧ ∈ Sn

n−k+1, then there is a non-zero vector
x ∈ U ↔ W because dim(U ) + dim(W ) = n + 1; we can assume that ⊆ x ⊆2= 1.
Therefore, by Theorem 7.47 we have ρk � xH Ax, and, therefore, for any U ∈ Sn

k ,
ρk � min{xH Ax | x ∈ Uand ⊆ x ⊆2= 1}. This implies ρk � maxU∈Sn

k
min{xH Ax |

x ∈ Uand ⊆ x ⊆2= 1}.
The same Theorem 7.47 implies that for a unit vector x ∈ ∨u1, . . . ,uk∧ ∈ Sn

k we
have xH Ax � ρk and uH

k Auk = ρk . Therefore, for W = ∨u1, . . . ,uk∧ ∈ Sn
k we have

min{xH Ax | x ∈ W, ⊆ x ⊆2= 1} � ρk , so maxW∈Sn
k

min{xH Ax | x ∈ W, ⊆ x ⊆2=
1} � ρk . The inequalities proved above yield

ρk = max
U∈Sn

k

min{xH Ax | x ∈ Uand ⊆ x ⊆2= 1}.

For the second equality, let U ∈ Sn
n−k+1. If W = ∨u1, . . . ,uk∧, there is a non-zero

unit vector x ∈ U ↔ W because dim(U ) + dim(W ) � n + 1. By Theorem 7.47 we
have xH Ax � ρk . Therefore, for any U ∈ Sn

n−k+1, ρk � max{xH Ax | x ∈ Uand ⊆
x ⊆2= 1}. This implies ρk � minU∈Sn

n−k+1
max{xH Ax | x ∈ Uand ⊆ x ⊆2= 1}.

Theorem 7.47 implies that for a unit vector x ∈ ∨uk, . . . ,un∧ ∈ Sn
n−k+1 we have

ρk � xH Ax and ρk = uH
k Auk . Thus, ρk � max{xH Ax | x ∈ Uand ⊆ x ⊆2= 1}.

Consequently, ρk � minU∈Sn
n−k+1

max{xH Ax | x ∈ U and ⊆ x ⊆2= 1}, which
completes the proof of the second equality of the theorem.

An equivalent formulation of Courant-Fisher Theorem is given next.

Theorem 7.51 Let A ∈ C
n×n be a Hermitian matrix having the eigenvalues ρ1 �

· · · � ρn. We have

ρk = max
w1,...,wn−k

min{xH Ax | x ⇒ w1, . . . , x ⇒ wn−kand ⊆ x ⊆2= 1}
= min

w1,...,wk−1
max{xH Ax | x ⇒ w1, . . . , x ⇒ wk−1and ⊆ x ⊆2= 1}.
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Fig. 7.1 Tight interlacing

Proof The equalities of the Theorem follow from the Courant-Fisher theorem tak-
ing into account that if U ∈ Sn

k , then U⇒ = ∨w1, . . . ,wn−k∧ for some vectors
w1, . . . ,wn − k, and if U ∈ Sn

n−k+1, then U = ∨w1, . . .wk−1∧ for some vectors
w1, . . . ,wk − 1 in C

n .

Definition 7.52 Consider two non-increasing sequences of real numbers
(ρ1, . . . ,ρn) and (μ1, . . . ,μm) with m < n. We say that the second sequence inter-
lace the first if ρi � μi � ρn−m+i for 1 � i � m (see Fig. 7.1).

The interlacing is tight if there exists k ∈ N, 0 � k � m such that ρi = μi for
0 � i � k and ρn−m+1 = μi for k + 1 � i � m.

The next statement is known as the Interlacing Theorem. The variant included
here was obtained in [1].

Theorem 7.53 (Interlacing Theorem) Let A ∈ C
n×n be a Hermitian matrix, S ∈

C
n×m be a matrix such that SH S = Im, and let B = SH AS ∈ C

m×m, where m � n.
Assume that A has the eigenvalues ρ1 � · · · � ρn with the orthonormal eigen-

vectors u1, . . . ,un, respectively, and B has the eigenvalues μ1 � · · · � μm with the
respective eigenvectors v1, . . . ,vm. The following statements hold:

(i) ρi � μi � ρn−m+i ;
(ii) if μi = ρi or μi = ρn−m+i for some i, 1 � i � m, then B has an eigenvector

v such that (μi ,v) is an eigenpair of B and (μi , Sv) is an eigenpair of A;
(iii) if for some integer ν, μi = ρi for 1 � i � ν (or μi = ρn−m+i for ν � i � m),

then (μi , Svi ) are eigenpairs of A for 1 � i � ν (respectively, ν � i � m);
(iv) if the interlacing is tight SB = AS.

Proof Note that BH = SH AH S = SH AS = B, so B is also Hermitian.
Since dim(∨v1, . . . ,vi ∧) = i and dim(∨SHu1, . . . , SHui−1∧⇒) = n − i + 1, there

exist non-zero vectors in the intersection of these subspaces. Let t be a unit vector in
∨v1, . . . ,vi ∧ ↔ ∨SHu1, . . . , SHui−1∧⇒.

Since t ∈ ∨SHu1, . . . , SHui−1∧⇒ we have tH SHuν = (St)Huν = 0 for 1 �
ν � i − 1. Thus, St ∈ ∨u1, . . . ,ui−1∧⇒, so, by Theorem 7.47, it follows that
ρi � (St)H A(St). On other hand,

(St)H A(St) = tH(SH AS)t = tH Bt

and t ∈ ∨v1, . . . ,vi ∧, which yield tH Bt � μi , again, by Theorem 7.47. Thus, we
conclude that

ρi � (St)H A(St) = tH Bt � μi . (7.6)



366 7 Spectral Properties of Matrices

Note that the matrices −A and −B have the eigenvalues −ρn � · · · � −ρ1
and −μm � · · · � −μ1. The ith eigenvalue in the list −ρn � · · · � −ρ1 is
−ρn−m+i , so, by applying the previous argument to the matrices −A and −B we
obtain: μi � ρn−m+i , which concludes the proof of (i).

If ρi = μi , since Bvi = μivi , it follows that SH ASvi = μivi , so A(Svi ) =
μi (Svi ) because S is a unitary matrix. Thus, (μi , Svi ) is an eigenpair of A, which
proves Part (ii).

Part (iii) follows directly from Part (ii) and its proof.
Finally, if the interlacing is tight, Sv1, . . . , Svm is an orthonormal set of eigenvec-

tors of A corresponding to the eigenvalues μ1, . . . ,μm , so SBvi = μi Svi = ASvi

for 1 � i � m. Since SB, AS ∈ C
n×m and the vectors v1, . . . ,vm form a basis in

C
m , we have SB = AS.

Example 7.54 Let R = {r1, . . . , rm} be a subset of {1, . . . , n}. Define the matrix
SR ∈ C

n×m by SR = (er1 · · · erm ).
For example, if n = 4 and R = {2, 4} we have the matrix

SR =




0 0
1 0
0 0
0 1


 .

It is immediate that SH
R SR = Im and that SH

R ASR is the principal submatrix A

⎜
R
R

]
,

defined by the intersection of rows r1, . . . , rm with the columns r1, . . . , rm .

Corollary 7.55 Let A ∈ C
n×n be a Hermitian matrix and let B = A

⎜
R
R

]
∈ C

m×m

be a principal submatrix of A. If A has the eigenvalues ρ1 � · · · � ρn and B has
the eigenvalues μ1 � · · · � μm, then ρi � μi � ρn−m+i for 1 � i � m.

Proof This statement follows immediately from Theorem 7.53, by taking S = SR .

Theorem 7.56 Let A, B ∈ C
n× be two Hermitian matrices and let E = B − A.

Suppose that the eigenvalues of A, B, E these are θ1 � · · · � θn, ν1 � · · · � νn,
and δ1 � · · · � δn, respectively. Then, we have δn � νi − θi � δ1.

Proof Note that E is also Hermitian, so all matrices involved have real eigenvalues.
By Courant-Fisher Theorem,

νk = min
W

max
x

{xH Bx | ⊆ x ⊆2= 1 and wH
i x = 0 for 1 � i � k − 1},

where W = {w1, . . . ,wk−1}. Thus,

νk � max
x

xH Bx = max
x

(xH Ax + xH Ex). (7.7)
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Let U be a unitary matrix such that U H AU = diag(θ1, . . . ,θn). Choose wi = Uei

for 1 � i � k − 1. We have wH
i x = eH

i U Hx = 0 for 1 � i � k − 1.
Define y = U Hx. Since U is an unitary matrix, ⊆ y ⊆2=⊆ x ⊆2= 1. Observe

that eH
i y = yi = 0 for 1 � i � k. Therefore,

∑n
i=k y2

i = 1. This, in turn implies
xH Ax = yHU H AUy = ∑n

i=k θi y2
i � θk .

From the Inequality (7.7) it follows that

νk � θk + max
x

xH Ex � θk + δn .

Since A = B − E , by inverting the roles of A and B we have θk � νk − δ1, or
δ1 � νk − θk , which completes the argument.

Lemma 7.57 Let T ∈ C
n×n be a upper triangular matrix and let ρ ∈ spec(T ) be

an eigenvalue such that the diagonal entries that equal ρ occur in ti1i1 , . . . , ti pi p .
Then, the invariant subspace ST,ρ is the p-dimensional subspace generated by
ei1 , . . . , ei p .

Proof The argument is straightforward and is omitted.

Lemma 7.58 Let T ∈ C
n×n be an upper triangular matrix and let pT (ρ) = ρn +

a1ρ
n−1 + · · · + an−1ρ + an be its characteristic polynomial. Then,

pT (T ) = T n + a1T n−1 + · · · + an−1T + an In = On,n .

Proof We have

pT (T ) = (T − ρ1 In) · · · (T − ρn In).

Observe that for any matrix A ∈ C
n×n , ρ j ,ρk ∈ spec(A), and every eigenvector

v of A in SA,ρk we have

(ρ j In − A)v = (ρ j − ρk)v.

Therefore, for v ∈ ST,ρk we have:

pT (T )v = (ρ1 In − T ) · · · (ρn In − T )v = 0,

because (ρk I − T )v = 0.
By Lemma 7.57, pT (T )ei = 0 for 1 � i � n, so pT (T ) = On,n .

Theorem 7.59 (Cayley-Hamilton Theorem) If A ∈ C
n×n is a matrix, then

pA(A) = On,n.

Proof By Schur’s Triangularization Theorem there exists a unitary matrix U ∈ C
n×n

and an upper-triangular matrix T ∈ C
n×n such that A = U T U H and the diagonal
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elements of T are the eigenvalues of A. Taking into account that U is unitary we can
write:

pA(A) = (ρ1 In − A)(ρ2 In − A) · · · (ρn In − A)

= (ρ1UU H − U T U H) · · · (ρnUU H − U T U H)

= U (ρ1 In − T )U HU (ρ2 In − T )U H · · · U (ρn In − T )U H

= U (ρ1 In − T )(ρ2 In − T ) · · · (ρn In − T )U H

= U pT (T )U H = On,n,

by Lemma 7.58.

Theorem 7.60 (Ky Fan’s Theorem) Let A ∈ C
n×n be a Hermitian matrix such

that spec(A) = {ρ1, . . . ,ρn}, where ρ1 � ρ2 � · · · � ρn. Also, let V ∈ C
n×n be

a matrix, V = (v1, . . . ,vn) whose set of columns constitutes an orthonormal set of
eigenvectors of A.

For every q ∈ N such that 1 � q � n, the sums
∑q

i=1 ρi and
∑q

i=1 ρn+1−i are the
maximum and minimum of

∑q
j=1 xH

j Ax j , where {x1, . . . , xq} is an orthonormal set
of vectors in C

n, respectively. The maximum (minimum) is achieved when x1, . . . , xq

are the first (last) columns of V .

Proof Let {x1, . . . , xn} be an orthonormal set of eigenvectors of A and let xi =∑n
k=1 bkivk be the expression of xi using the columns of V as a basis for 1 � i � n.

Since each xi is a unit vector we have

⊆ xi ⊆2= xH
i xi =

n⎟
k=1

|bki |2 = 1

for 1 � i � n. Also, note that

xH
i vr =

(
n⎟

k=1

bkiv
H
k

)
vr = bri ,

due to the orthonormality of the set of columns of V . We have

xH
i Axi = xH

i A
n⎟

k=1

bkivk =
n⎟

k=1

bki xH
i Avk

=
n⎟

k=1

bki xH
i ρkvk =

n⎟
k=1

ρkbki bki =
n⎟

k=1

|bki |2ρk

= ρq

n⎟
k=1

|bki |2 +
q⎟

k=1

(ρk − ρq)|bki |2 +
n⎟

k=q+1

(ρk − ρq)|bki |2
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� ρq +
q⎟

k=1

(ρk − ρq)|bki |2.

The last inequality implies

q⎟
i=1

xH
i Axi � qρq +

q⎟
i=1

q⎟
k=1

(ρk − ρq)|bki |2.

Therefore,

q⎟
i=1

ρi −
q⎟

i=1

xH
i Axi �

q⎟
i=1

(ρi − ρq)

(
1 −

q⎟
k=1

|bki |2
)

. (7.8)

By Inequality (6.10), we have
∑q

k=1 |bik |2 �⊆ xi ⊆2= 1, so

q⎟
i=1

(ρi − ρq)

(
1 −

q⎟
k=1

|bki |2
)

� 0.

The left member of Inequality (7.8) becomes 0 when xi = vi , so
∑q

i=1 xH
i Axi �∑q

i=1 ρi . The maximum of
∑q

i=1 xH
i Axi is obtained when xi = vi for 1 � i � q,

that is, when X consists of the first q columns of V .
The argument for the minimum is similar.

Theorem 7.61 Let A ∈ C
n×n be a Hermitian matrix. If A is positive semidefinite,

then all its eigenvalues are non-negative; if A is positive definite then its eigenvalues
are positive.

Proof Since A is Hermitian all its eigenvalues are real numbers. Suppose that A
is positive semidefinite, that is, xH Ax � 0 for x ∈ C

n . If ρ ∈ spec(A), then
Av = ρv for some eigenvector v ∅= 0. The positive semi-definiteness of A implies
vH Av = ρvHv = ρ ⊆ v ⊆2

2� 0, which implies ρ � 0. It is easy to see that if A is
positive definite, then ρ > 0.

Theorem 7.62 Let A ∈ C
n×n be a Hermitian matrix. If A is positive semidefinite,

then all its principal minors are non-negative real numbers. If A is positive definite
then all its principal minors are positive real numbers.

Proof Since A is positive semidefinite, every sub-matrix A

⎜
i1 · · · ik

i1 · · · ik

]
is a Hermitian

positive semidefinite matrix by Theorem 6.110, so every principal minor is a non-
negative real number. The second part of the theorem is proven similarly.

Corollary 7.63 Let A ∈ C
n×n be a Hermitian matrix. The following statements are

equivalent.

http://dx.doi.org/10.1007/978-1-4471-6407-4_6
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(i) A is positive semidefinite;
(ii) all eigenvalues of A are non-negative numbers;

(iii) there exists a Hermitian matrix C ∈ C
n×n such that C2 = A;

(iv) A is the Gram matrix of a sequence of vectors, that is, A = BH B for some
B ∈ C

n×n.

Proof (i) implies (ii): This was shown in Theorem 7.61.
(ii) implies (iii): Suppose that A is a matrix such that all its eigenvalues are the non-

negative numbers ρ1, . . . ,ρn . By Theorem 7.41, A can be written as A = U H DU ,
where U is a unitary matrix and

D =




ρ1 0 · · · 0
0 ρ2 · · · 0
...

... · · · ...

0 0 · · · ρn


.

Define the matrix
⊥

D as

⊥
D =




⊥
ρ1 0 · · · 0
0

⊥
ρ2 · · · 0

...
... · · · ...

0 0 · · · ⊥
ρn


.

Clearly, we gave (
⊥

D)2 = D. Now we can write A = U
⊥

DU HU
⊥

DU H, which
allows us to define the desired matrix C as C = U

⊥
DU H.

(iii) implies (iv): Since C is itself a Hermitian matrix, this implication is obvious.
(iv) implies (i): Suppose that A = BH B for some matrix B ∈ C

n×k . Then, for
x ∈ C

n we have xH Ax = xH BH Bx = (Bx)H(Bx) =⊆ Bx ⊆2
2� 0, so A is positive

semidefinite.

7.6 Matrix Norms and Spectral Radii

Definition 7.64 Let A ∈ C
n×n. The spectral radius of A is the number σ(A) =

max{|ρ| | ρ ∈ spec(A)}.
If (ρ, x) is an eigenpair of A, then |ρ||||x||| = |||Ax||| � |||A||||||x|||, so |ρ| � |||A|||,

which implies σ(A) � |||A||| for any matrix norm ||| · |||. Moreover, we can prove the
following statement.

Theorem 7.65 Let A ∈ C
n×n. The spectral radius σ(A) is the infimum of the set

that consists of numbers of the form |||A|||, where ||| · ||| ranges over all matrix norms
defined on C

n×n.
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Proof Since we have shown that σ(A) is a lower bound of the set of numbers men-
tioned in the statement, we need to prove only that for every δ > 0 there exists a
matrix norm ||| · ||| such that |||A||| � σ(A) + δ.

By Schur’s Triangularization Theorem there exists a unitary matrix U and an
upper triangular matrix T such that A = U T U−1 such that the diagonal elements of
T are ρ1, . . . ,ρn .

For θ ∈ R>0 let Sθ = diag(θ,θ2, . . . ,θn). We have

SθT S−1
θ =




ρ1 θ−1t12 θ−2t12 · · · θ−(n−1)t1n

0 ρ1 θ−1t23 · · · θ−(n−2)t2n
...

...
... · · · ...

...
...

... · · · ρn


.

If θ is sufficiently large, |||SθT S−1
θ |||1 � σ(A) + δ because, in this case, the sum

of the absolute values of the supradiagonal elements can be arbitrarily small. Let
M = (U Sθ)−1. For the matrix norm μM (·) (see Exercise 7) we have μM (A) =
|||U Sθ AS−1

θ U−1|||1. If θ is sufficiently large we have μM (A) � σ(A) + δ.

Let A, B ∈ C
n×n . We leave to the reader to verify that if abs(A) � abs(B), then

⊆ A ⊆2�⊆ B ⊆2; also, ⊆ A ⊆2=⊆ abs(A) ⊆2.

Theorem 7.66 Let A, B ∈ C
n×n. If abs(A) � B, then σ(A) � σ(abs(A)) � σ(B).

Proof By Theorem 5.62 we have abs(Ak) � (abs(A))k � Bk for every k ∈ N.
Therefore, ⊆ abs(Ak) ⊆� (abs(A))k � Bk , so ⊆ Ak ⊆2�⊆ abs(A)k ⊆2�⊆ Bk ⊆2,

which implies ⊆ Ak ⊆
1
k
2 �⊆ abs(A)k ⊆

1
k
2 �⊆ Bk ⊆

1
k
2 .

By letting k tend to ⊃ we obtain the double inequality of the theorem.

Corollary 7.67 If A, B ∈ C
n×n are two matrices such that On,n � A � B, then

σ(A) � σ(B).

Proof The corollary follows immediately from Theorem 7.66 by observing that
under the hypothesis, A = abs(A).

Theorem 7.68 Let A ∈ C
n×n. We have limk⊕⊃ = On,n if and only if σ(A) < 1.

Proof Suppose that limk⊕⊃ = On,n . Let (ρ, x) be an eigenpair of A, so x ∅= 0n and
Ax = ρx. This implies Akx = ρkx, so limk⊕⊃ ρkx = 0n . Thus, limk⊕⊃ ρkx = 0n ,
which implies limk⊕⊃ ρk = 0. Thus, |ρ| < 1 for every ρ ∈ spec(A), so σ(A) < 1.

Conversely, suppose that σ(A) < 1. By Theorem 7.65, there exists a matrix norm
||| · ||| such that |||A||| < 1. Thus, limk⊕⊃ Ak = On,n .
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7.7 Singular Values of Matrices

Definition 7.69 Let A ∈ C
m×n be a matrix. A singular triplet of A is a triplet

(φ,u,v) such that φ ∈ R>0, u ∈ C
n, v ∈ C

m, Au = φv and AHv = φu. The
number φ is a singular value of A, u is a left singular vector and v is a right singular
vector.

For a singular triplet (φ,u,v) of A we have AH Au = φAHv = φ2u and AAHv =
φAu = φ2v. Therefore, φ2 is both an eigenvalue of AAH and an eigenvalue of AH A.

Example 7.70 Let A be the real matrix

A =
(

cos θ sin θ
cos ν sin ν

)
.

We have det(A) = sin(ν−θ), so the eigenvalues of A∞ A are the roots of the equation
ρ2 − 2ρ + sin2(ν − θ) = 0, that is, ρ1 = 1 + cos(ν − θ) and ρ2 = 1 − cos(ν − θ).

Therefore, the singular values of A are φ1 = ⊥
2
∣∣∣ cos ν−θ

2

∣∣∣ and φ2 = ⊥
2
∣∣∣ sin ν−θ

2

∣∣∣.
It is easy to see that a unit left singular vector that corresponds to the eigenvalue

1 + cos(ν − θ) is

u =
(

cos θ+ν
2

sin θ+ν
2

)
,

which corresponds to the average direction of the rows of A.

We noted that the eigenvalues of a positive semi-definite matrix are non-negative
numbers. Since both AAH and AH A are positive semi-definite matrices for A ∈ C

m×n

(see Example 6.109), the spectra of these matrices consist of non-negative numbers
ρ1, . . . ,ρn . Furthermore, AAH and AH A have the same rank r and therefore, the same
number r of non-zero eigenvalues ρ1, . . . ,ρr . Accordingly, the singular values of A
have the form

⊥
ρ1 � · · · �

⊥
ρr . We will use the notation φi = ⊥

ρi for 1 � i � r
and will assume that φ1 � · · · � φr > 0.

Theorem 7.71 Let A ∈ C
n×n be a matrix having the singular values φ1 � · · · � φn.

If ρ is an eigenvalue value of A, then φn � |ρ| � φ1.

Proof Let u be an unit eigenvector for the eigenvalue ρ. Since Au = ρu it follows
that (AH Au,u) = (Au, Au) = ρρ(u,u) = ρρ = |ρ|2. The matrix AH A is Her-
mitian and its largest and smallest eigenvalues are φ2

1 and φ2
n , respectively. Thus,

φn � |ρ| � φ1.

Theorem 7.72 (SVD Theorem) If A ∈ C
m×n is a matrix and rank(A) = r , then

A can be factored as A = U DV H, where U ∈ C
m×m and V ∈ C

n×n are unitary
matrices, and D = diag(φ1, . . . ,φr , 0, . . . , 0) ∈ R

m×n, where φ1 � . . . � φr are
real positive numbers.
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Proof We saw that the square matrix AH A ∈ C
n×n has the same rank r as the matrix

A and is positive semidefinite. Therefore, there are r positive eigenvalues of this
matrix, denoted by φ2

1, . . . ,φ2
r , where φ1 � φ2 � · · · � φr > 0 and let v1, . . . ,vr

be the corresponding pairwise orthogonal unit eigenvectors in C
n .

We have AH Avi = φ2
i vi for 1 � i � r . Define V = (v1 · · · vr vr+1 · · · vn)

by completing the set {v1, . . . ,vr } to an orthogonal basis

{v1, . . . ,vr ,vr+1, . . . ,vn}

for Cn . If V1 = (v1 · · · vr ) and V2 = (vr+1 · · · vn), we can write V = (V1 V2).
The equalities involving the eigenvectors can now be written as AH AV1 = V1 E2,

where E = diag(φ1, . . . ,φr ).
Define U1 = AV1 E−1 ∈ C

m×r . We have U H
1 = S−1V H

1 AH, so

U H
1 U1 = S−1V H

1 AH AV1 E−1 = E−1V H
1 V1 E2 E−1 = Ir ,

which shows that the columns of U1 are pairwise orthogonal unit vectors. Conse-
quently, U H

1 AV1 E−1 = Ir , so U H
1 AV1 = E .

If U1 = (u1 · · · ,ur ), let U2 = (ur+1, . . . ,um) be the matrix whose columns
constitute the extension of the set {u1 · · · ,ur } to an orthogonal basis of Cm . Define
U ∈ C

m×m as U = (U1 U2). Note that

U H AV =
(

U H
1

U H
2

)
A(V1 V2) =

(
U H

1 AV1 U H
1 AV2

U H
2 AV1 U H

2 AV2

)

=
(

U H
1 AV1 U H

1 AV2
U H

2 AV1 U H
2 AV2

)
=

(
U H

1 AV1 O
O O

)
=

(
E O
O O

)
,

which is the desired decomposition.

Corollary 7.73 Let A ∈ C
m×n be a matrix such that rank(A) = r . If φ1 � . . . � φr

are non-zero singular values, then

A = φ1u1v
H
1 + · · · + φrurv

H
r , (7.9)

where (φi ,ui ,vi ) are singular triplets of A for 1 � i � r .

Proof This follows directly from Theorem 7.72.

The value of a unitarily invariant norm of a matrix depends only on its singu-
lar values.

Corollary 7.74 Let A ∈ C
m×n be a matrix and let A = U DV H be the singular

value decomposition of A. If ⊆ · ⊆ is a unitarily invariant norm, then

⊆ A ⊆=⊆ D ⊆=⊆ diag(φ1, . . . ,φr , 0, . . . , 0) ⊆ .
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Proof This statement is a direct consequence of Theorem 7.72 because the matrices
U ∈ C

m×m and V ∈ C
n×n are unitary.

As we saw in Theorem 6.86, ||| · |||2 and ⊆ · ⊆F are unitarily invariant. Therefore,
the Frobenius norm can be written as

⊆ A ⊆F=
√√√⎢ r⎟

i=1

φ2
r .

and |||A|||2 = φ1.

Theorem 7.75 Let A and B be two matrices in C
m×n. If A ∼u B, then they have

the same singular values.

Proof Suppose that A ∼u B, that is, A = W H
1 BW2 for some unitary matrices W1

and W2. If A has the SVD A = U Hdiag(φ1, . . . ,φr , 0, . . . , 0)V , then

B = W1 AW H
2 = (W1U H)diag(φ1, . . . ,φr , 0, . . . , 0)(V W H

2 ).

Since W1U H and V W H
2 are both unitary matrices, it follows that the singular values

of B are the same as the singular values of A.

Let v ∈ C
n be an eigenvector of the matrix AH A that corresponds to a non-zero,

positive eigenvalue φ2, that is, AH Av = φ2v.
Define u = 1

φ Av. We have Av = φu. Also,

AHu = AH

(
1

φ
Av

)
= φv.

This implies AAHu = φ2u, so u is an eigenvector of AAH that corresponds to the
same eigenvalue φ2.

Conversely, if u ∈ C
m is an eigenvector of the matrix AAH that corresponds to

a non-zero, positive eigenvalue φ2, we have AAHu = φ2u. Thus, if v = 1
φ Au we

have Av = φu and v is an eigenvector of AH A for the eigenvalue φ2.
The Courant-Fisher Theorem (Theorem 7.50) allows the formulation of a similar

result for singular values.

Theorem 7.76 Let A ∈ C
m×n be a matrix such that φ1 � φ2 � · · · � φr is the

non-increasing sequence of singular values of A. For 1 � k � r we have

φk = min
dim(S)=n−k+1

max{⊆ Ax ⊆2 | x ∈ S and ⊆ x ⊆2= 1}
φk = max

dim(T )=k
min{⊆ Ax ⊆2 | x ∈ T and ⊆ x ⊆2= 1},

where S and T range over subspaces of Cn.
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Proof We give the argument only for the second equality of the theorem; the first
can be shown in a similar manner.

We saw that φk equals the square root of kth largest absolute value of the eigenvalue
|ρk | of the matrix AH A. By Courant-Fisher Theorem, we have

ρk = max
dim(T )=k

min
x

{xH AH Ax | x ∈ T and ⊆ x ⊆2= 1}
= max

dim(T )=k
min

x
{⊆ Ax ⊆2

2 | x ∈ T and ⊆ x ⊆2= 1},

which implies the second equality of the theorem.

The equalities established in Theorem 7.76 can be rewritten as

φk = min
w1,...,wk−1

max{⊆ Ax ⊆2 | x ⇒ w1, . . . , x ⇒ wk−1 and ⊆ x ⊆2= 1}
= max

w1,...,wn−k
min{⊆ Ax ⊆2 | x ⇒ w1, . . . , x ⇒ wn−k and ⊆ x ⊆2= 1}.

Corollary 7.77 The smallest singular value of a matrix A ∈ C
m×n equals

min{⊆ Ax ⊆2 | x ∈ C
nand ⊆ x ⊆2= 1}.

The largest singular value of a matrix A ∈ C
m×n equals

max{⊆ Ax ⊆2 | x ∈ C
nand ⊆ x ⊆2= 1}.

Proof The corollary is a direct consequence of Theorem 7.76.

The SVD allows us to find the best approximation of of a matrix by a matrices of
limited rank. The central result of this section is Theorem 7.79.

Lemma 7.78 Let A = φ1u1v
H
1 + · · · + φrurv

H
r be the SVD of a matrix A ∈ R

m×n,

where φ1 � · · · � φr > 0. For every k, 1 � k � r the matrix B(k) = ∑k
i=1 φiuiv

H
i

has rank k.

Proof The null space of the matrix B(k) consists of those vectors x such that∑k
i=1 φiuiv

H
i x = 0. The linear independence of the vectors ui and the fact that

φi > 0 for 1 � i � r implies the equalities vH
i x = 0 for 1 � i � r . Thus,

NullSp(B(k)) = NullSp ((v1 · · · vk)) .

Sincev1, . . . ,vk are linearly independent it follows that dim(NullSp(B(k)) = n−k,
which implies rank(B(k)) = k for 1 � k � r .

Theorem 7.79 (Eckhart-Young Theorem) Let A ∈ C
m×n be a matrix whose

sequence of non-zero singular values is (φ1, . . . ,φr ). Assume that φ1 � · · · �
φr > 0 and that A can be written as
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A = φ1u1v
H
1 + · · · + φrurv

H
r .

Let B(k) ∈ C
m×n be the matrix defined by

B(k) =
k⎟

i=1

φiuiv
H
i .

If rk = inf{|||A − X |||2 | X ∈ C
m×n and rank(X) � k}, then

|||A − B(k)|||2 = rk = φk+1,

for 1 � k � r , where φr+1 = 0 and B(k) is the best approximation of A among the
matrices of rank no larger than k in the sense of the norm ||| · |||2.

Proof Observe that

A − B(k) =
r⎟

i=k+1

φiuiv
H
i ,

and the largest singular value of the matrix
∑r

i=k+1 φiuiv
H
i is φk+1. Since φk+1 is

the largest singular value of A − B(k) we have |||A − B(k)|||2 = φk+1 for 1 � k � r .
We prove now that for every matrix X ∈ C

m×n such that rank(X) � k, we
have |||A − X |||2 � φk+1. Since dim(NullSp(X)) = n − rank(X), it follows that
dim(NullSp(X)) � n − k. If T is the subspace of Rn spanned by v1, . . . ,vk+1, we
have dim(T ) = k + 1. Since dim(NullSp(X)) + dim(T ) > n, the intersection of
these subspaces contains a non-zero vector and, without loss of generality, we can
assume that this vector is a unit vector x.

We have x = a1v1 + · · · akvk + ak+1vk+1 because x ∈ T . The orthogonality of
v1, . . . ,vk,vk+1 implies ⊆ x ⊆2

2=
∑k+1

i=1 |ai |2 = 1.
Since x ∈ NullSp(X), we have Xx = 0, so

(A − X)x = Ax =
k+1⎟
i=1

ai Avi =
k+1⎟
i=1

aiφiui .

Thus, we have

|||(A − X)x|||22 =
k+1⎟
i=1

|φi ai |2 � φ2
k+1

k+1⎟
i=1

|ai |2 = φ2
k+1,

because u1, . . . ,uk are also orthonormal. This implies |||A − X |||2 � φk+1 = |||A −
B(k)|||2.

It is interesting to observe that the matrix B(k) provides an optimal approximation
of A not only with respect to ||| · |||2 but also relative to the Frobenius norm.
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Theorem 7.80 Using the notations introduced in Theorem 7.79, B(k) is the best
approximation of A among matrices of rank no larger than k in the sense of the
Frobenius norm.

Proof Note that ⊆ A − B(k) ⊆2
F=⊆ A ⊆2

F −∑k
i=1 φ2

i . Let X be a matrix of rank

k, which can be written as X = ∑k
i=1 xi yH

i . Without loss of generality we may
assume that the vectors x1, . . . , xk are orthonormal. If this is not the case, we can use
the Gram-Schmidt algorithm to express then as linear combinations of orthonormal
vectors, replace these expressions in

∑k
i=1 xi yH

i and rearrange the terms. Now, the
Frobenius norm of A − X can be written as

⊆ A − X ⊆2
F = trace



(

A −
k⎟

i=1

xi yH

)H (
A −

k⎟
i=1

xi yH

)


= trace

(
AH A +

k⎟
i=1

(yi − AHxi )(yi − AHxi )
H −

k⎟
i=1

AHxi xH
i A

)
.

Taking into account that
∑k

i=1(yi − AHxi )(yi − AHxi )
H is a real non-negative number

and that
∑k

i=1 AHxi xH
i A =⊆ Axi ⊆2

F we have

⊆ A − X ⊆2
F → trace

(
AH A −

k⎟
i=1

AHxi xH
i A

)
=⊆ A ⊆2

F −trace

(
k⎟

i=1

AHxi xH
i A

)
.

Let A = Udiag(φ1, . . . ,φn)V H be the singular value decomposition of A. If V =
(V1 V2), where V1 has k columns v1, . . . ,vk , D1 = diag(φ1, . . . ,φk) and D2 =
diag(φk+1, . . . ,φn), then we can write

AH A = V DHU HU DV H = (V1 V2)

(
D2

1 O
O D2

2

)(
V H

1
V H

2

)
= V1 D2

1 V H
1 + V2 D2

2 V H
2 .

and AH A = V D2V H. These equalities allow us to write:

⊆ Axi ⊆2
F = trace(xH

i AH Axi )

= trace
⎣

xH
i V1 D2

1 V H
1 xi + xH

i V2 D2
2 V H

2 xi

⎥
= ⊆ D1V H

1 xi ⊆2
F + ⊆ D2V H

2 xi ⊆2
F

= φ2
k +

⎣
⊆ D1V H

1 xi ⊆2
F −φ2

k ⊆ V H
1 xi ⊆2

F

⎥
−

⎣
φ2

k ⊆ V H
2 xi ⊆2

F − ⊆ D2V H
2 xi ⊆2

F )
⎥

− φ2
k (1− ⊆ V Hxi ⊆).
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Since ⊆ V Hxi ⊆1
F= 1 (because xi is an unit vector and V is an unitary matrix) and

φ2
k ⊆ V H

2 xi ⊆2
F − ⊆ D2V H

2 xi ⊆2
F� 0, it follows that

⊆ Axi ⊆2
F� φ2

k +
⎣
⊆ D1V H

1 xi ⊆2
F −φ2

k ⊆ V H
1 xi ⊆2

F

⎥
.

Consequently,

k⎟
i=1

⊆ Axi ⊆2
F � kφ2

k +
k⎟

i=1

⎣
⊆ D1V H

1 xi ⊆2
F −φ2

k ⊆ V H
1 xi ⊆2

F

⎥

= kφ2
k +

k⎟
i=1

k⎟
j=1

(φ2
j − φ2

k )|vH
j xi |2

=
k⎟

j=1

(
φ2

k + (φ2
j − φ2

k )

k⎟
i=1

|v j xi |2
)

�
k⎟

j=1

(φ2
k + (φ2

j − φ2
k )) =

k⎟
j=1

φ2
j ,

which concludes the argument.

Definition 7.81 Let A ∈ C
m×n. The numerical rank of A is the function nrA :

[0,⊃) −⊕ N given by

nrA(d) = min{rank(B) | |||A − B|||2 � d}

for d � 0.

Theorem 7.82 Let A ∈ C
m×n be a matrix having the sequence of non-zero singular

values φ1 � φ2 � · · · � φr . Then, nrA(d) = k < r if and only if φk > d � φk+1.

Proof Let d be a number such that φk > d � φk+1. Equivalently, by Eckhart-Young
Theorem, we have

|||A − B(k − 1)|||2 > d � |||A − B(k)|||2,

Since |||A − B(k − 1)|||2 = min{|||A − X |||2 | rank(X) = k − 1} > d, it follows that
min{rank(B) | |||A − B|||2 � d} = k, so nrA(d) = k.

Conversely, suppose that nrA(d) = k. This means that the minimal rank of a
matrix B such that |||A − B|||2 � d is k. Therefore, |||A − B(k − 1)|||2 > d. On
another hand, d � |||A − B(k)|||2 because there exists a matrix C of rank k such that
d � |||A − C |||2, so d � |||A − B(k)|||2 = φk+1. Thus, φk > d � φk+1.
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Exercises and Supplements

1. Prove that if (a, x) is an eigenpair of a matrix A ∈ C
n×n if and only if (a − b, x)

is an eigenpair of the matrix A − bIn .
2. Let A ∈ R

n×n be a matrix and let (a, x) be an eigenpair of A and (a, y) be an
eigenpair of A∞ such that x∞y = 1. If L = xy∞, prove that

(a) every non-zero eigenvalue of A − aL is also an eigenvalue of A and every
eigenpair (ρ, t) of A − aL is an eigenpair of A;

(b) if a ∅= 0 is an eigenvalue of A with geomm(A, a) = 1, then a is not an
eigenvalue of A − aL .

Solution: Let ρ a non-zero eigenvalue of A−aL . We have (A−aL)t = ρt
for some t ∅= 0n . By Part (d) of Exercise 24 of Chap. 5, L(A − aL) = On,n ,
so ρLt = 0n , so Lt = 0, which implies At = ρt.

For the second part suppose that a ∅= 0 were an eigenvalue of A − aL and
let (a,w) be an eigenpair of this matrix. By the first part, Aw = aw. Since
geomm(A, a) = 1, there exists b ∈ C − {0} such that w = bx. This allows
us to write

aw = (A − aL)w = (A − aL)bx = abx − abLx = abx − ab(xy∞)x
= abx − abx(y∞x) = 0n,

because y∞x = 1. Since a ∅= 0 and x ∅= 0n , this is impossible.

3. Let A ∈ R
n×n be a matrix, (ρ, x) be an eigenpair of A and (ρ, y) be an eigenpair

of A∞ such that:

(i) x∞y = 1;
(ii) ρ be an eigenvalue of A with |ρ| = σ(A) and ρ is unique with this property.

If L = xy∞, and ι ∈ spec(A) is such that |ι| < σ(A) and |ι| is maximal with this
property, prove that:

(a) σ(A − ρL) � |ι| < σ(A);
(b)

⎦ 1
ρ A

)m = L + ⎦ 1
ρ A − L

)m
and limm⊕⊃

⎦ 1
ρ A

)m = L .

Solution: By Part (a) of Supplement 2, every non-zero eigenvalue of A−ρL
is an eigenvalue of A. Therefore, either σ(A −ρL) = 0 or σ(A −ρL) = |ρ∞|
for some ρ∞ ∈ spec(A). Therefore, in either case, σ(A − ρL) � |ι| < σ(A).
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Since (A − ρL)m = Am − ρm L , we have
⎦ 1

ρ A
)m = L + ⎦ 1

ρ A − L
)m

. Note

that σ
⎦ 1

ρ A − L
) = σ(A−ρL)

σ(A)
� |ι|

σ(A)
< 1. Therefore, by Theorem 7.68,

limm⊕⊃
⎦ 1

ρ A
)m = L .

4. Let A ∈ R
n×n , where n is an odd number. Prove that A has at least one real

eigenvalue.
5. Prove that the eigenvalues of an upper triangular (or lower triangular) matrix are

its diagonal entries.

Let sk : Cn −⊕ C be the kth symmetric function of n arguments defined by

sn
k (z1, . . . , zn) =

⎟
i1,...,ik

⎬⎪


k⎩
j=1

zi j | 1 � i1 < · · · < ik � n


 ,

for z1, . . . , zn ∈ C. For example, we have

s3
1(z1, z2, z3) = z1 + z2 + z3,

s3
2(z1, z2, z3) = z1z2 + z1z3 + z2z3,

s3
3(z1, z2, z3) = z1z2z3.

6. Prove that

(t − z1) · · · (t − zn) = tn − sn
1(z1, . . . , zn)tn−1 + sn

2(z1, . . . , zn)tn−2 − · · ·
+(−1)n sn

n(z1, . . . , zn).

Solution: The equality follows by observing that the coefficient of tn−k in (t −
z1) · · · (t − zn) equals (−1)k sn

k (z1, . . . , zn).
7. Let M ∈ C

n×n be an invertible matrix and let ||| · ||| be a matrix norm. Prove that
the mapping μM : C

n×n −⊕ R�0 given by μM (A) = |||M−1 AM ||| is a matrix
norm.

8. Let A ∈ C
n×n be a matrix. Prove that:

(a) if ρ ∈ spec(A), then 1 + ρ ∈ spec(In + A);
(b) algm(In + A, 1 + ρ) = algm(A,ρ);
(c) σ(In + A) � 1 + σ(A).

Solution: Suppose that ρ ∈ spec(A) and algm(A,ρ) = k. Then ρ is root
of multiplicity k of pA(ρ) = det(ρIn − A). Since pIn+A(ρ) = det(ρIn −
In − A), it follows that pIn+A(1 + ρ) = det(ρIn − A) = pA(ρ). Thus
1 + ρ ∈ spec(In + A) and algm(In + A, 1 + ρ) = algm(A,ρ).

We have σ(In + A) = max{|1 + ρ| | ρ ∈ spec(A)} � 1 + max{|ρ| |
ρ ∈ spec(A) = 1 + σ(A).

9. Let A ∈ R
n×n be a symmetric matrix having the eigenvalues ρ1 � · · · � ρn .

Prove that
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∣∣∣∣∣∣∣∣∣A − ρ1 + ρn

2
In

∣∣∣∣∣∣∣∣∣
2

= ρ1 − ρn

2
.

10. Let A ∈ R
n×n be a matrix and let c ∈ R. Prove that for x, y ∈ R

n −{0n} we have
ralA(x) − ralA(y) = ralB(x) − ralB(y), where B = A + cIn .

11. Let A ∈ R
n×n be a symmetric matrix having the eigenvalues ρ1 � · · · � ρn and

let x and y be two vectors in R
n − {0n}. Prove that

|ralA(x) − ralA(y)| � (ρ1 − ρn) sin ∠(x, y).

Solution: Assume that ⊆ x ⊆=⊆ y ⊆= 1 and let B = A − ρ1+ρn
2 In . By

Exercise 10, we have

|ralA(x)−ralA(y)| = |ralB(x)−ralB(y)| == |x∞Bx−y∞ By| = |B(x−y)∞(x+y)|.

By Cauchy-Schwarz Inequality we have

|B(x − y)∞(x + y)| � 2 ⊆ B ⊆ ⊆ x − y ⊆ ⊆ x + y ⊆
2

= (ρ1 − ρn) sin ∠(x, y).

12. Prove that if A is a unitary matrix and 1 ∅∈ spec(A), then there exists a skew-
Hermitian S such that A = (In − S)(In + S)−1.

13. Let f : Rn×n −⊕ R be a function such that f (AB) = f (B A) for A, B ∈ R
n×n .

Prove that if A ∼ B, then f (A) = f (B).
14. Let a, b ∈ C − {0} and let Br (ρ, a) ∈ C

r×r be the matrix defined by

Br (ρ, a) =




ρ a 0 · · · 0
0 ρ a · · · 0
...

...
. . .

. . .
...

0 0 0 · · · a
0 0 0 · · · ρ


 ∈ C

r×r .

Prove that

(a) Bn(ρ, a) ∼ Bn(ρ, b);
(b) Br (ρ) is given by

(Br (ρ)k =




ρk
⎦k
1

)
ρk−1

⎦k
2

)
ρk−2 · · · ⎦ k

r−1

)
ρk−r+1

0 ρk
⎦k
1

)
ρk−1 · · · ⎦ k

r−2

)
ρk−r+2

...
...

... · · · ...

0 0 0 · · · ρk


 ;

(c) if |ρ| < 1, then limk⊕⊃ Br (ρ)k = O .
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15. Let A ∈ R
n×n be a symmetric real matrix. Prove that

≥ralA(x) = 2

x∞x
(Ax − ralA(x)x).

Also, show that the eigenvectors of A are the stationary points of the function
ralA(x).

16. Let A, B ∈ C
n×n be two Hermitian matrices. Prove that AB is a Hermitian

matrix if and only if AB = B A.
17. Let A ∈ R

3×3 be a symmetric matrix. Prove that if trace(A) ∅= 0, the sum of
principal minors of order 2 equals 0, and det(A) = 0, then rank(A) = 1.

Solution: The characteristic polynomial of A is pA(ρ) = ρ3−trace(A)ρ2 =
0. Thus, spec(A) = {trace(A), 0}, where algm(A, 0) = 2, so rank(A) = 1.

18. Let A ∈ R
3×3 be a symmetric matrix. Prove that if the sum of principal minors

of order 2 does not equal 0 but det(A) = 0, then rank(A) = 2.
19. Let A ∈ C

n×n be a Hermitian matrix, u ∈ C
n be a vector and let a be a complex

number. Define the Hermitian matrix B as

B =
(

A u
uH a

)
.

Let θ1 � · · · � θn be the eigenvalues of A and let ν1 � · · · � νn � νn+1 be
the eigenvalues of B. Prove that

ν1 � θ1 � ν2 � · · · � νn � θn � νn+1.

Solution: Since B ∈ C
(n+1)×(n+1), by Courant-Fisher Theorem we have

νk+1 = min
W

max
x

{xH Bx | ⊆ x ⊆2= 1andx ∈ ∨W ∧⇒}
= max

Z
min

x
{xH Bx | ⊆ x ⊆2= 1andx ∈ ∨Z∧⇒},

where W ranges of sets of k non-zero arbitrary vectors, and let Z be a subset of
C

n that consists of n − k non-zero arbitrary vectors in C
n+1.

Let U be a set of k non-zero vectors in C
n and let Y be a set of n − k − 1 vectors

in C
n . Define the subsets WU and ZY of C

n+1 as

WU =
⎛(

u
0

) ∣∣∣u ∈ U

⎧

and

ZY =
⎛(

y
0

) ∣∣∣y ∈ Y

⎧
≡ {en+1}.
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By restricting the sets W and Z to sets of the form WU and ZY we obtain the
double inequality

max
ZY

min
x

{xH Bx | ⊆ x ⊆2= 1 and x ∈ ∨ZY ∧⇒}
� νk+1 � min

WU
max

x
{xH Bx | ⊆ x ⊆2= 1 and x ∈ ∨WU ∧⇒}.

Note that, if x ∈ ∨ZY ∧⇒, then we have x ⇒ en+1, so xn+1 = 0. Therefore,

xH Bx = (yH0)

(
A u
uH a

)(
y
0

)
= yH Ay.

Consequently,

max
ZY

min
x

{xH Bx | ⊆ x ⊆2= 1andx ∈ ∨ZY ∧⇒}
= max

Y
min

y
{yH Ay | ⊆ y ⊆2= 1andy ∈ ∨Y ∧⇒} = θk .

This allows us to conclude that θk � νk+1 for 1 � k � n.

On another hand, if x ∈ ∨WU ∧⇒ and

x =
(
u
0

)

then xH Bx = uH Au and ⊆ x ⊆2=⊆ u ⊆2. Now we can write

min
WU

max
x

{xH Bx | ⊆ x ⊆2= 1 and x ∈ ∨WU ∧⇒}
= min

U
max
u

{uH Au | ⊆ u ⊆2= 1 and u ∈ ∨U ∧⇒} = θk+1,

so νk+1 � θk+1 for 1 � k � n − 1.
20. Let A, B ∈ C

n×n be two matrices such that AB = B A. Prove that A and B have
a common eigenvector.

Solution: Let ρ ∈ spec(A) and let {x1, . . . , xk} be a basis for NullSp(A−ρIn).
Observe that the matrices A − ρIn and B commute because

(A − ρIn)B = AB − ρB and B(A − ρIn) = B A − ρB.

Therefore, we have

(A − ρIn)Bxi = B(A − ρIn)xi = 0,
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so (A − ρIn)B X = On,n , where X = (x1, . . . , xk). Consequently, AB X =
ρB X . Let y1, . . . , ym be the columns of the matrix B X . The last equality implies
that Ayi = ρyi , so yi ∈ NullSp(A−ρIn). Since X is a basis of NullSp(A−ρIn)

it follows that each yi is a linear combination of the columns of X so there
exists a matrix P such that (y1 · · · ym) = (x1 · · · xk)P , which is equivalent to
B X = X P . Let w be an eigenvector of P . We have Pw = μw. Consequently,
B Xw = X Pw = μXw, which proves that Xw is an eigenvector of B. Also,
A(Xw) = A(B Xw) = (ρB X)w = ρμXw, so Xw is also an eigenvector of A.

21. Let A ∈ C
m×n and B ∈ C

n×m be two matrices. Prove that the set of non-zero
eigenvalues of the matrices AB ∈ C

m×m and B A ∈ C
n×n are the same and

algm(AB,ρ) = algm(B A,ρ) for each such eigenvalue.

Solution: Consider the following straightforward equalities:

(
Im −A

On,m ρIn

)(
ρIm A

B In

)
=

(
ρIm − AB Om,n

−ρB ρIn

)
(−Im Om,n

−B ρIn

)(
ρIm A

B In

)
=

(−ρIm −A
On,m ρIn − B A

)
.

Observe that

det

((
Im −A

On,m ρIn

)(
ρIm A

B In

))
= det

((−Im Om,n

−B ρIn

)(
ρIm A

B In

))
,

and therefore,

det

(
ρIm − AB Om,n

−ρB ρIn

)
= det

(−ρIm −A
On,m ρIn − B A

)
.

The last equality amounts to ρn pAB(ρ) = ρm pB A(ρ). Thus, for ρ ∅= 0 we have
pAB(ρ) = pB A(ρ), which gives the desired conclusion.

22. Let a ∈ C
n −{0n}. Prove that the matrix aaH ∈ C

n×n has one eigenvalue distinct
from 0, and this eigenvalue is equal to ⊆ a ⊆2.

23. Let A ∈ R
n×n be a symmetric matrix such that ai j ∈ {0, 1} for 1 � i, j � n. If

d = |{ai j | ai j =1}|
n2 , prove that n

⊥
d � ρ1 � nd, where ρ1 is the largest eigenvalue

of A.

Solution: By Rayleigh-Ritz Theorem (Theorem 7.49) we have ρ11∞
n1n �

1∞
n A1n . Since 1∞

n1n = n and 1∞
n A1n = n2d it follows that ρ1 � nd. On another

hand we have
∑n

i=1 ρ2
i �⊆ A ⊆2

F= n2d , so ρ1 � n
⊥

d.
24. Let U = (u1, . . . ,ur ) ∈ C

n×r be a matrix having an orthonormal set of columns.
For A ∈ C

n×n define the matrix AU ∈ C
r×r by AU = U H AU .

(a) Prove that if A is a Hermitian matrix, then AU is also a Hermitian matrix.
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(b) If A is a Hermitian matrix having the eigenvalues ρ1 � · · · � ρn and AU

has the eigenvalues μ1 � · · · � μr , prove that

ρk � μk � ρk+n−r .

(c) Prove that

r⎟
i=1

ρi = min{trace(AU ) | U HU = Ir }
n⎟

i=n−r+1

ρi = max{trace(AU ) | U HU = Ir }.

Solution: Observe that (AU )H = U H AHU = U H AU = AU , so AU is
indeed Hermitian and its eigenvalues μ1, . . . ,μr are real numbers.

Extend the set of columns u1, . . . ,ur of U to an orthonormal basis

{u1, . . . ,ur ,ur+1, . . . ,un}

and let W ∈ C
n×n be the matrix whose columns areu1, . . . ,un . Since W is a

unitary matrix, spec(W H AW ) = spec(A) and AU is a principal submatrix
of spec(W H AW ). The second part follows from Theorem 7.53.

The first equality of the third part follows from the fact that the second
part implies

r⎟
i=1

ρi �
r⎟

i=1

μi = trace(AU ),

where AU ∈ C
r×r . If the columns u1, . . . ,ur of U are chosen as orthonor-

mal eigenvectors the above inequality becomes an equality. In this case we
have U HU = Ir and the first equality of the third part follows. The argument
for the second equality is similar.

25. Let A, B ∈ C
n×n be two Hermitian matrices, where spec(A) = {λ1, . . . , λn},

spec(B) = {π1, . . . , πn}, and spec(A + B) = {ρ1, . . . ,ρn}. Also, suppose that
λ1 � · · · � λn , π1 � · · · � πn , and ρ1 � · · · � ρn . Prove that for r � n we have

r⎟
i=1

ρi �
r⎟

i=1

λi +
r⎟

i=1

πi

and
n⎟

i=n−r+1

ρi �
n⎟

i=n−r+1

λi +
n⎟

i=n−r+1

πi .
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Solution: Supplement 24 implies that

r⎟
i=1

ρi = min{trace((A + B)U ) | U HU = Ir }

� min{trace(AU ) | U HU = Ir } + min{trace(BU ) | U HU = Ir }
=

r⎟
i=1

λi +
r⎟

i=1

πi .

For the second part we can write

n⎟
i=n−r+1

ρi = max{trace((A + B)U ) | U HU = Ir }

� max{trace(AU ) | U HU = Ir } + max{trace(BU ) | U HU = Ir }
=

n⎟
i=n−r+1

λi +
n⎟

i=n−r+1

πi .

26. Let A ∈ R
2×2 be the matrix

A =
(

a b
c d

)
.

Prove that A is diagonalizable if and only if (a − d)2 + 4bc ∅= 0.
27. Let A ∈ C

n×n be a matrix. Prove that the following statements are equivalent:

(a) A is a rank 1 matrix;
(b) A has exactly one non-zero eigenvalue ρ with algm(A,ρ) = 1;
(c) There exist x, y ∈ C

n − {0} such that A = xyH and xHy is an eigenvalue of
A.

28. Prove that the characteristic polynomial of the companion matrix of a polynomial
p is p itself.

29. Let A ∈ C
n×n , B ∈ C

k×k , and X ∈ C
n×k be three matrices such that AX = X B.

Prove that

(a) Ran(X) is an invariant subspace of A;
(b) if v is an eigenvector of B, then Xv is an eigenvector of A;
(c) if rank(X) = k, then spec(B) ∩ spec(A).

The next supplements present a result known as Weyl’s Theorem (Supplement 30)
and several of its important consequences. For a Hermitian matrix A ∈ C

n×n we
denote its eigenvalues arranged in increasing order as ρ1(A) � · · · � ρn(A).

30. Let A and B be two Hermitian matrices in C
n×n . Prove that

ρ1(B) � ρk(A + B) − ρk(A) � ρn(B)
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for 1 � k � n.

Solution: By the Rayleigh-Ritz Theorem we have

ρ1(B) � xH Bx � ρn(B),

for x ∅= 0 and ⊆ x ⊆2= 1. Then, by the Courant-Fisher Theorem,

ρk(A + B) = min
W

max
x

{xH(A + B)x | ⊆ x ⊆2= 1 and x ∈ ∨W ∧⇒},

where the minimum is taken over sets W that contain k − 1 vectors. Since
xH(A + B)x = xH Ax + xH Bx, it follows that

ρk(A + B) � min
W

max
x

{xH Ax + ρn(B) | ⊆ x ⊆2= 1 and x ∈ ∨W ∧⇒}
= ρk(A) + ρn(B).

Similarly, we have

ρk(A + B) � min
W

max
x

{xH Ax + ρ1(B) | ⊆ x ⊆2= 1 and x ∈ ∨W ∧⇒}
= ρk(A) + ρ1(B).

31. Let A and E be Hermitian matrices in C
n×n . Prove that |ρp(A + E)−ρp(A)| �

σ(E) = |||E |||2 for 1 � p � n.

Solution: By Weyl’s inequalities (Supplement 30) we have

ρ1(E) � ρp(A + E) − ρp(A) � ρn(E)

By Definition 7.64, this implies |ρp(A + E)−ρp(A)| � σ(E) = |||E |||2 because
A is Hermitian.

32. Let A ∈ C
n×n be a Hermitian matrix and let w ∈ C

n . Then, ρk(A + wwH) �
ρk+1(A) � ρk+2(A + wwH) and ρk(A) � ρk+1(A + wwH) � ρk+2(A) for
1 � k � n − 2.

Solution: Let W ranging over the subsets of Cn that consist of n−k−2 vectors.
By Courant-Fisher Theorem (Theorem 7.50),

ρk+2(A + wwH)

= min
W

max
x

{xH(A + wwH)x | ⊆ x ⊆2= 1 and x ∈ ∨W ∧⇒}
� min

W
max

x
{xH(A + wwH)x | ⊆ x ⊆2= 1, x ∈ ∨W ∧⇒ and x ⇒ w}

= min
W

max
x

{xH Ax | ⊆ x ⊆2= 1, x ∈ ∨W ∧⇒ and x ⇒ w}
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(because xHw = wHx = 0)

� min
W1

max
x

{xH Ax | ⊆ x ⊆2= 1 and x ∈ ∨W1∧⇒} = ρk+1(A),

where W1 ranges over the sets that contain n − k − 1 vectors.
For 2 � k � n − 2, the same Courant-Fisher Theorem yields

ρk(A + wwH) = max
Z

min
x

{xH(A + wwH)x | ⊆ x ⊆2= 1andx ∈ ∨Z∧⇒},

where Z is a set that contains k − 1 vectors. This implies

ρk(A + wwH)

� max
Z

min
x

{xH(A + wwH)x | ⊆ x ⊆2= 1 and x ∈ ∨Z∧⇒andx ⇒ w}
= max

Z
min

x
{xH Ax | ⊆ x ⊆2= 1 and x ∈ ∨Z∧⇒andx ⇒ w}

� max
Z1

min
x

{xH Ax | ⊆ x ⊆2= 1 and x ∈ ∨Z1∧⇒} = ρ(k + 1, A),

where Z1 ranges over sets that contain k vectors.
33. Let A and B be two Hermitian matrices in C

n×n . If rank(B) � r , prove that
ρk(A + B) � ρk+r (A) � ρk+2r (A + B) for 1 � k � n − 2r and ρk(A) �
ρk+r (A + B) � ρk+2r (A).

Solution: If B is a Hermitian matrix of rank no larger than r , then B = Udiag
(ν1, . . . ,νr , 0, . . . , 0)U H, where U = (u1 · · · un) is a unitary matrix. This
amounts to B = ν1u1u

∞
1 + · · · + νruru

∞
r . Conversely, every Hermitian matrix

of rank no larger than r can be written in this form.
Let W range over the subsets of Rn that consist of n − k −2r vectors. We have

ρk+2r (A + B)

= min
W

max
x

{xH(A + B)x | ⊆ x ⊆2= 1 and x ∈ ∨W ∧⇒}
� min

W
max

x
{xH(A + B)x | ⊆ x ⊆2= 1, x ∈ ∨W ≡ {u1, . . . ,ur }∧⇒}

= min
W

max
x

{xH Ax | ⊆ x ⊆2= 1, x ∈ ∨W ≡ {u1, . . . ,ur }∧⇒}
(because xHui = uH

i x = 0)

� min
W1

max
x

{xH Ax | ⊆ x ⊆2= 1 and x ∈ ∨W1∧⇒} = ρk+r (A),

where W1 ranges over the subsets of R
n that contain n − k − r vectors.

The proof of the remaining inequalities follows the same pattern as above and
generalize the results and proofs of Supplement 32.

34. Let A be a Hermitian matrix in C
n×n such that A = U DU H, where U =

(u1 · · · un) is an unitary matrix and D = (ρ1(A), . . . ,ρn(A)). If A j =
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∑n
i= j+1 ρi (A)uiu

∞
i for 0 � j � n − 1, prove that the largest eigenvalue of the

matrix A − An−k is ρn−k(A).
Solution: Since A − An−k = ∑n−k

i=1 ρi (A)uiu
∞
i the statement follows imme-

diately.
35. Let A and B be two Hermitian matrices in C

n×n . Using the same notations as in
Supplement 30 prove that for any i, j such that 1 � i, j � n and i + j � n + 1
we have

ρ j+k−n(A + B) � ρ j (A) + ρk(B).

Also, if i + j � n + 1, then

ρ j (A) + ρk(B) � ρ j+k−1(A + B).

The field of values of a matrix A ∈ C
n×n is the set of numbers F(A) = {xAxH | x ∈

C
nand ⊆ x ⊆2= 1}.

36. Prove that spec(A) ∩ F(A) for any A ∈ C
n×n .

37. If U ∈ C
n×n is a unitary matrix and A ∈ C

n×n , prove that F(U AU H) = F(A).
38. Prove that A ∼ B implies f (A) ∼ f (B) for every A, B ∈ C

n×n and every
polynomial f .

39. Let A ∈ C
n×n be a matrix such that spec(A) = {ρ1, . . . ,ρn}. Prove that∑n

i=1 |ρi |2 �
∑n

i=1
∑n

j=1 |ai j |2; furthermore, prove that A is normal if and only

if
∑n

i=1 |ρi |2 = ∑n
i=1

∑n
j=1

|ai j |2.
40. Let A ∈ C

n×n such that A � On,n . Prove that if 1n is an eigenvector of A, then
σ(A) = |||A|||⊃ and if 1n is an eigenvector of A∞, then σ(A) = |||A|||1.

Solution: If 1n is an eigenvector of A, then A1n = ρ1n , so
∑n

j=1 ai j = ρ for
every i , 1 � i � n. This means that all rows of A have the same sum ρ and,
therefore, ρ = |||A|||⊃, as we saw in Example 6.84. This implies σ(A) = |||A|||⊃.
The argument for the second part is similar.

41. Prove that the matrix A ∈ C
n×n is normal if and only if there exists a polynomial

p such that p(A) = AH.
42. Prove that the matrix A ∈ C

n×n is normal if and only if there exist B, C ∈ C
n×n

such that A = B + iC and BC = C B.
43. Let A ∈ C

n×n be a matrix and let spec(A) = {ρ1, . . . ,ρn}. Prove that

(a)
∑n

p=1 |ρp|2 �⊆ A ⊆2
F ;

(b) the equality
∑n

p=1 |ρp|2 =⊆ A ⊆2
F holds if and only if A is normal.

Solution: By Schur’s Triangularization Theorem there exists a unitary
matrix U ∈ C

n×n and an upper-triangular matrix T ∈ C
n×n such that

A = U HT U and the diagonal elements of T are the eigenvalues of A.
Thus,

⊆ A ⊆2
F=⊆ T ⊆2

F=
n⎟

p=1

|ρp|2 +
⎟
i< j

|ti j |2,
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which implies the desired inequality.

The equality of the second part follows from the Spectral Theorem for
Normal Matrices. The converse implication can be obtained noting that by
the first part, the equality of the second part implies ti j = 0 for i < j , which
means that T is actually a diagonal matrix.

44. Let A and B be two normal matrices in C
n×n . Prove that if AB is a normal

matrix, then so is B A.

Solution: By Supplement 21 the matrices AB and B A have the same non-zero
eigenvalues. Since A and B are normal we have AH A = AAH and BH B = B BH.
Thus, we can write

⊆ AB ⊆2
F= trace((AB)H AB) = trace(BH AH AB) = trace(BH AAH B)

(because A is a normal matrix)

= trace((BH A)(AH B)) = trace((AH B)(BH A))

(by the third part of Theorem 5.51)

= trace(AH(B BH)A)) = trace(AH(BH B)A))

(because B is a normal matrix)

= trace((B A)H B A) =⊆ B A ⊆2
F .

Since AB is a normal matrix, if spec(AB) = {ρ1, . . . ,ρp}, we have
∑n

p=1 |ρp|2 =⊆
AB ⊆2

F=⊆ B A ⊆2
F .

Taking into account the equalities shown above, it follows that B A is a normal
matrix by Supplement 43.

45. Let A ∈ C
n×n be a matrix with spec(A) = {ρ1, . . . ,ρn}. Prove that A is normal

if and only if its singular values are |ρ1|, . . . , |ρn|.
46. Let A be a non-negative matrix in C

n×n and let u = A1n and v = A∞1n . Prove
that

max{min ui , min v j } � σ(A) � min{max ui , max v j }.

Solution: Note that |||A|||⊃ = max ui and |||A|||1 = max v j . By Theorem 7.65,
we have σ(A) � min{max ui , max v j }.

Let a = min ui . If a > 0 define the non-negative matrix B ∈ R
n×n as bi j = aai j

ui
.

We have A � B � On,n . By Corollary 7.67 we have σ(A) � σ(B) = a; the
same equality, σ(A) � a holds trivially when a = 0. In a similar manner, one
could prove that min v j � σ(A), so max{min ui , min v j } � σ(A).

47. Let A be a non-negative matrix in C
n×n and let x ∈ R

n be a vector such that
x > 0n . Prove that

(a) min
{

(Ax) j
x j

| 1 � j � n
}

� σ(A) � max
{

(Ax) j
x j

| 1 � j � n
}
;
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(b) min
{

x j
∑n

i=1
ai j
x j

| 1 � j � n
}

� σ(A) � max
{

x j
∑n

i=1
ai j
x j

| 1 � j � n
}
.

Solution: Define the diagonal matrix S = diag(x1, . . . , xn). Its inverse is
S−1 = diag( 1

x1
, . . . , 1

xn
). The matrix B = S−1 AS is non-negative and we

have bi j = xi ai j
x j

. This implies

u = B1n =




x1
∑n

j=1
a1 j
x j

...

xn
∑n

j=1
anj
x j


 and v = B ∞1n =




∑n
i=1 xi a1i

x1
...∑n

i=1 xi ani
xn


 =




(Ax)1
x1
...

(Ax)n
xn


 .

Thus, by applying the inequalities of Supplement 46 we obtain the desired
inequalities.

48. Let A ∈ R
n×n and x ∈ R

n such that A � On,n and x > 0. Prove that if a, b ∈ R�0
are such that ax � Ax � bx, then a � σ(A) � b.

Solution: Since ax � Ax we have a � min1�i�n
(Ax)i

xi
, so a � σ(A) by

Supplement 47. Similarly, we hace max1�i�n
(Ax)i

xi
� b, so σ(A) � b.

49. Let A ∈ C
n×n be a matrix such that A � On,n . Prove that if there exists k ∈ N

such that Ak > On,n , then σ(A) > 0.
50. Let A ∈ C

n×n be a matrix such that A � On,n . If A ∅= On,n and there exists an
eigenvector x of A such that x > 0n , prove that σ(A) > 0.

51. Prove that A ∈ C
n×n is positive semidefinite if and only if there is a set U =

{v1, . . . ,vn} ∩ C
n such that A = ∑n

i=1 viv
H
i . Furthermore, prove that A is

positive definite if and only if there exists a linearly independent set U as above.
52. Prove that A is positive definite if and only if A−1 is positive definite.
53. Prove that if A ∈ C

n×n is a positive semidefinite matrix, then Ak is positive
semidefinite for every k � 1.

54. Let A ∈ C
n×n be a Hermitian matrix and let pA(ρ) = ρn+c1ρ

n−1+· · ·+cmρn−m

be its characteristic polynomial, where cm ∅= 0. Then, A is positive semidefinite
if and only if ci ∅= 0 for 0 � k � m (where c0 = 1) and c j c j+1 < 0 for
0 � j � m − 1.

55. Let A ∈ C
n×n be a positive semidefinite matrix. Prove that for every k � 1 there

exists a positive semidefinite matrix B having the same rank as A such that

(a) Bk = A;
(b) AB = B A;
(c) B can be expressed as a polynomial in A.

Solution: Since A is Hermitian, its eigenvalues are real nonnegative num-
bers and, by the Spectral Theorem for Hermitian matrices, there exists
a unitary matrix U ∈ C

n×n such that A = U Hdiag(ρ1, . . . ,ρn)U . Let

B = U Hdiag(ρ
1
k
1 , . . . ,ρ

1
k
n )U , where ρ

1
k
i is a non-negative root of order k of

ρi . Thus, Bk = A, B is clearly positive semidefinite, rank(B) = rank(A),
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and AB = B A.

Let

p(x) =
n⎟

j=1

ρ
1
k
j

n⎩
k=1,k ∅= j

x − ρk

ρ j − ρk

be a Lagrange interpolation polynomial such that p(ρ j ) = ρ
1
k
j (see Exer-

cise 67). Then,

p(diag(ρ1, . . . ,ρn)) = diag(ρ
1
k
1 , . . . ,ρ

1
k
n ),

so

p(A) = p(U Hdiag(ρ1, . . . ,ρn)U ) = U H p(diag(ρ1, . . . ,ρn))U

= U Hdiag(ρ
1
k
1 , . . . ,ρ

1
k
n )U = B.

56. Let A ∈ R
n×n be a symmetric matrix. Prove that there exists b ∈ R such that

A + b(11∞ − In) is positive semi-definite, where 1 ∈ R
n .

Solution: We need to find b such that for every x ∈ R
n we will have

x∞(A + b(11∞ − In))x � 0.

We have x∞(A + b(11∞ − In))x = x∞ Ax + bx∞11∞x − bx∞x � 0, which amounts to

x∞ Ax + b


(

n⎟
i=1

xi

)2

− ⊆ x ⊆2
2


 � 0.

Since A is symmetric, by Rayleigh-Ritz Theorem, we have x∞ Ax � ρ1 ⊆ x ⊆2
2,

where ρ1 is the least eigenvalue of A. Therefore, it suffices to take b � ρ1 to
satisfy the equality for every x.

57. If A ∈ R
n×n is a positive definite matrix prove that there exist c, d > 0 such that

c ⊆ x ⊆2
2� x∞ Ax � d ⊆ x ⊆2

2, for every x ∈ R
n .

58. Let A = diag(A1, . . . , Ap) and B = (B1, . . . , Bq) be two block-diagonal
matrices. Prove that sepF (A, B) = min{sepF (Ai , B j ) | 1 � i � pand1 �
j � q}.

59. Let A ∈ C
n×n be a Hermitian matrix. Prove that if for any ρ ∈ spec(A) we have

ρ > −a, then the matrix A + aI is positive-semidefinite.
60. Let A ∈ C

m×m and B ∈ C
n×n be two matrices that have the eigenvalues

ρ1, . . . ,ρm and μ1, . . . ,μn , respectively. Prove that:

(a) if A and B are positive definite, then so is A ∗ B;
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(b) if m = n and A, B are symmetric positive definite, the Hadamard product
A √ B is positive definite.

Solution: For the second part recall that the Hadamard product A √ B of
two square matrices of the same format is a principal submatrix of A ∗ B.
Then, apply Theorem 7.53.

61. Let A ∈ C
n×n be a Hermitian matrix. Prove that if A is positive semidefinite, then

all its eigenvalues are non-negative; if A is positive definite then its eigenvalues
are positive.

Solution: Since A is Hermitian, all its eigenvalues are real numbers. Suppose
that A is positive semidefinite, that is, xH Ax � 0 for x ∈ C

n . If ρ ∈ spec(A),
then Av = ρv for some eigenvector v ∅= 0. The positive semi-definiteness of A
implies vH Av = ρvHv = ρ ⊆ v ⊆2

2� 0, which implies ρ � 0. It is easy to see
that if A is positive definite, then ρ > 0.

62. Let A ∈ C
n×n be a Hermitian matrix. Prove that if A is positive semidefinite, then

all its principal minors are non-negative real numbers; if A is positive definite
then all its principal minors are positive real numbers.

Solution: Since A is positive semidefinite, every sub-matrix A

⎜
i1 · · · ik

i1 · · · ik

]
is

a Hermitian positive semidefinite matrix by Theorem 6.110, so every principal
minor is a non-negative real number. The second part is proven similarly.

63. Let A ∈ C
n×n be a Hermitian matrix. Prove that he following statements are

equivalent:

(a) A is positive semidefinite;
(b) all eigenvalues of A are non-negative numbers;
(c) there exists a Hermitian matrix C ∈ C

n×n such that C2 = A;
(d) A is the Gram matrix of a sequence of vectors, that is, A = BH B for some

B ∈ C
n×n .

Solution: (a) implies (b): This is stated in Exercise 61.
(b) implies (c): Suppose that A is a matrix such that all its eigenvalues are
the non-negative numbers ρ1, . . . ,ρn . By Theorem 7.41, A can be written
as A = U H DU , where U is a unitary matrix and

D =




ρ1 0 · · · 0
0 ρ2 · · · 0
...

... · · · ...

0 0 · · · ρn


 .

Define the matrix
⊥

D as
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⊥
D =




⊥
ρ1 0 · · · 0
0

⊥
ρ2 · · · 0

...
... · · · ...

0 0 · · · ⊥
ρn


 .

Clearly, we gave (
⊥

D)2 = D. Now we can write A = U
⊥

DU HU
⊥

DU H,
which allows us to define the desired matrix C as C = U

⊥
DU H.

(c) implies (d): Since C is itself a Hermitian matrix, this implication is
obvious.

(d) implies (a): Suppose that A = BH B for some matrix B ∈ C
n×k . Then,

for x ∈ C
n we have xH Ax = xH BH Bx = (Bx)H(Bx) =⊆ Bx ⊆2

2� 0, so A is
positive semidefinite.

64. Let A ∈ R
n×n be a real matrix that is symmetric and positive semidefinite such

that A1n = 0n . Prove that 2 max1�i�n
⊥

aii �
∑n

j=1
⊥

a j j .

Solution: By Supplement 63(d), A is the Gram matrix of a sequence of vectors
B = (b1, . . . , bn), so A = B ∞ B. Since A1n = 0n , it follows that (B1n)∞(B1n) =
0, so B1n = 0n . Thus,

∑n
i=1 bi = 0n . Then, we have ⊆ bi ⊆2= |||−∑

j ∅=i b j |||2 �∑
j ∅=i ⊆ b j ⊆2, which implies 2 max1�i�n ⊆ bi ⊆2�

∑n
j=1 ⊆ b j ⊆2. This, is

equivalent to the inequality to be shown.
65. Let A ∈ R

n×n be a matrix and let (ρ, x) be an eigenpair of A. Prove that

(a) 2⊇(ρ) = xH(A − A∞)x;
(b) if θ = 1

2 max{|ai j − a ji | | 1 � i, j � n}, then 2|⊇(ρ)| � θ∑{
|x̄i x j − xi x̄ j |

∣∣∣1 � i, j � n, i ∅= j
}
;

(c) |⊇(ρ)| � θ
√

n(n−1)
2 .

The inequality of Part (c) is known as Bendixon Inequality.

Hint: apply the results of Exercise 5 of Chap. 6.

66. Let A ∈ C
m×m and B ∈ C

n×n be two matrices that have the eigenvalues
ρ1, . . . ,ρm andμ1, . . . ,μn , respectively. Prove that the Kronecker product A∗B
has the eigenvalues ρ1μ1, . . . ,ρ1μn, . . . ,ρmμ1, . . . ,ρmμn .

Solution: Suppose that Avi = ρivi and Bu j = μ ju j . Then, (A ∗ B)(vi ∗
u j ) = (Avi ) ∗ (Bu j ) = ρiμ j (vi × u j ).

67. Let A ∈ C
n×n and B ∈ C

m×m . Prove that trace(A ∗ B) = trace(A)trace(B) =
trace(B ∗ A) and det(A ∗ B) = (det(A))m(det(B))n = det(B ∗ A).

68. Let A ∈ C
n×n and B ∈ C

m×m be two matrices. If spec(A) = {ρ1, . . . ,ρn} and
spec(B) = {μ1, . . . ,μm}, prove that spec(A ⊕ B) = {ρi + μ j | 1 � i �
n, 1 � j � m} and spec(A � B) = {ρi − μ j | 1 � i � n, 1 � j � m}.
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Solution: Let x and y be two eigenvectors of A and B that correspond to the
eigenvalues ρ and μ, respectively. Since A ⊕ B = (A ∗ Im)+ (In ∗ B) we have

(A ⊕ B)(x ∗ y) = (A ∗ Im)(x ∗ y) + (In ∗ B)(x ∗ y)

= (Ax ∗ y) + (x ∗ By)

= ρ(x ∗ y) + μ(x ∗ y)

= (ρ + μ)(x ∗ y).

By replacing B by −B we obtain the spectrum of A � B.
69. Let A ∈ C

n×n be matrix and let ri = ∑{ai j | 1 � j � nand j ∅= i}, for
1 � i � n. Prove that spec(A) ∩ ⎨n

i=1{z ∈ C | |z − aii | � ri }.

A disk of the form Di (A) = {z ∈ C | |z − aii | � ri } is called a Gershgorin
disk.

Solution: Let ρ ∈ spec(A) and let suppose that Ax = ρx, where x ∅= 0. Let
p be such that |x p| = max{|xi | | 1 � i � n}. Then,

∑n
j=1 apj x j = ρx p, which

is the same as
∑n

j=1, j ∅=p apj x j = (ρ − app)x p. This, in turn, implies

|x p||ρ − app| =
∣∣∣∣∣∣

n⎟
j=1, j ∅=p

apj x j

∣∣∣∣∣∣ �
n⎟

j=1, j ∅=p

|apj ||x j |

� |x p|
n⎟

j=1, j ∅=p

|apj | = |x p|rp.

Therefore, |ρ − app| � rp for some p.
70. If A, B ∈ R

m×m is a symmetric matrices and A ∼ B, prove that I(A) = I(B).
71. If A is a symmetric block diagonal matrix, A = diag(A1, . . . , Ak), then I(A) =∑k

i=1 I(Ai ).

72. Let A =
(

B c
c∞ b

)
∈ R

m×m be a symmetric matrix, where B ∈ R
(m−1)×(m−1)

such that there exists u ∈ R
m−1 for which Bu = 0m−1 and c∞u ∅= 0. Prove that

I(A) = I(B) + (1, 1,−1).

Solution: It is clear that u ∅= 0m−1 and we may assume that u1 ∅= 0. We can
write

u =
(

u1
v

)
, B =

(
b11 d∞
d D

)
, and c =

(
c1
e

)
,

where v ∈ R
m−2, D ∈ R

(m−2)×(m−2), and d, e ∈ R
m−2. Define k = c∞u =

c1u1 + e∞v ∅= 0 and

P =

 u1 v∞ 0

0m−2 Im−2 0m−2
0 0∞

m−2 1


 .
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The equality Bu = 0m−1 can be written as b11u1 + d∞v = 0 and du1 + Dv =
0m−2. With these notations, A can be written as

A =

b11 d∞ c1

d D e
c1 e∞ b




and we have

P AP ∞ =

 0 0m−2 k

0∞
m−2 D e
k e∞ b




For

Q =

 1 0∞ 0

1
k e Im−2 0m−2

− 2
k b 0∞

m−2 1




we have

(Q P)A(Q P)∞ =

0 0∞

m−2 k
0 D 0m−2
k 0∞

m−2 0


 .

Let R be the permutation matrix

R =

 0 0∞

m−2 1
1 0∞

m−2 0
0m−2 Im−2 0m−2


 .

Observe that

R(Q P)A(Q P)∞ R∞ =

 0 k 0∞

m−2
k 0 0∞

m−2
0m−2 0m−2 D


 ,

which implies that I(A) = I(D)+(1, 1, 0) because the eigenvalues of the matrix(
0 k
k 0

)
are k and −k.

On the other hand, if

S =
(

u1 v
0m−2 Im−2

)
,
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we have SDS∞ =
(

0 0∞
m−2

0m−2 D

)
, which implies I(B) = I(D) + (0, 0, 1). This

yields I(A) = I(B) + (1, 1,−1).
73. Let A ∈ C

n×n and let U ∈ C
n×n an unitary matrix and T an upper-triangular

matrix T ∈ C
n×n such that A = U HT U whose existence follows by Schur’s

Triangularition Theorem. Let B = 1
2 (A + AH) and C = 1

2 (A − AH) be the
matrices introduced in Exercise 18 of Chap. 5.

Prove that

n⎟
i=1

⊂(ρi )
2 �⊆ B ⊆2

F and
n⎟

i=1

⊇(ρi )
2 �⊆ C ⊆2

F .
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The proof of Theorem 7.56 is given in [2]. Hoffman-Wielandt theorem was shown
in [3]. Ky Fan’s Theorem appeared in [4].
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in [6], and Supplement 72 is a result of Fiedler [7].

As before, the two volumes [8] and [9] are highly recommended for a deep under-
standing of spectral aspects of linear algebra.

References

1. W.H. Haemers, Interlacing values and graphs. Linear Algebra and Applications, 226, 593–616
(1995)

2. J.H. Wilkerson, The Algebraic Eigenvalue Problem (Clarendon Press-Oxford, London, 1965)
3. A.J. Hoffman, H.W. Wielandt, The variation of the spectrum of a normal matrix. Duke Math J

20, 37–39 (1953)
4. Ky Fan, On a theorem of Weil concerning eigenvalues of linear transformations-I. Proc. Natl.

Acad. Sci. 35, 652–655 (1949)
5. F. Juhász, On the spectrum of a random graph, in Colloquia Mathematica Societatis János

Bolyai, vol. 25 (Szeged, 1978), pp. 313–316
6. A.V. Knyazev, M.E. Argentati, On proximity of rayleigh quotients for different vectors and ritz

values generated by different trial subspaces. Linear Algebra Appl. 415, 82–95 (2006)
7. M. Fiedler, Eigenvectors of acyclic matrices. Czech. Math. J. 25, 607–618 (1975)
8. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)
9. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge,

2008)



Chapter 8
Metric Spaces Topologies and Measures

8.1 Introduction

The study of topological properties of metric spaces allows us to present an introduc-
tion to the dimension theory of these spaces, a topic that is relevant for data mining
due to its role in understanding the complexity of searching in data sets that have a
natural metric structure.

8.2 Metric Space Topologies

Metrics spaces are naturally equipped with topologies using a mechanism that we
describe next.

Theorem 8.1 Let (S, d) be a metric space. The collection Od defined by

Od = {L ∈ P(S) | for each x ∈ L there exists ρ > 0 such that Cd(x, ρ) ⊆ L}

is a topology on the set S.

Proof We have ∪ ∈ Od because there is no x in ∪, so the condition of the definition
of Od is vacuously satisfied. The set S belongs to Od because Cd(x, ρ) ⊆ S for every
x ∈ S and every positive number ρ.

If {Ui | i ∈ I } ⊆ Od and x ∈⋃{Ui | i ∈ I }, then x ∈ U j for some j ∈ I . Then,
there exists ρ > 0 such that C(x, ρ) ⊆ U j and therefore C(x, ρ) ⊆ ⋃{Ui | i ∈ I }.
Thus,

⋃{Ui | i ∈ I } ∈ Od .
Finally, let U, V ∈ Od and let x ∈ U ∞ V . Since U ∈ Od , there exists ρ > 0 such

that C(x, ρ) ⊆ U . Similarly, there exists ρ∅ such that C(x, ρ∅) ⊆ V . If ρ1 = min{ρ, ρ∅},
then C(x, ρ1) ⊆ C(x, ρ) ∞ C(x, ρ∅) ⊆ U ∞ V , so U ∞ V ∈ Od . This concludes the
argument.

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 399
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_8,
© Springer-Verlag London 2014
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Theorem 8.1 justifies the following definition.

Definition 8.2 Let d be a metric on a set S. The topology induced by d is the family
of sets Od .

We refer to the pair (S,Od) as a topological metric space.

Example 8.3 The usual topology of the set of real numbers R introduced in Exam-
ple 4.4 is actually induced by the metric d : R × R −⊆ R�0 given by d(x, y) =
|x − y| for x, y ∈ R. Recall that, by Theorem 4.4, every open set of this space is the
union of a countable set of disjoint open intervals.

The next statement explains the terms “open sphere” and “closed sphere”, which
we have used previously.

Theorem 8.4 Let (S,Od) be a topological metric space. If t ∈ S and r > 0, then
any open sphere C(t, r) is an open set and any closed sphere B(t, r) is a closed set
in the topological space (S,Od).

Proof Let x ∈ C(t, r), so d(t, x) < r . Choose ρ such that ρ < r − d(t, x). We claim
that C(x, ρ) ⊆ C(t, r). Indeed, let z ∈ C(x, ρ). We have d(x, z) < ρ < r − d(t, x).
Therefore, d(z, t) � d(z, x) + d(x, t) < r , so z ∈ C(t, r), which implies C(x, ρ) ⊆
C(t, r). We conclude that C(t, r) is an open set.

To show that the closed sphere B(t, r) is a closed set, we will prove that its
complement S− B(t, r) = {u ∈ S | d(u, t) > r} is an open set. Let v ∈ S− B(t, r).
Now choose ρ such that ρ < d(v, t) − r . It is easy to see that C(v, ρ) ⊆ S − B(t, r),
which proves that S − B(t, r) is an open set.

Corollary 8.5 The collection of all open spheres in a topological metric space
(S,Od) is a basis.

Proof This statement follows immediately from Theorem 8.4.

The definition of open sets in a topological metric space implies that a subset L of
a topological metric space (S,Od) is closed if and only if for every x ∈ S such that
x ∩∈ L there is ρ > 0 such that C(x, ρ) is disjoint from L . Thus, if C(x, ρ) ∞ L ∩= ∪
for every ρ > 0 and L is a closed set, then x ∈ L .

The closure and the interior operators KOd and IOd in a topological metric space
(S,Od) are described next.

Theorem 8.6 In a topological metric space (S,Od), we have

KOd (U ) = {x ∈ S | C(x, ρ) ∞ U ∩= ∪ for every ρ > 0}

and
IOd (U ) = {x ∈ S | C(x, ρ) ⊆ U for some ρ > 0}

for every U ∈ P(S).
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Proof Let K = KOd . If C(x, ρ) ∞ U ∩= ∪ for every ρ > 0, then clearly C(x, ρ) ∞
K(U ) ∩= ∪ for every ρ > 0 and therefore x ∈ K(U ) by a previous observation.

Now let x ∈ K(U ) and let ρ > 0. Suppose that C(x, ρ) ∞ U = ∪. Then, U ⊆
S − C(x, ρ) and S − C(x, ρ) is a closed set. Therefore, K(U ) ⊆ S − C(x, ρ). This
is a contradiction because x ∈ K(U ) and x ∩∈ S − C(x, ρ).

The second part of the theorem follows from the first part and from Corollary 4.27.

If the metric topologyOd is clear from the context, then we will denote the closure
operator KOd simply by K.

Corollary 8.7 The subset U of the topological metric space (S,Od) is closed if and
only if C(x, ρ) ∞ U ∩= ∪ for every ρ > 0 implies x ∈ U.

The border ιU is given by

ιL = {x ∈ S| for every ρ > 0, C(x, ρ) ∞ L ∩= ∪, and C(x, ρ) ∞ (S − L) ∩= ∪}.

Proof This corollary follows immediately from Theorem 8.6.

Theorem 8.8 Let T be a subset of a topological metric space (S,Od). We have
diam(T ) = diam(K(T )).

Proof Since T ⊆ K(T ), it follows immediately that diam(T ) � diam(K(T )), so we
have to prove only the reverse inequality.

Let u, v ∈ K(T ). For every positive number ρ, we have C(u, ρ) ∞ T ∩= ∪ and
C(v, ρ) ∞ T ∩= ∪. Thus, there exists x, y ∈ T such that d(u, x) < ρ and d(v, y) < ρ.
Thus, d(u, v) � d(u, x) + d(x, y) + d(y, v) � 2ρ + diam(T ) for every ρ, which
implies d(u, v) � diam(T ) for every u, v ∈ K(T ). This yields diam(K(T )) �
diam(T ).

A metric topology can be defined, as we shall see, by more than one metric.

Definition 8.9 Two metrics d and d ∅ defined on a set S are topologically equivalent
if the topologies Od and Od ∅ are equal.

Example 8.10 Let d and d ∅ be two metrics defined on a set S. If there exist two
numbers a, b ∈ R>0 such that a d(x, y) � d ∅(x, y) � b d(x, y), for x, y ∈ S, then
Od = O∅

d .
Let Cd(x, r) be an open sphere centered in x , defined by d. The previous inequal-

ities imply

Cd

⎜ r

b

)
⊆ Cd ∅(x, r) ⊆ Cd

⎜
x,

r

a

)
.

Let L ∈ Od . By Definition 8.2, for each x ∈ L there exists ρ > 0 such that Cd(x, ρ) ⊆
L . Then, C ∅

d(x, aρ) ⊆ Cd(x, ρ) ⊆ L , which implies L ∈ Od ∅ . We leave it to the reader
to prove the reverse inclusion Od ∅ ⊆ Od .

By Corollary 6.17, any two Minkowski metrics dp and dq on R
n are topologically

equivalent.
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8.3 Continuous Functions in Metric Spaces

Continuous functions between topological spaces were introduced in Definition 4.63.
Next, we give a characterization of continuous functions between topological metric
spaces.

Theorem 8.11 Let (S,Od) and (T,Oe) be two topological metric spaces. The fol-
lowing statements concerning a function f : S −⊆ T are equivalent:

(i) f is a continuous function;
(ii) for x ∈ S and ρ > 0, there exists θ > 0 such that f (Cd(x, θ)) ⊆ Ce( f (x), ρ).

Proof (i) implies (ii): Suppose that f is a continuous function. Since Ce( f (x), ρ) is
an open set in (T,Oe), the set f −1(Ce( f (x), ρ) is an open set in (S,Od). Clearly,
x ∈ f −1(Ce( f (x), ρ)), so by the definition of the metric topology there exists θ > 0
such that Cd(x, θ) ⊆ f −1(Ce( f (x), ρ), which yields f (Cd(x, θ)) ⊆ Ce( f (x), ρ).

(ii) implies (i): Let V be an open set of (T,Oe). If f −1(V ) is empty, then it is
clearly open. Therefore, we may assume that f −1(V ) is not empty. Let x ∈ f 1−(V ).
Since f (x) ∈ V and V is open, there exists ρ > 0 such that Ce( f (x), ρ) ⊆ V . By
Part (ii) of the theorem, there exists θ > 0 such that f (Cd(x, θ)) ⊆ Ce( f (x), ρ),
which implies x ∈ Cd(x, θ) ⊆ f −1(V ). This means that f −1(V ) is open, so f is
continuous.

In general, for a continuous function f from (S,Od) and (T,Oe), the number θ
depends both on x and on ρ. If θ is dependent only on ρ, then we say that f is uniformly
continuous. Thus, f is uniformly continuous if for every ρ > 0 there exists θ such
that d(u, v) < θ implies e( f (u), f (v)) < ρ.

Example 8.12 The function f : R −⊆ R defined by f (u) = u2 for u ∈ R is
continuous but not uniformly continuous. Indeed, suppose that f would be uniformly
continuous and let ρbe a positive number such that | f (u)− f (v)| = |(u−v)(u+v)| <

ρ. This implies |u − v| < ρ
|u+v| and, if u and v are sufficiently large, θ must be

arbitrarily close to 0 to ensure that |u − v| < θ implies | f (u) − f (v)| < ρ.

Theorem 8.13 Let (S,Od) and (T,Oe) be two topological metric spaces, let f :
S −⊆ T be a function, and let u = (u0,u1, . . .) and v = (v0, v1, . . .) in Seq⊕(S).
The following statements are equivalent:

(i) f is uniformly continuous;
(ii) if limn⊆⊕ d(un, vn) = 0, then limn⊆⊕ e( f (un), f (vn)) = 0;

(iii) if limn⊆⊕ d(un, vn) = 0, we have limk⊆⊕ e( f (unk ), f (vnk )) = 0, where
(un0 ,un1 , . . .) and (vn0 , vn1 , . . .) are two arbitrary subsequences of u and v,
respectively.

Proof (i) implies (ii): For ρ > 0, there exists θ such that d(u, v) < θ implies
e( f (u), f (v)) < ρ. Therefore, if u and v are sequences as above, there exists
nθ such that n > nθ implies d(un, vn) < θ, so e( f (un), f (vn)) < ρ. Thus,
limn⊆⊕ e( f (un), f (vn)) = 0.
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(ii) implies (iii): This implication is obvious.
(iii) implies (i): Suppose that f satisfies (iii) but is not uniformly continuous.

Then, there exists ρ > 0 such that for every θ > 0 there exist u, v ∈ X such that
d(u, v) < θ and e( f (u), f (v)) > ρ. Let un, vn be such that d(un, vn) < 1

n for
n � 1. Then, limn⊆⊕ d(un, vn) = 0 but e( f (un), f (vn)) does not converge to 0.

Example 8.14 The function f : R −⊆ R given by f (x) = x sin x is continuous
but not uniformly continuous. Indeed, let un = nν and vn = nν + 1

n . Note that
limn⊆⊕ |un − vn| = 0, f (un) = 0, and f (vn) = (nν + 1

n ) sin(nν + 1
n ) = (nν +

1
n )(−1)n sin 1

n . Therefore,

lim
n⊆⊕ | f (un) − f (vn)| = lim

n⊆⊕

(
nν + 1

n

⎟
sin

1

n
= ν lim

n⊆⊕
n

sin 1
n

= ν,

so f is not uniformly continuous.

A local continuity property is introduced next.

Definition 8.15 Let (S,Od) and (T,Oe) be two topological metric spaces and let
x ∈ S.

A function f : S −⊆ T is continuous in x if for every ρ > 0 there exists θ > 0
such that f (C(x, θ)) ⊆ C( f (x), ρ).

It is clear that f is continuous if it is continuous in every x ∈ S.
The definition can be restated by saying that f is continuous in x if for every

ρ > 0 there is θ > 0 such that d(x, y) < θ implies e( f (x), f (y)) < ρ.

Definition 8.16 Let (S, d) be a metric space and let U be a subset of S. The distance
from an element x to U is the number

d(x, U ) = inf{d(x,u) | u ∈ U }.

Note that if x ∈ U , then d(x, U ) = 0.

Theorem 8.17 Let (S, d) be a metric space and let U be a subset of S. The function
f : S −⊆ R given by f (x) = d(x, U ) for x ∈ S is continuous.

Proof Since d(x, z) ⊥ d(x, y) + d(y, z), we have d(x, U ) � d(x, y) + d(y, U ).
By exchanging x and y we also have d(y, U ) � d(x, y) + d(x, U ) and, together,
these inequalities yield |d(x, U ) − d(y, U )| � d(x, y). Therefore, if d(x, y) < ρ, it
follows that |d(x, U ) − d(y, U )| � ρ, which implies the continuity of d(x, U ).

Theorem 8.18 Let (S, d) be a metric space. The following statements hold:

(i) d(u, V ) = 0 if and only if u ∈ K(V ), and
(ii) d(u, V ) = d(u, K(V ))

for every u,u∅ ∈ S and V ⊆ S.
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Proof Suppose that d(u, V ) = 0. Again, by the definition of d(u, V ), for every
ρ > 0 there exists v ∈ V such that d(u, v) < ρ, which means that C(u, ρ) ∞ V ∩= ∪.
By Theorem 8.6, we have u ∈ K(V ). The converse implication is immediate, so (i)
holds.

To prove (ii), observe that V ⊆ K(V ) implies that d(u, K(V )) � d(u, V ), so we
need to show only the reverse inequality.

Letw be an arbitrary element of K(V ). By Theorem 8.6, for every ρ > 0, C(w, ρ)∞
V ∩= ∪. Let v ∈ C(w, ρ) ∞ V . We have

d(u, v) � d(u, w) + d(w, v) � d(u, w) + ρ,

so d(u, V ) � d(u, w)+ρ. Since this inequality holds for every ρ, d(u, V ) � d(u, w)

for every w ∈ K(V ), so d(u, V ) � d(u, K(V )). This allows us to conclude that
d(u, V ) = d(u, K(V )).

Theorem 8.18 can be restated using the function dU : S −⊆ R�0 defined by
dU (x) = d(x, V ) for u ∈ S. Thus, for every subset U of S and x, y ∈ S, we have
|dU (x) − dU (y)| � d(x, y), dU (x) = 0 if and only if x ∈ K(U ), and dU = dK(V ).
The function dU is continuous.

8.4 Separation Properties of Metric Spaces

A dissimilarity d : S × S −⊆ R̂�0 can be extended to the set of subsets of S by
defining d(U, V ) as

d(U, V ) = inf{d(u, v) | u ∈ Uand v ∈ V }

for U, V ∈ P(S). The resulting extension is also a dissimilarity. However, even if d
is a metric, then its extension is not, in general, a metric on P(S) because it does not
satisfy the triangular inequality. Instead, we prove that if d is a metric, then for every
U, V, W we have

d(U, W ) � d(U, V ) + diam(V ) + d(V, W ).

Indeed, by the definition of d(U, V ) and d(V, W ), for every ρ > 0, there exist u ∈ U ,
v, v∅ ∈ V , and w ∈ W such that

d(U, V ) � d(u, v) � d(U, V ) + ρ
2 ,

d(V, W ) � d(v∅, w) � d(V, W ) + ρ
2 .

By the triangular axiom, we have d(u, w) � d(u, v) + d(v, v∅) + d(v∅, w). Hence,
d(u, w) � d(U, V ) + diam(V ) + d(V, W ) + ρ, which implies d(U, W ) �
d(U, V ) + diam(V ) + d(V, W ) + ρ for every ρ > 0. This yields the needed
inequality.
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Definition 8.19 Let (S, d) be a metric space. The sets U, V ∈ P(S) are separate if
d(U, V ) > 0.

The notions of an open sphere and a closed sphere in a metric space (S, d) are
extended by defining the sets C(T, r) and B(T, r) as

C(T, r) = {u ∈ S | d(u, T ) < r},
B(T, r) = {u ∈ S | d(u, T ) � r},

for T ∈ P(S) and r � 0, respectively.
The next statement is a generalization of Theorem 8.4.

Theorem 8.20 Let (S,Od) be a topological metric space. For every set T , T ⊆ S,
and every r > 0, C(T, r) is an open set and B(T, r) is a closed set in (S,Od).

Proof Let u ∈ C(T, r). We have d(u, T ) < r , or, equivalently, inf{d(u, t) | t ∈
T } < r . We claim that if ρ is a positive number such that ρ < r

2 , then C(u, ρ) ⊆
C(T, r).

Let z ∈ C(u, ρ). For every v ∈ T , we have d(z, v) � d(z,u) + d(u, v) <

ρ + d(u, v). From the definition of d(u, T ) as an infimum, it follows that there exists
v∅ ∈ T such that d(u, v∅) < d(u, V ) + ρ

2 , so d(z, v∅) < d(u, T ) + ρ < r + ρ. Since
this inequality holds for every ρ > 0, it follows that d(z, v∅) < r , so d(z, T ) < r ,
which proves that C(u, ρ) ⊆ C(T, r). Thus, C(T, r) is an open set.

Suppose now that s ∈ K(B(T, r)). By Part (ii) of Theorem 8.18, we have
d(s, B(T, r)) = 0, so inf{d(s, w) | w ∈ B(T, r)} = 0. Therefore, for every
ρ > 0, there is w ∈ B(T, r) such that d(s, w) < ρ. Since d(w, T ) � r , it follows
from the first part of Theorem 8.18 that |d(s, T )−d(w, T )| � d(s, w) < ρ for every
ρ > 0. This implies d(s, T ) = d(w, T ), so s ∈ B(T, r). This allows us to conclude
that B(T, r) is indeed a closed set.

Theorem 8.21 (Lebesgue’s Lemma) Let (S,Od) be a topological metric space that
is compact and let C be an open cover of this space. There exists r ∈ R>0 such that
for every subset U with diam(U ) < r there is a set L ∈ C such that U ⊆ L.

Proof Suppose that the statement is not true. Then, for every k ∈ P, there exists a
subset Uk of S such that diam(Uk) < 1

k and Uk is not included in any of the sets L
of C. Since (S,Od) is compact, there exists a finite subcover {L1, . . . , L p} of C.

Let xik be an element in Uk − Li . For every two points xik, x jk , we have
d(xik, x jk) � 1

k because both belong to the same set Uk . By Theorem 8.61, the
compactness of S implies that any sequence xi = (xi1, xi2, . . .) contains a conver-
gent subsequence. Denote by xi the limit of this subsequence, where 1 � i � p.
The inequality d(xik, x jk) � 1

k for k � 1 implies that d(xi , x j ) = 0 so xi = x j for
1 � i, j � p. Let x be their common value. Then x does not belong to any of the
sets Li , which contradicts the fact that {L1, . . . , L p} is an open cover.



406 8 Metric Spaces Topologies and Measures

Theorem 8.22 Every topological metric space (S,Od) is a Hausdorff space.

Proof Let x and y be two distinct elements of S, so d(x, y) > 0. Choose ρ = d(x,y)
3 .

It is clear that for the open spheres C(x, ρ) and C(y, ρ), we have x ∈ C(x, ρ),
y ∈ C(y, ρ), and C(x, ρ) ∞ C(y, ρ) = ∪, so (S,Od) is indeed a Hausdorff space.

Corollary 8.23 Every compact subset of a topological metric space is closed.

Proof This follows directly from Theorems 8.22 and 4.90.

Corollary 8.24 If S is a finite set and d is a metric on S, then the topology Od is the
discrete topology.

Proof Let S = {x1, . . . , xn} be a finite set. We saw that every singleton {xi } is a
closed set. Therefore, every subset of S is closed as a finite union of closed sets.

Theorem 8.25 Every topological metric space (S,Od) is a T4 space.

Proof We need to prove that for all disjoint closed sets H1 and H2 of S there exist
two open disjoint sets V1 and V2 such that H1 ⊆ V1 and H2 ⊆ V2.

Let x ∈ H1. Since H1∞H2 = ∪, it follows that x ∩∈ H2 = K(H2), so d(x, H2) > 0

by Part (ii) of Theorem 8.18. By Theorem 8.20, the set C
⎜

H1,
d(x,L)

3

)
is an open

set and so is

Q H =
⋃{

C

(
H1,

d(x, L)

3

⎟
| x ∈ H1

}
.

The open set Q H2 is defined in a similar manner as

Q H2 =
⋃{

C

(
H2,

d(y, H1)

3

⎟
| y ∈ H2

}
.

The sets Q H1 and Q H2 are disjoint because t ∈ Q H1 ∞ Q H2 implies that there is
x1 ∈ H1 and x2 ∈ H2 such that d(t, x1) <

d(x1, H2)
3 and d(t, x2) <

d(x2, H1)
3 . This,

in turn, would imply

d(x1, x2) <
d(x1, H2) + d(x2, H1)

3
� 2

3
d(x1, x2),

which is a contradiction. Therefore, (S,Od) is a T4 topological space.

Corollary 8.26 Every metric space is normal.

Proof By Theorem 8.22, a metric space is a T2 space and therefore a T1 space. The
statement then follows directly from Theorem 8.25.

Corollary 8.27 Let H be a closed set and L be an open set in a topological metric
space (S,Od) such that H ⊆ L. Then, there is an open set V such that H ⊆ V ⊆
K(V ) ⊆ L.
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Proof The closed sets H and S − L are disjoint. Therefore, since (S,O) is normal,
there exist two disjoint open sets V and W such that H ⊆ V and S − L ⊆ W . Since
S − W is closed and V ⊆ S − W , it follows that K(V ) ⊆ S − W ⊆ L . Thus, we
obtain H ⊆ V ⊆ K(V ) ⊆ L .

A stronger form of Theorem 8.25, where the disjointness of the open sets is
replaced by the disjointness of their closures, is given next.

Theorem 8.28 Let (S,Od) be a metric space. For all disjoint closed sets H1 and
H2 of S, there exist two open sets V1 and V2 such that H1 ⊆ V1, H2 ⊆ V2, and
K(V1) ∞ K(V2) = ∪.

Proof By Theorem 8.25, we obtain the existence of the disjoint open sets Q H1 and
Q H2 such that H1 ⊆ Q H1 and H2 ⊆ Q H2 . We claim that the closures of these sets
are disjoint.

Suppose that s ∈ K(Q H1) ∞ K(Q H2). Then, we have C
(
s, ρ

12

) ∞ Q H1 ∩= ∪ and
C
(
s, ρ

12

)∞ Q H2 ∩= ∪. Thus, there exist t ∈ Q H1 and t ∅ ∈ Q H2 such that d(t, s) < ρ
12

and d(t ∅, s) < ρ
12 .

As in the proof of the previous theorem, there is x1 ∈ H1 and y1 ∈ H2 such
that d(t, x1) <

d(x1, H2)
3 and d(t ∅, y1) <

d(y1, H1)
3 . Choose t and t ∅ above for ρ =

d(x1, y1). This leads to a contradiction because

d(x1, y1) � d(x1, t) + d(t, s) + d(s, t ∅) + d(t ∅, y1) � 5

6
d(x1, y1).

Corollary 8.29 Let (S,Od) be a metric space. If x ∈ L, where L is an open subset
of S, then there exists two open sets V1 and V2 in S such that x ∈ V1, S − L ⊆ V2,
and K(V1) ∞ K(V2) = ∪.

Proof The statement follows by applying Theorem 8.28 to the disjoint closed sets
H1 = {x} and H2 = S − L .

Recall that the Bolzano-Weierstrass property of topological spaces was introduced
in Theorem 4.62. Namely, a topological space (S,O) has the Bolzano-Weierstrass
property if every infinite subset T of S has at least one accumulation point. For metric
spaces, this property is equivalent to compactness, as we show next.

Theorem 8.30 Let (S,Od) be a topological metric space. The following three state-
ments are equivalent:

(i) (S,Od) is compact.
(ii) (S,Od) has the Bolzano-Weierstrass property.

(iii) Every countable open cover of (S,Od) contains a finite subcover.

Proof (i) implies (ii): by Theorem 4.62.
(ii) implies (iii): Let {Ln | n ∈ N} be a countable open cover of S. Without

loss of generality, we may assume that none of the sets Ln is included in
⋃n−1

p=1 L p;
indeed, if this is not the case, we can discard Ln and still have a countable open cover.
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Let xn ∈ Ln −⋃n−1
p=1 L p and let U = {xn | n ∈ N}. Since (S,Od) has the Bolzano-

Weierstrass property, we have U ∅ ∩= ∪, so there exists an accumulation point z of U .
In every open set L that contains z, there exists xn ∈ U such that xn ∩= z.

Since {Ln | n ∈ N} is an open cover, there exists Lm such that z ∈ Lm . Suppose
that the set Lm contains only a finite number of elements xn1, . . . , xnk , and let d =
min{d(z, xni ) | 1 � i � k}. Then, Lm ∞ C

(
z, d

2

)
is an open set that contains no

elements of U with the possible exception of z, which contradicts the fact that z is
an accumulation point. Thus, Lm contains an infinite subset of U , which implies that
there exists xq ∈ Lm for some q > m. This contradicts the definition of the elements
xn of U . We conclude that there exists a number r0 such that Lr −⋃r−1

i=0 Li = ∪
for r � r0, so S = L0 ∨ · · · ∨ Lr0−1, which proves that L0, . . . , Lr0−1 is a finite
subcover.

(iii) implies (i). Let ρ be a positive number. Suppose that there is an infinite
sequence x = (x0, . . . , xn, . . .) such that d(xi , x j ) > ρ for every i, j ∈ N such that
i ∩= j . Consider the open spheres C(xi , ρ) and the set

C = S − K


⋃

i∈N
C
⎜

xi ,
ρ

2

)⎛ .

We will show that {C} ∨ {C(xi , ρ) | i ∈ N} is a countable open cover of S.
Suppose that x ∈ S − C ; that is x ∈ K

(⋃
i∈N C

(
xi ,

ρ
2

))
. By Theorem 4.38, we

have either that x ∈⋃i∈N C
(
xi ,

ρ
2

)
or x is an accumulation point of that set.

In the first case, x ∈ ⋃
i∈N C(xi , ρ) because C

(
xi ,

ρ
2

) ⊆ C(xi , ρ). If x
is an accumulation point of

⋃
i∈N C

(
xi ,

ρ
2

)
, given any open set L such that

x ∈ L , then L must intersect at least one of the spheres C
(
xi ,

ρ
2

)
. Suppose that

C
(
x, ρ

2

)∞ C
(
xi ,

ρ
2

) ∩= ∪, and let t be a point that belongs to this intersection. Then,
d(x, xi ) < d(x, t) + d(t, xi ) < ρ

2 + ρ
2 = ρ, so x ∈ C(xi , ρ).

Therefore, {C} ∨ {C(xi , ρ) | i ∈ N} is a countable open cover of S. Since
every countable open cover of (S,Od) contains a finite subcover, it follows that
this open cover contains a finite subcover. Observe that there exists an open sphere
C(xi , ρ) that contains infinitely many xn because none of these elements belongs
to C . Consequently, for any two of these points, the distance is less than ρ, which
contradicts the assumption we made initially about the sequence x.

Choose ρ = 1
k for some k ∈ N such that k ∧ 1. Since there is no infinite sequence

of points such that every two distinct points are at a distance greater than 1
k , it is

possible to find a finite sequence of points x = (x0, . . . , xn−1) such that i ∩= j
implies d(xi , x j ) > 1

k for 0 � i, j � n − 1 and for every other point x ∈ S there
exists xi such that d(xi , x) � 1

k .
Define the set Lk,m,i as the open sphere C

(
xi ,

1
m

)
, where xi is one of the points

that belongs to the sequence above determined by k and m ∈ N and m � 1. The
collection {Lk,m,i | m � 1, 0 � i � n − 1} is clearly countable. We will prove that
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each open set of (S,Od) is a union of sets of the form Lk,m,i ; in other words, we will
show that this family of sets is a basis for (S,Od).

Let L be an open set and let z ∈ L . Since L is open, there exists ρ > 0 such that
z ∈ C(z, ρ) ⊆ L . Choose k and m such that 1

k < 1
m < ρ

2 . By the definition of the
sequence x, there is xi such that d(z, xi ) < 1

k . We claim that

Lk,m,i = C

(
xi ,

1

m

⎟
⊆ L .

Let y ∈ Lk,m,i . Since d(z, y) � d(z, xi ) + d(xi , y) < 1
k + 1

m < ρ, it follows that
Lk,m,i ⊆ C(z, ρ) ⊆ L . Since d(y, z) < 1

k < 1
m , we have z ∈ Lk,m,i . This shows

that L is a union of sets of the form Lk,m,i , so this family of sets is a countable open
cover of S. It follows that there exists a finite open cover of (S,Od) because every
countable open cover of (S,Od) contains a finite subcover.

Theorem 8.31 Let d and d ∅ be two metrics on a set S such that there exist c0, c1 ∈
R>0 for which c0d(x, y) � d ∅(x, y) � c1d(x, y) for every x, y ∈ S. Then, the
topologies Od and Od ∅ coincide.

Proof Suppose that L ∈ Od , and let x ∈ L . There exists ρ > 0 such that Cd(x, ρ) ⊆
L . Note that Cd ∅(x, c1ρ) ⊆ Cd(x, ρ). Thus, Cd ∅(x, ρ∅) ⊆ L , where ρ∅ = c1ρ, which
shows that L ∈ Od ∅ . In a similar manner, one can prove that Od ∅ ⊆ Od , so the two
topologies are equal.

If d and d ∅ are two metrics on a set S such that Od = Od ∅ , we say that d and d ∅
are topologically equivalent. Corollary 6.20 implies that all metrics dp on R

n with
p � 1 are topologically equivalent.

In Sect. 4.2, we saw that if a topological space has a countable basis, then the space
is separable (Theorem 4.47) and each open cover of the basis contains a countable
subcover (Corollary 4.50). For metric spaces, these properties are equivalent, as we
show next.

Theorem 8.32 Let (S,Od) be a topological metric space. The following statements
are equivalent:

(i) (S,Od) has a countable basis;
(ii) (S,Od) is a separable;

(iii) every open cover of (S,Od) contains a countable subcover.

Proof By Theorem 4.47 and Corollary 4.50, the first statement implies (ii) and (iii).
Therefore, it suffices to prove that (iii) implies (ii) and (ii) implies (i).

To show that (iii) implies (ii), suppose that every open cover of (S,Od) contains
a countable subcover. The collection of open spheres {C (x, 1

n

) | x ∈ S, n ∈ N>0}
is an open cover of S and therefore there exists a countable set Tn ⊆ S such that
Cn = {C (x, 1

n

) | x ∈ Tn, n ∈ N>0} is an open cover of S. Let C = ⋃
n�1 Tn . By

Theorem 1.125, C is a countable set.

http://dx.doi.org/10.1007/978-1-4471-6407-4_4
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We claim that C is dense in (S,Od). Indeed, let s ∈ S and choose n such that n > 1
ρ .

Since Cn is an open cover of S, there is x ∈ Tn such that s ∈ C
(
x, 1

n

) ⊆ C (x, ρ).
Since Tn ⊆ C , it follows that C is dense in (S,Od). Thus, (S,Od) is separable.

To prove that (ii) implies (i), let (S,Od) be a separable space. There exists a
countable set U that is dense in (S,Od). Consider the countable collection

C =
{

C

(
u,

1

n

⎟
| u ∈ U, n � 1

}
.

If L is an open set in (S,Od) and x ∈ L , then there exists ρ > 0 such that C(x, ρ) ⊆ L .
Let n be such that n > 2

ρ . Since U is dense in (S,Od), we know that x ∈ K(U ), so
there exists y ∈ S(x, ρ) ∞ U and x ∈ C

(
y, 1

n

) ⊆ C
(
x, 2

n

) ⊆ C(x, ρ) ⊆ L . Thus, C
is a countable basis.

Theorem 8.33 Let (S,Od) be a topological metric space. Every closed set of this
space is a countable intersection of open sets, and every open set is a countable
union of closed sets.

Proof Let H be a closed set and let Un be the open set

Un =
⋃
n�1

{
C

(
x,

1

n

⎟
| x ∈ F

}
.

It is clear that H ⊆⎧n�1 Un . Now let u ∈⎧n�1 Un and let ρ be an arbitrary positive

number. For every n � 1, there is an element xn ∈ H such that d(u, xn) < 1
n . Thus,

if 1
n < ρ, we have xn ∈ H ∞ C(u, ρ), so C(u, ρ) ∞ H ∩= ∪. By Corollary 8.7, it

follows that u ∈ H , which proves the reverse inclusion
⎧

n�1 Un ⊆ H . This shows
that every closed set is a countable union of open sets.

If L is an open set, then its complement is closed and, by the first part of the
theorem, it is a countable intersection of open sets. Thus, L itself is a countable
union of closed sets.

Definition 8.34 Let (S,Od) be a topological metric space. A Gθ-set is a countable
intersection of open sets. An Fθ-set is a countable union of open sets.

Now, Theorem 8.33 can be restated by saying that every closed set of a topological
metric space is a Gθ-set and every open set is an Fθ-set.

Theorem 8.35 Let U be a Gθ-set in the topological metric space (S,Od). If T is a
Gθ-set in the subspace U, then T is a Gθ-set in S.

Proof Since T is a Gθ-set in the subspace U , we can write T = ⎧
n∈N Ln , where

each Ln is an open set in the subspace U . By the definition of the subspace topology,
for each Ln there exists an open set in S such that Ln = L ∅

n ∞ U , so

T =
⎨

n∈N
Ln =

⎨
n∈N

(L ∅
n ∞ U ) = U ∞

⎨
n∈N

L ∅
n .
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Since U is a countable intersection of open sets of S, the last equality shows that T
is a countable intersection of open sets of S and hence a Gθ-set in S.

8.5 Sequences in Metric Spaces

Definition 8.36 Let (S,Od) be a topological metric space and let x = (x0, . . . , xn,

. . .) be a sequence in Seq⊕(S).
The sequence x converges to an element x of S if for every ρ > 0 there exists

nρ ∈ N such that n � nρ implies xn ∈ C(x, ρ).
A sequence x is convergent if it converges to an element x of S.

Theorem 8.37 Let (S,Od) be a topological metric space and let x = (x0, . . . , xn,

. . .) be a sequence in Seq⊕(S). If x is convergent, then there exists a unique x such
that x converges to x.

Proof Suppose that there are two distinct elements x and y of the set S that satisfy the
condition of Definition 8.36. We have d(x, y) > 0. Define ρ = d(x, y)

3 . By definition,
there exists nρ such that n � nρ implies d(x, xn) < ρ and d(xn, y) < ρ. By applying
the triangular inequality, we obtain

d(x, y) � d(x, xn) + d(xn, y) < 2ρ = 2

3
d(x, y),

which is a contradiction.

If the sequence x = (x0, . . . , xn, . . .) converges to x , this is denoted by limn⊆⊕ xn

= x .
An alternative characterization of continuity of functions can be formulated using

convergent sequences.

Theorem 8.38 Let (S,Od) and (T,Oe) be two topological metric spaces and let
f : S −⊆ T . The function f is continuous in x if and only if for every sequence
x = (x0, . . . , xn, . . .) such that limn⊆⊕ xn = x we have limn⊆⊕ f (xn) = f (x).

Proof Suppose that f is continuous in x , and let x = (x0, . . . , xn, . . .) be a sequence
such that limn⊆⊕ xn = x . Let ρ > 0. By Definition 8.36, there exists θ > 0 such that
f (C(x, θ)) ⊆ C( f (x), ρ). Since limn⊆⊕ xn = x , there exists nθ such that n ∧ nθ

implies xn ∈ C(x, θ). Then, f (xn) ∈ f (C(x, θ)) ⊆ C( f (x), ρ). This shows that
limn⊆⊕ f (xn) = f (x).

Conversely, suppose that for every sequence x = (x0, . . . , xn, . . .) such that
limn⊆⊕ xn = x , we have limn⊆⊕ f (xn) = f (x). If f were not continuous in
x , we would have an ρ > 0 such that for all θ > 0 we would have y ∈ C(x, θ)
but f (y) ∩∈ C( f (x), ρ). Choosing θ = 1

n , let yn ∈ S such that yn ∈ C
(
x, 1

n

)
and f (yn) ∩∈ C( f (x), ρ). This yields a contradiction because we should have
limn⊆⊕ f (yn) = f (x).
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8.5.1 Sequences of Real Numbers

Theorem 8.39 Let x = (x0, . . . , xn, . . .) be a sequence in (R,O), where O is the
usual topology on R.

If x is an increasing (decreasing) sequence and there exists a number b ∈ R such
that xn � b (xn � b, respectively), then the sequence x is convergent.

Proof Since the set {xn | n ∈ N} is bounded above, its supremum s exists by the
Completeness Axiom for R given in Sect. 2. We claim that limn⊆⊕ xn = s. Indeed,
by Theorem 2.28, for every ρ > 0 there exists nρ ∈ N such that s − ρ < xnρ � s.
Therefore, by the monotonicity of the sequence and its boundedness, we have s−ρ <

xn � s for n � nρ, so xn ∈ C(x, ρ), which proves that x converges to s.
We leave it to the reader to show that any decreasing sequence in (R,O) that is

bounded below is convergent.

If x is an increasing sequence and there is no upper bound for x, this means that for
every b ∈ R there exists a number nb such that n � nb implies xn > b. If this is the
case, we say that x is a sequence divergent to +⊕ and we write limn⊆⊕ xn = +⊕.
Similarly, if x is a decreasing sequence and there is no lower bound for it, this means
that for every b ∈ R there exists a number nb such that n � nb implies xn < b. In this
case, we say that x is a sequence divergent to −⊕ and we write limn⊆⊕ xn = −⊕.

Theorem 8.39 and the notion of a divergent sequence allow us to say that
limn⊆⊕ xn exists for every increasing or decreasing sequence; this limit may be
a real number or ±⊕ depending on the boundedness of the sequence.

Theorem 8.40 Let [a0, b0] ⇒ [a1, b1] ↔ · · · ↔ [an, bn] ↔ · · · be a sequence
of nested closed intervals of real numbers. There exists a closed interval [a, b] such
that a = limn⊆⊕ an, b = limn⊆⊕ bn, and

[a, b] =
⎨

n∈N
[an, bn].

Proof The sequence a0, a1, . . . , an, . . . is clearly increasing and bounded because
we have an � bm for every n, m ∈ N. Therefore, it converges to a number a ∈ R

and a � bm for every m ∈ N. Similarly, b0, b1, . . . , bn, . . . is a decreasing sequence
that is bounded below, so it converges to a number b such that an � b for n ∈ N.
Consequently, [a, b] ⊆⎧n∈N[an, bn].

Conversely, let c be a number in
⎧

n∈N[an, bn]. Since c � an for n ∈ N, it
follows that c � sup{an | n ∈ N}, so c � a. A similar argument shows that c � b,
so c ∈ [a, b], which implies the reverse inclusion

⎧
n∈N[an, bn] ⊆ [a, b].

In Example 4.57, we saw that every closed interval [a, b] of R is a compact set.
This allows us to prove the next statement.

http://dx.doi.org/10.1007/978-1-4471-6407-4_2
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Theorem 8.41 (Bolzano-Weierstrass Theorem) A bounded sequence of real num-
bers has a convergent subsequence.

Proof Let x = (x0, . . . , xn, . . .) be a bounded sequence of real numbers. The bound-
edness of x implies the existence of a closed interval D0 = [a0, b0] such that
{xn | n ∈ N} ⊆ [a0, b0].

Let c = a0 + b0
2 be the midpoint of D0. At least one of the sets x−1([a0, c0]),

x−1([c0, b0]) is infinite. Let [a1, b1] be one of [a0, c0] or [c0, b0], for which
x−1([a0, c0]), x−1([c0, b0]) is infinite.

Suppose that we have constructed the interval Dn = [an, bn] having cn = an+bn
2

as its midpoint such that x−1(Dn) is infinite. Then, Dn+1 = [an+1, bn+1] is obtained
from Dn as one of the intervals [an, cn] or [cn, bn] that contains xn for infinitely
many n.

Thus, we obtain a descending sequence of closed intervals [a0, b0] ↔ [a1, b1] ↔
· · · such that each interval contains an infinite set of members of the sequence x.
By Theorem 8.40, we have [a, b] = ⋃

n∈N[an, bn], where a = limn⊆⊕ an and
b = limn⊆⊕ bn . Note that bn −an = b0−a0

2n , so a = limn⊆⊕ an = limn⊆⊕ bn = b.
The interval D0 contains at least one member of x, say xn0 . Since D1 contains

infinitely many members of x, there exists a member xn1 of x such that n1 > n0.
Continuing in this manner, we obtain a subsequence xn0 , xn1 , . . . , xn p , . . .. Since
ap � xn p � bp, it follows that the sequence (xn0 , xn1 , . . . , xn p , . . .) converges to a.

Let x = (x0, x1, . . .) be a sequence of real numbers. Consider the sequence of sets
Sn = {xn, xn+1, . . .} for n ∈ N. It is clear that S0 ⇒ S1 ⇒ · · · ⊆ Sn ⇒ · · · . Therefore,
we have the increasing sequence of numbers inf S0 � inf S1 � · · · � inf Sn � · · · ;
we define lim inf x as limn⊆⊕ inf Sn . On the other hand, we have the decreasing
sequence sup S0 � sup S1 � · · · � sup Sn � · · · of numbers; we define lim sup x as
limn⊆⊕ sup Sn .

Example 8.42 Let x be the sequence defined by xn = (−1)n for n ∈ N. It is clear
that sup Sn = 1 and inf Sn = −1. Therefore, lim sup x = 1 and lim inf x = −1.

Theorem 8.43 For every sequence x of real numbers, we have lim inf x � lim sup x.

Proof Let Sn = {xn, xn+1, . . .}, yn = inf Sn , and zn = sup Sn for n ∈ N. If p � n,
we have yn � yp � z p � zn , so yn � z p for every n, p such that p � n.
Since z1 � z2 � · · · � z p, it follows that yn � z p for every p ∈ N. Therefore,
lim sup x = lim p⊆⊕ z p � yn for every n ∈ N, which in turn implies lim inf x =
limn⊆⊕ yn � lim sup x.

Corollary 8.44 Let x = (x0, x1, . . . , xn, . . .) be a sequence of real numbers. We
have lim inf x = lim sup x = ν if and only if limn⊆⊕ xn = ν.

Proof Suppose that lim inf x = lim sup x = ν and that it is not the case that
limn⊆⊕ xn = ν. This means that there exists ρ > 0 such that, for every m ∈ N,
n � m implies |xn − ν| � ρ, which is equivalent to xn � ν + ρ or xn � ν − ρ. Thus,
at least one of the following cases occurs:
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(i) there are infinitely many n such that xn � ν+ ρ, which implies that lim sup xn �
ν + ρ, or

(ii) there are infinitely many n such that xn � ν− ρ, which implies that lim inf xn �
ν − ρ.

Either case contradicts the hypothesis, so limn⊆⊕ xn = ν.
Conversely, suppose that limn⊆⊕ xn = ν. There exists nρ such that n � nρ

implies ν − ρ < xn < ν + ρ. Thus, sup{xn | n � nρ} � ν + ρ, so lim sup x � ν + ρ.
Similarly, y − ρ � lim inf x and the inequality

ν − ρ � lim inf x � lim sup x � ν + ρ,

which holds for every ρ > 0, implies lim inf x = lim sup x = ν.

8.5.1.1 Sequences and Open and Closed Sets

Theorem 8.45 Let (S,Od) be a topological metric space. A subset U of S is open
if and only if for every x ∈ U and every sequence (x0, . . . , xn, . . .) such that
limn⊆⊕ xn = x there is m such that n � m implies xn ∈ U.

Proof Suppose U is an open set. Since x ∈ U , there exists ρ > 0 such that C(x, ρ) ⊆
U . Let (x0, . . . , xn, . . .) be such that limn⊆⊕ = x . By Definition 8.36, there exists
nρ such that n � nρ implies xn ∈ C(x, ρ) ⊆ U .

Conversely, suppose that the condition is satisfied and that U is not open. Then,
there exists x ∈ U such that for every n � 1 we have C

(
x, 1

n

) − U ∩= ∪. Choose
xn−1 ∈ C

(
x, 1

n

)
for n � 1. It is clear that the sequence (x0, . . . , xn, . . .) converges

to x . However, none of the members of this sequence belong to U . This contradicts
our supposition, so U must be an open set.

Theorem 8.46 Let (S,Od) be a topological metric space. A subset W of S is closed
if and only if for every sequence x = (x0, . . . , xn, . . .) ∈ Seq⊕(W ) such that
limn⊆⊕ xn = x we have x ∈ W .

Proof If W is a closed set and x = (x0, . . . , xn, . . .) is a sequence whose members
belong to W , then none of these members belong to S − W . Since S − W is an open
set, by Theorem 8.46, it follows that x ∩∈ S − W ; that is, x ∈ W .

Conversely, suppose that for every sequence (x0, . . . , xn, . . .) such that limn⊆⊕ =
x and xn ∈ W for n ∈ N we have x ∈ W . Let v ∈ S − W , and suppose that for
every n � 1 the open sphere C

(
v, 1

n

)
is not included in S − W . This means that for

each n � 1 there is zn−1 ∈ C
(
v, 1

n

) ∞ W . We have limn⊆⊕ zn = v; this implies
v ∈ W . This contradiction means that there is n � 1 such that C

(
v, 1

n

) ⊆ V , so V
is an open set. Consequently, W = S − V is a closed set.
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8.6 Completeness of Metric Spaces

Let x = (x0, . . . , xn, . . .) be a sequence in the topological metric space (S,Od) such
that limn⊆⊕ xn = x . If m, n > n ρ

2
, we have d(xm, xn) � d(xm, x) + d(x, xn) <

ρ
2 + ρ

2 = ρ. In other words, if x is a sequence that converges to x , then given a positive
number ρ we have members of the sequence closer than ρ if we go far enough in the
sequence. This suggests the following definition:

Definition 8.47 A sequence x = (x0, . . . , xn, . . .) in the topological metric space
(S,Od) is a Cauchy sequence if for every ρ > 0 there exists nρ ∈ N such that
m, n � nρ implies δ(xm, xn) < ρ.

Theorem 8.48 Every convergent sequence in a topological metric space (S,Od) is
a Cauchy sequence.

Proof Let x = (x0, x1, . . .) be a convergent sequence and let x = limn⊆⊕ x. There
exists n∅

ρ
2

such that if n > n∅
ρ
2
, then d(xn, x) < ρ

2 . Thus, if m, n � nρ = n∅
ρ
2
, it follows

that
d(xm, xn) � d(xm, x) + d(x, xn) <

ρ

2
+ ρ

2
= ρ,

which means that x is a Cauchy sequence.

Example 8.49 The converse of Theorem 8.48 is not true, in general, as we show
next.

Let ((0, 1), d) be the metric space equipped with the metric d(x, y) = |x − y| for
x, y ∈ (0, 1). The sequence defined by xn = 1

n+1 for n ∈ N is a Cauchy sequence.

Indeed, it suffices to take m, n � 1
ρ − 1 to obtain |xn − xm | < ρ; however, the

sequence xn is not convergent to an element of (0, 1).

Definition 8.50 A topological metric space is complete if every Cauchy sequence
is convergent.

Example 8.51 The topological metric space (R,Od), where d(x, y) = |x − y| for
x, y ∈∈ R, is complete.

Let x = (x0, x1, . . .) be a Cauchy sequence in R. For every ρ > 0, there exists
nρ ∈ N such that m, n � nρ implies |xm − xn| < ρ. Choose m0 ∈ N such that
m0 � nρ. Thus, if n � nρ, then xm0 − ρ < xn < xm0 + ρ, which means that
x is a bounded sequence. By Theorem 8.41, the sequence x contains a bounded
subsequence (xi0 , xi1 , . . .) that is convergent. Let ν = limk⊆⊕ xik . It is not difficult
to see that limxn xn = ν, which shows that (R,Od) is complete.

Theorem 8.52 Let (S,Od) be a complete topological metric space. If T is a closed
subset of S, then the subspace T is complete.

Proof Let T be a closed subset of S and let x = (x0, x1, . . .) be a Cauchy sequence
in this subspace. The sequence x is a Cauchy sequence in the complete space S, so
there exists x = limn⊆⊕ xn . Since T is closed, we have x ∈ T , so T is complete.
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Conversely, suppose that T is complete. Let x ∈ K(T ). There exists a sequence
x = (x0, x1, . . .) ∈ Seq⊕(T ) such that limn⊆⊕ xn = x . Then, x is a Cauchy
sequence in T , so there is a limit t of this sequence in T . The uniqueness of the limit
implies x = t ∈ T , so T is a closed set.

Theorem 8.53 There is no clopen set in the topological space (R,O) except the
empty set and the set R.

Proof Suppose that L is a clopen subset of R that is distinct from ∪ and R. Then,
there exist x ∈ L and y ∩∈ L . Starting from x and y, we define inductively the terms
of two sequences x = (x0, . . . , xn, . . .) and y = (y0, . . . , yn, . . .) as follows. Let
x0 = x and y0 = y. Suppose that xn and yn are defined. Then,

xn+1 =
⎩

xn+yn
2 if xn+yn

2 ∈ L ,

xn otherwise,

and

yn+1 =
⎩

xn+yn
2 if xn+yn

2 ∩∈ L ,

yn otherwise.

It is clear that {xn | n ∈ N} ⊆ L and {yn | n ∈ N} ⊆ R − L . Moreover, we have

|yn+1 − xn+1| = |yn − xn|
2

= · · · = |y − x |
2n+1 .

Note that

|xn+1 − xn| � |yn − xn| � |y − x |
2n

.

This implies that x is a Cauchy sequence and therefore there is x = limn⊆⊕ xn ;
moreover, the sequence y also converges to x , so x belongs to ιL , which is a con-
tradiction.

Theorem 8.54 In a complete topological metric space (S,Od), every descending
sequence of closed sets V0 ↔ · · · ↔ Vn ↔ Vn+1 ↔ · · · such that limn⊆⊕ diam(Vn) =
0 has a nonempty intersection, that is,

⎧
n∈N Vn ∩= ∪.

Proof Consider a sequence x0, x1, . . . , xn, . . . such that xn ∈ Vn . This is a Cauchy
sequence. Indeed, let ρ > 0. Since limn⊆⊕ diam(Vn) = 0, there exists nρ such that
if m, n > nρ we have xm, xn ∈ Vmin{m,n}. Since min{m, n} � nρ, it follows that
d(xm, xn) � diam(Vmin m,n) < ρ. Since the space (S,Od) is complete, it follows
that there exists x ∈ S such that limn⊆⊕ xn = x . Note that all members of the
sequence above belong to Vm , with the possible exception of the first m members.
Therefore, by Theorem 8.46, x ∈ Vm , so x ∈⎧n∈N Vn , so

⎧
n∈N Vn ∩= ∪.

Recall that the definition of Baire spaces was introduced on page 154.
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Theorem 8.55 Every complete topological metric space is a Baire space.

Proof We prove that if (S,Od) is complete, then it satisfies the first condition of
Theorem 4.28.

Let L1, . . . , Ln, . . . be a sequence of open subsets of S that are dense in S and let
L be an open, nonempty subset of S. We construct inductively a sequence of closed
sets H1, . . . , Hn, . . . that satisfy the following conditions:

(i) H1 ⊆ L0 ∞ L ,
(ii) Hn ⊆ Ln ∞ Hn−1 for n � 2,
(iii) I(Hn) ∩= ∪, and
(iv) diam(Hn) � 1

n

for n � 2.
Since L1 is dense in S, by Theorem 4.23, L1 ∞ L ∩= ∪, so there is a closed sphere

of diameter less than 1 enclosed in L1 ∞ L . Define H1 as this closed sphere.
Suppose that Hn−1 was constructed. Since I(Hn−1) ∩= ∪, the open set Ln ∞

I(Hn−1) is not empty because Ln is dense in S. Thus, there is a closed sphere
Hn included in Ln ∞ I(Hn−1), and therefore included in Ln ∞ Hn−1, such that
diam(Hn) < 1

n . Clearly, we have I(Hn) ∩= ∪. By applying Theorem 8.54 to the
descending sequence of closed sets H1, . . . , Hn, . . ., the completeness of the space
implies that

⎧
n�1 Hn ∩= ∪. If s ∈ ⎧n�1 Hn , then it is clear that x ∈ ⎧n�1 Ln and

x ∈ L , which means that the set
⎧

n�1 Ln has a nonempty intersection with every
open set L . This implies that

⎧
n�1 Ln is dense in S.

The notion of precompactness that we are about to introduce is weaker than the
notion of compactness formulated for general topological spaces.

Definition 8.56 Let (S, d) be a metric space. A finite subset {x1, . . . , xn} is an r -net
on (S, d) if S =⋃n

i=1 C(xi , r).

Observe that, for every positive number r the family of open spheres {C(x, r) |
x ∈ S} is an open cover of the space S.

Definition 8.57 A topological metric space (S,Od) is precompact if, for every pos-
itive number r , the open cover {C(x, r) | x ∈ S} contains an r-net {C(x1, r),

. . . , C(xn, r)}.
Clearly, compactness implies precompactness.

Using the notion of an r -net, it is possible to give the following characterization
to precompactness.

Theorem 8.58 (S,Od) is precompact if and only if for every positive number r there
exists an r-net Nr on (S,Od).

Proof This statement is an immediate consequence of the definition of precompact-
ness.

Next, we show that precompactness is inherited by subsets.
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Theorem 8.59 If (S,Od) is a precompact topological metric space and T ⊆ S, then
the subspace (T,Od �T ) is also precompact.

Proof Since (S,Od) is precompact, for every r > 0 there exists a finite open cover
Cr/2 = {C (si ,

r
2

) | si ∈ S, 1 � i � n}. Let C∅ = {C (si j ,
r
2

) | 1 � j � m} be a
minimal subcollection of Cr/2 that consists of those open spheres that cover T ; that
is,

T ⊆
⋃⎫

C
⎜

si j ,
r

2

)
| 1 � j � m

⎬
.

The minimality of C∅ implies that each set C
(
si j ,

r
2

)
contains an element y j of T .

By Exercise 68 of Chap. 14, we have C
(
si j ,

r
2

) ⊆ C(y j , r) and this implies that the
set {y1, . . . , ym} is an r -net for the set T .

If the subspace (T,Od �T ) of (S,Od) is precompact, we say that the set T is
precompact.

The next corollary shows that there is no need to require the centers of the spheres
involved in the definition of the precompactness of a subspace to be located in the
subspace.

Corollary 8.60 Let (S,Od) be a topological metric space (not necessarily precom-
pact) and let T be a subset of S. The subspace (T,Od �T ) is precompact if and only
if for every positive number r there exists a finite subcover {C(x1, r), . . . , C(xn, r) |
xi ∈ S for 1 � i � n}.
Proof The argument has been made in the proof of Theorem 8.59.

The next theorem adds two further equivalent characterizations of compact metric
spaces to the ones given in Theorem 8.30.

Theorem 8.61 Let (S,Od) be a topological metric space. The following statements
are equivalent.

(i) (S,Od) is compact;
(ii) every sequence x ∈ Seq⊕(S) contains a convergent subsequence;
(iii) (S,Od) is precompact and complete.

Proof (i) implies (ii): Let (S,Od) be a compact topological metric space and let x
be a sequence in Seq⊕(S). By Theorem 8.30, (S,Od) has the Bolzano-Weierstrass
property, so the set {xn | n ∈ N} has an accumulation point t . For every k � 1, the set
{xn | n ∈ N}∞C

(
t, 1

k

)
contains an element xnk distinct from t . Since d(t, xnk ) < 1

k
for k � 1, it follows that the subsequence (xn1 , xn2 , . . .) converges to t .

(ii) implies (iii): Suppose that every sequence x ∈ Seq⊕(S) contains a convergent
subsequence and that (S,Od) is not precompact. Then, there exists a positive number
r such that S cannot be covered by any collection of open spheres of radius r .

Let x0 be an arbitrary element of S. Note that C(x0, r)− S ∩= ∪ because otherwise
the C(x0, r) would constitute an open cover for S. Let x1 be an arbitrary element
in C(x0, r) − S. Observe that d(x0, x1) � r . The set (C(x0, r) ∨ C(x1, r)) − S is
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not empty. Thus, for any x2 ∈ (C(x0, r) ∨ C(x1, r)) − S, we have d(x0, x2) � r
and d(x0, x1) � r , etc. We obtain in this manner a sequence x0, x1, . . . , xn, . . . such
that d(xi , x j ) � r when i ∩= j . Clearly, this sequence cannot contain a convergent
sequence, and this contradiction shows that the space must be precompact.

To prove that (S,Od) is complete, consider a Cauchy sequence x = (x0, x1, . . . ,

xn, . . .). By hypothesis, this sequence contains a convergent subsequence (xn0 , xn1 ,

. . .). Suppose that limk⊆⊕ xnk = l. Since x is a Cauchy sequence, there is n∅
ρ
2

such that n, nk � n∅
ρ
2

implies d(xn, xnk ) < ρ
2 . The convergence of the subsequence

(xn0 , xn1 , . . .) means that there exists n∅∅
ρ
2

such that nk � n∅∅
ρ
2

implies d(xnk , l) < ρ
2 .

Choosing nk � n∅∅
ρ
2
, if n � n∅

ρ
2

= nρ, we obtain

d(xn, l) � d(xn, xnk ) + d(xnk , l) <
ρ

2
+ ρ

2
= ρ,

which proves that x is convergent. Consequently, (S,Od) is both precompact and
complete.

(iii) implies (i): Suppose that (S,Od) is both precompact and complete but not
compact, which means that there exists an open cover C of S that does not contain
any finite subcover.

Since (S,Od) is precompact, there exists a 1
2 -net, {x1

1 , . . . , x1
n1

}. For each of the
closed spheres B(x1

i , 1
2 ), 1 � i � n1, the trace collection CB(x1

i , 1
2 ) is an open cover.

There is a closed sphere B(x1
j ,

1
2 ) such that the open cover CB(x1

j ,
1
2 ) does not contain

any finite subcover of B(x1
j ,

1
2 ) since (S,Od) was assumed not to be compact. Let

z1 = x1
j .

By Theorem 8.59, the closed sphere B(z1,
1
2 ) is precompact. Thus, there exists a

1
22 -net {x2

1 , . . . , x2
n2

} of B(z1,
1
2 ). There exists a closed sphere B(x2

k , 1
22 ) such that the

open cover CB(x2
k , 1

22 ) does not contain any finite subcover of B(x2
k , 1

22 ). Let z2 = x2
k ;

note that d(z1, z2) � 1
2 .

Thus, we construct a sequence z = (z1, z2, . . .) such that d(zn+1, zn) � 1
2n for

n � 1.
Observe that

d(zn+p, zn) � d(zn+p, zn+p−1) + d(zn+p−1, zn+p−2) + · · · + d(zn+1, zn)

� 1

2n+p−1

1

2n+p−2 + · · · + 1

2n

= 1

2n−1

(
1 − 1

2p

⎟
.

Thus, the sequence z is a Cauchy sequence and there exists z = limn⊆⊕ zn , because
(S,Od) is complete.
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Since C is an open cover, there exists a set L ∈ C such that z ∈ L . Let r be
a positive number such that C(z, r) ⊆ L . Let n0 be such that d(zn, z) < r

2 and
1
2n � r

2 . If x ∈ B(zn, 1
2n ), then d(x, z) � d(x, zn) + d(zn, z) < 1

2n + r
2 � r , so

B(zn, 1
2n ) ⊆ C(z, r) ⊆ L . This is a contradiction because the spheres B(zn, 1

2n )

were defined such that CB(zn , 1
2n ) did not contain any finite subcover. Thus, (S,Od)

is compact.

Theorem 8.62 A subset T of (Rn,O) is compact if and only if it is closed and
bounded.

Proof Let T be a compact set. By Corollary 8.23. T is closed. Let r be a positive
number and let {C(t, r) | t ∈ T } be a cover of T . Since T is compact, there exists
a finite collection {C(ti , r) | 1 � i � p} such that T ⊆ ⋃{C(ti , r) | 1 � i � p}.
Therefore, if x, y ∈ T , we have d(x, y) � 2+max{d(ti , t j ) | 1 � i, j � p}, which
implies that T is also bounded.

Conversely, suppose that T is closed and bounded. The boundedness of T implies
the existence of a parallelepiped [x1, y1] × · · · × [xn, yn] that includes T , and we
saw in Example 4.100 that this parallelepiped is compact. Since T is closed, it is
immediate that T is compact by Theorem 4.61.

Corollary 8.63 Let (S,O) be a compact topological space and let f : S −⊆ R be a
continuous function, whereR is equipped with the usual topology. Then, f is bounded
and there exist u0,u1 ∈ S such that f (u0) = infx∈S f (x) and f (u1) = supx∈S f (x).

Proof Since S is compact and f is continuous, the set f (S) is a compact subset of
R and, by Theorem 8.62, is bounded and closed.

Both infx∈S f (x) and supx∈S f (x) are cluster points of f (S); therefore, both
belong to f (S), which implies the existence of u0 and u1.

Theorem 8.64 (Heine’s Theorem) Let (S,Od) be a compact topological metric
space and let (T,Oe) be a metric space. Every continuous function f : S −⊆ T is
uniformly continuous on S.

Proof Let u = (u0,u1, . . .) and v = (v0, v1, . . .) be two sequences in Seq⊕(S)

such that limn⊆⊕ d(un, vn) = 0. By Theorem 8.61, the sequence u contains a
convergent subsequence (up0 ,up1 , . . .). If x = limn⊆⊕ upn , then limn⊆⊕ vpn = x .
The continuity of f implies that limn⊆⊕ e( f (upn ), f (vpn )) = e( f (x), f (x)) = 0,
so f is uniformly continuous by Theorem 8.13.

8.7 Contractions and Fixed Points

Definition 8.65 Let (S, d) and (T, d ∅) be two metric spaces. A function f : S −⊆ T
is a similarity if there exists a number r > 0 for which d ∅( f (x), f (y)) = rd(x, y)

for every x, y ∈ S. If the two metric spaces coincide, we refer to f as a self-similarity
of (S, d).
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The number r is called the ratio of the similarity f and is denoted by ratio( f ).
An isometry is a similarity of ratio 1. If an isometry exists between the metric

spaces (S, d) and (T, d ∅), then we say that these spaces are isometric.
If there exists r > 0 such that d ∅( f (x), f (y)) � rd(x, y) for all x, y ∈ S, then

we say that f is a Lipschitz function. Furthermore, if this inequality is satisfied for
a number r < 1, then f is a contraction.

Example 8.66 Let (R, d) be the metric space defined by d(x, y) = |x − y|. Any
linear mapping (that is, any mapping of the form f (x) = ax + b for x ∈ R) is a
similarity having ratio a.

Theorem 8.67 Let (S,Od) and (T,Od ∅) be two metric spaces. Every Lipschitz func-
tion f : S −⊆ T is uniformly continuous.

Proof Suppose that d ∅( f (x), f (y)) � rd(x, y) for x, y ∈ S and let ρ be a positive
number. Define θ = ρ

r . If z ∈ f (C(x, θ)), there exists y ∈ C(x, θ) such that
z = f (y). This implies d ∅( f (x), z) = d( f (x), f (y)) < rd(x, y) < rθ = ρ, so
z ∈ C( f (x), ρ). Thus, f (C(x, θ)) ⊆ C( f (x), ρ), which means that f is uniformly
continuous.

Theorem 8.67 implies that every similarity is uniformly continuous.
Let f : S −⊆ S be a function. We define inductively the functions f (n) : S −⊆ S

for n ∈ N by
f (0)(x) = x

and
f (n+1)(x) = f ( f (n)(x))

for x ∈ S. The function f (n) is the nth iteration of the function f .

Example 8.68 Let f : R −⊆ R be the function defined by f (x) = ax + b for
x ∈ R, where a, b ∈ R and a ∩= 1. It is easy to verify that f (n)(x) = an x + an−1

a−1 · b
for x ∈ R.

Definition 8.69 Let f : S −⊆ S be a function. A fixed point of f is a member x of
the set S that satisfies the equality f (x) = x.

Example 8.70 The function f defined in Example 8.68 has the fixed point x0 = b
1−a .

Theorem 8.71 (Banach Fixed Point Theorem) Let (S,Od) be a complete topolog-
ical metric space and let f : S −⊆ S be a contraction on S. There exists a unique
fixed point u ∈ S for f , and for any x ∈ S we have limn⊆⊕ f (n)(x) = u.

Proof Since f is a contraction, there exists a positive number r , r < 1, such that
d( f (x), f (y)) � rd(x, y) for x, y ∈ S. Note that each such function has at most
one fixed point. Indeed, suppose that we have both u = f (u) and v = f (v) and
u ∩= v, so d(u, v) > 0. Then, d( f (u), f (v)) = d(u, v) � rd(u, v), which is absurd
because r < 1.
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The sequence s = (x, f (x), . . . , f (n)(x), . . .) is a Cauchy sequence. Indeed,
observe that

d( f (n)(x), f (n+1)(x)) � rd( f (n−1)(x), f (n)(x)) � · · · � rnd(x, f (x)).

For n � p, this implies

d( f (n)(x), f (p)(x)) � d( f (n)(x), f (n+1)(x)) + d( f (n+1)(x), f (n+2)(x)) +
· · · + d( f (p−1)(x), f (p)(x))

� rnd(x, f (x) + · · · + r p−1d(x, f (x))

� rn

1 − r
d(x, f (x)),

which shows that the sequence s is indeed a Cauchy sequence. By the completeness
of (S,Od), there exists u ∈ S such that u = limn⊆⊕ f (n)(x). The continuity of f
implies

u = lim
n⊆⊕ f (n+1)(x) = lim

n⊆⊕ f ( f (n)(x)) = f (u),

so u is a fixed point of f . Since d( f (n)(x), f (p)(x)) � rn

1−r d(x, f (x)), we have

lim
p⊆⊕ d( f (n)(x), f (p)(x)) = d( f (n)(x),u) � rn

1 − r
d(x, f (x))

for n ∈ N.

8.7.1 The Hausdorff Metric Hyperspace of Compact Subsets

Lemma 8.72 Let (S, d) be a metric space and let U and V be two subsets of S. If
r ∈ R�0 is such that U ⊆ C(V, r) and V ⊆ C(U, r), then we have |d(x, U ) −
d(x, V )| � r for every x ∈ S.

Proof Since U ⊆ C(V, r), for every u ∈ U there is v ∈ V such that d(u, v) < r .
Therefore, by the triangular inequality, it follows that for every u ∈ U there is
v ∈ V such that d(x,u) < d(x, v) + r , so d(x, U ) < d(x, v) + r . Consequently,
d(x, U ) � d(x, V )+ r . In a similar manner, we can show that V ⊆ C(U, r) implies
d(x, V ) � d(x, U ) + r . Thus, |d(x, U ) − d(x, V )| � r for every x ∈ S.

Let (S,Od) be a topological metric space. Denote byK(S,Od ) the collection of all
nonempty, compact subsets of (S,Od), and define the mapping θ : K(S,Od)2 −⊆
R�0 by

θ(U, V ) = inf{r ∈ R�0 | U ⊆ C(V, r) and V ⊆ C(U, r)}

for U, V ∈ K(S,Od).
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Lemma 8.73 Let U and V be two compact subsets of a topological metric space
(S,Od). We have

sup
x∈S

|d(x, U ) − d(x, V )| = max

{
sup
x∈V

d(x, U ), sup
x∈U

d(x, V )

}
.

Proof Let x ∈ S. There is v0 ∈ V such that d(x, v0) = d(x, V ) because V is a
compact set. Then, the compactness of U implies that there is u0 ∈ U such that
d(u0, v0) = d(v0, U ). We have

d(x, U ) − d(x, V ) = d(x, U ) − d(x, v0)

� d(x,u0) − d(x, v0)

� d(u0, v0) � sup
x∈V

d(U, x).

Similarly, d(x, U ) − d(x, V ) � supx∈U d(x, V ), which implies

sup
x∈S

|d(x, U ) − d(x, V )| � max

{
sup
x∈V

d(x, U ), sup
x∈U

d(x, V )

}
.

On the other hand, since U ⊆ S, we have

sup
x∈S

|d(x, U ) − d(x, V )| � sup
x∈U

|d(x, U ) − d(x, V )| = sup
x∈U

d(x, V )

and, similarly, supx∈S |d(x, U )−d(x, V )| � supx∈V d(x, U ), and these inequalities
prove that

sup
x∈S

|d(x, U ) − d(x, V )| � max

{
sup
x∈V

d(x, U ), sup
x∈U

d(x, V )

}
,

which concludes the argument.

An equivalent useful definition of θ is given in the next theorem.

Theorem 8.74 Let (S, d) be a metric space and let U and V be two compact subsets
of S. We have the equality

θ(U, V ) = sup
x∈S

|d(x, U ) − d(x, V )|.

Proof Observe that we have bothU ⊆ C(V, supx∈U d(x, V )) and V ⊆ C(U, supx∈V
d(x, U )). Therefore, we have

θ(U, V ) � max{sup
x∈V

d(x, U ), sup
x∈U

d(x, V )}.
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Combining this observation with Lemma 8.73 yields the desired equality.

Theorem 8.75 Let (S,Od) be a complete topological metric space. The mapping
θ : K(S,Od)2 −⊆ R�0 is a metric on K(S,Od).

Proof It is clear that θ(U, U ) � 0 and that θ(U, V ) = θ(V, U ) for every U, V ∈
K(S,Od). Suppose that θ(U, V ) = 0; that is, d(x, U ) = d(x, V ) for every x ∈ S.
If x ∈ U , then d(x, U ) = 0, so d(x, V ) = 0. Since V is closed, by Part (ii) of
Theorem 8.18, we have x ∈ V , so U ⊆ V . The reverse inclusion can be shown in a
similar manner.

To prove the triangular inequality, let U, V, W ∈ K(S,Od). Since

|d(x, U ) − d(x, V )| � |d(x, U ) − d(x, V )| + |d(x, V ) − d(x, W )|,

for every x ∈ S, we have

sup
x∈S

|d(x, U ) − d(x, V )| � sup
x∈S

(|d(x, U ) − d(x, V )| + |d(x, V ) − d(x, W )|)
� sup

x∈S
|d(x, U ) − d(x, V )| + sup

x∈S
|d(x, V ) − d(x, W )|,

which implies the triangular inequality

θ(U, V ) � θ(U, W ) + θ(W, V ).

The metric θ is known as the Hausdorff metric, and the metric space (K(S,Od), θ)
is known as the Hausdorff metric hyperspace of (S,Od).

Theorem 8.76 If (S,Od) is a complete topological metric space, then so is the
Hausdorff metric hyperspace (K(S,Od), θ).

Proof Let U = (U0, U1, . . .) be a Cauchy sequence in (K(S,Od), θ) and let U =
K(
⋃

n∈N Un). It is clear that U consists of those elements x of S such that x =
limn⊆⊕ xn for some sequence x = (x0, x1, . . .), where xn ∈ Un for n ∈ N.

The set U is precompact. Indeed, let ρ > 0 and let n0 be such that θ(Un, Un0) � ρ
for n � n0. Let N be an ρ-net for the compact set H = ⋃

n�n0
Un . Clearly, H ⊆

C(N , ρ). Since θ(Un, Un0) � ρ, it follows that U ⊆ C(H, ρ), so U ⊆ C(N , 2ρ).
This shows that U is precompact. Since U is closed in the complete space (S,Od),
it follows that U is compact.

Let ρ be a positive number. Since U is a Cauchy sequence, there exists n ρ
2

such
that m, n � n ρ

2
implies θ(Um, Un) < ρ

2 ; that is, sups∈S |d(s, Um) − d(s, Un)| < ρ
2 .

In particular, if xm ∈ Um , then d(xm, Un) = inf y∈Um d(x, y) < ρ
2 , so there exists

y ∈ Un such that d(xm, y) < ρ
2 .

For x ∈ U , there exists a sequence x = (x0, x1, . . .) such that xn ∈ Un for n ∈ N

and limn⊆⊕ xn = x . Therefore, there exists a number n∅
ρ
2

such that p � n∅
ρ
2

implies

d(x, x p) < ρ
2 . This implies d(x, y) � d(x, x p)+d(x p, y) � ρ if n � max{n ρ

2
, n∅

ρ
2
},

and therefore U ⊆ C(Un, ρ).
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Let y ∈ Un . Since U is a Cauchy sequence, there exists a subsequence U∅ =
(Uk0 , Uk1 , . . .) of U such that k0 = q and θ(Uk j , Un) < 2 j ρ for all n � k j .

Define the sequence z = (z0, z1, . . .) by choosing zk arbitrarily for k < q,
zq = y, and zk ∈ Uk for k j < k < k j+1 such that d(zk, zk j ) < 2− j ρ. The
sequence z is a Cauchy sequence in S, so there exists z = limk⊆⊕ zk and z ∈ U .
Since d(y, z) = limk⊆⊕ d(y, zk) < ρ, it follows that y ∈ C(U, ρ). Therefore,
θ(U, Un) < ρ, which proves that limn⊆⊕ Un = U . We conclude that (K(S,Od), θ)
is complete.

8.8 Measures in Metric Spaces

In this section, we discuss the interaction between metrics and measures defined on
metric spaces.

Definition 8.77 Let (S, d) be a metric space. A Carathéodory outer measure on
(S, d) is an outer measure on S, μ : P(S) −⊆ R̂�0 such that, for every two
sets U and V of the topological space (S,Od) such that d(U, V ) > 0, we have
μ(U ∨ V ) = μ(U ) + μ(V ).

Example 8.78 The Lebesgue outer measure introduced in Example 4.131 is a
Carathéodory outer measure.

Indeed, let U and V be two disjoint subsets of Rn such that r = d(U, V ) > 0 and
let D be the family of n-dimensional intervals that covers U ∨ V . Without loss of
generality we may assume that the diameter of each of these intervals is less than r .

If D = ⋃
D, we have D = DU ∨ DV ∨ D∅, where DU is the union of those

intervals that coverU , DV is the similar set for V , and D∅ is the union of those intervals
that are disjoint from U or V , that is, D∅ ∞(U ∨V ) = ∪. Since vol(DU )+vol(DV ) �
vol(D), we have μ(U ) + μ(V ) � μ(U ∨ V ), so μ is a Carathéodory outer measure.

Theorem 8.79 Let (S, d) be a metric space. The outer measure μ on S is a
Carathéodory outer measure if and only if every closed set of (S,Od) is μ-
measurable.

Proof Suppose that every closed set is μ-measurable, and let U and V be two subsets
of S such that d(U, V ) > 0. Consider the closed set K(C(U, r)), where r = d(u,v)

2 .
Since this is a μ-measurable set, we have

μ(U ∨ V ) = μ((U ∨ V ) ∞ C(U, r)) + μ((U ∨ V ) ∞ K(C(U, r))) = μ(U ) + μ(V ),

so μ is a Carathéodory outer measure.
Conversely, suppose that μ is a Carathéodory outer measure; that is, d(U, V ) > 0

implies μ(U ∨ V ) = μ(U ) + μ(V ).
Let U be an open set, L be a subset of U , and L1, L2, . . . be a sequence of sets

defined by
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Ln =
{

t ∈ L | d(t, K(U )) � 1

n

}

for n � 1. Note that L1, L2, . . . is an increasing sequence of sets, so the sequence
μ(L1),μ(L2), . . . is increasing. Therefore, limn⊆⊕ μ(Li ) exists and limn⊆⊕ μ(Li )

� μ(L). We claim that limn⊆⊕ μ(Li ) = μ(L).
Since every set Ln is a subset of L , it follows that

⋃
n�1 Ln ⊆ L . Let t ∈ L ⊆ U .

Since U is an open set, there exists ρ > 0 such that C(t, ρ) ⊆ U , so d(t, K(U )) � 1
n

if n > 1
ρ . Thus, for sufficiently large values of n, we have t ∈ Ln , so L ⊆⋃n�1 Ln .

This shows that L =⋃n�1 Ln .
Consider the sequence of sets Mn = Ln+1 − Ln for n � 1. Clearly, we can write

L = L2n ∨
⊕⋃

k=2n

Mk = L2n ∨
⊕⋃

p=n

M2p ∨
⊕⋃

p=n

M2p+1,

so

μ(L) � μ(L2n) +
⊕⎭

p=n

μ(M2p) +
⊕⎭

p=n

μ(M2p+1).

If both series
⎪⊕

p=1 μ(M2p) and
⎪⊕

p=1 μ(M2p+1) are convergent, then

lim
n⊆⊕

⊕⎭
p=n

μ(M2p) = 0 and lim
n⊆⊕

⊕⎭
p=n

μ(M2p+1) = 0,

and so μ(L) � limn⊆⊕ μ(L2n).
If the series

⎪⊕
p=n μ(M2p) is divergent, let t ∈ M2p ⊆ L2p+1. If z ∈ K(U ), then

d(t, z) � 1
2p+1 by the definition of L2p+1. Let y ∈ M2p+2 ⊆ L2p+3. We have

1

2p + 2
> d(y, z) >

1

2p + 3
,

so

d(t, y) � t (t, z) − d(y, z) � 1

2p + 1
− 1

2p + 2
,

which means that d(M2p, M2p+2) > 0 for p � 1. Since μ is a Carathéodory outer
measure, we have

n⎭
p=1

μ(M2p) = μ


 n⋃

p=1

M2p


⎛ � μ(L2n).
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This implies limn⊆⊕ μ(Ln) = limn⊆⊕ μ(L2n) = ⊕, so we have in all cases
limn⊆⊕ μ(An) = μ(L).

Let F be a closed set in (S,Od) and let V be an arbitrary set. The set V ∨K(F) is
contained in the set K(F) = F , so, by the previous argument, there exists a sequence
of sets Ln such that d(Ln, F) � 1

n for each n and limn⊆⊕ μ(Ln) = μ(V ∞ K(F)).
Consequently, μ(V ) � μ((V ∞ F) ∨ Ln) = μ(V ∨ F) + μ(Ln). Taking the limit,
we obtain μ(V ) � μ(V ∞ F)+μ(V ∞ K(F)), which proves that F is μ-measurable.

Corollary 8.80 Let (S, d)be a metric space. Every Borel subset of S isμ-measurable,
where μ is a Carathéodory outer measure on S.

Proof Since every closed set is μ-measurable relative to a Carathéodory outer mea-
sure, it follows that every Borel set is μ-measurable with respect to such a measure.

Thus, we can conclude that every Borel subset of S is Lebesgue measurable.
Let (S, d) be a metric space and let C be a countable collection of subsets of S.

Define
Cr = {C ∈ C | diam(C) < r},

and assume that for every x ∈ S and r > 0 there exists C ∈ Cr such that x ∈ C . Thus,
the collection Cr is a sequential cover for S, and for every function f : C ⊆ R̂�0
we can construct an outer measure μ f,r using Method I (the method described in
Theorem 4.128). This construction yields an outer measure that is not necessarily a
Carathéodory outer measure.

By Corollary 4.130, when r decreases, μ f,r increases. This allows us to define

μ̂ f = lim
r⊆0

μ f,r .

We shall prove that the measure μ̂ f is a Carathéodory outer measure.
Since each measure μ f,r is an outer measure, it follows immediately that μ̂ f is

an outer measure.

Theorem 8.81 Let (S, d) be a metric space, C be a countable collection of subsets
of S, and f : C ⊆ R̂�0. The measure μ̂ f is a Carathéodory outer measure.

Proof Let U and V be two subsets of S such that d(U, V ) > 0. We need to show
only that μ̂ f (U ∨ V ) � μ̂ f (U ) + μ̂ f (V ).

Choose r such that 0 < r < d(U, V ), and let D be an open cover of U ∨ V
that consists of sets of Cr . Each set of D can intersect at most one of the set U
and V . This observation allows us to write D as a disjoint union of two collections,
D = DU ∨ DV , where DU is an open cover for U and DV is an open cover for V .
Then,⎭

{ f (D) | D ∈ D} =
⎭

{ f (D) | D ∈ DU } +
⎭

{ f (D) | D ∈ DV }
� μ f,r (U ) + μ f,r (V ).
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This implies μ f,r (U ∨V ) � μ f,r (U )+μ f,r (V ), which yields μ̂ f (U ∨V ) � μ̂ f (U )+
μ̂ f (V ) by taking the limit for r ⊆ 0.

The construction of the Carathéodory outer measure μ̂ f described earlier is knows
as Munroe’s Method II or simply Method II (see [1, 2]).

8.9 Embeddings of Metric Spaces

Searching in multimedia databases and visualization of the objects of such databases
is facilitated by representing objects in a k-dimensional space, as observed in [3]. In
general, the starting point is the matrix of distances between objects, and the aim of
the representation is to preserve as much as possible the distances between objects.

Definition 8.82 Let (S, d) and (S∅, d ∅) be two metric spaces. An embedding of
(S, d) in (S∅, d ∅) is a function f : S −⊆ S∅. The embedding f is an isometry if
d ∅( f (x), f (y)) = cd(x, y) for some positive constant number c. If f is an isometry,
we refer to it as an isometric embedding.

If an isometric embedding f : S −⊆ S∅ exists, then we say that (S, d) is isomet-
rically embedded in (S, d).

Note that an isometry is an injective function for if f (x) = f (y), then d ∅( f (x),

f (y)) = 0, which implies d(x, y) = 0. This, in turn, implies x = y.

Example 8.83 Let S be a set that consists of four objects, S = {o1, o2, o3, o4}, that
are equidistant in the metric space (S, d); in other words, we assume that d(oi , o j ) =
k for every pair of distinct objects (oi , o j ).

The subset U = {o1, o2} of S can be isometrically embedded in R
1; the isometry

h : U −⊆ R
1 is defined by h(o1) = (0) and h(o2) = (k).

For the subset {o1, o2, o3} define the embedding f : {o1, o2, o3} −⊆ R
2 by

f (o1) = (0, 0), f (o2) = (k, 0), f (o3) = (c1, c2),

subject to the conditions

c2
1 + c2

2 = k2, (c1 − k)2 + c2
2 = k2.

These equalities yield c1 = k
2 and c2

2 = 3k2

4 . Choosing the positive solution of the

last equality yields f (o3) = ( k
2 , k

⊃
3

2 ).
To obtain an isometric embedding g of S inR3, we seek the mapping g : S −⊆ R

3

as

g(o1) = (0, 0, 0), g(o2) = (k, 0, 0), g(o3) =
(

k

2
,

k
⊃

3

2
, 0

)
, g(o4) = (e1, e2, e3),
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where

e2
1 + e2

2 + e2
3 = k2,

(e1 − k)2 + e2
2 + e2

3 = k2,(
e1 − k

2

⎟2

+
(

e2 − k
⊃

3

2

)2

+ e2
3 = k2.

The first two equalities imply e1 = k
2 ; this, in turn, yields

e2
2 + e2

3 = 3k2

4
,(

e2 − k
⊃

3

2

)2

+ e2
3 = k2.

Subtracting these equalities, one gets e2 = k
⊃

3
6 . Finally, we have e2

3 = 2k2

3 . Choosing
the positive solution, we obtain the embedding

g(o1) = (0, 0, 0), g(o2) = (k, 0, 0), g(o3) =
(

k

2
,

k
⊃

3

2
, 0

)
, g(o4) =

(
k

2
,

k
⊃

3

6
,

k
⊃

6

3

)
.

Example 8.84 Let (S, d) be a finite metric space such that |S| = n. We show that
there exists an isometric embedding of (S, d) into (Rn−1, d⊕), where d⊕ was defined
by Equality (6.3).

Indeed, suppose that S = {x1, . . . , xn}, and define f : S −⊆ R
n−1 as

f (xi ) = (d(x1, xi ), . . . , d(xn−1, xi ))

for 1 � i � n. We prove that d(xi , x j ) = d⊕( f (xi ), f (x j )) for 1 � i, j � n, which
will imply that f is an isometry with c = 1.

By the definition of d⊕, we have

d⊕( f (xi ), f (x j )) = max
1�k�n−1

|d(xk, xi ) − d(xk, x j )|.

Note that for every k we have |d(xk, xi ) − d(xk, x j )| � d(xi , x j ) (see Exer-
cise 62). Moreover, for k = i , we have |d(xi , xi ) − d(xi , x j )| = d(xi , x j ), so
max1�k�n−1 |d(xk, xi ) − d(xk, x j )| = d(xi , x j ). The isometry whose existence
was established in this example is known as the Fréchet isometry and was obtained
in [4].

Example 8.85 We now prove the existence of an isometry between the metric spaces
(R2, d⊕) and (R2, d1).

Consider the function f : R2 −⊆ R
2 defined by

http://dx.doi.org/10.1007/978-1-4471-6407-4_6
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f (u, v) =
(

u − v

2
,
u + v

2

⎟

for (u, v) ∈ R
2.

Since max{a, b} = 1
2 (|a − b| + |a + b|) for every a, b ∈ R, it is easy to see that

max{|u − u∅|, |v − v∅|} = 1

2

∣∣∣u − u∅ − (v − v∅)
∣∣∣+ ∣∣∣u − u∅ + (v − v∅)

∣∣∣,
which is equivalent to

d⊕((u, v), (u∅, v∅)) = d1

((
u − v

2
,
u + v

2

⎟
,

(
u∅ − v∅

2
,
u∅ + v∅

2

⎟⎟
.

The last equality shows that f is an isometry between (R2, d⊕) and (R2, d1).

Exercises and Supplements

1. Prove that any subset U of a topological metric space (S,Od) that has a finite
diameter is included in a closed sphere B(x, diam(U )) for some x ∈ U .

2. Let du be the metric defined in Exercise 69 of Chap. 1, where S = R
2 and d is

the usual Euclidean metric on R
2.

(a) Prove that if x ∩= u, the set {x} is open.
(b) Prove that the topological metric space (R2,Odu) is not separable.

3. Let (S,Od) be a topological metric space. Prove that, for every s ∈ S and every
positive number r , we have K(C(x, r)) ⊆ B(x, r).

4. Let (S,Od) be a topological metric space and let U and V be two subsets of S
such that θ(U, V ) � r . Prove that if D = {Di | i ∈ I } is a cover for V , then
the collection D∅ = {C(Di , r) | i ∈ I } is a cover for U .

5. Prove that if Nr is an r -net for a subset T of a topological metric space (S,Od),
then T ⊆ C(Nr , r).

Solution: Suppose Nr = {yi | 1 � i � n}, so T ⊆ ⋃n
i=1 C(yi , r). Thus,

for each t ∈ T there is y j ∈ Nr such that d(y j , t) < r . This implies that
d(t, Nr ) = inf{d(t, y) | y ∈ Nr } < r , so t ∈ C(Nr , r).

6. Prove that if Nr is an r -net for each of the sets of a collection of subsets of a
metric space (S, d), then Nr is an r -net for

⋃
C.

7. Let U and V be two subsets of a metric space (S, d) such that θ(U, V ) � c.
Prove that every r -net for V is an (r + c)-net for U .

8. Let (S,Od) be a topological metric space and let f : S −⊆ R be the function
defined by f (x) = d(x0, x) for x ∈ S. Prove that f is a continuous function
between the topological spaces (S,Od) and (R,O).

9. Define the function f : R −⊆ (0, 1) by
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f (x) = 1

1 + e−x

for x ∈ R. Prove that f is a homeomorphism between the topological spaces
(R,Od) and ((0, 1),Od �(0,1)). Conclude that completeness is not a topological
property.

10. Let X and Y be two separated sets in the topological metric space (S,Od) (recall
that the notion of separated sets was introduced in Exercise 12 of Chap. 1).
Prove that there are two disjoint open sets L1, L2 in (S,Od) such that X ⊆ L1,
Y ⊆ L2.

Solution: By Theorem 8.18, the functions dX and dY are continuous, K(X) =
d−1

X (0), and K(Y ) = d−1
Y (0). Since X and Y are separated, we have X∞d−1

Y (0) =
Y ∞ d−1

X (0) = ∪. The disjoint sets L1 = {s ∈ S | dX (s) − dY (s) < 0} and
L2 = {s ∈ S | dX (s) − dY (s) > 0} are open due to the continuity of dX and
dY , and X ⊆ L1 and Y ⊆ L2.

11. This is a variant of the T4 separation property of topological metric spaces
formulated for arbitrary sets instead of closed sets. Let (S,Od) be a topological
metric space and let U1 and U2 be two subsets of S such that U1 ∞ K(U2) = ∪
and U2 ∞ K(U1) = ∪. There exists two open, disjoint subsets V1 and V2 of S
such that Ui ⊆ Vi for i = 1, 2.

Solution: Define the disjoint open sets

V1 = {x ∈ S | d(x, U1) < d(x, U2)},
V2 = {x ∈ S | d(x, U2) < d(x, U1)}.

We have U1 ⊆ V1 because, for x ∈ U1, d(x, U1) = 0 and d(x, U2) > 0 since
x ∩∈ K(U2). Similarly, U2 ⊆ V2.

12. Prove that, for every sequence x of real numbers, we have lim inf x = − lim sup(−x).
13. Find lim inf x and lim sup x for x = (x0, . . . , xn, . . .), where

(a) xn = (−1)n · n,
(b) xn = (−1)n

n .

14. Let (S,Od) be a topological metric space. Prove that x = (x0, x1, . . .) is a
Cauchy sequence if and only if for every ρ > 0 there exists n ∈ N such that
d(xn, xn+m) < ρ for every m ∈ N.

15. Let (S,Od) be a topological metric space. Prove that if every bounded subset of
S is compact, then (S,Od) is complete.

16. Prove that if (S1, d1), . . . , (Sn, dn) are complete metric spaces, then their product
is a complete metric space.

17. Prove that a topological metric space (S,Od) is complete if and only if for every
nonincreasing sequence of nonempty closed sets S = (S0, S1, . . .) such that
limn⊆⊕ diam(Sn) = 0, we have

⎧
i∈N Si ∩= ∪.

18. Let (S, d) and (T, d ∅) be two metric spaces. Prove that every similarity f :
S −⊆ T is a homeomorphism between the metric topological spaces (S,Od)

and (T,Od ∅).
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19. Let (S,Od) be a complete topological metric space and let f : B(x0, r) −⊆ S
be a contraction such that d( f (x), f (y)) � kd(x, y) for x, y ∈ B(x0, r) and
k ∈ (0, 1).

(a) Prove that if d( f (x0), x0) is sufficiently small, then the sequence x =
(x0, x1, . . .), where xi+1 = f (xi ) for i ∈ N, consists of points located
in B(x0, r).

(b) Prove that y = limn⊆⊕ xn exists and f (y) = y.

20. Let f : Rn −⊆ R
n be a self-similarity of the topological metric (Rn, d2) having

similarity ratio r . Prove that if H is a Lebesgue-measurable set, then f (H) is
also Lebesgue-measurable and μ( f (H)) = rnμ(H), where μ is the Lebesgue
outer measure.

Solution: Suppose initially that r > 0. Since f is a homeomorphism, the image
on an
n-dimensional interval I = ∏n

i=1(ai , bi ) is the n-dimensional interval f (I ) =∏n
i=1( f (ai ), f (bi )). The definition of f implies vol( f (I )) = rnvol(I ).
Since

μ( f (H)) = inf
⎫⎭

vol( f (I )) | I ∈ C, H ⊆
⋃

I
⎬

,

it follows that μ( f (H)) � rnμ(H). Note that the inverse of f is a self similarity
with ratio 1

r , which implies μ( f (H)) � rnμ(H). Thus, μ( f (H)) = rnμ(H).
21. If U is a subset of R

n and μ is the Lebesgue outer measure, then μ(U ) =
inf{μ(L) | U ⊆ L , L is open }.

Solution: The monotonicity of μ implies μ(U ) � inf{μ(L) | U ⊆
L , L is open }. If μ(U ) = ⊕, the reverse inequality is obvious. Suppose there-
fore that μ(U ) < ⊕. By Equality (4.11) of Chap. 4, we have

μ(U ) = inf

⎢
⎣
⎭

vol(I j ) | j ∈ J, U ⊆
⋃
j∈J

I j

⎥⎦
 ,

so there exists a collection of n-dimensional open intervals {I j | j ∈ N} such
that

⎪
j∈N μ(I j ) < μ(U ) + ρ. Thus, μ(U ) = inf{μ(L) | U ⊆ L , L is open}.

22. A subset U of R
n is Lebesgue measurable if and only if for every ρ > 0 there

exist an open set L and a closed set H such that H ⊆ U ⊆ L and μ(L − H) < ρ.
23. Let D be a gauge on a set S and let OD be the collection of subsets T of S

such that for each t ∈ T , there is some finite subset D0 of D and some positive
number r such that

⎧{Cd(x, r) | d ∈ D0} ⊆ T . Prove that OD is a topology
on S.

24. Let D = {d1, d2} be a gauge on a set S. In Supplement 71 of Chap. 1 we saw
that d = max{d1, d2} and e = d1 + d2 are semimetrics on S. Prove that the
topologies determined by either d or e coincide with OD.
A uniformity on a set S is a collection U of binary relations on X such that
σX ∈ U, φ ∈ U and φ ⊆ λ implies λ ∈ U, φ1, φ2 ∈ U implies φ1 ∞ φ2 ∈ U, if
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φ ∈ U, there is δ such that δ2 ⊆ φ, and φ ∈ U implies φ−1 ∈ U. A uniform space
is a pair (S,U), where U is a uniformity on S. The members of U are entourages
of (S,U).

25. Let (S, d) be a metric space and let πr = {(x, y) ∈ S × S | d(x, y) < r}, where
r > 0. Prove that the collection

Ud = {λ ∈ P(S × S) | πr ⊆ λ}

is a uniformity on S.
26. Let S be a set and let s0 ∈ S. Define the function d : S × S −⊆ {0, 1} as

d(x, y) =
⎩

0 if {x, y} = {s0} or s0 ∩∈ {x, y}
1 if exactly one of x, y equals s0.

Prove that the uniformity Ud is

Ud = {λ ∈ P(S × S) | (S − {s0}) × (S − {s0}) ⊆ λ and (s0, s0) ∈ λ}.

27. Let (S,U) be a uniform space, φ be an entourage of U and x be an element
in S. Define the x-section of φ as the set φ[x] = {y ∈ S | (x, y) ∈ φ}. Let
O = {L ∈ P(S) | for every x ∈ L , φ[x] ⊆ L for some φ ∈ U }. Prove that O is
a topology on S.

Bibliographical Comments

A number of topology texts emphasize the study of topological metric spaces. We
mention [5] and [6]. The proof of Theorem 8.30 originates in [7]. Supplement 2 is a
result of K. Falconer [8].
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Chapter 9
Convex Sets and Convex Functions

9.1 Introduction

Convex sets and functions have been studied since the nineteenth century; the twen-
tieth century literature on convexity began with Bonnesen and Fenchel’s book [1],
subsequently reprinted as [2].

Convexity has extensive application in optimization and, therefore, it is important
for machine learning and data mining.

9.2 Convex Sets

Let x, y ∈ R
n . The closed segment determined by x and y is the set

[x, y] = {(1 − a)x + ay | 0 � a � 1}.

The half-closed segment determined by x and y is the set

[x, y) = {(1 − a)x + ay | 0 � a < 1}.

Definition 9.1 A subset C of Rn is convex if, for all x, y ∈ C we have [x, y] ⊆ C.

Example 9.2 The convex subsets of R are the intervals of R.

A related concept is given next.

Definition 9.3 A subset D of Rn is affine if, for all x, y ∈ C and all a ∈ R, we have
(1 − a)x + a y ∈ D.

In other words, D is an affine set if every point on the line determined by x and y
belongs to C.

Note that D is a subspace of Rn if 0 ∈ D and D is an affine set.

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 435
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_9,
© Springer-Verlag London 2014
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Theorem 9.4 Let D be a non-empty affine set in R
n. There exists translation tu and

a unique subspace L of Rn such that D = tu(L).

Proof Let L = {x − y | x, y ∈ D} and let x0 ∈ D. We have 0 = x0 − x0 ∈ L and
it is immediate that L is an affine set. Therefore, L is a subspace.

Suppose that D = tu(L) = tv(K ), where both L and K are subspaces of Rn .
Since 0 ∈ K , it follows that there exists w ∈ L such that u + w = v. Similarly, since
0 ∈ L , it follows that there exists t ∈ K such that u = v + t. Consequently, since
w + t = 0, both w and t belong to both subspaces L and K .

If s ∈ L , it follows that u+s = v+z for some z ∈ K . Therefore, s = (v−u)+z ∈
K because w = v−u ∈ K . This implies L ⊆ K . The reverse inclusion can be shown
similarly.

Affine sets arise in conjunction with solving linear systems, as we show next.

Theorem 9.5 Let A ∈ R
m×n and let b ∈ R

m. The set S = {x ∈ R
n | Ax = b} is

an affine subset of Rn. Conversely, every affine subset of Rn is the set of solutions of
a system of the form Ax = b.

Proof It is immediate that the set of solutions of a linear system is affine. Conversely,
let S be an affine subset of Rn and let L be the linear subspace such that S = u + L .
Let {a1, . . . , am} be a basis of L∪. We have

L = {x ∈ R
n | a∞

i x = 0 for 1 � i � m} = {x ∈ R
n | Ax = 0},

where A is a matrix whose rows are a∞
1, . . . , a∞

m . By defining b = Au we have

S = {u + x | Ax = 0} = {y ∈ R
n | Ay = b}.

Definition 9.6 Let U be a subset of Rn. A convex combination of U is a vector of
the form a1x1 + · · · + akxk , where x1, . . . , xk ∈ U, ai � 0 for 1 � i � k, and
a1 + · · · + ak = 1.

If the conditions ai � 0 are dropped, we have an affine combination of U. In
other words, x is an affine combination of U if there exist a1, . . . , ak ∈ R such that
x = a1x1 + · · · + akxk , for x1, . . . , xk ∈ U, and

∑k
i=1 ai = 1.

Definition 9.7 Let U be a subset of Rn. A subset {x1, . . . , xn} is affinely dependent
if 0 = a1x1 + · · · + anxn, at least one of the numbers a1, . . . , an is nonzero, and∑n

i=1 ai = 0. If no such affine combination exists, then x1, . . . , xn are affinely
independent.

Theorem 9.8 The set U = {x1, . . . , xn} is affinely independent if and only if the set
V = {x1 − xn, . . . , xn−1 − xn} is linearly independent.

Proof Suppose that U is affinely independent but V is linearly dependent; that is,
0 = b1(x1 − xn) + · · · + bn−1(xn−1 − xn) such that not all numbers bi are 0. This
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implies b1x1 + · · · + bn−1xn−1 −
⎜∑n−1

i=1 bi

)
xn = 0, which contradicts the affine

independence of U .
Conversely, suppose that V is linearly independent but U is not affinely inde-

pendent. In this case, 0 = a1x1 + · · · + anxn such that at least one of the num-
bers a1, . . . , an is nonzero and

∑n
i=1 ai = 0. This implies an = −∑n−1

i=1 ai ,
so 0 = a1(x1 − xn) + · · · + an−1(xn−1 − xn). Observe that at least one of the
numbers a1, . . . , an−1 must be distinct from 0 because otherwise we would have
a1 = · · · = an−1 = an = 0. This contradicts the linear independence of V , so U is
affinely independent.

Example 9.9 Let x1, x2 be vectors in R
2. The line that passes through x1 and x2

consists of all x such that x−x1 and x−x2 are collinear; that is, a(x−x1)+b(x−x2) =
0 for some a, b ∈ R such that a + b ∅= 0. Thus, we have x = a1x1 + a2x2, where
a1 = a

a+b , a2 = b
a+b and a1 + a2 = 1, so x is an affine combination of x1 and x2.

It is easy to see that the segment of line contained between x1 and x2 is given by a
convex combination of x1 and x2; that is, by an affine combination a1x1 + a2x2 such
that a1, a2 � 0.

Theorem 9.10 The intersection of any collection of convex (affine) sets in R
n is a

convex (affine) set.

Proof Let C = {Ci | i ∈ I } be a collection of convex sets and let C = ⋂
C.

Suppose that x1, . . . , xk ∈ C , ai � 0 for 1 � i � k, and a1 + · · · + ak = 1. Since
x1, . . . , xk ∈ Ci , it follows that a1x1 + · · · + akxk ∈ Ci for every i ∈ I . Thus,
a1x1 +· · ·+akxk ∈ C , which proves the convexity of C . The argument for the affine
sets is similar.

Corollary 9.11 The families of convex sets and affine sets ofRn are closure systems.

Proof This statement follows immediately from Theorem 9.10 by observing that Rn

itself is convex (affine).

Corollary 9.11 allows us to define the convex hull (or the convex closure) of a
subset U of Rn as the closure Kconv(U ) of U relative to the closure system of the
convex subsets of Rn . Similarly, the affine hull of U is the closure Kaff (U ).

Theorem 9.12 Every affine subset S of Rn is the intersection of a finite collections
of hyperplanes.

Proof By Theorem 9.5, S can be written as S = {x ∈ R
n | Ax = b}, where

A ∈ R
m×n and b ∈ R

m . Therefore, x ∈ S if and only if a∞
i x = bi , where ai is the ith

row of A. Thus, S = ⋂m
i=1 Hai ,bi .

Definition 9.13 A polytope in R
n is the convex hull of a finite set of points in R

n.

It is easy to see that every polytope is a closed and bounded subset of Rn . A polytope
P that is the convex hull of k + 1 affinely independent points is called a k-simplex
or a simplex of dimension k.
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Example 9.14 A two-dimensional simplex is defined starting from three points
x1, x2, x3 in R

2 such that none of these points is an affine combination of the other
two (no point is collinear with the others two). Thus, the two-dimensional simplex
generated by x1, x2, x3 is the full triangle determined by x1, x2, x3.

In general, an n-dimensional simplex is the convex hull of a set of n + 1 points
x1, . . . , xn+1 in R

n such that no point is an affine combination of the remaining n
points.

Let S be the n-dimensional simplex generated by the points x1, . . . , xn+1 inRn and
let x ∈ S. If x ∈ S, then x is a convex combination of x1, . . . , xn, xn+1. In other words,
there exist a1, . . . , an, an+1 such that a1, . . . , an, an+1 ∈ (0, 1),

∑n+1
i=1 ai = 1, and

x = a1x1 + · · · + anxn + an+1xn+1.
The numbers a1, . . . , an, an+1 are the baricentric coordinates of x relative to the

simplex S and are uniquely determined by x. Indeed, if we have

x = a1x1 + · · · + anxn + an+1xn+1 = b1x1 + · · · + bnxn + bn+1xn+1,

and ai ∅= bi for some i , this implies

(a1 − b1)x1 + · · · + (an − bn)xn + (an+1 − bn+1)xn+1 = 0,

which contradicts the affine independence of x1, . . . , xn+1.
In Chap. 6 we saw that a hyperplane Hw,a partitions R

n into the sets H>
w,a ,

H0
w,a = Hw,a , and H<

w,a .

Definition 9.15 Let P ⊆ R
n be a polytope. A hyperplane Hw,a supports P, or Hw,a

is a supporting hyperplane of P, if P ⊆ Hw,a ∅= ∩ and we have either P ⊆ H>
w,a or

P ⊆ H0
w,a.

If Hw,a is a supporting hyperplane of P, then P ⊆ Hw,a is a face of the polytope
P.

A face of a polytope is necessarily convex. The dimension of a face of a polytope
of dimension d ranges from 0 to d − 1. Faces of dimension 0 are called vertices
and faces of dimension 1 are called edges. The empty set is defined to be a face of
dimension −1 and the entire polytope is also a face of itself. Faces distinct from ∩
and P are proper faces.

The next statement plays a central role in the study of convexity. We reproduce
the proof given in [3].

Theorem 9.16 (Carathéodory’s Theorem) If U is a subset of Rn, then for every
x ∈ Kconv(U ) we have x = ∑n+1

i=1 ai xi , where xi ∈ U, ai � 0 for 1 � i � n + 1,
and

∑n+1
i=1 ai = 1.

Proof Consider x ∈ Kconv(U ). We can write x = ∑p+1
i=1 ai xi , where xi ∈ U , ai � 0

for 1 � i � p + 1, and
∑p+1

i=1 ai = 1. Let p be the smallest number which allows
this kind of expression for x. We prove the theorem by showing that p � n.
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Suppose that p � n + 1. Then, the set {x1, . . . , xp+1} is affinely dependent, so

there exist b1, . . . , bp+1 not all zero such that 0 = ∑p+1
i=1 bi xi and

∑p+1
i=1 bi = 0.

Without loss of generality, we can assume bp+1 > 0 and
ap+1
bp+1

� ai
bi

for all i such
that 1 � i � p and bi > 0. Define

ci = bi

⎟
ai

bi
− ap+1

bp+1

)

for 1 � i � p. We have

p∑
i=1

ci =
p∑

i=1

ai − ap+1

bp+1

p∑
i=1

bi = 1.

Furthermore, ci � 0 for 1 � i � p. Indeed, if bi � 0, then ci � ai � 0; if bi > 0,
then ci � 0 because ap+1

bp+1
� ai

bi
for all i such that 1 � i � p and bi > 0. Thus, we

have

p∑
i=1

ci xi =
p∑

i=1

⎟
ai − ap

bp
bi

)
xi =

p∑
i=1

ai xi = x,

which contradicts the choice of p.

A finite set of points P in R
2 is a convex polygon if no member p of P lies in the

convex hull of P − {p}.
Theorem 9.17 A finite set of points P in R

2 is a convex polygon if and only if no
member p of P lies in a two-dimensional simplex formed by three other members of
P.

Proof The argument is straightforward and is left to the reader as an exercise.

Theorem 9.18 (Radon’s Theorem) Let P = {xi ∈ R
n | 1 � i � n + 2} be a set

of n + 2 points in R
n. Then, there are two disjoint subsets R and Q of P such that

Kconv(R) ⊆ Kconv(Q) ∅= ∩.

Proof Since n + 2 points in R
n are affinely dependent, there exist a1, . . . , an+2 not

all equal to 0 such that
n+2∑
i=1

ai xi = 0 (9.1)

and
∑n+2

i=1 ai = 0. Without loss of generality, we can assume that the first k numbers
are positive and the last n + 2 − k are not. Let a = ∑k

i=1 ai > 0 and let b j = a j
a for

1 � j � k. Similarly, let cl = − al
a for k + 1 � l � n + 2. Equality (9.1) can now

be written as
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Fig. 9.1 A five-point config-
uration in R2

k∑
j=1

b j x j =
n+2∑

l=k+1

clxl .

Since the numbers b j and cl are nonnegative and
∑k

j=1 b j = ∑n+2
l=k+1 cl = 1, it

follows that Kconv ({x1, . . . , xk}) ⊆ Kconv ({xk+1, . . . , xn+2}) ∅= ∩.

Theorem 9.19 (Klein’s Theorem) If P ⊆ R
2 is a set of five points such that no three

of them are collinear, then P contains four points that form a convex quadrilateral.

Proof Let P = {xi | 1 � i � 5}. If these five points form a convex polygon, then
any four of them form a convex quadrilateral. If exactly one point is in the interior of a
convex quadrilateral formed by the remaining four points, then the desired conclusion
is reached.

Suppose that none of the previous cases occur. Then, two of the points, say xp, xq ,
are located inside the triangle formed by the remaining points xi , x j , xk . Note that the
line xpxq intersects two sides of the triangle xi x j xk , say xi x j and xi xk (see Fig. 9.1).
Then xpxqxkx j is a convex quadrilateral.

A beautiful application of Theorem 3.34 is known as the Erdös-Szekeres theorem.
We need the following preliminary observation.

Lemma 9.20 Let P be a set of points in R
2. If every four-point subset of P is a

convex polygon, then the set P itself is a convex polygon.

Proof This is a direct consequence of Theorem 9.17. ⊕⊥
Theorem 9.21 (The Erdös-Szekeres Theorem) For every number n ∈ N, n � 3,
there exists a number E(n) such that any set P of points in the plane such that
|P| = E(n) and no three points of P are collinear contains an n-point convex
polygon.



9.2 Convex Sets 441

Proof A four-point subset of P may or may not be a convex polygon. Thus, the
four-point subsets may be colored with two colors: c1 for convex polygons and c2
for the other four-point sets.

Choose E(n) = Ramsey((n, 5), 4), which involves coloring all sets in P4(P)

with the colors c1 and c2. Note that by Klein’s theorem, (Theorem 9.19), no five
point set can be colored in c2 (which would mean that none of its four-point sets is
convex). Therefore, there exists an n-element set K that can be colored by c1, and,
by Lemma 9.20, the set K is convex. ⊕⊥

9.3 Convex Functions

Definition 9.22 Let S be a non-empty convex subset of Rn. A function f : S −∨ R

is convex if f (tx+ (1− t)y) � t f (x)+ (1− t) f (y) for every x, y ∈ S and t ∈ [0, 1].
If f (tx + (1 − t)y) < t f (x)+ (1 − t) f (y) for every x, y ∈ S and t ∈ (0, 1) then

f is said to be strictly convex.
The function g : S −∨ R is concave if −g is convex.

Example 9.23 Any norm ν on R
n is convex. Indeed, we have

ν(tx + (1 − t)y) � ν(tx) + ν((1 − t)y) = tν(x) + (1 − t)ν(y)

for x, y ∈ R
n and t ∈ (0, 1).

Example 9.24 Let f : (0,∧) −∨ R be defined by f (x) = x2. The definition
domain of f is clearly convex and

t x2 + (1 − t)y2 − (t x + (1 − t)y)2

= t (1 − t)x2 + t (1 − t)y2 − 2t (1 − t)xy

= t (1 − t)(x − y)2 � 0,

which implies that f is indeed convex.

Let f : S −∨ R be a convex function, where S is a convex subset of Rn . As a
notational convenience, define the function f̂ : Rn −∨ R̂ as

f̂ (x) =
{

f (x) if x ∈ S,

+∧ otherwise.

Then, f is convex if and only if f̂ is convex, that is, it satisfies the inequality
f̂ (tx + (1 − t)y) � t f̂ (x)+ (1 − t) f̂ (y) for every x, y ∈ R

n . We extended the usual
definition of real-number operations on R by t∧ = ∧t = ∧ for t > 0. If there is
no risk of confusion we denote f̂ simply by f .
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Definition 9.25 Let f : S −∨ R be a function defined on a convex set S, where
S ⊆ R

n. Its epigraph is the set

epi( f ) = {(x, y) ∈ S × R | f (x) � y} ⊆ R
n+1.

The hypograph of f is the set

hyp( f ) = {(x, y) ∈ S × R | y � f (x)} ⊆ R
n+1.

The intersection

epi( f ) ⊆ hyp( f ) = {(x, y) ∈ S × R | y = f (x)} ⊆ R
n+1.

is the graph of the function f .

Theorem 9.26 Let f : S −∨ R be a function defined on the convex subset S of Rn.
Then, f is convex on S if and only if its epigraph is a convex subset of Rn+1; f is
concave if and only if its hypograph is a convex subset of Rn+1.

Proof Let f be a convex function on S. We have f (tx+ (1− t)y) � t f (x)+ (1− t)
f (y) for every x, y ∈ S and t ∈ [0, 1].

If (x1, y1), (x2, y2) ∈ epi( f ) we have f (x1) � y1 and f (x2) � y2. Therefore,

f (tx1 + (1 − t)x2) � t f (x1) + (1 − t) f (x2)

� t y1 + (1 − t)y2,

so (tx1 + (1 − t)x2, t y1 + (1 − t)y2) = t (x1, y1) + (1 − t)(x2, y2) ∈ epi( f ) for
t ∈ [0, 1]. This shows that epi( f ) is convex.

Conversely, suppose that epi( f ) is convex, that is, if (x1, y1) ∈ epi( f ) and
(x2, y2) ∈ epi( f ), then

t (x1, y1) + (1 − t)(x2, y2) = (tx1 + (1 − t)x2, t y1 + (1 − t)y2) ∈ epi( f )

for t ∈ [0, 1]. By the definition of the epigraph, this is equivalent to f (x1) � y1,
f (x2) � y2 implies f (tx1 + (1 − t)x2) � t y1 + (1 − t)y2. Choosing y1 = f (x1)

and y2 = f (x2) yields f (tx1 + (1 − t)x2) � t f (x1) + (1 − t) f (x2), which means
that f is convex.

The second part of the theorem follows by applying the first part to the function
− f .

Definition 9.27 A convex function is closed if epi( f ) is a closed set.

Theorem 9.28 Let C be a convex subset of Rn, b be a number in R, and let F =
{ fi | fi : C −∨ R, i ∈ I } be a family of convex functions such that fi (x) � b for
every i ∈ I and x ∈ C. Then, the function f : C −∨ R defined by
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f (x) = sup{ fi (x) | i ∈ I }

for x ∈ C is a convex function.

Proof Since the family of function F is upper bounded, the definition of f is correct.
Let x, y ∈ C . We have tx + (1 − t)y ∈ C because C is convex.

For every i ∈ I we have fi (tx + (1− t)y) � t fi (x)+ (1− t) fi (y). The definition
of f implies fi (x) � f (x) and fi (y) � f (y), so t fi (x) + (1 − t) fi (y) � t f (x) +
(1 − t) f (y) for i ∈ I and t ∈ [0, 1].

The definition of f implies f (tx + (1 − t)y) � t f (x)+ (1 − t) f (y) for x, y ∈ C
and t ∈ [0, 1], so f is convex on C .

Definition 9.29 Let f : S −∨ R be a convex function. Its conjugate is the function
f ⇒ : Rn −∨ R given by f ⇒(y) = sup{y∞x − f (x) | x ∈ R

n}.
Note that for each y ∈ R

n the function gy = y∞x − f (x) is a convex function.
Therefore, by Theorem 9.28, f ⇒ is a convex function.

9.3.1 Convexity of One-Argument Functions

The next theorem allows us to reduce convexity of functions of n arguments to
convexity of one-argument functions.

Theorem 9.30 Let f : Rn −∨ R̂ be a function. The function f is convex if and only
if the function φx,h : R −∨ R̂ given by φx,h(t) = f (x + th) is a convex function for
every x and h in R

n.

Proof Suppose that f is convex. We have

φx,h(ta + (1 − t)b) = f (x + (ta + (1 − t)b)h)

= f (t (x + ah) + (1 − t)(x + bh))

� t f (x + ah) + (1 − t) f (x + bh)

= tφx,h(a) + (1 − t)φx,h(b),

which shows that φx,h is indeed convex. The converse implication follows in a similar
manner.

Since each set of the form Lx,h = {x + th | t ∈ R} is a line in R
n if h ∅= 0 and

φx,h is the restriction of f to Lx,h, it follows that f : Rn −∨ R̂ is convex if and
only if its restriction to any line Lx,h is an one-argument convex function or is ∧.

For n = 1, f : R −∨ R is convex if its graph on an interval is located below the
chord determined by the endpoints of the interval.
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Lemma 9.31 Let f : I −∨ R be a function, where I is an open interval. The
following statements are equivalent for a < b < c, where a, b, c ∈ I :

(i) (c − a) f (b) � (b − a) f (c) + (c − b) f (a);
(ii) f (b)− f (a)

b−a � f (c)− f (a)
c−a ;

(iii) f (c)− f (a)
c−a � f (c)− f (b)

c−b .

Proof (i) is equivalent to (ii): Suppose that (i) holds. Then we have

(c − a) f (b) − (c − a) f (a) � (b − a) f (c) + (c − b) f (a) − (c − a) f (a),

which is equivalent to

(c − a)( f (b) − f (a)) � (b − a)( f (c) − f (a)). (9.2)

By dividing both sides by (b − a)(c − a) > 0 we obtain Inequality (ii).
Conversely, note that (ii) implies Inequality (9.2). By adding (c − a) f (a) to both

sides of this inequality we obtain (i).
In a similar manner it is possible to prove the equivalence between (i) and (iii).

Theorem 9.32 Let I be an open interval and let f : I −∨ R is a function. Each of
the conditions of Lemma 9.31 for a < b < c in I is equivalent to the convexity of f .

Proof Let f : I −∨ R be a convex function and let a, b, c ∈ I be such that
a < b < c. Define t = c−b

c−a . Clearly 0 < t < 1 and by the convexity property,

f (b) = f (at + (1 − t)c) � t f (a) + (1 − t) f (c)

= c − b

c − a
f (a) + b − a

c − a
f (c),

which yields the first inequality of Lemma 9.31.
Conversely, suppose that the first inequality of Lemma 9.31 is satisfied. Choose

a = x , c = y and b = t x + (1 − t)y for t ∈ (0, 1). We have (c − a) f (b) = (y − x)
f (t x +(1−t)y) and (b−a) f (c)+(c−b) f (a) = (1−t)(y−x) f (y)+t (y−x) f (x)
Taking into account that y > x , we obtain the inequality f (t x + (1 − t)y) �
t f (x) + (1 − t) f (y), which means that f is convex.

Theorem 9.33 Let I be an open interval and let f : R −∨ R is a convex function.
The function g(x, h) defined for x ∈ I and h ∈ R − {0} as

g(x, h) = f (x + h) − f (x)

h

is increasing with respect to each of its arguments.

Proof We need to examine three cases: 0 < h1 < h2, h1 < h2 < 0, and h1 < 0 <

h2.
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In the first case choose a = x , b = x +h1 and c = x +h2 in the second inequality
of Lemma 9.31, where all three numbers x, x +h1 and x +h2 belong to I . We obtain
f (x+h1)− f (x)

h1
� f (x+h2)− f (x)

h2
, which shows that g(x, h1) � g(x, h2).

If h1 < h2 < 0, choose a = x +h1, b = x +h2 and c = x in the last inequality of
Lemma 9.31. This yields: f (x)− f (x+h1)

−h1
� f (x)− f (x+h2)

−h2
, that is g(x, h1) � g(x, h2).

In the last case, h1 < 0 < h2, begin by noting that the last two inequalities of
Lemma 9.31 imply

f (b) − f (a)

b − a
� f (c) − f (b)

c − b
.

By taking a = x + h1, b = x , and c = x + h2 in this inequality we obtain

f (x) − f (x + h1)

−h1
� f (x + h2) − f (x)

h2
,

which is equivalent to g(x, h1) � g(x, h2). This g is increasing with respect to its
second argument.

To prove the monotonicity in the first argument let x1, x2 be in I such that x1 < x2
and let h be a number such that both x1 + h and x2 + h belong to I . Since g is
monotonic in its second argument we have

g(x1, h) = f (x1 + h) − f (x1)

h
� f (x2 + h) − f (x1)

h + (x2 − x1)

and

f (x2 + h) − f (x1)

h + (x2 − x1)
= f (x1) − f (x2 + h)

−h − (x2 − x1)

= f ((x2 + h) − h − (x2 − x1)) − f (x2 + h)

−h − (x2 − x1)

� f ((x2 + h) − h) − f (x2 + h)

−h
= f (x2 + h) − f (x2)

h
,

which proves the monotonicity in its first argument.

Theorem 9.34 Let f : (a, b) −∨ R be a function such that its second derivative
f ∞∞ exists on (a, b). Then, f is convex if and only if f ∞∞(t) � 0 for t ∈ (a, b).

Proof Let x, y ∈ (a, b) such that x < y and let (h0, h1, . . . , hn, . . .) be a decreasing
sequence of positive numbers such that h0 = y − x and limn∨∧ hn = 0. Then,
limn∨∧(x + hn) = x . By Theorem 9.33, the the sequence f (x+hn)− f (x)

hn
is decreas-

ing, so

f ∞(x) = lim
n∨∧

f (x + hn) − f (x)

hn
� f (x + h0) − f (x)

h0
= f (y) − f (x)

y − x
.
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Table 9.1 Examples of
convex or concave functions

Function Second derivative Convexity property

xr for r(r − 1)xr−2 Concave for r < 1
r > 0 Convex for r � 1
ln x − 1

x2 Concave
x ln x 1

x Convex
ex ex Convex

Similarly, by considering an increasing sequence (k0, k1, . . . , kn, . . .)with k0 = x−y
such that limn∨∧ = 0, and the corresponding sequence limn∨∧(y + kn) = y, it is
possible to show that f (y)− f (x)

y−x � f ∞(y). Therefore, f ∞(x) � f ∞(y) for x, y ∈ (a, b),
which implies f ∞∞(t) � 0 for t ∈ (a, b).

Conversely, suppose that f ∞∞(t) > 0 for x ∈ (a, b) and let x, y ∈ (a, b) such that
x < y and z = ax + (1− a)y. Since f ∞ is nondecreasing, f (t) � f (z) for t ∈ [x, z]
By the fundamental theorem of integral calculus, f (z) − f (x) = ∫ z

x f ∞(t)dt �
f ∞(z)(z − x). Similarly, f (y) − f (z) = ∫ y

z f ∞(t)dt � f ∞(z)(y − z), which yields
the inequalities

f (z) = a f (z) + (1 − a) f (z)

� a( f (x) + f ∞(z)(z − x)) + (1 − a)( f (y) − f ∞(z)(y − z))

= a f (x) + (1 − a) f (y) + f ∞(z)(a(z − x) − (1 − a)(y − z)).

Since z = ax + (1 − a)y we have a(z − x) − (1 − a)(y − z) = 0, which implies
f (z) � a f (x) + (1 − a) f (y). Thus, f is convex.

The functions listed in the Table 9.1, defined on the set R� 0, provide examples
of convex (or concave) functions.

9.3.2 Jensen’s Inequality

Theorem 9.35 (Jensen’s Theorem) Let f be a function that is convex on an interval
I . If t1, . . . , tn ∈ [0, 1] are n numbers such that

∑n
i=1 ti = 1, then

f

(
n∑

i=1

ti xi

)
�

n∑
i=1

ti f (xi )

for every x1, . . . , xn ∈ I .

Proof The argument is by induction on n, where n � 2. The basis step, n = 2,
follows immediately from Definition 9.22.

Suppose that the statement holds for n, and let u1, . . . , un, un+1 be n +1 numbers
such that

∑n+1
i=1 ui = 1. We have
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f (u1x1 + · · · + un−1xn−1 + un xn + un+1xn+1)

= f

⎟
u1x1 + · · · + un−1xn−1 + (un + un+1)

un xn + un+1xn+1

un + un+1

)
.

By the inductive hypothesis, we can write

f (u1x1 + · · · + un−1xn−1 + un xn + un+1xn+1)

� u1 f (x1) + · · · + un−1 f (xn−1) + (un + un+1) f

⎟
un xn + un+1xn+1

un + un+1

)
.

Next, by the convexity of f , we have

f

⎟
un xn + un+1xn+1

un + un+1

)
� un

un + un+1
f (xn) + un+1

un + un+1
f (xn+1).

Combining this inequality with the previous inequality gives the desired conclusion.

Of course, if f is a concave function and t1, . . . , tn ∈ [0, 1] are n numbers such
that

∑n
i=1 ti = 1, then

f

(
n∑

i=1

ti xi

)
�

n∑
i=1

ti f (xi ). (9.3)

Example 9.36 We saw that the function f (x) = ln x is concave. Therefore, if
t1, . . . , tn ∈ [0, 1] are n numbers such that

∑n
i=1 ti = 1, then

ln

(
n∑

i=1

ti xi

)
�

n∑
i=1

ti ln xi .

This inequality can be written as

ln

(
n∑

i=1

ti xi

)
� ln

n∏
i=1

xti
i ,

or equivalently
n∑

i=1

ti xi �
n∏

i=1

xti
i ,

for x1, . . . , xn ∈ (0,∧).
In the special case where t1 = · · · = tn = 1

n , we have the inequality that relates
the arithmetic to the geometric average on n positive numbers:
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x1 + · · · + xn

n
�
(

n∏
i=1

xi

) 1
n

. (9.4)

Let w = (w1, . . . ,wn) ∈ R
n be such that

∑n
i=1 wi = 1. For r ∅= 0, the w-

weighted mean of order r of a sequence of n positive numbers x = (x1, . . . , xn) ∈
R

n
>0 is the number

μr
w(x) =

(
n∑

i=1

wi xr
i

) 1
r

.

Of course, μr
w(x) is not defined for r = 0; we will give as special definition

μ0
w(x) = lim

r∨0
μr

w(x).

We have

lim
r∨0

ln μr
w(x) = lim

r∨0

ln
∑n

i=1 wi xr
i

r
= lim

r∨0

∑n
i=1 wi xr

i ln xi∑n
i=1 wi xr

i

=
n∑

i=1

wi ln xi = ln
n∏

i=1

xwi
i .

Thus, if we define μ0
w(x) = ∏n

i=1 xwi
i , the weighted mean of order r becomes a

function continuous everywhere with respect to r .
For w1 = · · · = wn = 1

n , we have

μ−1
w (x) = nx1 · · · xn

x2 · · · xn + · · · + x1 · · · xn−1

(the harmonic average of x),

μ0
w(x) = (x1 · · · xn)

1
n

(the geometric average of x),

μ1
w(x) = x1 + · · · + xn

n
(the arithmetic average of x).

Theorem 9.37 If p < r , we have μ
p
w(x) � μr

w(x).

Proof There are three cases depending on the position of 0 relative to p and r .

In the first case, suppose that r > p > 0. The function f (x) = x
r
p is convex, so

by Jensen’s inequality applied to x p
1 , . . . , x p

n , we have
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(
n∑

i=1

wi x p
i

) r
p

�
n∑

i=1

wi xr
i ,

which implies (
n∑

i=1

wi x p
i

) 1
p

�
(

n∑
i=1

wi xr
i

) 1
r

,

which is the inequality of the theorem.

If r > 0 > p, the function f (x) = x
r
p is again convex because f ∞∞(x) =

r
p

⎜
r
p − 1

)
x

r
p −2 ↔ 0. Thus, the same argument works as in the previous case.

Finally, suppose that 0 > r > p. Since 0 < r
p < 1, the function f (x) = x

r
p is

concave. Thus, by Jensen’s inequality,

(
n∑

i=1

wi x p
i

) r
p

↔
n∑

i=1

wi xr
i .

Since 1
r < 0, we obtain again

(
n∑

i=1

wi x p
i

) 1
p

�
(

n∑
i=1

wi xr
i

) 1
r

.

Exercises and Supplements

1. Prove that if C is a convex subset of R
n , then tu(C) is also convex.

2. A cone in R
n is a set C ⊆ R

n such that x ∈ C and a ∈ R�0 imply ax ∈ C . Prove
that a cone C is convex if and only if ax + by ∈ C for a, b ∈ R�0 and x, y ∈ C .

3. Prove that D is an affine set in R
n if and only if u + D = {u + x | x ∈ D} is an

affine set for every u ∈ R
n .

4. Let S be a convex set in R
n such that |S| � n and let x ∈ S. If r ∈ N such that

n + 1 � r � |S| prove that there exist
⎛|S|−n

r−n

⎧
set of points Y , Y ⊆ S, such that

x ∈ Kconv(Y ).

Hint: Use induction on k = |S| − n and Carathéodory’s Theorem.
Let S, T ⊆ R

n be two subsets in R
n . The Minkowski sum of S and T is the set

S + T = {x + y | x ∈ S, y ∈ T }.

5. Prove that for every set S ⊆ R
n we have S + {0} = S and S + ∩ = ∩.
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6. Let S, T be two subsets of R
n . Prove that Kconv(U )(S + T ) = Kconv(U )(S) +

Kconv(U )(T ).
7. Prove that if S is a convex set, then aS + bS is a convex set; furthermore, prove

that aS + bS = (a + b)S for every a, b � 0.
8. Let T be a subset of R

n . The core of T is the set core(T ) = {x ∈ T | ax +
(1 − a)y ∈ S for a ∈ (0, 1), y ∈ T }. Prove that the core of any set T is a convex
subset of T .

9. Prove that the intersection of two convex polygons having a total of n edges is
either empty or is a convex polygon with at most n edges.

10. Let C = {C1, . . . ,Cm} be a collection of m convex sets in R
n , where m ↔ n + 1

such that if every subcollection C∞ of C that contains n + 1 sets has a non-empty
intersection. Prove that

⋂
C ∅= ∩.

Hint: Proceed by induction on k = m − (n + 1). Apply Radon’s theorem in
the inductive step of the proof.

11. Prove that the border of a polytope is the union of its proper faces.
12. Prove that each polytope has a finite number of faces.
13. Let P ⊆ R

n be a polytope and let {Fi | 1 � m � m} be the set of its faces.
Prove that if Hwi ,ai is a hyperplane that supports P such that Fi = P ⊆ H>

wi ,ai

for 1 � i � m, then P = ⋂m
i=1 H�

wi ,ai .
14. Let f : S −∨ R and g : T −∨ R be two convex functions, where S, T ⊆ R

n ,
and let a, b ∈ R�0. Prove that a f + bg is a convex function.

15. Let F : S −∨ R
m be a function, where ∩ ⊃ S ⊆ R

n . Prove that if each
component fi of F is a convex function on S and g : Rm −∨ R is a monotonic
function, then the function gF defined by gF(x) = g(F(x)) for x ∈ S is convex.

16. Let f : S −∨ R be a convex function, where S ⊆ R
n . Define the function

g : R>0 × S −∨ R by g(t, x) = t f
⎛ x

t

⎧
. Prove that g is a convex function.

17. Let f : R � 0 −∨ R be a convex function. Prove that if f (0) = 0 and f is
monotonic and convex, then f is subadditive.

Solution: By applying the convexity of f to the interval [0, x + y] with
a = x

x+y , we have

f (a · 0 + (1 − a)(x + y)) � a f (0) + (1 − a) f (x + y),

we have f (y) � y
x+y f (x+y). Similarly, we can show that f (x) � x

x+y f (x+y).
By adding the last two inequalities, we obtain the subadditivity of f .

18. Let S be a convex subset of Rn and let I be an open interval of R. If f : S −∨ R

and g : I −∨ R are convex functions such that g(I ) ⊆ S and g is non-
decreasing, prove that g f is a convex function on S.

19. Let S ⊆ R
n be a convex set, S ∅= ∩. Define the support function of S, hS :

R
n −∨ R by hS(x) = sup{s∞x | s ∈ S}. Prove that Dom(hS) is a cone in R

n ,
hS is a convex function and hS(ax) = ahS(x) for a � 0.
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20. Let f : S ∨ R be a function, where S is a convex and open subset of R
n and

f (x) > 0 for x ∈ S. Prove that if log f is convex, then so is f .
21. The a-level set of a convex function f : S −∨ R, where S ⊆ R

n , is the set
La, f = {x ∈ S | f (x) � a}.
(a) Prove that if S is a convex set and f is a convex function, then every level

set La, f is a convex set.
(b) Give an example of a non-convex function whose level sets are convex.

22. Let C be a convex subset of R
n . Prove that if x ∈ I(C) and y ∈ K(C), then

[x, y) ⊆ I(C).
23. If C ⊆ R

n is convex, prove that both I(C) and Kconv(C) are convex sets. Further,
prove that if C is an open set, then Kconv(C) is open.

24. Prove that for any subset U of R
n we have Kconv(K(U )) ⊆ K(Kconv(U )). If U

is bounded, then Kconv(K(U )) = K(Kconv(U )).
25. Let f : S −∨ R, where S ⊆ R

n×n is the set of symmetric real matrices and
f (A) is the largest eigenvalue of A. Prove that f is a convex function.

26. Let M1 = {Y Y ∞ | Y ∈ R
n×k and Y ∞Y = Ik} and

M2 = {W ∈ R
n×n | W = W ∞, trace(W ) = k and

W and In − W are positive semidefinite}.

Prove that

(a) we have M2 = Kconv(M1);
(b) M1 is the set of extreme points of the polytope M2.

Solution: Every convex combination of elements ofM1 lies inM2. Indeed,
let Z = a1Y1Y ∞

1 + · · · + apYpY ∞
p be a convex combination of M1. It is

immediate that Z is a symmetric matrix. Furthermore, by Theorem 5.51 we
have

trace(Z) =
p∑

h=1

ahtrace(YhY ∞
h) =

p∑
h=1

ahtrace(Y ∞
hYh) =

p∑
h=1

ahtrace(Ik) = k.

because
∑p

h=1 ah = 1. The positive semi-definiteness of Y Y ∞ follows from
Example 6.109, while the positive semi-definiteness of In − Y Y ∞ follows
from Supplement 48. Thus, Kconv(M1) ⊆ M2.

Conversely, let W ∈ M2. By the spectral theorem for Hermitian matrices
(Theorem 7.41) applied to real symmetric matrices, W can be written as
W = U ∞DU , where U is an unitary matrix. Clearly, all eigenvalues of W
belong to the interval [0, 1].

If the columns of the matrix U ∞ are u1, . . . ,un and the eigenvalues of W
are λ1, . . . ,λn , then
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W = (u1 · · · un)

⎨
⎩⎫

λ1 0 · · · 0
0 λ2 · · · 0
...

... · · · ...

⎬
⎭⎪
⎨
⎩⎫

u∞
1
...

u∞
n

⎬
⎭⎪ ,

which allows us to write W = λ1u1u∞
1 + . . .+λr ur u∞

r , where W has rank r ,
λ1, . . . ,λr are the non-zero eigenvalues of W , and

∑r
i=1 λi = trace(W ) =

k. Note that the rank of W is at least k because its eigenvalues reside in the
interval [0, 1] and their sum is k.

If the rank of W equals k, then W = u1u∞
1 + . . . + uku∞

k because all
eigenvalues equal 1. This allows us to write W = Z Z ∞, where Z ∈ R

n×k

is the matrix Z = (u1 · · · uk). Since Z ∞Z = Ik it follows that in this case
W ∈ M1. In other words, M1 is exactly the subset of M2 that consists of
rank k matrices.

If rank(W ) = r > k we have W = λ1u1u∞
1 + . . .+λr ur u∞

r . Starting from
the r matrices ui u∞

i we can form
⎛r

k

⎧
matrices of rank k of the form

∑
i∈I ui u∞

i
by considering all subsets I of {1, . . . , r} that contain k elements. We have
W = ∑r

j=1 λ j u j u∞
j = ∑

I,|I |=k αI
∑

i∈I ui u∞
i . If we match the coefficients

of ui u∞
i we have λi = ∑

I,i∈I,|I |=k αI . If we add these equalities we obtain

k =
r∑

i=1

∑
I,i∈I,|I |=k

αI .

We choose αI to depend on the cardinality of I and take into account that
each αI occurs k times in the previous sum. This implies

∑
I,i∈I,|I |=k αI =

1, so each W is a convex combination of matrices of rank k, so Kconv(M1) =
M2. No matrix of rank greater than k can be an extreme point. Since every
convex and compact set has extreme elements, only matrices of rank k can
play this role. Since the definition of M2 makes no distinction between
the k-rank matrices, it follows that the set of extreme elements coincides
with M1.

27. Prove that for a normal matrix A ∈ C
n×n , F(A) equals the convex hull of

spec(A). Infer that A is Hermitian if and only if F(A) is an interval of R.

Solution: Since A is normal, by the Spectral Theorem for Normal Matrices
(Theorem 7.40) there exists a unitary matrix U and a diagonal matrix D such
that A = U H DU and the diagonal elements of D are the eigenvalues of A.
Then, by Exercise 37, F(A) = F(D). Therefore, z ∈ F(A) if z = xDxH for
some x ∈ C

n such that → x →2= 1, so z = ∑n
k=1 |xk |2λk , where spec(A) =

spec(D) = {λ1, . . . ,λn}, which proves that F(A) is included in the convex
closure of spec(A). The reverse inclusion is immediate.
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28. Let C1, . . . ,Ck be k convex subsets of Rn , where k � n + 2. Prove that if any
n + 1 of these sets have a common point, then all the sets have a common point.
This fact is known as Helly’s Theorem.

Solution: For i ∈ {1, . . . , k} there exists xi ∈ C1⊆· · ·⊆Ci−1⊆Ci+1⊆· · ·⊆Ck .
This results in a set {x1, . . . , xk} of more than n + 2 vectors that are affinely
dependent. By Radon’s Theorem we obtain that after a suitable renumbering we
have

x ∈ Kconv({x1, . . . , x j }) ⊆ Kconv({x j+1, . . . , xk})

for some j , where 1 � j � k − 1. Since each of the points x1, . . . , x j belong
to C j+1 ⊆ · · · ⊆ Ck we have

x ∈ Kconv({x1, . . . , x j }) ⊆ C j+1 ⊆ · · · ⊆ Ck .

Similarly, x ∈ Kconv({x j+1, . . . , xk}) ⊆ C1 ⊆ · · · ⊆ C j .
29. Let C be a finite collection of convex subsets in R

n and let C be a convex subset
of R

n . Prove that if any n + 1 subsets of C are intersected by some translation
of C , then all sets of C are intersected by some translation of C .

Let S be an interval of R and let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two
sequences of numbers from S such that x1 � x2 � · · · � xn , y1 � y2 � · · · �
yn . If

∑k
i=1 xi �

∑k
i=1 yi for 1 � k < n and

∑n
i=1 xi = ∑n

i=1 yi we say that
x majorizes y and we write x ≥ y.

30. Let S be an interval of R, x1, . . . , xn, y1, . . . , yn ∈ S and let f : S −∨ R be a
convex function. Prove the if (x1, . . . , xn) ≥ (y1, . . . , yn), then

n∑
i=1

f (xi ) �
n∑

i=1

f (yi ).

Solution: The proof is by induction on n � 2. For the base step, n = 2,
we have x1 � x2, y1 � y2, x1 � y1, and x1 + x2 � y1 + y2, which imply
x1 � y1 � y2 � x2. Therefore, there exists p ∈ [0, 1] such that y1 =
px1 + (1− p)x2 and y2 = (1− p)x2 + px2, so f (y1) � p f (x1)+ (1− p) f (x2)

and f (y1) � (1 − p) f (x1) + p f (x2) because f is convex. By adding these
inequalities we obtain the inequality for n = 2.

Suppose that the inequality holds for sequences of length n and let

(x1, . . . , xn+1), (y1, . . . , yn+1)

be two sequences that satisfy the previous conditions. Then, x1 + · · · + xn �
y1 + · · · + yn , so there exists a non-negative number z such that
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x1 + · · · + xn = y1 + · · · + (yn + z).

Since x1+· · ·+xn+xn+1 = y1+· · ·+yn+yn+1, it follows that z+xn+1 = yn+1.

By the inductive hypothesis, f (x1)+· · ·+ f (xn) � f (y1)+· · ·+ f (yn +z), so

f (x1) + · · · + f (xn) + f (xn+1) � f (y1) + · · · + f (yn + z) + f (xn+1).

Since yn + z � yn � yn+1 � xn+1 and yn + z + xn+1 = yn + yn+1, by using
again the base case, we obtain f (yn + z)+ f (xn+1) � f (yn)+ f (yn+1), which
yields the desired conclusion.

31. A reciprocal result of the inequality introduced in Supplement 30 holds as well.
Namely, prove that if n � 2, and the sequences x1 � · · · � xn and y1 � · · · � yn

from an interval S of R satisfy the inequality
∑n

i=1 f (xi ) �
∑n

i=1 f (yi ) for
every convex function, then

∑k
i=1 xi �

∑k
i=1 yi for 1 � k � n − 1 and∑n

i=1 xi �
∑n

i=1 yi .

Solution: The choice f (x) = x for x ∈ S yields the inequality x1+· · ·+xn �
y1 + · · · + yn ; the choice f (x) = −x yields −x1 − · · · − xn � −y1 − · · · − yn ,
so x1 + · · · + xn = y1 + · · · + yn . Let now fk : S −∨ R be the convex function
given by

fk(x) =
{

0 if x < xk

x − xk if x � xk

Using fk we obtain the inequality

x1 + · · · + xk − kxk = h(x1) + · · · + h(xn)

� h(y1) + · · · + h(yn) � h(y1) + · · · + h(yk)

� y1 + · · · + yk − kxk,

which implies x1 + · · · + xk � y1 + · · · + yk .

32. Let f : R −∨ R be a convex, increasing function.

(a) Prove that for any two sequences (x1, . . . , xn) and (y1, . . . , yn) of real num-
bers such that y1 � · · · � yn and x1+· · ·+xk � y1+· · ·+ yk for 1 � k � n
we have

f (x1) + · · · + f (xn) � f (y1) + · · · + f (yn).

(b) Prove that for any two sequences of positive real numbers (a1, . . . , an) and
(b1, . . . , bn) such that a1 � · · · � an and b1 � · · · � bn ,
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a1 · · · ak � b1 · · · bk

for 1 � k � n, we have

f (a1) + · · · + f (an) � f (b1) + · · · + f (bn).

Solution: This statement can be obtained from the inequality shown in Sup-
plement 30 as follows. Let c = x1 + · · · + xn − (y1 + · · · + yn). Clearly,
we have c � 0. Let yn+1 be a number such that yn � yn+1 and consider the
sequences (x1, . . . , xn, yn+1 − c) and (y1, . . . , yn, yn+1).

The inequality of Supplement 30 is applicable to these sequences and it
yields

f (x1) + · · · + f (xn) + f (yn+1 − c) � f (y1) + · · · + f (yn) + f (yn+1),

Since f is an increasing function we have

f (x1) + · · · + f (xn) + f (yn+1) � f (y1) + · · · + f (yn) + f (yn+1),

which amounts to the equality to be proven.

To prove the second part apply the first part to the numbers xi = log ai and
bi = log bi .

Bibliographical Comments
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of the authors Hardy, Littlewook, Polya [10] and Karamata [11] (who discovered
independently this inequality).
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Chapter 10
Graphs and Matrices

10.1 Introduction

Graphs model relations between elements of sets. The term “graph” is suggested
by the fact that these mathematical structures can be graphically represented. We
discuss two types of graphs: directed graphs, which are suitable for representing
arbitrary binary relations, and undirected graphs that are useful for representing
symmetric binary relations. Special attention is paid to trees, a type of graph that
plays a prominent role in many data mining tasks.

Graph mining has become an important research direction in data mining, as
illustrated by the recent collections of articles [1, 2].

10.2 Graphs and Directed Graphs

Definition 10.1 An undirected graph, or simply a graph, is a pairG = (V, E), where
V is a set of vertices or nodes and E is a collection of two-element subsets of V . If
{x, y} ∈ E, we say that e = {x, y} is an edge of G that joins x to y. The vertices x
and y are the endpoints of the edge e.

A graph G = (V, E) is finite if both V and E are finite. The number of vertices
|V | is referred to as the order of the graph.

If u is an endpoint of an edge e, we say that e is incident to u. To simplify the
notation, we denote an edge e = {x, y} by (x, y). If e = (x, y) is an edge, we say
that x and y are adjacent vertices. If e and e′ are two distinct edges in a graph G, then
|e ∪ e′| � 1.

Graphs can be drawn by representing each vertex by a point in a plane and each
edge (x, y) by an arc joining x and y.

Example 10.2 In Fig. 10.1 we show the graph G = ({vi | 1 � i � 8}, E), where
E = {(v1, v2), (v1, v3), (v2, v3), (v4, v5), (v5, v6), (v6, v7), (v7, v8), (v5, v8)}.

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 457
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_10,
© Springer-Verlag London 2014
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Fig. 10.1 Graph G = ({vi |
1 � i � 8}, E)

Fig. 10.2 The complete graph
K6

Fig. 10.3 The graph K4,3

Definition 10.3 A graph G = (V, E) is complete, if for every u, v ∈ E such that
u ∞= v, we have (u, v) ∈ E.

The complete graph G = ({1, . . . , m}, E) will be denoted by Km .

Example 10.4 The graph shown in Fig. 10.2 is complete.

Example 10.5 Let Kp,q be the graph

({v1, . . . , vp} ∅ {u1, . . . , vq}, {v1, . . . , vp} × {u1, . . . , vq}).

Note that the set of edges consists of all pairs (ui , v j ) for 1 � i � p and 1 � j � q.
The graph K4,3 is shown in Fig. 10.3.

Definition 10.6 A subgraph of a graph G = (V, E) is a graph G′ = (V ′, E ′), where
V ′ ⊆ V and E ′ ⊆ E.

The subgraph of G induced by a set of vertices U is the subgraph GU = (U, EU ),
where EU = {e ∈ E | e = (u, u′) and u, u′ ∈ U }.
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(a) (b)

(c)
(d)

Fig. 10.4 Subgraphs of the graph G

Fig. 10.5 Set of poiFnts

Example 10.7 Consider the graph G shown in Fig. 10.1. Figure 10.4a–d show the
subgraphsG induced by {v4, v5, v8},{v4, v5, v6, v8}, {v4, v5, v7}, and {v5, v6, v7, v9},
respectively.

Definition 10.8 Let V be a finite set where V = {v1, . . . , vm}, s be a similarity
on V , and let ν be a positive number. The ν-similarity graph of (V, s) is the graph
Gν = (V, Eν), where

Eν = {(u, v) ∈ V × V | u ∞= v and s(u, v) � ν}.

Example 10.9 If ν = 0, the similarity graph of (V, s) is the complete graph on V ;
if ν = 1, G1 consists of m isolated vertices.

Example 10.10 Consider the set of points in R
2 shown in Fig. 10.5 whose coordi-

nates are shown in Table 10.1.
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Table 10.1 Coordinates of points to be clustered

Point Coordinates Point Coordinates Point Coordinates Point Coordinates

v1 (1, 4) v5 (3, 5) v9 (5, 2) v13 (6, 5)

v2 (2, 3) v6 (4, 2) v10 (5, 3) v14 (6, 2)

v3 (2, 5) v7 (4, 5) v11 (5, 5)

v4 (3, 4) v8 (5, 1) v12 (5, 6)

The matrix D of distances between these points is


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

0 1.41 1.41 2.00 2.23 3.60 3.16 5.00 4.47 4.12 4.12 4.47 5.09 5.38
1.41 0 2.00 1.41 2.23 2.23 2.82 3.60 3.16 3.00 3.60 4.24 4.47 4.12
1.41 2.00 0 1.41 1.00 3.60 2.00 5.00 4.24 3.60 3.00 3.16 4.00 5.00
2.00 1.41 1.41 0 1.00 2.23 1.41 3.60 2.82 2.23 2.23 2.82 3.16 3.60
2.23 2.23 1.00 1.00 0 3.16 1.00 4.47 3.60 2.82 2.00 2.23 3.00 4.24
3.60 2.23 3.60 2.23 3.16 0 3.00 1.41 1.00 1.41 3.16 4.12 3.60 2.00
3.16 2.82 2.00 1.41 1.00 3.00 0 4.12 3.16 2.23 1.00 1.41 2.00 3.60
5.00 3.60 5.00 3.60 4.47 1.41 4.12 0 1.00 2.00 4.00 5.00 4.12 1.41
4.47 3.16 4.24 2.82 3.60 1.00 3.16 1.00 0 1.00 3.00 4.00 3.16 1.00
4.12 3.00 3.60 2.23 2.82 1.41 2.23 2.00 1.00 0 2.00 3.00 2.23 1.41
4.12 3.60 3.00 2.23 2.00 3.16 1.00 4.00 3.00 2.00 0 1.00 1.00 3.16
4.47 4.24 3.16 2.82 2.23 4.12 1.41 5.00 4.00 3.00 1.00 0 1.41 4.12
5.09 4.47 4.00 3.16 3.00 3.60 2.00 4.12 3.16 2.23 1.00 1.41 0 3.00
5.38 4.12 5.00 3.60 4.24 2.00 3.60 1.41 1.00 1.41 3.16 4.12 3.00 0


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

.

A similarity matrix S of the set of points can be obtained by definining s(vi , v j ) =
e− d2(vi ,v j )

2 for 1 � i, j � 14. The entries of the similarity matrix (truncated to the
last two decimals) are given below:


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

1.00 0.36 0.36 0.13 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.36 1.00 0.13 0.36 0.08 0.08 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00
0.36 0.13 1.00 0.36 0.60 0.00 0.13 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.13 0.36 0.36 1.00 0.60 0.08 0.36 0.00 0.01 0.08 0.08 0.01 0.00 0.00
0.08 0.08 0.60 0.60 1.00 0.00 0.60 0.00 0.00 0.01 0.13 0.08 0.01 0.00
0.00 0.08 0.00 0.08 0.00 1.00 0.01 0.36 0.60 0.36 0.00 0.00 0.00 0.13
0.00 0.01 0.13 0.36 0.60 0.01 1.00 0.00 0.00 0.08 0.60 0.36 0.13 0.00
0.00 0.00 0.00 0.00 0.00 0.36 0.00 1.00 0.60 0.13 0.00 0.00 0.00 0.36
0.00 0.00 0.00 0.01 0.00 0.60 0.00 0.60 1.00 0.60 0.01 0.00 0.00 0.60
0.00 0.01 0.00 0.08 0.01 0.36 0.08 0.13 0.60 1.00 0.13 0.01 0.08 0.36
0.00 0.00 0.01 0.08 0.13 0.00 0.60 0.00 0.01 0.13 1.00 0.60 0.60 0.00
0.00 0.00 0.00 0.01 0.08 0.00 0.36 0.00 0.00 0.01 0.60 1.00 0.36 0.00
0.00 0.00 0.00 0.00 0.01 0.00 0.13 0.00 0.00 0.08 0.60 0.36 1.00 0.01
0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.36 0.60 0.36 0.00 0.00 0.01 1.00


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

.

The similarity graphs G0.2 and G0.4 are shown in Fig. 10.6a, b, respectively.

Definition 10.11 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs having
disjoint sets of vertices. Their union is the graph G1 ∅ G2 = (V1 ∅ V2, E1 ∅ E2).

The join of these graphs is the graph G1 + G2 = (V1 ∅ V2, E1 ∅ E2 ∅ (V1 × V2).
The complement of G1 is the graph

G1 = (V1, {(u, v) ∈ V1 × V1, u ∞= v and (u, v) ∞∈ E}).

The product of the graphs G1 and G2 is the graph G1 ×G2 = {V1 × V2, E}, where
E consists of pairs ((u1, u2), (v1, v2)) such that either u1 = v1 and (u2, v2) ∈ E2
or (u1, v1) ∈ E1 and u2 = v2.
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(a) (b)

Fig. 10.6 Similarity graphs G0.2 and G0.4

Fig. 10.7 The graph K3+K2

Example 10.12 The complement of a complete graph K4 is the graph K4 =
({v1, v2, v3, v4},∩), that is, a graph with no edges. Thus, K4,3 can be expressed
as K4,3 = K4 ∅ K3. The join of the graph K3 and K2 is shown in Fig. 10.7.

If G is a connected graph, the graph that consist of the union of n disjoint copies
of G is denoted by nG.

Definition 10.13 Let G = (V, E) be a graph. The degree of a vertex v is the number
of edges dG(v) that are incident with v.

When the graph G is clear from the context, we omit the subscript and simply
write d(v).

The degree matrix of G = (V, E), where V = {v1, . . . , vm} is the diagonal matrix
DG = diag(dG(v1), . . . , dG(vm)) ∈ N

m×m.

If d(v) = 0, then v is an isolated vertex. For a graph G = (V, E), we have

∑
{d(v) | v ∈ V } = 2|E | (10.1)

because, when adding the degrees of the vertices of the graph we count the number
of edges twice. Since the sum of the degrees is an even number, it follows that a finite
graph has an even number of vertices that have odd degrees. Also, for every vertex
v, we have d(v) � |V | − 1.

Definition 10.14 A sequence (d1, . . . , dm) ∈ Seqn(N) is graphic if there is a graph
G = ({v1, . . . , vm}, E) such that d(vi ) = di for 1 � i � m.
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Fig. 10.8 Construction of
graph Ĝ (b)(a)

Clearly, not every sequence of natural numbers is graphic since we must have
di � m − 1 and

∑m
i=1 di must be an even number. For example, the sequence

(5, 5, 4, 3, 3, 2, 1) is not graphic since the sum of its components is not even. A
characterization of graphic sequences obtained in [3, 4] is given next.

Theorem 10.15 (The Havel-Hakimi Theorem) Let d = (d1, . . . , dm) be a
sequence of natural numbers such that d1 � d2 � · · · � dm, m � 2, d1 � 1,
and di � m −1 for 1 � i � m. The sequence d is graphic if and only if the sequence

e = (d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dm)

is graphic.

Proof Suppose that d = (d1, . . . , dm) is a graphic sequence, and let G =
({v1, . . . , vm}, E) be a graph having d as the sequence of degrees of its vertices.

If there exists a vertex v1 of degree d1 that is adjacent with vertices having degrees
d2, d3, . . . , dd1+1, then the graph G′ obtained from G by removing the vertex v1 and
the edges having v1 as an endpoint has e as its degree sequence, so e is graphic.

If no such vertex exists, then there are vertices vi , v j such that i < j (and thus
di � d j ), such that (v1, v j ) is an edge but (v1, vi ) is not. Since di � d j there exists
a vertex vk such that vk is adjacent to vi but not to v j .

Let Ĝ be the graph obtained from G by removing the edges (v1, v j ) and (vi , vk)

shown in Fig. 10.8a and adding the edges (v1, vi ) and (v j , vk) shown in Fig. 10.8b.
Observe that the degree sequence of Ĝ remains the same but the sum of the degrees
of the vertices adjacent to v1 increases. This process may be repeated only a finite
number of times before ending with a graph that belongs to the first case.

Conversely, suppose that e is a graphic sequence, and let G1 be a graph that has e
as the sequence of vertex degrees. Let G2 be a graph obtained from G1 by adding a
new vertex v adjacent to vertices of degrees d2 − 1, d3 − 1, . . . , dd1+1 − 1. Clearly,
the new vertex has degree d1 and the degree sequence of the new graph is precisely d.
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(a) (b)

(c) (d)

Fig. 10.9 Construction of a graph with a prescribed degree sequence

Table 10.2 Degree
sequences

d1 Sequence

(5, 4, 4, 3, 3, 3, 3, 1)

5 (3, 3, 3, 2, 2, 2, 1)

3 (2, 2, 2, 2, 1, 1)

2 (2, 1, 1, 1, 1)

Example 10.16 Let us determine if the sequence (5, 4, 4, 3, 3, 3, 3, 1) is a graphic
sequence. Note that the sum of its components is an even number. The sequence
derived from it by applying the transformation of Theorem 10.15 is (3, 3, 2, 2, 2, 3, 1).
Rearranging the sequence in non-increasing order, we have the same question
for the sequence (3, 3, 3, 2, 2, 2, 1). A new transformation yields the sequence
(2, 2, 1, 2, 2, 1). Placing the components of this sequence in increasing order yields
(2, 2, 2, 2, 1, 1). A new transformation produces the shorter sequence (1, 1, 2, 1, 1).
The new resulting sequence (2, 1, 1, 1, 1) can be easily seen to be the degree sequence
of the graph shown in Fig. 10.9a. We show the degree of each vertex.

The process is summarized in Table 10.2.
Starting from the graph having degree sequence (2, 1, 1, 1, 1), we add a new

vertex and two edges linking this vertex to two vertices of degree 1 to obtain the
graph of Fig. 10.9b, which has the degree sequence (2, 2, 2, 2, 1, 1).

In the next step, a new vertex is added that is linked by three edges to vertices of
degrees 2, 2, and 1. The resulting graph shown in Fig. 10.9c has the degree sequence
(3, 3, 3, 2, 2, 2, 1). Finally, a vertex of degree 5 is added to produce the graph shown
in Fig. 10.9d, which has the desired degree sequence.
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Fig. 10.10 Graph whose
incidence and adjacency
matrix are given in
Example 10.18

A graph G is k-regular if all vertices have the same degree k. If G is k-regular for
some k, then we say that the graph is regular.

Finite graphs are often represented using matrices.

Definition 10.17 Let G = (V, E) be a finite graph, where V = {v1, . . . , vm} and
E = {e1, . . . , en}.

The incidence matrix of G is the matrix UG = (uip) ∈ R
m×n given by

uip =
{

1 i f vi i s incident to ep,

0 otherwise,

for 1 � i � m and 1 � p � n.
The adjacency matrix of G is the matrix AG = (ai j ) ∈ R

m×m given by

ai j =
{

1 i f vi i s ad jacent to v j ,

0 otherwise,

for 1 � i, j � m.

Example 10.18 Let G be the graph shown in Fig. 10.10. Its incidence and adjacency
matrices are

UG =


⎜⎜

1 0 0 1 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 1


⎟⎟ ∈ {0, 1}4×5 and AG =


⎜⎜

1 0 0 1
1 0 1 1
0 1 0 1
1 1 1 0


⎟⎟ ∈ {0, 1}4×4.

Definition 10.19 A walk in a graph G = (V, E) is a sequence of vertices w =
(v0, . . . , vp) such that (vi , vi+1) is an edge of G for 0 � i � p − 1. The length of
the walk w, φ(w), is the number of edges in w counting repetitions.

The vertices v0 and vp are the endpoints of w, and we say that the walk w connects
the vertices v0 and vp.

A path is a walk having distinct vertices.
A cycle is a walk w = (v0, . . . , vp) such that p � 3 and v0 = vp.
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A cycle is simple if all vertices are distinct with the exception of the first and the
last. A cycle of length 3 is called a triangle.

A graph with no cycles is said to be acyclic.

For every vertex v of a graph G = (V, E), there is a unique walk (v) of length 0
that joins v to itself.

Theorem 10.20 Let G = (V, E) be a graph, where |V | = m. The numbers of walks
of length k that join the vertex vi to the vertex v j equals (Ak

G)i j for k ∈ N.

Proof The argument is by induction on k. For the base step, k = 0, is immediate
because there is a unique walk (vi ) of length 0 that joins vi to itself and A0

G = In .
Suppose that the statement holds for k. Every walk w of length k + 1 that joins vi

to v j can be written as w = (vi , . . . , v, v j ), where (vi , . . . , v) is a walk of length k
and (v, v j ) ∈ E . By the inductive hypothesis, if v = vp, there are ((AG)k)i p walks
of length k that join vi to vp. If (vp, v j ) ∈ E (which amounts to (AG)pj = 1), the
number of walks of length k + 1 from vi to v j equals

∑m
p=1(AG)k)i p(AG)pj , which

equals ((AG)k+1)i j .

Definition 10.21 Let G = (V, E) be a graph and let x, y ∈ V be two vertices. The
distance d(x, y) between x and y is the length of the shortest path that has x and y
as its endpoints. If no such path exists, then we define d(x, y) = ⊕.

The diameter of G is dG = max{d(x, y) | x, y ∈ V }.
Example 10.22 The distances between the vertices of the graph shown in Fig. 10.1
are given in the following table.

d v1 v2 v3 v4 v5 v6 v7 v8

v1 0 1 1 ⊕ ⊕ ⊕ ⊕ ⊕
v2 1 0 1 ⊕ ⊕ ⊕ ⊕ ⊕
v3 1 1 0 ⊕ ⊕ ⊕ ⊕ ⊕
v4 ⊕ ⊕ ⊕ 0 1 2 3 2
v5 ⊕ ⊕ ⊕ 1 0 1 2 1
v6 ⊕ ⊕ ⊕ 2 1 0 1 2
v7 ⊕ ⊕ ⊕ 3 2 1 0 1
v8 ⊕ ⊕ ⊕ 2 1 2 1 0

Theorem 10.23 Let G = (V, E) be a graph and let x, y be two distinct vertices in
V . Every walk that connects x to y contains a path that joins x to y.

Proof Let w be a walk in G that joins x to y. The proof is by induction on k = φ(w).
If φ(w) = 1 or φ(w) = 2, then w is a path and the conclusion follows.
Suppose that the statement holds for walks having length less than k and let

w = (v0, v1, . . . , vk) be a path of length k such that x = v0 and vk = y. If the
vertices v0, . . . , vk are distinct, then w is itself a path. Otherwise, let h be the number
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h = min{i | 1 � i � k, vi = v j for some j, 0 � i < j}.

Let q = (v0, . . . , vh, v j+1, . . . , vk), where v j = vh and h < j . We have φ(q) < k
and, therefore, by inductive hypothesis, q contains a path that joints x to y. This
implies that the walk w contains such a path.

10.2.1 Directed Graphs

Directed graphs differ from graphs in that every edge in such a graph has an orien-
tation. The formal definition that follows captures this aspect of directed graphs by
defining an edge as an ordered pair of vertices rather than a two-element set.

Definition 10.24 A directed graph (or, for short, a digraph) is a pair G = (V, E),
where V is a set of vertices or nodes and E ⊆ V × V is the set of edges. A digraph
G = (V, E) is finite if V is a finite set.

If e = (u, v) ∈ E , we refer to u as the source of the edge e and to v as the
destination of e. The source and the destination of an edge e are denoted by source(e)
and dest(e), respectively. Thus, we have the mappings source : E −⊥ V and
dest : E −⊥ V , which allow us to define for every subset U of the set of vertices
the sets

out(U ) = {source−1(U ) − dest−1(U )},
in(U ) = {dest−1(U ) − source−1(U )}.

In other words, out(U ) is the set of edges that originate in U without ending in this
set and in(U ) is the set of edges that end in U without originating in U .

Note that a digraph may contain both edges (u, v) and (v, u), and loops of the
form (u, u).

Definition 10.25 Let G = (V, E) be a digraph. The out-degree of a vertex v is the
number do(v) = |{e ∈ E | v = source(e)}|, and the in-degree of a vertex v is the
number di (v) = |{e ∈ E | v = dest(e)}|.

Clearly, we have
∑

v∈V do(v) = ∑
v∈V di (v) = |E |.

The notion of a walk for digraphs is similar to the notion of a walk for graphs.

Definition 10.26 Let G = (V, E) be a digraph. A walk in G is a sequence of vertices
w = (v0, . . . , vk) such that (vi , vi+1) ∈ E for 0 � i � k − 1.

The number k is the length of w. We refer to w as a walk that joins v0 to vk−1. If
v0 = vk , we say that the walk is closed.

If all vertices of the sequence w = (v0, . . . , vk−1, vk) are distinct, with the pos-
sible exception of v0 and vk , then w is a path.

If v0 = vk , then the path w is a cycle. A directed graph with no cycles is said to
be acyclic.
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An undirected walk in a digraph G = (V, E) is a sequence of vertices u =
(v0, . . . , vk) such that either (vi , vi+1) ∈ E or (vi+1, vi ) ∈ E for every i , 0 � i �
k − 1.

Note that a walk w may have length 0; in this case, w is the null sequence of edges
and the sequence of vertices of w consists of a single vertex.

Definition 10.27 Let G = (V, E) be an acyclic digraph and let u, v ∈ V . The vertex
u is an ancestor of v, and v is a descendant of u if there is a path p from u to v.

Every vertex is both an ancestor and a descendant of itself due to the existence of
walks of length 0. If u is an ancestor of v and u ∞= v, then we say that u is a proper
ancestor of v. Similarly, if v is a descendant of u and u ∞= v, we refer to v as a proper
descendant of u.

Definition 10.28 A digraph G = (V, E) is linear if di (v) = do(v) = 1 for every
vertex v ∈ V .

It is not difficult to see that a linear digraph is a collection of directed cycles such
that every vertex occurs in exactly one directed cycles.

Theorem 10.29 In a finite acyclic digraph G, there is a vertex whose in-degree is 0.

Proof Let G = (V, E) be a finite acyclic digraph and let p be a path of maximum
length in G from x to y. If there is a vertex z on the path p such that (z, x) ∈ E , then
the G has a cycle, contradicting the fact that G is acyclic. If x is the destination of
an edge whose source is not on p, then there exists a longer path in G ending in y,
contradicting the maximality of p. Thus, there is no vertex w such that (w, x) ∈ E ,
so di (x) = 0.

Definition 10.30 Let G = (V, E) be a directed acyclic graph, where |V | = m. A
topological sorting of V is a bijection t : {1, . . . , m} −⊥ V such that if (t (i), t ( j))
is an edge in G, then i < j .

An algorithm for obtaining a topological sort on the set A can be formulated using
Theorem 10.29.

Algorithm 10.2.1: Topological Sort Algorithm
Data: An acyclic directed graph G= (V, E), where V = {v1, . . . , vm}
Result: A topological sort t : {1, . . . , m} −⊥ V
i = 1;1
while there exist vertices in G do2

let v be a vertex of Gwith di (v) = 0 and let t (i) = v;3
replace G by the subgraph of G generated by V − {v};4
i + +;5
return t ;6

end7
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Theorem 10.31 Let V0 be the set of vertices of a finite forest G = (V, E) having
in-degree 0. For every vertex v ∈ V − V0, there exists a unique vertex v0 ∈ V0 and
a unique path that joins v0 to v.

Proof Since v ∈ V −V0, we have di (v) = 1 and there exists at least one edge whose
destination is v. Let p = (v0, v1, . . . , vk−1) be a maximal path whose destination is
v (so vk−1 = v). We have di (v0) = 0. Indeed, if this is not the case, then there is
a vertex v′ such that an edge (v′, v) exists in E and v′ is distinct from every vertex
of p because otherwise G would not be acyclic. This implies the existence of a path
p′ = (v′, v0, v1, . . . , vk−1), which contradicts the maximality of p.

The path that joins a vertex of in-degree 0 to v is unique. Indeed, suppose that q
is another path in G that joins a vertex of in-degree 0 to v. Let u be the first vertex
having a positive in-degree that is common to both paths. The predecessors of u on
p and q must be distinct, so di (u) > 1. This contradicts the fact that G is a forest.
The uniqueness of the path implies also the uniqueness of the source.

The adjacency matrix and the incidence matrix for directed graphs are introduced
next.

Definition 10.32 Let G = (V, E) be a directed graph, with |V | = m. The adjacency
matrix of G is the matrix AG ∈ {0, 1}m×m defined by

(AG)i j =
{

1 i f there exists an edge(vi , v j ) ∈ E,

0 otherwise.

In general, the adjacency matrix of a directed graph is not symmetric.

Definition 10.33 Let G = (V, E) be a directed graph, with |V | = m and |E | = n.
The incidence matrix of G is a matrix UG ∈ {−1, 0, 1}m×n such that

(UG)i p =




1 i f source(ep) = vi ,

−1 i f dest(ep) = vi ,

0 otherwise

for 1 � i � m and 1 � p � n.

Example 10.34 Let G = (V, E) be the directed graph shown in Fig. 10.11.
The incidence matrix UG and the adjacency matrix AG are given by

UG =


⎜⎜⎜⎜

1 1 0 0 1
−1 0 1 0 0
0 0 −1 −1 −1
0 −1 0 1 0
0 0 0 0 0


⎟⎟⎟⎟ and AG =


⎜⎜

0 1 1 1
0 0 1 0
0 0 0 0
0 0 1 0


⎟⎟ .
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Fig. 10.11 Directed graph
G = ({vi | 1 � i � 4}, {e j |
1 � j � 5})

Fig. 10.12 Graph G0 =
({vi | 1 � i � 4}, {e j | 1 �
j � 5})

Theorem 10.35 The determinant of any square submatrix of the incidence matrix
UG of a directed graph G equals 0, 1, or −1.

Proof We show that the result holds for any matrix of the form A

⎛
i1, . . . , ik

j1, . . . , jk

⎧
by

induction on k � 1.
The basis case, k = 1 is immediate because an entry of UG is 0, 1 or −1.
Suppose the statement holds for k and let C be a (k + 1) × (k + 1) submatrix of

UG. If each column of C has an 1 or −1, then det(C) = 0, which follows from the
fact that the sum of the rows of C is 0′

k . The same happens if C has a zero column.
So, suppose that C has a column with one non-zero entry (which must be 1 or −1).
By expanding C along this column, the result follows by the inductive hypothesis.

A directed graph an be obtained from an undirected graph by assigning an orien-
tation to the edges of the undirected graph.

Definition 10.36 Let G = (V, E) be a graph. An orientation on G is a function
r : V × V −⊥ {−1, 0, 1} such that r(u, v) ∞= 0 if and only if (u, v) is an edge
of V , and r(u, v) + r(v, u) = 0 for u, v ∈ V × V . If r(u, v) = 1 (and, therefore,
r(v, u) = −1) we say thatv is the positive end of the edge (u, v)under this orientation
and u is the negative end of the edge.

The directed graph determined by the orientation r is Gr = (V, Er ), where Er

consists of all ordered pairs (u, v) ∈ E × E such that r(u, v) = 1.
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Example 10.37 The directed graph G shown in Fig. 10.11 can be obtained from the
graph G0 of Fig. 10.12 be applying the orientation defined by

r(v1, v2) = 1, r(v2, v1) = −1, r(v1, v3) = 1, r(v3, v1) = −1,

r(v1, v4) = 1, r(v4, v1) = −1, r(v2, v3) = 1, r(v3, v2) = −1,

r(v3, v4) = −1, r(v4, v3) = 1.

10.2.2 Graph Connectivity

Theorem 10.38 Let G = (V, E) be a graph. The relation ΨG on V that consists of
all pairs of vertices (x, y) such that there is a walk that joins x to y is an equivalence
on V .

Proof The reflexivity of ΨG follows from the fact that there is a walk of length 0 that
joins any vertex x to itself.

If a walk p = (v0, . . . , vn) joins x to y (which means that x = v0 and y = vn),
then the walk q = (vn, . . . , v0) joins y to x . Therefore, ΨG is symmetric.

Finally, suppose that (x, y) ∈ ΨG and (y, z) ∈ ΨG. There is a walk p = (v0,

f . . . , vn) with x = v0 and y = vn and a walk q = (v′
0, . . . , v

′
m) such that y = v′

0
and z = v′

m . The walk r = (v0, . . . , vn = v′
0, . . . , v

′
m) joins x to z, so (x, z) ∈ ΨG.

Thus, ΨG is transitive, so it is an equivalence.

Definition 10.39 Let G = (V, E) be a graph. The connected components of G are
the equivalence classes of the relation ΨG.

A graph is connected if it has only one connected component.
A graph is linear if d(v) = 1 for every vertex v.

It is easy to see that in a linear graph each connected component is an edge or a
cycle.

Example 10.40 The sequences (v4, v5, v8, v7) and (v4, v5, v6, v7) are both walks of
length 3 in the graph shown in Fig. 10.1.

The connected components of this graph are

{v1, v2, v3} and {v4, v5, v6, v7, v8}.

Definition 10.41 A spanning subgraph of a graph G = (V, E) is a subgraph of the
form G′ = (V, E ′); that is, a subgraph that has the same set of vertices as G.

Example 10.42 The graph shown in Fig. 10.13 is a spanning subgraph of the graph
defined in Example 10.2.

Theorem 10.43 If G = (V, E) is a connected graph, then |E | � |V | − 1.
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Fig. 10.13 Spanning
subgraph of the graph defined
in Example 10.2

Proof We prove the statement by induction on |E |. If |E | = 0, then |V | � 1 because
G is connected and the inequality is clearly satisfied.

Suppose that the inequality holds for graphs having fewer than n edges, and let
G = (V, E) be a connected graph with |E | = n. Let e = (x, y) be an arbitrary edge
and let G′ = (V, E − {e}) be the graph obtained by removing the edge e. The graph
G′ may have one or two connected components, so we need to consider the following
cases:

1. If G′ is connected, then, by the inductive hypothesis, we have |E ′| � |V | − 1,
which implies |E | = |E ′| + 1 � |V | − 1.

2. If G′ contains two connected components V0 and V1, let E0 and E1 be the set
of edges whose endpoints belong to V0 and V1, respectively. By the inductive
hypothesis, |E0| � |V0| − 1 and |E1| � |V1| − 1. Therefore,

|E | = |E0| + |E1| + 1 � |V0| + |V1| − 1 = |V | − 1.

This concludes the argument.

Corollary 10.44 Let G = (V, E) be a graph that has k connected components. We
have |E | � |V | − k.

Proof Let Vi and Ei be the set of edges of the i th connected component of G,
where 1 � i � k. It is clear that V = ⎨k

i=1 Vi and E = ⎨k
i=1 Ei . Since the sets

V1, . . . , Vk form a partition of V and the sets E1, . . . , Ek form a partition of E , we
have |E | = ∑k

i=1 |E |i �
∑k

i=1 |V |i − k = |V | − k, which is the desired inequality.

A subset U of the set of vertices of a graph G = (V, E) is complete if the subgraph
induced by it is complete.

A set of vertices W is a clique in G if it is maximally complete. In other words,
W is a clique if the graph induced by W is complete and there is no set of vertices Z
such that W ∨ Z and Z is complete.

Example 10.45 The sets {v1, v2, v3, v4} and {v3, v5, v6} are cliques of the graph
shown in Fig. 10.14.

Definition 10.46 Let Gi = (Vi , Ei ) be two graphs, where i ∈ {1, 2}. The graphs
G1 and G2 are isomorphic if there exists a bijection f : V1 −⊥ V2 such that
( f (u), f (v)) ∈ E ′ if and only if (u, v) ∈ E. The mapping f in this case is called a
graph isomorphism. If G1 = G2, then we say that f is a graph automorphism of G1.
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Fig. 10.14 Graph and its two cliques

(a) (b)

Fig. 10.15 Two isomorphic graphs

Two isomorphic graphs can be represented by drawings that differ only with
respect to the labels of the vertices.

Example 10.47 G1 = ({v1, v2, v3, v4, v5}, E1) and G2 = ({u1, u2, u3, u4, u5}, E2)

shown in Fig. 10.15a, b, respectively, are isomorphic graphs. Indeed, the function
f : {v1, v2, v3, v4, v5} −⊥ {u1, u2, u3, u4, u5} defined by f (v1) = u1, f (v2) =
u3, f (v3) = u5, f (v4) = u2, and f (v5) = u4 can be easily seen to be a graph
isomorphism.

On the other hand, both graphs shown in Fig. 10.16 have six vertices but cannot
be isomorphic. Indeed, the first graph consists of one connected component, while
the second has two connected components ({u1, u3, u5} and {u2, u4, u6}).

If two graphs are isomorphic, they have the same degree sequences. The inverse
is not true; indeed, the graphs shown in Fig. 10.16 have the same degree sequence
d = (2, 2, 2, 2, 2, 2) but are not isomorphic.

In general, an invariant of graphs is a set of numbers that is the same for two
isomorphic graphs. Thus, the degree sequence is an invariant of graphs.

For digraphs we have two types of connectivity.
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(a) (b)

Fig. 10.16 Two graphs that are not isomorphic

Definition 10.48 A digraph is weakly connected if there exists an undirected walk
between any pair of vertices and is strongly connected it there exists a walk between
every pair of vertices.

The connectivity relation ΨG of a digraph G = (V, E) consists of all pairs (u, v) ∈
V × V such that there exists a path from u to v and a path from v to u. Thus, for a
strongly connected digraph ΨG has a single equivalence class.

Theorem 10.49 A digraph G = (V, E) is strongly connected if and only if there
exists no partition {S, T } of V such that all edges between S and T have their source
in S and their destination in T .

Proof Let G = (V, E) be a strongly connected digraph. Suppose that {S, T } is a
partition of V such that all edges between S and T have their source in S and their
destination in T and let s, t be two vertices such that s ∈ S and t ∈ T . Since G

is strongly connected there is a walk w = (x0, x1, . . . , xk) that joins t to s, that is,
t = x0 and xk = s. Let x p be the first vertex on this path that belongs to S. If is clear
that x p−1 ∈ T and the edge (x p−1, x p) has its source in T and its destination in S,
which contradicts the definition of the partition {S, T }.

Conversely, suppose thatG is not strongly connected. There exists a pair of vertices
(x, y) such that there is no path from x to y. Let S ∨ V consist of those vertices
that can be reached from x and let T = V − S. Clearly, both S and T are non-empty
subsets of V because x ∈ S, and y ∈ T . Thus, {S, T } is a partition of V .

There is no edge in G that has its source in S and its destination in T . Indeed,
suppose that (u, v) ∈ E were such an edge with u ∈ S and v ∈ T . By the definition
of S there is a path w from x to u. Then w(u, v) would be a path that would reach v

from x . This contradicts the definition of T . Therefore, if G is strongly connected, a
partition {S, T } of V such that all edges between S and T have their source in S and
their destination in T cannot exist.

Definition 10.50 Let G = (V, E) be a directed graph and let V1, . . . , Vk the set of
equivalence classes relative to the equivalence ΨG.

The condensed graph of G is the digraph C(G) = ({V1, . . . , Vk}, K ), having the
strong components as its vertices such that (Vi , Vj ) ∈ K if and only if there exists
vi ∈ Vi and v j ∈ Vj such that (vi , v j ) ∈ E.
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(a)

(b)

Fig. 10.17 Directed graph G and its condensed graph C(G)

Theorem 10.51 The condensed graph C(G) is acyclic.

Proof Suppose that (vi1 , . . . , viφ , vi1) is a cycle in the graph C(G) that consists
of φ distinct vertices. By the definition of C(G) we have a sequence of vertices
(vi1 , . . . , viφ,vi1

in G such that the (vi p , vi p+1 ∈ E for 1 � p � φ − 1 and
(viell , vi1) ∈ E . Therefore, (vi1 , . . . , viφ,vi1

is a cycle and for any two vertices u, v of
this cycle there is a path from u to v and a path from v to u. In other words, for any
pair of vertices (u, v) of this cycle we have (u, v) ∈ ΨG, so Vi1 = · · · = Viφ , which
contradicts our initial assumption.

Example 10.52 The strong components of the digraph G shown in Fig. 10.17a are
K1 = {v1, v2, v3}, K2 = {v4, v5, v7, v8}, and K3 = {v6, v9}. The condensed
graph C(G) shown in Fig. 10.17b has {K1, K2, K3} as its set of vertices and
{(K1, K2), (K2, K3)} as its set of edges.

10.2.3 Variable Adjacency Matrices

Let G = (V, E) be a digraph, where V = {v1, . . . , vm}. For each edge (vi , v j ) ∈ E
we introduce the variable ei j . The variable adjacency matrix of the graph G is the
matrix AG(E) defined by

(AG(E))i j =
{

ei j if (vi , v j ) is an edge in E,

0 otherwise.

The definition of the adjacency matrix for undirected graph is identical.

Example 10.53 The variable adjacency matrix of the graph shown in Fig. 10.18 is

AG(E) =


⎜⎜

0 e12 0 e14
e21 0 e23 e24
e31 e32 0 e34
e41 0 0 0


⎟⎟ .



10.2 Graphs and Directed Graphs 475

Fig. 10.18 Directed graph

By taking ei j = 1 we get the standard adjacency matrix of G,

AG =


⎜⎜

0 1 0 1
1 0 1 1
1 1 0 1
1 0 0 0


⎟⎟ .

The determinant of AG(E) is

det(AG(E)) = −e12e23e34e41 + e14e41e23e32.

A term in the expansion of the determinant det(AG(E)) corresponds to a permu-
tation

β =
⎩

1 2 · · · m
j1 j2 · · · jm

⎫

and has the form
(−1)inv(β)e1 j1 · · · em jm .

Therefore, such a term is nonzero if and only if the edges of a digraph corresponding
to the entries in this term constitute a linear spanning subgraph that consists of a
collection of cycles such that each vertex of G is contained in exactly one of these
cycles.

Theorem 10.54 (Harary’s Theorem) Let s be the number of linear spanning sub-
graphs of a digraph G. Then, det(AG(E)) is given by

det(AG(E)) =
s∑

h=1

(−1)eh ph,

where ph is the product of the variables corresponding to the edges of the hth linear
spanning subgraph Hh of G and eh is the number of even cycles of Hh.
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Proof The contribution of a spanning subgraph Hh consists of two factors: the prod-
uct ph of the variables corresponding to the edges of Hh , and the factor (−1)eh .
Since the number of inversions of a cyclic permutation of odd length is even, and
the number of inversions of a cyclic permutation of even length is odd, the parity of
the permutation β equals the sum of the parities of the even cycles and, therefore, it
equals the number eh of even cyclic permutations.

Corollary 10.55 The value of the determinant det(AG) is

det(AG) =
s∑

h=1

(−1)eh ,

where eh is the number of even cycles of the spanning graph Hh.

Proof This follows from Theorem 10.54 by taking ei j = 1 for every edge (vi , v j ) ∈
E .

Example 10.56 The spanning linear subgraphs of the digraph introduced in Example
10.53 are defined by the sets of edges (v1, v2), (v2, v3), (v3, v4)(v4, v1) and (v1, v4),

(v4v1), (v2v3), (v3v2). The first linear spanning subgraph is a cycle of length 4; the
second consists of two cycles of length 2.

If a digraph G has k strong connected components V1, . . . , Vk and its vertices
are numbered such that vertices that belong to a strong connected component are
numbered consecutively, then its adjacency matrix (and its variable adjacency matrix)
is a block diagonal matrix, AC = diag(A1, . . . , Ak), where Ai is the adjacency
matrix of the subgraph of G induced by Vi for 1 � i � k.

To transfer the results for digraphs to graphs, note that the adjacency matrix of a
graph G = (V, E), which is symmetric, can be interpreted as the adjacency matrix of
a digraph G′ = (V, E ′), where E ′ contains both edges (vi , v j ) and (v j , vi ) whenever
E contains the edge (vi , v j ).

The digraph G′ is said to be obtained from G by symmetrization.

Example 10.57 Let A ∈ {0, 1}4 be the matrix

A =


⎜⎜

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


⎟⎟ .

We have A = AK4 , where K4 is the graph shown in Fig. 10.19a. The digraph that
has the same incidence matrix is shown in Fig. 10.19b.

The variable adjacency matrix of a graph has the same definition as the corre-
sponding adjacency matrix of a digraph with the provision that variables of the form
ei j and e ji are identified. For example, the variable adjacency matrix of K4 is
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(a) (b)

Fig. 10.19 The graph K4 and its symmetrized digraph

AG(E) =


⎜⎜

0 e12 e13 e14
e12 0 e23 e24
e13 e23 0 e34
e14 e24 e34 0


⎟⎟

and its determinant is

det(AG(E)) = e2
12e2

34 + e2
13e2

24 + e2
14e2

23

−2e12e13e24e34 − 2e12e14e23e34 − 2e13e14e23e24.

For both digraphs and graphs the determinant of the variable adjacency matrix is
the sum of the variable determinants of its linear subgraphs,

det(AG(E)) =
n∑

h=1

det(AHh (E)).

Thus, to obtain a formula for the determinant of a graph it suffices to develop such
a formula for the determinant of a linear graph.

Recall that the components of a linear graph H are either edges or cycles. Denote
by LH the set of of components ofH that consist of two vertices and the edge joining
them and let MH remaining components of H which are cycles. The same symbols,
LH and MH are used to denote the sets of variables that correspond to the edges in
the two sets. Denote by eH the number of components of H that consist of an even
number of vertices and by cH the number of components of H that contain more
than two points (and, therefore, consist of a cycle).

Theorem 10.58 Let H be a linear graph. We have

det(AH(E1 ∅ E) = (−1)eH 2cH
⎬

e∈LH

e2
⎬

e∈MH

e.

Proof The equality of the theorem follows from the similar equality for digraphs
obtained in Theorem 10.54.
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Fig. 10.20 Tree having V =
{t, u, v, w, x, y, z} as its set
of vertices

Consider the digraph H′ obtained by symmetrization from H. The factor (−1)eH

is the same as the factor given in Theorem 10.54.
Note that the symmetrized digraph H′ may contain several linear subgraphs

because every cycle in H yields two directed cycles in H′. Thus, the number of
linear subgraphs of H′ is 2cH . For each of the linear subgraphs of H′ the product of
variables is obtained by multiplying all variables that correspond to edges that are
part of a cycle and the squares of the variables that correspond to the edges.

10.3 Trees

Trees are graphs of special interest to data mining due to the presence of tree-
structured data in areas such as Web and text mining and computational biology.

Definition 10.59 A tree is a graph G = (V, E) that is both connected and acyclic.
A forest is a graph G = (V, E) whose connected components are trees.

Example 10.60 The graph of Fig. 10.20 is a tree having V = {t, u, v, w, x, y, z} as
its set of vertices and E = {(t, v), (v,w), (y, u), (y, v), (x, y), (x, z)} as its set of
edges.

Next, we give several equivalent characterizations of trees.

Theorem 10.61 Let G = (V, E) be a graph. The following statements are equiva-
lent:

(i) G is a tree.
(ii) Any two vertices x, y ∈ V are connected by a unique path.

(iii) G is minimally connected; in other words, if an edge e is removed from E, the
resulting graph G′ = (E, V − {e}) is not connected.

(iv) G is connected, and |E | = |V | − 1.
(v) G is an acyclic graph, and |E | = |V | − 1.
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Proof (i) implies (ii): Let G be a graph that is connected and acyclic and let u and
v be two vertices of the graph. If p and q are two distinct paths that connect u to v,
then pq is a cycle in G, which contradicts its acyclicity. Therefore, (ii) follows.

(ii) implies (iii): Suppose that any two vertices of G are connected by a unique
path. If e = (u, v) is an edge in G, then (u, v) is a path in G and therefore it must be
the unique path connecting u and v. If e is removed, then it is impossible to reach v

from u, and this contradicts the connectivity of G.
(iii) implies (iv): The argument is by induction on |V |. If |V | = 1, there is

no edge, so the equality is satisfied. Suppose that the statement holds for graphs
with fewer than n vertices and that |V | = n. Choose an edge (u, v) ∈ E . If the
edge (u, v) is removed, then the graph separates into two connected components
G0 = (V0, E0) and G1 = (V1, E1) with fewer vertices because G is minimally
connected. By the inductive hypothesis, |E0| = |V0| − 1 and |E1| = |V1| − 1.
Therefore, |E | = |E0| + |E1| + 1 = |V0| − 1 + |V1| − 1 + 1 = |V | − 1.

(iv) implies (v): Let G be a connected graph such that |E | = |V | − 1. Suppose
that G has a cycle c = (v1, . . . , vp, v1). Let G0 = (V0, E0) be the subgraph of G that
consists of the cycle. Clearly, G0 contains p vertices and an equal number of edges.

Let U = V − {v1, . . . , vp}. Since G is connected, there is a vertex u1 ∈ U
and a vertex v of the cycle c such that an edge (u1, v) exists in the graph G. Let
G1 = (V1, E1), where V1 = V0 ∅ {u1} and E1 = E0 ∅ {(u1, v)}. It is clear that
|V1| = |E1|. If V − V1 ∞= ∩, there exists a vertex v2 ∈ V − V2 and an edge (v2, w),
where w ∈ V1. This yields the graph G2 = (V1 ∅ {v2}, E1 ∅ {(v2, w)}), which,
again has an equal number of vertices and edges. The process may continue until
we exhaust all vertices. Thus, we have a sequence G0,G1, . . . ,Gm of subgraphs of
G, where Gm = (Vm, Em), |Em | = |Vm | and Vm = V . Since Gm is a subgraph of G,
we have |V | = |Vm | = |Em | � |E |, which contradicts the fact that |E | = |V | − 1.
Therefore, G is acyclic.

(v) implies (i): Let G = (V, E) be an acyclic graph such that |E | = |V | − 1.
Suppose thatG has k connected components, V1, . . . , Vk , and let Ei be the set of edges
that connect vertices that belong to the set Vi . Note that the graphs Gi = (Vi , Ei )

are both connected and acyclic so they are trees. We have |E | = ∑n
i=1 |Ei | and

|V | = ∑n
i=1 |Vi |. Therefore, |E | = ∑n

i=1 |Ei | = ∑n
i=1 |Vi | − k = |V | − k. Since

|E | = |V | − 1 it follows that k = 1, so G = (V, E) is connected. This implies that
G is a tree.

Corollary 10.62 The graphG = (V, E) is a tree if and only if it is maximally acyclic;
in other words, if an edge e is added to E, the resulting graph G′ = (E, V ∅ {e})
contains a cycle.

Proof Let G be a tree. If we add an edge e = (u, v) to the E , then, since u and v are
already connected by a path, we create a cycle. Thus, G is maximally acyclic.

Conversely, suppose that G is maximally acyclic. For every pair of vertices u and
v in G, two cases may occur:

1. there is an edge (u, v) in G or
2. there is no edge (u, v) in G.
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In the second case, adding the edge (u, v) creates a cycle, which means that there is
a path in G that connects u to v. Therefore, in either case, there is a path connecting
u to v, so G is a connected graph and therefore a tree.

Corollary 10.63 If G = (V, E) is a connected graph, then G contains a subgraph
that is a tree that has V as its set of vertices.

Proof Define the graph T = (V, E ′) as a minimally connected subgraph having the
set V as its set of vertices. It is immediate that T is a tree.

We shall refer to a tree T whose existence was shown in Corollary 10.63 as a
spanning tree of G.

Corollary 10.64 If G is an acyclic graph, then G contains |V | − |E | connected
components.

Proof This statement follows immediately from the proof of Theorem 10.61.

Definition 10.65 A rooted tree is a pair (T, v0), where T = (V, E) is a tree and v0
is a vertex of T called the root of R.

If (T, v0) is a rooted tree and v is an arbitrary vertex of T there is a unique path
that joins v0 to v. The height of v is the length of this path, denoted by height(v).

The number max{height(v) | v ∈ V } is the height of the rooted tree (T, v0); this
number is denoted by height(T, v0).

Rooted trees are generally drawn with the root at the top of the picture; if (u, v)

is an edge and height(u) = height(v) + 1, then u is drawn above v.

Example 10.66 Let (T, v0) be the rooted tree shown in Fig. 10.21. The heights of
the vertices are shown in the following table:

v v1 v2 v3 v4 v5 v6 v7 v8

height(v) 1 2 3 1 2 2 3 3

A rooted tree (T, v0) may be regarded as a directed graph. Note that if (u, v) is an
edge in a rooted tree, the heights of u and v differ by 1. If height(u) = height(v) + 1,
then we say that u is an immediate descendant of v and that v is an immediate
ascendant of u. The unoriented edge {u, v} can now be replaced by the oriented edge
(u, v).

In a rooted tree, vertices can be partitioned into sets of nodes named levels. Each
level Li consists of those nodes whose height in the tree equals i . In a rooted tree
(T, v0) of height h there exist h + 1 levels, L0, · · · , Lh .

Example 10.67 The directed graph that corresponds to the rooted tree from Fig. 10.21
is shown in Fig. 10.22.

The levels of this rooted tree are L0 = {v0}, L1 = {v1, v4}, L2 = {v2, v5, v6},
and L3 = {v3, v7, v8}.
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Fig. 10.21 Rooted tree

Fig. 10.22 Directed graph of
a rooted tree

An ordered rooted tree is a triple (T, v0, r), where T = (V, E) and v0 have the
same meaning as above, and r : V −⊥ Seq(V ) is a function defined on the set of
vertices of T such that r(v) is a sequence, without repetition, of the descendants of
the node v. If v is a leaf, then r(v) = Φ.

Example 10.68 In Fig. 10.23, we present an ordered rooted tree that is created start-
ing from the rooted tree from Fig. 10.22.

In general, we omit the explicit specification of the sequences of descendants for an
ordered rooted tree and assume that each such sequence r(v) consists of the direct
descendants of v read from the graph from left to right.

Definition 10.69 A binary tree is a rooted tree (T, v0) such that each node has at
most two descendants.

The rooted tree is a subgraph of (T, v0) that consists of all descendants of the left
son of v0 is the left subtree of the binary tree. Similarly, the set of descendants of the
right son of v0 forms the right subtree of T.
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Fig. 10.23 Ordered rooted tree

In a binary tree, a level Li may contain up to 2i nodes; when this happens, we say
that the level is complete. Thus, in a binary tree of height h, we may have at most
2h+1 nodes.

The notion of an ordered binary tree corresponds to binary trees in which we
specify the order of the descendants of each node. If v, x, y are three nodes of an
ordered binary tree and r(v) = (x, y), then we say that x is the left son of v and y is
the right son of v.

An almost complete binary tree is a binary tree such that all levels, with the
possible exception of the last, are complete. The last level of an almost complete
binary tree is always filled from left to right.

Note that the ratio of the number of nodes of a right subtree and the number of
nodes of the left subtree of an almost complete binary tree is at most 2. Thus, the size
of these subtrees is not larger than 2

3 the size of the almost complete binary tree.

Example 10.70 The binary tree shown in Fig. 10.24 is an almost complete binary
tree.

Given a graph G = (V, E) and two unconnected vertices u, v ∈ V let G + (u, v)

be the graph (V, E ∅ {(u, v)}). If (r, s) is an edge in G, we denote by G − (r, s) the
graph (V, E − {(r, s)}).
Definition 10.71 A weighted graph is a triple G = (V, E, w), where (V, E) is a
graph and w : E −⊥ R is a weight function. If e ∈ E, we refer to w(e) as the
weight of the edge e.

The weighted degree of a vertex v ∈ V is

d(v) =
∑

{w(v, t) | (v, t) ∈ E}.

The weight of a set of edges F is the number w(F) defined by
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Fig. 10.24 An almost
complete binary tree

w(F) =
∑

{w(e)|e ∈ F}.

The adjacency matrix and the degree matrix of a weighted graph are direct gen-
eralizations of the corresponding notions for graphs.

The adjacency matrix of a weighted graph G = (V, E, w), where V =
{v1, . . . , vm} is defined by

(AG)i j =
{

w(vi , v j ) if (vi , v j ) ∈ E,

0 otherwise.

for 1 � i, j � m. The degree matrix of a weighted graph G = (V, E, w) is

DG = diag(d(v1), . . . , d(vm)).

Clearly, if w(e) = 1 for every edge e ∈ E , the adjacency and the degree matrices
of a weighted graph G = (V, E, w) coincide with the corresponding matrices of the
graph (V, E).

Definition 10.72 A minimal spanning tree for a weighted graph G = (V, E, w) is
a spanning graph for (V, E) that is a tree T = (V, F) such that w(F) is minimal.

We present an effective construction of a minimal spanning tree for a weighted
graph G = (V, E, w), where (V, E) is a finite, connected graph known as Kruskal’s
algorithm. Suppose that e1, e2, . . . , en is the list of all edges of G listed in increasing
order of their weights; that is, w(e1) � w(e2) � · · · � w(en). We use the following
algorithm.

We claim that T = (V, F) is a minimal spanning tree. Indeed, let T′ = (V, F ′)
be a minimal spanning tree such that |F ∪ F ′| is maximal. Suppose that F ′ ∞= F , and
let e = (x, y) be the first edge of F in the list of edges that does not belong to F ′.



484 10 Graphs and Matrices

Fig. 10.25 Weighted graph (V, E, w)

The tree T′ contains a unique path p that joins x to y. Note that this path cannot
be included in T since otherwise T would contain a cycle formed by p and (x, y).
Therefore, there exists an edge e′ on the path p that does not belong to T.

Algorithm 10.3.1: Kruskal’s Algorithm
Data: a weighted graph G= (V, E, w)

Result: a set of edges F that defines a minimal spanning tree
initialize F = e1;1
repeat2

select the first edge e in the list of edges such that e ∞∈ F and the subgraph (V, F ∅ {e}) is3
acyclic;
F := F ∅ {e};4

until no edges exist such thate ∞∈ F and the subgraph (V, F ∅ {e}) is acyclic;5
return T = (V, F);6

Note that the weight of edge e cannot be larger than the weight of e′ because e
was chosen for T by the algorithm and e′ is not an edge of T, which shows that e
precedes e′ in the previous list of edges. The set F1 = F ′ − {e′} ∅ {e} defines a
spanning tree T1, and since w(F1) = w(F ′)−w(e′)+w(e) � w(F ′), it follows that
the tree T′ = (V, F ′) is a minimal spanning tree of G. Since |F1 ∪ F | > |F ′ ∪ F |,
this leads to a contradiction. Thus, F ′ = F and T is indeed a minimal spanning tree.

Example 10.73 Consider the weighted graph given in Fig. 10.25, whose edges are
marked by the weights. The list of edges in nondecreasing order of their weights is

(v1, v2), (v1, v4), (v6, v7), (v5, v6),

(v3, v4), (v3, v5), (v5, v8), (v7, v8),

(v2, v3), (v1, v8), (v2, v6), (v4, v6).
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Fig. 10.26 Minimal spanning tree for the weighted graph from Fig. 10.25

The minimal spanning tree for this weighted graph is shown in thick lines in
Fig. 10.26. The sequence of edges added to the set of edges of the minimal spanning
tree is

(v1, v2), (v1, v4), (v6, v7), (v5, v6), (v3, v4), (v3, v5), (v5, v8).

An alternative algorithm known as Prim’s algorithm is given next. In this modality
of constructing the minimal spanning tree of a finite, connected graph G = (V, E),
we construct a sequence of pairs of sets of vertices and edges that begins with a pair
(V1, E1) = ({v},∩), where v is an arbitrary vertex.

Suppose that we constructed the pairs (V1, E1), . . . , (Vk, Ek). Define the set of
edges Hk = {(v,w) ∈ E |v ∈ Vk, w ∞∈ Vk}. If (vk, tk) is an edge in Hk of minimal
weight, then Vk+1 = Vk ∅ {vk} and Ek+1 = Ek ∅ {(vk, tk)}. The algorithm halts
when Hk = ∩.

Consider the increasing sequences V1 ⊆ V2 ⊆ · · · and E1 ⊆ E2 ⊆ · · · . An
easy induction argument on k shows that the subgraphs (Vk, Ek) are acyclic. The
sequence halts with the pair (Vn, En), where Hn = ∩, so Vn = V . Thus, (Vn, En) is
indeed a spanning tree.

To prove that (Vn, En) = (V, En) is a minimal spanning tree, we will show that
for every subgraph (Vk, Ek), Ek is a subset of the set of edges of a minimal spanning
tree T = (V, E).

The argument is by induction on k. The basis case, k = 1, is immediate since
E1 = ∩.

Suppose that Ek is a subset of the set of edges of a minimal spanning tree T =
(V, E) and Ek+1 = Ek ∅ {(vk, tk)}.

Since T is a connected graph, there is a path in this graph that connects vk to tk .
Let (r, s) be the first edge in this path that has one endpoint in Vk . By the definition
of (vk, tk), we have w(vk, tk) � w(r, s). Thus, if we replace (r, s) by (vk, tk) in T,
we obtain a minimal spanning tree whose set of edges includes Ek+1.

Example 10.74 We apply Prim’s algorithm to the weighted graph introduced in
Example 10.73 starting with the vertex v3.
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The sequences V1 ⊆ V2 ⊆ · · · and E1 ⊆ E2 ⊆ · · · are given in the following
table:

k Ek Vk
1 {v3} ∩
2 {v3, v5} {(v3, v5)}
3 {v3, v5, v6} {(v3, v5), (v5, v6)}
4 {v3, v5, v6, v7} {(v3, v5), (v5, v6), (v6, v7)}
5 {v3, v5, v6, v7, v4} {(v3, v5), (v5, v6), (v6, v7), (v3, v4)}
6 {v3, v5, v6, v7, v4, v1} {(v3, v5), (v5, v6), (v6, v7), (v3, v4), (v4, v1)}
7 {v3, v5, v6, v7, v4, v1, v2} {(v3, v5), (v5, v6), (v6, v7), (v3, v4), (v4, v1), (v1, v2)}
8 {v3, v5, v6, v7, v4, v1, v2} {(v3, v5), (v5, v6), (v6, v7), (v3, v4), (v4, v1), (v1, v2), (v5, v8)}

Definition 10.75 Let G = (V, E, w) be a weighted graph. A cut of G is a two-block
partition β = {S, T } of V .

The cut set of the cut β = {S, T } is the set of edges

CS(β) = {(u, v) ∈ E | u ∈ S and v ∈ T }.

The size of the cut β is the number
∑{w(u, v)|(u, v) ∈ CS(β)|. If w(u, v) = 1 for

every edge in E, then the size of a cut is just |CS(β)|.
If s, t ∈ V are two vertices such that s ∈ S and t ∈ T , then we refer to the cut

β = {S, T } as an (s, t)-cut.

For a weighted graph G = (V, E, w) the separation of β is

sep(β) = min{w(v1, v2) | v1 ∈ V1 and v2 ∈ V2}.

The set of links of β is the set of edges

LK(β) = {(x, y) ∈ CS(β) | w(x, y) = sep(β)}.

Example 10.76 Let β = {S, T } be a partition of the set of vertices of Km . Then,
CS(β) = S × T , so the size of this cut is |S| · |T |.
Theorem 10.77 For every partition β = {V1, V2} of a weighted graph (V, E, w)

and minimal spanning tree T, there exists an edge that belongs to T and to LK(β).

Proof Suppose that T is a minimal spanning graph that contains no edge of LK(β).
If an edge (v1, v2) ∈ LK({V1, V2}) is added to T, the resulting graph G′ contains a
unique cycle. The part of this cycle contained in T must contain at least one other
edge (s, t) ∈ CS({V1, V2}) because v1 ∈ V1 and v2 ∈ V2. The edge (s, t) does not
belong to LK({V1, V2}) by the supposition we made concerning T. Consequently,
w(s, t) > w(v1, v2), which means that the spanning tree T1 obtained from T by
removing (s, t) and adding (v1, v2) will have a smaller weight than T. This would
contradict the minimality of T.

Theorem 10.78 If (x, y) is an edge of a treeT = (V, E), then there exists a partition
β = {V1, V2} of V such that CS({V1, V2}) = {(x, y)}.
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Proof Since T is a minimally connected graph, removing an edge (x, y) results in a
graph that contains two disjoint connected components V1 and V2 such that x ∈ V1
and y ∈ V2. Then, it is clear that {(x, y)} = CS({V1, V2}).
Theorem 10.79 Let G = (V, E, w) be a weighted graph and let T be a minimal
spanning link of G. All minimal spanning tree edges are links of some partition of G.

Proof Let (x, y) be an edge in T. If (V1, V2) is the partition of V that corresponds
to the edge (x, y) that exists by Theorem 10.78, then, by Theorem 10.77, T must
contain an edge from CS({V1, V2}). Since T contains only one such edge, it follows
that this edge must belong to LK({V1, V2}).
Corollary 10.80 Let G = (V, E, w) be a weighted graph, where. If w : E −⊥ R

is an injective mapping (that is, if all weights of the edges are distinct), then the
minimal spanning tree is unique. Furthermore, this minimal spanning tree has the
form T = (V, L(G)), where L(G) is the set of all links of G.

Proof Let T = (V, E ′) be a minimal spanning tree of G. Since w is injective, for
any partition β of V , the set LK(β) consists of a unique edge that belongs to each
minimal spanning tree. Thus, L(G) ⊆ E ′. The reverse inclusion follows immediately
from Theorem 10.79, so G has a unique spanning tree T = (V, L(G)).

Theorem 10.81 Let G = (V, E, w) be a weighted graph. If U is a nonempty subset
of V such that sep({U1, U2}) < sep(U, V − U ) for every two-block partition β =
{U1, U2} ∈ PART(U ), then, for every minimal spanning tree T of G, the subgraph
TU is a subtree of T.

Proof Let β = {U1, U2} be a two block partition of U . To prove the statement, it
suffices to show that every minimal spanning tree T of (G, w) contains an edge in
CS(β). This, in turn, will imply that the subgraph TU of T determined by U has only
one connected component, which means that TU is a subtree of T.

To prove that T contains an edge from CS(β), it will suffice to show that
sep(U1, U2) < sep(U1, V −U )because this implies LK(U1, V − U1) ⊆ CS(U1, U2).
Indeed, if this is the case, then the shortest link between a vertex in U1 and one outside
of U1 must be an edge that joins a vertex from U1 to a vertex in U2.

Observe that

sep(U, V −U ) = sep(U1 ∅U2, V −U ) = min{sep(U1, V −U ), sep(U2, V −U )},

and therefore sep(U1, V − U ) � sep(U, V − U ).
By the hypothesis of the theorem, sep(U, V − U ) > sep(U1, U2), and therefore

sep(U1, U2) < sep(U, V − U ) � sep(U1, V − U ),

which leads to the desired conclusion.
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Fig. 10.27 Rymon tree for P({i1, i2, i3, i4})

Search enumeration trees were introduced by Rymon in [5] in order to provide a
unified search-based framework for several problems in artificial intelligence; they
are also useful for data mining algorithms.

Let S be a set and let d : S −⊥ N be an injective function. The number d(x) is
the index of x ∈ S. If P ⊆ S, the view of P is the subset

view(d, P) =
⎭

s ∈ S | d(s) > max
p∈P

d(p)

⎪
.

Definition 10.82 Let C be a hereditary collection of subsets of a set S. The graph
G = (C, E) is a Rymon tree for C and the indexing function d if

(i) the root of G is the empty set, and
(ii) the children of a node P are the sets of the form P ∅ {s}, where s ∈ view(d, P).

If S = {s1, . . . , sn} and d(si ) = i for 1 � i � n, we will omit the indexing
function from the definition of the Rymon tree for P(S).

Example 10.83 Let S = {i1, i2, i3, i4} and letCbeP(S), which is clearly a hereditary
collection of sets. Define the injective mapping d by d(ik) = k for 1 � k � 4. The
Rymon tree for C and d is shown in Fig. 10.27.

A key property of a Rymon tree is stated next.

Theorem 10.84 Let G be a Rymon tree for a hereditary collection C of subsets of a
set S and an indexing function d. Every set P of C occurs exactly once in the tree.
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Proof The argument is by induction on p = |P|. If p = 0, then P is the root of the
tree and the theorem obviously holds.

Suppose that the theorem holds for sets having fewer than p elements, and let
P ∈ C be such that |P| = p. Since C is hereditary, every set of the form P − {x}
with x ∈ P belongs to C and, by the inductive hypothesis, occurs exactly once in the
tree.

Let z be the element of P that has the largest value of the index function d. Then
view(P − {z}) contains z and P is a child of the vertex P − {z}. Since the parent of
P is unique, it follows that P occurs exactly once in the tree.

If a set U is located at the left of a set V in the tree GI , we shall write U � V .
Thus, we have

∩ � {i1} � {i1, i2} � {i1, i2, i3, i4}
� {i1, i2, i4} � {i1, i3} � {i1, i3, i4}
� {i1, i4} � {i2} � {i2, i3}
� {i2, i3, i4} � {i2, i4} � {i3}
� {i3, i4} � {i4}.

Note that in the Rymon tree of a collection of the form P(S), the collection of sets
of Sr that consists of sets located at distance r from the root denotes all

(n
r

)
subsets

of size r of S.

Definition 10.85 A numbering of a graph G = (V, E) is a bijection δ : V −⊥
1, . . . , |V |. The pair (G, δ) is referred to as a numbered graph.

Theorem 10.86 Let δ : V −⊥ {1, . . . , n} be a bijection on the set V , where
|V | = n. There are nn−2 numbered trees (T, δ) having V as the set of vertices.

Proof The best-known argument for this theorem is based on a bijection between
the set of numbered trees having n vertices and the set of sequences of length n − 2
defined on the set {1, . . . , n} and has been formulated in [6].

Let (T, δ) be a numbered tree having n vertices. Define a sequence of trees
(T1, . . . ,Tn−1) and a Prüfer sequence (φ1, . . . , φn−2) ∈ Seqn(N) as follows. The
initial tree T1 equals T. The tree Ti will have n − i + 1 vertices for 1 � i � n − 1.

The Ti+1 is obtained from Ti by seeking the leaf x of Ti such that δ(x) is minimal
and deleting the unique edge of the form (x, y). The number δ(y) is added to the
Prüfer sequence. Note that the label φ of a vertex u will occur exactly d(u)− 1 times
in the Prüfer sequence, once for every vertex adjacent to u that is removed in the
process of building the sequence of trees.

Let L(T, δ) be the Prüfer sequence of (T, δ). If NTn is the set of numbered trees
on n vertices, then the mapping L : NTn −⊥ Seqn−2({1, . . . , n}) is a bijection.

The edges that are removed in the process of constructing the Prüfer sequences
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Fig. 10.28 Enumerated tree

can be listed in a table:

Starting tree Leaf Vertex Resulting tree

T1 x1 y1 T2
.
.
.

.

.

.
.
.
.

.

.

.

Tn−2 xn−2 yn−2 Tn−1
Tn−1 xn−1 yn−1 −

Note that the edges of Ti are (x j , y j ) for i � j � n − 1.
The next to the last tree in the sequence, Tn−2, has two edges and therefore three

vertices. The last tree in the sequence Tn−1 consists of a unique edge (xn−1, yn−1).
Since a tree with at least two vertices has at least two leaves, the node whose label
is n will never be the leaf with the minimal label. Therefore, δ(yn−1) = n and n is
always the last number of L(T, δ).

Also, observe that the leaves of the tree Ti are those vertices that do not belong to
{x1, . . . , xi−1, yi , . . . , yn−1}, which means that xi is the vertex that has the minimal
label and is not in the set above. In particular, x1 is the vertex that has the least label
and is not in L(T, δ). This shows that we can uniquely determine the vertices xi from
L(T, δ) and x1, . . . , xi−1.

Example 10.87 Consider the tree T shown in Fig. 10.28.
The labels of the vertices are placed at the right of each rectangle that represents

a vertex. The table that contains the sequence of edges is

Starting tree Leaf Vertex y δ(y) Resulting tree

T1 u y 5 T2
T2 w v 1 T3
T3 z x 7 T4
T4 t v 1 T5
T5 v y 5 T6
T6 y x 7 −
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Fig. 10.29 Numbered trees with sequences (x1, . . . , xi−1, yi , . . . , yn−1)

This means that L(T, μ) = (5, 1, 7, 1, 5) = δ−1(y, v, x, v, y). The vertex with the
smallest label that does occur in L(T, μ) = (5, 1, 7, 1, 5) is u because φ(u) = 2. This
means that the first edge is (u, y) since φ(y) = 5. The succession of trees is shown
in Fig. 10.29. Under each tree, we show the sequence (x1, . . . , xi−1, yi , . . . , yn−1),
which allows us to select the current leaf xi .

Example 10.88 Suppose again that we have a tree having the set of nodes V =
{x, y, z, u, v, w, t} with the numbering given by
We reconstruct the tree that has (2, 3, 5, 2, 3) as its Prüfer sequence. The first leaf of
this tree will be the vertex with the least value of δ that is not present in the sequence
δ−1(2, 3, 5, 2, 3) = (u, w, y, u, w); that is, v. This means that we start with the
following table.
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Fig. 10.30 Tree reconstructed
from its Prüfer sequence

Vertex x y z u v w t

δ(vertex) 7 5 4 2 1 3 6

Starting tree Leaf Vertex y δ(y) Resulting tree

T1 x u 2 T2
T2 w 3 T3
T3 y 5 T4
T4 u 2 T5
T5 w 3 T6
T6 x 7 −

For each step in filling in this table, we construct the sequence

(x1, . . . , xi−1, yi , . . . , yn−1)

and choose xi as the vertex having minimal numbering that is not in the sequence.
The final table is

Starting tree Leaf Vertex y δ(y) Resulting tree

T1 x u 2 T2
T2 z w 3 T3
T3 t y 5 T4
T4 y u 2 T5
T5 u w 3 T6
T6 w x 7 −

and gives the tree shown in Fig. 10.30.
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10.4 Bipartite Graphs

Definition 10.89 A bipartite graph is a graph G = (V, E) such that there is a two-
block partition β = {V1, V2} for which E ⊆ V1 × V2. If E = V1 × V2, then we say
that G is bipartite complete.

We refer to β as the bipartition of G.

A bipartite complete graph, where |V1| = p and |V2| = q is denoted by Kp,q .
The bipartite graph K4,3 is shown in Fig. 10.3.

Theorem 10.90 Let G = (V, E) be a bipartite graph having the bipartition β =
{V1, V2}. Then

∑{dG(v) | v ∈ V1} = ∑{dG(v) | v ∈ V2}.
Proof Let p = |V1| and q = |V2|. If p = q = 1, the conclusion is immediate
since E consists just of one edge. Thus, we can assume that p, q > 1. The argument
is by induction on |E | and the base case, |E | = 0 is immediate. Suppose that the
conclusion holds for graphs having m edges and let (v1, v2) be an edge that is joining
a vertex v1 ∈ V1 with a vertex v2 ∈ V2. Let G′ be the graph obtained by removing
the edge (v1, v2) from E . By inductive hypothesis we have

∑{dG′(v) | v ∈ V1} =∑{dG′(v) | v ∈ V2}. Adding back the edge (v1, v2) to G′ yields the graph G and we
have∑

{dG(v) | v ∈ V1} =
∑

{dG′(v) | v ∈ V1} + 1

=
∑

{dG′(v) | v ∈ V2} + 1 =
∑

{dG(v) | v ∈ V2}.

Theorem 10.91 A graph is bipartite if and only if it contains no cycle of odd length.

Proof Let G = (V, E) be a bipartite graph having the bipartition {V1, V2}. Suppose
that G contains a cycle of odd length (v0, v1, . . . , v2φ). Without loss of general-
ity, assume that v0 ∈ V1. Because G is bipartite it follows that v1 ∈ V2, v2 ∈
V1, . . . , v2φ ∈ V1. The existence of the edge (v2φ, v0) implies v0 ∈ V2, which con-
tradicts the fact that V1 ∪ V2 = ∩.

Conversely, suppose that G = (V, E) is a graph that contains no cycles having
odd length. Assume initially that G is connected.

Let u ∈ V be a fixed vertex in V . Partition V into two sets V1 and V2 such that
V1 is the set of vertices v such that d(u, v) is odd and V2 is the set of vertices v such
that d(u, v) is even. Clearly, u ∈ V2 and V1 ∪ V2 = ∩.

Suppose that s, t ∈ V1 and there is an edge (s, t) ∈ E . Then, there exists a cycle
(u, . . . , s, t, . . . , u) which has odd length, which is impossible.

If s, t ∈ V2 and there is an edge (s, t) ∈ E , then, again (u, . . . , s, t, . . . , u) is a
cycle of odd length. Thus, no edge may exists that joins vertices in the same block
of the bipartition, so G is bipartite.

If G is not connected the above argument can be applied to each of its connected
component.
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Definition 10.92 A matching in a graph G = (V, E) is a set of edges M such that
no two edges in M have a vertex in common.

M is a matching of a set U of vertices if every vertex u ∈ U is an endpoint of an
edge in M.

The matching number of G is the size of the largest matching of G. This number
is denoted by match(G).

The set of neighbors of a set of vertices W of a graph G = (V, E) is the set

NG(W ) = {v ∈ V − W | (v,w) ∈ E for some w ∈ W }.

Theorem 10.93 (Hall’s Matching Theorem) Let G = (V, E) be a bipartite graph
having the bipartition (V0, V1). There exists a matching of V0 in G if and only if
|NG(U )| � |U | for every subset U of V0.

Proof The condition of the theorem is obviously necessary. Therefore, we need to
show only that the condition is sufficient. The argument is by induction on n = |V0|.

The base case, n = 1, is immediate. Suppose that the condition is sufficient when
the size of V0 is smaller than n and let G be a bipartite graph such that |V0| = n.

If |NG(U )| > |U | for every set U ∨ V0, let (v0, v1) be an edge inG, where v0 ∈ V0
and v1 ∈ V1, and letG′ = (V, E −{(v0, v1)}). We have NG′(U ) � NG(U )−1 � |U |,
so G′ contains a matching of V0 − {v0}. Adding (v0, v1) to this matching we obtain
a matching of V0 in G.

If there exists a subset U of V0 such that NG(U ) = |U |, then, by the inductive
hypothesis, the bipartite graph H = (U ∅ NG(U ), {(u, v) ∈ E | u ∈ U and v ∈
NG(U )} contains a matching of U .

Let H′ be the graph having the set of vertices (V0 − U ) ∅ (V1 − NG(U ) and the
set of edges consisting of those edges of G whose endpoints are located in the sets
(V0 −U ) and (V1 − NG(U ). The bipartite graph H′ also has a matching for if S were
a subset of V0 − U with |NH′(S)| < |S|, this would imply |NG(S ∅ U )| < |S ∅ U |,
which contradicts the initial assumption. Thus, by the inductive hypothesis, H′ has
a matching of V0 − S, which together with the matching for U yields a matching
of V0.

A beautiful application of Hall’s Matching Theorem involves doubly stochastic
matrices.

We observed in Example 5.73 that permutation matrices are doubly-stochastic
matrices. Therefore, any convex combination of permutation matrices is a doubly-
stochastic matrix. An important converse statement is discussed next.

Theorem 10.94 (Birkhoff-von Neumann Theorem) If A ∈ R
n×n is a doubly-

stochastic matrix, then A is a convex combination of permutation matrices.

Proof Let A ∈ R
n×n be a doubly-stochastic matrix. Define a bipartite graph G =

(V, E), where V contains a node ri for each row of A and a node c j for each
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column of A. The bipartition of the graph is {R, C}, where R = {r1, . . . , rn} and
C = {c1, . . . , cn}}.

An edge (ri , c j ) exists if E if ai j > 0. In this case, the edge weight w(ri , c j ) is
ai j . Recall that we denote the set of neighbors of a set of vertices T in G by

NG(T ) = {v ∈ V − T | (v, t) ∈ E for some t ∈ W }.

For every vertex v ∈ V we have

∑
{w(v, t) | t ∈ NG({v})} = 1. (10.2)

Indeed, if v = ri , then the set of neighbors of v consists of vertices that correspond
to columns of A such that ai j > 0. Since the sum of all components of A in row i
is 1, the equality follows immediately. A similar argument applied to the jth column
works when v = c j .

Let T be a set of vertices. We have∑
{w(t, u) | t ∈ T and u ∈ NG(T )} =

∑
t∈T

∑
{w(t, u) | u ∈ NG(t)} = |T |,

by Equality (10.2). If U = NG(T ), then T ⊆ NG(U ), so

|NG(T )| = |U | =
∑

{w(u, s) | u ∈ U and s ∈ NG(U )}
�
∑

{w(u, s) | u ∈ U and s ∈ T } = |T |.

By Hall’s Matching Theorem (Theorem 10.93), there exists a matching M of R in G

for {r1, . . . , rn}. Define the matrix P by

pi j =
{

1 if (ri , c j ) ∈ M,

0 otherwise.

We claim that P is a permutation matrix.
For every row i of A there exists an edge (ri , c j ) in M , so pi j = 1. There exits

only one 1 in the jth column of A for, if pi1 j = pi2 j = 1 for i1 ∞= i2, it would follow
that we have both (i1, j) ∈ M and (i2, j) ∈ M contradicting the fact that M is a
matching.

Let a = min{ai j | pi j ∞= 0}. Clearly, a > 0 and a = apq for some p and q. Let
C = A − a P . If C = On,n , then A is a permutation matrix. Otherwise, note that

(i)
∑n

j=1 ci j = 1 − a and
∑n

i=1 ci j = 1 − a;
(ii) 0 � ci j � 1 − a for 1 � i � n and 1 � j � n;

(iii) cpq = 0.
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Therefore, the matrix D = 1
1 − a C is doubly-stochastic and we have A = a P + (1 −

a)D, where D has at least one more zero element than A.
The equality A = a P + (1 − a)D shows that A is a convex combination of a per-

mutation matrix and a doubly stochastic matrix with strictly more zero components
than A. The statement follows by repeatedly applying this procedure.

Birkhoff-von Neumann Theorem can be applied to obtain a spectral bounding of
the Frobenius distance between two matrices.

Theorem 10.95 (Hoffman-Wielandt Theorem) Let A, B ∈ C
n×n be two normal

matrices having the eigenvalues ν1, . . . , νn and π1, . . . , πn, respectively. Then, there
exist permutations σ and ι in PERMn such that

n∑
i=1

|νi − πι(i)|2 � ∧ A − B ∧2
F �

n∑
i=1

|νi − πσ(i)|2.

Proof Since A and B are normal matrices they can be diagonalized as A = U H DAU
and B = W H DB W , where U and W are unitary matrices and C, D are diagonal
matrices, C = diag(ν1, . . . , νn) and D = diag(π1, . . . , πn). Then, we can write

∧ A − B ∧2
F =∧ U HCU − W H DW ∧2

F = trace(EH E),

where E = U HCU − W H DW . Note that

EH E = (U HCHU − W H DHW )(U HCU − W H DW )

= U HCHCU + W H DH DW − W H DHWU HCU − U HCHU W H DW

= U HCHCU + W H DH DW − U HCHU W H DW − (U HCHU W H DW )H

= U HCHCU + W H DH DW − 2⇒(U HCHU W H DW ).

Observe that

trace(⇒(U HCHU W H DW )) = ⇒(trace(U HCHU W H DW ))

= ⇒(trace(CHU W H DWU H)).

Thus, if Z is the unitary matrix Z = WU H, we have

trace(⇒(U HCHU W H DW )) = ⇒(trace(CH Z H DZ)).

Since ∧ C ∧2
F = ∑n

i=1 ν2
i and ∧ D ∧2

F = ∑n
i=1 π2

i , we have:

trace(EH E) = ∧ C ∧2
F + ∧ D ∧2

F − 2⇒(trace(CH Z H DZ))

=
n∑

i=1

ν2
i +

n∑
i=1

π2
i − 2⇒


 n∑

i=1

n∑
j=1

āi |zi j |2π j


 .



10.4 Bipartite Graphs 497

The matrix S that has the elements |zi j |2 is doubly-stochastic because Z is a unitary
matrix. This allows us to write:

∧ A − B ∧2
F = trace(EH E)

�
n∑

i=1

ν2
i +

n∑
i=1

π2
i − max

S
⇒

 n∑

i=1

n∑
j=1

āi si jπ j


 ,

and

∧ A − B ∧2
F = trace(EH E)

�
n∑

i=1

ν2
i +

n∑
i=1

π2
i − min

S
⇒

 n∑

i=1

n∑
j=1

āi si jπ j


 ,

where the maximum and the minimum are taken over the set of all doubly-stochastic
matrices.

Birkhoff-von Neumann Theorem states that the polyhedron of doubly-stochastic
matrices has the permutation matrices as its vertices. Therefore, the extremes of the
linear function

f (S) = ⇒

 n∑

i=1

n∑
j=1

ν̄i si jπ j




are achieved when S is a permutation matrix. Let Pσ the permutation matrix that gives
the maximum of f and let Pι be the permutation matrix that gives the minimum.

If S = Pσ , then
∑n

j=1 si jπ j = πσ(i), so

∧ A − B ∧2
F �

n∑
i=1

ν2
i +

n∑
i=1

π2
i − ⇒


 n∑

i=1

n∑
j=1

ν̄iπσ( j)




=
n∑

i=1

|νi − πσ(i)|2.

In the last equality we used the elementary equality |a − b|2 = |a|2 + |b|2 −2⇒(āb)

for a, b ∈ C.
Similarly, if S = Pι , we obtain the other inequality.

Corollary 10.96 Let A, B ∈ C
n×n be two Hermitian matrices having the eigenval-

ues ν1, . . . , νn and π1, . . . , πn, respectively, where ν1 � · · · � νn and π1 � · · · �
πn. Then,

∑n
i=1 |νi − πi |2 � ∧ A − B ∧2

F .
If ν1 � · · · � νn and π1 � · · · � πn, then

∑n
i=1 |νi − πi |2 � ∧ A − B ∧2

F .



498 10 Graphs and Matrices

Proof Since A and B are Hermitian, their eigenvalues are real numbers. By Hoffman-
Wielandt Theorem, there exist two permutations σ,ι ∈ PERMn such that

n∑
i=1

|νi − πι(i)|2 � ∧ A − B ∧2
F �

n∑
i=1

|νi − πσ(i)|2.

We have
∑n

i=1 |νi − πσ(i)|2 =∧ a − Pσb ∧2
F and

∑n
i=1 |νi − πι(i)|2 =∧ a −

Pιb ∧2
F , where

a =

⎜

ν1
...

νn


⎟ and b =


⎜

π1
...

πn


⎟ ,

so
∧ a − Pιb ∧2

F � ∧ A − B ∧2
F � ∧ a − Pσb ∧2

F .

By Corollary 6.30, since the components of a and b are placed in decreasing order,
we have ∧ a − Pσb ∧F � ∧ a − b ∧F , so

∧ a − b ∧2
F =

n∑
i=1

|νi − πi |2 � ∧ a − Pσb ∧F � ∧ A − B ∧2
F ,

which proves the first inequality of the corollary.
For the second part, by Corollary 6.30 we have

∧ A − B ∧F � ∧ a − Pιb ∧F � ∧ a − b ∧F ,

Bipartite graphs allow an intuitive description of the supremum and infimum of
two partitions.

Definition 10.97 Let β, α ∈ PART(S), where β = {Bi | i ∈ I } and α = {C j |
j ∈ J }. The graph of the pair (β, α ) is the bipartite graph

Gβ,α = ({Bi | i ∈ I } ∅ {C j | j ∈ J }, E),

where E consists of those two-element sets {Bi , C j } such that Bi ∪ C j ∞= ∩.

Example 10.98 Let S = {ai | 1 � i � 12} and let β = {Bi | 1 � i � 5} and
α = {C j | 1 � j � 4}, where

B1 = {a1, a2}, C1 = {a2, a4},
B2 = {a3, a4, a5}, C2 = {a1, a3, a5, a6, a7},
B3 = {a6, a7}, C3 = {a8, a11},
B4 = {a8, a9, a10}, C4 = {a9, a10, a12},
B5 = {a11, a12}.
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Fig. 10.31 The graph Gβ,α

The graph Gβ,α is shown in Fig. 10.31.

Note that the blocks of β ↔ α correspond to the edges of the graph Gβ,α .

Example 10.99 If β and α are the partitions introduced in Example 10.98, then the
partition β ↔ α consists of nine blocks that correspond to the edges of the graph:

B1 ∪ C1 = {a2}, B1 ∪ C2 = {a1}, B2 ∪ C1 = {a4},
B2 ∪ C2 = {a3, a5}, B3 ∪ C2 = {a6, a7}, B4 ∪ C3 = {a8},
B4 ∪ C4 = {a9, a10}, B5 ∪ C3 = {a11}, B5 ∪ C4 = {a12}.

Theorem 10.100 Let β and α ∈ PART(S), where β = {Bi | i ∈ I } and α =
{C j | j ∈ J }. The sup{β, α } exists in the poset (PART(S),�), and the blocks of the
partition sup{β, α } are the unions of the blocks that belong to connected components
of the graph Gβ,α .

Proof The connected components of the graph Gβ,α form a partition of the set of
vertices of the graph. Let ∂ be the partition of S whose blocks are the unions of the
blocks that belong to connected components of the graph Gβ,α .

Let D be a block of ∂ and let {Bi1, . . . , Bi p } and {C j1, . . . , C jq } be the sets of
blocks of β and α , respectively, that are included in ∂ . We claim that

⋃
{Bik | 1 � k � p} =

⋃
{C jh | 1 � h � q}.

Indeed, let x ∈ ⎨{Bik | 1 � k � p}. There exists a block Biφ such that x ∈ Biφ .
Also, there is a block C of α such that x ∈ C . Since x ∈ Biφ ∪C , it follows that there
exists an edge (Biφ , C) in Gβ,α , so C belongs to the same connected component as
Biφ ; that is, C = C jg for some g, 1 � g � q . Therefore,

⋃
{Bik | 1 � k � p} ⊆

⋃
{C jh | 1 � h � q}.
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The reverse inclusion can be shown in a similar manner. This proves the needed
equality, which can now be written

D =
⋃

{Bik | 1 � k � p} =
⋃

{C jh | 1 � h � q}.

It is clear that we have both β � ∂ and α � ∂ .
Suppose now that ∂ ′ is a partition such that β � ∂ ′ and β � ∂ ′. Let B ∈ β and

C ∈ α be two blocks that have a nonempty intersection. If x ∈ B ∪ C , then both B
and C are included in the block of ∂ ′ that contains x . In other words, if in Gβ,α an
edge exists that joins B and C , then they are both included in the same block of ∂ ′.
This property can be extended to paths: if there is a path in Gβ,α that joins a block B
of β to a block C of α , then the union of all β -blocks and of all the α -blocks along
this path is included in a block E of ∂ ′. The argument, by induction on the length of
the path, is immediate and is omitted. Thus, every block of ∂ , which is a union of all
β -blocks that belong to a connected component (and of all α -blocks that belong to
the same connected component), is included in a block of ∂ ′. Therefore, ∂ � ∂ ′, and
this proves that ∂ = sup{β, α }.

Let β, α ∈ PART(S) and let ∂ = sup{β, α }. We have (x, y) ∈ ξ∂ if and
only if {x, y} is enclosed in the same connected component of the graph Gβ,α ;
that is, if and only if there exists an alternating sequence of blocks of β and α –
Bi1, C j1 , Bi2 , C j2 , . . . , Bir , C js – such that x ∈ Bi1 and y ∈ C js . This is equivalent
to the existence of a sequence of elements z0, z1, . . . , zm of S such that z0 = x ,
zm = y, and (zi , zi+1) ∈ ξβ or (zi , zi+1) ∈ ξα for every i , 0 � i � m − 1.

The partition sup{β, α } will be denoted by β ⊃ α .

Example 10.101 The graph of the partitions β, α introduced in Example 10.98 has
two connected components that correspond to the blocks,

D1 = {a1, a2, a3, a4, a5, a6, a7} = B1 ∅ B2 ∅ B3 = C1 ∅ C2,

D2 = {a8, a9, a10, a11, a12} = B4 ∅ B5 = C3 ∅ C4,

of the partition β ⊃ α .

Theorem 10.102 Let S be a set and let ξ, ξ′ ∈ EQ(S). We have βξ ↔ βξ′ = βξ∪ξ′ .

Proof Indeed, note that ξ ∪ ξ′ is an equivalence on S, and the equivalence classes
of this equivalence (that is, the blocks of the partition βξ∪ξ′ ) are the nonempty
intersections of the blocks of ξ and ξ′. The definition of the infimum of two partitions
shows that the set of blocks of βξ ↔βξ′ is exactly the same, which gives the equality
of the theorem.
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Fig. 10.32 Digraph of the
matrix A

10.5 Digraphs of Matrices

The adjacency matrix is the usual matrix representation of a digraph. In this section
we are concerned with the reverse process that associates a graph to a matrix.

Definition 10.103 Let A ∈ C
n×n be a square matrix. The directed graph of A is the

digraph GA = ({1, . . . , n}, E), where (i, j) ∈ E if and only if ai j ∞= 0.

Example 10.104 The directed graph of the matrix

A =

 1 2 0

−1 0 1
−2 1 1




is shown in Fig. 10.32.

Definition 10.105 A matrix A ∈ C
n×n is irreducible if its digraph GA is strongly

connected.

Let M(A) be the adjacency matrix of the digraphGA. It is clear that A is irreducible
if and only if M(A) is irreducible. Furthermore, the irreducibility of A is equivalent
to the irreducibility of AH (and of A′).

Theorem 10.49 states that the digraph GA is strongly connected if and only if
there does not exist a partition {S, T } of {1, . . . , n} such that all edges between S and
T have their source in S and their destination in T . Assuming that we number the
vertices of S as 1, . . . , m and the vertices of T as {m + 1, . . . , n}, A is irreducible if
and only if A does not have the form

A =
⎩

U V
On−m,m W

⎫
,

where U ∈ C
m×m , V ∈ C

m×(n−m) and W ∈ C
(n−m)×(n−m).

If the vertices of the digraph GA are renumbered by replacing each number j
by σ( j), where σ is a permutation of the set {1, . . . , n}, the adjacency matrix of
the resulting graph G′ is AG′ = Pσ AΦ−1

σ = Pσ AΦ ′
σ . Thus, a matrix A ∈ C

n×n is
irreducible if and only if there is there is no permutation σ such that
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Pσ AΦ ′
σ =

⎩
U V

On−m,m W

⎫
,

where U ∈ C
m×m , V ∈ C

m×(n−m) and W ∈ C
(n−m)×(n−m).

Theorem 10.106 Let A be matrix, A ∈ C
n×n. There exists a permutation matrix

Pσ and p ∈ N, p � 1 such that Pσ AP ′
σ is a upper triangular block matrix,

Pσ AP ′
σ =


⎜⎜⎜

A11 A12 · · · A1p

O A22 · · · A2p
...

...
...

...

O O · · · App


⎟⎟⎟ ,

where the diagonal blocks A11, . . . , App are irreducible.

Proof Let K1, . . . , K p be the strong connected components of the digraph GA and
let c(G) the condensed graph graph of G. We may assume that K1, . . . , K p are
listed in topological order since c(G) is an acyclic graph. In other words, if c(G)

contains an edge (Ki , K j ), we have i < j . Assume initially that the vertices of Ki

are vφi , vφi +1, . . . , vφi +|Ki |−1, where φi = ∑i−1
j=1 |K j | for 1 � i � p. Under this

assumption the adjacency matrix AG has the form

AG =


⎜⎜⎜

A11 A12 · · · A1p

O A22 · · · A2p
...

...
...

...

O O O App


⎟⎟⎟ ,

where Aii is the adjacency matrix of the strongly connected subgraph generated by
Ki ; clearly, each Aii is an irreducible matrix.

If the vertices of Ki are not numbered according to the previous assumptions, a
permutation σ can be applied; thus Pσ AGP ′

σ has the necessary form.

Corollary 10.107 Let A be symmetric matrix, A ∈ C
n×n. There exists a permutation

matrix Pσ and p ∈ N, p � 1 such that Pσ AP ′
σ is a upper diagonal block matrix,

Pσ AP ′
σ =


⎜⎜⎜

A11 0 · · · 0
O A22 · · · 0
...

...
...

...

O O · · · App


⎟⎟⎟ ,

where the diagonal blocks A11, . . . , App are irreducible.
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Proof This follows directly from Theorem 10.106.

Definition 10.108 The degree of reducibility red(A) of a matrix A ∈ C
n×n is the

p − 1, where p is the number of strongly connected components of the digraph GA.

A is an irreducible matrix if and only if red(A) = 0. Furthermore, if A is a symmetric
matrix, then red(A) = p − 1 if and only if there exists a permutation matrix Pσ

such that Pσ AP ′
σ is a block diagonal matrix that consits of p irreducible blocks

A11, . . . , App.
It is easy to see that a matrix A is irreducible if and only if its transpose is

irreducible.

Theorem 10.109 Let A ∈ R
n×n be a non-negative matrix. For m � 1 we have

(Am)i j > 0 if and only if there exists a path of length m in GA from i to j .

Proof The argument is by induction on m � 1. The base case, m = 1, is imme-
diate. Suppose that the theorem holds for numbers less than m. Then, (Am)i j =∑n

k=1(Am−1)ik Ak j . (Am)i j > 0 if and only if there is a positive term (Am−1)ik Ak j

in the right-hand sum because all terms are non-negative. By the inductive hypothesis
this is the case if and only if there exists a path of length m − 1 joining i to k and an
edge joining k to j , that is, a path of length m joining i to j .

Theorem 10.110 Let A ∈ R
n×n be an irreducible matrix such that A � O. If ki > 0

for 1 � i � n − 1, then
∑n−1

i=0 ki Ai > On,n.

Proof Since A is an irreducible matrix, the digraph GA is strongly connected. Thus,
there exists a path of length no larger than n − 1 that joins any two distinct vertices
i and j of the digraph GA. By Theorem 10.109, there exists m � n − 1 such that
(Am)i j > 0. Since (

n−1∑
i=0

ki Ai

)
i j

=
n−1∑
i=0

ki (Am)i j ,

and all numbers that occur in this equality are non-negative, it follows that for i ∞= j

we have
⎢∑n−1

i=0 ki Ai
⎣

i j
> 0. If i = j , the same inequality follows from the fact

that k0 In > On,n .

Corollary 10.111 Let A ∈ R
n×n be a matrix such that A � On,n. Then A is

irreducible matrix if and only if (In + A)n−1 > On,n.

Proof Suppose that A is irreducible. By choosing ki = (n−1
i

)
for 0 � i � n − 1 in

Theorem 10.110, the desired inequality follows immediately.
Conversely, suppose that (In + A)n−1 > On,n and let i, j be two vertices of the

digraph GA. Since
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⎢
(In + A)n−1

⎣
i j

= (In)i j +
⎩

n − 1

1

⎫
(A)i j + · · · +

⎩
n − 1

k

⎫
(Ak)i j + · · · + (An−1)i j > 0,

taking into account that for i ∞= j we have (In)i j = 0, we have
(n−1

1

)
(A)i j + · · · +(n−1

k

)
(Ak)i j + · · · + (An−1)i j > 0. At least one term of this sum, say

(n−1
k

)
(Ak)i j ,

must be positive. This means that the vertices i and j in GA are joined by a walk of
length k. This shows that GA is strongly connected, so A is irreducible.

Definition 10.112 A matrix A ∈ R
n×n is primitive if A � On,n, and there exists

m � 1 such that Am > On,n.

Theorem 10.113 Let A ∈ R
n×n be an irreducible matrix with A � On,n and let gi

be the greatest common divisor of the lengths of the cycles in GA that begin and end
at vertex i , 1 � i � n. If A is primitive, then gi = 1 for 1 � i � n.

Proof Since A is irreducible every node i is located on a cycle. By the definition of
primitiveness there exists m such that Am > 0, so Ak > 0 for k � m. This means
that there exist cycles of length m + 1, m + 2, . . . starting and ending in i , so gi = 1
for every vertex i .

10.6 Spectra of Non-negative Matrices

Non-negative and irreducible matrices have important interactions with graph theory.
We focus initially on spectra of a special class of such matrices, namely positive
matrices. The main results presented in this section were obtained at the beginning
of the 20th century by the German mathematicians Oskar Perron (1880–1975) and
Georg Frobenius (1849–1917).

Theorem 10.114 Let Φ be an eigenvalue of A such that |Φ| = ξ(A) and let (Φ, x)

be an eigenpair. Then, (ξ(A), abs(x)) is an eigenpair of A.

Proof We have

ξ(A) abs(x) = |Φ| abs(x) = abs(Φx)

= abs(Ax) � abs(A) abs(x) = A abs(x),

which implies that ξ(A) is a positive eigenvalue of A and abs(x) > 0 is a positive
eigenvector that corresponds to this eigenvalue.

Lemma 10.115 Let z1, . . . , zn be n non-zero complex numbers such that

⎥⎥⎥ n∑
k=1

zk

⎥⎥⎥ =
n∑

k=1

|zk |.
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There exists ν such that zk = |zk |eiν for 1 � k � n.

Proof Let zk = |zk |eiνk for 1 � k � n. We have

⎥⎥⎥ n∑
k=1

zk

⎥⎥⎥2 =
(

n∑
k=1

zk

)
 n∑

k=1

zk


 =


 n∑

p=1

|z p|eiνp




 n∑

q=1

|zq |eiνq




=
n∑

p=1

n∑
q=1

|z p||zq |ei(νp−νq ) =
n∑

p=1

|z p|2 + 2
∑

1�p,q�n

|z p||zq | cos(νp − νq).

On the other hand,

n∑
k=1

|zk |2 =
n∑

p=1

|z p|2 + 2
∑

1�p,q�n

|z p||zq |.

The equality of the lemma is possible only if νp = νq for 1 � p < q � n, that is if
there exists ν such that ν1 = · · · = νn = ν. →≥
Lemma 10.116 Let A ∈ R

n×n be a matrix such that A > On,n. If (Φ, x) is an
eigenpair of A such that |Φ| = ξ(A), then there exists η ∈ R such that abs(x) =
e−iη x.

Proof By Theorem 10.114 we have A abs(x) = ξ(A) abs(x). Thus, we have

ξ(A) |xk | = |Φ| |xk | = |Φxk | =
⎥⎥⎥ n∑

p=1

akpx p

⎥⎥⎥
�

n∑
p=1

|akp| |x p| =
n∑

p=1

akp |x p| = ξ(A)|xk |.

Consequently, the above inequality becomes an equality and we obtain

⎥⎥⎥ n∑
p=1

akpx p

⎥⎥⎥ =
n∑

p=1

akp |x p|.

By Lemma 10.115 this is possible, only if akpx p = |akpx p|eiν for 1 � p � n.
Thus, akpx pe−iν = |akpx p| > 0 for 1 � p � n. Since akp > 0, it follows that
|x p| = x pe−iν > 0 for 1 � p � n, which implies abs(x) = xe−iν > 0n .

Theorem 10.117 Let A ∈ R
n×n be a matrix such that A > On,n. If Φ ∈ spec(A)

and Φ ∞= ξ(A), then |Φ| < ξ(A).
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Proof The definition of ξ(A) implies |Φ| � ξ(A).
Suppose that |Φ| = ξ(A) and Ax = Φx for x ∞= 0n . By Lemma 10.116 there

exists η ∈ R such that abs(x) = e−iη x, so A abs(x) = Φ abs(x), which implies
Φ = ξ(A); this contradicts the hypothesis of the theorem.

Theorem 10.118 Let A ∈ R
n×n be a positive matrix. The geometric multiplicity of

ξ(A) equals 1.

Proof Let (ξ(A), x) and (ξ(A), y) be two eigenpairs of A. By Lemma 10.116, there
exist η1 and η2 such that abs(x) = e−iη1x > 0 and abs(y) = e−iη2 y > 0.

Define z = abs(y) − b abs(x), where b = min
⎦ |yi |

|xi | | 1 � i � n
}

and suppose

that z ∞= 0n . Then z � 0n and there exists zi such that zi = 0, so z is not positive.
Since Az = A(abs(y) − b abs(x)) = ξ(A)abs(y) − bξ(A)abs(x) = ξ(A)z,
if z ∞= 0n , it follows that z = 1

ξ(A)
Az > 0n . By Supplement 25 of Chap. 5, we

have z > 0n , which contradicts the fact that that z is not positive. Thus, z = 0n , so
abs(y) = b abs(x) and y = bei(η2−η1)x.

Definition 10.119 Let A ∈ R
n×n be a positive matrix. The Perron vector of A is the

positive eigenvector x that corresponds to ξ(A) such that ∧ x ∧1= 1.

Theorem 10.118 ensures the existence of the Perron vector for any positive
matrix A.

The next statement gives a stronger result (compared to Theorem 10.118):

Theorem 10.120 Let A ∈ R
n×n be a matrix such that A > On,n. The spectral

radius ξ(A) is an eigenvalue of A having algebraic multiplicity 1.

Proof By Schur’s Triangularization Theorem (Theorem 7.13) there exists a unitary
matrix U and an upper-triangular matrix T such that A = U T U−1, where diagonal
elements of T are the eigenvalues of A. We saw that each eigenvalue Φ of A occurs
in the sequence of diagonal elements of T a number of algm(A, Φ) times. Let p =
algm(A, ξ(A)), and note that for every other eigenvalue Φ of A we have |Φ| < ξ(A).
The matrix 1

ξ(A)
T is an upper triangular matrix and the sequence of its diagonal

elements is ⎩
1, . . . , 1,

Φp+1

ξ(A)
, . . . ,

Φn

ξ(A)

⎫
.

Therefore,
⎢

1
ξ(A)

T
⎣m

is an upper triangular matrix whose sequence of diagonal

elements is ⎩
1, . . . , 1,

⎩
Φp+1

ξ(A)

⎫m

, . . . ,

⎩
Φn

ξ(A)

⎫m⎫
.

Let L be the matrix introduced in Supplement 3 of Chap. 7 for which rank(L) = 1.

We saw that limm⊥⊕
⎢

1
ξ(A)

A
⎣m = L . Since
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⎩
1

ξ(A)
A

⎫m

= U

⎩
1

ξ(A)
T

⎫m

U−1,

it follows that limm⊥⊕
⎢

1
ξ(A)

A
⎣m

is an upper triangular matrix having the diagonal

sequence (1, . . . , 1, 0, . . . , 0). Since 1 occurs p times in this sequence,

rank
⎢
limm⊥⊕

⎢
1

ξ(A)
A
⎣m⎣ = p, and we must have p = 1 because rank(L) = 1.

For no eigenvalue of A other than ξ(A) there exists an eigenvector whose com-
ponents are positive. Indeed, if Φ′ is an eigenvalue distinct from ξ(A) and w is an
eigenvector of Φ′, then w cannot be a positive vector for this would contradict the
orthogonality of w and Perron vector u.

Corollary 10.121 (Perron Theorem) Let A ∈ R
n×n be a symmetric matrix with

positive elements. The following statements hold:

(i) ξ(A) is a positive number and is an eigenvalue of A;
(ii) there exists an eigenpair (ξ(A), x) with x > 0n;

(iii) algm(A, ξ(A)) = 1;
(iv) if η is any other eigenvalue of A, then |η | < ξ(A).

Proof The statements of the corollary follow from the preceding theorems.

Positive matrices are clearly irreducible, non-negative matrices. Therefore, it is
natural to extend Perron’s Theorem to this larger class of matrices. The next statement
concerns non-negative matrices.

Theorem 10.122 Let A ∈ R
n×n be a non-negative matrix. We have ξ(A) ∈

spec(A) and there exists x ∈ R
n − {0n} such that x � 0n and (ξ(A), x) is an

eigenpair of A.

Proof Let A(ζ) = A + ζ Jn for ζ > 0 and let x(ζ) be the Perron vector of the
positive matrix A(ζ). The collection of vectors {x(ζ) | ζ > 0} is contained in
the closed sphere B1(0n, 1) (which is a compact set), so, by Theorem 8.30, there
a monotonic decreasing sequence ζ1, . . . , ζp, . . . such that limp⊥⊕ ζp = 0 and
limp⊥⊕ x(ζp) = x. Since A(ζ1) � · · · � A(ζp) � · · · � A, by Theorem 7.66, we
have ξ(A(ζ1)) � · · · � ξ(A(ζp)) � · · · � ξ(A). This implies limk⊥⊕ ξ(A(ζk)) �
ξ(A).

Since x(ζp) > 0n , it follows that x � 0n . Moreover, since
∑n

i=1 xi =
limp⊥⊕

∑n
i=1 xi (ζp) = 1, we have x ∞= 0n .

The continuity of the matrix product implies

Ax = lim
k⊥⊕ A(ζk)x(ζk) = lim

k⊥⊕ ξ(A(ζk))x(ζk)

= lim
k⊥⊕ ξ(A(ζk)) lim

k⊥⊕ x(ζk) = lim
k⊥⊕ ξ(A(ζk))x.

Consequently, limk⊥⊕ ξ(A(ζk)) ∈ spec(A), so limk⊥⊕ ξ(A(ζk)) � ξ(A). Thus,
limk⊥⊕ ξ(A(ζk)) = ξ(A). Thus, (ξ(A), x) is an eigenpair of A.



508 10 Graphs and Matrices

Theorem 10.123 Let A ∈ R
n×n be an primitive matrix. The spectral radius ξ(A)

is a simple eigenvalue of A.

Proof Suppose that Am > On,n . If Φ1, . . . , Φn are the eigenvalues of A, then
Φm

1 , . . . , Φm
n are the eigenvalues of Am . Theorem 10.122 implies that ξ(A) is an

eigenvalue of A, so ξ(A)m is an eigenvalue of Am . By Perron’s Theorem, ξ(A)m is
a simple eigenvalue of Am , so ξ(A) must be a simple eigenvalue of ξ(A).

Theorem 10.124 (Perron-Frobenius Theorem) Let A ∈ C
n×n be a matrix that

is non-negative and irreducible. Then, ξ(A) > 0 and ξ(A) is an eigenvalue of A.
Furthermore, there is a positive x ∈ R

n such that (ξ(A), x) is an eigenpair and
algm(A, ξ(A)) = 1.

Proof Supplement 46 of Chap. 7 implies ξ(A) > 0 and (ξ(A), x) is an eigenpair of
A by Theorem 10.122, where x ∞= 0n and x � 0n .

Note that
(In + A)n−1x = (1 + ξ(A))nx.

By Corollary 10.111, (In + A)n−1 > On,n , so (In + A)n−1x > 0. Since x =
(1 + ξ(A))−(n−1)(In + A)n−1x, it follows that x > 0.

Finally, since ξ(A) is an eigenvalue of A, 1 + ξ(A) is an eigenvalue of I + A
having the same multiplicity. Since I + A � On,n and (I + A)n−1 > 0, 1 + ξ(A)

is a simple eigenvalue of I + A.

The eigenvector x of the eigenpair (ξ(A), x) having
∑

xi
= 1 is the Perron vector

of A.
Perron-Frobenius Theorem is useful for the study of adjacency matrices of graphs

which are clearly non-negative matrices.

10.7 Fiedler’s Classes of Matrices

This section is dedicated to certain classes of matrices introduced by Fiedler in [7]. Let
Zn be a subset of Rn×n that consists of those matrices whose off-diagonal elements
are not larger than 0 and let Z = ⎨

n�1 Zn .
In [7] Fiedler has obtained eighteen equivalent characterizations of a subclass of

Zn , known as the class of K-matrices. Further equivalent characterization can be
found in [8].

We reproduce Fiedler’s result in Theorems 10.125–10.128. The numbering of
statements is consistent across these theorems.

Theorem 10.125 Let A ∈ Zn be a matrix. The following statements are equivalent:

(i) there exists x ∈ R
n such that x � 0n and Ax > 0n;

(ii) there exists x ∈ R
n such that x > 0n and Ax > 0n;
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(iii) there exists a diagonal matrix D = diag(d1, . . . , dn) ∈ R
n×n with positive

diagonal entries such that if W = AD, then wi i >
∑{|wik | | 1 � k �

n, k ∞= i};
(iv) if B ∈ Zn and B � A, then B is invertible;
(v) every real eigenvalue of any principal submatrix of A is positive;

(vi) all principal minors of A are positive;
(vii) for each k, 1 � k � n, the sum of all principal minors of order k of A is

positive;
(viii) every real eigenvalue of A is positive;

(ix) there exists a matrix C � O and a number k > ξ(C) such that A = k In − C;
(x) the matrix A can be written as A = D − E such that D−1 � O, E � O, and

ξ(D−1 E) < 1;
(xi) A is invertible and A−1 � O.

Proof (i) implies (ii): Suppose that x � 0n and Ax > 0n . Since Ax > 0n

there exists ζ > 0 such that Ax + ζ A1 > 0, so A(x + ζ1n) > 0. Thus, the vector
y = x + ζ1 satisfies (ii).

(ii) implies (iii): Let x ∈ R
n be a vector that satisfies (ii) and let

D = diag(x1, . . . , xn). We have wi j = ai j x j . Since Ax > 0n we have

aii xi >
∑

{−ai j x j | 1 � j � n, j ∞= i},

so wi i >
∑{|wi j | | 1 � j � n, j ∞= i} because A ∈ Zn .

(iii) implies (iv):Let D be a diagonal matrix D = diag(d1, . . . , dn) ∈
R

n×n with positive diagonal entries such that if W = AD, then wi i >
∑{|wik | |

1 � k � n, k ∞= i}.
Suppose that (iv) does not hold, that is, there exists B ∈ Zn such that B � A and

B is singular. This supposition entails the existence of y ∈ R
n , y ∞= 0n and By = 0n .

Define φ = arg max1� j�n
|y j |
d j

. We have
|y j |
d j

� |yφ|
dφ

for 1 � j � n.

Since By = 0n , we have bφφyφ = ∑
j ∞=φ(−bφj )y j . By the definition of W we also

have

aφφdφ >

n∑
k=1,k ∞=φ

|aφk |dk .

Since B � A, we have bφφ � aφφ and bφj � aφj for j ∞= φ. Since the off-diagonal
elements of both A and B are not larger than 0, this means that |bφj | � |aφj | for
j ∞= φ. Therefore,

|bφφyφ| �
∑
j ∞=φ

|bφj y j | �
∑
j ∞=φ

|aφj |d j
|y j |
d j
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�


∑

j ∞=φ

|aφj |d j


 |yφ|

dφ

< aφφ

|yφ|
dφ

� bφφ |yφ| � |bφφyφ|,

which is a contradiction. Thus, B is non-singular.
(iv) implies (v):Let A ∈ Zn and let {i1, . . . , im}be a subset of {1, . . . , n}

and let Φ be an eigenvalue of A

⎛
i1, . . . , im

i1, . . . , im

⎧
. Suppose that Φ is negative. Then, for

the matrix B ∈ Zn defined by

bi j =




aii − Φ if j = i,

ai j if i, j ∈ {i1, . . . , im} and i ∞= j

0 otherwise,

we have B � A. By (iv), B is non-singular. On the other hand,

B

⎛
i1, . . . , im

i1, . . . , im

⎧
= A

⎛
i1, . . . , im

i1, . . . , im

⎧
− ΦIm

so det

⎩
B

⎛
i1, . . . , im

i1, . . . , im

⎧⎫
= 0 because Φ is an eigenvalue of A

⎛
i1, . . . , im

i1, . . . , im

⎧
. Thus,

det(B) = 0, which leads to a contradiction.
(v) implies (vi): Let

det

⎩
A

⎛
i1 · · · im

i1 · · · im

⎧⎫

be a principal minor of A whose eigenvalues are positive. Since A

⎛
i1 · · · im

i1 · · · im

⎧
is

a real matrix, complex eigenvalues occur in conjugate pairs, so the product of the
complex eigenvalues is positive, which implies that the product of all eigenvalues is

positive. Since this product equals det

⎩
A

⎛
i1 · · · im

i1 · · · im

⎧⎫
, statement (vi) follows.

(vi) implies (vii): This implication is immediate.
(vii) implies (viii): Suppose that for each k, 1 � k � n, the sum

of all principal minors of order k of A is positive. In Theorem 7.3 we saw that the
characteristic equation of A has the form

n∑
k=0

(−1)kakΦ
n−k = 0

where ak is the sum of the principal minors of order k of A. Thus, the coefficients
of this polynomial have alternating signs, so no real eigenvalue can be less than or
equal to 0.
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(viii) implies (ix): Let A ∈ Zn be a matrix whose real eigenvalues
are positive. If m = max1�i�n aii , the matrix C = m In − A is non-negative. By
Theorem 10.122, ξ(C) ∈ spec(C). Since A = m In −C , m −ξ(C) is an eigenvalue
of A, so m > ξ(C) because all real eigenvalues of A are positive.
(ix) implies (x): Suppose that there exists a matrix C � O and a number

k > ξ(C) such that A = k In − C . Define D = k In and E = C , so A = D − E .
Furthermore, we have

ξ(D−1 E) = 1

k
ξ(C) < 1.

(x) implies (xi): Suppose that the matrix A ∈ Zn can be written as
A = D − E such that D is an invertible matrix, D−1 � O , E � O , and
ξ(D−1 E) < 1. Then, A = D(In − D−1 E). Since ξ(D−1 E) < 1 it follows that
A−1 = ∑⊕

k=1(D−1 E)k D−1. Since D−1 E � O , we have A−1 � O .
(xi) implies (i): Let A ∈ Zn be a non-singular matrix such that A−1 >

O . Define x = A−11n . Since A−1 > O , it follows that x � 0n and Ax = 1n > 0n .

Theorem 10.126 Let A ∈ Zn be a matrix. The following statements are equivalent:

(vi) all principal minors of A are positive;
(xii) we have

det

⎩
A

⎛
1 · · · k
1 · · · k

⎧⎫
> 0

for every k, 1 � k � n;
(xiii) the matrix A can be factored as A = LU, where L is a lower triangular matrix

and U is an upper triangular matrix such that both L and U have positive
diagonal entries;

(xiv) the matrix A can be factored as A = LU, where L is a lower triangular matrix
in Zn and U is an upper triangular matrix in Zn such that both L and U have
positive diagonal entries;

(xi) the matrix A is non-singular and A−1 � O.

Proof (vi) implies (xii) is immediate.
(xii) implies (xiii): Suppose that

det

⎩
A

⎛
1 · · · k
1 · · · k

⎧⎫
> 0

for 1 � k � n. This means that the matrix A is strongly non-singular (see
Supplement 63 of Chap. 5), so A can be factored as a product A = L DU , where L is
a lower triangular matrix having 1s on its diagonal, D is a diagonal matrix, and U is
an upper diagonal matrix whose diagonal elements are equal to 1. Since the diagonal
elements of D are positive, by the same supplement and Part (xii), it follows that
(DU ) is an upper diagonal matrix having positive elements. Thus, A = L(DU ) is
the desired factorization.
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(xiii) implies (xiv):Suppose that A ∈ Zn can be factored as A = LU ,
where L is a lower triangular matrix and U is an upper triangular matrix such that
both L and U have positive diagonal entries. To prove that L and U belong to Zn it
suffices to show that if i ∞= j , then li j � 0 and ui j � 0. We have

aik =
n∑

j=1

li j u jk =
min i,k∑

j=1

li j u jk .

Thus, a12 = l11u12 and a21 = l21u11. Since a12 < 0 and a21 < 0 it follows that
u12 < 0 and l21 < 0. Thus, we established that lik � 0 and uik � 0 if i + k = 3.
We proceed by induction on i + k � 3. The base case i + k = 3 was just proven.
Suppose that the property holds for i + k < p.

If i > k we have aik = ∑k
j=1 li j u jk < 0, so

likukk = ai j −
k−1∑
j=1

li j u jk .

Note that if j � k − 1, then i + j � i + k − 1 and j + k � 2k − 1 � i + k − 1, so
li j � 0 and u jk � 0 by the inductive hypothesis. Therefore, lik � 0.

If i < k we have aik = ∑i
j=1 li j u jk , so

lii uik = aik −
i−1∑
j=1

li j u jk .

By a similar argument we obtain uik � 0, so L , U ∈ Zn .
(xiv) implies (xi): Suppose that A = LU , where L , U ∈ Zn . By

Theorem 5.74, the matrix L−1 � O and U−1 � 0. Therefore, A−1 = U−1L−1 � O .
(xi) implies (vi): This is immediate by Theorem 10.125.

Theorem 10.127 Let A ∈ Zn be a matrix. The following statements are equivalent:

(xi) A is invertible and A−1 � O;
(xv) the matrix A can be written as A = D − E such that D−1 � O, E � O and

ξ(D−1 E) < 1;
(ix) there exists a matrix C � O and a number k > ξ(C) such that A = k In − C.

Proof (xi) implies (xv): Let A ∈ Zn be an invertible matrix and A−1 � O .
We can write A = A − O and, therefore, we can take D = A and E = O and
D−1 E � O . This establishes that A can be written as a difference of matrices
A = D − E such that D−1 � O , E � O and D−1 E � O . By Theorem 10.122,
ξ(D−1 E) is an eigenvalue of D−1 E and there exists a non-negative eigenvector
v > 0 that corresponds to this eigenvalue. This implies D−1 Ev = ξ(D−1 E)v, so
Ev = ξ(D−1 E)Dv. If ξ(D−1 E) were at least equal to 1, this would imply
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Av = (D − E)v = Dv − Ev =
⎩

1

ξ(D−1 E)
− 1

⎫
Ev � 0.

Since Av � 0, by multiplying this inequality by A−1 � O we obtain v � 0. Thus,
ξ(D−1 E) < 1.
(xv) implies (ix): Suppose that A ∈ Zn can be written as A = D − E

such that D−1 � O and Q � O , and for each such pair (D, E) we have
ξ(D−1 E) < 1.

We claim that k = max{aii | 1 � i � n} > 0. Indeed, suppose that this is not
the case. Since A ∈ Zn this would imply A � O , so D � E . In turn, this implies
I < D−1 E and this would contradict the fact that ξ(D−1 E) < 1. Therefore, k > 0.

Let C = k In − A. Since A = k In − C , (k In)−1 = k−1 In � O and C � O it
follows that ξ(k−1C) < 1. Therefore, k > ξ(C) and we obtain (ix).
(ix) implies (xi): This is immediate by Theorem 10.125.

Theorem 10.128 Let A ∈ Zn be a matrix. The following statements are equivalent:

(ix) there exists a matrix C � O and a number k > ξ(C) such that A = k In −C;
(xvi) there exists a diagonal matrix G = diag(g11, . . . , gnn) with gi i > 0 for

1 � i � n such that if B = G AG−1, then the symmetric matrix B + B ′ is
positive definite;

(xvii) there exists a diagonal matrix H = diag(h11, . . . , hnn) with hii > 0 for
1 � i � n such that if C = AH, then C + C ′ is positive definite;

(xviii) for any Φ ∈ spec(A), ⇒(Φ) > 0.

Proof (ix) implies (xvi): Let A ∈ Zn be a matrix that can be written as
A = k In − C , where C � O and k > ξ(C).

Suppose initially that C is irreducible. By Theorem 10.114 its spectral radius
ξ(C) is an eigenvalue and there exists a positive eigenvector u that corresponds to
this eigenvalue, that is Cu = ξ(C)u. Since C ′ is also irreducible and non-negative,
it follows that there exists a positive eigenvector v such that C ′v = ξ(C)v.

Let w ∈ R
n be the vector defined by wi = ≡

uivi for 1 � i � n and let G be the
diagonal matrix G = diag(g1, . . . , gn), where

gi =
√

vi

ui

for 1 � i � n. We have
Gw = v and G−1w = u,

so

(GCG−1)w = GCu = ξ(C)Gu = ξ(C)w,

(GCG−1)′w = G−1C ′Gw = G−1C ′v = ξ(C)G−1v = ξ(C)w.
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We need to show that if B = G AG−1, then the matrix B + B ′ is positive definite.
Clearly, B ∈ Zn and we have

Bw = G AG−1w = G(k In − C)G−1w = kw − GCG−1w = (k − ξ(C))w

B ′w = (G AG−1)′w = (G(k In − C)G−1)′w = (k − ξ(C))w.

Therefore,

1

2
(B + B ′)w = (k − ξ(C))w

and k − ξ(C) > 0. Using the equivalence of statements (ii) and (vi) shown in
Theorem 10.125, it follows that all minors of 1

2 (B + B ′) are positive. Therefore,
1
2 (B + B ′) is positive definite, so B + B ′ is positive definite.

Suppose now that C is not irreducible. By Theorem 10.106 there exists a permu-
tation matrix P such that

PC P ′ =


⎜⎜⎜

C11 C12 · · · C1φ

O C22 · · · C2φ

...
... · · · ...

O O · · · Cφφ


⎟⎟⎟ ,

and the diagonal blocks C11, . . . , Cφφ are irreducible.
Let M = P AP ′. We have the block upper triangular matrix given by

M = P AP ′ = P(k In − C)P ′ = k In − PC P ′

=


⎜⎜⎜

k I1 − C11 −C12 · · · −C1φ

O k I2 − C22 · · · −C2φ

...
... · · · ...

O O · · · k Iφ − Cφφ


⎟⎟⎟ .

By the first part of the proof there exist diagonal matrices Li having positive diagonal
entries such that, for Bi = Li Mii L−1

i = Li (k Ii − Cii )L−1
i , the matrices 1

2 (Bi + B ′
i )

are positive definite for 1 � i � φ.
Let L(a) be the block diagonal matrix

L(a) = diag
⎩

L1,
1

a
L2,

1

a2 L3, . . . ,
1

aφ−1 Lφ

⎫
.

Since
L(a)−1 = diag

⎢
L−1

1 , aL2, a2L3, . . . , aφ−1Lφ

⎣
,

we have
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L(a)M L(a)−1 =


⎜⎜⎜

B1 B12 B13 · · · B1φ

O B2 B21 · · · B2φ

...
...

...
...

...

O O O · · · Bφ


⎟⎟⎟ ,

where Bi j = a j−i Li (a)Ci j L−1
j (a) for i < j .

If E is the block diagonal matrix

E =


⎜⎜⎜

B1 O · · · O
O B2 · · · O
...

...
...

...

O O · · · Bφ


⎟⎟⎟ = L(0)M L(0)−1,

then it is clear that 1
2 (E + E ′) is positive definite. By Theorem 6.127 there exists a

number a > 0 such that 1
2 (L(a)(M + M ′)L(a)−1) is positive definite. Let D be the

diagonal matrix P ′L(a)P . Then, since

B = D AD−1 = (P ′L(a)P)A(P−1L(a)−1) = P ′L(a)A(L(a))−1 P

the matrix 1
2 (B + B ′) is positive definite and therefore, B + B ′ is positive definite.

(xvi) implies (xvii): Suppose that there exists a diagonal matrix G =
diag(g11, . . . , gnn) with gi i > 0 for 1 � i � n such that if B = G AG−1, then the
symmetric matrix B + B ′ is positive definite.

Let H be the diagonal matrix given by

H = diag

(
1

g2
11

, . . . ,
1

g2
nn

)
= (G−1)2.

Clearly, all diagonal elements of H are positive. For C = AH we have

C + C ′ = AH + H ′ A′ = AH + H A′ = A(G−1)2 + (G−1)2 A′

= G−1(G AG−1 + G−1 A′G)G−1 = G−1(B + B ′)G−1.

It is immediate that the matrix C + C ′ is positive definite.
(xvii) implies (xviii): Suppose that there exists a diagonal matrix

H = diag(h11, . . . , hnn) with hii > 0 for 1 � i � n such that for C = AH the
matrix C + C ′ = AH + H A′ is positive definite. Then, xH(AH + H A′)x > 0, so
xH AHx + xH H A′x > 0 for x ∈ C

n − {0}. Therefore, ⇒(xH AHx) > 0.
Let Φ be an eigenvalue of A and let y be an eigenvector associated with Φ. For

x = H−1y we have Hx = y, and yH = xH H , because H is a diagonal matrix with
real positive elements on its diagonal, so



516 10 Graphs and Matrices

⇒(xH AHx) = ⇒(xH Ay) = ⇒(xHΦy)

= ⇒(yH H−1Φy) = ⇒(Φ)(yH H−1y) > 0,

which implies ⇒(Φ) > 0.
(xviii) implies (ix): This implication follows from Theorem 10.125.

Theorems 10.125–10.128 allow us to introduce the class of K-matrices.

Definition 10.129 A matrix A ∈ Zn is a K-matrix if it satisfies any of the eighteen
equivalent conditions contained by Theorems 10.125–10.126.

The following results of Fiedler [7] (Theorems 10.130 and 10.131) will help with
the characterization of K-matrices as members of another important class of matrices.

Theorem 10.130 The following properties of a matrix A ∈ Zn are equivalent:

(i) A + ζ In ∈ K for every ζ > 0;
(ii) every real eigenvalue of any principal minor of A is non-negative.

(iii) all principal minors of A are non-negative;
(iv) the sum of all principal minors of order k is non-negative for 1 � k � n;
(v) every real eigenvalue of A is non-negative;

(vi) A can be written as A = k I − C, where C � O and k � ξ(C).

Proof (i) implies (ii): Let A be a matrix from Zn such that A + ζ In ∈ K

for every ζ > 0 and let Φ be an eigenvalue of a principal submatrix A

⎛
i1 · · · ik

i1 · · · ik

⎧
of

A. Suppose that Φ < 0 and let B = A + ΦI . By Part (v) of Theorem 10.125 all real
eigenvalues of the matrix

(A − ΦIn)

⎛
i1 · · · ik

i1 · · · ik

⎧

are positive. However, A − ΦIn has the eigenvalue 0, which is a contradiction.
(ii) implies (iii): The proof is virtually identical to the argument used

for the implication (vi) by (v) in the proof of Theorem 10.125.
(iii) implies (iv): This implication is immediate.
(iv) implies (v): Suppose that for each k, 1 � k � n, the sum of all

principal minors of order k of A is non-negative.
The characteristic equation of A has the form

Φn − S1(A)Φn−1 + · · · + (−1)n−1Sn−1(A)Φ + (−1)n Sn(A) = 0,

where Si (A) is the sum of all principal minors of order i of A. If Φ were a real negative
root than all numbers of the left-hand side would have the same sign which would
make the equality with 0 impossible. Thus, every real eigenvalue is non-negative.

(v) implies (vi): Let A ∈ Zn be a matrix whose real eigenvalues are
non-negative. If m = max1�i�n aii , the matrix C = m In − A is non-negative. As
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we saw before, ξ(C) ∈ spec(C). Since A = m In − C , m − ξ(C) is an eigenvalue
of A, so m � ξ(C).

(vi) implies (i): Suppose that A can be written as A = k I − C , where
C � O and k � ξ(C). For the matrix B = A + ζ I = (k + ζ)I − C we have
k + ζ > ξ(C), so by Part (ix) of Theorem 10.125, A + ζ I ∈ K.

Theorem 10.131 Let A be a matrix in Zn. We have A + ζ In ∈ K for any ζ > 0 if
and only if for every Φ ∈ spec(A) we have ⇒(Φ) � 0.

Proof This follows immediately from Theorem 10.128.

The class K0 consists of all matrices of Zn that satisfy one of the equivalent
conditions in Theorems 10.130 or 10.131.

Theorem 10.132 The class of K-matrices is a subclass of K0 which consists of all
invertible matrices of K0.

Proof Let A ∈ K. Then, all principal minors of A are positive, so they are non-
negative and K ⊆ K0.

Suppose that A ∈ K0 and A is invertible. Then, 0 ∞∈ spec(A), so every eigenvalue
of A is positive. Therefore, by Part (viii) of Theorem 10.125, A ∈ K.

10.8 Flows in Digraphs

Definition 10.133 A network is a 4-tuple N = (G, cap, s, t), where

• G = (V, E) is a finite digraph,
• cap : V × V −⊥ R�0 is a function called the capacity function such that

(u, v) ∞∈ E implies cap(u, v) = 0, and
• s and t are two distinct vertices of G, referred to as the source and the sink,

respectively.

The number cap(e) is the capacity of the edge e. If p = (v0, . . . , vn) is a path in
the graph G the capacity of this path is the number cap(p) = min{cap(vi , vi+1) |
0 � i � n − 1}.
Example 10.134 The network N = (G, cap, s, t) is shown in Fig. 10.33. If (u, v) is
an edge in G, the number cap(u, v) is written near the edge.

The capacity of the path p = (v1, v2, v5, v6) is 3 because the smallest capacity of
an edge on this path is cap(v2, v5) = 3.

Definition 10.135 A flow in the network N = (G, cap, s, t) is a function f : V ×
V −⊥ R that satisfies the following conditions:
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Fig. 10.33 6-vertex network

(i) For every edge (u, v) ∈ E we have 0 � f (u, v) � cap(u, v).
(ii) The function f is skew-symmetric, that is, f (u, v) = − f (v, u) for every pair

(u, v) ∈ V × V .
(iii) The equality ∑

{ f (v, x) | v ∈ V } = 0,

known as Kirchhoff’s law, holds for every vertex x ∈ V − {s, t}.
The value of a flow f in a network N = (G, cap, s, t) is the number

val( f ) =
∑

{ f (s, v) | v ∈ V },

that is, the net flow that exits the source.
The set of flows of a network N is denoted by FL(N).
A flow h in N is maximal if val( f ) � val(h) for every flow f ∈ FL(N).
If f (u, v) = c(u, v) for an edge of G, then we say that the edge (u, v) is saturated.

Let N = (G, cap, s, t) be a network, where G = (V, E). If f (u, v) = 0 for every
pair (u, v) ∈ V × V , then f is a flow in the network. We will refer to this flow as
the zero flow in N.

Theorem 10.136 Let N = (G, cap, s, t) be a network, f and g be two flows in
FL(N), and a and b be two real numbers. Define the function a f + bg by

(a f + bg)(u, v) = a f (u, v) + bg(u, v)

for every (u, v) ∈ V × V . If 0 � (a f + bg)(u, v) � c(u, v) for (u, v) ∈ V × V ,
then a f + bg is a flow in the network N.
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Proof We leave this easy argument to the reader.

Note that if v ∈ V − {s, t}, Kirchhoff’s law can be written equivalently as

∑
{ f (v, x) | v ∈ V, (v, x) ∈ E} +

∑
{ f (v, x) | v ∈ V, (x, v) ∈ E} = 0,

which amounts to∑
{ f (v, x) | v ∈ V, (v, x) ∈ E} =

∑
{ f (x, v) | v ∈ V, (x, v) ∈ E}

due to the skew symmetry of f .

Theorem 10.137 Let N = (G, cap, s, t) be a network and let f be a flow in N. If U
is a set of vertices such that s ∈ U and t ∞∈ U, then

∑
{ f (u, v) | (u, v) ∈ out(U )} −

∑
{ f (u, v) | (u, v) ∈ in(U )} = val( f ).

Proof If f is a flow in N and x is a vertex in G, then

∑
{ f (x, v) | v ∈ V } −

∑
{ f (v, x) | v ∈ V } =

{
val( f ) if x = s,

0 if x ∈ U − {s}.

Therefore,

∑
x∈U

⎢∑
{ f (x, v) | v ∈ V } −

∑
{ f (v, x) | v ∈ V }

⎣
= val( f ).

If an edge that occurs in the inner sums has both its endpoints in U , then its contri-
bution in the first inner sum cancels with its contribution in the second inner sum.
Thus, the previous equality can be written as

∑
{ f (u, v) | (u, v) ∈ out(U )} −

∑
{ f (u, v) | (u, v) ∈ in(U )} = val( f ).

Corollary 10.138 Let N = (G, cap, s, t) be a network and let f be a flow in N. For
every vertex x, we have

∑
{ f (v, x) | v ∈ V } −

∑
{ f (x, v) | v ∈ V } = val( f ).

Proof Choose U = V − {x}. For the set U , we have

out(U ) = (V × {x}) ∪ E,

in(U ) = ({x} × V ) ∪ E,

so it follows that
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∑
{ f (v, x) | v ∈ v} −

∑
{ f (x, v) | v ∈ V } = val( f ).

Definition 10.139 A cut in a network N = (G, cap, s, t) is an (s, t)-cut.
The capacity of a cut (C, C ′) is the number

cap(C, C ′) =
∑

{cap(u, w) | u ∈ C and w ∈ C ′}.

A cut with minimal capacity is a minimal cut.
If f is a flow in N and (C, C ′) is a cut, the value of the flow f across the cut

(C, C ′) is the number

f (C, C ′) =
∑

{ f (u, w) | u ∈ C and w ∈ C ′}.

The set of cuts of a network N is denoted by CUTS(N).

Thus, Theorem 10.137 can be rephrased as stating that the flow across any cut
equals the value of the flow. An essential observation is that since the value of a flow
across a cut cannot exceed the capacity of the cut, it follows that the value of any
flow is less than the capacity of any cut. As we shall see, the maximum value of a
flow equals the minimal capacity of a cut.

Definition 10.140 Let N = (G, cap, s, t) be a network and let f be a flow in N.
The residual network of N relative to f is the network RES(N, f ) = (N, cap′, s, t),
where cap′(u, v) = cap(u, v) − f (u, v).

Theorem 10.141 Let f be a flow on the network N = (G, cap, s, t) and let g be a
maximal flow of N. The value of a maximal flow on RES(N, f ) is val(g) − val( f ).

Proof Let f ′ be a flow in the residual network RES(N, f ). It is easy to see that
f + f ′ ∈ FL(N), so val( f ′) � val(g) − val( f ). On the other hand, h = g − f is
a flow on RES(N, f ) and val(h) = val(g) − val( f ), so h is a maximal flow having
the value val(g) − val( f ).

Theorem 10.142 The following statements that concern a flow f in a network N =
(G, cap, s, t) are equivalent:

(i) f is a maximal flow.
(ii) There is no path that joins s to t in the residual network RES(N, f ) with a

positive capacity.
(iii) val( f ) = cap(C, C ′) for some cut (C, C ′) in N.

Proof (i) implies (ii): Let f be a maximal flow in N, and suppose that there is a
path p in the residual network RES(N, f ) with a positive capacity. Then, the flow g
defined by

g(u, v) =
{

f (u, v) + cap(p) if (u, v) is an edge on p,

f (u, v) otherwise,
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is a flow in N and val(g) = val( f ) + cap(p), which contradicts the maximality of
the flow f .

(ii) implies (iii): Suppose that there is no path is the residual network RES(N, f )

that joins the source with the sink and has a positive capacity.
Let C be the set of vertices that can be reached from s via a path with positive

capacity (to which we add s) in the residual network RES(N, f ) and let C ′ = V −C .
Then the pair (C, C ′) is a cut in N. Observe that if x ∈ C and y ∈ C ′, then the
residual capacity of the edge (x, y) is 0 by the definition of C , which means that
f (x, y) = cap(x, y). Thus, val( f ) = f (C, C ′).

(iii) implies (i): Since any flow value is less than the capacity of any cut, it is
immediate that f is a maximal flow.

Any path that joins the source to the target of a network N and has a positive
capacity in that network is called an augmenting path for the network.

Theorem 10.142 suggests the following algorithm for constructing a maximal
flow in a network.

Algorithm 10.8.1: The Ford-Fulkerson Algorithm
Data: a network N = (G, cap, s, t)
Result: a maximal flow in N
initialize flow f to the zero flow in N;1
while there exists an augmenting path p do2

augment flow f along p3

end4
return f ;5

Example 10.143 To find a maximal flow, we begin with the zero flow f0 shown in
Example 10.34(a). There are several cuts in this graph having a minimal capacity
equal to 9. One such cut is {{v1}, {v2, v3, v4, v5, v6}}; the edges that join the two sets
are (v1, v2) and (v1, v3), which have the capacities 4 and 5, respectively.

The first augmenting path is (v1, v2, v4, v6), having capacity 2. The flow f1 along
this path has the value 2, it saturates the edge (v2, v4), and is shown in Fig. 10.34b.
The next augmenting path is (v1, v2, v5, v6), which has a capacity of 3 and is shown
in Fig. 10.34c. Now the edges (v1, v2) and (v2, v5) become saturated. The next
flow in also shown in Fig. 10.34c. In Fig. 10.34d, we show the augmenting path
(v1, v3, v5, v6) having capacity 3. This saturates the edge (v5, v6). Finally, the last
augmenting path of capacity 1 (shown in Fig. 10.34e) is (v1, v3, v4, v6), and the
corresponding flow saturates the edge (v1, v3). The value of the flow is 9.

Corollary 10.144 Let N = (G, cap, s, t) be a network such that cap(e) is an integer
for every edge of the graph G. Then, a maximal flow ranges over the set of natural
numbers.
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(e)

(c)

(a)

(d)

(b)

Fig. 10.34 Construction of a flow in a network

Proof The argument for the corollary is on the number n of augmenting paths used
for the construction of a flow.

The basis step, n = 0, is immediate since the zero flow takes as values natural
numbers.

Suppose that the statement holds for the flow constructed after applying n − 1
augmentations. Since the value of any path is a natural number and the residual
capacities are integers, the values obtained after using the nth augmenting path are
again integers.

Flows in networks that range over the set of integers are referred to as integral
flows.

Network flows can be used to prove several important graph-theoretical results.
We begin with a technical result.

Lemma 10.145 Let N = (G, cap, x, y) be a network such that cap(u, v) = 1 for
every edge (u, v) ∈ E. If f is an integral flow in FL(N) and val( f ) = m, then there
are m pairwise edge-disjoint simple paths from x to y.
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Proof If f is a flow in N that ranges over integers, then f (u, v) ∈ {0, 1} for every
edge (u, v) ∈ E . Also, note that the capacity of any path that joins x to y equals 1.

Let E f be the set of edges saturated by the flow f ,

E f = {(u, v) ∈ E | f (u, v) = 1}.

Note that no two distinct simple paths can share an edge because this would violate
Kirchhoff’s law. Since each path contributes a unit of flow to f , it follows that there
exist m pairwise edge-disjoint paths in N.

Theorem 10.146 (Menger’s Theorem for Directed Graphs) Let G = (V, E) be a
directed graph and let x and y be two vertices. The maximum number of paths that
join x to y whose sets of edges are pairwise disjoint equals the minimum number of
edges whose removal eliminates all paths from x to y.

Proof Define a network N = (G, cap, x, y) such that cap(u, v) = 1 for every edge
(u, v) ∈ E , and let f be an maximal integral flow in N whose value is m. By
Lemma 10.145, this number equals the number of pairwise edge-disjoint simple
paths from x to y and is also equal to the minimum capacity of a cut in N. Since
this latter capacity equals the minimal number of edges whose removal eliminates
all paths from x to y, we obtain the desired equality.

Menger’s theorem allows us to prove the following statement involving bipartite
graphs.

Definition 10.147 A vertex cover of G is a set of vertices U such that, for every edge
e ∈ E, one of its endpoints is in U.

An edge cover is a set of edges F such that every vertex in V is an endpoint of an
edge in F.

Theorem 10.148 (König’s Theorem for Bipartite Graphs) Let G = (V, E) be a
bipartite graph. A maximum size of a matching of G equals the minimum size of an
vertex cover of G.

Proof Suppose that {V1, V2} is the partition of the vertices of the graph such that
E ⊆ V1 × V2. Define the digraph G′ = (V ∅ {s, t}, {(x, y) | (x, y) ∈ E} ∅ {(s, x) |
x ∈ V }∅ {(x, t) | x ∈ V }) and the network N = (G′, cap, s, t). We assume that s, t
are new vertices. The capacity of every edge equals 1.

A matching M of the bipartite graph G yields a number of |M | pairwise disjoint
paths in N.

An vertex cover U in G produces a cut in the network N using the following
mechanism. Define the sets of vertices U1, U2 as Ui = U ∪ Vi for i ∈ {1, 2}. Then,
({s} ∅ U1, U2 ∅ {t}) is a cut in N and its capacity equals |U |. By removing the edges
having an endpoint in U , we eliminate all paths that join s to t . Thus, the current
statement follows immediately from Menger’s theorem.
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Fig. 10.35 4-vertex graph

10.9 The Ordinary Spectrum of a Graph

Let G = (V, E) be a graph and AG its adjacency matrix. Since AG is a symmetric
matrix, each of its eigenvalues Φ are real and geomm(AG, Φ) = algm(AG, Φ) by
Theorem 7.29. Furthermore, since trace(AG) = 0, the sum of the eigenvalues of AG

is 0 and
∑{Φ2 | Φ ∈ spec(AG)} = 2n.

Definition 10.149 Let G = (V, E) be a graph. Its ordinary spectrum is spec(AG).

Example 10.150 Let G = ({v1, v2, v3, v4}, {(v1, v3), (v2, v4)}) be the graph shown
in Fig. 10.35. The adjacency matrix is

AG =


⎜⎜

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


⎟⎟ .

Its characteristic polynomial is pAG is

pAG (Φ) = (Φ − 1)2(Φ + 1)2 = Φ4 − 2Φ2 + 1.

Thus, the ordinary spectrum of this graph is the set {1,−1} and each eigenvalue has
the multiplicity (algebraic and geometric) equal to 2.

Note that if G = (V, E) is a graph with |V | = n, then the components of the
vector AG1n are equal to the degrees of their respective vertices.

Example 10.151 Let G = (V, E) be a graph. We have AG1 = k1 if and only if G is
a k-regular graph. Thus, a k-regular graph has the ordinary eigenvalue k. Moreover,
if G is k-regular graph then for every ordinary eigenvalue Φ we have |Φ| � k. Indeed,
if |a| > k, then the matrix AG − aIn is diagonally dominant and therefore, by
Theorem 5.125, non-singular, which prevents a from being an eigenvalue of AG.
Thus, k is the largest eigenvalue of AG.

Example 10.152 We saw that the adjacency matrix of a bipartite graph G =
({v1, . . . , vm}, E) having the bipartition {V1, V2}, where V1 = {v1, . . . , vp} and
V2 = {vp+1, . . . , vn} has the form

AG =
⎩

Op,p B
B ′ Oq,q

⎫
,

where B ∈ {0, 1}p×q .
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Let Φ be an eigenvalue of AG and let x be the corresponding eigenvector. We can
write

x =
⎩

y
z

⎫
,

where y consists of the first p components of x and z consists of the last n − p
components of the same vector. These definitions imply that Bz = Φy and B′y = Φz.
Let t ∈ R

n be defined by

t =
⎩

y
−z

⎫
.

Since B(−z) = Φy and B′y = −Φ(−z), it follows that t is an eigenvector that
corresponds to the eigenvalue −Φ. Thus, the eigenvalues of the adjacency matrix of
a bipartite graph come in pairs placed symmetrically with respect to the origin.

In fact, the property discussed in Example 10.152 is a characteristic property of
bipartite graphs as we show next.

Theorem 10.153 Let G be a graph. If algm(A, Φ) = algm(A,−Φ) for every Φ ∈
spec(A), then G is a bipartite graph.

Proof The property of eigenvalues mentioned above implies pAG (−Φ) = pAG (Φ),
which means that the characteristic polynomial of AG is a sum of even powers of Φ.
Therefore, G has no odd-length cycles, so it is a bipartite graph.

Example 10.154 The adjacency matrix of the complete graphKn is AK = Jn,n − In .
Note that Jn,n = 1n1′

n and 1′
n1n = n. The characteristic polynomial of AKn is

p(Φ) = det(ΦIn − Jn,n + In) = det((1 + Φ)In − Jn,n)

= det((1 + Φ)In − 1n1′
n) = (−1)n(1 + Φ)n det

⎩
In − 1

1 + Φ
1n1′

n

⎫
.

By Supplement 45 Part (a) we have

pA(Φ) = (−1)n(1 + Φ)n det

⎩
In − 1

1 + Φ
1n1′

n

⎫

= (−1)n(1 + Φ)n
⎩

1 − 1

1 + Φ
1′

n1n

⎫

= (−1)n(1 + Φ)n
⎩

1 − n

1 + Φ

⎫
= (−1)n(1 + Φ)n−1(1 + Φ − n).

Thus, the eigenvalues of Kn are −1 and n − 1 with algm(AKn ,−1) = n − 1 and
algm(AKn , n − 1) = 1.
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Fig. 10.36 Star graph

Example 10.155 The adjacency matrix of the complete bipartite graph Kp,q has the
form

AKp,q =
⎩

Op,p Jp,q

Jq,p Oq,q

⎫
,

and its characteristic polynomial is

p(Φ) = det(ΦIp+q − AKp,q ) =
⎥⎥⎥⎥ ΦIp −Jp,q

−Jq,p ΦIq

⎥⎥⎥⎥ .
By Exercise 61 of Chap. 5 we have

p(Φ) = det(ΦIp) det

⎩
ΦIq − 1

Φ
Jq,p Jp,q

⎫
= Φp+q det

⎢
Iq − p

Φ2 Jq

⎣

= (−1)q pqΦp−q det

⎩
Jq − Φ2

p
Iq

⎫
,

taking into account that Jq,p Jp,q = p Jq . By Exercise 41 of Chap. 5,

p(Φ) = (−1)p+q−1Φp+q−2(pq − Φ2),

which means that the ordinary spectrum of Kp,q consists of 0,
≡

pq and −≡
pq ,

where algm(AKp,q , 0) = p + q − 2 and algm(AKp,q ,
≡

pq) = algm(AKp,q ,−≡
pq) = 1.

A special type of complete bipartite graph occurs when p = 1; that graph (which
has q + 1 vertices), shown in Fig. 10.36, is known as a star graph and has the
spectrum 0,

≡
q,−≡

q , with algm(AK1,q , 0) = q − 1 and algm(AK1,q ,
≡

q) =
algm(AK1,q ,−

≡
q) = 1.

The principal minors of the adjacency matrix of a graph play an important role in
the study of graphs. Recall that pAG (Φ) = ∑n

k=0(−1)kakΦ
n−k , where ak is the sum

of the principal minors of order k of A.
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Fig. 10.37 Directed simple
cycle Dm

Since all principal minors of order 1 of AG are 0 it follows that the sum of the
eigenvalues of A is 0. Consider now a principal minor or order 2,

det

⎩
A

⎛
i1 i2
i1 i2

⎧⎫
=
⎥⎥⎥⎥ai1i1 ai1i2
ai2i1 ai2i2

⎥⎥⎥⎥ .
Since ai1i1 = ai2i2 = 0, this minor equals −1 if and only if there is an edge (vi1 , vi2)

in G. Thus, the sum of the principal minors of order 2 is −|E |, and so a2 = −|E |.
A principal minor of order 3 has the form

det

⎩
A

⎛
i1 i2 i3
i1 i2 i3

⎧⎫
=
⎥⎥⎥⎥⎥⎥

0 ai1i2 ai1i3
ai2i1 0 ai2i3
ai3i1 ai3i2 0

⎥⎥⎥⎥⎥⎥ = 2ai1i2ai2i3ai3i1 .

The contribution of such a minor to a3 is 1 only when ai1i2 = ai2i3 = ai3i1 = 1, that
is, when the vertices vi1 , vi2 and vi3 form a triangle. Thus, the number of triangles in
G is a3

2 .
For directed graphs the definition of the ordinary spectrum is exactly the same as

for undirected graphs. Note however, that unlike undirected graphs whose adjacency
matrices are symmetric and, therefore, have real eigenvalues, in the case of directed
graphs their spectra may consist of complex numbers.

Example 10.156 Let Dm be a directed simple cycle that has m vertices:

Dm = ({v1, . . . , vm}, {(vi , vi+1) | 1 � i � m − 1} ∅ {(vm, v1)})

shown in Fig. 10.37. Its adjacency matrix is

ADm =


⎜⎜⎜⎜⎜

0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

... · · · ...

1 0 0 0 · · · 0


⎟⎟⎟⎟⎟ .
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The characteristic polynomial of ADm is

pADm
=

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

Φ −1 0 0 · · · 0
0 Φ −1 0 · · · 0
0 0 Φ −1 · · · 0
...

...
...

... · · · ...

−1 0 0 0 · · · Φ

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
= Φm − 1.

Thus, the ordinary spectrum of Dm consists of the m-ary complex roots z0 =
1, z1, . . . , zm−1 of 1, where

zk = cos
2kβ

m
+ i sin

2kβ

m
= e

2kiβ
m ,

for 0 � k � m − 1.
Observe that

ADm


⎜⎜⎜

1
zk
...

zm−1
k


⎟⎟⎟ =


⎜⎜⎜

zk
...

zm−1
k
1


⎟⎟⎟ = zk


⎜⎜⎜

1
...

zm−2
k

zm−1
k


⎟⎟⎟ ,

which shows that each ordinary eigenvalue zk of Dm has


⎜⎜⎜

1
zk
...

zm−1
k


⎟⎟⎟

as an eigenvector.

Exercises and Supplements

1. How many graphs exist that have a finite set of vertices V such that |V | = n?
2. Let G = (V, E) be a k-regular graph having m vertices and E ∞= ∩. Prove that

at least one of the numbers k and m must be even.
3. Let G = (V, E) be a graph such that |E | = n. Prove that |V | � 1+≡

1+8n
2 .

4. Let G = (V, E) be a finite graph. How many spanning subgraphs exist for G?
5. Prove that at least one of the graphs G or G is connected.
6. Let G = (V, E) be a graph. Prove that for any vertex v ∈ V we have dG(v) +

dG(v) = |V | − 1.
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(a) (b) (c)

Fig. 10.38 Four-vertex graphs that are not threshold

7. Let G = (V, E) be a graph with |V | = m. Prove that the if Φ ∈ spec(AG)

with algm(AG, Φ) = p, p > 1, then −Φ − 1 ∈ spec(AG), and p − 1 �
algm(AG,−Φ − 1) � p + 1.

8. Let G = (V, E) be a graph, where |V | = m and let q(G) = maxv∈V d(v). Prove
that the matrix SG defined as SG = Im − 1

q(G)
LG is a symmetric and doubly

stochastic matrix.

A matrix A ∈ {0, 1}n×m is a threshold matrix if there exists a vector a ∈ R
m and

b ∈ R such that Ax � 1n if and only if a′x � b for every x ∈ {0, 1}m .
The intersection graph of a matrix A ∈ {0, 1}n×m isTA = ({1, . . . , m}, E), where

an edge (i, j) exists in E if a′
i a j > 0 for 1 � i < j � m.

Recall that the characteristic vector of a subset S of a set V is denoted by cS (see
Supplement 8 of Chap. 6).

.
A graph G = (V, E), where V = {v1, . . . , vm} is threshold if there exists a ∈ R

m

and b ∈ R such that a′cS � b if and only if S is independent.

9. Let A ∈ {0, 1}n×m be a matrix and let TA be its intersection graph. Prove that:

(a) the set S, S ⊆ {1, . . . , m} is independent if and only if Aw � 1n ;
(b) A is a threshold matrix if and only if TA is a threshold graph.

10. Prove that the graphs shown in Fig. 10.38a–c are not threshold. Furthermore,
prove that a graph is not threshold if it contains a subgraph isomorphic to any of
the graphs shown in Fig. 10.38.

11. Let G = (V, E) be a graph having the connected components C1, . . . , Ck . Prove
that G is threshold if and only if there exits a component C j that is a threshold
graph and each component Ci such that i ∞= j consists of a single vertex.

Solution: If (x, y) is an edge in a component C p and (u, v) is an edge in a
component Cq , where p ∞= q , then the subgraph generated by {x, y, u, v} is
isomorphic to 2K2 and G cannot be threshold.

12. Prove that a threshold graph can be obtained from the empty graph by applying
a sequence of one of the following operations: add an isolated node, or take the
complement.

Let G = (V, E) be a graph. The vertex space of G is the C-linear space VG of all
functions of the form f : V −⊥ C; the edge space of G is the C-linear space EG of
the functions g : E −⊥ C. Note that dim(VG) = |V | and dim(EG) = |E |.
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13. Let G = (V, E) be a graph with |V | = m and |E | = n and let r : V × V −⊥
{−1, 0, 1} be an orientation on G. Define the matrix D ∈ C

m×n by

dφj =




1 if vφ is the positive end of e j ,

−1 if vφ is the negative end of e j ,

0 otherwise.

Prove that rank(D) = |E | − c, where c is the number of connected components
of G.

14. In Definition 10.19 it is required that the length n of a cycle p = (v0, . . . , vn) in
a graph G be at least 3. Why is this necessary?

15. Let S be a finite set. Define the graph GS = (P(S), E) such that an edge (K , L)

exists if K ∨ L and |L| = |K | + 1. Prove that there exist (|M | − |K |)! paths
that join the vertex K to M .

16. Let G = (V, E) be a finite graph. Define the triangular number of G as t =
max{|ρ(x) ∪ ρ(y)| | (x, y) ∈ E}.
(a) Prove that for every two vertices x, y ∈ V we have d(x) + d(y) � |V | + t .
(b) Show that ∑

{d(x) + d(y) | (x, y) ∈ E} =
∑
x∈V

d2(x).

Conclude that ∑
x∈V

d2(x) � (|V | + t)|E |.

17. Let m(G) be the minimum degree of a vertex of the graphG. Prove thatG contains
a path of length m(G) and a cycle of length at least m(G) + 1.

Hint: Consider a path of maximal length in G.
18. Let C be a collection of sets. The graph GC of C has C as the set of vertices. The

set of edges consists of those pairs C, D ∈ C such that C ∞= D and C ∪ D ∞= ∩.

(a) Prove that for every graph G there exists a collection of sets C such that
G = GC.

(b) Let C = (V, E) and let

c(G) = min{|S| | G = GC for some C ⊆ P(S)}.

Prove that if G is connected and |C| � 3, then c(C) � |E |.
19. Let G1 and G2 be two graphs whose adjacency matrices are
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AG1 =


⎜⎜⎜⎜

0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 0 1 0 1
0 1 0 1 0


⎟⎟⎟⎟ and AG2 =


⎜⎜⎜⎜

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0


⎟⎟⎟⎟ .

Prove that the graphs G1 and G2 are not isomorphic. However, their ordi-
nary spectra are identical and consist of {−2, 0, 2}, where algm(AG1 , 0) =
algm(AG2 , 0) = 3.

20. Let G = (V, E) be a bipartite graph. Prove that trace(A2k+1
G ) = 0 for every

k ∈ N.
21. Let G = (V, E) be a graph such that (u, v) ∈ (V × V ) − E implies

d(u) + d(v) � |V |, where V contains at least three vertices. Prove that G is
connected.

Solution: Suppose that u and v belong to two distinct connected components
C and C ′ of the graph G, where |C | = p and |C ′| = q, so p +q � |V |. If x ∈ C
and y ∈ C ′, then there is no edge (x, y), d(x) � p − 1 and d(y) � q − 1. Thus,
d(x) + d(y) � p + q − 2 � |V | − 2, which contradicts the hypothesis. Thus,
u, v must belong to the same connected component, so G is connected.

22. Prove that AKn = Jn − In and that

(AKn )
k = (n − 1)k − (−1)k

n
Jn + (−1)k In .

Let G = (V, E) be a graph and let C be a set referred to as the set of colors.
A C-coloring of G is a function f : V −⊥ C such that (u, v) ∈ E implies f (u) ∞=
f (v). The chromatic number of G is the least number |C | such that the graph has a
C-coloring. The chromatic number of G is denoted by χ(G); if χ(G) = n, then we
say that G is n-chromatic.

23. Prove that the graph G has χ(G) = 1 if and only if it is totally disconnected.
Further, prove that χ(G) = 2 if and only if it has no odd cycles.

24. Let G = (N, E) be a complete graph having N as its set of vertices and E =
(m, n) ∈ P2(N) | m ∞= n.

(a) If f : E −⊥ {c1, c2} is a two-color coloring of the edges of G, prove that
there exists an infinite complete subgraph of G that is monochromatic.

(b) Extend this statement to an r -color coloring, where r � 3.

Solution: Define the sequence of infinite subsets T0, T1, . . . of N as fol-
lows. The initial set is T0 = N. Suppose Ti is defined. Choose ni ∈ Ti , and
let Ui j = {n ∈ T − {ni } | f (ni , n) = c j } for j = 1, 2. At least one of
Ui1, Ui2 is infinite, and Ti+1 is chosen as one of Ui1, Ui2 that is infinite.
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If i � min{ j, k}, then n j ∈ Tj ∨ Ti+1 and nk ∈ Tk ∨ Ti+1, which
implies f (ni , n j ) = f (ni , nk) because of the definition of the sets Ti . Let
U = {n0, n1, . . .} and let g : U −⊥ {c1, c2} be given by g(ni ) = f (ni , n j )

for i < j . It is clear that g is well-defined. Since U is an infinite set,
at least one of the subsets g−1(c1), g

−1(c2) is infinite. Let W be one of
these subsets that is infinite. Then, for nl , nk ∈ W , where l < k, we have
g(nl) = g(nk) = c and therefore f (nl , nk) = c. Thus, the subgraph induced
by U is monochromatic.

25. Let (P,�) be a finite partially ordered set. The comparability graph of (P,�)

is the graph (P, E), where (u, v) ∈ E if (u, v) are comparable. Prove that the
chromatic number of (P, E) equals the minimum number of antichains in a
partition of P into antichains.

Let G = (V, E) be a graph. A Hamiltonian path that joins the vertex u to the vertex
v is a path in G that joins u to v such that every vertex of V occurs in the path.

A Hamiltonian cycle in G is a simple cycle that contains all vertices of G. Next,
we present several sufficient conditions for the existence of a Hamiltonian path due
to O. Ore and G. A. Dirac.

26. Let G = (V, E) be a graph such that (u, v) ∈ (V × V ) − E implies
d(u) + d(v) � |V |, where V contains at least three vertices. Prove that G
contains a Hamiltonian cycle.

Solution: The graph G is connected. Let p = (v1, . . . , vm) be the longest path
in G.
Suppose that m = |V |, which implies that p is a Hamiltonian path that joins v1
to vm . If vm and v1 are joined by an edge, then (v1, . . . , vm, v1) is a Hamiltonian
cycle.
Suppose that no edge exists between vm and v1, so d(v1) + d(vm) � |V |. The
vertex v1 is joined to d(v1) vertices on the path (v2, . . . , vm) and there are
d(v1) nodes that precede these nodes on the path p. If vm were not joined to
any of these nodes, then the set of nodes on p joined to vm would come from
a set of m − 1 − d(v1) nodes, so we would have d(vm) � m − 1 − d(v1),
which would contradict the assumption that d(v1) + d(vm) � |V |. Thus,
there exists a node vi on p such that (v1, vi ), (vi−1, vn) ∈ E . Therefore
(v1, vi , vi+1, . . . , vn, vi−1, vi−2, . . . , v2, v1 is a Hamiltonian cycle.
Suppose that m < |V |. If there is an edge (w, v1), where w is not a node of
p, then (w, v1, . . . , vm) is longer than p. Thus, v1 is joined only to nodes in p
and so is vm . An argument similar to the one previously used shows that there
exists a simple cycle q = (y1, . . . , ym, y1) of length m. Since m < |V | and G

is connected, there is a node t not on q that is joined to some vertex yk in q.
Then (t, yk, yk+1, . . . , ym, y1, y2, . . . , yk−1) is a path of length m + 1, which
contradicts the maximality of the length of p. Since this case cannot occur, it
follows that G has a Hamiltonian cycle.

27. Let G = (V, E) be a graph such that |V | � 3 in which d(v) � |V |/2.
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(a) Prove that G is connected.
(b) Prove that G has a Hamiltonian cycle.

28. Let G = (V, E) be a graph such that |E | � (|V |−1)(|V |−2)
2 + 2. Prove that G has

a Hamiltonian cycle.
29. Prove that every subgraph of a bipartite graph is bipartite.
30. Prove that a tree is a bipartite graph.
31. Prove that the adjacency matrix of a tree that has n vertices contains (n −1)2 +1

zeros.
32. Prove that a tree that has at least two vertices has at least two leaves.
33. Prove that if T is a tree and x is a leaf, then the graph obtained by removing x

and the edge that has x as an endpoint from T is again a tree. Also, show that if
z is a new vertex, then the graph obtained from T by joining z with any node of
T is also a tree.

34. Prove that Dilworth’s Theorem (Theorem 2.57) is equivalent to König Theorem
(Theorem 10.148), that is, each each of these statement can be proven starting
with the other.

Solution: We start with König Theorem. Let (S,�) is a finite nonempty poset,
where S = {s1, . . . , sn} such that width(S,�) = m. Consider a bipartite graph

G = ({s1, . . . , sn, s′
1, . . . , s′

n}, E)

having the bipartition {S, S′}, where S′ = {s′
1, . . . , s′

n}. The set of edges of G is
E = {(si , s′

j ) | si < s j }.

By König Theorem there exists a maximal matching M of G and a minimal
vertex cover U of G of the same cardinality. Let T = {s ∈ S | {s, s′} ∪ U = ∩}.
Note that no two elements of T are comparable in the poset (S,�) for otherwise,
an edge would exist between two elements of T and one of these vertices would
belong to U . Thus, T is an antichain in (S,�).
Define the reflexive and symmetric relation κ on S as consisting of those pairs
(si , s j ) such that i = j , or (si , s′

j ) ∈ M , or (s j , s′
i ) ∈ M . Note that if (si , s j ) ∈ κ

and (s j , sk) ∈ κ , then (si , sk) ∈ M . Since M and U have the same cardinality,
it follows that T has the same cardinality as the partition S/κ .
To prove König Theorem starting from Dilworth’s Theorem we start with a
bipartite graph G = (V, E) having the bipartition {Y, Z}. Define a partial order
on V by taking y � z when y = z, or when y ∈ Y and z ∈ Z . By Dilworth’s
Theorem, there exists an antichain and a partition of the poset (V,�) having
the same size. The nontrivial chains in (V,�) yield a matching in the graph; the
complement of the set of vertices corresponding to the antichain yield an vertex
cover with the same cardinality as the matching.

35. Let u be a vertex in a tree T = (V, E), where |V | � 2. Prove that
∑{d(u, v) |

v ∈ V } �
(|V |

2

)
.
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Solution: The proof is by induction on n = |V |. The base case. n = 2 is
immediate. Suppose that the statement holds for trees with fewer than n vertices
and let x be a leaf of T such that x ∞= u. Note that no shortest path from u
to a vertex v, where v ∞= x exists that passes through x . Then, by inductive
hypothesis,

∑{d(u, v) | v ∈ V } = ∑{d(u, v) | v ∈ V, v ∞= x} + d(u, x) �(n−1
2

) + (n − 1) = (n
2

)
.

36. Prove that the inequality from Supplement 35 holds in arbitrary graphs using
spanning trees.

37. Let f : S −⊥ S be a function. Define the directed graph G f = (S, E), where
E = {(x, y) ∈ S × S | y = f (x)}. Prove that each connected component of
G f consists of a cycle and a number of trees linked to the cycle.

38. Let G be a graph. Prove that for every square submatrix M of UG we have
det(M) ∈ {−1, 0, 1}.

39. LetG = (V, E)be a connected graph with |V | = n. Prove that rank(UG) = n−1.
40. Let G = (V, E) be a tree such that |V | = n. Prove that any square submatrix

M ∈ R
(n−1)×(n−1) of the incidence matrix UG is non-singular.

41. Let G = (V, E) be a graph with |V | = n, |E | = n − 1, where n � 2 and let Gr

be an oriented graph obtained from G having the incidence matrix UGr . If B =
UGr

⎛
2 · · · n

1 · · · n − 1

⎧
, prove that det(UGr ) ∈ {−1, 0, 1} and det(UGr ) ∈ {−1, 1} if

and only if G is a tree.
42. Let G = (V, E) be a digraph. Prove that there exists a path of length m from

vertex vi to vertex v j , where vi , v j ∈ V if and only if (Am
G)i j > 0.

43. Let G = (V, E) be a digraph. Prove that G is strongly connected if and only if
there exists a closed walk that contains each vertex.

44. Let N = (G, cap, s, t) be a network. Prove that if (C1, C ′
1) and (C2, C ′

2) are
minimal cuts, then (C1 ∅ C2, C ′

1 ∪ C ′
2) is a minimal cut¡.

45. Let G = (V, E) be a graph such that V = {v1, . . . , vm} and G contains no sub-
graph isomorphic to Kp,p. Prove that

∑m
i=1

(d(vi )
p

)
�
(m

p

)
(p − 1).

Solution: Consider the pairs of the form ({v1, . . . , vp}, v) such that (vi , v) ∈ E
for 1 � i � p. Note that for a set {v1, . . . , vp} there exist at most p − 1 choices
for v because, otherwise, Gwould contain a subgraph isomorphic toKp,p. Thus,
there are no more than

(m
p

)
(p − 1) pairs of the specified form.

Note that for a vertex v there exists a pair ({v1, . . . , vp}, v) only if d(v) �
p and, in this case, there are

(d(v)
p

)
such pairs. Consequently,

∑m
i=1

(d(vi )
p

)
�(m

p

)
(p − 1).

46. Let G = (V, E) be a digraph. If U ⊆ V , let C(U ) = {(x, y) ∈ E | x ∈ U, y ∞∈
U } and let f : P(V ) −⊥ R�0 be the function given by f (U ) = |C(U )| for
U ∈ P(V ). Prove that f satisfies the inequality

f (U1 ∅ U2) + f (U1 ∪ U2) � f (U1) + f (U2)
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for every U1, U2 ∈ P(V ).
47. Let A, B ∈ R

n×n be two symmetric matrices, where

spec(A) = {ν1, . . . , νn} and spec(B) = {π1, . . . , πn}.

Prove that:

(a) if ν1 � · · · � νn and π1 � · · · � πn , then trace(AB) �
∑n

i=1 νiπi ;
(b) if ν1 � · · · � νn and π1 � · · · � πn , then trace(AB) �

∑n
i=1 νiπi .

Solution: Observe that ∧ A−B ∧2
F= trace((A−B)′(A−B)) = trace((A−B)2)

due to the symmetry of the matrices A and B. This implies

∧ A − B ∧2
F = trace(A2 − 2AB + B2) =∧ A ∧2

F + ∧ A ∧2
F − 2 trace(AB),

so 2 trace(AB) =∧ A ∧2
F + ∧ B ∧2

F − ∧ A − B ∧2
F .

By Corollary 10.96 of Hoffman-Wieland Theorem, we have ∧ A − B ∧2
F�∑n

i=1(νi − πi )
2, so

2 trace(AB) � ∧ A ∧2
F + ∧ B ∧2

F −
n∑

i=1

(νi − πi )
2

=
n∑

i=1

ν2
i +

n∑
i=1

π2
i −

n∑
i=1

(νi − πi )
2 = 2

n∑
i=1

νiπi ,

which yields the first inequality.
If ν1 � · · · � νn and π1 � · · · � πn , then by the second part of Corollary 10.96,
we have∧ A−B ∧2

F�
∑n

i=1(νi−πi )
2, and this implies trace(AB) �

∑n
i=1(νi−

πi )
2.

48. Let G = (V, E) be a graph, where |V | = m and |E | = n, and let β =
{B1, . . . , Bp} be a partition of V . The community matrix of β is the matrix Sβ ∈
R

m×p defined by (Sβ )i j = 1 if vi ∈ B j . Prove that S′S = diag(|B1|, . . . , |Bp|).
49. Let G = (V, E) be a graph, where |V | = m and |E | = n, and let β =

{B1, . . . , Bp} be a partition of V such that the vertices that belong to a block are
numbered consecutively, that is, Bφ = {vmell−1 + 1, . . . , vmφ

}, where |Bφ| = mφ

for 1 � φ � p.
Define the matrix

AGβ = diag
⎩

1

|B1| , . . . ,
1

|Bp|
⎫

S′
β AGSβ .

A partition β is equitable if Aβ
GSβ = Sβ AG.

Prove that β is equitable if for blocks Br , Bs the number of neighbors that a
vertex in Br has in the block Bs is the same for every vertex in Br .
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Let G be a graph. The eigenvector centrality is a measure of the influence of a node
in the graph G. Its definition (given below) formalizes the idea that the centrality of
a vertex is determined by the measures of centrality of its neighbors in G. Google
ranks web pages based on their centrality in the web graph.

50. LetG = (V, E, w) be a weighted graph, where V = {v1, . . . , vn}. The centrality
of a vertex vi is a non-negative number ci such that

ci = k
∑

{wi j c j | v j ∈ NG({vi })}

for 1 � i � n. A vector whose components are the numbers ci is a centrality
vector. Prove that:

(a) c = k AGc;
(b) c is an eigenvector that corresponds to the spectral radius of AG.

51. Let G = (V, E) be a graph, where |V | = m and |E | = n. If Φ1 is the largest
eigenvalue of AG, prove that

Φ1 �
√

2n(m − 1)

m
.

Solution: If Φ1 � Φ2 � · · · � Φm , we have Φ1 = −∑m
i=2 Φi , so Φ1 �

∑m
i=2 |Φi |.

By Inequality (6.4) of Chap. 6, we have

2n − Φ2
1 =

m∑
i=2

Φ2
i � 1

m − 1

(
m∑

i=2

|Φi |
)2

� Φ2
1

m − 1
.

Thus, 2n � Φ2
1

m
m − 1 , which gives the desired inequality.

52. Let G = (V, E) be a k-regular graph, U, W be two sets of vertices and let
E(U, V ) = (U × V ) ∪ E be the set of edges whose endpoints belong to U and
V . Prove that

|E(U, V )| � Φ
√|U | · |V | + k

n
|U | · |V |,

where n = |V | and Φ is the largest absolute value of an eigenvalue of AG.

Solution: Let Φn � · · · � Φ1 = k be the ordinary spectrum of G (see
Example 10.151) and let vn, . . . , v1 be the orthonormal base of R

n that con-
sists of the corresponding eigenvectors. We saw that v1 = 1≡

n
1n . Let cU and

cW be the characteristic vectors of U and V , respectively (see Supplement 8 of
Chap. 6) and let cU = ∑n

i=1 ai vi , cW = ∑n
i= j b j v j be the representations of

cU and cW in this basis. We have
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|E(U, W )| = cU AGcW =
(

n∑
i=1

ai vi

)
AG


 n∑

j=1

b j v j




=
(

n∑
i=1

ai vi

)
 n∑

j=1

b j AGv j




=
(

n∑
i=1

ai vi

)
 n∑

j=1

b jΦ j v j


 =

n∑
i=1

Φi ai bi ,

due to the orthonormality of the basis. Since c′
U

1≡
n

1n = |U | and c′
W

1≡
n

1n = |V |
we have

|E(U, W )| = k
|U | · |W |

n
+

n∑
i=2

Φi ai bi = k
|U | · |W |

n
+

n∑
i=2

Φi ai bi .

Thus, we can write⎥⎥⎥⎥|E(U, W )| − k
|U | · |W |

n

⎥⎥⎥⎥
�

n∑
i=2

|Φi ai bi | � Φ

n∑
i=2

|ai bi | � Φ ∧ a ∧2 · ∧ b ∧2

= Φ ∧ cU ∧2 · ∧ cW ∧2= Φ|U | · |W |,

which gives the desired inequality.

Bibliographical Comments

Among the many references for graph theory we mention [9–11] and [12]. We
adopted the treatment of maximal flows (including Theorem 10.142) from [13],
a classic reference for networks.

Supplement 28 is a result of Ore [14]; the same author (see [15]) has shown the
statement in Exercise 28.

The result contained in Exercise 27 is from Dirac [16]. The notions of intersection
graph and threshold graph were introduced in [17].

Exercise 41 originates in [18]. Exercise 20 contains a result of Cvetcović [19].
A great source for application of spectral theory of matrices to graphs is [20]. Our

presentation of spectra of non-negative matrices follows [21].
Interesting applications of graph theory in the study of the world-wide web and

search engines can be found in [22, 23].
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The results that concern variable adjacency matrix of graphs and digraphs were
obtained in [24]. The equivalence of Dilworth’s and König Theorems was shown
in [25].
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Chapter 11
Lattices and Boolean Algebras

11.1 Introduction

Lattices can be defined either as special partially ordered sets or as algebras. In this
chapter, we present both definitions and show their equivalence. We study several
special classes of lattices: modular and distributive lattices and complete lattices.
The last part of the chapter is dedicated to Boolean algebras and Boolean functions.

11.2 Lattices as Partially Ordered Sets and Algebras

We begin with a simple algebraic structure.

Definition 11.1 A semilattice is a semigroup S = (S, {∈}) such that s ∈ s = s and
s ∈ t = t ∈ s for all s, t ∈ S.

In other words, S = (S, {∈}) is a semilattice if “∈” is a commutative and idem-
potent operation.

Example 11.2 Let ∈ be the binary operation on the setN1 of positive natural numbers
defined by n ∈ p = gcd(n, p). In Example 1.142, we saw that ∈ is an associative
operation. Since gcd(n, p) = gcd(p, n) and gcd(n, n) = n for every n ∈ N, it
follows that (N1, {∈}) is indeed a semilattice.

It is easy to see that (N1, {lcm}) is also a semilattice.

Theorem 11.3 Let S = (S, {∈}) be a semilattice. The relation x � y defined by
x = x ∈ y for x, y ∈ S is a partial order on S. Further, inf{u, v} in the partially
ordered set (S,�) exists for all u, v ∈ S and u ∈ v = inf{u, y}.
Proof The idempotency of ∈, x = x ∈ x implies x � x for every x ∈ S; that is, the
reflexivity of �.

Suppose that x � y and y � x ; that is, x = x∈y and y = y∈x . The commutativity
of ∈ implies that x = y, so � is antisymmetric.

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 539
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_11,
© Springer-Verlag London 2014
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Now let x, y, z be three elements of S such that x � y and y � z, that is, x = x ∈ y
and y = y ∈ z. We have x ∈ z = (x ∈ y) ∈ z = x ∈ (y ∈ z) = x ∈ y, which proves that
x � z. Thus, � is transitive, so it is a partial order on S.

Let u and v be two arbitrary elements of S. Note that u ∈ v � u and v ∈ v � u
because (u ∈ v) ∈ u = u ∈ (u ∈ v) = (u ∈ u) ∈ v = u ∈ v and (u ∈ v) ∈ v =
u ∈ (v ∈ v) = u ∈ v. Thus, u ∈ v is a lower bound of the set {u, v}. Suppose now
that w is an arbitrary lower bound of {u, v}, that is, w = w ∈ u and w = w ∈ v. We
have w ∈ (u ∈ v) = (w ∈ u) ∈ v = w ∈ v = w, which proves that w � u ∈ v. This
allows us to conclude that u ∈ v = inf{u, v}.

We also need the following converse result.

Theorem 11.4 Let (S,�) be a partially ordered set such that inf{u, v} exists for all
u, v ∈ S. If ∈ is the operation defined by u ∈ v = inf{u, v} for u, v ∈ S, then (S, {∈})
is a semilattice.

Proof It is immediate that ∈ is an idempotent and commutative operation. We prove
here only its associativity.

Let t, u, v ∈ S and let p, q be defined by p = inf{t, inf{u, v}} and
q = inf{inf{t, u}, v}. By the definition of infimum, we have p � t and p � inf{u, v},
so p � u and p � v. Since p � t and p ∪ u, we have p � inf{t, u}. This inequality,
together with p � v, implies p � inf{inf{t, u}, v}, so p � q.

By the same definition of infimum, we have q � inf{t, u} and q � v. The first
inequality implies q � t and q � u. Thus, q � inf{u, v}; together with q � t , these
inequalities imply q � inf{t, inf{u, v}} = p. We conclude that p = q, which shows
that ∈ is indeed an associative operation.

The next statement is closely related to the previous theorem.

Theorem 11.5 Let (S,�) be a partially ordered set such that sup{u, v} exists for
all u, v ∈ S. If ν is the operation defined by u ν v = sup{u, v} for u, v ∈ S, then
(S, {ν}) is a semilattice.

Proof This statement follows from Theorem 11.4 by duality.

Example 11.6 The partially ordered sets (P,�) and (Q,�), whose Hasse diagrams
are given in Fig. 11.1, are semilattices because sup{u, v} exists for any pair of ele-
ments in each of these sets. The operation ν is described by the the following table.

(P, ν) a b c (Q, ν) x y z

a a c c x x y z
b c b c y y y z
c c c c z z z z
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Fig. 11.1 Hasse diagrams.
a The posets (P, �), and
b (Q, �)

(a) (b)

Example 11.7 Let S be a set and let (Seq(S),�pref) be the poset introduced in
Example 2.6. We prove that this is a semilattice by verifying that inf{u, v} exists for
any sequences u, v ∈ Seq(S).

Note that any two sequences have at least the null sequence λλλ as a common prefix.
If t and s are common prefixes of u and v, then either t is a prefix of s or vice-versa.
Thus, the finite set of common prefixes of u and v is totally ordered by “�pref” and
therefore it has a largest element z. The sequence z is the longest common prefix of
the sequences u and v. It is clear that z = inf{u, v} in the poset (Seq(S),�pref).

We denote the result of the semilattice operation introduced here, which associates
with u and v their longest common prefix, by lcp(u, v).

The associativity of this operation can be written as

lcp(u, lcp(v, w)) = lcp(lcp(u, v), w) (11.1)

for all sequences u, v, w ∈ Seq(S).

Theorem 11.8 Let S be a set and let u, v, w be three sequences in Seq(S). Then, at
most two of the sequences lcp(u, v), lcp(v, w), lcp(w, u) are distinct. The common
value of two of these sequences is a prefix of the third sequence.

Proof Let t = lcp(u, v), r = lcp(v, w), and s = lcp(w, u). Note that any two of the
sequences t, r, s are prefixes of the same sequence. Therefore, they form a chain in
the poset (Seq(S),�pref).

Suppose, for example, that t �pref r �pref s. Observe that r is a prefix of v because
it is a prefix of s. Thus, r is a prefix of both u and v. Since t is the longest common
prefix of u and v, it follows that r is a prefix of t, so r = t.

The remaining five cases that correspond to the remaining permutation of the
sequences t, r, and s can be treated in a similar manner.

Theorems 11.4 and 11.5 shows that, in principle, a partial order relation on a set S
may induce two semilattice structures on S. Traditionally, the semilattice (S, ∈) has
been referred to as the meet semilattice , while (S, ν) is called the join semilattice,
and the operations “∈” and “ν” are denoted by “∞” and “∅”, respectively. This is a
notation that we will use from now on.

Definition 11.9 Let S1 = (S1, {∞}) and S2 = (S2, {∞}) be two semilattices. A
morphism h fromS1 toS2 is a function h : S1 −⊆ S2 such that h(x∞y) = h(x)∞h(y)

for x, y ∈ S1.
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The semilattices S1 and S2 are isomorphic if there exist two bijective morphisms
h : S1 −⊆ S2 and h∩ : S2 −⊆ S1 that are inverse to each other.

A semilattice morphism is a monotonic function between the partially ordered
sets (S1,�) and (S2,�). Indeed, suppose that x, y ∈ S1 such that x � y, which
is equivalent to x = x ∞ y. Since h is a morphism, we have h(x) = h(x) ∞ h(y),
so h(x) � h(y). The converse is not true; a monotonic function between the posets
(S1,�) and (S2,�) is not necessarily a semilattice morphism, as the next example
shows.

Example 11.10 Let (P, {ν}) and (Q, {ν}) be the semilattices defined in Exam-
ple 11.6. The function f : P −⊆ Q given by f (a) = x , f (b) = y, and f (c) = z
is clearly monotonic, and it is even a bijection. However, it fails to be a semilattice
morphism because f (a ν b) = f (c) = z, while f (a) ν f (b) = x ν y = y ⊕= z.

However, we have the following theorem.

Theorem 11.11 Let S1 = (S1, {∞}) and S2 = (S2, {∞}) be two semilattices. S1 and
S2 are isomorphic if and only if there exists a bijection h : S1 −⊆ S2 such that both
h and h−1 are monotonic.

Proof Suppose that h : S1 −⊆ S2 is a bijection such that both h and h−1 are
monotonic functions, and let x and y be two elements of S1. Since x ∞ y � x and
x ∞ y � y, we have h(x ∞ y) � h(x) and h(x ∞ y) � h(y), so h(x ∞ y) � h(x)∞h(y).
We further prove that h(x ∞ y) is the infimum of h(x) and h(y).

Let u ∈ S2 such that u � h(x) ∞ h(y), so u � h(x) and u � h(y). Equivalently,
we have h−1(u) � x and h−1(u) � y, which implies h−1(u) � x ∞ y. Therefore,
u � h(x ∞ y), which allows us to conclude that h(x) ∞ h(y) = inf{h(x), h(y)} =
h(x ∞ y), so h is indeed a morphism. Similarly, one can prove that h−1 is also a
morphism, so S1 and S2 are isomorphic.

Conversely, if S1 and S2 are isomorphic and h : S1 −⊆ S2 and h∩ : S2 −⊆ S1
are morphisms that are inverse to each other, then they are clearly inverse monotonic
mapping.

A structure that combines the properties of join and meet semilattices is introduced
next.

Definition 11.12 A lattice is an algebra of type (2, 2), that is, an algebra
L = (L , {∞,∅}) such that ∞ and ∅ are both idempotent, commutative, and associa-
tive operations and the equalities (known as absorption laws)

x ∅ (x ∞ y) = x, x ∞ (x ∅ y) = x

are satisfied for every x, y ∈ L.

Observe that if (L , {∞,∅}) is a lattice, then both (L , {∞}) and (L , {∅}) are semi-
lattices. Thus, by Theorem 11.3, both operations induce partial order relations on L .
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Let us denote these operations temporarily by “�” and “�∩”, respectively. In other
words, we have x � y if x = x ∞ y and u �∩ v if u = u ∅ v.

The absorption laws that link together the operations ∞ and ∅ imply that the two
partial orders are dual to each other. Indeed, suppose that x � y, that is, x = x ∞ y.
Then, since y ∅ x = y ∅ (y ∞ x) = y, we have y �∩ x . We usually use the partial
order � on the lattice (L , {∞,∅}).

If (L , {∞,∅}) is a lattice, then for every finite, nonempty subset K of L , inf K
and sup K exist, as it can be shown by induction on n = |K |, where n � 1 (see
Exercise 2). Moreover, if K = {x1, . . . , xn}, then

inf K = x1 ∞ x2 ∞ · · · ∞ xn,

sup K = x1 ∅ x2 ∅ · · · ∅ xn .

Example 11.13 Let S be a set. The algebra (P(S), {⊥,∨}) is a lattice. Also, if P f (S)

is the set of all finite subsets of S, then (P f (S), {⊥,∨}) is also a lattice.

Example 11.14 The posets M5 and N5 from Example 2.55 are both lattices. Indeed,
the operations ∞ and ∅ for the first poset is given by the following table.

(M5,∞) 0 a b c 1 (M5,∅) 0 a b c 1

0 0 0 0 0 0 0 0 a b c 1
a 0 a 0 0 a a a a 1 1 1
b 0 0 b 0 b b b 1 b 1 1
c 0 0 0 c c c c 1 1 c 1
1 0 a b c 1 1 1 1 b 1 1

The similar operations for N5 are given next.

(N5,∞) 0 x y z 1 (N5,∅) 0 x y z 1

0 0 0 0 0 0 0 0 x y z 1
x 0 x x 0 x x x x y 1 1
y 0 x y 0 y y y y y 1 1
z 0 0 0 z z z z 1 1 z 1
1 0 x y 1 1 1 1 1 1 1 1

Example 11.15 The poset of partitions of a finite set (PART(S),�) introduced in
Example 2.3 is a lattice. Indeed, we saw in Sect. 2.5 that for every two partitions
π,σ, both inf{π,σ} and sup{π,σ} exist.

Example 11.16 Consider the set N × N and the partial order ∧ on this set defined
by (p, q) ∧ (m, n) if p � m and q � n. Then inf{(u, v), (x, y)} = (min{u, x}, min
{v, y}) and sup{(u, v), (x, y)} = (max{u, x}, max{v, y}).

http://dx.doi.org/10.1007/978-1-4471-6407-4_2
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Theorem 11.17 Let (L , {∞,∅}) be a lattice. If x � y and u � v, then x ∞u � y ∞v

and x ∅ u � y ∅ v (compatibility of the lattice operations with the partial order).

Proof Note that x � y is equivalent to x = x ∞ y and to y = x ∅ y. Similarly, u � v

is equivalent to u = u ∞ v and to v = u ∅ v. Therefore, we can write

(x ∞ u) ∞ (y ∞ v) = (x ∞ y) ∞ (u ∞ v) = x ∞ u,

so x ∞ u � y ∞ v. The proof of the second inequality is similar.

Let (L , {∞,∅}) be a lattice. If the poset (L ,�) has the largest element 1, then we
have 1 ∞ x = x ∞ 1 = x and 1 ∅ x = x ∅ 1 = x . If the poset has the least element
0, then 0 ∞ x = x ∞ 0 = 0 and 0 ∅ x = x ∅ 0 = x . In other words, if a lattice has
a largest element 1, then 1 is a unit with respect to the ∞ operation; similarly, if the
least element exists, then it plays the role of a unit with respect to ∅.

Let K and H be two finite subsets of L , where (L , {∞,∅}) is a lattice. If K ⇒ H ,
then it is easy to see that sup K � sup H and that inf K � inf H . Since ↔ ⇒ H for
every set H , by choosing H = {x} for some x ∈ L , it is clear that if a lattice has
the least element 0 and the greatest element 1, then we can define sup ↔ = 0 and
inf↔ = 1.

Definition 11.18 A lattice (L , {∞,∅}) is bounded if the poset (L ,�) has the least
element and the greatest element 1.

Note that every finite subset of of a finite lattice (including the empty set) is
bounded.

If L = (L , {∞,∅}) is a finite lattice, then L is bounded. Indeed, since both sup L
and inf L exist, it follows that sup L is the greatest element and inf L is the least
element of L, respectively.

Definition 11.19 Let L1 = (L1,∞,∅) and L2 = (L2,∞,∅) be two lattices. A
morphism h from L1 to L2 is a function h : L1 −⊆ L2 such that h(x ∞ y) =
h(x) ∞ h(y) and h(x ∅ y) = h(x) ∅ h(y) for every x, y ∈ L1.

A lattice isomorphism is a bijective lattice morphism.

A counterpart of Theorem 11.11 characterizes isomorphic lattices.

Theorem 11.20 Let L1 = (L1, {∞,∅}) and L2 = (L2, {∞,∅}) be two lattices. L1
and L2 are isomorphic if and only if there exists a bijection h : L1 −⊆ L2 such that
both h and h−1 are monotonic.

Proof The proof is similar to the proof of Theorem 11.11; we leave the argument to
the reader as an exercise.

Definition 11.21 Let L = (L , {∞,∅}) be a lattice. A sublattice of L is a subset K
of L that is closed with respect to the lattice operations. In other words, for every
x, y ∈ K , we have both x ∞ y ∈ K and x ∅ y ∈ K .
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Note that if K is a sublattice of L, then the pair K = (K , {∞,∅}) is itself a lattice.
We use the term “sublattice” to designate both the set K and the lattice K when there
is no risk of confusion. For example, if K and K ∩ are two sublattices of a lattice
L and f : K −⊆ K ∩ is a morphism between the lattices K = (K , {∞,∅}) and
K∩ = (K ∩, {∞,∅}), we designate f as a morphism between K and K ∩.

Example 11.22 LetL = (L , {∞,∅}) be a lattice and let a and b be a pair of elements
of L . The interval [a, b] is the set

{x ∈ L | a � x � b}.

Clearly, an interval [a, b] is nonempty if and only if a � b. Each such set is a
sublattice. Indeed, if [a, b] = ↔, then ↔ is clearly a sublattice.

Suppose that x, y ∈ [a, b]; that is, a � x � b and a � y � b. Due to the
compatibility of the lattice operations with the partial order, we obtain immediately
a � x ∞ y � b and a � x ∅ y � b, so [a, b] is a sublattice in all cases.

Example 11.23 Let [a, b] be a nonempty interval of a lattice L = (L , {∞,∅}). The
function h : L −⊆ [a, b] defined by h(x) = (x ∅ a) ∞ b is a surjective morphism
between L and the lattice ([a, b], {∞,∅}) because

h(x ∞ y) = ((x ∞ y) ∅ a) ∞ b = ((x ∅ a) ∞ (y ∅ a)) ∞ b

= ((x ∅ a) ∞ b) ∞ ((y ∅ a)) ∞ b)) = h(x) ∞ h(y)

and

h(x ∅ y) = ((x ∅ y) ∅ a) ∞ b = ((x ∅ a) ∅ (y ∅ a)) ∞ b

= ((x ∅ a) ∞ b) ∅ ((y ∅ a)) ∞ b)) = h(x) ∅ h(y)

for x, y ∈ B.
The elements a and b are invariant under h. Indeed, we have h(a) = a because

h(a) = (a ∅ a) ∞ b = a ∞ b = a and h(b) = (b ∅ a) ∞ b = b by absorption.
Moreover, this property is shared by every member of the interval [a, b] because we
can write

h(h(x)) = h((x ∅ a) ∞ b) = h(x ∅ a) ∞ h(b)

= (h(x) ∅ h(a)) ∞ h(b) = (h(x) ∅ a) ∞ b

= (((x ∅ a) ∞ b) ∅ a) ∞ b

= (x ∅ a) ∞ (b ∅ a) ∞ b

= (x ∅ a) ∞ b = h(x)

for x ∈ B. We refer to h as the projection of L on the interval [a, b].
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11.3 Special Classes of Lattices

Let (L , {∞,∅}) be a lattice and let u, v, w be three members of L such that u � w.
Since u � u ∅ v and u � w, it follows that

u � (u ∅ v) ∞ w. (11.2)

Starting from the inequalities v ∞ w � v � u ∅ v and v ∞ w � w, we have also

v ∞ w � (u ∅ v) ∞ w. (11.3)

Combining Inequalities (11.2) and (11.3) yields the inequality

u ∅ (v ∞ w) � (u ∅ v) ∞ w, (11.4)

which is satisfied whenever u � w. This inequality is known as the submodular
inequality.

An important class of lattices is obtained when we replace the submodular inequal-
ity (satisfied by every lattice) with an equality, as follows.

Definition 11.24 A lattice (L , {∞,∅}) is modular if, for every u, v, w ∈ L, u � w

implies
u ∅ (v ∞ w) = (u ∅ v) ∞ w. (11.5)

Observe that if u = w, Equality (11.5) holds in every lattice. Therefore, it is
sufficient to require that u < w implies u ∅ (v∞w) = (u ∅v)∞w for all u, v, w ∈ L
to ensure modularity.

Example 11.25 The lattice M5 introduced in Example 11.14 is modular. Indeed,
suppose that x < z. If u = 0 andw = 1, it is easy to see that Equality (11.5) is verified.
Suppose, for example, that u = a and w = 1. Then, u∅(v∞w) = a∅(v∞1) = a∅v

and (u ∅ v) ∞ w = (a ∅ v) ∞ 1 = a ∅ v for every v ∈ {0, 1, a, b, c}. The remaining
cases can be analyzed similarly.

On the other hand, the lattice N5 introduced in the same example is not modular
because we have x < y, x ∅ (z ∞ y) = x ∅ 0 = x , and (x ∅ z)∞ y = 1∞ y = y ⊕= x .

The special role played by N5 is described next.

Theorem 11.26 A lattice L = (L , {∞,∅}) is modular if and only if it does not
contain a sublattice isomorphic to N5.

Proof Suppose L contains a sublattice K = {t0, t1, t2, t3, t4} isomorphic to N5, and
let f : K −⊆ N5 be an isomorphism. Suppose that f (t0) = 0, f (t1) = x , f (t2) = y,
f (t3) = z, and f (t4) = 1. Also, let g : N5 −⊆ K be the inverse isomorphism.

Since x < y, g(x) = t1, and g(y) = t2, we have t1 < t2. On the other hand,
t1 ∅(t3 ∞ t2) = g(x)∅(g(z)∞g(y)) = g(x ∅(z∞ y)) = g(x) = t1 and (t1 ∅ t3)∞ t2 =



11.3 Special Classes of Lattices 547

(g(x) ∅ g(z)) ∞ g(y) = g((x ∅ z) ∞ y) = g(y) = t2 ⊕= t1, which shows that L is not
modular.

Conversely, suppose that L = (L , {∞,∅}) is not modular. Then, there exist three
members of L – u, v, w – such that u < w and u ∅ (v ∞ w) < (u ∅ v) ∞ w because
L still satisfies the submodular inequality. Observe that the elements t0, . . . , t4 given
by:

t0 = v ∞ w, t1 = u ∅ (v ∞ w), t2 = (u ∅ v) ∞ w, t3 = v, t4 = (u ∅ v) ∞ w

form a sublattice isomorphic to N5.

The relationship between intervals of the form [a ∞b, a] and [b, a ∅b] in modular
lattices is shown next.

Theorem 11.27 Let L = (L , {∞,∅}) be a modular lattice and let a and b be two
elements. The mappings φ : [a∞b, a] −⊆ [b, a∅b] and ψ : [b, a∅b] −⊆ [a∞b, a]
defined by φ(x) = x ∅ b and ψ(y) = y ∞ a for x ∈ [a ∞ b, b] and y ∈ [a, a ∅ b] are
inverse monotonic mappings between the sublattices [a ∞ b, b] and [a, a ∅ b].
Proof Note that, for a ∞ b � x � a, we have (x ∅ b) ∞ a = x ∅ (b ∞ a) because L
is modular and x ∅ (b ∞ a) = x because a ∞ b � x . Thus, ψ(φ(x)) = x for every
x ∈ [a ∞ b, a].

Similarly, one can prove that φ(ψ(y)) = y for every y ∈ [b, a ∅ b], which shows
that φ and ψ are inverse to each other. The monotonicity is immediate.

Corollary 11.28 Let L = (L , {∞,∅}) be a modular lattice and let a and b be two
elements such that a and b cover a ∞ b. Then a ∅ b covers both a and b.

Proof Since a covers a∞b, the interval [a∞b, a] consists of two elements. Therefore,
by Theorem 11.27, the interval [b, a ∅ b] also consists of two elements, so a ∅ b
covers b. A similar argument shows that a ∅ b covers a (starting from the fact that
b covers a ∞ b).

The property of modular lattices described in Corollary 11.28 allows us to intro-
duce a generalization of the class of modular lattices.

Definition 11.29 A lattice L = (L , {∞,∅}) is semimodular, if for every a, b ∈ L
such that both cover a ∞ b, the same elements are covered by a ∅ b.

Clearly, every modular lattice is semimodular. The converse is not true, as the
next example shows.

Example 11.30 Let (PART(S), {∞,∅}) the lattice of partitions of the set S =
{1, 2, 3, 4}, whose Hasse diagram is shown in Fig. 2.6. By Theorem 2.75, a par-
tition σ covers the partition π if and only if there exists a block C of σ that is the
union of two blocks B and B ∩ of π, and every block of σ that is distinct of C is a
block of π. Thus, it is easy to verify that this lattice is indeed semimodular.
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Fig. 11.2 The graph Gπ,σ of
π and σ

To show that the lattice (PART({1, 2, 3, 4}), {∞,∅}) is not modular, consider the
partitions π1 = {12, 3, 4}, π2 = {123, 4}, and π3 = {14, 2, 3}. It is easy to see that
the sublattice αS,π1,π2,π3,ωS is isomorphic to N5 and therefore the lattice is not
modular.

A more general statement follows.

Theorem 11.31 The partition lattice (PART(S), {∞,∅}) of a nonempty set is semi-
modular.

Proof Let π,σ ∈ PART(S) be two partitions such that both cover π∞ σ. By Theorem
2.75, both π and σ are obtained from π ∞ σ by fusing two blocks of this partition.
If π ∞ σ = {B1, . . . , Bn}, then there exist three blocks of π ∞ σ, Bp, Bq , Br , such
that π is obtained by fusing Bp and Bq , and σ is obtained by fusing Bq and Br . To
simplify the argument we can assume without loss of generality that p = 1, q = 2,
and r = 3.

The graph Gπ,σ of the partitions π and σ is given in Fig. 11.2. The blocks of the
partition π∅σ correspond to the connected components of the graph Gπ,σ , so π∅σ =
{B1 ∨ B2 ∨ B3, . . . , Bn}, which covers both π and σ. Thus, (PART(S), {∞,∅}) is
semimodular.
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Fig. 11.3 Hasse
diagram of lattice L =
({0, a, b, c, d, e, 1}, {∞,∅})

Example 11.32 Let L = ({0, a, b, c, d, e, 1}, {∞,∅}) be the lattice whose Hasse
diagram is shown in Fig. 11.3. This is a semimodular lattice that is not modular.
Indeed, we have a � c but (a ∅ e) ∞ c = c, while a ∅ (e ∞ c) = a ⊕= c.

Let L = (L , {∞,∅}) be a lattice and let x, y, z be three elements of L . We have
the inequalities

x ∞ (y ∅ z) ⊃ (x ∞ y) ∅ (x ∞ z), (11.6)

x ∅ (y ∞ z) ∪ (x ∅ y) ∞ (x ∅ z). (11.7)

Indeed, note that x � x ∞ y and x � x ∞ z, so x � (x ∞ y) ∅ (x ∞ z). Also,
(y ∅ z) � (x ∞ y) and (y ∅ z) � (x ∞ z), which implies (y ∅ z) � (x ∞ y) ∅ (x ∞ z).
Therefore, we conclude that x ∞ (y ∅ z) � (x ∞ y) ∅ (x ∞ z). The argument for
the second inequality is similar. We refer to Inequalities (11.6) and (11.7) as the
subdistributive inequalities.

The existence of subdistributive inequalities satisfied by every lattice serves as an
introduction to a new class of lattices.

Definition 11.33 A lattice (L , {∞,∅}) is distributive if

x ∞ (y ∅ z) = (x ∞ y) ∅ (x ∞ z),

x ∅ (y ∞ z) = (x ∅ y) ∞ (x ∅ z),

for x, y, z ∈ L.

It suffices that only one of the equalities of Theorem 11.33 be satisfied to ensure
distributivity. Suppose, for example, that x ∞ (y ∅ z) = (x ∞ y) ∅ (x ∞ z) for
x, y, z ∈ L . We have

x ∅ (y ∞ z) = (x ∅ (x ∞ z)) ∅ (y ∞ z)

(by absorption)

= x ∅ ((x ∞ z) ∅ (y ∞ z))
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(by the associativity of ∅)

= x ∅ ((z ∞ x) ∅ (z ∞ y))

(by the commutativity of ∞)

= x ∅ (z ∞ (x ∅ y))

(by the first distributivity equality)

= x ∅ ((x ∅ y) ∞ z)

(by the commutativity of ∞)

= (x ∞ (x ∅ y)) ∅ ((x ∅ y) ∞ z)

(by absorption)

= ((x ∅ y) ∞ x) ∅ ((x ∅ y) ∞ z)

(by the commutativity of ∞)

= (x ∅ y) ∞ (x ∅ z),

(by the first distributivity equality),

which is the second distributivity law. In a similar manner, one could show that the
second distributivity law implies the first law.

Theorem 11.34 Every distributive lattice is modular.

Proof Let L = (L , {∞,∅}) be a distributive lattice. Suppose that u � w. Applying
the distributivity, we can write

u ∅ (v ∞ w) = (u ∅ v) ∞ (u ∅ w)

= (u ∅ v) ∞ w,

(because u � w),

which shows that L is modular.

We saw that the lattice N5 is not modular and therefore is not distributive. The
lattice M5 is modular (as we have shown in Example 11.25) but not distributive.
Indeed, note that a ∅ (b ∞ c) = a ∅ 0 = a and (a ∅ b) ∞ (a ∅ c) = 1 ∞ 1 ⊕= 0.

It is easy to see that every sublattice of a distributive lattice is also distributive.
Thus, a distributive lattice may not contain sublattices isomorphic to M5 or N5.
This allows the formulation of a statement for distributive lattices that is similar to
Theorem 11.26.

Theorem 11.35 A lattice L = (L , {∞,∅}) is distributive if and only if it does not
contain a sublattice isomorphic to M5 or N5.

Proof The necessity of this condition is clear, so we need to prove only that it is
sufficient.
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Let L be a lattice that is not distributive. Then, L may or may not be modular. If
L is not modular, then by Theorem 11.26 it contains a sublattice isomorphic to N5.
Therefore, we need to consider only the case whereL is modular but not distributive.
We show in this case that L contains a sublattice that is isomorphic to M5.

The nondistributivity of L implies the existence of x, y, z ∈ L such that

x ∞ (y ∅ z) > (x ∞ y) ∅ (x ∞ z), (11.8)

x ∅ (y ∞ z) < (x ∅ y) ∞ (x ∅ z). (11.9)

Let u and v be defined by

u = (x ∅ y) ∞ (y ∅ z) ∞ (z ∅ x)

v = (x ∞ y) ∅ (y ∞ z) ∅ (z ∞ x).

We first prove that v < u.
Note that

x ∞ u

= x ∞ ((x ∅ y) ∞ (y ∅ z) ∞ (z ∅ x)) (by the definition of u)

= (x ∞ (x ∅ y)) ∞ (y ∅ z) ∞ (z ∅ x) (by the associativity of ∞)

= x ∞ (y ∅ z) ∞ (z ∅ x) (by absorption)

= x ∞ (z ∅ x) ∞ (y ∅ z) (by associativity and commutativity of ∞)

= x ∞ (x ∅ z) ∞ (y ∅ z) (by commutativity of ∅)

= x ∞ (y ∅ z) (by absorption).

Also,

x ∅ v

= x ∅ ((x ∞ y) ∅ (y ∞ z) ∅ (z ∞ x)) (by the definition of v)

= x ∅ ((x ∞ y) ∅ (x ∞ z) ∅ (y ∞ z)) (by associativity and commutativity)

= ((x ∞ y) ∅ (x ∞ z)) ∅ (x ∞ (y ∞ z)

(by modularity since(x ∞ y) ∅ (x ∞ z) � x)

= (x ∞ y) ∅ (x ∞ z) (because x ∞ y ∞ z � (x ∞ y) ∅ (x ∞ z)).

Thus, by Inequality (11.8), we have x ∅ v < x ∅ u, which clearly implies v < u.
Consider now the projections x1, y1, z1 of x, y, z on the interval [v, u] given by

x1 = (x ∞ u) ∅ v, y1 = (y ∞ u) ∅ v, z1 = (z ∞ u) ∅ v.

It is clear that v � x1, y1, z1 � u. We prove that {u, x1, y1, z1, v} is a sublattice
isomorphic to M5 by showing that
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x1 ∞ y1 = y1 ∞ z1 = z1 ∞ x1 = v and x1 ∅ y1 = y1 ∅ z1 = z1 ∅ x1 = u.

We have

x1 ∞ y1

= ((x ∞ u) ∅ v) ∞ ((y ∞ u) ∅ v) (by the definition of x1 and y1)

= ((x ∞ u) ∞ ((y ∞ u) ∅ v)) ∅ v (by modularity since v � (y ∞ u) ∅ v)

= ((x ∞ u) ∞ ((y ∅ v) ∞ u)) ∅ v (by modularity since v � u)

= ((x ∞ u) ∞ u ∞ (y ∅ v)) ∅ v (by associativity and commutativity of ∞)

= ((x ∞ u) ∞ (y ∅ v)) ∅ v (by absorption)

= (x ∞ (y ∅ z) ∞ (y ∅ (x ∞ z))) ∅ v (because x ∞ u = x ∞ (y ∅ z) and

y ∅ v = y ∅ (x ∞ z))

= (x ∞ (y ∅ ((y ∅ z) ∞ (x ∞ z)))) ∅ v (by modularity since y � y ∅ z)

= (x ∞ (y ∅ (x ∞ z))) ∅ v (since x ∞ z � y ∅ z)

= (x ∞ z) ∅ (y ∞ z) ∅ v (by modularity since x � x ∞ z)

= v (due to the definition of v).

Similar arguments can be used to prove the remaining equalities.

Definition 11.36 Let L = (L , {∞,∅}) be a bounded lattice that has 0 as its least
element and 1 as its largest element.

The elements x and y are complementary if x ∞ y = 0 and x ∅ y = 1.

If x and y are complementary we say that one element is the complement of the
other. Lattices in which every element has a complement are referred to as comple-
mented lattices.

Example 11.37 The lattice N5 is a complemented lattice. Indeed, x and z are com-
plementary elements and so are y and z. The lattice M5 is also complemented.

Example 11.38 Let S be a set and let (P(S),⊥,∨) be the bounded lattice of its
subsets having ↔ as its first element and S as its last element. Unlike the lattices
mentioned in Example 11.37, a set X ∈ P(S) has a unique complement S − X .

Example 11.39 Let (N∨ {→},�) be the infinite chain of natural numbers extended
by →. If m, n ∈ N∨{→}, then m ∞n = min{m, n} and m ∅n = max{m, n}. Clearly,
this is a bounded lattice and no two of elements except 0 and → are complementary.

Theorem 11.40 Let L = (L , {∞,∅}) be a bounded, distributive lattice. For every
element x, there exists at most one complement.

Proof Let x ∈ L and suppose that both r and s are complements of x ; that is,
x ∞ r = 0, x ∅ r = 1, and x ∞ s = 0, x ∅ s = 1. We can write

r = r ∞ 1 = r ∞ (x ∅ s) = (r ∞ x) ∅ (r ∞ s) = 0 ∅ (r ∞ s) = r ∞ s,
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which implies r � s. Similarly, starting with s, we obtain

s = s ∞ 1 = s ∞ (r ∅ x) = (s ∞ r) ∅ (s ∞ x) = (s ∞ r) ∅ 0 = s ∞ r,

which implies s � r . Consequently, s = r .

Definition 11.41 A latticeL = (L , {∞,∅}) is relatively complemented if each inter-
val [x, y] of L is complemented.

Example 11.42 We saw that the lattice N5 is complemented (see Example 11.37).
However, this lattice is not relatively complemented.

11.4 Complete Lattices

Definition 11.43 A complete lattice is a poset (L ,�) such that for every subset U
of L both sup U and inf U exist.

Note that if U and V are two subsets of a complete lattice and U ⇒ V , then
sup U � sup V and inf V � inf U . Therefore, for every subset T of L , we have

sup ↔ � sup T � sup L and inf L � inf T � inf ↔.

If T is a singleton (that is, T = {t}), then these inequalities amount to

sup ↔ � t � sup L and inf L � t � inf ↔

for every t ∈ L . This means that a complete lattice has a least element 0 = sup ↔ =
inf L and a greatest element 1 = inf ↔ = sup L .

For a subset U of the complete lattice, we denote sup U by
∨

U and infU by⎜
U .
Obviously, every complete lattice is also a lattice since x∅y and x∞y are sup{x, y}

and inf{x, y}, respectively.
The associative properties of the usual lattices can be extended to complete lattices

as follows. Let (L ,�) be a complete lattice and let C = {Ci | Ci ⇒ L for i ∈ I } be
a collection of subsets of L . Then,∨

i∈I

∨
Ci =

∨⋃
C, and

⎟
i∈I

⎟
Ci =

⎟⋃
C.

Theorem 11.44 Let (L ,�) be a poset such that sup U exists for every subset U of
L. Then (L ,�) is a complete lattice.

Proof It is sufficient to prove that infU exists for each subset U of the lattice. By
hypothesis, the set U i of lower bounds of U has a supremum x = sup Ui . Every
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element of U is an upper bound of Ui , which means that x � u, which implies that
x is a lower bound for U . Thus, x ∈ Ui ⊥ (Ui )s , which means that x = inf U .

Theorem 11.45 If (L ,�) is a poset such that infU exists for every set U, then
(L ,�) is a complete lattice.

Proof This statement follows by duality from Theorem 11.44.

Example 11.46 Let S be a set. The poset of its subsets (P(S),⇒) is a complete lattice
because, for any collection C of subsets of S, supC = ⋃

C and infC = ⋂
C.

Example 11.47 Let C be a closure system on a set S and let K be the correspond-
ing closure operator. Then, (C,⇒) is a complete lattice because infD = ⋂

D and
supD = K

(⋃
D
)

for any subcollection D of C.
It is clear that infD exists and equals

⋂
D for any subcollection D of C. We show

that K
(⋃

D
)

equals supD. It is clear that D ⇒ K
(⋃

D
)
. Suppose now that E is a

subset of C that is an upper bound for D, that is, D ⇒ E for every D ∈ D. We have⋃
D ⇒ E , so K

(⋃
D
) ⇒ K(E) = E because E ∈ C. Therefore, K

(⋃
D
)

is the
least upper bound of D.

The notion of a lattice morphism is extended to complete lattices.

Definition 11.48 Let (L1,�) and (L2,�) be two complete lattices. A function f :
L1 −⊆ L2 is a complete lattice morphism if f

(∨
U
) = ∨

f (U ) and f
(⎜

U
) =⎜

f (U ) for every subset U of L1.
If f is a bijection such that both f and f −1 are complete lattice morphisms, then

we say that f is a complete lattice isomorphism.

Theorem 11.49 Every complete lattice is isomorphic to the lattice of closed sets of
a closure system.

Proof Let (L ,�) be a complete lattice and let Ix = {t ∈ L | t ∪ x} for x ∈ L . We
claim that I = {Ix | x ∈ L} is a closure system on L .

Indeed, note that I1 (where 1 is the largest element of L) coincides with L , so
L ∈ I.

Now let {Ix | x ∈ M} be an arbitrary family of sets in I, where M is a subset of
L . Note that

⋂{Ix | x ∈ M} = Iy , where y = inf M . Thus, I is a closure system.
It is easy to verify that f : L −⊆ I given by f (x) = Ix is a complete lattice

isomorphism.

Definition 11.50 Let (S,�) and (T,�) be two posets. A Galois connection between
S and T is a pair of mappings (φ,ψ), where φ : S −⊆ T and ψ : T −⊆ S that
satisfy the following conditions.

(i) If s1 � s2, then φ(s2) � φ(s1) for every s1, s2 ∈ S.
(ii) If t1 � t2, then φ(t2) � φ(t1) for every t1, t2 ∈ T .
(iii) s � ψ(φ(s)) and t � φ(ψ(t)) for s ∈ S and t ∈ T .
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Example 11.51 Let X and Y be two sets and let ρ be a relation, ρ ⇒ X × Y . Define
φρ : P(X) −⊆ P(Y ) and ψρ : P(Y ) −⊆ P(X) by

φρ(U ) = {y ∈ Y | (x, y) ∈ ρ for all x ∈ U },
ψρ(V ) = {x ∈ X | (x, y) ∈ ρ for all y ∈ V }

for U ∈ P(X) and V ∈ P(Y ).
The pair (φρ,ψρ) is a Galois connection between the posets (P(X),⇒) and

(P(Y ),⇒). It is immediate to verify that the first two conditions of Definition 11.50
are satisfied. We discuss here only the third condition of the definition.

To prove that U ⇒ ψρ(φρ(U )), let u ∈ U . We need to show that (u, y) ∈ ρ for
every y ∈ ψρ(U ). By the definition of ψρ, if y ∈ ψρ(U ), we have indeed (u, y) ∈ ρ.
The proof of the second inclusion of the third part of the definition is similar.

The pair (φρ,ψρ) is referred to as the polarity generated by the relation ρ.

Theorem 11.52 Let (S,�) and (T,�) be two posets. A pair of mappings (φ,ψ),
where φ : S −⊆ T and ψ : T −⊆ S, is a Galois connection between (S,�) and
(T,�) if and only if s � ψ(t) is equivalent to t � φ(s).

Proof Suppose that (φ,ψ) is a pair of mappings such that s � ψ(t) is equivalent
to t � φ(s). Choosing t = φ(s), it is clear that t � φ(s), so s � ψ(t) = ψ(φ(s)).
Similarly, we can show that t � φ(ψ(t)), so the pair (φ,ψ) satisfies the third condition
of Definition 11.50.

Let s1, s2 ∈ S such that s1 � s2. Since s2 � ψ(φ(s2)), we have s1 � ψ(φ(s2)),
which implies φ(s2) � φ(s1). A similar argument can be used to prove that t1 � t2
implies ψ(t2) � ψ(t1), so (φ,ψ) satisfies the remaining conditions of the definition,
and therefore is a Galois connection.

Conversely, let (φ,ψ) be a Galois connection. If s � ψ(t), then φ(ψ(t)) � φ(s).
Since t � φ(ψ(t)), we have t � φ(s). The reverse implication can be shown in a
similar manner.

The notion of a closure operator, which was discussed in Sect. 1.8, can be gener-
alized to partially ordered sets.

Definition 11.53 Let (L ,�) be a poset. A mapping κ : L −⊆ L is a closure
operator on L if it satisfies the following conditions:

(i) u � κ(u) (expansiveness),
(ii) u � v implies κ(u) � κ(v) (monotonicity), and

(iii) κ(κ(u)) = κ(u) (idempotency)

for u, v ∈ L.

Example 11.54 Let (S,�) and (T,�) be two posets, and suppose that (φ,ψ) is a
Galois connection between these posets. Then, ψφ is a closure on S and φψ is a
closure on T .

By the third part of Definition 11.50, we have s � ψ(φ(s)), so ψφ is expansive.
Suppose that s1 � s2. This implies φ(s2) � φ(s1), which in turn implies ψ(φ(s1)) �
ψ(φ(s2)). Thus, ψφ is monotonic.

http://dx.doi.org/10.1007/978-1-4471-6407-4_1
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In exactly the same manner, we can prove that t � φ(ψ(t)) and that φψ is
monotonic.

Since s � ψ(φ(s)), we have φ(ψ(φ(s))) � φ(s). On the other hand, choosing
t = φ(s), we have φ(s) � φ(ψ(φ(s))), so φ(s) = φ(ψ(φ(s))) for every s ∈ S. A
similar argument shows that ψ(t) = ψ(φ(ψ(t))). Therefore we obtain ψ(φ(s)) =
ψ(φ(ψ(φ(s)))) for every s ∈ S and φ(ψ(t)) = φ(ψ(φ(ψ(t)))), which proves that
φψ and ψφ are idempotent.

Lemma 11.55 Let (L ,�) be a complete lattice and let κ : L −⊆ L be a closure
operator. Define the family of κ-closed elements Qκ = {x ∈ L | x = κ(x)}. Then,
1 ∈ Qκ, and for each subset D of Qκ,

⎜
D ∈ Qκ.

Proof Since 1 � κ(1) � 1, we have 1 ∈ Qκ.
Let D = {ui | i ∈ I } be a collection of elements of L such that ui = κ(ui ) for

i ∈ I . Since
⎜

D � ui , we have κ(
⎜

D) � κ(ui ) = ui for every i ∈ I . Therefore,
κ(
⎜

D) �
⎜

D, which implies κ(
⎜

D) = ⎜
D. Thus,

⎜
D ∈ Qκ.

Theorem 11.56 Let (L ,�) be a complete lattice and let κ be a closure operator on
L. Then, (Qκ,�) is a complete lattice.

Proof This statement follows from Lemma 11.55 and from Theorem 11.45.

If (φ,ψ) is a Galois connection between the posets (S,�) and (T,�), then each
of the mappings φ,ψ is an adjunct of the other. The next theorem characterizes those
mappings between posets that have an adjunct mapping.

Theorem 11.57 Let (S,�) and (T,�) be two posets and let φ : S −⊆ T be
a mapping. There exists a mapping ψ : T −⊆ S such that (φ,ψ) is a Galois
connection between (S,�) and (T,�) if and only if for every t ∈ T there exists
z ∈ S such that φ−1({v ∈ T | v � t}) = {u ∈ S | u � z}.
Proof Suppose that the condition of the theorem is satisfied by φ. Given t ∈ T , the
element z ∈ S is unique because the equality {u ∈ S | u � z} = {u ∈ S | u � z∩}
implies z = z∩. Define the mapping ψ : T −⊆ S by ψ(t) = z, where z is the element
of S whose existence is stipulated by the theorem. Note that s � ψ(t) is equivalent
to t ∪ φ(s), which means that (φ,ψ) is a Galois connection according to Theorem
11.52.

The proof of the necessity of the condition of the theorem is immediate.

11.5 Boolean Algebras and Boolean Functions

If L = (L , {∞,∅}) is a bounded distributive lattice that is complemented then, by
Theorem 11.40, there is a mapping h : L −⊆ L such that h(x) is the complement
of x ∈ L . This leads to the following definition.
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Fig. 11.4 Hasse diagram
of the four-element Boolean
algebra

Definition 11.58 A Boolean lattice is a bounded distributive lattice that is comple-
mented.

An equivalent notion that explicitly introduces two zero-ary operations and one
unary operation is the notion of Boolean algebra.

Definition 11.59 A Boolean algebra is an algebra B = (B, {∞,∅, ¯ , 0, 1}) having
the type (2, 2, 1, 0, 0) that satisfies the following conditions:

(i) (B, {∞,∅}) is a distributive lattice having 0 as its least element and 1 as its
greatest element, and

(ii) ¯ : B −⊆ B is a unary operation such that x̄ is the complement of x for x ∈ B.

Every Boolean algebra has at least two elements, the ones designated by its zero-
ary operations.

Example 11.60 The two-element Boolean algebra is the Boolean algebra B2 =
({0, 1}, {∞,∅, ¯ , 0, 1}) defined by:

0 ∞ 0 = 0, 1 ∞ 1 = 1, 0 ∞ 1 = 1 ∞ 0 = 0,

0 ∅ 0 = 0, 1 ∅ 1 = 1, 0 ∅ 1 = 1 ∅ 0 = 1,

0̄ = 1, 1̄ = 0.

Example 11.38 can now be recast as introducing a Boolean algebra.

Example 11.61 The set P(S) of subsets of a set S defines a Boolean algebra
(P(S), {⊥,∨, ¯ ,↔, S}), where X = S − X .

Example 11.62 LetB4 = ({0, a, ā, 1}, {∞,∅, ¯ , 0, 1}) be the four-element Boolean
algebra whose Hasse diagram is given in Fig. 11.4. We leave it to the reader to verify
that the poset defined by this diagram is indeed a Boolean algebra.

The existence of the zero-ary operations means that every subalgebra of a Boolean
algebra must contain at least 0 and 1.

In a Boolean algebra B = (B, {∞,∅, ¯ , 0, 1}), we have x = x because of the
symmetry of the definition of the complement and because the complement of an
element is unique (since B is a distributive lattice). This property is known as the
involutive property of the complement.
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Theorem 11.63 (DeMorgan Laws) Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean
algebra. We have x ∞ y = x̄ ∅ ȳ and x ∅ y = x̄ ∞ ȳ for x, y ∈ B.

Proof By applying the distributivity, commutativity, and associativity of ∞ and ∅
operations, we can write

(x̄ ∅ ȳ) ∞ (x ∞ y) = (x̄ ∞ (x ∞ y)) ∅ (ȳ ∞ (x ∞ y))

= ((x̄ ∞ x) ∞ y) ∅ ((ȳ ∞ y) ∞ x)

= (0 ∞ y) ∅ (0 ∞ x) = 0

and

(x̄ ∅ ȳ) ∅ (x ∞ y) = (x̄ ∅ ȳ ∅ x) ∞ (x̄ ∅ ȳ ∅ y)

= (1 ∅ ȳ) ∞ (1 ∅ x̄) = 1 ∅ 1 = 1

for x, y ∈ B. This shows that x̄ ∅ ȳ is the complement of x ∞ y; that is, x ∞ y = x̄ ∅ ȳ.
The second part of the theorem has a similar argument.

Definition 11.64 Let Bi = (Bi , {∞,∅, ¯ , 0, 1}), i = 1, 2, be two Boolean algebras.
A morphism from B1 to B2 is a function h : B1 −⊆ B2 such that h(x ∞ y) =
h(x) ∞ h(y), h(x ∅ y) = h(x) ∅ h(y), and h(x̄) = h(x), for x, y ∈ B1.

An isomorphism of Boolean algebras is a morphism that is also a bijection.

Example 11.65 Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean algebra and let c, d ∈ B
such that c � d. We can define a Boolean algebra on the interval [c, d] as

B[c,d] = ([c, d], {∞,∅, ˜ , c, d}),

where ∞,∅ are the restrictions of the operations of B to the set [c, d] and x̃ =
(x̄ ∅ c) ∞ d for x ∈ B.

The projection h : B −⊆ [c, d] defined by h(x) = (x ∅ c) ∞ d for x ∈ B is a
morphism between B and B[c,d]. We already saw in Example 11.23 that h is a lattice
morphism. Thus, we need to prove only that h(x) = h(x̄) = (x̄ ∅ c) ∞ d for x ∈ B.
The verification of this equality is left to the reader.

Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean algebra and let “≥” be a binary
operation on B defined by a ≥ b = (a ∞ b̄) ∅ (ā ∞ b) for a, b ∈ B.

It is easy to verify that

a ≥ b = b ≥ a,

(a ≥ b) ≥ c = a ≥ (b ≥ c),

a ≥ a = 0,

a ≥ 1 = ā,

a ∞ (b ≥ c) = (a ∞ b) ≥ (a ∞ c),

a ∞ 1 = a,
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for every a, b, c ∈ B. Thus, the Boolean algebra B has a related natural structure
of a commutative unitary ring (B, {0, 1,≥, h,∞}), where the role of the addition or
the ring is played by the operation ≥, the additive inverse is given by h(a) = a for
a ∈ B, and each element is idempotent.

Example 11.66 For the Boolean algebra (P(S), {∞,∅, ¯ ,↔, S}) introduced in Exam-
ple 11.61, the additive operation of the ring is the symmetric difference of sets

U ≥ V = (U − V ) ∨ (V − U )

for U, V ∈ P(S). Thus, we obtain a commutative unitary ring structure (P, {↔, S,≥,

h,⊥}), where h(U ) = U for U ∈ P(S).

A commutative unitary ring in which each element is its own additive inverse and
each element is idempotent defines a Boolean algebra, as we show next.

Theorem 11.67 Let I = (B, {0, 1,+, h, ·, 1} be a commutative unitary ring such
that h(b) = b and b ∞ b = b for every b ∈ B. Define the operations ∅,∞,¯by

a ∅ b = a + b + a · b,

a ∞ b = a · b,

ā = 1 + a,

for a ∈ B. Then, B = (B, {∞,∅, ¯ , 0, 1}) is a Boolean algebra.

Proof The operation ∅ is commutative because I is a commutative ring. Observe
that

a ∅ (b ∅ c) = a ∅ (b + c + bc)

= a + b + c + bc + ab + ac + abc,

(a ∅ b) ∅ c = a + b + ab + c + ac + bc + abc,

which proves that ∅ is also associative. Further, we have a ∅ a = a + a + aa = a,
which proves that ∅ is idempotent.

The operation “∞” is known to be commutative, associative, and idempotent since
it coincides with the multiplication of the ring I. To prove the distributivity, note that

a ∞ (b ∅ c) = a(b + c + bc) = ab + ac + abc

and
(a ∞ b) ∅ (a ∞ c) = ab + ac + (ab)(ac) = ab + ac + abc

due to the commutativity and idempotency of multiplication in I. Thus, we have
shown that B = (B, {∞,∅, 0, 1}) is a distributive lattice having 0 as its least element
and 1 as its largest element.
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We need to show only that h(a) = 1 + a is the complement of a. This is indeed
the case because a ∅ (1+a) = a +1+a +a(1+a) = 1 and a ∞h(a) = a(1+a) =
a + a = 0 for every a ∈ B.

Boolean Functions

Definition 11.68 Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean algebra. For n ∈ N,
the set BF(B, n) of Boolean functions of n arguments over B contains the following
functions:

(i) For every b ∈ B, the constant function fb : Bn −⊆ B defined by

fb(x0, . . . , xn−1) = b

for every x0, . . . , xn−1 ∈ B belongs to BF(B, n).
(ii) Every projection function pn

i : Bn −⊆ B given by pn
i (x0, . . . , xn−1) = xi for

every x0, . . . , xn−1 ∈ B belongs to BF(B, n).
(iii) If f, g ∈ BF(B, n), then the functions f ∞ g, f ∅ g, and f̄ given by

( f ∞ g)(x0, . . . , xn−1) = f (x0, . . . , xn−1) ∞ g(x0, . . . , xn−1),

( f ∅ g)(x0, . . . , xn−1) = f (x0, . . . , xn−1) ∅ g(x0, . . . , xn−1),

and
f̄ (x0, . . . , xn−1) = f (x0, . . . , xn−1)

for every x0, . . . , xn−1 ∈ B belong to BF(B, n).

Definition 11.69 For n ∈ N, the set SBF(B, n) of simple Boolean functions of n
arguments consists of the following functions:

(i) Every projection function pn
i : Bn −⊆ B given by pn

i (x0, . . . , xn−1) = xi for
every x0, . . . , xn−1 ∈ B.

(ii) If f, g ∈ SBF(B, n), then the functions f ∞ g, f ∅ g and f̄ given by

( f ∞ g)(x0, . . . , xn−1) = f (x0, . . . , xn−1) ∞ g(x0, . . . , xn−1),

( f ∅ g)(x0, . . . , xn−1) = f (x0, . . . , xn−1) ∅ g(x0, . . . , xn−1),

and
f̄ (x0, . . . , xn−1) = f (x0, . . . , xn−1)

for every x0, . . . , xn−1 ∈ B belong to SBF(B, n).

If x ∈ B and a ∈ {0, 1}, define the function xa as

xa =
{

x if a = 1

x̄ if a = 0.
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Observe that x = a if and only if xa = 1, and x = ā if and only if xa = 0.
For A = (a1, . . . , an) ∈ {0, 1, ∈}n , define the simple Boolean function tA :

Bn −⊆ B as
tA(x1, . . . , xn) = x

ai1
i1

∞ x
ai2
i2

∞ x
ai p
i p

for (x1, . . . , xn) ∈ Bn , where {ai1 , . . . , ai p } = {ai | ai ⊕= ∈, 1 � i � n}. This
function is an n-ary term for the Boolean algebra B. The set of n-ary terms of a
Boolean algebra is denoted by T(B, n).

Those components of A that equal ∈ denote the places of variables that do not
appear in the term tA.

Example 11.70 Let A = (1, ∈, 0, 0, ∈) ∈ {0, 1}n . The 5-term tA is

t (x1, x2, x3, x4, x5) = x1 ∞ x̄3 ∞ x̄4

for every (x1, x2, x3, x4, x5) ∈ B5.

It is easy to see that if A, B ∈ {0, 1}n , then

tB(A) =
{

1 if A = B,

0 if A ⊕= B.

To simplify the notation, whenever there is no risk of confusion, we omit the symbol
“∞” and denote an application of this operation by a simple juxtaposition of symbols.
For example, instead of writing a ∞ b, we use the notation ab. For the same reason,
we assume that ∞ has higher priority than ∅. These assumptions allow us to write
a ∅ bc instead of a ∅ (b ∞ c).

Theorem 11.71 Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean algebra. For every
(x1, . . . , xn) ∈ Bn, where n � 1, we have

(i) tA(x1, . . . , xn)tB(x1, . . . , xn) = 0 for A, B ∈ {0, 1}n and A ⊕= B,
(ii)

∨{tA(x1, . . . , xn) | A ∈ {0, 1}n} = 1, and

(iii) tA(x1, . . . , xn) = ∨{tB(x1, . . . , xn) | B ∈ {0, 1}n − {A}}
for every (x1, . . . , xn) ∈ Bn.

Proof Let A = (a0, . . . , an−1) and B = (b0, . . . , bn−1). If A ⊕= B, then there exists
i such that 0 � i ∪ n − 1 and ai ⊕= bi . Therefore, by applying the commutativity
and associativity properties of ∞, the expression

(tAtB)(x1, . . . , xn) = xa1
1 ∞ · · · ∞ xan

n ∞ xb1
1 ∞ · · · ∞ xbn

n

can be written as

(tAtB)(x1, . . . , xn) = · · · ∞ xai
i ∞ xbi

i ∞ · · · = · · · ∞ x1
i ∞ x0

i ∞ · · · = 0.
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The proof of the second part can be done by induction on n. In the base case, n = 1,
the desired equality amounts to x0

1 ∅ x1
1 = 1, which obviously holds.

Suppose now that the equality holds for n. We have

∨
{(tA(x1, . . . , xn+1) | A ∈ {0, 1}n+1}

=
∨

{(x1, . . . , xn)(a1,...,an) ∞ x0
n+1 | (a1, . . . , an) ∈ {0, 1}n}∨

{(x1, . . . , xn)(a1,...,an) ∞ x1
n+1 | (a1, . . . , an) ∈ {0, 1}n}

=
∨

{(x1, . . . , xn)(a1,...,an) | (a1, . . . , an) ∈ {0, 1}n} ∞ (x0
n+1 ∅ x1

n+1)

=
∨

{(x1, . . . , xn)(a1,...,an) | (a1, . . . , an) ∈ {0, 1}n}
= 1 (by the inductive hypothesis).

Part (iii) of the theorem follows by observing that

tA(x1, . . . , xn) =
{

1 if (x1, . . . , xn) ⊕= A,

0 if (x1, . . . , xn) = A.

The right-hand member of the equality takes exactly the same values, as can be seen
easily.

The set BF(B, n) is itself a Boolean algebra relative to the operations ∅, ∞, and¯
from Definition 11.68. The least element is the constant function f0 : Bn −⊆ B
given by f0(x1, . . . , xn) = 0, and the largest element is the constant function f1 :
Bn −⊆ B given by f1(x1, . . . , xn) = 0 for (x1, . . . , xn) ∈ Bn .

A partial order on BF(B, n) can be introduced by defining f � g if f (x1, . . . , xn)

� g(x1, . . . , xn) for x1, . . . , xn ∈ B. It is clear that f � g if and only if f ∅ g = g
or f ∞ g = f .

Theorem 11.72 Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean algebra, A, B ∈
{0, 1, ∈}n, and let tA and tB be the terms in T(B, n) that correspond to A and
B, respectively. We have tA � tB if and only if ak = ∈ implies bk = ∈ and ak ⊕= ∈
implies ak = bk or bk = ∈ for 1 � k � n.

Proof Suppose that tA � tB; that is,

x
ai1
i1

∞ x
ai2
i2

∞ x
ai p
i p

� x
b j1
j1

∞ x
b j2
j2

∞ x
b jq
jq

,

for (x1, . . . , xn) ∈ Bn . Here {i1, . . . , i p} = {i | 1 � i � n and ai ⊕= ∈} and
{ j1, . . . , jq} = { j | 1 � j � n and b j ⊕= ∈}.

Suppose that ak = ∈ but bk ∈ {0, 1}. Choose xiφ = aiφ for 1 � φ � p and xk =
b̄k . The remaining components of (x1, . . . , xk) can be chosen arbitrarily. Clearly,
tA(x1, . . . , xn) = 1 and tB(x1, . . . , xn) = 0 because xbk

k = 0. This contradicts the
inequality tA � tB, so we must have bk = ∈.
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Suppose now that ak ∈ {0, 1} and bk ⊕= ∈. This means that xk occurs in both tA

and tB, so there exists ir = js = k for some r, s, 1 � r � p and 1 � s � q. Choose
as before xiφ = aiφ for 1 � φ � p, which implies tA(x1, . . . , xn) = 1, which in turn
implies tB(x1, . . . , xn) = 1. This is possible only if bk = ak , which concludes the
argument.

Corollary 11.73 The minimal elements of the poset (T(B, n),�) are terms that
depend on all their arguments, that is, terms of the form

tB(x1, . . . , xn) = xb1
1 xb2

2 · · · xbn
n

for (x1, . . . , xn) ∈ Bn.

Proof If tB is a minimal element of (T(B, n),�), then tA � tB implies tA = tB.
Suppose that there is k such that bk = ∈. Then, by defining

ai =
{

bi if i ⊕= k,

0 or 1 otherwise,

we would have tA < tB, which would contradict the minimality of tB.

The minimal terms of the poset (T(B, n),�), described by Corollary 11.73 are
known as n-ary minterms.

Definition 11.74 Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean algebra and let f :
Bn −⊆ B be a Boolean function. A disjunctive normal form of f is an expression of
the form

∨k
i=1 tAi (x1, . . . , xn)bAi , where Ai ∈ {0, 1, ∈}n, {bA1 , . . . , bAk } ⇒ B, and

f (x1, . . . , xn) =
k∨

i=1

tAi (x1, . . . , xn)bAi

for (x1, . . . , xn) ∈ Bn.

We can prove the existence of a special disjunctive normal form for every Boolean
function, which involves only minterms.

Theorem 11.75 Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean algebra. A function
f : Bn −⊆ B is a Boolean function if and only if there exists a family {bA | A ∈
{0, 1}n} of elements of B

f (x1, . . . , xn) =
∨

A∈{0,1}n

tA(x1, . . . , xn)bA (11.10)

for every (x1, . . . , xn) ∈ Bn.
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Proof The sufficiency of this condition is obvious. The necessity is shown by induc-
tion on the definition of Boolean functions.

For the base case, we need to consider constant functions and projections. Let
A = (a0, . . . , an−1) ∈ {0, 1}n . For a constant function fa(x1, . . . , xn) = a for
(x1, . . . , xn), we can define bA = a for every A ∈ {0, 1}n because

f (x1, . . . , xn) = a =
∨

A∈{0,1}n

tA(x1, . . . , xn)a

by the second part of Theorem 11.71.
For a projection pn

i : Bn −⊆ B given by pn
i (x1, . . . , xn) = xi for (x1, . . . , xn) ∈

Bn , let bA be

bA =
{

1 if ai = 1,

0 otherwise,

for A ∈ {0, 1}n . We have

∨
A∈{0,1}n

tA(x1, . . . , xn)bA

=
∨

A∈{0,1}n

t(a1,...,ai−1,1,ai+1,...,an)(x1, . . . , xn)

= xi

∨
A∈{0,1}n−1

(x0, . . . , xi−1, xi+1, . . . , xn−1)
(a0,...,ai−1,ai+1,...,an−1)

= xi = pn
i (x1, . . . , xn).

For the inductive step, suppose that the statement holds for the functions f, g ∈
BF(B, n); that is,

f (x1, . . . , xn) =
∨

A∈{0,1}n

tA(x1, . . . , xn)bA,

g(x1, . . . , xn) =
∨

A∈{0,1}n

tA(x1, . . . , xn)cA,

for (x1, . . . , xn) ∈ Bn . Then, f ∅ g is

( f ∅ g)(x1, . . . , xn) =
∨

A∈{0, 1}n

tA(x1, . . . , xn)(bA ∅ cA)

by the associativity, commutativity, and idempotency of “∅”.
For f ∞ g, we can write
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( f ∞ g)(x1, . . . , xn) =

 ∨

A∈{0, 1}n

tA(x1, . . . , xn)bA


⎛

∞

 ∨

A∈{0, 1}n

tA(x1, . . . , xn)cA


⎛

=
∨

A∈{0, 1}n

tA(x1, . . . , xn)(bA ∞ cA)

by applying the distributivity properties of the operations ∅ and ∞.
For f , we have

f (x1, . . . , xn) =
⎟

A∈{0, 1}n

⎧
tA(x1, . . . , xn) ∅ bA

⎨

=
⎟

A∈{0, 1}n

⎧∨
{tB(x1, . . . , xn) | B ∈ {0, 1}n − {A}} ∅ bA

⎨

=
⎟

A∈{0, 1}n

⎧∨
{tB(x1, . . . , xn) | B ∈ {0, 1}n − {A}} ∅ bA

⎨
.

For C, D ∈ {0, 1}n and (x1, . . . , xn) ∈ Bn , define φC,D(x1, . . . , xn) as

φC,D(x1, . . . , xn) =
{

tD(x1, . . . , xn) if D ⊕= C,

bC if D = C.

Then, we can write

f (x1, . . . , xn) =
⎟

A∈{0, 1}n

∨
D∈{0, 1}n

φA,D(x1, . . . , xn)

=
∨

D∈{0, 1}n

⎟
A∈{0, 1}n

φA,D(x1, . . . , xn)

(by the distributivity property)

=
∨

D∈{0, 1}n

(tD(x1, . . . , xn) ∞ bD),

which concludes the argument.

Equality (11.10) is known as the standard disjunctive normal form of the Boolean
function f .

Note that by replacing (x1, . . . , xn) by C = (c1, . . . , cn) ∈ {0, 1}n in Equal-
ity (11.10), we obtain f (c1, . . . , cn) = bC, which shows that the elements of the
form bA, known as the standard disjunctive coefficients, are uniquely determined by
the function f . Now, we can rewrite Equality (11.10) as
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f (x1, . . . , xn) =
∨

A∈{0, 1}n

tA(x1, . . . , xn) f (A)

for every (x1, . . . , xn) ∈ Bn .
Consider the standard disjunctive normal form of the Boolean function f :

Bn −⊆ B given by

f (x1, . . . , xn) =
∨

A∈{0, 1}n

tA(x1, . . . , xn) f (A).

By applying the ¯ operation in both members, we can write

f (x1, . . . , xn) =
⎟

A∈{0, 1}n

(tA(x1, . . . , xn) ∅ f (A))

=
⎟

(a1,...,an)∈{0, 1}n

⎩
n∨

i = 1

xāi
i ∅ f (a1, . . . , an)

⎫

=
⎟

(ā1,...,ān)∈{0, 1}n

⎩
n∨

i = 1

xai
i ∅ f (ā1, . . . , ān)

⎫

=
⎟

(a1,...,an)∈{0, 1}n

⎩
n∨

i = 1

xai
i ∅ f (ā1, . . . , ān)

⎫
.

The last equality is known as the conjunctive normal form of the function f .
The existence of the standard disjunctive normal form shows that a Boolean

function f : Bn −⊆ B is completely determined by its values on n-tuples A ∈
{0, 1}n . Thus, to fully specify a Boolean function, we can use a table that has 2n

rows, one for each n-tuple A.

Example 11.76 Consider the Boolean function f : B3 −⊆ B given by

x1 x2 x3 f (x1, x2, x3)

0 0 0 a
0 0 1 a
0 1 0 a
0 1 1 b
1 0 0 a
1 0 1 b
1 1 0 b
1 1 1 b

Its standard disjunctive normal form is
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f (x1, x2, x3) = t (0,0,0)(x1, x2, x3)a ∅ t (0,0,1)(x1, x2, x3)a ∅ t (0,1,0)(x1, x2, x3)a

∅t (0,1,1)(x1, x2, x3)b ∅ t (1,0,0)(x1, x2, x3)a ∅ t (1,0,1)(x1, x2, x3)b

∅t (1,1,0)(x1, x2, x3)b ∅ t (1,1,1)(x1, x2, x3)b.

Theorem 11.77 Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean algebra and let f, g ∈
BF(B, n). We have f � g if and only if f (A) � g(A) for every A ∈ {0, 1}n.

Proof The necessity of the condition is obvious. Suppose that f (A) � g(A) for
every A ∈ {0, 1}n . Then, by the monotonicity of the binary operations of the Boolean
algebra, we have

f (x1, . . . , xn) =
∨

A∈{0, 1}n

tA(x1, . . . , xn) f (A)

∪
∨

A∈{0, 1}n

tA(x1, . . . , xn)g(A) = g(x1, . . . , xn)

for x1, . . . , xn ∈ Bn , which gives the desired inequality.

The next theorem (see [1]) is a characterization of simple Boolean functions.

Theorem 11.78 Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean algebra. The following
statements that concern a function f : Bn −⊆ B are equivalent:

(i) f is a simple Boolean function.
(ii) f is a Boolean function, and f (A) ∈ {0, 1} for every A ∈ {0, 1}n.
(iii) f (x1, . . . , xn) = 0 for every (x1, . . . , xn) ∈ Bn or

f (x1, . . . , xn) =
∨

{(x1, . . . , xn)A | f (A) = 1}.

Proof (i) implies (ii): Clearly every simple Boolean function is a Boolean function.
The proof that f (A) ∈ {0, 1} for every A ∈ {0, 1}n is by induction on the definition
of simple Boolean functions and is left to the reader.

(ii) implies (iii): This implication follows from the existence of the standard dis-
junctive normal form of Boolean functions.

(iii) implies (i): The constant function f0(x1, . . . , xn) = 0 for (x1, . . . , xn) ∈ Bn

can be written as f0(x1, . . . , xn) = x1 ∞ x̄1, so f0 is a simple Boolean function. It
is clear that if f (x1, . . . , xn) = ∨{(x1, . . . , xn)A | f (A) = 1}, then f is a simple
Boolean function.

For a Boolean algebra B = (B, {∞,∅, ¯ , 0, 1}) with |B| = k there exist kkn

functions of the form f : Bn −⊆ B. The number of Boolean functions can be
considerably smaller. Indeed, since a Boolean function f is completely determined
by the collection { f (A) | A ∈ {0, 1}n}, it follows that the number of Boolean
functions in BF(B, n) is 22n

. For example, if B is the four-element Boolean algebra
from Example 11.62, there are 445 = 22048 functions of five arguments defined on
the Boolean algebra. However, only 232 of these functions are Boolean functions.
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Binary Boolean Functions

Definition 11.79 Let B2 = ({0, 1}, {∞,∅, ¯ , 0, 1}) be the two-element Boolean
algebra. A binary Boolean function is a function f : {0, 1}n −⊆ {0, 1}.

We saw that in general Boolean algebra there are many functions that are not
Boolean. However, in two-element Boolean algebras, any function is a Boolean
function, as we show next.

Theorem 11.80 Every function f : {0, 1}n −⊆ {0, 1} is a binary Boolean function
in the two-element Boolean algebra B2.

Proof Consider the binary Boolean function g : {0, 1}n −⊆ {0, 1} defined by
g(x1, . . . , xn) = ∨

A∈{0,1}n (x1, . . . , xn)A f (A). It is clear that g(A) = f (A) for

every A ∈ {0, 1}n , so g = f . Thus, f = ∨
A∈{0,1}n (x1, . . . , xn)A f (A), which

implies that f is indeed a Boolean function.

Definition 11.81 An implicant of a binary Boolean function f : {0, 1}n −⊆ {0, 1}
is a term tA ∈ T(B2, n) such that tA � f .

The rank of an implicant tA of f : {0, 1}n −⊆ {0, 1} is the number r(tA) =
|{i | 1 � i � n, ai = ∈}|. Observe that implicants with higher ranks contain fewer
literals than implicants with lower rank.

The set of implicants of rank k of f , 0 � k � n, is the set Lk
f that consists of all

implicants of rank k for f .
The set of implicants of f is denoted by IMPL f . For f : {0, 1}n −⊆ {0, 1}, we

have IMPL f = ⋃n−1
k=0 Lk

f .

Starting from the standard disjunctive normal form for a function f : Bn −⊆ B,

f (x1, . . . , xn) =
∨

A∈{0, 1}n

tA(x1, . . . , xn) f (A),

it follows that if f (A) = 1, then the minterm tA is an implicant of f in L0
f . Fur-

thermore, each such term is a minimal implicant of f (relative to the partial order
introduced on T(B2, n)).

In the next definition, we introduce a partial operation on the set T(B2, n).

Definition 11.82 Let A, B ∈ {0, 1, ∈}n be two n-tuples. Suppose that there exists k,
1 � k � n such that

1. ai = bi if 1 � i � n and i ⊕= k;
2. ak, bk ∈ {0, 1} and ak = b̄k .

The consensus of the terms tA and tB is the term tC, where C = (c1, . . . , cn) and

ci =
{

ai = bi if i ⊕= k,

∈ otherwise,
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for 1 � i � n.
The consensus of tA and tC is denoted by tA � tB.

Observe that if the consensus tC of the terms tA and tA exists, then r(tC) =
r(tA) + 1 = r(tB) + 1. Furthermore, it is immediate that tC = tA ∅ tB in the
Boolean algebra of Boolean functions.

Example 11.83 Let tA and tB be the terms

tA = x1 ∞ x̄3 ∞ x̄4 ∞ x6, tB = x1 ∞ x3 ∞ x̄4 ∞ x6,

from T(B2, 6). Their consensus is the term

tA(x1, . . . , x6) ∅ tB(x1, . . . , x6)

= (x1 ∞ x̄3 ∞ x̄4 ∞ x6) ∅ (x1 ∞ x3 ∞ x̄4 ∞ x6)

= x1 ∞ x̄4 ∞ x6.

Theorem 11.84 Let f : {0, 1}n −⊆ {0, 1} be a Boolean function. If tA and tB are
implicants of f and their consensus tC = tA ∅ tB exists, then tC is also an implicant
of f .

Proof The existence of the consensus tC of tA and tB means that there exists k,
1 � k � n such that ai = bi if 1 � i � n and a ⊕= k, ak, bk ∈ {0, 1}, and ak = b̄k .

Since both tA and tB are implicants of f , it follows that tA(x1, . . . , xn) �
f (x1, . . . , xn) and tB(x1, . . . , xn) � f (x1, . . . , xn) for every (x1, . . . , xn) ∈ {0, 1}n .
Thus,

tC(x1, . . . , xn) = tA(x1, . . . , xn) ∅ tB(x1, . . . , xn) ∪ f (x1, . . . , xn),

which means that tC is an implicant of f .

Definition 11.85 A prime implicant of a function f : {0, 1}n −⊆ {0, 1} is a maximal
element of the poset (IMPL f ,�).

Theorem 11.86 For every binary Boolean function f : {0, 1}n −⊆ {0, 1}, we have

Lk+1
f (ϕ) = {tA ∅ tB | tA ∅ tB ∈ Lk

f and tA ∅ tB exists}

for 0 � k � n − 1.

Proof We observed already that if r(tA) = r(tB) = k and tA ∅ tB exists, then
r(tA ∅ tB) = k + 1. Thus, we have

Lk+1
f (ϕ) ≡ {tA ∅ tB | tA ∅ tB ∈ Lk

f and tA ∅ tB exists}

for 0 � k � n − 1, and we need to prove only the reverse inclusion.
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Let tC ∈ Lk+1
f , where C = (c1, . . . , cn). There exists φ, 1 � φ � n such that

cφ = ∈, so tC does not depend on xφ. If tC(x1, . . . , xn) = x
ci1
i1

· · · x
cin−k−1
in−k−1

, then
φ ⊕∈ {i1, . . . , in−k−1} and both

tA(x1, . . . , xn) = x
ci1
i1

· · · x0
φ · · · x

cin−k−1
in−k−1

and

tA(x1, . . . , xn) = x
ci1
i1

· · · x1
φ · · · x

cin−k−1
in−k−1

belong to Lk
f . Clearly, tC is the consensus of tA and tB, which yields the reverse

inclusion.

Theorem 11.86 suggests that we can generate the posets of all implicants of a
binary Boolean function f : {0, 1}n −⊆ {0, 1} by producing inductively the sets
L0

f , . . . , Ln−1
f . The algorithm that implements this idea is the Quine-McCluskey

algorithm, discussed next.

Algorithm 11.5.1: Quine-McCluskey Algorithm
Data: A binary Boolean function given in tabular form
Result: The set IMPL f of all implicants of f
let L0

f be the set of minterms for f ;1

for 0 � k � n − 2 do2

include in Lk+1
f every term that can be obtained as a consensus of two terms from Lk

f3

end4

return the collection
⋃n−1

k=0 Lk
f ;5

The correctness of the algorithm is an immediate consequence of Theorem 11.86.

Example 11.87 Consider the Boolean function f : {0, 1}3 −⊆ {0, 1} given by

x1 x2 x3 f (x1, x2, x3)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Its standard disjunctive normal form is

f (x1, x2, x3) = t (0,1,1)(x1, x2, x3) ∅ t (1,0,1)(x1, x2, x3)

∅t (1,1,0)(x1, x2, x3) ∅ t (1,1,1)(x1, x2, x3),
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Fig. 11.5 Hasse diagram of
IMPL f

so the set L0
f consists of the minterms

t (0,1,1)(x1, x2, x3) = x0
1 x1

2 x1
3 ,

t (1,0,1)(x1, x2, x3) = x1
1 x0

2 x1
3 ,

t (1,1,0)(x1, x2, x3) = x1
1 x1

2 x0
3 ,

t (1,1,1)(x1, x2, x3) = x1
1 x1

2 x1
3 ,

for (x1, x2, x3) ∈ {0, 1}3.
The Hasse diagram of IMPL f is shown in Fig. 11.5. Clearly, IMPL f = L0

f ∨ L1
f

because there is no consensus possible among any two of the implicants from L1
f .

Definition 11.88 A nonempty set of terms T = {tB1, . . . , tBm } of implicants of a
binary Boolean function f : {0, 1}n −⊆ {0, 1} is a cover of f if f (x1, . . . , xn) =∨m

i=1 tBi (x1, . . . , xn).
T is a minimal cover of f if T is a cover of f and no proper subset of T is a cover

of f .

The set of all minterms of f is clearly a cover of f . However, other covers may
exist for f that contain terms of rank that is higher than 0 and it is important to
determine such simpler covers.

Since (IMPL f ,�) is a finite poset, for every tB ∈ IMPL f there is a prime impli-
cant tA such that tB � tA.

Theorem 11.89 Let f be a binary Boolean function that is not the constant function
f0. A set of implicants of f , T = {tB1, . . . , tBm } is a cover of f if and only if for
every minterm tA of f there is an implicant tB ∈ T such that tA � tBi .

Proof Suppose that T satisfies the condition of the theorem. Let {A ∈ {0, 1}n |
f (A) = 1} = {A1, . . . , Ak}. Then, since

f (x1, . . . , xn) =
∨

1�i�k

tA(x1, . . . , xn) �
∨

1�l�m

tBl � f (x1, . . . , xn),

it is immediate that T is a cover for ϕ.
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Conversely, let T be a cover of f , T = {tB1, . . . , tBm } and let tA be a minterm,
where A = (a1, . . . , an). Since

tA(x1, . . . , xn) � f (x1, . . . , xn) �
∨

{tB(x1, . . . , xn) | tB ∈ T },

it follows that there is B such that tB(a1, . . . , an) = 1. This implies tA � tB.

Corollary 11.90 Let f : {0, 1}n −⊆ {0, 1} be a function that is distinct from
the constant function f0. If T = {tB1, . . . , tBm } is a cover of f , and tC is
an implicant of f such that tBi < tC for some i, 1 � i � m, then T ∩ =
{tB1, . . . , tBi−1 , tC, tBi+1 , . . . , tBm } is a cover of f .

Proof The statement follows immediately from Theorem 11.89.

We now discuss the Quine-McCluskey systematic construction that starts with
the set of prime implicants and the set of minterms of a nonzero Boolean function
f : {0, 1}n −⊆ {0, 1} and yields covers of f that consist of prime implicants.

Let M f = (mi j ) be a p × q-matrix having one row for each prime implicant
tB1, . . . , tBp and one column for each minterm {tA1, . . . , tAq } of f . Define

mi j =
{

1 if tA j � tAi ,

0 otherwise.

If a column of M f contains a single 1, that corresponding prime implicant is referred
to as an essential prime implicant. Denote by E f the set of essential prime implicants
for f . Clearly, the set E f must be contained in any cover by prime implicants of f .

Eliminate from M all essential prime implicants and the columns corresponding
to the minterms they dominate.

If the set of rows of M f in which a column of a minterm tA has 1s strictly includes
the set of rows in which some other column of a minterm tA∩

has 1s, then eliminate
column tA. Next, if among the remaining columns several have the same pattern of
1s, then retain only one of them.

Eliminate from M f all rows that contain no 1s. The output consists of every
minimal set of rows in M f such that at least one 1 exists in these rows for every
column, to each of which we add the set of essential prime implicants E f .

Example 11.91 Let f : {0, 1}4 −⊆ {0, 1} be the binary Boolean function defined
by

Starting from the minterms

tA1 = x̄1 x̄2 x̄3 x̄4, tA5 = x̄1x2x3 x̄4,

tA2 = x̄1 x̄2x3 x̄4, tA6 = x̄1x2x3x4,

tA3 = x̄1x2 x̄3 x̄4, tA7 = x1 x̄2x3 x̄4,

tA4 = x̄1x2 x̄3x4, tA8 = x1x2x3 x̄4,
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x1 x2 x3 x4 f (x1, x2, x3)

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

we have the following sets of implicants computed by using the Quine-McCluskey
algorithm:

L0
f = {x̄1 x̄2 x̄3 x̄4, x̄1 x̄2x3 x̄4, x̄1x2 x̄3 x̄4, x̄1x2 x̄3x4,

x̄1x2x3 x̄4, x̄1x2x3x4, x1 x̄2x3 x̄4, x1x2x3 x̄4, },
L1

f = {x̄1 x̄2 x̄4, x̄1 x̄3 x̄4, x̄1x3 x̄4, x̄2x3 x̄4, x̄1x2 x̄3,

x̄1x2x4, x̄1x2x3, x2x3 x̄4, x1x3 x̄4},
L2

f = {x̄1 x̄4, x3 x̄4, x̄1x2}.

The prime implicants of f are the terms tB1 = x̄1 x̄4, tB2 = x3 x̄4, and tB3 = x̄1x2.
The matrix M f introduced above is a 3 × 8 matrix:

M f =

1 1 1 0 1 0 0 0

0 1 0 0 1 0 1 1
0 0 1 1 1 1 0 0


⎛ .

The first, fourth, and the last three columns contain exactly one 1. Thus, all three
prime implicants are essential, and they form a unique cover of prime implicants
of f .

Definition 11.92 A partially defined Boolean function (pdBf) on the two-element
Boolean algebra is a partial function f : {0, 1}n � {0, 1}.

A pdBf f : {0, 1}n � {0, 1} is completely defined by the pair of disjoint sets

T f = {A ∈ Dom( f ) | f (A) = 1},
F f = {A ∈ Dom( f ) | f (A) = 0}.
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Definition 11.93 Let f : {0, 1}n −⊆ {0, 1} be a binary Boolean function and let i
be an integer such that 1 � i � n. The function is i-positive if

f (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∪ f (x1, . . . , xi−1, 1, xi+1, . . . , xn)

for every x1, . . . , xi−1, xi+1, . . . , xn ∈ {0, 1}.
Similarly, f is i -negative if

f (x1, . . . , xi−1, 0, xi+1, . . . , xn) ⊃ f (x1, . . . , xi−1, 1, xi+1, . . . , xn)

for every x1, . . . , xi−1, xi+1, . . . , xn ∈ {0, 1}.
The function is i-monotonic if it is either i-positive or i-negative.

Example 11.94 For every A ∈ {0, 1, ∈}n , the term tA is i-monotonic for 1 � i � n.
Indeed, if ai ∈ {1, ∈}, then tA is i-positive; if ai ∈ {0, ∈}, then tA is i-negative.

Theorem 11.95 Let f : {0, 1}n −⊆ {0, 1} be a binary Boolean function and let i
be an integer such that 1 � i � n. If f is i -positive, then for every prime implicant
tA of f we have ai ∈ {1, ∈}, where A = (a1, . . . , an).

If f is i -negative, then ai ∈ {0, ∈}.
Proof Suppose that f is i-positive. Then,

f (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∪ f (x1, . . . , xi−1, 1, xi+1, . . . , xn)

for every x1, . . . , xi−1, xi+1, . . . , xn ∈ {0, 1}.
Suppose that ai = 0, that is,

tA(x1, . . . , xn) = · · · ∞ x̄i ∞ · · · .

We claim that this implies the inequality

xa1
1 · · · xai−1

i−1 xai+1
i+1 · · · xan

n � f (x1, . . . , xi−1, xi , xi+1, . . . , xn)

for every x1, . . . , xn ∈ {0, 1}. In other words, we have to prove that we have both

xa1
1 · · · xai−1

i−1 xai+1
i+1 · · · xan

n � f (x1, . . . , xi−1, 0, xi+1, . . . , xn)

and
xa1

1 · · · xai−1
i−1 xai+1

i+1 · · · xan
n � f (x1, . . . , xi−1, 1, xi+1, . . . , xn).

Since f is i-positive, only the proof of the first inequality is necessary. The fact that
tA is an implicant of f means that

tA(x1, . . . , xn) � f (x1, . . . , xn)
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Fig. 11.6 Hasse diagrams of
two partially ordered sets

(a) (b)

for every x1, . . . , xn ∈ {0, 1}. Therefore,

tA(x1, . . . , xi−1, 0, xi+1, . . . , xn) = xa1
1 · · · xai−1

i−1 xai+1
i+1 · · · xan

n

� f (x1, . . . , xi−1, 0, xi+1, . . . , xn).

Thus, tB(x1, . . . , xn) = xa1
1 · · · xai−1

i−1 xai+1
i+1 · · · xan

n is also an implicant of f and, since
tA < tB, this contradicts the fact that tA is a prime implicant of f .

The second part of the theorem can be shown in a similar manner.

Exercises and Supplements

1. Consider the partially ordered sets (P,�) and (Q,�) whose Hasse diagrams
are given in Figs. 11.6a, b, respectively. Determine which diagram corresponds
to a lattice.

2. Prove that if (L , {∞,∅}) is a lattice, then for every finite, nonempty subset K
of L , inf K and sup K exist.

3. Prove that every chain is a lattice.
4. Let L = (L , {∞,∅}) be a lattice and let x and y be two elements of L . Prove

that the least sublattice of L that contains x and y is {x, y, x ∞ y, x ∅ y}.
Let L = (L , {∞,∅}) be a lattice. A nonempty subset I of L is an ideal of L if
x ∅ y ∈ I holds if and only if both x ∈ I and y ∈ I . A filter of L is a nonempty
subset F of L such that x ∞ y ∈ F if and only if x ∈ F and y ∈ F.

5. Prove that a set K is an ideal of the lattice L = (L , {∞,∅}) if and only if x ∈ K
and y ∈ K imply x ∅ y ∈ K , and x ∈ K and t � x imply t ∈ K .
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6. Prove that a set K is a filter of the lattice L = (L , {∞,∅}) if and only if x ∈ K
and y ∈ K imply x ∞ y ∈ I , and x ∈ K and t � x imply t ∈ K .

7. Prove that, for every element x of a lattice L = (L , {∞,∅}), the set Ix = {t ∈
L | t � x} is an ideal and the set Fx = {t ∈ L | x � t} is a filter. They are
referred to as the principal ideal of x and the principal filter of x .

8. Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean algebra. A subset of B is an ideal
(filter) if it is an ideal (filter) of the underlying lattice (B, {∞,∅}). Prove that D
is an ideal of B if and only if D∩ = {x̄ | x ∈ D} is a filter.

9. LetL = (L , {∞,∅}) be a lattice and let A = (ai j ) be an m×n matrix of elements
of L .

(a) Prove the following generalization of the minimax inequality (see Exercise
23 of Chap. 5): ∨

j

⎟
i

ai j �
⎟

i

∨
j

ai j

(b) Suppose that L has the least element 0. Write the inequality that follows
from the application of the minimax inequality to the matrix

A =

0 a b

b 0 c
a c 0


⎛ .

10. Prove the following generalization of Theorem 11.40. In a distributive lattice
L = (L , {∞,∅}), the equalities x ∅ y = x ∅ z and x ∞ y = x ∅ z imply y = z.
Conversely, if x ∅ y = x ∅ z and x ∞ y = x ∅ z imply y = z for all x, y, z ∈ L ,
then L is distributive.

11. Let x, y, z be three elements of a lattice L = (L ,∞, vee). Prove that each of
the sublattices generated by x ∅ y, y ∅ z, z ∅ x and by x ∞ y, y ∞ z, z ∞ x is
distributive.

12. Prove that every lattice having four elements is distributive.
13. Let L = (L , {∞,∅}) be a modular lattice. Prove that if x � y or if y � x ,

a ∞ x = a ∞ y, and a ∅ x = a ∅ y, then x = y.
14. Prove that a lattice L = (L , {∞,∅}) is modular if and only if

x ∞ (y ∅ (x ∞ z)) = (x ∞ y) ∅ (x ∞ z)

for every x, y, z ∈ L .
15. Let S(Rn) be the collection of subspaces of Rn . Prove that

(a) for S, T ∈ S(Rn) we have S = S + T if and only if T ⇒ S;
(b) (S(Rn),⊥,+) is a lattice having {0} as its least element and S as its greatest

element.

16. Prove that if R, S, T ∈ S(Rn) and R ⇒ T , then R + (S ⊥ T ) = (R + S) ⊥ T .
In other words, (S(Rn),⊥,+) is a modular lattice.
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Solution: By the submodular inequality we have R + (S ⊥ T ) ⇒ (R + S) ⊥ T .
To prove the reverse inclusion let x ∈ (R + S) ⊥ T . This implies x ∈ T and
x = y + z, where y ∈ R and z ∈ S. We have z = x − y ∈ T because x ∈ T and
y ∈ R ⇒ T . This implies z ∈ S ⊥ T , so x ∈ R + (S ⊥ T ). This establishes the
modular equality.

17. Let L = (L , {∞,∅}) be a lattice that has the least element 0. If the set {t ∈ L |
x ∅ t = 0} has a largest element x∈, then we say that x∈ is the pseudocomplement
of x . If every element of L has a pseudocomplement, then we say that L is a
pseudocomplemented lattice.

(a) Prove that any pseudocomplemented lattice has a largest element.
(b) Prove that if L is a chain having the least element 0 and the largest element

1, then L is pseudocomplemented.
(c) Prove that x � x∈∈ and x∈ = x∈∈∈ for x ∈ L .
(d) Prove that (x ∞ y)∈∈ = x∈∈ ∞ y∈∈ for x, y ∈ L .

18. Let (S,�) be a poset, x be an element of S, and Ix = {s ∈ S | s � x}.
(a) Prove that for every x ∈ S the set Ix = {s ∈ S | s � x} is an order ideal of

(S,�). This is the principal order ideal of x .
(b) Let Ip(S,�) be the collection of principal order ideals of (S,�) and let

f : S −⊆ Ip(S,�) be the mapping defined by f (x) = Ix for x ∈ S. Prove
that f is a monotonic injection.

(c) Let T be a subset of S. Prove that if sup T (infT ) exists in (S,�), then
sup{Ix | x ∈ T } in (Ip(S,�),⇒) is Isup T (inf{Ix | x ∈ T } in
(Ip(S,� ),⇒) is IinfT ).

(d) Prove that the poset of principal order ideals of S, (Ip(S,�),⇒) is a complete
lattice.

19. Let (L1,�) and (L2,�) be two complete lattices and let f : L1 −⊆ L2 be a
monotonic function between these posets. Prove that

f
⎧∨

K
⎨

⊃
∨

f (K ),

f
⎧⎟

K
⎨

∪
⎟

f (K ),

for every subset K of L1.
20. Let (L ,�) be a complete lattice and let f : L −⊆ L be a monotonic mapping.

Prove that there exists x ∈ L such that f (x) = x (Tarski’s fixed-point theorem).
Solution: Let T = {x ∈ L | x � f (x)} and t = sup T . Since x � t , we have
f (x) � f (t) for every x ∈ T , so x � f (x) � f (t). This implies t � f (t), so
t ∈ T . Therefore, f (t) � f ( f (t)), so f (t) ∈ T , which implies f (t) ∪ t . This
shows that t = f (t).

21. Let S and T be two sets and let f : S −⊆ T , g : T −⊆ S be two injective
functions. Define the function F : P(S) −⊆ P(S) as F(U ) = S −g(T − f (U ))

for every U ∈ P(S).
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(a) Prove that F is a monotonic mapping between the complete lattices
(P(S),⇒ ) and (P(T ),⇒).

(b) Let U0 ⇒ S be a fixed point of F . Define the function h : S −⊆ T by

h(x) =
{

f (x) if x ∈ U0,

y if x ⊕∈ U0 and g(y) = x .

Show that h is well-defined and, moreover, is a bijection. (The existence of
a bijection h between S and T when the injections f and g exist is known
as the Schröder-Bernstein theorem.)

22. Prove that f : Bn −⊆ B is a Boolean function if and only if

(x1, . . . , xn)A f (x1, . . . , xn) = (x1, . . . , xn)A f (A)

for every A ∈ {0, 1}n .
23. Prove that there are 2n−k

(n
k

)
n-ary terms of rank k.

24. A Horn term is a term tA : Bn −⊆ B such that A contains at most one 0. Prove
that if the consensus tC of the Horn tA, tB exists, then tC is a Horn term.

25. Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean algebra and let f : Bn −⊆ B be a
Boolean function. Prove that, for every b ∈ B, there exists a Boolean function
f(b) : Bn −⊆ B such that

b ∞ f (x0, . . . , xn−1) = f(b)(b ∞ x0, . . . , b ∞ xn−1)

for (x0, . . . , xn−1) ∈ Bn .
Hint: The argument is by induction on the definition of Boolean functions.

26. Let S be a set and let π be a partition of S. Prove that the collection of π-
saturated subsets of S is a Boolean subalgebra Sπ of the Boolean algebra
(P(S), {⊥,∨, ¯ ,↔, S}).

Let L = (L , {∞,∅}) be a lattice that has 0 as its least element and let A(L) be the
set of its atoms. Recall that an atom for a poset was introduced in Definition 2.18. L
is an atomic lattice if for every x ∈ L we have x = sup{a ∈ A(L) | a � x}.
27. Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean algebra and let A(B) be the set of its

atoms. Prove that:

(a) if a ∈ A(B), then a � x ∅ y if and only if either a � x or a � y;
(b) a � x ∞ y if and only if both a � x and a � y;
(c) if a � x ≥ y, then we have either a � x ∞ y or a � x ∞ y.

28. Let B = (B, {∞,∅, ¯ , 0, 1}) be a Boolean algebra and let A(B) be the set of its
atoms. Define the function h : B −⊆ P(A(B)) as

h(x) = {a ∈ A(B) | a � x}.
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Prove that

(a) h is a Boolean algebra homomorphism between the Boolean algebras B and
(P(A(B)), {⊥,∨, ¯ ,↔, A(B)});

(b) if B is an atomic Boolean algebra, then h is injective;
(c) if B is complete, then h is surjective;
(d) a Boolean algebra is isomorphic to the Boolean algebra of subsets if and

only if it is both atomic and complete.

29. Let C be a finite collection of subsets of a set S. Prove that the subalgebra of
(P(S), {⊥,∨, ¯ ,↔, S}) generated by C coincides with the collection of all πC-
saturated sets, where πC is the partition defined in Supplement 6 of Chap. 1.
Further, show that the atoms of this subalgebra are the blocks of the partition
πC.

30. Let S and T be two sets and let f : S −⊆ T be a mapping.

(a) Prove that the function F : P(T ) −⊆ P(S) defined by F(V ) = f −1(V ) for
V ∈ P(T ) is a Boolean algebra morphism between (P(T ), {⊥,∨, ¯ ,↔, T })
and (P(S), {⊥,∨, ¯ ,↔, S}).

(b) Let D = {D1, . . . , Dr } be a finite collection of subsets of T and let
C = {F(D) | D ∈ D} be the corresponding finite collection of subsets
of C .

If πD is the partition of T associated to D, then prove that for any block B
of this partition, F(B) is either the empty set or a block of the partition πC
of S, and each block of the partition πC is of the form F(B). Further, if f is
a surjective mapping, then F(B) is always a block of πC.
Solution: The first part is a consequence of Theorems 1.63 and 1.65. For
the second part, let

Da1,...,ar = Da1
1 ⊥ · · · ⊥ Dar

r

be an atom of πD for some (a1, . . . , ar ). Note that F(Da1,...,ar ) = Ca1
1 ⊥

· · ·⊥Car
r , where Ci = f −1(Di ) = F(Di ) for 1 � i � r . If this intersection

is nonempty, then it is clearly a block of πP.
If f is surjective, the preimage of any nonempty set f −1(Da1,...,ar ) is non-
empty and therefore a block of πC.

31. Let F : {0, 1}n −⊆ {0, 1}n be a function. Prove that there exists a bijection
G : {0, 1}n −⊆ {0, 1}n such that G(x) ∞ x = F(x) ∞ x for every x ∈ {0, 1}n .
Solution: Without loss of generality, we may assume that F(x) � x for x ∈
{0, 1}n . Thus, we need to prove the existence of G such that G(x) ∞ x = F(x).
For x ⇒ {0, 1}n let K F (x) = {u ∈ {0, 1}n | u ∞ x = F(x)}. If X ⇒ {0, 1}n ,
define KF (X) = ⋃{K (x) | x ∈ X}. Then, we should have G(x) ∈ KF (x) for
each x ∈ {0, 1}n . To obtain the result it suffices to show that, for every X , we
have |X | � |KF (X)| because this would imply that there is a bijection G such
that G(x) ∈ KF (x).
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Note that if F(x) = x, then K F (x) = {u ∈ {0, 1}n | u � x}, so x ∈ K F (x) for
every x ∈ {0, 1}n , which implies |X | � |KF (X)|.
For x = (x1, . . . , xn) and F(x) = (y1, y2, . . . , yn), define F1 : {0, 1}n −⊆
{0, 1}n by modifying the first component of F(x) as

F1(x) = (x1, y2, . . . , yn).

If u = (u1, u2, . . . , un) ∈ {0, 1}n , denote by u[0] and u[1] the n-tuples
u[0] = (0, u2, . . . , un) and u[1] = (1, u2, . . . , un).

We claim that |K F1(X)| � |KF (X)|. To prove this inequality, it suffices to show
that |KF1(X) ⊥ {u[0], u[1]}| � |KF (X) ⊥ {u[0], u[1]}| for every u ∈ {0, 1}n .

If u[0] ∈ K F1(X), then {u[0], u[1]} ⇒ K F (X). Indeed, u[0] ∈ K F1(X) implies
u[0] ∞ x = F1(x) for some x = (x1, x2, . . . , xn) ∈ X , which yields x1 = 0.
Since F(x) � x, it follows that (F(x))1 = 0 and (F(x))1 = (F1(x))1. Thus,
u[1] ∞ x = u[0] ∞ x = F(x), so {u[0], u[1] ⇒ K F (X)}. If u[1] ∈∈ F1(X) and
u[0] ⊕∈ F1(X), then {u[0], u[1]} ⊥ KF (X) ⊕= ↔. Under these assumptions, there
exists x ∈ X such that u[1] ∞ x = F1(x) and u[0] ∞ x ⊕= F1(x). Note that
(u[0] ∞ x)i = (u[1] ∞ x)i = (F1(x))i = (F(x))i for 2 � i � n. Also, we
have (F(x))1 = 0 = (u[0] ∞ x)1 or (F(x))1 = 1 = (u[1] ∞ x)1. Thus, either
u[0] ∞ x = F(x) or u[1] ∞ x = F(x).
The treatment applied to the first coordinate can now be repeated for the second
component starting from F1 to produce a function F2 : {0, 1}n −⊆ {0, 1}n such
that |KF2(X)| ∪ |KF1(X)|, etc. After n steps, we reach a function Fn such that
Fn(x) = x. We have KFn (x) = {u ∈ {0, 1}n | u � x}, so X ⇒ K Fn (X), which
implies |X | � |KFn (X)| � |KF (X).

32. Prove that if L is a relatively complemented lattice of finite length, then L is an
atomic lattice.

Bibliographical Comments

The most known reference for lattice theory is [2]. The books [1, 3] are essential
references for Boolean algebra and Boolean functions. A comprehensive reference on
pseudo-Boolean functions is the monograph [4]. Supplement 5 appears in a slightly
different form in [5].

The modularity of the lattice of subspaces of an n-dimensional linear space was
established in [6].
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Chapter 12
Applications to Databases and Data Mining

12.1 Introduction

This chapter presents an introduction to the relational model, which is of paramount
importance for data mining. We continue with certain equivalence relations (and
partitions) that can be associated to sets of attributes of tables.

An algebraic approach to the notion of entropy and several of its generalizations
is also discussed because entropy is used in data mining for evaluating the concen-
trations of values of certain data features. Generalized measures and data constraints
that can be formulated using these measures are included. Finally, we discuss cer-
tain types of classifiers, namely, decision trees and perceptrons and the associated
learning processes.

12.2 Relational Databases

Relational databases are the mainstay of contemporary databases. The principles of
relational databases were developed by Codd in the early 1970s [1, 2], and various
extensions have been considered since. In this section, we illustrate applications of
several notions introduced earlier to the formalization of database concepts.

The notion of a tabular variable (or relational variable) was introduced by Date
in [3]; we also formalize the notion of table of a relational variable. To reflect the
implementations of a relational database system we assume that table contents are
sequences of tuples (and not just sets of tuples, a simplification often adopted in the
literature that is quite distant from reality).

LetU be a countably infinite injective sequence having pairwise distinct members,
U = (A0, A1, . . .). The components of U are referred to as attributes and denoted,
in general, by capital letters from the beginning of the alphabet, A, B, C, . . . We also
consider a collection of sets indexed by the components of U, D = {DA | A ∈ U }.

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 583
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_12,
© Springer-Verlag London 2014
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The set DA is referred to as the domain of the attribute A and denoted alternatively
as Dom(A). We assume that each set DA contains at least two elements.

Let H be a finite subset of set(U), H = {Ai1, . . . , Ai p }. We refer to such a set as
a heading. In keeping with the tradition of the field of relational databases, we shall
denote H as H = Ai1 · · · Ai p . For example, instead of writing H = {A, B, C, D, E},
we shall write H = ABC DE .

The set of tuples on H = Ai1 · · · Ai p is the set DAi1
× · · · × DAi p

denoted by
tupl(H). Thus, a tuple t on the heading H = Ai1 · · · Ai p is a sequence t = (t1, . . . , tp)

such that t j ∈ Dom(Ai j ) for 1 � j � p.
A tabular variable is a pair ν = (T, H), where T is a word over an alphabet to

be defined later and H is a heading.
A value of a tabular variable ν = (T, H) is a triple φ = (T, H, r), where r is a

sequence on tupl(H). We refer to such a triple as a table of the tabular variable ν or,
a ν -table; when the tabular variable is clear from the context or irrelevant, we refer
to φ just as a table.

The set set(r) of tuples that constitute the components of a tuple sequence r is a
p-ary relation on the collection of sets tupl(H); this justifies the term “relational”
used for the basic database model. If φ1 = (T1, H, r1) and φ2 = (T2, H, r2) are two
tables and set(r1) = set(r2) we say that φ1 and φ2 are coextensive and write φ1 ≡ φ2.

Example 12.1 Consider a tabular variable that is intended to capture the description
of a collection of objects,

ν = (OBJECTS, shape length width height color),

where
Dom(shape) = Dom(color) = {a, . . . , z}∪ and
Dom(length) = Dom(width) = Dom(color) = N.

A value of this variable is

(OBJECTS, shape length width height color, r),

where r consists of the tuples

(cube, 5, 5, 5, red),

(sphere, 3, 3, 3, blue),
(pyramid, 5, 6, 4, blue),
(cube, 2, 2, 2, red),

(sphere, 3, 3, 3, blue),

that belong to tupl(shape length width height color). It is convenient to represent this
table graphically as

The set set(r) of tuples that corresponds to the sequence r of tuples of the table is
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Objects

Shape Length Width Height Color
Cube 5 5 5 Red
Sphere 3 3 3 Blue
Pyramid 5 6 4 Blue
Cube 2 2 2 Red
Sphere 3 3 3 Blue

set(r) = {(cube, 5, 5, 5, red), (sphere, 3, 3, 3, blue),

(pyramid, 5, 6, 4, blue), (cube, 2, 2, 2, red)}.

Note that duplicate tuples do not exist in set(r).

We can now formalize the notion of a relational database.

Definition 12.2 A relational database is a finite, nonempty collection D of tabular
variables νi = (Tk, Hk), where 1 � k � m such that i ∞= j implies Ti ∞= Tj for
1 � i, j � m.

In other words, a relational database D is a finite collection of tabular variables that
have pairwise distinct names.

Let D = {ν1, . . . , νm} be a relational database. A state of D is a sequence of
tables (φ1, . . . , φm) such that φi is a table of νi for 1 � i � m. The set of states of a
relational database D will be denoted by SD.

To discuss further applications we need to introduce table projection, an operation
on tables that allows us to build new tables by extracting “vertical slices” of the
original tables.

Definition 12.3 Let φ = (T, H, r) be a table, where H = A1 · · · Ap and r =
(t1, . . . , tn), and let K = Ai1 · · · Aiq be a subsequence of set(H).

The projection of a tuple t ∈ tupl(H) on K is the tuple t[K ] ∈ tupl(K ) defined
by t[K ]( j) = t (i j ) for every j , 1 � i � q.

The projection of the table φ on K is the table φ [K ] = (T [K ], K , r[K ]), where
r[K ] is the sequence (t1[K ], . . . , tn[K ]).

Observe that, for every tuple t ∈ tupl(H), we have t[∅] = λ; also, t[H ] = t .

Example 12.4 The projection of the table

Objects

Shape Length Width Height Color
Cube 5 5 5 Red
Sphere 3 3 3 Blue
Pyramid 5 6 4 Blue
Cube 2 2 2 Red
Sphere 3 3 3 Blue

on the set K = shape color is the table
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Objects (shape color)

Shape Color
Cube Red
Sphere Blue
Pyramid Blue
Cube Red
Sphere Blue

Two simple but important properties of projection are given next.

Theorem 12.5 Let H be a set of attributes, u, v ∈ tupl(H), and let K and L be two
subsets of H. The following statements hold:

(i) u[K ][K ⊆ L] = u[L][K ⊆ L] = u[K ⊆ L].
(ii) The equality u[K L] = v[K L] holds if and only if u[K ] = v[K ] and u[L] =

v[L].
Proof The argument is a straightforward application of Definition 12.3 and is left to
the reader. ∩⊕
Definition 12.6 Let ν = (T, H, t) and Ψ = (S, K , s) be two tables and let t ∈ set(t)
and s ∈ set(s).

The tuples t and s are joinable if t[H ⊆ K ] = s[H ⊆ K ].
If t and s are joinable, their join is the tuple u ∈ tupl(H ⊥ K ) given by

u[A] =
{

t[A] if A ∈ H,

s[A] if A ∈ K .

The tuple u is denoted by t �� s.

If H ⊆ K = ∅, then every tuple t ∈ set(t) is joinable with every tuple s ∈ set(s).
If H = K , then t is joinable with s if and only if t = s.

Example 12.7 Let ν = (T, ABC, r) and Ψ = (S, BC DE, r) be the tables

T
A B C

t1 a1 b1 c1
t2 a1 b2 c2
t3 a2 b1 c1
t4 a3 b2 c3
t5 a2 b3 c1

and

S
B C D E

s1 b1 c1 d1 e1
s2 b1 c1 d2 e2
s3 b2 c2 d3 e2
s4 b3 c3 d2 e1

It is clear that both t1 and t3 are joinable with s1 and s2 and that t2 is joinable with
s3. Their joins are
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t1 �� s1 = (a1, b1, c1, d1, e1) t1 �� s2 = (a1, b1, c1, d2, e2)

t3 �� s1 = (a2, b1, c1, d1, e1) t3 �� s2 = (a2, b1, c1, d2, e2)

t2 �� s3 = (a1, b2, c2, d3, e2).

Definition 12.8 Let ν = (T, H, t) and Ψ = (S, K , s) be two tables, where t =
(t1, . . . , tm) and s = (s1, . . . , sn).

Their join is the table ν �� Ψ given by ν �� Ψ = (T �� S, H K ,w), where w is
the sequence of tuples obtained by concatenating the sequences obtained by joining
each tuple t in t with each joinable tuple in s.

We denote set(w) by set(t) �� set(s).

Example 12.9 The join of tables ν and Ψ defined in Example 12.7 is the table

T �� S

A B C D E
t1 �� s1 a1 b1 c1 d1 e1
t1 �� s2 a1 b2 c2 d2 e2
t2 �� s3 a2 b3 c1 d3 e2
t3 �� s1 a2 b1 c1 d1 e1
t3 �� s2 a3 b2 c3 d2 e2

Definition 12.10 Let φ = (T, H, r) be a table, where r = (t1, . . . , tn). The in-
discernibility relation defined by a set of attributes X, X ∨ set(H) is the relation
βX ∨ {1, . . . , n}2 given by

βX = {(p, q) ∈ {1, . . . , n}2 | tp[X ] = tq [X ]}.

It is easy to verify that βX is an equivalence for every set of attributes X . The
partition of {1, . . . , n} that corresponds to this equivalence will be denoted by Φ X .

Example 12.11 Consider again the table introduced in Example 12.4.

Objects
Shape Length Width Height Color

t1 Cube 5 5 5 Red
t2 Sphere 3 3 3 Blue
t3 Pyramid 5 6 4 Blue
t4 Cube 2 2 2 Red
t5 Sphere 3 3 3 Blue

Several partitions defined by sets of attributes of this table are:

Φ shape = {{t1, t4}, {t2, t5}, {t3}}
Φ length = {{t1, t3}, {t2, t5}, {t4}},
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Φwidth = {{t1}, {t2, t5}, {t3}, {t4}},
Φheight = {{t1}, {t2, t5}, {t3}, {t4}},
Φ color = {{t1, t4}, {t2, t3, t5}},

Φ shape length = {{t1}, {t4}, {t2, t5}, {t3}},
Φ shape color = {{t1, t4}, {t2, t5}, {t3}}.

Theorem 12.12 Let φ = (T, H, r) be a table and let X and Y be two sets of at-
tributes, X, Y ∨ H. We have βXY = βX ⊆ βY.

Proof Let tp, tq ∈ set(r) be two tuples such that (p, q) ∈ βXY . This means that
tp[XY ] = tq [XY ]. By the second part of Theorem 12.5, this holds if and only if
tp[X ] = tp[X ] and tp[Y ] = tq [Y ]; that is, if and only if (p, q) ∈ βX and (p, q) ∈ βY .
Thus, βXY = βX ⊆ βY. ∩⊕
Corollary 12.13 Let φ = (T, H, r) be a table and let X and Y be two sets of
attributes, X, Y ∨ H. We have Φ XY = Φ X ∧ ΦY.

Proof This statement follows immediately from Theorems 12.12 and 10.102. ∩⊕
Corollary 12.14 Let φ = (T, H, r) be a table and let X and Y be two sets of
attributes, X, Y ∨ H. If X ∨ Y , we have ΦY � Φ X .

Proof Since X ∨ Y , we have XY = Y , so ΦY = Φ X ∧ ΦY , which implies
ΦY � Φ X . ∩⊕
Definition 12.15 A reduct of a table φ = (T, H, r) is a set of attributes L that
satisfies the following conditions:

(i) Φ L = Φ H , and
(ii) L is a minimal set having the property (i); that is, for every J ⇒ L, we have

Φ J � Φ H .

The core of φ is the intersection of the reducts of the table.

Example 12.16 Let φ = (T, ABC DE, r) be the following table:

T
A B C D E

t1 a1 b1 c1 d1 e1
t2 a2 b2 c2 d2 e1
t3 a1 b2 c2 d1 e2
t4 a2 b2 c1 d2 e2
t5 a1 b1 c1 d1 e1
t6 a1 b1 c1 d1 e1
t7 a1 b2 c2 d1 e2

We have Φ H = {{t1, t5, t6}, {t3, t7}, {t2}, {t4}}. Note that we have Φ AC = Φ H and
Φ DE = Φ H . On the other hand, we also have
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Φ A = {{t1, t3, t5, t6, t7}, {t2, t4}},
ΦC = {{t1, t4, t5, t6}, {t2, t3, t7}},
Φ D = {{t1, t3, t5, t6, t7}, {t2, t4}},
Φ E = {{t1, t2, t5, t6}, {t3, t4, t7}},

which shows that both AC and DE are reducts of this table.

Table reducts are minimal sets of attributes that have the same separating power
as the entire set of attributes of the table. Example 12.16 shows that a table may
possess several reducts.

Note that no two distinct reducts may be comparable as sets because of the mini-
mality condition. Therefore, each maximal chain of sets in the poset (P(H),∨) that
joins ∅ to H may include at most one reduct. Thus, the largest number of reducts
that a table with n attributes may have is

⎜ n
↔n/2⊃

)
.

Example 12.17 Let φ be the table

T
A B C D

t1 a1 b1 c1 d1
t2 a1 b2 c1 d2
t3 a2 b1 c1 d1
t4 a2 b2 c1 d2

It is easy to see that this table has two reducts, AB and AD. Therefore, the core of
this table consists of the attribute A.

On the other hand, the core of the two-tuple table

S
A B C D

t1 a1 b1 c1 d1
t2 a1 b2 c1 d2

is empty because its two reducts, B and D, have no attributes in common.

The following theorem gives a characterization of table reducts.

Theorem 12.18 Let φ = (T, H, r) be a table such that |r| = n and let δ:{1, . . . , n}2

−→ P(H) be the function defined by

δ(i, j) = {A ∈ set(H) | ti [A] ∞= t j [A]}

for 1 � i, j � n. The set of attributes L is a reduct for φ if and only if L ⊆ δ(i, j) ∞= ∅
for every pair (i, j) ∈ {1, . . . , n}2 such that δ(i, j) ∞= ∅ and L is minimal with this
property.
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Proof Suppose that L is a reduct for φ and that (i, j) is a pair such that δ(i, j) ∞= ∅.
The equality δ(i, j) ∞= ∅ implies that (i, j) ∞∈ βH = βL , so ti [L] ∞= t j [L]. Therefore,
L ⊆ δ(i, j) ∞= ∅.

Suppose that there is a strict subset G of L such that G ⊆ δ(i, j) ∞= ∅ for every pair
(i, j) ∈ {1, . . . , n}2 such that δ(i, j) ∞= ∅. This implies βG = βH , which contradicts
the minimality of the reduct L .

Conversely, suppose that L ⊆ δ(i, j) ∞= ∅ for every pair (i, j) ∈ {1, . . . , n}2

such that δ(i, j) ∞= ∅ and L is minimal with this property. Since L ∨ H , we have
βH ∨ βL .

Now let (h, k) be a pair in βL . Since th coincides with tk on every attribute of L , it
follows that we must have δ(h, k) = ∅, which implies (h, k) ∈ βH . Thus, βH = βL .
If L is a minimal set satisfying the condition of the theorem, it follows immediately
that L is minimal in the collection of sets of attributes that differentiate the tuples of
φ , so L is a reduct. ∩⊕

The notion of a key that is frequently used in databases is related to the notion of
a reduct.

Definition 12.19 A key of a table φ = (T, H, r) and r = (t1, . . . , tn) is a set of
attributes L that satisfies the following conditions:

(i) Φ L = π{1,...,n}, and
(ii) L is a minimal set having the property (i); that is, for every J ⇒ L, we have

Φ J � π{1,...,n}.

A table φ = (T, H, r) has a key if and only if the sequence r does not contain
duplicate tuples.

12.3 Partitions and Functional Dependencies

Note that if two objects have the same shape, then they have the same color. We also
note that the reverse implication is not true because two objects may have the same
color without having the same shape. This observation suggests the introduction of
a type of constraint that applies to the table contents for every table that is a value of
a tabular variable.

Definition 12.20 Let H be a set of attributes. A functional dependency is an ordered
pair (X, Y ) of subsets of H.

The set of all functional dependencies on a set of attributes H is denoted by
FD(H). If (X, Y ) ∈ FD(H) we shall write this pair as X → Y using a well-
established convention in database theory.

Definition 12.21 Let φ = (T, H, r) be a table and let X and Y be two subsets of
H. The table φ satisfies the functional dependency X −→ Y if u[X ] = v[X ] implies
u[Y ] = v[Y ] for every two tuples u, v ∈ set(r).
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In other words, a table φ satisfies the functional dependency X → Y if and only
if βX ∨ βY or, equivalently, Φ X � ΦY.

Example 12.22 Let us consider a tabular variable whose values are intended to store
the data reflecting the instructors, students, and musical instruments studied by the
students of a community music school. Lessons are scheduled once a week, and each
instructor is teaching one instrument:

ν = (SCHEDULE, student instructor instrument day time room).

Any table φ that is a value of this tabular variable must satisfy functional dependencies
that reflect these “business rules” as well as other semantic restrictions:

student instrument → instructor,
instructor → instrument,
student instrument → day time,
room day time → student instructor,
student day time → room,

instructor day time → room.

For example, a possible value of this tabular variable is the table:

Schedule
Student Instructor Instrument Day Time Room

t1 Margo Donna Piano Mon 4 A
t2 Danielle Igor Violin Mon 4 B
t3 Joshua Donna Piano Mon 5 A
t4 Ondine Donna Piano Tue 3 A
t5 Michael Donna Piano Tue 4 A
t6 Linda Mary Flute Tue 4 B
t7 Todor Mary Flute Tue 5 A
t8 Sarah Emma Piano Tue 6 A
t9 Samuel Donna Piano Tue 6 B
t10 Alex David Guitar Tue 6 C
t11 Dan Emma Piano Wed 3 A
t12 William Mary Flute Wed 4 A
t13 Nora David Guitar Wed 4 B
t14 Amy Donna Piano Wed 5 A
t15 Peter Igor Violin Thr 4 A
t16 Kenneth David Guitar Thr 4 B
t17 Patrick Donna Piano Thr 5 A
t18 Elizabeth Emma Piano Thr 5 B
t19 Helen Mary Flute Thr 5 C
t20 Cris Mary Flute Fri 4 B
t21 Richard Igor Violin Fri 4 C
t22 Yves Donna Piano Fri 5 A
t23 Paul Emma Piano Fri 5 B
t24 Colin Igor Violin Fri 6 C
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The reader can easily check that this table satisfies all functional dependencies
identified after the definition of the tabular variable.

It is clear that if X, Y ∨ H and Y ∨ X , any table φ = (T, H, r) satisfies the
functional dependency X → Y .

Definition 12.23 A functional dependency X → Y is trivial if it is satisfied by every
table φ = (T, H, r) such that X, Y ∈ P(H).

Theorem 12.24 Let H be a finite set of attributes. A functional dependency X →
Y ∈ FD(H) is trivial if and only if Y ∨ X.

Proof For each attribute A ∈ H , let u A and vA be two distinct values in Dom(A).
Suppose that X → Y is a trivial functional dependency and that Y is not included
in X . This means that there exists an attribute B ∈ Y − X . Consider the table
φ = (T, XY, r), where r = (t1, t2), where t1[A] = u A for every A ∈ XY , and

t2[A] =
{

u A if A ∞= B,

vB if A = B.

Since t1[X ] = t2[X ] and t1[Y ] ∞= t2[Y ], it follows that φ violates the functional
dependency X → Y , which contradicts the fact that X → Y is trivial.

The sufficiency of the condition is immediate. ∩⊕
Suppose now that φ = (T, H, r) satisfies the functional dependencies X → Y and

Y → Z , where X, Y, Z are subsets of H . This means that Φ X � ΦY and ΦY � Φ Z ,
which implies Φ X � Φ Z . Therefore, φ satisfies the functional dependency X → Z .

If φ = (T, H, r) satisfies the functional dependency X → Y and W is a subset
of H , then we have Φ X � ΦY . Therefore, we have

Φ X W = Φ X ∧ ΦW � ΦY ∧ ΦW = ΦY W ,

which means that φ satisfies the functional dependency X W → Y W .
In the database design process, it is necessary to identify functional dependencies

satisfied by tables that are values of tabular variables. Thus, for a tabular variable
ν = (T, H), the design of the database entails the construction of the functional
dependency schema defined as a pair S = (H, F), where F ∨ FD(H). Tables that are
values of ν are also said to satisfy the schema S. The identification of these functional
dependencies is based on the meaning of the attributes involved. For example, in a
table schema that contains the attributes ssn (standing for social security number)
and name, it is natural to impose the functional dependency ssn → name. Every
table that satisfies this schema will satisfy this functional dependency.

Suppose that a table satisfies the functional dependencies A → B and B → C .
By a previous observation, the table will also satisfy A → C . Thus, it is not necessary
to explicitly stipulate that the table will satisfy A → C . This functional dependency
is obtained by applying the rule
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A → B, B → C

A → C
,

which is an instance of the transitivity rule

X → Y, Y → Z

X → Z
Rtrans,

for every X, Y, Z ∈ P(H). Here H is the set of attributes of a table. Our previous
argument shows that this rule is sound; in other words, if a table satisfies X → Y
and Y → Z , then the table satisfies X → Z .

The previous arguments allow us to identify two more sound rules, the inclusion
rule

X ∨ Y

Y → X
Rinc,

and the augmentation rule
X → Y

X W → Y W
Raug,

for every X, Y, W ∈ P(H).
As we saw above, rules are denoted as fractions; the objects that appear in the

numerator are known as the premises of the rule; the object that appears in the
denominator is the conclusion of the rule.

The three rules introduced so far (transitivity, augmentation, and inclusion) are
known as Armstrong’s rules.

The previous discussion establishes the soundness of the rules Rinc, Raug , and
Rtran . This means that a table that satisfies a set F of functional dependencies will
satisfy any functional dependency obtained from F through applications of these
rules.

In a certain sense that will be made clear in what follows, these are all the rules
we need in order to reason about functional dependencies.

Rules are used to generate in a syntactic manner new functional dependencies
starting from existing sets of such dependencies. The process of producing such new
functional dependencies is known as a proof. This notion is formalized in the next
definition.

Definition 12.25 Let S = (H, F) be a functional dependencies schema. A non-null
sequence of functional dependencies:

U1 → V1, . . . , Un → Vn

is an F-proof of length n if one of the following conditions is satisfied for every i ,
1 � i � n:

(i) Ui → Vi is one of the functional dependencies of F, or
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(ii) Ui → Vi is obtained from 0, 1, or 2 predecessors in the sequence by applying
one of Armstrong’s rules.

The last dependency in the sequence Un → Vn is the target of the F-proof.

Example 12.26 Suppose that S = (H, F) is a functional dependency schema, where
H = ABC DE and F is the set of functional dependencies

F = {A → C, AB → D, C D → E}.

We claim that the sequence

A → C, AB → BC, AB → ABC, AB → D,

ABC → C D, AB → C D, C D → E, AB → E

is an F-proof of AB → E for the following reasons:

(i) A → C belongs to F .
(ii) AB → ABC is obtained from (i) by applying Raug with W = AB.

(iii) AB → D belongs to F .
(iv) ABC → C D is obtained from (iii) by applying Raug with W = C .
(v) AB → C D is obtained from (ii) and (iv) by applying Rtran .
(vi) C D → E belongs to F .

(vii) AB → E is obtained from (v) and (vi) by applying Rtran .

The existence of an F-proof that has a functional dependency U → V as a target
is denoted as F ≥

ARM
U → V .

Finding an F-proof for a functional dependency can be a daunting task if the
number of attributes and functional dependencies is large. Fortunately, there are
ways of simplifying this process.

Theorem 12.27 Let S = (H, F)be a functional dependency schema. If F ≥
ARM

X →
Y and F ≥

ARM
X → Z, then F ≥

ARM
X → Y Z for every X, Y, Z ∨ H.

Proof Let U1 → V1, . . . , Un → Vn and U ≡
1 → V ≡

1, . . . , U ≡
n → V ≡

m be two F-proofs
that have X → Y and X → Z as targets. Using the augmentation by X , the first
proof generates the F-proof

U1 → V1, . . . , Un → Vn = X → Y, X → XY.

On the other hand, starting from the second proof

U ≡
1 → V ≡

1, . . . , U ≡
n → V ≡

m = X → Z ,

by augmenting the last functional dependency by Y , we have the F-proof
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U ≡
1 → V ≡

1, . . . , U ≡
n → V ≡

m = X → Z , XY → Y Z

By concatenating the two newly obtained proofs and applying the transitivity prop-
erty, we have the F-proof

U1 → V1, . . . , Un → Vn, X → XY,

U ≡
1 → V ≡

1, . . . , U ≡
n → V ≡

m, XY → Y Z , X → Y Z ,

which has the desired functional dependency X → Y Z as its target. ∩⊕
The last theorem shows that we can derive the functional dependency X → Y Z

from the functional dependencies X → Y and X → Z . This fact is interpreted as a
“derived rule” known as the additivity rule and is denoted by

X → Y, X → Z

X → Y Z
Radd .

Another derived rule is introduced in the next theorem.

Theorem 12.28 If F ≥
ARM

X → Y Z, then F ≥
ARM

X → Y for every X, Y, Z ∨ H.

Proof Let U1 → V1, . . . , Un → Vn be an F-proof that has X → Y Z as its target.
We can add to this proof the functional dependency Y Z → Y obtained by applying
Rinc. This yields the needed F-proof

U1 → V1, . . . , Un → Vn = X → Y Z , Y Z → Y, X → Y,

where the last step was obtained by applying the transitivity rule to the previous two
steps. ∩⊕

Thus, from X → Y Z we can derive the functional dependency X → Y . This
derived rule is known as the projectivity rule and is denoted by

X → Y Z

X → Y
Rproj .

Note that if F is a set of functional dependencies, F ∨ FD(H) and X ∨ H , then
it is always possible to find Y such that F ≥

ARM
X → Y . Indeed, it suffices to take

Y = X and we can always prove X → X starting from F because the functional
dependency X → X can be generated by applying Rinc.

Let X → Y1, . . . , X → Yp be the set of all functional dependencies such that
F ≥

ARM
X −→ Y , where X, Y ∨ H . By repeatedly applying the additivity rule,

we have F ≥
ARM

X −→ Y1 · · · Yp. The set Y1 · · · Yp is the largest set Y such that

F ≥
ARM

X −→ Y . Further, we have F ≥
ARM

X −→ V if and only if V ∨ Y1 · · · Yp.

Indeed, it is clear that if F ≥
ARM

X −→ V , then V ∨ Y1 · · · Yp. Conversely, if
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V ∨ Y1 · · · Yp, then Y1 · · · Yp → V (by Rinc), so F ≥
ARM

X → V by Rtran . Thus,

the set Y1 · · · Yp plays a special role; we will refer to it as the closure of X under F
and will denote it by clF (X).

Theorem 12.29 Let S = (H, F) be a functional dependency schema. The mapping
clF : P(H) −→ P(H) is a closure operator on H.

Proof We need to show that clF satisfies the conditions of Definition 1.171.
Since we have F ≥

ARM
X → X , it is clear that X ∨ clF (X).

Suppose now that X, X ≡ ∈ P(H) and X ≡ ∨ X . Since F ≥
ARM

X → X ≡ by Rinc and

F ≥
ARM

X ≡ → clF (X ≡), it follows that F ≥
ARM

X → clF (X ≡). This implies clF (X ≡) ∨
clF (X), so clF is monotonic.

Finally, note that we have both F ≥
ARM

X → clF (X) and F ≥
ARM

clF (X) →
clF (clF (X)), which yields F ≥

ARM
X → clF (clF (X)) by Rtran . This implies

clF (clF (X)) ∨ clF (X). The converse inclusion follows from the fact that X ∨
clF (X) and the monotonicity of clF . Thus, clF (clF (X)) = clF (X) for every
X ∈ P(H). ∩⊕

The statement that F ≥
ARM

X → Y has a syntactic character; it can be shown

by constructing an F-proof that has X → Y as its target. Actually, a computation
of clF (X) allows us to decide whether F ≥

ARM
X → Y without constructing the

F-proof, as shown in the next theorem.

Theorem 12.30 Let S = (H, F) be a functional dependency schema. We have
F ≥

ARM
X → Y if and only if Y ∨ clF (X).

Proof If Y ∨ clF (X), then we have F ≥
ARM

clF (X) → Y by a single application

of Rinc. Then, since F ≥
ARM

X → clF (X), (by the definition of clF (X)), another

application of Rtran yields F ≥
ARM

X → Y .

Conversely, if F ≥
ARM

X → Y , then Y ∨ clF (X) by the definition of clF (X). ∩⊕

Now we introduce a semantic counterpart of relation ≥
ARM

.

Definition 12.31 Let S = (H, F) be a functional dependency schema. The set F
logically implies the functional dependency X → Y if every table that satisfies all
functional dependencies of F also satisfies X → Y . This is denoted by F |= X → Y .

The soundness of Armstrong’s rules means that if F ≥
ARM

X → Y , then F |=
X → Y . It is interesting that the reverse implication also holds. This fact is known
as the completeness of Armstrong’s axioms and will be established next. To this end,
we introduce the notion of an Armstrong table.
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Definition 12.32 Let S = (H, F) be a functional dependency schema, where H =
A1 · · · An, and let X ∈ P(H). For each attribute A ∈ H, let u A and vA be two distinct
values from Dom(A). The Armstrong table φF,X = (TF,X , H, rF,X ) contains a two-
row sequence (rF,X ) = (t0, t1), where t0(A) = u A for A ∈ H and

t1(A) =
{

u A if A ∈ clF (X),

vA if A ∈ H − clF (X).

Note that the existence of Armstrong relations is assured by our assumption that the
domain of every attribute contains at least two values.

Lemma 12.33 Let F be a set of functional dependencies F ∨ FD(H), H =
A1 · · · An, and let X ∈ P(H). The Armstrong table φF,X = (TF,X , H, rF,X ) sat-
isfies all dependencies that can be proven from F.

Proof Suppose that U → V is a functional dependency that can be proven from F
(which means that F ≥

ARM
U → V ) and that this dependency is violated by φF,X .

Since φF,X contains two tuples, this is possible only if these tuples have the same
projection on U but distinct projections on V . The definition of φF,X allows this
only if U ∨ clF (X) and V ∞∨ clF (X). By the definition of clF (X) this is possible
only if F ≥

ARM
X → U and F ∞≥

ARM
X → V . This leads to a contradiction because

F ≥
ARM

X → U and F ≥
ARM

U → V imply F ≥
ARM

X → V (by Rtran). ∩⊕

Theorem 12.34 (Completeness of Armstrong’s Rules) Let F be a set of functional
dependencies, F ∨ FD(H), H = A1 · · · An, and let X, Y ∈ P(H). If F |= X → Y ,
then F ≥

ARM
X → Y .

Proof Suppose that F |= X → Y but F ∞≥
ARM

X → Y , which means that Y ∞∨
clF (X). The Armstrong table φF,X = (TF,X , H, rF,X ) satisfies X → Y because
it satisfies all functional dependencies of F . Since X ∨ clF (X), this implies Y ∨
clF (X), which yields a contradiction. ∩⊕
Corollary 12.35 Let S = (H, F) be a functional dependency schema and let
X → Y be a functional dependency in FD(F). The following three statements
are equivalent:

(i) Y ∨ clF (X).
(ii) F ≥

ARM
X → Y .

(iii) F |= X → Y .

Proof (i) is equivalent to (ii) by Theorem 12.30. We have (ii) implies (iii) by the
soundness of Armstrong’s rules and (iii) implies (ii) by the completeness of these
rules. ∩⊕
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Theorem 12.36 Let φ = (T, H, r) be a table and let X and Y be two subsets of H.
If Z = H − (XY ), then

set(r) ∨ set(r[XY ]) �� set(r[X Z ]).

Proof Let u be a tuple in set(r). Since u = t �� s for some t ∈ set(r[XY ]) and
s ∈ set(r[X Z ]), it follows that t and s are joinable (because u[X ] = t[X ] = s[X ])
and, therefore, u ∈ set(r[XY ]) �� set(r[X Z ]).
Corollary 12.37 If φ satisfies the functional dependency X −→ Y the inclusion of
Theorem 12.36 becomes an equality.

Proof Indeed, let v ∈ set(r[XY ]) �� set(r[X Z ]). There exist two joinable tuples
t ∈ set(r[XY ]) and s ∈ set(r[X Z ]) such that v = t �� s, which means that v[XY ] =
t[XY ] and v[X Z ] = s[X Z ]. This implies

v[X ] = t[X ] = s[X ] = x,

v[Y ] = t[Y ] = y,

v[Z ] = s[Z ] = z.

for some x, y, z. The existence of t and s implies the existence of t1, s1 ∈ set(r) such
that t1 = (x, y, z1) and s1 = (x, y1, z). Since φ satisfies the functional dependency
X −→ Y it follows that y = y1, which implies s = (x, y, z) = v. Thus, v ∈ set(r).

12.4 Partition Entropy

The notion of entropy is a probabilistic concept that lies at the foundation of infor-
mation theory. Our goal is to define entropy in an algebraic setting by introducing
the notion of entropy of a partition of a finite set. This approach allows us to take
advantage of the partial order that is naturally defined on the set of partitions. Actu-
ally, we introduce a generalization of the notion of entropy that has the Gini index
and Shannon entropy as special cases.

Let S be a finite set and let Φ = {B1, . . . , Bm} be a partition of S. The Shannon
entropy of Φ is the number

H(S, Φ) = −
m∑

i=1

|Bi |
|S| log2

|Bi |
|S| .

The Gini index of Φ is the number

gini(S, Φ) = 1 −
m∑

i=1

⎟ |Bi |
|S|

)2

.
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Fig. 12.1 Entropy increasing
with partition uniformity

Fig. 12.2 Gini index
increasing with partition
uniformity

Both numbers can be used to evaluate the uniformity of the distribution of the ele-
ments of S in the blocks of Φ because both values increase with the uniformity of
the distribution of the elements of S.

Example 12.38 Let S be a set containing ten elements and let Φ1, Φ2, Φ3, Φ4 be the
four partitions shown in Fig. 12.1.

The partition Φ1, which is the most uniform (each block containing two elements),
has the largest entropy. At the other end of the range, partition Φ4 has a strong
concentration of elements in its fourth block and the lowest entropy. Similar results
involving the Gini index are shown in Fig. 12.2.

If S and T are two disjoint and nonempty sets, Φ ∈ PART(S) and Ψ ∈ PART(T ),
where Φ = {B1, . . . , Bm}, Ψ = {C1, . . . , Cn}, then the partition Φ + Ψ is the
partition of S ⊥ T given by



600 12 Applications to Databases and Data Mining

Φ + Ψ = {B1, . . . , Bm, C1, . . . , Cn}.

Whenever the “+” operation is defined, then it is easily seen to be associative. In
other words, if S, T, U are pairwise disjoint and nonempty sets and Φ ∈ PART(S),
Ψ ∈ PART(T ), ν ∈ PART(U ), then Φ + (Ψ + ν) = (Φ + Ψ) + ν . If S and T are
disjoint, then πS + πT = πS⊥T . Also, σS + σT is the partition {S, T } of the set
S ⊥ T .

If Φ = {B1, . . . , Bm}, Ψ = {C1, . . . , Cn} are partitions of two arbitrary sets S, T ,
then we denote the partition {Bi × C j | 1 � i � m, 1 � j � n} of S × T by Φ ×Ψ .
Note that πS × πT = πS×T and σS × σT = σS×T .

We introduce below a system of four axioms that define a class of functions of the
form Hι(S, Φ), where ι is a number such that ι > 1, S is a set, and Φ is a partition
of S. When the set S is understood from context, we shall omit the first argument
and write Hι(Φ) instead of Hι(S, Φ).

Definition 12.39 Let ι ∈ R, ι � 1, and α : R
2
�0 −→ R�0 be a continuous

function such that α(x, y) = α(y, x), and α(x, 0) = x for x, y ∈ R�0.
A (α, ι)-system of axioms for a partition entropy Hι : PART(S) −→ R�0

consists of the following axioms:

(P1) If Φ, Φ ≡ ∈ PART(S) are such that Φ � Φ ≡, then Hι(S, Φ ≡) � Hι(S, Φ).
(P2) If S and T are two finite sets such that |S| � |T |, then Hι(S, πS) �

Hι(T, πT ).
(P3) For all disjoint sets S and T and partitions Φ ∈ PART(S) and Ψ ∈ PART(T )

we have

Hι(S ⊥ T, Φ + Ψ) =
⎟ |S|

|S| + |T |
)ι

Hι(S, Φ) +
⎟ |T |

|S| + |T |
)ι

Hι(T, Ψ )

+ Hι(S ⊥ T, {S, T }).

(P4) We have Hι(S × T, Φ × Ψ) = α(Hι(S, Φ),Hι(T, Ψ )) for Φ ∈ PART(S)

and Ψ ∈ PART(T ).

Since the range of every function Hι is R�0, it follows that Hι(S, Φ) � 0 for any
partition Φ ∈ PART(S).

Lemma 12.40 For every (α, ι)-entropy Hι and set S, we have Hι(S, σS) = 0.

Proof Let S and T be two disjoint sets that have the same cardinality, |S| = |T |.
Since σS + σT is the partition {S, T } of the set S ⊥ T , by Axiom (P3) we have

Hι(S ⊥ T, σS + σT ) =
⎟

1

2

)ι

(Hι(S, σS) + Hι(T, σT )) + Hι(S ⊥ T, {S, T }),

which implies Hι(S, σS) + Hι(T, σT ) = 0. It follows that Hι(S, σS)

= Hι(T, σT ) = 0 because both Hι(S, σS) and Hι(T, σT )) are non-negative
numbers. ∩⊕
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Lemma 12.41 Let S and T be two disjoint sets and let Φ, Φ ≡ ∈ PART(S ⊥ T ) be
defined by Φ = Ψ + πT and Φ ≡ = Ψ + σT , where Ψ ∈ PART(S). Then,

Hι(S ⊥ T, Φ) = Hι(S ⊥ T, Φ ≡) +
⎟ |T |

|S| + |T |
)ι

Hι(T, πT ).

Proof By Axiom (P3), we can write

Hι(S ⊥ T, Φ) =
⎟ |S|

|S| + |T |
)ι

Hι(S, Ψ ) +
⎟ |T |

|S| + |T |
)ι

Hι(T, πT )

+ Hι(S ⊥ T, {S, T })

and

Hι(S ⊥ T, Φ ≡) =
⎟ |S|

|S| + |T |
)ι

Hι(S, Ψ ) +
⎟ |T |

|S| + |T |
)ι

Hι(T, σT )

+Hι(S ⊥ T, {S, T })

=
⎟ |S|

|S| + |T |
)ι

Hι(S, Ψ ) + Hι(S ⊥ T, {S, T })
(by Lemma 12.40).

The previous equalities yield the equality of the lemma. ∩⊕
Theorem 12.42 For every (α, ι)-entropy and partition Φ = {B1, . . . , Bm} ∈
PART(S), we have

Hι(Φ) = Hι(πS) −
m∑

i=1

⎟ |Bi |
|S|

)ι

Hι(πBi ).

Proof Starting from the partition Φ , consider the following sequence of partitions in
PART(S):

Φ0 = σB1 + σB2 + σB3 + · · · + σBm

Φ1 = πB1 + σB2 + σB3 + · · · + σBm

Φ2 = πB1 + πB2 + σB3 + · · · + σBm

...

Φn = πB1 + πB2 + πB3 + · · · + πBm .

Let Ψi = πB1 + · · · + πBi + σBi+2 + · · · + σBm . Then, Φi = Ψi + σBi+1 and
Φi+1 = Ψi + πBi+1 ; therefore, by Lemma 12.41, we have
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Hι(S, Φi+1) = Hι(S, Φi ) +
⎟ |Bi+1|

|S|
)ι

Hι(Bi+1, πBi+1)

for 0 � i � m − 1.
A repeated application of this equality yields

Hι(S, Φm) = Hι(S, Φ0) +
m−1∑
i=0

⎟ |Bi+1|
|S|

)ι

Hι(Bi+1, πBi+1).

Since Φ0 = Φ and Φm = πS , we have

Hι(S, Φ) = Hι(S, πS) −
m∑

i=1

⎟ |Bi |
|S|

)ι

Hι(Bi , πBi ).

∩⊕
Note that if S and T are two sets such that |S| = |T | > 0, then, by Axiom (P2),

we have Hι(S, πS) = Hι(T, πT ). Therefore, the value of Hι(S, πS) depends only
on the cardinality of S, and there exists a function μ : N1 −→ R�0 such that
Hι(S, πS) = μ(|S|) for every nonempty set S. Axiom (P2) also implies that μ is an
increasing function. We will refer to μ as the kernel of the (α, ι)-system of axioms.

Corollary 12.43 Let Hι be a (α, ι)-entropy. For the kernel μ defined in accor-
dance with Axiom (P2) and every partition Φ = {B1, . . . , Bm} ∈ PART(S), we
have

Hι(S, Φ) = μ(|S|) −
m∑

i=1

⎟ |Bi |
|S|

)ι

μ(|Bi |). (12.1)

Proof The statement is an immediate consequence of Theorem 12.42. ∩⊕
Theorem 12.44 Let Φ = {B1, . . . , Bm} be a partition of the set S. Define the parti-
tion Φ ≡ obtained by fusing the blocks B1 and B2 of Φ as Φ ≡ = {B1 ⊥ B2, B3, . . . , Bm}
of the same set. Then

Hι(S, Φ) = Hι(S, Φ ≡) +
⎟ |B1 ⊥ B2|

|S|
)ι

Hι(B1 ⊥ B2, {B1, B2}).

Proof A double application of Corollary 12.43 yields

Hι(S, Φ) − Hι(S, Φ)

=
⎟ |B1 ⊥ B2|

|S|
)ι

μ(|B1 ⊥ B2|) −
⎟ |B1|

|S|
)ι

μ(|B1|) −
⎟ |B2|

|S|
)ι

μ(|B2|)

=
⎟ |B1 ⊥ B2|

|S|
)ι

(
μ(|B1 ⊥ B2|) −

⎟ |B1|
|B1 ⊥ B2|

)ι

μ(|B1|)
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−
⎟ |B2|

|B1 ⊥ B2|
)ι

μ(|B2|)
)

=
⎟ |B1 ⊥ B2|

|S|
)ι

Hι(B1 ⊥ B2, {B1, B2}),

which is the desired equality. ∩⊕
Theorem 12.44 allows us to extend Axiom (P3):

Corollary 12.45 Let B1, . . . , Bm be m nonempty, disjoint sets and letΦi ∈ PART(Bi )

for 1 � i � m. We have

Hι(S, Φ1 + · · · + Φm) =
m∑

i=1

⎟ |Bi |
|S|

)ι

Hι(Bi , Φi ) + Hι(S, {B1, . . . , Bm}),

where S = B1 ⊥ · · · ⊥ Bm.

Proof The argument is by induction on m � 2. The basis step, m = 2, is Axiom (P3).
Suppose that the statement holds for m, and let B1, . . . , Bm, Bm+1 be m + 1 disjoint
sets. Further, suppose that Φ1, . . . , Φm, Φm+1 are partitions of these sets, respectively.
Then, Φm + Φm+1 is a partition of the set Bm ⊥ Bm+1. By the inductive hypothesis,
we have

Hι(S, Φ1 + · · · + (Φm + Φm+1)) =
m−1∑
i=1

⎟ |Bi |
|S|

)ι

Hι(Bi , Φi )

+
⎟ |Bm | + |Bm+1|

|S|
)ι

Hι(Bm ⊥ Bm+1, Φm + Φm+1)

+ Hι(S, {B1, . . . , (Bm ⊥ Bm+1)}),

where S = B1 ⊥ · · · ⊥ Bm ⊥ Bm+1.
Axiom (P3) and Theorem 12.44 give the desired equality. ∩⊕

Theorem 12.46 Let μ be the kernel of a (α, ι)-system. If a, b ∈ N1, then

μ(ab) − μ(a) · b1−ι = μ(b).

Proof Let A = {x1, . . . , xa} and B = {y1, . . . , yb} be two nonempty sets. The
relation σA × πB consists ofb blocks of sizea: A × {y1}, . . . , A × {yb}. By
Axiom (P4),

A × B,Hι(σA × πB)

= α(A,Hι(σA),Hι(B, πB)) = α(0,Hι(B, πB)) = Hι(B, πB) = μ(b).
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On the other hand,

Hι(A × B, σA × πB) = Hι(A × B, πA×B)

−
b∑

i=1

⎟
1

b

)ι

Hι(A × {yi }, πA×{yi })

= μ(ab) − 1

bι
b · μ(a),

which gives the needed equality. ∩⊕
An entropy is said to be non-Shannon if it is defined by a (α, ι)-system of axioms

such that ι > 1; otherwise (that is if ι = 1), the entropy will be referred to as a
Shannon entropy. As we shall see, the choice of the parameter ι determines the form
of the function α.

Initially we focus on non-Shannon entropies, that is, on (α, ι)-entropies, where
ι > 1.

Lemma 12.47 Let f : (0,∗) −→ R be a function such that

f (x + y) = f (x) + f (y)

for x, y ∈ (0,∗). If there exists an interval on which f is bounded above, then
f (x) = x f (1) for x > 0.

Proof Let g(x) = f (x) − x f (1). The function g satisfies the functional equation
g(x + y) = g(x) + g(y) for x, y > 0; in addition, g(1) = 0. It is easy to verify, by
induction on n that g(nx) = ng(x). Therefore, g

⎜ n
m

) = ng
⎜ 1

m

)
. On another hand,

0 = g(1) = mg
⎜ 1

m

)
, so g

⎜ 1
m

) = 0. Consequently, g(r) = 0 for every rational
number r .

To prove that g(x) = 0 for every x > 0 suppose that g(x0) ∞= 0 for some x0. If
g(x0) < 0 and r is a rational number, since g(r) = 0 and g(r −x0)+g(x0) = g(r) =
0, it follows that g(r − x0) > 0. Thus, we can assume that there exists a number z0
such that g(z0) > 0.

Let (c, d) be an open interval such that g has an upper bound on (c, d) and let u
be a number. Let n be a number such that ng(z0) > u and let r be a rational number
such that nz0 + r ∈ (c, d).

If r > 0, we have g(r + nz0) = g(r) + g(nz0) = g(nz0) = ng(z0); if r < 0,
then ng(z0) = g(nz0) = g(−r + nz0 + r) = g(−r) + g(nz0 + r) = g(nz0 + r). In
either case, g(nz0 + r) = ng(z0) > u. Since u is arbitrary, ths contradicts the fact
that g was supposed to be bounded on (c, d). Thus, g(x) = 0 for every x > 0, so
f (x) = x f (1). ∩⊕
Lemma 12.48 Let h : (0,∗) −→ R be a function such that

h(xy) = h(x) + h(y)
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for x, y ∈ (0,∗). If there exists an interval on which h is bounded above, then there
exists c ∈ R such h(t) = c ln t for t > 0.

Proof Define the function p as p(x) = h(ex ). The hypothesis implies that there
exists an interval of R such that p is bounded above on this interval. We have

p(x + y) = h(ex+y) = h(ex ey) = h(ex ) + h(ey) = p(x) + p(y),

for x, y ∈ R. By Lemma 12.47 we have p(x) = xp(1), so h(ex ) = xh(e), which
implies h(t) = h(e) ln t = c log t , where c = h(e) ln 10.

Theorem 12.49 Let t : (0,∗) −→ Rbe a function such that t (xy) = yt (x) +
xt (y) for x, y ∈ (0,∗). If there is an interval I and a constant k such that t (x) � kx
for x ∈ I , then t (x) = dx log x for some constant d.

Proof By hypothesis, we have

t (xy)

xy
= t (x)

x
+ t (y)

y

for x, y ∈ (0,∗). Let h : (0,∗) −→ R be the function defined by h(x) = t (x)
x for

x ∈ (0,∗). Note that h has is upper bounded when x ranges over I , so h(x) = c ln x
by Lemma 12.48. Therefore, t (x) = xh(x) = cx ln x for some constant c and
x ∈ (0,∗).

Theorem 12.50 Let Hι be a non-Shannon entropy defined by a (α, ι)-system of
axioms and let μ be the kernel of this system of axioms.

There is a number k > 0 such that μ(a) = k · (1 − a1−ι) for every a ∈ N1.

Proof Theorem 12.46 implies μ(ab) = μ(a) · b1−ι + μ(b) = μ(b) · a1−ι + μ(a)

for every a, b ∈ N1. Consequently, μ(a)

1 − a1 − ι = μ(b)

1−b1−ι = k for every a, b ∈ N1,
which gives the desired equality. ∩⊕
Corollary 12.51 If Hι is a non-Shannon entropy defined by a (α, ι)-system of
axioms and Φ ∈ PART(S), where Φ = {B1, . . . , Bm}, then there exists a constant
k ∈ R such that

Hι(S, Φ) = k

(
1 −

m∑
i=1

⎟ |Bi |
|S|

)ι
)

. (12.2)

Proof By Corollary 12.43 and Theorem 12.50, we have

Hι(S, Φ) = μ(|S|) −
m∑

i=1

⎟ |Bi |
|S|

)ι

μ(|Bi |)

= k

⎟
1 − 1

|S|ι−1

)
− k

m∑
i=1

⎟ |Bi |
|S|

)ι

·
⎟

1 − 1

|Bi |ι−1

)
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= k

⎟
1 − 1

|S|ι−1

)
− k

m∑
i=1

⎟ |Bi |
|S|

)ι

+ k
m∑

i=1

|Bi |
|S|ι

= k

(
1 −

m∑
i=1

⎟ |Bi |
|S|

)ι
)

.

The last equality follows from the fact that
∑m

i=1 |Bi | = |S|. ∩⊕
The constant k introduced in Theorem 12.50 is given by

k = lim
a→∗ μ(a), (12.3)

and the range of values assumed by μ is [0, k].
Our axiomatization defines entropies (and therefore the kernel μ) up to the mul-

tiplicative constant k and the Equality (12.3) expresses this constant in terms of the
limit of μ(a) when a tends to infinity.

The next theorem shows that the function α introduced by Definition 12.39 and
used in Axiom (P4) is essentially determined by the choices made for ι and k.

Theorem 12.52 Let Hι be the non-Shannon entropy defined by a (α, ι)-system
and let k be as defined by Equality (12.3), where μ is the kernel of the (α, ι)-system
of axioms.

The function α of Axiom (P4) is given byα(x, y) = x + y − 1
k ·xy for x, y ∈ R�0.

Proof Let Φ = {B1, . . . , Bm} ∈ PART(S) and Ψ = {C1, . . . , Cn} ∈ PART(T ) be
two partitions. Since

m∑
i=1

⎟ |Bi |
|S|

)ι

= 1 − 1

k
Hι(Φ) and

n∑
j=1

⎟ |C j |
|T |

)ι

= 1 − 1

k
Hι(Ψ ),

we can write

Hι(Φ × Ψ) = k


1 −

m∑
i=1

n∑
j=1

⎟ |Bi ||C j |
|S||T |

)ι



= k

⎟
1 −

⎟
1 − 1

k
Hι(Φ)

)⎟
1 − 1

k
Hι(Ψ )

))

= Hι(Φ) + Hι(Ψ ) − 1

k
Hι(Φ)Hι(Ψ ).

Suppose initially that ι > 1. Observe that the set of rational numbers of the form

1 −
n∑

l=1

rι
l ,
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where rl ∈ Q, 0 � rl � 1 for 1 � l � n and
∑n

l=1 rl = 1, for some n ∈ N1, is dense
in the interval [0, 1]. Thus, Formula (12.2) shows that the set of entropy values is
dense in the interval [0, k] because the sets B1, . . . , Bm are finite but of arbitrarily
large cardinalities. Since the set of values of entropies is dense in the interval [0, k],
the continuity of α implies the desired form of α. ∩⊕

Choosing k = 1
1 − 21−ι in Equality (12.2), we obtain the Havrda-Charvat entropy

(see [4]):

Hι(S, Φ) = 1

1 − 21−ι
·
(

1 −
m∑

i=1

⎟ |Bi |
|S|

)ι
)

.

If ι = 2, we obtain H2(Φ), which is twice the Gini index,

Hι(S, Φ) = 2 ·
(

1 −
m∑

i=1

⎟ |Bi |
|S|

)2
)

.

The Gini index, gini(Φ) = 1 − ∑m
i=1

⎛ |Bi ||S|
⎧2

, is widely used in machine learning

and data mining.
The limit case, limι→1 Hι(Φ), yields

lim
ι→1

Hι(S, Φ) = lim
ι→1

1

1 − 21−ι
·
(

1 −
m∑

i=1

⎟ |Bi |
|S|

)ι
)

= lim
ι→1

1

21−ι ln 2
·
(

−
m∑

i=1

⎟ |Bi |
|S|

)ι

ln
|Bi |
|S|

)

= −
m∑

i=1

|Bi |
|S| log2

|Bi |
|S| ,

which is the Shannon entropy of Φ .
If ι = 1, by Theorem 12.46, we have μ(ab) = μ(a) + μ(b) for a, b ∈ N1. If

∂ : N1 −→ R is the function defined by ∂(a) = aμ(a) for a ∈ N1, then ∂ is clearly an
increasing function and we have ∂(ab) = abμ(ab) = b∂(a) + a∂(b) for a, b ∈ N1.
By Theorem 12.49, there exists a constant c ∈ R such that ∂(a) = ca log2 a for
a ∈ N1, so μ(a) = c log2(a). Then, Eq. (12.1) implies:

Hι(S, Φ) = c ·
m∑

i=1

ai

a
log2

ai

a

for every partition Φ = {A1, . . . , Am} of a set A, where |Ai | = ai for 1 � i � m
and |A| = a. This is the expression of Shannon’s entropy.

The continuous function α is determined as in the previous case. Indeed, if A, B
are two sets such that |A| = a and |B| = b, then we must have



608 12 Applications to Databases and Data Mining

c · log2 ab = Hι(A × B, πA × πB) = α(c · log2 a, c · log2 b)

for any a, b ∈ N1 and any c ∈ R. The continuity of α implies α(x, y) = x + y.
The ι-entropy of πS is given by

Hι(S, πS) = 1 − |S|1−ι

1 − 21−ι
. (12.4)

The entropies previously introduced generate corresponding conditional en-
tropies.

Let Φ ∈ PART(S) and let C ∨ S. Denote by ΦC the “trace” of Φ on C given by

ΦC = {B ⊆ C |B ∈ Φ such that B ⊆ C ∞= ∅}.

Clearly, ΦC ∈ PART(C); also, if C is a block of Φ , then ΦC = σC .

Definition 12.53 Let Φ, Ψ ∈ PART(S) and let Ψ = {C1, . . . , Cn}. The ι-conditional
entropy of the partitions Φ, Ψ ∈ PART(S) is the function Hι : PART(S)2 −→ R�0
defined by

Hι(Φ |Ψ) =
n∑

j=1

⎟ |C j |
|S|

)ι

Hι(ΦC j ).

Note that Hι(Φ |σS) = Hι(Φ) and that Hι(σS|Φ) = Hι(Φ |πS) = 0 for every
partition Φ ∈ PART(S).

For Φ = {B1, . . . , Bm} and Ψ = {C1, . . . , Cn}, the conditional entropy can be
written explicitly as

Hι(Φ |Ψ) =
n∑

j=1

⎟ |C j |
|S|

)ι m∑
i=1

1

1 − 21−ι

⎨
1 −

⎟ |Bi ⊆ C j |
|C j |

)ι
⎩

= 1

1 − 21−ι

n∑
j=1

(⎟ |C j |
|S|

)ι

−
m∑

i=1

⎟ |Bi ⊆ C j |
|S|

)ι
)

. (12.5)

For the special case when Φ = πS , we can write

Hι(πS|Ψ) =
n∑

j=1

⎟ |C j |
|S|

)ι

Hι(πC j ) = 1

1 − 21−ι


 n∑

j=1

⎟ |C j |
|S|

)ι

− 1

|S|ι−1


 .

(12.6)

Theorem 12.54 Let S be a finite set and let Φ, Ψ ∈ PART(S). We haveHι(Φ |Ψ) = 0
if and only if Ψ � Φ .

Proof Suppose that Ψ = {C1, . . . , Cn}. If Ψ � Φ , then ΦC j = σC j for 1 � j � n
and therefore



12.4 Partition Entropy 609

Hι(Φ |Ψ) =
n∑

j=1

⎟ |C j |
|S|

)ι

Hι(σC j ) = 0.

Conversely, suppose that

Hι(Φ |Ψ) =
n∑

j=1

⎟ |C j |
|S|

)ι

Hι(ΦC j ) = 0.

This implies Hι(ΦC j ) = 0 for 1 � j � n, which means that ΦC j = σC j for
1 � j � n by a previous remark. This means that every block C j of Ψ is included
in a block of Φ , so Ψ � Φ . ∩⊕

The next statement is a generalization of a well-known property of Shannon’s
entropy.

Theorem 12.55 Let Φ and Ψ be two partitions of a finite set S. We have

Hι(Φ ∧ Ψ) = Hι(Φ |Ψ) + Hι(Ψ ) = Hι(Ψ |Φ) + Hι(Φ),

Proof Let Φ = {B1, . . . , Bm} and that Ψ = {C1, . . . , Cn}. Observe that

Φ ∧ Ψ = ΦC1 + · · · + ΦCn = ΨB1 + · · · + ΨBm .

Therefore, by Corollary 12.45, we have

Hι(Φ ∧ Ψ) =
n∑

j=1

⎟ |C j |
|S|

)ι

Hι(ΦC j ) + Hι(Ψ ),

which implies Hι(Φ ∧ Ψ) = Hι(Φ |Ψ) +Hι(Ψ ). The second equality has a similar
proof. ∩⊕
Corollary 12.56 If Hι(Φ ∧ Ψ) = Hι(Φ), then Φ � Ψ .

Proof Since Hι(Φ ∧ Ψ) = Hι(Φ), Theorem 12.55 implies Hι(Ψ |Φ) = 0. By
Theorem 12.54, we have Φ � Ψ . ∩⊕
Lemma 12.57 Let w1, . . . , wn be n positive numbers such that

∑n
i=1 wi = 1,

a1, . . . , an ∈ [0, 1], and let ι � 1. We have

1 −
(

n∑
i=1

wi ai

)ι

−
(

n∑
i=1

wi (1 − ai )

)ι

�
n∑

i=1

w
ι
i

⎛
1 − aι

i − (1 − ai )
ι
⎧

.

Proof It is easy to see that xι + (1 − x)ι � 1 for x ∈ [0, 1]. This implies
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wi

⎛
1 − aι

i − (1 − ai )
ι
⎧

w
ι
i

⎛
1 − aι

i − (1 − ai )
ι
⎧

because wi ∈ (0, 1) and ι � 1.
By applying Jensen’s inequality to the convex function h(x) = xι we have

(
n∑

i=1

wi ai

)ι

�
n∑

i=1

wi a
ι
i

(
n∑

i=1

wi (1 − ai )

)ι

�
n∑

i=1

wi (1 − ai )
ι .

These inequalities allow us to write

1 −
(

n∑
i=1

wi ai

)ι

−
(

n∑
i=1

wi (1 − ai )

)ι

=
n∑

i=1

wi −
(

n∑
i=1

wi ai

)ι

−
(

n∑
i=1

wi (1 − ai )

)ι

�
n∑

i=1

wi −
n∑

i=1

wi a
ι
i −

n∑
i=1

wi (1 − ai )
ι

=
n∑

i=1

wi

⎛
1 − aι

i − (1 − ai )
ι
⎧

�
n∑

i=1

w
ι
i

⎛
1 − aι

i − (1 − ai )
ι
⎧

,

which is the desired inequality. ∩⊕
Theorem 12.58 Let S be a set, Φ ∈ PART(S) and let C and D be two disjoint
subsets of S. For ι � 1, we have

|C ⊥ D|ιHι(ΦC⊥D) � |C |ιHι(ΦC ) + |D|ιHι(ΦD).

Proof Let Φ = {B1, . . . , Bn} ∈ PART(S). Define

wi = |Bi ⊆ (C ⊥ D)|
|C ⊥ D| , ai = |Bi ⊆ C |

|Bi ⊆ (C ⊥ D)|

for 1 � i � n, so 1 − ai = |Bi ⊆ D|
|Bi ⊆ (C ⊥ D)| .

By Lemma 12.57, we have

1 −
(

n∑
i=1

|Bi ⊆ C |
|C ⊥ D|

)ι

−
(

n∑
i=1

|Bi ⊆ D|
|C ⊥ D|

)ι
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�
n∑

i=1

⎟ |Bi ⊆ (C ⊥ D)|
|C ⊥ D|

)ι
(

1 −
⎟ |Bi ⊆ C |

|Bi ⊆ (C ⊥ D)|
)ι

−
⎟ |Bi ⊆ D|

|Bi ⊆ (C ⊥ D)|
)ι

)
,

which is equivalent to

|C ⊥ D|ι −
n∑

i=1

|Bi ⊆ (C ⊥ D)|ι

� |C |ι −
n∑

i=1

|Bi ⊆ C |ι + |D|ι −
n∑

i=1

|Bi ⊆ D|ι.

This last inequality leads immediately to the inequality of the theorem. ∩⊕
The next result shows that the ι-conditional entropy is dually monotonic with

respect to its first argument and is monotonic with respect to its second argument.

Theorem 12.59 Let Φ, Ψ, Ψ ≡ ∈ PART(S), where S is a finite set. If Ψ � Ψ ≡, then
Hι(Ψ |Φ) � Hι(Ψ ≡|Φ) and Hι(Φ |Ψ) � Hι(Φ |Ψ ≡).

Proof Since Ψ � Ψ ≡, we have Φ ∧ Ψ � Φ ∧ Ψ ≡, so Hι(Φ ∧ Ψ) � Hι(Φ ∧ Ψ ≡).
Therefore, Hι(Ψ |Φ) + Hι(Φ) � Hι(Ψ ≡|Φ) + Hι(Φ), which implies Hι(Ψ |Φ) �
Hι(Ψ ≡|Φ).

For the second part of the theorem, it suffices to prove the inequality for par-
titions Ψ, Ψ ≡ such that Ψ √ Ψ ≡. Without loss of generality we may assume that
Ψ = {C1, . . . , Cn−2, Cn−1, Cn} and Ψ ≡ = {C1, . . . , Cn−2, Cn−1 ⊥ Cn}. Thus, we
can write

Hι(Φ |Ψ ≡)

=
n−2∑
j=1

⎟ |C j |
|S|

)ι

Hι(ΦC j ) +
⎟ |Cn−1 ⊥ Cn|

|S|
)ι

Hι(ΦCn−1⊥Cn )

�
⎟ |C j |

|S|
)ι

Hι(ΦC j ) +
⎟ |Cn−1|

|S|
)ι

Hι(ΦCn−1) +
⎟ |Cn|

|S|
)ι

Hι(ΦCn )

(by Theorem 12.58)

= H(Φ |Ψ).

∩⊕
Corollary 12.60 We have Hι(Φ) � Hι(Φ |Ψ) for every Φ, Ψ ∈ PART(S).

Proof We noted that Hι(Φ) = Hι(Φ |σS). Since σS � Ψ , the statement follows
from the second part of Theorem 12.59. ∩⊕
Corollary 12.61 Let ξ, φ, φ ≡ be three partitions of a finite set S. If φ � φ ≡, then

Hι(ξ ∧ φ) − Hι(φ) � Hι(ξ ∧ φ ≡) − Hι(φ ≡).
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Proof By Theorem 12.55, we have

Hι(ξ ∧ φ) − Hι(ξ ∧ φ ≡) = Hι(ξ |φ) + Hι(φ) − Hι(ξ |φ ≡) − Hι(φ ≡).

The monotonicity ofHι(|) in its second argument means that:Hι(ξ |φ)−Hι(ξ |φ ≡) �
0, so Hι(ξ ∧ φ) − Hι(ξ ∧ φ ≡) � Hι(φ) − Hι(φ ≡), which implies the desired in-
equality. ∩⊕

The behavior of ι-conditional entropies with respect to the “addition” of partitions
is discussed in the next statement.

Theorem 12.62 Let S be a finite set and Φ and φ be two partitions of S, where
φ = {D1, . . . , Dh}. If Ψi ∈ PART(Di ) for 1 � i � h, then

Hι(Φ |Ψ1 + · · · + Ψh) =
h∑

i=1

⎟ |Di |
|S|

)ι

Hι(ΦDi |Ψi ).

If ν = {F1, . . . , Fk} and Ψ = {C1, . . . , Cn} are two partitions of S, let Φi ∈
PART(Fi ) for 1 � i � k. Then,

Hι(Φ1 + · · · + Φk |Ψ) =
k∑

i=1

⎟ |Fi |
|S|

)ι

Hι(Φi |ΨFi ) + Hι(ν |Ψ).

Proof Suppose that Ψi = {E�
i | 1 � � � pi }. The blocks of the partition Ψ1

+ · · · + Ψh are the sets of the collection
⎫h

i=1{E�
i | 1 � � � pi }. Thus, we have

Hι(Φ |Ψ1 + · · · + Ψh) =
h∑

i=1

pi∑
�=1

(
|E�

i |
|S|

)ι

Hι(ΦE�
i
).

On the other hand, since (ΦDi )E�
i

= ΦE�
i
, we have

h∑
i=1

⎟ |Di |
|S|

)ι

Hι(ΦDi |Ψi ) =
h∑

i=1

⎟ |Di |
|S|

)ι pi∑
�=1

(
|E�

i |
|Di |

)ι

Hι(ΦE�
i
)

=
h∑

i=1

pi∑
�=1

(
|E�

i |
|S|

)ι

Hι(ΦE�
i
),

which gives the first equality of the theorem.
To prove the second part, observe that (Φ1 +· · ·+Φk)C j = (Φ1)C j +· · ·+ (Φk)C j

for every block C j of Ψ . Thus, we have
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Hι(Φ1 + · · · + Φk |Ψ) =
n∑

j=1

⎟ |C j |
|S|

)ι

Hι((Φ1)C j + · · · + (Φk)C j ).

By applying Corollary 12.45 to partitions (Φ1)C j , . . . , (Φk)C j of C j , we can write

Hι((Φ1)C j + · · · + (Φk)C j ) =
k∑

i=1

⎟ |Fi ⊆ C j |
|C j |

)ι

Hι((Φi )C j ) + Hι(νC j ).

Thus,

Hι(Φ1 + · · · + Φk |Ψ)

=
n∑

j=1

k∑
i=1

⎟ |Fi ⊆ C j |
|S|

)ι

Hι((Φi )C j ) +
n∑

j=1

⎟ |C j |
|S|

)ι

Hι(νC j )

=
k∑

i=1

⎟ |Fi |
|S|

)ι n∑
j=1

⎟ |Fi ⊆ C j |
|Fi |

)ι

Hι((Φi )Fi ⊆C j ) + Hι(ν |Ψ)

=
k∑

i=1

⎟ |Fi |
|S|

)ι

Hι(Φi |ΨFi ) + Hι(ν |Ψ),

which is the desired equality. ∩⊕
Theorem 12.63 Let Φ, Ψ, ν be three partitions of the finite set S. We have

Hι(Φ |Ψ ∧ ν) + Hι(Ψ |ν) = Hι(Φ ∧ Ψ |ν).

Proof By Theorem 12.55, we can write

Hι(Φ |Ψ ∧ ν) = Hι(Φ ∧ Ψ ∧ ν) − Hι(Ψ ∧ ν)

Hι(Ψ |ν) = Hι(Ψ ∧ ν) − Hι(ν ).

By adding these equalities and again applying Theorem 12.55, we obtain the equality
of the theorem. ∩⊕
Corollary 12.64 Let Φ, Ψ, ν be three partitions of the finite set S. Then, we have

Hι(Φ |Ψ) + Hι(Ψ |ν) � Hι(Φ |ν).

Proof By Theorem 12.63, the monotonicity of ι-conditional entropy in its second
argument, and the antimonotonicity of the same in its first argument, we can write
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Hι(Φ |Ψ) + Hι(Ψ |ν) � Hι(Φ |Ψ ∧ ν) + Hι(Ψ |ν)

= Hι(Φ ∧ Ψ |ν)

� Hι(Φ |ν),

which is the desired inequality. ∩⊕
Corollary 12.65 Let Φ and Ψ be two partitions of the finite set S. Then, we have

Hι(Φ ⊇ Ψ) + Hι(Φ ∧ Ψ) � Hι(Φ) + Hι(Ψ ).

Proof By Corollary 12.64, we have Hι(Φ |Ψ) � Hι(Φ |ν) + Hι(ν |Ψ). Then, by
Theorem 12.55, we obtain

Hι(Φ ∧ Ψ) − Hι(Ψ ) � Hι(Φ ∧ ν) − Hι(ν ) + Hι(ν ∧ Ψ) − Hι(Ψ ),

hence
Hι(ν ) + Hι(Φ ∧ Ψ) � Hι(Φ ∧ ν) + Hι(ν ∧ Ψ).

Choosing ν = Φ ⊇ Ψ implies immediately the inequality of the corollary. ∩⊕
The property of Hι described in Corollary 12.65 is known as the submodularity

of the generalized entropy. This result generalizes the modularity of the Gini index
proven in [5] and gives an elementary proof of a result shown in [6] concerning
Shannon’s entropy.

12.5 Generalized Measures and Data Mining

The notion of a measure is important for data mining since, in a certain sense, the
support count and the support of an item sets are generalized measures.

The notion of generalized measure was introduced in [5], where generalizations
of measures of great interest to data mining are considered.

We need first to introduce four properties that apply to real-valued functions
defined on a lattice.

Definition 12.66 Let (L , {∧,⊇}) be a lattice. A function f : L −→ R is

• submodular if f (u ⊇ v) + f (u ∧ v) � f (u) + f (v),
• supramodular if f (u ⊇ v) + f (u ∧ v) � f (u) + f (v),
• modular if it is both submodular and supramodular;
• logarithmic submodular if f (u ⊇ v) · f (u ∧ v) � f (u) · f (v), and
• logarithmic supramodular if f (u ⊇ v) · f (u ∧ v) � f (u) · f (v),

for every u, v ∈ L.
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Clearly, if f is a submodular or supramodular function then a f is logarithmic sub-
modular or supramodular, respectively, where a is a fixed positive number.

Generalized measures are real-valued functions defined on the lattice of subsets
(P(S), {⊥,⊆}) of a set S. The first two properties introduced in Definition 12.66 may
be combined with the monotonicity or antimonotonicity properties to define four
types of generalized measures.

Definition 12.67 A generalized measure or g-measure on a set S is a mapping
m : P(S) −→ R that is either monotonic or anti-monotonic and is either submodular
or supramodular.

Example 12.68 Let S be a finite nonempty set of nonnegative numbers, S =
{x1, x2, . . . , xn} such that x1 � x2 � · · · � xn . Define the mapping max :P(S) −→
R�0 by

max(U ) =
{

the largest element of U if U ∞= ∅,

x1 if U = ∅,

for U ∈ P(S).
Note that the definition of max is formulated to ensure that the function is

monotonic; that is, U ∨ V implies max U � max V .
The function max is submodular. Indeed, let U and V be two subsets of S and let

u = max U and v = max V . Without restricting the generality, we may assume that
u � v. In this case, it is clear that max(U ⊥ V ) = v and that max(U ⊆ V ) � max U
and max(U ⊆ V ) � max V . This implies immediately that max is submodular and
therefore that max is a g-measure.

The function min is defined similarly by

min(U ) =
{

the least element of U if U ∞= ∅,

xn if U = ∅.

The function min is antimonotonic; that is, U ∨ V implies min V � min U . If U =
∅, then we have ∅ ∨ V for every subset V of S and therefore min V � min ∅ = xn ,
which is obviously true.

It is easy to show that min is a supramodular function, so it is also a g-measure.

Let f :P(S) −→ R�0 be a nonnegative function defined on the set of subsets of
S. The functions f neg and f co introduced in [5] are defined by

f neg(X) = f (S) + f (∅) − f (X),

f co(X) = f (S − X),

for X ∈ P(X).

Theorem 12.69 Let f : P(S) −→ R�0 be a nonnegative function defined on the
set of subsets of S. The following statements are equivalent:
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(i) f is monotonic.
(ii) f neg is antimonotonic.
(iii) f co is antimonotonic.
(iv) ( f co)neg is monotonic.

Also, the following statements are equivalent:

(i) f is submodular.
(ii) f neg is supramodular.
(iii) f co is submodular.
(iv) ( f co)neg is supramodular.

We have ( f neg)neg = f and ( f co)co = f (the involutive property of neg and co).

Proof The arguments are straightforward and are left to the reader. ∩⊕
Example 12.70 Let S be a set and let B be a finite collection of subsets of S. Define
the function η : P(S) −→ N as

η(W ) = |{B ∈ B | W ∨ B}|,

for W ∈ P(S). Starting from η we can provide four examples of g-measures [5].
It is immediate that η is an anti-monotonic function. Moreover, since

{B ∈ B|X ⊆ Y ∨ B} ⊇ {B ∈ B|X ∨ B} ⊥ {B ∈ B|Y ∨ B},
{B ∈ B|X ⊥ Y ∨ B} = {B ∈ B|X ∨ B} ⊆ {B ∈ B|Y ∨ B},

it follows that

η(X ⊆ Y ) � |{B ∈ B|X ∨ B} ⊥ {B ∈ B|Y ∨ B}|
= |{B ∈ B|X ∨ B}| + |{B ∈ B|Y ∨ B}| − |{B ∈ B|X ∨ B} ⊆ {B ∈ B|Y ∨ B}|
= |{B ∈ B|X ∨ B}| + |{B ∈ B|Y ∨ B}| − |{B ∈ B|X ⊥ Y ∨ B}|
= η(X) + η(Y ) − η(X ⊥ Y ),

so η is supramodular.

Note that η(S) =
{

1 if S ∈ B,

0 otherwise
and η(∅) = |B|.

Suppose now that S ∞∈ B. The function ηneg is given by

ηneg(X) = |B| − η(X) = |B| − |{B ∈ B | X ∨ B}|
= {B ∈ B|X ∞∨ B}.

Thus, the function ζ : P(S) −→ N given by ζ(X) = ηneg(X) = {B ∈ B|X ∞∨ B}
is monotonic and submodular.

The function ρ = ηco given by
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ρ(X) = ηco(X) = η(X) = |{B ∈ P | X ∨ B}|

is monotonic and supramodular.
Finally, the function ∂ = (ηco)neg given by

∂(X) = (ηco)neg(X) = |{B ∈ B|X ∞∨ B}|

is anti-monotonic and submodular.

We consider next two important examples of g-measures related to database tables
and sets of transactions, respectively. Recall that the partition generated by the set of
attributes X of a table was denoted by Φ X .

Definition 12.71 Let φ = (T, H, r) be a table and let X be a set of attributes,
X ∨ H. The ι-entropy of X, Hι(X), is the ι-entropy of the partition of the set of
tuples set(r) generated by X:

Hι(X) = Hι(Φ X ).

Example 12.72 We claim that Hι is a monotonic submodular g-measure on the set
of attributes of the table on which it is defined.

Indeed, if X ∨ Y , we saw that ΦY � Φ X , so Hι(Φ X ) � Hι(ΦY ) by the first
axiom of partition entropies. Thus, Hι is monotonic.

To prove the submodularity, we start from the submodularity of the ι-entropy on
partitions shown in Corollary 12.65. We have

Hι(Φ X ⊇ ΦY ) + Hι(Φ X ∧ ΦY ) � Hι(Φ X ) + Hι(ΦY );

hence
Hι(Φ X ⊇ ΦY ) + Hι(Φ X⊥Y ) � Hι(Φ X ) + Hι(ΦY )

because Φ X⊥Y = Φ X ∧ ΦY . Since X ⊆ Y ∨ X and X ⊆ Y ∨ Y it follows that
Φ X � Φ X⊆Y and ΦY � Φ X⊆Y , so Φ X ⊇ ΦY � Φ X⊆Y . By Axiom (P1), we have
Hι(Φ X ⊇ ΦY ) � Hι(Φ X⊆Y ), which implies

Hι(Φ X⊆Y ) + Hι(Φ X⊥Y ) � Hι(Φ X ) + Hι(ΦY ),

which is the submodularity of the g-measure Hι .

Example 12.73 Let T be a transaction data set over a set of items I as introduced in
Definition 13.1. The functions suppcountT and suppT introduced in Definition 13.3
are antimonotonic, supramodular g-measures over P(I ). The antimonotonicity of
these functions was shown in Theorem 13.6.

Let K and L be two item sets of T . If k is the index of a transaction such that
either K ∨ T (k) or L ∨ T (k), then it is clear that K ⊆ L ∨ T (k). Therefore, we
have
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suppcountT (K ⊆ L) � |{k | K ∨ T (k)} ⊥ {k | L ∨ T (k)}|.

This allows us to write

suppcountT (K ⊆ L)

= |{k | K ⊆ L ∨ T (k)}|
� |{k | K ∨ T (k)} ⊥ {k | L ∨ T (k)}|
= |{k | K ∨ T (k)}| + |{k | L ∨ T (k)}|

− |{k | K ∨ T (k)} ⊆ {k | K ∨ T (k)}|
= suppcountT (K ) + suppcountT (L) − suppcountT (K ⊥ L)

for every K , L ∈ P(I ), which proves that suppcountT is supramodular. The
supramodularity of suppT follows immediately.

The definition of conditional entropy of partitions allows us to extend this concept
to attribute sets of tables.

Definition 12.74 Let φ = (T, H, r) be a table and let X and Y be two attribute sets
of this table. The ι-conditional entropy of X, Y is defined by

Hι(X |Y ) = Hι(Φ X |ΦY ).

Properties of conditional entropies of partitions can now be easily transferred to
conditional entropies of attribute sets. For example, Theorem 12.55 implies

Hι(Y |X) = Hι(XY ) − Hι(X).

12.6 Differential Constraints

Differential constraints have been introduced in [7]. They apply to real-valued func-
tions defined over the set of subsets of a set. Examples of such functions are abundant
in databases and data mining. For example, we have introduced the entropy of at-
tribute sets mapping sets of attributes into the set of real numbers and the support
count of sets of items mapping such sets into natural numbers. Placing restrictions
on such functions help us to better express the semantics of data.

Definition 12.75 Let C be a collection of subsets of a set S and let f : P(S) −→ R

be a function. The C-differential of f is the function DC
f : P(S) −→ R defined by

DC
f (X) =

∑
D∨C

(−1)|D| f
⎛

X ⊥
⎬

D
⎧
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for X ∈ P(S).
The density function of f is the function d f : P(S) −→ R defined by

d f (X) =
∑

X∨U∨S

(−1)|U |−|X | f (U ) (12.7)

for X ∈ P(S).

Recall that in Example 3.29 we have shown that the Möbius function of a poset
(P(S),∨) is given by

μ(X, U ) =
{

(−1)|U |−|X | if X ∨ U,

0 otherwise,

for X, U ∈ P(S). Therefore, the density d f can be written as

d f (X) =
∑

X∨U∨S

μ(X, U ) f (U )

for X, U ∈ P(S), which implies

f (X) =
∑

X∨U∨S

d f (U ) (12.8)

by the Möbius dual inversion theorem (Theorem 3.28).
The density of f can be expressed also as a C-differential. For X ∈ P(S), define

the collection CX as CX = {{y}|y ∞∈ X}. Then, we can write

DCX
f (X) =

∑
D∨CX

(−1)|D| f
⎛

X ⊥
⎬

D
⎧

=
∑

D∨S−X

(−1)|D| f (X ⊥ D)

=
∑

X∨U∨S

(−1)|U |−|X | f (U ).

In the last equality, we denoted U = X ⊥ D. Since D is a subset of S − X , we have
immediately D = U − X , which justifies the last equality. This allows us to conclude
that d f (X) = DCX

f (X) for X ∈ P(S).

Example 12.76 Let S be a finite set and let f : P(S) −→ R. If C = ∅, we have
D∅(X) = f (X). Similarly, if C is a one-set collection C = {Y }, then DC(X) =
f (X) − f (X ⊥ Y ). When C = {Y, Z}, we have DC(X) = f (X) − f (X ⊥ Y )

− f (X ⊥ Z) + f (X ⊥ Y ⊥ Z) for X ∈ P(S).
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Example 12.77 Let S = {a, b, c, d} and let f : P(S) −→ R be a function. For
X = {a, b}, we have CX = {{c}, {d}}. Thus, d f ({a, b}) = D{c},{d}

f ({a, b}). Note that
the collections of subsets of S included in the collection {{c}, {d}} are ∅, {{c}}, {{d}},
and {{c}, {d}}. Therefore,

D{{c},{d}}
f ({a, b}) = f ({a, b}) − f ({a, b, c}) − f ({a, b, d}) + f ({a, b, c, d}),

which equals d f ({a, b}), as computed directly from Equality (12.7).

Definition 12.78 Let C be a collection of subsets of a set S. A subset W of S is a
witness set of C if W ∨ ⎫

C and X ⊆ W ∞= ∅ for every X ∈ C.
The collection of all witness sets for C is denoted by W(C).

Observe that W(∅) = {∅}.
Example 12.79 Let S = {a, b, c, d} and let C = {{b}, {c, d}} be a collection of
subsets of S. The collection of witness sets of C is

W(C) = {{b, c}, {b, d}, {b, c, d}}.

For the collection D = {{b, c}, {b, d}}, we have

W(D) = {{b}, {b, c}, {b, d}, {c, d}, {b, c, d}}.

Definition 12.80 Let C be a collection of subsets of S and let X be a subset of S. The
decomposition of C relative to X is the collection L[X,C] of subsets of S defined as
a union of intervals by

L[X,C] =
⎬

W∈W(C)

[X, W ],

where W = S − W .

Example 12.81 The decomposition of the collection C = {{b}, {c, d}} considered in
Example12.79 relative to the set X = {a} is given by

L[X,C] = [{a}, {b, c}] ⊥ [{a}, {b, d}] ⊥ [{a}, {b, c, d}]
= [{a}, {a, d}] ⊥ [{a}, {a, c}] ⊥ [{a}, {a}]
= {{a}, {a, d}, {a, c}}.

Similarly, we can write for the collection D = {{b, c}, {b, d}}

L[X,D]
= [{a}, {b}] ⊥ [{a}, {b, c}] ⊥ [{a}, {b, d}] ⊥ [{a}, {c, d}] ⊥ [{a}, {b, c, d}]
= [{a}, {a, c, d}] ⊥ [{a}, {a, d}] ⊥ [{a}, {a, c}] ⊥ [{a}, {a, b}] ⊥ [{a}, {a}]
= {{a}, {a, c}, {a, d}, {a, c, d}, {a, b}}
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Example 12.82 We have L[X,∅] = ⎫
W∈W(∅)[X, W ] = [X, S] because W(∅) =

{∅}. Consequently, L[∅,∅] = P(S) for every set S.
Note that if X ∞= ∅, then W({X}) = P(X) − {∅}. Therefore, L[X, {X}] =⎫

W∈W(C)[X, W ] = ∅ because there is no set T such that X ∨ T ∨ W .

Theorem 12.83 Let S be a finite set, X, Y ∈ P(S), and let C be a collection of
subsets of S. We have

L[X,C] = L[X,C ⊥ {Y }] ⊥ L[X ⊥ Y,C].

Proof We begin the proof by showing that L[X,C ⊥ {Y }] ∨ L[X,C]. Let U ∈
L[X,C ⊥ {Y }]. There is a witness set W for C ⊥ {Y } such that X ∨ U ∨ W .

The set W ≡ = W ⊆ ⎫
C is a witness set for C. Indeed, we have W ≡ ∨ ⎫

C, and
for every set Z ∈ C we have W ≡ ⊆ Z ∞= ∅. Since W ≡ ∨ W , we have W ∨ W ≡, so
X ∨ U ∨ W ≡. Therefore, U ∈ L[X,C].

Next, we show that L[X ⊥ Y,C] ∨ L[X,C]. Let V ∈ L[X ⊥ Y,C], so V ∈
[X ⊥ Y, W ] for some witness set of C. Since [X ⊥ Y, W ] ∨ [X, W ], the desired
conclusion follows immediately. Thus, we have shown that

L[X,C ⊥ {Y }] ⊥ L[X ⊥ Y,C] ∨ L[X,C].

To prove the converse inclusion, let U ∈ L[X,C]. There is a witness set W of C
such that X ∨ U ∨ W . Depending on the relative positions of the sets U and Y , we
can distinguish three cases:

(i) Y ∨ U ;
(ii) Y ∞∨ U and Y ⊆ W ∞= ∅;

(iii) Y ∞∨ U and Y ⊆ W = ∅.

Note that the first condition of the second case is superfluous because Y ⊆ W ∞= ∅
implies Y ∞∨ U .

In the first case, we have U ∈ L[X ⊥ Y,C].
In Case (ii), W is a witness set for C ⊥ {Y }, and therefore U ∈ L[X,C ⊥ {Y }].
Finally, in the third case, define W1 = W ⊥ (Y − U ). We have W1 ∨ ⎫

C ⊥ Y .
Since every member of C has a nonempty intersection with W1 and Y ⊆ W1 ∞= ∅,
it follows that W1 is a witness set of C ⊥ {Y }. Note that U ∨ W1. Therefore U ∈
L[X,C ⊥ {Y }]. ∩⊕

The connection between differentials and density functions is shown in the next
statement.

Theorem 12.84 Let S be a finite set, X ∈ P(S) and let C be a collection of subsets
of S. If f : P(S) −→ R, then

DC
f (X) =

∑
{d f (U ) | U ∈ L[X,C]}.
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Proof By Definition 12.75, the C-differential of f is

DC
f (X) =

∑
D∨C

(−1)|D| f
⎛

X ⊥
⎬

D
⎧

=
∑
D∨C

(−1)|D| ∑
X⊥⎫D∨U∨S

d f (U ),

(by Equality 12.8)

=
∑

X∨U∨S

d f (U )
∑

D∨{Y∈C| Y∨U }
(−1)|D|

=
∑

{d f (U ) | X ∨ U ∨ S and {Y ∈ D | Y ∨ U } = ∅}.

∩⊕
Constraints can be formulated on real-valued functions defined on collection sub-

sets using differentials of functions or density functions. Both types of constraints
have been introduced and studied in [5, 7, 8].

Definition 12.85 Let S be a set, C a collection of subsets of S, and f : P(S) → R

a function.
The function f satisfies the differential constraint X � C if DC

f (X) = 0.
The function f satisfies the density constraint X � C if d f (U ) = 0 for every

U ∈ L[X,C].
By Theorem 12.84, if f satisfies the density constraint X � C, then f satisfies the

differential constraint X � C. If the density of f takes only nonnegative values (or
only nonpositive values), then, by the same theorem, the reverse also holds. However,
in general, this is not true, as the next example shows. Thus, differential constraints
are weaker than density constraints.

Example 12.86 Let S = {a} and let f :P(S) → R be defined by f (∅) = 0 and
f ({a}) = 1. Observe that D∅

f (∅) = f (∅) = 0, so f satisfies the differential con-
straint ∅ � ∅.

Since C∅ = {{a}} and C{a} = ∅, we have

d f (∅) = DC∅
f (∅) = f (∅) − f ({a}) = −1,

d f ({a}) = D
C{a}
f ({a}) = f ({a}) = 1.

On the other hand, L[∅,∅] = P(S) by Example 12.82, and f fails to satisfy the
density constraint ∅ � ∅.

Example 12.87 Consider the ι-entropy Hι defined on the set of subsets of the head-
ing of a table φ = (T, H, r). We saw that Hι is a monotonic, submodular g-measure
on P(H).
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We claim that Hι satisfies the differential constraint X � {Y } if and only if the
table φ satisfies the functional dependency X → Y .

By Example 12.76, Hι satisfies the differential constraint X � {Y }, that is,

D{Y }
f (X) = 0 if and only if Hι(X) = Hι(X ⊥ Y ). This is equivalent to Hι(Φ XY ) =

Hι(Φ X ) or to Hι(Φ X ∧ΦY ) = Hι(Φ X ) by Corollary 12.13. This equality implies:
Φ X � ΦY by Corollary 12.56, which shows that φ satisfies the functional dependency
X → Y .

The observation contained in this example generalizes the result of Sayrafi [5]
proven for the Gini index and the result contained in [9–11] that involves the Shannon
entropy.

Note also that this shows that

Hι(Y |X) = −D{Y }
f (X)

for X, Y ∈ P(H).

Example 12.88 Let S = {a, b, c}. To compute L[{a}, {{b}}], note that

W({{b}}) = {{b}}.

Thus, L[{a}, {{b}}] = [{a}, {a, c}] = {{a}, {a, c}}. In general, we have for x, y, z ∈
S that are pairwise distinct

L[{x}, {{y}}] = {{x}, {x, z}}.

Consider now a function f : P(S) → R such that

f (X) =
{

2 if X ∈ {∅, {c}},
1 otherwise.

We have

d f ({c}) = f ({c}) − f ({a, c}) − f ({b, c}) + f ({a, b, c}) = 1,

d f ({a, b, c}) = f ({a, b, c}) = 1.

For X ∞∈ {{c}, {a, b, c}}, we have d f (X) = 0. For example,

d f ({b}) = f ({b}) − f ({a, b}) − f ({b, c}) + f ({a, b, c}) = 0,

d f ({b, c}) = f ({b, c}) − f ({a, b, c}) = 0.

This shows that f satisfies the density constraints {a} � {{b}} and {b} � {{c}} but
fails to satisfy {c} � {{a}} because L[{c}, {{a}}] consists of {c} and {b, c}.
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12.7 Decision Systems and Decision Trees

Classifiers are algorithms that place objects in certain classes based on characteristic
features of those objects. Classifiers are constructed starting from a set of objects
known as a training set; for each object of the training set the class of the object is
known and the classifier can be regarded as a function that maps as well as possible
the objects of a training set to their respective classes.

It is desirable that the classifiers constructed from a training set do a reliable job
of placing objects that do not belong to the training set in their correct classes. When
the classifier works well on the training set but does a poor job of classifying objects
outside the training set, we say that the classifier overfits the training set.

Decision systems use tables to formalize the notion of a training set. The features
of the objects are represented by the attributes of the table; a special attribute (called
a decision attribute) represents the class of the objects.

Definition 12.89 A decision system is a pair D = (φ, D), where φ = (T, H, r) is
a table and D is a special attribute of H called a decision attribute. The attributes
of H that are distinct from D are referred to as conditional attributes, and the set of
conditional attributes of H will be denoted by Hc.

Clearly, Hc is obtained by removing D from H .

Example 12.90 The decision system considered in this example is based on a data
set that is well-known in the machine-learning literature (see [12, 13]). The heading
H and domains of the attributes are specified below:

Attribute Domain
Outlook {Sunny, Overcast, Rain}
Temperature {Hot, Mild, Cool}
Humidity {Normal, High}
Wind {Weak, Strong}

The decision attribute is PlayTennis; this attribute has the domain {yes, no}.
The sequence r consists of 14 tuples, t1, . . . , t14, shown in Table 12.1:
The partitions of the form Φ A (where A is an attribute) are

Φ Outlook = {{1, 2, 8, 9, 11}, {3, 7, 12}, {4, 5, 6, 10, 13, 14}},
ΦT emperature = {{1, 2, 3, 13}, {4, 8, 10, 11, 12, 14}, {5, 6, 7, 9}},

Φ Humidity = {{1, 2, 3, 4, 8, 12, 14}, {5, 6, 7, 9, 10, 11, 13}},
ΦWind = {{1, 3, 4, 5, 8, 9, 10, 13}, {2, 6, 7, 11, 12, 14}},

Φ PlayT ennis = {{1, 2, 6, 8, 14}, {3, 4, 5, 7, 9, 10, 11, 12, 13}}.

Let D = (φ, D) be a decision system, where φ = (T, H, r) and r = (t1, . . . , tn).
The decision function of D is the function δD : {1, . . . , n} −→ Dom(D) given by
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Table 12.1 The content of the decision system

Outlook Temperature Humidity Wind PlayTennis

1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Rain Hot Normal Weak Yes
14 Rain Mild High Strong No

δD(i) = {d ∈ Dom D | (i, j) ∈ βHc and t j [D] = d},

where βHc is the indiscernibility relation defined by the set of conditional attributes
of D. Equivalently, we can write

δD(i) = {t j [D] | j ∈ [i]βHc }

for 1 ≤ i ≤ n.
If |δD(i)| = 1 for every i , 1 ≤ i ≤ n, then D is a deterministic (consistent)

decision system; otherwise, D is a nondeterministic (inconsistent) decision system.
In other words, a decision system D is consistent if the values of the components of
a tuple that correspond to the conditional attributes determine uniquely the value of
the tuple for the decision attribute.

If there exists d ∈ Dom(D) such that δD(i) = {d} for every i , 1 ≤ i ≤ n, then D

is a pure decision system.

Definition 12.91 Let D = (φ, D) be a decision system, where φ = (T, H, r) and
|r| = n. The classification generated by D is the partition Φ D of the set {1, . . . , n}.

If Bd is the block of Φ D that corresponds to the value d of Dom(D), we refer to
Bd as the d-decision class of D.

Note that the partition Φ D contains a block for every element of Dom(D) that occurs
in set(r[D]).

If X is a set of attributes, we denote the functions uapβX and lapβX by X and X ,
respectively.
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Example 12.92 The decision classes of the decision system D of Example 12.90 are

Bno = {1, 2, 6, 8, 14},
Byes = {3, 4, 5, 7, 9, 10, 11, 12, 13}.

Definition 12.93 Let U be a set of conditional attributes of D = (φ, D), where
φ = (T, H, r) and |r| = n. The U-positive region of the decision system D is the set

POSU (D) =
⎬

{U (Bd) | d ∈ set(r[D])}.

The tuples whose indexes occur in POSHc(D) can be unambiguously placed in
the d-decision classes of D.

Example 12.94 For the decision system D of Example 12.90, we have

POSOutlook(D) = {3, 7, 12},
POST emperature(D) = POSHumidity(D) = POSWind(D) = ∅.

Thus, using the value of a single attribute, we can reach a classification decision only
for the tuples t3, t7, and t12 (based on the Outlook attribute).

Next, we attempt to classify tuples using partitions generated by two attributes.
We have six such partitions:

Φ Outlook,T emperature = {{1, 2}, {3}, {4, 10, 14}, {5, 6},
{7}, {8, 11}, {9}, {12}, {13}},

Φ Outlook,Humidity = {{1, 2, 8}, {3, 12}, {4, 14}, {5, 6, 10, 13},
{7}, {9, 11}},

Φ Outlook,Wind = {{1, 8, 9}, {2, 11}, {3},
{4, 5, 10, 13}, {6, 14}, {7, 12}},

ΦT emperature,Humidity = {{1, 2, 3}, {4, 8, 12, 14}, {5, 6, 7, 9},
{10, 11}, {13}},

ΦT emperature,Wind = {{1, 3, 13}, {2}, {4, 8, 10},
{5, 9}, {6, 7}, {11, 12, 14}},

Φ Humidity,Wind = {{1, 3, 4, 8}, {2, 12, 14}, {5, 9, 10, 13},
{6, 7, 11}},

and their corresponding positive regions are

POSOutlook,T emperature(D) = {1, 2, 3, 7, 9, 13},
POSOutlook,Humidity(D) = {1, 2, 3, 7, 8, 9, 11, 12},

POSOutlook,Wind(D) = {3, 4, 5, 6, 7, 10, 12, 13, 14},
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POST emperature,Humidity(D) = {10, 11, 13},
POST emperature,Wind(D) = {2, 5, 9},

POSHumidity,Wind(D) = {5, 9, 10, 13}.

There are four partitions generated by three attributes:

Φ Outlook,T emperature,Humidity = {{1, 2}, {3}, {4, 14}, {5, 6},
{7}, {8}, {9}, {10}, {11}, {12}, {13}},

Φ Outlook,T emperature,Wind = {{1}, {2}, {3}, {4, 10}, {5}, {6},
{7}, {8}, {9}, {11}, {12}, {13}, {14}},

Φ Outlook,Humidity,Wind = {{1, 8}, {2}, {3}, {4}, {5, 10, 13},
{6}, {7}, {9}, {11}, {12}, {14}},

ΦT emperature,Humidity,Wind = {{1, 3}, {2}, {4, 8}, {5, 9},
{6, 7}, {10}, {11}, {12, 14}, {13}}.

Their positive regions are

POSOutlook,T emperature,Humidity(D) = {1, 2, 3, 7, 8, 9, 10, 11, 12, 13},
POSOutlook,T emperature,Wind(D) = set(H),

POSOutlook,Humidity,Wind(D) = set(H),

POST emperature,Humidity,Wind(D) = {2, 5, 9, 10, 11, 13}.

This computation shows that a classification decision can be reached for every tuple
starting from its components on the projection on either the set Outlook, Temperature,
Wind or the set Outlook, Humidity, Wind.

Finally, note that D is a deterministic system because Φ set(Hc) = πset(Hc).

Theorem 12.95 Let D = (φ, D) be a decision system, where φ = (T, H, r) and
|r| = n. The following statements are equivalent:

(i) D is deterministic;
(ii) Φ Hc ≤ Φ D;
(iii) POSHc (D) = {1, . . . , n}.
Proof (i) implies (ii): Suppose that D is deterministic. Then, if two tuples u and v in
r are such that u[Hc] = v[Hc], then u[D] = v[D]. This is equivalent to saying that
Φ Hc ≤ Φ D .

(ii) implies (iii): This implication follows immediately from Theorem 1.209.
(iii) implies (i): Suppose that POSHc(D) = {1, . . . , n}, that is,

⎬
{Hc(Bd) | d ∈ set(r[D])} = {1, . . . , n}. (12.9)
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Note that Hc(Bd) = lapβHc (Bd) ∨ Bd . Therefore, we have lapβHc (Bd) = Bd for
every d ∈ set(r[D]) because if the inclusion were strict for any of the sets Bd , then
Equality (12.9) would be violated. Thus, each block Bd is a union of blocks of the
partition Φ Hc . In other words, each equivalence class of βHc is included in a block
Bd , which means that for every j ∈ [i]βHc we have t j [D] = d and the set δD(i)
contains a single element. Thus, D is deterministic. ∩⊕

Next, we discuss informally a classification algorithm that makes use of decision
systems. This algorithm is recursive and begins with the selection of a conditional
attribute (referred to as a splitting attribute) by applying a criterion that is specific
to the algorithm. The algorithm halts when it applies to a pure decision system (or
to a decision system where a minimum percentage of tuples have the same decision
value).

The splitting attribute is chosen here as one of the attributes whose positive region
has the largest number of elements. This choice is known as a splitting criterion. The
table of the decision system is split into a number of tables such that each new
table is characterized by a value of the splitting attribute. Thus, we obtain a new set
of decision systems, and the algorithm is applied recursively to the new decision
systems. The process must stop because the tables become smaller with each split;
its result is a tree of decision systems known as a decision tree.

Example 12.96 As we saw in Example 12.94, a classification decision can be
reached immediately for the tuples t3, t7, t12, which are characterized by the con-
dition Outlook = ‘overcast’.

Define the tables

φ0 = (φ where Outlook = ‘sunny’)[K ],
φ1 = (φ where Outlook = ‘overcast’)[K ],
φ2 = (φ where Outlook = ‘rain’)[K ],

where
K = Temperature Humidity Wind PlayTennis

is the heading obtained by dropping the Outlook attribute and the decision systems
Di = (φi , D) for 0 ≤ i ≤ 3.

Note that the decision system D1 is pure because the tuples of φ1 belong to the
same PlayTennis-class as shown in Table 12.2.

For the remaining systems

D0 = (φ0, PlayTennis)andD2 = (φ2, PlayTennis),

we have the tables shown in Table 12.3a, b.
The same process is now applied to the decision systems D0 and D2. The positive

regions are:
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Table 12.2 The table φ1

Temperature Humidity Wind PlayTennis

3 Hot High Weak Yes
7 Cool Normal Strong Yes
12 Mild High Strong Yes

Table 12.3 The tables φ0 and φ2

Temperature Humidity Wind PlayTennis

(a)
1 Hot High Weak No
2 Hot High Strong No
8 Mild High Weak No
9 Cool Normal Weak Yes
11 Mild Normal Strong Yes
(b)
4 Mild High Weak Yes
5 Cool Normal Weak Yes
6 Cool Normal Strong No
10 Mild Normal Weak Yes
13 Hot Normal Weak Yes
14 Mild High Strong No

POST emperature(D0) = {1, 2, 9},
POSHumidity(D0) = {1, 2, 8, 9, 11},
POSWind(D0) = ∅,

POST emperature(D2) = {13},
POSHumidity(D2) = ∅,

POSWind(D2) = {4, 5, 10, 13, 6, 14}.

Thus, the splitting attribute for D0 is Humidity; the splitting attribute for D2 is Wind.
The decision system D0 yields the decision systems

D00 = (φ00, PlayT ennis) and D01 = (φ01, PlayT ennis),

where φ00 and φ01 are given by

φ00 = (φ0 where Humidity = ‘high’)[K0],
φ01 = (φ0 where Humidity = ‘normal’)[K0],

where
K0 = Temperature Wind PlayTennis.
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Table 12.4 The tables φ00 and φ01

Temperature Wind PlayTennis

(a)
1 Hot Weak No
2 Hot Strong No
8 Mild Weak No
(b)
9 Cool Weak Yes
11 Mild Strong Yes

Table 12.5 The tables φ00 and φ01

Temperature Humidity PlayTennis

(a)
4 Mild High Yes
5 Cool Normal Yes
10 Mild Normal Yes
13 Hot Normal Yes
(b)
6 Cool Normal No
14 Mild High No

The tables φ00 and φ01 are shown in Table 12.4a, b, respectively. Note that both
decision systems D00 and D01 are pure, so no further action is needed.

The decision system D2 produces the decision systems

D20 = (φ20, PlayT ennis) and D21 = (φ21, PlayT ennis),

where φ20 and φ21 are given by

φ20 = (φ0 where Wind = ‘weak’)[K2]
φ21 = (φ0 where Wind = ‘strong’)[K2],

where
K2 = Temperature Humidity PlayTennis.

The tables φ20 and φ21 are shown in Table 12.5a, b, respectively.
Again, both decision systems are pure, so no further splitting is necessary. The

decision tree that is obtained from this process is shown in Fig. 12.3.
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Fig. 12.3 Decision tree

12.8 Logical Data Analysis

Logical data analysis (LDA) is a methodology that aims to discover patterns in
data using Boolean methods. LDA techniques were introduced by the Rutcor group
(see [14]).

Let D = (φ, C) be a pair (also referred to as a decision system), where φ =
(T, H, r) is a table having the heading H = A1 · · · AnC and C is the decision
attribute. All attributes are binary, that is, we have Dom(A1) = · · · = Dom(An) =
Dom(C) = {0, 1}. The content of φ represents a sequence of observations that
consists of the projections t[A1 · · · An] of the tuples of r. The component t[C] of t
is the class of the observation t . The sequence of positive observations is

r+ = {t[A1 · · · An] in r | t[C] = 1};

the sequence of negative observations is

r− = {t[A1 · · · An] in r | t[C] = 0}.

It is clear that the sets set(r+) and set(r−) are disjoint and thus define a partial
Boolean function of n arguments. We refer to ν as an observation table.

Example 12.97 Consider the decision system D = ((T, A1 A2 A3C, r), C) given by

T

A1 A2 A3 C
0 0 1 0
0 1 1 0
1 1 1 0
0 0 0 1
1 0 0 1
1 1 0 1
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The sequence of positive observations is

r+ = ((0, 0, 0), (1, 0, 0), (1, 1, 0)).

The sequence of negative observations is

r− = ((0, 0, 1), (0, 1, 1), (1, 1, 1)).

Starting from a pdBf specified by two sequences of positive and negative observa-
tions, r+ = (A1, . . . , Ap) ∈ Seq({0, 1}n) and r− = (B1, . . . , Bq) ∈ Seq({0, 1}n),
we define two corresponding binary Boolean functions f + and f − as

f +(x1, . . . , xn) =
{

1 if (x1, . . . , xn) does not occur in r−,

0 otherwise,

for (x1, . . . , xn) ∈ {0, 1}n , and

f −(x1, . . . , xn) =
{

1 if (x1, . . . , xn) does not occur in r+,

0 otherwise,

for (x1, . . . , xn) ∈ {0, 1}n . Clearly, we have

f +(x1, . . . , xn) =
⎭

{(x1, . . . , xn)A | A occurs in r−},
f −(x1, . . . , xn) =

⎭
{(x1, . . . , xn)A | A occurs in r+}.

Definition 12.98 The positive (negative) patterns of a decision system D = (φ, C),
where φ = (T, H, r), are the prime implicants of the binary Boolean function f + (of
the function f −) that cover at least one minterm tA, where A is a positive (negative)
observation of ν .

Example 12.99 For the positive and negative observations considered in
Example 12.97, the binary Boolean functions f + and f − are given by

f +(x1, x2, x3, x) = x̄1 x̄2 x̄3 ⊇ x̄1x2 x̄3 ⊇ x1 x̄2 x̄3

⊇x1 x̄2x3 ⊇ x1x2 x̄3

and

f −(x1, x2, x3, x) = x̄1 x̄2x3 ⊇ x̄1x2 x̄3 ⊇ x̄1x2x3

⊇x1 x̄2x3 ⊇ x1x2x3
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Fig. 12.4 Hasse diagram of
(IMPL f + , �)

for (x1, x2, x3) ∈ {0, 1}3. The Hasse diagram of the poset of implicants (IMPL f + ,�)

is shown in Fig. 12.4. The prime implicants of f + are x̄3 and x1 x̄2, and they are both
positive patterns. Indeed, x̄3 covers every positive observation, while x1 x̄2 covers the
minterm that corresponds to the positive observation (1, 0, 0).

A positive pattern can be regarded as a combination of values taken by a small
number of variables that never appeared in a negative observation and did appear in
some positive observation. Thus, if a new observation is covered by a positive pattern,
this fact can be regarded as an indication that the observation is a positive one.

Next, we discuss algorithms for generating positive patterns (the negative patterns
can be found using similar techniques).

Two basic approaches are described for finding positive patterns: a top-down
approach and a bottom-up approach (directions are defined relative to the Hasse
diagram of the poset (T(B2, n),�)). In the bottom-up approach, we start with the
minterms that correspond to positive observations, which are clearly positive patterns
of rank 0. If one or more literals are removed from such a pattern, the resulting term
may still be a pattern if it does not cover any negative examples. The process consists
of a systematic removal of literals from minterms and verifying whether the resulting
minterms remain positive patterns until prime patterns are reached.

The top-down approach begins with terms of rank n −1; that is, with patterns that
contain one literal. If such a term does not cover any negative observations, then it is
a positive pattern; otherwise, literals are added systematically until a positive pattern
is obtained.

The number of positive patterns can be huge, which suggests that seeking only
patterns whose rank is sufficiently high (and therefore contain few literals) is a good
practical compromise.

Example 12.100 The Hasse diagram of the poset (T(B2, 3),�) is shown in Fig. 12.5.
We apply the top-down method to determine the positive patterns of the decision
system introduced in Example 12.97.
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Fig. 12.5 Hasse diagram of the poset (T(B2, 3), �)

We begin with the minterms that correspond to positive observations,

t (0,0,0)(x1, x2, x3) = x̄1 x̄2 x̄3,

t (1,0,0)(x1, x2, x3) = x1 x̄2 x̄3,

t (1,1,0)(x1, x2, x3) = x1x2 x̄3.

The terms that can be obtained from these terms by discarding one literal are listed
below.

Original term Derived term Negative patterns covered
x̄1 x̄2 x̄3 x̄2 x̄3 None
x̄1 x̄2 x̄3 x̄1 x̄3 None
x̄1 x̄2 x̄3 x̄1 x̄2 x̄1 x̄2x3
x1 x̄2 x̄3 x̄2 x̄3 None
x1 x̄2 x̄3 x1 x̄3 None
x1 x̄2 x̄3 x1 x̄2 None
x1x2 x̄3 x2 x̄3 None
x1x2 x̄3 x1 x̄3 None
x1x2 x̄3 x1x2 x1x2x3

The preceding table yields a list of seven positive patterns of rank 1:

x̄2 x̄3, x̄1 x̄3, x̄2 x̄3, x1 x̄3, x1 x̄2, x2 x̄3, x1 x̄3.

By discarding one literal, we have the following patterns of rank 2:
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Original term Derived term Negative patterns covered
x̄2 x̄3 x̄2 x̄1 x̄2x3
x̄2 x̄3 x̄3 None
x̄1 x̄3 x̄3 None
x̄1 x̄3 x̄1 x̄1 x̄2x3, x̄1x2x3
x̄2 x̄3 x̄3 None
x̄2 x̄3 x̄2 x̄1 x̄2x3
x1 x̄3 x̄3 None
x1 x̄3 x1 x̄1 x̄2x3, x̄1x2x3
x1 x̄2 x̄2 x̄1 x̄2x3
x1 x̄2 x1 x1x2x3
x2 x̄3 x̄3 None
x2 x̄3 x2 x̄1x2x3, x1x2x3
x1 x̄3 x̄3 None
x1 x̄3 x1 x1x2x3

The unique positive pattern of rank 2 is x̄3, which covers all positive patterns of rank
1 with the exception of x1 x̄2. Thus, we retrieve the results obtained in Example 12.99,
where we used the Hasse diagram of (IMPL f + ,�).

A pattern generation algorithm is given in [14]. The algorithm gives preference
to high-ranking patterns and attempts to cover every positive observation.

Data binarization is a preparatory process for LAD. Its goal is to allow the applica-
tion of the Boolean methods developed in the LAD, and there are other computational
benefits that follow from the binarization process.

Let D = (φ, C) be a decision system where φ = (T, H, r) is a table having the
heading H = A1 · · · AnC . We assume that the attributes of H , except C , are nominal
or numerical rather than binary. Nominal attributes have discrete domains that do not
admit a natural partial order. For example, a color attribute having as domain the set
{red, white, blue} is a nominal attribute. The domain of C is the set {0, 1}, and we
continue to refer to φ as an observation table.

As in Sect. 12.8, the content of φ represents a sequence of observations that consists
of the projections t[A1 · · · An] of the tuples of r, and t[C] of t is the class of the
observation t . The sequence of positive observations is

r+ = {t[A1 · · · An] in r | t[C] = 1};

the sequence of negative observations is

r− = {t[A1 · · · An] in r | t[C] = 0}.

Data binarization consists of replacing nominal or numerical attributes by binary
attributes. The technique that is described here was introduced in [14].

In the case of a nominal attribute B whose domain consists of the values
{b1, . . . , bp}, we introduce p attributes B1, . . . , Bp. The B-component of a tuple
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t[B] will be replaced with p components corresponding to the attributes B1, . . . , Bp

such that

t[Bi ] =
{

1 if t[B] = bi ,

0 otherwise,

for 1 � i � p.
For a numerical attribute A, we define a set of cut points. Suppose that the set of

values that appear under the attribute A is {a1, . . . , ak} such that a1 < a2 < · · · < ak .
If two consecutive values a j and a j+1 belong to two different classes, a cut point v

is defined as v = a j +a j+1
2 . The role of cut points is to separate consecutive values of

an attribute that belong to different classes.
There is no sense in choosing cut points below mini ai or above maxi ai because

they could not distinguish between positive or negative observations. Also, there is
no reason to choose cut points between consecutive values that correspond to two
positive observations or two negative observations. Therefore, we need to consider
at most one cut point between any two consecutive values of A that correspond to
different classes.

Each cut point v defines a level binary attribute Av. The Av-component of a tuple
t is

t[Av] =
{

0 if t[A] < v,

1 if t[A] � v.

Each pair (v, v≡) of consecutive cut points defines an interval binary attribute Avv≡ ,
where the Avv≡ -component of t is

t[Avv≡ ] =
{

0 if v � t[A] < v≡,
1 otherwise.

Example 12.101 Consider the decision system D = (φ, PlayT ennis), where φ is
the following table.

Tennis

Outlook Temperature Humidity Wind PlayTennis
Overcast 90 70 Weak 1
Rain 65 72 Weak 1
Rain 50 60 Weak 1
Overcast 55 55 Strong 1
Rain 89 58 Weak 1
Rain 58 52 Strong 0
Sunny 75 75 Weak 0
Rain 77 77 Strong 0

The attributes Outlook and Wind are nominal, while the attributes Temperature
and Humidity are numerical.
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Since there exist three distinct values (overcast, rain, and sunny) for the attribute
Outlook, this attribute will be replaced with three binary attributes, Oo, Or , Os that
correspond to these values. Similarly, the attribute Wind will be replaced by two
binary attributes, Ww and Ws .

The sequence of values for Temperature is shown together with the class of the
observations:

50 55 58 65 75 77 89 90
+ + − + − − + +

This requires four cut points placed at the midpoints of intervals determined by
consecutive values that belong to distinct classes: 56.5, 61.5, 70, 83.

Similarly, the sequence of values for Humidity is

52 55 58 60 70 72 75 77
− + + + + + − −

In this case, we need two cut points: 53.5 and 73.5. We use a simplified notation for
binary attributes shown in the right column of the next table.

Attribute Simplified notation

Oo B1
Or B2
Os B3
T56.5 B4
T61.5 B5
T70 B6
T83 B7
T56.5,61.5 B8
T61.5,70 B9
T70,83 B10
H53.5 B11
H73.5 B12
H53.5,73.5 B13
Ww B14
Ws B15

The binarized table is

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 C

t1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1
t2 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1
t3 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1
t4 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1
t5 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 1
t6 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0
t7 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0
t8 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0
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The number of binary attributes can be reduced; however, the remaining attributes
must allow the differentiation between positive and negative cases.

Definition 12.102 Let D = (φ, C) be a decision system where φ = (T, H, r) is a
table having the heading H = B1 · · · BpC that consists of binary attributes.

A support heading for D is a subset L = Bi1 · · · Biq of B1 · · · Bp such that if u
occurs in r+ and v occurs in r−, then u[L] ∞= v[L]. For any two such tuples, define
their difference set χD(u, v) = {i ∈ H | u[Bi ] ∞= v[Bi ]}.

A support heading L is irredundant if no proper subset of L is a support heading
of D.

If L is a support set for a decision system D = (φ, C), then L must have a
nonempty intersection with each set of the form {Bi | i ∈ χD(u, v)} for each
positive example u and each negative example v. Finding an irredundant support
heading can be expressed as a discrete optimization problem, as was shown in [14].

Example 12.103 Let y = (y1, . . . , y14) be the characteristic sequence of a support
heading L; that is,

yi =
{

1 if Bi ∈ L ,

0 otherwise.

The decision system introduced in Example 12.101 has five positive examples and
three negative examples, so there are 15 difference sets:

χD(t1, t6) = {1, 2, 5, 6, 7, 8, 11, 13, 14, 15},
χD(t1, t7) = {1, 3, 7, 10, 12, 13},
χD(t1, t8) = {1, 2, 7, 10, 12, 13, 14, 15},
χD(t2, t6) = {5, 8, 9, 11, 13, 14, 15},
χD(t2, t7) = {2, 3, 6, 9, 10, 12, 13},
χD(t2, t8) = {6, 9, 10, 12, 13, 14, 15},
χD(t3, t6) = {4, 8, 11, 13, 14, 15},
χD(t3, t7) = {2, 3, 4, 5, 6, 10, 12, 13},
χD(t3, t8) = {4, 5, 6, 10, 12, 13, 14, 15},
χD(t4, t6) = {1, 2, 4, 8, 11, 13},
χD(t4, t7) = {1, 3, 4, 5, 6, 10, 12, 13, 14, 15},
χD(t4, t8) = {1, 2, 4, 5, 6, 10, 12, 13},
χD(t5, t6) = {5, 6, 7, 8, 11, 13, 14, 15},
χD(t5, t7) = {2, 3, 7, 10, 12, 13},
χD(t5, t8) = {7, 10, 12, 13, 14, 15}.

The requirement that a support heading intersect each of these sets leads to 15
inequalities. For example, the requirement that χD(t1, t6) ⊆ L ∞= ∅ amounts to
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y1 + y2 + y5 + y6 + y7 + y8 + y11 + y13 + y14 + y15 � 1.

Fourteen other similar inequalities can be similarly written.
Note that the set {13} intersects all these sets, so it is a minimal support heading.

To find an irredundant support heading for a decision system D = (φ, C), where
φ = (T, H, r) is a table having the heading H = B1 · · · BpC , we need to minimize
the sum

∑p
i=1 yi subjected to restrictions of the form:

∑
{yi | i ∈ χD(ti , t j )} � 1

for every pair of tuples (ti , t j ) such that ti is a positive example and t j is a negative
example.

12.9 Perceptrons

Perceptrons are classifiers that use hyperplanes to separate sets of vectors in R
n . Data

analyzed consists of finite sequences of pairs of the form

⎟
x
y

)
, where x ∈ R

n and

y ∈ {−1, 1}.
If

⎟
x
1

)
∈ S, we say that x is a positive example; otherwise, that is, if y = −1, x

is a negative example. A sequence

S =
⎟⎟

x1
y1

)
, . . . ,

⎟
x�

y�

))

is linearly separable if there exists a hyperplane w≡x+b = 0 such that w≡xi +b � 0
if yi = 1 and w≡xi + b < 0 if yi = −1.

Example 12.104 Let

x1 =
⎟

0
0

)
, x2 =

⎟
0
1

)
, x3 =

⎟
1
1

)
, x4 =

⎟
1
0

)
.

The sequence

S1 =
⎟⎟

x1
1

)
,

⎟
x2
1

)
,

⎟
x3
−1

)
,

⎟
x4
1

))

is linearly separable, as shown in Fig. 12.6a. On the other hand the sequence

S2 =
⎟⎟

x1
1

)
,

⎟
x2
−1

)
,

⎟
x3
1

)
,

⎟
x4
−1

)
,

)

shown in Fig. 12.6b. is not linearly separable.
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(b)(a)

Fig. 12.6 A linearly separable sequence and a sequence that is not linearly separable

Next, we discuss an algorithm that begins with a linearly separable sequences and
produces a separating hyperplane. The algorithm is due to Rosenblatt [15] and aims
to produce a mathematical device known as a perceptron that is described by a vector
w ∈ R

n called the weight vector and a number b ∈ R called bias. Together, the pair
(w, b) determine a hyperplane w≡x + b = 0 in R

n .
Let R be the minimum radius of a closed ball centered in 0, that is R = max{⊂

xi ⊂ | 1 � i � �}.
If

⎟
xi

yi

)
is a member of the sequence S and H is the target hyperplane w≡x+b = 0,

where ⊂ w ⊂= 1, define the functional margin of

⎟
xi

yi

)
as κi = yi (w

≡xi +b). Observe

that if yi and w≡xi +b have the same sign, then

⎟
xi

yi

)
is classified correctly; otherwise,

it is incorrectly classified and we say that a mistake occurred.
A perceptron is constructed starting from the sequence S and from a parameter

∂ ∈ (0, 1) known as a learning rate. There are several variants of this algorithm in
the literature [15–18]. In Algorithm 12.9.1 we present the variant of [18].

Algorithm 12.9.1: Learning Algorithm for Perceptron
Data: labelled training sequence S and learning rate ∂

Result: weight vector w and parameter b defining classifier
initialize w = 0, b0 = 0, k = 0;1

R = max{⊂ xi ⊂ | 1 � i � �};2

repeat3

for i = 1 to � do4

if yi (w
≡
kxi + bk) � 0 then5

wk+1 = wk + ∂yi xi ;6

bk+1 = bk + ∂yi R2;7

k = k + 1;8

end9

end10

until no mistakes are made in the for loop;11

return k, (wk, bk) where k is the number of mistakes;12
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Theorem 12.105 Let S =
⎟⎟

x1
y1

)
, . . . ,

⎟
x�

y�

))
be a non-trivial training sequence

that is linearly separable, and let R = max{⊂ xi ⊂ | 1 � i � �}. Suppose there
exists an optimal weight vector wopt and an optimal bias bopt such that

⊂ wopt ⊂= 1 and yi (w
≡
opt xi + bopt ) � κ,

for 1 � i � �. The, the number of mistakes made by the algorithm is at most

⎟
2R

κ

)2

Proof Let t be the update counter

ŵ =
⎟

w
b
R

)
and x̂i =

⎟
xi

R

)

for 1 � i � �.
The algorithm begins with an augmented vector ŵ0 = 0 and updates it at each

mistake.
Let ŵt−1 be the augmented weight vector prior to the t th mistake. The t th update

is performed when
yi ŵ

≡
t−1x̂i = yi (w

≡
t−1xi + bt−1) � 0,

where (xi , yi ) is the example incorrectly classified by

ŵt−1 =
⎟

wt−1
bt−1

R

)
.

The update is

ŵt =
⎟

wt
bt
R

)
=
(

wt−1 + ∂yi xi
bt−1+∂yi R2

R

)

=
⎟

wt−1 + ∂yi xi
bt−1

R + ∂yi R

)
=
⎟

wt−1
bt−1

R

)
+
⎟

∂yi xi

∂yi R

)
= ŵt−1 + ∂yi x̂i ,

where we used the fact that bt = bt−1 + ∂yi R2.
Since

yi ŵ
≡
opt x̂i = yi

⎟
w≡

opt
b

R

)⎟
xi

R

)
= yi (w

≡
opt xi + b) � κ,

we have
ŵ≡

opt ŵt = ŵ≡
opt ŵ

≡
t−1 + ∂yi ŵ

≡
opt x̂i � ŵ≡

opt ŵt−1 + ∂κ.
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By repeated application of the inequality ŵ≡
opt ŵt � ∂κ we obtain

ŵ≡
optwt � t∂κ.

Since ŵt = ŵt−1 + ∂yi x̂i , we have

⊂ ŵt ⊂2 = ŵ≡
t ŵt = (ŵ≡

t−1 + ∂yi x̂
≡
i )(ŵt−1 + ∂yi x̂i )

= ⊂ ŵt−1 ⊂2 +2∂yi ŵ
≡
t−1x̂i + ∂2 ⊂ x̂i ⊂2

(because yi ŵ
≡
t−1x̂i � 0 when an update occurs)

� ⊂ ŵt−1 ⊂2 +∂2 ⊂ x̂i ⊂2

� ⊂ ŵt−1 ⊂2 +∂2(⊂ xi ⊂2 +R2)

� ⊂ ŵt−1 ⊂2 +2∂2 R2,

which implies ⊂ ŵt ⊂2� 2t∂2 R2. By combining the inequalities

ŵ≡
optwt � t∂κ and ⊂ ŵt ⊂2 � 2t∂2 R2

we have
⊂ ŵopt ⊂ ◦

2t∂R �⊂ ŵopt ⊂⊂ ŵt ⊂� ŵ≡
opt ŵt � t∂κ,

which imply

t � 2

⎟
R

κ

)2

⊂ ŵopt ⊂2 �
⎟

2R

κ

)2

because bopt � R for a non-trivial separation of data and hence

⊂ ŵopt ⊂2 �⊂ wopt ⊂2 +1 = 2.

Exercises and Supplements

1. Let H = A1 · · · An be a set of n attributes. Prove that |FD(H)| = 4n and that
there exist 4n − 3n nontrivial functional dependencies in FD(H).

2. How many functional dependency schemas can be defined on a set H that con-
tains n attributes?

3. Consider the table

T

A B C D E
a1 b1 c1 d1 e1
a1 b1 c2 d2 e2
a1 b1 c2 d3 e2

Show several functional dependencies that this table violates.
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4. Let φ = (T, H, r) be a table of a table schema (H, F) such that r contains no
duplicate rows. Prove that the set of attributes K is a key of φ if and only if
clF (K ) = H and for every proper subset L of K we have clF (L) ⇒ clF (K ).
Formulate and prove a similar statement for reducts.

5. Let (S, F) be a functional dependency schema. Prove that if A is an attribute in
H that does not occur on the right member of any functional dependency, then
A is a member of the core of the schema.

6. Let S = (ABC DE, {AB → D, B D → AE, C → B}) be a functional depen-
dency schema. Is the functional dependency ABC → DE a logical consequence
of F?

7. Let S = (A1, . . . , An, B1, . . . , Bn, F) be a table schema, where F = {Ai →
Bi , Bi → Ai | 1 � i � n}. Prove that any table of this schema has 2n reducts.

8. Let S be a finite set. Prove that for every partition Φ ∈ PART(S) we have
Hι(πS|Φ) = Hι(πS) − Hι(Φ).

9. Let Φ = {B1, . . . , Bm} be a partition of the finite set S, where |S| = n. Use
Jensen’s inequality (Theorem 9.35) applied to suitable convex functions to prove
the following inequalities:

(a) for ι > 1, 1
mι−1 �

∑m
i=1

⎛ |Bi ||S|
⎧ι

;

(b) log m � −∑m
i=1

|Bi ||S| log |Bi ||S| ;

(c) me
1
m �

∑m
i=1 e

|Bi ||S| .

Solution: Choose, in all cases p1 = · · · = pm = 1
m . The needed convex

functions are xι with ι > 1, x log x , and ex , respectively.
10. Use Supplement 9 to prove that if ι > 1, then Hι(Φ) � 1−m1−ι

1−21−ι .
11. Prove that if K is a reduct of a table φ = (T, H, r), then Hι(K ) = min{Hι(L) |

L ∈ P(H)}.
12. Let S be a finite set and be a set and let f : P(S) −→ R be a function. Prove

that f is a submodular function if and only if for U, V ∨ S and x ∈ S − V such
that U ∨ V the function f satisfies the inequality

f (U ⊥ {x}) − f (U ) � f (V ⊥ {x}) − f (V ) (12.10)

(the diminishing return property of submodular functions).

Solution: Let f be a submodular function and let C = U ⊥ {x} and D = V .
Since C ⊥ D = V ⊥ {x} and C ⊆ D = U , we have

f (U ⊥ {x}) − f (U ) − f (V ⊥ {x}) + f (V )

= f (C) + f (D) − f (C ⊥ D) − f (C ⊆ D) � 0,

which proves that f satisfies the condition given above.



644 12 Applications to Databases and Data Mining

Conversely, suppose that Inequality (12.10) is satisfied and let X = {x1, . . . , xm}
be such that V ⊆ X = ∅. By adding up the inequalities

f (U ⊥ {x1, . . . , xk}) − f (U ⊥ {x1, . . . , xk−1})
� f (V ⊥ {x1, . . . , xk}) − f (V ⊥ {x1, . . . , xk−1})

for 1 � k � m, we obtain f (U ⊥ X) − f (U ) � f (V ⊥ X) − f (V ). Take
U = A ⊆ B, V = B and X = A − B. Clearly, U ∨ V and V ⊆ X = ∅. By the
previous assumption we have f (A) − f (A ⊆ B) � f (A ⊥ B) − f (B), which is
the submodular property.

13. Let S be a finite set and be a set and let f : P(S) −→ R be a function. Prove
that f is a submodular function if and only if for all U ∈ P(S) and x, y ∞∈ U ,
we have

f (U ⊥ {y}) − f (U ) � f (U ⊥ {x, y}) − f (U ⊥ {x}).

14. Let a ∈ R
n and let f : P({1, . . . , n}) −→ R be the function defined by f (S) =

a≡cS , where S ∨ {1, . . . , n} and cS is the characteristic vector of S. Prove that
f is a modular set function.

15. Let f : P({1, . . . , n}) −→ R be a function such that f (∅) = 0. The Lovász
extension of f at z, where z≡ = (z1, . . . , zn) ∈ R

n is the function f̂ : R
n −→ R

given by

f (z) =
n−1∑
k=1

f ({ j1, . . . , jk})(z jk − z jk+1) + f ({1, . . . , n})z jn

where z j1 � · · · � z jn . Prove that

(a) f̂ (cS) = f (S), where S ∈ P({1, . . . , n}) and cS is the characteristic vector
of S;

(b) The function f is submodular if and only if f̂ is convex.

16. Let L = (L , {∧,⊇}) be a lattice and let f : L −→ R be an antimonotonic
mapping. Prove that the following statements are equivalent:

(a) f is submodular.
(b) f (z) + f (x ∧ y) � f (x ∧ z) + f (z ∧ y) for x, y, z ∈ L .

Solution: To prove that (i) implies (ii), apply the submodular inequality to x ∧ z
and z ∧ y. This yields

f ((x ∧ z) ⊇ (z ∧ y)) + f (x ∧ y ∧ z) � f (x ∧ z) + f (z ∧ y).

By the subdistributive inequality (11.6) and the anti-monotonicity of f , we have

f ((x ∧ z) ⊇ (z ∧ y)) � f (z ⊇ (x ∧ y)) � f (z).

http://dx.doi.org/10.1007/978-1-4471-6407-4_11
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Since f (x ∧ y) � f (x ∧ y ∧ z), the desired inequality follows immediately.
The reverse implication follows immediately by replacing z by x ⊇ y and using
the absorption properties of the lattice.

17. Let L = (L , {∧,⊇}) be a lattice and let f : L −→ R be an anti-monotonic
mapping. Prove that the following statements are equivalent:

(a) f is supramodular.
(b) f (z) + f (x ⊇ y) � f (x ⊇ z) + f (z ⊇ y) for x, y, z ∈ L .

18. Let S be a set, Φ ∈ PART(S) and let C and D be two disjoint subsets of S. Prove
that if ι � 1 then

Hι(C ⊥ D, ΦC⊥D) � Hι(C ⊥ D, ΦC + ΦD) + Hι(C ⊥ D, {C, D}).

19. Let η : P(S) −→ R be a logarithmic supramodular on P(S). For a collection
E ∨ P(S) define η(E) = ∑

E∈Eη(E).
Prove that if A,B are two collections of subsets of S, then η(A)η(B) � η(A⊇
B)η(A ∧ B).

20. Let f : L −→ R�0 be a real-valued, nonnegative function, where L =
(L , {∧,⊇}) is a lattice. Define the mapping d : L2 −→ R�0 as d(x, y) =
f (x)+ f (y)− 2 f (x ⊇ y) for x, y ∈ L . Prove that d is a semimetric on L if and
only if f is anti-monotonic and supramodular.

Bibliographical Comments

Extensive presentations of functional dependencies and their role in database design
are offered in [19–21].

The identification of functional dependencies satisfied by database tables is a
significant topic in data mining [22–24]. Generalized entropy was introduced in [4,
25]. The algebraic axiomatization of partition entropy was done in [26] and various
applications of Shannon and generalized entropies in data mining were considered
in [27, 28].

Basic references for logical data analysis are [14, 29].
Generalized measures and their differential constraints were studied in [5, 7, 8].

References

1. E.F. Codd, A relational model of data for large shared data banks. Commun. ACM 13, 377–387
(1970)

2. E.F. Codd, The Relational Model for Database Management, Version 2 (Addison-Wesley,
Reading, 1990)

3. C.J. Date, An Introduction to Database Systems, 8th edn. (Addison-Wesley, Boston, 2003)



646 12 Applications to Databases and Data Mining

4. J.H. Havrda, F. Charvat, Quantification methods of classification processes: concepts of struc-
tural π-entropy. Kybernetica 3, 30–35 (1967)

5. B. Sayrafi, A Measure-Theoretic Framework for Constraints and Bounds on Measurements
of Data. Ph.D. thesis, Indiana University, 2005

6. E.H. Lieb, M. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy. J.
Math. Phys. 14, 1938–1941 (1973)

7. B. Sayrafi, D. van Gucht, in Principles of Database Systems, ed. by C. Li. Differential Con-
straints, Baltimore, MD, (ACM, New York, 2005), pp. 348–357

8. B. Sayrafi, D. van Gucht, M. Gyssens, Measures in databases and datamining. Technical
Report TR602, Indiana University, 2004

9. F.M. Malvestuto, Statistical treatment of the information content of a database. Inf. Syst. 11,
211–223 (1986)

10. T.T. Lee, An information-theoretic analysis of relational databases. IEEE Trans. Softw. Eng.
13, 1049–1061 (1997)

11. M.M. Dalkilic, E.L. Robertson, Information dependencies. Technical Report TR531, Indiana
University, 1999

12. T.M. Mitchell, Machine Learning (McGraw-Hill, New York, 1997)
13. J.R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann, San Mateo, 1993)
14. E. Boros, P.L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, I. Muchnik, An implementation

of logical analysis of data. IEEE Trans. Knowl. Data Eng. 12, 292–306 (2000)
15. F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization

in the brain. Psychol. Rev. 65, 386–407 (1958)
16. A.B.J. Novikoff, On convergence proofs on perceptrons, in Proceedings of the Symposium on

Mathematical Theory of Automata
17. Y. Freund, R.E. Shapire, Large margin classification using the perceptron algorithm. Mach.

Learn. 37, 277–296 (1999)
18. N. Cristianini, J. Shawe-Taylor, Support Vector Machines (Cambridge University, Cambridge,

2000)
19. D. Maier, The Theory of Relational Databases (Computer Science Press, Rockville, 1983)
20. J.D. Ullman, Database and Knowledge-Base Systems (2 vols.) (Computer Science Press,

Rockville, 1988)
21. D.A. Simovici, R.L. Tenney, Relational Database Systems (Academic Press, New York, 1995)
22. Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen, Efficient discovery of functional and ap-

proximate dependencies using partitions (extended version). TR C-79, University of Helsinki,
Department of Computer Science, Helsinki, Finland, 1997

23. J. Kivinen, H. Mannila, Approximate dependency inference from relations. Theor. Comput.
Sci. 149, 129–149 (1995)

24. D.A. Simovici, D. Cristofor, L. Cristofor, Impurity measures in databases. Acta Informatica
38, 307–324 (2002)

25. Z. Daróczy, Generalized information functions. Inf. Control 16, 36–51 (1970)
26. S. Jaroszewicz, D.A. Simovici, On axiomatization of conditional entropy, Proceedings of the

29th International Symposium for Multiple-Valued Logic, Freiburg, Germany (IEEE Com-
puter Society, Los Alamitos, 1999), pp. 24–31

27. D. Simovici, S. Jaroszewicz, Generalized conditional entropy and decision trees, in Proceed-
ings of Extraction et Gestion des connaissances—EGC 2003 (Lavoisier, Paris, 2003), pp.
363–380

28. D.A. Simovici, S. Jaroszewicz, in Finite Versus Infinite, ed. by C. Calude, G. Paun. On
Information-Theoretical Aspects of Relational Databases (Springer, London, 2000), pp. 301–
321

29. E. Boros, P.L. Hammer, T. Ibaraki, A. Kogan, A logical analysis of numerical data. Math.
Prog. 79, 163–190 (1997)



Chapter 13
Frequent Item Sets and Association Rules

13.1 Introduction

Association rules have received lots of attention in data mining due to their many
applications in marketing, advertising, inventory control, and many other areas.

A typical supermarket may well have several thousand items on its shelves.
Clearly, the number of subsets of the set of items is immense. Even though a pur-
chase by a customer involves a small subset of this set of items, the number of such
subsets is very large. For example, even if we assume that no customer has more
than five items in his shopping cart, there are

∑5
i=1

⎜10000
i

)
possible contents of this

cart, which corresponds to the subsets having no more than five items of a set that
has 10,000 items, and this is indeed a large number!

The supermarket is interested in identifying associations between item sets; for
example, it may be interested to know how many of the customers who bought
bread and cheese also bought butter. This knowledge is important because if it turns
out that many of the customers who bought bread and cheese also bought butter,
the supermarket will place butter physically close to bread and cheese in order to
stimulate the sales of butter. Of course, such a piece of knowledge is especially
interesting when there is a substantial number of customers who buy all three items
and a large fraction of those individuals who buy bread and cheese also buy butter.

We will formalize this problem and will explore its algorithmic aspects.

13.2 Frequent Item Sets

Suppose that I is a finite set; we refer to the elements of I as items.

Definition 13.1 A transaction data set on I is a function T : {1, . . . , n} −∈ P(I ).
The set T (k) is the kth transaction of T . The numbers 1, . . . , n are the transaction
identifiers (tids).

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 647
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_13,
© Springer-Verlag London 2014
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An example of a transaction set is the set of items present in the shopping cart of a
consumer that completed a purchase in a store.

Example 13.2 The table below describes a transaction data set on the set of over-
the-counter medicines in a drugstore.

Trans. Content

T (1) {Aspirin, Vitamin C}
T (2) {Aspirin, Sudafed}
T (3) {Tylenol}
T (4) {Aspirin, Vitamin C, Sudafed}
T (5) {Tylenol, Cepacol}
T (6) {Aspirin, Cepacol}
T (7) {Aspirin, Vitamin C}

The same data set can be presented as a 0/1 table:

Aspirin Vitamin C Sudafed Tylenol Cepacol

T (1) 1 1 0 0 0
T (2) 1 0 1 0 0
T (3) 0 0 0 1 0
T (4) 1 1 1 0 0
T (5) 1 0 0 0 1
T (6) 1 0 0 0 1
T (7) 1 1 0 0 0

The entry in the row T (k) and the column i j is set to 1 if i j ∈ T (k); otherwise, it is
set to 0.

Example 13.2 shows that we have the option of two equivalent frameworks for
studying frequent item sets: tables or transaction item sets.

Given a transaction data set T on the set I , we would like to determine those
subsets of I that occur often enough as values of T .

Definition 13.3 Let T : {1, . . . , n} −∈ P(I ) be a transaction data set on a set of
items I . The support count of a subset K of the set of items I in T is the number
suppcountT (K ) given by

suppcountT (K ) = |{k | 1 � k � n and K ∪ T (k)}|.

The support of an item set K is the number

suppT (K ) = suppcountT (K )

n
.
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Example 13.4 For the transaction data set T considered in Example 13.2, we have

suppcountT ({Aspirin, V itaminC}) = 3

because {Aspirin, V itaminC} is a subset of three of the sets T (k). Therefore,

suppT ({Aspirin, V itaminC}) = 3

7
.

Example 13.5 Let I = {i1, i2, i3, i4} be a collection of items. Consider the transac-
tion data set T given by

T (1) = {i1, i2},
T (2) = {i1, i3},
T (3) = {i1, i2, i4},
T (4) = {i1, i3, i4},
T (5) = {i1, i2},
T (6) = {i3, i4}.

Thus, the support count of the item set {i1, i2} is 3; similarly, the support count of
the item set {i1, i3} is 2. Therefore, suppT ({i1, i2}) = 1

2 and suppT ({i1, i3}) = 1
3 .

The following rather straightforward statement is fundamental for the study of
frequent item sets.

Theorem 13.6 Let T : {1, . . . , n} −∈ P(I ) be a transaction data set on a set of
items I . If K and K ∞ are two item sets, then K ∞ ∪ K implies suppT (K ∞) � suppT (K ).

Proof Note that every transaction that contains K also contains K ∞. The statement
follows immediately. ∅⊆

If we seek those item sets that enjoy a minimum support level relative to a trans-
action data set T , then it is natural to start the process with the smallest nonempty
item sets.

Definition 13.7 An item set K is μ-frequent relative to the transaction data set T if
suppT (K ) � μ.

We denote by F
μ
T the collection of all μ-frequent item sets relative to the trans-

action data set T and by F
μ
T,r the collection of μ-frequent item sets that contain r

items for r � 1.

Note that
F

μ
T =

⋃
r�1

F
μ
T,r .

If μ and T are clear from the context, then we may omit either or both adornments
from this notation.

Let I = {i1, . . . , in} be an item set that contains n elements.
Denote by GI = (P(I ), E) the Rymon tree of P(I ). Recall that the root of the tree

is ∩. A vertex K = {i p1, . . . , i pk } with i p1 < i p2 < · · · < i pk has n − i pk children
K ⊕ { j}, where i pk < j � n.
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Fig. 13.1 Rymon tree for P({i1, i2, i3, i4})

Let Sr be the collection of item sets that have r elements. The next theorem
suggests a technique for generating Sr+1 starting from Sr .

Theorem 13.8 Let G be the Rymon tree of P(I ), where I = {i1, . . . , in}. If W ∈
Sr+1, where r � 2, then there exists a unique pair of distinct sets U, V ∈ Sr that
has a common immediate ancestor T ∈ Sr−1 in G such that U ⊥ V ∈ Sr−1 and
W = U ⊕ V .

Proof Let u and v be the two elements of W that have the largest and the second-
largest subscripts, respectively. Consider the sets U = W − {u} and V = W − {v}.
Both sets belong to Sr . Moreover, Z = U ⊥ V belongs to Sr−1 because it consists
of the first r − 1 elements of W . Note that both U and V are descendants of Z and
that U ⊕ V = W .

The pair (U, V ) is unique. Indeed, suppose that W can be obtained in the same
manner from another pair of distinct sets U ∞, V ∞ ∈ Sr such that U ∞ and V ∞ are
immediate descendants of a set Z ∞ ∈ Sr−1. The definition of the Rymon tree GI

implies that U ∞ = Z ∞ ⊕ {im} and V ∞ = Z ∞ ⊕ {iq}, where the letters in Z ∞ are indexed
by a number smaller than min{m, q}. Then, Z ∞ consists of the first r − 1 symbols of
W , so Z ∞ = Z . If m < q , then m is the second-highest index of a symbol in W and
q is the highest index of a symbol in W , so U ∞ = U and V ∞ = V . ∅⊆
Example 13.9 Consider the Rymon tree of the collection P({i1, i2, i3, i4}) shown in
Fig. 13.1.

The set {i1, i3, i4} is the union of the sets {i1, i3} and {i1, i4} that have the common
ancestor {i1}.

Next we discuss an algorithm that allows us to compute the collection F
μ
T of all

μ-frequent item sets for a transaction data set T . The algorithm is known as the
Apriori algorithm.

We begin with the procedure apriori_gen, which starts with the collection
F

μ
T,k of frequent item sets for the transaction data set T that contain k elements and
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generates a collection Ck+1 of sets of items that contains Fμ
T,k+1, the collection of

the frequent item sets that have k + 1 elements. The justification for this procedure
is based on the next statement.

Theorem 13.10 Let T be a transaction data set on a set of items I and let k ∈ N

such that k > 1.
If W is a μ-frequent item set and |W | = k +1, then there exists a μ-frequent item

set Z and two items im and iq such that |Z | = k − 1, Z ∪ W , W = Z ⊕ {im, iq},
and both Z ⊕ {im} and Z ⊕ {iq} are μ-frequent item sets.

Proof If W is an item set such that |W | = k + 1, then we already know that W is
the union of two subsets U and V of I such that |U | = |V | = k and that Z = U ⊥ V
has k − 1 elements. Since W is a μ-frequent item set and Z , U, V are subsets of W ,
it follows that each of these sets is also a μ-frequent item set. ∅⊆

Note that the reciprocal statement of Theorem13.10 is not true, as the next example
shows.

Example 13.11 Let T be the transaction data set introduced in Example 13.5. Note
that both {i1, i2} and {i1, i3} are 1

3 -frequent item sets; however,

suppT ({i1, i2, i3}) = 0,

so {i1, i2, i3} fails to be a 1
3 -frequent item set.

The procedure apriori_gen mentioned above is Algorithm 13.2.1. This pro-
cedure starts with the collection of item sets FT,k and produces a collection of item
sets CT,k+1 that includes the collection of item sets FT,k+1 of frequent item sets
having k + 1 elements.

Note that in apriori_gen no access to the transaction data set is needed.
The Apriori Algorithm 13.2.2 operates on “levels”. Each level k consists of a

collection C
μ
T,k of candidate item sets of μ-frequent item sets. To build the ini-

tial collection of candidate item sets C
μ
T,1, every single item set is considered for

membership in C
μ
T,1. The initial set of frequent item sets consists of those singletons

that pass the minimal support test. The algorithm alternates

Algorithm 13.2.1: The Procedure apriori_gen

Data: a minimum support μ, the collection F
μ
T,k of frequent item sets having k elements

Result: the set of candidate frequent item sets Cμ
T,k+1

1 set j = 1;
2 C

μ
T, j+1 = ∩;

3 for L , M ∈ F
μ
T,k such that L ∨= M and L ⊥ M ∈ F

μ
T,k−1 do

4 add L ⊕ M to C
μ
T,k+1

5 end
6 remove all sets K in C

μ
T,k+1 where there is a subset of K containing k elements that does not

belong to F
μ
T,k ;
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between a candidate generation phase (accomplished by using apriori_gen)
and an evaluation phase that involves a data set scan and is therefore the most expen-
sive component of the algorithm.

Algorithm 13.2.2: The Apriori Algorithm
Data: transaction data set T and a minimum support μ

Result: the collection F
μ
T of μ-frequent item sets

1 C
μ
T,1 = {{i} | i ∈ I }; set i = 1; while C

μ
T,i ∨= ∩ do

2 /* evaluation phase */ Fμ
T,i = {L ∈ C

μ
T,i | suppT (L) � μ};

3 /* candidate generation */ Cμ
T,i+1 = apriori_gen(F

μ
T,i );

4 i + +;
5 end
6 return F

μ
T = ⎟

j<i F
μ
T, j ;

Example 13.12 Let T be the data set given by

i1 i2 i3 i4 i5
T (1) 1 1 0 0 0
T (2) 0 1 1 0 0
T (3) 1 0 0 0 1
T (4) 1 0 0 0 1
T (5) 0 1 1 0 1
T (6) 1 1 1 1 1
T (7) 1 1 1 0 0
T (8) 0 1 1 1 1

The support counts of various subsets of I = {i1, . . . , i5} are given below:

i1 i2 i3 i4 i5
5 6 5 2 5

i1i2 i1i3 i1i4 i1i5 i2i3 i2i4 i2i5 i3i4 i3i5 i4i5
3 2 1 3 5 2 3 2 3 2

i1i2i3 i1i2i4 i1i2i5 i1i3i4 i1i3i5 i1i4i5 i2i3i4 i2i3i5 i2i4i5 i3i4i5
2 1 1 1 1 1 2 3 2 2
i1i2i3i4 i1i2i3i5 i1i2i4i5 i1i3i4i5 i2i3i4i5

1 1 1 1 2
i1i2i3i4i5

0

Starting with μ = 0.25 and F
μ
T,0 = {∩}, the Apriori algorithm computes the

following sequence of sets:
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C
μ
T,1 = {i1, i2, i3, i4, i5},

F
μ
T,1 = {i1, i2, i3, i4, i5},

C
μ
T,2 = {i1i2, i1i3, i1i4, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5},

F
μ
T,2 = {i1i2, i1i3, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5},

C
μ
T,3 = {i1i2i3, i1i2i5, i1i3i5, i2i3i4, i2i3i5, i2i4i5, i3i4i5},

F
μ
T,3 = {i1i2i3, i2i3i4, i2i3i5, i2i4i5, i3i4i5},

C
μ
T,4 = {i2i3i4i5},

F
μ
T,4 = {i2i3i4i5},

C
μ
T,5 = ∩.

Thus, the algorithm will output the collection

F
μ
T =

4⋃
i=1

F
μ
T,i

= {i1, i2, i3, i4, i5, i1i2, i1i3, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5,

i1i2i3, i2i3i4, i2i3i5, i2i4i5, i3i4i5, i2i3i4i5}.

13.3 Borders of Collections of Sets

Let I be a collection of sets such that I ∪ P(I ), where I is a set.

Definition 13.13 The border of I is the collection

BD(I) = {L ∈ P(I ) | U ∧ L implies U ∈ I and L ∧ V implies V ∨∈ I}.

The positive border of I is the collection

BD+(I) = BD(I) ⊥ I

= {L ∈ I | U ∧ L implies U ∈ I and L ∧ V implies V ∨∈ I}, }

while the negative border is

BD−(I) = BD(I) − I

= {L ∈ P(I ) − I | U ∧ L implies U ∈ I and L ∧ V implies V ∨∈ I}.

Clearly, we have BD(I) = BD+(I) ⊕ BD−(I).

If I is a hereditary collection of sets (see Definition 1.14), then the positive and
the negative borders of I are given by
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BD+(I) = {L ∈ I | L ∧ V implies V ∨∈ I}

and
BD−(I) = {L ∈ P(I ) − I | U ∧ L implies U ∈ I},

respectively. Thus, for a hereditary collection of subsets I, the positive border consists
of the maximal subsets of I, while the negative border of I consists of the minimal
subsets of the collection P(I ) − I.

Note that if I and I∞ are two hereditary collections of subsets of I and BD+(I) =
BD+(I∞), then I = I∞. Indeed, if K ∈ I, one of the following two cases may occur:

1. If K is not a maximal set of I, then there is a maximal set H of I such that K ∧ H .
Since H ∈ BD+(I) = BD+(I∞), it follows that H ∈ I∞, hence K ∈ I∞ because I∞
is hereditary.

2. If K is a maximal set of I, then K ∈ BD+(I) = BD+(I∞); hence, K ∈ I∞.

In either case K ∈ I∞, so I ∪ I∞. The reverse inclusion can be proven in a similar
way, so I = I∞.

Similarly, we can show that for two hereditary collections I, I∞ of subsets of I ,
BD−(I) = BD−(I∞) implies I = I∞. Indeed, suppose that K ∈ I − I∞. Since K ∨∈ I∞,
there exists a minimal subset V of K such that V ∨∈ I∞ and each of its subsets is in
I∞. The set V belongs to the negative border BD−(I∞) and, therefore to BD−(I). This
leads to a contradiction because K ∈ I and V is subset of K does not belong to I,
thereby contradicting the fact that I is a hereditary family of sets.

Since no such set K may exist, it follows that I ∪ I∞. The reverse inclusion can
be be shown in the same manner.

Borders of collections of sets play an important role in the study of the Apri-
ori algorithm. Observe, for example, that after computing the collection F

μ
T,3 =

{i1i2i3, i2i3i4, i2i3i5, i2i4i5, i3i4i5} in Example 13.12, the candidate set C
μ
T,4 =

{i2i3i4i5} is the negative border of Fμ
T,3. In general, Cμ

T,i+1 is the negative border
BD−(F

μ
T,i ).

For the same example, the negative and the positive borders of the collection of
frequent sets Fμ

T are given by

BD+(F
μ
T ) = {i1i5, i1i2i3, i2i3i4i5},

BD−(F
μ
T ) = {i1i4, i1i2i5, i1i3i5},

respectively. Clearly, BD+(F
μ
T ) consists of the maximal μ-frequent item sets, while

BD−(F
μ
T ) consists of the minimal μ-infrequent item sets.

The time complexity of the Apriori algorithm is dominated by the number of
accesses to the data set T that is required for computing the support of candidate
item sets.
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Theorem 13.14 The Apriori algorithm performs |Fμ
T | + |BD−(F

μ
T )| support

computations.

Proof The Apriori algorithm selects the μ-frequent item sets from among the
candidate item sets, and for each candidate item set it must perform a support com-
putation. A number of |Fμ

T | candidate sets turn out to be μ-frequent, so the algorithm
will perform |Fμ

T | computations for these sets. On the other hand, a candidate set
C is not retained as a μ-frequent set if and only if all its subsets are μ-frequent
(a requirement of apriori-gen) and C itself is not μ-frequent, which means
that none of its supersets are μ-frequent. This happens if and only if C belongs
to the negative border of F

μ
T . Thus, the total number of support computations is

|Fμ
T | + |BD−(F

μ
T )|. ∅⊆

Theorem 13.15 Let I be a set and let I be a hereditary family of subsets of I .
Consider the collection of sets

E = {I − L | L ∈ BD+(I)}

and the hypergraph H = (I,E). Then, the collection of minimal transversals of the
hypergraph E equals BD−(I), the negative border of I.

Proof The following statements concerning a subset X of I are easily seen to be
equivalent:

(i) X is a transversal of H.
(ii) X ⊥ Y ∨= ∩ for every Y ∈ E.
(iii) X ⊥ (I − L) ∨= ∩ for every L ∈ BD+(I).
(iv) X is not included in any maximal set L of I.
(v) X ∨∈ I.

Thus, X is a transversal of H if and only if X ∨∈ I. Consequently, X is a minimal
transversal of H if and only if X is a minimal set with the property that X ∨∈ I, which
means that X ∈ BD−(I). ∅⊆

13.4 Association Rules

Definition 13.16 An association rule on an item set I is a pair of nonempty disjoint
item sets (X, Y ).

Note that if |I | = n, then there exist 3n −2n+1 +1 association rules on I . Indeed,
suppose that the set X contains k elements; there are

⎜n
k

)
ways of choosing X . Once

X is chosen, Y can be chosen among the remaining 2n−k − 1 nonempty subsets of
I − X . In other words, the number of association rules is

n∑
k=1

(
n

k

)
(2n−k − 1) =

n∑
k=1

(
n

k

)
2n−k −

n∑
k=1

(
n

k

)
.
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By taking x = 2 in the equality

(1 + x)n =
n∑

k=0

(
n

k

)
xn−k,

we obtain
n∑

k=1

(
n

k

)
2n−k = 3n − 2n .

Since
∑n

k=1

⎜n
k

) = 2n − 1 the desired equality follows immediately. The number of
association rules can be quite considerable even for small values of n. For example,
for n = 10, we have 310 − 211 + 1 = 57002 association rules.

An association rule (X, Y ) is denoted by X ⇒ Y . The confidence of X ⇒ Y is
the number

confT (X ⇒ Y ) = suppT (XY )

suppT (X)
.

Definition 13.17 An association rule holds in a transaction data set T with support
μ and confidence c if suppT (XY ) � μ and confT (X ⇒ Y ) � c.

Once a μ-frequent item set Z is identified, we need to examine the support levels
of the subsets X of Z to ensure that an association rule of the form X ⇒ Z − X
has a sufficient level of confidence, confT (X ⇒ Z − X) = μ

suppT (X)
. Observe that

suppT (X) � μ because X is a subset of Z . To obtain a high level of confidence for
X ⇒ Z − X , the support of X must be as small as possible.

Clearly, if X ⇒ Z − X does not meet the level of confidence, then it is pointless
to look for rules of the form X ∞ ⇒ Z − X ∞ among the subsets X ∞ of X .

Example 13.18 Let T be the transaction data set introduced in Example 13.12.
We saw that the item set L = i2i3i4i5 has support count equal to 2 and therefore
suppT (L) = 0.25. This allows us to obtain the following association rules having
three item sets in their antecedent that are subsets of L:

Rule suppcountT (X) confT (X ⇒ Y )

i2i3i4 ⇒ i5 2 1
i2i3i5 ⇒ i4 3 2

3
i2i4i5 ⇒ i3 2 1
i3i4i5 ⇒ i2 2 1

Note that i2i3i4 ⇒ i5, i2i4i5 ⇒ i3, and i3i4i5 ⇒ i2 have 100% confidence. We refer
to such rules as exact association rules.

The rule i2i3i5 ⇒ i4 has confidence 2
3 . It is clear that the confidence of rules of

the form U ⇒ V with U ∪ i2i3i5 and U V = L will be lower than 2
3 since suppT (U )

is at least 3. Indeed, the possible rules of this form are:
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Rule suppcountT (X) confT (X ⇒ Y )

i2i3 ⇒ i4i5 5 2
5

i2i5 ⇒ i3i4 3 2
3

i3i5 ⇒ i2i4 3 2
3

i2 ⇒ i3i4i5 6 2
6

i3 ⇒ i2i4i5 5 2
5

i5 ⇒ i2i3i4 5 2
5

Obviously, if we seek association rules having a confidence larger than 2
3 , no such

rule U ⇒ V can be found such that U is a subset of i2i3i5.
Suppose, for example, that we seek association rules U ⇒ V that have a minimal

confidence of 80%. We need to examine subsets U of the other sets, i2i3i4, i2i4i5, or
i3i4i5, which are not subsets of i2i3i5 (since the subsets of i2i3i5 cannot yield levels

of confidence higher than
2

3
). There are five such sets:

Rule suppcountT (X) confT (X ⇒ Y )

i2i4 ⇒ i3i5 2 1
i3i4 ⇒ i2i5 2 1
i4i5 ⇒ i2i3 2 1
i3i4 ⇒ i2i5 2 1
i4 ⇒ i2i3i5 2 1

Indeed, all these sets yield exact rules, that is, rules having 100% confidence.

Many transaction data sets produce a huge number of frequent item sets and
therefore a huge number of association rules, particularly when the levels of sup-
port and confidence required are relatively low. Moreover, it is well-known [1] that
limiting the analysis of association rules to the support/confidence framework can
lead to dubious conclusions. The data mining literature contains many references
that attempt to derive interestingness measures for association rules in order to focus
data analysis of those rules that may be more relevant [2–7].

13.5 Levelwise Algorithms and Posets

This section focuses on the levelwise algorithms, a powerful and elegant generaliza-
tion of the Apriori algorithm that was introduced in [8].

Let (P,�) be a partially ordered set and let Q be a subset of P .

Definition 13.19 The border of Q is the set

BD(Q) = {p ∈ P | u < p implies u ∈ Q and p < ν implies v ∨∈ Q}.
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The positive border of Q is the set:

BD+(Q) = BD(Q) ⊥ Q,

while the negative border of Q is

BD−(Q) = BD(Q) − Q.

Clearly, we have BD(Q) = BD+(Q) ⊕ BD−(Q).
An alternative terminology exists that makes use of the terms generalization and

specialization. If r, p ∈ P and r < p, then we say that r is a generalization of p or
that p is a specialization of r . Thus, the border of a set Q consists of those elements
p of P such that all of their generalizations are in Q and none of their specializations
is in Q.

Theorem 13.20 Let (P,�) be a partially ordered set. If Q and Q∞ are two disjoint
subsets of P, then BD(Q ⊕ Q∞) ∪ BD(Q) ⊕ BD(Q∞).

Proof Let p ∈ BD(Q ⊕ Q∞). Suppose that u < p, so u ∈ Q ⊕ Q∞. Since Q and Q∞
are disjoint, we have either u ∈ Q or u ∈ Q∞. On the other hand, if p < v, then
v ∨∈ Q ⊕ Q∞, so v ∨∈ Q and v ∨∈ Q∞. Thus, we have p ∈ BD(Q) ⊕ BD(Q∞). ∅⊆

The notion of a hereditary subset of a poset is an immediate generalization of the
notion of a hereditary family of sets.

Definition 13.21 A subset Q of a poset (P,�) is said to be hereditary if p ∈ Q and
r � p imply r ∈ Q.

Theorem 13.22 If Q is a hereditary subset of a poset (P,�), then the positive and
the negative borders of Q are given by

BD+(Q) = {p ∈ Q | p < v implies v ∨∈ Q}

and
BD−(Q) = {p ∈ P − Q | u < p implies u ∈ Q},

respectively.

Proof Let t be an element of the positive border BD+(Q) = BD(Q) ⊥ Q. We have
t ∈ Q and t < v implies v ∨∈ Q because t ∈ BD(Q).

Conversely, suppose that t is an element of Q such that t < v implies v ∨∈ Q. Since
Q is hereditary, u < t implies u ∈ Q, so t ∈ BD(Q). Therefore, t ∈ BD(Q) ⊥ Q =
BD+(Q).

Now let s be an element of the negative border of Q; that is, s ∈ BD(Q)− Q. We
have immediately s ∈ P − Q. If u < s, then u ∈ Q, because Q is hereditary. Thus,
BD−(Q) ∪ {p ∈ P − Q | u < p implies u ∈ Q}.
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Conversely, suppose that s ∈ P − Q and u < s implies u ∈ Q. If s < v, then v

cannot belong to Q because this would entail s ∈ Q due to the hereditary property
of Q. Consequently, s ∈ BD(Q) and so s ∈ BD(Q) − Q = BD−(Q). ∅⊆

Theorem 13.22 can be paraphrased by saying that for a hereditary subset Q of P
the positive border consists of the maximal elements of Q, while the negative border
of Q consists of the minimal elements of P − Q.

Note that if Q and Q∞ are two hereditary subsets of P and BD+(Q) = BD+(Q∞),
then Q = Q∞. Indeed, if z ∈ P , one of the following two cases may occur:

1. If z is not a maximal element of Q, then there is a maximal element w of Q such
that z < w. Since w ∈ BD+(Q) = BD+(Q∞), it follows that w ∈ Q∞; hence
z ∈ Q∞ because Q∞ is hereditary.

2. If z is a maximal element of Q, then z ∈ BD+(Q) = BD+(Q∞), hence z ∈ Q∞.

In either case z ∈ Q∞, so Q ∪ Q∞. The reverse inclusion can be proven in a similar
way, so Q = Q∞.

Similarly, we can show that for two hereditary collections Q and Q∞ of subsets of
I , BD−(Q) = BD−(Q∞) implies Q = Q∞. Indeed, suppose that z ∈ Q − Q∞. Since
z ∨∈ Q∞, there exists a minimal element v such that v ∨∈ Q∞ and each of its lower
bounds is in Q∞. Since v belongs to the negative border BD−(Q∞), it follows that
v ∈ BD−(Q). This leads to a contradiction because z ∈ Q and v (for which we have
v < z) does not, thereby contradicting the fact that Q is a hereditary subset. Since
no such z may exist, it follows that Q ∪ Q∞. The reverse inclusion can be shown in
the same manner.

Definition 13.23 Let D be a relational database, SD be the set of states of D, and
(B,↔, h) be a ranked poset referred to as the ranked poset of objects.

A query is a function q : SD × B −∈ {0, 1} such that D ∈ SD, b � b∞, and
q(D, b∞) = 1 imply q(D, b) = 1.

Definition 13.23 is meant to capture the framework of the Apriori algorithm for
identification of frequent item sets. As was shown in [8], this framework can capture
many other situations.

Example 13.24 Let D be a database that contains a tabular variable (T, H) and let
φ = (T, H, Ψ) be the table that is the current value of (T, H) contained by the current
state D of D.

The graded poset (B,↔, h) is (P(H),∪, h), where h(X) = |X |. Given a number
μ, the query is defined by

q(D, K ) =
{

1 if suppT (K ) � μ,

0 otherwise.

Since K ∪ K ∞ implies suppT (K ∞) � suppT (K ), it follows that q satisfies the
condition of Definition 13.23.
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Example 13.25 As in Example 13.24, let D be a database that contains a tabular
variable (T, H), and let φ = (T, H, Ψ) be the table that is the current value of
(T, H) contained by the current state D of D. The graded poset (P(H),⊃, g) is the
dual of the graded poset considered in Example 13.24, where g(K ) = |H | − |K |. If
L is a set of attributes, the function qL is defined by

qL(D, K ) =
{

1 if K ∈ L holds in φ,

0 otherwise.

Note that if K ∞ ∪ K and D satisfies the functional dependency K ∞ ∈ L , then D
satisfies K ∈ L . Thus, q is a query in the sense of Definition 13.23.

Definition 13.26 The set of interesting objects for the state D of the database and
the query q is given by

INT(D, q) = {b ∈ B | q(D, b) = 1}.

Note that the set of interesting objects is a hereditary set (B,�). Indeed, if b ∈
INT(D, q) and c ↔ b, then c ∈ INT(D, q) according to Definition 13.23. Thus,

BD+(INT(D, q)) = {b ∈ INT(D, q) | b < v implies v ∨∈ INT(D, q)},
BD−(INT(D, q)) = {b ∈ B − INT(D, q) | u < b implies u ∈ INT(D, q)}.

In other words, BD+(INT(D, q)) is the set of maximal objects that are interesting,
while BD−(INT(D, q)) is the set of minimal objects that are not interesting.

Algorithm 13.5.1, which we discuss next, is a general algorithm that seeks to
compute the set of interesting objects for a state of a database. The algorithm is
known as the levelwise algorithm because it identifies these objects by successively
scanning the levels of the graded poset of objects.

If L0, L1, . . . are the levels of the graded poset (B,↔, h), then the algorithm
begins by examining all objects located on the initial level. The set of interesting
objects located on the level Li is denoted by Fi ; for each level Li , the computation
of Fi is preceded by a computation of the set of potentially interesting objects Ci

referred to as the set of candidate objects.
The first set of candidate objects, C1, coincides with the level Li . Only the inter-

esting objects on this level are retained for the set F1.
The next set of candidate objects, Ci+1, is constructed by examining the level

Li+1 and keeping those objects b having all their subobjects c in the interesting sets
of the previous levels.
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Algorithm 13.5.1: General Levelwise Algorithm
Data: a database state D, a graded poset of objects (B,↔, h), and a query q
Result: the set of interesting objects for D

1 C1 = L1;
2 i = 1;
3 while Ci ∨= ∩ do
4 /* evaluation phase */ Fi = {b ∈ Ci | q(D, b) = 1};
5 /* candidate generation */

Ci+1 = {b ∈ Li+1 | c < b implies c ∈ ⎟
j�i Fj } − ⎟

j�i Cj ;
6 i + +;
7 end
8 output

⎟
j<i Fj ;

Example 13.27 For frequent item sets, we can work in the framework described in
Example 13.24. The algorithm, which is essentially the Apriori algorithm described
in Sect. 13.2, goes through the while loop no more than k + 1 times, where

k = max{|X | | X ∪ H, suppT (X) > μ}.

Example 13.28 In Example 13.25, we defined the grading query qL as

qL(D, K ) =
{

1 if K ∈ L holds in φ,

0 otherwise,

for K ∈ P(H). The levelwise algorithm allows us to identify those subsets K such
that a table φ = (T, H, Ψ) satisfies the functional dependency K ∈ L . The first
level consists of all subsets K of H that have |H |−1 attributes. There are, of course,
|H | − 1 such subsets, and the set F1 will contain all these sets such that K ∈ H is
satisfied. Successive levels contain sets that have fewer and fewer attributes. Level
Li contains sets that have |H | − i attributes.

The algorithm will go through the while loop at most 1 + |H − K | times, where
K is the smallest set such that K ∈ L holds.

Observe that the computation of Ci+1 in the generic levelwise algorithm

Ci+1 =

b ∈ Li+1 | c < b implies c ∈

⋃
j�i

F j

⎛
⎧ −

⋃
j�i

C j

can be written as

Ci+1 = BD−
⎨
⎩⋃

j�i

F j

⎫
⎬ −

⋃
j�i

C j .
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This shows that the set of candidate objects at level Li+1 is the negative border of the
interesting sets located on the lower level, excluding those objects that have already
been evaluated.

The most expensive component of the levelwise algorithm is the evaluation of
q(D, b) since this requires a scan of the database state D. Clearly, we need to evaluate
this function for each candidate element, so we will require |⎟β

i=1 Ci | evaluations,
where β is the number of levels that are scanned. Some of these evaluations will result
in including the evaluated object b in the set Fi . Objects that will not be included in
INT(D, q) are such that any of their generalizations are in INT(D, q), even though
they fail to belong to this set. They belong to BD−(INT(D, q)). Thus, the levelwise
algorithm performs |INT(D, q)| + |BD−(INT(D, q))| evaluations of q(D, b).

13.6 Lattices and Frequent Item Sets

Galois connections discussed in Sect. 11.4 are useful in the study of frequent item
sets. This approach was introduced for the first time in [9].

Let I be a set of items and T : {1, . . . , n} −∈ P(I ) be a transaction data
set. Denote by D the set of transaction identifiers D = {1, . . . , n}. The functions
itemsT : P(D) −∈ P(I ) and tidsT : P(I ) −∈ P(D) are defined by

itemsT (E) =
⎭

{T (k) | k ∈ E},
tidsT (H) = {k ∈ D | H ∪ T (k)},

for every E ∈ P(D) and every H ∈ P(I ).
Note that suppcountT (H) = |tidsT (H)| for every H ∈ P(I ).

Theorem 13.29 Let T : {1, . . . , n} −∈ P(I ) be a transaction data set. The pair
(itemsT , tidsT ) is a Galois connection between the posets (P(D),∪) and (P(I ),∪).

Proof We need to prove that

1. if E ∪ E ∞, then itemsT (E ∞) ∪ itemsT (E),
2. if H ∪ H ∞, then tidsT (H ∞) ∪ tidsT (H),
3. E ∪ tidsT (itemsT (E)), and
4. H ∪ itemsT (tidsT (H))

for every E, E ∞ ∈ P(D) and every H, H ∞ ∈ P(I ).

The first two properties follow immediately from the definitions of the functions
itemsT and tidsT .

To prove Part (iii), let k ∈ E be a transaction identifier. Then, the item set T (e)
includes itemsT (E) by the definition of itemsT (E). By Part (ii), tidsT (T (e)) ∪
tidsT (itemsT (E)). Since e ∈ tidsT (T (e)), it follows that e ∈ tidsT (itemsT (E)), so
E ∪ tidsT (itemsT (E)).

http://dx.doi.org/10.1007/978-1-4471-6407-4_11
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The argument for Part (iv) is similar. ∅⊆
The theorem can be obtained directly by noting that (itemsT , tidsT ) is the polarity

determined by the relation

Ψ = {(k, i) ∈ D × I | i ∈ T (k)}.

Corollary 13.30 Let T : D −∈ P(I ) be a transaction data set and let Ki :
P(I ) −∈ P(I )and Kd : P(D) −∈ P(D)be defined by Ki (H) = itemsT (tidsT (H))

for H ∈ P(I ) and Kd(E) = tidsT (itemsT (E)) for E ∈ P(D). Then, Ki and Kd are
closure operators on I and D, respectively.

Proof The argument was made in Example 11.54. ∅⊆
Theorem 13.31 Let T : D −∈ P(I ) be a transaction data set. We have

Ki (H1 ⊕ H2) = Ki (H1) ⊥ Ki (H2),

Kd(E1 ⊕ E2) = Kd(E1) ⊥ Kd(E2),

for H1, H2 ∪ I and E1, E2 ∪ D.

Proof This statement is a direct consequence of the definitions of Ki and Kd . ∅⊆
Closed sets of items (that is, sets of items H such that H = Ki (H)) can be

characterized as follows.

Theorem 13.32 Let T : {1, . . . , n} −∈ P(I ) be a transaction data set.
A set of items H is closed if and only if, for every set L ∈ P(I ) such that H ∧ L,

we have suppT (L) < suppT (H).

Proof Suppose that for every superset L of H we have suppT (H) > suppT (L) and
that H is not a closed set of items. Therefore, the set Ki (H) = itemsT (tidsT (H)) is a
superset of H and consequently suppcountT (H) > suppcountT (itemsT (tidsT (H))).
Since

suppcountT (itemsT (tidsT (H))) = |tidsT (itemsT (tidsT (H)))| = |tidsT (H)|,

this leads to a contradiction. Thus, H must be closed.

Conversely, suppose that H is a closed set of items,

H = Ki (H) = itemsT (tidsT (H)),

and let L be a strict superset of H . Suppose that suppT (L) = suppT (H). This means
that |tidsT (L)| = |tidsT (H)|.

Since H = itemsT (tidsT (H)) ∧ L , it follows that

tidsT (L) ∪ tidsT (itemsT (tidsT (H))) = tidsT (H),
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which implies the equality tidsT (L) = tidsT (itemsT (tidsT (H))) because the sets
tidsT (L) and tidsT (H) have the same number of elements. Thus, we have tidsT (L) =
tidsT (H). In turn, this yields

H = itemsT (tidsT (H)) = itemsT (tidsT (L)) ⊃ L ,

which contradicts the initial assumption H ∧ L . ∅⊆
The importance of determining the closed item sets is based on the equality

suppcountT (itemsT (tidsT (H))) = |tidsT (itemsT (tidsT (H)))| = |tidsT (H)|. Thus,
if we have the support counts of the closed sets, we have the support count of every
set of items and the number of closed sets can be much smaller than the total number
of item sets. An interesting algorithm focused on closed item sets was developed
in [10].

Exercises and Supplements

1. Let I = {a, b, c, d} be a set of items and let T be a transaction data set defined
by

T (1) = abc,

T (2) = abd,

T (3) = acd,

T (4) = bcd,

T (5) = ab.

(a) Find item sets whose support is at least 0.25.
(b) Find association rules having support at least 0.25 and a confidence at least

0.75.

2. Let I = i1i2i3i4i5 be a set of items. Find the 0.6-frequent item sets of the
transaction data set T on I defined by

T (1) = i1, T (6) = i1i2i4,
T (2) = i1i2, T (7) = i1i2i5,
T (3) = i1i2i3, T (8) = i2i3i4,
T (4) = i2i3, T (9) = i2i3i5,
T (5) = i2i3i4, T (10) = i3i4i5.

Also, determine all rules whose confidence is at least 0.75.
3. Let T be a transaction data set T on an item set I , T : {1, . . . , n} −∈ P(I ).

Define the bit sequence of an item set X as sequence bX = (b1, . . . , bn) ∈
Seqn({0, 1}), where
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bi =
{

1 if X ∪ T (i),

0 otherwise,

for 1 � i � n.
For b ∈ Seqn({0, 1}), the number

→|{i |1 � i � n, bi = 1}| is denoted by ≥ b ≥.
The distance between the sequences b and c is defined as ≥ b ≡ c ≥. Prove that:

(a) bX⊕Y = bX ∗ bY for every X, Y ∈ P(I ).
(b) bK≡L = bL ≡ bK , where K ≡ L is the symmetric difference of the item

sets K and L .
(c) |⎪suppT (K ) − ⎪

suppT (L)| ↔ d(bK ,bL )→|T | .

4. For a transaction data set T on an item set I = {i1, . . . , in}, T : {1, . . . , n} −∈
P(I ) and a number h, 1 � h � n, define the number νT (h) by

νT (h) = 2n−1bn + · · · + 2b2 + b1,

where

bk =
{

1 if ik ∈ T (h),

0 otherwise,

for 1 � k � n. Prove that ik ∈ T (h) if and only if the result of the integer
division νT (h)/k is an odd number.

Suppose that the tabular variables of a database D are (T1, H1), . . . , (Tp, Hp).
An inclusion dependency is an expression of the form Ti [K ] ∪ Tj [L], where
K ∪ Hi and L ∪ Hj for some i, j , where 1 � i, j � p are two sets of attributes
having the same cardinality. Denote by IDD the set of inclusion dependencies
of D.
Let D ∈ SD be a state of the database D, Φ = Ti [K ] ∪ Tj [L] be an inclu-
sion dependency, and φi = (Ti , Hi , Ψi ), φ j = (Tj , Hj , Ψ j ) be the tables that
correspond to the tabular variables (Ti , Hi ) and (Tj , Hj ) in D. The inclusion
dependency Φ is satisfied in the state D of D if for every tuple t ∈ Ψi there is a
tuple s ∈ Ψ j such that t[K ] = s[L].

5. For Φ = Ti [K ] ∪ Tj [L] and δ = Td [K ∞] ∪ Te[L ∞], define the relation Φ � δ

if d = i, e = j , K ∪ K ∞, and H ∪ H ∞. Prove that “↔” is a partial order on IDD.
6. Prove that the triple (IDD,↔, h) is a graded poset, where h(Ti [K ] ∪ Tj [L]) =

|K |.
7. Prove that the function q : SD × IDD −∈ {0, 1} defined by

q(D, Φ) =
{

1 if Φ is satisfied in D,

0 otherwise,

is a query (as in Definition 13.23).
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8. Specialize the generic levelwise algorithm to an algorithm that retrieves all inclu-
sion dependencies satisfied by a database state.
Let T : {1, . . . , n} −∈ P(D) be a transaction data set on an item set D. The
contingency matrix of two item sets X and Y is the 2 × 2-matrix:

MXY =
(

m11 m10
m01 m00

)
,

where

m11 = |{k|X ∪ T (k) and Y ∪ T (k)}|,
m10 = |{k|X ∪ T (k) and Y ∨∪ T (k)}|,
m01 = |{k|X ∨∪ T (k) and Y ∪ T (k)}|,
m00 = |{k|X ∨∪ T (k) and Y ∨∪ T (k)}|.

Also, let m1· = m11 + m10 and m·1 = m11 + m01.
9. Let X ⇒ Y be an association rule. Prove that

confT (X ⇒ Y ) = m11

m11 + m10
.

Which significance has the number m10 for X ⇒ Y ?
10. Let T : {1, . . . , n} −∈ P(I ) be a transaction data set on a set of items I and let π

be a partition of the set {1, . . . , n} of transaction identifiers, π = {B1, . . . , Bp}.
Let ni = |Bi | for 1 � i � p.
A partitioning of T is a sequence T1, . . . , Tp of transaction data sets on I
such that Ti : {1, . . . , ni } −∈ P(I ) is defined by Ti (β) = T (kβ), where
Bi = {k1, . . . , kni } for 1 � i ↔ p.

Intuitively, this corresponds to splitting horizontally the table of T into p tables
that contain n1, . . . , n p consecutive rows, respectively.

Let K be an item set. Prove that if suppT (K ) � μ, there exists j , 1 � j � p,
such that suppTj

(K ) � μ. Give an example to show that the reverse implication
does not hold; in other words, give an example of a transaction data set T , a
partitioning T1, . . . , Tp of T , and an item set K such that K is μ-frequent in
some Ti but not in T .

11. Piatetsky-Shapiro formulated in [2] three principles that a rule interestingness
measure R should satisfy:

(a) R(X ⇒ Y ) = 0 if m11 = m1·m·1
n ,

(b) R(X ∈ Y ) increases with m11 when other parameters are fixed, and
(c) R(X ∈ Y ) decreases with m·1 and with m1· when other parameters are

fixed.
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The lift of a rule X ⇒ Y is the number lift(X ⇒ Y ) = nm11
m1·m·1 . The PS measure

is PS(X ∈ Y ) = m11 − m1·m·1
n . Do lift and PS satisfy Piatetsky-Shapiro’s prin-

ciples? Give examples of interestingness measures that satisfy these principles.
12. Let I be a set of items and T : {1, . . . , n} −∈ P(I ) be a transaction data

set. Recall that in Sect. 13.6 we introduced the function tidsT : P(I ) −∈
P({1, . . . , n) by tidsT (H) = {k ∈ {1, . . . , n} | H ∪ T (k)} for any item
set H .

(a) Prove that if L , J ∪ I , J ∪ L , and L − J = {i1, . . . , i p}, then tidsT (L) =⋂p
β=1 tidsT (J ⊕ {iβ}).

(b) Let F L
J be the number F L

J = |{(h, J ∞) | J ∞ ∪ T (h) and J ∞ ⊥ L = J |. Prove
that

F L
J =

∣∣∣∣∣
p⋃

k=1

tidsT (J ⊕ {ik})
∣∣∣∣∣ − |tidsT (J )|.

(c) By applying the Inclusion-Exclusion Principle, prove that

suppcount(L) − (−1)p F L
J =

∑
J∪J ∞∧L

(−1)|L−J ∞|+1suppcount(J ∞).

13. Let T : {1, . . . , n} −∈ P(I ) be a transaction data set on the set of items I .
Prove that if f = suppcountT , then for the density d f we have d f (K ) = |{i |
T (i) = K }| for every K ∈ P(I ).

14. Let T : {1, . . . , n} −∈ P(I ) be a transaction data set on the set of items
I and let C be a collection of sets of items. Prove that DC

suppcount (K ) =∑{dsuppcount (U ) | U ∈ L[K ,C]}.
15. Let T : {1, . . . , n} −∈ P(I ) be a transaction data set over a set of items

I . Prove that the mapping d : (P(I ))2 −∈ R�0 defined by d(H, K ) =
suppcount(H) + suppcount(K ) − 2suppcountT (H K ) for K , H ∪ I is a semi-
metric on the collection of item sets.

Bibliographical Comments

In addition to general data mining references [1, 11], the reader should consult [12], a
monograph dedicated to frequent item sets and association rules. Seminal work in this
area, in addition to the original paper [13], has been done by Mannila and Toivonen [8]
and by Zaki [10]; these references lead to an interesting and rewarding journey
through the data mining literature. An alternative method for detecting frequent
item sets based on a very interesting condensed representation of the data set was
developed by Han et al. [14].
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An algorithm that searches the collection of item sets in a depth-first manner with
the purpose of discovering maximal frequent item sets was proposed in [15, 16].

Exercises 5–8 are reformulations of results obtained in [8].
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Chapter 14
Special Metrics

14.1 Introduction

Clustering and classification, two central data mining activities, require the evaluation
of degrees of dissimilarity between data objects. This task is accomplished using a
variety of specializations of the notion of dissimilarity, such as tree metrics and
ultrametrics, which we introduced in Sect. 1.9.

Substantial attention is paid to ultrametrics due to their importance for clustering
algorithms. Various modalities for generating ultrametrics are discussed, starting
with hierarchies on sets, equidistant trees, and chains of partitions (or equivalences).

Metrics on several quite distinct data types (beyond metrics on linear spaces
discussed in Chap. 5) are considered: subsets of finite sets, partitions of finite sets,
and sequences. The chapter concludes with a section dedicated to the application of
elementary properties of metrics to searching in metric spaces. Further applications
of metrics are presented in subsequent chapters.

14.2 Ultrametrics and Ultrametric Spaces

Recall that an ultrametric on a set S was defined in Sect. 1.9 as a mapping d : S2 −∈
R�0 that has the following properties:

(i) d(x, y) = 0 if and only if x = y for x, y ∈ S;
(ii) d(x, y) = d(y, x) for x, y ∈ S;
(iii) d(x, y) � max{d(x, z), d(z, y)} for x, y, z ∈ S.

As we did for metrics, if property (i) is replaced by the weaker requirement that
d(x, x) = 0 for x ∈ S, then d is a quasi-ultrametric on S.

Example 14.1 Let ρ = {B, C} be a two-block partition of a nonempty set S. Define
the mapping dρ : S2 −∈ R�0 by

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 669
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_14,
© Springer-Verlag London 2014
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dρ(x, y) =
{

0 if {x, y} ∪ B or {x, y} ∪ C

1 otherwise,

for x, y ∈ S. We claim that dρ is a quasi-ultrametric. Indeed, it is clear that
dρ(x, x) = 0 and dρ(x, y) = dρ(y, x) for x, y ∈ S. Now let x, y, z be three
arbitrary elements in S. If dρ(x, y) = 1, then x and y belong to two distinct blocks
of the partition ρ, say to B and C , respectively. If z ∈ B, then dρ(x, z) = 0 and
dρ(z, y) = 1; similarly, if z ∈ C , then dρ(x, z) = 1 and dρ(z, y) = 0. In either case,
the ultrametric inequality is satisfied.

Theorem 14.2 Let a0, a1, a2 ∈ R be three numbers. If ai � max{a j , ak} for every
permutation (i, j, k) of the set {0, 1, 2}, then two of the numbers are equal and the
third is not larger than the two others.

Proof Suppose that ai is the least of the numbers a0, a1, a2 and a j , ak are the remain-
ing numbers. Since a j � max{ai , ak} = ak and ak � max{ai , a j } = a j , it follows
that a j = ak � ai .

Triangles in ultrametric spaces have an interesting property that is given next.

Corollary 14.3 Let (S, d) be an ultrametric space. For every x, y, z ∈ S, two of the
numbers d(x, y), d(x, z), d(y, z) are equal and the third is not larger than the two
other equal numbers.

Proof Since d satisfies the ultrametric inequality, the statement follows immediately
from Theorem 14.2.

Theorem 14.4 Let B(x, r) be a closed sphere in the ultrametric space (S, d). If
z ∈ B(x, d), then B(x, r) = B(z, r). In other words, in an ultrametric space, a
closed sphere has all its points as centers.

Proof Suppose that z ∈ B(x, r), so d(x, z) � r . Let y ∈ B(z, r). Since d(y, x) �
max{d(y, z), d(z, x)} � r , we have y ∈ B(x, r). Conversely, if y ∈ B(x, r), we
have d(y, z) � max{d(y, x), d(x, z)} � r , hence y ∈ B(z, r).

Both closed and open spheres in ultrametric spaces are clopen sets as we show
next.

Theorem 14.5 If d is an ultrametric on S, then any closed sphere B(t, r) and any
open sphere C(t, r) are clopen sets in the topological ultrametric space (S,Od).

Proof We already know that B(t, r) is closed. To prove that this set is also open if
d is an ultrametric, let s ∈ B(t, r). By Theorem 14.4 s is a center of the sphere.
Therefore, C

⎜
s, r

2

) ∪ B(t, r), so B(t, r) is open. We leave the proof that C(t, r) is
also closed to the reader.

By Theorem 4.35, the border of a closed sphere or of an open sphere in an
ultrametric space is empty.
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Theorem 14.6 Let (S, d) be an ultrametric space, x, y ∈ S, and let S(x, y) ∪
Seq(S) be the set of sequences that start with x and end with y. We have d(x, y) =
min{ampd(s) | s ∈ S(x, y)}.
Proof Since d is an ultrametric, we have d(x, y) � ampd(s) for any nonnull sequence
s = (s1, . . . , sn) such that s1 = x and sn = y. Therefore,

d(x, y) � min{ampd(s) | s ∈ S(x, y)}.

The equality of the theorem follows from the fact that (x, y) ∈ S(x, y).

Theorem 14.7 If two closed spheres B(x, r) and B(y, r ∞) of an ultrametric space
have a point in common, then one of the closed spheres is included in the other.

Proof The statement follows directly from Theorem 14.4.

Theorem 14.4 implies that the entire space S equals the closed sphere B(x,

diamS,d) for any point x ∈ S.
The next statement gives a method of constructing ultrametrics starting from

chains of equivalence relations.

Theorem 14.8 Let S be a finite set and let d : S × S −∈ R�0 be a function whose
range is Ran(d) = {r1, . . . , rm}, where r1 = 0 such that d(x, y) = 0 if and only if
x = y. Define the relations ιri = {(x, y) ∈ S × S | d(x, y) � ri } for 1 � i � m.

The function d is an ultrametric on S if and only if the sequence of relations
ιr1, . . . , ιrm is an increasing chain of equivalences on S such that ιr1 = θS and
ιrm = νS.

Proof Suppose that d is an ultrametric on S. We have (x, x) ∈ ιri because d(x, x) =
0, so all relations ιri are reflexive. Also, it is clear that the symmetry of d implies
(x, y) ∈ ιri if and only if (y, x) ∈ ιri , so these relations are symmetric.

The ultrametric inequality is essential for proving the transitivity of the relations
ιri . If (x, y), (y, z) ∈ ιri , then d(x, y) � ri and d(y, z) � ri , which implies
d(x, z) � max{d(x, y), d(y, z)} � ri . Thus, (x, z) ∈ ιri , which shows that every
relation ιri is transitive and therefore an equivalence.

It is straightforward to see that ιr1 � ιr2 � · · · � ιrm ; that is, this sequence of
relations is indeed a chain of equivalences.

Conversely, suppose that ιr1, . . . , ιrm is an increasing sequence of equivalences
on S such that ιr1 = θS and ιrm = νS , where ιri = {(x, y) ∈ S × S | d(x, y) � ri }
for 1 � i � m and r1 = 0.

Note that d(x, y) = 0 is equivalent to (x, y) ∈ ιr1 = θS , that is, to x = y.
We claim that

d(x, y) = min{r | (x, y) ∈ ιr }. (14.1)

Indeed, sinceιrm = νS , it is clear that there is an equivalenceιri such that (x, y) ∈ ιri .
If (x, y) ∈ ιri , the definition of ιri implies d(x, y) � ri , so d(x, y) � min{r |
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(x, y) ∈ ιr }. This inequality can be easily seen to become an equality since (x, y) ∈
ιd(x,y). This implies immediately that d is symmetric.

To prove that d satisfies the ultrametric inequality, let x, y, z be three members of
the set S. Let p = max{d(x, z), d(z, y)}. Since (x, z) ∈ ιd(x,z) ∪ ιp and (z, y) ∈
ιd(z,y) ∪ ιp, it follows that (x, y) ∈ ιp, due to the transitivity of the equivalence ιp.
Thus, d(x, y) � p = max{d(x, z), d(z, y)}, which proves the triangular inequality
for d.

Of course, Theorem 14.8 can be formulated in terms of partitions.

Theorem 14.9 Let S be a finite set and let d : S × S −∈ R�0 be a function whose
range is Ran(d) = {r1, . . . , rm}, where r1 = 0 such that d(x, y) = 0 if and only
if x = y. For u ∈ S and r ∈ R�0, define the set Du,r = {x ∈ S | d(u, x) � r} and
let ρri = {D(u, ri ) | u ∈ S} for 1 � i � m.

The function d is an ultrametric on S if and only if the sequence ρr1 , . . . ,ρrm is
an increasing sequence of partitions on S such that ρr1 = δS and ρrm = σS.

Proof The argument is entirely similar to the proof of Theorem 14.8 and is omitted.

14.2.1 Hierarchies and Ultrametrics

Definition 14.10 Let S be a set. A hierarchy on S is a collection of sets H ∪ P(S)

that satisfies the following conditions:

(i) the members of H are nonempty sets;
(ii) S ∈ H;
(iii) for every x ∈ S, we have {x} ∈ H;
(iv) if H, H ∞ ∈ H and H ∅ H ∞ ⊆= ∩, then we have either H ∪ H ∞ or H ∞ ∪ H.

A standard technique for constructing a hierarchy on a set S starts with a rooted
tree (T, v0) whose nodes are labeled by subsets of the set S. Let V be the set of
vertices of the tree T. The function μ : V −∈ P(S), which gives the label μ(v) of
each node v ∈ V , is defined as follows:

(i) the tree T has |S| leaves, and each leaf v is labeled by a distinct singleton
μ(v) = {x} for x ∈ S;

(ii) if an interior vertex v of the tree has the descendants v1, v2, . . . , vn , then μ(v) =⋃n
i=1 μ(vi ).

The set of labels HT of the rooted tree (T, v0) forms a hierarchy on S. Indeed,
note that each singleton {x} is a label of a leaf. An easy argument by induction on the
height of the tree shows that every vertex is labeled by the set of labels of the leaves
that descend from that vertex. Therefore, the root v0 of the tree is labeled by S.

Suppose that H, H ∞ are labels of the nodes u, v of T, respectively. If H ∅ H ∞ ⊆= ∩,
then the vertices u, v have a common descendant. In a tree, this can take place only if
u is a descendant of v or v is a descendant of u; that is, only if H ∪ H ∞, or H ∞ ∪ H ,
respectively. This gives the desired conclusion.
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Fig. 14.1 Tree labeled by
subsets of S

Example 14.11 Let S = {s, t, u, v, w, x, y} and let T be a tree whose vertices are
labeled as shown in Fig. 14.1. It is easy to verify that the family of subsets of S that
label the nodes of T,

H = {{s}, {t}, {u}, {v}, {w}, {x}, {y},
{s, t, u}, {w, x}, {s, t, u, v}, {w, x, y}, {s, t, u, v, w, x, y}}

is a hierarchy on the set S.

Chains of partitions defined on a set generate hierarchies, as we show next.

Theorem 14.12 Let S be a set and let C = (ρ1,ρ2, . . . ,ρn) be an increasing chain
of partitions (PART(S),�) such that ρ1 = δS and ρn = σS. Then, the collection
HC = ⋃n

i=1 ρi that consists of the blocks of all partitions in the chain is a hierarchy
on S.

Proof The blocks of any of the partitions are nonempty sets, so HC satisfies the first
condition of Definition 14.10.

We have S ∈ HC because S is the unique block of ρn = σS . Also, since all
singletons {x} are blocks of δS = ρ1, it follows that HC satisfies the second and the
third conditions of Definition 14.10. Finally, let H and H ∞ be two sets of HC such
that H ∅ H ∞ ⊆= ∩. Because of this condition, it is clear that these two sets cannot be
blocks of the same partition. Thus, there exist two partitions ρi and ρ j in the chain
such that H ∈ ρi and H ∞ ∈ ρ j . Suppose that i < j . Since every block of ρ j is a
union of blocks of ρi , H ∞ is a union of blocks of ρi and H ∅ H ∞ ⊆= ∩ means that H is
one of these blocks. Thus, H ∪ H ∞. If j > i , we obtain the reverse inclusion. This
allows us to conclude that HC is indeed a hierarchy.

Theorem 14.12 can be stated in terms of chains of equivalences; we give the
following alternative formulation for convenience.

Theorem 14.13 Let S be a finite set and let (φ1, . . . , φn) be a chain of equivalence
relations on S such that φ1 = θS and φn = νS. Then, the collection of blocks of the
equivalence relations φr (that is, the set

⋃
1�r�n S/φr ) is a hierarchy on S.
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Proof The proof is a mere restatement of the proof of Theorem 14.12.

Define the relation “⊕” on a hierarchy H on S by H ⊕ K if H, K ∈ H, H ⊥ K ,
and there is no set L ∈ H such that H ⊥ L ⊥ K .

Lemma 14.14 Let H be a hierarchy on a finite set S and let L ∈ H. The collection
PL = {H ∈ H | H ⊕ L} is a partition of the set L.

Proof We claim that L = ⋃
PL . Indeed, it is clear that

⋃
PL ∪ L .

Conversely, suppose that z ∈ L but z ⊆∈ ⋃
PL . Since {z} ∈ H and there is no

K ∈ PL such that z ∈ K , it follows that {z} ∈ PL , which contradicts the assumption
that z ⊆∈ ⋃

PL . This means that L = ⋃
PL .

Let K0, K1 ∈ PL be two distinct sets. These sets are disjoint since otherwise we
would have either K0 ⊥ K1 or K1 ⊥ K0, and this would contradict the definition of
PL .

Theorem 14.15 Let H be a hierarchy on a set S. The graph of the relation ⊕ on H

is a tree whose root is S; its leaves are the singletons {x} for every x ∈ S.

Proof Since ⊕ is an antisymmetric relation on H, it is clear that the graph (H,⊕)

is acyclic. Moreover, for each set K ∈ H, there is a unique path that joins K to S,
so the graph is indeed a rooted tree.

Definition 14.16 Let H be a hierarchy on a set S. A grading function for H is a
function h : H −∈ R that satisfies the following conditions:

(i) h({x}) = 0 for every x ∈ S, and
(ii) if H, K ∈ H and H ⊥ K , then h(H) < h(K ).

If h is a grading function for a hierarchy H, the pair (H, h) is a graded hierarchy.

Example 14.17 For the hierarchy H defined in Example 14.11 on the set S =
{s, t, u, v, w, x, y}, the function h : H −∈ R given by

h({s}) = h({t}) = h({u}) = h({v}) = h({w}) = h({x}) = h({y}) = 0,

h({s, t, u}) = 3, h({w, x}) = 4, h({s, t, u, v}) = 5, h({w, x, y}) = 6,

h({s, t, u, v, w, x, y}) = 7,

is a grading function and the pair (H, h) is a graded hierarchy on S.

Theorem 14.12 can be extended to graded hierarchies.

Theorem 14.18 Let S be a finite set and let C = (ρ1,ρ2, . . . ,ρn) be an increasing
chain of partitions (PART(S),�) such that ρ1 = δS and ρn = σS.

If f : {1, . . . , n} −∈ R�0 is a function such that f (1) = 0, then the function
h : HC −∈ R�0 given by h(K ) = f

⎜
min{ j | K ∈ ρ j }

)
is a grading function for

the hierarchy HC .
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Proof Since {x} ∈ ρ1 = δS , it follows that h({x}) = 0, so h satisfies the first
condition of Definition 14.16.

Suppose that H, K ∈ HC and H ⊥ K . If ν = min{ j | H ∈ ρ j } it is impossible
for K to be a block of a partition that precedes ρν. Therefore, ν < min{ j | K ∈ ρ j },
so h(H) < h(K ), and (HC , h) is indeed a graded hierarchy.

A graded hierarchy defines an ultrametric, as shown next.

Theorem 14.19 Let (H, h) be a graded hierarchy on a finite set S. Define the func-
tion d : S2 −∈ R as d(x, y) = min{h(U ) | U ∈ H and {x, y} ∪ U } for x, y ∈ S.
The mapping d is an ultrametric on S.

Proof Observe that for every x, y ∈ S there exists a set H ∈ H such that {x, y} ∪ H
because S ∈ H.

It is immediate that d(x, x) = 0. Conversely, suppose that d(x, y) = 0. Then,
there exists H ∈ H such that {x, y} ∪ H and h(H) = 0. If x ⊆= y, then {x} ⊥ H ,
hence 0 = h({x}) < h(H), which contradicts the fact that h(H) = 0. Thus, x = y.

The symmetry of d is immediate.
To prove the ultrametric inequality, let x, y, z ∈ S, and suppose that d(x, y) = p,

d(x, z) = q, and d(z, y) = r . There exist H, K , L ∈ H such that {x, y} ∪ H ,
h(H) = p, {x, z} ∪ K , h(K ) = q , and {z, y} ∪ L , h(L) = r . Since K ∅ L ⊆= ∩
(because both sets contain z), we have either K ∪ L or L ∪ K , so K ∨ L equals
either K or L and, in either case, K ∨ L ∈ H. Since {x, y} ∪ K ∨ L , it follows that

d(x, y) � h(K ∨ L) = max{h(K ), H(L)} = max{d(x, z), d(z, y)},

which is the ultrametric inequality.

We refer to the ultrametric d whose existence is shown in Theorem 14.19 as the
ultrametric generated by the graded hierarchy (H, h).

Example 14.20 The values of the ultrametric generated by the graded hierarchy
(H, h) on the set S introduced in Example 14.17 are given in the following table:

d s t u v w x y

s 0 3 3 5 7 7 7
t 3 0 3 5 7 7 7
u 3 3 0 5 7 7 7
v 5 5 5 0 7 7 7
w 7 7 7 7 0 4 6
x 7 7 7 7 4 0 6
y 7 7 7 7 6 6 0

The hierarchy introduced in Theorem 14.13 that is associated with an ultrametric
space can be naturally equipped with a grading function, as shown next.
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Theorem 14.21 Let (S, d) be a finite ultrametric space. There exists a graded hier-
archy (H, h) on S such that d is the ultrametric associated to (H, h).

Proof Let H be the collection of equivalence classes of the equivalences ιr =
{(x, y) ∈ S2 | d(x, y) � r} defined by the ultrametric d on the finite set S,
where the index r takes its values in the range Rd of the ultrametric d. Define
h(E) = min{r ∈ Rd | E ∈ S/ιr } for every equivalence class E .

It is clear that h({x}) = 0 because {x} is an ι0-equivalence class for every x ∈ S.
Let [x]t be the equivalence class of x relative to the equivalence ιt .
Suppose that E and E ∞ belong to the hierarchy and E ⊥ E ∞. We have E = [x]r

and E ∞ = [x]s for some x ∈ X . Since E is strictly included in E ∞, there exists
z ∈ E ∞ − E such that d(x, z) � s and d(x, z) > r . This implies r < s. Therefore,

h(E) = min{r ∈ Rd | E ∈ S/ιr } � min{s ∈ Rd | E ∞ ∈ S/ιs} = h(E ∞),

which proves that (H, h) is a graded hierarchy.
The ultrametric e generated by the graded hierarchy (H, h) is given by

e(x, y) = min{h(B) | B ∈ H and {x, y} ∪ B}
= min{r | (x, y) ∈ ιr } = min{r | d(x, y) � r} = d(x, y),

for x, y ∈ S; in other words, we have e = d .

Example 14.22 Starting from the ultrametric on the set S = {s, t, u, v, w, x, y}
defined by the table given in Example 14.20, we obtain the following quotient sets:

Values of r S/ιr

[0, 3) {s}, {t}, {u}, {v}, {w}, {x}, {y}
[3, 4) {s, t, u}, {v}, {w}, {x}, {y}
[4, 5) {s, t, u}, {v}, {w, x}, {y}
[5, 6) {s, t, u, v}, {w, x}, {y}
[6, 7) {s, t, u, v}, {w, x, y}
[7,∧) {s, t, u, v, w, x, y}

We shall draw the tree of a graded hierarchy (H, h) using a special representation
known as a dendrogram. In a dendrogram, an interior vertex K of the tree is repre-
sented by a horizontal line drawn at the height h(K ). For example, the dendrogram
of the graded hierarchy of Example 14.17 is shown in Fig. 14.2.

By Theorem 14.19, the value d(x, y) of the ultrametric d generated by a hierarchy
H is the smallest height of a set of a hierarchy that contains both x and y. This allows
us to “read” the value of the ultrametric generated byH directly from the dendrogram
of the hierarchy.

Example 14.23 For the graded hierarchy of Example 14.17, the ultrametric extracted
from Fig. 14.2 is clearly the same as the one that was obtained in Example 14.20.
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Fig. 14.2 Dendrogram of graded hierarchy of Example 14.17

14.2.2 The Poset of Ultrametrics

Let S be a set. Recall that we denoted the set of dissimilarities byDS . Define a partial
order � on DS by d � d ∞ if d(x, y) � d ∞(x, y) for every x, y ∈ S. It is easy to verify
that (DS,�) is a poset.

The set US of ultrametrics on S is a subset of DS .

Theorem 14.24 Let d be a dissimilarity on a set S and let Ud be the set of ultra-
metrics Ud = {e ∈ US | e � d}. The set Ud has a largest element in the poset
(DS,�).

Proof The set Ud is nonempty because the zero dissimilarity d0 given by
d0(x, y) = 0 for every x, y ∈ S is an ultrametric and d0 � d.

Since the set {e(x, y) | e ∈ Ud} has d(x, y) as an upper bound, it is possible
to define the mapping e1 : S2 −∈ R�0 as e1(x, y) = sup{e(x, y) | e ∈ Ud}
for x, y ∈ S. It is clear that e � e1 for every ultrametric e. We claim that e1 is an
ultrametric on S.

We prove only that e1 satisfies the ultrametric inequality. Suppose that there exist
x, y, z ∈ S such that e1 violates the ultrametric inequality; that is,

max{e1(x, z), e1(z, y)} < e1(x, y).

This is equivalent to

sup{e(x, y) | e ∈ Ud} > max{sup{e(x, z) | e ∈ Ud}, sup{e(z, y) | e ∈ Ud}}.

Thus, there exists ê ∈ Ud such that

ê(x, y) > sup{e(x, z) | e ∈ Ud}, and ê(x, y) > sup{e(z, y) | e ∈ Ud}.

In particular, ê(x, y) > ê(x, z) and ê(x, y) > ê(z, y), which contradicts the fact
that ê is an ultrametric.
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Fig. 14.3 Two ultrametrics
on the set {x, y, z} (a) (b)

The ultrametric defined by Theorem 14.24 is known as the maximal subdominant
ultrametric for the dissimilarity d.

The situation is not symmetric with respect to the infimum of a set of ultramet-
rics because, in general, the infimum of a set of ultrametrics is not necessarily an
ultrametric.

For example, consider a three-element set S = {x, y, z}, four distinct nonnegative
numbers a, b, c, d such that a > b > c > d and the ultrametrics d and d ∞ defined
by the triangles shown in Figs. 14.3a, b, respectively.
The dissimilarity d0 defined by d0(u, v) = min{d(u, v), d ∞(u, v)} for u, v ∈ S is
given by

d0(x, y) = b, d0(y, z) = d, and d0(x, z) = c,

and d0 is clearly not an ultrametric because the triangle xyz is not isosceles.
In what follows, we give an algorithm for computing the maximal subdominant

ultrametric for a dissimilarity defined on a finite set S.
We define inductively an increasing sequence of partitions ρ1 ⊕ ρ2 ⊕ · · · and a

sequence of dissimilarities d1, d2, . . . on the sets of blocks of ρ1,ρ2, . . ., respectively.
For the initial phase, ρ1 = δS and d1({x}, {y}) = d(x, y) for x, y ∈ S.
Suppose that di is defined on ρi . If B, C ∈ ρi is a pair of blocks such that di (B, C)

has the smallest value, define the partition ρi+1 by

ρi+1 = (ρi − {B, C}) ∨ {B ∨ C}.

In other words, to obtain ρi+1, we replace two of the closest blocks B and C , of ρi

(in terms of di ) with new block B ∨ C . Clearly, ρi ⊕ ρi+1 in PART(S) for i � 1.
Note that the collection of blocks of the partitions ρi forms a hierarchy Hd on the
set S. The dissimilarity di+1 is given by

di+1(U, V ) = min{d(x, y) | x ∈ U, y ∈ V } (14.2)

for U, V ∈ ρi+1.
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We introduce a grading function hd on the hierarchy defined by this chain of
partitions starting from the dissimilarity d . The definition is done for the blocks of
the partitions ρi by induction on i .

For i = 1 the blocks of the partition ρ1 are singletons; in this case we define
hd({x}) = 0 for x ∈ S.

Suppose that hd is defined on the blocks of ρi , and let D be the block of ρi+1 that
is generated by fusing the blocks B and C of ρi . All other blocks of ρi+1 coincide
with the blocks of ρi . The value of the function hd for the new block D is given by
hd(D) = min{d(x, y) | x ∈ B, y ∈ C}. It is clear that hd satisfies the first condition
of Definition 14.16.

For a set U of Hd , define pU = min{i | U ∈ ρi } and qU = max{i | U ∈ ρi }.
To verify the second condition of Definition 14.16, let H, K ∈ Hd such that

H ⊥ K . It is clear that qH � pK . The construction of the sequence of partitions
implies that there are H0, H1 ∈ ρpH −1 and K0, K1 ∈ ρpK −1 such that H = H0 ∨ H1
and K = K0 ∨ K1. Therefore,

hd(H) = min{d(x, y) | x ∈ H0, y ∈ H1},
hd(K ) = min{d(x, y) | x ∈ K0, y ∈ K1}.

Since H0 and H1 were fused (to produce the partition ρpH ) before K0 and K1 were
(to produce the partition ρpK ), it follows that hd(H) < hd(K ).

By Theorem 14.19, the graded hierarchy (Hd , hd) defines an ultrametric; we
denote this ultrametric by e and will prove that e is the maximal subdominant ultra-
metric for d. Recall that e is given by

e(x, y) = min{hd(W ) | {x, y} ∪ W }

and that hd(W ) is the least value of d(u, v) such that u ∈ U, v ∈ V if W ∈ ρpW is
obtained by fusing the blocks U and V of ρpW −1. The definition of e(x, y) implies
that we have neither {x, y} ∪ U nor {x, y} ∪ V . Thus, we have either x ∈ U and
y ∈ V or x ∈ V and y ∈ U . Thus, e(x, y) � d(x, y).

We now prove that:

e(x, y) = min{ampd(s) | s ∈ S(x, y)}

for x, y ∈ S.
Let D be the minimal set in Hd that includes {x, y}. Then, D = B ∨ C , where

B and C are two disjoint sets of Hd such that x ∈ B and y ∈ C . If s is a sequence
included in D, then there are two consecutive components of s, sk and sk+1, such
that sk ∈ B and sk+1 ∈ C . This implies

e(x, y) = min{d(u, v) | u ∈ B, v ∈ C}
� d(sk, sk+1)

� ampd(s).
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If s is not included in D, let sq and sq+1 be two consecutive components of s such that
sq ∈ D and sq+1 ⊆∈ D. Let E be the smallest set of Hd that includes {sq , sq+1}. We
have D ∪ E (because sk ∈ D ∅ E) and therefore hd(D) � hd(E). If E is obtained
as the union of two disjoint sets E ∞ and E ∞∞ of Hd such that sk ∈ E ∞ and sk+1 ∈ E ∞∞,
we have D ∪ E ∞. Consequently,

hd(E) = min{d(u, v) | u ∈ E ∞, v ∈ E ∞∞} � d(sk, sk+1),

which implies

e(x, y) = hd(D) � hd(E) � d(sk, sk+1) � ampd(s).

Therefore, we conclude that e(x, y) � ampd(s) for every s ∈ S(x, y).
We now show that there is a sequence w ∈ S(x, y) such that e(x, y) � ampd(w),

which implies the equality e(x, y) = ampd(w). To this end, we prove that for every
D ∈ ρk ∪ Hd there exists w ∈ S(x, y) such that ampd(w) � hd(D). The argument
is by induction on k.

For k = 1, the statement obviously holds. Suppose that it holds for 1, . . . , k − 1,
and let D ∈ ρk . The set D belongs to ρk−1 or D is obtained by fusing the blocks B, C
of ρk−1. In the first case, the statement holds by inductive hypothesis. The second
case has several subcases:

(i) If {x, y} ∪ B, then by the inductive hypothesis, there exists a sequence u ∈
S(x, y) such that ampd(u) � hd(B) � hd(D) = e(x, y).

(ii) The case {x, y} ∪ C is similar to the first case.
(iii) If x ∈ B and y ∈ C , there exist u, v ∈ D such that d(u, v) = hd(D). By

the inductive hypothesis, there is a sequence u ∈ S(x, u) such that ampd(u) �
hd(B) and there is a sequence v ∈ S(v, y) such that ampd(v) � hd(C). This
allows us to consider the sequence w obtained by concatenating the sequences
u, (u, v), v; clearly, w ∈ S(x, y) and ampd(w) = max{ampd(u), d(u, v),

ampd(v)} � hd(D).

To complete the argument, we need to show that if e∞ is another ultrametric such
that e(x, y) � e∞(x, y) � d(x, y), then e(x, y) = e∞(x, y) for every x, y ∈ S. By
the previous argument, there exists a sequence s = (s0, . . . , sn) ∈ S(x, y) such that
ampd(s) = e(x, y). Since e∞(x, y) � d(x, y) for every x, y ∈ S, it follows that
e∞(x, y) � ampd(s) = e(x, y). Thus, e(x, y) = e∞(x, y) for every x, y ∈ S, which
means that e = e∞. This concludes our argument.

14.3 Tree Metrics

The distance d between two vertices of a connected graph G = (V, E) introduced
in Definition 10.21 is a metric on the set of vertices V . Recall that d(x, y) = m if m
is the length of the shortest path that connects x and y.
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We have d(x, y) = 0 if and only if x = y. The symmetry of d is obvious. If
p is a shortest path that connects x to z and q is a shortest path that connects z to
y, then pq is a path of length d(x, z) + d(z, y) that connects x to y. Therefore,
d(x, y) � d(x, z) + d(z, y).

The notion of distance between the vertices of a connected graph can be gen-
eralized to weighted graphs as follows. Let (G, w) be a weighted graph where
G = (V, E), and let w : E −∈ R�0 be a positive weight. Define dw(x, y) as

dw(x, y) = min{w(p) | p is a path joining x to y}

for x, y ∈ V . We leave to reader to verify that dw is indeed a metric.
If (T, w) is a weighted tree the metric dw is referred to as a tree metric. Since T is

a tree, for any two vertices u, v ∈ V there is a unique simple path p = (v0, . . . , vn)

joining u = v0 to v = vn . In this case, dw(u, v) = ⎟n−1
i=0 w(vi , vi+1). Moreover, if

t = vk is a vertex on the path p, then

dw(u, t) + dw(t, v) = dw(u, v), (14.3)

a property known as the additivity of dw.
We already know that dw is a metric for arbitrary connected graphs. For trees, we

have the additional property given in the next statement.

Theorem 14.25 If (T, w) is a weighted tree, then dw satisfies Buneman’s inequality

dw(x, y) + dw(u, v) � max{dw(x, u) + dw(y, v), dw(x, v) + dw(y, u)}

for every four vertices x, y, u, v of the tree T.

Proof Let x, y, u, v be four vertices in T. If x = u and y = v, the inequality reduces
to an obvious equality. Therefore, we may assume that at least one of the pairs (x, u)

and (y, v) consists of distinct vertices.
Suppose that x = u. In this case, the inequality amounts to

dw(x, y) + dw(x, v) � max{dw(y, v), dw(x, v) + dw(y, x)},

which is obviously satisfied. Thus, we may assume that we have both x ⊆= u and
y ⊆= v. Since T is a tree, there exists a simple path p that joins x to y and a simple
path q that joins u to v.

Two cases may occur, depending on whether p and q have common edges.
Suppose initially that there are no common vertices between p and q. Let s be a

vertex on the path p and t be a vertex on q such that dw(s, t) is the minimal distance
between a vertex located on the path p and one located on q; here dw(s, t) is the sum
of the weights of the edges of the simple path r that joins s to t .

The path r has no other vertices in common with p and q except s and t , respec-
tively (see Fig. 14.4). We have
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Fig. 14.4 Paths that have no
common vertices

Fig. 14.5 Paths that share
vertices

dw(x, u) = dw(x, s) + dw(s, t) + dw(t, u),

dw(y, v) = dw(y, s) + dw(s, t) + dw(t, v),

dw(x, v) = dw(x, s) + dw(s, t) + dw(t, v),

dw(y, u) = dw(y, s) + dw(s, t) + dw(t, u).

Thus, dw(x, u)+dw(y, v) = dw(x, v)+dw(y, u) = dw(x, s)+dw(s, t)+dw(t, u)+
dw(y, s)+dw(s, t)+dw(t, v) = dw(x, y)+dw(u, v)+2dw(s, t), which shows that
Buneman’s inequality is satisfied.

If p and q have some vertices in common, the configuration of the graph is as
shown in Fig. 14.5. In this case, we have

dw(x, y) = dw(x, t) + dw(t, s) + dw(s, y),

dw(u, v) = dw(u, t) + dw(t, s) + dw(s, v),

dw(x, u) = dw(x, t) + dw(t, u),

dw(y, v) = dw(y, s) + dw(s, v),

dw(x, v) = dw(x, t) + dw(t, s) + dw(s, v),

dw(y, u) = dw(y, s) + dw(s, t) + dw(t, u),

which implies
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dw(x, y) + dw(u, v) = dw(x, t) + 2dw(t, s) + dw(s, y) + dw(u, t) + dw(s, v),

dw(x, u) + dw(y, v) = dw(x, t) + dw(t, u) + dw(y, s) + dw(s, v),

dw(x, v) + dw(y, u) = dw(x, t) + 2dw(t, s) + dw(s, v) + dw(y, s) + dw(t, u).

Thus, Buneman’s inequality is satisfied in this case, too, because

dw(x, y) + dw(u, v) = dw(x, v) + d(y, u) � dw(x, u) + dw(y, v).

By Theorem 14.2, Buneman’s inequality is equivalent to saying that of the three
sums d(x, y) + d(u, v), d(x, u) + d(y, v), and d(x, v) + d(y, u), two are equal and
the third is no less than the two others.

Next, we examine the relationships that exist between metrics, tree metrics, and
ultrametrics.

Theorem 14.26 Every tree metric is a metric, and every ultrametric is a tree metric.

Proof Let S be a nonempty set and let d be a tree metric on S, that is, a dissimilar-
ity that satisfies the inequality d(x, y)+d(u, v) � max{d(x, u)+d(y, v), d(x, v)+
d(y, u)} for every x, y, u, v ∈ S. Choosingv = u,we obtain d(x, y) � max{d(x, u)+
d(y, u), d(x, u) + d(y, u)} = d(x, u) + d(u, y) for every x, y, u, which shows that
d satisfies the triangular inequality.

Suppose now that d is an ultrametric. We need to show that

d(x, y) + d(u, v) � max{d(x, u) + d(y, v), d(x, v) + d(y, v)}

for x, y, u, v ∈ S. Several cases are possible depending on which of the elements
u, v is the closest to x and y, as the next table shows:

Case Closest to Implications
x y

1 u u d(x, v) = d(u, v), d(y, v) = d(u, v)

2 u v d(x, v) = d(u, v), d(y, u) = d(u, v)

3 v u d(x, u) = d(u, v), d(y, v) = d(u, v)

4 v v d(x, u) = d(u, v), d(y, u) = d(u, v)

We discuss here only the first two cases; the remaining cases are similar and are left
to the reader.

In the first case, by Corollary 14.3, we have d(x, u) � d(x, v) = d(u, v) and
d(y, u) � d(y, v) = d(u, v). This allows us to write

max{d(x, u) + d(y, v), d(x, v) + d(y, v)}
= max{d(x, u) + d(u, v), d(u, v) + d(y, v)}
= max{d(x, u), d(y, v)} + d(u, v)
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� max{d(x, u), d(u, y)} + d(u, v)

(because u is closer toy than v)

� d(x, y) + d(u, v)

(since d is an ultrametric),

which concludes the argument for the first case.
For the second case, by the same theorem mentioned above, we have d(x, u) �

d(x, v) = d(u, v) and d(y, v) � d(y, u) = d(u, v). This implies d(x, u) +
d(y, v) � d(x, v) + d(y, v) = 2d(u, v). Thus, it remains to show only that
d(x, y) � d(u, v). Observe that we have d(x, u) � d(u, v) = d(u, y). There-
fore, in the triangle x, y, u, we have d(x, y) = d(u, y) = d(u, v), which concludes
the argument in the second case.

Theorem 14.26 implies that for every set S, US ∪ TS ∪ MS .
As shown in [1], Buneman’s inequality is also a sufficient condition for a graph

to be a tree in the following sense.

Theorem 14.27 A graph G = (V, E) is a tree if and only if it is connected, contains
no triangles, and its graph distance satisfies Buneman’s inequality.

Proof By our previous discussions, the conditions are clearly necessary. We show
here that they are sufficient.

Let p be a cycle of minimal length ν. Since G contains no triangles, it follows that
ν � 4. Therefore, ν can be written as ν = 4q+r , where q � 1 and 0 � r � 3. Since p
is a minimal circuit, the distance between its end points is given by the least number of
edges of the circuit that separate the points. Therefore, we can select vertices x, u, y, v

(in this order) on the cycle such that the distances d(x, u), d(u, y), d(y, v), d(v, x)

are all either q or q+1 and d(x, u)+d(u, y)+d(y, v)+d(v, x) = 4q+r . Then, 2q �
d(x, y) � 2q + 2 and 2q � d(u, v) � 2q + 2, so 4q � d(x, y)+ d(u, v) � 4q + 4,
which prevents d from satisfying the inequality d(x, y) + d(u, v) � max{d(x, u) +
d(y, v), d(x, v) + d(y, u)}. This condition shows that G is acyclic, so it is a tree.

In data mining applied in biology, particularly in reconstruction of phylogenies,
it is important to determine the conditions that allow the construction of a weighted
tree (T, w) starting from a metric space (S, d) such that the tree metric induced by
(T, w) coincides with d when restricted to the set S.

Example 14.28 Let S = {a, b, c} be a three-element set and let d be a distance
defined on S. Suppose that (a, b) are the closest points in S, that is, d(a, b) � d(a, c)
and d(a, b) � d(b, c).

We shall seek to determine a weighted tree (T, w) such that the restriction of the
metric induced by the tree to the set S coincides with d. To this end, consider the
weighted tree shown in Fig. 14.6. The distances between vertices can be expressed
as d(a, b) = m + n, d(a, c) = m + p + q , and d(b, c) = n + p + q. It is easy to
see that
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Fig. 14.6 Weighted tree

p + q = d(a, c) + d(b, c) − d(a, b)

2
.

A substitution in the last two equalities yields

m = d(a, c) − d(b, c) + d(a, b)

2
� 0, n = d(b, c) − d(a, c) + d(a, b)

2
� 0,

which determines the weights of the edges that end in a and b, respectively. For
the remaining two edges, one can choose p and q as two arbitrary positive numbers
whose sum equals d(a,c)+d(b,c)−d(a,b)

2 .

Theorem 14.29 Starting from a tree metric d on a nonempty set S, there exists a
weighted tree (T, w) whose set of vertices contains S and such that the metric induced
by this weighted tree on S coincides with d.

Proof The argument is by induction on n = |S|. The basis step, n = 3, is immediate.
Suppose that the statement holds for sets with fewer than n elements, and let S

be a set with |S| = n. Define a function f : S3 −∈ R as f (x, y, z) = d(x, z) +
d(y, z) − d(x, y). Let (p, q, r) ∈ S3 be a triple such that f (p, q, r) is maximum.
If x ∈ S − {p, q}, we have f (x, q, r) � f (p, q, r) and f (p, x, r) � f (p, q, r).
These inequalities are easily seen to be equivalent to

d(x, r) + d(p, q) � d(x, q) + d(p, r) and d(x, r) + d(p, q) � d(x, p) + d(q, r),

respectively. Using Buneman’s inequality, we obtain

d(x, q) + d(p, r) = d(x, p) + d(q, r). (14.4)

Similarly, for any other y ∈ S − {p, q}, we have

d(y, q) + d(p, r) = d(y, p) + d(q, r),

so d(x, q) + d(y, p) = d(x, p) + d(y, q).
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Consider now a new object t , t ⊆∈ S. The distances from t to the objects of S are
defined by

d(t, p) = d(p, q) + d(p, r) − d(q, r)

2
,

and
d(t, x) = d(x, p) − d(t, p), (14.5)

where x ⊆= p.
For x ⊆= p, we can write

d(t, x) = d(x, p) − d(t, p)

= d(x, p) − d(p, q) + d(p, r) − d(q, r)

2
(by the definition of d(t, p))

= d(x, p) − d(p, q) + d(p, x) − d(q, x)

2
(by Equality (14.4))

= d(p, x) − d(p, q) + d(q, x)

2
� 0.

Choosing x = q in Equality (14.5), we have

d(t, q) = d(q, p) − d(t, p) = d(p, q) − d(p, q) + d(p, r) − d(q, r)

2

= d(p, q) − d(p, r) + d(q, r)

2
� 0,

which shows that the distances of the form d(t, ·) are all nonnegative.
Also, we can write for x ∈ S − {p, q}

d(q, t) + d(t, x) = d(p, q) − d(p, r) + d(q, r)

2
+ d(p, x) − d(p, q) + d(q, x)

2

= d(p, q) − d(p, x) + d(q, x)

2
+ d(p, x) − d(p, q) + d(q, x)

2
(by Equality (14.4))

= d(q, x).

It is not difficult to verify that the expansion of d to S ∨ {t} using the values defined
above satisfies Buneman’s inequality.

Consider the metric space ((S − {p, q}) ∨ {t}, d) defined over a set with n − 1
elements. By inductive hypothesis, there exists a weighted tree (T, w) such that the
metric induced on (S − {p, q}) ∨ {t} coincides with d. Adding two edges (t, p)

and (t, q) having the weights d(t, p) and d(t, q), we obtain a tree that generates the
distance d on the set S.
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Fig. 14.7 An equidistant tree

A class of weighted trees that is useful in clustering algorithms and in phyloge-
netics is introduced next.

Definition 14.30 An equidistant tree is a triple (T, w, v0), where (T, v0) is a rooted
tree and w is a weighting function defined on the set of edges of T such that dw(v0, v)

is the same for every leaf of the rooted tree (T, v0).

In an equidistant tree (T, w; v0), for every vertex u there is a number k such that
dw(u, t) = k for every leaf that is joined to v0 by a path that passes through u. In
other words, the equidistant property is inherited by subtrees.

Example 14.31 The tree shown in Fig. 14.7 is an equidistant tree. The distance dw

from the root to each of its four leaves is equal to 8.

Theorem 14.32 A function d : S × S −∈ R is an ultrametric if and only if there
exists an equidistant tree (T, w; v0) having S as its set of leaves and d is the restriction
of the tree distance dw to S.

Proof To prove that the condition is necessary, let (T, w; v0) be an equidistant tree
and let x, y, z ∈ L be three leaves of the tree. Suppose that u is the common ancestor
of x and y located on the shortest path that joins x to y. Then, dw(x, y) = 2dw(u, x) =
2dw(u, y).

Let v be the common ancestor of y and z located on the shortest path that joins y
to z. Since both u and v are ancestors of y, they are located on the path that joins v0
to y. Two cases may occur:
Case 1 occurs when dw(v0, v) � dw(v0, u) (Fig. 14.8a).
Case 2 occurs when dw(v0, v) > dw(v0, u) (Fig. 14.8b).
In the first case, we have d(u, x) = d(u, y) and d(v, z) = d(v, u) + d(u, x) =

d(v, u)+d(u, y)because (T, w, v0) is equidistant. Therefore, dw(x, y) = 2dw(x, u),
dw(y, z) = 2dw(u, v) + 2dw(u, y), and dw(x, z) = 2dw(u, v) + 2dw(u, x). Since
dw(u, y) = dw(u, x), the ultrametric inequality dw(x, y) � max{dw(x, z), dw(z, y)}
follows immediately. The second case is similar and is left to the reader.
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(a) (b)

Fig. 14.8 Two equidistant trees

(a) (b)

Fig. 14.9 Small equidistant weighted trees

Conversely, let d : S × S −∈ R be an ultrametric, where S = {s1, . . . , sn}. We
prove by induction of n = |S| that an equidistant tree can be constructed that satisfies
the requirements of the theorem.

For n = 2, the simple tree shown in Fig. 14.9a, where w(x0, s1) = w(x0, s2) =
d(s1,s2)

2 satisfies the requirements of the theorem. For n = 3, suppose that d(s1, s2) �
d(s1, s3) = d(s2, s3). The tree shown in Fig. 14.9b is the desired tree for the ultra-
metric because d(s1, s3) − d(s1, s2) � 0.

Suppose now that n � 4. Let si , s j be a pair of elements of S such that the distance
d(si , s j ) is minimal. By the ultrametric property, we have d(sk, si ) = d(sk, s j ) �
d(si , s j ) for every k ∈ {1, . . . , n} − {i, j}.

Define S∞ = S −{si , s j }∨{s}, and let d ∞ : S∞ × S∞ −∈ R be the mapping given by
d ∞(sk, sl) = d(sk, sl) if sk, sl ∈ S, and d ∞(sk, s) = d(sk, si ) = d(sk, s j ). It is easy to
see that d ∞ is an ultrametric on the smaller set S∞, so, by inductive hypothesis, there
exists an equidistant weighted tree (T∞, w∞; v0) that induces d ∞ on the set of its leaves
S∞.

Let z be the direct ancestor of s in the tree T∞ and let sm be a neighbor of s. The
weighted rooted tree (T, w; v0) is obtained from (T∞, w∞; v0) by transforming s into
an interior node that has the leaves si and s j as immediate descendants, as shown in
Fig. 14.10. To make the new tree T be equidistant, we keep all weights of the edges
of T∞ in the new tree T except the weight of the edge (z, s), which is defined now as
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Fig. 14.10 Constructing (T, w; v0) starting from (T∞, w∞; v0)

w(z, s) = d(sm, si ) − d(si , s j )

2
.

We also define the weight of the edges (s, si ) and (s, s j ) as

w(s, si ) = w(s, s j ) = d(si , s j )

2
.

These definitions imply that T is an equidistant tree because

d ∞(sm, z) = d(sm, si )

2
(because of the definition of d)

= d ∞(z, s)

(since T∞ is equidistant),

d(z, si ) = w(z, s) + w(s, si ) = d(sm, si ) − d(si , s j )

2
+ d(si , s j )

2
= d(sm, si )

2
.

and d(z, zm) = d ∞(z, sm).

14.4 Metrics on Collections of Sets

Dissimilarities between subsets of finite sets have an intrinsic interest for data mining,
where comparisons between sets of objects are frequent. Also, metrics defined on
subsets can be transferred to metrics between binary sequences using the characteris-
tic sequences of the subsets and thus become an instrument for studying binary data.
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A very simple metric on P(S), the set of subsets of a finite set S is given in the
next theorem.

Theorem 14.33 Let S be a finite set. The mapping λ : (P(S))2 −∈ R�0 defined by
λ(X, Y ) = |X ⇒ Y | is a metric on P(S).

Proof The function λ is clearly symmetric and we have λ(X, Y ) = 0 if and only if
X = Y . Therefore, we need to prove only the triangular inequality

|X ⇒ Y | � |X ⇒ Z | + |Z ⇒ Y |

for every X, Y, Z ∈ P(S).
Since X ⇒ Y = (X ⇒ Z) ⇒ (Z ⇒ Y ), we have |X ⇒ Y | � |X ⇒ Z | + |Z ⇒ Y |,

which is precisely the triangular inequality for λ.

For U, V ∈ P(S), we have 0 � λ(U, V ) � |S|, where λ(U, V ) = |S| if and only
if V = S − U .

Lemma 14.34 Let d : S × S −∈ R�0 be a metric and let u ∈ S be an element of
the set S. Define the Steinhaus transform of d as the mapping du : S × S −∈ R�0
given by

du(x, y) =
{

0 if x = y = u
d(x,y)

d(x,y)+d(x,u)+d(u,y)
otherwise.

Then, du is a metric on S.

Proof It is easy to see that du is symmetric and, further, that du(x, y) = 0 if and
only if x = y.

To prove the triangular inequality, observe that a � a∞ implies

a

a + k
� a∞

a∞ + k
, (14.6)

which holds for every positive numbers a, a∞, k. Then, we have

du(x, y) = d(x, y)

d(x, y) + d(x, u) + d(u, y)

� d(x, z) + d(z, y)

d(x, z) + d(z, y) + d(x, u) + d(u, y)

(by Inequality (14.6))

= d(x, z)

d(x, z) + d(z, y) + d(x, u) + d(u, y)

+ d(z, y)

d(x, z) + d(z, y) + d(x, u) + d(u, y)

� d(x, z)

d(x, z) + d(z, y) + d(z, u)
+ d(z, y)

d(z, y) + d(z, u) + d(u, y)
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= du(x, z) + du(z, y),

which is the desired triangular inequality.

Theorem 14.35 Let S be a finite set. The function d : P(S)2 −∈ R�0 defined by
d(X, Y ) = |X⇒Y |

|X∨Y | for X, Y ∈ P(S) is a metric on P(S).

Proof It is clear that d is symmetric and that d(X, Y ) = 0 if and only if X = Y .
So, we need to prove only the triangular inequality. The mapping λ defined by
λ(X, Y ) = |X ⇒ Y | is a metric on P(X), as we proved in Theorem 14.33. By
Lemma 14.34, the mapping λ∩ is also a metric on P(S). We have

λ∩(X, Y ) = |X ⇒ Y |
|X ⇒ Y | + |X ⇒ ∩| + |∩ ⇒ Y | .

Since X ⇒ ∩ = X , ∩ ⇒ Y = Y , we have

|X ⇒ Y | + |X ⇒ ∩| + |∩ ⇒ Y | = |X ⇒ Y | + |X | + |Y | = 2|X ∨ Y |,

which means that 2λ∩(X, Y ) = d(X, Y ) for every X, Y ∈ P(S). This implies that d
is indeed a metric.

Theorem 14.36 Let S be a finite set. The function d : P(S)2 −∈ R�0 defined by
d(X, Y ) = |X⇒Y |

|S|−|X∅Y | for X, Y ∈ P(S) is a metric on P(S).

Proof We only prove that d satisfies the triangular axiom. The argument begins, as
in Theorem 14.35, with the metric λ. Again, by Lemma 14.34, the mapping λS is
also a metric on P(S). We have

λS(X, Y ) = |X ⇒ Y |
|X ⇒ Y | + |X ⇒ S| + |S ⇒ Y |

= |X ⇒ Y |
|X ⇒ Y | + |S − X | + |S − Y |

= |X ⇒ Y |
|X ⇒ Y | + |S − X | + |S − Y |

= |X ⇒ Y |
2(|S| − |X ∅ Y |)

because |X ⇒ Y | + |S − X | + |S − Y | = 2(|S| − |X ∅ Y |), as the reader can easily
verify. Therefore, d(X, Y ) = 2λS(X, Y ), which proves that d is indeed a metric.

A general mechanism for defining a metric onP(S), where S is a finite set, |S| = n,
can be introduced starting with two functions:

1. a weight function w : S −∈ R�0 such that
⎟{w(x) | x ∈ S} = 1 and

2. an injective function π : P(S) −∈ (S −∈ R).
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The metric defined by the pair (w,π) is the function dw,π : P(S)2 −∈ R�0
defined by

dw,π(X, Y ) =
(∑

s∈S

w(s)|π(X)(s) − π(Y )(s)|q
)1

q

for X, Y ∈ P(S).
The function w is extended to P(S) by

w(T ) =
∑

{w(x) | x ∈ T }.

Clearly, w(∩) = 0 and w(S) = 1. Also, if P and Q are two disjoint subsets, we have
w(P ∨ Q) = w(P) + w(Q).

We refer to both w and its extension to P(S) as weight functions.
The value π(T ) of the function π is itself a function π(T ) : S −∈ R, and each

subset T of S defines such a distinct function. These notions are used in the next
theorem.

Theorem 14.37 Let S be a set, w : S −∈ R�0 be a weight function, and π :
P(S) −∈ (S −∈ R) be an injective function.

If w(x) > 0 for every x ∈ S, then the mapping dw,π : (P(S))2 −∈ R defined by

dw,π(U, V ) =
(∑

x∈S

w(x)|π(U )(x) − π(V )(x)|p

)1
p

(14.7)

for U, V ∈ P(S) is a metric on P(S).

Proof It is clear that dw,π(U, U ) = 0. If dw,π(U, V ) = 0, then π(U )(x) = π(V )(x)

because w(x) > 0, for every x ∈ S. Thus, π(U ) = π(V ), which implies U = V
due to the injectivity of π.

The symmetry of dw,π is immediate.
To prove the triangular inequality, we apply Minkowski’s inequality. Suppose that

S = {x0, . . . , xn−1}, and let U, V, W ∈ P(S). Define the numbers

ai = (w(xi ))
1
p πU (xi ), bi = (w(xi ))

1
p πV (xi ), ci = (w(xi ))

1
p πW (xi ),

for 0 � i � n − 1. Then, by Minkowski’s inequality, we have

(
n−1∑
i=0

|ai − bi |p

)1
p

�
(

n−1∑
i=0

|ai − ci |p

)1
p

+
(

n−1∑
i=0

|ci − bi |p

)1
p

,

which amounts to the triangular inequality dw,π(U, V ) � dw,π(U, W )+dw,π(W, V ).
Thus, we may conclude that dw,π is indeed a metric on P(S).
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Example 14.38 Let w : S −∈ [0, 1] be a positive weight function. Define the
function π by

π(U )(x) =
{

1↔
w(U )

if x ∈ U,

0 otherwise.

It is easy to see that π(U ) = π(V ) if and only if U = V , so π is an injective function.
Choosing p = 2, the metric defined in Theorem 14.37 becomes

d2
w,π(U, V ) =

(∑
x∈S

w(x)|π(U )(x) − π(V )(x)|2
)1

2

.

Suppose initially that neither U nor V are empty. Several cases need to be con-
sidered:

1. If x ∈ U ∅ V , then

|π(U )(x) − π(V )(x)|2 = 1

w(U )
+ 1

w(V )
− 2↔

w(U )w(V )
.

The total contribution of these elements of S is

w(U ∅ V )

(
1

w(U )
+ 1

w(V )
− 2↔

w(U )w(V )

)
.

If x ∈ U − V , then

|π(U )(x) − π(V )(x)|2 = 1

w(U )

and the total contribution is w(U − V ) 1
w(U )

.
2. When x ∈ V − U , then

|π(U )(x) − π(V )(x)|2 = 1

w(V )

and the total contribution is w(V − U ) 1
w(V )

.

3. Finally, if x ⊆∈ U ∨ V , then |π(U )(x) − π(V )(x)|2 = 0.

Thus, we can write

d2
w,π(U, V ) = w(U ∅ V )

(
1

w(U )
+ 1

w(V )
− 2↔

w(U )w(V )

)

+ w(U − V )
1

w(U )
+ w(V − U )

1

w(V )

= w(U ∅ V ) + w(U − V )

w(U )
+ w(U ∅ V ) + w(V − U )

w(V )
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− 2w(U ∅ V )↔
w(U )w(V )

= 2

(
1 − w(U ∅ V )↔

w(U )w(V )

)
,

where we used the fact that w(U ∅V )+w(U −V ) = w(U ) and w(U ∅V )+w(V −
U ) = w(V ). Thus,

dw,π(U, V ) =
√

2

(
1 − w(U ∅ V )↔

w(U )w(V )

)
.

If U ⊆= ∩ and V = ∩, then it is immediate that dw,π(U,∩) = 1. Of course,
dw,π(∩,∩) = 0.

Thus, the mapping dw,π defined by

dw,π(U, V ) =

⎛
⎧

0 if U = V = ∩,

1 if U ⊆= ∩ and V = ∩,

1 if U = ∩ and V ⊆= ∩,⎨
2
⎩
1 − w(U∅V )↔

w(U )w(V )

⎫
if U ⊆= ∩ and V ⊆= ∩,

for U, V ∈ P(S) is a metric, which is known as the Ochïai metric on P(S).

Example 14.39 Using the same notation as in Example 14.38 for a positive weight
function w : S −∈ [0, 1], define the function π by

π(U )(x) =
{

1
w(U )

if x ∈ U,

0 otherwise.

It is easy to see that π is an injective function.
Suppose that p = 2 in Equality (14.7). If U ⊆= ∩ and V ⊆= ∩, we have the

following cases:

1. If x ∈ U ∅ V , then

|π(U )(x) − π(V )(x)|2 = 1

w(U )2 + 1

w(V )2 − 2

w(U )w(V )
.

The total contribution of these elements of S is

w(U ∅ V )

(
1

w(U )2 + 1

w(V )2 − 2

w(U )w(V )

)
.
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If x ∈ U − V , then

|π(U )(x) − π(V )(x)|2 = 1

w(U )2

and the total contribution is w(U − V ) 1
w(U )2 .

2. When x ∈ V − U , then

|π(U )(x) − π(V )(x)|2 = 1

w(V )2

and the total contribution is w(V − U ) 1
w(V )2 .

3. Finally, if x ⊆∈ U ∨ V , then |π(U )(x) − π(V )(x)|2 = 0.

Summing up these contributions, we can write

d2
w,π(U, V ) = 1

w(U )
+ 1

w(V )
− 2

w(U ∅ V )

w(U )w(V )

= w(U ) + w(V ) − 2w(U ∅ V )

w(U )w(V )

= w(U ⇒ V )

w(U )w(V )
.

If V = ∩, dw,π(U,∩) =
⎬

1
w(U )

; similarly, dw,π(∩, V ) =
⎬

1
w(V )

.

We proved that the mapping dw,π defined by

dw,π(U, V ) =

⎛
⎧

⎬
w(U⇒V )

w(U )w(V )
if U ⊆= ∩ and V ⊆= ∩,⎬

1
w(U )

if U ⊆= ∩ and V = ∩,⎬
1

w(V )
if U = ∩ and V ⊆= ∩,

0 if U = V = ∩,

for U, V ∈ P(S), is a metric on P(S) known as the α2 metric.

14.5 Metrics on Partitions

Metrics on sets of partitions of finite sets are useful in data mining because attributes
induce partitions on the sets of tuples of tabular data. Thus, they help us determine
interesting relationships between attributes and to use these relationships for clas-
sification, feature selection, and other applications. Also, exclusive clusterings can
be regarded as partitions of the set of clustered objects, and partition metrics can be
used for evaluating clusterings, a point of view presented in [2].
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Let S be a finite set and let ρ and ω be two partitions of S. The equivalence
relations φρ and φω are subsets of S × S that allow us a simple way of defining a
metric between ρ and ω as the relative size of the symmetric difference between the
sets of pairs φρ and φω ,

λ(ρ,ω) = 1

|S|2 |φρ ⇒ φω| = 1

|S|2| (|φρ| + |φω| − 2|φρ ∅ φω|) . (14.8)

If ρ = {B1, . . . , Bm} and ω = {C1, . . . , Cn}, then there are
⎟m

i=1 |Bi |2 pairs in φρ ,⎟n
j=1 |C j |2 pairs in φω , and

⎟n
i=1

⎟n
j=1 |Bi ∅ C j |2 pairs in φρ ∅ φω . Thus, we have

λ(ρ,ω) = 1

|S|2

⎭
⎪ m∑

i=1

|Bi |2 +
n∑

j=1

|C j |2 − 2
n∑

i=1

n∑
j=1

|Bi ∅ C j |2

 . (14.9)

The same metric can be linked to a special case of a more general metric related to
the notion of partition entropy.

We can now show a central result.

Theorem 14.40 For every ψ � 1 the mapping dψ : PART(S)2 −∈ R�0 defined by

dψ(ρ,ω) = Hψ(ρ|ω) + Hψ(ω|ρ)

for ρ,ω ∈ PART(S) is a metric on PART(S).

Proof A double application of Corollary 12.64 yields

Hψ(ρ|ω) + Hψ(ω|β ) � Hψ(ρ|β ),

Hψ(ω|ρ) + Hψ(β |ω) � Hψ(β |ρ).

Adding these inequalities gives

dψ(ρ,ω) + dψ(ω, β ) � dψ(ρ, β ),

which is the triangular inequality for dψ .
The symmetry of dψ is obvious, and it is clear that dψ(ρ,ρ) = 0 for every

ρ ∈ PART(S).
Suppose now that dψ(ρ,ω) = 0. Since the values of ψ-conditional entropies are

nonnegative, this implies Hψ(ρ|ω) = Hψ(ω|ρ) = 0. By Theorem 12.54, we have
both ω � ρ and ρ � ω, so ρ = ω. Thus, dψ is a metric on PART(S).

An explicit expression of the metric between two partitions can now be obtained
using the values of conditional entropies given by Equality (12.5),

http://dx.doi.org/10.1007/978-1-4471-6407-4_12
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dψ(ρ,ω)

= 1

(1 − 21−ψ)|S|ψ

⎭
⎪ m∑

i=1

|Bi |ψ +
n∑

j=1

|C j |ψ − 2 ·
m∑

i=1

n∑
j=1

|Bi ∅ C j |ψ

 ,

where ρ = {B1, . . . , Bm} and ω = {C1, . . . , Cn} are two partitions from PART(S).
In the special case ψ = 2, we have

d2(ρ,ω)

= 2

|S|2

⎭
⎪ m∑

i=1

|Bi |2 +
n∑

j=1

|C j |2 −
m∑

i=1

n∑
j=1

2|Bi ∅ C j |2

 ,

which implies d2(ρ,ω) = 2λ(ρ,ω), where λ is the distance introduced by using the
symmetric difference in Equality (14.9).

It is clear that dψ(ρ,σS) = Hψ(ρ) and dψ(ρ,δS) = H(δS|ρ). Another useful
form of dψ can be obtained by applying Theorem 12.55. Since Hψ(ρ|ω) = Hψ(ρ ⊃
ω) − Hψ(ω) and Hψ(ω|ρ) = Hψ(ρ ⊃ ω) − Hψ(ω), we have

dψ(ρ,ω) = 2Hψ(ρ ⊃ ω) − Hψ(ρ) − Hψ(ω), (14.10)

for ρ,ω ∈ PART(S).
The behavior of the metric dψ with respect to partition addition is discussed in the

next statement.

Theorem 14.41 Let S be a finite set and ρ and ν be two partitions of S, where
ν = {D1, . . . , Dh}. If ωi ∈ PART(Di ) for 1 � i � h, then we have ω1 +· · ·+ωh � ν
and

dψ(ρ,ω1 + · · · + ωh) =
h∑

i=1

( |Di |
|S|

)ψ

dψ(ρDi ,ωi ) + Hψ(ν|ρ).

Proof This statement follows directly from Theorem 12.62.

Theorem 14.42 Let ω and ν be two partitions in PART(S) such that

ν = {D1, . . . , Dh}

and ω � ν. Then, we have

dψ(ν,ω) =
h∑

i=1

( |Di |
|S|

)ψ

dψ(σDi ,ωDi ).

Proof In Theorem 14.41, take ρ = ν and ωi = ωDi for 1 � i � h. Then, it is clear
that ω = ω1 + · · · + ωh and we have
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dψ(ν,ω) =
h∑

i=1

( |Di |
|S|

)ψ

dψ(σDi ,ωDi )

because νDi = σDi for 1 � i � h.

The next theorem generalizes a result from [2].

Theorem 14.43 In the metric space (PART(S), dψ), we have that

(i) if ω � ρ, then dψ(ρ,ω) = Hψ(ω) − Hψ(ρ),
(ii) dψ(δS,ω) + dψ(ω,σS) = dψ(δS,σS), and
(iii) dψ(ρ,ρ ⊃ ω) + dψ(ρ ⊃ ω,ω) = dψ(ρ,ω)

for all partitions ρ,ω ∈ PART(S).

Furthermore, we have dψ(σT ,δT ) = 1−|T |1−ψ

1−21−ψ for every subset T of S.

Proof The first three statements of the theorem follow immediately from Equal-
ity (14.10); the last part is an application of the definition of dψ .

A generalization of a result obtained in [2] is contained in the next statement,
which gives an axiomatization of the metric dψ .

Theorem 14.44 Let d : PART(S)2 −∈ R�0 be a function that satisfies the follow-
ing conditions:

(D1) d is symmetric; that is, d(ρ,ω) = d(ω,ρ).
(D2) d(δS,ω) + d(ω,σS) = d(δS,σS).
(D3) d(ρ,ω) = d(ρ,ρ ⊃ ω) + d(ρ ⊃ ω,ω).
(D4) if ω, ν ∈ PART(S) such that ν = {D1, . . . , Dh} and ω � ν, then we have

d(ν,ω) =
h∑

i=1

( |Di |
|S|

)ψ

d(σDi ,ωDi ).

(D5) d(σT ,δT ) = 1−|T |1−ψ

1−21−ψ for every T ∪ S.

Then, d = dψ .

Proof Choosing ω = δS in axiom (D4) and using (D5), we can write

d(δS, ν) =
h∑

i=1

( |Di |
|S|

)ψ

d(σDi ,δDi )

=
h∑

i=1

( |Di |
|S|

)ψ 1 − |Di |1−ψ

1 − 21−ψ
=

⎟h
i=1 |Di |ψ − |S|

(1 − 21−ψ)|S|ψ .

From Axioms (D2) and (D5) it follows that
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d(ν,σS) = d(δS,σS) − d(δS, ν)

= 1 − |S|1−ψ

1 − 21−ψ
−

⎟h
i=1 |Di |ψ − |S|

(1 − 21−ψ)|S|ψ = |S|ψ − ⎟h
i=1 |Di |ψ

(1 − 21−ψ)|S|ψ .

Now let ρ,ω ∈ PART(S), where ρ = {B1, . . . , Bm} and ω = {C1, . . . , Cn}. Since
ρ ⊃ω � ρ and ωBi = {C1 ∅ Bi , . . . , Cn ∅ Bi }, an application of Axiom (D4) yields:

d(ρ,ρ ⊃ ω) =
m∑

i=1

( |Bi |
|S|

)ψ
d(σBi , (ρ ⊃ ω)Bi )

=
m∑

i=1

( |Bi |
|S|

)ψ
d(σBi ,ωBi )

=
m∑

i=1

( |Bi |
|S|

)ψ |Bi |ψ − ⎟n
j=1 |Bi ∅ C j |ψ

(1 − 21−ψ)|Bi |ψ

= 1

(1 − 21−ψ)|S|ψ

⎭
⎪ m∑

i=1

|Bi |ψ −
n∑

j=1

n∑
i=1

|Bi ∅ C j |ψ



because (ρ ⊃ ω)Bi = ωBi .
By Axiom (D1), we obtain the similar equality

d(ρ ⊃ ω,ω) = 1

(1 − 21−ψ)|S|ψ

⎭
⎪ m∑

i=1

|Bi |ψ −
n∑

j=1

n∑
i=1

|Bi ∅ C j |ψ

 ,

which, by Axiom (D3), implies:

d(ρ,ω) = 1

(1 − 21−ψ)|S|ψ

⎭
⎪ m∑

i=1

|Bi |ψ +
n∑

j=1

|C j |ψ − 2
n∑

j=1

n∑
i=1

|Bi ∅ C j |ψ

 ;

that is, d(ρ,ω) = dψ(ρ,ω).

14.6 Metrics on Sequences

Sequences are the objects of many data mining activities (text mining, biological
applications) that require evaluation of the degree to which they are different from
each other.

The Hamming distance introduced for sequences in Example 1.192 is not very
useful due to its inability to measure anything but the degree of coincidence between
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symbols that occur in similar position. A much more useful tool is Levenshtein’s
distance, introduced in [3], using certain operations on sequences.

Recall that we introduced the notion of replacement of an occurrence (y, i) in a
sequence x in Definition 1.91 on page 25.

Definition 14.45 Let S be a set and let x ∈ Seq(S). The insertion of s ∈ S in x at
position i yields the sequence is,i (x) = replace (x, (τττ, i), s), where 0 � i � |x|.

The deletion of the symbol located at position i yields the sequence di (x) =
replace (x, (x(i), i),τττ), where 0 � i � |x| − 1.

The substitution of s ∈ S at position i by s∞ produces the sequence ss,i,s∞(x) =
replace (x, (s, i), s∞), where 0 � i � |x| − 1.

In Definition 14.45, we introduced three types of partial functions on the set of
sequences Seq(S), is,i , di , and ss,i,s∞ , called insertion, deletion, and substitution,
respectively. There partial functions are collectively referred to as editing functions.
Observe that, in order to have x ∈ Dom(di ), we must have |x| � i .

Definition 14.46 An edit transcript is a sequence ( f0, f1, . . . , fk−1) of edit opera-
tions.

Example 14.47 Let S be the set of small letters of the Latin alphabet,
S = {a, b, . . . , z}, and let x = (m, i, c, k, e, y), y = (m, o, u, s, e). The follow-
ing sequence of operations transforms x into y:

Step Sequence Operation

0 (m, i, c, k, e, y) si,1,o
1 (m, o, c, k, e, y) sc,2,u
2 (m, o, u, k, e, y) d3
3 (m, o, u, e, y) d3
4 (m, o, u, y) is,3
5 (m, o, u, s, y) sy,4,e
6 (m, o, u, s, e)

The edit transcript (si,1,o, sc,2,u, d3, d3, is,3, sy,4,e) has length 6.

If ( f0, f1, . . . , fk−1) is an edit transcript that transforms a sequence x into a
sequence y, then we have the sequences z0, z1, . . . , zk such that z0 = x, zi ∈
Dom( fi ), and fi (zi ) = zi+1 for 0 � ik − 1 and zk = y. Moreover, we can write
y = fk−1(· · · f1( f0(x)) · · · ).
Theorem 14.48 Let ν : Seq(S) × Seq(S) −∈ R�0 be a function defined by
ν(x, y) = n if n is the length of the shortest edit transcript needed to transform
x into y. The function ν is a metric on Seq(S).

Proof It is clear that ν(x, x) = 0 and that ν(x, y) = ν(y, x) for every x, y ∈ Seq(S).
Observe that the triangular inequality is also satisfied because the sequence of oper-
ations that transform x into y followed by the sequence of operations that transform
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y into z will transform x into z. Since the smallest such number of transformations
is ν(x, z), it follows that ν(x, z) � ν(x, y) + ν(y, z). This allows us to conclude that
ν is a metric on Seq(S).

We refer to ν as the Levenshtein distance between x and y.
Recall that we introduced on page 23 the notation xi, j for the infix (xi , . . . , x j )

of a sequence x = (x0, . . . , xn−1).
Let x = (x0, . . . , xn−1) and y = (y0, . . . , ym−1) be two sequences and li j (x, y) be

the length of a shortest edit transcript needed to transform x0,i y0, j for −1 � i � |x|
and −1 � j � |y|. In other words,

li j = ν(x0,i , y0, j ) (14.11)

for 0 � i � n − 1 and 0 � j � m − 1, where n = |x| and m = |y|.
When i = −1, we have x0,−1 = τττ; similarly, when j = −1, y0,−1 = τττ.

Therefore, l−1, j = j since we need to insert j elements of S into τττ to obtain y0, j−1
and li,−1 = i for similar reasons.

To obtain an inductive expression of li j , we distinguish two cases. If xi = y j , then
li, j = li−1, j−1; otherwise (that is, if xi ⊆= yi ) we need to choose the edit transcript
of minimal length among the following edit transcripts:

(i) the shortest edit transcript that transforms x0,i into y0, j−1 followed by ixi , j ;
(ii) the shortest edit transcript that transforms x0,i−1 into y0, j followed by di ;

(iii) the shortest edit transcript that transforms x0,i−1 into y0, j−1 followed by sub-
stitution sxi ,i,y j if xi ⊆= y j .

Therefore,
li j = min{li−1, j + 1, li, j−1 + 1, li−1, j−1 + λ(i, j)}, (14.12)

where

λ(i, j) =
{

0 if xi = y j

1 otherwise.

The numbers li j can be computed using a bidimensional (m + 1) × (n + 1) array
L . The rows of the array are numbered from −1 to |x| − 1, while the columns are
numbered from −1 to |y|− 1. The component Li j of L consists of a pair of the form
(li j , Ai j ), where Ai j is a subset of the set {→,≥,≡}.

Initially, the first row of L is L−1, j = (l−1, j , {≥}) for −1 � j � |y| − 1; the
first column of L is Li,−1 = (li,−1,→) for −1 � i � |x| − 1.

For each of the numbers li−1, j +1, li, j−1 +1, or li−1, j−1 + λ(i, j) that equals li j ,
we include in Ai j the symbols →, ∈, or ≡, respectively, pointing to the surrounding
cells that help define li j . This will allow us to extract an edit transcript by following
the points backward from Lm−1,n−1 to the cell L−1,−1. Each symbol ≥ denotes
an insertion of y j into the current string, each symbol → as a deletion of xi from
the current string, and each diagonal edge as a match between xi and y j or as a
substitution of xi by y j .
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Example 14.49 Consider the sequences x = (a, b, a, b, c, a, b, a, c) and y =
(a, b, c, a, a, c). The content of L8,5 shows that ν(x, y) = 3. Following the path

a b c a a c
-1 0 1 2 3 4 5

−1 0 ≥0 ≥0 ≥0 ≥0 ≥0 ≥0
a 0 →0 ≡0 ≥≡1 ≥≡2 ≡2 ≥≡3 ≥4
b 1 →1 →≡1 ≡1 ≥≡2 ≥→≡3 ≡3 ≥≡4
a 2 →2 ≡1 ≥→≡2 ≡2 ≡2 ≥≡3 ≥≡4
b 3 →3 →2 ≡1 →≡3 →≡3 ≡3 →≡4
c 4 →4 →3 →2 ≡1 →≡4 →≡4 ≡3
a 5 →5 →≡4 →3 →2 ≡1 ≥2 ≥3
b 6 →6 →5 →≡4 →3 →2 ≡2 ≥≡3
a 7 →7 →≡6 →5 →4 →≡3 →≡3 ≡3
c 8 →8 →7 →6 →≡5 →4 →≡4 ≡3

L8,5 L7,4 L6,3 L5,3 L4,2 L3,1 L2,0 L1,0 L0,0
≡3 →≡3 →2 ≡1 ≡1 ≡1 →1 →0 0

that leads from L8,5 to L0,0, we obtain the following edit transcript:

Step Sequence Operation Remark

0 (a, b, a, b, c, a, b, a, c) match x8 = y5 = c
1 (a, b, a, b, c, a, b, a, c) match x7 = y4 = a
2 (a, b, a, b, c, a, a, c) d6
3 (a, b, a, b, c, a, a, c) match x5 = y3 = a
4 (a, b, a, b, c, a, a, c) match x4 = y2 = c
5 (a, b, a, b, c, a, a, c) match x3 = y1 = b
6 (a, b, a, b, c, a, a, c) match x2 = y0 = a
7 (a, a, b, c, a, a, c) d1
8 (a, b, c, a, a, c) d0

The notion of an edit distance can be generalized by introducing costs for the edit
functions.

Definition 14.50 A cost scheme is a triple (ci , cd , cs) ∈ R̂�0, where the components
ci , cd , and cs are referred to as the costs of an insertion, deletion, and substitution,
respectively.

The cost of an edit transcript t = ( f0, f1, . . . , fk−1) according to the cost scheme
(ci , cd , cs) is ni ci + ndcd + nscs , where ni , nd , and ns are the number of insertions,
deletions, and substitutions that occur in t.
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When ci = cd = cs = 1, the cost of t equals the length of t, and finding the
Levenshtein distance between two strings x, y can now be seen as determining the
length of the shortest editing transcript that transforms x into y using the cost schema
(1, 1, 1). It is interesting to remark that, for any cost schema, the minimal cost of a
transcript that transforms x into y remains an extended metric on Seq(S). This can
be shown using an argument that is similar to the one we used in Theorem 14.48.

Note that a substitution can always be replaced by a deletion followed by an
insertion. Therefore, for a cost scheme (1, 1,∧), the edit transcript of minimal cost
will include only insertions and deletions. Similarly, if cs = 1 and ci = cd = ∧,
then the edit transcript will contain only substitutions if the two sequences have equal
lengths and the distance between strings will be reduced to the Hamming distance.

The recurrence (14.12) that allowed us to compute the length of the shortest edit
transcript is now replaced by a recurrence that allows us to compute the least cost
Ci j of transforming the prefix x0,i into y0, j :

Ci j = min{Ci−1, j + ci , li, j−1 + cd , li−1, j−1 + λ(i, j)cs}. (14.13)

The computation of the edit distance using the cost scheme (ci , cd , cs) now proceeds
in a tabular manner similar to the one used for computing the length of the shortest
edit transcript.

14.7 Searches in Metric Spaces

Searches that seek to identify objects that reside in the proximity of other objects are
especially important in data mining, where the keys or the ranges of objects of interest
are usually unknown. This type of search is also significant for multimedia databases,
where classical, exact searches are often meaningless. For example, querying an
image database to find images that contain a sunrise is usually done by providing an
example image and then, identifying those images that are similar to the example.
The natural framework for executing such searches is provided by metric spaces or,
more generally, by dissimilarity spaces [4], and we examine the usefulness of metric
properties for efficient searching algorithms. We show how various metric properties
benefit the design of searching algorithms.

Starting from a finite collection of members of S, T ∪ S, and a query object q ,
we consider two types of searching problems:

(i) range queries that seek to compute the set B(q, r)∅T , for some positive number
r , and

(ii) k-nearest-neighbor queries that seek to compute a set Nk such that Nk ∪ T ,
|Nk | = k and for every x ∈ Nk and y ∈ T − Nk , we have d(x, q) � d(y, q).

In the case of k-nearest-neighbor queries the set Nk is not uniquely identified
because of the ties that may exist. For k = 1, we obtain the nearest-neighbor queries.
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Fig. 14.11 Set of 16 points in
R

2

The triangular inequality that is satisfied by every metric plays an essential role
in reducing the amount of computation required by proximity queries.

Suppose that we select an element p of S (referred to as a pivot) and we compute
the set of distances {d(p, x) | x ∈ S} before executing any proximity searches. If
we need to compute a range query B(q, r) ∅ T , then by the triangular inequality, we
have d(q, x) � |d(p, q) − d(p, x)|. Since the distances d(p, q) and d(p, x) have
been already computed, we can exclude from the search all elements x such that
|d(p, q) − d(p, x)| > r .

The triangular inequality also ensures that the results of the search are plausible.
Indeed, it is expected that if both x and y are in the proximity of q, then a certain degree
of similarity exists between x and y. This is implied by the triangular inequality that
requires d(x, y) � d(x, q) + d(q, y).

To execute any of these searches, we need to examine the entire collection of
objects C unless specialized data structures called indexes are prepared in advance.

One of the earliest types of indexes is the Burkhard-Keller tree (see [5]), which
can be used for metric spaces where the distance is discrete; that is, the range of the
distance function is limited to a finite set. To simplify our presentation, we assume
that Ran(d) = {0, 1, . . . , k}, where k ∈ N. The pseudo-code for this construction is
given in the Algorithm 14.7.1.

Example 14.51 Consider the collection of points C = {o1, . . . , o16} in R
2 shown

in Fig. 14.11. Starting from their Euclidean distance d2(oi , o j ), we construct the
discrete distance d as in Exercise 16, namely, we define d(oi , o j ) = ∗d2(oi , o j )√ for
1 � i, j � 16.

The Manhattan distances d1(oi , o j ) are given by the following matrix and we
shall use this distance to construct the Burkhard-Keller tree.
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D =

⎭
⎪

0 1 2 3 1 2 3 4 2 3 4 5 3 4 5 6
1 0 1 2 2 1 2 3 3 3 3 4 4 3 4 5
2 1 0 1 3 2 1 2 4 3 2 3 5 4 3 4
3 2 1 0 4 3 2 1 9 4 3 2 6 5 4 3
1 2 3 4 0 1 2 3 1 2 3 4 2 3 4 5
2 1 2 3 1 0 1 2 2 1 2 3 3 2 3 4
3 2 1 2 2 1 0 1 3 2 1 2 4 3 2 3
4 2 2 1 3 2 1 0 4 3 2 1 5 4 3 2
2 3 4 5 1 2 3 4 0 1 2 3 1 2 3 4
3 2 3 4 2 1 2 3 1 0 1 2 2 1 2 3
4 3 2 3 3 2 1 2 2 1 0 1 3 2 1 2
5 4 3 2 4 3 2 1 3 2 1 0 4 3 2 1
3 4 5 6 2 3 4 5 1 2 3 4 0 1 2 3
4 3 4 5 3 2 3 4 2 1 2 3 1 0 1 2
5 4 3 4 4 3 2 3 3 2 1 2 2 1 0 1
6 5 4 3 5 4 3 2 4 3 2 1 3 2 1 0




.

Algorithm 14.7.1: Construction of the Burkhard-Keller Tree
Data: a collection of elements C of a metric space (S, d), where

Ran(d) = {0, 1, . . . , k}
Result: a tree TC whose nodes are labeled by objects of C
if |C | = 1 then1

return a single-vertex tree whose root is labeled p2

else3
select randomly an object p ∈ C to serve as root of TC ;4
partition C into the sets C1, . . . , Ck defined by Ci = {o ∈ C | d(o, p) = i} for5
1 � i � k;
construct the trees corresponding to Cl0 , . . . , Clm−1 , which are the nonempty sets among6
C1, . . . , Ck ;
connect the trees TCl0

, . . . ,TClm−1
to p;7

return TC8

end9

We begin by selecting o6 as the first pivot. Then, we create trees for the sets

C1 = {o2, o5, o7, o10},
C2 = {o1, o3, o8, o11, o14},
C3 = {o4, o12, o13, o15},
C4 = {o16}.

Choose o7, o8, and o13 as pivots for the sets C1, C2, and C3, respectively. Note that
TC4 is completed because it consists of one vertex. Assuming certain choices of
pivots, the construction results in a tree shown in Fig. 14.12.
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Fig. 14.12 Burkhard-Keller tree

Burkhard-Keller trees can be used for range queries that seek to compute sets of
the form Oq,r,C = B(q, r)∅C , where d is a discrete metric. In other words, we seek
to locate all objects o of C such that d(q, o) � r (see Algorithm 14.7.2).

By Exercise 62 we have |d(p, o) − d(p, q)| � d(q, o) � r , where p is the pivot
that labels the root of the tree. This implies d(p, q) − r � d(p, o) � d(p, q) + r ,
so we need to visit recursively the trees TCi where d(p, q) − r � i � d(p, q) + r .

Algorithm 14.7.2: Searching in Burkhard-Keller Trees
Data: a collection of elements C of a metric space (S, d), a query object q and a radius r
Result: the set O(q, r, C) = B(q, r) ∅ C
O(q, r, C) = ∩;1
if d(p, q) � r then2

O(q, r, C) = O(q, r, C) ∨ {p}3

end4
compute I = {i | 1 � i � k, d(p, q) − r � i � d(p, q) + r};5
compute

⋃
i∈I O(q, r, Ci );6

O(q, r, C) = O(q, r, C) ∨ ⋃
i∈I O(q, r, Ci );7

return O(q, r, C);8

Example 14.52 To solve the query B(o11, 1)∅C , where C is the collection of objects
introduced in Example 14.51, we begin by observing that d(o11, o6) = 2, so the pivot
itself does not belong to O(o11, 1, C). The set I in this case is I = {1, 2, 3}.

We need to execute three recursive calls, namely Oo11,1,C1 , Oo11,1,C2 , and
Oo11,1,C3 .
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For the set C1 having the pivot o7, we have o7 ∈ O(o11, 1, C1) because
d(o7, o11) = 1. Thus, O(o11, 1, C1) is initialized to {o7} and the search proceeds
with the set C1,2, which consists of the objects o5, o2, o10 located at distance 2 from
the pivot o7.

Since d(o5, o11) = 3, o5 does not belong to the result. The set C1,2,2 consists
of {o2, o10}. Choosing o2 as the pivot, we can exclude it from the result because
d(o2, o11) = 3. Finally, the set C1,2,2,2 consists of {o10} and d(o10, o11) = 1. Thus,

O(o11, 1, C1,2,2,2) = O(o11, 1, C1,2,2) = O(o11, 1, C1,2) = {o10},

so O(o11, 1, C1) = {o7, o10}.
Similarly, we have O(o11, 1, C2) = o11 and O(o11, 1, C3) = {o12, o15}. The

result of the query is Oo11,1,C = {o7, o10, o11, o12, o15}.
Orchard’s algorithm [6] aims to solve the nearest-neighbor problem and proceeds

as follows (see Algorithm 14.7.3).

Algorithm 14.7.3: Orchard’s Algorithm
Data: a finite metric space (S, d) and a query q ∈ S
Result: a member of S that is closest to the query q
for w ∈ S do1

establish a list Lw of elements of S in increasing order of their distance to w; select an2
initial candidate c (pre-processing phase)

end3
repeat4

compute d(c, q);5
scan Lc until a site s closer to q is found;6
c = s;7

until Lc is completely traversed or s is found in Lc such that d(c, s) > 2d(c, q);8
return c;9

Since Lc lists all elements of the space in increasing order of their distance to
c, observe that if the scanning of a list Lc is completed without finding an element
that is closer to q, then it is clear that p is one of the elements that is closest to
q and the algorithm halts. Let s be the first element in the current list Lc such that
d(c, s) > 2d(c, q) (if such elements exist at all). Then, none of the previous elements
on the list is closer to q than s since otherwise we would not have reached s in Lc.
By Exercise 67, (with k = 2) we have d(q, s) > d(c, q), so c is still the closest
element to q on this list. If z is an element of Lc situated past s, it follows that
d(z, c) � d(s, c) because Lc is arranged in increasing order of the distances to c,
so d(c, z) > 2d(c, q), which ensures that z is more distant from q than c. So, in all
cases where c is closest to q , the algorithm works correctly.

The preprocessing phase requires an amount of space that grows as φ(n2) with
n, and this limits the usefulness of the algorithm to rather small sets of objects.
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An alternative algorithm known as the annulus algorithm, proposed in [7], allows
reduction of the volume of preprocessing space to φ(n).

Suppose that the finite metric space (S, d) consists of n objects. The pre-
processing phase consists of selecting a pivot o and constructing a list of objects
L = (o1, o2, . . . , on) such that d(o, o1) � d(o, o2) � · · · � d(o, on). Without loss
of generality, we may assume that o = o1.

Suppose that u is closer to the query q than v; that is, d(q, u) � d(q, v). Then
we have

|d(u, o − d(q, o)| � d(u, q) � d(q, v)

by Exercise 62, which implies

d(q, o) − d(q, v) � d(u, o) � d(q, p) + d(q, v).

Thus, u is located in an annulus centered in o that contains the query point q and is
delimited by two spheres, B(o, d(q, o) − d(q, v)) and B(o, d(q, p) + d(q, v)).

Algorithm 14.7.4: Annulus algorithm
Data: a finite metric space (S, d) and a query q ∈ S
Result: the member of S that is closest to the query q
select a pivot object o;1
establish a list L of elements of S in increasing order of their distances to o (preprocessing2
phase);
select an initial candidate v;3
compute the set of Uv that consists of those u such that4
d(q, o) − d(q, v) � d(u, o) � d(q, p) + d(q, v);
scan Uv for an object w closer to q;5
if such a vector exists then6

replace v by w, recompute Uv and resume scan7

else8
output v9

end10

The advantage of the annulus algorithm over Orchard’s algorithm consists of the
linear amount of space required for the preprocessing phase. Implementations of
these algorithms and performance issues are discussed in detail in [8].

A general algorithm for the nearest-neighbor search in dissimilarity spaces was
formulated in [9]. The algorithm uses the notion of basis for a subset of a dissimilarity
space.

Definition 14.53 Let (S, d) be a dissimilarity space and let (δ,ψ) be a pair of
numbers such that δ � ψ > 0. A basis at level (δ,ψ) for a subset H, H ∪ S is a
finite set of points {z1, . . . , zk} ∪ S if for any x, y ∈ H we have

δd(x, y) � max{|d(x, zi ) − d(y, zi )| | 1 � i � k} � ψd(x, y).
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A dissimilarity space is k-dimensional if there exist δ,ψ, and k depending only on
(S, d) such that for any bounded subset H of S, there are k points of S that form a
basis at level (δ,ψ) for H.

Example 14.54 Consider the metric space (Rn, d2), and let H be a bounded subset
of R

n . A basis at level (1, 0.5) for H can be formed by the n + 1 vertices of a
sufficiently large n-dimensional simplex Sn that contains H . Indeed, observe that
d2(x, y) � |d2(x, zi ) − d2(y, zi )| for 1 � i � n + 1 by Exercise 62, which shows
that the first condition of Definition 14.53 is satisfied.

On the other hand, if the n + 1 points of the n-dimensional simplex are located
at sufficient distances from the points of the set H , then there exists at least one
vertex zi such that |d2(u, zi ) − d2(v, zi )| � 0.5d2(u, v); that is, max{|d2(u, zi ) −
d2(v, zi )| | 1 � i � k} � 0.5d(u, v). Indeed, let hi be the distance from zi to
the line determined by u and v, and let wi be the projection of zi on this line (see
Fig. 14.13). We discuss here only the case where wi is located outside the segment
(u, v). Let ki = min{d2(u, wi ), d2(v, wi )}.

To satisfy the condition

|d2(u, zi ) − d2(v, zi )| � ν

2

or the equivalent equality

∣∣∣∣
⎬

h2
i + (ν + ki )2 −

⎬
h2

i + k2
i

∣∣∣∣ � ν

2
,

it suffices to have

ν + 2ki �
⎬

h2
i + (ν + ki )2.

This inequality is satisfied if ki � 1
3

(⎬
ν + 4h2

i − ν

)
. Thus, if zi is chosen appro-

priately, the set z1, . . . , zn, zn+1 is a (1, 0.5) basis for H .

Algorithm 14.7.5: Faragó-Linder-Lugosi Algorithm
Data: a finite subset H = {x1, . . . , xn} of a dissimilarity space (S, d), an (δ,ψ)-basis

z1, . . . , zk for H , and a query x ∈ S
Result: the element of H that is closest to the query x
compute and store all dissimilarities d(xi , z j ) for 1 � i � n and 1 � j � k (preprocessing1
phase);
I = {x1, . . . , xn};2
γ(xi ) = max1� j�k |d(xi , z j ) − d(x, z j )| for 1 � i � n;3
t0 = min1�i�n γ(xi );4
delete all points xi from I such that γ(xi ) > δ

ψ t0;5

find the nearest neighbor of x in the remaining part of I by exhaustive search and output6
xnn = arg min1�i�n γ(xi );
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Fig. 14.13 Point of the basis
for a set H in Rn

If a tie occurs in the last step of the algorithm, then an arbitrary element is chosen
among the remaining elements of I that minimize γ(xi ).

The first phase of the algorithm is designated as the preprocessing phase because
it is independent of the query x and can be executed only once for the data set H and
its base. Its time requirement is O(nk).

To prove the correctness of the algorithm, we need to show that if an element of
H is deleted from I, then it is never the nearest neighbor xnn of x . Suppose that the
nearest neighbor xnn were removed. This would imply γ(xnn) > δ

ψ t0 or, equivalently,

1

δ
γ(xnn) >

1

ψ
min

1�i�n
γ(xi ).

Since {z1, . . . , zk} is a basis for the set H , we have

d(x, xnn) � 1

δ
max

1� j�k
|d(x, z j ) − d(xnn, z j )| � 1

δ
γ(xnn)

and
1

ψ
min

1�i�n
γ(xi ) � min

1�i�n
d(x, xi ),

which implies d(x, xnn) > min1�i�n d(x, xi ). This contradicts the definition of
xnn , so it is indeed impossible to remove xnn . Thus, in the worst case, the algorithm
performs n dissimilarity calculations.

Next, we present a unifying model of searching in metric spaces introduced in [4]
that fits several algorithms used for proximity searches. The model relates equiva-
lence relations (or partitions) to indexing schemes.
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Definition 14.55 The index defined by the equivalence φ on the set S is the surjection
Iφ : S −∈ S/φ defined by Iφ(x) = [x], where [x] is the equivalence class of x in
the quotient set S/φ.

A general searching strategy can be applied in the presence of an index and
involves two phases:

(i) identify the equivalence classes that contain the answers to the search, and
(ii) exhaustively search the equivalence classes identified in the first phase.

The cost of the first phase is the internal complexity of the search, while the cost of
the second phase is the external complexity.

If φ1, φ2 ∈ EQ(S) and φ1 � φ2, then |S/φ1| � |S/φ2|. Therefore, the internal
complexity of the search involving Iφ1 is larger than the internal complexity of
the search involving Iφ2 since we have to search more classes, while the external
complexity of the search involving Iφ1 is smaller than the external complexity of the
search involving Iφ2 since the classes that need to be exhaustively searched form a
smaller set.

Let (S, d) be a metric space and let φ be an equivalence on the set S. The metric
d generates a mapping λd,φ : (S/φ)2 −∈ R�0 on the quotient set S/φ, where
λd,φ([x], [y]) = inf{d(u, v) | u ∈ [x] and v ∈ [y]}. We refer to λd,φ as the pseudo-
distance generated by d and φ. It is clear that λd,φ([x], [y]) � d(x, y), for x, y ∈ S,
but λd,φ is not a metric because if fails to satisfy the triangular inequality in general.

If a range query B(q, r) ∅ T = {y ∈ T | d(q, y) � r} must be executed we
can transfer this query on the quotient set S/φ (which is typically a smaller set than
S) as the range query B([q], r) ∅ {[t] | t ∈ T }. Note that if y ∈ B(q, r), then
d(q, y) � r , so λd,φ([q], [y]) � d(q, y) � r . This setting allows us to reduce the
search of the entire set T to the search of the set of equivalence classes {[y] | y ∈
T, λd,φ([q], [y]) � r}.

Since λd,φ is not a metric, it is not possible to reduce the internal complexity of
the algorithm. In such cases, a solution is to determine a metric e on the quotient set
S/φ such that e([x], [y]) � λd,φ([x], [y]) for every [x], [y] ∈ S/φ. If this is feasible,
then we can search the quotient space for classes [y] such that e([q], [y]) � r using
the properties of the metric e.

Let φ1, φ2 ∈ EQ(S) be two equivalences on S such that φ1 � φ2. Denote by [z]i

the equivalence class of z relative to the equivalence φi for i = 1, 2.
If φ1 � φ2, then [z]1 ∪ [z]2 for every z ∈ S and therefore

λd,φ1([x]1, [y]1) = inf{d(u, v) | u ∈ [x]1 and v ∈ [y]1}
� inf{d(u, v) | u ∈ [x]2 and v ∈ [y]2}
= λd,φ2([x]2, [y]2).

Thus, λd,φ1([x]1, [y]1) � λd,φ2([x]2, [y]2) for every x, y ∈ S, and this implies

{[y]1 | λd,φ1([q], [y]) � r} ∪ {[y]2 | λd,φ2([q], [y]) � r},
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confirming that the external complexity of the indexing algorithm based on φ2 is
greater than the same complexity for the indexing algorithm based on φ1.

Example 14.56 Let (S, d) be a metric space, p ∈ S, and let r be a sequence of
positive real numbers r = (r0, r1, . . . , rn−1) such that r0 < r1 < . . . < rn−1. Define
the collection of sets E = {E0, E1, . . . , En} by E0 = {x ∈ S | d(p, x) < r0},
Ei = {x ∈ S | ri−1 � d(p, x) < ri } for 1 � i � n − 1, and En = {x ∈ S |
rn−1 � d(p, x)}. The subcollection of E that consists of nonempty sets is a partition
of S denoted by ρr. Denote the corresponding equivalence relation by φr.

If Ei ⊆= ∩, then Ei is an equivalence class of φr that can be imagined as a circular
ring around p. Then, if i < j and Ei and E j are equivalence classes, we have
λd,φ(Ei , E j ) > r j−1 − ri .

Example 14.57 Let (S, d) be a metric space and p be a member of S. Define the
equivalence φp = {(x, y) ∈ S × S | d(p, x) = d(p, y)}. We have λd,φ([x], [y]) =
|d(p, x)−d(p, y)|. It is easy to see that the pseudo-distance λd,φ is actually a distance
on the quotient set S/φ.

Exercises and Supplements

1. Let d be a metric on the set S. Prove that the function d ∞ : S × S −∈ R given by

d ∞(x, y) = 1 − e−kd(x,y),

where k is a positive constant and x, y ∈ S, is also a metric on S. This metric is
known as the Schoenberg transform of d (see [10]).
If d is an ultrametric, does it follow that d ∞ is an ultrametric?

2. Let S be a set and let ∂ : Seq(S) −∈ R>0 be a function such that u �pref v
implies ∂(u) � ∂(v) for u, v ∈ Seq(S).

(a) Define the mapping d∂ : (Seq(S))2 −∈ R�0 by

d∂(u, v) =
{

0 if u = v,

∂(lcp(u, v)) otherwise,

for u, v ∈ Seq(S). Prove that d∂ is an ultrametric on Seq(S).
(b) Consider an extension of the function d∂ to the set Seq∧(S) obtained by

replacing the sequences u, v in the definition of d∂ by infinite sequences.
Note that this extension is possible because the longest common prefix of
two distinct infinite sequences is always a finite sequence. Prove that the
extended function is an ultrametric on Seq∧(S).

(c) Give examples of functions ∂ that satisfy the conditions of Part (a) and the
associated ultrametrics.
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Solution for Part (a): It is clear that d∂(u, v) = 0 if and only if u = v
and that d∂(u, v) = d∂(v, u). Thus, we need to prove only the ultrametric
inequality. Let u, v, w be three sequences. In Theorem 11.8 we have shown
that at most two of the sequences lcp(u, v), lcp(v, w), lcp(w, u) are distinct
and that the common value of two of these sequences is a prefix of the third
sequence. This is equivalent to the ultrametric inequality for d∂.

3. Let x, y ∈ Seq∧({0, 1}) be two infinite binary sequences. Define

d : (Seq∧({0, 1}))2 −∈ R̂�0

as d(x, y) = ⎟∧
i=0

|xi −yi |
ai , where a > 1.

Prove that d is a metric on Seq∧({0, 1}) such that d(x, y) = d(x, z) implies
y = z for all x, y, z ∈ Seq∧({0, 1}).

4. Give an example of a topological metric space where the inclusion K(C(x, r)) ∪
B(x, r) can be strict.
Solution: Let (Seq∧({0, 1}), d∂) be the ultrametric space, where the ultrametric
d∂ was introduced in Supplement 2 and let ∂(u) = 1

|u| for u ∈ Seq({0, 1}).
It is clear that B(x, 1) = Seq∧({0, 1}) because d∂(x, y) � 1 for every x, y ∈
Seq∧({0, 1}). On the other hand, C(x, 1) contains those sequences y that have a
non-null longest common prefix with x; the first symbol of each such sequence
is the same as the first symbol s of x.
Since d∂ is an ultrametric, the open sphere C(x, 1) is also closed, so C(x, 1) =
K(C(x, 1)). Let s∞ be a symbol in S distinct from s and let z = (s∞, s∞, . . .) ∈
Seq∧(S). Note that d∂(x, z) = 1, so z ⊆∈ C(x, 1) = K(C(x, 1)). Thus, we have
K(C(x, 1) ⊥ B(x, 1).

5. Consider the ultrametric space (Seq∧({0, 1}), d∂), where ∂(u) = 1
2|u| for u ∈

Seq({0, 1}). For u ∈ Seq({0, 1}), let Pu = {ut | t ∈ Seq∧({0, 1})} be the set
that consists of all infinite sequences that begin with u. Prove that {Pu | u ∈
Seq({0, 1})} is a basis for the topological ultrametric space defined above.

6. Prove that x = (x0, x1, . . .) is a Cauchy sequence in a topological ultrametric
space (S,Od) if and only if limn∈∧ d(xn, xn+1) = 0.

7. Let (S, d) be a finite ultrametric space, where S = {x1, . . . , xn} and n � 3.
Prove that d takes at most n − 1 distinct positive values.

Solution: The argument is by induction on n. The statement is clearly true when
n = 3. Let n � 4 and and suppose that the statement is true for all m < n.
Without loss of generality we may assume that d(x1, x2) � d(xi , x j ) for all
i, j such that 1 � i ⊆= j � n. Then, d(xk, x1) = d(xk, x2) for all k such that
3 � k � n.
Let {a1, . . . , ar } = {d(xk, x1) | 3 � k � n}, where 0 = a0 < a1 < · · · <

ar . Define B j = {xk | k � 3 and d(xk, x1) = a j } for 1 � j � r . The
collection B1, . . . , Br is a partition of the set {x3, x4, . . . , xn}. Let m j = |B j |;
then m1 + · · · + mr = n − 2.
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If u ∈ Bi and v ∈ B j with i < j , then d(u, x1) = ai < a j = d(v, x1), hence
d(u, v) = a j . Therefore, the values of d(u, v) for u, v in distinct blocks of the
partition belong to the set {a1, . . . , ar }. By the induction hypothesis, for each k,
1 � k � r , the restriction of d to Bk can take at most mk − 1 distinct positive
values; therefore, d can take at most 1 + r + (m1 − 1)+ · · ·+ (mr − 1) = n − 1
distinct values on S, which concludes the argument.

8. Let (S,E) be a measurable space and let m : E −∈ R̂�0 be a measure. Prove
that the dm defined by dm(U, V ) = m(U ⇒ V ) is a semimetric on E.

9. Let f : L −∈ R�0 be a real-valued, nonnegative function, where
L = (L , {⊃,⊇}) is a lattice. Define the mapping d : L2 −∈ R�0 as
d(x, y) = 2 f (x ⊃ y) − f (x) − f (y) for x, y ∈ L . Prove that d is a semi-
metric on L if and only if f is anti-monotonic and submodular.
Hint: Use Supplement 16 of Chap. 12.

10. Let d : S × S −∈ R�0 be a metric on a set S and let k be a number k ∈ R�0.
Prove that the function e : S × S −∈ R�0 defined by ε(x, y) = min{d(x, y), k}
is a metric on S.

11. Let S be a set and e : P(S)2 −∈ R�0 be the function defined by e(X, Y ) =
|X − Y | for X, Y ∈ P(S). Prove that e satisfies the triangular axiom but fails to
be a dissimilarity.

12. Let S be a set and e : S2 −∈ R be a function such that

• e(x, y) = 0 if and only if x = y for x, y ∈ S,
• e(x, y) = e(y, x) for x, y ∈ S, and
• e(x, y) � e(x, z) + e(z, y)

for x, y, z ∈ S. Prove that e(x, y) � 0 for x, y ∈ S.
13. Let S be a set and f : S2 −∈ R be a function such that

• f (x, y) = 0 if and only if x = y for x, y ∈ S;
• f (x, y) = f (y, x) for x, y ∈ S;
• f (x, y) � f (x, z) + f (z, y) for x, y, z ∈ S.

Note that the triangular inequality was replaced with its inverse. Prove that the
set S contains at most one element.

14. Let d : S2 −∈ R be a function such that d(x, y) = 0 if and only if x = y
and d(x, y) � d(x, z)+ d(y, z) (note the modification of the triangular axiom),
for x, y, z ∈ S. Prove that d is a metric, that is, prove that d(x, y) � 0 and
d(x, y) = d(y, x) for all x, y ∈ S.

15. Let f : R�0 −∈ R�0 be a function that satisfies the following conditions:

a) f (x) = 0 if and only if x = 0.
b) f is monotonic on R�0; that is, x � y implies f (x) � f (y) for x, y ∈ R�0.
c) f is subadditive on R�0; that is, f (x + y) � f (x) + f (y) for x, y ∈ R�0.

Prove that if d is a metric on a set S, then f d is also a metric on S.
16. Let d : S × S −∈ R�0 be a metric on the set S. Prove that the function

e : S × S −∈ R�0 defined by e(x, y) = ∗d(x, y)√ for x, y ∈ S is also be a
metric on the set S. Also, prove that if the ceiling function is replaced by the
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floor function, then this statement is no longer valid. Note that e is a discretized
version of the metric d .

17. Let S be a set and let c : S2 −∈ [0, 1] be a function such that c(x, y)+c(y, x) =
1 and c(x, y) � c(x, t) + c(t, y) for every x, y, t ∈ S.

(a) Prove that the relation φc = {(x, y) ∈ S2 | c(x, y) = 1} is a strict partial
order on S.

(b) Let “<” be a strict partial order on a set S. Define the function e : S2 −∈
{0, 1

2 } by

e(x, y) =

⎛
⎧

1 if x < y,
1
2 if x, y are incomparable

0 if y < x,

for x, y ∈ S. Prove that e(x, y)+e(y, x) = 1 and c(x, y) � c(x, t)+c(t, y)

for every x, y, t ∈ S.

18. Let S be a finite set and let d : S2 −∈ R�0 be a dissimilarity. Prove that there
exists a ∈ R�0 such that the dissimilarity da defined by

da(x, y) =
{

(d(x, y))a if x ⊆= y

0 if x = y,

for x, y ∈ S satisfies the triangular inequality.
Hint: Observe that lima∈0 da(x, y) is a dissimilarity that satisfies the triangular
inequality.

19. Let U be a set and let f : U −∈ S be an injective function. Show that if
(S, d) is a metric space, then the pair (U, d ∞) is also a metric space, where
d ∞(u, v) = d( f (u), f (v)).

20. Let (S1, d1), . . . , (Sn, dn) be n metric spaces, where n � 1, and let ν be a norm
on R

n . Define the mapping Dν : (S1 × · · · × Sn)2 −∈ R̂�0 as Dν(x, y) =
ν(d1(x1, y1), . . . , dn(xn, yn)) for x = (x1, . . . , xn) and y = (y1, . . . , yn).

(a) Prove that Dν is a metric on S1 × · · · × Sn .
We refer to (S1 × · · · × Sn, Dν) as the ν-product of the metric spaces
(S1, d1), . . . , (Sn, dn). When ν is the Euclidean norm, we refer to (S1×· · ·×
Sn, Dν) simply as the product of the metric spaces (S1, d1), . . . , (Sn, dn).

(b) Let (S1, d1), (S2, d2) be two metric spaces. Consider the functions λ, λ∞ :
S1 × S2 −∈ R̂�0 given by

λ((x, y), (u, v)) = d(x, u) + d(y, v),

λ∞((x, y), (u, v)) = max{d(x, u), d(y, v)},

for every (x, y), (u, v) ∈ S1 × S2. Prove that both λ and λ∞ are metrics on
the set product S1 × S2.
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21 Let (S, d) be a finite metric space. Prove that there exists a graphG = (S, E) such
that d is the distance associated with this graph if and only if d(x, y) ∈ N and
d(x, y) � 2 implies the existence of z ∈ S such that d(x, y) = d(x, z)+d(z, y)

for x, y ∈ S.
22. Prove that every metric defined on a finite set S such that |S| = 3 is a tree metric.
23. Let S be a finite set, d : S × S −∈ R�0 be a dissimilarity on S, and s be an

element of S. Define the mapping ds,k : S × S −∈ R by

ds,k(x, y) =
{

k+d(x,y)−d(x,s)−d(y,s)
2 if x ⊆= y

0 if x = y,

for x, y ∈ S.

(a) Prove that there is k > 0 such that ds,k � 0 for every s ∈ S.
(b) Prove that d is a tree metric if and only if there exists k such that ds,k is an

ultrametric for all s ∈ S.

24. Let S be a set, ρ be a partition of S, and a, b be two numbers such that a < b.
Prove that the mapping d : S2 −∈ R�0 given by

d(x, y) =

⎛
⎧

0 if x = y,

a if x ⊆= y and x ≡ρ y,

b if x ⊆≡ρ y,

is an ultrametric on S.
25. Prove the following extension of the statement from Exercise 24.

Let S be a set, ρ0 < ρ1 < · · · < ρk−1 be a chain of partitions on S, where
ρ0 = δS and ρk−1 = σS and let 0 < a1 . . . < ak−1 < ak be a chain of positive
reals. Prove that the mapping d : S2 −∈ R�0 given by d(x, y) = 0 if x = y
and d(x, y) = ai if i = min{p > 0 | (x, y) ∈ ρp} is an ultrametric on S.

Solution: It is clear that d(x, y) = 0 if and only if x = y and that
d(x, y) = d(y, x) for any x, y ∈ S. Thus, we need to show only that d sat-
isfies the ultrametric property.
Suppose that x, y, z ∈ S are such that d(x, y) = ai and d(y, z) = a j , where
ai < a j and i < j . The definition of d implies that x ⊆≡ρi−1 y, x ≡ρi y, and
y ⊆≡ρ j−1 z, y ≡ρ j z. Since ρi < ρ j , it follows that x ≡ρ j z by the transitivity of
≡ρ j . Thus, d(x, z) � j = max{d(x, y), d(y, z)}.

26. Using the Steinhaus transform (Lemma 14.34 on page 673), prove that if the
mapping d : Rn × R

n −∈ R�0 is defined by

d(x, y) = d2(x, y)

d2(x, y)+ ‖ x ‖ + ‖ y ‖ ,

for x, y ∈ R
n , then d is a metric on R

n such that d(x, y) < 1.
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27. Using Exercises 17 and 26 prove that the mapping e : Rn × R
n −∈ R�0 given

by

e(x, y) = d2(x, y)

‖ x ‖ + ‖ y ‖
for x, y ∈ R

n is a metric on R
n .

28. Prove that the following statements that concern a subset U of (Rn, dp) are
equivalent:

(a) U is bounded.
(b) There exists n closed intervals [a1, b1], . . . , [an, bn] such thatU ∪ [a1, b1]×

· · · × [an, bn].
(c) There exists a number k � 0 such that dp(0, x) � k for every x ∈ U .

29. Let S = {x1, . . . , xm} be a finite subset of the metric space (R2, dp). Prove that
there are at most m pairs of points (xi , x j ) ∈ S × S such that dp(xi , x j ) =
diam(S).

30. Let x, y ∈ R
2. Prove that z is outside the circle that has the diameter x, y if and

only if d2
2 (x, z) + d2

2 (y, z) > d2
2 (x, y).

31. Let S = {x1, . . . , xm} be a finite subset of the metric space (R2, dp). The Gabriel
graph of S is the graphG = (S, E), where (xi , x j ) ∈ E if and only if d2

2 (xi , xk)+
d2

2 (x j , xk) > d2
2 (x, y) for every k ∈ {1, . . . , n} − {i, j}.

Prove that if x, y, z ∈ S and (y − x) · (z − x) < 0, for some y ∈ S, then there is
no edge (x, z) in the Gabriel graph of S. Formulate an algorithm to compute the
Gabriel graph of S that requires an amount of time that grows as m2.

32. Let C ∈ R
n×n be a square matrix such that Cw = 0 implies w = 0 for w ∈ R

n×1.
Define dC : Rn × R

n −∈ R by dC(x, y) = (x − y)∞C∞C(x − y) for x, y ∈ R
n×1.

Prove that dC is a metric on R
n .

33. Let Un = {(x1, . . . , xn) ∈ R
n | ⎟n

i=1 x2
i = 1} be the set of unit vectors in R

n .
Prove that the mapping d : U 2

n −∈ R�0 defined by

d(x, y) = arccos

(
n∑

i=1

xi yi

)
,

where x = (x1, . . . , xn) and y = (y1, . . . , yn) belong to Un , is a metric on Un .
34. Let (S, d) be a finite metric space. Prove that the functions D, E : P(S)2 −∈ R

defined by

D(U, V ) = max{d(u, v) | u ∈ U, v ∈ V },
E(U, V ) = 1

|U | · |V |
∑

{d(u, v) | u ∈ U, v ∈ V },

for U, V ∈ P(S) such that U ⊆= V , and D(U, U ) = E(U, U ) = 0 for every
U ∈ P(S) are metrics on P(S).
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35. Prove that if we replace max by min in Exercise 14.7.1, then the resulting function
F : P(S)2 −∈ R defined by

D(U, V ) = min{d(u, v) | u ∈ U, v ∈ V }

for U, V ∈ P(S) is not a metric on P(S), in general.
Solution: Let S = U ∨ V ∨ W , where

U = {(0, 0), (0, 1), (1, 0), (1, 1, )},
V = {(2, 0), (2, 1), (2 + ν, 0), (2 + ν, 1)},
W = {(ν + 1, 0), (ν + 1, 1), (ν + 2, 0), (ν + 2, 1)}.

The metric d is the usual Euclidean metric in R
2. Note that F(U, V ) =

F(V, W ) = 1; however, F(U, W ) = ν + 2. Thus, if ν > 0, the triangular
axiom is violated by F .

36. Let (S, d) be a metric space. Prove that:

(a) d(x, T ) � d(x, y) + d(y, T ) for every x, y ∈ S and T ∈ P(S).
(b) If U and V are nonempty subsets of S, then:

inf
x∈U

d(x, V ) = inf
x∈V

d(x, U ).

37. Let S be a finite set and let λ : P(S)2 −∈ R�0 defined by

λ(X, Y ) = |X ⇒ Y |
|X | + |Y |

for X, Y ∈ P(S). Prove that λ is a dissimilarity but not a metric.
Hint: Consider the set S = {x, y} and its subsets X = {x} and Y = {y}.
Compare λ(X, Y ) with λ(X, S) + λ(S, Y ).

38. Let S be a finite set and let ρ and ω ∈ PART(S). Prove that

dψ(ρ,ω) � dψ(δS,σS) = Hψ(δS)

for every ψ � 1.
39. Let S be a finite set and let ρ,ω be two partitions on S. Prove that if ω covers

the partition ρ, then there exist Bi , B j ∈ ρ such that

d2(ρ,ω) = 4 · |Bi | · |B j |
|S|2 .

40. Let X be a set of attributes of a table ν = (T, H, r), r = (t1, . . . , tn), and let ρX

be the partition of {1, . . . , n} defined on page 571. For ψ ∈ R such that ψ > 1,
prove that:
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(a) We have Hψ(ρU V ) = Hψ(ρU |ρV ) + H(ρV ).
(b) If Dψ : P(H)2 −∈ R�0 is the semimetric defined by Dψ(U, V ) =

dψ(ρU ,ρV ), show that Dψ(U, V ) = 2Hψ(ρU V ) − Hψ(ρU ) − Hψ(ρV ).
(c) Prove that if ν satisfies the functional dependency U −∈ V , then

Dψ(U, V ) = Hψ(ρU ) − Hψ(ρV ).
(d) Prove that Dψ(U, V ) � Hψ(ρU V ) − Hψ(ρU ⊇ ρV ).

41. An attribute A of a table ν is said to be binary if Dom(A) = {0, 1}. Define
the contingency matrix of two binary attributes of a table ν = (T, H, r) as the
2 × 2-matrix

K AB =
(

n00 n01
n10 n11

)
,

where r = (t1, . . . , tn) and ni j = |{k | tk[AB] = (i, j)}|. Prove that
D2(U, V ) = 4

n (n00 + n11)(n10 + n01), where D2 is a special case of the semi-
metric Dψ introduced in Exercise 14.7.1.

42. Let ρ = {B1, . . . , Bm} and ω = {C1, . . . , Cn} be two partitions of a set S. The
Goodman-Kruskal coefficient of ρ and ω is the number

GK(ρ,ω) = 1 − 1

|S|
m∑

i=1

max
1� j�n

|Bi ∅ C j |.

(a) Prove that GK(ρ,ω) = 0 if and only if ρ � ω.
(b) Prove that the function GK is monotonic in the first argument and dually

monotonic in the second argument.
(c) If ν,ρ,ω ∈ PART(S), then prove that:

GK(ρ ⊃ ν,ω) + GK(ν,ρ) � GK(ν,ρ ⊃ ω).

(d) Prove that GK(ν,ρ) + GK(ρ,ω) � GK(ν,ω) for ν,ρ,ω ∈ PART(S).
(e) Prove that the mapping dG K : PART(S) × PART(S) −∈ R given by

dG K (ρ,ω) = GK(ρ,ω) + GK(ω,ρ)

for ρ,ω ∈ PART(S), is a metric on PART(S).

A longest common subsequence of two sequences x and y is a sequence z that
is a subsequence of both x and y and is of maximal length. For example, if
x = (a1, a2, a3, a4, a2, a2) and y = (a3, a2, a1, a3, a2, a1, a1, a2, a1), then both
(a2, a3, a2, a2) and (a1, a3, a2, a2) are both longest subsequences of x and y.
The length of a longest common subsequence of x and y is denoted by llcs(x, y).

43. Let x = (x0, . . . , xn−1) and y = (y0, . . . , ym−1) be two sequences. Prove that
we have
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llcs(x, y) =

⎛
⎧

0 if x = τ or y = τ,

llcs(x0,n−2, y0,m−2) + 1 if xn−1 = ym−1,

max{llcs(x0,n−2, y), llcs(x, y0,m−2)}.

Based on this equality, formulate a tabular algorithm (similar to the one used to
compute Levenshtein’s distance) that can be used to compute llcs(x, y) and all
longest common subsequences of x and y.

44. Let d be the string distance calculated with the cost scheme (1, 1,∧). Prove
that d(x, y) = |x| + |y| − 2llcs(x, y).

45. Let d be the string distance calculated with the cost scheme (∧,∧, 1). Show
that if x = (x0, . . . , xn−1) and y = (y0, . . . , ym−1), then

d(x, y) =
{

∧ if |x| ⊆= |y|,
|{i | 0 � i � n − 1, xi ⊆= yi }| if |x| = |y|.

Let ρ = {B1, . . . , Bm} and ω = {C1, . . . , Cn} of a finite set S = {s1, . . . , sν}.
The contingency matrix of the partitions ρ and ω is the m × n matrix Q(ρ,ω),
where Q(ρ,ω)i j = |Bi ∅ C j | for 1 � i � m and 1 � j � n. The element
Q(ρ,ω)i j will be denoted by qi j for 1 � i � m and 1 � j � n.
The marginal totals of Q(ρ,ω) are:

q· j =
m∑

i=1

qi j for 1 � j � n, and,

qi · =
n∑

j=1

qi j for 1 � i � m.

Clearly, |C j | = q· j , |Bi | = qi · and |S| = ⎟m
i=1 qi · = ⎟n

j=1 q· j = |S|. Also, we
have:

m∑
i=1

n∑
j=1

qi j =
m∑

i=1

qi · =
n∑

j=1

q· j = ν.

A subset T of S is ρ-homogeneous if there exists a block Bi such that T ∪ Bi .
The set of unordered pairs of elements of S was denoted by P2(S). If |S| = ν,
then it is easy to see that |P2(S)| = ν2−ν

2 distinct unordered pairs of elements.
An unordered pair Ψ = {s, s∞} is said to be of

1. type 1 if Ψ is both ρ-homogeneous and ω-homogeneous;
2. type 2 if Ψ is neither ρ-homogeneous nor ω-homogeneous;
3. type 3 if Ψ is not ρ-homegeneous but is ω-homogeneous;
4. type 4 if Ψ is ρ-homegeneous but not ω-homogeneous.
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The number of agreements agr(ρ,ω) of the partitions ρ,ω is the total number of
pairs of type 1 and 2; the number of disagreements of these partitions dagr(ρ,ω)

is the total number of pairs of types 3 and 4. Clearly, we have:

agr(ρ,ω) + dagr(ρ,ω) = ν2 − ν

2
.

46. Prove that:

(a) the number of pairs of type 1 equals

ν1 =
m∑

i=1

n∑
j=1

q2
i j − qi j

2
= 1

2

⎭
⎪ m∑

i=1

n∑
j=1

q2
i j − ν


 ;

(b) the number of pairs of type 3 is

ν3 =
n∑

j=1

q2· j − q· j

2
−

m∑
i=1

n∑
j=1

q2
i j − qi j

2
= 1

2

⎭
⎪ n∑

j=1

q2· j −
m∑

i=1

n∑
j=1

q2
i j


 ;

(c) the number of pairs of type 4 is:

ν4 =
m∑

i=1

q2
i · − qi ·

2
−

m∑
i=1

n∑
j=1

q2
i j − qi j

2
= 1

2

⎭
⎪ m∑

i=1

q2
i · −

m∑
i=1

n∑
j=1

q2
i j


 .

(d) the number of pairs of type 2 is:

ν2 = ν2 − ν

2
− ν1 − ν3 − ν4

= 1

2

⎭
⎪ν2 +

m∑
i=1

n∑
j=1

q2
i j −

m∑
i=1

q2
i · −

n∑
j=1

q2· j


 .

47. Prove that agr(ρ,ω) is:

agr(ρ,ω) = 1

2

⎭
⎪2

m∑
i=1

n∑
j=1

q2
i j + ν2 − ν −

m∑
i=1

q2
i · −

n∑
j=1

q2· j


 .
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48. Prove that the number of disaggrements is:

dagr(ρ,ω) = 1

2

⎭
⎪ n∑

j=1

q2· j +
m∑

i=1

q2
i · − 2

m∑
i=1

n∑
j=1

q2
i j


 .

49. The Rand index of two partitions ρ,ω ∈ PART(S) is the number:

rand(ρ,ω) = agr(ρ,ω)⎜|S|
2

) ,

Prove that:

(a) dagr(ρ,ω) = |S|2
4 · d2(ρ,ω);

(b) rand(ρ,ω) = 1 − |S|2
2(|S|2−|S|)d2(ρ,ω);

(c) 0 � rand(ρ,ω) � 1; moreover, rand(ρ,ω) = 1 if and only if ρ = ω.

50. A shortest common supersequence of two sequences x and y is a sequence of
minimum length that contains both x and y as subsequences. Prove that the length
of a shortest common supersequence of x and y equals |x| + |y| − llcs(x, y).

51. Let (S, d) be a finite metric space. A metric tree for (S, d) (see [11]) is a binary
tree T(S, d), defined as follows:

• If |S| = 1, then T(S, d) consists of a single node that is sphere B(s, 0), where
S = {s}.

• If |S| > 1 create a node v labeled by a sphere B(s, r) ∪ S and construct the
trees T(B(s, r), d) and T(S − B(s, r), d). Then, make T(B(s, r) and T(S −
B(s, r) the direct descendants of v.
Design an algorithm for retrieving the k-nearest members of S to a query
q ∈ S using an existing metric tree.

The AESA algorithm (an acronym of Approximating and Eliminating Search
Algorithm) shown as Algorithm 14.7.6 starts with a finite metric space (S, d),
a subset X = {x1, . . . , xn} of S, and a query q ∈ S and produces the nearest
neighbors of q in X .
The values of distances between the members of X are precomputed. The algo-
rithm uses the semimetric DT defined in Exercise 65.
The algorithm partitions the set X into three sets: K , A, E , where K is the set
of known elements (that is, the set of elements of S for which d(x, q) has been
computed), A is the set of active elements, and E is the set of eliminated elements
defined by

E = {x ∈ X | DK (x, q) > min{d(y, q) | y ∈ K }}.

The algorithm is given next.
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Algorithm 14.7.6: The Approximating and Eliminating Search Algorithm
Data: a metric space (S, d), a subset X of S, and a query q ∈ S
Result: the set of nearest neighbors of q in X
compute the matrix of dissimilarities (d(xi , x j )) of the elements of X (preprocessing phase);1
A = X ; K = ∩; E = ∩;2
while (A ⊆= ∩) do3

DK (x, q) = ∧;4
select x ∈ A such that x = arg min{DK (x, q) | x ∈ A};5
compute d(x, q); K = K ∨ {x}; A = A − {x};6
update r = min{d(x, q) | x ∈ K };7
update DK (x ∞, q) for all x ∞ ∈ A as8
DK∨{x}(x ∞, q) = max{DK (x ∞, q), |d(x, q) − d(x, x ∞)|};
K = K ∨ {x};9
if DK (x ∞, q) > r then10

A = A − {x ∞};11
E = E ∨ {x ∞};12

end13
return the set K14

end15

52. Prove that the AESA algorithm is indeed computing the set of nearest neighbors
of q.

53. Let (S, d) be a metric space and let X = {x1, . . . , xn} be a finite subset of
S. Suppose that not all distances between the elements of X are known. The
distance graph of X is a weighted graph (GX , w), where GX = (X, E). An
edge (x, y) exists in the underlying graph GX if d(x, y) is known; in this case,
w(x, y) = d(x, y).
If p is a simple path in the graph (GX , w) that joins x to y, define ι(p) =
w(ê) −⎟{w(e) | e is in p, e ⊆= ê}, where ê is the edge of maximum weight in
p. Prove that d(x, y) � ι(p).

54. Let paths(x, y) be the set of simple paths in (GX , w) that joins x to y. Define
the approximate distance map for X as an n × n matrix A = (ai j ) such that

ai j = max{ι(p) | p ∈ paths(xi , x j )}

for 1 � i, j � n. Also, define the n × n-matrix M = (mi j ) as

mi j = min{w(p) | p ∈ paths(xi , x j )}

for 1 � i, j � n. Prove that ai j � d(xi , x j ) � mi j for 1 � i, j � n.
55. Let pathsk(x, y) be the set of simple paths in (GX , w) that join x to y and do not

pass through any of the vertices numbered higher than k, where k � 1. Denote
by ak

i j , mk
i j , bk

i j the numbers
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ak
i j = max{ι(p) | p ∈ pathsk(xi , x j )},

mk
i j = min{w(p) | p ∈ pathsk(xi , x j )},

bk
i j = max{ι(p) | p ∈ pathsk(xi , xk)pathsk(xk, x j )}

for 1 � i, j � n. Prove that bk
i j = max{ak−1

i j − mk−1
i j , ak−1

jk − mk−1
ki } for

1 � k � n.

Bibliographical Comments

A comprehensive, research-oriented source for metric spaces is [10].
The reader should consult two excellent surveys [4, 12] on searches in metric

spaces. Nearest-neighbor searching is comprehensively examined in [11, 13]. The
AESA algorithm was introduced in [14, 15]. Weighted graphs of partially defined
metric spaces and approximate distance maps are defined and studied in [16, 17],
where Exercises 53–55 originate. Finally, we refer the reader to two fundamental
references for all things about metrics [10],[18].

Supplement 7 is due to C. Zara [19]; see also [20].
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Chapter 15
Dimensions of Metric Spaces

15.1 Introduction

Subsets ofRn may have “intrinsic” dimensions that are much lower than n. Consider,
for example, two distinct vectors a, b ∈ R

n and the line L = {a + tb | t ∈ R}.
Intuitively, L has the intrinsic dimensionality 1; however, L is embedded in R

n

and from this point of view is an n-dimensional object. In this chapter we examine
formalisms that lead to the definition of this intrinsic dimensionality.

Difficulties related to the high number of correlated features that occur when
data mining techniques are applied to data of high dimensionality are collectively
designated as the dimensionality curse. In Sect. 15.3 we discuss properties of the
R

n spaces related to the dimensionality curse and we show how the reality of highly
dimensional spaces contradicts the common intuition that we acquire through our
common experience with lower dimensional spaces. Higher dimensional spaces are
approached using analogies with lower dimensional spaces.

15.2 The Euler Functions and the Volume of a Sphere

The functions B and ν defined by the integrals

B(a, b) =
∫ 1

0
xa−1(1 − x)b−1 dx and ν (a) =

∫ ∞

0
xa−1e−x dx,

are known as Euler’s integral of the first type and Euler’s integral of the second type,
respectively. We assume here that a and b are positive numbers to ensure that the
integrals are convergent.

Replacing x by 1 − x yields the equality

B(a, b) = −
∫ 0

1
(1 − x)a−1(x)b−1 dx = B(b, a),

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 727
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_15,
© Springer-Verlag London 2014
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which shows that B is symmetric.
Integrating B(a, b) by parts, we obtain

B(a, b) =
∫ 1

0
xa−1(1 − x)b−1 dx =

∫ 1

0
(1 − x)b−1 d

xa

a

= xa(1 − x)1−b)

a

1⎜⎜⎜⎜
0

+ b − 1

a

∫ 1

0
xa(1 − x)b−2 dx

= b − 1

a

∫ 1

0
xa−1(1 − x)b−2 dx − b − 1

a

∫ 1

0
xa−1(1 − x)b−1 dx

= b − 1

a
B(a, b − 1) − b − 1

a
B(a, b),

which yields

B(a, b) = b − 1

a + b − 1
B(a, b − 1). (15.1)

The symmetry of the function B allows us to infer the formula

B(a, b) = a − 1

a + b − 1
· B(a − 1, b).

If b = n ∈ N, a repeated application of Equality (15.1) allows us to write

B(a, n) = n − 1

a + n − 1
· n − 2

a + n − 2
· · · 1

a + 1
· B(a, 1).

It is easy to see that B(a, 1) = 1
a . Thus,

B(a, n) = B(n, a) = 1 · 2 · · · · (n − 1)

a · (a + 1) · · · · (a + n − 1)
.

If a is also a natural number, a = m ∈ N, then

B(m, n) = (n − 1)!(m − 1)!
(m + n − 1)! .

Next, we show the connection between Euler’s integral functions:

B(a, b) = ν (a)ν (b)

ν (a + b)
. (15.2)

Replacing x in the integral
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ν (a) =
∫ ∞

0
xa−1e−x dx

by x = r y with r > 0 gives ν (a) = ra
∫∞

0 ya−1e−r y dy.
Replacing a by a + b and r by r + 1 yields the equality

ν (a + b)(r + 1)−(a+b) =
∫ ∞

0
ya+b−1e−(r+1)y dy.

By multiplying both sides by ra−1 and integrating, we have

ν (a + b)

∫ ∞

0
ra−1(r + 1)−(a+b) dr =

∫ ∞

0
ra−1

(∫ ∞

0
ya+b−1e−(r+1)y dy

⎟
dr.

By the definition of B, the last equality can be written

ν (a + b)B(a, b) =
∫ ∞

0
ra−1

(∫ ∞

0
ya+b−1e−(r+1)y dy

⎟
dr.

By permuting the integrals from the right member (we omit the justification of this
manipulation), the last equality can be written as

ν (a + b)B(a, b) =
∫ ∞

0
ya+b−1e−y

(∫ ∞

0
ra−1e−r y dr

⎟
dy.

Note that
∫∞

0 ra−1e−r y dr = ν (a)
ya . Therefore,

ν (a+b)B(a, b)=
∫ ∞

0
ya+b−1e−y ν (a)

ya
dy=

∫ ∞

0
yb−1e−yν (a) dy =ν (a)ν (b),

which is Formula (15.2).
The ν function is a generalization of the factorial. Starting from the definition of

ν and integrating by parts, we obtain

ν (x) =
∫ ∞

0
xa−1e−x dx = xa

a
e−x

∞⎜⎜⎜⎜
0

+ 1

a

∫ ∞

0
xae−x dx = 1

a
ν (a + 1).

Thus, ν (a + 1) = aν (a). Since ν (1) = ∫∞
0 e−x dx = 1, it is easy to see that

ν (n + 1) = n! for n ∈ N.
Using an argument from classical analysis it is possible to show that ν has deriv-

atives of arbitrary order and that we can compute these derivatives by deriving the
function under the integral sign. Namely, we can write:
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ν ∪(a) =
∫ ∞

0
xa−1(ln x)e−x dx,

and, in general, ν (n)(a) = ∫∞
0 xa−1(ln x)ne−x dx . Thus, ν (2)(a) > 0, which shows

that the first derivative is increasing.
Since ν (1) = ν (2) = 1, there exists a ∈ [1, 2] such that ν ∪(a) = 0. For

0 < x < a, we have ν ∪(x) � 0, so ν is decreasing. For x > a, ν ∪(x) � 0, so ν is
increasing. It is easy to see that

lim
x∞0+ ν (x) = ν (x + 1)

x
= ∞,

and limx∞∞ ν (x) = ∞.
An integral that is useful for a variety of applications is

I =
∫
R

e− 1
2 t2

dt.

We prove that I = ∅
2φ .

We can write

I 2 =
∫
R

e− 1
2 x2

dx ·
∫
R

e− 1
2 y2

dy =
∫
R2

e− x2+y2

2 dx dy.

Changing to polar coordinates by using the transformation x = Ψ cos β and y =
Ψ sin β whose Jacobian is

⎜⎜⎜⎜⎜⎜⎜
Φx

ΦΨ

Φx

Φβ
Φy

ΦΨ

Φy

Φβ

⎜⎜⎜⎜⎜⎜⎜ =
⎜⎜⎜⎜cos β −Ψ sin β

sin β Ψ cos β

⎜⎜⎜⎜ = Ψ,

we have

I 2 =
∫
R2

e− Ψ2

2 Ψ dΨ dβ =
∫ 2φ

0
dβ

∫ ∞

0
e− Ψ2

2 Ψ dΨ = 2φ.

Thus, I = ∅
2φ . Since e− 1

2 t2
is an even function, it follows that

∫ ∞

0
e− 1

2 t2
dt =

√
φ

2
.

Using this integral, we can compute the value of ν
( 1

2

)
. Note that Since ν

( 1
2

) =∫∞
0

e−x∅
x

dx , by applying the change of variable x = t2

2 , we have
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ν

(
1

2

⎟
= ∅

2 ·
∫ ∞

0
e− 1

2 t2
dt = ∅

φ. (15.3)

The last equality allows us to compute the values of the form ν
(

2p + 1
2

)
. It is easy

to see that

ν

(
2p + 1

2

⎟
= (2p − 1) · (2p − 3) · · · 3 · 1

2p

∅
φ = (2p)!

p!22p

∅
φ. (15.4)

A closed sphere centered in (0, . . . , 0) and having the radius R in R
n is defined

as the set of points:

Sn(R) =
{

(x1, . . . , xn) ∈ R
n |

n∑
i=1

x2
i = 1

}
.

The volume of this sphere is denoted by Vn(R).
We approximate the volume of an n-dimensional sphere of radius R as a sequence

of n − 1-dimensional spheres of radius r(u) = ⎛
R2 − u2, where u varies between

−R and R. This allows us to write

Vn+1(R) =
∫ R

−R
Vn(r(u)) du.

We seek Vn(R) as a number of the form Vn(R) = kn Rn . Thus, we have

Vn+1(R) = kn

∫ R

−R
(r(u))n du = kn

∫ R

−R
(R2 − u2)

n
2 du

= kn Rn
∫ R

−R

(
1 −

( u

R

)2
⎟ n

2

du

= Vn(R)

∫ R

−R

(
1 −

( u

R

)2
⎟ n

2

du = RVn(R)

∫ 1

−1
(1 − x2)

n
2 dx .

In turn, this yields the recurrence

kn+1 = kn

∫ 1

−1
(1 − x2)

n
2 dx .

Note that

∫ 1

−1
(1 − x2)

n
2 dx = 2 ·

∫ 1

0
(1 − x2)

n
2 dx
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because the function (1 − x2)
n
2 is even. To compute the latest integral, substitute

u = x2. We obtain

∫ 1

0
(1 − x2)

n
2 dx = 1

2

∫ 1

0
u− 1

2 (1 − u)
n
2 du,

which equals 1
2 · B( 1

2 , n
2 + 1). Using the ν function, the integral can be written as

∫ 1

0
(1 − x2)

n
2 dx = 1

2
· ν ( 1

2 )ν ( n
2 + 1)

ν
( n

2 + 3
2

) .

Thus,

kn+1 = kn
ν
( 1

2

)
ν
( n

2 + 1
)

ν
( n+1

2 + 1
) .

Since k1 = 2, this implies

kn = 2

(
ν

(
1

2

⎟⎟n−1 ν
( 1

2 + 1
)

ν
( n

2 + 1
) =

(
ν

(
1

2

⎟⎟n 1

ν
( n

2 + 1
) = φ

n
2

1

ν
( n

2 + 1
) .

Thus, the volume of the n-dimensional sphere of radius R equals

φ
n
2 Rn

ν
( n

2 + 1
) .

For n = 1, 2, 3, by applying Formula (15.4), we obtain the well-known values 2R,
φ R2, and 4φ R3

3 , respectively. For n = 4, the volume of the sphere is φ2 R4

2 .

15.3 The Dimensionality Curse

The term “dimensionality curse,” invented by Richard Bellman in [1], is used to
describe the difficulties of exhaustively searching a space of high dimensionality for
an optimum value of a function defined on such a space. These difficulties stem from
the fact that the size of the sets that must be searched increases exponentially with the
number of dimensions. Moreover, phenomena that are at variance with the common
intuition acquired in two- or three-dimensional spaces become more significant. This
section is dedicated to a study of these phenomena.

The dimensionality curse impacts many data mining tasks, including classification
and clustering. Thus, it is important to realize the limitations imposed by high-
dimensional data on designing data mining algorithms.
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Let Qn(δ) be an n-dimensional cube inRn . The volume of this cube is δn . Consider
the n-dimensional closed sphere of radius R that is centered in the center of the cube
Qn(2R) and is tangent to the opposite faces of this cube. We have:

lim
n∞∞

Vn(R)

2n Rn
= φ

n
2

2nν
( n

2 + 1
) = 0.

In other words, as the dimensionality of the space grows, the fraction of the cube
volume that is located inside the sphere decreases and tends to become negligible
for very large values of n.

It is interesting to compare the volumes of two concentric spheres of radii R and
R(1 − π), where π ∈ (0, 1). The volume located between these spheres relative to
the volume of the larger sphere is

Vn(R) − Vn(R(1 − π))

Vn(R)
= 1 − (1 − π)n,

and we have

lim
n∞∞

Vn(R) − Vn(R(1 − π))

Vn(R)
= 1.

Thus, for large values of n, the volume of the sphere of radius R is concentrated
mainly near the surface of this sphere.

Let Qn(1) be a unit side-length n-dimensional cube, Qn(1) = [0, 1]n , centered in
cn = (0.5, . . . , 0.5) ∈ Rn . The d2-distance between the center of the cube cn and any

of its vertices is
∅

0.52 + · · · 0.52 = 0.5
∅

n, and this value tends to infinity with the
number of dimensions n despite the fact that the volume of the cube remains equal to 1.
On the other hand, the distance from the center of the cube to any of its faces remains
equal to 0.5. Thus, the n-dimensional cube is exhibits very different properties in
different directions; in other words the n-dimensional cube is an anisotropic object.

An interesting property of the unit cube Qn(1) is observed in [2]. Let P =
(p, . . . , p) ∈ R

n be a point located on the main diagonal of Qn(1) and let K be the
subcube of Qn(1) that includes (0, . . . , 0) and P and has a side of length p; similarly,
let K ∪ be the subcube of Qn(1) that includes P and (1, . . . , 1) and has side of length
1 − p. The ratio of the volumes V and V ∪ of the cubes K and K ∪ is

r(p) =
(

p

1 − p

⎟n

.

To determine the increase σ of p needed to double the volume of this ratio, we must
find σ such that r(p + σ)

r(p)
= 2, that is

p(1 − p) + σ(1 − p)

p(1 − p) − σp
= n

∅
2.
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Equivalently, we have

σ = p(1 − p)(
n
∅

2 − 1)

1 − p + p n
∅

2
.

The first factor p(1 − p)

1 − p + p n∅2
remains almost constant for large values of n. However, the

second factor n
∅

2 − 1 tends toward 0, which shows that within large dimensionality
smaller and smaller moves of the point p are needed to double the ratio of the volumes
of the cubes K and K ∪. This suggests that the division of Qn(1) into subcubes is very
unstable. If data classifications are attempted based on the location of data vectors
in subcubes, this shows in turn the instability of such classification schemes.

Another interesting example of the counterintuitive behavior of spaces of high
dimensionality is given in [3]. Now let Qn(1) be the unit cube centered in the point
cn ∈ R

n , where cn = (0.5, . . . , 0.5). For n = 2 or n = 3, it is easy to see that
every sphere that intersects the sides of Q2(1) or all faces of Q3(1) must contain the
center of the cube cn . We shall see that, for sufficiently high values of n a sphere that
intersects all (n − 1)-dimensional faces of Qn(1) does not necessarily contain the
center of Qn(1).

Consider the closed sphere B(qn, r), whose center is the point qn = (q, . . . , q),
where q ∈ [0, 1]. Clearly, we have qn ∈ Qn(1) and d2(cn, qn)=⎛n(q2 − q + 0.25).

If the radius r of the sphere B(qn, r) is sufficiently large, then B(qn, r) intersects
all faces of Qn . Indeed, the distance from qn to an (n−1)-dimensional face is no more
than max{q, 1 − q}, which shows that r � max{q, 1 − q} ensures the nonemptiness
of all these intersections. Thus, the inequalities

n (q − 0.5)2 > r2 > max{q2, (1 − q)2} (15.5)

ensure that B(qn, r) intersects every (n − 1)-dimensional face of Qn , while leaving
cn outside B(qn, r). This is equivalent to requiring

n >
max{q2, (1 − q)2}

(q − 0.5)2 .

For example, if we choose q = 0.3, then n > 0.72

0.22 = 12.25. Thus, in the case of R13,

Inequality (15.5) amounts to 0.52 > r2 > 0.49. Choosing r =
∅

2
2 gives the sphere

with the desired “paradoxical” property.
The examples discussed in this section suggest that precautions and sound argu-

ments are needed when trying to extrapolate familiar properties of two- or three-
dimensional spaces to spaces of higher dimensionality.
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15.4 Inductive Dimensions of Topological Metric Spaces

We present two variants of the inductive dimensions of topological metric spaces: the
small inductive dimension ind(S,Od) and the large inductive dimension IND(S,Od).
Informally, these dimensions capture the intuitive idea that a sphere B(x, r) in R

n+1

has a border that is n-dimensional. They are defined by inductive definitions, which
we present next.

Definition 15.1 Let (S,Od) be a topological metric space. The large inductive
dimension of (S,Od) is a member of the set {n ∈ Z | n � −1} ⊆ {∞} defined
by:

1. if S = ∩ and Od = {∩}, then IND(S,Od) = −1;
2. IND(S,Od) � n for n � 0 if, for every closed set H and every open set L such

that H ⊕ L, there exists an open set V such that

H ⊕ V ⊕ L and IND(ΦV,Od�ΦV ) � n − 1;

3. IND(S,Od) = n if IND(S,Od) � n and IND(S,Od) ⊥� n − 1;
4. if there is no integer n � −1 such that IND(S,Od) = n, then IND(S,Od) = ∞.

Theorem 15.2 If IND(S,Od) ∈ Z, then IND(S,Od) is the smallest integer n such
that n � −1, and for every closed set H and every open set L of the topological metric
space (S,Od) such that H ⊕ L, there exists an open set V such that H ⊕ V ⊕ L
such that IND(ΦV,Od �ΦV ) � n − 1.

Proof The statement is an immediate consequence of Definition 15.1.

If we relax the requirement of Definition 15.1 by asserting the existence of the set
V only when the closed set H is reduced to an element of S, we obtain the following
definition of the small inductive dimension.

Definition 15.3 Let (S,Od) be a topological metric space. The small inductive
dimension of (S,Od) is a member of the set {n ∈ Z | n � −1} ⊆ {∞} defined
by:

(i) if S = ∩ and Od = {∩}, then ind(S,Od) = −1;
(ii) ind(S,Od) � n, where n � 0, if for x ∈ S and every open set L that contains

x, there exists an open set V such that x ∈ V ⊕ L such that ind(ΦV,Od �ΦV)

� n − 1;
(iii) ind(S,Od) = n if IND(S,Od) � n and ind(S,Od) ⊥� n − 1;
(iv) if there is no integer n � −1 such that ind(S,Od) = n, then ind(S,Od) = ∞.

Theorem 15.4 If ind(S,Od) ∈ Z, then ind(S,Od) is the smallest integer n such
that n � −1, and for every x ∈ S and every open set L that contains x, there is an
open set V such that x ∈ V ⊕ L and ind(ΦV,Od �ΦV ) � n − 1.

Proof The statement is an immediate consequence of Definition 15.3.
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Since {x} is a closed set for every x ∈ S, it is clear that, for every topological
metric space (S,Od), we have ind(S,Od) � IND(S,Od).

If there is no risk of confusion, we denote ind(S,Od) and IND(S,Od) by ind(S)

and IND(S), respectively.

Definition 15.5 A topological metric space (S,Od) is zero-dimensional if
ind(S,Od) = 0.

Clearly, if IND(S,Od) = 0, then (S,Od) is zero-dimensional.

Theorem 15.6 Let (S,Od) be a nonempty topological metric space. The space is
zero-dimensional if and only if there exists a basis for Od that consists of clopen sets.

Proof Suppose that ind(S) = 0. By Definition 15.3, for every x ∈ S and every open
set L , there is an open set V such that x ∈ V ⊕ L and ind(ΦV ) � −1, which implies
ind(ΦV ) = −1 and thus ΦV = ∩. This shows that V is a clopen set and the collection
of all such sets V is the desired basis.

Conversely, if there exists a basis B for Od such that each set in B is clopen,
then for every x ∈ S and open set L there exists V ∈ B such that ΦV = ∩,
x ∈ V = K(V ) ⊕ L . This implies ind(S) = 0.

Theorem 15.7 Let (S,Od) be a zero-dimensional separable topological metric
space. If H1 and H2 are two disjoint closed subsets of S, there exists a clopen
set U such that H1 ⊕ U and U ∨ H2 = ∩.

Proof Since ind(S) = 0, by Theorem 15.6 there exists a base B of (S,Od) that
consists of clopen sets.

Let x ∈ S. If x ⊥∈ H1, then x belongs to the open set S − H1, so there exists
Ux ∈ B such that x ∈ Ux ⊕ S − H1, which implies Ux ∨ H1 = ∩.

If x ⊥∈ H2, a similar set Ux can be found such that x ∈ Ux ∨ H2 = ∩. Since every
x is in either of the two previous cases, it follows that U = {Ux | x ∈ S} is an open
cover of S and each set Ux is disjoint from H1 or H2.

By Theorem 8.32, the separability of (S,Od) implies that U contains a countable
subcover, {Ux1, Ux2 , . . .}. Let V1, V2, . . . be the sequence of clopen sets defined
inductively by V1 = Ux1 , and Vn = Uxn − ⎧n−1

i=1 Vi for n � 1. The sets Vi are
pairwise disjoint,

⎧
i�0 Vi = S, and each set Vi is disjoint from H1 or H2.

Let U = ⎧{Vi | Vi ∨ H2 = ∩}. The set U is open, H1 ⊕ U , and U ∨ H2 = ∩.
Note that the set U is also closed because S − U = ⎧{Vi | Vi ∨ H2 ⊥= ∩} is also
open. This means that U is clopen and satisfies the conditions of the theorem.

Theorem 15.7 can be restated by saying that in a zero-dimensional space (S,Od),
for any two disjoint closed subsets of S, H1 and H2, there exist two disjoint clopen
subsets U1 and U2 such that H1 ⊕ U1 and H2 ⊕ U2. This follows from the fact that
we can choose U1 = U and U2 = S − U .

Corollary 15.8 Let (S,Od) be a zero-dimensional separable topological metric
space. If H is a closed set and L is an open set such that H ⊕ L, then there exists a
clopen set U such that H ⊕ U ⊕ L.
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Proof This statement is immediately equivalent to Theorem 15.7.

Corollary 15.9 Let (S,Od) be a separable topological metric space. We have
ind(S) = 0 if and only if IND(S) = 0.

Proof We saw that IND(S) = 0 implies ind(S) = 0. Suppose that ind(S) = 0. By
Corollary 15.9, if H is a closed set and L is an open set such that H ⊕ L , then
there exists a clopen set U such that H ⊕ U ⊕ L . This implies IND(S) = 0 by
Theorem 15.2.

Example 15.10 If (S,Od) is a nonempty topological ultrametric space, then ind(S) =
0 because the collection of open spheres is a basis for Od that consists of clopen sets
(see Theorem 14.5).

Example 15.11 For any nonempty, finite topological metric space (S,Od), we
have ind(S) = 0. Indeed, consider the a open sphere C(x, π). If we choose
π < min{d(x, y) | x, y ∈ S and x ⊥= y}, then each open sphere consists of {x}
itself and thus is a clopen set.

Example 15.12 Let Q be the set of rational numbers and let I = R − Q be the set
of irrational numbers. Consider the topological metric spaces (Q,O∪) and (I,O∪∪),
where the topologies O∪ and O∪∪ are obtained by restricting the usual metric topology
Od of R to Q and I, respectively. We claim that ind(Q,O∪) = ind(I,O∪∪) = 0.

Let r be a rational number and let ι be an irrational positive number. Consider
the set D(r, ι) = {q ∈ Q | |r − q| < ι}. It is easy to see that the collection
{D(r, ι) | r ∈ Q, ι ∈ I} is a basis for (Q,O∪). We have

Φ D(r, ι) = {q ∈ Q | |q − r | � ι} ∨ {q ∈ Q | |q − r | � ι}
= {q ∈ Q | |q − r | = ι} = ∩

because the difference of two rational numbers is a rational number. Therefore, the
sets of the form D(r, ι) are clopen and ind(Q,O∪) = 0.

Let r and p be two rational numbers. Consider the set of irrational numbers

E(r, p) = {ι ∈ I | |r − ι| < p}.

We claim that the collection E = {E(r, p) | r, p ∈ Q} is a basis for (I,O∪∪). Indeed,
let α ∈ I, and let L be an open set in O∪∪. There exists an open sphere C(α, u) such
that u > 0 and C(α, u) ⊕ L . Let r1, r2 ∈ Q be two rational numbers such that
α − u < r1 < α < r2 < α + u. If we define r = (r1 + r2)/2 and p = (r2 − r1)/2,
then α ∈ E(r, p) ⊕ C(α, u) ⊕ L , which proves that E is indeed a basis. We have

Φ E(r, p) = {ι ∈ I | |r − ι| � p} ∨ {ι ∈ I | |r − ι| � p}
= {ι ∈ I | |r − ι| = p} = ∩

for reasons similar to the ones given above. The sets in the basis E are clopen, and
therefore ind(I,O∪∪) = 0.



738 15 Dimensions of Metric Spaces

Example 15.13 We have ind(R,O) = 1. Indeed, by Theorem 8.53, its topological
dimension is not 0 and, on the other hand, it has a basis that consists of spheres
C(x, r), that are open intervals of the form (x − r, x + r). Clearly, Φ(x − r, x + r)

is the finite set {−r, r}, which has a small inductive dimension equal to 0. Therefore,
ind(R,O) = 1. It is interesting to observe that this shows that the union of two
zero-dimensional sets is not necessarily zero-dimensional because ind(Q,O∪) =
ind(I,O∪∪) = 0, as we saw in Example 15.12.

Theorem 15.14 Let (S,Od) be a topological metric space and let T be a subset of
S. We have ind(T,Od �T ) � ind(S,Od).

Proof The statement is immediate if ind(S,Od) = ∞. The argument for the finite
case is by strong induction on n = dim(S,Od) � −1.

For the base case, n = −1, the space (S,Od) is the empty space (∩, {∩}), so
T = ∩ and the inequality obviously holds.

Suppose that the statement holds for topological metric spaces of dimension no
larger than n. Let (S,Od) be a metric topological space such that ind(S,Od) = n + 1,
T be a subset of S, t be an element of T , and L be an open set in (T,Od �T ) such
that t ∈ L .

There is an open set L1 ∈ Od such that L = L1 ∨ T . Since ind(S,Od) = n + 1,
n is the least integer such that there is an open set W ⊕ S for which

t ∈ W ⊕ L1 (15.6)

and ind(ΦW ) � n. The set V = W ∨ T is an open set in (T,Od �T ), and we have

t ∈ V ⊕ L

by intersecting the sets involved in Inclusions (15.6) with T . Theorem 4.31 implies
that

ΦT (V ) = ΦT (W ∨ T ) ⊕ ΦS(W )

and, by the inductive hypothesis, ind(ΦT (V )) � ind(ΦS(W )) � n. Therefore, the
small inductive dimension of T cannot be greater than n + 1, which is the desired
conclusion.

A similar statement involving the large inductive dimension can be shown.

Theorem 15.15 Let (S,Od) be a topological metric space and let T be a subset
of S. We have IND(T,Od �T ) � IND(S,Od).

Proof The argument is similar to the one given in the proof of Theorem 15.14.

We denote ind(T,Od �U ) by ind(T ).
An extension of Theorem 15.6 is given next.
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Theorem 15.16 Let (S,Od) be a topological metric space. We have ind(S) = n,
where n � 0, if and only if n is the smallest integer such that there exists a basis for
Od such that for every B ∈ B we have ind(Φ B) � n − 1.

Proof The necessity of the condition is immediate from Definition 15.3 because the
sets V constitute a basis that satisfies the condition.

To prove that the condition is sufficient, note that from the proof of Theorem 8.25
we obtain the existence of two open disjoint sets V1 and V2 such that {x} ⊕ V1 and
S − L ⊕ V2 because {x} and S − L are two disjoint closed sets. This is equivalent to
x ∈ V1 ⊕ S −V2 ⊕ L and, because S −V2 is closed, we have x ∈ V1 ⊕ K(V1) ⊕ L .
Let B be a set in the basis such that x ∈ B ⊕ V1. We have x ∈ B ⊕ L and
ind(Φ B) � n −1; since n is the least number with this property, we have ind(S) = n.

Corollary 15.17 For every separable topological metric space (S,Od), we have
ind(S) = n, where n � 0, if and only if n is the smallest integer such that there exists
a countable basis for Od such that, for every B ∈ B, we have ind(Φ B) � n − 1.

Proof This statement is a consequence of Theorems 15.16 and 4.49.

The inductive dimensions can be alternatively described using the notion of set
separation.

Definition 15.18 Let (S,O) be a topological space, and let X and Y be two disjoint
subsets of S. The subset T of S separates the sets X and Y if there exists two open,
disjoint sets L1 and L2 in (S,O) such that X ⊕ L1, Y ⊕ L2, and T = S − (L1⊆L2).

It is clear that if T separates X and Y , then T must be a closed subset of S.
Observe that the empty set separates the sets X and Y if and only if the space S is

the union of two open disjoint sets L1 and L2 such that X ⊕ L1 and Y ⊕ L2. Since
L1 is the complement of L2, both L1 and L2 are clopen sets.

Theorem 15.19 Let (S,O) be a topological space, and let X and Y be two disjoint
subsets of S. The set T separates the sets X and Y if and only if the following
conditions are satisfied:

(i) T is a closed set in (S,O), and
(ii) there exist two disjoint sets K1 and K2 that are open in the subspace S − T

such that X ⊕ K1, Y ⊕ K2, and S − T = K1 ⊆ K2.

Proof Suppose that T separates the sets X and Y . It is clear that we have both
X ⊕ S − T and Y ⊕ S − T . We already observed that T is closed, and so S − T
is open. Therefore, the sets L1 and L2 considered in Definition 15.18 are open in
S − T and the second condition is also satisfied.

Conversely, suppose that conditions (i) and (ii) are satisfied. Since T is closed,
S − T is open. Since K1 and K2 are open in S − T , they are open in (S,O), so T
separates X and Y .

Theorem 15.20 Let (S,O) be a topological space, H be a closed set, and L be an
open set such that H ⊕ L. The set T separates the disjoint sets H and S − L if
and only if there exists an open set V and a closed set W such that the following
conditions are satisfied:
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(i) H ⊕ V ⊕ W ⊕ S − L and
(ii) T = W − V .

Proof Suppose that T separates H and S − L . There are two disjoint open sets L1
and L2 such that H ⊕ L1, S − L ⊕ L2, and T = S − (L1 ⊆ L2). This implies
S − L2 ⊕ L , and T = (S − L1) ∨ (S − L2). Let V = L1 and W = S − L2. Since
L1 and L2 are disjoint, it is clear that V ⊕ W . Also, T = (S − V ) ∨ W = W − V .

Conversely, if the conditions of the theorem are satisfied, then T separates H
and S − L because V and S − W are the open sets that satisfy the requirements of
Definition 15.18.

Using the notion of set separation, we have the following characterization of
topological metric spaces having large or small inductive dimension n.

Theorem 15.21 Let (S,Od) be a topological metric space and let n ∈ N. The
following statements hold:

(i) IND(S) = n if and only if n is the smallest integer such that for every closed
subset H and open set L of S such that H ⊕ L there exists a set W with
IND(W ) � n − 1 that separates H and L;

(ii) ind(S) = n if and only if n is the smallest integer such that for any element x of
S and any open set L that contains x there exists a set W with ind(W ) � n − 1
that separates {x} and L.

Proof Suppose that IND(S) = n. By Definition 15.1, n is the smallest integer such
that n � −1, and for every closed set H and every open set L such that H ⊕ L , there
exists an open set V such that H ⊕ V ⊕ K(V ) ⊕ L such that IND(ΦV ) � n − 1.
Let W = K(V ) − V . It is clear that W separates H and L . Since

W = K(V ) − V = K(V ) ∨ (S − V ) ⊕ K(V ) ∨ K(S − V ) = Φ(V ),

it follows that IND(W ) � n − 1.
Conversely, suppose that n is the least integer such that for any closed set H and

open set L such that H ⊕ L there exist an open set V and a closed set U such that
H ⊕ V ⊕ U ⊕ L , W = U − V , and IND(W ) � n −1. Clearly, we have K(V ) ⊕ U
and therefore

H ⊕ V ⊕ K(V ) ⊕ L .

Note that

Φ(V ) = K(V ) ∨ K(S − V )

= K(V ) ∨ (S − V )

because S − V is a closed set

⊕ U ∨ (S − V ) = U − V = W,

which implies IND(V ) � n − 1.
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The proof of the second part of the theorem is similar.

The next statement shows the possibility of lifting the separation of two closed
sets from a subspace to the surrounding space.

Theorem 15.22 Let (S,Od) be a topological metric space, and let H1 and H2 be
two closed and disjoint subsets of S. Suppose that U1 and U2 are two open subsets
of S such that H1 ⊕ U1, H2 ⊕ U2 and K(U1) ∨ K(U2) = ∩.

If T ⊕ S and the set K separates the sets T ∨ K(U1) and T ∨ K(U2) in the
subspace (T,Od �T ), then there exists a subset W of S, that separates H1 and H2 in
(S,Od) such that W ∨ T ⊕ K .

Proof Since K separates the sets T ∨K(U1) and T ∨K(U2) in T there are two open,
disjoint subsets V1 and V2 of T such that T ∨ K(U1) ⊕ V1, T ∨ K(U2) ⊕ V2, and
T − K = V1 ⊆ V2.

We have

U1 ∨ V2 = U1 ∨ (T ∨ V2)

= (U1 ∨ T ) ∨ V2

⊕ K(U1) ∨ T ∨ V2

⊕ V1 ∨ V2 = ∩,

and therefore U1 ∨ K(V2) = ∩, because U1 is open (by Theorem 4.9). Therefore,
H1 ∨ K(V2) = ∩. Similarly, H2 ∨ K(V1) = ∩. Consequently,

(H1 ⊆ V1) ∨ (K(H2 ⊆ V2)) = (H1 ⊆ V1) ∨ (K(H2) ⊆ K(V2))

= (H1 ⊆ V1) ∨ (H2 ⊆ K(V2)) = ∩

and similarly
K(H1 ⊆ V1) ∨ (H2 ⊆ V2) = ∩.

By Supplement 11 of Chap. 8, there exist two disjoint open sets Z1 and Z2 such that
H1 ⊆ V1 ⊕ Z1 and H2 ⊆ V2 ⊕ Z2. Then, the set W = S − (Z1 ⊆ Z2) separates H1
and H2, and W ∨ T ⊕ T − (Z1 ⊆ Z2) ⊕ T − (V1 ⊆ V2) = K .

We can now extend Corollary 15.8.

Corollary 15.23 Let (S,Od) be a separable topological metric space and let T be
a zero-dimensional subspace of S. For any disjoint closed sets H1 and H2 in S,
there exist two disjoint open sets L1 and L2 such that H1 ⊕ L1, H2 ⊕ L2, and
T ∨ ΦL1 = T ∨ ΦL2 = ∩.

Proof By Theorem 8.28, there are two open sets V1 and V2 such that H1 ⊕ V1,
H2 ⊕ V2, and K(V1) ∨ K(V2) = ∩. By Theorem 15.7, there exists a clopen subset
U of T such that T ∨ K(V1) ⊕ U and T ∨ K(V2) ⊕ T − U . Therefore, we have
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T − U ⊕ S − K(V1) ⊕ S − V1 ⊕ S − H1,

U ⊕ T − K(V2) ⊕ S − V2 ⊕ S − H2,

which implies that the sets H1 ⊆ U and H2 ⊆ (T − U ) are disjoint.
Let f, g : S −∞ R be the continuous functions defined by f (x) = dH1⊆U (x) and

g(x) = dH2⊆(T −U )(x) for x ∈ S. The open sets

L1 = {x ∈ S | f (x) < g(x)},
L2 = {x ∈ S | f (x) > g(x)},

are clearly disjoint. Note that if x ∈ H1 we have f (x) = 0 and g(x) > 0, so H1 ⊕ L1.
Similarly, H2 ⊕ L2.

Since U is closed in T , we have f (x) = 0 and g(x) > 0 for every x ∈ U ;
similarly, since T − U is closed in T , we have f (x) > 0 and g(x) = 0. Thus,
U ⊕ L1 and T − U ⊕ L2, so T ⊕ L1 ⊆ L2.

Note that we have the inclusions

ΦL1 = K(L1) ∨ K(S − L1)

(by the definition of the border)

= K(L1) ∨ (S − L1)

(because S − L1 is a closed set)

⊕ K(S − L2) ∨ S − L1

(since L1 ⊕ S − L2)

= (S − L2) ∨ (S − L1) = S − (L1 ⊆ L2) ⊕ S − T .

Similarly, we can show that ΦL2 ⊕ S − T , so T ∨ ΦL1 = T ∨ ΦL2 = ∩.

Theorem 15.24 Let T be a zero-dimensional, separable subspace of the topological
metric space (S,Od). If H1 and H2 are disjoint and closed subsets of S, then there
exists a set W that separates H1 and H2 such that W ∨ T = ∩.

Proof By Theorem 8.28, there exist two open sets U1 and U2 such that H1 ⊕ U1,
H2 ⊕ U2, and K(U1) ∨ K(U2) = ∩.

Since T is zero-dimensional, the empty set separates the sets T ∨ K(U1) and
T ∨K(U1) in the space T . By Theorem 15.22, there exists a set W of S that separates
H1 and H2 in (S,Od) such that W ∨ T = ∩, as stipulated in the statement.

Theorem 15.25 Let (S,Od) be a nonempty separable topological metric space that
is the union of a countable collection of zero-dimensional closed sets {Hn | n ∈ N}.
Then, (S,Od) is zero-dimensional.

Proof Let x ∈ S and let L be an open set such that x ∈ L . By Corollary 8.29, two
open sets U0 and W0 exist such that x ∈ U0, L ⊕ W0, and K(U0) ∨ K(W0) = ∩.

We define two increasing sequences of open sets U0, U1, . . . , Un, . . . and W0, W1,

. . . , Wn, . . . such that
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(i) K(Ui ) ∨ K(Wi ) = ∩ for i � 0;
(ii) Hi ⊕ Ui ⊆ Wi for i � 1.

Suppose that we have defined the sets Un and Wn that satisfy the conditions above.
Observe that the disjoint sets Hn+1 ∨ K(Un) and Hn+1 ∨ K(Wn) are closed in the
subspace Hn+1.

Since dim(Hn+1) = 0, by Theorem 15.7, there is a clopen set K in Hn+1 such
that Hn+1 ∨ K(Un) ∧ K and K ∨ (Hn+1 ∨ K(Wn)) = ∩. Both K and Hn+1 − K are
closed sets in the space S because Hn+1 is a closed subset of S, which implies that
the sets K ⊆ K(Un) and (Hn+1 − K ) ⊆ K(Wn) are also closed. Moreover, we have

(K ⊆ K(Un)) ∨ ((Hn+1 − K ) ⊆ K(Wn)) = ∩,

so there exist two open subsets of S, Un+1 and Wn+1, such that K ⊆ K(Un) ⊕ Un+1,
(Hn+1 − K ) ⊆ K(Wn) ⊕ Wn+1, and K(Un+1) ∨ K(Wn+1) = ∩.

Consider the open setsU = ⎧
n∈N Un and W = ⎧

n∈N Wn . It is clear thatU∨W =
∩ and U ⊆ W = S, so both U and W are clopen. Since x ∈ U0 ⊕ U = S − W ⊕ V
and S − V ⊕ W0 ⊕ W , it follows that S is zero-dimensional.

It is interesting to contrast this theorem with Example 15.13, where we observed
that ind(R,O) = 1 and ind(Q,O∪) = ind(I,O∪∪) = 0. This happens, of course,
because the subspaces Q and I are not closed.

Theorem 15.26 Let (S,Od) be a separable metric space. If X and Y are two subsets
of S such that S = X ⊆ Y , ind(X) � n − 1, and ind(Y ) = 0, then ind(S) � n.

Proof Suppose that S can be written as S = X ⊆ Y such that X and Y satisfy the
conditions of the theorem. Let x ∈ S and let L be an open set such that x ∈ L . By
applying Theorem 15.24 to the closed sets {x} and S − L , we obtain the existence of
a set W that separates {x} and S − L such that W ∨ Y = ∩, which implies W ⊕ X .
Thus, ind(W ) � n − 1, and this yields ind(S) � n.

Theorem 15.27 (The Sum Theorem) Let (S,Od) be a separable topological met-
ric space that is a countable union of closed subspaces, S = ⎧

i�1 Hi , where
ind(Hi ) � n. Then, ind(S) � n, where n � 0.

Proof The argument is by strong induction on n. The base case, n = 0, was discussed
in Theorem 15.25.

Suppose that the statement holds for numbers less than n, and let S be a countable
union of closed subspaces of small inductive dimension less than n. By Corollary
15.17, each subspace Hi has a countable basis Bi such that ind(ΦHi Bi ) � n − 1 for
every Bi ∈ Bi .

Each border ΦHi Bi is closed in Hi and therefore is closed in S because each Hi

is closed. Define X = ⎧
i�1

⎧{Φ Bi | Bi ∈ Bi }. By the inductive hypothesis, we
have ind(X) � n − 1.

Define the sets Ki = Hi − X for i � 1. The collection Ci = {Ki ∨ B | B ∈ B}
consists of sets that are clopen in Ki , and therefore, for each nonempty set Ki , we
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have ind(Ki ) = 0. Let Y = S − X . Since Y is a countable union of the closed
subspaces Ki = Hi ∨ Y , it follows that ind(Y ) = 0. By Theorem 15.26, it follows
that ind(S) � n.

The next statement complements Theorem 15.26.

Corollary 15.28 Let (S,Od) be a separable metric space. If ind(S) � n, then there
exist two subsets X and Y of S such that S = X ⊆Y , ind(X) � n−1, and ind(Y ) = 0.

Proof Let S be such that ind(S) � n and let B be a countable basis such that
ind(Φ B) � n − 1 for every B ∈ B. The existence of such a basis is guaranteed by
Corollary 15.17. Define X = ⎧{Φ B | B ∈ B}. By the Sum Theorem, we have
ind(X) � n − 1. If Y = S − X , then {Y ∨ B | B ∈ B} is a base of Y that consists
of clopen sets (in Y ), so ind(Y ) � 0.

Theorem 15.29 (The Decomposition Theorem) Let (S,Od) be a separable metric
space such that S ⊥= ∩. We have ind(S) = n, where n � 0 if and only if S is the
union of n + 1 zero-dimensional subspaces.

Proof This statement follows from Theorem 15.26.

Theorem 15.30 (The Separation Theorem) Let (S,Od ) be a separable topological
metric space such that ind(S) � n, where n � 0. If H1 and H2 are two disjoint closed
subsets, then there exist two disjoint open subsets L1 and L2 that satisfy the following
conditions:

(i) H1 ⊕ L1 and H2 ⊕ L2;
(ii) ind(ΦL1) � n − 1 and ind(ΦL2) � n − 1.

Proof By Theorem 15.26, there exist two subsets X and Y of S such that S = X ⊆Y ,
ind(X) � n − 1, and ind(Y ) = 0. By Corollary 15.23, there exist two disjoint open
sets L1 and L2 such that H1 ⊕ L1, H2 ⊕ L2, and Y ∨ ΦL1 = Y ∨ ΦL2 = ∩.
Therefore, ΦL1 ⊕ X and ΦL2 ⊕ X , so ind(ΦL1) � n − 1 and ind(ΦL2) � n − 1.

The next statement is an extension of Theorem 15.24.

Theorem 15.31 Let T be a subspace of a separable topological metric space (S,Od )

such that ind(T ) = k, where k � 0. If H1 and H2 are disjoint closed subsets of S, then
there exists a subset U of S that separates H1 and H2 such that ind(T ∨U ) � k − 1.

Proof The case k = 0 was discussed in Theorem 15.24.
If k � 1, then T = X ⊆ Y , where ind(X) = k − 1 and ind(Y ) = 0. By Theo-

rem 15.24, the closed sets H1 and H2 are separated by a set W such that W ∨ Y = ∩,
which implies W ∨ T ⊕ X . Thus, ind(W ∨ T ) � k − 1.

Theorem 15.32 Let (S,Od) be a separable topological metric space. We have
ind(S) = IND(S).
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Proof We observed already that ind(S) � IND(S) for every topological metric
space. Thus, we need to prove only the reverse equality, IND(S) � ind(S). This
clearly holds if ind(S) = ∞.

The remaining argument is by induction on n = ind(S). The base case, n = 0,
was discussed in Corollary 15.9.

Suppose that the inequality holds for numbers less than n. If H1 and H2 are two
disjoint and closed sets in S, then they can be separated by a subset U of S such that
ind(U ) � n − 1 by Theorem 15.31. By the inductive hypothesis, IND(U ) � n − 1,
so IND(S) � n.

15.5 The Covering Dimension

Definition 15.33 Let E be a family of subsets of a set S. The order of E is the least
number n such that any n + 2 sets of E have an empty intersection.

The order of E is denoted by ord(E).

If ord(E) = n, then there exist n + 1 sets in E that have a nonempty intersection.
Also, we have ord(E) � |E| + 1.

Example 15.34 If ord(E) = −1, this means that any set of E is empty, so E = {∩}.
The order of any partition is 0.

Definition 15.35 A topological metric space (S,Od) has the covering dimension
n if n is the least number such that n � −1 and every open cover C of S has a
refinement D that consists of open sets with ord(D) = n. If no such number n exists,
then the covering dimension is ∞.

The covering dimension of (S,Od) is denoted by cov(S,Od), or just by cov(S),
when there is no risk of confusion.

Theorem 15.36 Let (S,Od) be a topological metric space. The following statements
are equivalent:

(i) cov(S) � n;
(ii) for every open cover L = {L1, . . . , L p} of (S,Od), there is an open cover

K = {K1, . . . , K p} such that ord(K) � n and Ki ⊕ Li for 1 � i � p;
(iii) for every open cover L = {L1, . . . , Ln+2} there exists an open cover K =

{K1, . . . , Kn+2} such that
⎨

K = ∩ and Ki ⊕ Li for 1 � i � n + 2;
(iv) for every open cover L = {L1, . . . , Ln+2} there exists a closed cover H =

{H1, . . . , Hn+2} such that
⎨

H = ∩ and Hi ⊕ Li for 1 � i � n + 2.

Proof (i) implies (ii): If cov(S) � n, then for the open cover L = {L1, . . . , L p} of
(S,Od) there exists an open cover U that is a refinement of L such that ord(U) � n.
We need to derive from U another open cover that is also a refinement of L, contains
the same number of sets as L, and satisfies the other conditions of (ii).
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For U ∈ U, let iU be the least number i such that U ⊕ Li . Define the open set
Ki = ⎧{U ∈ U | iU = i} for 1 � i � p. Observe that K = {K1, . . . , K p} is an
open cover.

An arbitrary element x ∈ S belongs to at most n + 1 members of the collection
U because ord(U) � n. Observe that x ∈ Ki only if x ∈ U for some U ∈ U, which
implies that x belongs to at most n + 1 members of K. Thus, ord(K) � n.

(ii) implies (iii): This implication is immediate.
(iii) implies (iv): Suppose that (iii) holds, so for every open cover L = {L1, . . . ,

Ln+2} there exists an open cover K = {K1, . . . , Kn+2} such that
⎨

K = ∩ and
Ki ⊕ Li for 1 � i � n +2. Starting from the open cover K, by Supplement 35(b) of
Chap. 4, we obtain the existence of the closed cover H = {H1, . . . , Hn+2} such that
Hi ⊕ Ki for 1 � n + 2. This implies immediately that H satisfies the requirements.

(iv) implies (iii): Suppose that (iv) holds, so for every open cover L = {L1, . . . ,

Ln+2} there exists a closed cover H = {H1, . . . , Hn+2} such that
⎨

H = ∩ and
Hi ⊕ Li for 1 � i � n + 2. By Part (b) of Supplement 36 of Chap. 4, there exists
an open cover K = {K1, . . . , Kn+2} such that Ki ⊕ Li for 1 � i � n + 2 and⎨

K = ∩.
(iii) implies (ii): Suppose that (S,O) satisfies condition (iii), and let L =

{L1, . . . , L p} be an open cover of (S,Od). If p � n + 1, then the desired collection
is L itself. Thus, we may assume that p � n + 2.

We need to prove that there exists an open cover K = {K1, . . . , K p} such that
ord(K) � n and Ki ⊕ Li for 1 � i � p. This means that we have to show that
the intersection on any n + 2 sets of K is empty. Without loss of generality, we can
prove that the intersection of the first n + 2 sets of K is empty.

Consider the open cover {L1, . . . , Ln+1, Ln+2 ⊆· · ·⊆ L p}. By (iii), there exists an
open cover Q = {Q1, . . . , Qn+2} such that

⎨
Q = ∩ and Qi ⊕ Li for 1 � i � n +1

and Qn+2 ⊕ Ln+2 ⊆ · · · ⊆ L p. For 1 � i � p, define the open sets

Ki =
{

Qi if 1 � i � n + 1,

Qn+2 ∨ Li if n + 2 � i � p.

The collection K = {K1, . . . , K p} is clearly an open cover, Ki ⊕ Li for 1 � i � p,
and

⎨n+2
i=1 Ki = ∩.

(ii) implies (i): This implication is immediate.

Corollary 15.37 Let (S,Od) be a nonempty topological metric space. The following
statements are equivalent:

(i) cov(S) = 0;
(ii) for all open sets L1 and L2 such that L1 ⊆ L2 = S, there exist two disjoint open

sets K1 and K2 such that Ki ⊕ Li for i ∈ {1, 2};
(iii) for all open sets L1 and L2 such that L1 ⊆ L2 = S there exist two disjoint

closed sets H1 and H2 such that Hi ⊕ Li for i ∈ {1, 2}.
Proof This corollary is a special case of Theorem 15.36.
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Theorem 15.38 Let (S,Od) be a topological metric space. We have cov(S) = 0
if and only if IND(S) = 0.

Proof Suppose that cov(S) = 0. Let H1 and H2 be two disjoint closed sets. Then
{S − H1, S − H2} is an open cover of S. By Part (ii) of Corollary 15.37, there exist
two disjoint open sets K1 and K2 such that K1 ⊕ S − H1 and K2 ⊕ S − H2. Thus,
K1 ⊆ K2 ⊕ (S − H1) ⊆ (S − H2) = S − (H1 ∨ H2) = S, which means that both K1
and K2 are clopen. This implies IND(S) = 0.

Conversely, suppose that IND(S) = 0, so ind(S) = 0. Let L1 and L2 be two open
sets such that L1 ⊆ L2 = S. The closed sets S − L1 and S − L2 are disjoint, so by
Theorem 15.7 there exists a clopen set U such that S − L1 ⊕ U (that is, S −U ⊕ L1)
and U ∨ (S − L2) = ∩ (that is, U ⊕ L2). Since the sets S −U and U are also closed,
it follows that cov(S) = 0 by the last part of Corollary 15.37.

Theorem 15.39 If (S,Od) is a separable topological space, then cov(S) � ind(S).

Proof The statement clearly holds if ind(S) = ∞. Suppose now that ind(S) = n.
By the Decomposition Theorem (Theorem 15.29), S is the union of n + 1 zero-

dimensional spaces, S = ⎧n+1
i=1 Ti . If L = {L1, . . . , Lm} is a finite open cover

of S, then C = {L1 ∨ Ti , . . . , Lm ∨ Ti } is a finite open cover of the subspace Ti .
Since ind(Ti ) = 0, we have cov(Ti ) = 0 by Theorem 15.38. Therefore, the open
cover C has a finite refinement that consists of disjoint open sets of the form Ki j

such that Ki j ⊕ L j and
⎧

j=1 Ki j ⊕ Ti . Consequently, the collection K = {Bi j |
1 � i � n + 1, 1 � j � m} is a cover of S that refines the collection L. Every
subcollection K∪ of K that contains n + 2 sets must contain two sets that have the
same second index, so any such intersection is empty. This allows us to conclude
that cov(S) � n = ind(S).

15.6 The Cantor Set

We introduce a special subset of the set of real numbers that plays a central role in
the dimension theory of metric spaces.

Let vn : {0, 1}n −∞ N be the function defined by

vn(b0, b1, . . . , bn−1) = 2n−1b0 + · · · + 2bn−2 + bn−1

for every sequence (b0, . . . , bn) ∈ {0, 1}n . Clearly, vn(b0, . . . , bn−2, bn−1) yields
the number designated by the binary sequence (b0, . . . , bn−2, bn−1). For example,
v3(110) = 22 · 1 + 21 · 1 + 0 = 6.

Similarly, let wn : {0, 1, 2}n −∞ N be the function defined by

wn(b0, b1, . . . , bn−1) = 3n−1b0 + · · · + 3bn−2 + bn−1
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Fig. 15.1 Construction of the Cantor dust

for every sequence (b0, . . . , bn) ∈ {0, 1, 2}n . Then, wn(b0, . . . , bn−2, bn−1) is the
number designated by the ternary sequence (b0, . . . , bn−2, bn−1). For example,
w3(110) = 32 · 1 + 31 · 1 + 0 = 12.

Consider a sequence of subsets of R, E0, E1, . . ., where E0 = [0, 1] and E1 is
obtained from E0 by removing the middle third (1/3, 2/3) of E0. If the remaining
closed intervals are E1

0 and E1
1 , then E1 is defined by E1 = E1

0 ⊆ E1
1 .

By removing the middle intervals from the sets E1
0 and E1

1 , four new closed
intervals E2

00, E2
01, E2

10, E2
11 are created. Let E2 = E2

00 ⊆ E2
01 ⊆ E2

10 ⊆ E2
11.

En is constructed from En−1 by removing 2n−1 disjoint middle third intervals
from En−1 (see Fig. 15.1). Namely, if En

i0···in−1
is an interval of the set En , by

removing the middle third of this interval, we generate two closed intervals En+1
i0···in−10

and En+1
i0···in−11.

In general, En is the union of 2n closed intervals

En =
⎩

i0,...,in−1

{En
i0,...,in−1

| (i0, . . . , in−1) ∈ {0, 1}n},

for n � 0.
An argument by induction on n ∈ N shows that

En
i0···in−1

=
⎫

2wn(i0, . . . , in−1)

3n
,

2wn(i0, . . . , in−1) + 1

3n

⎬
.

Indeed, the equality above holds for n = 0. Suppose that it holds for n, and denote
by a and b the endpoints of the interval En

i0···in−1
; that is,
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a = 2wn(i0, . . . , in−1)

3n
,

b = 2wn(i0, . . . , in−1) + 1

3n
.

By the inductive hypothesis, the points that divide En
i0···in−1

are

2a + b

3
= 6wn(i0, . . . , in−1) + 1

3n+1 = 2wn+1(i0, . . . , in−1, 0) + 1

3n+1

and

a + 2b

3
= 6wn(i0, . . . , in−1) + 2

3n+1 = 2wn+1(i0, . . . , in−1, 1)

3n+1 .

Thus, the remaining left third of En
i0···in−1

is

En+1
i0···in−10 =

⎫
2wn(i0, . . . , in−1)

3n
,

2wn+1(i0, . . . , in−1, 0) + 1

3n+1

⎬

=
⎫

2wn+1(i0, . . . , in−1, 0)

3n+1 ,
2wn+1(i0, . . . , in−1, 0) + 1

3n+1

⎬
,

while the remaining right third is

En+1
i0···in−11 =

⎫
2wn+1(i0, . . . , in−1, 1)

3n+1 ,
2wn(i0, . . . , in−1) + 1

3n

⎬

=
⎫

2wn+1(i0, . . . , in−1, 1)

3n+1 ,
2wn+1(i0, . . . , in−1, 1) + 1

3n+1

⎬
,

which concludes the inductive argument.
Each number x located in the leftmost third E1

0 = [0, 1/3] of the set E0 = [0, 1]
can be expressed in base 3 as a number of the form x = 0.0d2d3 · · · ; the number 1/3,
the right extreme of this interval, can be written either as x = 0.1 or x = 0.022 · · · .
We adopt the second representation which allows us to say that all numbers in the
rightmost third E1

1 = [2/3, 1] of E0 have the form 0.2d2d3 · · · in the base 3.
The argument applies again to the intervals E2

00, E2
01, E2

10, E2
11 obtained from the

set E1. Every number x in the interval E2
i j can be written in base 3 as x = 0.i ∪ j ∪ · · · ,

where i ∪ = 2i and j ∪ = 2 j .
The Cantor set is the intersection C = ⎨{En | n � 0}.
Let us evaluate the total length of the intervals of which a set of the form En

consists. There are 2n intervals of the form En
i0···in−1

, and the length of each of these

intervals is 1
3n . Therefore, the length of En is (2/3)n , so this length tends toward

0 when n tends towards infinity. In this sense, the Cantor set is very sparse. Yet,
surprisingly, the Cantor set is equinumerous with the interval [0, 1]. To prove this
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fact, observe that the Cantor set consists of the numbers x that can be expressed
as x = ⎭∞

n=1
an
3n , where an ∈ {0, 2} for n � 1. For example, 1/4 is a member of

this set since 1/4 can be expressed in base 3 as 0.020202 · · · . Define the function
g : C −∞ [0, 1] by g(x) = y if x = 0.a1a2 · · · (in base 3), where ai ∈ {0, 2}
for i � 1 and y = 0.b1b2 · · · (in base 2), where bi = ai/2 for i � 1. It is easy
to see that this is a bijection between C and [0, 1], which shows that these sets are
equinumerous.

We now study the behavior of the sets

En
i0···in−1

=
⎫

2wn(i0, . . . , in−1)

3n
,

2wn(i0, . . . , in−1) + 1

3n

⎬

relative to two mappings f0, f1 : [0, 1] −∞ [0, 1] defined by

f0(x) = x

3
and f1(x) = x + 2

3

for x ∈ [0, 1].
Note that

f0(En
i0···in−1

) =
⎫

2wn(i0, . . . , in−1)

3n+1 ,
2wn(i0, . . . , in−1) + 1

3n+1

⎬

=
⎫

2wn+1(0i0, . . . , in−1)

3n+1 ,
2wn+1(0i0, . . . , in−1) + 1

3n+1

⎬
= En+1

0i0···in−1
.

Similarly,
f1(En

i0···in−1
) = En+1

1i0···in−1
.

Thus, in general, we have fi (En
i0···in−1

) = En+1
i i0···in−1

for i ∈ {0, 1}.
This allows us to conclude that En+1 = f0(En) ⊆ f 1(En) for n ∈ N. Since both

f0 and f1 are injective, it follows that

C =
⎪
n�1

En =
⎪
n�0

En+1

=
⎪
n�0

[ f0(En) ⊆ f1(En)]

=

⎪

n�0

f0(En)


 ⊆


⎪

n�0

f1(En)




= f0


⎪

n�0

En


 ⊆ f1


⎪

n�0

En


 .
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Fig. 15.2 Mapping sets E2
i j into sets E3

i jk

In Fig. 15.2 we show how sets of the form E2
i j are mapped into sets of the form

E3
i jk by f0 (represented by plain arrows) and f1 (represented by dashed arrows).

Theorem 15.40 The small inductive dimension of the Cantor set is 0.

Proof We saw that
C =

⎪
n∈N

En =
⎪
n∈N

⎩
i0···in−1

En
i0···in−1

.

The sets C ∨ En
i0···in−1

form a base for the open sets of the subspace C of (R,O).

Note that the length of a closed interval En
i0···in−1

is 1
3n and the distance between two

distinct intervals En
i0···in−1

and En
j0··· jn−1

is at least 1
3n . Thus, C ∨ En

i0···in−1
is closed

in C . On the other hand, the same set is also open because

C ∨ En
i0···in−1

= C ∨
(

a − 1

3n
, b + 1

3n

⎟
,

where

a = 2wn(i0, . . . , in−1)

3n
,

b = 2wn(i0, . . . , in−1) + 1

3n
.

If x ∈ C , then C ∨ En
i0···in−1

⊕ C ∨ S(x, r) provided that 1
3n < r . This shows that C

has a basis that consists of clopen sets, so ind(C) = 0 by Theorem 15.6.

15.7 The Box-Counting Dimension

The box-counting dimension reflects the variation of the results of measuring a set at
a diminishing scale, which allows the observation of progressively smaller details.

Let (S,Od) be a topological metric space and let T be a precompact set. For
every positive r , there exists an r -net for T ; that is, a finite subset Nr of S such that
T ⊕ ⎧{C(x, r) | x ∈ Nr } for every r > 0. Denote by nT (r) the smallest size of an
r -net of T . It is clear that r < r ∪ implies nT (r) � nT (r ∪).
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Definition 15.41 Let (S,Od) be a topological metric space and let T be a precom-
pact set.

The upper box-counting dimension of T is the number

ubd(T ) = lim sup
r∞0

nT (r)

log 1
r

.

The lower box-counting dimension of T is the number

lbd(T ) = lim inf
r∞0

nT (r)

log 1
r

.

If ubd(T ) = lbd(T ), we refer to their common values as the box-counting dimension
of T , denoted by bd(T ).

Example 15.42 Let T = {0} ⊆ { 1
n | n � 1} be a subset of R. The interval [0, r ]

contains almost all members of T because if n � ⇒ 1
r ↔, we have 1

n ∈ [0, r ].
It is easy to verify that

1

n − 1
− 1

n
>

1

n
− 1

n + 1
,

for n > 1. Note that 1
n−1 − 1

n > r is equivalent to n2 − n − 1
r < 0, and this happens

when

n <
1 +

√
1 + 4

r

2
.

Thus, each number of the form 1
n for

n � n0 =
⎢⎢⎢⎣1 +

√
1 + 4

r

2

⎥⎥⎥⎦
requires a distinct interval of size r to be covered.

The portion of T that is located to the left of 1
n0

and ends with the number r has

length 1
n0

− r and can be covered with no more than 1
rn0

− 1 intervals of length r .
The least number of intervals of length r that are needed has

1

rn0
+
⎢⎢⎢⎣1 +

√
1 + 4

r

2

⎥⎥⎥⎦

as an upper bound, a number that has the order of magnitude ∂(r−1/2). Thus,
ubd(T ) � 1

2 .
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The notion of an r -net is related to two other notions, which we introduce next.

Definition 15.43 Let (S, d) be a metric space, T be a subset of S, and let r be a
positive number.

A collectionCof subsets of S is an r-cover of T of S if, for every C ∈ C, diamd(C) �
2r and T ⊕ ⎧

C;
A subset W of T is r-separated if, for every x, y ∈ W , x ⊥= y implies d(x, y) > r .

The cardinality of the largest r-separated subset W of T is denoted by ξT (r) and
will be referred to as the r-separation number of T .

Observe that an r -net for a set T is an r -cover.

Example 15.44 Consider the metric space ([0, 1]2, d2), where d2 is the Euclidean
metric. Since the area of a circle Bd2(x, r) is φr2, it follows that for any 2r -cover
C that consists of circles, we have φ · r2 · |C| � 1. Thus, a cover of this type of
([0, 1]2, d2) must contain at least 1

φ ·r2 circles.
In general, the volume of a sphere Bd2(x, r) in R

n is

φ
n
2

ν
( n

2 + 1
)rn,

which means that in the metric space ([0, 1]n, d2), a cover by spheres of radius r
contains at least

ν
( n

2 + 1
)

φ
n
2 rn

spheres.

Example 15.45 Let W = {w1, . . . , wn} be an r -separated subset of the interval
[0, 1], where w1 < · · · < wn . We have 1 � wn − w1 � (n − 1)r , so n � 1

r + 1.
This implies

ξ[0,1](r) =
⌊

1

r
+ 1

⌋
.

Example 15.46 Let T = {0} ⊆ { 1
n | n ∈ N1}. We seek to determine an upper bound

for ξT (r). Note that if p > n, then

1

n
− 1

p
� 1

n
− 1

n + 1
.

By the Mean Value Theorem, there exists c ∈ (n, n + 1) such that

1

n
− 1

n + 1
= 1

c2

and therefore
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1

n2 >
1

n
− 1

n + 1
>

1

(n + 1)2 .

Let n1 be the largest number such that 1
(n1+1)2 � r . Then, an r -separated subset of

T has at least n1 elements; thus, the number 1∅
r

is a lower bound for the number of
elements of an r -separating set.

Theorem 15.47 Let T be a subset of a metric space (S, d). The following statements
are equivalent:

(i) For each r > 0, there exists an r-net for T .
(ii) For each r > 0, every r-separated subset of T is finite.
(iii) For each r > 0, there exists a finite r-cover of T .

Proof (i) implies (ii): Let W be an r -separated subset of T and let N r
2

be an r
2 -net

for T . By the definition of r
2 -nets, for each w ∈ W there exists t ∈ N r

2
such that

d(w, t) < r
2 ; that is, w ∈ C

(
t, r

2

)
. Note that each sphere C(t, r

2 ) contains at most
one member of w because W is an r -separated subset of T . The finiteness of T
implies that W is finite too.

(ii) implies (iii): Let W = {w1, . . . , wn} be a maximal finite r -separated subset
of T . If t ∈ T , then there exists wi ∈ W such that d(t, wi ) � r since otherwise
the maximality of W would be contradicted. Thus, T ⊕ ⎧n

i=1 B(wi , r), each set
B(wi , r) has a diameter of 2r , and this implies that {B(wi , r)|1 � i � n} is an
r -cover of T .

(iii) implies (i): Let D = {D1, . . . , Dn} be a finite r + π
2 -cover of T , where π > 0.

Select yi ∈ Di for 1 � i � n, and define the set Y = {y1, . . . , yn}. Since the
diameter of every set Di is not larger than r + π, for every t ∈ T there exists yi such
that d(t, yi ) � r + π for every π > 0, so d(t, yi ) < r . Therefore, Y is an r -net for T .

The connection between the numbers nT (r) and ξT (r) is discussed next.

Corollary 15.48 For every precompact set T of a topological metric space (S,Od),
we have

nT (r) � ξT (r) � nT

( r

2

)
,

for every positive r .

Proof The first inequality follows from the proof of the first implication in Theo-
rem 15.47. The second is a consequence of the last two implications of the same
theorem.

The open spheres of radius r in the definition of a box-counting dimension of a
precompact set T can be replaced with arbitrary sets of diameter 2r . Indeed, suppose
nT (r) is the smallest number of open spheres of radius r that cover T and nT (2r)∪
is the least number of sets of diameter 2r that cover T . Since each sphere of radius
r has diameter 2r , we have nT (2r)∪ � nT (r). Observe that each set of diameter
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2r that intersects T is enclosed in an open sphere with radius 2r centered in T ,
so nT (2r) � nT (2r)∪. The inequalities nT (2r) � nT (2r)∪ � nT (r) imply that the
replacement previously mentioned does not affect the value of the box dimension.
For example, open spheres can be replaced by closed spheres without affecting the
value of the box-counting dimension.

Theorem 15.49 Let T be a subset of a topological metric space (S,Od). We have
ubd(K(T )) = ubd(T ) and lbd(K(T )) = lbd(T ).

Proof Let {B(x1, r), . . . , B(xn, r)} be a finite collection of closed spheres such that
T ⊕ ⎧n

i=1 B(xi , r). Clearly, we have K(T ) ⊕ ⎧n
i=1 B(xi , r). Thus, a finite collec-

tion of closed spheres covers T if and only if it covers K(T ). The conclusion follows
immediately.

15.8 The Hausdorff-Besicovitch Dimension

The Hausdorff-Besicovitch measure plays a fundamental role in the study of fractals.
The best-known definition of fractals was formulated by B. Mandelbrot [4], who is
the founder of this area of mathematics, and states that a fractal is a geometrical object
whose Hausdorff-Besicovitch dimension is greater than its small inductive dimen-
sion. The most famous example is the Cantor set whose small inductive dimension
is 0 (by Theorem 15.40) and whose Hausdorff-Besicovitch dimension is ln 2

ln 3 , as we
shall prove below.

Recall that a collection C of subsets of a metric space (S, d) is an r-cover of a
subset U of S if, for every C ∈ C, diamd(C) � 2r and U ⊕ ⎧

C.
Let (S, d) be a metric space and let Cr (U ) be the collection of all countable r -

covers for a set U . Observe that r1 � r2 implies Cr1(U ) ⊕ Cr2(U ) for r1, r2 ∈ R>0.
Let s be a positive number. We shall use the outer measure HBs

r obtained by
applying Method I (see Theorem 4.128) to the function f : C −∞ R�0 given by
f (C) = (diam(C))s for C ∈ C, which is given by

HBs
r (U ) = inf

C∈Cr (U )

∑
{(diam(C))s | C ∈ C}.

The function HBs
r (U ) is antimonotonic with respect to r . Indeed, if r1 � r2, then

Cr1(U ) ⊕ Cr2(U ), so

inf
C∈Cr2 (U )

∑
{(diam(C))s | C ∈ C} � inf

C∈Cr1 (U )

∑
{(diam(C))s | C ∈ C},

which means that HBs
r2

(U ) � HBs
r1

(U ). Because of this, limr∞0 HBs
r (U ) exists for

every set U , and this justifies the next definition.
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Definition 15.50 The Hausdorff-Besicovitch outer measure HBs is given by

HBs(U ) = lim
r∞0

HBs
r (U )

for every U ∈ P(S).

Theorem 15.51 Let (S, d) be a metric space and let U be a Borel set in this space.
If s and t are two positive numbers such that s < t and HBs(U ) is finite, then
HBt (U ) = 0. Further, if HBt (U ) > 0, then HBs(U ) = ∞.

Proof If s < t and C is an r -cover of U , then

∑
{(diam(C))t | C ∈ C} =

∑
{(diam(C))t−s(diam(C))s | C ∈ C}

� r t−s
∑

{(diam(C))s | C ∈ C},

which implies HBt
r (U ) � r t−sHBs

r (U ). This, in turn, yields

HBt (U ) = lim
r∞0

HBt
r (U ) � lim

r∞0
r t−sHBs(U ).

If HBs(U ) is finite, then HBt (U ) = 0. On the other hand, if HBt (U ) > 0, the last
inequality implies HBs(U ) = ∞.

Corollary 15.52 Let (S, d) be a metric space and let U be a Borel set. There exists
a unique s0 such that 0 � s0 � ∞ and

HBs(U ) =
{

∞ if s < s0,

0 if s > s0.

Proof This statement follows immediately from Theorem 15.51 by defining s0 =
inf{s ∈ R�0 | HBs(U ) = 0} = sup{s ∈ R�0 | HBs(U ) = ∞}.
Corollary 15.52 justifies the following definition.

Definition 15.53 Let (S, d) be a metric space and let U be a Borel set. The
Hausdorff-Besicovitch dimension of U is the number

HBdim(U ) = sup{s ∈ R�0 | HBs(U ) = ∞}.

Theorem 15.54 The Hausdorff-Besicovitch dimension is monotonic; that is, U ⊕
U ∪ implies HBdim(U ) � HBdim(U ∪).

Proof If U ⊕ U ∪, then it is clear that Cr (U ∪) ⊕ Cr (U ). Therefore, we have
HBs

r (U ) � HBs
r (U

∪), which implies HBs(U ) � HBs(U ∪) for every s ∈ R�0. This
inequality yields HBdim(U ) � HBdim(U ∪).
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Theorem 15.55 If {Un | n ∈ N} is a countable family of sets, then

HBdim

(⎩
n∈N

Un

)
= sup{HBdim(Un) | n ∈ N}.

Proof By Theorem 15.55, we have HBdim(Un) � HBdim
(⎧

n∈N Un
)
, so

sup
{HBdim(Un) | n ∈ N} � HBdim

(⎧
n∈N Un

)
.

If HBdim(Un) < t for n ∈ N, then HBt (Un) = 0, so HBt
(⎧

n∈N Un
) = 0

since the Hausdorff-Besicovitch outer measure HBt is subadditive. Therefore,
HBdim

(⎧
n∈N Un

)
< t . This implies HBdim

(⎧
n∈N Un

)
� sup{HBdim(Un) |

n ∈ N}, which gives the desired equality.

Example 15.56 If U = {u} is a singleton, then HB0({u}) = 0. Thus, HBdim({x}) =
0. By Theorem 15.55, we have HBdim(T ) = 0 for every countable set T .

Example 15.57 Let f : [0, 1]2 −∞ R be a function that is continuous and has
bounded partial derivatives in the square [0, 1]2 and let S be the surface inR2 defined
by z = f (x, y). Under these conditions, there is a constant k such that | f (x ∪, y∪) −
f (x, y)| � k(|x ∪ − x | + |y∪ − y|). We prove that HBdim(S) = 2.

Suppose that S is covered by spheres of diameter di , S ⊕ ⎧{B(xi ,
di
2 ) |

i ∈ I }. Then, the square [0, 1]2 is covered by disks of diameter di and therefore⎭
i∈I

φd2
i

4 � 1, which is equivalent to
⎭

i∈I d2
i � 4

φ
. Therefore, HB2(S) > 0, so

HBdim(S) � 2. Observe that, in this part of the argument, the regularity of f played
no role.

To prove the converse inequality, HBdim(S) � 2, we show that HB2+π(S) = 0
for every π > 0; that is, limr∞0 HB2+π

r (U ) = 0 for every π > 0.
Divide the square [0, 1]2 into n2 squares of size 1

n . Clearly, for any two pairs (x, y)

and (x ∪, y∪) located in the same small square, we have | f (x ∪, y∪) − f (x, y)| � 2k
n ,

which means that the portion of S located above a small square can be enclosed in a

cube of side 2k
n and therefore in a sphere of diameter 2

∅
3k

n . For the covering C that
consists of these n2 spheres, we have

∑
{(diam(C))2+π | C ∈ C} = n2

(
2
∅

3k

n

)2+π

= 2
∅

3k

nπ
.

If n is chosen such that 2
∅

3k
n < r , we have HB2+π

r (S) � 2
∅

3k
nπ . Thus, limr∞0 HB2+π

r
(S) = 0, so HBdim(S) � 2.

Example 15.58 We saw that the Cantor set C is included in each of the sets En that
consists of 2n closed intervals of length 1

3n . Thus, we have

HBs
1

3n
(C) � 2n

3sn
=
(

2

3s

⎟n
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for every n � 1. If 2
3s < 1

(
that is, i f s > ln 2

ln 3

)
, we have limn∞∞ HBs

1
3n

= 0. If

s < ln 2
ln 3 , then limn∞∞ HBs

1
3n

= ∞, so HBdim(C) = ln 2
ln 3 .

Theorem 15.59 Let (S,Od) be a topological metric space and let T be a precompact
set. We have HBdim(T ) � lbd(U ).

Proof Suppose that T can be covered by nT (r) sets of diameter r . By the definition
of the outer measure HBs

r (U ), we have

HBs
r (U ) � r snT (r).

Since HBs(U ) = limr∞0 HBs
r (U ), if HBs(U ) > 1, then if r is sufficiently small

we have HBs
r (U ) > 1, so log HBs

r (U ) > 0, which implies s log r + log nT (r) > 0.
Thus, if r is sufficiently small, s <

nT (r)

log 1
r

, so s � lbd(U ). This entails HBdim(U ) �
lbd(U ).

The following statement is known as the mass distribution principle (see [5]).

Theorem 15.60 Let (S, d) be a metric space and let μ be a Carathéodory outer
measure on S such that there exist s, r > 0 such that μ(U ) � c · diam(U )s for all
U ∈ P(S) with diam(U ) � r . Then, HBs(W ) � μ(W )

c and s � HBdim(W ) �
lbd(W ) for every precompact set W ∈ P(S) with μ(W ) > 0.

Proof Let {Ui | i ∈ I } be a cover of W . We have

0 < μ(W ) � μ

(⎩
i

Ui

)
�
∑
i∈I

μ(Ui ) � c
∑

i

(diam(Ui ))
s,

so
⎭

i (diam(Ui ))
s � μ(W )

c . Therefore, HBs
r (W ) � μ(W )

c , which implies HBs(W ) �
μ(W )

c > 0. Consequently, HBdim(W ) � μ(W )
c > 0.

15.9 Similarity Dimension

The notions of similarity and contraction between metric spaces were introduced in
Definition 8.65.

Definition 15.61 Let r = (r1, . . . , rn) be a sequence of numbers such that ri ∈ (0, 1)

for 1 � i � n and let (S, d) be a metric space.
An iterative function system on (S, d) that realizes a sequence of ratios r =

(r1, . . . , rn) is a sequence of functions f = ( f1, . . . , fn), where fi : S −∞ S is a
contraction of ratio ri for 1 � i � n.

A subset T of S is an invariant set for the iterative function system ( f1, . . . , fn)

if T = ⎧n
i=1 fi (T ).
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Example 15.62 Let f0, f1 : [0, 1] −∞ [0, 1] defined by

f0(x) = x

3
and f1(x) = x + 2

3

for x ∈ [0, 1], which are contractions of ratio 1
3 .

The Cantor set C is an invariant set for the iterative function system f = ( f0, f1),
as we have shown in Sect. 15.6.

Lemma 15.63 Let r1, . . . , rn be n numbers such that ri ∈ (0, 1) for 1 � i � n and
n > 1. There is a unique number d such that

rd
1 + rd

2 + · · · + rd
n = 1.

Proof Define the function φ : R�0 −∞ R�0 by

φ(x) = r x
1 + r x

2 + · · · + r x
n

for x > 0. Note that φ(0) = n, limx∞∞ φ(x) = 0, and φ∪(x) = r x
1 ln r1 + r x

2 ln r2 +
r x

n ln rn < 0. Since φ∪(x) < 0, φ is a strictly decreasing function, so there exists a
unique d such that φ(d) = 1.

Definition 15.64 Let r = (r1, . . . , rn) be a sequence of ratios such that ri ∈ (0, 1)

for 1 � i � n and n > 1. The dimension of r is the number d, whose existence was
proven in Lemma 15.63.

Observe that if the sequence r has length 1, r = (r1), then rd
1 = 1 implies d = 0.

Example 15.65 The dimension of the sequence r = ( 1
3 , 1

3 ) is the solution of the
equation

2 ·
(

1

3

⎟d

= 1;

that is, d = log 2
log 3 .

Lemma 15.66 Let (S,Od) be a complete topological metric space and let f =
( f1, . . . , fn) be an iterative function system that realizes a sequence of ratios r =
(r1, . . . , rn). The mapping F : K(S,Od) −∞ K(S,Od) defined on the Hausdorff
metric hyperspace (K(S,Od), σ) by

F(U ) =
n⎩

i=1

fi (U )

is a contraction.
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Proof We begin by observing that F is well-defined. Indeed, since each contraction
fi is continuous and the image of a compact set by a continuous function is compact
(by Theorem 4.69), it follows that if U is compact, then F(U ) is compact as the
union of a finite collection of compact sets.

Next, we prove that σ(F(U ), F(V )) � rσ(U, V ) for r = max0�i�n−1 ri < 1.
Let x ∈ F(U ). There is u ∈ U such that x = fi (u) for some i , 1 � i � n. By the

definition of σ, there exists v ∈ V such that d(u, v) � σ(U, V ). Since fi is a contrac-
tion, we have d(u, v) = d( fi (v), fi (u)) � ri d(u, v) � rd(u, v) � rσ(U, V ),
so F(U ) ⊕ C(F(V ), rσ(U, V )). Similarly, F(V ) ⊕ C(F(U ), rσ(U, V )), so
σ(F(U ), F(V )) � rσ(U, V ), which proves that F is a contraction of the Hausdorff
metric hyperspace (K(S,Od), σ).

Theorem 15.67 Let (S,Od) be a complete topological metric space and let f =
( f1, . . . , fn) be an iterative function system that realizes a sequence of ratios r =
(r1, . . . , rn). There exists a unique compact set U that is an invariant set for f.

Proof By Lemma 15.66, the mapping F : K(S,Od) −∞ K(S,Od) is a contraction.
Therefore, by the Banach fixed point theorem (Theorem 8.71), F has a fixed point
in K(S,Od), which is an invariant set for f.

The unique compact set that is an invariant for an iterative function system f is
usually referred to as the attractor of the system.

Definition 15.68 Let (S,Od) be a topological metric space and let U be an invariant
set of an iterative function system f = ( f1, . . . , fn) that realizes a sequence of ratios
r = (r1, . . . , rn).

The similarity dimension of the pair (U, f) is the number SIMdim(f), which equals
the dimension of r.

In principle, a set may be an invariant set for many iterative function systems.

Example 15.69 Let p, q ∈ (0, 1) such that p + q � 1 and let f0, f1 : [0, 1] −∞
[0, 1] be defined by f0(x) = px and f1(x) = qx + 1 − q. Both f0 and f1 are
contractions. The sequence f = ( f0, f1) realizes the sequence of ratios r = (p, q)

and we have (0, 1) = f0(0, 1) ⊆ f1(0, 1). The dimension of the pair (U, r) is the
number d such that pd + qd = 1; this number depends on the values of p and q.

Theorem 15.70 Let (S,Od) be a complete topological metric space, f = ( f1,
. . . , fn) be an iterative function system that realizes a sequence of ratios r =
(r1, . . . , rn), and U be the attractor of f. Then, we have HBdim(U ) � SIMdim(f).

Proof Suppose that rd
1 + rd

2 + · · · + rd
n = 1, that is, d is the dimension of f. For a

subset T of S denote the set fi1( fi2(· · · fi p (T ) · · · )) by fi1i2···i p (T ).
If U is the attractor of f, then

U =
⎩

{ fi1i2···i p (U ) | (i1, i2, . . . , i p) ∈ Seqp({1, . . . , n})}.

This shows that the sets of the form fi1i2···i p (U ) constitute a cover of U .
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Since fi1 , fi2 , . . . , fi p are similarities of ratios ri1 , ri2 , . . . , ri p , respectively, it
follows that diam( fi1i2···i p (U )) � (ri1ri2 · · · ri p )diam(U ). Thus,

∑
{(diam( fi1i2···i p (U )))d | (i1, i2, . . . , i p) ∈ Seqp({1, . . . , n})}

⊃
∑

{rd
i1rd

i2 · · · rd
i p

diam(U )d | (i1, i2, . . . , i p) ∈ Seqp({1, . . . , n})}

=

∑

i1

rd
i1




∑

i2

rd
i2


 · · ·


∑

i p

rd
i p


 diam(U )d

= diam(U )d .

For r ∈ R>0, choose p such that diam( fi1i2···i p (U )) � (max ri )
pdiam(U ) < r . This

implies HBd
r (U ) � diam(U )d , so HBd(U ) = limr∞0 HBd

r (U ) � diam(U )d . Thus,
we have HBdim(U ) � d = SIMdim(f).

The next statement involves an iterative function system f = ( f1, . . . , fm) acting
on a closed subset H of the metric space (Rn, d2) such that each contraction fi

satisfies the double inequality

bi d2(x, y) � d2( fi (x), fi (y)) � ri d2(x, y)

for 1 � i � m and x, y ∈ H . Note that each of the functions fi is injective on the
set H .

Theorem 15.71 Let f = ( f1, . . . , fm) be an iterative function system on a closed
subset H of Rn that realizes a sequence of ratios r = (r1, . . . , rm). Suppose that, for
every i , 1 � i � m, there exists bi ∈ (0, 1) such that d2( fi (x), fi (y)) � bi d2(x, y)

for x, y ∈ H.
If U is the nonempty and compact attractor of f and { f1(U ), . . . , fm(U )} is a

partition of U, then U is a totally disconnected set and HBdim(U ) � c, where c is
the unique number such that

⎭n
i=1 bc

i = 1.

Proof Let

t = min{d2( fi (U ), f j (U ) | 1 � i, j � m and i ⊥= j}.

Using the same notation as in the proof of Theorem 15.70, observe that the collection
of sets

{ fi1···i p (U ) | (i1, . . . , i p) ∈ Seq({1, . . . , m})}

is a sequential cover of the attractor U . Note also that all sets fi1···i p (U ) are com-
pact and therefore closed. Also, since each collection { fi1···i p (U ) | (i1, . . . , i p) ∈
Seqp({1, . . . , m}) is a partition of U , it follows that each of these sets is clopen in
U . Thus, U is totally disconnected.
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Define

m( fi1i2···i p (U )) = (bi1bi2 · · · bi p )
c.

Note that

m∑
i=1

m( fi1i2···i pi (U )) =
m∑

i=1

(bi1bi2 · · · bi p bi )
c

= (bi1bi2 · · · bi p )
c

m∑
i=1

bc
i

= (bi1bi2 · · · bi p )
c = m( fi1i2···i p (U ))

= m

(
m⎩

i=1

fi1i2···i pi (U )

)
.

For x ∈ U , there is a unique sequence (i1, i2, . . .) ∈ Seq∞({1, . . . , m}) such that
x ∈ Ui1···ik for every k � 1. Observe also that

U → Ui1 → Ui1i2 → · · · → Ui1i2···ik → · · · .

Consider the decreasing sequence 1 > bi1 > bi1bi2 > · · · > bi1 · · · bin > · · · . If
0 < r < t , let k be the least number j such that r

t � bi1 · · · bi j . We have

bi1 · · · bik−1 >
r

t
� bi1 · · · bik

so m(Ui1···ik−1) > rc

tc � m(Ui1···ik ).
Let (i ∪1, . . . , i ∪k) be a sequence distinct from (i1, . . . , ik). If δ is the least integer

such that i ∪δ ⊥= iδ, then Ui ∪1···i ∪δ ⊕ Ui ∪δ and Ui1···iδ ⊕ Uiδ . Since Uiδ and Uiδ∪ are disjoint
and separated by t , it follows that the sets Ui1...ik and Ui ∪1...i ∪k are disjoint and separated
by at least bi1 · · · biδ t > r . Thus, U ∨ B(x, r) ∧ Ui1···ik , so

m(U ∨ B(x, r)) � m(Ui1···ik ) = (bi1 · · · bik )
c �

(r

t

)c
.

If U ∨ W ⊥= ∩, then W ∧ B(x, r) for some x ∈ U with r = diam(W ). Thus,
m(W ) � diam(W)

tc , so HBc(U ) > 0 and HBdim(U ) � c.

Exercises and Supplements

1. Let Qn(δ) be an n-dimensional cube in R
n . Prove that:

(a) there are
(n

k

) · 2n−k k-dimensional faces of Qn(δ);
(b) the total number of faces of Qn(δ) is

⎭n
k=1

(n
k

) · 2n−k = 3n − 1.
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2. Let {Ui | i ∈ I } be a collection of pairwise disjoint open subsets of the topo-
logical metric space (Rn,Od2) such that for each i ∈ I there exist xi , yi ∈ R

n

such that B(xi , ar) ⊕ Ui ⊕ B(yi , br). Prove that for any B(u, r), we have
|{Ui | K(Ui ) ∨ B(u, r) ⊥= ∩}| �

( 1+2b
a

)n
.

Solution: Suppose that K(Ui ) ∨ B(u, r) ⊥= ∩. Then K(Ui ) ⊕ B(u, r + 2br).

Recall that the volume of a sphere of radius r in R
n is Vn(r) = φ

n
2 rn

ν ( n
2 +1)

. If

m = |{Ui | K(Ui )∨ B(u, r) ⊥= ∩}|, the total volume of the spheres B(xi , ar) is
smaller than the volume of the sphere B(u, (1 + 2b)r), and this implies man �
(1 + 2b)n .

3. Let T be a subset of R. Prove that T is zero-dimensional if and only if it contains
no interval.

4. Prove that the Cantor set C is totally disconnected.

Hint: Suppose that a < b and b belongs to the connected components Ka of a.
By Example 4.83, this implies [a, b] ⊕ Ka ⊕ C , which leads to a contradiction.

5. Prove the following extension of Example 15.42. If T = {0} ⊆ { 1
na | n � 1},

then (T) = 1
1+a .

6. Let (S,Od) be a compact topological metric space, x ∈ S, and let H be a closed
set in (S,O). Prove that if the sets {x} and {y} are separated by a closed set Kxy

with ind(Kxy) � n − 1 for every y ∈ H , then {x} is separated from H by a
closed set K with ind(K ) � n − 1.

7. Prove that every zero-dimensional separable topological space (S,O) is home-
omorphic to a subspace of the Cantor set.

Hint: By the separability of (S,O) and by Theorem 15.6, (S,O) has a countable
basis {B0, B1, . . . , Bn, . . .} that consists of clopen sets. Consider the mapping
f : S −∞ Seq∞({0, 1}) defined by f (x) = (b0, b1, . . .), where bi = IBi (x)

for i ∈ N.
8. Let T be a subset of Rn . A function f : T −∞ R

n satisfies the Hölder condition
of exponent ι if there is a constant k such that | f (x) − f (y)| � k|x − y|ι for
x, y ∈ R

n . Prove that
HB

s
ι ( f (T )) � k

s
ι HBs(T ).

Solution: If C ⊕ R
n is a set of diameter diam(C), then f (C), the image of

C under f , has a diameter no larger than k(diam(C))ι . Therefore, if C is an
r -cover of T , then { f (T ∨ C) | C ∈ C} is a krι-cover of f (T ). Therefore,

∑
{(diam(T ∨ C))

s
ι | C ∈ C} �

∑
{(k(diam(C))ι)

s
ι | C ∈ C}

= k
s
ι

∑
{(diam(C))s | C ∈ C},

which implies HB
s
ι
r (T ) � k

s
ι HBs

r (T ). Since limr∞0 krι = 0, we have
HB

s
ι ( f (T )) � k

s
ι HBs(T ).
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9. Consider the ultrametric space (Seq∞({0, 1}), dφ) introduced in Supplement 2
of Chap. 14, where φ(u) = 2−|u| for u ∈ Seq({0, 1}). Prove that if (S,Od) is a
separable topological metric space such that ind(S) = 0, then S is homeomorphic
to a subspace of the topological metric space (Seq∞{0, 1},Odφ ).

Solution: Since ind(S) = 0, there exists a basis B0 for Od that consists of
clopen sets (by Theorem 15.6). Further, since (S,Od) is countable, there exists
a basis B ⊕ B0 that is countable. Let B = {B0, B1, . . .}.

If s = (s0, s1, . . . , sp−1) ∈ Seqp({0, 1}), let B(s) be the clopen set B(s) =
Bs0

0 ∨ Bs1
1 ∨ · · · ∨ Bs1

p−1.
Define the mapping h : S −∞ Seq∞({0, 1}) by h(x) = (s0, s1, . . .), where

si = 1 if x ∈ Bi and si = 0 otherwise for x ∈ S. Thus, s is a prefix of h(x) if and
only if x ∈ B(s). The mapping h is injective. Indeed, suppose that x ⊥= y. Since
S − {y} is an open set containing x , there exists i with x ∈ Bi ⊕ S − {y}, which
implies (h(x))i = 1 and (h(y))i = 0, so h(x) ⊥= h(y). Thus, h is a bijection
between S and h(S).

In Exercise 4 of Chap. 8, we saw that the collection {Pu | u ∈ Seq({0, 1})}
is a basis for Seq∞({0, 1}) and h−1(Pu) = B(u), so h−1 : h(S) −∞ S is
continuous.

Note that h(Ui ) = h(S) ∨ {0, 1}i−1Seq∞({0, 1}) is open in Seq∞({0, 1}) for
every i ∈ N, so h−1 is continuous. Thus, h is a homeomorphism of S into h(S).

10. Let f = ( f1, . . . , fm) be an iterative function system on R
n that realizes the

sequence (r, . . . , r) with r ∈ (0, 1) and let H be a nonempty compact set in R
n .

Prove that if U is the attractor of f, then

σ(H, U ) � 1

1 − r
σ (H, F(H)) ,

where σ is the metric of the Hausdorff hyperspace of compact subsets and
F(T ) = ⎧n

i=1 fi (T ) for T ∈ P(S).

Solution: In the proof of Lemma 15.66, we saw that σ(F(H), F(U )) �
rσ(H, U ). This allows us to write

σ(H, U ) � σ(H, F(H)) + σ(F(H), U )

= σ(H, F(H)) + σ(F(H), F(U ))

� σ(H, F(H)) + rσ(H, U ),

which implies the desired inequality.
11. Consider the contractions f0, f1 : R −∞ R defined by f0(x) = r x and f1(x) =

r x +1−r for x ∈ R, where r ∈ (0, 1). Find the attractor of the iterative function
system f = ( f0, f1).

12. Let (S,Od) be a compact topological metric space. Prove that cov(S) � n if
and only if for every π > 0 there is an open cover C of S with ord(C) � n and
sup{diam(C) | C ∈ C} < π.
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Solution: The set of open spheres {C(x, π/2) | x ∈ S} is an open cover that
has a refinement with order not greater than n; the diameter of each of the sets
of the refinement is less than π.

Conversely, suppose that for every π > 0 there is an open cover C of S with
ord(C) � n and sup{diam(C) | C ∈ C} < π.

LetD be a finite open cover of S. By Lebesgue’s Lemma (Theorem 8.21) there
exists r > 0 such that for every subset U of S with diam(U ) < r there is a set
L ∈ D such that U ⊕ L .

Let C∪ be an open cover of S with order not greater than n and such that
sup{diam(C ∪) | C ∪ ∈ C∪} < min{π, r}. Then C∪ is a refinement of D, so
cov(S) � n.

13. Prove that if f : Rn −∞ R
m is an isometry, then HB

s
ι ( f (T )) = HBs(T ).

14. Let F be a finite set of a metric space. Prove that HB0(F) = |F |.
15. A useful variant of the Hausdorff-Besicovitch outer measure can be defined by

restricting the r -covers to closed spheres of radius no greater than r . Let Br (U )

be the set of all countable covers of a subset U of a metric space (S, d) that
consist of closed spheres of radius no greater than r . Since Br (U ) ⊕ Cr (U ), it
is clear that HBs

r (U ) � HB
∪s
r (U ), where

HB
∪s
r (U ) = inf

C∈Br (U )

∑
{(diam(C))s | C ∈ C}.

Prove that:

(a) HB
∪s
r (U ) � 2sHBs

r (U ),
(b) HBsU � HB

∪sU � 2sHBsU , where HB
∪s(U ) = limr∞0 HB

∪s
r (U ), and

(c) HBdim(U ) = HBdim ∪(U ), where HBdim∪(U ) = sup{s ∈ R�0 |
HB

∪s(U ) = ∞}
for every Borel subset U of S.

16. Prove that if U is a subset of Rn such that I(U ) ⊥= ∩, then HBdim(U ) = n.

Let (S, d) be a metric space, s and r be two numbers in R>0, U be a subset of S,
and

Ps
r (U ) = sup

{∑
i

diam(Bi )
s | Bi ∈ Br (U )

}
,

whereBr (U ) is the collection of disjoint closed spheres centered in U and having
diameter not larger than r . Observe that limr∞0 Ps

r (U ) exists because Ps
r (U )

decreases when r decreases. Let Ps(U ) = limr∞0 Ps
r (U ).

17. Let (S,Od) be a topological metric space. Define PKs(U ) as the outer measure
obtained by Method I starting from the function Ps ,

PKs(U ) = inf
C∈Cr (U )

∑{
Ps(C) | C ∈ C

}
,
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where Cr (U ) is the collection of all countable r -covers for a set U .

(a) Prove that if U is a Borel set in (S,Od), 0 < s < t , and PKs(U ) is finite,
then PKt (U ) = 0. Further, prove that if PKt (U ) > 0, then PKs(U ) = ∞.

(b) The packing dimension of U is defined as

PKdim(U ) = sup{s | PKs(U ) = ∞}.

Prove that HBdim(U ) � PKdim(U ) for any Borel subset U of Rn .

Bibliographical Comments

The first monograph dedicated to dimension theory is the book by Hurewicz and Wall-
man [6]. A topology source with a substantial presentation of topological dimensions
is [7]. The literature dedicated to fractals has several excellent references for dimen-
sion theory [5, 8, 9]. Supplement 10 appears in the last reference. Example 15.5
is from [10], where an interesting connection between entropy and the Hausdorff-
Besicovitch dimension is discussed.
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Chapter 16
Clustering

16.1 Introduction

Clustering is the process of grouping together objects that are similar. The groups
formed by clustering are referred to as clusters.

Similarity between objects that belong to a set V is usually measured using either
a similarity function s : V × V −∈ [0, 1], or a definite dissimilarity d : V × V −∈
R�0 (see Sect. 1.9). The similarities between the objects are grouped in a symmetric
similarity matrix S ∈ R

m×m , where sij = s(vi , sj) for 1 � i, j � m, where m = |V |.
There are several points of view for examining clustering techniques. We follow

here the taxonomy of clustering presented in [1].
Clustering may or may not be exclusive, where an exclusive clustering technique

yields clusters that are disjoint, while a nonexclusive technique produces overlapping
clusters. From an algebraic point of view, an exclusive clustering algorithm generates
a partition ν = {C1, . . . , Ck} of the set of objects whose blocks C1, . . . , Ck are
referred to as clusters.

Clustering may be intrinsic or extrinsic. Intrinsic clustering is an unsupervised
activity that is based only on the dissimilarities between the objects to be clustered.
Most clustering algorithms fall into this category. Extrinsic clustering relies on infor-
mation provided by an external source that prescribes, for example, which objects
should be clustered together and which should not.

Finally, clustering may be hierarchical or partitional.
In hierarchical clustering algorithms, a sequence of partitions is constructed. In

hierarchical agglomerative algorithms this sequence is increasing and it begins with
the least partition of the set of objects whose blocks consist of single objects; as the
clustering progresses, certain clusters are fused together. As a result, an agglomerative
clustering is a chain of partitions on the set of objects that begins with the least
partition φS of the set of objects S and ends with the largest partition ΨS . In a
hierarchical divisive algorithm, the sequence of partitions is decreasing. Its first
member is the one-block partition ΨS , and each partitions is built by subdividing the
blocks of the previous partition.

D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining, 767
Advanced Information and Knowledge Processing, DOI: 10.1007/978-1-4471-6407-4_16,
© Springer-Verlag London 2014

http://dx.doi.org/10.1007/978-1-4471-6407-4_1
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Partitional clustering creates a partition of the set of objects whose blocks are the
clusters such that objects in a cluster are more similar to each other than to objects
that belong to different clusters. A typical representative algorithm is the k-means
algorithm and its many extensions.

Our presentation is organized around the last dichotomy. We start with a class
of hierarchical agglomerative algorithms. This is continued with a discussion of the
k-means algorithm, a representative of partitional algorithms. Then, we continue
with a discussion of certain limitations of clustering centered around Kleinberg’s
impossibility theorem. We conclude with an evaluation of clustering quality.

Clustering can be regarded as a special type of classification, where the clusters
serve as classes of objects. It is a widely used data mining activity with multiple
applications in a variety of scientific activities ranging from biology and astronomy
to economics and sociology.

16.2 Hierarchical Clustering

Hierarchical clustering is a recursive process that begins with a metric space of
objects (S, d) and results in a chain of partitions of the set of objects. In each of the
partitions, similar objects belong to the same block and objects that belong to distinct
blocks tend to be dissimilar.

In agglomerative hierarchical clustering, the construction of this chain begins with
the unit partition β1 = φS . If the partition constructed at step k is

βk = {U k
1 , . . . , U k

mk
},

then two distinct blocks U k
p and U k

q of this partition are selected using a selection
criterion. These blocks are fused and a new partition

βk+1 = {U k
1 , . . . , U k

p−1, U k
p+1, . . . , U k

q−1, U k
q+1, . . . , U k

p ∪ U k
q }

is formed. Clearly, we have βk ∞ βk+1. The process must end because the poset
(PART(S),�) is of finite height. The algorithm halts when the one-block partition
ΨS is reached.

As we saw in Theorem 14.12, the chain of partitions β1, β2, . . . generates a
hierarchy on the set S. Therefore, all tools developed for hierarchies, including the
notion of a dendrogram, can be used for hierarchical algorithms.

When data to be clustered are numerical (that is, when S ∅ R
n), we can define

the centroid of a nonempty subset U of S as:

cU = 1

|U |
∑

{o|o ∈ U }.



16.2 Hierarchical Clustering 769

If β = {U1, . . . , Um} is a partition of S, then the sum of the squared errors of β is
the number

sse(β) =
m∑

i=1

∑⎜
d2(o, cUi )|o ∈ Ui

}
, (16.1)

where d is the Euclidean distance in R
n .

If two blocks U and V of a partition β are fused into a new block W to yield
a new partition β ⊆ that covers β , then the variation of the sum of squared errors is
given by

sse(β ⊆) − sse(β) =
∑⎜

d2(o, cW )|o ∈ U ∩ V
}

−
∑⎜

d2(o, cU )|o ∈ U
}

−
∑⎜

d2(o, cV )|o ∈ V
}

.

The centroid of the new cluster W is given by

cW = 1

|W |
∑

{o|o ∈ W } = |U |
|W |cU + |V |

|W |cV .

This allows us to evaluate the increase in the sum of squared errors:

sse(β ⊆) − sse(β) =
∑⎜

d2(o, cW ) | o ∈ U ∪ V
}

−
∑⎜

d2(o, cU ) | o ∈ U
}

−
∑⎜

d2(o, cV ) | o ∈ V
}

=
∑⎜

d2(o, cW ) − d2(o, cU ) | o ∈ U
}

+
∑⎜

d2(o, cW ) − d2(o, cV ) | o ∈ V
}

.

Observe that:∑⎜
d2(o, cW ) − d2(o, cU ) | o ∈ U

}
=
∑
o∈U

((o − cW )(o − cW ) − (o − cU )(o − cU ))

= |U |(c2
W − c2

U ) + 2(cU − cW )
∑
o∈U

o

= |U |(c2
W − c2

U ) + 2|U |(cU − cW )cU

= (cW − cU ) (|U |(cW + cU ) − 2|U |cU )

= |U |(cW − cU )2.

Using the equality cW − cU = |U |
|W |cU + |V |

|W |cV − cU = |V |
|W | (cV − cU ), we obtain∑⎟

d2(o, cW ) − d2(o, cU ) | o ∈ U
} = |U ||V |2

|W |2 (cV − cU )2.
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Similarly, we have

∑⎜
d2(o, cW ) − d2(o, cV ) | o ∈ V

}
= |U |2|V |

|W |2 (cV − cU )2 ,

so,

sse(β ⊆) − sse(β) = |U ||V |
|W | (cV − cU )2 . (16.2)

The dissimilarity between two clusters U and V can be defined using one of the
following real-valued, two-argument functions defined on the set of subsets of S:

sl(U, V ) = min {d(u, v)|u ∈ U, v ∈ V } ;
cl(U, V ) = max {d(u, v)|u ∈ U, v ∈ V } ;

gav(U, V ) =
∑ {d(u, v)|u ∈ U, v ∈ V }

|U | · |V | ;
cen(U, V ) = (cU − cV )2;

ward(U, V ) = |U ||V |
|U | + |V | (cV − cU )2 .

The names of the functions sl, cl, gav, and cen defined above are acronyms of the
terms “single link”, “complete link”, “group average”, and “centroid”, respectively.
They are linked to variants of the hierarchical clustering algorithms that we discuss
in later. Note that in the case of the ward function the value equals the increase in
the sum of the square errors when the clusters U, V are replaced with their union.

The specific selection criterion for fusing blocks defines the clustering algo-
rithm. All algorithms store the dissimilarities between the current clusters βk =
{U k

1 , . . . , U k
mk

} in an mk × mk-matrix Dk = (dk
ij), where dk

ij is the dissimilarity

between the clusters U k
i and U k

j . As new clusters are created by merging two exist-
ing clusters, the distance matrix must be adjusted to reflect the dissimilarities between
the new cluster and existing clusters.

The general form of the algorithm is shown as Algorithm 16.2.1.

Algorithm 16.2.1: Matrix Agglomerative Clustering
Data: the initial dissimilarity matrix D1

Result: the cluster hierarchy on the set of objects S, where |S| = n
k = 1;1

initialize clustering: β1 = φS ;2

while βk contains more than one block do3
merge a pair of two of the closest clusters;4
output new cluster;5
k + +;6

compute the dissimilarity matrix Dk ;7

end8
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To evaluate the space and time complexity of hierarchical clustering, note that the
algorithm must handle the matrix of the dissimilarities between objects, and this is a
symmetric n ×n-matrix having all elements on its main diagonal equal to 0; in other
words, the algorithm needs to store n(n−1)

2 numbers. To keep track of the clusters,
an extra space that does not exceed n − 1 is required. Thus, the total space required
is O(n2).

The time complexity of agglomerative clustering algorithms has been evaluated
in [2].

The computation of the dissimilarity between a new cluster and existing clusters
is described next.

Theorem 16.1 Let U and V be two clusters of the clustering β that are joined into
a new cluster W . Then, if Q ∈ β − {U, V }, we have

sl(W, Q) = 1

2
sl(U, Q) + 1

2
sl(V, Q) − 1

2

∣∣∣sl(U, Q) − sl(V, Q)

∣∣∣;
cl(W, Q) = 1

2
cl(U, Q) + 1

2
cl(V, Q) + 1

2

∣∣∣cl(U, Q) − cl(V, Q)

∣∣∣;
gav(W, Q) = |U |

|U | + |V |gav(U, Q) + |V |
|U | + |V |gav(V, Q);

cen(W, Q) = |U |
|U | + |V |cen(U, Q) + |V |

|U | + |V |cen(V, Q)

− |U ||V |
(|U | + |V |)2 cen(U, V );

ward(W, Q) = |U | + |Q|
|U | + |V | + |Q|ward(U, Q) + |V | + |Q|

|U | + |V | + |Q|ward(V, Q)

− |Q|
|U | + |V | + |Q|ward(U, V ).

Proof The first two equalities follow from the fact that

min{a, b} = 1

2
(a + b) − 1

2
|a − b|,

max{a, b} = 1

2
(a + b) + 1

2
|a − b|,

for every a, b ∈ R.
For the third equality, we have

gav(W, Q) =
∑{d(w, q)|w ∈ W, q ∈ Q}

|W | · |Q|
=
∑ {d(u, q)|u ∈ U, q ∈ Q}

|W | · |Q| +
∑{d(v, q)|v ∈ V, q ∈ Q}

|W | · |Q|
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= |U |
|W |
∑{d(u, q)|u ∈ U, q ∈ Q}

|U | · |Q| + |V |
|W |
∑{d(v, q)|v ∈ V, q ∈ Q}

|V | · |Q|
= |U |

|U | + |V |gav(U, Q) + |V |
|U | + |V |gav(V, Q).

The equality involving the function cen is immediate. The last equality can be
easily translated into

|Q||W |
|Q| + |W |

(
cQ − cW

)2 = |U | + |Q|
|U | + |V | + |Q|

|U ||Q|
|U | + |Q|

(
cQ − cU

)2
+ |V | + |Q|

|U | + |V | + |Q|
|V ||Q|

|V | + |Q|
(
cQ − cV

)2
− |Q|

|U | + |V | + |Q|
|U ||V |

|U | + |V | (cV − cU )2 ,

which can be verified replacing |W | = |U | + |V | and cW = |U |
|W |cU + |V |

|W |cV . ⊕⊥
The equalities contained by Theorem 16.1 are often presented as a single equality

involving several coefficients.

Corollary 16.2 (The Lance-Williams Formula) Let U and V be two clusters of
the clustering β that are joined into a new cluster W . Then, if Q ∈ β − {U, V }, the
dissimilarity between W and Q can be expressed as

d(W, Q) = aU d(U, Q) + aV d(V, Q) + bd(U, V ) + c|d(U, Q) − d(V, Q)|,

where the coefficients aU , aV , b, c are given by the following table:

Function aU aV b c

sl
1

2

1

2
0 −1

2

cl
1

2

1

2
0

1

2
gav

|U |
|U | + |V |

|V |
|U | + |V | 0 0

cen
|U |

|U | + |V |
|V |

|U | + |V | − |U ||V |
(|U | + |V |)2 0

ward
|U | + |Q|

|U | + |V | + |Q|
|V | + |Q|

|U | + |V | + |Q| − |Q|
|U | + |V | + |Q| 0

Proof This statement is an immediate consequence of Theorem 16.1. ⊕⊥
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Fig. 16.1 Set of seven points
in R

2

The variant of the algorithm that makes use of the function sl is known as the single-
link clustering. It tends to favor elongated clusters.

Example 16.3 We use single-link clustering for the metric space (S, d1), where S ∅
R

2 consists of seven objects, S = {o1, . . . , o7} (see Fig. 16.1).
The distances d1(oi , oj) for 1 � i, j � 7 between the objects of S are specified

by the 7 × 7 matrix

D1 =




0 1 3 6 8 11 10
1 0 2 5 7 10 9
3 2 0 3 5 8 7
6 5 3 0 2 5 4
8 7 5 2 0 3 4
11 10 8 5 3 0 3
10 9 7 4 4 3 0


⎛⎛⎛⎛⎛⎛⎛⎛⎧

.

We apply the hierarchical clustering algorithm using the single-link variant to the set
S. Initially, the clustering consists of singleton sets:

β1 = {{oi } | 1 � i � 7} {{o1}, {o2}, {o3}, {o4}, {o5}, {o6}, {o7}} .

Two of the closest clusters are {o1}, {o2}; these clusters are fused into the cluster
{o1, o2}, the new partition is

β2 = {{o1, o2}, . . . , {o7}},

and the matrix of dissimilarities becomes the 6 × 6-matrix
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D2 =




0 2 5 7 10 9
2 0 3 5 8 7
5 3 0 2 5 4
7 5 2 0 3 4
10 8 5 3 0 3
9 7 4 4 3 0


⎛⎛⎛⎛⎛⎛⎧

.

The next pair of closest clusters is {o1, o2} and {o3}. These clusters are fused into the
cluster {o1, o2, o3}, and the new 5 × 5-matrix is:

D3 =




0 3 5 8 7
3 0 2 5 4
5 2 0 3 4
8 5 3 0 3
7 4 4 3 0


⎛⎛⎛⎛⎧ ,

which corresponds to the partition

β3 = {{o1, o2, o3}, {o4}, . . . , {o7}}.

Next, the closest clusters are {o4} and {o5}. Fusing these yields the partition

β4 = {{o1, o2, o3}, {o4, o5}, {o6}, {o7}}

and the 4 × 4-matrix

D4 =




0 3 8 7
3 0 3 4
8 3 0 3
7 4 3 0


⎛⎛⎧

We have three choices now since there are three pairs of clusters at distance 3 of each
other: ({o1, o2, o3}, {o4, o5}), ({o4, o5}, {o6}), and ({o6}, {o7). By choosing to fuse
the first pair, we obtain the partition

β5 = {{o1, o2, o3, o4, o5}, {o6}, {o7}},

which corresponds to the 3 × 3-matrix

D5 =

0 3 4

3 0 3
4 3 0


⎧ .

Observe that the large cluster {o1, o2, o3, o4, o5} formed so far has an elongated
shape, which is typical for single-link variant of the algorithm.

Next, we coalesce {o1, o2, o3, o4, o5} and {o6}, which yields
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Fig. 16.2 Dendrogram of
single-link clustering

β6 = {{o1, o2, o3, o4, o5, o6}, {o7}}

and

D6 =
⎨

0 3
3 0

⎩
.

Finally, we join the last two clusters, and the clustering is completed.
The dendrogram of the hierarchy produced by the algorithm is given in Fig. 16.2.

The variant of the algorithm that uses the function cl is known as the complete-link
clustering. It tends to favor globular clusters.

Example 16.4 Now we apply the complete-link algorithm to the set S considered in
Example 16.3. It is easy to see that the initial two partitions and the initial matrix are
the same as for the single-link algorithm.

However, after creating the first cluster {o1, o2}, the distance matrices begin to
differ. The next matrix is

D2 =




0 3 6 8 11 10
3 0 3 5 8 7
6 3 0 2 5 4
8 5 2 0 3 4
11 8 5 3 0 3
10 7 4 4 3 0


⎛⎛⎛⎛⎛⎛⎧

,

which shows that the closest clusters are now {o4} and {o5}. Thus,

β3 = {{o1, o2}, {o3}, {o4, o5}, {o6}, {o7}}

and the new matrix is

D3 =




0 3 8 11 10
3 0 5 8 7
8 5 0 5 3
11 8 5 0 3
10 7 3 3 0


⎛⎛⎛⎛⎧ .
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Fig. 16.3 Partial clustering
obtained by the complete-link
method

Three pairs of clusters correspond to the minimal value 3 in D3:

({o1, o2}, {o3}),
({o4, o5}, {o3}),
({o6}, {o7}).

If we merge the last pair, we get the partition

β4 = {{o1, o2}, {o3}, {o4, o5}, {o6, o7}}

and the matrix

D4 =




0 3 8 11
3 0 5 8
8 5 0 5
11 8 5 0


⎛⎛⎧ .

Next, the closest clusters are {o1, o2}, {o3}. Merging those clusters results in the
partition β5 = {{o1, o2, o3}, {o4, o5}, {o6, o7}} and the matrix

D5 =

 0 8 11

8 0 5
11 5 0


⎧ .

The current clustering is shown in Fig. 16.3. Observe that in the case of the clusters
obtained by the complete-link method that appear early tend to enclose objects that
are closed in the sense of the distance.

Now the closest clusters are {o4, o5} and {o6, o7}. By merging those clusters, we
obtain the partition β5 = {{o1, o2, o3}, {o4, o5, o6, o7}} and the matrix
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Fig. 16.4 Dendrogram of
complete-link clustering

D6 =
⎨

0 11
11 0

⎩
.

The dendrogram of the resulting clustering is given in Fig. 16.4.

The group average method, which makes use of the gav function generates an
intermediate approach between the single-link and the complete-link method. What
the methods mentioned so far have in common is the monotonicity property expressed
by the following statement.

Theorem 16.5 Let (S, d) be a finite metric space and let D1, . . . , Dm be the
sequence of matrices constructed by any of the first three hierarchical methods
(single, complete, or average link), where m = |S|. If μi is the smallest entry of
the matrix Di for 1 � i � m, then μ1 � μ2 � · · · � μm. In other words, the
dissimilarity between clusters that are merged at each step is nondecreasing.

Proof Suppose that the matrix Dj+1 is obtained from the matrix Dj by merging
the clusters C p and Cq that correspond to the lines p and q and to columns p, q
of Dj . This happens because dpq = dqp is one of the minimal elements of the
matrix Dj . Then, these lines and columns are replaced with a line and column that
corresponds to the new cluster Cr and the dissimilarities between this new cluster
and the previous clusters Ci , where i ∨= p, q . The elements dj+1

rh of the new line (and

column) are obtained either as min{dj
ph, dj

qh}, max{dj
ph, dj

qh}, or |C p |
|Cr | dj

ph + |Cq |
|Cr | d

j
qh ,

for the single-link, complete-link, or group average methods, respectively. In any of
these cases, it is not possible to obtain a value for dj+1

rh that is less than the minimal
value of an element of Dj . ⊕⊥
The last two methods captured by the Lance-Williams formula are the centroid
method and the Ward method of clustering. As we observed before, Formula (16.2)
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shows that the dissimilarity of two clusters in the case of Ward’s method equals the
increase in the sum of the squared errors that results when the clusters are merged. The
centroid method adopts the distance between the centroids as the distance between
the corresponding clusters. Either method lacks the monotonicity properties.

16.3 The k-Means Algorithm

The k-means algorithm is a partitional algorithm that requires the specification of the
number of clusters k as an input. The set of objects to be clustered S = {o1, . . . , on}
is a subset of Rm . Due to its simplicity and its many implementations it is a very
popular algorithm despite this requirement.

The k-means algorithm begins with a randomly chosen collection of k points
c1, . . . , ck in R

m called centroids. An initial partition of the set S of objects is
computed by assigning each object oi to its closest centroid cj . Let Uj be the set of
points assigned to the centroid cj .

The assignments of objects to centroids are expressed by a matrix (bij), where

bij =
⎫

1 if oi ∈ Uj,

0 otherwise.

Since each object is assigned to exactly one cluster, we have
∑k

j=1 bij = 1. Also,∑n
i=1 bij equals the number of objects assigned to the centroid cj .
After these assignments, expressed by the matrix (bij), the centroids cj must be

re-computed using the formula:

cj =
∑n

i=1 bijoi∑n
i=1 bij

(16.3)

for 1 � j � k.
The sum of squared errors of a partition β = {U1, . . . , Uk} of a set of objects S

was defined in Equality (16.1) as

sse(β) =
k∑

j=1

∑
o∈Uj

d2(o, cj),

where cj is the centroid of Uj for 1 � j � k. The error of such an assignment is the
sum of squared errors of the partition β = {U1, . . . , Uk} defined as

sse(β) =
n∑

i=1

k∑
j=1

bij ||oi − cj ||2

=
n∑

i=1

k∑
j=1

bij

m∑
p=1

⎬
oi

p − cjp
⎭2

.
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The mk necessary conditions for a local minimum of this function,

Φsse(β)

Φcjp
=

n∑
i=1

bij

⎬
−2
⎬

oi
p − cjp

⎭⎭
= 0,

for 1 � p � m and 1 � j � k, can be written as

n∑
i=1

bijoi
p =

n∑
i=1

bijcjp = cjp

n∑
i=1

bij,

or as

cjp =
∑n

i=1 bijoi
p∑n

i=1 bij

for 1 � p � m. In vectorial form, these conditions amount to

cj =
∑n

i=1 bijoi∑n
i=1 bij

,

which is exactly the formula (16.3) that is used to update the centroids. Thus, the
choice of the centroids can be justified by the goal of obtaining local minima of the
sum of squared errors of the clusterings.

Since we have new centroids, objects must be reassigned, which means that the
values of bij must be recomputed, which, in turn, affects the values of the centroids,
etc.

The halting criterion of the algorithm depends on particular implementations and
may involve

(i) performing a certain number of iterations;
(ii) lowering the sum of squared errors sse(β) below a certain limit;

(iii) the current partition coinciding with the previous partition.

This variant of the k-means algorithm is known as Forgy’s Algorithm 16.3.1.

Algorithm 16.3.1: The k-means Forgy’s Algorithm
Data: the set of objects to be clustered S = {o1, . . . , on} and the number of

clusters k
Result: collection of k clusters
extract a randomly chosen collection of k vectors c1, . . . , ck in R

n ;1

assign each object oi to the closest centroid cj ;2

let β = {U1, . . . , Uk} be the partition defined by c1, . . . , ck ;3
recompute the centroids of the clusters U1, . . . , Uk ;4
while halting criterion is not met do5

compute the new value of the partition β using the current centroids;6
recompute the centroids of the blocks of β ;7

end8
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The popularity of the k-means algorithm stems from its simplicity and its low
time complexity O(knδ), where n is the number of objects to be clustered and δ is
the number of iterations that the algorithm is performing.

Another variant of the k-means algorithm redistributes objects to clusters based
on the effect of such a reassignment on the objective function. If sse(β) decreases,
the object is moved and the two centroids of the affected clusters are recomputed.
This variant is carefully analyzed in [3].

16.4 The PAM Algorithm

Another algorithm, named PAM (an acronym of “Partition Around Medoids”) devel-
oped by Kaufman and Rousseeuw [4], also requires as an input parameter the number
k of clusters to be extracted.

The k clusters are determined based on a representative object from each cluster,
called the medoid of the cluster. The medoid of a cluster is one of the objects that
have a most central position in the cluster.

PAM begins with a set of objects S, where |S| = n, a dissimilarity n × n matrix
D, and a prescribed number of clusters k. The dij entry of the matrix D is the
dissimilarity d(oi , oj) between the objects oi and oj .

The algorithm has two phases:

(i) The building phase aims to construct a set L of selected objects, L ∅ S. The
set of remaining objects is denoted by R; clearly, R = S − L . To determine the
most centrally located object we compute Qi = ∑n

j=1 dij for 1 � i � n. The
most central object oq is determined by q = arg mini Qi . The set L is initialized
as L = {oq}.
Suppose now that we have constructed a set L of selected objects and |L| < k.
We need to add a new selected object to the set L . To do this, we need to examine
all objects that have not been included in L so far, that is, all objects in R. The
selection is determined by a merit function M : R −∈ N.
To compute the merit M(o) of an object o ∈ R, we scan all objects in R
distinct from o. Let o⊆ ∈ R − {o} be such an object. If d(o, o⊆) < d(L , o⊆), then
adding o to L could benefit the clustering (from the point of view of o⊆) because
d(L , o⊆) will diminish. The potential benefit is d(o⊆, L) − d(o, o⊆). Of course, if
d(o, o⊆) � d(L , o⊆), no such benefit exists (from the point of view of o⊆). Thus,
we compute the merit of o as

M(o) =
∑

o⊆∈R−{o}
max{D(L , o⊆) − d(o, o⊆), 0}.

We add to L the unselected object o that has the largest merit value. The building
phase halts when |L| = k.
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The objects in set L are the potential medoids of the k clusters that we seek to
build.

(ii) In a second phase, swapping objects and existing medoids is considered. A cost
of a swap is defined with the intention of penalizing swaps that diminish the
centrality of the medoids in the clusters. Swapping continues as long as useful
swaps (that is, swaps with negative costs) can be found.
The second phase of the algorithm aims to improve the clustering by considering
the merit of swaps between selected and unselected objects. So, assume now that
oi is a selected object, oi ∈ L , and oh is an unselected object, oh ∈ R = S − L .
We need to determine the cost C(oi , oh) of swapping oi and oh . Let oj be an
arbitrary unselected object. The contribution cihj of oj to the cost of the swap
between oi and oh is defined as follows:

(a) If d(oi , oj) and d(oh, oj) are greater than d(o, oj) for any o ∈ L − {oi },
then cihj = 0.

(b) If d(oi , oj) = d(L , oj), then two cases must be considered depending on
the distance e(oj) from ej to the second-closest object of S.
(i) If d(oh, oj) < e(oj), then cihj = d(oh, oj) − d(S, oj).

(ii) If d(oh, oj) � e(oj), then cihj = e(oj) − d(S, oj).
In either of these two subcases, we have

cihj = min{d(oh, oj), ej} − d(oi , oj).

(c) If d(oi , oj) > d(L , oj) (that is, oj is more distant from oi than from at least
one other selected object) and d(oh, oj) < d(L , oj) (which means that oj is
closer to oh than to any selected object), then cihj = d(oh, oj) − d(S, oj).

The cost of the swap is C(oi , oh) = ∑oj∈R cihj . The pair that minimizes
C(oi , oj) is selected. If C(oi , oj) < 0, then the swap is carried out. All potential
swaps are considered.
The algorithm halts when no useful swap exists; that is, no swap with negative
cost can be found.

PAM is more robust than Forgy’s variant of k-clustering because it minimizes the
sum of the dissimilarities instead of the sum of the squared errors.

The pseudocode of the algorithm is given in Algorithm 16.4.1.

Algorithm 16.4.1: The PAM algorithms
Data: a set of objects S, where |S| = n, a dissimilarity n × n matrix D, and a prescribed

number of clusters k
Result: a k-clustering of S
construct the set L of k medoids;1
repeat2

compute the costs C(oi , oh) for oi ∈ L and oh ∈ R;3
select the pair (oi , oh) that corresponds to the minimum m = C(oi , oh);4

until (m > 0);5
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Note that inside the loop repeat · · · until there are l(n − l) pairs of objects to be
examined, and for each pair we need to involve n − l non-selected objects. Thus, one
execution of the loop requires O(l(n − l)2), and the total execution may require up

to O
⎬∑n−l

l=1 l(n − l)2
⎭
, which is O(n4). Thus, the usefulness of PAM is limited to

rather small data set (no more than a few hundred objects).

16.5 The Laplacian Spectrum of a Graph

Spectral clustering is a relatively new clustering technique that applies linear algebra
technique to matrices associated to a similarity graph of a set of objects and produces
clustering that are often more adequate to clusterings produced via the methods
previously discussed. Laplacian matrices of graphs play a central role in spectral
clusterings and are the focus of the current section.

Definition 16.6 Let G = (V, E, w) be a weighted graph. The Laplacian matrix of
G is the symmetric matrix LG = DG − AG.

The spectrum of the Laplacian matrix is referred to as the Laplacian spectrum of
the weighted graph.

Note that the off-diagonal elements of LG are non-positive numbers. Also,
LG1m = 1⊆

m A = 0m .
The notion of Laplacian can be applied to common, unweighted graphs which

can be regarded as weighted graphs such that the weight of every edge is 1.

Example 16.7 Let G = ({v1, v2}, {(v1, v2)}, w) be a two-vertex weighted graph,
where w(v1, v2) = a. The degree matrix DG and the adjacency matrix are

DG =
⎨

a 0
0 a

⎩
, and AG =

⎨
0 a
a 0

⎩
.

Thus, we have

LG = a ·
⎨

1 −1
−1 1

⎩
.

Lemma 16.8 Let G = (V, E, w) be a weighted graph, where V = {v1, . . . , vm}
and let AG = (wij) ∈ R

m×m be its adjacency matrix. For x ∈ R
m we have x⊆LGx =

1
2

∑m
i=1
∑m

j=1 wij(xi − xj)2.

Proof We have

x⊆LGx = x⊆(DG − AG)x = x⊆DGx − x⊆ AGx

=
m∑

i=1

d(πi )x2
i −

m∑
i=1

m∑
j=1

Ψijxi xj .
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Since

m∑
i=1

m∑
j=1

wij(xi − xj)
2 =

m∑
i=1

x2
i

m∑
j=1

wij − 2
m∑

i=1

m∑
j=1

wijxi xj +
m∑
j=1

x2
j

m∑
i=1

wij

= 2
m∑

i=1

x2
i d(vi ) − 2

m∑
i=1

m∑
j=1

wijxi xj,

the desired equality is immediate.

The symmetry of AG implies that the equality of Lemma 16.8 can be written as

x⊆LGx =
∑

{wij(xi − xj)
2 | 1 � i < j � m}, (16.4)

for every x ∈ R
m .

Theorem 16.9 The Laplacian of a weighted graph G = (V, E, w) is a singular,
symmetric and positive semi-definite matrix that has 0 as its smallest eigenvalue and
1m as a corresponding eigenvector, where m = |V |.
Proof Let LG = DG − AG be the Laplacian of G. Since both DG and AG are
symmetric matrices, so is LG.

The positive definiteness of LG follows immediately from Lemma 16.8. Since the
sum of elements of each row of LG is 0 we have LG1m = 0m , which shows that 0 is
an eigenvalue of LG and 1m is an eigenvector of this eigenvalue.

Theorem 16.9 implies that all eigenvalues of LG are real and non-negative, and LG

has a full set of n real and orthogonal eigenvectors. Thus, 0 is the smallest eigenvalue
of LG.

There exists an interesting connection between the Laplacian of a graph G and the
incidence matrix of an oriented graph Gr obtained from G be applying an orientation
to the edges of G, as seen in Definition 10.36.

Theorem 16.10 Let G = (V, E) be a graph and let Gr = (V, Er ) be the directed
graph obtained by applying the orientation r . We have LG = UGr U ⊆

Gr , where UGr is
the incidence matrix of Gr .

Proof Let V = {v1, . . . , vm}, E = {e1, . . . , en}, and let r : V × V −∈ {−1, 0, 1}
be an orientation of G. Since

(UGr U ⊆
Gr )ij =

m∑
p=1

uipuj p,

several cases are possible. If i = j, each term of the sum
∑n

p=1 u2
i p that corresponds

to an edge ep equals 1, so the sum equals d(vi ).
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If i ∨= j and there exists an edge ep that joins vi to vj , then the only non-zero
term of the sum

∑n
p=1 uipuj p equals −1. Otherwise, the value of the sum is 0. This

justified the equality of the theorem.

Observe that Theorem 16.10 also implies that LG is positive semi-definite because
x⊆LGx = x⊆UGr U ⊆

Gr x = (UGr x⊆)⊆U ⊆
Gr x =∧ U ⊆

Gr x ∧2
2� 0.

16.5.1 Laplacian Spectra of Special Graphs

Example 16.11 The Laplacian of Km , the complete graph having m vertices is

LKm =




m − 1 −1 · · · −1
−1 m − 1 · · · −1
...

... · · · ...

−1 −1 · · · m − 1


⎛⎛⎛⎧ .

Note that LKm = −P(1 − m), where P(a) is the matrix defined in Example 7.8.
Its characteristic equation is det(σIm − LG) = 0, or det(σIm + P(1 − m)) = 0.
Thus, the eigenvalues of LG are the opposites of the eigenvalues of P(1 − m). In
other words, LG has 0 as an simple eigenvalue and m with multiplicity m − 1. So
φ(Km) = m.

For Km we have:

x⊆LKm x =
∑

{(xi − xj)
2 | 1 � i < j � m}. (16.5)

When x⊆1m = 0, we can write

x⊆LKm x = x⊆(m Im − Jm,m)x = mx⊆x = m ∧ x ∧2
2 (16.6)

because x⊆ Jm,m = x⊆(1m · · · 1m) = 0m .

Example 16.12 The Laplacian of the star graph shown in Fig. 10.36 is

LG =




q − 1 −1 · · · −1
−1 1 · · · 0
...

... · · · ...

−1 0 · · · 1


⎛⎛⎛⎧ .

Using the determinant Qq(q − 1 − σ, 1 − σ) = (1 − σ)q−2σ(σ − q) computed in
Example 5.145, the eigenvalues of LG are 0, 1 and q, so φ(G) = 1.

http://dx.doi.org/10.1007/978-1-4471-6407-4_10
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Fig. 16.5 Cycle graph Cn

Theorem 16.13 Let G = (V, E) be a k-regular graph with |V | = m. If the ordinary
spectrum of G is k = σ1 � σ2 � · · · � σm, then its Laplacian spectrum consists of
the numbers 0 = k − σ1 � k − σ2 � · · · � k − σm.

Proof Since G is a k-regular graph its Laplacian has the form LG = k In − AG.
Therefore, LG has the eigenvalues 0 = k − σ1 � k − σ2 � · · · � k − σm .

Example 16.14 The graphCm=({v1, . . . , vm}, {(vi , vi+1)|1 � i � m} ∪ {(vm, v1)})
is a simple cycle shown in Fig. 16.5. The adjacency matrix of Cm is ACm =
ADm + A⊆

Dm
, where Dm is the directed simple cycle examined in Example 10.156.

Recall that ADm and A⊆
Dm

have identical spectra.
Suppose that

wk =




1
zk
...

zm−1
k


⎛⎛⎛⎧

is an eigenvector that corresponds to the eigenvalue zk of Dm . We have

A⊆
Dm




1
zk
...

zm−1
k


⎛⎛⎛⎧ =




zm−1
k
1
...

zm−2
k


⎛⎛⎛⎧ = 1

zk




1
zk
...

zm−1
k


⎛⎛⎛⎧ = 1

zk
wk .

This shows that the matrices ADm and A⊆
Dm

have both identical spectra and an
identical set of eigenvectors. However, while wk corresponds to the eigenvalue zk

for ADm , the same wk corresponds to the eigenvalue 1
zk

for A⊆
Dm

. Thus, we have

(ADm + A⊆
Dm

)wk = (zk + z−1
k )wk,
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Fig. 16.6 Path graph Pm

which proves that the adjacency matrix of Cm has the real eigenvalues zk + z−1
k =

2 cos 2kβ
m for 0 � k � m − 1, and the same eigenvectors as the matrices ADm and

A⊆
Dm

.
The Laplacian of Cm is

LCm =




2 −1 0 0 · · · −1
−1 2 −1 0 · · · 0
0 −1 2 1 · · · 0
...

...
... · · · ... 0

−1 0 0 · · · −1 2


⎛⎛⎛⎛⎛⎧ .

By Theorem 16.13, C has the Laplacian spectrum

⎪
2 − 2 cos

2kβ

m

∣∣∣0 � k � m − 1

}

because Cm is a 2-regular graph.

Example 16.15 Let Pm = ({v1, . . . , vm}, {(vi , vi+1)|1 � i � m − 1} be the path
graph shown in Fig. 16.6.

The Laplacian matrix of Pm is the tridiagonal matrix

LPm =




1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
0 0 −1 2 · · · 0
...

...
...

... · · · ...

0 0 0 0 −1 1


⎛⎛⎛⎛⎛⎛⎛⎧

To determine the ordinary spectrum of Pm consider the simple undirected cycle
C2m+2. The ordinary spectrum of this graph consists of eigenvalues of the form
zk + z−1

k = 2 cos 2kβ
2m+2 = 2 cos kβ

m+1 , where z2m+2
k = 1. These eigenvalues have the

geometric multiplicity 2 and both vectors

wk =




1
zk
...

z2m+1
k


⎛⎛⎛⎧ and uk =




1
z−1

k
...

z−(2m+1)
k


⎛⎛⎛⎧



16.5 The Laplacian Spectrum of a Graph 787

are eigenvectors that correspond to 2 cos kβ
m+2 , where 0 � k � 2m + 1. Therefore,

the vector

tk = wk − uk =




0
zk − z−1

k
...

zm
k − z−m

k
0

zm+2
k − z−m−2

k
...

z2m+1
k − z−2m−1

k


⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎧

=




0
zk − z−1

k
...

zm
k − z−m

k
0

−(zm
k − z−m

k )
...

(−zk − z−1
k )


⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎧

is also an eigenvector for 2 cos kβ
m+1 . We used here the fact that z2m+2

k = 1 implies

zm+1
k = z−m−1

k . The incidence matrix AC2m+2 can be written as

AC2m+2 =
⎨

APm+1 Em+1,1
Em+2,1 APm+1

⎩
,

so the equality AC2m+2 tk = 2 cos kβ
m+1 tk implies

APm+1




0
zk − z−1

k
...

zm
k − z−m

k


⎛⎛⎛⎧ = 2 cos

kβ

m + 1
tk




0
zk − z−1

k
...

zm
k − z−m

k


⎛⎛⎛⎧ .

This, in turn, yields

APm




zk − z−1
k

...

zm
k − z−m

k


⎛⎧ = 2 cos

kβ

m + 1
tk




zk − z−1
k

...

zm
k − z−m

k


⎛⎧ .

which shows that 2 cos kβ
m+1 tk is an ordinary eigenvalue for the path graph Pm . A

corresponding eigenvector is




zk − z−1
k

...

zm
k − z−m

k


⎛⎧ .

Next we compute the Laplacian spectrum of Pm . Let z be a complex number such
that z2m = 1 and let
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u =




1 + z2m−1

z + z2m−2
...

zj + z2m−1−j

...

zm−2 + zm+1

zm−1 + zm


⎛⎛⎛⎛⎛⎛⎛⎛⎧

.

The equalities

1 + z2m−1 −
⎬

z + z2m−2
⎭

=
⎬
2 − z − z−1

⎭ ⎬
1 + z2m−1

⎭
,

−
⎬

zj−1 + z2m−j
⎭

+ 2
⎬

zj + z2m−1−j
⎭

−
⎬

zj+1 + z2m−2−j
⎭

=
⎬
2 − z − z−1

⎭ ⎬
zj + z2m−1−j

⎭
,

and
−
⎬

zm−2 + zm+1
⎭

+ zm−1 + zm =
⎬
2 − z − z−1

⎭ ⎬
zm−1 + zm

⎭
can be directly verified and they show that u is an eigenvector of LPm that corresponds
to the eigenvalue 2 − z − z−1. If zk = cos 2kβ

2m + i sin 2kβ
2m , then the Laplacian

spectrum of Pm consists of numbers of the form

2 − 2 cos
2kβ

2m
= 4 sin2 kβ

2m
,

where 0 � k � m − 1.

16.5.2 Graph Connectivity

Theorem 16.16 Let G = (V, E) be a graph, where |V | = m. The number of con-
nected components ofG equals algm(LG, 0) and the the characteristic vector of each
connected component is an eigenvector of A that corresponds to the eigenvalue 0.

Proof Let k the number of connected components of G.
When k = 1 the graph is connected and this is the case that we examine initially.

If x is an eigenvector that corresponds to the eigenvalue 0 we have x⊆LGx = 0, so
by Lemma 16.8, we have

∑m
i=1
∑m

j=1 aij(xi − xj)2 = 0. Thus, (xi − xj)2 = 0 for
all i, j, 1 � i, j � m such that aij = 1. This means that the existence of an edge
(vi , vj) in G implies xi = xj . Consequently, the values of the components of x must
be the same and the invariant subspace SLG ,0 is generated by the vector 1m .

Suppose now that we have k connected components. Without loss of generality
we can assume that the vertices of the graph are numbered such that the numbers
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attributed to the vertices that belong to a connected component are consecutive. In
this case, the Laplacian LG has a block-diagonal form

LG =




L1 O · · · O
O L2 · · · O
...

... · · · ...

O O · · · Lk


⎛⎛⎛⎧ .

By Corollary 7.32, 0 is an eigenvalue of LG and of each of the matrices Lj , where
1 � j � k. Furthermore, each Li is the Laplacian of a connected component of G,
so it has 0 as an eigenvalue of multiplicity 1. Therefore, LG has 0 as an eigenvalue
of multiplicity k.

The characteristic vector cp ∈ R
m of a connected component C p, where 1 � p �

k, is given by

(cp)i =
⎫

1 if i is the number of a row that corresponds to Li

0 otherwise.

It is clear that each such vector is an eigenvector of LG.

Corollary 16.17 If a graph G = (V, E) is connected then rank (LG) = |V | − 1.

Proof By Theorem 16.16, if G is connected, 0 has algebraic multiplicity 1. Thus, by
Theorem 7.26, LG has rank |V | − 1.

Definition 16.18 The connectivity of a graph G is the second smallest eigenvalue
φ(G) of its Laplacian LG.

Recall that the smallest eigenvalue of LG is 0. By Theorem 7.51 we have

φ(G) = min
x

⎟
xH LGx | ∧ x ∧2= 1 and x⊆1 = 0

}
. (16.7)

Example 16.19 The incidence matrices of the similarity graphs G0.2 and G0.4 intro-
duced in Example 10.10 are A0.2:




0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 1 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0


⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎧
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and A0.4, given by 


0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0


⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎛⎧

The spectrum of the Laplacian of the first matrix is 0 (with algm(0, L0.2) =
2), 0.41, 1.56, 2.39, 3.00, 3 (with algm(3, L0.2) = 3), 4, 4.10, 4.77, 5 (with
algm(5, L0.2) = 2) and 5.73. Thus, φ(G0.2) = 0.41.

For the second graph G0.4 the eigenvalues of the Laplacian are 0 (with
algm(0, L0.2) = 4), 0.26, 1 (with algm(0, L0.2) = 5), 1.58, 3.73, 4.41, 5. Thus, the
connectivity of G0.4 is 0.26, which is lower than the connectivity of the first graph.

As expected, the multiplicity of 0, the least eigenvalues of the Laplacians equals
the number of connected components of these graphs.

Definition 16.20 The edge connectivity of a graph G = (V, E) is the minimal
number of edges whose removal would result is losing connectivity. This number is
denoted by e(G). The least number of vertices whose removal (with the corresponding
edges) would result in losing connectivity is the vertex connectivity and is denoted
by v(G).

For a complete graph we have v(Km) = m − 1.

Theorem 16.21 Let G = (V, E) be a graph. We have

v(G) � e(G) � min
v∈V

d(v).

Proof Suppose that G is a connected graph which is not complete.
Let v0 be a vertex such that d(v0) = minv∈V d(v). By removing all edges incident

with v0 the graph becomes disconnected, so e(G) � minv∈V d(v) because e(G) was
defined as the minimal number of edges whose removal renders the graph discon-
nected. By the same definition, there exists a set of edges E0 with |E0| = e(G) whose
removal partitions the graph into two sets of vertices S and T . Note that any edge
of E0 joins a vertex in S with a vertex in T , because adding back any edge in E0
restores the connectivity of the graph.

The graph G can also be disconnected by removing vertices from S or T joined by
edges from E0 and the subgraphs generated by S and T may lose their connectedness
before e(G) vertices are removed. Thus, v(G) � e(G).

Theorem 16.21 allows us to obtain a counterpart of Menger’s Theorem for
Digraphs (Theorem 10.146).

Theorem 16.22 (Menger’s Theorem for Graphs) Let G = (V, E) be a graph and
let x and y be two vertices. The maximum number of paths that join x to y whose sets
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of edges are pairwise disjoint equals the minimum number of edges whose removal
eliminates all paths from x to y.

Proof Let E1 be a set of edges whose removal separates x from y, which means that
the removal destroys all paths between x and y. Thus, the number of link-disjoint
paths between x and y cannot exceed |E1|. If we choose E1 to contain the least
number of edges the desired conclusion follows.

Theorem 16.23 Let Gi = (V, Ei ), i = 1, 2 be two graphs having the same set of
vertices such that E1 ∩ E2 = ⇒. If G1 ∪ G2 = (V, E1 ∪ E2), then φ(G1 ∪ G2) �
φ(G1) + φ(G2).

Proof It is easy to see that LG1∪G2 = LG1 + LG2 , so by Equality (16.7) we have

φ(G1 ∪ G2) = min
x

{x⊆LG1x + x⊆LG2x | ∧ x ∧2= 1 and x⊆1 = 0}
� min

x
{x⊆LG1x | ∧ x ∧2= 1 and x⊆1 = 0}

+ min
x

{x⊆LG2x | ∧ x ∧2= 1 and x⊆1 = 0}
= φ(G1) + φ(G2).

If G1 = (V, E1) and G2 = (V, E2) are two graphs having the same set of vertices
we write G1 ∅ G2 if E1 ∅ E2.

Corollary 16.24 If G1 and G2 are two graphs on the same set of vertices, then
G1 ∅ G2 implies φ(G1) � φ(G2).

Proof This statement is an immediate consequence of Theorem 16.23.

Theorem 16.25 Let G⊆ = (V ⊆, E ⊆) be a graph obtained from the graph G = (V, E)

by removing k vertices and all edges incident to these vertices. Then, φ(G⊆) �
φ(G) − k.

Proof The proof is by induction on k � 1 and the base case k = 1 is the only
non-trivial part.

For k = 1 suppose that V = {v1, . . . , vm} and V ⊆ = V − {vm}. Define the
graph G1 = (V ⊆ ∪ {vm}, E ⊆ ∪ {(vi , vm) | 1 � i � m − 1}). Clearly G ∅ G1, so
φ(G) � φ(G1). The Laplacian of G1 has the form

LG1 =
⎨

LG⊆ + Im−1 −1m−1
−1⊆

m−1 m − 1

⎩
.

If t is an eigenvector of LG⊆ , then

z =
⎨

t
0

⎩

is an eigenvector of LG1 and we have
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LG1

⎨
t
0

⎩
= (φ(G⊆) + 1)

⎨
t
0

⎩
,

which proves that φ(G⊆)+1 is a non-zero eigenvalue of LG1 . In other words, we have
φ(G1) � φ(G⊆) + 1, which implies φ(G⊆) � φ(G) − 1.

The induction step is immediate.

Theorem 16.26 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, where V1 =
{v1, . . . , vp} and V2 = {u1, . . . , uq}. We have LG1×G2 = LG1 ↔ LG2 .

Proof If the vertex (vi , uj) of G1 × G2 occupies the δth place in the list of vertices
we have

(DG1×G2)ll = dG1(vi ) + dG2(uj),

where i =
⌈

δ
q

⌉
and j = δ − q

⎬⌈
δ
q

⌉
− 1
⎭
. This shows that DG1×G2 = DG1 ↔ DG2 ,

as it can be verified easily from Definition 5.163. Thus,

LG1×G2 = DG1×G2 − AG1×G2 = (DG1 ↔ DG2) − (AG1 ↔ AG2)

= (DG1 ⊃ Iq + Ip DG2) − (AG1 ⊃ Iq + Ip AG2)

= (DG1 − AG1) ⊃ Iq + Ip ⊃ (DG2 − AG2) = LG1 ↔ LG2 .

Theorem 16.27 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. We have
φ(G1 × G2) = min{φ(G1), φ(G2)}.
Proof By Supplement 68 of Chap. 7 the eigenvalues of the Laplacian LG1×G2 have
the form σ + μ, where σ is an eigenvalue of LG1 and μ is an eigenvalue of LG2 .
Therefore, the second smallest eigenvalue of LG1×G2 is either φ(G1) + 0 or 0 +
φ(G2), which implies the desired statement.

Theorem 16.28 Let A ∈ R
m×m be a symmetric, positive semidefinite matrix such

that A1m = 0m and spec(A) = {σ1, . . . , σm}, where 0 = σ1 � σ2 � · · · � σm.
The second smallest eigenvalue σ2 satisfies the inequality

σ2 � m

m − 1
min{aii | 1 � i � m}.

Proof Note that the smallest eigenvalue of A is 0 and 1m is an eigenvector that
corresponds to this eigenvalue. Therefore, by Equality (16.7),

σ2 = min{x⊆ Ax | ∧ x ∧2= 1, x⊆1m = 0}.

Let B = A − σ2(Im − 1
m Jm,m). Note that if y ∈ R

m we can write y = c11m + c2x,
where x⊆1 = 0 and ∧ x ∧2= 1.

Since B1m = 0 it follows that y⊆By = c2
2x⊆ Bx = c2

2(x
⊆ Ax − σ2) � 0. Thus,

B is positive semidefinite and the least diagonal entry of B, min{aii | 1 � i �
m} − σ2

(
1 − 1

m

)
is non-negative.
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Corollary 16.29 Let G = (V, E) be a graph, where |V | = m Then,

φ(G) � m

m − 1
min
v∈V

d(v) � 2
|E |

m − 1
.

Proof The first inequality follows from Theorem 16.28; the second is a consequence
of the fact that m minv∈V �

∑
v∈V d(v) = 2 |E |.

Let G = (V, E) be a graph. Its complement is the graph G = (V, Ē), where
Ē = {(x, y) | x ∨= y and (x, y) ∨∈ E}.

For a graph G = (V, E) with |V | = m define ι(G) = m−φ(G). The next theorem
was obtained by Fiedler in [5].

Theorem 16.30 For every graph G = (V, E), where |V | = m, the following state-
ments hold:

(i) ι(G) = max{x⊆LGx | ∧ x ∧2= 1 and x⊆1m = 0};
(ii) φ(G) � ι(G) and the equality holds if and only if G is a complete graph or a

void graph;
(iii) if G1, . . . ,Gk are the connected components of G, then ι(G) = max{ι(Gi ) |

1 � i � k};
(iv) if G1 = (V, E1) and G2 = (V, E2) with E1 ∅ E2, then ι(G1) � ι(G2);
(v) if G1 and G2 have the same set of vertices, then ι(G1 ∪G2) � ι(G1)+ι(G2)−

φ(G1 ∩ G2);
(vi) m

m−1 maxv∈V d(v) � ι(G) � 2 maxv∈V d(v).

Proof Note that LG + LG = m Im − Jm,m . Also, for x ∈ R
m we have ∧ x ∧2=

x⊆x = 1 and x⊆1m = 0; therefore, x⊆(m Im − Jm,m)x = m. This implies

max{x⊆LGx | ∧ x ∧2= 1, x⊆1m} = m − min{x⊆LGx | ∧ x ∧2= 1, x⊆1m}
= n − φ(G) = ι(G),

which proves Part (i) and implies φ(G) � ι(G). If φ(G) = ι(G), then x⊆LGx is

constant on the set W = {x | ∧ x ∧2= 1, x⊆1m}. Note that x =
√

1
m(m−1)

(mei − 1m)

belongs to W . Since x⊆LGx = m2(LG)i i it follows that all diagonal elements of LG

are constant. Similarly, choosing x = 1→
2
(ei − ej) (with i ∨= j) it follows that all

off-diagonal elements of LG are 0 (so all are equal to 0 or −1). Thus, G is either void
or a complete graph.

Part (iii) follows immediately from Part (i). Part (iv) follows from φ(G1) � φ(G2).
To prove Part (v) note that

ι(G1 ∪ G2) = m − φ
⎬
G1 ∪ G2

⎭
= m − φ

⎬
G1 ∪ G2

⎭
= m − φ(G1 ∩ G2)
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= m −
⎬
φ(G1) − φ(G2) + φ(G1 ∪ G2)

⎭
= ι(G1) + ι(G2) − m + φ(G1 ∪ G2)

� ι(G1) + ι(G2) − φ(G1 ∩ G2).

To prove the left inequality of (vi), by Corollary 16.29 we have

φ(G) � m

m − 1
min
v∈V

dG(v),

which is equivalent to

m − ι(G) � m

m − 1

⎨
m − 1 − max

v∈V
dG(v)

⎩
.

Finally, the right part of the inequality of (vi) is discussed in Supplement 26.

Corollary 16.31 Let G = (V, E) be a graph with |V | = m. We have φ(G) �
2 minv∈V d(v) − m + 2.

Proof By Part (vi) of Theorem 16.30 we have ι(G) � 2 maxv∈V dG(v) =
2 maxv∈V (m − 1 − dG(v)). Since φ(G) = m − ι(G) the inequality follows imme-
diately.

Theorem 16.32 (Fiedler’s Matrix Theorem) Let A ∈ R
m×m be a symmetric, non-

negative and irreducible matrix with eigenvalues σ1 � · · · � σm. Let v ∈ R
m be a

vector such that for a fixed s ∈ N, s � 2, such that Av � σsv. If

P = {i | 1 � i � p and vi � 0},

then P ∨= ⇒ and the degree of reducibility of the submatrix A

[
P
P

⎢
does not exceed

s − 2.

Proof Suppose that P = ⇒, that is vi < 0 for 1 � i � m. In this case the vector
z = −v has positive components and Az � σsz. This implies that all off-diagonal
elements of σ1 Im − A are non-positive and all its eigenvalues are non-negative.
Furthermore, σ1 Im − A is irreducible because A is irreducible.

Note that the matrix A⊆ is also symmetric, non-negative and irreducible. Therefore,
by Perron-Frobenius Theorem, there exists a positive eigenvector that corresponds
to σ1 such that A⊆y = σ1y, or y⊆ A = σ1y⊆. This implies y⊆ Av = σ1y⊆v > σsy⊆v, since
σ1 is a simple value. Thus, u⊆ Av � σsu⊆z, which is a contradiction. Consequently,
we have P ∨= ⇒.

If P = {1, . . . , n}, then A

[
P
P

⎢
= A and the proof is complete because A is

irreducible and, therefore, its degree of reducibility is 0. Therefore, we can assume
that ⇒ ≥ P ≥ {1, . . . , n}.
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We prove that if we assume that the degree of reducibility of A is at least s − 1,
then we obtain a contradiction. With this assumption, without loss of generality, we
can assume that P = {1, . . . , p}, where p < n, and that the symmetric matrix A can
be written as a block matrix:

A =




A11 O · · · O A1 r+1
O A22 · · · O A2 r+1
...

... · · · ...
...

A⊆
1 r+1 A⊆

2 r+1 · · · A⊆
r r+1 Ar+1 r+1


⎛⎛⎛⎧ ,

where r � s, the matrices Ajj ∈ R
mj×mj are irreducible for 1 � j � r and∑r

j=1 mj = p.
The vector v can be partitioned in blocks as

v =




v(1)

...

v(r)

v(r+1)


⎛⎛⎛⎧ .

We have v(j) � 0mj for 1 � j � r and v(r+1) < 0q , where q = n −∑r
j=1 mj . By

hypothesis, we have

(Ajj − σs Imj )v
(j) > −Aj r+1v(r+1) (16.8)

for 1 � j � r .
Since the matrix

B =




σs Im1 − A11 O · · · O
O σs Im2 − A22 · · · O
...

... · · · ...

O O · · · σs Imr − Arr


⎛⎛⎛⎧

is a principal submatrix of σI − A, it follows that it has at most s − 1 negative
eigenvalues. Thus, at least one of the matrices σs Imj − Ajj has only non-negative
eigenvalues values. We can assume that is is the case for σs Im1 − A11. Therefore,
σs Im1 − A11 ∈ K0 and is irreducible.

Equality (16.8) implies

(σs Im1 − A11)v(1) � A1 r+1v(r+1) � 0. (16.9)

Suppose that σs Im1 − A11 is non-singular. Then, σs Im1 − A11 ∈ K and we have
(σs Im1 − A11)

−1 > O by Part (xi) of Theorem 10.125. Equality (16.9) implies
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v(1) � (σs Im1 − A11)
−1 A1 r+1v(r+1) � 0m1 .

Thus, v(1) = 0m1 and A1 r+1v(r+1) = 0 which implies A1 r+1 = O . This contradicts
the irreducibility of A.

Suppose now that σs Im1 − A11 is singular, which means that u⊆(σs Im1 − A11) = 0⊆.
Therefore, u⊆(σs Im1 − A11)v(1) = 0. Since (σs Im1 − A11)v(1) � 0, it follows that
(σs Im1 − A11)v(1) = 0 by Equality (16.9). Thus, A1,r+1v(r+1) = 0, so A1,r+1 = O ,
which is again a contradiction. This concludes the argument.

Corollary 16.33 Let A ∈ R
m×m be a symmetric, non-negative, and irreducible

matrix having the eigenvalues σ1 � σ2 � · · · � σm. Let s ∈ N be a natural
number such that s � 2 and let v an eigenvector corresponding to σs . Then, the set
P = {i ∈ N | vi � 0} is non-void and the degree of reducibility of the submatrix

A

[
P
P

⎢
does not exceed s − 2.

Proof The corollary is immediate from Theorem 16.32.

Corollary 16.34 Let A ∈ R
m×m be a symmetric, non-negative, and irreducible

matrix having the eigenvalues σ1 � σ2 � · · · � σm.
If (σ1, u) and (σ2, v) are eigenpairs of A with u > 0, then, for any φ � 0, the

submatrix A

[
Pφ

Pφ

⎢
is irreducible, where Pφ = {i ∈ N | vi + φui � 0}.

Proof Note that
A(v + φu) = σ2v + φσ1u � σ2(v + φu),

which means that the vector v + φu satisfies the condition of Theorem 16.32 for
s = 2. The statement of the corollary follows immediately from the theorem.

The notion of connectivity can be extended to weighted graphs.

Definition 16.35 Let (G, w) be a weighted graph. Its connectivity φ(G, w) is the
second smallest eigenvalue of its Laplacian LG.

Theorem 16.36 Let (G, w) be a connected weighted graph such that |V | = m and
w(vi , vj) > 0 for every (vi , vj) ∈ E.

The algebraic connectivity φ(G, w) is positive and is equal to the minimum of the
function α : Rm −∈ R defined by

α(x) = m

∑{wij(xi − xj)2 | (vi , vj) ∈ E}∑{(xi − xj)2 | i < j} ,

over all vectors x ∈ R
m having distinct components. The corresponding eigenvectors

to φ(G, w) are those vectors y having distinct components for which the minimum of
α is attained and for which

∑m
i=1 yi = 0.
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Proof Since LG1 = 0 and LG is positive semidefinite, the smallest eigenvalue of LG

is 0. Since G is connected it follows that 1 is the only linearly independent solution
of (LGx, x) = 0, so 0 is a simple eigenvalue. All other eigenvalues are positive,
and all eigenvectors that correspond to these values are orthogonal to 1. Thus, by
Theorem 7.50, the second smallest eigenvalue φ(G, w) is given by

φ(G, w) = min

⎫∑{wij(xi − xj)2 | (vi , vj) ∈ E}∑m
i=1 x2

i

∣∣∣x ∨= 0, x⊆1 = 0

⎣

and the minimum is attained for any eigenvector corresponding to φ(G, w).
By the elementary identity

m
m∑

i=1

x2
i −
⎥

m∑
i=1

xi

⎦2

=
∑
i<j

(xi − xj)
2,

taking into account that x⊆1 =∑m
i=1 xi = 0, we have

m
m∑

i=1

x2
i =
∑
i<j

(xi − xj)
2,

which yields the desired equality. Observe that the value of α(x) is invariant with
respect to adding a multiple of 1 to x.

Corollary 16.37 Let (G, w) be a connected weighted graph such that w(vi , vj) > 0
for every (vi , vj) ∈ E. If |V | = m we have the inequality

m
∑

{wij(xi − xj)
2 | (vi , vj) ∈ E} � φ(G)

∑
{(xi − xj)

2 | i < j}

for every x ∈ R
n.

Proof The corollary is a direct consequence of Theorem 16.36.

Definition 16.38 Let (G, w) be a weighted graph. A Fiedler vector of the weighted
graph is an eigenvector that corresponds to the second smallest eigenvalue φ(G, w).

A Fiedler vector is distinct from 0 and is determined up to a non-zero factor. If y
is a Fiedler vector of the weighted graph (({v1, . . . , vm}, E), w), its component yi

corresponds to the vertex vi is the y-valuation of the vertex vi .

Theorem 16.37 (Fiedler’s Graph Theorem) LetG = (V, E) be a connected graph
such that |V | = m and let y be a Fiedler vector of this graph. The subgraphs
determined by the sets Vr = {vi ∈ V | yi + r � 0} for r � 0 and V ⊆

r = {vi ∈ V |
yi + r � 0} for r � 0 are connected.
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Proof The matrix B = −LG has non-negative off-diagonal entries. Therefore, for
sufficently large r , the matrix B + r Im is non-negative.

Note that v is an eigenvector of LG if and only if LGv = σv, which is equivalent
to (r Im − LG)v = (r − σ)v. Thus, the matrices r Im + B and LG have the same
eigenvectors. Moreover, the second smallest eigenvalue of LG corresponds to the
second largest eigenvalue of the matrix B + r Im + B, so a Fiedler vector of G is also
an eigevector of r Im + B that corresponds to the second largest eigenvalue of this
matrix.

By Corollary 16.33, y + r1m has the property that the submatrix of r Im + B with
indices in Vr has reducibilty degree 0, that is, it is irreducible and, therefore, the
subgraph determined by Vr is connected. The argument for V ⊆

r is similar.

16.6 Spectral Clustering Algorithms

Spectral clustering algorithms compute clusterings starting from local information
represented by a similarity matrix of the object space and using global information
in the form of eigenvectors of this matrix [6].

If similarities between objects that belong to distinct clusters is 0 (which is usually
not the case), the clustering problem is reduced to the determination of the connected
components. In this ideal case, clusterings can be found using Theorem 16.16 and
identify clusters as subsets of V whose indicator vectors are eigenvectors that span
the eigenspace of 0.

If this is not the case, we could use k eigenvectors that correspond to the k small-
est eigenvalues, represent the objects to be clustered as k-tuples of components of
these vectors located in the same position and apply a clustering algorithm to these
representatives.

Next, we introduce two variants of the Laplacian matrix of a graph.

Definition 16.40 The symmetric Laplacian or the normalized Laplacian of a graph
G = (V, E, w) is the matrix LG,sym given by

LG,sym = D
− 1

2
G LGD

− 1
2

G = I − D
− 1

2
G WGD

− 1
2

G .

The random walk Laplacian of G is the matrix LG,rw defined as

LG,rw = D−1
G LG = I − D−1

G WG.

Theorem 16.41 The pair (σ, t) is an eigenpair of the symmetric Laplacian LG,sym,

if and only if (σ, D− 1
2 t) is an eigenpair of the random walk Laplacian LG,rw.

Proof Let (σ, t) be an eigenpair of the symmetric Laplacian LG,sym. We have

LG,symt = σt, or D
− 1

2
G LGD

− 1
2

G t = σt, so LGD
− 1

2
G = σD

1
2
Gt. By multiplying this
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equality to the left by D−1 we obtain finally D−1LG,sym

⎨
D

1
2
Gt
⎩

= σ

⎨
D

1
2
Gt
⎩

, or

LG,rw

⎨
D

1
2
Gt
⎩

= σ

⎨
D

1
2
Gt
⎩

, which proves that

⎨
σ, D

1
2
Gt
⎩

is an eigenpair of LG,rw.

The reverse implication follows by observing that all implications mentioned in
the previous argument hold in reverse.

An analogue of Lemma 16.8 can be formulated for the symmetric Laplacian:

Lemma 16.42 Let G = (V, E, w) be a weighted graph, where V = {v1, . . . , vm}.
For x ∈ R

m we have x⊆LG,symx = 1
2

∑m
i=1
∑m

j=1 wij

⎨
xi→
d(vi )

− xj→
d(vj)

⎩2

.

Proof By the definition of the symmetric Laplacian we have x⊆LG,symx = x⊆D− 1
2

G LG

D
− 1

2
G x. Note that

D
− 1

2
G x = diag

⎨
1→

d(v1)
, . . . ,

1→
d(vn)

⎩
x =




x1→
d(v1)
...

xn→
d(vn)


⎛⎛⎧ .

An application of Lemma 16.8 yields the desired conclusion.

Theorem 16.43 The symmetric Laplacian of a weighted graph G = (V, E, w) is
a symmetric positive semi-definite matrix that has the eigenvalues 0 = σ1 � σ2 �
· · · � σn. Furthermore, (0, D

1
2 1n) is an eigenpair of LG,sym.

Proof The symmetry of LG,sym is immediate. Its positive semi-definiteness of fol-
lows from Lemma 16.42. Theorem 16.9 implies that all eigenvalues of LG,sym are
real and non-negative. Finally, we have

LG,sym D
1
2 1n = D

− 1
2

G LG,sym D
− 1

2
G D

1
2 1n = 0n .

16.6.1 Spectral Clustering by Cut Ratio

Let G = (V, E, s) be a similarity graph and let ν = {C1, . . . , n} be a clustering. For
each cluster Cj define the vector qj ∈ R

n of the cluster Cj as

(qj)i =
⎫ 1→|Cj | if vi ∈ Cj

0 otherwise,

where 1 � i � m and 1 � j � k.
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Let Q = (q1 · · · qk). The matrix Q has an orthonormal set of columns. Indeed,
since the sets C1, . . . , Ck are pairwise disjoint, if follows that the vectors q1, . . . , qk
are pairwise orthogonal. Furthermore,

∧ qj ∧2
2=

m∑
i=1

(qj)
2
i = |Cj | · 1

|Cj | = 1,

for 1 � j � k, which allows us to conclude that the set of columns Q is orthonormal.
The notion of cut ratio of a partition was introduced in [7].

Definition 16.44 Let ν = {C1, . . . , Ck} be a partition of a set V = {v1, . . . , vm}.
The cut ratio of ν is the number cutratio(ν) given by:

cutratio(ν) =
k∑

j=1

cut (Cj, C̄j)

|Cj | .

By Lemma 16.8 we have

q⊆
jLGqj = 1

2

m∑
i=1

m∑
δ=1

siδ(qij − qδj)
2

=
∑

vi ∈Cj

∑
vδ ∨∈Cj

sij(qij − qδj)
2 +
∑

vi ∨∈Cj

∑
vδ∈Cj

sij(qij − qδj)
2

= 2
∑

vi ∈Cj

∑
vδ ∨∈Cj

sij(qij − qδj)
2.

Since in each of the terms of the sum we have qij = 1→|Cj | and qδj = 0, it follows

that
sij(qij − qδj)

2 = sij

|Cj | .

Therefore, q⊆
jLGqj = 2

∑
vi ∈Cj

∑
vδ ∨∈Cj

sij
|Cj | = 2 cut (Cj ,C̄j )

|Cj | . Also, we have

Q⊆LGQ = (q⊆
1 · · · q⊆

k)LG




q1
...

qk


⎛⎧ ,

which implies q⊆
jLGqj = (Q⊆LGQ)jj . Now we can write

k∑
j=1

q⊆
jLGqj =

k∑
j=1

(Q⊆LGQ)jj
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= trace(Q⊆LGQ) = 2
k∑

j=1

cut (Cj, C̄j)

|Cj | = 2cutratio(ν).

To minimize cutratio(ν) is tantamount to seeking Q such that trace(Q⊆LGQ) is
minimized subjected to the constraint Q⊆Q = Ik . A practical solution this optimiza-
tion problem is obtained by relaxation, namely by allowing Q to range over Rm×k .
By Ky Fan’s Theorem (Theorem 7.60), the minimum is obtained by choosing Q such
that its columns consist of the eigenvectors u1, . . . , uk of LG that correspond to the
k smallest eigenvalues of the Laplacian LG.

If Q is redefined now as Q = (u1 · · · uk), then the m points to be clustered
correspond now to the rows y1, . . . , ym of Q.

Example 16.45 Let G0.2 = ({}, E, s) be the similarity graph examined in Exam-
ple 16.9. Recall that its Laplacian spectrum consists of 0 (with algm(0, L0.2) = 2),
0.41, 1.56, 2.39, 3.00, 3 (with algm(3, L0.2) = 3), 4, 4.10, 4.77, 5 (with
algm(5, L0.2) = 2) and 5.73. The three eigenvectors that correspond to the smallest
eigenvalues, 0 and 0.41 are:

0.33 0.41
0.33 0.37
0.33 0.28
0.33 0.18
0.33 0.13

0 0
0.33 0.12

0 0
0 0
0 0

0.33 0.38
0.33 0.38
0.33 0.48

0 0

Note that the 6th, 8th, 9th, 10th and 14th objects are mapped into the same point in
R

2, so they constitute a cluster; the remaining objects form another cluster, which is
a reasonable good approximation of the groupings that occur in Fig. 10.6a.

16.6.2 Spectral Clustering by Normalized Cuts

Graph partitioning can be used for identifying groups of vertices such that the sim-
ilarity between vertices that belong to different groups is low by using a divisive
approach. The set of vertices is partitioned into two sets, such that the similarity
between the objects of these sets is minimal. This similarity is evaluated using the
sum of the weights that join objects that belong to the two subsets identified by the
partition algorithm. The algorithm is applied recursively to the subgraphs that result

http://dx.doi.org/10.1007/978-1-4471-6407-4_10
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from the partition of the initial graph, until a satisfactory clustering of the vertices is
achieved.

Let G = (V, E, w) be a weighted graph and let S, T be two subsets of V . Define
the association between S and T as the number

assoc(S, T ) =
∑

{w(u, v) | u ∈ S, v ∈ T }.

In particular, if β = {S, T } is a bipartition of V , to assoc(S, T ) is the size of the
cut β .

Let U ∅ V , where V = {v1, . . . , vm}, let cU ∈ {0, 1}m be the characteristic
vector of U defined by

(cU )i =
⎫

1 if vi ∈ U

0 otherwise,

for 1 � i � m.
The volume of the set U is the number

vol(U ) =
∑
u∈U

d(u).

It is easy to see that vol(U ) = c⊆
U DGcU , where DG is the diagonal matrix D =

diag(d(v1), . . . , d(vm)). Also, note that

c⊆
S DGcT = vol(S ∩ T ) (16.10)

for any set of vertices S, T of G. Therefore, for a bipartition β of V we have
c⊆

S DGcT = 0.
In [8], it is shown that a relaxation of the minimum cut problem in graphs can be

solved efficiently.
If S, T are two sets of vertices of the weighted graph G = (V, E, w), then

c⊆
S AGcT =

∑
{w(u, v) | u ∈ S, v ∈ T } = assoc(S, T ). (16.11)

This implies

c⊆
U LGcU = c⊆

U (DG − AG)cU

=
∑

{d(v) | v ∈ U } −
∑

{w(u, v) | u ∈ U, v ∈ U }.

The normalized cut of a bipartition β = {S, T } of G is the number

ncut(β) = cut (S, T )

assoc(S, V )
+ cut (S, T )

assoc(T, V )
.
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The normalized association of β is

nassoc(β) = assoc(S, S)

assoc(S, V )
+ assoc(T, T )

assoc(T, V )
.

It is immediate that ncut(β) + nassoc(β) = 2. Thus, seeking a bipartition β

minimizing the normalized cut is equivalent to seeking a partition that maximizes
the normalized association of β .

For a weighted graph G = (V, E, w) and a bipartition β = {S, T } of V =
{v1, . . . , vm} define x ∈ {−1, 1}m as

xi =
⎫

1 if vi ∈ S,

−1 if vi ∈ T .

Observe that

cS = 1

2
(1m + x) and cT = 1

2
(1m − x). (16.12)

We have

ncut(β) = cut (S, T )

assoc(S, V )
+ cut (S, T )

assoc(T, V )
= c⊆

S LGcS

k1⊆
m DG1m

+ c⊆
T LGcT

(1 − k)1⊆
m DG1

,

where k =
∑

v∈S d(v)∑
v∈V d(v)

. Taking into account Equalities (16.12) we obtain:

4 · ncut(β) = (1m + x)⊆LG(1m + x)

k1⊆
m DG1m

+ (1m − x)⊆LG(1m − x)

(1 − k)1⊆
m DG1

.

Since LG1m = 0m and 1⊆
m LG = 0⊆

m , the last equality can be written as

4 · ncut(β) = x⊆LGx
k1⊆

m DG1m
+ x⊆LGx

(1 − k)1⊆
m DG1m

= 1

k(1 − k)
· x⊆LGx

1⊆
m DG1m

= vol(V )

vol(S)vol(T )
x⊆LGx.

Define the vector y ∈ R
m as

y = 2

⎨
cS − k

1 − k
cT

⎩
= 1 − 2k

1 − k
1m + 1

1 − k
x.

The value of a component yi of y is either 2, when xi = 1, or is − 2k
1−k , when xi = −1.

Also, y⊆DG1m = 0, when {S, T } is a partition of V .
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We have

y⊆Dy = 4 ·
⎨

c⊆
S − k

1 − k
c⊆

T

⎩
DG

⎨
cS − k

1 − k
cT

⎩

= 4 ·
⎨

c⊆
S DGcS + k2

(1 − k)2 c⊆
T DGcT

⎩
(because S ∩ T = ⇒)

= 4 ·
⎨

vol(S) + k2

(1 − k)2 vol(T )

⎩
= 4 ·
⎨

vol(S) + vol(S)2

vol(T )

⎩

= 4
vol(S)vol(V )

vol(T )
,

and

y⊆LGy =
⎨

1 − 2k

1 − k
1⊆

m + 1

1 − k
x⊆
⎩

LG

⎨
1 − 2k

1 − k
1m + 1

1 − k
x
⎩

= 1

(1 − k)2 x⊆LGx =
⎨

vol(V )

vol(T )

⎩2

x⊆LGx.

Thus, we can write

y⊆LGy
y⊆ DGy

=
⎬

vol(V )
vol(T )

⎭2
x⊆LGx

4 vol(S)vol(V )
vol(T )

= 1

4

vol(V )

vol(S)vol(T )
x⊆LGx = ncut(β).

If we define z = D
1
2
Gy, the normalized cut can be written as a Rayleigh quotient

ncut(β) = z⊆ D− 1
2

⊆

G LGD
− 1

2
G z

z⊆z
= z⊆LGz

z⊆z
.

We saw that the components of y range over the set
⎜
2,− 2k

1−k

}
. If we relax this

restriction and we allow these components to range over R, then this relaxation will
involve also the vector z. Thus, the relaxation of this problem amounts to finding z

such that the Rayleigh quotient z⊆LGz
z⊆z is minimal.

Normalized cuts of partitions offer another approach to spectral clustering. As
before, let ν = {C1, . . . , Ck} be a partition of a set V = {v1, . . . , vn} of n objects into
k clusters for which we have a similarity matrix S ∈ R

n×n . Define the characteristic
vector hj of Cj as

(hj)i =
⎫ 1→

vol(Cj)
if vi ∈ Cj,

0 otherwise,

for 1 � j � k and let H = (h1 · · · hk). We have
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h⊆
j DGhj =

n∑
i=1

n∑
δ=1

(hj)i diδ(hj)δ.

The non-zero terms in this sum are such that i = δ and vi ∈ Cj . Thus, h⊆
j DGhj =

1
vol(Cj)

∑
v∈Cj

d(v) = 1. On the other hand we have h⊆
j DGhm = 0 if j ∨= m, so

H ⊆DGH = Ik . A similar computation yields

h⊆
j AGhj =

n∑
i=1

n∑
δ=1

(hj)i siδ(hj)δ = 1

vol(Cj)

∑
vi ,vδ∈Cj

s(vi , vδ).

These computations allow us to write

h⊆
jLGhj = h⊆

j(DG − AG)hj = Ik − h⊆
j AGhj = 1 − 1

vol(Cj)

∑
vi ,vδ∈Cj

s(vi , vδ)

=
vol(Cj) −∑vi ,vδ∈Cj

s(vi , vj)

vol(Cj)
= cut (Cj, C̄j)

vol(Cj)
.

Therefore,

trace(H ⊆LGH) =
k∑

j=1

h⊆
jLGhj =

k∑
j=1

cut (Cj, C̄j)

vol(Cj)
= ncut(ν).

To minimize the normalized cut we need to minimize trace(H ⊆LGH) subjected

to the constraint H ⊆ DH = Ik . Let M = D
1
2 H . Then, in terms of the matrix M , the

optimization problem amounts to minimizing

trace(M ⊆D− 1
2 LGD− 1

2 M) = trace(M ⊆LG,sym M),

subjected to the restriction M ⊆M = Ik . By allowing M to range over Rn×k , the opti-
mum can be achieved by M = (m1, . . . , mk), where m1, . . . , mk are the first k eigen-

vectors of the symmetric Laplacian LG,sym. By Theorem 16.41 D− 1
2 m1, . . . , D− 1

2 mk

are the first k eigenvectors of the of the random walk Laplacian and these are exactly
the columns of the matrix H . So, the optimal value of H is obtained by choosing
its columns to be equal to the eigenvectors that correspond to the first k eigenval-
ues of LG,rw.

Observe also, that an eigenvector of LG,rw is also an eigenvector of the matrix pen-
cil (LG, DG) andσ is an eigenvalue of LG,rw if and only if it belongs to spec(LG, DG).

Using the random walk Laplacian, Shi and Malik [8] gave the spectral clustering
Algorithm 16.6.1.
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Algorithm 16.6.1: Random Walk Lagrangean Spectral Clustering
Data: Similarity matrix S ∈ R

n×n , number k of clusters
Result: A clustering ν = {C1, . . . , Ck}
let W be its weighted adjacency matrix;1
compute the random walk Laplacian LG,rw;2
compute the first k eigenvectors v1, . . . , vk of LG,rw;3

let V = (v1, . . . , vk) ∈ R
n×k ;4

define y1, . . . , yn ∈ R
k such that V ⊆ = (y1 · · · yn);5

cluster {y1, . . . , yn} ∅ R
k using the k-means algorithm into ν;6

An asymmetric variant of Shi and Malik technique is proposed in [9] in order to
cluster the most salient points of an image. The set of these points is defined as the
foreground set; the remaining points form the background set.

The starting point, as before, is a similarity matrix S defined on a set of objects V =
{v1, . . . , vm}. By Eckhart-Young Theorem (Theorem 7.79), S can be approximated
by the rank-1 matrix P = ∂1uv⊆ such that u and v are unit vectors and |||A−P|||2 = ∂2.
In addition, since S is symmetric, we have v = u⊆, so the approximating matrix is P =
∂1uu⊆. Let p be defined by p = →

∂1u, which allows us to write the approximating
matrix as P = pp⊆. The foreground set F consists of those objects whose indices
belong to the set {i | pi > 0}; the remaining objects constitute the set of background
objects B and they are indexed by the set {1, . . . , m} − {i | pi > 0}.

The set of foreground objects F can be obtained by minimizing an asymmetric
form of Shi and Malik’s criterion, namely

N (F) = assoc(F, B)

assoc(F, F)
.

Let cF be the characteristic of the set F . Then,

N (F) =
∑

i∈F,j∈B sij∑
i∈F,j∈F sij

= c⊆
F S(1m − cF )

c⊆
F ScF

= c⊆
F S1

c⊆
F ScF

− 1.

Thus, mimimizing N (F) is equivalent to minimizing N (F) + 1 = c⊆
F S1

c⊆
F ScF

.

Let S = U DU ⊆ be the singular value decomposition of the symmetric matrix S

and let z = D
1
2 U ⊆cF . Now we have

N (F) + 1 = c⊆
FU DU ⊆1

c⊆
FU DU ⊆cF

.

Define z = D
1
2 U ⊆cF . Using this notation N (F) can be written as
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N (F) + 1 = z⊆ D 1
2 U ⊆1

z⊆z
= z⊆u

z⊆z
,

where u = D
1
2 U ⊆1.

Since cF is a characteristic vector, we seek a vector with 0/1 components that

minimizes
c⊆

F S1
c⊆

F ScF
and it is not clear how to find such a vector. Instead, the problem is

relaxed and we seek a unit vector z that minimizes z⊆u (since z⊆z = 1). This is done by
finding the component uk of u with the largest absolute value and choosing z either

as ek or −ek (with an opposite sign of that of uk) and, thus obtaining cF = D− 1
2 Uz.

As the result, the following algorithm for computing the foreground set is obtained:

Algorithm 16.6.2: Perona-Freeman algorithm for the foreground set
Data: Similarity matrix S ∈ R

n×n

Result: Foreground set of objects
let S = U DU ⊆ be the singular decomposition of S ;1

compute the vector u = D
1
2 U ⊆1 ;2

determine the index k of the maximum entry of u;3
define x as the kth column of U ;4
obtain F as the set of objects that correspond to non-zero entries of x;5

Exercises and Supplements

1. Apply hierarchical clustering to the data set given in Example 16.3 using the
average-link method, the centroid method, and the Ward method. Compare the
shapes of the clusters that are formed during the aggregation process. Draw the
dendrograms of the clusterings.

2. Using a random number generator, produce h sets of points in R
n normally

distributed around h given points in R
n . Use k-means to cluster these points with

several values for k and compare the quality of the resulting clusterings.
3. A variant of the k-means clustering introduced in [10] is the bisecting k-means

algorithm described below.
The cluster C that is bisected may be the largest cluster or the cluster having the
largest sse.
Evaluate the time performance of bisecting k-means compared with the stan-
dard k-means and with some variant of a hierarchical clustering.

4. One of the issues that the k-means algorithm must confront is that the number
of clusters k must be provided as an input parameter. Using clustering validity,
design an algorithm that identifies local maxima of validity (as a function of k)
to provide a basis for a good choice of k. See [11] for a solution that applies to
image segmentation.
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Algorithm 16.6.3: Bisecting k-means algorithm
Data: S the set of objects to be clustered, k the desired number of clusters, and nt, the

number of trial bisections
Result: A k-clustering of S
set_of_clusters = {S};1
while |set_of_clusters| < k do2

select a cluster C from the set_of_clusters;3
k = 0;4
for i = 1 to nt do5

let C0i , C1i be the two clusters obtained from C by bisecting C using standard6
k-means (k = 2);
if (i = 1) then7

s = sse({C0i , C1i })8

end9
if (sse({C0i , C1i }) � s) then10

k = i ;11
s = sse({C0i , C1i })12

end13

end14
add C0k , C1k to set_of_clusters;15

end16

5. Let S = {x1, . . . , xm} ∅ R
n be a set of m objects and let C1, . . . , Ck be the set of

clusters computed by the k-means algorithm at any step. Prove that the convex
closure of each cluster Ci , Kconv(Ci ) is included in a polytope Pi that contains
ci for 1 � i � k.

Solution: Let c1, . . . , ck be the centroids of the partition {C1, . . . , Ck} and let
mij = 1

2 (ci +cj) be the midpoint of the segment ci cj . Define the hyperplane Hij

as the set of points x such that (ci − cj)⊆(x − mij) = 0, that is, the perpendicular
bisector of the segment ci cj . Equivalently,

Hij = {x ∈ R
m | (ci − cj)⊆x = 1

2
(ci − cj)⊆(ci + cj)}.

The halfspaces determined by Hij are described by the inequalities:

H+
ij : (ci − cj)⊆x � 1

2

⎬
∧ ci ∧2

2 − ∧ cj ∧2
2

⎭
H−

ij : (ci − cj)⊆x � 1

2

⎬
∧ ci ∧2

2 − ∧ cj ∧2
2

⎭
.

It is easy to see that ci ∈ H+
ij and cj ∈ H−

ij . Moreover, if d2(ci , x) < d2(cj, x),

then x ∈ H+
ij , and if d2(ci , x) > d2(cj, x), then x ∈ H−

ij . Indeed, suppose that

d2(ci , x) < d2(cj, x), which amounts to ∧ ci − x ∧2
2<∧ cj − x ∧2

2. This is
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equivalent to
(ci − x)⊆(ci − x) < (cj − x)⊆(cj − x).

The last inequality is equivalent to

∧ ci ∧2
2 −2c⊆

i x <∧ cj ∧2
2 −2c⊆

jx,

which implies that x ∈ H+
ij . In other words, x is located in the same half-space

as the closest centroid of the set {ci , cj}. Note also that if d2(ci , x) = d2(cj, x),
then x is located in H+

ij ∩ H−
ij = Hij , that is, on the hyperplane shared by Pi

and Pj .

Let Pi be the closed polytope defined by

Pi =
⋂

{H+
ij | j ∈ {1, . . . , k} − {i}}

Objects that are closer to ci than to any other centroid cj are located in the closed
polytope Pi . Thus, Ci ∅ Pi and this implies Kconv(Ci ) ∅ Pi .

6. Let B ∅ R
n be a finite subset of R

n . The clustering feature of B is a triple
(p, s, q), where p = |B|, s =∑{x | x ∈ R

n}, and

q =
⎬∑

{x2
1 | x ∈ B}, . . . ,

∑
{x2

n | x ∈ B}
⎭

.

The center of B is x̄ = 1
p s, the average distance between the center and the

members of B is

RB =
√

(x − x̄)2

p

and the average distance between the members of the clusters is

DB =
√∑{(u − v)2 | u, v ∈ B}

p(p − 1)
.

Prove that x̄, RB , and DB can be computed starting from the cluster feature.
Let G = (V, E) be a finite graph. A graph clustering [12] is a partition
ν = {C1, . . . , C p} of the set V ; the clusters are the subgraphs GCi = (Ci , ECi )

induced by the blocks of ν . The intracluster edges are the edges in Eν =⋃p
i=1 ECi , while the intercluster edges are the edges in E − Eν . The set of

edges between nodes in C and C ⊆ is denoted by E(C, C ⊆).
7. The quality of a graph clustering ν can be measured by its modularity index q(ν)

given by
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q(ν) =
∑
C∈ν

⎫
|Eν |
|E | −

⎨ |E(C)| +∑C ⊆∈ν |E(C, C ⊆)|
2|E |

⎩2
⎣

.

Prove that q(ν) = ∑C∈ν

⎪
|Eν |
|E | −

⎬∑
v∈C d(v)

2|E |
⎭2}

What does it take for a clus-

tering to achieve a high value of the modularity index?
8. Prove that q(ν) ∈ [−0.5, 1] for every clustering of a graph G and the minimum

is achieved when all edges are intercluster edges.
9. Prove that there is always a clustering of a graph G that has maximum modularity

in which each cluster consists of a connected subgraph.
10. Let G = (V, E) be a bipartite graph with the partition β = {V1, V2} (see

Definition 10.89). Prove that q(ν) = −0.5.
In general, a clustering algorithm starts with a definite dissimilarity on S and
generates a partition of S whose blocks are regarded as clusters. If D⊆

S is the set
of definite dissimilarities S, a clustering function on S is a mapping f : D⊆

S −∈
PART(S).
Let ν be a partition of S and let d, d ⊆ ∈ D⊆

S . The definite dissimilarity d ⊆ is a
ν-transformation of d if the following conditions are satisfied:

(i) if x ≡ν y, then d ⊆(x, y) � d(x, y);
(ii) if x ∨≡ν y, then d ⊆(x, y) > d(x, y).

In other words, d ⊆ is a ν-transformation of d if for two objects that belong to
the same ν-cluster d ⊆(x, y) is smaller than d(x, y), while for two objects that
belong to two distinct clusters d ⊆(x, y) is larger than d(x, y).
The following properties are desirable for a clustering function f : D⊆

S −∈
PART(S). The function f is:

(i) scale-invariant if, for every d ∈ D⊆
S and every φ > 0, we have f (d) =

f (φd);
(ii) rich, if f is surjective;

(iii) consistent if, for every d, d ⊆ ∈ D⊆
S and ν ∈ PART(S) such that f (d) = ν

and d ⊆ is a ν-transformation of d , we have f (d ⊆) = ν .

A dissimilarity d ∈ D⊆
S is (a, b)-conformant to a clustering ν if x ≡ν y implies

d(x, y) � a and x ∨≡ν y implies d(x, y) � b. A dissimilarity is conformant to
a clustering ν if it is (a, b)-conformant to ν for some pair of numbers (a, b).
Let g : R�0 −∈ R�0 be a continuous, nondecreasing and unbounded function
and let S ∅ R

n be a finite subset of R
n . For k ∈ N and k � 2, define a gk-

clustering function as follows.
Begin by selecting a set T of k points from S such that the function ξ

g
d(T ) =∑

x∈S g(d(x, T )) is minimized. Here d(x, T ) = min{d(x, t)|t ∈ T }. Then,
define a partition of S into k clusters by assigning each point to the point in T
that is the closest and breaking the ties using a fixed (but otherwise arbitrary)
order on the set of points. The clustering function defined by gd , denoted by f g ,
maps d to this partition.
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The k-median clustering function, is obtained by choosing g(x) = x for x ∈ R�0;
the k-means clustering function is obtained by taking g(x) = x2 for x ∈ R�0.

11. Prove that for k � 2 and for sufficiently large sets of objects, the clustering
function gk introduced above is not consistent.
Solution: Suppose that ν = {C1, C2, . . . , Ck} is a partition of S and d is a
definite dissimilarity on S such that d(x, y) = ri if x ∨= y and {x, y} ∅ Ci for
some 1 � i � k and d(x, y) = r + a if x and y belong to two distinct blocks of
ν , where r = max{ri |1 � i � k} and a > 0.
Suppose that T is a set of k members of S. Then, the value of g(d(x, T )) is g(r)

if the closest member of T is in the same block as x and is g(r + a) otherwise.
This means that the smallest value of ξ

g
d(T ) = ∑x∈Ci

g(d(x, T )) is obtained
when each block Ci contains a member ti of T for 1 � i � k and the actual
value is ξ

g
d(T ) =∑k

i=1(|Ci | − 1)r2 = (|S| − k)r2.
Consider now a partition ν ⊆ = {C ⊆

1, C ⊆⊆
1 , C2, . . . , Ck}, where C1 = C ⊆

1 ∪ C ⊆⊆
1

so ν ⊆ < ν . Choose r ⊆ to be a positive number such that r ⊆ < r and define
the dissimilarity d ⊆ on S such that d ⊆(x, y) = r ⊆ if x ∨= y and x ≡ν ⊆ y and
d ⊆(x, y) = d(x, y) otherwise. Clearly, d ⊆ is a ν-transformation of d. The minimal
value for ξ

g
d(T ⊆) is achieved when T ⊆ consists of k +1 points, one in each block

of ν ⊆; as a result, the value of the clustering function for d ⊆ is ν ⊆ ∨= ν , which
shows that no clustering function obtained by this technique is consistent.

12. Prove that if d ⊆ is a ν-transformation of d , and d is (a, b)-conformant to ν , then
d ⊆ is also (a, b)-conformant to ν .

13. Let ν ∈ PART(S) be a partition on S and let f be a clustering function on S. A
pair of positive numbers (a, b) is ν-forcing with respect to f if, for every d ∈ D⊆

S
that is (a, b)-conformant to ν , we have f (d) = ν .
Let f be a consistent clustering function on a set S. Prove that for any partition
ν ∈ Ran( f ) there exist a, b ∈ R>0 such that the pair (a, b) is ν-forcing.

14. Prove that if f is a scale-invariant and consistent clustering function on a set S,
then its range is an antichain in poset (PART(S),�).

Solution: This statement is equivalent to saying that, for any scale-invariant and
consistent clustering function, no two distinct partitions of S that are values of
f are comparable.
Suppose that there are two clusterings, ν0 and ν1, in the range of a scale-invariant
and consistent clustering such that ν0 < ν1.
Let (ai , bi ) be a νi -forcing pair for i = 0, 1, where a0 < b0 and a1 < b1. Let a2
be a number such that a2 � a1 and choose ε such that

0 < ε <
a0a2

b0
.

By Supplement 25 of Chap. 14 construct a distance d such that

(a) for any points x, y that belong to the same block of ν0, d(x, y) � ε;
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(b) for points that belong to the same cluster of ν1 but not to the same cluster
of ν0, a2 � d(x, y) � a1; and

(c) for points that do not belong to the same cluster of ν1, d(x, y) � b1.
The distance d is (a1, b1)-conformant to ν1, and so we have f (d) = ν1. Take φ =
b0
a2

, and define d ⊆ = φd . Since f is scale-invariant, we have f (d ⊆) = f (d) = ν1.
Note that for points x, y that belong to the same cluster of ν0, we have

d ⊆(x, y) � εb0

a2
< a0,

while for points x, y that do not belong to the same cluster of ν0 we have

d ⊆(x, y) � a2b0

a2
� b0.

Thus, d ⊆ is (a0, b0)-conformant to ν0, and so we must have f (d ⊆) = ν0. Since
ν0 ∨= ν1, this is a contradiction.

15. Prove that if |S| � 2, there is no clustering function that is scale-invariant, rich
and consistent. (This fact is known as the Kleinberg’s Impossibility Theorem.)

Solution: If S contains at least two elements, then the poset (PART(S),�)

is not an antichain. Therefore, this statement is a direct consequence of Supple-
ment 14.

16. Prove that for every antichain A of the poset (PART(S),�), there exists a clus-
tering function f that is scale-invariant and consistent such that Ran( f ) = A.

Solution: Suppose that A contains more than one partition. We define f (d)

as the first partition β ∈ A (in some arbitrary but fixed order) that minimizes the
quantity

ηd(β) =
∑

x≡β y

d(x, y).

Note that ηφd = φηd . Therefore, f is scale-invariant.
We need to prove that every partition of A is in the range of f .
For a partitionζ ∈ A, define d such that d(x, y) < 1

|S|3 if x ≡ζ y and d(x, y) � 1
otherwise. Observe that ηd(ζ) < 1. Suppose that ηd(ρ) < 1. The definition of
d means that

ηd(ρ) =
∑
x≡ρ y

d(x, y) < 1,

so for all pairs (x, y) ∈≡ρ we have d(x, y) < 1
|S|3 , which means that x ≡ζ y.

Therefore, we have β < ζ. Since A is an antichain, it follows that ζ must
minimize ηd over all partitions of A and, consequently, f (d) = ζ.
To verify the consistency of f , suppose that f (d) = β , and let d ⊆ be a β -
transformation of d . For ∂ ∈ PART(S), define χ(∂ ) as ηd(∂ ) − ηd ⊆(∂ ). For
∂ ∈ A, we have
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χ(∂ ) =
∑

x≡∂ y

(d(x, y) − d ⊆(x, y))

�
∑

x≡∂ y
andx≡β y

(d(x, y) − d ⊆(x, y))

(only terms corresponding to pairs in the same cluster are nonnegative)

� χ(β)

(every term corresponding to a pair in the same cluster is nonnegative).

Consequently,
ηd(∂ ) − ηd ⊆(∂ ) � ηd(β) − ηd ⊆(β)

or ηd(∂ ) − ηd(β) � ηd ⊆(∂ ) − ηd ⊆(β). Thus, if β minimizes ηd(β), then
ηd(∂ ) − ηd(β) � 0 for every ∂ ∈ A and therefore ηd ⊆(∂ ) − ηd ⊆(β) � 0,
which means that β also minimizes ηd ⊆(β). This implies f (d ⊆) = β , which
shows that f is consistent.

17. Let O = {u1, . . . , un} be a collection of objects, d : O × O −∈ R�0 be a
dissimilarity on O , and let f : O −∈ {C1, . . . , Ck} be a clustering function.
Define the functions a, b : O −∈ R�0 as

a(ui ) =
∑{d(ui , u) | f (u) = f (ui ) and u ∨= ui }

| f (ui )| ,

b(ui ) = min{d(ui , C) | C ∨= f (ui )},
for ui ∈ O . The silhouette of the object ui for which | f (ui )| � 2 is the number
sil(ui ) given by

sil(ui ) =




1 − a(ui )
b(ui )

if a(ui ) < b(ui )

0 if a(ui ) = b(ui )
b(ui )
a(ui )

− 1 if a(ui ) > b(ui ).

(a) Prove that −1 � sil(ui ) � 1 for 1 � i � m.
(b) Discuss the situations when sil(ui ) is close to 1 or to −1.

Let (S, d) be a finite metric space and let G0, . . . ,Gk be a sequence of graphs,
where k = diamS,d , where Gp = (S, E p) is defined by its set of edges

E p = {(x, y) ∈ S × S | d(x, y) � p}
for 0 � p � k. The graph G0 is (S,⇒), while Gk is a complete graph on the set
S. The number of connected components of the threshold graph Gi is denoted
by ci for 1 � i � k.

18. Consider Algorithm 16.6.4
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Algorithm 16.6.4: Graph-based single-link clustering
Data: a finite metric space (S, d) of diameter k, where |S| = n
Result: a hierarchical clustering of S
initialize the threshold graph G0;1
c = n; // current number of connected components;2
p = 1;3
while (cp > 1) do4

if (cp < c) then5
output the connected components Gp6

end7
p++;8

end9

Prove that two connected components C, C ⊆ of Gp−1 are fused into a connected
component of Gp if there exists one edge in Gp that joins these components.

19. Let (S, d) be a finite metric space. Construct a chain of partitions β1, β2, . . . and
a chain of dissimilarities d1, d2, . . ., where di is defined on the set of blocks of
βi as follows. Define β1 = φS . The partition βi+1 is obtained from βi by fusing
the blocks B, C of β such that di (B, C) has the smallest value, that is,

βi+1 = (βi − {B, C}) ∪ {B ∪ C}.

(a) Prove that the sequences of partitions β1, β2, . . . and a chain of dissimilari-
ties d1, d2, . . . coincides with the sequence of partitions β1, β2, . . . and the
sequence of dissimilarities d1, d2, . . . constructed in the single-link cluster-
ing algorithm.

(b) Prove that the value e(x, y) of the subdominant ultrametric that corresponds
to d equals the least height hd(W ) of a cluster W such that {x, y} ∅ W .

20. Let G = (V, E) be a graph with |V | = m. Prove that the adjacency and the
Laplacian matrices of the graph complement G are AG = Jm,m − Im − AG and
LG = m Im − Jm,m − LG, respectively.

21. Let G = (V, E, w) be a weighted graph, where V = {v1, . . . , vm}. Prove that if
σ is an eigenvalue of LG,sym, then 0 � σ � 2.

Solution: Since σ � sup{x⊆LG,symx | ∧ x ∧= 1} it follows that

σ � sup
∧x∧=1

1

2

m∑
i=1

m∑
j=1

wij

⎥
xi→
d(vi )

− xj√
d(vj)

⎦2

(by Lemma 16.42)

� sup
∧x∧=1

1

2

m∑
i=1

m∑
j=1

2wij

⎥
x2

i

d(vi )
+ x2

j

d(vj)

⎦

� sup
∧x∧=1

2 ∧ x ∧2= 2.
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22. If G1 = (V1, E1) and G2 = (V2, E2) are two graphs such that V1 ∅ V2 and
E1 ∅ E2. Prove that ι(G1) � ι(G2).

Solution: By Corollary 16.24 we have φ(G2) � φ(G1). Therefore, ι(G1) =
|V1| − φ(G1) � |V2| − φ(G2) = ι(G2).
A set of vertices U in a graph G = (V, E) is independent if no two vertices in
U are joined by an edge in E .

23. LetG = (V, E) be a graph with |V | = m. Prove that ifG contains an independent
set of vertices U , then φ(G) � m − |U |.
Solution: Observe that G contains a complete subgraph Kp, where p = |U |.
Therefore, by Supplement 22, p � ι(G) = m − φ(G), which produces the
desired inequality.

24. Prove that if the Laplacian spectrum of a threshold graph G = (V, E) is
σ1 � σ2 � · · · � σn = 0, then σj = |{v ∈ V | d(v) � j}|.

Hint: The argument is by induction on the length of the sequence of operations
used to construct the graph.

25. Let G1 = (V, E1) and G2 = (V, E2) be two graphs having the same set of
vertices V and let G1 ∪G2 = (V, E1 ∪ E2), G1 ∩G2 = (V, E1 ∩ E2). Prove that:

(a) dG1(v) + dG2(v) = dG1∪G2(v) + dG1∩G2(v) for every v ∈ V .
(b) LG1 + LG2 = LG1∪G2 + LG1∩G2 .

26. Let G = (V, E) be a graph. Prove that ι(G) � |||LG|||1 � 2 maxv∈V d(v).

Solution: The first inequality is an immediate consequence of Theorem 7.65.
Since |||LG|||1 = maxj

∑m
i=1(LG)ij , where |V | = m, the second inequality

follows immediately from the definition of the Laplacian matrix.
27. Let ν = {V1, . . . , Vk} be a partition of the set of vertices of a graph G = (V, E)

such that |Vp| = m p for 1 � p � k and
∑k

p=1 m p = m = |V |. Furthermore,
assume that the vertices in V1, . . . , Vk are numbered consecutively. Let B ∈
R

m×m be a block-diagonal matrix having Jm1,m1 , . . . , Jmk ,mk as its diagonal
blocks. Prove that trace(LGB) = 2|E ⊆|, where E ⊆ be the set of edges in E
having their endpoints in two distinct blocks of ν .

Solution: Note that the element δij of the Laplacian matrix LG can be written
as δij = diχij − aij , where

χij =
⎫

1 if i = j,

0 otherwise,

di = d(vi ) and aij is the (i, j)-element of the adjacency matrix AG.
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For trace(LGB) we can write:

trace(LGB) =
m∑

p=1

(LGB)pp =
m∑

p=1

m∑
i=1

δpi bip =
m∑

p=1

m∑
i=1

(diχpi − api )bip

=
m∑

p=1

m∑
i=1

diχpi bip −
m∑

p=1

m∑
i=1

api bip =
m∑

p=1

dpbpp −
m∑

p=1

m∑
i=1

api bip.

Since bpp = 1, and

bip =




1 if (vi , vp) ∈ E and

vi , vp belong to the same block Vj,

0 otherwise,

it follows that trace(LGB) = 2|E | − 2(|E | − |E ⊆) = 2|E ⊆|.
28. Using the notations of Supplement 27 assume further that m1 � m2 � · · · � mk .

If σ1 � σ2 � · · · � σm are the eigenvalues of LG, prove that

|Ec| ∗ 1

2

k∑
p=1

m pσp.

Solution: The spectrum of B consists of the numbers m1, . . . , mk (each having
algebraic multiplicity 1) and 0 having algebraic multiplicity

∑k
p=1 m p − k. By

Supplement 47 of Chap. 10 we have

trace(LGB) �
k∑

p=1

m pσp.

Taking into account Supplement 27 it follows that |E ⊆| �
∑k

p=1 m pσp.

Bibliographical Comments

Several general introductions in data mining [10, 13] provide excellent references
for clustering algorithms. Basic reference books for clustering algorithms are [4, 14].
Recent surveys such as [1, 15] allow the reader to get familiar with current issues in
clustering. Cluster features discussed in Exercise 6 were considered in the BIRCH
algorithm [16]. Exercises 7–10 contain results obtained in [12]. Theorem 16.39 was
obtained in [17].

The result described in Supplement 15 was established in [18].
Supplements 27–28 contain results obtained in [19].
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Symbols
F-closed subset of a set, 46
Fν-set, 410
Gν-set, 410
Q R-decomposition, 334
φ-conditional entropy of two attribute sets, 618
φ-entropy of a set of attributes, 617
I-open subsets of a set, 46
K-closed subsets of a set, 44
K-matrix, 516
C-differential, 622
C-differential of a set function, 618
Ψn

1 and Ψn∞ normed linear space of sequences,
285

β-transformation of a dissimilarity, 810
μ-measurable set, 181
Φ-product of metric spaces, 715
δ -homogeneous set, 720
π -field of sets, 174
k-dimensional dissimilarity space, 709
k-nearest neighbor query, 703
n-ary term, 561
r -net, 417
t-congruent matrices, 349

A
Absorption laws, 542
Accumulation point, 158
Accuracy of approximation, 53
Addition formula for binomial coefficients, 103
Additive inverse of an element, 36
Additivity of measures, 179
Additivity property of tree metrics, 681
Additivity rule, 595

Adjunct of a mapping, 556
Affine combination, 436
Affine mapping, 202
Affine set, 435
Affinely dependent set, 436
Affinely independent set, 436
Algebra, 36

Boolean, 557
carrier of an, 36
closed set of an, 40
congruence of an, 40
endomorphism of an, 39
finite, 36
of finite type, 36
quotient algebra of an, 40
set of polynomials of an, 62
subalgebra of an, 41
type, 36

finite, 36
Algebra of type σ , 36
Alphabet, 22
Angle between vectors, 295
Annulus algorithm, 708
Antimonotonic mapping, 85
Antisymmetric

relation, 11
Approximation space, 51

definable set in an, 53
externally undefinable set in an, 53
internally undefinable set in an, 53
totally undefinable set in an, 53
undefinable set in an, 53

Armstrong table, 596
Armstrong’s rules, 593

soundness of, 593
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Association rule, 655
exact, 656

Attractor of an iterative function system, 760
Attribute, 583

domain of an, 584
Augmentation rule, 593
Axioms for partition entropy, 600

B
Banach space, 310
Basis for a subset of a dissimilarity space, 708
Bell numbers, 142
Bijection, 13
Bilinear form, 236
Bilinear mapping, 236
Binomial coefficient, 102
Bipartition, 493
Birkhoff-von Neumann theorem, 494
Boolean algebra morphism, 558
Boolean function, 560

i-negative binary, 574
i-positive binary, 574
binary, 568
conjunctive normal form of a, 566
cover of a binary, 571
disjunctive normal form of a, 563
implicant of a binary, 568
minimal cover of a binary, 571
partially defined, 573
prime implicant of a binary, 569
standard disjunctive normal form of a, 565

Boolean projection function, 560
Borel set, 175
Borel–Cantelli lemma, 194
Boundary of a set, 51
Box-counting dimension, 752
Buneman’s inequality, 48

C
Candidate objects, 660
Capacity of an edge, 517
Cartesian product

monotonicity of, 7
projections of the, 57

Cauchy matrix of two real sequences, 274
Cauchy–Binet formula, 251
Cayley–Hamilton theorem, 367
Centroid, 768
Characteristic polynomial, 348
Cholesky’s decomposition theorem, 327
Closed function, 189

Closed segment, 435
Closed set, 150
Closed set generated by a subset, 44
Closed sphere, 50
Closure

border defined by a, 62
Closure of a set of attributes under a set of

functional dependencies, 596
Closure operator, 43
Closure system on a set S, 42
Cluster, 767
Cluster point, 158
Clustering, 767

complete-link, 775
dissimilarity conformant to a, 810
exclusive, 767
extrinsic, 767
group average, 777
hierarchical, 767

agglomerative, 767
divisive, 767

intrinsic, 767
partitional, 767
single-link, 773

Clustering function, 810
β-forcing with respect to a, 811
k-means, 811
k-median, 811
consistent, 810
rich, 810
scale-invariant, 810

Coextensive tables, 584
Cofactor, 250

principal, 250
Collection

bi-dual collection of a, 12
intersection of a, 2
union of a, 2

Collection of neighborhoods, 150
Community matrix of a partition, 535
Companion matrix of a polynomial, 268
Complementary subspaces, 205
Complete lattice isomorphism, 554
Complete lattice morphism, 554
Completeness of Armstrong’s axioms, 596
Completion of a measure, 194
Concave function, 441
Conclusion of a rule, 593
Condensed graph of a graph, 473
Conditional attribute, 624
Congruent matrices, 349
Conjugate of an integral partition, 119
Connected component of an element, 168
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Consensus of terms, 568
Consistent family of matrix norms, 312
Contingency matrix of two partitions, 720
Continuity argument, 260
Continuous function, 164
Contraction, 421
Convex closure of a set, 437
Convex combination, 436
Convex function, 441

closed, 442
level set of a, 451

Convex hull of a set, 437
Convex set, 435

support function of a, 450
Convolution product, 107
Core of a set, 450
Correlation coefficient, 344
Cost of an edit transcript, 702
Cost scheme of editing, 702
Courant–Fisher theorem, 364
Covariance coefficient, 344
Covering of partition, 87
Cramer’s formula, 256
Crisp set, 52
Cut, 520

(s, t)-, 486
capacity of a, 520
minimal, 520
value of a flow across a, 520

Cut ratio, 800
Cycle, 98, 464

simple, 465
trivial, 98

D
Decision attribute, 624
Decision function of a decision system, 624
Decision system, 624

classification generated by a, 625
consistent, 625
deterministic, 625
inconsistent, 625
negative patterns of a, 632
nondeterministic, 625
positive patterns of a, 632
pure, 625

Decomposition of a collection of sets, 620
Degree of membership, 51
Deletion, 700
Deletion of a symbol from a sequence, 700
Dendrogram, 676
Density constraint, 622

Density function of a set function, 619
Density of a collection, 136
Derangement, 139
Derived set, 158
Determinant, 242

Vandermonde, 250
Difference set of a positive and a negative

example in a decision system, 638
Differential constraint, 622
Digraph, 466

acyclic, 466
ancestor of a vertex in an, 467
descendant of a vertex in an, 467

closed walk in a, 466
cycle in a, 466
edge in a, 466
finite, 466
in-degree of a vertex in a, 466
length of a walk in a, 466
linear, 467
node in a, 466
out-degree of a vertex in a, 466
path in a, 466
source of an edge in a, 466
undirected walk in a, 467
vertex in a, 466
walk in a, 466

Dimension of a sequence of ratios, 759
Dimensionality curse, 727
Diminishing return property of submodular

functions, 643
Direct sum of subspaces, 204
Dissimilarities

definiteness of, 48
evenness of, 48

Dissimilarity, 47
space, 47

Distance, 48
Hamming, 49

Dual statement, 74
Dualization, 74
Dually hereditary collection of sets, 123

E
Eckhart–Young theorem, 375
Edge cover, 523
Edit transcript, 700
Editing functions, 700
Eigenspace of an eigenvalue, 355
Eigenvalue, 347

algebraic multiplicity of an, 349
geometric multiplicity of an, 355
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semisimple, 356
simple, 349, 356

Element
inverse of an, 37

Endpoints of an edge, 457
Entourage in a uniform space, 433
Epigraph of a function, 442
Equivalence

positive set of an, 54
set saturated by an, 27

Equivalence class, 27
Equivalent norms, 306
Essential prime implicant, 572
Extended dissimilarity on a set, 47
Extended dissimilarity space, 48
External complexity of searching in metric

spaces, 711

F
Factorial power, 141
Ferrers diagram, 119
Fiedler vector, 797
Fiedler’s graph theorem, 797
Fiedler’s matrix theorem, 794
Field, 38
Field of sets, 174
Filter

principal, 576
Filter of a lattice, 575
Finite intersection property, 162
Fixed point of a function, 421
Flow, 517

edge saturated by a, 518
integral, 522
maximal, 518
value of a, 518
zero, 518

Forest, 478
Forgy’s algorithm, 779
Four-point inequality, 48
Fourier expansion, 299
Fréchet isometry, 429
Frobenius inequality, 275
Function, 10

empty, 10
image of a set under a, 17
image of an element under a, 12
indicator, 15
inverse image of a set under a, 17
kernel of a, 26
pairing, 31
partial, 13

total, 13
Function between two sets, 13
Function continuous in a point, 403
Functional dependency, 590

proof of a, 593
table that satisfies a, 590
trivial, 592

Functional dependency schema, 592
Functions

composition of, 14

G
G-measure on a set, 615
Galois connection, 554
Generalization in a partially ordered set, 658
Generalized measure, 614, 615
Gershgorin disk, 395
Gini index, 607
Gini index of a partition, 598
Gramian of a sequence of vectors, 327
Graph, 457

k-regular, 464
n-chromatic, 531
acyclic, 465
adjacency matrix of a, 464
adjacent vertices in a, 457
bipartite, 493

complete, 493
centrality of a vertex in a, 536
chromatic number of a, 531
clique in a, 471
coloring of a, 531
complement of a, 460
complete, 458
complete set of vertices in a, 471
connected, 470
connected component of a, 470
connectivity of a, 789, 796
degree matrix of a, 461
degree of a vertex in a, 461
destination of an edge in a, 466
directed, 466

adjacency matrix of a, 468
incidence matrix of a, 468
variable adjacency matrix of a, 474

distance between two vertices in a, 465
edge connectivity of a, 790
edge in a, 457
edge incident to a vertex in a, 457
endpoints of a walk in a, 464
finite, 457
Hamiltonian path in a, 532
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incidence matrix of a, 464
intersection, 529
Laplacian matrix of a, 782
linear, 470
loop in a, 466
matching in a, 494
node in a, 457
normalized Laplacian of a, 798
numbered, 489
numbering of a, 489
order of a, 457
ordinary spectrum of a, 524
regular, 464
star, 526
symmetric Laplacian of a, 798
threshold, 529
triangle in a, 465
undirected, 457
vertex connectivity of a, 790
vertex in a, 457
walk in a, 464
weighted, 482

adjacency matrix of a, 483
cut in a, 486
degree matrix of a, 483
minimal spanning tree of a, 483
separation of a partition in a, 486

Graph automorphism, 471
Graph invariant, 472
Graph isomorphism, 471
Graph of a pair of partitions, 498
Graphic sequence, 461
Graphs

volume of a set of vertices in a, 802
Greatest element, 72
Greatest lower bound, 72
Group, 37

Abelian, 37
commutative, 37
linear, 278

Groupoid, 36

H
Hadamard product, 262
Hadamard quotient, 262
Hall’s matching theorem, 494
Hasse diagram, 69
Hausdorff metric hyperspace, 424
Hausdorff–Besicovitch dimension of a set, 756
Hausdorff–Besicovitch outer measure, 756
Helly’s theorem, 453
Hereditary collection of sets, 123

Hereditary set, 658
Hierarchy, 672

graded, 674
ultrametric generated by a, 675

grading function for a, 674
Hilbert matrix, 274
Hoffman–Wielandt theorem, 496
Homeomorphic topological spaces, 165
Homeomorphism, 165
Homogeneous linear system, 240

trivial solution of a, 240
Homotety, 202
Hyperplane, 300

vector normal to a, 300
Hypograph of a function, 442
Hölder condition of exponent ι, 763

I
Ideal of a lattice, 575
Immediate descendant of a vertex, 480
Inclusion rule, 593
Inclusion–exclusion principle, 104
Independence number of a collection of sets,

137
Independent collection of sets, 137
Independent set of vertices in a graph, 815
Index of an element in a set, 488
Indiscernibility relation, 587
Inertia of a data matrix, 343
Infimum, 72
Infinite ascending sequence, 78
Infinite descending sequence, 78
Injection, 13
Inner product, 290

conjugate linearity of an, 290
Euclidean, 291

Inner product space, 290
Insertion, 700
Insertion of a symbol in a sequence, 700
Integral partition of a natural number, 118
Interior of a set, 155
Interior system, 46
Interlace, 365

tight, 365
Interlacing theorem, 365
Internal complexity of searching in metric

spaces, 711
Intersecting property of a collection, 143
Intersection

associativity of, 3
commutativity of, 3
idempotency of, 3
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Interval binary attribute, 636
Invariant set for an iterative function system,

758
Invariant subspace, 355
Isolated vertex, 461
Isometric embedding, 428
Isometry, 421
Isomorphic graphs, 471
Isomorphic posets, 86
Isomorphic semilattices, 542
Isomorphism, 41
Isomorphism of Boolean algebras, 558
Iteration of a function, 421
Iterative function system on a metric space,

758

J
Join between tuples, 586
Join of two graphs, 460
Join of two tables, 587
Joinable tuples, 586
Jordan–Dedekind condition for posets, 80

K
Kirchhoff’s law, 518
Kleitman inequality, 124
Kronecker difference, 262
Kronecker function, 107
Kronecker product, 260
Kronecker sum, 262
Kruskal’s algorithm, 483

L
Lagrange interpolation polynomial, 277
Lagrange’s identity, 253
Laplace expansion of a determinant by a

column, 250
Laplace expansion of a determinant by a row,

249
Laplacian spectrum, 782
Large inductive dimension, 735
Lattice, 542

Boolean, 557
bounded, 544
complement of an element in a, 552
complementary elements in a, 552
complemented, 552
complete, 553
distributive, 549
interval in a, 545
modular, 546

projection in a, 545
semimodular, 547
sublattice of a, 544

Lattice isomorphism, 544
Lattice morphism, 544
Least element, 72
Least upper bound of a set, 72
Left inverse, 14
Left singular vector, 372
Length of a walk, 464
Level binary attribute, 636
Levelwise algorithm, 660
Levenshtein distance between sequences, 701
Lexicographic partial order, 84
Linear form, 202
Linear mapping, 202
Linear space, 197

n-dimensional, 201
affine subspace of a, 266
basis of a, 199
complex, 197
dimension of a, 201
endomorphism of a, 202
linear combination of a subset of a, 199
linear operator on a, 202
real, 197
set spanning a, 199
set that generates a, 199
subspace of a, 199
zero element of a, 198

Linear space symmetric relative to a norm, 342
Linearly dependent set, 199
Linearly independent set, 199
Linearly separable set, 639
Lipschitz function, 421
Locally finite poset

Möbius function of a, 110
Logarithmic submodular function, 614
Logarithmic supramodular function, 614
Logical implication between functional

dependencies, 596
Lovász extension of a set function, 644
Lower approximation of a set, 51
Lower bound, 70
Lower box-counting dimension, 752

M
Möbius dual inversion theorem, 619
Mapping, 13

containment, 13
Marginal totals of a contingency matrix, 720
Mass distribution principle, 758
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Matrix, 206
adjoint, 256
adjoint of a, 291
Cholesky factor of a, 328
column subspace of a, 218
covariance, 344
data, 278

centered, 278
mean of, 278
standard deviation of a, 343

defective, 356
degenerate, 227
diagonal, 207
diagonalizable, 352
diagonally dominant, 241
directed graph of a, 501
doubly stochastic, 220
eigenvalue of a, 347
field of values of a, 389
format of a, 206
full-rank, 227
g-inverse of a, 277
generalized inverse of a, 277
Givens, 304
Gram, 326
Hadamard, 336
Hermitian, 208
Hermitian conjugate of a, 208
Householder, 305
idempotent, 213
index of a square, 235
inertia, 362
inertia of a, 361
inverse of a, 219
irreducible, 501
left inverse of a, 233
linear operator associated to a, 218
lower triangular, 207
main diagonal of a, 207
minor of a, 248
Moore-Penrose pseudoinverse of a, 278
nilpotency of a, 213
nilpotent, 213
non-defective, 356
non-derogatory, 356
non-negative, 212

Perron vector of an irreducible, 508
non-singular, 227
normal, 214
null space of a, 218
numerical rank of a, 378
orthogonal, 302
partitioning of a, 213

Pauli, 300
positive, 212

Perron vector of a, 506
positive definite, 324
positive semidefinite, 324
primitive, 504
range of a, 218
rank of a, 225
reflexion, 303
right inverse of a, 233
rotation, 303
self-adjoint, 291
signature of a, 361
singular, 227
singular triplet of a, 372
singular value of a, 372
skew-Hermitian, 208
skew-symmetric, 207
square, 207
stochastic, 220
strongly non-singular, 276
symmetric, 207
threshold, 529
trace of a, 211
transpose of a, 207
unimodular, 270
unit, 209
unitarily diagonalizable, 352
unitary, 214
upper triangular, 207
zero, 209

Matrix associated to a linear mapping, 217
Matrix norm

vectorial, 311
Maximal element, 73
Maximal subdominant ultrametric for a

dissimilarity, 678
Measurable function, 177
Measurable space, 174
Measure, 179
Measure space, 179
Medoid, 780
Method I for constructing outer measures, 183
Metric, 48

α2, 695
discrete, 49
Hausdorff, 424
Minkowski, 286
Ochïai, 694
Steinhaus transform of a, 690
topology induced by a, 400
tree, 681

Metric space, 48
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r -cover of a, 755
r -cover of a set in a, 753
r -separation number of a subset of a, 753
amplitude of a sequence in a, 47
bounded set in a, 50
complete, 415
covering dimension of a, 745
diameter of a, 50
diameter of a subset of a, 50
distance between an element and a set in a,

403
embedding of a, 428
large inductive dimension of a, 735
separate sets in a, 405
separated r -set in a, 753
small inductive dimension of a, 735
topological, 400
zero-dimensional, 736

Metric spaces
isometric, 421

Minimal element, 73
Minimax inequality for real numbers, 268
Minkowski sum of two subsets, 449
Minterms, 563
Modular function, 614
Modularity index, 809
Modularity property of measures, 179
Monochromatic set, 114
Monoid, 37
Monotonic mapping, 85
Monotonicity of measures, 179
Monotonicity property, 777
Morphism, 202
Morphism of posets, 85
Multicollection, 34
Multilinear mapping, 236
Multiset, 33

carrier of a, 33
difference of, 60
empty, 34
multiplicity of an element of a, 33

Multisets
intersection of, 34
sum of, 34
union of, 34

Munroe’s method II, 428

N
Negative closed half-space, 300
Negative example, 639
Negative observations, 631, 635
Negative open half-space, 300

Negative region of a set, 51
Net, 417
Network, 517
Newton’s binomial formula, 103
Non-Shannon entropy, 604
Norm

Euclidean, 286
Frobenius, 313
metric induced by a, 286
Minkowski, 285
unitarily invariant, 316
zero-, 340

Norm of a linear function, 308
Normal matrix

spectral decomposition of a, 360
Normed linear space, 284
Normed space

complete, 310

O
Oblique projection, 318
Observation table, 631, 635
One-to-one correspondence, 13
Open function, 189
Open set, 149
Open sphere, 50
Operation, 35

n-ary, 35
arity of an, 35
associative, 35
binary, 35

unit of a, 35
zero of a, 35

commutative, 35
idempotent, 35
inverse of an element relative to an, 36
multiplicative inverse of an element relative

to an, 36
unary, 35
zero-ary, 35

Opposite element of an element, 36
Orbit of an element, 61
Order of a family of subsets of a set, 745
Orthogonal projection, 319
Orthogonal set of vectors, 298
Orthogonal subspaces, 296
Orthogonal vectors, 296
Orthogonality, 296
Orthonormal set of vectors, 298
Outer measure, 181

Carathéodory, 425
Lebesgue, 185
regular, 186
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P
Pair

ordered, 5
components of an, 5

Parallelogram equality, 292
Parseval’s equality, 299
Partial order, 67

discrete, 67
extension of a, 90
infix notation for, 68
strict, 67
trace of a, 68
transitive reduction of a, 70

Partially ordered set, 67
Partition, 28

φ-conditional entropy of a, 608
block of a, 28
finer than another partition, 28
set saturated by a, 29

Path, 464
Permutation, 97

cyclic, 98
cyclic decomposition of a, 98
descent of a, 99
even, 100
inversion of a, 99
odd, 100

Permutation parity, 100
Perron theorem, 507
Pigeonhole principle, 116
Pivot, 704
Polytope, 437

proper faces of a, 438
supporting hyperplane of a, 438

Poset, 67
antichain in a, 77
Artinian, 78
atom in a, 72
border of a subset of a, 657
chain in a, 76
closed interval in a, 106
closure operator on a, 555
co-atom in a, 72
comparability graph of a, 532
covering relation in a, 69
dual of a, 74
finite, 67

dimension of a, 93
height of a, 80
width of a, 80

graded, 79
grading function of a, 79
level set of a, 79

greatest element of a, 72
height of an element of a, 80
incidence algebra of a, 107
incomparable elements in a, 76
least element of a, 72
locally finite, 94, 107
multichain in a, 76
negative border of a subset of a, 658
Noetherian, 78
open interval in a, 106
order filter in a, 92
order ideal in a, 92
positive border of a subset of a, 658
realizer of a, 93
standard example, 93
upward closed set in a, 153
well-founded, 79
well-ordered, 78

Poset isomorphism, 86
Positive closed half-space, 300
Positive example, 639
Positive observations, 631, 635
Positive open half-space, 300
Positive region of a set, 51
Prűfer sequence, 489
Precompact set, 418
Premises of a rule, 593
Prim’s algorithm, 485
Principal ideal, 576
Principal minor, 248

leading, 248
Product of algebras, 41
Product of graphs, 460
Product of matrices, 210
Product of metric spaces, 715
Product of posets, 83, 95
Product of the topologies, 172
Product of topological spaces, 172
Projection, 21
Projection matrix of a subspace, 320
Projection of a table, 585
Projection of a tuple, 585
Projectivity rule, 595
Ptolemy inequality, 342
Pythagora’s theorem, 297

Q
Quasi-ultrametric, 669
Query, 659
Query object, 703
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R
Random walk Laplacian, 798
Range query, 703
Rank of an implicant, 568
Ranked poset of objects, 659
Rayleigh–Ritz theorem, 363
Reflexive

relation, 11
Relation, 7

n-ary, 22
acyclic, 69
arity of a, 22
asymmetric, 11
binary, 22
collection of images of a set under a, 12
domain of a, 8
dual class relative to a, 12
empty, 8
equivalence, 26
full, 8
identity, 8
image of an element under a, 12
inverse of a, 8
irreflexive, 11
one-to-one, 10
onto, 11
polarity generated by a, 555
power of a, 10
preimage of an element under a, 12
range of a, 8
ternary, 22
tolerance, 28
total, 11
transitive closure of a, 45
transitive-reflexive closure of a, 45

Relation product, 9
Relational database, 585

state of a, 585
Replacement, 25
Residual network, 520
Riemann function of a locally finite poset, 110
Right inverse, 14
Right singular vector, 372
Ring, 37

commutative, 38
left distributivity laws in a, 38
right distributivity laws in a, 38
unitary, 38

Ring addition, 38
Ring multiplication, 38
Rotation with a given axis, 343
Rough set, 52

S
Schröder–Bernstein theorem, 578
Schur’s complement, 275
Selection criterion, 768
Self-conjugate partition of an integer, 143
Semigroup, 36
Semilattice, 539

join, 541
meet, 541

Semilattice morphism, 541
Semimetric, 49
Seminorm, 284
Sequence, 22

Cauchy, 415
components of a, 22
concatenation, 23
convergent, 411
infinite, 24
infix of a, 23
length of a, 22
occurrence of a, 24
prefix of a, 23
product, 23
proper infix of a, 23
proper prefix of a, 23
proper suffix of a, 23
sequence majorizing a, 453
sequence on a, 22
subsequence of a, 23
suffix of a, 23

Sequence divergent to +∞, 412
Sequence divergent to −∞, 412
Sequential cover of a set, 183
Set

bounded, 70
cardinality of a, 20
collection of preimages of a, 12
complement of a, 3
countable, 31
cover of a, 30
finite, 19
gauge on a, 49
group action on a, 61
indicator function of a, 15
infinite, 19

cofinite subset of an, 19
product, 21
quotient, 29
relation on a, 7
simple function on a, 16
transitive, 56
unbounded, 70
uncountable, 31
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Set of colors of a set coloring, 114
Set of interesting objects for a database state

and a query, 660
Set of neighbors of a set of vertices, 494
Set of permutations, 97
Set of tuples of a heading, 584
Set shattered by a collection of concepts, 125
Set that separates two sets in a topological

space, 739
Setq

sequence of
expanding, 25

Sets
Cartesian product of two, 6
collection

refinement of a, 5
collection of, 2

trace of, 5
inclusion between, 2

collection of
hereditary, 5

difference of, 3
disjoint, 3
equinumerous, 19
product of a collection of, 21
sequence of

contracting, 25
convergent, 25
limit of a, 25
monotonic, 25
upper limit of a, 25

sequence of sets
lower limit of a, 25

symmetric difference of, 4
Shannon entropy of a partition, 598
Similar matrices, 349

unitarily, 349
Similarity, 50, 420
Similarity dimension of an iterative function

system, 760
Similarity graph, 459
Similarity ratio, 421
Simple Boolean functions, 560
Simplex, 437

dimension of a, 437
Singular value, 372
Size of a cut, 486
Skew-symmetric multilinear form, 236
Small inductive dimension, 735
Smith normal form for a matrix, 270
Specialization in a partially ordered set, 658
Spectral radius, 370
Spectral theorem for Hermitian matrices, 360

Spectral theorem for normal matrices, 359
Sperner system, 119
Sperner’s theorem, 120
Standard basis of Cn , 222
Standard disjunctive coefficients, 565
Stirling numbers

of the first kind, 141
Stirling numbers of the second kind, 118
Strict order, 67
Strictly monotonic mapping, 85
Strongly connected digraph, 473
Subcollection, 2
Subcover of an open cover, 161
Subdistributive inequalities, 549
Subgraph, 458

spanning, 470
Subgraph induced by a set of vertices, 458
Subgroup, 41
Submodular function, 614
Submodular inequality, 546
Submodularity of generalized entropy, 614
Submonoid, 41
Submultiplicative property of matrix norms,

312
Subset closed under a set of operations, 46
Subspace

orthogonal complement of a, 296
Substitution, 700
Substitution of a symbol of a sequence, 700
Sum of matrices, 209
Sum of square errors, 769
Sum of two morphisms, 203
Supramodular function, 614
Supremum, 72
Surjection, 13
SVD theorem, 372
Sylvester’s identity, 271
Sylvester’s inertia theorem, 362
Sylvester’s rank theorem, 229
Symbol

occurrence of a, 24
Symmetric

relation, 11
Symmetric function, 380
System of distinct representatives, 59
System of linear equations, 240

augmented matrix of a, 240
consistent, 240

T
Table

core of a, 588
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key of a, 590
reduct of a, 588

Tabular variable, 584
heading of a, 584
table of a, 584

Target of a functional dependency proof, 594
Tarski’s fixed point theorem, 577
The Bolzano–Weierstrass property of compact

spaces, 164
The Full-rank factorization theorem, 231
The normed linear space Ψp of infinite

sequences, 290
The Schoenberg transform of a metric, 712
Tolerance, 28
Topological linear space, 263
Topological property, 166
Topological sorting, 467
Topological space, 149

T0, 170
T1, 170
T2, 170
T3, 170
T4, 170
arcwise connected, 190
Baire, 156
border of a set in a, 156
clopen set in a, 158
closed cover in a, 161
compact, 162
compact set in a, 163
connected, 167
connected subset of a, 167
continuous path in a, 190
cover in a, 161
dense set in a, 154
disconnected, 167
empty, 150
first axiom of countability for a, 161
Hausdorff, 170
locally compact, 164
normal, 171
open cover in a, 161
precompact, 417
regular, 171
relatively compact set in a, 163
second axiom of countability for a, 161
separable, 154
separated sets in a, 188
subspace of a, 153
totally disconnected, 170

Topologically equivalent metrics, 401
Topology, 149

Alexandrov, 153

basis of a, 160
coarser, 153
cofinite, 153
discrete, 150
finer, 153
indiscrete, 150
subbasis of a, 160
usual, 150

Total order, 76
Totally ordered set, 76
Training set, 624
Transitive

relation, 11
Transitivity rule, 593
Translation in Rn , 203
Transposition, 98

standard, 98
Tree, 478

binary, 481
almost complete, 482
complete, 482
ordered, 482

equidistant, 687
root of a, 480
rooted, 480

height of a, 480
height of a vertex in a, 480
level in a, 480
ordered, 481

Rymon, 488
spanning, 480

Tree metric, 48
Triangular inequality, 48

U
Ultrametric, 48
Ultrametric inequality, 48
Ultrametric space, 48
Uniform space, 433
Uniformity on a set, 432
Uniformly continuous function, 402
Unimodal sequence, 138
Union

associativity of, 3
commutativity of, 3
idempotency of, 3

Union of graphs, 460
Upper approximation of a set, 51
Upper bound, 70
Upper box-counting dimension, 752
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V
Valuation of a vertex, 797
Vapnik–Chervonenkis class, 126
Vapnik–Chervonenkis dimension, 125
VC class, 126
Vector

standard deviation of a, 343
variance of a, 343

Vectorization mapping, 311
Vertex

proper ancestor of a, 467
proper descendant of a, 467

Vertex cover, 523

W
Walk that connects two vertices, 464

Weakly connected digraph, 473
Wedderburn’s theorem, 234
Weight function, 691
Weight of an edge, 482
Well-ordering principle, 78
Weyl’s theorem, 386
Witness set of collection of sets, 620
Woodbury–Sherman–Morrison identity for

determinants, 273
Woodbury–Sherman–Morrison identity for

matrices, 273
Word, 22

Z
Zero morphism of Rn , 202
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